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Preface to ”Applications of Remote Sensing/GIS in

Water Resources and Flooding Risk Managements”

Water, one of the most important natural resources, supports our daily life, maintains the ecosystems

that we rely on, provides transportation, recreation, ecotourism, and much more. Pressures on water

resources and disasters are rising primarily due to unequal distribution, urbanization, extreme and

frequent drought and flooding, pollution, deforestation, and also partly due to poor knowledge about

the distribution of water recourses and poor management of water resources and usage. Remote

sensing provides critical data for mapping water resources and changes, while GIS provides the best

tool for water resource and flood risk management, presentation, visualization and public education.

This Special Issue collects the best practices, cutting-edge technologies and applications of remote

sensing, GIS and hydrologic models for water resources mapping, satellite rainfall measurements,

runoff simulation, urban water body and flood inundation mapping. We hope you will find this issue

valuable and it helps to improve water and water-related risk research and management moving

forward to a new era.

Hongjie Xie, Xianwei Wang

Special Issue Editors
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Abstract: Water is one of the most critical natural resources that maintain the ecosystem and support
people’s daily life. Pressures on water resources and disaster management are rising primarily due to
the unequal spatial and temporal distribution of water resources and pollution, and also partially
due to our poor knowledge about the distribution of water resources and poor management of their
usage. Remote sensing provides critical data for mapping water resources, measuring hydrological
fluxes, monitoring drought and flooding inundation, while geographic information systems (GIS)
provide the best tools for water resources, drought and flood risk management. This special issue
presents the best practices, cutting-edge technologies and applications of remote sensing, GIS and
hydrological models for water resource mapping, satellite rainfall measurements, runoff simulation,
water body and flood inundation mapping, and risk management. The latest technologies applied
include 3D surface model analysis and visualization of glaciers, unmanned aerial vehicle (UAV) video
image classification for turfgrass mapping and irrigation planning, ground penetration radar for soil
moisture estimation, the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation
Measurement (GPM) satellite rainfall measurements, storm hyetography analysis, rainfall runoff and
urban flooding simulation, and satellite radar and optical image classification for urban water bodies
and flooding inundation. The application of those technologies is expected to greatly relieve the
pressures on water resources and allow better mitigation of and adaptation to the disastrous impact
of droughts and flooding.

Keywords: remote sensing; geographic information systems (GIS); glaciers; water body; soil moisture;
groundwater; flooding; rainfall measurements; design storm; runoff simulation

1. Introduction

Human-accessible freshwater resources primarily include mountain glaciers, snow, surface water
bodies (lakes, rivers and reservoirs), soil moisture and ground water. Since they have very unequal
distribution spatially and temporally, pressures on water resources are increasing globally. On the
other hand, people may not know where and how much water resources are available regionally,
especially for the remote mountain glaciers/snow, and deep confined groundwater. In extreme
cases, if there is too little or too much water within a certain period and area, severe drought and
torrent flooding could occur, often resulting in catastrophic impacts and damages to the local and
regional community. Therefore, it is of great significance to map and manage water resources,
drought and flooding risk precisely by using the cutting-edge technologies of remote sensing,
geographic information systems (GIS), geostatistics and hydrologic models (Table 1).

Water 2018, 10, 608 1 www.mdpi.com/journal/water
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Table 1. Latest remote sensing technology and sensors used for water resources, hydrological fluxes,
drought and flood mapping.

Application Fields Specific Contents Examples of Sensors or Satellites

Water resources

Snow AVHRR, Terra/Aqua MODIS, Landsat, SSM/I,
AMSR-E, Cryosat etc.

Glaciers Landsat, ASTER, SPOT, ICESat, SRTM, etc.
Soil moisture SSM/I, AMSR-E, SMAP, SMOS, etc.
Groundwater GRACE

Lakes, reservoirs, rivers, and wetlands MODIS, Landsat, SPOT, ICESat, GRACE, SRTM etc.

Hydrological fluxes
Precipitation NEXRAD, TRMM, GPM, etc.

Evapotranspiration MODIS, Landsat, GRACE, etc.
River, reservoir or lake discharge MODIS, ENVISAT, Landsat, SRTM, ICESat, etc.

Drought and flooding Drought and flooding MODIS, Landsat, GRACE, UAV, AMSR-E, SMAP,
SMOS, ENVISAT, ASAR, Sentinel-1A/2A, etc.

Remote sensing provides critical data for water resource mapping (Table 1). Satellite remote
sensing techniques can make continuous and up-to-date measurements with global coverage
depending on their orbital features, while they count on ground observations for algorithm
development and validation [1]. For example, the Moderate Resolution Imaging Spectroradiometer
(MODIS) on-board on Terra and Aqua satellites has provided daily global snow cover products
since February 2000 [2]. They have been widely applied in different fields, such as hydrology,
agriculture and climate studies [3,4]. Relative high-resolution images from the Landsat series could
be used to recovery and monitor the global state of mountain glaciers, thus making it possible to
update the global glacier inventories at high accuracy and confidence, such as the Global Land
Ice Measurements from Space (GLIMS), and Glacier Area Mapping for Discharge from the Asian
Mountains (GAMDAM), and the second Chinese Glacier Inventory [5–7]. Besides areas, glaciers surface
elevation information extracted from satellite instruments of the National Aeronautics and Space
Administration (NASA) Ice, Cloud and land Elevation Satellite (ICESat), Shuttle Radar Topographic
Mission (SRTM), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER),
SPOT 5 and even airborne stereo images were used to investigate glaciers’ thickness and volume
changes in the vast, high Asia Mountains [8–10]. MODIS images and ICESat elevation data were used
together to map the lake water body areas and surface elevation changes in human-inaccessible
regions in the Tibetan Plateaus for the first times on record [11,12]. The Advanced Microwave
Scanning Radiometer for NASA’s Earth Observing System (AMSR-E), NASA’s Soil Moisture Active
and Passive (SMAP) mission, and the European Space Agency (ESA) Soil Moisture Ocean Salinity
(SMOS) mission all can provide global soil moisture mapping [1,13]. Groundwater is the most
difficult to detect by satellite sensors, while the Gravity Recovery and Climate Experiment (GRACE)
has been successfully used to measure groundwater depletion and the filling of the Three Gorges
Reservoir [14,15]. Ground penetration radar can even obtain accurate estimations of glacier thickness,
soil moisture, and groundwater [16,17].

Besides water resource mapping, remote sensing can also quantitatively measure hydrological
fluxes, such as precipitation, evapotranspiration, river stages and discharges (Table 1). Ground-based
radar such as the US Next Generation Weather Radar (NEXRAD) has been used to quantitatively
measure precipitation on US territory since 1990s at relatively high accuracy, and has been widely
applied to monitoring precipitation locally and regionally worldwide [18,19]. The Tropical Rainfall
Measuring Mission (TRMM) was the first satellite to measure the global mid-latitude precipitation
at unprecedented 0.25◦ and 3-h product since 1998, e.g., the Multi-satellite Precipitation Analysis
(TMPA), and the Global Precipitation Measurement (GPM) products have even been able to provide
global near-real time precipitation estimates of 0.1◦ and 30-min products since 2014, e.g., the Integrated
Multi-satellitE Retrievals of GPM (IMERG) [20,21]. Those precipitation products greatly improve
hydrological simulation and flood prediction due to their large coverage and relatively high spatial
resolution [22]. Evapotranspiration (ET) can be estimated based on the Surface Energy Balance
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Algorithms for Land (SEBAL) using the radiance detected by satellite sensors, such as Landsat and
MODIS retrievals [23]. Now, more energy balance-based models have been developed to estimate the
field actual ET in agricultural management [24]. Together with in situ lake water level observations,
daily MODIS images were also used to map the Poyang Lake’s water volume and lake bed topography
changes by the elevation contours derived from the land-water boundary line [25]. River discharge
estimation was traditionally done by in situ observations, and now can also be detected by the
synthetic width/stage-discharge rating curves via measuring the river’s effective wet width and
water level using MODIS, the Environmental Satellite (ENVISAT), Landsat and other high-resolution
images [26–28].

Remote sensing techniques are playing increasingly important roles in drought monitoring
and flooding emergency response (Table 1). Many drought indices were developed using MODIS
reflectance data under different climate and land cover conditions, such as the Normalized Difference
of Vegetation Index (NDVI), Normalized Difference of Water Index (NDWI), Visible Atmospherically
Resistant Index (VARI), Enhanced Vegetation Index (EVI), Normalized Difference Infrared Index Band
6 or Band7 (NDIIB6/7), and so on [29–31]. Emerging Unmanned Aerial Vehicles (UAV) provide a more
flexible low-altitude platform to monitor vegetation growth, soil moisture conditions, flood inundation
mapping and damage assessment [32]. Flood mapping from various data sources can greatly improve
disaster response, e.g., for the widespread and sustained flood events in several river basins in Texas
and Oklahoma of USA in late April and May 2015, a total 27,174 space- and airborne images were
applied to monitor the daily variations of flood inundation extents [33].

GIS is very versatile, especially in spatial analysis, modeling, visualization, data processing and
management. At most times e.g., in this special issue, GIS operates heroically behind the scenes.
Almost every paper published in this special issue uses GIS for data preprocessing, spatial analysis
or establishing results maps (Table 2). With unprecedented data resources, it is quite challenging
to manage so much data in risk management and especially in disaster response, such as in the
aforementioned 2015 Texas flooding event. Schumann et al. [33] suggest that the proactive assimilation
of methodologies and tools into the mandated agencies are required in order to unlock the full potential
of those various data. GIS, such as the most popular ArcGIS products and other commercial or open
source software, are required to process the original remote sensing images and videos, and carry out
spatial analysis, modeling and visualization. Meanwhile, statistics can draw solid conclusions from
the satellite images data and GIS spatial analysis.

Hydrologic models can take full use of the remote sensing and GIS data and carry out lots of
physical experiments and scenario analyses. They are able to provide a full spectrum of modeling what
happened in the past and project what will happen in the future. The availability of model simulations
over a long time period also allows for a robust estimate of low-probability events that were not
recorded in ground observations [34]. This is especially so for the remote and mountainous areas where
there are few or even none in situ observations for rainfall and stream flows; satellite-measured rainfall
is normally used to drive a hydrological model to simulate historical flooding events, thus projecting
current and future flooding risk [35].

In summary, remote sensing techniques have played increasingly important roles in the hydrologic
community (Table 1). They can map the spatial and temporal distributions of water resources,
quantitatively measure the hydrologic flux, and monitor the working conditions of hydraulic
infrastructures, drought conditions and flooding inundation. GIS, statistics and numerical models
together can unlock the potential of various remote sensing data resources, and make for better
management of water resources, drought and flooding disasters. The following session 2 summarizes
the 12 papers published in this special issue (Table 2), which present the best practices, cutting-edge
technologies and applications of remote sensing, GIS and hydrological models for water resources
mapping, satellite rainfall measurements, storm hyetography analysis, runoff and urban flooding
simulation, water body and flooding inundation mapping, and risk management.
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Table 2. Latest geographic information systems (GIS) and remote sensing technologies and hydrologic
models applied in the 12 papers published in this special issue.

Application Fields Specific Contents
GIS, Algorithm, Model,

Sensor or Satellites
Reference

Water resources
mapping and
management

Glaciers mapping Landsat, ASTER GDEM, GIS,
TIN 3D model. [36]

Soil moisture detection GPR, CMP, FO, GIS spatial
analysis [16]

Groundwater and
subsidence analysis GIS spatial analysis, GPS [37]

Irrigation planning
UAV, HTM for video image

classification, GIS
visualization

[32]

Rainfall
measurements and

design storm

Rainfall measurements TRMM, GPM, GIS spatial
analysis and visualization [38]

Design storm and urban
flood modeling

Huff curve, SWMM, GIS data
preprocess and visualization [39]

Rainfall runoff
prediction and flood

forecasting

Flood modeling GSSHA model, GPM IMERG,
GIS visualization [40]

Rainfall Runoff simulation RCM, LSM, CoLM, CoLM+LF,
GIS data preprocess [41]

Flood inundation forecast ARX regressor, MOGA
algorithm, GIS visualization [42]

Water body and flood
mapping

Flash flood detection TMPA real time 3B2RT, CT,
CDFs, JFI, GIS spatial analysis [43]

Urban water body mapping ZY-3 images, AUWEM, GIS
spatial analysis [44]

Flood inundation mapping ENVISAT, ASAR, GIS spatial
analysis [45]

2. Summary of This Special Issue

2.1. Water Resources Mapping and Management

Mountain glaciers and snow in the Tianshan Mountains are critical water resources in arid and
semi-arid Central Asia [46]. Glacier areas are defined as the extent in two horizontal dimensions
(2D area) in the ice mass balance community [47], and often used to estimate the total ice volume by
volume-area power law equations [48]. In the high Tianshan Mountains, most glaciers lie on steep
slopes, and their actual surface extent (3D area) may be much larger than the 2D area. Wang et al. [36]
in this special issue establish a 3D model to quantify glaciers’ 3D and 2D area differences in the
Muzart Glacier catchment and in Central Tianshan using ASTER GDEM data, CGI2 and Landsat
images. They found that glaciers’ 3D areas was 34.2% larger than their 2D areas in the Muzart Glacier
catchment and by 27.9% in the entire Central Tianshan, where glaciers’ 3D areas reduced by 115 km2

between 2007 and 2013, being 27.6% larger than their 2D area reduction. This confirms that there is
significantly large difference between glaciers’ 3D and 2D areas in the steep Central Tianshan. As they
remarked, “Those large areal differences remind us to re-consider a glacier’s real topographic extent
when discussing an alpine glacier’s areal and volume changes, especially in calculating the glacier’s
surface energy balance and melting rates in the high Asian mountain glaciers with large surface slopes
and strong solar radiation.”

Surface soil is a critical boundary layer between atmosphere and land surface. Soil water content
affects local agriculture, ecology, hydrology and climate. In the dry desert steppe, soil moisture is
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one of the main factors that control vegetation growth and ecosystem restoration. The common soil
moisture measurement technologies, such as the gravimetric method, neutron method, Time Domain
Reflector (TDR), Frequency Domain Reflectometry (FDR), and so on, provide point measurements
with high accuracy, while being labor and time-consuming and may destroy the soil structures.
Lu et al. [16] in this special issue present their study to measure the steppe soil moisture using Ground
Penetrating Radar (GPR). The common-mid point (CMP) method and fixed offset (FO) method are
used for sensitivity analysis, while the gravimetric soil moisture measurements are used to validate the
accuracy of the GPR measurements. Their results show Topp’s equation is more suitable than Roth’s
equation for processing GPR data in the desert steppe. Both CMP and FO methods show high accuracy
in GPR soil moisture measurements. Vegetation affects the measurement precision, and precipitation
reduces the effective sampling depth of the ground wave from 0.1 m to 0.05 m. Overall, the operation
of GPR measurements is simple and does not damage the soil layer structure, while providing high
accuracy and easy movement.

Groundwater is an important freshwater resource in mid-latitude and in arid and semiarid
regions. Instead of directly measuring the soil moisture or aforementioned glaciers, Li et al. [37] in this
special issue used GIS and statistical tools to study the geographic distribution of land subsidence,
groundwater drawdown, and compressible layer thickness using in situ monitoring data in the
metropolitan areas of Beijing, the capital of China. The Beijing Plain lies in the alluvial–pluvial plain
fan built up by river deposits and belongs to the temperate continental monsoon climate with annual
mean temperature of 10–15 ◦C and precipitation of 601 mm. Land subsidence is one of the critical
threats to the sustainable development of Beijing. Multiple approaches including point (gravity center),
line (major axes), and polygon (coverage) views are tested for analyzing spatial change patterns.
Results show that the Chaoyang District of Beijing had the largest land subsidence and groundwater
drawdown, both of which concentration trends were consistent and the principle orientation was
southwest–northeast (SW–NE). The spatial distribution pattern of land subsidence was similar to that
of the compressible layer. Those results are useful for assessing the distribution of land subsidence
and managing groundwater resources.

Irrigation planning is an important component in water resource and precision agriculture
management. Golf courses are one kind of precision agriculture, and their turfgrass has high water
demand. Turfgrass irrigation is rapidly transitioning to reuse water because of the water price incentive
and mandated water management policies. Therefore, knowing the turfgrass areas and growth
conditions can help plan the water and treated sewage effluent needs exactly at a daily or weekly
rate. Perea-Moreno et al. [32] in this special issue utilized UAV video images to extract automatically
the turfgrass areas and growth conditions by a Hierarchical Temporal Memory (HTM) algorithm,
and further assess the water needs for turfgrass irrigation. The extracted turfgrass area from video
imagery classification could achieve an accuracy of 98%. They commented, “Technical progress
in computing power and software has shown that video imagery is one of the most promising
environmental data acquisition techniques available today. This rapid classification of turfgrass can
play an important role for planning water management.”

2.2. Rainfall Measurements and Design Storm

Rainfall is one of the most critical components of water cycle and water resources recharge.
Heavy rainfall often causes devastating flood events. Typhoon-related heavy rainfall has unique
structures in both time and space at mesoscale. Satellite rainfall estimate may better delineate the
structures of heavy rainfall, which is helpful for early-warning systems and disaster management.
Wang et al. [38] in this special issue compares the latest versions of two satellite rainfall products with
ground rain gauge observations along the coastal region of China from 2014 to 2015. They are the GPM
IMERG final run and TMPA 3B42V7. Overall, correlation coefficients (CCs) of both IMERG and TMPA
with gauge observations for the eight typhoon events investigated are significant at the 0.01 level,
but both TMPA and IMERG tend to underestimate the heavy rainfall against the gauge observation,
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especially around the storm center. The IMERG final run exhibits better performance than TMPA
3B42V7. In space, both products have the best applicability within the range of 50–100 km away from
typhoon tracks, and the worst beyond the 300-km range. It is always a challenging task to measure
accurately heavy rainfall by rain gauges, a ground radar network, or satellite sensors.

The temporal evolution of heavy rainfall over certain area is called the storm hyetograph.
Given a total rain depth and duration over a certain return period, the storm hyetograph (also called
design storm) determines the peak flooding volume and is critical for drainage design in storm water
management [49]. The common design storms for drainage design include the Triangular curve [50],
the Chicago curve [51] and the Soil Conservation Service (SCS) curve [52]. Pan et al. [39] in this
special issue compared these curves and found that they tend to underestimate the peak rainfall in the
metropolitan areas of Guangzhou, south China. The normalized time of peak rainfall is at 33% ± 5%
for all storms in Guangzhou, and most storms (84%) are in the 1st and 2nd quartiles. Pan et al. [39]
improved the Huff curve by separately describing rising and falling limbs and then combined them
into a full storm hyetograph, instead of dividing the storms into four quartiles as in the original Huff
curve analysis. The improved Huff curve can better represent the storm hyetographs in Guangzhou
than the other three curves. It generates larger peak flooding volumes that match better with the street
water inundation depth when they are input in the Storm Water Management Model (SWMM) for
given heavy storm events. “The Improved Huff curve has great potential in storm water management
such as flooding risk mapping and drainage facility design, after further validation.” [39].

2.3. Rainfall Runoff Prediction and Flood Forecasting

Hydrological models are the backbones of climatic and hydrologic simulations, water resources
management, and flood forecasting. Hydrological models originated from conceptual and clumped
models, and are advancing to physically-based, distributed models, such as the Gridded Surface
Subsurface Hydrologic Analysis (GSSHA). Sharif et al. [40] in this special issue utilized the GSSHA
model to simulate a recent flood event to gain a better understanding of the runoff generation and
spatial distribution of flooding in a very arid catchment of Hafr Al Batin City, north-eastern Saudi
Arabia. The GPM IMERG rainfall products (the uncalibrated early run and calibrated final run) were
used to drive the GSSHA model. This showed that 85% of the flooding was generated in the urbanized
portion of the catchments for the simulated flood event. Urban storm drainage and catchment runoff
were used in simulations by different models. The variable model grid sizes allowed the GSSHA
model to be applied on large basins that include the entire catchment for a coarse grid size and urban
centers that need to be modeled at very high resolutions. Thus, urban flooding can be simulated by
a single physically-based and distributed model that could model the local heavy storm runoff in
the urban areas and the regional rainfall runoff on a large river catchment, and the integrated urban
flooding risk can be considered at the same time.

Compared to the fine hydrologic modeling of storm runoff at grid sizes of tens of meters and
minutes or hourly intervals, runoff prediction in the regional climate models (RCM) such as the Land
Surface Models (LSM) is much coarser, at tens of kilometers and daily or monthly scales. The original
Common Land Model (CoLM) predicts runoff from net water at each computation grid even without
the explicit Lateral Flow (LF) scheme. Lee and Choi [41] in this special issue proposed a CoLM+LF
model to improve the runoff prediction by incorporating a set of lateral surface and subsurface runoff
computations into the existing terrestrial hydrologic processes in CoLM. The CoLM+LF model was
assessed in the Nakdong River Watershed of Korea using Earth observations at the 30-km resolution
and daily time step. The simulated runoff by CoLM and the CoLM+LF was then compared with the
daily stream flow observations at the Jindong stream gauge station in the study watershed during
2009. CoLM+LF can simulate the effect of runoff travel time over a watershed by an explicit lateral
flow scheme, and can more effectively capture seasonal variations in daily streamflow than CoLM.
It is expected to be a helpful and essential tool for water resource management and hydrological
impact assessment.
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Flood inundation forecast technology can generally be divided into either numerical simulation
or black-box modeling. Numerical simulation is based on theoretical deduction and often has good
accuracy, while demanding high computing resources and being difficult to use for the real-time
forecasting of rapid disaster mitigation and rescue response in most conditions, such as during
a typhoon and flash flooding. In contrast, the black-box model relies on different approaches by
deeming the process from rainfall to inundation as a black box to simulate the relationship between
input rainfall and output runoff and inundation [53]. It cannot explain the physical mechanism, but can
correctly and effectively simulate the response after full calibration at much faster computing speed
than physically-based models. Ouyang et al. [42] in this special issue proposed such a black-box
model that combines non-sequential regressors for the ARX (Auto-Regressive model with eXogenous
inputs)-based typhoon inundation forecast. The difficulty when using the model is finding an optimal
combination of regressors to perform accurate prediction. They developed a novel approach to
integrate a Multi-Objective Genetic Algorithm (MOGA) to transfer the search for the optimal
combination of non-sequential regressors into an optimization problem. The results (tested in
the northeastern Taiwan) showed that the optimal models acquired through this model had good
inundation forecasting capabilities in terms of accuracy, time-shift error, and error distribution,
thus providing practical benefits for decision making and rescue response during a typhoon
landfall period.

2.4. Water Body and Flood Mapping

It is a challenge to forecast accurately flash flooding by hydrological models in arid regions
of the Middle East like Saudi Arabia because of the sporadic storm events and scarce stream flow
data. The vulnerability of arid and semi-arid regions to flash floods was thought to be similar to
that of regions having heavy rain owing to the strong convective storms and the rapid formation of
flash floods [54,55]. Tekeli [43] in this special issue examines the feasibility of flash flood detection
over the city of Jeddah in western Saudi Arabia using TRMM TMPA Real Time (RT) 3B2RT data
during 2000–2014. Three indices, constant threshold (CT), cumulative distribution functions (CDFs)
and Jeddah flood index (JFI), were developed to detect flash flood events using the 3-h 3B42RT
rainfall data. CDF worked best. It did not miss any flood event and had a hit rate of up to 94%.
Compared to hydrological models using various variables, this approach seems promising in arid
regions, although only rainfall data are used.

Water surface is easily detectable by remote sensing images in most conditions because of its low
reflectance, while it is a challenging task to accurately extract urban water bodies from high-resolution
images due to the shadowing effect of high-rise buildings and trees. To disentangle this problem,
Yang et al. [44] in this special issue proposed an automatic urban water extraction method (AUWEM)
to extract urban water bodies from high-resolution ZY-3 multi-spectral images. They first refined
the Normalized Difference of Water Index (NDWI) algorithm by constructing two new indices,
namely NNDWI1, which is sensitive to turbid water, and NNDWI2, which is sensitive to the water
body interfered with by vegetation. Both indices were then used to map all water body and shaded
areas by image threshold segmentation. An object-based technology was then developed to detect
the shades, which were finally removed from the classified water bodies. This automated approach
was tested by five images featuring different areas and environments including lakes and rivers in
the cities of Beijing, Suzhou, Wuhan and Guangzhou, China. Compared to the Maximum Likelihood
Method (MaxLike) and NDWI, AUWEM had a detection accuracy of 93%, against 86% for Maxlike
and 89% for NDWI, and exhibited both smaller omission errors and commission errors. It even works
better when detecting water edge and small rivers, and can effectively distinguish shadows of high
buildings from water bodies to improve the overall accuracy.

Flood inundation mapping is similar to water body mapping, while facing more challenges,
such as the short response time and cloud blockage. Flood mapping from various data sources can
greatly improve disaster response, e.g., all optical images, UAV video images and radar images were
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applied in the May 2015 Texas flooding event [33]. Radar microwave images beat the optical images
in flood mapping by their unique capability to penetrate through cloud. Frappart et al. [45] in this
special issue use the ENVISAT ASAR images to recovery the flood extent between 2005 and 2008
in the Guayas watershed on the Pacific Coast of Ecuador, where floods are an annual phenomenon
and become devastating during El Niño years. Flooded pixels present lower backscattering than
bare soil or vegetation as the radar electromagnetic wave is specularly reflected by water surfaces.
The core algorithm of the method is change detection using radar backscattering coefficients at the
C-band between the wet and dry seasons. Mapping inundation water under tree canopy and other
vegetation needs special consideration, since vegetation usually decreases the radar backscattering
coefficients. In spite of the coarse spatial resolution (1 km) of these SAR images, the patio-temporal
(monthly) dynamics of the flood in the Guayas watershed between 2005 and 2008 was mapped using
ASAR images for the first time in this watershed. Moreover, other radar satellites launched in recent
years, such as Sentinel-1A in April 2014, Sentinel-2A in June 2015 and Sentinel-1B in April 2016,
satellite SAR (C-band) etc., can provide global coverage of flood inundation mapping every few days
at unprecedented spatial resolution of tens of meters.

3. Conclusions

Remote sensing and GIS play critical roles in water resource and flood inundation mapping and risk
management. Remote sensing provides critical data for mapping water resources (snow and glaciers,
water bodies, soil moisture and groundwater), measuring hydrological fluxes (ET, precipitation and
river discharge), and monitoring drought and flooding inundation; while GIS provides the best
tools for water resource, drought and flood risk management and for hydrologic models’ setup,
input data processing, output analysis and visualization. This special issue presents the best practices,
cutting-edge technologies and applications of remote sensing, GIS and hydrologic models for water
resource mapping, satellite rainfall measurements, runoff and urban flood simulation, water body
and flood inundation mapping, and risk management. The latest technologies applied include 3D
model analysis and visualization of glaciers, UAV video image classification for turfgrass mapping and
irrigation planning, ground penetration radar for soil moisture estimation, TRMM and GPM satellite
rainfall measurements, storm hyetograph analysis, rainfall runoff and urban flooding simulation,
and satellite radar and optical image detection for urban water bodies and flooding inundation. GIS is
very versatile, but operating heroically behind the scenes at most times. GIS techniques are used in
almost every paper published in this special issue for data preprocessing, spatial analysis or making
results maps. The applications of those technologies are expected to greatly relieve the pressures on
water resources and enable better mitigation of and adaptation to the disastrous impact of droughts
and flooding.
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Abstract: Most glaciers in China lie in high mountainous environments and have relatively large
surface slopes. Common analyses consider glaciers’ projected areas (2D Area) in a two-dimensional
plane, which are much smaller than glacier’s topographic surface extents (3D Area). The areal
difference between 2D planar areas and 3D surface extents exceeds −5% when the glacier’s surface
slope is larger than 18◦. In this study, we establish a 3D model in the Muzart Glacier catchment using
ASTER GDEM data. This model is used to quantify the areal difference between glaciers’ 2D planar
areas and their 3D surface extents in various slope zones and elevation bands by using the second
Chinese Glacier Inventory (CGI2). Finally, we analyze the 2D and 3D area shrinking rate between
2007 and 2013 in Central Tianshan using glaciers derived from Landsat images by an object-based
classification approach. This approach shows an accuracy of 89% when it validates by comparison of
glaciers derived from Landsat and high spatial resolution GeoEye images. The extracted glaciers in
2007 also have an agreement of 89% with CGI2 data in the Muzart Glacier catchment. The glaciers’
3D area is 34.2% larger than their 2D area from CGI2 in the Muzart Glacier catchment and by 27.9%
in the entire Central Tianshan. Most underestimation occurs in the elevation bands of 4000–5000 m
above sea level (a.s.l.). The 3D glacier areas reduced by 30 and 115 km2 between 2007 and 2013 in the
Muzart Glacier catchment and Central Tianshan, being 37.0% and 27.6% larger than their 2D areas
reduction, respectively. The shrinking rates decrease with elevation increase.

Keywords: glacier; 2D area; 3D area; Central Tianshan

1. Introduction

Mountain glaciers and snow are crucial water resources for the surrounding river, lake, oasis,
cropland and urban life in arid Central Asia [1]. Glaciers’ ice volumes are usually estimated by
Volume-Area (V-A) power law equations since there are few in situ measurements of ice volume using
modern techniques, such as sounding echo, ground radar or gravity methods [2–4]. The V-A scaling
method is based on ice dynamics imposed by the climatic and topographic conditions in different
glacierized regions, and has an inherent steady-state assumption [2]. This assumption is often violated,
with many glaciers being out of equilibrium [5]. The volume estimation errors can exceed 50% for
individual glaciers [6]. Moreover, glaciers’ area change does not closely correspond to ice thickness
changes (increase in the accumulation zone and decrease in the ablation zone), resulting in even larger
errors, especially in estimating the ice volume changes by using glacier’s areas in different years [2].

The glacier area is defined by the ice mass balance community as the extent in two horizontal
dimensions (Figure 1), i.e., the extent/outline of the glacier is projected onto the surface of an ellipsoid
Earth surface, rather than the real topographic surface/the slope normal [7]. The former is called 2D
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area (Figure 1, A1), and the latter is called 3D area (Figure 1, A2) in this study hereafter. Meanwhile,
the ice/glacier thickness is defined as the vertical length (Figure 1, T1) measured parallel to the vertical
axis of the ellipsoid Earth surface and not normal to the glacier surface [7]. Thus, the ice volume is the
integral of the planar area and thickness. In contrast, the snow layer thickness (Figure 1, T2) is usually
measured perpendicularly relative to the slope normal of the snow/land surface [8]. Both the glacier’s
2D area and thickness values are close to the true values for flat ice sheets and glaciers with gentle
slope (<18◦), while greater difference exists for glaciers with larger slopes, although the two pairs of
definitions for area and thickness relative to horizontal normal (2D area) or slope normal (3D area)
make no difference for calculating ice volume together (Figure 1). The 3D area might be a better
variable in the ice volume estimate using the V-A scaling method, since it considers the slope factor
and reflects ice thickness changes. Moreover, glaciers’ 3D surface extent could be a better variable in
modeling their surface melting and sublimation [9].

 

Figure 1. Schematic diagram of the definitions of glacier’s area (A) and thickness (T) in a longitudinal
glacier profile.

Most glaciers in Central Tianshan lie in high mountainous areas over 3000 m a.s.l. These alpine
glaciers often have complex catchments, divisions and large slopes. For example, one of the large
glaciers, the Muzart Glacier near the Tumor Peak, is highly labile with fluctuating length, area, volume,
and shape [1,10,11], thus violating the steady state assumption of the V-A scaling method and leading
to large uncertainties in the ice volume estimation.

Numerous studies have investigated glacier area changes in Central Tianshan based on satellite
and airborne images and topographic data/DEM [1,12–16]. Most studies analyze 2D planar areas,
while few studies discuss the difference between glacier’s 2D areas and 3D areas [17], partially due to
the unavailability of topographic data with relatively high spatial resolution. Therefore, the primary
objective of this study is to compute glaciers’ 2D and 3D areas and evaluate how the differences
between them relate to changes in surface slope and elevation bands in the Muzart Glacier catchment
and Central Tianshan.
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2. Study Area and Data Analysis

2.1. Study Area

The Muzart Glacier catchment is located in the upper Muzart River Basin in Central Tianshan
(also called Tien Shan in some literature) Mountains, and is the largest center of modern glaciation in
the Tianshan Range (Figure 2). Locally, the Muzart Glacier also includes its northern division, or the
northern Muzart Glacier catchment, which drains to the northern Muzart River, the upper tributary of
the Tekes River and then Yili River. This study only focuses on the southern division of the Muzart
Glacier, i.e., simplified as the Muzart Glacier catchment in this study. The (southern) Muzart River
is more than 80% supported by snow/glacier melt water and is an important tributary of the Tarim
River [11,18]. The snow/glacier melt water provides a critical water resource for the downstream
piedmont oases. According to the Second Chinese Glacier Inventory, there are 318 glaciers with a total
area of 1192 km2 in the Muzart Glacier catchment, including hanging glaciers, cirque glaciers, single
valley glaciers and compound valley glaciers [11]. The average slope in the Muzart glacial catchment is
31.4◦ with elevation ranging from 2500 to 7400 m a.s.l. Beyond the Muzart Glacial catchment, glaciers
distribute above 3000 m a.s.l. in the entire Central Tianshan, and the contour of 2500 m a.s.l. is applied
to constrain the analyzing ranges of glacier areas (Figure 2).

 

Figure 2. Study area in Central Tianshan Mountain and the Muzart Glacier catchment (yellow line) of
the upper Muzart River Basin, China. The analyzing areas are constrained by the 2500 m elevation
contour (dark blue line).

2.2. Data and Analysis

The Second Chinese Glacier Inventory (CGI2) data provided by the West Data Center for
glaciology and geocryology, at Lanzhou, China [19] are used to analyze the spatial distribution
and to compare the glacier maps classified from Landsat images in this study. The outline of CGI2
was derived using the band ratio segmentation method, and had extensive manual editions based on
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218 Landsat TM/ETM+ scenes (30 m of spatial resolution) acquired mainly during 2006–2010. Glaciers
positioning errors were about 10 m for clean-ice outlines and 30 m for debris-covered outlines, and
area errors were 3.2% [10].

Four Landsat 5 TM images acquired on 24 August 2007, which are the same images used in CGI2,
and four Landsat 8 OLI images acquired on 10 September 2013, are used to extract the glacier areas in
the Muzart Glacier catchment and Central Tianshan. These scenes were cloud-free over glaciers and
had minimum seasonal snow cover, which is best for glacier mapping [13]. The extracted glaciers are
compared to CGI2 in the Muzart Glacier catchment. Also, a suitable high-resolution GeoEye (nominal
2-m spatial resolution) acquired on 20 April 2015 is downloaded to validate the glacier outline derived
from Landsat images.

A semi-automatic methodology is utilized to delineate the glacier area using an object-based
image classification approach on eCognition 9.0 (Trimble Inc., Sunnyvale, CA, USA) [12,20–22].
The specific procedures are illustrated in (Figure 3). The Landsat/GeoEye images are first segmented
using multi-resolution segmentation which creates the image object based on spectral and shape
characteristics [2]. Then, the class hierarchy is built with a focus on clean ice. Next, the classifier is
trained and applied by using the Support Vector Machine (SVM) with a linear kernel [23]. The classified
glaciers are manually corrected by visual comparison with images acquired in different years. Finally,
the classified objects are merged and exported to vector polygons for further visually checking and
manual edition on ArcMap, eliminating misclassified pro-glacial water, snow cover, and shadow areas
by overlaying with DEM data and GoogleEarth images.

Figure 3. Flowcharts of glacier outline delineation using object-based image classification.

The ASTER GDEM V2 was downloaded from Japan Space Systems [24], and had a 30-m spatial
resolution with reported vertical accuracies of less than 17 m and horizontal accuracies of 71 m. It is
suitable for the compilation of topographic parameters in a glacier inventory [25,26], and is used to
establish the 3D model, delineate the glacier catchment, compute the slope, and classify the slope
zones and elevation bands in this study. All Landsat and GeoEye images, CGI2 and the ASTER GDEM
V2 data sets are reprojected to the Universal Transverse Mercator (UTM) coordinate system, zone 44
before analysis.

The study areas are further divided into elevation bands with a 500-m interval and slope zones
with a 10◦ interval based on the ASTER GDEM V2 data. The 3D surface areas in the entire area
and different elevation bands and slope zones are estimated by raster-based methods based on the
3D model established from the ASTER GDEM V2 data. Similarly, the 2D project glacier areas are
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also analyzed in those elevation bands and slope zones. All areal calculations are carried out on
ArcMap 10.3 (ESRI, Redlands, CA, USA).

3. Results

3.1. Glacier Outline Extractions

This study derives the glacier maps directly from Landsat images in 2007 and 2013 by utilizing
the object-based classification approach, thus can detect the glacier’s 2D and 3D area changes using
consistent glacier maps between the two years. In glacier extraction, snow cover and glaciers are not
separated, and it is not possible to distinguish them from optical images because of snow-covered
glaciers. Meanwhile, both snow and glacier have a similar spectral signature in the optical wavelength
range. Glacier/snow covered 65% of this sub-catchment with a total area of 50.5 km2 on 20 April 2015
in the validation GeoEye image (Figure 4). Statistical results show that the glacier/snow classification
accuracy is 89.3% (Table 1). Both glacier boundary lines match well with the underlying white
glacier/snow of GeoEye images. Most differences are located in debris-covered glaciers, shaded
glaciers and the glacier edges. Some of those small and scattering glaciers identified by GeoEye images
were seasonal snow in the lower ranges.

 

Figure 4. Glacier outlines derived from Landsat images (yellow polygons) and GeoEye images (blue
polygon and background images) using object-based classification in the upper sub-catchment of the
Muzart Glacier catchment on 20 April 2015.

Table 1. Error matrix of glacier mapping between Landsat and GeoEye01 images in the upper
sub-catchment of the Muzart Glacier catchment on 20 April 2015.

Image Classification Reference (km2)
2015 Landsat 8 OLI (km2)

Glacier Non-Glacier

GeoEye01

Glacier 32.8
29.3 3.5

89.3% 10.7%

Non-glacier 17.7
3.8 13.9

21.5% 78.5%

Overall Accuracy 85.5%
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The extracted glacier areas (2D) are 89.3% of CGI2 in the Muzart Glacier catchment (Table 2), where
the extracted glaciers’ 3D areas are 91.9% of CGI2. Most of these lower estimates occur at the lower end
of debris-covered glaciers and have gentle slope (Figures 5 and 6). Most of the debris-covered/mixed
glacier tongues are not classified as glaciers in this comparison due to their low reflectance, while
CGI2 manually edits them to be glaciers (Figure 5). The glaciers’ area, as extracted from CGI2 in slope
zones of less than 10◦, is 22% of the total area for 2D areas and 17% of the total area for 3D areas
(Figure 6a), while they are only 16% and 11%, respectively, for those extracted from Landsat images in
this study (Figure 6b). The debris-covered glacier areas are around 5%–10% of the total areas according
to statistical analysis of all CGI2 data in Central Tianshan [10].

 

Figure 5. Comparison of glacier outlines of CGI2 (blue polygon) and those derived from Landsat
images (yellow polygons and background images) in this study using object-based classification in the
Muzart Glacier catchment on 24 August 2007.

Table 2. Statistics of glacier areas (km2) based on CGI2 and those extracted from Landsat images in the
Muzart Glacier catchment and the entire Central Tianshan Mountain during 2007–2013. CGI2 does not
cover the entire Central Tianshan; its statistics not given.

Glaciers

Muzart Glacier Catchment Central Tianshan Mountain

2D Area 3D Area
Relative Difference

(3D-2D)/2D
2D Area 3D Area

Relative Difference
(3D-2D)/2D

CGI2 1160 1557 34.2%
24 August 2007 1036 1431 38.1% 4518 5778 27.9%
Landsat/CGI2 89.3% 91.9%

10 September 2013 953 1316 38.1% 4101 5244 27.9%
Dif. (2013–2007)

Dif. (2013–2007)/2007
−81 −111 37.0% −418 −533 27.6%

−7.76% −7.82% −9.25% −9.23%
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3.2. Glacier Distributions

Glaciers distribute in a large range of slopes in the Muzart Glacier catchment (Figure 6a).
According to CGI2, glaciers’ 2D planar areas are 1160 km2 in total, while their 3D surface extents are
1557 km2. About half of the glaciers lie in slopes larger than 30◦, causing great differences (397 km2,
34.2%) between the 3D surface extents and 2D planar areas. When the slope is less than 10◦, the
absolute values of both 3D and 2D areas are similar, while their own frequency percentages reduce
from 22% for the 2D area to 17% for the 3D area. When the slopes range from 10◦ to 20◦, the 3D area is
5% larger than the 2D area. When the slopes range from 20◦ to 30◦, the 3D area is 16% larger than the
2D area. When the slopes range from 40◦ to 50◦, the 3D area is 47% larger than the 2D area. When the
slope is larger than 50◦, glaciers’ 3D areas are nearly two times that of the 2D areas. In addition, the
slope zones separate the glacier catchment into many fractional areas instead of continuous areas like
elevation bands, leading to large distribution differences/fluctuations between two glaciers (CGI2 and
glaciers derived from Landsat images in this study) in each slope zones (Figure 6b).

Figure 6. Histogram of glacier 2D and 3D areas within different slope zones based on the second
Chinese Glacier Inventory (CGI2) data (a) and glaciers classified from Landsat images (b) on 24 August
2007 in the Muzart Glacier catchment. The numbers above the columns are the frequency percentages
of glacier areas in each slope zones against total 2D and 3D areas, respectively.

The glacier maps extracted from Landsat images in 2007 are also analyzed in different elevation
bands for their 2D and 3D areas in the Muzart Glacier catchment and the entire Central Tianshan
(Figure 7). Their total glacier areas were 1036 km2 (1431 km2 for 3D) and 4518 km2 (5778 km2 for 3D)
in 2007, and their 3D surface extents are 38.1% and 27.9% larger than the 2D planner areas, respectively
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(Table 2). These ratios remained similar in 2013. Most glaciers (83%) distribute in elevation bands of
4000–4500 m (47%) and 4500–5000 m (36%) in the Muzart Glacier catchment (Figure 7a). By contrast,
glaciers are more evenly distributed throughout the entire Central Tianshan, although the frequency
components of glaciers in the elevation bands of 4000–4500 m (38%) and 4500–5000 m (29%) are also
dominant (67%), but smaller than those in the Muzart Glacier catchment (Figure 7b).

Figure 7. Histogram of Glacier 2D and 3D areas within different elevation bands in 2007 in the Muzart
Glacier catchment (a) and Central Tianshan (b). The numbers above the columns are the frequency
percentages of glacier areas in each elevation bands against the total 2D and 3D areas, respectively.

3.3. Glacier Area Changes

Aside from the glacier distributions in different slope zones and elevation bands, this study further
compares the glaciers’ 2D and 3D area changes between 2007 and 2013, and their spatial distributions
in different elevation bands in the Muzart Glacier catchment and Central Tianshan. Overall, the glacier
areas reduced between 2007 and 2013 (Table 2). In the Muzart Glacier catchment, the 2D planar area
reduced by 81 km2, while their actual 3D surface extents reduced by 111 km2, which is 30 km2 (37.0%)
larger than the 2D planar area reduction, although their relative shrinking rates are quite similar.
As expected, the shrinking rates decrease with elevation increase, and the dominant shrinking areas
(42.8 km2, 57%) occurred in the elevation band of 4000–4500 m, where the actual 3D shrinking areas
were 16.2 km2 (38%) larger than the 2D area (Figure 8a).

19



Water 2017, 9, 282

Figure 8. Histogram of Glacier 2D and 3D area difference between 2007 and 2013 (2013–2007) in
different elevation bands in the Muzart Glacier catchment (a) and Central Tianshan (b). The numbers
above columns are the area shrinking rates ((2013–2007)/2007) in each elevation bands.

In the entire Central Tianshan Mountains, the 2D planar area reduced by 418 km2, while their
actual 3D surface extents reduced by 533 km2, which is 115 km2 (27.6%) larger than the 2D planar
area. Their relative shrinking rates are also similar, being slightly larger than that in the Muzart Glacier
catchment (Table 2). The shrinking rates also decrease with elevation increase (Figure 8b), and the
dominant shrinking areas occurred in the elevation bands of 3500–4000 m (37% for 2D area and 33%
for 3D area) and 4000–4500 m (42% for 2D area and 36% for 3D area).

4. Discussion

4.1. Glacier Classifications

There are many factors that affect the accuracy of glacier classification using optical images, such
as classification approach, seasonal snow, cloud, shadow, debris, and so on. The primary objective of
this study is to investigate the differences between glacier’s 2D planar areas and 3D surface extents
using CGI2 data, instead of developing or evaluating different classification approaches. In order to
quantify how the difference of 2D and 3D areas affects the change rates of glaciers between different
years, consistent glacier area products are expected to cancel out their systematic errors between
different glacier products.
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There are several classification methods and band-combination options to extract the glacier
outlines in literature. This study only utilizes the object-based classification method to extract glacier
outline from Landsat images and GeoEye images using the software eCognition 9.0. This approach
has been widely used for glacier mapping recently [12,20–22]. The common procedure provided
in the software manual is adopted to delineate the glacier outlines like those in the literature
(Figure 3). Meanwhile, manual corrections were intensive in some areas, such as those within
debris-covered/mixed glaciers, shade, under cloud or seasonal snow cover, similar to those stated
in making the second Chinese Glacier Inventory [10]. In such complex situations, we compare the
images acquired for different years, seasons and time, and only retain the minimum outline. As shown
in Figure 9, loading the Landsat image on the 3D surface could be better than the 2D planar image
to determine the shaded area and debris-covered glacier tongue, leading to higher confidence and
accuracy in manual editing.

 

Figure 9. Comparison of 3D (a) and 2D (b) glacier outlines in 2007 (green lines) and 2013 (white lines)
in a glacier sub-catchment of the Muzart Glacier catchment (mid-west). The background image is the
Landsat 8 on 10 September 2013.

This classification approach is validated by comparing glacier outlines derived from high
resolution GeoEye image on 20 April 2015, since there was no high spatial resolution image available
on the date of the Landsat images, i.e., on 24 August 2007 and 10 September 2013. The selected
validation image is constrained by the limited high spatial resolution images and the Landsat images
on the same date in the study areas. There was much snow over glacier surface and nearby rocks on
20 April 2015, only when both the GeoEye and Landsat images were available and cloud-free in the
study catchment. In practice, snow is not separated from glacier in classification, and a large part of
the debris-covered glaciers are not included in our analysis as well (Figure 5). This explains why there
is a larger area difference between 3D and 2D areas for our delineated glacier outlines (38.1%) than for
those of CGI2 (34.2%) in the Muzart Glacier catchment (Table 2), since debris-covered glaciers have
gentler slopes (Figure 5). The glacier 2D areas derived from the Landsat image on 20 April 2015 have
an agreement of 89.3% with those from the GeoEye image (Table 1, Figure 4). The classified glacier 2D
areas have 89.3% agreement with CGI2 in the Muzart Glacier catchment, both using the same Landsat
images (Table 2, Figure 5). This accuracy is similar to those reported in the literature, e.g., 93% for clean
ice, 83% for debris-covered glacier, and total accuracy of 91% [22]. This indicates that the classified
glacier outlines are suitable for glaciers’ 2D and 3D area analysis.
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4.2. Difference between Glacier 2D and 3D Areas

The difference between glacier 2D and 3D areas increases with slope in the Muzart Glacier
catchment for both CGI2 and the classified glaciers, revealing their geometric relationship (Figure 6).
The slope zones divide the study areas into many small fractions, resulting in larger uncertainties than
the elevation bands due to the edge/boundary issues overlaying with glacier areas (Figures 6 and 7).
The 3D areas are 38.1% and 27.9% larger than the 2D areas in the Muzart Glacier catchment and Central
Tianshan, respectively. This large difference is significant in calculating the total ice volume using the
V-A scaling method [2–4], and computing surface energy balance and mass melting [9]. It is worthy of
further investigation into whether or not 3D areas work better than 2D areas for estimating the total
ice volume by the V-A scaling method.

The shrinking rates of glaciers’ 2D areas are −1.1%.a−1 for Muzart Glacier catchment and
−1.3%.a−1 for Central Tianshan in this study. They fall within the ranges of those reported in the
literature (Table 3). The glaciers’ area remained near constant in the Inylchek Glacier of Central
Tianshan during 1999–2007 [27]. The largest shrinking rate was −1.7%.a−1 reported by Du and Li [28]
in the Mt. Karlik of Eastern Tianshan during 2007–2013, then −1.0%.a−1 published by Kaldybayev [29]
in the Karatal River Basin of Nothern Tianshan during 1989–2012. The mean glacier surface slope
of CGI2 is 19.9◦, while glaciers in the Central Tianshan, Pamir plateau, Qilian Mountains and Altun
Mountains have the steepest glacier surfaces, over one-third of their surface slopes are greater than
30◦ [10]. Geometrically, the 3D area is 5% larger than the 2D area as the slope is larger than 18◦, 15%
larger for 30◦ and 41% larger for 45◦ (Figure 1). These large areal differences between 3D real surface
extents and the projected virtual 2D area is significant not only in areal and volume calculation, but
also in glaciers’ precise surface energy budget and mass balance/melting modeling, especially in the
high Asian mountain glaciers with large surface slope and strong solar radiation.

Table 3. The glaciers 2D area changes reported from different studies in Tianshan Mountains.

Location Region Period 2D Area Changes (%) Change Rate (%.a−1) Document Source

Jinghe River Basin Eastern Tianshan 1964–2004 −15.2 −0.4 [30]
Karatal River Basin Northern Tianshan 1989–2012 −23.0 −1.0 [29]
Ak-Shyirak massif Western Tianshan 2003–2013 −5.9 −0.6 [15]

Ili-Kungoy Central Tianshan 2007–2013 −4.0 −0.4 [31]
Mt. Karlik Eastern Tianshan 2007–2013 −9.9 −1.7 [28]

Inylchek Glacier Central Tianshan 1999–2007 −0.3 −0.1 [27]
Muzart Glacier (south) Central Tianshan 2007–2013 −7.8 −1.1 This study

Central Tianshan Central Tianshan 2007–2013 −9.2 −1.3 This study

5. Summary and Remark

This study utilizes the lastest relatively high-resolution global topographic data (ASTER GDEM
V2) and CGI2 data to illustrate the large areal difference between glaciers’ 3D real surface extents and
their projected 2D planar area in the Muzart Glacier catchment and Central Tianshan. Besides the
CGI2 data, this study also extracts the glacier outlines from Landsat images in 2007 and 2013 by an
object-based classification approach, which is validated using GeoEye high-resolution images and
shows an accuracy of 89.3%. The extracted glacier outlines in 2007 also had an agreement of 89.3% with
CGI2 data in the Muzart Glacier catchment. Most of the differences are in the lower-end of glaciers
covered by debris.

The difference between 3D surface extents and 2D planar areas from those extracted glacier
outlines in 2007 and 2013 (38.1%) are slightly larger than those of CGI2 (34.2%) in the Muzart Glacier
catchment and were 27.9% on average in the entire Central Tianshan. The difference between 3D areas
and 2D areas for the shrunk glaciers were slightly smaller than those of existing glaciers in the Muzart
Glacier catchment (37.0%), and the entire Central Tianshan (27.6%) since many of the shrunk ones were
located on the lower end of glaciers and had a smaller slope. Consequently, their relative shrinking
rates from 2007 to 2013 were similar in both Muzart Glacier catchment (−7.8%, 30 km2) and Central
Tianshan (−9.2%, 115 km2), although there was a large difference between 3D areas and 2D area of
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those shrunk glaciers. Those large areal differences remind us to re-consider glacier’s real topographic
extent when discussing alpine glacier’s areal and volume changes, especially in calculating the glaciers
surface energy balance and melting rates in the high Asian mountain glaciers with large surface slope
and strong solar radiation.
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Abstract: Ground penetrating radar (GPR) is a new technique of rapid soil moisture measurement,
which is an important approach to measure soil moisture at the intermediate scale. To test the
applicability of GPR method for soil moisture in desert steppe, we used the common-mid point
(CMP) method and fixed offset (FO) method to evaluate the influence factors and the accuracy of
GPR measurement with gravimetric soil moisture measurements. The experiments showed that
Topp’s equation is more suitable than Roth’s equation for processing the GPR data in desert steppe
and the soil moisture measurements by GPR had high accuracy by either CMP method or FO
method. To a certain extent, the vegetation coverage affects the measurement precision and the soil
moisture profile. The precipitation can reduce the effective sampling depth of the ground wave from
0.1 m to 0.05 m. The results revealed that GPR has the advantages of high measurement accuracy,
easy movement, simple operation, and no damage to the soil layer structure.

Keywords: ground penetrating radar; GPR; soil moisture; desert steppe; gravimetric method; CMP

1. Introduction

Soil water is the basis of vegetation development, and soil moisture is an important indicator of
climate, hydrology, ecology, and agriculture. The spatial and temporal distribution of soil moisture has
a significant impact on precipitation infiltration, runoff, and other hydrological processes. In the desert
steppe, soil moisture is the main factor that controls the vegetation growth and restoration, and it is the
main factor to affect the ecosystem degradation and reversion. The monitoring of soil moisture in desert
steppe is important to protect grassland vegetation, prevent desertification, improve the ecological
environment, and provide the basis for grazing control and the prevention of grassland degradation.

Measurement technology of soil moisture can be roughly divided into three types according to the
measuring scale. The first is the point scale method, including the gravimetric method, neutron method,
TDR, FDR, and so on. The data determined by these methods can reflect the soil moisture of the
observation point accurately, but it is time-consuming and laborious with destructive problems to the
soil structure. Second, the intermediate scale method includes GPR and CRS. These are non-hazardous,
non-contact, and non-destructive measurement methods that develop rapidly. The third is the coarser
scale method mainly composed of satellite platforms. The point scale methods of measuring soil
moisture are not capable of collecting large scale data rapidly. The remote sensing methods have
the advantage of large coverage and repeated observations on a regular basis but at coarse scales [1].
Ground penetrating radar (GPR), as a nondestructive geophysical methods, has the ability to monitor
soil moisture bridging the scale gap between point and remote sensing measurements, and to quantify
the spatial variation of soil moisture [2]. The non-invasive character of GPR offers the mobility
needed to map soil water content of large areas (up to 500 m × 500 m a day) [3]. GPR method
for measuring soil moisture is widely used in irrigation experiments [4], monitoring soil moisture
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dynamic [5–7], agriculture [8–10], and observation of long time series [11,12]. FO method, CMP method,
and Wide angle reflection and refraction (WARR) method are the three commonly used methods of
GPR. By WARR and CMP methods, soil moisture can be estimated easily. However, measurements
by WARR and CMP methods have low spatial resolution and require more time. FO method has the
advantage of faster measurement and higher resolution by towing the antenna with a vehicle [4], but it
is difficult to calibrate time zero and identify ground direct wave. Many studies on GPR method of soil
moisture measurement by scholars have been carried out in the world. Grote [8] used CMP method
to measure soil moisture by 450 MHz and 900 MHz GPR, and found an RMSE of 0.022 m3/m3 and
0.015 m3/m3, respectively. Huisman [13], Galagedara [4], and Weihermller [14] studied the optimum
antenna spacing of FO method to separate ground direct wave from airwave by WARR method or
CMP method. Huisman [13] and Weihermller [14] compared 225 MHz and 450 MHZ GPR with TDR
to measure soil moisture, concluding that the soil moisture obtained by FO method had an RMSE of
0.018 m3/m3 and 0.011 m3/m3, respectively. Lunt [15] compared FO method by 100 MHz GPR with
the neutron method and got an RMSE of 0.018 m3/m3. Stoffregen [16] extracted reflected wave to
estimate soil moisture by 1 GHz GPR and got a standard deviation of 0.01 m3/m3 compared with
lysimeter data. However, there is less research on GPR measurement of soil moisture applied in
China area. Instead, there are more studies on GPR simulation experiments conducted by Chinese
researchers. For example, Wang [17] used WARR method to determine the optimum antenna spacing
of FO method and applied FO method to estimate soil moisture over large areas by 200 MHz GPR
in arid area of China. Wang [17] found a deviation of only 0.015 m3/m3 and an effective depth of
0.20 m compared with TDR results. Qin [18] used 200 MHz GPR to monitor the spatial change of soil
water before and after snow melt in desert, and the absolute error of GPR measurement was less than
0.03 m3/m3 compared with TDR results. Guo [19], Ma [20], and Li [21] studied on the relationship
between soil moisture and GPR signal attributes by simulation experiments.

Research on GPR application for different soil types is still in the initial stage, and mainly used in
laboratory test or in the desert area [22–25], and there is no research to focus on the applicability of
soil water measurement by GPR in the desert steppe region. This research used the CMP method and
FO method of GPR to measure soil moisture in desert steppe, verifying the measurement accuracy by
gravimetric method synchronously. The application in different land cover types was also analyzed.
The specific objective of this research was to study the suitability of monitoring soil moisture by GPR
and its influencing factors for desert steppe: (1) To choose a more appropriate formula from Topp’s
equation and Roth’s equation for calculating soil moisture in desert steppe; (2) To assess the accuracy of
CMP and FO methods in desert steppe; (3) To analyze the influencing factors of GPR measurement in
desert steppe. Research on the real-time monitoring of soil moisture in desert steppe contributes to the
vegetation protection, and helps to prevent soil desertification and protect functional ecosystems. It also
provides technical support for remote sensing calibration of soil moisture, agricultural production,
and ecological restoration for desert steppe.

2. Materials and Methods

2.1. Study Site

The study was carried out at the experimental base of Institute of Water Resources for Pastoral
in Xilamuren Town, Baotou City, Inner Mongolia region (41◦22′ N, 111◦12′ E). The base nearing
the south of Tabu River covers an area of 150 hectares with the highest elevation of 1690.3 m and
the lowest elevation of 1585.0 m. The study area belongs to the temperate semi-arid continental
monsoon climate. The average annual precipitation is 284 mm, the average annual evaporation
is 2305 mm, and the annual average temperature is 2.5 ◦C. The study area with the zonal soil of
Kastanozems is located in the Wulanchabu desert steppe of central Inner Mongolia Region. The local
vegetation in the base showing typical steppe characteristics is not disturbed from grazing and human
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activities (Figure 1). The vegetation edificator in the study area is Stipa krylovii, the dominant species is
Leymus chinensis, and other important species are Artemisia frigida, Cleistogenes, Agropyron cristatum, etc.

 

 

Figure 1. Distribution of land cover types in study area.

2.2. GPR Theory

2.2.1. Measuring Principle

Ground penetrating radar (GPR) is an electromagnetic detection technology which uses the
high frequency electromagnetic wave to detect the inner structure and the characteristic of buildings
in the center frequency ranging from 10 MHZ to 3 GHZ [15]. The electromagnetic wave received
by the receiving transducer is divided into air wave, ground wave, reflected wave, and refraction
wave. The propagation speed of radar waves in unsaturated soil depends on its relative dielectric
constant. The velocity of ground wave and reflected wave can be extracted from GPR data to
calculate relative dielectric constant of the soil. Then soil moisture can be obtained by the relationship
between soil moisture and its relative dielectric constant. The depth of soil moisture is determined
by the corresponding sampling depth of ground wave or reflected wave. In the low loss medium,
the relationship between the electromagnetic wave velocity v and the relative dielectric constant K is

K = (c/v)2 (1)

where c is the propagation velocity of electromagnetic wave in vacuum [26] and v is the electromagnetic
wave velocity in the low loss medium. The relationship between soil moisture constants (θ) and
relative dielectric constant of the soil (ε) can be described by the empirical formula, semi theoretical
formula. This study used two common empirical formulas which are Topp’s equation [27] and Roth’s
equation [28] to calculate soil water content

Topp’s equation: θ = −0.053 + 0.0293ε − 0.00055ε2 + 0.0000043ε3 (2)

Roth’s equation: θ = −0.078 + 0.0448ε − 0.00195ε2 + 0.0000361ε3 (3)

The effective depth of the soil water content calculated by the ground direct wave is related to
the antenna frequency and soil type, which has not been clearly defined. However, some research
attempted to establish the empirical formula of the effective depth of the ground direct wave, in which
Sperl (1999) [29] proposed the function of the effective depth Z and radar wave length λ.

Z ≈ 0.145λ1/2 (4)
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The experimental results of Huisman [3] showed that the effective depth of 225 MHZ and 450 MHZ
GPR is 0.10 m, which is consistent with the conclusion of Sperl [29].

The measuring depth of the soil moisture by reflected wave is the sampling depth of reflection
wave. When the soil moisture is calculated by the reflection wave velocity, the reflection layer is
assumed continuous, horizontal, and with a clear interface. In this study, the soil profile structure was
obtained by FO method, and the reflected wave velocity was measured by CMP method, and then the
depth of the reflection layer was calculated.

2.2.2. GPR Methods

GPR can obtain relative dielectric constant of the soil by extracting the information of radar
waves, and then retrieve the soil moisture content. According to the different measuring mode of
GPR, the GPR method is mainly divided into the multi-offset reflection method (including CMP
and WARR methods), FO method, surface reflection method, and transillumination method [30,31].
On the basis of obvious layered soil structure in study area, we applied the CMP method of GPR to
soil moisture measurement, and FO method to obtain the soil profile structure. The CMP method is the
measuring method in which the center point of the antennas is fixed and the receiving and transmitting
antennas move in opposite directions at the same distance synchronously from the center point of
the antennas (Figure 2) [32]. CMP method measures the propagation velocity of direct wave and
reflected wave directly for soil moisture calculation with high accuracy and different depth. FO method
is a method that the receiving and transmitting antenna spacing is fixed and moving at the same
interval. (Figure 2) [32]. The soil profile structure in the study area can be obtained by FO method,
which can be used to determine the soil layer, and combined with the results of the CMP method to
determine the depth of the soil moisture content. When the appropriate antenna spacing of FO method
is set, the ground direct wave and the airwave can be separated. Then the soil relative permittivity is
calculated by antenna spacing (x), ground direct wave arrival time (tGW), and airwave arrival time
(tAW) using the Formula (5) to estimate the soil moisture. The measured depth of FO method is the
sampling depth of the ground wave.

ε =
( c

v

)2
=

(
c(tGW − tAW) + x

x

)2
(5)

(a) (b)

Figure 2. Schematic diagram of CMP method (a) and FO method (b).

2.3. Data Acquisition

Measurements were mainly carried out in two 30 m × 30 m plots chosen in the study area
(named Plot 1 and Plot 2 in Figure 1) which had flat terrain, uniform underlying surface condition,
and differences in vegetation growth. On 11 June 2015, 6 CMP measurements were collected in the
middle of each row after raining in each plot. On 20 September 2015, we collected 18 measurements
spaced 7.5 m apart by CMP method along six transects in each plot (Figure 3). We also selected two
measuring points with exuberant vegetation in the Plot 2 measuring the soil moisture before and after
weeding, and four measuring points of different land cover types (vegetables, alfalfa, natural grassland,
washland; Figure 1) in the experimental area to obtain soil moisture by CMP method. The six transects
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of 30 m spaced 5 m apart along six rows were set for FO method. We used FO method to obtain soil
structure on 20 September 2015 and measure soil moisture on 24 August 2016.

Higher frequencies have higher spatial resolutions and a higher attenuation which lead to a lower
depth of penetrating. This study intended to obtain soil moisture at different depths, so the selected
frequency of GPR should not be too high. Considering the portability of GPR and the feature of FO
method, a high-frequency antenna with wheels should be used to improve the measuring efficiency of
FO method. For the above reasons, this study used the pulse EKKO PRO GPR at a center frequency of
250 MHZ produced by Sensors & Software, a Canadian company, mainly consisting of the transmitting
antenna, the receiving antenna, the Digital Video logger (DVL) and control module. The CMP
measurements were made with antenna separations increasing from 0.38 m to 5.38 m with increments
of 0.10 m, a time window of 100 ns, a sampling interval of 0.4 ns, and 32 stacks per trace. The collection
parameters of FO method for soil structure included an antenna separation of 0.38 m, a sampling
interval of 0.4 ns, trace spacing of 0.05 m, and 32 stacks per trace at each location to improve the signal
to noise ratio. FO method for soil moisture measurement changed the antenna spacing to 1.5 m and
other parameters remained the same. According to the Formula (4), the effective depth of 250 MHZ
GPR ground direct wave is about 0.10 m. Combined with the research results of Huisman, we selected
the soil moisture measurements of 0.10 m depth from gravimetric method for accuracy verification of
GPR ground direct wave. Therefore, soil samples were collected adjacent to the locations of measuring
points for CMP method at the depth of 0.10 m.

Figure 3. Disposition pattern of measuring points and lines in plots.

3. Results and Discussion

3.1. Inspection of the GPR Measurement Accuracy

Soil moisture measured by gravimetric method was used as the standard value to compare the
GPR-derived soil moisture results estimated by Topp’s equation to those by Roth’s equation. The soil
moisture estimated by the Topp’s equation was much closer to the gravimetric result, and the soil
moisture derived by Roth’s equation was generally higher than the gravimetric data (Figure 4).
The relative error and variation of Topp’s equation was significantly lower than those of the Roth’s
equation (Figure 5). For desert steppe region, the Topp’s equation is more stable and accurate when
calculating the soil moisture measured by GPR. This paper chooses the Topp’s equation to calculate
the GPR-derived soil moisture for the following analysis.

For CMP method, the results showed that the average soil moisture at the depth of 0.10 m from
ground wave in Plot 1 was 0.075 m3/m3, and that in Plot 2 was 0.094 m3/m3. The soil moisture
extracted by ground wave had an RMSE of 0.0101 m3/m3 compared to the gravimetric measurements
at the depth of 0.10 m.
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Soil moisture calculated by CMP method and FO method was compared with gravimetric
measurements at the depth of 0.10 m. The accuracy of FO method and CMP method were similarly
high with an RMSE of 0.0068 m3/m3 and 0.0101 m3/m3 (Figure 6), which means the GPR measurement
results are reliable in desert steppe.

 

RMSE: 0.037 m3/m3 

RMSE: 0.039 m3/m3 

Figure 4. Soil moisture calculated by Topp’s equation and Roth’s equation in comparison with
gravimetric method.

 

Figure 5. Comparison between relative error of soil moisture calculated by Topp’s equation and that
by Roth’s equation.

Figure 6. Soil moisture calculated by CMP method and FO method in comparison with gravimetric method.

3.2. Soil Moisture of Different Land Cover Types

In this experiment, the soil moisture of four different land cover types (Figure 7) at different depth
obtained by ground wave and reflected wave are shown in Table 1. In the farmland area, the soil natural
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layered structure was destroyed, and the measured results were consistent with the actual conditions.
Because alfalfa and vegetable regions are located in the farmland area with drip irrigation facilities,
the soil moisture of alfalfa and vegetable regions were significantly higher than other land cover
regions, suggesting that the measurement results were in line with the actual conditions. The change
of soil water content in the soil profile of vegetable and alfalfa was larger than that of grassland in
the soil profile, and the soil water was accumulated in the soil surface. In addition to the area of
farmland, the soil moisture of grassland and its fluctuation at depths from 0 m to 0.40 m between
different regions were relatively close, while the soil moisture at depths below 0.40 m in grassland
between regions had larger fluctuation than that in surface soil.

 
(a) (b)

 
(c) (d)

Figure 7. Vegetables (a), alfalfa (b), natural grassland (c), washland (d).

Table 1. Soil moisture of four different land cover types and two plots obtained by ground wave and
reflected wave.

Land Cover Type
Soil Moisture by

Ground Wave
(m3/m3)

Effective
Depth (m)

Soil Moisture above
the First Reflected

Layer (m3/m3)

Effective
Depth (m)

Soil Moisture above
the Second Reflected

Layer (m3/m3)

Effective
Depth (m)

Alfalfa 0.1919 0.10 0.0978 0.63
Vegetables 0.1578 0.10 0.1961 0.25 0.1612 0.66
Washland 0.0801 0.10 0.0622 0.40 0.1243 0.71

Natural Grassland 0.0819 0.10 0.0652 0.36 0.1021 0.75
Plot 1 0.0750 0.10 0.0975 0.41
Plot 2 0.0939 0.10 0.0716 0.43

3.3. Effects of Vegetation Coverage on Soil Moisture and Its Measuring Accuracy

Vegetation coverage has a great impact on soil moisture and surface evapotranspiration. Due to the
difference in root distribution, the response to this impact is not the same at different depths of the soil
profile. The vegetation coverage of two plots had obvious differences, where the average normalized
difference vegetation index (NDVI) of Plot 1 and Plot 2 were 0.30 and 0.56. The average surface soil
moisture of Plot 1 and Plot 2 at the depth of 0.10 m were 0.0750 m3/m3 and 0.0939 m3/m3 respectively,
of which the soil moisture of Plot 2 was significantly higher. However, for deeper soil moisture (about
0.42 m), the average soil moisture in Plot 1 was 0.0975 m3/m3, and higher than that in Plot 2 with
0.0716 m3/m3.
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The reason for this phenomenon is that vegetation coverage was obviously different in two plots
(Figure 8). The vegetation coverage of Plot 2 was higher than that of Plot 1. The higher vegetation
coverage lead to less evaporation of water on the soil surface, so the surface soil moisture of Plot 2 at
the depth of 0.10 m is higher. Whereas the vegetation evapotranspiration is derived from the water
absorbed by roots from the soil moisture. The vegetation root system of Plot 2 was more developed
and dense than that in Plot 1 because of the higher vegetation coverage. The vegetation root in Plot 2
absorbed more water from deep soil because of higher evapotranspiration than that in Plot 1 under the
same condition. As a result, the deep soil moisture of Plot 1 was higher.

The comparison of soil moisture measured by ground wave in Plot 1 and Plot 2 (Figure 9) showed
that the measurements of Plot 1 were more similar to gravimetric results at the depth of 0.10 m than
that of Plot 2, with an RMSE of 0.0059 m3/m3 and 0.0130 m3/m3, respectively. The measuring accuracy
of Plot 2 was significantly higher than Plot 1 perhaps because the high vegetation coverage affects the
air refraction of the GPR measurements. When the vegetation coverage was high, a large amount of
air refraction wave was generated during the process of radar wave propagation, which interfered
with the waveform of the ground wave and was reflected wave in the radar profile, affecting the
extraction accuracy of wave velocity. At the same time, too much air refraction wave can cause
rapid attenuation of radar wave, and hinder the GPR measurement of soil moisture at deep depth.
Therefore, the accuracy of GPR measurements can be improved if weeding. For two selected measuring
points with dense vegetation in Plot 2 (Figure 10), the relative error of soil moisture compared with
gravimetric method decreased from 19.24% and 12.80%, respectively, to 4.22% and 6.74% by weeding.
The experimental results further showed that the vegetation coverage to a certain extent affected the
accuracy of GPR measurements.

 
(a) (b) 

Figure 8. Vegetation condition in Plot 1 (a) and Plot 2 (b).

 

Figure 9. Comparison of the soil moisture measured by GPR and gravimetric method in Plot 1 and Plot 2.
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(a) Before weeding (b) After weeding 

Figure 10. Contrast diagram before (a) and after (b) weeding (marking area by dotted line is weed
control part).

3.4. Effect of Precipitation on GPR Measurements

After raining during 11 June 2016, we applied CMP method to measure soil moisture of two plots.
Ground wave velocity was extracted to estimate surface soil moisture from radar profile, obtaining the
average soil moisture of 0.1873 m3/m3 and 0.1563 m3/m3. Compared with gravimetric soil moisture
at depths of 0.05, 0.10, and 0.15 m, the effective depth of the ground wave by CMP method was
0.05 m. The average relative error of GPR measurement compared with gravimetric soil moisture
at the depth of 0.05 m was 9.45%. The depth of soil moisture extracted by ground wave became
smaller after raining, that is, the effective depth of ground wave became smaller due to the influence
of the precipitation. Because of less rain in the experimentation area for a long time, soil moisture was
generally low. Precipitation makes surface soil moisture much higher than that of the lower soil layer,
forming high speed propagation layer of radar wave in the soil layer about 0.05 m. The radar wave
was spread on the interface formed by the difference of soil moisture, which makes the effective depth
of the ground wave smaller.

4. Conclusions

As a nondestructive measuring method, ground penetrating radar (GPR) was used in the fields of
soil water monitoring, and soil moisture dynamic. In this paper, GPR was used to measure soil moisture
in Inner Mongolia desert steppe. The accuracy of GPR measurement was verified by gravimetric
method. The influence of vegetation coverage and precipitation on GPR measurement was analyzed.
The research showed that GPR can accurately measure the soil moisture of desert steppe and meet the
actual demand of field monitoring.

1. For desert steppe region, the Topp’s equation is more accurate than the Roth’s equation in
calculating the soil moisture of GPR data.

2. The soil moisture measurements by GPR were consistent with gravimetric results, with the RMSE
of only 0.0101 m3/m3. Compared with the traditional gravimetric method and TDR, GPR can
quickly measure the soil moisture at different depths and obtain soil stratification condition
without destroying soil layer structure by virtue of the portable and operational characteristics.

3. The vegetation coverage affects the accuracy of GPR measurement and also affects the profile
distribution of soil water content. When vegetation coverage is high, the air refraction wave
interferes with the ground wave and reflected wave in the radar profile, which can reduce the
accuracy of GPR measurement.

4. Under certain conditions, precipitation reduces the effective depth of the ground wave,
and further affects the depth of the soil moisture measured by the GPR ground wave.
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5. The accuracy comparison of GPR measurement in different soil types, the application of different
GPR methods in desert steppe, and the combination of GPR and soil water model are to be
further studied.
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Abstract: Beijing is located on multiple alluvial-pluvial fans with thick Quaternary unconsolidated
sediments. It has suffered serious groundwater drawdown and land subsidence due to groundwater
exploitation. This study aimed to introduce geographical distribution measure methods into land
subsidence research characterizing, geographically, land subsidence, groundwater drawdown, and
compressible layer thickness. Therefore, we used gravity center analysis and standard deviational
ellipse (SDE) methods in GIS to statistically analyze their concentration tendency, principle orientation,
dispersion trend, and distribution differences in 1995 (1999), 2007, 2009, 2011, and 2013. Results show
that they were all concentrated in Chaoyang District of Urban Beijing. The concentration trend of
land subsidence was consistent with that of groundwater drawdown. The principle orientation of
land subsidence was SW–NE, which was more similar with that of the static spatial distribution of the
compressible layer. The dispersion tendency of land subsidence got closer to that of the compressible
layer with its increasing intensity. The spatial distribution difference between land subsidence
and groundwater drawdown was about 0.2, and that between land subsidence and compressible
layer thickness it decreased from 0.22 to 0.07, reflecting that the spatial distribution pattern of land
subsidence was increasingly close to that of the compressible layer. Results of this study are useful
for assessing the distribution of land subsidence development and managing groundwater resources.

Keywords: land subsidence; groundwater drawdown; compressible layer; gravity center;
standard deviational ellipse

1. Introduction

Regional land subsidence is a geological process occurring in a long-run equilibrium and
inter-coordination between anthropogenic activity and the hydrogeological environment [1,2]. In most
areas worldwide, compressible sediments are the material basis and it unbalances the starting point
of land subsidence; groundwater drawdown is an inherent drive and its spatial diversity induces an
uneven development process of land subsidence [3–11]. Land subsidence has increased the risk of
other disasters and threatened the properties of the society [12–15]. Mapping and quantifying how,
and to what extent, the groundwater drawdown and compressible layer influence non-uniform land
subsidence based on multiple time-series displacement and hydrogeological data are of concern to
many scholars [16–20].
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Land subsidence in Beijing Plain is mainly triggered by over-exploitation of groundwater,
and its magnitude and extent is affected by heterogeneity of compressible layers [21]. Integrated
subsidence-monitoring programs with multiple surveying methods were designed to clarify both
hydrological and mechanical processes of land subsidence [22]. The persistent scatterer interferometry
(PSI) technique was adopted to quantify the dynamic evolution of land subsidence in the Beijing
north plain, and to determine the spatial relationship with its triggering factors [23]. The small
baseline interferometric synthetic aperture radar (InSAR) [24] technique was employed to investigate
the relationship between land subsidence and groundwater level, active faults, cumulated soft soil
thickness, different aquifer types, and the distance to pumping wells [10]. These studies proved that
the spatial extent and magnitude of land subsidence in Beijing Plain has both spatial variability and
inheritance. They paid much attention to adopting a GIS spatial overlay or visualization, focusing on
its spatial extent, magnitude, and spatial correlation with groundwater drawdown, and the geological
structural control at the macro scale, but it has been rarely reported that Geographic Distribution
Measuring methods [25] were used to measure the distribution of subsidence-related temporal-spatial
datasets that allows one to quantify their concentration tendency, development orientation, dispersion
trend, and distribution differences and track their changes over time.

Gravity center analysis is an aggregated statistical method in geographical space. The gravity
center dynamic could reveal the spatial concentration of geographical phenomena. It was widely
used to assess spatial distribution evolvement in many fields, like population, economics, and
employment [26,27]. The deviation direction indicates the adjustment of high intensity, and the
deviation distance indicates the degree of equilibrium or adjustment magnitude [26]. The standard
deviational ellipse (SDE) was first proposed by Lefever [28] to reveal characteristics of geospatial
distribution [29–32]. It has been widely used in urban science [33,34], ecology [35,36], geology [37,38],
and infectious disease distribution [39]. Mapping distributional trends for a set of violent events
might identify a relationship to particular features, like ethnicity, terrain, land cover, targets, and
separatist tradition [40]; comparing the size, shape, and overlap of ellipses for population, gross
domestic product, and topography might provide insights regarding economic spatial variation [41].
Plotting ellipses across time series for PM2.5 (aerosol particles smaller than 2.5 μm in diameter that are
suspended in the air) concentrations might characterize the overall spatial dynamic process [42].

Therefore, this study adopted the two Geographic Distribution Measuring methods to calculate
the gravity center and SDE of land subsidence, groundwater drawdown, and compressible layer
thickness. Then, by comparing their parameters across time series, the understanding of their spatial
distribution evolution and spatial correlation was improved. The main objective of this current study
is three-fold: to introduce geographic distribution measuring methods into land subsidence research
based on GIS spatial technology; to quantify the spatiotemporal distribution of land subsidence and
its influencing factors in the development center, principle orientation, and dispersion, tracking their
spatial distribution characteristics; and to distinguish their spatial distribution differences.

2. Materials and Methods

2.1. Study Area

The Beijing Plain (excluding Yanqing region) is located in the southeast part of Beijing, covering a
total area of 6390 km2, about 38% of Beijing (Figure 1). It lies in the alluvial-pluvial plain fan which was
built up by the river deposits primarily from five rivers, including Yongding, Chaobai, Wenyu, Dashi
and Jiyun Rivers. Urban districts include downtown, Chaoyang, Haidian, Shijingshan, and Fengtai.
The average annual temperature is about 10–15 ◦C, and precipitation is 601.7 mm, which belongs
to the temperate continental monsoon climate. Land subsidence is one of the critical threats to the
sustainable development of Beijing city.
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Figure 1. Location, type of main sediments, and digital elevation model of the study area.

2.2. Available Datasets

Cumulative subsidence contours (the starting time was 1955) in 1999, 2007, 2009, 2011, and 2013
were derived from the Beijing land subsidence monitoring network (Figure 2). The total mean square
error of leveling per kilometer and the mean square error of point locations conform to the national
norms of primary leveling and second-class leveling (GB12897-91) [43]. This level monitoring network
includes 278 monitoring points that provide elevation observation, and monitoring frequency is once
a year. By comparing current observations and previous ones, land subsidence of the observation
points were identified and then a cumulative land subsidence contour map was plotted. By 2013, the
area where cumulative subsidence was greater than 100 mm reached 4942 km2. A, B, C, D, E, and F
referred to typical funnel zones and their maximum values are shown in Table 1. The sedimentary time,
genetic type, lithology, structure, thickness, and physical and mechanical properties of Quaternary
strata are complicated and affect the occurrence and development of land subsidence in Beijing Plain.
The thickness map (Figure 3) was derived after grouping silty clay, clay, silt, and other compressible
sediments into a compressible layer [44]. Groundwater level observations in 1965, 1995, 2007, 2009,
2011, and 2013 were collected to delineate the changes of the groundwater seepage field (Figure 4).
They are retrieved from official reports published by the Beijing Water Authority and the data are
accurate and reliable [45]. Compared with that in 1965 in the natural state, fluctuating with terrain
changes, the groundwater level in 2013 dropped significantly. Typical funnels of greater than −15 m
have formed especially in the regions where Changping, Shunyi, and Chaoyang join together.
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Figure 2. Cumulative land subsidence in Beijing Plain. For simplicity, only three of six collected
datasets are shown, and the others are shown in Figure S1.

Table 1. Maximum values of the subsidence funnel zone (mm).

Subsidence Funnel Zone 1999 2005 2007 2009 2011 2013

A Balizhuang-Dajiaoting in Chaoyang 700 750 750 800 1050 1300
B Laiguangying in Chaoyang 500 650 800 950 1000 1400
C Shahe-Baxianzhaung in Changpiing 650 1050 1100 1150 1200 1400
D Lixian-Yufa in Daxing 650 800 850 950 1050 1200
E Pinggezhuang in Shunyi 250 400
F Yang town in Shunyi 150 200 250 300 400

Figure 3. Compressible layer thickness.

39



Water 2017, 9, 64

Figure 4. Groundwater seepage field. For simplicity, only three of six collected datasets are shown,
and the others are shown in Figure S2.

Considering the smallest distance between two original isolines is larger than about 100 m in the
area with the most serious land subsidence, the contour map was interpolated as a raster map with
a 100 m resolution to keep the overall trend reflected by the map. Spatial sampling was performed
to derive 3872 samples at an interval of 1000 m according to the completeness and coverage of data.
The discrete point set could be used for spatial-temporal statistics calculation and assessment (Figure 5).
Each sampling point can be regarded as a case with geographic coordinates (xi, yi) (i = 1, 2, . . . , n).
The weight of geographic phenomena corresponding to each case was wi. The groundwater drawdown
was the groundwater level in 1965 minus that of the target year, because the groundwater seepage
field in 1965 can be approximately regarded as that of 1955.

Figure 5. Discrete point set of land subsidence.
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2.3. Gravity Center Analysis

The position of the gravity center was calculated using a combination of geographical coordinates
and geographic space phenomena. It was extended from the concept of the spatial mean [46] and
expressed as follows [26,27]: ⎧⎪⎪⎨

⎪⎪⎩
x =

n
∑

i=1
wixi/

n
∑

i=1
wi

y =
n
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i=1
wiyi/

n
∑

i=1
wi

, (1)

where x and y represent the longitude and latitude coordinates (respectively) of gravity center.
According to Equation (1), if sampling points are evenly distributed and geographic space

phenomena are homogeneous, the gravity center is equivalent to the regional geometric center.
When the gravity center of the geographic space phenomena shows a significant offset from its regional
geometric center, it indicates its disproportionate spatial distribution or gravity center deviation. In our
study, gravity center motion is caused by uneven development of land subsidence. Based on tracking
the gravity center derived from long-term monitoring data, its direction and distance of deviation
can reflect the adjustment direction and magnitude of land subsidence. Similarly, the method can
also be used to measure the influential factors of land subsidence in spatial variation features and,
by comparing their movement, the influencing mode will be clarified from the macroscopic prospective.

2.4. Standard Deviational Ellipse Analysis

SDE [28] is based on the average center of a set of discrete points, and the calculation of
the standard distance of other points away from the average center separately in the x and y
directions. These two measures define the axes of an ellipse encompassing the distribution of features.
This calculated ellipse covers the spatial center, extent, orientation, shape, and other aspects, with the
specific indicators are represented by the average center, the SDE, major and minor axes, and azimuth
(Figure 6a). When the SDE was weighted by an attribute value associated with the features, it was
termed as a weighted SDE, and the weighted average center can be expressed as shown in Equation (1).
The other main parameters and corresponding equations of the weighted SDE are shown in Table 2.
θ refers to the azimuth of the ellipse; σ refers to the standard deviation.

�
x i and

�
y i refers to the distance

of the point i away from the average center separately in the x and y directions. The SDE represents
elements in the main distribution area; the major axis and minor axis correspond to the dispersion
degree of geographical features in the principle and secondary direction; the azimuth reflects the
main trend directions, allowing one to see if the distribution of features is elongated and, hence, has a
particular orientation. The orientation is the rotation of the long axis measured clockwise from north.
While one can get a sense of the orientation by drawing the features on a map, calculating the SDE
makes the trend clear [42].

By comparing SDEs across time series, it is possible to characterize the overall spatial dynamic
process. The dynamic of the center reveals the overall evolutionary track of elements; changes in the
dimensions of the major and minor axes of an ellipse indicates an expansion or contraction of a specific
spatial direction; and changes in the azimuth reflect the changes of overall elements in a particular
spatial direction. In addition, the spatial differentiation coefficient was defined [41] to characterize the
differentiation degree between different geospatial phenomena (Figure 6b). For instance, IB/A referring
to the spatial differentiation coefficient of geospatial phenomena of B relative to A can be expressed as:

IB/A =
CB(A ∩ B)

B
, (2)
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Figure 6. Space expression of the standard deviational ellipse (SDE): (a) basic parameters and (b)
distribution difference [41].

Table 2. The main parameters and corresponding equations of weighted standard deviational
ellipse (SDE).
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3. Results

3.1. Gravity Center Evolution Analysis

3.1.1. Gravity Center of Land Subsidence

The gravity centers of land subsidence in Beijing Plain were located to the southeast of downtown
in Chaoyang District from 1999 to 2013, and they were distributed between Fourth Ring Road and Fifth
Ring Road (Figure 7). From Figure 2 and Table 1, we can see that (1) three main subsidence funnels
were located within or nearby Chaoyang district; and (2) the Lixian-Yufa subsidence area was located
at the southernmost tip and far away from the urban district. This indicates that the spatial pattern of
land subsidence determines the gravity center location.

Table 3 shows that the gravity center of land subsidence experienced an accelerating-
stabilizing-reducing move north by east yearly, approaching the geometric center. From 2007 to
2011, the gravity center moved to the northeast at a higher speed. After 2011, its speed slowed
and the direction was more biased to the geometric center. Figure 2 shows that the first five typical
subsidence funnels have taken shape and the whole extent has kept stable since 1999; the two funnels
in Chaoyang mainly moved eastwards; the Lixian-Yufa subsidence area expanded north. From 2003 to
2010, the new Yang town funnel formed, owing to continuous overexploitation and it developed to the
northeast compared with the old funnel [23]; the maximum of funnels in Chaoyang district reached
110 mm/year, while that in Changping district was moderate [10]. Generally speaking, the movement
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of the gravity center depended on the development trend of land subsidence. It produced a small shift
from southwest to northeast, presenting a total stability of spatial distribution.

Figure 7. Gravity center of cumulative land subsidence, groundwater drawdown, and the
compressible layer.
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Table 3. Gravity center (the relative distance and direction are relative to the geometric center).

Year x y Distance
(m)

Direction
Rate

(m/Year)
Relative

Distance (m)
Relative

Direction

Cumulative
land

subsidence

1999 455,082.73 4,409,843.56 11,221.13 South by
West 33.70◦

2007 458,249.82 4,411,339.05 3502.42 North by
East 64.72◦ 437.80 7773.48 South by

West 37.49◦

2009 458,814.36 4,412,488.92 1280.98 North by
East 26.15◦ 640.49 6650.08 South by

West 32.58◦

2011 459,259.27 4,413,771.85 1357.88 North by
East 19.13◦ 678.94 5647.37 South by

West 24.01◦

2013 460,186.49 4,413,978.36 949.93 North by
East 77.44◦ 474.97 4720.14 South by

West 26.30◦

Groundwater
drawdown

1995 462,135.93 4,421,975.89 6331.38 North by
West 21.13◦

2007 463,338.85 4,424,859.60 3124.55 North by
East 22.64◦ 260.38 8855.55 North by

West 7◦

2009 463,147.88 4,426,294.86 1447.90 North by
West 7.58◦ 723.95 10,303.39 North by

West 7.08◦

2011 464,963.60 4,427,455.10 2154.77 North by
East 57.42◦ 1077.38 11,398.14 North by

East 2.74◦

2013 463,472.92 4,427,165.65 1518.53 South by
West 10.99◦ 759.27 11,135.78 North by

West 4.87◦

Compressible layer
thickness 464,698.89 4,417,620.02 1575.25 North by

East 10.28◦
Geometry center 464,417.87 4,416,070.03

3.1.2. Gravity Center of Groundwater Drawdown and Compressible Layer Thickness

The gravity centers of groundwater drawdown in Beijing Plain were also located in Chaoyang
District, to the northeast of downtown from 1999 to 2013, and they were to the northeast of the
intersection of Chaoyang Road and Fifth Ring Road (Figure 7). This is because its main funnels were
always distributed in the northeast of Chaoyang District and its extent fluctuated, but basically covered
this area (Figure 4). The gravity center movement also experienced an accelerating-steady-reducing
process (Figure 7 and Table 3). It moved north by east from Baijialou in 1995 to Dongba in 2007.
From 2007 to 2009, its movement speed increased more than three times and the direction was biased
to the west. From 2009 to 2011, its direction returned to north by west. After that, it moved south by
west to Beimafang and the movement rate was slowed down.

The groundwater variation determined the gravity center movement dynamic. With the
continuous overexploitation of groundwater through many years, the groundwater depression
expanded in the northeast part of Beijing Plain, resulting in the gravity center moving northward.
According to the statistics of the Beijing Water Authority, groundwater storage increased only in 2012
and it decreased more or less in other years (Figure 8). In 2012, the average annual precipitation of the
whole city was 708 mm, 28% more than that in 2011, and 21% more than the average for previous years.
Considering that precipitation is the main recharge for groundwater in Beijing Plain, a plentiful supply
of groundwater in 2012 led to a rebound of 0.67 m of the average groundwater level compared with
2011. The estimated groundwater storage increased by 3.4 × 109 m3 and the dramatic groundwater
decline trend was alleviated.

The gravity center of the compressible layer was located in east-central Chaoyang District, close
to the geometric center (Figure 7). It was located on the northeast part of the Yongding alluvial-pluvial
fan-fringe area, and also close to the of Chaobai fan-fringe area with mass compressible deposits,
reflecting the spatial concentration of the compressible layer (Figure 3).
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Figure 8. The 2001–2015 yearly time series precipitation, and groundwater storage anomalies in Beijing
Plain. Note that these data were retrieved from the Beijing Water Resources Bulletin from 2001 to
2015 [45] issued by the Beijing Water Authority.

3.1.3. Coupling Analysis of the Gravity Center

The gravity center dynamic demonstrated the adjusting direction and intensity of land subsidence,
groundwater drawdown, and compressible layer thickness. The length of the connecting line (Table 4)
between them can reflect their relative adjusting trend. For land subsidence and groundwater
drawdown, it increased in 2011, and then decreased. For land subsidence and compressible layer
thickness, it decreased in 2013. This suggested that the concentration trend of land subsidence showed
a larger difference with that of groundwater drawdown yearly until 2011, but it decreased sharply
from 2011 to 2013. In light of the largely increasing groundwater recharge from precipitation in 2012,
the decrease of groundwater drawdown slowed subsidence development. The concentration trend of
land subsidence illustrated a smaller difference with that of the compressible layer thickness yearly,
tending to be similar with that of the latter. This reflected their increasing spatial agreement.

Table 4. Coupling parameters of the gravity center. Note the cumulative land subsidence from 1955
to 1999 and the groundwater drawdown from 1965 to 1995 were compared because of the missing of
same period. The same process was also seen in below.

Year 1995 (1999) 2007 2009 2011 2013

Land subsidence vs. groundwater drawdown (m) 14,033.57 14,446.58 14,470.08 14,824.67 13,590.63
Land subsidence vs. compressible layer thickness (m) 12,367.04 9002.28 7807.42 6663.16 5798.57

Groundwater drawdown is a dynamic factor, which triggers land subsidence. The compressible
layer is a static factor, which provides a potential medium for land subsidence. Under the context of
urbanization, the high intensity of groundwater exploitation gradually moved to the upper part of
the alluvial-pluvial plain fan, with more groundwater sources. Although the compressible sediments
reduced relatively, it still exists and breeds severe land subsidence [23]. Thus, the synchronized
behavior of land subsidence and groundwater drawdown made the length of the connecting
line change slightly. With the development of land subsidence and the groundwater drawdown,
partially- or fully-developed subsidence existed in the static compressible layer. Owing to the positive
correlation between the magnitude of land subsidence and the thickness of the compressible layer,
the more developed the land subsidence, the thicker the compressible layer. The length of the
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corresponding connecting line is, therefore, getting shorter. We can make an assumption that when the
potential provided by the compressible layer is exhausted, the development of land subsidence will
hit a plateau. This still needs continuous observation and further study.

3.2. Development Orientation Comparison Analysis

The change tendency of the principle orientation can be analyzed by the azimuth of the ellipse’s
major axis. From 1999 to 2013, the spatial direction of land subsidence development was SW–NE,
showing a generally increasing trend north by east (Figure 9). From 1999 to 2007, the azimuth was
increased with an average annual offset angle of 0.94◦; from 2007 to 2009, the azimuth was enabled
to maintain at about 18.70◦; from 2011 to 2013, the azimuth was enabled to maintain at about 20.50◦

(Table 5). For groundwater drawdown weighted SDE, the azimuth was 24.96◦ north by east in 1995;
it increased to 31.52◦ in 2007, at the ratio of 0.55◦/year to the east. From 2007 to 2011, the azimuth
increased and the rate was 0.58◦/year, which was the same with that in the previous period; from 2011
to 2013, there was a sharp counter-clockwise shift (Table 5).

Figure 9. SDE of cumulative land subsidence, groundwater drawdown, and compressible layer
thickness. The map on the left shows SDE of land subsidence; the map on the right shows SDE of
water drawdown.

By comparison, the azimuth of the cumulative subsidence weighted SDE changed with that of
groundwater drawdown, but was confined by that of the compressible layer thickness. The azimuth of
the cumulative subsidence weighted SDE was at least 11◦ smaller than that of groundwater drawdown
in the same year. They all had a growing tendency to north by east with some fluctuations and a peak
in 20.58◦. The principle direction of the cumulative subsidence weighted SDE rotated north by east,
and the largest in 2009 was close to, but less than, that of the compressible layer thickness weighted
SDE. This suggested that land subsidence was driven by the groundwater drawdown, but confined by
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the compressible layer in extent and magnitude because the thicker compressible layer is the material
for land subsidence.

Table 5. SDE parameters of land subsidence, groundwater drawdown, and compressible
layer thickness.

SDE Parameters Year Short Axis (m) Long Axis (m) Rotation Angle (◦) Long Axis/Short Axis Area (km2)

Cumulative land
subsidence

1999 19,346.19 36,550.69 11.19 1.89 2221.28
2007 19,789.50 36,998.78 18.72 1.87 2300.04
2009 19,348.78 36,293.81 18.67 1.88 2205.97
2011 19,875.39 36,567.86 20.58 1.84 2283.12
2013 19,904.22 35,492.24 20.51 1.78 2219.19

Groundwater
drawdown

1995 22,751.85 34,974.82 24.96 1.54 2499.73
2007 23,714.93 37,426.64 31.52 1.58 2788.20
2009 22,851.41 37,940.96 32.96 1.66 2723.58
2011 23,416.54 37,325.74 33.87 1.59 2745.69
2013 23,009.21 37,143.34 31.94 1.61 2684.74

Compressible
layer thickness 23,473.52 35,233.51 21.62 1.50 2598.10

3.3. Dispersion Tendency Comparison Analysis

The major axis and its ratio with the minor axis characterized the spatial dispersion tendency.
From 1999 to 2007, the major axis length of the land subsidence weighted SDE increased at a rate of
56 m/year; from 2007 to 2009, it decreased by 704.97 m; and from 2011 to 2013, there was another
stronger spatial contraction. The corresponding ratio was reduced from 1.89 in 1999 to 1.78 in 2013
(Table 5). The spatial contraction of the ellipse suggested the central region experienced more serious
land subsidence than that in the external ellipse most of the time.

From 1995 to 2007, the major axis of the groundwater drawdown weighted SDE increased at the
annual rate 204.32 m/year; since 2007, its length was generally kept above 37,000 m, and there was
a peak in 2009 (Table 5). Since precipitation is the main recharge of groundwater, the groundwater
drawdown varied with its fluctuation and there was an apparent trough in the total precipitation and
corresponding total groundwater storage especially in 2009 (Figure 8). This suggested that the length
of the major axis can be regarded as an important index to measure the groundwater drawdown.

By comparison, the major axis length of the land subsidence weighted SDE decreased and
approached that of the compressible layer thickness. In addition, from 1999 to 2013, the ratio between
the length of the major axis and the minor axis of the land subsidence weighted SDE was reduced more
closely to that of the compressible layer thickness. This suggested that the land subsidence distribution
pattern got closer to that of the compressible layer with the increase of its development intensity.

3.4. Spatial Differentiation Coefficient Comparison Analysis

The spatial differentiation coefficient between coverage areas can determine their spatial
differential degree. The coverage area of the land subsidence weighted SDE fluctuated from 1999
to 2013 (Table 5). It almost covered four of the five funnels, except for Shahe-Baxianzhaung, whose
development intensity was high, but was located along the direction of minor axis and close to the
gravity center. Therefore, it had little influence in the spatial pattern, comparatively. The coverage
area of the groundwater drawdown weighted SDE fluctuated from 1995 to 2013. Since 2007, it was
maintained at about 2700 km2, and the smallest appeared in 2013, associated with the precipitation
peak of the previous year. The coverage area of the compressible layer thickness weighted SDE was
roughly less than that of groundwater drawdown, and larger than that of land subsidence.

The spatial differentiation coefficient between the cumulative subsidence and groundwater
drawdown moved up and down between 0.20 and 0.22; and that between the cumulative subsidence
and the compressible layer thickness gradually decreased from 0.22 in 1999 to 0.07 in 2013 (Figure 10).
This meant that (1) the spatial pattern of land subsidence is different with that of groundwater
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drawdown, but their difference degree is stable; and (2) the spatial pattern of land subsidence was
increasingly close to that of the compressible layer. It can, therefore, be inferred that (1) land subsidence
was triggered by groundwater drawdown, but confined and diversified by the compressible sediments
in spatial magnitude and extent; and (2) the extent of land subsidence approached the extent of the
compressible layer distribution area. Whether the land subsidence in the whole area might hit a
plateau after its strong growth, or keep expanding, it needs further observations and confirmation.
Continuous attention to this point is very necessary.

Figure 10. Spatial distribution difference coefficient.

4. Discussion

Our study made an attempt to introduce geographic distribution measuring methods into
land subsidence synthetic research. It is a geographical approach to evaluate land subsidence,
groundwater drawdown, and compressible layer thickness from multiple perspectives, including
point (gravity center), line (major axes), and polygon (coverage) views. The compressible sediment is a
typical type of natural endowment, invariable in a long time scale and providing the material basis of
land subsidence. Its non-uniform distribution can accelerate or decelerate the development of land
subsidence, unbalancing the starting point of spatial evolvement of land subsidence. Groundwater
drawdown is mainly caused by artificial extraction, which is a typical type of anthropogenic activity.
It is the inherent drive and its spatial diversity induces unbalanced development of land subsidence.
According to Krugman’s theory [47], the compressible sediment and groundwater drawdown can be
regarded as the “first nature” and the “second nature”. Therefore, it is of significance to understand
regional land subsidence from a geographic view. In addition, it is a benefit that the method can
be implemented by using the reliable commercial GIS software ArcGIS (ESRI, Redlands, CA, USA),
which provides a wide variety of spatial analysis interfaces, and allows us to focus on the geographic
distribution measured in the GIS environment.

Our result distinguished the spatial distribution differences between land subsidence,
groundwater drawdown, and compressible layer thickness. They suggest that (1) land subsidence
developed from the southwest to the northeast and has the same concentration trend to groundwater
drawdown; (2) land subsidence was stable in extent, but increasing in magnitude; and (3) with the
increasing intensity, the spatial pattern of land subsidence was more similar to that of the compressible
layer. This can reflect that land subsidence in Beijing is triggered by groundwater overexploitation
and influenced by spatial heterogeneity of compressible layers. This is in good agreement with the
conclusions from Jia et al. [21] and Zhu et al. [23].

We quantified the development center, principle orientation, dispersion, and tracking of the spatial
distribution characteristics of relative study subjects. This can be achieved thanks to the ongoing

48



Water 2017, 9, 64

multiple monitoring data based on groundwater level surveying, and ground-based geological and
geodetic measurements, which enable us to acquire sufficient data and draw a scientific conclusion.
However, conventional technologies cannot meet the needs of both spatial and temporal resolutions
such that we can only focus on general trends, neglecting seasonal variations and funnel features.
For instance, only yearly spatial distribution characteristics of land subsidence can be detected
owing to the high cost of leveling; groundwater drawdown does not fully explain land subsidence,
considering the heterogeneity of specific storage. In this context, remote sensors bring useful
information. The InSAR technique can be used to detect land subsidence with higher spatiotemporal
resolutions [48–52]. The Gravity Recovery and Climate Experiment (GRACE) technique can reveal the
large-scale time series water storage change and the groundwater storage loss [53,54]; most notably,
it has a potential to detect heterogeneous groundwater storage variations at the subregional scale,
smaller than the typical GRACE footprint (200,000 km2) [55], and to detect anthropogenic signals over
regions with high levels of groundwater consumption [56]. Beijing will receive about 1 × 109 m3 of
water through the south-to-north water diversion project and the northern part of Beijing Plain is
designed for groundwater recharge. Meanwhile, ongoing urbanization will change the underlying
surface condition which can decrease the quantity of precipitation infiltration. Under the above context,
groundwater drawdown and land subsidence will take on a different spatial development and pattern.
Our study will provide a good reference.

5. Conclusions

This paper proposed a comprehensive geographic measurement to improve the understanding of
spatiotemporal distribution features of land subsidence, groundwater drawdown, and compressible
layer thickness in Beijing Plain.

Land subsidence, groundwater drawdown, and compressible layer thickness were all
concentrated in Chaoyang District. The concentration of land subsidence moved from southwest
to northeast, which was basically consistent with groundwater drawdown. The compressible layer
thickness was concentrated in the east-central Chaoyang District on, or close to, the alluvial-pluvial
fan-fringe areas with mass compressible deposits.

The principle direction of land subsidence was SE–NE. It changed with that of the groundwater
drawdown, but was getting closer to that of the compressible layer. The length ratio between the major
and minor axes suggested that the dispersion tendency of the land subsidence became closer to that of
the compressible layer with its increasing development intensity. The spatial contraction of the ellipse
suggested the Chaoyang District, in the central region of the study area, experienced more serious
subsidence than that in the surrounding areas most of the time.

The spatial distribution difference between land subsidence and groundwater drawdown was
about 0.2, and that between land subsidence and compressible layer thickness decreased from 0.22
to 0.07, reflecting that the spatial pattern of land subsidence was increasingly close to the spatial
distribution pattern of the compressible layer. Depending on development trends, the spatial pattern
of land subsidence in the whole area might reach a plateau after its strong growth, which needs
further study.

Generally speaking, land subsidence continued to develop with the groundwater drawdown,
and its development was characterized by the inheritance owing to the compressible layer.
They enabled the concentration trend of land subsidence in Beijing Plain to change little, and the
spatial distribution difference remained stable. This paper focuses on the general distribution features
of land subsidence, groundwater drawdown, and compressible layer thickness using GIS methods.
If more detailed information on land subsidence and groundwater drawdown can be derived by
cutting-edge remote sensing technologies, their distribution features can be finely depicted by the
adopted methods, and the results will be more accurate and practical. Meanwhile, the error and
reliability of the geographic measurement results will be broadly acceptable with the improvement
of the temporal and spatial resolution of the collected monitoring datasets. Geographic distribution
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measurement approaches enriched the methodologies for studying land subsidence. This study will
help in risk assessment of land subsidence under the “new normal” of south-to-north water diversion
in Beijing Plain.

Supplementary Materials: Cumulative land subsidence (the starting time was 1955) in 2005, 2009, 2011, in Beijing
Plain; groundwater seepage field in 1965, 2009, 2011, in Beijing Plain. Available online at www.mdpi.com/2073-
4441/9/1/64/s1.
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Abstract: Golf courses can be considered as precision agriculture, as being a playing surface, their
appearance is of vital importance. Areas with good weather tend to have low rainfall. Therefore, the
water management of golf courses in these climates is a crucial issue due to the high water demand
of turfgrass. Golf courses are rapidly transitioning to reuse water, e.g., the municipalities in the USA
are providing price incentives or mandate the use of reuse water for irrigation purposes; in Europe
this is mandatory. So, knowing the turfgrass surfaces of a large area can help plan the treated sewage
effluent needs. Recycled water is usually of poor quality, thus it is crucial to check the real turfgrass
surface in order to be able to plan the global irrigation needs using this type of water. In this way, the
irrigation of golf courses does not detract from the natural water resources of the area. The aim of this
paper is to propose a new methodology for analysing geometric patterns of video data acquired from
UAVs (Unmanned Aerial Vehicle) using a new Hierarchical Temporal Memory (HTM) algorithm.
A case study concerning maintained turfgrass, especially for golf courses, has been developed.
It shows very good results, better than 98% in the confusion matrix. The results obtained in this
study represent a first step toward video imagery classification. In summary, technical progress
in computing power and software has shown that video imagery is one of the most promising
environmental data acquisition techniques available today. This rapid classification of turfgrass can
play an important role for planning water management.

Keywords: water management; golf course; memory-prediction theory; object-based classification;
unmanned aerial vehicle

1. Introduction

As a case of precision agriculture, golf courses can be considered; this is called precision turfgrass
in the literature [1]. The huge dimensions of maintained turfgrass can be highlighted by the fact
that it is estimated to cover 20 million ha in the USA [2]. Spatio-temporal variation of soil, climate,
plants and irrigation requirements are new challenges for precision agriculture and, above all, complex
turfgrass sites [3]. The irrigation of golf courses is a major concern in this crop maintenance, especially
in a Mediterranean climate, both in the USA and in Europe [4]. Golf courses in the southwestern
United States are rapidly transitioning to reuse water (treated sewage effluent), as municipalities
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provide price incentives or mandate the use of reuse water for irrigation purposes [5]. So, when
reuse water of poor quality is used, as on golf courses in the arid southwestern United States, proper
irrigation management is critical [6], so greenkeepers should pay attention to irrigation strategies
employed on reuse water irrigated golf courses to properly manage for higher nitrogen and salt loads.
In Spain, it is estimated that water consumption for a golf course is 6.727 m3/ha per year (this is due
to the use of poor water, 2.5 dS/m) [7].

Recently, unmanned aerial vehicles (UAVs) have provided a technological breakthrough with
potential application in PA [8,9]. UAVs enable the quick production of cartographic material because
they rely on different technologies, including cameras, video and GPS (Global Positioning System) [10].
Even though an UAV has very restricted, heavy limitations, the minimization of the sensors during
the last year is allowing the use of lighter vehicles, or the use of more features and sensors to a given
platform [11]. The opportunity offered by UAVs to observe the world from the sky provides the
opportunity to study crops or turfgrass from an unusual viewpoint, allowing the visualization of
details that cannot be easily seen from the ground [12,13].

Regarding agricultural purposes, aerial photography and colour video from UAVs presents
an alternative to imagery from satellite and aerial platforms [14], which are often difficult to obtain or
expensive [15]. Hassan et al. [15] highlight the problem of conventional methods in the classification
process, using high resolution images to overcome or minimize the difficulty in classification of the
mixed pixel areas. A huge number of applications are achieved using UAVs to monitoring the health of
crops through spectral information, e.g., stressed or damaged crops change their internal leaf structure
which could be rapidly detected by a thermal infrared sensor [16], therefore, this information is very
important to detect stress such as water and nutrient deficiency in growing crops [17].

On the other hand, texture measurements from images obtained by UAVs have been integrated in
object-oriented classification, specifically in the classification and management of agricultural land
cover [18]. Likewise, there are studies that demonstrate the feasibility of using UAVs with thermal
multispectral cameras for estimating crop water requirements, determining the ideal time for watering
and saving water consumption without affecting productivity [19–21]. Therefore, the technology is
versatile and capable of producing very useful cartographic material for working with PA; the technique
also facilitates working with aerial photography in addition to LIDAR (Laser Imaging Detection and
Ranging) or video cameras [22,23]. UAVs on golf courses have been used for some time to monitor
certain agronomic variables, such as nitrogen [24], and should be considered as a valuable tool to
monitor plant nutrition. In this case study, a rapid classification of turfgrass, among others, can play
an important role to determine the water requirements of the different areas in order to plan water use.

For this purpose, information of important use can be analyzed and extracted from the images
through the employment of powerful and automatic software. The object-based image classification
techniques are applied not only for a high level of adaptability but automation as well. These techniques
overcome some limitations of pixel-based classification by creating objects on the image through
segmentation, using adjacent pixels with a spectral similarity [25]. Subsequently, object-based
classification combines spectral contextual information for these objects to perform more complex
classifications. These techniques have been successfully applied to images obtained by UAVs in
agricultural [26,27], aquatic ecosystems [28] and urban [29] areas.

Therefore, for golf courses, irrigation need planning, especially if it is employed in large areas,
and has to be monitored more frequently than other crops. UAVs, due to low cost and fast response
time, are the technology that allows this monitoring. A monitoring system based on the video image
analysis and classification, will allow a real-time control of crops. Thus, this research is the first step to
show the technical viability of real-time control of crops.

Thus, given the positive results previously obtained in the classification of images and given
that the applications developed using the HTM algorithm are capable of analyzing video images, the
objective of the current study is to develop a recognition methodology for golf courses in real-time
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using video images taken by an UAV based in a HTM for possible application in planning irrigation
needs in order to maximize the water use efficiency and help to plan water requirements of reuse water.

2. Material and Methods

2.1. UAV and Sensor Description

The material used in this work included images taken by an UAV DJI Phantom 2 Vision+
(Figure 1a) with a flight control system Naza-M V2, that has a range of 700 m and an altitude of 300 m;
a HD integrated camera; and a 3-axis gimbal correcting movements in any axis and direction [30].
The Phantom 2 Vision+ is a rigid quadcopter with a maximum ascent rate of 6 m/s, a maximum
descent rate of 2 m/s and a maximum flight speed of 15 m/s.

The camera of the Vision+ (Figure 1b) has a 140◦ FOV (Field of View), F2.8 connected to a 2.3′ ′

sensor with 14 megapixels that can capture images in Adobe DNG and JPEG format as well as recording
1080-pixel and 30-fps videos or recording in a slow camera mode at 60-fps 720-pixel resolution [30].
The equipment also features a streaming video and telemetry data with a range of up to 700 m to
a phone, tablet or computer and has a 5200-mAh lithium battery that can hold the quadcopter in the air
for up to 25 min. The operator can control the camera using Wi-Fi to manage pan, tilt and camera light
sensitivity, video or image modes. The Wi-Fi computer camera system is a very important element
that allows for real-time viewing of everything being seen by the camera and the obtainment of video
images in real-time.

The equipment also includes an inertial sensor and a barometric altimeter to measure altitude
and latitude.

Figure 1. Details of the DJI Phantom 2 Vision+. (a) General image of the quadcopter; and (b) the details
of the camera.

2.2. Study Site

The first stage of this study is to propose a new methodology for analysing geometric patterns of
video data acquired from UAVs using a new Hierarchical Temporal Memory (HTM) algorithm.

The information used in this research during the training phase includes simple and short videos,
as these videos represent a first step in the integration of UAV video cameras into this technology and
the search for the most suitable videos for the proposed purposes. The analyzed patterns to check
the accuracy of the method were grapes (Vitis vinifera; see Figure 2) and other non-agricultural uses,
namely urban and wood areas.

For each of these categories, 300 training videos and 150 testing videos with a total duration of
60 min were used. The videos were obtained in different areas of Redwood City, San Mateo County,
California, United States (37◦30.128′ N 122◦12.758′ W; Figure 3).
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Figure 2. Sample image of the video sequences studied.

Figure 3. Location map.

2.3. HTM Methodology

In recent years, the technology involved in remote sensing and object recognition has considerably
advanced [31,32], with diverse applications ranging from recognition and vehicle classification [33]
to the facial recognition of individuals [34]. Studies on detection and object recognition can be
classified into two categories: keypoint-based object detection [35] and hierarchical and cascaded
classifications [36]. Parallel to this development, a new technology applicable to the classification
of digital pictures emerged: the Hierarchical Temporal Memory (HTM) learning algorithm.
This classification technology is based on both neural networks and Bayesian networks but involves
a particular algorithm based on a revolutionary model of human intelligence—the memory-prediction
theory developed by Jeff Hawkins [37]. This theory is based on the workings of the human cerebral
cortex, which has a structure in the form of “layers” in which information flows bidirectionally
from the senses to the brain. From this operating hierarchy, a hypothesis of how the human mind
works is created. The key point of this algorithm is found in the duality of the information received.
All information we perceive has a spatial component and a temporal one; information is received
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by the human brain not as an isolated pattern but as a succession of patterns. The cerebral cortex
stores the patterns that we perceive and how they are ordered in time. In light of that concept, the
memory-prediction theory states that the cerebral cortex stores the new patterns and their evolution
over time so that once these sequences stabilize, the brain can make predictions (or inferences) enabling
it, without observing a full sequence, to know what pattern it is observing because it knows the
sequence in which the patterns occur over time [37].

Thus, this new technology developed by Jeff Hawkins not only presents a new model of how
human intelligence functions but also models a neural network system capable of emulating this theory.
This classification technology is not specific to image analysis but is versatile for any type of information
(from medical information to economic data), with a dual role: learning and pattern recognition in
data flows and classifying unknown data according to the training received. Currently, we can
find this technology integrated into the free software application NuPIC developed by NUMENTA®

(Redwood City, CA, USA), which is used to classify data streams [38]. These data can be of many
types, ranging from sign language [39] to eye retinal images for biomedical purposes [40]. There are
open areas of research using HTM as a classifier for land planning, which is where our work focuses.
In a previous study, Perea et al. [41] conducted an analysis of high-resolution images for classification
and land planning in agricultural environments; starting from images from a UltracamD® (Graz,
Austria) photo sensor of a region of southern Spain, classification results were obtained that recognized
the ground cover up to 90.4%. In a similar fashion, using HTM in the recognition and object-oriented
classification, the technology was successfully applied in the recognition of urban areas and green
areas; the classification results obtained were approximately 93.8% [42].

Objects with a hierarchical structure, in both space and time, compose the world; this same
concept is used by HTM to generate a series of interconnected nodes organized in a tree hierarchy [43].
Thus, the HTM presents a hierarchical structure either in space or time and represents the structure of
the world [44].

The HTM learning algorithm implemented in the HTM Camera Toolkit free Application
Programming Interface (API) was used in this experiment. This API allows easy implementations
of HTM learning algorithms using real world images. Although this API can be used in a variety of
contexts, in this paper we focus only on visual recognition applications (i.e., inputs are UAV videos).
This API is built and configured by writing Python scripts, allowing researchers to design and configure
the hierarchy of nodes based on their input data. To improve the accuracy based on node parameters
configuration it is necessary to work with iterations.

As commented before, the principal objective of this first stage in this investigation is to propose
a new methodology for analysing geometric patterns of video data acquired from UAVs using a new
Hierarchical Temporal Memory (HTM) algorithm. For this purpose, the parameterization and structure
of the HTM algorithm for learning and inference have been analyzed and constructed.

Figure 4 shows the overall methodology for HTM design and implementation. There are five
phases in this methodology, from the definition and configuration of the data and HTM network to the
training and its evaluation.

Once the data to be used have been defined, two steps were necessary to create this network: the
creation of the architecture using the Python programming language and the formation of a set of
training patterns.

Based on the experience of the research group in previous work [41,42,45], the HTM network was
defined in three levels: the first two levels are composed by two sub-levels (a sub-level which analyses
the spatial component and another sub-level that analyses the temporal component), and finally there
is a classifier which sorts the images into common categories. The level 1 or input level is composed of
8 × 8 pixel input nodes, each associated to a single pixel. Nodes from the first level go through the
raw image and receive a characteristic of the training pattern image, creating an entry vector formed
by digital levels of 8 × 8 pixels. Level 2 is composed of 16 nodes that receive the information from
the previous level; therefore, each level 2 node is formed by four primary child nodes (arranged in

57



Water 2016, 8, 584

a 2 × 2 region). Finally, level 3 or higher comprises a single node, and it has 16 child nodes (arranged
in a 4 × 4 region) and a receptive field of 64 pixels. In Figure 5, the downward connection of one
node per level is shown. This system operates in two phases: the training phase and the inference
phase. During the training phase, the network is exposed to training patterns and builds a model that
categorizes patterns. During the inference phase, new patterns will be distributed in these categories.
All nodes (except the initial node) process information in the same manner and consist of two modules:
temporal and spatial [44]. Understanding an HTM node involves understanding the operation of these
modules during the learning and training phases.

Figure 4. Overall methodology diagram.

Figure 5. Details of the HTM structure. Level 1 is composed of 64 nodes; Level 2 is composed of
16 nodes and Level 3 comprises a single node.
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2.3.1. Training Phase

During the training phase, the spatial module learns to classify input data based on the spatial
coincidence of the elements that compose them. The input vector is compared with other vectors already
stored. The exit of the spatial module (temporal module entrance) occurs in terms of their matches and
can be seen as a pre-processing stage for the temporal module, simplifying entry. The temporal module
learns temporary groups, which are groups of coincidences that frequently occur [44].

Spatial Module

The spatial modules of the input nodes receive raw data from the sensor; spatial modules of
the upper nodes receive the output data from their lower nodes. The input of the spatial module in
the upper layers is the concatenation of the order set by the output of the nodes below. Its input is
represented by a series of vectors, and the function of the spatial module is to build a matrix (match
matrix) of input vectors that have recently occurred. There are several algorithms for the spatial
modules, such as the Gaussian and Product algorithms. The Gaussian algorithm is used for nodes in
the input level, and the top nodes of the hierarchy use the spatial module Product.

The Gaussian algorithm compares the input vector without dealing with the existing matches
in the match matrix. If the Euclidean distance between the input vector and the existing match is
sufficiently small, then the entry is considered as the same match, and the match count is incremented
and stored in the memory. The distance between an input vector and previously stored vectors is:

d2 (
x, wj

)
=

D

∑
i=1

(
xi − wj

)2 (1)

where D is the dimension of the vector (64 in the first level), xi is the ith element of the input vector
and wj is the position i of the vector j in the match matrix W. The match threshold of an input vector to
an existing match is the Maximum distance parameter.

The product algorithm calculates the probability of similarity (beliefi), Equation (2), between an
input in the inference and a vector that had been previously memorized by the spatial module:

belie fi =
nchildren

∏
j=1

yi
(
childj

) ∗ x
(
childj

)
(2)

where nchildren is the number of secondary nodes (previous level) that the parent node has, x is the
input vector, yi are the vectors previously stored by the spatial module and (childj) is the part of a vector
obtained from nchildren secondary nodes.

Temporal Module

The temporal module forms groups of matches in time, called temporal groups. Subsequently,
a temporal match matrix is built. After the training phase, the temporal module uses this matrix to
create the temporal groups. This module uses the sum algorithm, which takes the best representations
of all groups to classify new input patterns during inference. When a new input vector is presented
during the training phase, the spatial module represents the input vector as one of the learned
matches. This process increases the elements (j, i) of the temporal match matrix and is controlled by
the transitionMemory parameter. This increment (It) is calculated as follows, Equation (3):

It = transitionMemory − t + 1 (3)

where t is the training; the HTM time is in seconds between the current match and the past match.
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2.3.2. Inference Phase

After training a node, the network transitions to the inference mode. When the complete network
is trained, all of the nodes are in the inference state, and the network is capable of performing inference
with new input patterns. Initially, a probability distribution is generated for the categories that were
used during training.

Spatial Module

When an input pattern arrives to the spatial module, the network will generate a distribution of
beliefs about the categories that have been created in the training phase. Both the Gaussian spatial
module and the Product spatial module work differently during the inference stage, but both turn
an input vector into a belief vector around the matches.

In the Gaussian spatial module, the distance between an input vector x and each of the trained
matches wj is calculated using Equation (1).

This distance becomes a probability vector considering x as a random sample drawn from a set of
multi-dimensional Gaussian probability distributions, all of them based in one of the trained matches.
All of these distribution probabilities have the same constant variance in all dimensions, controlled by
the Standard Deviation (SD) parameter, which is the square root of the variance. Each element i of the
probability vector b, which represents the probability of the input vector x having the same cause as
the match i, is calculated using the following equation:

yi = exp

{
−d2 (

x, wj
)

2SD2

}
(4)

where d2 is defined in Equation (1) and wj is the match of the position j in the match matrix W.
The algorithm of the Product spatial module divides the input vector at the outputs of each one

of its subgroups. The algorithm uses the dot product with the same parts of the match and then
calculates the products of these numbers, resulting in a probability vector element in matches in the
match matrix.

Temporal Module

During the inference phase, the temporal module receives a probability vector concerning the
matches in the spatial module. Subsequently, the module calculates the probability distribution of
the groups. A choice is made between two different algorithms in the temporal module during the
inference: maxProp and sumProp, controlled by the PoolerAlgorithm time parameter. These algorithms
are defined in detail in [46].

2.4. HTM Design and Implementation

As commented before, we used the HTM Camera Toolkyt API, developed by Numenta®

(Redwood City, CA, USA), in order to design the HTM network used in this investigation.
Once the network has been built, the second step is to configure the information handling and

training process. Here, the key parameter is the number of iterations performed with the training
images. In this case, 2000 iterations were performed at three levels. Experiments have demonstrated
that increasing up to double the number of iterations (4000) does not result in a significant increase in
the accuracy of the analysis [41,42,45].

In Table 1, the most relevant parameters of the network-training phase are presented, as are the
starting values of the core network as recommended by [43].

Figure 6 presents images of each level of the network structure. Each image that is contained in
a video is analyzed by the network. As a pre-treatment, all frames are rescaled to a specific resolution
as many times as the parameter ScaleCount indicates (Figure 6a—original image, Figure 6b—rescaled
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image), after which the information goes through the first level of nodes (level 1). This first level is
called the S1 layer, and it uses a filter (Gabor filter) to help in recognizing input patterns and making
a selection among a series of categories based on geometric and temporal similarities. To extract
features and analyze texture, Gabor filters are used [47].

Table 1. Parameters used during training.

Parameter Description Values

maxDistance (maxDist) Minimum Euclidean distance for storing a pattern as a new
category, in the lower level of the training phase. 1

Scale factor (ScaleCount) Number of scales of the same image that the sensor introduces into
the network. 1

Spatial reference (spatialRF) Size of the information reception field with respect to the total. 0.2

Temporal groups
(requestGroupCount) Sets the maximum number of temporal groups that will be created. 24

Spatial overlap
(spatialOverlap)

Overlap between nodes of the same level according to the
information received from child nodes. 0.5

Scale reference (ScaleRF) Number of scales of which the node receives information. 2

Categories
(outputElementCount) Number of categories. 3

Figure 6. Operation of network levels during the training phase. (a) Input with 80 × 60 pixels resolution;
(b) input with 66 × 50 pixels resolution; (c) S1 layer with 72 × 52 pixels resolution (Gabor filter);
(d) S1 layer with 58 × 42 pixels resolution (Gabor filter); (e) C1 layer with 17 × 12 pixels resolution;
and (f) S2 layer with 14 × 9 pixels resolution.

Due to this initial screening, we generate a database of the most common patterns and reduce
the infinite number of patterns that we could receive in each image to a limited number. This level
produces a set of patterns that are common or that are strongly present in the image as an output.

The input for Level 2 (Figure 6c—obtained from the image, Figure 6d—obtained from the rescaled
image), designated C1 Layer (Figure 6e), is the output of the previous level (S1). Level 2 is where the
clustering of time sequences occurs. In this level, grouping is performed based on the information
of the previous layer, with the base patterns (equivalent to the invariant representations of the HTM
theory) creating pattern sequences or pattern clusters using geometric criteria. These sequences are
stored, generating more complex patterns.
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The information travels up the network to level 3, called the S2 layer (Figure 6f), where information
from the preceding level 2 (C1) arrives. Level 3 is where an initial classification is performed. During the
training phase, a set of prototypical patterns are memorized through the sequences received from the
classification made by the lower layer (C1). When the network is trained, the new data stream in this
sub-layer will be compared to the memorized sequences performing an initial classification.

2.5. Inference Phase

Once the network has been trained with the data set that was provided, indicating the categories
that we want it to recognize, we move to the inference phase. In the inference phase, we supply the
network with a set of unknown images for it to classify according to what the network learned and
memorized in the previous phase.

Figure 7 presents the system working in the inference phase. The status of any of the nodes of
the different levels (Figure 7a–e) can be visualized while the network is processing the information.
Finally, we have the C2 Layer, in which the process of grouping already classified patterns is repeated.
This process is performed to convert the information into a probability vector, which collects the
sequences with the maximum response to the classification process. Behind this last layer, we have
a support vector machine (SVM) classifier. SVM, as a kernel learning method, is used for classification
problems, performing a non-linear classification [48]. This classifier memorizes the categories with
which we are working; these categories were defined during the training phase. This classifier is
responsible for assigning the class to which each classified image belongs (Figure 7f). Once the
inference stage is completed, a confusion matrix is obtained.

Figure 7. Operation of network level in the training phase. (a) Input with 80 × 60 pixels resolution;
(b) input with 66 × 50 pixels resolution; (c) S1 Layer with 72 × 52 pixels resolution (Gabor filter);
(d) S1 layer with 58 × 42 pixels resolution (Gabor filter); (e) C1 Layer with 17 × 12 pixels resolution;
(f) SVM classifier.

3. Results and Discussion

During the experiments, internal network parameters that affect the learning process were
modified, with the main goal of obtaining an optimal methodology for the recognition of video
image patterns.

As mentioned above, the maxDist parameter defined the Euclidean distance between a known
pattern and a new one, which is critical in the recognition and classification of patterns. An optimal
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value is essential for the successful creation of temporal groups during the training phase. A high value
of the maxDist parameter contributes to the formation of fewer temporal groups, which could seriously
impact the total recognition accuracy. On the other hand, a low value of the maxDist parameter
generates a high number of temporal groups, which on top of the large memory demand, also results
in poor recognition performance. To avoid these undesirable effects, it is very important to evaluate
the optimal value for maxDist to achieve the best accuracy in the classifications.

In the original configuration, the maxDist parameter has a starting value of 1, and the influence of
this parameter on the overall accuracy values in the different classifications was studied. The maxDist
values (Table 2) used in this experiment were defined based on the results of the initial studies
performed [41,42,45].

Table 2 presents the maxDist parameter values with respect to the overall accuracy obtained
for each of the test classifications. The maximum accuracy value was 96% and was obtained at
an intermediate value for a maxDist of 3. After this value, there is nearly a linear drop in the overall
accuracy of the classifications. This drop is due to the number of coincidences detected during the
training phase and the temporal groups formed.

Table 2. Overall accuracy and average number of coincidences and temporal groups learned in the
64 bottom nodes for different values of maxDist.

maxDist Overall Accuracy (%) Number of Coincidences Number of Temporal Groups

1 86.77 55.00 25.00
3 96.00 44.79 20.00
6 83.13 17.94 13.65
9 76.37 12.20 8.21
12 64.50 10.12 5.67

For the previously mentioned optimal value of maxDist, the Urban class was the class that obtained
the largest number of misclassified frames, as seen in Table 3, whereas the Grape class reached the
highest accuracy of all the classes during classification.

Table 3. Confusion matrix for the optimum value of maxDist.

Classes Grapes Urban Woods

Grapes 985 5 10
Urban 6 913 81
Woods 8 10 982

Looking at the second and third columns of Table 2, a large number of matches was not related
to a greater overall accuracy of classification, as the number of matches in input patterns might be
unrealistic, classifying new similar patterns in different categories. For example, if we set a low value
for the parameter maxDist, it is forcing the creation of many different, but similar, groups. So, several
categories may correspond to the same pattern.

For the case with maxDist of 3, which can be considered optimal, the number of matches obtained
was 44.79. On the other hand, the effect of the value of the maxDist parameter on the creation of
temporal groups during the training phase of the network can be seen in Table 2; the smaller the
maxDist parameter, the greater the number of temporal groups was obtained, leading similar patterns
to be classified in different classes. Conversely, increasing the value of the maxDist parameter reduces
the formation of temporal groups, an effect that is not conducive in any way to obtaining an optimal
accuracy in the classification, as the images of wineries and images of forest areas are classified in the
same category (Table 4). For the case with the optimal maxDist value of 3, the number of temporal
groups obtained was 20.

The effect of the SD parameter on the accuracy of the classification was verified. This parameter
is calculated as the square root of the maxDist. This value is a reasonable starting value for SD because
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the distances between the matches are calculated as the square of the Euclidean distance instead of the
normalized Euclidean distance.

Table 4. Confusion matrix for a maxDist value of 12.

Classes Grapes Urban Woods

Grapes 600 5 395
Urban 157 767 76
Woods 407 25 568

Figure 8 presents the overall accuracy values obtained for different SD values. Similar to the
maxDist parameter, there is growth in the overall accuracy value until it reaches a maximum of 96% for
an SD value of 1.73. Smaller SD parameter values cause high beliefs to be assigned only to matches
that are very close to the inferred pattern. Conversely, when using lower SD values, between 1 and
1.73, all of the matches receive high belief values independent of their distance to the inferred pattern.

Figure 8. Overall accuracy for five setups of the SD parameter.

Based on the optimal maxDist and SD values previously discussed, we studied the effect of the
ScaleRF and ScaleOverlap parameters on the network training and overall accuracy obtained in the
classification of the images.

As mentioned above, the ScaleRF and ScaleOverlap parameters are related to the scale or the
resolution of the images that are presented to the network; thus, by changing these parameters, we
can vary the number of different scales of the image that are presented to the nodes and the overlap
among them. This change is critical because changes in the image resolutions allow the network to
extract patterns of the same image in different levels to create invariant representations (or models of
stored patterns) used to classify new images.

The basic network starts from intermediate values of ScaleOverlap and ScaleRF (1 and 1,
respectively). Figure 9 presents a bar chart in which the ScaleOverlap and the ScaleRF parameters are
related to the overall accuracy for each case. The highest overall accuracy (97.1%) was obtained for
a value of 4 for the ScaleRF parameter and 1 for the ScaleOverlap. The worst results were obtained for
a ScaleOverlap parameter value of 0; this value creates no spatial overlap among the input patterns,
worsening the training stage in the temporal module and thereby reducing the number of temporal
groups formed and their time sequence.

In general, it is observed in this study that a value of 4 for the ScaleRF parameter optimizes the
capacity of the network to extract patterns from images at different resolutions. From a value of 5, the
overall classification accuracy starts to fall again.

After the analysis of the videos, the abilities of the model to learn the invariant representation
of the visual pattern, to store these patterns in the hierarchy and to automatically retrieve them
associatively, was verified.
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For this experience, the maximum overall accuracy obtained among the different classifications
made was 97.1% (Figure 10), avoiding problems related to the use of images with high spatial resolution,
as in the salt-and-pepper noise effect. The salt-and-pepper effect makes it difficult to obtain and cleanly
classify images, resulting in different cases for a plot where there should only be a single case.

Figure 9. Overall accuracy for different values of ScaleRF and ScaleOverlap.

Figure 10. Classification results for the best HTM configuration presented by the HTM Camera Toolkit
API (Application Programming Interface). (a) Confusion matrix; (b) overall accuracy; (c) clicking on
confusion matrix the user can display the misclassified frames (for example, Urban class classified as
Grapes or Urban class classified as Woods).

Comparing the results of the Confusion matrix (Table 5), lower accuracy in the Urban class is
observed; there were a few misclassified frames because in the same image, two different classes could
coexist, such as buildings and parks (Table 5). In 59 frames, the Urban class was classified as the Woods
class, and in 11 frames, it was classified as the Grapes class. The higher accuracy obtained was for the
Grapes class, where one frame was classified as Urban class and five frames as Woods class.
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Table 5. Confusion matrix of the best performing system.

Classes Grapes Urban Woods

Grapes 994 1 5
Urban 11 930 59
Woods 4 7 989

Overall accuracy 97.10%

Case Study: Golf Course

The analyzed patterns to check the accuracy of this case study were turfgrass (see Figure 11) and
other uses, namely urban, water, bunker and wood areas.

Figure 11. Sample image of the video sequences studied.

For each of these categories, 300 training videos and 150 testing videos with a total duration of
60 min were used. The videos were obtained in different areas of a golf course in Pilar, Buenos Aires
(34◦29′52.62′ ′ S; 58◦56′11.68′ ′ O; Figure 12).

Figure 12. Golf course location: case study.
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Based on the optimal parameter values previously discussed, we studied the effect of and the
overall accuracy obtained in the classification of the images.

For this case study, the overall accuracy obtained, using the optimal values parameters studied
above, was 98.28% (Table 6).

Table 6. Confusion matrix of the best performing system.

Classes Turfgrass Urban Water Bunker Woods

Turfgrass 986 1 3 4 6
Urban 0 980 7 3 10
Water 2 7 974 15 2

Bunker 3 3 7 986 1
Woods 3 4 0 5 988
Overall

accuracy 98.28%

We compared our results to those of other works. For example, Revollo et al. [49] develop
an autonomous application for geographic feature extraction and recognition in coastal videos
and obtained an overall accuracy of 95%; Duro et al. [50] used object-oriented classification and
decision trees in Spot images to identify vegetal coverings and obtained an overall accuracy of 95%;
Karakizi et al. [51] developed and evaluated an object-based classification framework towards the
detection of vineyards reaching an overall accuracy rate of 96%.

Therefore, the accuracy value obtained from the classification using the algorithm based on HTM
is similar or superior to values obtained by other authors using object-oriented classification and neural
networks, which demonstrates that the methodology is appropriate for discriminating agricultural
covers in real-time.

Furthermore, as an added benefit, HTM and the methodology developed in this study enable the
classification and decision making to be performed in real-time. As we commented before, the operator
can control the camera using Wi-Fi. The Wi-Fi computer camera system allows for real-time viewing
of everything being seen by the camera, even without taking an image or video. Once the network has
been trained and tested, the algorithm classifies the videos, which are received in real-time from the
Wi-Fi computer camera system of the DJI Phantom 2 Vision+ (Figure 13).

Figure 13. Display of the classification in real-time.

In contrast, in the works [1,2,51] of classical classification, post-processing work was required.
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4. Conclusions

Pattern recognition is an important step in remote sensing applications for precision agriculture.
Unmanned aerial vehicles (UAVs) are currently a valuable source of aerial photographs and video
images for inspection, surveillance and mapping in precision agriculture purposes. This is because
UAVs can be considered in many applications as a low-cost alternative to classical remote sensing.
New applications in the real-time domain are expected. The problem of video image analysis taken
from an UAV is approached in this paper. A new recognition methodology based on the Hierarchical
Temporal Memory (HTM) algorithm for classifying video imagery was proposed and tested for
agricultural areas.

As a case study of precision agriculture, golf courses have been considered, namely precision
turfgrass. The analyzed patterns to check the accuracy of this case study were turfgrass (see Figure 11)
and other uses, namely urban, water, bunker and wood areas.

In the classification process, based on the optimal parameter values obtained during the first
stage, a maximum overall accuracy of 98.28% was obtained with a minimum number of misclassified
frames. In this case study, a rapid classification of turfgrass, among others, can play an important role
to determine water requirements of the different areas in order to plan water use.

Additionally, these results provide evidence that the analysis of UAV-based video images through
HTM technology represents a first step for video imagery classification. As a final conclusion, the use
of HTM has shown that it is possible to perform, in real-time, pattern recognition of video data images
taken from an UAV. This opens new perspectives for precision irrigation methods in order to save
water, increase yields and improve water, as well as indicating many possible future research topics.
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The following abbreviations are used in this manuscript:

DTM Digital terrain model
GCP Ground control point
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NDVI Normalized difference vegetation index
OBIA Object-based image analysis
PA Precision agriculture
SD Standard deviation
SVM Support vector machine
UAV Unmanned aerial vehicle

References

1. Carrow, R.N.; Krum, J.M.; Flitcroft, I.; Cline, V. Precision turfgrass management: Challenges and field
applications for mapping turfgrass soil and stress. Precis. Agric. 2010, 11, 115–134. [CrossRef]

2. Beard, J.B.; Kenna, M.P. Water Quality and Quantity Issues for Turfgrasses in Urban Landscapes; CAST Special
Publication 27; Council for Agricultural Science and Technology: Ames, IA, USA, 2008.

68



Water 2016, 8, 584

3. Baghzouz, M.; Devitt, D.A.; Morris, R.L. Evaluating temporal variability in the spatial reflectance response
of annual ryegrass to changes in nitrogen applications and leaching fractions. Int. J. Remote Sens. 2006, 27,
4137–4158. [CrossRef]

4. López-Bellido, R.J.; López-Bellido, L.; Fernández-García, P.; López-Bellido, J.M.; Muñoz-Romero, V.;
López-Bellido, P.J.; Calvache, S. Nitrogen remote diagnosis in a creeping bentgrass golf green. Eur. J. Agron.
2012, 37, 23–30. [CrossRef]

5. Devitt, D.A.; Morris, R.L.; Kopec, D.; Henry, M. Golf course superintendents’ attitudes and perceptions
toward using reuse water for irrigation in the southwestern United States. Hortechnology 2004, 14, 1–7.

6. Devitt, D.A. Irrigation management considerations when using reuse water on golfcourses in the
arid southwest. In Proceedings of the World Environmental and Water Resources Congress 2008,
Ahupua’a, HI, USA, 12–16 May 2008; p. 316.

7. Manzano-Agugliaro, F. Study for Economic and Environmental Sustainability in the Planning, Construction and
Maintenance of Golf Courses in Mediterranean Climate; National Report for Ministry of the Presidency of the
Government of Spain 2012; Grant Project Number 190/UPB10/12; Ministry of Education, Culture and Sport:
Madrid, Spain, 2012.

8. Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned Aircraft Systems in Remote Sensing and Scientific
Research: Classificacion and Considerations of Use. Remote Sens. 2012, 4, 1671–1692. [CrossRef]

9. Borra-Serrano, I.; Peña, J.M.; Torres-Sánchez, J.; Mesas-Carrascosa, F.J.; López-Granados, F. Spatial Quality
Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping. Sensors 2015, 15, 19688–19708.
[CrossRef] [PubMed]

10. Feng, Q.; Liu, J.; Gong, J. Urban Flood Mapping Based on Unmanned Aerial Vehicle Remote Sensing and
Random Forest Classifier—A Case of Yuyao, China. Water 2015, 7, 1437–1455. [CrossRef]

11. Vallet, J.; Panissod, F.; Strecha, C.; Tracol, M. Photogrammetric performance of an ultra-light weight swinglet
UAV. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, ISPRS Archives, Zurich, Switzerland, 14–16 September 2011; Volume 38 (1C22),
pp. 253–258.

12. Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and
Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047.
[CrossRef]

13. Torres-Sánchez, J.; López-Granados, F.; Serrano, N.; Arquero, O.; Pena, J.M. High-Throughput 3-D
Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology. PLoS ONE
2015, 10, e0130479. [CrossRef] [PubMed]

14. Hassan, F.M.; Lim, H.S.; MatJafri, M.Z. Cropcam UAV images for land use/land cover over Penang Island,
Malaysia using neural network approach. In Proceedings of the SPIE: Earth Observing Missions and Sensors:
Development, Implementation, and Characterization, Incheon, Korea, 13–14 October 2010; Volume 7862,
p. 78620.

15. Wang, J.; Wang, L.; Yue, X.; Liu, Y.; Quan, D.; Qu, X.; Gan, H.; Wang, J. Design and test of unmanned aerial
vehicle video transfer system based on WiFi. Trans. Chin. Soc. Agric. Eng. 2015, 31, 47–51.

16. Yang, G.; Li, C.; Yu, H.; Xu, B.; Feng, H.; Gao, L.; Zhu, D. UAV based multi-load remote sensing technologies
for wheat breeding information acquirement. Trans. Chin. Soc. Agric. Eng. 2015, 31, 184–190.

17. Kusnierek, K.; Korsaeth, A. Challenges in using an analog uncooled microbolometer thermal camera to
measure crop temperature. Int. J. Agric. Biol. Eng. 2014, 7, 60–74.

18. Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple
vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [CrossRef]

19. Berni, J.A.J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and Narrow-band Multispectral Remote
Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009,
47, 722–738. [CrossRef]

20. Zarco-Tejada, P.J.; Berni, J.A.J.; Suárez, L.; Sepulcre-Cantó, G.; Morales, F.; Miller, J.R. Imaging Chlorophyll
Fluorescence from an Airborne Narrow-Band Multispectral Camera for Vegetation Stress Detection.
Remote Sens. Environ. 2009, 113, 1262–1275. [CrossRef]

21. Suárez, L.; Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J.; Sagardoy, R.; Morales, F.; Fereres, E. Detecting water
stress effects on fruit quality in orchards with time-series PRI airborne imagery. Remote Sens. Environ. 2010,
114, 286–298. [CrossRef]

69



Water 2016, 8, 584

22. Yang, B.; Chen, C. Automatic registration of UAV-borne sequent images and LiDAR data. ISPRS J. Photogramm.
2015, 101, 262–274. [CrossRef]

23. Zhang, L.Y.; Peng, Z.R.; Li, L.; Wang, H. Road boundary estimation to improve vehicle detection and tracking
in UAV video. J. Cent. South Univ. Technol. 2014, 12, 4732–4741. [CrossRef]

24. Caturegli, L.; Corniglia, M.; Gaetani, M.; Grossi, N.; Magni, S.; Migliazzi, M.; Angelini, L.; Mazzoncini, M.;
Silvestri, N.; Fontanelli, M.; et al. Unmanned aerial vehicle to estimate nitrogen status of turfgrasses.
PLoS ONE 2016, 11, e0158268. [CrossRef] [PubMed]

25. Perea-Moreno, A.J.; Meroño-De Larriva, J.E.; Aguilera-Ureña, M.J. Comparison between pixel based and
object based methods for analysing historical building façades. Dyna 2016, 91, 681–687.

26. Ma, L.; Cheng, L.; Han, W.Q.; Zhong, L.S.; Li, M.C. Cultivated land information extraction from high-resolution
unmanned aerial vehicle image data. J. Appl. Remote Sens. 2014, 8, 083673. [CrossRef]

27. Díaz-Varela, R.A.; Zarco-Tejada, P.J.; Angileri, V.; Loudjani, P. Automatic identification of agricultural terraces
through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from
an unmanned aerial vehicle. J. Environ. Manag. 2014, 134, 117–126. [CrossRef] [PubMed]

28. Chung, M.; Detweiler, C.; Hamilton, M.; Higgins, J.; Ore, J.-P.; Thompson, S. Obtaining the Thermal Structure
of Lakes from the Air. Water 2015, 7, 6467–6482. [CrossRef]

29. Feng, Q.; Liu, J.; Gong, J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and
Texture Analysis. Remote Sens. 2015, 7, 1074–1094. [CrossRef]

30. DJI Company. Phantom 2 Vision+ User Manual, V1.6. Available online: http://download.dji-innovations.
com/downloads/phantom_2_vision_plus/en/Phantom_2_Vision_Plus_User_Manual_v1.6_en.pdf
(accessed on 19 October 2015).

31. Andreopoulos, A.; Tsotsos, J.K. 50 Years of object recognition: Directions forward. Comput. Vis. Image Underst.
2013, 117, 827–891. [CrossRef]

32. Li, Y.; Wang, S.; Tian, Q.; Ding, X. Feature representation for statistical-learning-based object detection:
A review. Pattern Recogn. 2015, 48, 3542–3559. [CrossRef]

33. Battiato, S.; Farinella, G.M.; Furnari, A.; Puglisi, G.; Snijders, A.; Spiekstra, J. An Integrated System for
Vehicle Tracking and Classification. Expert Syst. Appl. 2015, 42, 7263–7275. [CrossRef]

34. Siddiqi, M.H.; Ali, R.; Khan, A.M.; Kim, E.S.; Kim, G.J.; Lee, S. Facial expression recognition using active
contour-based face detection, facial movement-based feature extraction, and non-linear feature selection.
Multimed. Syst. 2015, 21, 541–555. [CrossRef]

35. Hare, S.; Saffari, A.; Torr, P.H. Efficient online structured output learning for keypoint-based object
tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Providence, RI, USA, 16–21 June 2012; IEEE: San Diego, CA, USA, 2012; pp. 1894–1901.

36. Li, Y.; Gong, J.; Wang, D.; An, L.; Li, R. Sloping farmland identification using hierarchical classification in the
Xi-He region of China. Int. J. Remote Sens. 2013, 34, 545–562. [CrossRef]

37. Hawkins, J.; Blakeslee, S. On Intelligence, 1st ed.; Henry Holt: New York, NY, USA, 2004; p. 296.
38. Hawkins, J.; Ahmad, S.; Dubinsky, D. Hierarchical Temporal Memory including HTM Cortical Learning

Algorithms. Available online: http://numenta.org/resources/HTM_CorticalLearningAlgorithms.pdf
(accessed on 19 October 2015).

39. Rozado, D.; Rodriguez, F.B.; Varona, P. Extending the bioinspired hierarchical temporal memory paradigm
for sign language recognition. Neurocomputing 2012, 79, 75–86. [CrossRef]

40. Boone, A.; Karnowski, T.P.; Chaum, E.; Giancardo, L.; Li, Y.; Tobin, K.W. Image Processing and Hierarchical
Temporal Memories for Automated Retina Analysis. In Proceedings of the Biomedical Sciences and
Engineering Conference (BSEC), Oak Ridge, TN, USA, 25–26 May 2010; IEEE: San Diego, CA, USA, 2010.

41. Perea, A.J.; Meroño, J.E.; Aguilera, M.J. Application of Numenta® Hierarchical Temporal Memory for
land-use classification. S. Afr. J. Sci. 2009, 105, 370–375.

42. Perea, A.J.; Meroño, J.E.; Crespo, R.; Aguilera, M.J. Automatic detection of urban areas using the Hierarchical
Temporal Memory of Numenta®. Sci. Res. Essays 2012, 7, 1662–1673.

43. Numenta Inc. HTM Cortical Learning Algorithms; Numenta, Inc.: Redwood City, CA, USA, 2010.
44. Hawkins, J.; George, D. Hierarchical Temporal Memory, Concepts, Theory, and Terminology; Numenta, Inc.:

Redwood City, CA, USA, 2007.

70



Water 2016, 8, 584

45. Perea, A.J.; Meroño, J.E. Comparison between New Digital Image Classification Methods and Traditional
Methods for Land-Cover Mapping. In Remote Sensing of Land Cover: Principles and Applications, 1st ed.;
Giri, C., Ed.; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2012; pp. 1662–1673.

46. George, D.; Jaros, B. The HTM Learning Algorithms; Numenta, Inc.: Redwood City, CA, USA, 2007.
47. Weldon, T.P.; Higgins, W.E.; Dunn, D.F. Efficient Gabor filter design for texture segmentation. Pattern Recogn.

1996, 29, 2005–2015. [CrossRef]
48. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
49. Revollo, N.V.; Delrieux, C.A.; Perillo, G.M.E. Automatic methodology for mapping of coastal zones in

video sequences. Mar. Geol. 2016, 381, 87–101. [CrossRef]
50. Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with

selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG
imagery. Remote Sens. Environ. 2012, 118, 259–272. [CrossRef]

51. Karakizi, C.; Oikonomou, M.; Karantzalos, K. Vineyards Detection and Vine Variety Discrimination from
very hight Resolution Satellite Data. Remote Sens. 2016, 8, 235. [CrossRef]

© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

71



water

Article

Comparison of IMERG Level-3 and TMPA 3B42V7 in
Estimating Typhoon-Related Heavy Rain

Ren Wang 1,2, Jianyao Chen 1,2,* and Xianwei Wang 2,*

1 Department of Water Resources and Environment, School of Geography and Planning,
Sun Yat-sen University, Guangzhou 510275, China; rwang91@foxmail.com

2 Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University,
Guangzhou 510275, China

* Correspondence: chenjyao@mail.sysu.edu.cn (J.C.); wangxw8@mail.sysu.edu.cn (X.W.);
Tel.: +86-20-8411-5930 (J.C.)

Academic Editor: Ataur Rahman
Received: 17 January 2017; Accepted: 10 April 2017; Published: 22 April 2017

Abstract: Typhoon-related heavy rain has unique structures in both time and space, and use of
satellite-retrieved products to delineate the structure of heavy rain is especially meaningful for
early warning systems and disaster management. This study compares two newly-released satellite
products from the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG
final run) and the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis
(TMPA 3B42V7) with daily rainfall observed by ground rain gauges. The comparison is implemented
for eight typhoons over the coastal region of China for a two-year period from 2014 to 2015. The results
show that all correlation coefficients (CCs) of both IMERG and TMPA for the investigated typhoon
events are significant at the 0.01 level, but they tend to underestimate the heavy rainfall, especially
around the storm center. The IMERG final run exhibits an overall better performance than TMPA
3B42V7. It is also shown that both products have a better applicability (i.e., a smaller absolute relative
bias) when rain intensities are within 20–40 and 80–100 mm/day than those of 40–80 mm/day and
larger than 100 mm/day. In space, they generally have the best applicability within the range of
50–100 km away from typhoon tracks, and have the worst applicability beyond the 300-km range.
The results are beneficial to understand the errors of satellite data in operational applications, such as
storm monitoring and hydrological modeling.

Keywords: IMERG final run; TMPA 3B42V7; typhoon; heavy rain; coastal region of China

1. Introduction

Heavy rain events have profound impacts on human society, hydrological processes, and natural
ecosystems [1,2]. They can adjust river regimes, flood peak, and waterlogging patterns rapidly, and
even cause significant losses in human life and social economy [3–5]. A typhoon is a type of cyclone
formed in the tropical ocean and often brings heavy rainfall to coastal territory. Typhoon-related heavy
rain has unique patterns in both time and space, e.g., it can last from one day to several days, and
is dominated by typhoon track, translation speed, atmospheric environment, etc. Therefore, reliable
measurements of the heavy rainfall provide essential information to monitor and forecast its changing
patterns, which are crucial for early warning systems and disaster management strategies [6–9].
Moreover, detailed regularity of heavy rainfall across different spatiotemporal scales leads to insights
about the variability of runoff, which can further contribute to reduce inundation of urban regions [10].
However, rainfall is highly variable in both space and time during a typhoon event, creating significant
challenges in its accurate monitoring.
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Radar and satellite precipitation measurements provide more homogeneous datasets than
ground gauge observations [11,12]. Radar precipitation estimates are constrained by the monitoring
scope of radar, while satellite precipitation products have advantages in global coverage and fine
resolution [13,14]. There are currently various open access satellite-based precipitation products that
could bring valuable scientific and societal benefits. Meanwhile, those products often contain large
uncertainties and inevitable errors in different aspects, such as the variability of the precipitation
fields and systematic errors [15–17]. These various errors and differential resolutions influence the
accuracy of hydrological modeling [18,19]. Evaluation of these products is, therefore, necessary
for further understanding of their error characteristics, and is vital to algorithm improvement and
subsequent applications.

The Global Precipitation Measurement (GPM) mission, which was launched on 27 February 2014,
provides the next generation satellite-based global observations of rainfall and snow. GPM is built upon
the success of the Tropical Rainfall Measuring Mission (TRMM). Currently, the accessible Integrated
Multi-satellitE Retrievals for GPM (IMERG) Level-3 products have finer resolutions (0.1◦ × 0.1◦, 30 min)
than the TRMM precipitation series (0.25◦ × 0.25◦, 3 h), and are valuable for applications over the band
of 60◦ N to 60◦ S [20]. Meanwhile, the TRMM Multi-satellitE Precipitation Analysis (TMPA) products
have provided abundant precipitation information since 1997 [12]. The recently-updated version,
3B42 version 7 (3B42V7), comprises near-real-time and research-grade products with a resolution of
0.25◦ × 0.25◦ in space and 3 h in time [21,22].

Scientists, worldwide, have been investigating the error characteristics of the satellite precipitation
series at different spatial and temporal scales. Some studies [6,17,23] demonstrated that TMPA
3B42V7 performs better than TMPA 3B42V6, while both products have larger errors in mountainous
regions [6,8]. Some other studies [24–30] made comparisons between IMERG and TMPA products,
and reported that IMERG generally exhibits an overall better performance than TMPA, especially
for estimating heavy and light precipitation. However, IMERG still has room to improve, such as in
arid and high-latitude zones [26,29], and mountainous areas [28,31]. These studies provide a large
amount of information to understand the applicability of IMERG and TMPA, but tend to focus on
annual, seasonal, and monthly scales, not sufficient for short-term heavy rainfall events, especially
when associated with the tropical cyclone rainfall system [4,32]. Evaluation of the products for heavy
rainfall is a high standard to verify their performance, and is important in practical applications, such
as flood forecasting and urban stormwater collection.

The coastal region of China has experienced frequent typhoons and encountered severe
socio-economic losses. In general, typhoons strike the coastal region frequently during the period of
July to September every year and generate a large number of rainstorm events. There were more than
$5.3 billion economic losses per year since 2001, and approximately 34 typhoons landed in this region,
which caused 422 losses to life during 2011–2015 [33]. It is of great significance to focus on typhoon
heavy rains over the coastal region of China.

Therefore, our motivations are: (1) to evaluate the performance of two recently-released products,
i.e., the IMERG final run and TMPA 3B42V7, in estimating typhoon-related heavy rain over the coastal
region of China; and (2) to analyze their applicability with respect to different rainfall intensities and
ranges away from the typhoon track. This paper is organized as follows: Section 2 describes the study
area and datasets; Section 3 describes the statistical methods used in this study; Section 4 presents and
analyzes the results; Section 5 discusses the causes of the error characteristics and the comparative
results; and Section 6 provides a summary and some concluding remarks.

2. Study Area and Datasets

2.1. Study Area

The coastal region of China (18◦–38.5◦ N; 104◦5′–123◦ E), which is located at the leading edge of
Eurasia and Pacific Ocean, comprises seven provinces and one city, i.e., Shandong, Jiangsu, Zhejiang,
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Fujian, Guangdong, Hainan, and Guangxi provinces and Shanghai city (Figure 1). The region is a
typical monsoon climate zone, with annual average precipitation ranging from 550 to 2600 mm, and
a decreasing pattern from the south to the north. The temporal distribution of precipitation is also
uneven, with more than 70% of the annual rainfall concentrating in summer and autumn, when rainfall
is primarily controlled by summer wet monsoons and typhoons. Owing to its rapid urbanization and
topographic feature, i.e., the eastern areas are mainly plains and rivers downstream where most of the
large cities are located, therefore, the risk of flooding is very high over the developed areas. In addition,
the coastal region of China has a well-developed economy and dense distribution of cities and people.
According to the 2015 China Statistical Yearbook, the region possessed a total gross domestic product
(GDP) of $4.48 trillion, accounting for 48% of the national GDP, and had a total resident population of
459 million, accounting for 34% of the country’s total population.

 

Figure 1. Study area and the spatial distribution of rain gauges.

2.2. Typhoon Events

Eight typhoon events, which landed in the coastal region of China during the two-year period
of 2014–2015, are investigated in this study. The study period of 2014 to 2015 is constrained by the
availability of the IMERG final run data. Additionally, the investigated typhoons are different in
magnitude, typhoon track, duration and the affected geographical areas. The basic information of
typhoon events and their storm tracks are obtained from China Typhoon Online [34] and National
Meteorological Center [35]. For the convenience of making comparisons, the typhoon events are
further divided into two groups according to the geographical areas where they made landfall and
their moving directions. Rammasun, Mujigae, Kalmaegi, and Linfa, which made landfall in the
southern areas (Guangdong or Hainan province) and moved to the south, are divided into Group I.
Chon-hom, Matmo, Soudelor, and Dujuan, which made landfall in the eastern areas (Fujian or Zhejiang
province) and moved to the north, are divided into group II. Matmo and Soudelor are two stronger
typhoons among them and have almost impacted the entire coastal region. The basic information of
the eight investigated typhoons is listed in Table 1.
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Table 1. Basic information of the investigated typhoon events over the coastal region of China.

Group
Typhoon

Event
Period Mainly Affected Province (City)

Number of
Investigated

Station

Maximum
Daily Rainfall

Group I

Rammasun 18–19 July 2014 Guangdong, Guangxi, Hainan 55 303.6 mm
Mujigae 4–5 October 2015 Hainan, Guangdong, Guangxi 58 192.9 mm

Kalmaegi 16–17 September 2014 Hainan, Guangdong, Guangxi 67 296.5 mm
Linfa 9–10 July 2015 Guangdong, Fujian 39 158.8 mm

Group II

Chon-hom 11–12 July 2015 Zhejiang, Jiangsu, Fujian, Shanghai 37 267.7 mm
Matmo 23–25 July 2014 Fujian, Guangdong, Jiangsu, Shandong 98 238.3 mm

Soudelor 8–10 August 2015 Fujian, Zhejiang, Jiangsu, Guangdong 104 232.1 mm
Dujuan 28–30 September 2015 Fujian, Zhejiang, Jiangsu 80 170.9 mm

2.3. Gauge Observations

Daily rain gauge observations are collected from the National Meteorological Information Center
of the China Meteorological Administration (CMA). There are 165 observation stations in total over the
study area (Figure 1) with the gauge density of 1.734 stations per 104 km2. Regarding the data quality
control, the dataset has passed homogeneity assessments through the Standard Normal Homogeneity
Test method [36]. Non-uniform stations, such as “Shaoguang” “Qingyuan”, and “Shangchuandao”,
have been corrected using the ratio method by CMA. Few missing records, which were amended
by the CMA, have been replaced by the mean value of adjacent dates. This study mainly analyzes
these stations which had total rainfall larger than 10 mm during a typhoon event and have substantial
spatial relation with the typhoon track. Thus, the 10 mm rainfall depth threshold [37], which refers
to accumulated rainfall from gauge observations, is applied to screen out the light rainfall since the
focus of this study is to investigate the performance of both latest satellite precipitation products for
heavy rainfall. In addition, some stations with total rainfall less than 10 mm are still retained if they
are within a 150-km range of the typhoon track. One and two stations with rainfall <10 mm have been
retained for the Rammasun and Linfa events, respectively.

2.4. TMPA 3B42V7

The latest post real-time 3B42V7 precipitation product of TMPA is used in this study. It integrates
various satellite microwave radar data, including that from TRMM Microwave Image (TMI), Special
Sensor Microwave Image (SSMI), Special Sensor Microwave Image/Sounder (SSMIS), Advanced
Microwave Scanning Radiometer-EOS (AM-SR-E), Advanced Microwave Sounding Unit-B (AMSU-B),
and Microwave Humidity Sounder (MHS) [20]. In addition, the 3B42V7 version combines the ground
rain gauge products of the Global Precipitation Climatology Center (GPCC) [21]. The improved 3B42V7
data (0.25◦ × 0.25◦, 3 h) are collected from the Precipitation Measurement Missions website [38]. This
study utilized all of the TMPA 3B42V7 data, in HDF format, during the period of the typhoons. The
unit of the precipitation field is mm per hour, which refers to the precipitation rate. The three-hour
3B42V7 precipitation is further accumulated into daily and event-total rainfall during the period of
each typhoon event, based on ENVI version 5.1 which is developed by Exelis Visual Information
Solutions company in the United States, and MATLAB R2015a which is developed by MathWorks
company in Natick, Massachusetts, USA. The precipitation in a grid that corresponds to the ground
gauges can be extracted by ArcMap 10.1 which is provided by Environmental Systems Research
Institute in RedLands, California, USA.

2.5. IMERG Final Run

The IMERG final run-calibrated precipitation data are analyzed in this study. The geophysical
parameters of IMERG Level-3 have been spatially or temporally re-sampled from Level-1 or Level-2
data, and the Level-3 products include early run, late run, and final run versions. Currently, IMERG
employs the 2014 version of the Goddard Profiling Algorithm (GPROF2014) to compute precipitation
estimates from all passive microwave (PMW) sensors onboard GPM satellites, and is an improvement
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compared to TMPA’s retrieval algorithm (GPROF2010) [21,39]. The IMERG final run data [38], with a
latency of four months, are available from March 2014 to present, so that the investigated typhoon of
this study is constrained in the period of March 2014 to September 2015. All of the IMERG final run
datasets in HDF5 format, are collected for the periods of typhoon events. The unit of the precipitation
field is mm per half hour. Similar to TMPA 3B42V7, the half-hour IMERG precipitation is also
accumulated into daily and event-total rainfall.

3. Methods

A series of common statistical metrics, which include relative bias (RB), mean error (ME), mean
absolute error (MAE), root-mean-squared error (RMSE), and Pearson linear correlation coefficient (CC),
are used to perform the comparative evaluation. RB is used to evaluate the errors in a gauge-grid pair
while ME, MAE, and RMSE are for regional-scale evaluations [40].

RB is the ratio of underestimating or overestimating, in percentage, and it is applicable to reflect
errors between the satellite estimates and the corresponding gauge observations. RB is calculated for a
typhoon event at individual sites by Equation (1):

RBi =
Si − Gi

Gi
× 100 (1)

where i is a rain gauge number; Si represents the satellite precipitation estimates; and Gi represents the
gauge observations.

The other metrics (ME, MAE, and RMSE) are used to measure the magnitude of errors for a whole
region or sub-region in this study. MAE is a statistical metric with absolute value, while ME is a metric
having positive and negative value, so it can be used to reflect the direction of accumulated errors, i.e.,
overestimation or underestimation at all stations. Furthermore, RMSE is the squared root of errors
emphasizing extremes [8]. These statistical metrics can be calculated by Equations (2)–(4):

ME =
1
n

n

∑
i=1

(Si − Gi) (2)

MAE =
1
n

n

∑
i=1

|Si − Gi| (3)

RMSE =

√√√√√ n
∑

i=1
(Si − Gi)

2

n
(4)

where n represents the number of samples.
In addition, Pearson linear correlation analysis is used to examine the linear agreement of satellite

precipitation estimates and rain gauge observations. The CC can be obtained by Equation (5) [32].

CC =
∑(xi − x)(yi − y)√

∑(xi − x)2 ∑(yi − y)2
(5)

where CC is the correlation coefficient, ranging from −1 to 1; x = 1
n

n
∑

i=1
xi and y = 1

n

n
∑

i=1
yi n represents

the number of gauge-grid samples; and xi and yi represent the grid-scale satellite measurements and
rain gauge observations, respectively.
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4. Results

4.1. Characteristics of the Metrics

The statistical metrics (ME, MAE, RSME, and CC), which can reflect the error characteristics of
satellite rainfall data over the region during typhoon events, were computed for each gauge-grid pair.
The results are presented in Figure 2. With the exception of the products for Mujigae and Rammasun
and the IMERG final run for Soudelor, all MEs have a negative value, highlighting that both IMERG
and TMPA tend to underestimate typhoon heavy rainfall at the regional scale. Moreover, except for
the typhoon Dujuan, the absolute ME of IMERG is smaller than that of TMPA. Since some samples
have large values of positive RB (more than 100%), the positive ME for Mujigae and Rammasun is
highly possible. Meanwhile, there are six typhoon events where the MAE of IMERG is slightly larger
than that of TMPA. This is also likely to be influenced by some large values of positive RB in IMERG.
The RSME presents a similar pattern with MAE, i.e., RSMEs of IMERG are larger than that of TMPA
during the periods of Rammasun, Mujigae, Linfa, Soudelor, and Dujuan. Regarding the correlations
between the satellite products and gauge observations, all CCs for the investigated typhoon events
are significant at the 0.01 confidence level, and there are five typhoon events, i.e., Mujigae, Kalmaegi,
Linfa, Soudelor, and Dujuan, that the CC of TMPA 3B42V7 is higher than that of the IMERG final run.
These larger CCs are partially attributed to the smoothing effect of the larger grid size of TMPA (25 km)
than IMERG (10 km).

Figure 2. Statistical metrics (ME, MAE, RSME, and CC) of (a1–a8) the IMERG final run and (b1–b8)
TMPA 3B42V7 against gauge observations for each typhoon event over the coastal region of China.
The units of ME, MAE, and RSME is mm/day, and the range of CC is −1 to 1. ** The correlation is
significant at the 0.01 level.

77



Water 2017, 9, 276

Overall, both satellite products underestimate the heavy rainfall at the regional scale. The IMERG
final run can provide a slightly better performance than TMPA 3B42V7 in estimating typhoon heavy
rainfall. Taking one of the largest typhoon events, Matmo, for example, the Kriging interpolation
method [41] was used to map the spatial patterns of total rainfall from gauge observations, as shown
in Figure 3. It is also shown that the IMERG final run and TMPA 3B42V7 have captured similar spatial
patterns of total rainfall, but they all tend to underestimate the extreme values of total rainfall in the
storm center.

 
Figure 3. Spatial distribution of total rainfall plotted for (a) gauge observations, (b) the IMERG final
run, and (c) TMPA 3B42V7 for typhoon Matmo during the period of 23–25 July 2014.

The characteristics of gauge-grid RB of over- and underestimated amounts are illustrated in
Figures 4 and 5 for the typhoon events of Group I and Group II, respectively. Table 2 summarizes the
percentages of overestimate and underestimate that are illustrated in Figures 4 and 5.

Table 2. The percentage (%) of gauge-grid pairs of over- and underestimation of IMERG and TMPA
against gauge observations illustrated in Figure 2.

Typhoon Events
IMERG TMPA

Overestimate Underestimate Overestimate Underestimate

Group I

Rammasun 47.27 52.73 38.18 61.82
Mujigae 58.62 41.38 67.24 32.76

Kalmaegi 26.87 73.13 23.88 76.12
Linfa 25.51 74.49 17.95 82.05

Group II

Chon-hom 8.11 91.89 8.11 91.89
Matmo 39.80 60.20 35.71 64.29

Soudelor 55.77 44.23 50.96 49.04
Dujuan 38.75 61.25 46.25 53.75

The typhoons of group I made landfall in Southern China, such as in Guangdong, Guangxi, or
Hainan province. Both IMERG and TMPA underestimated the total rainfall in the storm centers
and along the typhoon tracks (Figure 4). For instance, the percentages of IMERG and TMPA’s
underestimated samples are 74.49% and 82.05% for typhoon Linfa, and 73.13% and 76.12% for typhoon
Kalmaegi, respectively (Table 2). However, only one exception exists, for typhoon Mujigae, when both
products overestimated the total rainfall in most regions and their percent of overestimated samples
are 58.62% (IMERG) and 67.24% (TMPA).

The typhoons of group II made landfall in Eastern China (Fujian and Zhejiang provinces) and
moved toward northern areas. Similar to Group I, both the IMERG final run and TMPA 3B42V7 show
underestimation for the total rainfall in the storm centers (Figure 5). Both products underestimated
the total rainfall of most samples for typhoon Chon-hom, and their underestimated percentages
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are all 91.89% (Table 2), with different magnitudes of underestimation (Figure 5). This relates to
the rain intensity of Chon-hom, as it was a powerful typhoon with a maximum daily rainfall of
267.7 mm (Table 1). Moreover, its track through the coastal areas should also contribute to the largest
underestimation. In contrast, for typhoon Soudelor, IMERG and TMPA both displayed larger values
than the gauge observations, especially in the east of the typhoon track. Their overestimated samples
were 55.77% (IMERG) and 50.96% (TMPA).

Figure 4. Spatial distribution of total rainfall (a1–a4), RB (%) in (b1–b4) IMERG and (c1–c4) TMPA for
the typhoon events of Group I (Rammasun, Kalmaegi, Linfa, and Mujigae). Dots are scaled according to
the magnitude of the overestimation or underestimation. The arrowed lines represent typhoon tracks.
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Figure 5. Spatial distribution of total rainfall (a1–a4), RB (%) in (b1–b4) IMERG and (c1–c4) TMPA for
the typhoons of Group II (Chon-hom, Matmo, Soudelor, and Dujuan). Dots are scaled according to the
magnitude of the overestimation or underestimation. The arrowed lines represent typhoon tracks.

4.2. Applicability Associated with Rain Intensity and Typhoon Track

The above analysis indicates that the performance of IMERG and TMPA are associated with
the storm center or rain intensity. Therefore, the applicability of the products associated with rain
intensity and typhoon track are further investigated. Figure 6 shows that both IMERG and TMPA
have many large overestimate samples (RB > 100%) when rain intensity is less than 20 mm/day,
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and the percentages of IMERG and TMPA’s overestimated samples are 44.31% and 54.90%, with
mean an RB of 31.51% and 45.23% (Table 3). When the rain intensity is larger than 20 mm/day,
both IMERG and TMPA capture smaller rainfall than gauge observations, and the magnitude of the
underestimation is generally increased with the increased rain intensity. When rain intensities are
20–40 and 80–100 mm/day, the absolute RB (|RB|) are smaller than those of 40–80 and larger than
100 mm/day. Meanwhile, the |RB| of IMERG are much smaller than those of TMPA in all rain
intensity ranges, which again suggest the better performance of IMERG than TMPA.

Figure 6. Scatter diagram and fitted curve of the rain intensity and RB in (a) IMERG final run and
(b) TMPA 3B42V7 for the eight investigated typhoon events. The colors of the dots represent different
magnitudes of RB.

Table 3. The percentage (%) of overestimate (over-per) and underestimate (under-per) and mean RB
(%) in IMERG and TMPA at different rain intensity (mm/day) for the eight typhoon events.

Rain Intensity
IMERG TMPA

Over-Per Under-Per RB Over-Per Under-Per RB

0–20 44.31 55.69 31.51 54.90 45.10 45.23
20–40 39.86 60.14 −9.23 33.11 66.89 −19.58
40–60 33.33 66.66 −12.14 21.57 78.43 −23.77
60–80 18.18 81.82 −27.92 18.18 81.82 −41.13
80–100 50.00 50.00 −7.87 25.00 75.00 −22.50
>100 12.50 87.50 −30.17 12.50 87.50 −34.81

Furthermore, the distance of stations away from the typhoon central track also has an influence
on the rain intensity, as well as the performance of satellite rainfall products. As shown in Figure 7,
the rain intensity mainly decreases with the increase of the distance from typhoon tracks, which are
consistent with storm centers that are around the typhoon tracks (Figures 4 and 5). Meanwhile, the
averaged RB of both IMERG and TMPA are mainly larger for those stations with a range >300 km than
those within smaller ranges. Table 4 shows that IMERG has the smallest absolute mean RB in the range
of 50–100 km, and has the largest RB in a range within 300 km. TMPA also has the smallest absolute
mean RB in the range of 50–100 km, but its largest value is within the range of 50 km, although RB has
fluctuations for the eight typhoon events when the range is larger than 300 km. Therefore, IMERG and
TMPA mainly have the best applicability within the range of 50–100 km away from the typhoon tracks,
and the worst applicability beyond a range of 300 km. This is also illustrated in Figures 4 and 5.
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Buffer ranges (km) 

Figure 7. Variations of mean RB (%) and mean rain intensity (mm/day) within different buffer ranges
(km) away from typhoon tracks during the period of (a) Rammasun, (b) Mujigae, (c) Kalmaegi, (d) Linfa,
(e) Chon-hom, (f) Matmo, (g) Soudelor, and (h) Dujuan. The yellow histograms represent IMERG’s
mean RBs, and the blue histograms represent TMPA’s mean RBs. The red polylines are the changes of
mean rain intensity.

Table 4. Mean RB (%) of IMERG and TMPA within the different buffer ranges away from
typhoon tracks.

Buffer
Ranges

(km)

IMERG

Group I Group II
Mean

Rammasun Mujigae Kalmaegi Linfa Chon-hom Matmo Soudelor Dujuan

<50 30.18 63.66 −24.11 −55.77 −65.57 −11.76 6.32 −37.47 −11.82
50–100 54.36 1.31 −17.26 −55.49 −58.78 −28.33 69.95 −17.47 −6.46
100–300 47.02 15.00 6.19 −1.13 −38.93 21.10 70.48 6.37 15.76

>300 −46.94 63.79 −42.82 −91.89 −96.40 82.81 0.84 −4.92 −16.94

Buffer
Ranges

(km)

TMPA

Group I Group II
Mean

Rammasun Mujigae Kalmaegi Linfa Chon-hom Matmo Soudelor Dujuan

<50 2.65 63.83 −69.00 −55.57 −65.57 −23.96 −13.21 −26.76 −23.45
50–100 34.03 7.64 −35.35 −57.20 −62.21 43.31 54.52 −9.42 −3.09
100–300 11.50 27.12 −30.00 −13.73 −50.51 14.50 58.09 40.88 7.23

>300 −9.30 79.40 −24.80 −98.11 −55.34 22.23 22.23 23.90 −4.97

5. Discussion

Why do both IMERG and TMPA generally perform better along the typhoon track than farther
away from it? One possible explanation is its association with the physical structure of the typhoon
and the underlying surface topography of typhoon tracks, both of which can influence the spatial
distribution of rainfall intensity [42]. As shown in Figure 7, the mean rain intensity decreases with the
increase of buffer ranges. Most storm centers are within the range of 50 km, where both IMERG and
TMPA tend to underestimate the heavy rainfall. Meanwhile, when the range is larger than 300 km away
from the typhoon track, there is light rain, for which the satellite products show large RB and have
large uncertainties. Moreover, the impact range of typhoon-related heavy rain is also associated with
the magnitude of each typhoon. This applicability range suggested in this study is just a simplified
analysis and indicator of the error characteristics of satellite products in estimating typhoon heavy rain.
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It has been reported that the current satellite rainfall products have limitations for monitoring
typhoon heavy rain [43]. In particular, Chen et al. [44] found that TMPA 3B42V7 is least capable in the
coastal region and significantly underestimates the heavy rainfall, which is the primary motivation of
this study to investigate the performance of the latest released IMERG in the typhoon-affected coastal
region and to compare its performance with TMPA 3B42V7. Our results also confirm this error pattern
of both IMERG and TMPA in the coastal region of China. In addition, the daily rain gauge observations
are used to validate the total rainfall estimated by both IMERG and TMPA. This is constrained by
the availability of the hourly precipitation data in a large region in a timely way. Moreover, the
density of the observation gauges in the studied area have impacts on the satellite-based rainfall errors.
Thus, higher spatiotemporal density of gauges or gauge-satellite merged products could, potentially,
be better in evaluating the errors and to monitor the evolution of heavy rainfall [32,45].

IMERG Level-3 and TMPA 3B42V7 are the emerging satellite precipitation products with relatively
high resolutions in time and space, and have the potential to provide more reliable information
for flood/drought monitoring, hydrologic modeling, and global climate change study. Previous
studies [17,24,25] have demonstrated that the latest products have better performance, but few studies
focused on typhoon-related heavy rain events that occur in a short time. That is another objective of
this study to evaluate the performance of both products for typhoon rainfall. Overall, IMERG shows a
better performance than TMPA.

6. Summary

This study compared the performance of the IMERG final run and TMPA 3B42V7 for typhoon
heavy rain using ground gauge observations for reference, with focus on eight typhoon events that
made landfall in the coastal region of China from July 2014 to October 2015. The main conclusive
remarks are as follows:

1. All correlation coefficients (CCs) both of IMERG and TMPA for the investigated typhoon events
are significant at the 0.01 level, but they tend to underestimate a total amount of heavy rainfall,
especially around the storm center.

2. The IMERG final run shows an overall better performance than TMPA 3B42V7.
3. Both IMERG and TMPA exhibit a better performance (i.e., smaller absolute RB) when rain

intensities are within 20–40 and 80–100 mm/day than those of 40–80 mm/day and larger than
100 mm/day. Meanwhile, both products generally have the best applicability in the range of
50–100 km away from typhoon tracks, and have the worst applicability beyond a 300-km range.

4. It needs to be emphasized that the study lacks physical insights to strengthen the statistical
analysis. Future works, which will be devoted to further understand the limits of the applicability
and accuracy of such satellite products in monitoring typhoon rainfall, should be focused on the
physical process of typhoon rainfall, with consideration for the moving speed and direction of
the typhoon, and the underlying topography.
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Abstract: The storm hyetograph is critical in drainage design since it determines the peak flooding
volume in a catchment and the corresponding drainage capacity demand for a return period.
This study firstly compares the common design storms such as the Chicago, Huff, and Triangular
curves employed to represent the storm hyetographs in the metropolitan area of Guangzhou using
minute-interval rainfall data during 2008–2012. These common design storms cannot satisfactorily
represent the storm hyetographs in sub-tropic areas of Guangzhou. The normalized time of peak
rainfall is at 33 ± 5% for all storms in the Tianhe and Panyu districts, and most storms (84%)
are in the 1st and 2nd quartiles. The Huff curves are further improved by separately describing
the rising and falling limbs instead of classifying all storms into four quartiles. The optimal time
intervals are 1–5 min for deriving a practical urban design storm, especially for short-duration and
intense storms in Guangzhou. Compared to the 71 observed storm hyetographs, the Improved
Huff curves have smaller RMSE and higher NSE values (6.43, 0.66) than those of the original Huff
(6.62, 0.63), Triangular (7.38, 0.55), and Chicago (7.57, 0.54) curves. The mean relative difference
of peak flooding volume simulated with SWMM using the Improved Huff curve as the input is
only 2%, −6%, and 8% of those simulated by observed rainfall at the three catchments, respectively.
In contrast, those simulated by the original Huff (−12%, −43%, −16%), Triangular (−22%, −62%, −38%),
and Chicago curves (−17%, −19%, −21%) are much smaller and greatly underestimate the peak
flooding volume. The Improved Huff curve has great potential in storm water management such as
flooding risk mapping and drainage facility design, after further validation.

Keywords: Huff curve; design storm; urban flooding; SWMM

1. Introduction

The storm hyetograph is crucial not only for urban storm water management, but also for the
catchment hydrology in general [1–4]. Given a total rainfall depth and duration for a certain return
period, the storm hyetograph determines the peak flow/time and the drainage capability demand
in a catchment [5,6]. Therefore, the accurate representation of the storm hyetograph is significant for
designing suitable drainage facilities and reducing the flooding risk in an urban catchment.

Urban flooding events have frequently occurred and increased in many cities worldwide in recent
years in the context of global warming [7–11]. China faces even more severe challenges in urban
flooding due to its dramatic urbanization and relatively poor storm water management [12]. In order

Water 2017, 9, 411 87 www.mdpi.com/journal/water



Water 2017, 9, 411

to mitigate the impacts of urban flooding, the Chinese government has issued a series of regulations
on urban storm water management [13–15]. Several design storms are recommended for drainage
facility design in those regulations, including the Triangular curve [16], the Chicago curve [17], and the
Soil Conservation Service (SCS) curve [18].

The Triangular curve was developed by Yen & Chow [16] for drainage design in a small catchment
and is widely used in natural watersheds and small urban catchments [19,20]. It is a one-parameter
model that is estimated by preserving the first moment of the rainfall depth [19]. The Chicago curve is
constructed by fitting the equations of the intensity-duration-frequency curves given the total rainfall
depth and duration for a return period [17–21]. It is often applied in sewer and flooding drainage
design [22,23]. The SCS curve is a dimensionless hyetograph/hydrograph with a single parameter [24].
It was originally developed for designing safe water storage facilities in agricultural applications and
has been widely applied in various situations, especially for long duration storm events of 6, 12, 24 h,
and even longer [4,25–27].

The Huff curve is another popular design hyetograph for characterizing the temporal distributions
of rainfall depth in an area [19]. Like the SCS curve, it is also a dimensionless cumulative hyetograph
with specified probabilities of occurrence [28] and is widely utilized as a design storm, downscaling
analysis of rainfall depth data, and inputs to rainfall-runoff models for drainage design [5,29].
In practice, historic storm data are first classified into four quartiles according to the normalized
time of peak rainfall, and a series of Huff curves are then developed at different probabilities within
each quartile [29].

The above design storm curves are derived for the entire storms using historic storm data with
hourly rainfall accumulation in most cases, except for the Chicago curve. The time of peak rainfall has
a critical influence on the classification of the hyetograph [30]. Separating a storm into the rising and
falling limbs could better represent the rainfall hyetograph [31]. The Chicago curve uses two formulas
to represent the rising and falling limbs, where the rainfall intensity exponentially decreases on both
sides of the peak rainfall [32].

Most storms are less than three hours in the Guangzhou Metropolitan areas in South China,
identified according to the criteria reported in the following Section 3.1. The partial reason for this
frequent flooding is that the pipe system underestimates the peak runoff, which is simulated by using
design storms like Chicago and Triangular curves for a given return period. Those design storms are
usually derived from hourly rainfall data and thus underestimate the rainfall intensity. As a result of
this, they do not satisfactorily represent the real storm hyetograph.

Therefore, the primary objective of this study is to develop a suitable storm hyetograph by
improving the Huff model through studying the rising and falling limbs separately based on
minute-interval rainfall depth data in the Guangzhou metropolitan areas. A secondary objective
is to investigate the sensitivity of the design storm to time intervals of rainfall depth and to offer
a suggestion for selecting optimal time intervals of rainfall depth data with urban design storm
research. The Improved Huff curve is then validated and compared to the Huff curve, Triangular curve,
and Chicago curve by using in situ measurements of storm events and by applying for flooding volume
simulation as inputs to the Storm Water Management Model (SWMM) in three small urban catchments.

2. Study Area and Data

2.1. Study Area

The study area is located in the Guangzhou Metropolitan areas in South China (Figure 1).
It has a sub-tropic climate controlled by the East Asian Monsoon, more specifically the South China
Sea Monsoon. It has warm and wet summers and dry winters, with a mean annual air temperature
of 22 ◦C and annual precipitation of 1700 mm [33]. Over 80% of the annual precipitation falls during
the rainy season from April to September [12,34]. This area is well known for its dense interlocking
river network and has gone through dramatic urbanization over the past 20 years; the impervious
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land changed from 12,998 ha in 1990 to 59,911 ha in 2009 [35,36]. In the Tianhe (Site/Rain gauge 2)
and Panyu (Site/Rain gauges 1, 3–6) Districts, the imperious land ratio (based on Landsat images)
increased from 16% to 71% and from 2% to 40% from 1990 to 2013, respectively. However, most (83%)
of the drainage pipes adopted the design standards for storms of a one-year return period, and only
9% of the pipes adopted these for a two-year return period [37]. It is a very low return period. In many
countries, a 25-year return period is adopted. Hence, the streets in the city of Guangzhou were
frequently inundated.

a

c 

b 

Figure 1. The locations of Guangzhou (a); meteorological sites (b); and the three selected nodes and
their catchment area/ modeling areas by SWMM in Panyu District (c). Street flooding water depth is
recorded near Site 4/Node 503 by a wireless electronic water depth meter.
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2.2. Rainfall Depth Data

This study uses two types of rainfall data from six automatic gauges. The first type is from national
standard meteorological sites (Sites 1 and 2) of China, where rainfall depth data are automatically
recorded at one-minute intervals with a precision of 0.1 mm. Site 2 is within the downtown area of the
Tianhe District, whereas Site 1 is in the Panyu District, a sub-urban area. The two sites are 25 km apart.
Five-year rainfall data from 2008 to 2012 are obtained to develop and validate the coefficients of the
design storms at Sites 2 and 1, respectively. The other four sites (Sites 3–6) were set up at the Panyu
District in the summer of 2014 by our research team. Rainfall data are recorded at one-minute intervals
with a precision of 1 mm. Meanwhile, an electronic water depth meter was also set up to record the
street water depth at Site 4 (Node 503), where flooding inundation has occurred several times each
year recently. The storm rainfall and water depth data recorded at Site 4/Node503 is used to optimize
the SWMM model and validate the design storms.

3. Methodology

The rainfall data at Site 2 are used to develop the design storms, including the Huff curve,
Improved Huff curve, and the Triangular curve. The storm data at Site 1 and Sites 3–6 are used to
validate the design storms. These design storms are further applied as inputs to the SWMM model to
simulate the flooding volume, which is compared with that from in situ measurements at Node 503.
The detailed procedure and methods are arranged below.

3.1. Storm Events

In this study, storm events are identified based on the following criteria: (a) rainfall duration
> 20 min [31]; (b) rainfall depth in a one-hour moving window > 20 mm [13]; (c) storm event separation,
hourly rainfall depth < 1 mm [29]. According to these criteria, 175 storms at Sites 1 (71) and 2 (104)
during the five years from 2008 to 2012 were extracted and are summarized in Table 1.

Table 1. The number of storms in different durations at two sites for the period 2008–2012.

Rain Gauges
Duration (h)

<1 1–2 2–3 3–4 4–5 5–6 >6 Total

Site 1 (Sub-urban) 12 27 15 3 6 5 3 71
Site 2 (Urban) 25 37 16 11 6 5 4 104
Total 37(21%) 64(36%) 31(18%) 14(8%) 12(7%) 10(6%) 7(4%) 175

3.2. Design Storms

Four design storms are developed and validated for comparison in this study, including the Huff
curve, Improved Huff curve, Triangular curve, and Chicago curve.

3.2.1. Huff Curve

The Huff curve was initially developed by Huff [28] for characterizing temporal rainfall
distributions in an area and has been widely applied to describe the hyetograph and to predict
the runoff in a watershed [28,38–43]. The Huff curve is a dimensionless hyetograph. First, the storm
durations (X axis) of different storms are normalized by dividing the total storm duration. The 10%
interval of time is normally applied. Next, the cumulative rainfall depth (Y axis) within each
time interval from 0–10% to 90–100% is normalized by dividing the storm-total rainfall depth.
When developing the Huff curve from historic storm data, the percent of the cumulative rainfall
depth within a time interval (e.g., 0–10%) is sorted into a descending order for all storm events, and the
rank of each storm is then normalized into a probability from 0 to 100% by the storm count [29].
The Huff curve is an isopleth, i.e., the percent of cumulative rainfall depth within each time interval
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at a certain probability. These isopleths are usually developed by the probability in a 10% increment
from 10% up to 90%. The 50% (median) curve is the most representative curve [44] and is developed
for comparison in this study using the storm data from 2008 to 2012 at Site 2, while the 10% and
90% curves represent the two extreme cases, which are the highest and lowest ranks in percent of the
cumulative rainfall depth within a time interval.

The aforementioned curve is a general Huff curve that is derived using all historic storm rainfall
data. In practice, the number of storms in each quartile is defined according to the occurrence of
peak rainfall in a normalized rainfall duration, i.e., the 1st (0–25%), 2nd (25–50%), 3rd (50–75%),
and 4th (75–100%) quartiles. Then, a series of Huff curves are developed at different probabilities
within each quartile [28]. All Huff curves are derived at the probability of 50% within a quartile in this
study. The storm count within each quartile at Sites 1 and 2 is summarized in Table 2. Most of the
storms (84%) are in the first two quartiles.

Table 2. The number of storms in each quartile defined according to the occurrence of peak rainfall
considering a normalized time at two sites for the period 2008–2012.

Quartiles 1st 2nd 3rd 4th Total

Site 1 31(44%) 27(38%) 9(13%) 4(6%) 71
Site 2 33(32%) 56(54%) 8(8%) 7(7%) 104
Total 64(37%) 83(47%) 17(10%) 11(6%) 175

3.2.2. Improved Huff Curve

The Huff curve model is applied to describe the hyetograph of a storm event within a quartile
of its normalized time of peak rainfall intensity. Instead of separating the storms into different
quartiles, all storms at Site 2 from 2008 to 2012 are first separated into the rising and falling limbs.
Then, a series of Huff curves are derived separately from both limbs at different probabilities,
and finally form an Improved Huff curve by combining both limbs. Figure 2a,b are the developed
dimensionless hyetographs using the percent of rainfall intensity at the probabilities of 10%, 50%,
and 90%. Accordingly, Figure 2c,d are the curves using the percent of the cumulative rainfall depth.
The mean normalized time of peak rainfall is 33 ± 5% at Site 2 (Table 3). The hyetographs of the percent
of rainfall intensity at 50% are further fitted into Equations (1) and (2) by regression models for the
rising and falling limbs, respectively. The fitting coefficients (R2 and RMSE) are 0.985 and 0.008 in the
rising limb, and 0.993 and 0.009 in the falling limb. Both equations can be easily applied to compute the
rainfall depth distribution with time once the total rainfall depth and duration are given for a drainage
facility design and other purposes.

i(tb) = 0.007 + 0.406tb − 0.927tb
2 + 0.785tb

3 (1)

i(ta) = 0.017 + 0.040/ta (2)

where i(tb) and i(ta) are the time series of rainfall intensity in the rising and falling limbs, respectively,
and tb and ta represent the normalized time prior to and post the peak rainfall intensity, respectively.

The Improved Huff curves are also derived at the probability of 50% in both rising and falling
limbs using the storm data within each quartile (Figure 3a,b). The first and second quartiles play
a dominant role in forming the rainfall hyetograph and have a similar shape to that from all rainfall.
In contrast, the hyetographs in the third and fourth quartiles show some discrepancy, especially in the
falling limb.
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Table 3. Statistics of the rising and falling limbs for storm events at Sites 1 and 2 from 2008 to 2012.

Title
Rainfall Depth (%) Rainfall Duration (%) Intensity (mm/min)

Rising Falling Rising Falling Rising Falling

Site 1 45 ± 5% 55 ± 5% 33 ± 5% 67 ± 5% 0.66 ± 0.26 0.36 ± 0.03
Site 2 41 ± 4% 59 ± 4% 33 ± 5% 67 ± 5% 0.62 ± 0.23 0.32 ± 0.07
Mean 43 ± 5% 57 ± 5% 33 ± 5% 67 ± 5% 0.64 ± 0.24 0.34 ± 0.05

ba 
i(tb)=-0.007+0.406tb-0.927tb²+0.785tb³ (50%) 

R² = 0.985 
RMSE=0.008 

i(ta)=-0.017+0.04/tb (50%) 
R² = 0.993 

RMSE=0.009 

c d

Figure 2. Comparisons of rainfall intensity and cumulative rainfall percent derived by the Improved
Huff curve at three probabilities (10%, 50%, and 90%) for the rising limb (a,c), and the falling limb (b,d),
which are separated by the time of peak rainfall (33%) at Site 2.

a b

Figure 3. The Huff curves for the rising (a) and falling (b) limbs at a probability of 50% by all storm
events and by those within the four quartiles at Site 2.

3.2.3. Triangular Curve

The triangular curve was developed by Yen & Chow [16] for drainage design in small areas
and has been widely used in watershed and urban drainage designs [16,19]. The establishment of
a triangular curve is used to determine the three vertexes of the triangular hyetograph, denoted by
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(0, 0), (a, h), and (td, 0). The height (h) of the triangle is calculated by Equation (3) according to the area
computation of a triangle.

h =
2D
td

(3)

where D is the storm total rainfall depth and td is the storm duration. Both are given values in storm or
drainage facility designs.

Then, a critical step is to determine a, the time of the peak rainfall intensity, which is estimated by
preserving the first moment of the rainfall depth in Equations (4) and (5) [19].

a = 3t − td (4)

t =

Δt

[
n
∑

j=1
(j − 0.5)dj

]
D

(5)

where t is the first moment of the rainfall depth or the geometric center of the triangle, dj is the rainfall
depth corresponding to the jth time interval, n is the number of time intervals for a storm, and Δt is
the time interval.

3.2.4. Chicago Curve

The Chicago curve is developed by intensity-duration-frequency curves for the design of sewers
and drainage management [17–22]. The applied formats and constants in Guangzhou are presented in
Equation (6) [14].

I =
167A1(1 + C log P)

(td + b)n ; a = 167A1(1 + C log P) (6)

where I is the mean rainfall intensity, A1 is the rainfall depth with a one-year return period, C is the
parameter of rainfall depth variations, P is a return period, t is the rainfall duration, and b and n are
constants. The values of C, b, and n are 0.438, 11.259, and 0.750, respectively, which are adopted by the
Department of Water Authority in the Guangzhou metropolitan area based on historic rainfall data
from 1990 to 2010 [14]. The general equations of the rising and falling limbs are:

i(tb) =
a
[
(1−n)tb

r + b
]

[
tb
r + b

]1+n ; i(ta) =
a
[
(1−n)ta

1−r + b
]

[
ta

1−r + b
]1+n (7)

where i(tb) and i(ta) are the time series of rainfall intensity in the rising and falling limbs, respectively;
tb and ta are the time before and after the peak rainfall intensity, respectively; and r is the ratio of the
peak rainfall intensity time to the total duration.

3.3. Validations and Applications

The derived hyetographs are first validated by using the real hyetographs from Sites 1, 3–6.
Two indices, the Root Mean Squared Error (RMSE) (Equation (8)) and Nash-Sutcliffe Efficiency (NSE)
(Equation (9)), are used to evaluate their agreement [45].

RMSE =

√√√√√ n
∑

i=1
(Pi − Oi)

2

N
(8)
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NSE = 1 −

n
∑

i=1
(Pi − Oi)

2

n
∑

i=1
(Oi − O)

2
(9)

where Pi is the model-predicted value, Oi is the observed value, O is the mean of the observed value,
and N is the number of observations.

The developed design storms are further applied as inputs to the SWMM model to simulate the
flooding volume in three small urban catchments. SWMM is developed by the American Environmental
Protection Agency [46]. It has been widely applied in urban drainage management, flood-control
facility design, water quality modeling, and so on [47–52]. In order to verify the Improved Huff curve
at the rainfall depth-runoff calculation, SWMM is established in the Shiqiao Street, in the downtown
area of Panyu District in the south of Guangzhou (Figure 1c). The total study area of SWMM modeling
is 15.53 km2, and three catchments are selected to test the design storms, represented by Node 192,
Node 503, and Node 519 (Figure 1c). The drainage boundaries of each sub-catchment are derived from
detailed pipe network and fine airborne LiDAR DEM data (0.5 m grid), plus repeated field visits and
validation. The selected three catchments have similar total catchment areas, but different areas in
terms of their direct drainage catchment and upstream catchment (Table 4).

Table 4. Direct Catchment Area (DCA), Upstream Catchment Area (UCA), Total Catchment Area
(TCA), and Drainage Capacity (DC) of the three selected nodes.

Node DCA (ha) UCA (ha) TCA (ha) DC (m3/s)

503 8.8 26.2 35.0 0.88
192 10.1 27.3 37.4 1.76
519 2.4 40.5 43.0 1.69

The SWMM model is firstly validated using the in situ measured storm rainfall and flooding
volume at Site 4/Node 503. Next, the verified SWMM model is applied to simulate the flooding volume
using design storms according to the storm-total rainfall depth recorded at Site 4. Finally, the simulated
peak flooding volume and time at Nodes 503, 519, and 192 by all design storms and by the same storms
recorded at Site 1 are compared.

4. Results

4.1. Characteristics of Historic Storms

Storm events frequently occur in the study area of a tropical climate setting. According to the
given criteria, there were 71 (14/year) and 104 (21/year) storm events during the five years from
2008 to 2012 (Table 1). Site 2, which is located within the Downtown area of Tianhe District, had 46%
more storm events than Site 1, especially concerning those of less than 2 h. Those storm events at
Site 2 mainly (54%) concentrate in the 2nd quartile, while 44% of storm events are in the 1st quartile
at Site 1 (Table 2). This large difference in short-duration storm events between the two sites is likely
caused by the surrounding conditions of the urban center for Site 2 and the sub-urban area of Site 1.
Similar phenomena are also found in the urban areas of Beijing [7]. However, after normalizing the
rainfall duration and depth, both sites have a similar distribution with rainfall depth, time of peak
intensity, and mean intensity in the rising and falling limbs, respectively (Table 3). The time of peak
rainfall intensity is around 33 ± 5% of the storm duration. The rising limb displays 43 ± 5% of the
total rainfall depth, with a stronger rainfall intensity than the falling limb. This suggests that the
storm hyetograph is similar at both sites, which are located 25 km apart, and the design storm curve
developed at one site is able to represent the overall rainfall temporal distribution at least within the
study area and even in the entire Guangzhou metropolitan area.
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4.2. Validations of Design Storms

The developed design storms are first validated by the storm events recorded at our own
research Sites 3–6 in 2014 and 2015 (Figure 4, Table 5). Three storm events at each site are selected for
a detailed comparison according to the different rainfall depths and durations of storm events. Overall,
the Improved Huff curves have the best agreements with the observations, exhibiting smaller RMSE
and higher NSE values than the other three curves (Table 5). The NSE of the Improved Huff curves
varies from 0.94 to 0.99, except for one event (0.82) on 21 July 2015, when all design storms have
a relatively lower NSE than the other events. In contrast, the Huff curves have the largest variations
in terms of NSE, ranging from 0.65 to 0.99. Both Triangular and Chicago curves display a similar
performance, with much larger RMSE and lower NSE values than the Improved Huff curves.

b 

d

a 

c 

Figure 4. Comparisons of cumulative rainfall between ground observations and the design storms for
the storm events at Site 3 on 21 September 2015 (a); at Site 4 on 25 May 2015 (b); at Site 5 on 3 October
2015 (c); and at Site 6 on 21 July 2015 (d).
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Table 5. RMSE and NSE values computed between design storms and observed rainfall at Sites 3-6,
where the observed storm data are not used to develop design storms. Both the Improved Huff and
original Huff curves represent those at a probability of 50%.

Site Date
Rainfall

Depth (mm)
Duration

(min)
Intensity
(mm/h)

Index
Improved

Huff
Huff Triangular Chicago

3

19 August 2014 40 28 86
RMSE 1.08 1.22 4.91 4.33
NSE 0.99 0.99 0.87 0.88

21 September 2015 95 175 33
RMSE 6.92 16.43 10.79 9.75
NSE 0.94 0.65 0.85 0.88

03 October 2015 55 136 24
RMSE 3.70 9.34 3.56 4.09
NSE 0.96 0.75 0.96 0.95

4

02 August 2014 42 84 30
RMSE 2.75 3.53 5.39 4.90
NSE 0.97 0.94 0.88 0.90

11 May 2015 78 97 48
RMSE 5.58 8.54 14.25 12.25
NSE 0.95 0.87 0.65 0.74

25 May 2015 53 66 48
RMSE 2.74 3.91 4.60 3.87
NSE 0.97 0.94 0.91 0.93

5

16 May 2015 27 65 25
RMSE 1.74 2.80 2.05 1.22
NSE 0.94 0.83 0.91 0.97

21 July 2015 22 59 22
RMSE 2.56 2.89 2.99 2.64
NSE 0.82 0.76 0.75 0.80

03 October 2015 26 49 32
RMSE 0.85 1.53 3.56 3.36
NSE 0.99 0.96 0.81 0.83

6

21 June 2014 30 105 17
RMSE 1.32 1.62 3.87 3.63
NSE 0.95 0.94 0.55 0.61

20 August 2014 34 125 16
RMSE 1.28 3.38 2.88 1.81
NSE 0.99 0.92 0.94 0.98

21 July 2015 35 148 15
RMSE 1.17 2.95 2.84 1.78
NSE 0.99 0.93 0.94 0.97

The cumulative hyetographs of one storm selected from Table 5 for each site is illustrated in
Figure 4. Again, the Improved Huff curves successfully recover all of the rainfall processes recorded at
the four sites. The Huff curves overestimate the observed rainfall depth at Sites 3–5, but greatly
underestimate it at Site 6 prior to the peak rainfall intensity. Both the Triangular and Chicago
curves tend to underestimate the rainfall prior to the peak rainfall intensity at Sites 4–6. A study in
Reykjavik, the capital city of Iceland, has found that the Chicago curve underestimates the peak rainfall
intensity [22]. Another study in Taiwan has shown that the Triangular curve does not satisfactorily
simulate heavy storms because of its flat slope in the rising and falling limbs [53].

Besides the above events, all design storms are also validated using the 71 storm events at Site 1
from 2008 to 2012 (Table 6). The Improved Huff curves have the lowest RMSE and highest NSE values
of 6.43 mm and 0.66, while they are 6.62, 7.38, and 7.57 mm and 0.63, 0.55, and 0.54 for the Huff,
Triangular, and Chicago curves, respectively. Here, all design storms are derived using the parameters
computed from 104 storms at Site 2. In contrast, the design storms illustrated in Figure 4 and Table 5
are derived using the parameters of each individual storm event. Therefore, the NSE values of design
storms for a single storm event in Figure 4 and Table 5 are higher than those in Table 6. No matter
which validation method is applied, the Improved Huff curve performs better than the others.
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Table 6. Mean RMSE and NSE values between the 71 observed hyetographs at Site 1 and their design
storms, and the mean relative difference of the simulated peak flooding volume (PV) and time (PT)
at the three nodes by the design storms against those simulated by the 71 observed storms at Site 1.
All design storms are computed using the parameters derived from the 104 storms at Site 2, together
with the total rainfall depth and duration for each storm at Site 1.

Index Improved Huff Huff Triangular Chicago

RMSE 6.43 6.62 7.38 7.57
NSE 0.66 0.63 0.55 0.54

N503
PV(%) 2 −12 −22 −17
PT(%) 19 24 45 41

N192
PV(%) −6 −43 −62 −19
PT(%) 17 19 15 24

N519
PV(%) 8 −16 −38 −21
PT(%) 8 8 9 10

The above Huff curves are developed using the storm data at the original one-minute interval.
In order to investigate the sensitivity of the Improved Huff curve to time intervals, we developed the
curves by aggregating the one-minute interval data into time intervals of 5, 10, 30, 60, and 120 min
and then compared the curves with the real storm data at Site 2. The storm events were divided
into three groups by duration: <1 h, 1–3 h, and >3 h (Figure 5, Table 7). The results suggest that
an optimal time interval for the original data is determined by the storm duration divided by 20,
which is constrained by the 10% increment of time unit for computing the isopleths in the rising and
falling limbs. For instances, for storms within 1 to 3 h, the percent of cumulative rainfall depth varies
linearly with time for hourly and half-hourly data (Figure 5c,d). The mean storm duration for group 2
(1–3 h) is 100 min, and the optimal recording or computing time interval is 100/20 = 5 min. Similarly,
the optimal time intervals for groups 1 (mean duration = 40 min) and 3 (mean duration = 300 min)
are 2 and 15 min, respectively. The rising limb requires a smaller interval primarily due to its shorter
time duration (33 ± 5%) than the falling limb. This further suggests that it is challenging to develop
a storm hyetograph using hourly data in most conditions, and the rainfall depth data recorded at
short-time intervals (1 min or 5 min) are required to derive a practical storm hyetograph, especially for
short-duration intense storms in metropolitan areas like Guangzhou.
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b. 1h

d. 1–3h

f. >3h

a. 1h 

c. 1–3h 

e. >3h

Figure 5. Percent of cumulative rainfall depth derived by the Improved Huff curves (probability 50%)
using different time intervals for three groups (rainfall duration: 1 h, 1–3 h, and >3 h) of storms from
2008 to 2012 at Site 2. Plots (a,c,e) are for the rising limb, and plots (b,d,f) are for the falling limb.

Table 7. NSE, RMSE, (mm) and Relative Difference (RD) values between design storms derived by the
Improved Huff curves (probability 50%) using different time intervals and observed rainfall depth for
all storms at Site 2 from 2008 to 2012.

Duration (h) Title
Time Interval (min)

1 5 10 30 60 120

1
NSE 0.97 0.94 0.81

RMSE 1.32 2.12 3.80
RD (%) 2 −5 13

1–3
NSE 0.94 0.94 0.94 0.89 0.75

RMSE 2.22 2.24 2.36 3.61 5.27
RD (%) −2 −3 −3 −5 −13

>3
NSE 0.92 0.92 0.92 0.92 0.90 0.82

RMSE 5.81 5.85 5.87 5.94 5.99 8.00
RD (%) 2 −3 −3 −4 −4 −10

4.3. Applications in SWMM

SWMM was first established and optimized using the observed rainfall and flooding volume
measured at Site 4/Node503 on 2 August 2014 (Figure 6). The optimized SWMM was then utilized to
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simulate the flooding volume at the three nodes by using the observed rainfall and the according design
storms (Figure 6b–d). At Node 503, the simulated flooding volume using the observed rainfall is in good
agreement with that from the observation, especially for the four small crests (Figure 6b). The simulated
peak flooding volume and time by the Improved Huff curve is also in good agreement with that from
the observation. In contrast, the simulated peak flooding volumes by the Huff, Triangular, and Chicago
curves all are lower than the observed values. Meanwhile, the simulated peak flooding time by the
Huff, Triangular, and Chicago curves is 10, 14, and 27 min later than the real situation, respectively
(Figure 6b, Table 8).

a 

c N192 d. N519 

b. N503 

Figure 6. Comparisons of hyetographs (a) and the according ground measured and simulated flooding
volume by SWMM using different hyetographs at Node 503 (b), Node 192 (c) and Node 519 (d) for the
storm event recorded at Site 4 on 2 August 2014, with total rainfall of 42 mm and duration of 84 min.

Table 8. Peak flooding volume, time, and NSE simulated by SWMM using rainfall depths from gauge
observations at Sites 4 and the considered design storms. The last four columns are the difference in the
simulated peak flooding volume and time using design storms (DS) against those by gauge (G) rainfall
depth. The water volume at Node 503 is computed according to the DEM and water depth recorded at
Site 4/Node 503, while that at Node 192 and 519 is simulated by SWMM using gauge rainfall depth
data at Site 4.

Date Total P & T Node
Flooding Volume &

Time by Gauge Rain

Difference of Flooding Volume and Time (DS-G)

Improved Huff Huff Triangular Chicago

4733 m3 −342 −844 −1044 −1173
503 57 min 0 10 14 27

NSE 0.97 0.93 0.90 0.86

2 August 2014 2596 −281 −703 −1313 −1319
42 mm 192 46 −1 3 7 2
84 min NSE 0.97 0.71 0.38 0.39

4126 173 −532 −879 −1171
519 70 −2 −7 −6 −5

NSE 0.98 0.92 0.93 0.92
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At Nodes 192 and 519, there is no observed flooding volume. The simulated flooding volumes
by the four design storms are compared to those simulated by the observed rainfall depth at Site 4.
The simulated flooding volumes by gauge observed rainfall and the Improved Huff curve at Node 192
are similar and smaller than those at Node 503 (Figure 6c), which is consistent with the real situations
that we learned about during our field survey. This node also has the largest drainage capacity/largest
pipe radius among the three nodes (Table 4). The flooding volumes reported by the Huff, Triangular,
and Chicago curves are much lower than seen for the observed rainfall. The overall patterns of the
simulated flooding volumes by the four design storms are similar at Node 519, and the peak flooding
volume reported by the Improved Huff curve displays the best agreement with that simulated by the
observed rainfall (Figure 6d, Table 8).

All of the 71 observed storm events at Site 1 from 2008 to 2012 and their design storms are applied
to drive SWMM. The simulated peak flooding volume and time of the four design storms are compared
to those of the observed rainfall. The results show that the improved Huff curves exhibit the best
performance, followed by the original Huff curves, and then the Chicago and Triangular curves (Table 6).
Again, all design storms are derived using the parameters computed from the 101 storms at Site 2.

5. Discussion

5.1. Urban Flooding

There are generically two types of urban flooding. The first type of flooding is caused by a large
stream flow due to long and continuous heavy rainfall in the upstream area of the cities, such as the
typhoon-brought heavy rainfall in the Guangdong province. In such cases, the drainage system in
the cities plays a small role. The other type of flooding is mainly caused by short and intense rainfall,
which is the primary study target in this study. The large rainfall-runoff generated within a short time
cannot be drained immediately by the drainage system and thus inundates the urban streets, which is
also called waterlogging in some literature [54].

Why does waterlogging frequently occur in most cities in China? Global warming is often
attributed as a scapegoat. The drainage system is mandatory in urban planning and community
constructions, and there are all kinds of laws and regulations on drainage design in China [13,15,55].
In our preliminary study in the same area as in this study, we simulated the runoff by SWMM with real
storm rainfall and found that the drainage capacity of the pipe was below the grade that is classified in
construction. Then, we examined the design storms recommended in the pipe construction code [15],
such as the Triangular and Chicago curves, and found similar results as demonstrated in this study
(Figures 4 and 6, Table 8). These recommended curves underestimate the peak rainfall intensity,
resulting in a lower peak flooding volume and thus a lower drainage capacity demand in drainage
facility design for the same return period.

5.2. Improvement to the Huff Curve

It is quite challenging (if not impossible) to describe the storm hyetograph using a single design
storm. A set of Huff curves are developed to describe the storm hyetographs for Peninsular Malaysia,
where the majority (80%) of storms are between 3 and 6 h, belonging to the 2nd quartile [29].
Huff curves represent the temporal characteristics of rainfall quite well, although four types of Huff
curves at different probabilities are required within the four quartiles [56]. Similarly, most storms (75%)
are less than 3 h and dominate in the 2nd (47%) and 1st (37%) quartiles in Guangzhou (Tables 1 and 2).
Thus, the Huff curves are investigated in this study to represent the storm hyetographs using
minute-interval rainfall data. However, whilst the Huff curves work well in some cases, they work
badly in other cases (Figures 4 and 6; Tables 5 and 8). How could we improve the Huff curve to be
better representative of the temporal distribution of all storm rainfall depth?

The time of peak rainfall has a critical influence on the analysis of hyetographs [30]. The rainfall
intensity exponentially decreases on both sides of the peak rainfall in the Chicago curve [32].
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The Monte Carlo method could better simulate the storm hyetograph separately in the rising and
falling limbs [31]. The normalized time of peak rainfall is similar at 33 ± 5% for both sites (Table 3).
The rising limb (0.64 ± 0.24 mm/min) has much stronger rainfall intensity than the falling limb
(0.34 ± 0.05 mm/min). Therefore, we separate the storms into the rising and falling limbs at the time
of peak rainfall and then compute the Huff curves separately for both limbs in this study.

The storm events are firstly classified into the 1st, 2nd, 3rd, and 4th quartiles according to the
time of peak rainfall. Each storm event is further divided into the rising and falling limb within
each quartile, within which a set of Huff curves are derived at different probabilities for both limbs.
The Huff curves for all storms in both limbs are quite similar with those for storms in the 1st and 2nd
quartiles (Figure 3), which include 84% of all storm events (Table 2). The Huff curves in the rising limb
for the 3rd and 4th quartiles are also similar to that for all storms, and they slightly deviate from the
total Huff curve in the falling limb. Too many options for the different Huff curves in the four quartiles
always generate challenges and even confusion to civil engineers in practice. Therefore, considering
the limited storm events in the 3rd and 4th quartiles and their slight derivation, the total Huff curves
derived separately for the rising and falling limbs from all storm events are recommended in this study.
The Huff curves for both limbs are finally combined together to form a full storm hyetograph, which is
known as the Improved Huff curve in this study.

The Improved Huff curve could better represent the storm hyetographs recorded at rain gauges
than the original Huff curve, the Triangular curve, and the Chicago curve (Figure 4, Tables 5 and 6).
This Improved Huff curve presents point-developed curves by using five-year data from one site and
is verified at several neighboring sites. More sites and a longer period of time are needed to verify the
curves in future studies.

The Triangular curve does not work well in our validation. One possible reason for this is that
the Triangular curve is relatively flat on both sides of the peak rainfall and is often used in arid and
semi-arid areas [19]. A double Triangular curve was tested to simulate the typhoon-related storms in
Taiwan, China, and the central triangle of the double Triangular curve can better simulate the peak
rainfall intensity than a single Triangular curve [53]. This is a possible option to improve the single
Triangular curve to better represent the storm hyetographs in South China and is scheduled in our
further study.

The Chicago curve is applied using constants recommended by the local water authority in this
study [14]. These constants are derived from rainfall data during 1990–2010. The constants required
in the Chicago curve equations may differ in different regions and climate settings and vary with
the climate change, even in the same region [23]. This study does not try to apply or derive new
constants by using the minute-interval rainfall depth data and this is another possible direction for our
continuing study.

5.3. Application of the Improved Huff Curve

SWMM is established to verify the Improved Huff curve at the rainfall-runoff calculation (Figure 6;
Tables 6 and 8). The optimal model parameters are obtained by comparing the flooding volume
between the street observations at Node 503 and SWMM simulations using the storm data at Site 4.
Thus, the flooding volumes simulated by SWMM using different design storm hyetographs could
represent the real situations to some extent. Of course, more storm events data could provide better
model parameters and simulations [47].

The Improved Huff curve displays a better performance in SWMM than the Huff, Triangular,
and Chicago curves at the three small urban catchments in the Panyu District, Guangzhou.
More studies in other districts are needed to verify the results obtained in this study. After further
validation, the Improved Huff curve will have great applications in drainage design in the metropolitan
area of Guangzhou, other urban areas in the Guangdong province, and even in Southern China,
where there are similar climate settings. Of course, the fitting coefficients or equations must be derived
from the local storm data in different cities with optimal time intervals of one to five minutes.
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6. Conclusions

China faces severe challenges in urban flooding due to its dramatic urbanization and relatively
poor storm water management. A partial reason for this phenomenon in China is that the recommended
design storms underestimate the rainfall intensity before the peak rainfall, resulting in a lower peak
flooding volume and thus a lower drainage capacity demand in drainage facility design for the return
period. The design storms vary with different regions and climatic conditions. This study derives
a storm hyetograph to represent the temporal distributions of rainfall depth in the metropolitan area
of Guangzhou by improving the Huff curve. The results are summarized below.

The Huff curve is improved by separately describing the rising and falling limbs instead of
classifying the storms into four quartiles. The time of peak rainfall is at 33 ± 5% for both sites and has
a critical influence on the classification of hyetographs. The rising limb has a much stronger rainfall
intensity (0.64 ± 0.24 mm/min) and slightly lower rainfall depth (43 ± 5% of total rainfall depth) than
the falling limb (0.34 ± 0.05 mm/min). Most (84%) of the storm events are in the 1st and 2nd quartiles,
whose Huff curves are dominant and similar to those for all storms in both limbs. The Huff curves for
both limbs are combined together to form a full storm hyetograph, which is known as the Improved
Huff curve in this study.

The optimal time intervals are one to five minutes to derive a practical storm hyetograph,
especially for short-duration and intense storms in metropolitan areas like Guangzhou. It is challenging
to develop urban storm hyetographs using hourly data in most conditions. All design storms except
for the Chicago Curve are derived using the minute-interval rainfall data in this study.

The Improved Huff curve works best in simulations of hyetographs and hydrographs, followed
by the Huff curves, and then the Chicago curves and Triangular curves. The peak flooding volumes
simulated using the Huff, Triangular, and Chicago curves as inputs to SWMM are lower than that
presented by the observed rainfall, i.e., underestimating the rainfall intensity and resulting in a lower
peak flooding volume.

The Improved Huff curve has great potential in storm water management such as flooding risk
mapping and drainage facility design after further validation. The Improved Huff curve presents
point-developed curves by using five-year data from one site and is verified at several neighboring
sites in this study. More site data with longer periods are needed to verify the Improved Huff curves
in future study.
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Abstract: A physically-based, distributed-parameter hydrologic model was used to simulate a recent
flood event in the city of Hafr Al Batin, Saudi Arabia to gain a better understanding of the runoff
generation and spatial distribution of flooding. The city is located in a very arid catchment. Flooding
of the city is influenced by the presence of three major tributaries that join the main channel in and
around the heavily urbanized area. The Integrated Multi-satellite Retrievals for Global Precipitation
Measurement Mission (IMERG) rainfall product was used due to lack of detailed ground observations.
To overcome the heavy computational demand, the catchment was divided into three sub-catchments
with a variable model grid resolution. The model was run on three sub-catchments separately,
without losing hydrologic connectivity among the sub-catchments. Uncalibrated and calibrated
satellite products were used producing different estimates of the predicted runoff. The runoff
simulations demonstrated that 85% of the flooding was generated in the urbanized portion of the
catchments for the simulated flood. Additional model simulations were performed to understand
the roles of the unique channel network in the city flooding. The simulations provided insights
into the best options for flood mitigation efforts. The variable model grid size approach allowed
using physically-based, distributed models—such as the Gridded Surface Subsurface Hydrologic
Analysis (GSSHA) model used in this study—on large basins that include urban centers that need to
be modeled at very high resolutions.

Keywords: floods; hydrologic modeling; GSSHA; satellite rainfall; IMERG; GPM

1. Introduction

Storm events that result in catastrophic floods are rare but do occur in arid environments,
especially in urban centers. With increasing population and urbanization, the public susceptibility
and economic impact of flooding in these areas will be increasing [1]. Since these events do not
occur frequently, there may not be enough pressure on decision makers to invest in the development
of robust hydrometeorological observing systems or hydrologic/hydraulic flood control structures.
The dramatic societal impacts of these events motivate researchers to perform studies aimed at
developing science-based recommendations on best approaches to help decision makers address
this issue [2]. Such information can lead to solutions that help save lives and resources and provide
opportunities to harness floodwaters and turn them into a resource that can benefit the society.
However, conducting hydrological studies of these events in ungauged areas is hampered by lack of
adequate rainfall and physiographical data. Understanding the hydrometeorological conditions and
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processes that lead to destructive flood events is a first step in this process [3]. Physiographic data that
enable the development of hydrologic models at reasonable resolutions over ungauged basins have
become available globally in recent years. However, the accuracy of hydrologic model simulations is
controlled by the accuracy of the model inputs, especially precipitation. A major challenge is the low
quality and spatio-temporal resolutions of precipitation data for regions that do not have adequate
ground observation networks.

High-resolution, better-quality satellite precipitation products that are increasingly becoming
available can potentially lead to improvements in hydrologic modeling and forecasting, improvements
as substantial as those witnessed in the United States in the 1990s when the NEXRAD radar network
became operational. The potential of satellite precipitation products for various hydrometeorological
applications has been reported in numerous studies [4–7]. Weather radars brought about the advantage
of better spatial coverage, but satellites have even a better spatial coverage, though at lower temporal
and spatial resolutions, and their field of view is not obstructed by topography. A major difference
between radar and satellite precipitations products for hydrological applications is that when the
NEXRAD network was deployed, the radar retrieval techniques were in place; however, it took
many years to develop robust retrieval techniques after the launch of the Tropical Rainfall Measuring
Mission (TRMM) satellite in late 1997. Also, systematic and random error of satellite precipitation
products are typically higher than those associated with radar products [8,9]. Some of the satellite
precipitation products that have been widely used in the past two decades include the Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) [10],
the Climate Prediction Center (CPC) MORPHing (CMORPH) [11], the Tropical Rainfall Measuring
Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) [12], and Global Satellite Mapping of
Precipitation (GSMap) [13] products. These multi-sensor techniques that merge quality-controlled
satellite products with higher resolution data from radars and rain gauges are helping improve the
accuracy of satellite-based rainfall products over time [14]. In hydrological applications, however,
satellite rainfall errors may either be amplified on dampened in simulated runoff at the catchment scale
depending on the interaction between the spatio-temporal patterns of errors and catchment properties
such as size, slope, and initial moisture conditions [15,16].

Simulation of flash floods, which are typically triggered by abrupt and intense bursts of rainfall,
will benefit most from the fine resolution of the recent satellite rainfall products. For example,
Anquetin et al. [17] reported that a higher resolution precipitation product was able to capture
features of the precipitation system that caused the devastating 2002 flash flood in France. These
features were missed by low resolution products. Several other studies demonstrated the need of
high-resolution rainfall data for flash flood studies [18–20]. The number of hydrometeorological
and climatological applications of satellite precipitation products will definitely increase with
the emergence of the latest satellite product, the Integrated Multi-satellitE Retrievals for Global
Precipitation Measurement (IMERG) product, with spatial and temporal resolutions of 0.1 × 0.1◦

and 30 min, respectively. IMERG is based on the Global Precipitation Mission (GPM), which was
deployed in 2014 to consolidate and enhance precipitation measurements from a constellation of
research and operational microwave sensors [21]. GPM is composed of one Core Observatory
satellite, deployed by NASA and the Japan Aerospace Exploration Agency (JAXA), and carries a dual
frequency radar and a multi-channel microwave imager, and about 10 partner satellites [22]. IMERG
integrates the intermittent precipitation estimates from all GPM microwave sensors (high quality, low
temporal resolution) with infra-red-based observations from geosynchronous satellites (lower quality,
higher temporal resolution) and precipitation gauge data to produce a uniformly gridded, global,
multi-sensor precipitation product. The IMERG product is designed to incorporate strengths and
avoid major weaknesses of the previous multi-satellite algorithms supported by NASA: CMORPH-KF,
TRMM-TMPA, and PERSIANN. This high-resolution precipitation data will significantly advance
hydrological modeling and predictions worldwide, especially in ungauged and poorly gauged basins.
The near-real-time IMERG Early and Late products are available within 6 h and 18 h after observations
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are made, respectively. After the gauge analysis is incorporated, the final satellite-gauge IMERG
product becomes available, typically three or more months after the month in which the observations
were made.

Since the hydrological response of a basin is very sensitive to the spatio-temporal variability in
various physical attributes of soil, land use, and topography, hydrological models that consider the
spatial variability are better suited for accurate flood simulation and predictions [23–25]. Distributed
hydrologic models can also provide a detailed description of the flood hazard areas, especially in
urban catchments [26]. Physically based, distributed models employ a gridded nature, which allows
parameters to be constrained within certain ranges that have clear physical meanings. Recent research
demonstrated that physically-based, distributed hydrologic models can potentially perform as well
as—or outperform—calibrated conceptual, lumped models [24–27]. The physically-based Gridded
Surface Subsurface Hydrologic Analysis (GSSHA) model is an example of a grid-based fully-distributed
hydrologic models [28]. GSSHA is capable of simulating flow generated from Hortonian runoff,
saturated source areas, exfiltration, and ground water discharge to streams [28]. Sharif et al. [29]
successfully applied the GSSHA model to evaluate the effect of flood control structures on stream
discharge in urbanized watersheds. Furl et al. [23] used the model to describe the flood hydrology
of a small urbanized basin in Austin, TX. Chintalapudi et al. [30] used the GSSHA model to study
the effect of land cover changes on peak discharge and runoff volumes with simulations driven by
satellite rainfall products. Ogden et al. [31] compared the GSSHA distributed model to the HEC-HMS
(a lumped model). Results showed that HEC-HMS failed to simulate some extreme events using
standard parameters, whereas the GSSHA performed fairly well. Elhassan et al. [32] compared
the simulated stream generated by the GSSHA and HEC-HMS models for different storm events.
They concluded that the GSSHA simulated streamflow matched the observations much better than
HEC-HMS. In addition to these studies, the model has been validated over a densely urbanized
catchment in Texas and the results demonstrated the benefit of the use of 30-m model grid over urban
areas [25]. Different satellite products we used as input to GSSHA in simulation of several floods
over a 3000 km2 catchment in Texas [30] with satellite products of higher spatiotemporal resolutions
producing the most reasonable runoff estimates. Another study over the Guadalupe River in Texas
demonstrated that GSSHA was more successful in simulating events with multiple rainfall hiatuses
than the HEC model [33]. An experiment using rainfall forecasts over a semi-arid urban catchment in
Colorado demonstrated that GSSHA was able to produce reasonable forecasts of inundation and peak
discharge for lag times of up to 70 min [34].

Recent extreme precipitation and flooding events in the Arab Peninsula led to several
hydrometeorological studies. Furl et al. [35] analyzed rainfall in the southwestern region of Saudi
Arabia and highlighted the lack of dense rain gauge networks. Almazroui [36] studied the TRMM
rainfall data over Saudi Arabia throughout the period from 1998 to 2009. Although mixed results
were obtained regarding accuracy of the TRMM estimates, the study recommended using the product
to complement rainfall data from the extremely sparse rain gauge network in the country. A more
recent study [37], evaluated the use of TRMM rainfall estimates for flood warning in urban areas of
the country and concluded that TRMM satellite rainfall will provide some helpful information for
preparation during extreme events but with low accuracy in terms of the spatiotemporal distribution
of the rainfall storms. However, detailed fully-distributed hydrological analysis of runoff generation
during these events is lacking, especially for urban areas that are most vulnerable to flash flooding
events. A major reason for that was the lack of rainfall data at resolutions suitable for physically-based
hydrologic modeling. The main objective of this study is to examine the flooding potential in the arid
Wadi Al Batin catchment, Saudi Arabia, with focus on the rapidly urbanizing city of Hafr Al Batin,
located near the outlet of the catchment. The city started to witness frequent flooding in the last two
decades. A short-lived storm that hit the city in 2009 caused major ephemeral streams in the city to
flow overbank, resulting in devastating flooding in the residential areas and significant damage to
public and private properties. A flood event that occurred in October 2015 is employed as a case study
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in this paper. Detailed understanding of the runoff response in the urbanized part of the city of Hafr
Al Batin will provide invaluable information that can help city officials to identify appropriate actions
for reducing the probability of future flooding as well as to implement mitigation measures for severe
storm events. GPM satellite precipitation data was used as input to a physically-based distributed
hydrologic model. At model grid resolutions of 30 m to 700 m, computational requirements were
reduced by dividing the basin into fully hydrologically interconnected sub-basins. The high-resolution
simulations in the urbanized portion of the catchment helped identify the areas most susceptible to
flooding. The relative contribution of the three streams that meet the main channel near the urban
center was examined through model simulations.

2. Study Area

Hafr Al Batin is an old town in northeastern Saudi Arabia not very far from the borders with
Kuwait and Iraq. The city has been witnessing a high rate of urbanization in the past few decades with
a current population of over 300,000. Hafr Al Batin lies in the valley of the mostly-dry Wadi Al Batin
(Figure 1) from which it takes its name and is the sole source of its groundwater supplies. Wadi Al
Batin represents the now-disconnected upstream segment of an ancient large river, Wadi Al Rimmah,
originates in western Saudi Arabia and empties in the Arabian Gulf [38,39]. The main channel is highly
incised, a sign of a history of very frequent deluges [40], which is probably the reason for the name
Hafr (incision in Arabic).

As the purpose of the hydrologic simulations of this study is to quantify the runoff generation and
spatial distribution of flooding in the city of Hafr Al Batin (Figure 2), the catchment outlet was selected
just northeast of the city limits such that all of the city is included in the simulation. Digital Elevation
Models (DEMs) at 30-m resolution of the catchment were based on the Saudi General Directorate
of Military Survey (GDMS) national DEM data. These DEMs were based on photogrammetry and
ground control data [41]. ArcGIS 10.3 software was used for processing and resampling of the data
to different resolutions (the grid cell size of the hydrologic model). The Watershed Modeling System
(WMS) software [42] was used to delineate the stream network and sub-catchments based on the DEM
at variable resolutions. The stream network based on aerial photography was superimposed on the
network generated through WMS-based delineation to make adjustments when necessary.

The drainage area of the delineated catchment is 4273 km2, as seen in Figure 1, with the city
of Hafr Al Batin representing only about 7.2% of the delineated area. The densely urbanized part
represents about 4% of the total catchment. The catchment has a generally mild slope with elevation
ranging between around 660 m above mean sea level at the western edge and 203 m at the outlet.
The catchment is dominated by a combination of sand and gravel soil while the alluvial fans of the
ephemeral streams (wadis) consist of weathered and fractured limestone and sandstone and permeable
sediments. Soil and land use data over the catchment are shown in Figure 3. Land use/cover data
were obtained from Spot 5 and Landsat remote sensing imagery. Soil and geologic data were obtained
from the Saudi Geological Survey maps. Soil properties and parameters were derived from the digital
soil map of the world [43]. These datasets were compiled and then processed in ArcGIS 10.3 to create
GSSHA input files that represent the physical characteristics of the watershed.

The delineated catchment includes three other wadis that meet Wadi Al Batin (Figure 2) in or
around the city. The North Fleaj originates northwest of the city and joins the main channel just north
of the city. The Northwest Fleaj that joins Wadi Al Batin near the center of the city passes through a
heavily urbanized area. The South Fleaj that originates southeast of the city and flows through sparsely
urbanized areas except near its confluence with the Wadi Al Batin’s main channel in the northern part
of the city.
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Figure 1. Location of the Wadi Al Batin catchment in Northeast Saudi Arabia.

Figure 2. Soil and land use types of the Wadi Al Batin catchment in Northeast Saudi Arabia.

110



Water 2017, 9, 163

 

Figure 3. The city of Hafr Al Batin and Wadi Al Batin and its major tributaries.

3. Methods

3.1. Rainfall Data

The main hydrological simulations of this study were driven by satellite rainfall. The IMERG data
were downloaded from the Precipitation Measurement Missions (PMM) website (http://pmm.nasa.
gov/data-access/downloads/gpm). The three IMERG products, the early, late, and final were available
for this event; all with spatial and temporal resolutions of 0.1 × 0.1◦ (approximately 11 × 11 km) and
30 min, respectively. An R-based script was used to download GPM products, convert the rainfall data
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from HDF5 into a gridded ASCII format, and prepare the rainfall input files for the GSSHA model.
Figure 4 shows the 3–5 November total rainfall I the region as estimated the IMERG product.

Figure 4. IMERG rainfall totals for the 2–3 November 2015 storm over the region.

3.2. Hydrologic Model

The physically-based, distributed-parameter Gridded Surface Subsurface Hydrologic Analysis
(GSSHA) model is used to simulate recent flooding in Wadi Al Batin catchment. GSSHA is a
process-based model for simulating all the hydrologic states and fluxes before, during and after storm
events over each grid cell. GSSHA can accept spatially and temporally varying precipitation (e.g.,
from gauges, radar, satellite, or design storms). It can also ingest snowfall accumulation and simulate
snow melting, abstractions due to interception, evapotranspiration, surface retention, and infiltration.
The GSSHA model uses a simple two-parameter scheme to model interception of precipitation by
plants. The user can select one of four infiltration methods: Green and Ampt (GA), Green and Ampt
with Redistribution (GAR, [44]), multi-layered GA, and fully-implemented Richards’s equation [45].
The last two methods are best suited for modeling continuous storm event with significant hiatuses.
GSSHA can simulate overland runoff routing, unsaturated zone soil moisture dynamics, saturated
groundwater flow, surface sediment erosion transport and deposition, in-stream sediment transport,
simplified lake storage and routing, wetland peat layer hydraulics, and overland contaminant transport
and uptake [45].

The GAR method was used in simulating the flooding event of November 2015. The method,
which computes inter-storm redistribution of soil water and performs multiple ponding simulations
using the GA methodology, is based on the following equation:

f (t) = K
(S f (θs − θi)

F(t)
+ 1

)
(1)

where:

f (t)—potential Infiltration rate (cm/h)
F(t)—cumulative Infiltration (cm)
Sf—wetting front suction head (cm)

K—effective hydraulic conductivity (cm/h) = Ks/2.0
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Ks—saturated hydraulic conductivity (cm/h)
θs—water content of the soil at natural saturation.
θi—initial soil water content.

The GAR methods uses the traditional rectangular wetting form assumption to execute variations
of this equation to predict infiltration for multiple periods of ponding [44]. The configuration of GAR
is illustrated in several figures and discussed in detail by Ogden and Saghafian [44]. After subtracting
all abstraction, ponded flow over each grid cell is computed using the diffusive wave approximation
of Saint-Venant’s equation and routed into two orthogonal directions. For grid cells adjacent to
the watershed divide, only inwards flow is allowed [46]. The GSSHA model uses three numerical
schemes to solve the diffusive wave equation: the Explicit, Alternative Direction Explicit (ADE), and
ADE-Prediction Correction (PC) schemes. The physiographic conditions of the catchment dictate the
most appropriate method. The Explicit is the fastest, simplest, and least robust method and the ADE-PC
is the slowest and most robust method [46]. The ADE-PC, which is more demanding computationally,
is generally recommended for watersheds of complex terrain when minimal smoothing of the DEM is
warranted. The ADE scheme is used in this study. The ADE method uses the following formulas to
calculate the flows.

First, inter cell flows are calculated in the x-direction by using Equation (2).

pN
ij =

1
n

(
dN

ij

) 5
3
(

sN
f x

) 1
2 (2)

Based on the flows in the x-direction, depths in each cell are calculated at the n + 1 time level by
using Equation (3).

dN+ 1
2

ij = dN
ij +

Δt
Δx

(
pN

i−1,j − pN
ij

)
(3)

Equation (4) is used to calculate the interflows in the y-direction from each cell.

qN+ 1
2

ij =
1
n

(
dN+ 1

2
ij

) 5
3
(
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2

f y

) 1
2

(4)

Column depths are updated based on the interflows in the y-direction. Equation (5) is used to
update the column depths.

dN+1
ij = dN+ 1

2
ij +

Δt
Δx

(
qN+ 1

2
i,j−1 − qN+ 1

2
ij

)
(5)

where:

pij and qij are the overland flows from cell ij in the x and y directions, respectively

dij is the depth of water in cell ij at the Nth time level

sfx and sfy are the water surface slopes in the x and y directions, respectively.

n is Manning’s roughness coefficient

In this study, the Explicit solution scheme is used for solving the diffusive wave equation for 1-D
channel routing. Overland flow that is entered into the stream is routed until it reaches the outlet.
The volume of flow at each node is calculated using Equation (6).

VN+1
i = VN

i + Δt
(

qN+1
lat Δx + qN+1

rec Δx + QN
i−1/2 − QN

i+1/2

)
(6)

where:

qlat—amount of lateral flow (m2/s)
qrec—amount of flow exchanged between the groundwater and channel (m2/s)
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QN
i−1/2 and QN

i+1/2 are the inter cell flows in the longitudinal direction (x) computed from depths
d, at the Nth time level. A simplified flowchart of GSSHA model is shown in Figure 5.

3.3. Model Setup

The GSSHA model step follows the flowchart shown in Figure 5. Al Batin catchment was
divided into three sub-catchments: the upper sub-catchment of entirely barren desert with an area of
3117 km2, the middle sub-catchment with increased density of small dry channels that join the main
channel (an area of approximately 847 km2), and the lower sub-catchment, which includes the city
of Hafr Al Batin and its surroundings and covers an area of 309 km2. To provide the level of detail
needed to simulate runoff over the three sub-catchments, three sizes of GSSHA model grid were used,
270 × 270 m2, 90 × 90 m2, and 30 × 30 m2 for the upper, middle, and lower sub-catchments, Figure 4.
GSSHA model has to be run on each sub-catchment separately to allow for a variable grid size.

Figure 5. A simplified flowchart of GSSHA model.

The hydrologic connectivity between the three adjacent sub-catchments is maintained through
the downstream channel flow from an upstream sub-catchment because there is no sub-surface flow
interchange among them. For every model time step, outflow from the upstream sub-catchment
is added as inflow to the most upstream cell of the corresponding channel in the downstream
sub-catchment. This inflow is merged with the channel flow in the same manner lateral inflow
is treated at every time step—i.e., it is not just added to the downstream channel flow—as is typically
done in popular semi-distributed models. This method of hydrologic connectivity (not simple
routing) will ensure that dividing the catchment into sub-catchments will have minimum effect
on the hydrograph and the water balance at every simulation time step. The model has to be run on
the three sub-catchments in sequence or in parallel separated by one time step. A script was written to
run the simulations in sequence and transfer of output from one sub-catchment to the next. The three
sub-catchments are shown in Figure 6 together with the location of the outflow from one sub-catchment
into the next. Since the sub-catchment delineation was not based entirely on topography, overland flow
across the divide between the sub-catchments is not included. The sub-catchments were delineated
such that overland flow between sub-catchments is minimal and can be neglected in the simulation.

The 30 × 30 m DEMs were used to delineate the channel network. Minor adjustments were
performed after comparing the delineated network with aerial photographs of the catchment.
All stream channels within the urbanized sub-catchment were modeled with irregular cross sections
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as well as the main channel in the other two sub-catchments. Uniform trapezoidal channels were used
for the tributaries in the un-urbanized sub-catchments. Manual adjustment of stream channels using
the WMS ‘smoothing’ tools were used to adjust the profiles of the stream channels to remove several
regions of adverse (negative) channel slope resulting from errors in the DEM. Infiltration is simulated
using the Green and Ampt with redistribution and the ADE method was selected for overland flow
routing. The infiltration model parameters’ Manning roughness coefficients were taken from the
GSSHA manual [46]. The initial soil moisture is estimated by running GSSHA model simulations over
the few weeks prior to the event and extracting initial soil moisture for each model grid from the final
map of spatially-distributed soil moisture values.

 

Figure 6. The three sub-catchments of the Wadi Al Batin with variable model grid sizes.

4. Results

The storm event started on 2 November 2015 at 9: 30 p.m. local time and ended at 11:30 a.m.
on 3 November 2015. The spatial distribution of the total rainfall accumulations over the catchment
estimated by the three GPM products, using Inverse Distance Weighted (IDW) interpolation, is shown
in Figure 7. For the three products, the high amounts of rainfall fell on the urbanized portions of
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the catchment and immediately to the west of the city of Hafr Al Batin. Only two rain gauges were
operational during the storm and they reported total accumulations (Figure 7). The Ministry of
Environment, Water, and Agriculture rain gauge located inside the city recorded 63 mm while the
Presidency of Meteorology and Environment rain gauge at the airport south of the city recorded
32 mm. The satellite grids collocated with the two gauges reported total accumulations of 47 mm and
23 mm for the Early IMERG product, respectively. The total storm precipitation averaged over the
entire catchment for this product is 33.6–32 mm, 48 mm, and 47 mm over the upper, middle, and lower
sub-catchments, respectively. The other two satellite products estimated slightly higher rainfall with
the final IMERG product reporting the highest rainfall and a somewhat different spatial pattern of
the storm. The total storm rainfall averaged over the entire catchment for the Late IMERG products
are 37.2 (28.5, 44.7, and 43.1 mm for the three sub-catchments, respectively) and 46.2 mm for the final
product (36.5, 52.9, and 51.9 mm for the three sub-catchments, respectively). The temporal distributions
of rainfall the three IMERG products are shown in Figure 8.

 

Figure 7. Rainfall totals for the 2–3 November 2015 storm as estimated by the three IMERG satellite
products using IDW interpolation.

Figure 8. 30-min hyetographs of the the three IMERG products for the 2–3 November 2015 storm.
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The GSSHA model was run for the period between 12:00 p.m. local time on 30 September 2015
and 10:30 a.m. on 5 November 2015 for the three catchments. The run was started one month in
advance to spin up the model in order to obtain a reasonable estimate of the initial moisture content
for each model grid (see Chintalapudi et al. [30,47] for details of model spin-up). The three GPM
precipitation products were used to force the GSSHA model but the results forced by the final product
will be discussed since this product is the one adjusted with climatology data and ground observations.
The storm lasted for a period of 14 h which allowed for infiltration of most of the rainfall except in the
urbanized areas. The discharge from the upper sub-catchment into the middle sub-catchment was
very small due the small amount of rainfall and high infiltration in the barren dominantly sandy soils.
The runoff ratio for the event was 1% and most of the water that reached the main channel infiltrated
in the channel. The middle sub-catchment generated modest amounts of runoff with a runoff ratio of
5%. Most of the flow from the middle sub-catchment into the lower one occurred through the main
channel. The discharge at the watershed was primarily due to runoff generated within the urbanized
sub-catchment with inflow form the upstream sub-catchments representing more than 12% of the
total discharge. The runoff ratio in the urbanized area was 15% due to higher rainfall, the significant
impervious fraction, and efficient drainage by the natural channel network.

The peak discharge of 127 cms at the outlet occurred at 8:00 a.m. on 3 November 2015. Peak
discharges were 10, 50, and 90 min earlier for the North Fleaj, the South Fleaj, and the Northwest Fleaj
tributaries, respectively. The South Fleaj contributed most to the total discharge at the outlet (about
46%) and has the highest peak among the tributaries. The contribution from the North Fleaj and North
West Fleaj was very small (each contributed just about 5%). Lack of development around the South
Fleaj indicates that this tributary witnesses frequent flooding, even more than the main Al Batin Wadi.
Underestimation of rainfall by the Early and Late IMERG products was amplified in runoff simulation,
producing much smaller outlet peak discharges of 44.2 and 66.7 cms, respectively.

The predicted outlet hydrographs when the model was forced by the three IMERG products are
shown in Figure 9. As described in the introduction section, the final IMERG product is the best rainfall
product. There are no streamflow observations for the event, however, GSSHA simulations highlight
the fact that rainfall errors will result in higher runoff errors and give an idea about the magnitude of
runoff error (in this case, difference between using calibrated and raw satellite rainfall) to be expected
when the real-time product is used for flood forecasting.

 

Figure 9. Outlet discharge predicted by GSSHA model for 2–3 November 2015 storm as estimated by
the three GPM satellite products.
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GSSHA outputs also include the overland and channel flow depths at every time step. The map
shown in Figure 10 illustrates the maximum inundation over the city area as a result of the storm—only
depth values above 3 cm are shown. The water depth values for each grid were estimated by GSSHA
forced by the final IMERG product. The map indicates that most of the flooding occurred in the highly
urbanized areas and near the center of the city. The map also shows significant flooding over some
major streets. There is significant flooding also over the undeveloped areas adjacent to the South Fleaj.
The storm did not result in any flooding at the confluences of the North West Fleaj and South Fleaj
with Wad Al Batin. It is clear that the inundation is caused by topography and neither the Wadi Al
Batin nor the South Fleaj witnessed overbank flooding. These results agree with media reports and
photographs released after the event that described significant street flooding without a mention of
channel overflow. The map shows that there is hardly any flooding outside the urban area, reinforcing
the fact that the city was built over the ancient flood plain of Wadi Al Batin, which might be the reason
for the city name, and the role of urbanization in increasing the flood hazard. When GSSHA was
forced by the Early and Late GPM products, the inundation maps illustrate smaller flooding depths
and extent.

Figure 10. Flood inundation in the city of Hafr Al Batin caused by the 2–3 November 2015 storm as
estimated by the GSSHA model.
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To understand the role of tributaries and inflow from the upper portions of the catchment in
the city of Hafr Al Batin flooding, two more GSSHA simulations were performed: a simulation
representing the frequent flood events in the city and another simulation representing extreme events.
GSSHA was run with the 5-year, 24-h, and 100-year, 24-h storms, which are considered spatially
uniform. The two storms were based on statistical analysis of the historical rainfall data from the
Ministry of Environment, Water, and Agriculture rain gauge with a record starting from 1979. The 24-h
rainfall accumulations for the 5-year and 100-year, 24-h storms were found to be 31 mm and 73 mm,
respectively, using Log-Pearson Type III distribution (LPT III) [48]. Due to the size of the catchment,
an area-reduction factor of 0.8. Was used (see [49,50]). The temporal distributions of the designed
storms, which are based on Type II storms [51], are shown in Figure 11. GSSHA simulation results
indicate that the upper sub-catchment contributes less than 1% of the total discharge flooding in the
city for the 5-year storm. Contribution from the middle sub-catchment is also small, about 7%, for this
event. The 5-year event does not generate much discharge at the outlet. The South Fleaj, Northwest
Fleaj, and North Fleaj tributaries contribute about 52.2, 13.6, and 6.9% of that discharge, respectively.
For the 100-year event, the contributions from the middle sub-catchment is significant. The peak
discharge at the outlet of the upper sub-catchment is 5.5 cms and it contributes less than 3% of the
total discharge at the outlet. The middle sub-catchment contributes 21% of the total discharge with
a peak of 50 cms at the main channel. Again, South Fleaj contributed most to the total discharge of
the lower sub-catchment (53%) and has the highest peak among the tributaries while the other two
tributaries contributed smaller amounts −6% from the Northwest Fleaj and 5% from the North Fleaj.
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Figure 11. Hourly hyeographs of the design storms used for addition GSSHA model simulations.

5. Summary and Conclusions

In this study, the physically-based, distributed-parameter hydrologic model GSSHA, forced by
Integrated Multi-satellite Retrievals for Global Precipitation Measurement Mission (IMERG) rainfall
product, was used to study a recent flood event in the city of Hafr Al Batin, Saudi Arabia. Due to
the large size of the catchment that encompasses the city, it was divided into three hydrologically
connected sub-catchments: a lower sub-catchment that represents the urban area, an upper sub-catchment
dominated by barren desert land, and a middle sub-catchment. A variable model grid size of 270 × 270 m2,
90 × 90 m2, and 30 × 30 m2 was adopted for the upper, middle, and lower sub-catchments.
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The semi-real time IMERG products underestimated the event rainfall with much more
pronounced underestimation of the event runoff. The IMERG product is relatively news and is
currently undergoing continuous enhancement. The references cited in the introduction section of
this paper provide early assessments and discussions of the validity of the product. These products
are expected to improve as the IMERG algorithms get refined through more ground validations.
Nonetheless, they provide valuable information that can help improve flood prediction in ungauged
basins. The authors are not aware of published hydrologic applications of the IMERG products. There
was no streamflow data to validate the hydrographs predicted by the hydrologic. However, the model
has been validated over similar environments in many previous studies as described in the introduction
section. Notwithstanding, the GSSHA model simulations forced by the final IMERG product enabled
quantifying the relative contribution of the sub-catchments and the major tributaries in the urbanized
area to flooding of the city. For this event, the distributed model simulations demonstrated that most
of the flooding (approximately 85%) was generated in the urbanized portion of the catchments (6.8%
of the total area of the simulated catchment). The contribution of the upper portion of the catchment
(68% of the area) was insignificant due to it sandy soils and the limited amounts of rainfall it received.
The middle sub-catchment contributed about 13% of the discharge at the outlet.

One of the tributaries, the Northwest Fleaj, that meets the main channel inside the city, does
not play an important role in flooding of the city center due to the size of its drainage area and its
physiographic feature. For the same reasons, the North Fleaj, which meets the main channel just north
of the city, does not contribute significant discharge. However, the South Fleaj that meets the main
channel just north of the city center contributes significantly to the total discharge in the main channel
and therefore has to be considered in any future flood control projects and urban development in
the eastern part of the city. As this tributary originates well outside the city, different types of flood
control measures can be applied to reduce the discharge it contributes. Distributed model simulations
demonstrate that flooding in the city is driven primarily by topography rather that overbank flow in
the main channel. A well designed urban drainage network might be needed to prevent flooding of
residential areas and streets. This information is important if the city officials want to implement flood
mitigation measures. For example, the presence of North Fleaj will limit expansion of the urban area
to the north because of increasing flood hazards unless its flow is diverted before entering the urban
area. Large detention basins outside the city on the main channel and Northwest Fleaj and South Fleaj
can help mitigate flooding caused by extreme event. Also, diversion of the Northwest Fleaj and South
Fleaj flow outside the city can be helpful.

Additional simulations were performed to understand the roles of the unique channel network in
flooding in the city of Hafr Al Batin. The barren desert upper portions of the catchment contribute
to flooding in the city only when it receives significant amounts of rainfall. It contributes about 3%
of the total discharge when the 100-year storm covers the entire catchment, which should have a
probability of much less than 1%. No significant discharge results from the 5-year storm. The middle
sub-catchment contributes 7% of the total runoff for the 5-year storm and 23% for the 100-year storm.
The results demonstrate that the upper portions of the catchment do not pose a significant flood threat
unless they receive exceptional amounts of rainfall. In that case, the early or even the late satellite
rainfall products can be invaluable since the flood peak will arrive many hours after the precipitation
peak for such a large catchment. The best approach to control flooding in the city of Hafr Al Batin
is to improve storm drainage to control runoff generated within and around the urbanized area as
described above and use quantitative precipitation estimates, such as IMERG, and/forecast to prepare
in the case of exceptional rainfall events in the upper portions of Wadi Al Batin catchment.

The use of variable grid size resulted in significant saving of computing time. It is necessary to use
a 30 × 30 m2 grid size in the urbanized portion of the catchment (about 300 km2) to make full use of
the topographic resolution and include the major land surface in the simulations. However, there is no
need to use such a resolution of the dominantly barren desert portion of the catchment. Employing this
gridding scheme, the simulation run takes about 5% of what it would have taken had the 30 × 30 m2
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grid been used for the entire catchment (more than 4000 km2). We did not perform a synchronized
run of the three simulations in parallel. The computing time for such a run is effectively not more
than the time to run the model on the urbanized catchment alone. In addition to significant saving of
computing time, the same approach used in this study will allow merging observed discharge from
upstream portions of a catchment with the simulated runoff downstream.

Using this approach, physically-based, fully-distributed models like the GSSHA can be run on
large basins that include urban centers that need to be modeled at very high resolutions. Previous
studies demonstrated the validity of model predictions in urban settings, including semi-arid
catchments. We believe that using high-resolution calibrated satellite products and land features
would result in reasonable estimates of the flood inundation. However, several issues need to be
taken into account. For example, the division of sub-catchments needs special treatment to make
sure that no significant over land flow is lost. Also, the inflow into a sub-catchment must have the
same time step of the model simulations (typically minutes or seconds). Disaggregation of observed
discharge data represents a challenge as it may introduce significant errors. In addition, inclusion of
sub-surface flow from one sub-catchment to the next, if needed, would add more complexity to the
hydrological connectivity.

The main limitations of the study are that the IMERG product is relatively new and has not been
validated extensively and there was no streamflow data to validate the hydrographs. Yet, the authors
are confident that the main conclusions regarding the spatial distribution of the flood inundation and
the relative contributions of different parts of the catchment to the flood generation will hold unless
the hydrological model and IMERG are of very poor quality, which they do not believe to be the case.
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Abstract: Like most land surface models (LSMs) coupled to regional climate models (RCMs),
the original Common Land Model (CoLM) predicts runoff from net water at each computational grid
without explicit lateral flow (LF) schemes. This study has therefore proposed a CoLM+LF model
incorporating a set of lateral surface and subsurface runoff computations controlled by topography
into the existing terrestrial hydrologic processes in the CoLM to improve runoff predictions in land
surface parameterizations. This study has assessed the new CoLM+LF using Earth observations at the
30-km resolution targeted for mesoscale climate applications, especially for surface and subsurface
runoff predictions in the Nakdong River Watershed of Korea under study. Both the baseline CoLM
and the new CoLM+LF are implemented in a standalone mode using the realistic surface boundary
conditions (SBCs) and meteorological forcings constructed from remote sensing products and in
situ observations, mainly by geoprocessing tools in a Geographic Information System (GIS) for the
study domain. The performance of the CoLM and the CoLM+LF simulations are evaluated by the
comparison of daily runoff results from both models with observations during 2009 at the Jindong
stream gauge station in the study watershed. The proposed CoLM+LF, which can simulate the effect
of runoff travel time over a watershed by an explicit lateral flow scheme, more effectively captures
seasonal variations in daily streamflow than the baseline CoLM.

Keywords: lateral flow; surface runoff; subsurface runoff; topography; surface boundary condition;
meteorological forcing; remote sensing; Geographic Information System; land surface model;
Common Land Model

1. Introduction

Regional climate models (RCMs) that have been used to reproduce past and recent climate
features are expected to provide credible predictions of future climate changes and impacts at regional
or local scales. For the predictability of RCMs, the coupled models need more realistic and accurate
calculations for interactions between the land surface and the atmosphere [1]. The Intergovernmental
Panel on Climate Change (IPCC) also addressed the need for improvements to terrestrial land surface
parameterizations in land surface models (LSMs) coupled to RCMs [2]. As the climate and hydrology
modeling studies have developed toward physical sophistication and high resolution, LSMs coupled to
RCMs have improved land surface parameterization schemes by incorporating sophisticated process
interactions in the terrestrial hydrologic cycle [3–10]. However, some unrealistic parameterizations
for terrestrial hydrologic schemes in LSMs have a direct or indirect influence on the complex and
dynamic responses of land surface processes, which may cause serious errors in both terrestrial water
and energy predictions.
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The fact that most land surface parameterizations are currently limited to vertical fluxes in each
single grid column may negatively affect the model’s predictions for terrestrial water and energy
processes, especially because the existing terrestrial hydrologic schemes in most LSMs are incapable of
representing the lateral water movement induced by topographic features. As incoming precipitation
is divided into evapotranspiration, soil moisture, surface and subsurface runoff by land surface
processes in LSMs, runoff plays an important part in the terrestrial water budget. However, runoff
is estimated just by the soil water budget without topographically controlled surface and subsurface
flow schemes in most LSMs. Moreover, surface runoff used for neither soil moisture nor subsurface
runoff calculation as the boundary condition results in a mass balance error in the terrestrial water
cycle. The infiltration rate calculations do not take into consideration the role of surface flow depth,
which can cause errors in both infiltration and surface flow calculations [11–13]. Such unrealistic and
simplified parameterizations in the terrestrial hydrologic scheme may affect other key components in
land surface water and energy cycles, limiting the predictability of LSMs.

The Common Land Model (CoLM), a Soil–Vegetation–Atmosphere Transfer (SVAT) model [14],
already coupled to the mesoscale Climate–Weather Research and Forecasting model (CWRF), has been
developed and updated for sophisticated land surface processes. The CWRF has built-in modules
for realistic Surface Boundary Conditions (SBCs) and is the most comprehensive of the weather
and climate models [15–17]. The CWRF’s responses to various subgrid topographic representations
and parameter selections were examined [18,19]. A scalable soil moisture transport scheme was
developed for representing subgrid topographic control in land–atmosphere interactions of the
CWRF [20,21]. The CWRF simulations were evaluated based on a continuous integration for the
period 1979–2009 using a 30-km grid spacing over the North American domain [22]. The model
improvement and performance of the CWRF were evaluated especially for possible impacts of
precipitation, temperature, radiation, and extreme events’ occurrence and magnitude to help with
future climate projection [23]. Also, many studies [6–9,14,24–28] have evaluated the performance
of the CoLM simulations in a standalone mode by the observational forcing data. Nonetheless, the
mesoscale simulations of the CoLM at the 30-km resolution are found to still have problems in the
terrestrial hydrologic scheme, especially streamflow runoff predictions. Choi et al. [10] have therefore
developed a conjunctive surface-subsurface flow (CSSF) model based on a one-dimensional (1D)
diffusion wave model for the surface flow routing scheme coupled with the 3D volume averaged
soil-moisture transport (VAST) model for water flux in unsaturated soils [21]. However, the CSSF
model cannot be widely implemented yet for watersheds all around the world because the VAST
model requires closure parameterizations by regional estimates of subgrid and lateral soil moisture
fluxes for each local watershed.

Based on an assumption that the lateral soil moisture movement may not be a major water
flux in large spatial scale simulations, this study has focused on incorporating a routed surface flow
scheme and an unrouted subsurface lateral runoff scheme into the existing 1D soil moisture transport
formulation to evaluate the influence of a lateral flow scheme on runoff predictions in the CoLM.
A new version of the CoLM, named CoLM+LF, is proposed in this study as it can explicitly route
surface runoff from excess water of both infiltration and saturation, and estimate subsurface runoff
induced by topographic controls. This study has implemented both the baseline CoLM and the new
CoLM+LF at the CWRF 30-km grid resolution, focusing on surface and subsurface runoff predictions
because the terrestrial hydrologic parameterizations including the runoff scheme must be tested and
evaluated at the same resolution as the coupled climate models.

The principal aim of this study is to assess the improvement to runoff predictions from the
new CoLM+LF with a lateral flow scheme using the best Earth observation data possible for model
predictability. For evaluating the performance of runoff results simulated from both the baseline
CoLM and the new CoLM+LF, this study has selected a watershed under study, the Nakdong River
Watershed in Korea. All the CoLM and the CoLM+LF schemes were implemented at 30-km grid points
in this study watershed without any downscaling and upscaling schemes for exchanges between the
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atmosphere and the land surface. For such direct applications of both the CoLM and the CoLM+LF,
this study has constructed a set of realistic SBCs and meteorological forcing data based on high-quality
Earth observations at the finest possible resolution from multifarious sources such as remote sensing
products (see Section 3.2 for details), photography images, in situ observations, scanned and digitized
maps, etc. for the study domain at 30-km (0.25◦) resolution on the geographic coordinate system
following Choi [29,30]. The raw data at finer resolutions were transformed into SBCs on the 30-km
spacing grids in the study domain mainly by geoprocessing tools in a Geographic Information System
(GIS), ArcGIS (ESRI, Redlands, CA, USA). Most meteorological forcing data to drive both the CoLM
and the CoLM+LF simulations in a standalone mode were spatially interpolated onto the 30-km
computational grids by the Inverse Distance Weighting (IDW) method in ArcGIS from observations
at 19 gauge stations managed by the Korea Meteorological Administration (KMA) around the study
watershed. For the performance assessment of the terrestrial hydrologic schemes in predicting runoff
by the goodness-of-fit test, the results from both the CoLM and the CoLM+LF simulations through
the sensitivity analysis of key parameters for runoff variables were compared with daily streamflow
discharges during a year of 2009 observed at the Jindong stream gauge station managed by the
Ministry of Land, Infrastructure, and Transport (MOLIT) near the drainage outlet of the Nakdong
River Watershed, Korea. It is expected that the proposed CoLM+LF with a lateral flow scheme using
realistic Earth observations can more effectively generate daily streamflow variations compared with
the baseline CoLM runoff results from the local net excess water flux in each grid when ignoring the
role of surface flow depth over the watershed, as most current LSMs do.

2. Model Description

Although the CSSF incorporates the 3D VAST for improvements to terrestrial hydrologic schemes,
the implementation of the 3D VAST model requires five key parameters for the dependence of soil
moisture variability or terrain features on the mean moisture flux, which should be regionally estimated
for each watershed. Owing to a lack of applicable regional parameters for the use of the 3D VAST
model, this study has proposed a new version of the CoLM, named the CoLM+LF, to improve runoff
predictability. Hence, a set of topographically controlled surface and subsurface flow schemes have
been combined with the existing 1D soil water transport scheme in the baseline CoLM. A sensitivity
analysis of key parameters for runoff variables in both the baseline CoLM and the new CoLM+LF is
also presented in this study.

2.1. Baseline Runoff Scheme in the CoLM

Surface runoff Rs is generated by Hortonian runoff [31] due to infiltration excess and Dunnian
runoff [32] induced by saturation excess as:

Rs = (1 − Fimp)max[ 0, Qw − Imax ]︸ ︷︷ ︸
Hortonian

+ FimpQw︸ ︷︷ ︸
Dunnian

, (1)

where Fimp is the impermeable area fraction of the saturated area and the frozen area. Qw is the
available water supply rate such as rainfall, dewfall, and snowmelt rate on the surface. Imax is the
maximum potential infiltration rate.

In the CoLM, subsurface runoff Rsb comprises three components as:

Rsb = Rsb,bas + Rsb,dra + Rsb,sat , (2)

where Rsb,bas, Rsb,dra, and Rsb,sat denote subsurface runoff components from baseflow, bottom drainage,
and saturation excess, respectively. The bottom drainage contribution to subsurface runoff is negligible
when the actual bedrock is located within the model soil layers under the exponentially decay profile
of the hydraulic conductivity. The saturation excess runoff rarely occurs by incorporating a maximum
surface infiltration limit condition and the effective hydraulic conductivity function at the interface of
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unfrozen areas from Choi and Liang [9]. In this study watershed under such conditions, the baseflow
is almost comparable to the whole subsurface runoff.

After Sivapalan et al. [33], the baseflow is calculated by the subsurface saturated lateral runoff
equation based on the TOPMODEL [34] as:

Rsb,bas =
ζKs(0)

f
e−λe− f z∇ , (3)

where ζ is an anisotropic ratio of the lateral to the vertical hydraulic conductivities, Ks(0) is the
saturated hydraulic conductivity on the surface of the top soil layer, and f is the decay factor of the
saturated hydraulic conductivity. λ is the grid-averaged topographic index defined as λ = ln(a/ tan β)

where a is the drainage area per unit contour length and tan β is the local surface slope. z∇ is the
water table depth. Because the topographic index λ has uncertainties in the regional and continental
studies where the digital elevation model (DEM) data are generally available at coarse resolutions [35],
a simplified parameterization of Equation (3) was used in some models [6,7,9,25] as:

Rsb,bas = Rsb,max e− f z∇ , (4)

where a single calibration parameter Rsb,max is the maximum baseflow coefficient representing
ζKs(0)e−λ/ f .

2.2. Lateral Flow Runoff Scheme in the CoLM+LF

For the interaction between surface and subsurface runoff components, the new scheme considers
the influence of overland flow depth on both infiltration rate and surface runoff. Total available
water supply rate Qt on the surface is computed by incorporating the surface flow depth h during a
computational time Δt into the available water supply rate Qw as:

Qt = Qw + h/Δt , (5)

Hence, the net surface runoff Rn as a result of water exchange between surface and subsurface is

Rn = (1 − Fimp)max[ 0, Qt − Imax ] + FimpQt − h/Δt , (6)

In addition, the CoLM+LF model utilizes the 1D non-inertia diffusion wave equation for a surface
flow routing scheme as:

∂h
∂t

+ cd
∂h
∂xc

= Dh
∂2h
∂x2

c
+ Rn , (7)

where t is time and xc is a flow direction coordinate. cd is the diffusion wave celerity and Dh is the
hydraulic diffusivity. Note that the spatial and temporal variation of the surface water simulated by
the 1D diffusion wave model in Equation (7) depends on the net water exchange flux Rn between
surface and subsurface in Equation (6).

The surface flow rate Qs using the Darcy–Weisbach formula can be written as:

Qs = Bh3/2

√
8g
fd

(
So − ∂h

∂xc

)
, (8)

where B is the flow cross-section width and g is the gravitational acceleration. fd is the Darcy–Weisbach
friction resistance coefficient calculated for flow regimes such as laminar, transition, or turbulent,
respectively, based on the Reynolds number of the surface flow. So is the bottom slope in the flow
direction.

Baseflow Equations (3) and (4) in the baseline CoLM are incapable of representing the frozen soil
area and surface macropore effects as well as the hydraulic conductivity variation with soil textures
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for different layers. Moreover, both equations may either fail to capture observed recession curves or
produce unrealistic remaining soil moisture content, as demonstrated in Choi and Liang [9]. Starting
with the basic assumptions in TOPMODEL, therefore, the saturated lateral flow qb at a depth z beneath
a water table can be written as:

qb(z) = Fliq(z)ζKsz(z) tan β , (9)

where Fliq is the unfrozen part of soil water and Ksz is the vertical saturated hydraulic conductivity.
The baseflow runoff Rsb,bas for a grid cell area A is calculated by integrating Equation (9) through

the entire saturated soil layers and along the channel length L connected to the grid outlet as:

Rsb,bas =
Qb
A

=

∫
L

∫ zN
z∇ qb dz dL

A
=

∫
L

∫ zN
z∇ Fliq(z)ζKsz(z) tan β dz dL

A
=

N
∑

k=j
T(k) tan β · L

A
, (10)

where Qb is the total baseflow from a grid cell. T(k) =
∫ zk

zk−1
Fliq(z)ζKsz(z)dz is a transmissivity

varying nonlinearly with depth between vertical coordinates zk and zk−1 of the layer k where zk−1 is
replaced with z∇ for the interface layer j with the water table. N is the total number of soil layers.
To prevent Equation (10) from producing an unrealistic (negative or less than the residual) value for
soil moisture content, a layer baseflow qb(k) for each discrete layer k below the water table z∇ is finally
determined as:

qb(k) = min

⎡
⎣ T(k) tan β · L

A
,
[θliq(k)− θr(k)

]
Δz′k

Δt

⎤
⎦ , (11)

where Δz′k =

{
zk − z∇ for k = j
zk − zk−1 for k = j + 1 to N

. θliq is the liquid soil moisture content and θr is the

minimum soil moisture content for residual water in a soil.
The liquid water θliq(k) for each soil layer k should be updated by the layer baseflow qb(k) for

mass conservation as:

θliq(k) = θliq(k)− qb(k)Δt
Δzk

, (12)

where Δzk = zk − zk−1 is a layer thickness for the layer k.

3. Model Implementation

The new CoLM+LF model has incorporated a set of topographically controlled surface and
subsurface flow schemes into the existing terrestrial hydrologic representation in the baseline CoLM.
The performance of both the baseline CoLM and the new CoLM+LF in predicting runoff was evaluated
over the second-largest watershed on complex terrain in Korea to study the impact of lateral flow
induced by topography using the 30-km computational grid mesh targeted for regional applications.
The model experiments were performed in a standalone mode for which both the CoLM and the
CoLM+LF were driven by the realistic SBCs and meteorological forcing data at the 30-km grid scale,
constructed by applications of Earth observation data and GIS in this study.

3.1. Study Watershed

The Nakdong River Watershed with high topographic heterogeneity in Korea was selected under
study to evaluate the performance of the baseline runoff simulation in the CoLM and the lateral flow
adopted runoff simulation in the CoLM+LF at the 30-km resolution. Figure 1 shows the study domain
comprising 72 (8 × 9) computational grid cells at 30-km (0.25◦) horizontal spacing overlaid with the
main streamline and the watershed boundary of the Nakdong River on the geographic coordinate
system. The Nakdong River Watershed is located between 127◦29′~129◦18′ E and 35◦03′~37◦13′ N
with the size of 23,384.21 km2 and the main channel length of 510.36 km. The Nakdong River flows
from the Taebaek Mountains over the north region to the South Sea. The terrain elevation ranges from
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1 to 1885 EL.m over the watershed, and the width of the river ranges from only a few meters in its
upper reaches to several hundred meters towards its estuary. Major land cover types are comprised of
irrigated cropland/pasture, cropland/woodland mosaic, savanna, and mixed forest in the USGS land
cover classification. A stream gauge station is located at the Jindong Bridge where daily streamflow
discharges were measured in 2009 by the MOLIT. There are 19 meteorological gauge stations managed
by the KMA around the study watershed for hourly or daily observations. See Section 3.3 for details
on observations and meteorological forcing data in the study domain.

Figure 1. Location map for meteorological and stream gauge stations in the study watershed overlaid
with the main streamline and the watershed boundary of the Nakdong River in Korea on the 30-km
computational grid mesh.

3.2. Surface Boundary Conditions

This study has constructed a set of primary SBCs from high-quality and -resolution observational
data over the Nakdong River Watershed. The primary SBCs required for the CoLM and the CoLM+LF
implementations comprise three groups of SBC datasets related to vegetation, terrain, and flow
direction features on the 30-km spacing grids transformed from various Earth observations at the finest
resolution possible for the study domain.

The vegetative SBCs include land cover category, albedo, fractional vegetation cover, and monthly
leaf area index in 2009. First of all, the raw data at much finer than the 30-km resolution on
various data format and map projections were converted into ArcGIS raster data, and then the
representative (majority or average) values were computed for each 30-km computational grid.
The 30-km land cover category data was made from the 1-km USGS land cover classification
with 24 categories [36], developed from the Advanced Very High Resolution Radiometer (AVHRR)
satellite-derived Normalized Difference Vegetation Index (NDVI) composites. The one of the USGS
24 land cover types constituting the largest fraction is selected as the representative value for each
30-km grid. Provided that category 16 (water bodies) with the largest fraction is not the absolute
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majority in a grid, this grid’s land cover type is not the water body but belongs in the category
that constitutes the second largest fraction. As shown in Figure 2a, the study watershed consists of
the USGS land cover categories 3 (irrigated cropland and pasture), 6 (cropland/woodland mosaic),
10 (savanna), and 15 (mixed forest) at the 30-km scale. The three water body (category 16) grids
in the study domain were used as the standard identification for consistency of water bodies in all
datasets of SBCs. Following Yucel [37], the 30-km albedo values were assigned with respect to the
30-km USGS land cover categories, distributed from 0.13 to 0.20 for the study watershed and given
to 0.08 for water bodies as shown in Figure 2b. The high-resolution fractional vegetation cover was
computed following Zeng et al. [38,39] from the 1-km NDVI data in the Système Pour l’Observation
de la Terre-VEGETATION (SPOT-VGT) satellite products [40]. Figure 2c denotes spatial distributions
of the 30-km fractional vegetation cover values ranging from 83.2% to 100%, calculated by averaging
all 1-km values within each 30-km grid using a zonal statistic function, ZONALMEAN in ArcGIS
geoprocessing tools. The raw leaf area index data is provided from the 1-km MOD 15 LAI data [41] by
Moderate Resolution Imaging Spectroradiometer (MODIS) from the Terra (EOS AM) and Aqua (EOS
PM) satellites. After abnormal values were removed by a smoothing filter method by Liang et al. [16]
and then missing values were filled using an interpolation method by Choi [29], the monthly leaf
area index data were calculated following Zeng et al. [39] for each 30-km grid by the ZONEALMEAN
function in ArcGIS. Figure 2d denotes leaf area index values in a range of 2.3 to 4.6 for the study
domain in July 2009.

The terrain SBCs comprise surface elevation, bedrock depth, and soil sand/clay fraction profiles
over the 11 soil layers at the 30-km resolution. After higher resolution raw data on various data formats
and map projections were converted into ArcGIS raster data, the average of all raster values within
each 30-km grid was calculated by the ZONALMEAN function in ArcGIS. The surface elevation data
was constructed from the 90-m (3 arc-second) DEM provided by the National Aeronautics and Space
Administration (NASA) Shuttle Radar Topographic Mission (SRTM) DEM dataset [42]. The 30-km
surface elevation data ranges from 22.8 to 910.0 EL.m for the study domain as shown in Figure 3a.
The bedrock depth and soil sand/clay fraction profiles were constructed by the Harmonized World Soil
Database (HWSD) [43], developed by the Land Use Change (LUC) project of International Institute for
Applied Systems Analysis (IIASA) and the Food and Agriculture Organization of the United Nations
(FAO). The spatial distribution of the bedrock depth is in the range from 0.8 to 135.2 cm below the
surface ground as shown in Figure 3b. Figure 3c,d denote the 30-km soil composition fraction results
for the first soil model layer, ranging between 24.9% and 36.3% for sand, and between 34.4% and 58.9%
for clay.

(a) (b)

Figure 2. Cont.
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(c) (d)

Figure 2. Spatial distributions of vegetative surface boundary conditions for (a) land cover category
(3: irrigated cropland and pasture, 6: cropland/woodland mosaic, 10: savanna, 15: mixed forest, and
16: water bodies); (b) albedo; (c) fractional vegetation cover; and (d) July’s leaf area index on 30-km
computational grids over the study domain.

(a) (b)

(c) (d)

Figure 3. Spatial distributions of terrain surface boundary conditions for (a) surface elevation;
(b) bedrock depth; (c) the first soil layer’s sand fraction; and (d) the first soil layer’s clay fraction
on 30-km computational grids over the study domain.
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The new CoLM+LF requires additional SBCs on the lateral flow information such as flow direction
and accumulation data for each 30-km grid to perform the topographically controlled surface and
subsurface flow computations. These fields were constructed by our own upscaling method using
the reference flow information data at finer resolution possible, the 90-m (3 arc-second) terrain and
drainage data provided by the Hydrological data and maps based on SHuttle Elevation Derivatives
at multiple Scales (HydroSHEDS) [44], derived from the NASA SRTM DEM. The HydroSHEDS
geospatial dataset is known to provide the realistic stream flow direction data through a sequence of
algorithms such as void-filling, filtering, hydrologic conditioning, stream burning, manual corrections,
and upscaling techniques on the original SRTM DEM for improvements to data information accuracy
suitable for hydrologic study applications. Figure 4 compares the difference between the 30-km flow
information datasets derived from our own upscaling method using the 90-m HydroSHEDS data and
from the eight direction flow model using the 30-km SBC of surface elevation in ArcGIS. The 30-km
flow information result upscaled by our own method properly represents and is much closer to the
main streamline of the Nakdong River in the study domain. The 30-km lateral flow SBCs have a
significant influence on the lateral surface and subsurface flow computation as well as the drainage
area delineation.

(a) (b)

Figure 4. Comparison of lateral flow surface boundary conditions for the CoLM+LF flow direction
(arrows) and flow accumulation (grey-black pixels) (a) from our own upscaling method; and (b)
from ArcGIS eight direction method on 30-km computational grids with overlays of the main stream
networks (blue lines) and the watershed boundary (black polygon) over the study domain.

To prevent any inconsistency over all the 30-km SBCs due to different sources of the raw data,
all constructed SBCs were adjusted by the 30-km land cover category as the standard identification for
land and water body grids.

3.3. Meteorological Forcing Data

The meteorological forcing variables are required for both the CoLM and the CoLM+LF
simulations in the offline mode. Most meteorological forcing data to drive both model simulations
during the year of 2009 were also constructed onto the 30-km computational grids by the
ZONALMEAN function in ArcGIS after in situ observations at 19 KMA meteorological gauge stations
around the study watershed were spatially interpolated onto the study domain with average values
weighted by the inverse of the distance from the gauge point. The 30-km daily meteorological
forcing data constructed in this study are precipitation (mm), snow (cm), air pressure (hPa), vapor
pressure (hPa), air temperature (◦C), specific humidity (%), zonal and meridional wind speeds (m/s),
and downward short wave radiation (MJ/m2). The daily meteorological forcing data were linearly
interpolated for the computational time step of 600 seconds in the both models.
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Figure 5 denote spatial distributions of selective meteorological forcing data for the study domain
on 5 July, one day of precipitation events in 2009.

(a) (b)

(c) (d)

 
(e) (f)

Figure 5. Spatial distributions of selective meteorological forcing variables for (a) precipitation; (b) air
pressure; (c) air temperature; (d) specific humidity; (e) zonal wind speed; and (f) meridional wind
speed on 30-km computational grids over the study domain on 5 July, one of the precipitation event
days in 2009.
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3.4. Initial Conditions

To resolve uncertainty in the initial conditions, both CoLM and CoLM+LF under the assumed
initial conditions on 1 January 2009 were run six times repeatedly without interruption for the whole
of 2009. The sixth set of results from CoLM and CoLM+LF was saved for analysis and interpretation.

4. Results

The runoff results simulated from both CoLM and CoLM+LF at the 30-km resolution were
compared with streamflow discharges observed at the Jindong gauge station by the MOLIT around
the outlet of the study watershed. For the performance assessment of both model simulations, the
relative agreement of the model results with the observations was evaluated by the Nash–Sutcliffe
efficiency (NSE) [45] and the absolute value of the relative bias (ARB), a set for assessing the goodness
of fit as suggested by McCuen et al. [46] as:

NSE = 1 −

n
∑

i=1
(Oi − Si)

2

n
∑

i=1
(Oi − O)

2
, (13)

ARB =

∣∣∣∣ n
∑

i=1
(Oi − Si)

∣∣∣∣
O

, (14)

where n is total number of data, Oi is the observed data and Si is the simulated data at day i, and O
is the average of Oi. NSE can assess the model predictive ability and ARB is used to compute total
volume error in model predictions.

4.1. Runoff Results from the Baseline CoLM

Total runoff is comprised of surface and subsurface runoff parts. Since total runoff for a watershed
was calculated by the sum of watershed-wide averages of surface runoff and subsurface runoff in
the baseline CoLM simulations, total runoff was calculated from average values over all upstream
grid cells of the target grid with the Jindong gauge station. Total runoff simulation results were
compared with daily specific discharges (discharge per unit drainage area) observed at the Jindong
stream gauge station in the study watershed during the year of 2009. Following Choi and Liang [9],
the sensitivity of the baseline CoLM was examined to two calibration parameters, the hydraulic
conductivity decay factor f and the maximum baseflow coefficient Rsb,max for runoff simulations in the
Nakdong River Watershed.

Figure 6 denotes both NSE and ARB scores for runoff results under a set of two calibration
parameters in a wide range from 2 to 9 m−1 for the hydraulic conductivity decay factor f and from
1 × 10−5 to 9 × 10−1 mm/s for the maximum baseflow coefficient Rsb,max. NSE scores are low and
negative on the whole analysis, and the maximum score of −0.140 occurs with a tolerable ARB of 0.367
when the hydraulic conductivity decay factor f is 7 m−1 and the maximum baseflow coefficient Rsb,max
is 7 × 10−1 mm/s. These two calibration parameters play a significant role in the baseflow generation
for the baseline CoLM without the topographically controlled lateral flow scheme.
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Figure 6. Comparison of the model performance evaluation results for assessing the goodness of fit by
(a) the Nash–Sutcliffe efficiency (NSE); and (b) the absolute value of the relative bias (ARB) with respect
to the hydraulic conductivity decay factor f and the maximum baseflow coefficient Rsb,max in the
baseline CoLM for total runoff during 2009 at the Jindong stream gauge station in the study watershed.

4.2. Runoff Results from the New CoLM+LF

In the CoLM+LF that can simulate surface outflow at each grid, total runoff was calculated by the
sum of the specific discharge of surface flow and the upstream grid-averaged subsurface runoff for a
target grid point as:

Rtot =
Qs

(n f a + 1)A
+ Rsb (15)

where Rtot is total runoff, n f a is the flow accumulation number at the target grid point, and Rsb is the
averaged subsurface runoff for the total grid cells located upstream of the target grid point.

The CoLM+LF runoff simulations were examined to two calibration parameters, the hydraulic
conductivity decay factor f values from 2 to 9 m−1 and the hydraulic conductivity anisotropic ratio
ζ values from 10 to 106. Figure 7 represents both NSE and ARB scores between total runoff results
from the CoLM+LF and specific discharges observed at the Jindong stream gauge station for the study
watershed in 2009. Overall, both NSE and ARB scores are much better than those for the baseline
CoLM results, and the hydraulic conductivity decay factor f of 3 m−1 and the hydraulic conductivity
anisotropic ratio ζ of 104 are calibrated in considering synchronization performance results for NSE of
0.774 and ARB of 0.012.
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Figure 7. Comparison of the model performance evaluation results for assessing the goodness of fit by
(a) the Nash–Sutcliffe efficiency (NSE); and (b) the absolute value of the relative bias (ARB) with respect
to the hydraulic conductivity decay factor f and the hydraulic conductivity anisotropic ratio ζ in the
new CoLM+LF for total runoff during 2009 at the Jindong stream gauge station in the study watershed.

4.3. Comparison of Runoff Results

Figure 8 compares the time series of daily specific discharges (total runoff) during 2009 simulated
from the baseline CoLM and the new CoLM+LF under each calibrated parameter set, along with
observations at the Jindong gauge station in the study watershed. Table 1 summarizes model
performance results measured by NSE = −0.140 and ARB = 0.367 for the baseline CoLM under
calibrated parameters of f = 7 m−1 and Rsb,max = 7 × 10−1 mm/s, and NSE = 0.774 and ARB = 0.012
for the new CoLM+LF under calibrated parameters of f = 3 m−1 and ζ = 104, respectively. As shown
in Figure 8 and Table 1, the seasonal variability of observed streamflow is realistically captured by
the runoff result from the CoLM+LF incorporating the lateral surface and subsurface flow schemes,
whereas the baseline CoLM generates high peak discharges due to immediate response to precipitation
events without surface flow routing or runoff travel time effect over the watershed, leading to the
overestimated runoff result in total volume. Moreover, the runoff result from the baseline CoLM
without considering impacts of surface flow depth on the infiltration rate may make errors in both
infiltration and surface flow calculations. The new CoLM+LF scheme significantly improves the
performance of the baseline CoLM simulation in representing the watershed runoff prediction.
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Figure 8. Comparison of daily time series of model simulated specific discharges of total runoff from
the baseline CoLM and the new CoLM+LF under each calibrated parameter set, along with the daily
observations from the Jindong stream gauge station in the study watershed during 2009. The observed
hyetographs of total precipitation averaged for the study watershed are presented along the secondary
vertical axis.

Table 1. Comparison of the model performance measured by the Nash–Sutcliffe coefficient, NSE and
the absolute relative bias, ARB for daily runoff results in the study watershed during 2009 simulated
from the baseline CoLM under the calibrated values of the hydraulic conductivity decay factor f and
the maximum baseflow coefficient Rsb,max and from the new CoLM+LF under the calibrated values of
the hydraulic conductivity decay factor f and the hydraulic conductivity anisotropic ratio ζ.

Models
Model Performance Calibration Parameters

NSE ARB f Rsb,max or ζ

CoLM −0.140 0.367 7 m−1 7 × 10−1 mm/s
CoLM+LF 0.774 0.012 3 m−1 104

Figure 9 compares surface runoff and subsurface runoff components separately from both the
baseline CoLM and the new CoLM+LF simulations under each calibrated parameter set. The baseline
CoLM simulates surface runoff with much higher and shaper peaks than the new CoLM+LF result.
Although the baseline CoLM simulation generates much enhanced baseflow by larger values of the
two calibration parameters to capture the recession parts in the observed hydrograph, even the selected
set of two calibration parameters still generates unrealistic high peaks due to quick response of surface
runoff to precipitation events in the baseline CoLM. On the contrary, the lateral surface and subsurface
flow computations play an important part in capturing the seasonal streamflow patterns in the new
CoLM+LF result. The CoLM+LF incorporating the lateral surface flow scheme generates lower peaks
and declining recession curves in surface runoff by the surface flow routing effect, and the baseflow
is effectually generated by the surface flow depth contribution to infiltration with a lower f value
than the baseline CoLM simulation. It is found that the watershed runoff is much more realistically
predicted in the new CoLM+LF parameterizations by interactions between the lateral surface flow and
the subsurface flow controlled by topography.
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Figure 9. Comparison of daily time series of surface runoff and subsurface runoff simulated from the
baseline CoLM and the new CoLM+LF under each calibrated parameter set at the Jindong stream gauge
station in 2009. The observed hyetographs of total precipitation averaged for the study watershed are
presented along the secondary vertical axis.

5. Discussion

Like most existing LSMs, the baseline CoLM predicts runoff from local net excess water flux after
excluding surface evapotranspiration and soil moisture flux from precipitation. A disregard for the role
of lateral surface and subsurface runoff in the terrestrial hydrologic cycle may make significant errors
in the baseline CoLM simulations. This study has therefore introduced a new model, the CoLM+LF
that incorporates the 1D diffusion wave surface flow model and the 1D topographically controlled
baseflow scheme into the existing formulations for the terrestrial hydrologic cycle in the baseline CoLM.
The baseline CoLM and the new CoLM+LF were implemented for the Nakdong River Watershed in
Korea in a standalone mode by the realistic SBCs and meteorological forcings on the 30-km grid mesh
for mesoscale applications by direct interactions between hydrological and atmospheric components.
This study has collected high quality observational data mainly by multispectral remote sensing
products and in situ observations from finer possible spatial data. The various raw data were spatially
transformed into the proper representative values on the 30-km spacing grids in the study domain
by our own program codes and geoprocessing tools in ArcGIS. The new CoLM+LF simulations need
the additional SBCs such as the 30-km flow direction and accumulation data to implement an explicit
lateral flow scheme. Since it is problematic to directly use the eight direction flow model provided
by ArcGIS on the 30-km resolution grids, our own upscaling method properly generated the 30-km
flow direction result, which coincides better with the Nakdong River stream network, compared
with the result from ArcGIS. This study has successfully provided a primary set of SBCs and daily
meteorological forcing data during the year 2009 for the study domain, including the entire Nakdong
River Watershed from the comprehensive Earth observations.

This study has evaluated the performance of the CoLM and the CoLM+LF in offline simulations of
daily runoff through the sensitivity analysis of key parameters for runoff variables at a watershed scale
by comparison of the simulated results with observations at the Jindong gauge station in the study
watershed. Surface runoff generated simply from the local net excess water in each grid disappears
at the next computational time step in the baseline CoLM. Since surface runoff calculated at every
time step irrespective of the remaining surface runoff at the previous time step makes no contribution
to infiltration, larger values of the two calibration parameters (decay factor f and the maximum
baseflow coefficient Rsb,max) were estimated for the baseline CoLM to enhance both infiltration and
baseflow generation. As the baseflow equation in the baseline CoLM is apt to underestimate baseflow,
as demonstrated in Choi and Liang [9], runoff recession curves observed at the Jindong gauge station
cannot be captured by runoff results generated with Rsb,max values in the order of 10−4 mm/s used in

139



Water 2017, 9, 148

previous studies [6,7,9,25]. Accordingly, the baseline CoLM simulations that predict sharp and steep
peaks in surface runoff were tuned by larger values for f of 7 m−1 and Rsb,max of 7 × 10−1 mm/s
to enhance baseflow generation. Such simplistic assumptions and crude parameterizations for the
lateral surface and subsurface runoff processes in the baseline CoLM may cause significant model
errors and consequently unrealistic model parameters by calibration. On the other hand, the new
CoLM+LF incorporating an explicit surface flow routing scheme can facilitate infiltration by the surface
flow depth contribution, leading to the enhanced baseflow generation as well. Moreover, baseflow
can be effectually generated in the new CoLM+LF by a new formulation for baseflow controlled by
topography which can also depict the effects of surface macropores and vertical hydraulic conductivity
changes. In the new CoLM+LF with a set of the lateral surface and subsurface runoff schemes, lower
peaks and smoother recession curves of surface runoff were generated under relatively smaller value
for f of 3 m−1 due to the surface flow routing effect, and the baseflow were successfully generated by
the surface flow depth contribution to infiltration and topographically controlled baseflow scheme
with the hydraulic conductivity anisotropic ratio ζ of 104.

This study has demonstrated that the CoLM+LF incorporating the topographically controlled
surface and subsurface flow computations realistically can predict the temporal variation of the
spatial distribution of streamflow runoff at a watershed scale, while the baseline CoLM may generate
unrealistic surface runoff and infiltration results, which are important components for terrestrial water
distribution and movement. The new CoLM+LF provides improved runoff modeling capability to the
baseline CoLM for better streamflow predictions affecting the terrestrial hydrologic cycle crucial to
climate variability and change studies. The new CoLM+LF is expected to be a helpful and essential
tool for water resource management and hydrological impact assessment, particularly in regions
with complex topography. This proposed CoLM+LF targeted for mesoscale climate application and
watershed scale hydrologic analysis at relatively large spatial scales needs to be implemented for
comprehensive terrestrial hydrologic simulations with long-term observations after climatological
data are constructed over various watersheds including this study domain. The next study is planning
to perform an analysis on uncertainties in the SBCs constructed from various remote sensing products
and examine the sensitivity of model predictability to the spatial and temporal resolutions of input
data. The next model also needs to include aquifer recharge, deep aquifer groundwater, channel flow
routing, and regulation storage for further investigation.
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Abstract: Inundation forecast models with non-sequential regressors are advantageous in efficiency
due to their rather fewer input variables required to be processed. This type of model is nevertheless
rare mainly because of the difficulty in finding the proper combination of regressors for the model to
perform accurate prediction. A novel methodology is proposed in this study to tackle the problem.
The approach involves integrating a Multi-Objective Genetic Algorithm (MOGA) with forecast models
based on ARX (Auto-Regressive model with eXogenous inputs) to transfer the search for the optimal
combination of non-sequential regressors into an optimization problem. An innovative approach to
codifying any combinations of model regressors into binary strings is developed and employed in
MOGA. The Pareto optimal sets of three types of models including linear ARX (LARX), nonlinear
ARX with Wavelet function (NLARX-W), and nonlinear ARX with Sigmoid function (NLARX-S)
are searched for by the proposed methodology. The results show that the optimal models acquired
through this approach have good inundation forecasting capabilities in every aspect in terms of
accuracy, time shift error, and error distribution.

Keywords: typhoon; inundation; ARX model; non-sequential regressors; multi-objective
genetic algorithm

1. Introduction

Typhoon is a common weather phenomenon in subtropical areas and usually occurs between
July and October of each year. Heavy rainfall brought by the typhoon during the event usually results
in serious inundation problems in low-lying areas, which not only causes property loss to the local
population but also threatens their safety. Due to restrictions on engineering funding, structural
protective measures are constrained by the designed limits. Once the typhoon scale exceeds the
designed protective limit, people must rely on nonstructural means for disaster relief during the event,
such as evacuating people from areas in potentially high flooding risk. Among nonstructural measures
the accurate forecast of the inundation level in the areas within the next several hours is a critical factor
in the decision-making and planning of disaster relief actions.

Relevant studies on inundation forecast technology are quite ample and can generally be divided
into either the numerical simulation or the black-box modeling. The numerical simulation is based
on theoretical deduction through the understanding of the mechanism from rainfall to inundation.
The advantage of this type of method is the completed support from the theoretical basis for the
physical mechanism of inundation. The simulation result often has a high degree of accuracy, which
renders the method a powerful tool of inundation forecast. However, the disadvantage of this method
is its high demand for computing resources and CPU time, which makes it unsuitable to provide the
real-time forecast required in the quick disaster prevention and rescue response during the typhoon
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attack. On the other hand, the black-box modeling relies on a different approach by deeming the process
from rainfall to inundation as a black box. It does not delve into the internal physical mechanism but
instead analyzes the input and output data of the system to simulate the relationship between them.
These types of models cannot explain the physical mechanism involved in the system, but they can
correctly and effectively simulate the response of the system, and the computing speed is faster than
numerical models [1]. These practical benefits render black-box modeling a suitable forecasting tool
for decision making and rescue planning during the typhoon period.

Abundant studies with regard to black-box modeling for inundation forecasting can be found
in literature, for example, Liong et al. [2] developed a river stage forecasting model based on an
artificial neural network (ANN) and yielded a very high degree of prediction accuracy even for
up to seven lead days. Campolo et al. [3] developed a flood forecasting model based on ANN
that exploits real-time information available for the basin of the River Arno to predict the basin’s
water level evolution. Keskin et al. [4] proposed a flow prediction method based on an adaptive
neural-based fuzzy inference system (ANFIS) coupled with stochastic hydrological models. Shu and
Ouarda [5] proposed a methodology using ANFIS for flood quantile estimation at ungauged sites
and demonstrated that the ANFIS approach has a much better generalization capability than other
alternatives. Kia et al. [6] develop a flood model based on ANN using various flood causative factors
in conjunction with geographic information system (GIS) to model flood-prone areas in southern
Malaysia. Lin et al. [7] proposed a real-time regional forecasting model to yield 1- to 3-h lead time
inundation maps based on K-means cluster analysis incorporated with support vector machine (SVM).
Tehrany et al. [8] proposed a methodology for flood susceptibility mapping by combining SVM and
weights-of-evidence (WoE) models and demonstrated that the ensemble method outperforms the
individual methods. Del Giudice et al. [9] developed a methodology that formulated models with
increasing detail and flexibility, describing their systematic deviations using an autoregressive bias
process. Chang and Tsai [10] proposed a spatial–temporal lumping of radar rainfall for modeling
inflow forecasts to mitigate time-lag problems and improve forecasting accuracy.

In view of the above literature, most of the approaches employ sequential data as model inputs. Less
has been explored for forecasting models with non-sequential data inputs. This type of model is efficient
because there are rather fewer inputs required to be processed. The challenge for these models, however,
lies in selecting the appropriate combination of non-sequential variables to be used in the inputs. This
study aims to propose a methodology to tackle this difficulty. The approach proceeds by integrating
a Multi-Objective Genetic Algorithm (MOGA) with models based on ARX (Auto-Regressive models
with eXogenous inputs) to search for the optimal combination of non-sequential regressors for model
inputs. Three types of ARX-based models are tested by the proposed methodology, including linear ARX
(LARX), nonlinear ARX with Wavelet function (NLARX-W), and nonlinear ARX with Sigmoid function
(NLARX-S). The models are assessed by a number of indexes to examine their performance on various
aspects, and the characteristics of the models selected from the Pareto optimal sets located by MOGA with
the best performance in each index are compared and discussed. The remainder of this paper is arranged
as follows: Section 2 illustrates the environmental background of the study area, the ARX models, and
the optimal models obtained by MOGA; Section 3 discusses the characteristics of the acquired optimal
models, and finally the conclusions are drawn in Section 4 based on the findings.

2. Materials and Methods

2.1. Study Area

Yilan County (Figure 1), located in northeastern Taiwan, is known for its rainy weather. With
about 200 rainy days per year, the annual average precipitation is around 2000–2500 mm. The terrain
is surrounded by mountains in the west and coastline in the east. It is frequently hit by typhoons
in the summer and autumn of each year. On average, two to three typhoons hit Taiwan every year
and among which 45% land in Yilan County [11]. The heavy rainfall during the typhoon attacking
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period often causes severe inundation in the low-lying areas. Among these inundation-prone areas,
the situation in Donsan area (Figure 1) is most extreme. The drainage area of Donsan is about 34 km2.
Ground level in the area is very low and flat. The ground elevation in more than one-third of the
area is below 2 m, as seen in Figure 1. During typhoon invasion, these low grounds are often flooded,
causing heavy damages and tremendous losses to the properties.

 

N

Figure 1. Donsan area in Yilan County, Taiwan.

The high tendency in severe flooding within the area has raised an urgent need for effective
disaster preventive measures. In order to monitor the local inundation condition during the typhoon
period, Taiwan Water Resources Agency established a surveillance network for the area in 2011.
It includes three water-level gauging stations, as well as a data transmission system that can receive
the precipitation observations of the Quantitative Precipitation Estimation and Segregation Using
Multiple Sensor (QPESUMS, [12]). QPESUMS consists of eight Doppler radar stations that each
scans an area with a radius of approximately 230 km. The system provides quantitative precipitation
estimation by integrating observations from weather radars and rainfall readings from 406 automatic
gauges and 45 ground stations in Taiwan. QPESUMS also provides rainfall forecasts by tracking and
extrapolating the movement paths of storm cells based on radar readings. During the typhoon period,
QPESUMS delivers the rainfall data in a frequency of every 10 min through a network connection to
the surveillance system. The water level gauging stations return the local inundation water-level data
with the same frequency through radio transmission.

Since the monitoring system of Donsan area was established, it has collected data of 10 typhoons
over the years. Figure 2 shows the recorded water level of each station and QPESUMS rainfall data
during Typhoon Trami in 2013. Detailed information of each typhoon event is listed in Table 1. These
data not only provide the local rainfall and water level information during the typhoon period but
can also be used for the establishment of water-level forecast models. In the present study, the WG2
gauging site is selected as the study object to establish the water level forecast model.

Figure 2. Water level and rainfall records during Typhoon Trami in Donsan area, Taiwan.
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Table 1. Historical typhoon records in Donsan area.

Typhoon Year
Time of Official Typhoon Sea

Warning Issued h/Day/Month (UTC)
Affecting
Period (h)

Maximum Rainfall
Intensity (mm/h)

Cumulative
Rainfall (mm)

Songda 2011 0230/27/May 36 28.5 213
Nanmadol 2011 0530/27/August 99 26.5 172

Saola 2012 2030/30/July 90 37.5 537
Soulik 2013 0830/11/July 63 30.0 133
Trami 2013 1130/20/August 45 22.0 461
Usagi 2013 2330/20/September 93 23.0 165

Matmo 2014 1730/21/July 54 35.5 98
Fung-wong 2014 0830/19/September 72 41.0 72

Soudelor 2015 1130/6/August 69 87.5 421
Dujuan 2015 0830/27/September 57 42.0 218

2.2. Model Construction

The present study adopts ARX to build the water-level forecast model for the quick calculation
feature. ARX is a kind of black-box model which can be divided into the linear model and nonlinear
model according to the relationship between the input and output. The nonlinear model can be further
subdivided into various types according to the different nonlinear functions applied. The present study
respectively aims at linear ARX, as well as ARX with Wavelet function and ARX with Sigmoid function in
the nonlinear ARX, to discuss the inundation forecast performance of these three types of models.

With regard to emergency response to the typhoon, the water level is a greater concern than
runoff. Therefore, the purpose of the forecast model is to establish the relationship between rainfall
and water level, rather than the more commonly seen rainfall and runoff relationship. Although few
studies have focused on the relationship between rainfall and water level, relevant works can be found
in the literature [13–15].

2.2.1. Linear ARX

Linear ARX (LARX) is an extension of the AR model [16] in time series analysis by adding the
influence of other exogenous inputs. The equation is as follows:

H(t + 1) + a1H(t) + · · ·+ ana H(t − na) = b1R(t − nk) + · · ·+ bnb R(t − nb − nk + 1) + e(t) (1)

in which H represents the system output; R is the exogenous input; na and nb are the number of terms of
H and R, respectively; nk is the time lag of R; e is white noise; a1 through ana and b1 through bnb are the
coefficient of each term, respectively. H(t + 1) through H(t − na) and R(t − nk) through R(t − nb − nk + 1)
are called the regressors which take in the known data to forecast H(t + 1). In LARX, the relationship
between H(t) and the regressors is linear, as shown in Equation (1). In this study, H represents the water
level at the site of WG2 in Donsan area, while R is the local rainfall data provided by QPESUMS.

2.2.2. Nonlinear ARX

Nonlinear ARX extends linear ARX by using a nonlinear relationship between the forecast and
the regressors, as shown in the equation below:

H(t + 1) = ψ(H(t), . . . , H(t − na), R(t − nk), . . . , R(t − nb − nk + 1)) (2)

where ψ is the nonlinearity estimator which has the following form:

ψ(x) =
n

∑
k=1

αkκ(βk(x − γk) (3)

in which x is the row vector consists of the regressors, n is the number of terms of nonlinearity estimator,
αk and βk are the coefficients of each term, and γk is the mean value of the regressor vector. κ is the
nonlinear unit, which can adopt different nonlinear functions.
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Two different types of nonlinear ARX models are employed in the present study, viz. the nonlinear
ARX with Wavelet function (NLARX-W) and the nonlinear ARX with Sigmoid function (NLARX-S). In
NLARX-W, the nonlinear unit κ adopts the Wavelet function [17], which has the following formula:

κ(s) =
(

dim(s)− sTs
)

e−0.5sTs (4)

where dim represents the dimension of the vector s; e is the exponential function.
On the other hand, in NLARX-S, κ adopts the Sigmoid function as shown in the equation below:

κ(s) = (es + 1)−1 (5)

The model structure of LARX, NLARX-W, and NLARX-S is determined by the selection of
regressors which are to be determined later on through the optimization process.

2.2.3. Rainfall Data Analysis

To analyze the relationship between water level and rainfall, correlation analysis on typhoon data
records was carried out. The definition of the correlation coefficient (CC) is shown below [18]:

CC(x, y) =
cov(x, y)

σxσy
=

∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(6)

in which cov is the covariance between variables x and y; σx and σy are the standard deviations of
x and y, respectively; n is the quantity of the data points. CC ranges between −1 and 1, where −1
represents the perfect negative correlation between x and y, +1 means the perfect positive correlation,
and 0 means that there is no correlation between x and y.

The rainfall data provided by QPESUMS are 10-min rainfall increments. However, it has been
reported by Ouyang [19] that the variation in water level is slower than the variation in rainfall, and
often a certain amount of rainfall accumulation is required for the water to build up. To search for the
most correlated cumulative rainfall to the water level at the study site, the procedure of Ouyang [19]
was adopted here. The moving cumulative rainfall data of the typhoon events with accumulation
duration ranging from 1 h to 30 h were first constructed. The correlations of each cumulative rainfall
data set and the water level data were then calculated. The results are as shown in Figure 3. The circle
dots in the figure represent the average CC of the typhoon events, and the error bars denote the CC
distribution of the events. As shown in the figure, the average CC is first gradually increasing along
with an increase in the accumulation duration, and then followed by a gradual recession with a further
increase in the accumulation duration. As shown in the figure, the maximum average CC appears when
the accumulation duration is about 18 h. This indicates that the water level at the study site is most
correlated with the 18 h cumulative rainfall which shall be adopted as the input data of the ARX models.

 

Figure 3. Correlations between water level and cumulative rainfall with various accumulation durations.
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2.2.4. Regressors

The ARX simulation depends on the selection of regressors. With different combinations of
regressors, the performance of the model varies. In the selection of model regressors, two methods are
commonly utilized in the literature. The first one is Sequential Time Series (see for example, [20–23])
where a sequence of time series data from the current time to a certain time before is used as model
regressors, for example, R(t), R(t − 1), . . . , R(t − m), in which R represents the cumulative rainfall.
The second common method is Pruned Sequential Time Series (see for example [24,25]), which retains
only the most relevant period of data sequence as the model input to prevent excessive variables from
influencing the model simulations. For example, R(t − a), . . . , R(t − b), where t − a through t − b
represent the time period when R is most correlated to the water level.

In addition to the above two methods, a third method namely Non-Sequential Time Series has
been proposed by Talei et al. [26]. In their study, two antecedent rainfall data R(t − T1) and R(t − T2)

are selected as the model input, in which T1 and T2 are two non-sequential time points determined
through a search test. Their results show that the models acquired in this method perform better than
those acquired in the two aforementioned methods. In the study of Talei et al. [26], T1 and T2 were
determined by a search process using the method of exhaustion. However, this approach of exhaustion
search requires tremendous computing resources and CPU time, which makes it only suitable for the
combination of a few regressors. The present study improves this aspect by adopting genetic algorithm
(GA) for the optimal selection of model regressors, such that the number of model regressors is no
longer limited and a vast amount of models with various combinations of regressors can be explored.

In the present study, the input variables of the models are selected non-sequentially from the
combination of R(t), R(t − 1), . . . , R(t − m), where R represents the 18-h cumulative rainfall which,
according to the previous data analysis, has been shown most correlated to the water-level. m defines
the range of regressors to be selected. The greater the value of m, the more possible combinations of
regressors and thus candidate models can be explored. Considering the computing time required for
the search process, m is set to be 10 in the present study. The water level forecast is also related to
water level data H(t), . . . , H(t − n). For simplicity, n is also set to be 10 herein. The relation between
the regressors and output of each model is summarized below:

H(t + 1) = ψ[combination of R(t), R(t − 1), · · · , R(t − 10), and H(t), H(t − 1), · · · , H(t − 10)] (7)

in which ψ represents the function of ARX.

2.2.5. Assessing Indexes

In order to search for the optimal models, the following indexes are employed to evaluate the
water level forecast capacity of each candidate model.

Coefficient of Efficiency (CE)

CE is an index designed to evaluate the performance of a hydrological model [27]. CE is defined
as follows

CE = 1 − ∑nt
t=1[Hobs(t)− Hest(t)]

2

∑nt
t=1

[
Hobs(t)− Hobs

]2 (8)

where Hobs and Hest are the observed and estimated water levels, respectively; Hobs is the average of
observed water level, and nt is the number of data points. A CE value closer to 1 indicates that the
predicted water levels fit more for the observations.

Relative Time Shift Error (RTS)

It has been shown by Talei and Chua [28] that a certain time shift error might emerge when using
past data to forecast into the future. The forecasted water-level hydrograph displays a shifted delay in
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time from the observations. In order to assess the time shift error of the models, the process of Talei
and Chua [28] is adopted in this study. The water-level hydrograph predicted by the model is first
shifted back in time from 0 to k data points, and the CE of each shifted hydrograph is then calculated
by comparing to the observations. The shift step δ associated to the maximum CE is considered as the
time shift error of the model. The definition of Relative Time Shift is thus as follows

RTS =
δ

k
(9)

where δ denotes the average δ of the typhoon events, and k is the forecast horizon (i.e., prediction
time steps; each time step is 10 min in the present study). RTS ranges between 0 and 1. A smaller RTS
represents less time shift in the predictions.

Threshold Statistic for a Level of x% (TSx)

TSx ([29,30]) was employed to assess the error distribution in the forecasted water-level
hydrographs. TSx is defined as follows

TSx =
yx

n
× 100 (10)

where n is the total amount of data points; yx is the amount of forecasted data points with absolute
relative error |REt| less than a specified criteria of x%. REt is defined as

REt =
Ht

o − Ht
c

dto × 100 (11)

where Ht
o and Ht

c are the observed and predicted water level at time t, respectively; and dt
o is the

observed water depth. Using water depth instead of water level as the denominator in Equation (11)
has several benefits. First, the value of |REt| thus defined ranges between 0 and 1, where |REt| =
0 indicates perfect prediction and 1 denotes a bad prediction deviated from the observation by the
entire water depth. Second, a better accuracy in error measurement is achieved since the scale of water
level might be in tens or hundreds of meters (depends on the location where the data were recorded)
whereas in water depth it is often in meters only. A greater TSx means that the forecasted water-level
hydrograph contains more predicted data points with the absolute relative error less than x%, and
thus the model performance is better. The present study adopts 15% as the threshold value (i.e., TS15).

2.2.6. Data Processing

The water level and cumulative rainfall data are standardized using the following equation [31]

yn = 0.1 + 0.8
(

yi − ymin
ymax − ymin

)
(12)

where yn is the data after standardization; yi is the raw data; ymax and ymin are the maximum and
minimum of raw data, respectively. The process of data standardization concentrates the dispersive
data in a defined interval, which has shown great improvement on the predictions [31].

2.3. Model Optimization

The three indexes of CE, RTS, and TS15 each evaluates the model’s water level forecast accuracy,
the time shift error, and the error distribution, respectively. All the three indexes provide valuable
information for disaster prevention action during typhoon attack and shall be considered at the same
time. However, it is difficult to weigh the importance of the three indexes. In order to find the models
with good performance in all aspects, the multi-objective genetic algorithm (MOGA) was adopted in
the present study as a tool for the search.
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2.3.1. Multi-Objective Genetic Algorithm

The theoretical basis of GA was developed based on the Darwinian natural selection theory. After
Holland [32] developed a firm mathematical foundation for the algorithm, GA has been widely applied
to various fields to solve optimization problems that could not be tackled by traditional methods. In
GA, each individual in a population is deemed as a possible solution to the optimization problem
at hand. Based on the specified objective functions, the performance of each individual is evaluated
and compared, and the individuals with better performance shall have a greater chance to pass its
gene to the next generation. Through this procedure, the overall performance of the entire population
gradually evolves and improves. After several generations of evolution, the individuals with optimal
performance shall emerge, and these optimal individuals are considered as the optimal solutions of the
problem. The algorithm has been shown capable of locating the global optima [33] and is particularly
suitable for solving multi-objective optimization problems [34].

2.3.2. Objective Functions

Based on the definition of CE, RTS, and TS15, three design goals of the optimal model can be
identified, which are the maximum CE, minimum RTS, and maximum TS15, respectively. Also,
according to Equations (8)–(10), the upper limit of CE and TS15 is 1, and RTS is always a positive
number; therefore, the objective functions shall be defined as follows:

Objective 1 : minimize
(
1 − CE

)
(13)

Objective 2 : minimize RTS (14)

Objective 3 : minimize
(
1 − TS15

)
(15)

in which CE, RTS, TS15 represent the averaged value of the three indexes for the typhoon events,
respectively. The design goal of Objective 1 and Objective 3 is to get CE and TS15 closest to 1, while the
design goal of Objective 2 is to get RTS closest to 0.

2.3.3. Codification of Regressor Combinations

The design variables of the optimization problem are the various possible combinations of model
regressors consisting of R(t) through R(t − 10) and H(t) through H(t − 10), as shown in Equation (7).
To utilize MOGA to search for the optimal models, the combination of the regressors has to be codified
into a chromosome. In the present study, this procedure is accomplished by using binary bit string
codifications, as illustrated in Figure 4. The combination of regressors is represented by a binary bit
string chromosome consisting of 22 genes each associated to a specific regressor. If the value of a gene
is 1, the regressor associated to this gene shall be selected as an input variable of the model. Contrarily,
for a gene with a value of 0, the associated regressor shall not be selected as input. Each chromosome
represents a specific combination of regressors and thus a candidate model. With 22 genes in one
chromosome, the total candidate models thus formed in the search space are 222 ≈ 4.19 × 106.

Figure 4. Binary bit string codification of a combination of regressors.
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For model calibration, 6 out of the 10 events were selected, and the rest events were employed for
validation. The selection of the calibration events is based on total cumulative rainfall to represent
large, middle, and small amounts of rainfalls. The events thus selected are Songda, Nanmadol, Soulik,
Fung-wong, Soudelor, and Dujuan. The three performance indexes of CE, RTS and TS15 are calculated
and averaged over the validation events. The optimal models for the three types of LARX, NLARX-W,
and NLARX-S are searched for using MOGA. With regard to MOGA setting, the population size is set
to 200 with Pareto fraction of 0.35. The maximum generation of evolution is 500, and the stopping
criterion of the evolution is set to 50 generations of stalls.

3. Results and Discussion

The result acquired by MOGA is the Pareto optimal model set, in which every model is
un-dominated, that is, at least one of the three indexes of the model is not exceeded by another
model. For each model type of LARX, NLARX-W, and NLARX-S, the three models with the best
performance in the three indexes, respectively, are selected among the Pareto optimal set. The results
are shown in Table 2. The selected models are named according to their model type and the featuring
index, L1 represents the model with the maximum CE in LARX, L2 represents the one with the
minimum RTS in LARX, and L3 represents the maximum TS15 model in LARX. Similarly, W1, W2 and
W3, as well as S1, S2, and S3, respectively represent the models with the maximum CE, minimum RTS,
and maximum TS15 in NLARX-W and NLARX-S. The scores of the nine optimal models on the three
indexes and the corresponding chromosomes (i.e., selected regressors) are listed in Table 2. As shown,
the selected regressors associated to each of the nine optimal models appear to be in a non-sequential
pattern. This supports the result of Talei et al. [26] that a model with non-sequential inputs has better
performance than the ones with sequential or pruned sequential inputs.

Table 2. Optimal models and the corresponding chromosomes (L1–L3: optimal Linear Auto-Regressive
model with eXogenous inputs (LARX) models; W1–W3: optimal nonlinear ARX with Wavelet function
(NLARX-W) models; S1–S3: optimal nonlinear ARX with Sigmoid function (NLARX-S) models; R(t − 1)
through R(t − 10): antecedent cumulative rainfall data; H(t − 1) through H(t − 10): antecedent water
level data).

Index
Model

L1 L2 L3 W1 W2 W3 S1 S2 S3

CE 0.859 0.245 0.852 0.933 0.269 0.911 0.946 0.734 0.929
RTS 0.403 0.251 0.500 0.125 0.108 0.278 0.111 0.098 0.167
TS15 0.590 0.472 0.618 0.728 0.356 0.743 0.725 0.426 0.768

Available regressor Chromosome (Selected regressor)

R(t − 1) 1 0 0 0 0 0 1 1 1
R(t − 2) 0 0 1 0 0 0 1 0 0
R(t − 3) 1 1 1 1 1 1 1 1 1
R(t − 4) 1 0 1 1 0 1 1 0 1
R(t − 5) 0 0 0 0 0 0 1 1 1
R(t − 6) 1 1 0 0 0 0 0 1 1
R(t − 7) 0 0 0 0 0 0 1 0 0
R(t − 8) 0 0 0 1 0 1 1 1 1
R(t − 9) 0 0 0 0 0 0 0 1 1

R(t − 10) 0 0 0 0 0 0 1 1 1
H(t − 1) 0 0 1 0 0 0 0 0 0
H(t − 2) 0 1 0 0 1 1 0 0 1
H(t − 3) 0 0 0 0 1 0 1 0 0
H(t − 4) 0 1 0 0 1 0 0 0 0
H(t − 5) 1 0 0 0 0 0 0 0 0
H(t − 6) 0 0 1 0 0 0 0 1 0
H(t − 7) 0 1 0 0 0 0 0 0 0
H(t − 8) 0 1 0 1 0 0 0 1 0
H(t − 9) 0 0 0 0 1 0 0 0 1
H(t − 10) 0 0 0 0 0 0 0 0 0

Prediction lead: k = 18 (3 h)
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The prediction lead time is crucial for disaster relief action during typhoon attack. An appropriate
choice of the prediction lead time has to be linked to the properties of the hydrological behavior of the
watershed. It has been observed in the study area that the variation of water level often lags behind
the rainfall (for example, as observed in Figure 2). This time lag behavior between the rainfall and the
water level presents a characteristic of the watershed, which can be used as an index for the selection
of the appropriate prediction lead time. For that, the corrections between the cumulative rainfall data
and the water level data shifted back in time by various time lags are analyzed. The results are as
shown in Figure 5. The circle dots represent the average CC of the typhoon events and the error bars
denote the maximum and the minimum CCs of the events. As seen, the average CC reaches the peak
at the time lag of t − 3. This indicates that the water level is most correlated to the cumulative rainfall
with 3 h of lead in the study area. The prediction lead time in the present study is thus selected to be 3
h in accordance with this hydrological characteristic of the watershed.

 

Figure 5. Correlations between cumulative rainfall and water level with various time lags.

Figure 6a–c compare the performance of the nine models in CE, RTS, and TS15. In the comparison
of CE, as shown in Figure 6a, the performance of Model Type 1 (L1, W1, S1) and Model Type 3 (L3,
W3, S3) is quite good, in which CE all reaches above 0.8. The CEs of Type 1 Models are seen a little
higher than Type 3 Models, but the differences are not significant. The CE performance of Model Type
2 is relatively poorer, especially for L2 and W2. This is because Model Type 2 features on reducing
the time shift error. Nevertheless, it is noted that the CE of Model S2 still reaches above 0.7. As
shown in Figure 6a, the CEs of the nonlinear models (W- and S-series of models) are somewhat higher
than the linear L-series of models, thus indicating that the relationship between rainfall and water
level at the site of WG2 is nonlinear. In the comparison of nonlinear models, the CEs of NLARX-S
models (S1, S2, S3) appear to be higher than NLARX-W models (W1, W2, W3), and that difference is
particularly evident with S2 and W2. In the comparison of time shift errors, as shown in Figure 6b, the
RTS of Model Type 2 (L2, W2, S2) is seen lower than Type 1 (L1, W1, S1) and Type 3 (L3, W3, S3). The
RTS of S2 in all models is the lowest, showing the minimum time shift error in the forecast, which is
followed by W2 with a little increase in RTS; both of which are nonlinear models. The RTS of L2 is
the worst in Type 2 models, and as shown in Figure 6b, even W1 and S1 which feature on CE have
shown somewhat better performance on RTS than L2. Also, the RTS of the linear L1 and L3 models are
much higher than the nonlinear W- and S-series of models. This yet again implies the nonlinearity
between the rainfall and the water-level at the study area. Figure 6c is the comparison of the nine
models in TS15 performance. As shown in the figure, both Type 1 models ((L1, W1, S1) and Type 3
models (L3, W3, S3) display high performance on TS15. Among the nine models, the TS15 of S3 is the
highest, which is closely followed by W3. The linear L3 has the worst TS15 in Type 3 models, which
as shown in Figure 6c, is even lower than the nonlinear W1 and S1 that features on CE. In summary,
the comparisons in Figure 6 show that the overall performance of nonlinear models is better than
linear models on every aspect. Comparisons in the nonlinear models show that the NLARX-S models
perform a little better than the NLARX-W models, but the differences are not very significant.
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The results of the model predictions might be related to the hydrological behavior of the watershed.
As has been shown in Figure 5, the correction between the water level and the rainfall in the study area
is most prominent with a time lag of 3 h. It is noted in Table 2 that the model regressors optimized by
MOGA all include R(t − 3) in the inputs. This result might reflect the hydrological behavior of the study
area. It is also noted that Type 1 and Type 3 models which exhibit higher CE and TS15 values include not
only R(t − 3) but also R(t − 4) or R(t − 2) as their regressors. As seen in Figure 2, the correction between
the water level and the rainfall in the study area is also high with time lags of t − 2 and t − 4. This might
explain the rather good results of CE and TS15 scores achieved by Type 1 and Type 3 models.

Figure 6. Performance comparison of the optimal models (a) Coefficient of efficiency (CE), (b) Relative
time shift error (RTS) and (c) Threshold statistic for a level of x% TS15.

Figure 7 is the comparison of validated water level hydrograph and measured data of Type 1
models, with a prediction lead time of 3 h. Figure 7a–d show the validation results of Typhoon Saola,
Matmo, Trami and Usagi, respectively. As seen in the figures, the models generally give reasonable
forecasts comparing to the data. It is noted that all the three models exhibit certain degrees of time
shift errors on the rising limb of the hydrographs. Since the rising limb of the flood wave is the most
important phase for flood forecasting activities, the delayed forecasts pose a limitation of the models.
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(a) (b)

(c) (d)

Figure 7. Comparison of model validation and measured data for (a) Typhoon Saola, (b) Typhoon
Matmo, (c) Typhoon Trami, and (d) Typhoon Usagi (3-h lead time).

The above model performance comparison is mainly based on 3 h of prediction lead time. In order
to investigate the performance under other lead times, the models are applied to the forecasts with
prediction lead times varying from 0.5 h to 3 h, and the three indexes of CE, RTS, and TS15 associated
to each prediction lead time are calculated. The results are shown in Figure 8a–c. Figure 8a shows
the CE variations of Type 1 models (L1, W1, and S1) along with the prediction lead. As shown in
the figure, it appears that the CEs of all the three models increase with smaller prediction leads. For
0.5 h of prediction lead, the CEs of all models reach above 0.95, among which S1 is the highest. As
the prediction lead time increases, the CEs of the three models gradually decrease. CE of L1 drops
below 0.9 after the lead time passes 2 h, while W1 and S1 maintain above 0.9 up to 3 h of prediction
lead. As the figure shows, for prediction leads from 0.5 to 3 h, CE performance of the three models
shows S1 as optimal, closely followed by W1, and L1 is the worst. Figure 8b shows the RTS of Type 2
models (L2, W2, S2) varying along with prediction lead time from 0.5 to 3 h. As shown in the figure,
the RTS of the three models gradually increases as the prediction lead time increases. All three models
appear to have higher RTS with longer prediction leads, indicating greater relative time shift errors
there. Comparing the three models, the RTS performance of S2 appears to be the best, and L2 is the
worst. Figure 8c shows the TS15 of Type 3 models (L3, W3, S3) varying along with prediction lead
time. As shown in the figure, the TS15 of all three models increase with smaller prediction leads. With
0.5 h of lead time, TS15 of the three models all reach above 0.9, showing very good forecasts. As the
prediction lead time increases, the TS15 of the three models gradually decreases. The TS15 performance
of the three models shows S3 as the best, closely followed by W3, and L3 as the worst.
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Figure 8. Variation of assessing indexes of the optimal models with respect to different prediction lead
times (a) CE, (b) RTS and (c) TS15.

4. Conclusions

A methodology for the determination of the optimal combination of non-sequential regressors for
typhoon inundation forecasting models has been developed. By integrating a MOGA with ARX-based
models, the proposed methodology is capable of locating the optimal models that conform to multiple
objectives in terms of high prediction accuracy, low time shift error, and low threshold statistics. Testing
results show that the nine optimal models obtained by the MOGA all display non-sequential patterns
in the resultant combinations of regressors, which signifies the superiority of this type of model as
well as the capacity of the proposed methodology in locating the optimal non-sequential regressors.
In comparing the resultant models obtained by the proposed methodology, the results show that the
overall performance of nonlinear models (NLARX-W and NLARX-S) is significantly better than linear
models (LARX), revealing a nonlinear relationship between the rainfall and water level at the study
area. On all the three assessing indexes of CE, RTS, and TS15, the evaluation results of the three types
of models present, in general, NLARX-S as the best, NLARX-W falling slightly behind, and LARX as
the worst. These results provide a new approach to constructing better models for typhoon inundation
level forecasts.

Acknowledgments: This research was supported by the Ministry of Science and Technology in Taiwan under
grant No. MOST 105-2625-M-197-001. Support from the Water Resources Agency in Taiwan is also acknowledged.

Author Contributions: Huei-Tau Ouyang designed the framework of the study; Shang-Shu Shih and Ching-Sen
Wu participated in data collection and final approval of the writing.

155



Water 2017, 9, 519

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Karlsson, M.; Yakowitz, S. Rainfall-runoff forecasting methods, old and new. Stoch. Hydrol. Hydraul. 1987, 1,
303–318. [CrossRef]

2. Liong, S.Y.; Lim, W.H.; Paudyal, G.N. River stage forecasting in Bangladesh: Neural network approach.
J. Comput. Civ. Eng. 2000, 14, 1–8. [CrossRef]

3. Campolo, M.; Soldati, A.; Andreussi, P. Artificial neural network approach to flood forecasting in the River
Arno. Hydrol. Sci. J. 2003, 48, 381–398. [CrossRef]

4. Keskin, M.E.; Taylan, D.; Terzi, O. Adaptive neural-based fuzzy inference system (ANFIS) approach for
modeling hydrological time series. Hydrol. Sci. J. 2006, 51, 588–598. [CrossRef]

5. Shu, C.; Ouarda, T.B.M.J. Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy
inference system. J. Hydrol. 2008, 349, 31–43. [CrossRef]

6. Kia, M.B.; Pirasteh, S.; Pradhan, B.; Mahmud, A.R.; Sulaiman, W.N.A.; Moradi, A. An artificial neural
network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ. Earth Sci. 2012, 67,
251–264. [CrossRef]

7. Lin, G.F.; Lin, H.Y.; Chou, Y.C. Development of a real-time regional-inundation forecasting model for the
inundation warning system. J. Hydroinf. 2013, 15, 1391–1407. [CrossRef]

8. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble
weights-of-evidence and support vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [CrossRef]

9. Del Giudice, D.; Reichert, P.; Bareš, V.; Albert, C.; Rieckermann, J. Model bias and complexity–Understanding
the effects of structural deficits and input errors on runoff predictions. Environ. Model. Softw. 2015, 64,
205–214. [CrossRef]

10. Chang, F.J.; Tsai, M.J. A nonlinear spatio-temporal lumping of radar rainfall for modeling multi-step-ahead
inflow forecasts by data-driven techniques. J. Hydrol. 2016, 535, 256–269. [CrossRef]

11. Pan, T.Y.; Chang, L.Y.; Lai, J.S.; Chang, H.K.; Lee, C.S.; Tan, Y.C. Coupling typhoon rainfall forecasting with
overland-flow modeling for early warning of inundation. Nat. Hazards 2014, 70, 1763–1793. [CrossRef]

12. Gourley, J.J.; Maddox, R.A.; Howard, K.W.; Burgess, D.W. An exploratory multisensor technique for
quantitative estimation of stratiform rainfall. J. Hydrometeorol. 2002, 3, 166–180. [CrossRef]

13. Thirumalaiah, K.; Deo, M.C. Real-time flood forecasting using neural networks. Comput. Aided Civ. Infrastruct.
Eng. 1998, 13, 101–111. [CrossRef]

14. Bazartseren, B.; Hildebrandt, G.; Holz, K.P. Short-term water level prediction using neural networks and
neuro-fuzzy approach. Neurocomputing 2003, 55, 439–450. [CrossRef]

15. Yu, P.S.; Chen, S.T.; Chang, I.F. Support vector regression for real-time flood stage forecasting. J. Hydrol. 2006,
328, 704–716. [CrossRef]

16. Yule, G.U. On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s
sunspot numbers. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Charact. 1927, 226, 267–298.
[CrossRef]

17. Grossmann, A.; Morlet, J. Decomposition of Hardy functions into square integrable wavelets of constant
shape. Siam J. Math. Anal. 1984, 15, 723–736. [CrossRef]

18. Gayen, A.K. The frequency distribution of the product-moment correlation coefficient in random samples of
any size drawn from non-normal universes. Biometrika 1951, 38, 219–247. [CrossRef] [PubMed]

19. Ouyang, H.T. Multi-objective optimization of typhoon inundation forecast models with cross-site structures
for a water-level gauging network by integrating ARMAX with a genetic algorithm. Nat. Hazards Earth
Syst. Sci. 2016, 16, 1897–1909. [CrossRef]

20. Furundzic, D. Application example of neural networks for time series analysis: Rainfall–runoff modeling.
Signal Process. 1998, 64, 383–396. [CrossRef]

21. Tokar, A.S.; Markus, M. Precipitation-runoff modeling using artificial neural networks and conceptual
models. J. Hydrol. Eng. 2000, 5, 156–161. [CrossRef]

22. Riad, S.; Mania, J.; Bouchaou, L.; Najjar, Y. Predicting catchment flow in a semi-arid region via an artificial
neural network technique. Hydrol. Process. 2004, 18, 2387–2393. [CrossRef]

156



Water 2017, 9, 519

23. Chua, L.H.; Wong, T.S.; Sriramula, L.K. Comparison between kinematic wave and artificial neural network
models in event-based runoff simulation for an overland plane. J. Hydrol. 2008, 357, 337–348. [CrossRef]

24. Mitra, S.; Hayashi, Y. Neuro-fuzzy rule generation: Survey in soft computing framework. IEEE Trans.
Neural Netw. 2000, 11, 748–768. [CrossRef] [PubMed]

25. Nayak, P.C.; Sudheer, K.P.; Jain, S.K. Rainfall-runoff modeling through hybrid intelligent system. Water Resour.
Res. 2007, 43. [CrossRef]

26. Talei, A.; Chua, L.H.C.; Wong, T.S. Evaluation of rainfall and discharge inputs used by Adaptive
Network-based Fuzzy Inference Systems (ANFIS) in rainfall–runoff modeling. J. Hydrol. 2010, 391, 248–262.
[CrossRef]

27. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles.
J. Hydrol. 1970, 10, 282–290. [CrossRef]

28. Talei, A.; Chua, L.H. Influence of lag time on event-based rainfall–runoff modeling using the data driven
approach. J. Hydrol. 2012, 438, 223–233. [CrossRef]

29. Jain, A.; Ormsbee, L.E. Short-term water demand forecast modeling techniques—Conventional methods
versus AI. J. Am. Water Works Assoc. 2012, 94, 64–72.

30. Jain, A.; Varshney, A.K.; Joshi, U.C. Short-term water demand forecast modeling at IIT Kanpur using artificial
neural networks. Water Resour. Manag. 2001, 15, 299–321. [CrossRef]

31. Rajurkar, M.P.; Kothyari, U.C.; Chaube, U.C. Artificial neural networks for daily rainfall—Runoff modeling.
Hydrol. Sci. J. 2002, 47, 865–877. [CrossRef]

32. Holland, J.H. Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 1973, 2, 88–105.
[CrossRef]

33. Goldberg, D.E.; Holland, J.H. Genetic algorithms and machine learning. Mach. Learn. 1988, 3, 95–99.
[CrossRef]

34. Bagchi, T.P. Multi-Objective Scheduling by Genetic Algorithms; Springer Science & Business Media:
New York, NY, USA, 1999; pp. 143–145.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

157



water

Article

Exploring Jeddah Floods by Tropical Rainfall
Measuring Mission Analysis

Ahmet Emre Tekeli

Civil Engineering Department, Çankırı Karatekin University, Çankırı 18100, Turkey;
ahmetemretekeli@karatekin.edu.tr; Tel.: +90-376-212-9582

Received: 13 June 2017; Accepted: 10 August 2017; Published: 16 August 2017

Abstract: Estimating flash floods in arid regions is a challenge arising from the limited time preventing
mitigation measures from being taken, which results in fatalities and property losses. Here, Tropical
Rainfall Measuring Mission (TRMM) Multi Satellite Precipitation Analysis (TMPA) Real Time (RT)
3B2RT data are utilized in estimating floods that occurred over the city of Jeddah located in the
western Kingdom of Saudi Arabia. During the 2000–2014 period, six floods that were effective
on 19 days occurred in Jeddah. Three indices, constant threshold (CT), cumulative distribution
functions (CDFs) and Jeddah flood index (JFI), were developed using 15-year 3-hourly 3B42RT. The
CT calculated, as 10.37 mm/h, predicted flooding on 14 days, 6 of which coincided with actual
flood-affected days (FADs). CDF thresholds varied between 87 and 93.74%, and JFI estimated 28 and
20 FADs where 8 and 7 matched with actual FADs, respectively. While CDF and JFI did not miss any
flood event, CT missed the floods that occurred in the heavy rain months of January and December.
The results are promising despite that only rainfall rates, i.e., one parameter out of various flood
triggering mechanisms, i.e., soil moisture, topography and land use, are used. The simplicity of the
method favors its use in TRMM follow-on missions such as the Global Precipitation Measurement
Mission (GPM).

Keywords: Jeddah; floods; TRMM; 3B42RT; Saudi Arabia; GPM

1. Introduction

Disasters, which can be categorized as either man-made or natural, are defined as events or
dangerous cases that may lead to injury or loss of human life with/without property loss [1] in
addition to the interruptions they cause on human activities [2]. Out of 31 natural disasters, 28 are the
result of meteorological events [3]. Among these 28 meteorology-based disasters, floods are the most
common [4]. Despite the limited areas in which they occur [5], flash floods are the most commonly
faced, the most deadly and the most challenging [6,7]. It is the limited response time that makes flash
floods challenging. Hapuarachi et al. [8] identified excess rainfall as the main driving mechanism for
flash floods.

The vulnerability of arid and semi-arid regions to flash floods has been indicated to be equal to
that of regions with heavy rain. Moreover, Zipser et al. [9] mentioned the occurrence of the strongest
convective storms, and Haggag and El-Badry [10] indicated the rapid formation of flash floods in
arid and semi-arid regions. The Kingdom of Saudi Arabia (KSA) is well known for its dry climatic
conditions [11] and is classified as a semi-arid region [12,13]. However, the floods that occurred over
Jeddah, Makkah and Riyadh in KSA indicate flash floods risks in the semi-arid kingdom (Figure 1a).
The risks as well as the impact of flash floods increase due to the rainfall intensity and lack of mitigation
implementations [11].

Water 2017, 9, 612 158 www.mdpi.com/journal/water
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(a)

(b)

(c)

Figure 1. Flooding event in Jeddah from 24–26 November 2009 (a) Source: https://ontheredsea.
wordpress.com/tag/jeddah/, location of Jeddah in KSA (b) Source: http://www.weather-forecast.
com/system/images/249/original/Jeddah.jpg?1299372620, Digital Elevation Model of Jeddah city
and surroundings obtained from ASTER DEM (30 m) (c).

Negri et al. [14] identified the establishment of early warning systems as the most effective way
to reduce life and property damage in flash flood cases. Despite improvements in numerical weather
predictions, it is not easy to detect flash floods. This situation increases the importance of rainfall
observations in flash flood estimations.

Ground-based rain gauges have been the main source of data for rainfall observations. However,
as mentioned in Negri et al. [14], in these ground-based stations, data transfer problems can be seen
during flooding events, and maintenance of the stations are needed after flooding [15]. In addition
Borga et al. [5] indicated the inadequacy of ground-based rain gauges in showing the spatial
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variability of rainfall. Moreover, insufficiency in spatial and temporal coverage, particularly for
rainfall observations over Jeddah, is mentioned in Deng et al. [16].

Ground radar and satellite-based remote sensing are free from such disadvantages and are being
used more frequently in both research and operational applications [17]. In particular, satellite-based
remote sensing provides new techniques to monitor extreme rainfall events in an uninterrupted
manner and enables implementation of new flood warning systems [15,18]. Rainfall intensities at high
spatial (1 km to 10 km) and temporal (30 min–3 h) resolutions can be obtained in near real time [19].
Borga et al. [5] mentioned that as remotely sensed precipitation became a major component in flood
warning systems, mortality decreased due to timely warnings provided by satellite-based rainfall
intensities [18,20].

In this study, three different flood indexes, namely, the constant threshold (CT), cumulative
distribution functions (CDFs) and Jeddah flood index (JFI) that are based on the Tropical Rainfall
Measuring Mission (TRMM) satellite 3B42RT rainfall rates are compared in forecasting of flooding
events in Jeddah. Thus, the main objective is assessing the forecasting capabilities of TRMM
3B42RT-based indices in identifying the Jeddah floods.

2. Study Area and Data Sets

2.1. Study Area

With a population of 4.2 million over an area of 1600 km2, Jeddah, the second largest city in
KSA after the capital Riyadh is the largest sea port on the Red Sea coast (Figure 1b) and has been a
commercial hub in KSA [21]. Jeddah extends in a northern to southern direction bordered by the Red
Sea in the west and by mountains in the east (Figure 1c). Drainage extending from those mountains
in the east crosses the city, transporting surface flow to the city and ultimately merges with Red Sea
(Please Refer to Figure 8 in Youssef et al. [12]).

With air temperatures dropping to 15 ◦C in winter and reaching as high as 52 ◦C in summer,
Jeddah can be classified as having a hot, arid climate [21]. Despite Jeddah being located in the rainiest
region of KSA, precipitation is still low, below the potential evaporation point, and indicates high
temporal and spatial variability [12]. The monthly maximum, average and minimum air temperatures
(◦C) and monthly cumulative precipitation (mm) observed in Jeddah are provided in Figure 2 [21].
As seen in Figure 2, the summer period can be very hot (max 52 ◦C) with no rainfall. Based on
precipitation values in Figure 2, Jeddah exhibits three main seasons. The high rain season covers
November, December and January, the low rain season covers February, March, April and October
and the dry season covers June, July, August and September. Most of the rain is received in brief
thunderstorms during the high rain season [12]. Table 1 presents the Jeddah floods gathered from
various sources. Figure 2 indicates that, out of six floods observed over Jeddah, 3 occurred in the
high season (January, November, December), 2 in the low season (April, October) and 1 in the dry
(July) season.

Table 1. Major flood events observed over Jeddah city in KSA.

Start End Flood Affected

Date Date Days Data Source

28 April 2005 28 April 2005 1 [22]
29 October 2006 31 October 2006 3 [23]

24 November 2009 26 November 2009 3 [10,16,22,24–28]
13 July 2010 16 July 2010 4 [29]

30 December 2010 * 1 [10,25]
25 January 2011 31 January 2011 7 [10,24–26,28]

Note: * Related information could not be found.
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Figure 2. Monthly maximum, average and minimum air temperatures (◦C), monthly cumulative
precipitation (mm) and number of observed floods for Jeddah (Data source: https://en.wikipedia.org/
wiki/Jeddah#Climate).

2.2. Satellite Data

The Tropical Rainfall Measuring Mission (TRMM) is a collaboration between the Japan Aerospace
Exploration Agency (JAXA) and National Aeronautics and Space Administration (NASA). It was
the first satellite to carry a precipitation radar. Besides the radar, microwave imaging and lightning
sensors are used in rainfall detection [30]. Using multi-channel microwave and infrared observations
from satellites [31], TRMM Multi-satellite Precipitation Analysis (TMPA) data produce the “best”
precipitation estimate between 50◦ N–50◦ S. Precipitation products have high temporal (3 h) and high
spatial resolution (0.25◦ × 0.25◦). Real-time (RT) data (3B42RT) are provided to users 6–9 h following
the data reception and research products (3B42) are available 15 days following the end of month [32].

Usability of TRMM 3B42 data for water resource applications and high performance over KSA
was demonstrated by Almazroi [33] and Kheimi and Gutub [34]. Tekeli and Fouli [35] indicated the
capability of 3B42RT data in forecasting floods in Riyadh, KSA. Similar to Tekeli and Fouli [35] version
7 (V7) of 3B42RT data posted online in May of 2012 [36] is used here. Figure 3 presents TRMM 3B42RT
pixel coverage over Jeddah. Despite Haggag and El-Badry [10] stating the underestimation of rainfall
fields by TRMM 3B42 data, Figure 4 shows the flooding event on 25 November 2009 as detected by
3B42RT data. Details of TRMM 3B42RT data production algorithms can be obtained from the TRMM
website [37], and data can be downloaded from the web address; https://pmm.nasa.gov/data-access/
downloads/trmm.

 

Figure 3. Coverage of TRMM 3B42RT pixels over Jeddah.
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Figure 4. 3B42RT rainfall rates for 24–25 November 2009 (in mm/h) indicated in year/month/day/hour.

3. Methodology

Hapuarachi et al. [8] and Alfieri and Thielen [38] reviewed flash flood occurrences and found that
rainfall comparison (RC) provides good estimates despite its simplicity, as it just requires Quantitative
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Precipitation Estimates (QPE). Borga et al. [5] mentioned that event detection is the most important
step in flash flood warnings. Thus, the comparison of rainfall amounts, RC, with thresholds has been
used in detecting flash floods [39]. However, as Hamada et al. [40] indicated, regional differences
should be considered in determining thresholds. In addition, a large database is needed for flash
flood threshold determination, as flash floods are not frequent occurrences. For this study, 3-h interval
3B42RT TRMM data covering the years from 2000 to 2014 are used to obtain three indices, namely
constant threshold (CT), cumulative distribution function (CDF) and Jeddah flood index (JFI).

3.1. Constant Threshold

The intensity duration frequency (IDF) curves indicate the relationship between intensity (i),
duration (d) and frequency (f) of rainfall and provide rainfall intensity for a given (selected) rainfall
duration and frequency [41]. Equation (1) represents the IDF curve for Jeddah that was developed by
Ewea et al. [42] using storms recorded at Mudaylif station for 27 years covering the period 1975–2001.

i(mm/h) = (236.63ln(Tr) + 388.48) * (D) (0.0107ln(Tr) − 0.7869) (1)

where Tr is the return period, D is rainfall duration and i is the rainfall intensity in mm/h. Table 2
shows the calculated rainfall intensities that would cause flooding over Jeddah for different return
periods based on Equation (1).

Taking the return period as 2.33 for average annual flooding [43] and rainfall duration as 180 min
(as 3B42RT data are 3 hourly), a flood causing the rainfall intensity threshold is determined as
10.37 mm/h.

Table 2. Calculated rainfall intensities using Equation (1) for Jeddah city in KSA.

Tr (Years) Duration (min) I (mm/h)

2.33 180 10.37
5 180 14.13

25 180 23.11
50 180 27.44

100 180 32.08

3.2. Cumulative Distribution Function (CDF)

Three-hourly TRMM 3B42RT rainfall intensities over the pixels (pixels 5, 6, 9, 10, 13 and 14—See
Figure 3) are aggregated monthly, pixel wise, and cumulative distribution functions (CDFs) are
obtained for each pixel for each month. Figure 5 presents monthly CDFs covering the 2000–2014 period
for the flood observed months.

 

Figure 5. Cont.
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Figure 5. Cumulative distribution functions of 3B42RT pixels over Jeddah. P indicates the pixel
numbers given in Figure 3. (Rain rates should be multiplied by 0.01).

Different characteristics of CDFs can be seen in Figure 5. This is in agreement with [35,44], whereas
it is opposite to [45].

3.3. Jeddah Flood Index (JFI)

Tekeli and Fouli [35] proposed the Riyadh Flood Precipitation Index (RFPI), which is a modified
version of the European Precipitation Climatology Index (EPIC) proposed by Alfieri et al. [7] and by
Alfieri and Thielen [38] for extreme rain storm and flash flood early warning. Modification to the
EPIC implemented by [35] included the monthly calculation instead of yearly values in EPIC. In this
study, the Jeddah Flood Index (JFI) was developed similar to the monthly case proposed by [35]. Thus,
JFI can be given by the following equation.

JFI =
Pi

∑N
j=1 Max(Pi)

N

(2)

Pi indicates the 3-h rain rate in 3B42RT data, and N is the number of years with available 3B42RT
data. The denominator is the monthly average of the maximum three-hour interval of rain rates found
in 3B42RT. Monthly values of the denominator are based on 3-h intervals for 15-year (2000–2014)
TRMM data for the pixels covering Jeddah, summarized in Table 3.

165



Water 2017, 9, 612

Table 3. Calculated monthly denominator values for JFI (Equation (2)) for Jeddah city in KSA (mm/h).

P5 P6 P9 P10 P13 P14

January 2.48 2.32 2.42 3.33 1.78 2.70
February 1.18 1.59 1.09 0.73 0.83 1.07

March 0.86 0.87 1.45 0.76 1.00 1.26
April 2.26 3.06 2.40 3.25 2.37 2.50
May 1.82 3.07 1.98 1.90 1.63 1.42
June 1.13 0.48 1.28 0.38 0.87 0.64
July 2.87 3.66 1.57 1.07 0.99 1.51

August 2.60 5.01 3.15 4.08 1.85 3.06
September 0.43 0.69 0.39 3.04 0.52 5.16

October 5.29 5.26 3.70 9.04 3.35 5.91
November 4.27 6.92 4.08 4.83 2.66 4.60
December 1.78 3.34 3.53 5.34 2.10 1.75

High correlations of observed high flows with EPIC values (1, 1.5) are mentioned in [7]. Tekeli
and Fouli [35] tested values of 1, 1.5 and 2 for RFPI. Since there are no discharge observations for the
study period, for JFI threshold is selected as 1.

4. Results and Discussion

Flood events and minimum and maximum rainfall rates obtained from TRMM 3B42RT data are
presented in Figure 6. High rainfall rates matched well with flood events except for August, during
which no floods were reported. Moreover, both frequency and magnitude of the high rainfall rates
are more common during the high rain season (November, December and January period). Thus,
seasonality of rainfall patterns of Jeddah are also detected well by 3B42RT.

 

Figure 6. Temporal distribution of major flood events over Jeddah throughout the year and minima
(black squares) and maxima (red diamonds) rainfall rates obtained from 3B42RT data for Jeddah
between 2000 and 2014.
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It is seen that 3B42RT intensities increase towards to the east of Jeddah (Figure 4). This is in line
with the topography where high mountains on the east cause large amounts of rainfall that flow down
quickly to Jeddah city [16,24]. Moreover, Haggag and El-Badry [10] also mentioned that eastern parts
of the catchment receive 220mm/year more rainfall than other parts.

For the constant threshold (CT), rainfall rates equal or greater than 10.37 mm/h obtained from
Equation (1) were searched for in all three-hour interval 3B42RT TRMM data covering the 2000–2014
period. Tekeli and Fouli [35] and Hamada et al. [40] used 90% and 99.9% as threshold values in
cumulative distribution functions (CDFs). As an initial value, CDF 90% is used as a threshold value in
this study. For each 3-h interval covering the 2000–2014 period, the Jeddah Flood Index (JFI) of the
3B42RT pixels are calculated, and values greater than the threshold value 1, are searched.

Based on the above-mentioned thresholds for each method, estimated flood events are
summarized in Table 4. Estimated events that match with the real flood observations are framed
by a thick dark border. CT yielded 20 estimated flood events on 14 different days. This led to the
identification of 8 events on 6 days. For CDFs, a 90% thresholds resulted in too many false alarms,
especially for January, April and December—all of which are in the high rain season. JFI, with a
threshold value of 1.00, yielded the highest number flood estimates. It is easily seen that other than
December and January, the observed floods are seen when all CT, CDF and JFI indicated flooding.

Table 4. Estimated flood dates and time (UTC) according to the constant threshold (10.37 mm/h),
cumulative distribution function (90%) and Jeddah flood index (1.00).

Year Month Day Hour CT CDF JFI Year Month Day Hour CT CDF JFI

2003 1 15 12 X X 2000 10 14 21 X X X

2003 1 16 0 X X 2006 10 29 3 X X X
2004 1 8 18 X X 2006 10 30 12 X X X
2004 1 12 0 X 2006 10 30 15 X X X
2008 1 10 21 X 2006 10 31 15 X X X

2009 1 12 15 X

2010 1 7 0 X X 2000 11 13 18 X
2011 1 14 18 X X X 2000 11 14 0 X
2011 1 14 21 X X X 2000 11 16 18 X X

2011 1 25 18 X X 2003 11 23 15 X
2011 1 26 0 X 2003 11 24 9 X
2011 1 26 3 X 2003 11 25 6 X X X
2011 1 26 6 X X 2003 11 25 9 X X X
2011 1 26 9 X X 2003 11 25 12 X X X

2004 11 3 15 X X X

2004 4 3 21 X 2009 11 25 6 X X X
2000 4 4 0 X X 2009 11 25 12 X X X

2000 4 4 3 X X 2012 11 18 21 X
2000 4 4 6 X X 2012 11 23 15 X
2000 4 4 12 X X 2013 11 10 9 X
2004 4 23 6 X 2014 11 16 12 X X
2005 4 18 15 X X X 2014 11 21 21 X X X

2005 4 25 21 X X

2005 4 28 3 X X X 2001 12 31 12 X X
2005 4 28 9 X 2004 12 3 18 X X

2006 4 4 21 X X 2004 12 8 0 X X
2006 4 9 9 X 2009 12 22 18 X X X
2006 4 13 21 X X 2009 12 22 21 X X X
2006 4 27 0 X X 2010 12 9 12 X X
2008 4 12 21 X 2010 12 10 0 X X
2010 4 3 21 X X 2010 12 11 0 X X
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Table 4. Cont.

Year Month Day Hour CT CDF JFI Year Month Day Hour CT CDF JFI

2012 4 4 18 X 2010 12 29 6 X X

2010 12 29 9 X X

2001 7 14 21 X 2010 12 30 6 X

2005 7 29 0 X 2014 12 8 12 X

2008 7 20 15 X
2008 7 24 21 X
2010 7 11 18 X X X
2010 7 11 21 X X

2010 7 14 15 X X X
2010 7 14 18 X X

2010 7 19 0 X X
2011 7 10 3 X
2012 7 27 15 X X
2014 7 6 18 X

Note: Estimated events that match with the real flood observations are framed by a thick dark border.

Dönmez and Tekeli [44] reduced false flood alarms by updating the CDF thresholds. Since they
knew the places where flooding occurred, they used the CDFs of the respective pixels and performed
updates accordingly. Unfortunately, the case is not the same in this study. In the approach proposed
by [35], they used the constant threshold value of (3 mm/h) derived from intensity duration curves to
determine the respective CDFs. Similarly, in this study, the value obtained from the intensity duration
curve, 10.37 mm/h, is used to determine thresholds. The months October and November indicated
values higher than the constant value. Thus, these months were used to derive the new thresholds.
New values were determined as 91.68%, 91.62%, 93.74%, 87.30%, 88.87% and 87.46% for respective
pixels 5, 6, 9, 10, 13 and 14. The first three values (91.68%, 91.62%, 93.74%) are within the 90–99.9%
range mentioned in [35,40]. However, the last three (87.30%, 88.87% and 87.46%) are not within the
range. Using these as thresholds and using the respective months’ CDFs, flood estimations of the
CDF-based method are updated. In addition, JFI values are also updated based on the actual flood
occurrences. Estimated flood events based on updated thresholds are presented in Table 5. Both
updates drastically reduced false flood alarms.

Table 5. Estimated flood dates and time (UTC) according to the constant threshold (10.37 mm/h), and
updated cumulative distribution function and Jeddah flood index.

Year Month Day Hour CT CDF JFI Year Month Day Hour CT CDF JFI

2003 1 15 12 2000 10 14 21 X X

2003 1 16 0 2006 10 29 3 X X X
2004 1 8 18 2006 10 30 12 X X
2004 1 12 0 2006 10 30 15 X X
2008 1 10 21 2006 10 31 15 X X X

2009 1 12 15
2010 1 7 0 2000 11 13 18
2011 1 14 18 X X X 2000 11 14 0
2011 1 14 21 X X X 2000 11 16 18
2011 1 25 18 X X 2003 11 23 15
2011 1 26 0 2003 11 24 9
2011 1 26 3 2003 11 25 6 X X X
2011 1 26 6 2003 11 25 9 X X X
2011 1 26 9 2003 11 25 12 X X X
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Table 5. Cont.

Year Month Day Hour CT CDF JFI Year Month Day Hour CT CDF JFI

2004 11 3 15 X X X

2004 4 3 21 2009 11 25 6 X X X
2000 4 4 0 X 2009 11 25 12 X X X

2000 4 4 3 X X 2012 11 18 21
2000 4 4 6 2012 11 23 15
2000 4 4 12 X 2013 11 10 9
2004 4 23 6 2014 11 16 12
2005 4 18 15 X X X 2014 11 21 21
2005 4 25 21 X X

2005 4 28 3 X X X 2001 12 31 12 X X
2005 4 28 9 2004 12 3 18 X

2006 4 4 21 X 2004 12 8 0 X
2006 4 9 9 2009 12 22 18 X X X
2006 4 13 21 X X 2009 12 22 21 X X
2006 4 27 0 X 2010 12 9 12 X
2008 4 12 21 2010 12 10 0
2010 4 3 21 X 2010 12 11 0 X
2012 4 4 18 2010 12 29 6 X X

2010 12 29 9 X X

2001 7 14 21 2010 12 30 6 X X

2005 7 29 0 2014 12 8 12
2008 7 20 15
2008 7 24 21
2010 7 11 18 X X X
2010 7 11 21 X X

2010 7 14 15 X X X
2010 7 14 18 X

2010 7 19 0 X
2011 7 10 3
2012 7 27 15 X
2014 7 6 18

Note: Estimated events that match with the real flood observations are framed by a thick dark border.

Table 6 summarizes the estimated number of flood alarms before and after updating under
“Estimated/Updated” columns for CDF and JFI and under “Detected” columns number of missed,
false and true detection number is presented for CT, CDF and JFI. Table 6 indicates that CT, CDF and
JFI estimated 14, 28 and 20 flood-affected days (FADs) where 6, 8 and 7 matched with actual FADs.
CT, with a ratio of 6/14, seems to be superior to CDF (8/28) and JFI (7/20). However, as CT missed
January and December floods, the second best, JFI, is selected as the main flood estimation index.

Table 6. Comparison of flood alarms after updating the thresholds.

Month
Actual Flood
Occurrence

CT CDF JFI

Estimated Detected
Estimated/
Updated

Detected
Estimated/
Updated

Detected

JAN 1 1 1M 10/2 2T + 8F/1T + 1F 7/2 2T + 5F/1T + 1F
APR 1 2 1T + 1F 8/6 1T + 7F/1T + 5F 13/7 1T + 12F/1T + 6F
JUL 1 2 1T + 1F 6/4 1T + 5F/1T + 3F 8/2 1T + 7F/1T + 1F
OCT 1 4 3T + 1F 4/4 3T + 1F/3T + 1F 4/2 3T + 1F/2T + 0F
NOV 1 4 1T + 3F 6/4 1T + 5F/1T + 3F 13/3 1T + 12F/1T + 2F
DEC 1 1 0T + 1F 8/8 0T + 8F/1T + 7F 10/4 1T + 9F/1T + 3F

Overall
detection

6/14 8/28 7/20

Note: M, F and T denotes missed, false and true detection respectively.

For the 14 January 2011, all indexes (Table 5, CT, CDF, JFI) indicated flooding. However, nothing
was mentioned in the published literature. However, as can be seen from the cumulative precipitation
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figure (Figure 7) for the World Meteorological Organization (WMO) station 41024, which is located
in Jeddah, heavy rains were recorded. Also, video clips dated the 14 January 2011 are found on
the internet (https://www.youtube.com/watch?v=TiA1AhWrZTs and https://www.youtube.com/
watch?v=1mgDiQ4iDUg) showing the flooded streets. Thus, the event on the 14 January 2011 can be
treated as a correct detection. Moreover, the TRMM 3B42RT rainfall rates for the 25–26 January 2011
were lower than those for the 14 January 2011.

 

Figure 7. Cumulative precipitation plot for WMO station 41024 in Jeddah.

This is evident from the case that only CDF and JFI indicated flooding for the 25 January 2011.
Despite the smaller rainfall intensities, the flood (25–31 January 2011) damage seemed more extensive
than on the 14 January 2011. This might have occurred due to soil being saturated by rainfall on the
14 January 2011. Soil moisture is indicated as the second major flood triggering component, and the
effect of soil moisture on flood estimations over Riyadh city is shown in [46].

Table 7 shows the flood estimations based on the updates (Table 5) and rain observations for
WMO station 41024. In Table 7, flood observed dates are indicated in black boxes. Unfortunately, data
for WMO 41024 are available back to 2008 on the website [47]. Table 7 indicates that for CT, 5 out of
6 days; for CDF, 9 out of 14 days; and for JFI, 7 out of 8 days of rain were observed at WMO station
41024. These high detection rates (0.83, 0.64 and 0.88) for CT, CDF and JFI, respectively, show the
dependability of the methods. Higher detection rates of JFI with respect to CT support JFI being better
in flood estimations.

Table 7. Updated flood estimations and rain observations at WMO station 41024.

Year Month Day Hour CT CDF JFI WMO41024

2011 1 14 18 X X X Rain
2011 1 14 21 X X X Rain

2011 1 25 18 X X Rain

2010 4 3 21 X No Rain
2010 7 11 18 X X X Rain
2010 7 11 21 X X Rain

2010 7 14 15 X X X No Rain
2010 7 14 18 X No Rain
2010 7 19 0 X No Rain
2012 7 27 15 X No Rain

2009 11 25 6 X X X Rain
2009 11 25 12 X X X Rain

2014 11 21 21 X X Rain
2009 12 22 18 X X X Rain
2009 12 22 21 X X Rain
2010 12 9 12 X Rain
2010 12 11 0 X No Rain
2010 12 29 6 X X Rain
2010 12 29 9 X X Rain

2010 12 30 6 X X Rain

Note: Estimated events that match with the real flood observations are framed by a thick dark border.
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5. Conclusions

This is the first study to show that during floods in Jeddah, TRMM 3B42RT indicated high rainfall
intensities. In addition, the seasonal variation of flood occurrences could be represented by 3B42RT
data. Moreover, the rainfall timing and rates seemed to match the Weather Research Forecasting (WRF)
Model simulations performed by [16]. The movements of storms from the northwest to southeast seen
in 3B42RT images were in parallel with the model results of [16].

Using 3B42RT data, three different indices, constant threshold (CT), cumulative distribution
functions (CDFs) and Jeddah Flood Index (JFI), were developed and compared for Jeddah flood
detection capability. For the whole TRMM 3B42RT data period, i.e., 2000–1014, CT, CDF and JFI
estimated 14, 28 and 20 flood affected days (FADs) where 6, 8 and 7 matched with actual FADs, leading
to detection ratios of 6/14, 8/28 and 7/20, respectively. WMO has a station in Jeddah (with id: 41024);
on the web, these data go back to 2008. After 2008, CT, CDF and JFI showed 6, 14 and 8 FADs where 5,
9 and 7 days of these, respectively, matched with 41024 rain records. Despite the higher 6/14 ratio of
CT, since CT missed January and December floods and because of the higher rain match ratio of JFI
with 41024, JFI is considered as the best index to indicate floods in Jeddah.

Accuracy assessments of all three methods were performed by using the flood information
obtained from International Disasters Database and by combining information obtained from various
papers. Thus, the accuracy of flood information (both location and time) is very important for valid
assessments. The need for good documentation of flood events was also mentioned in [22].

Rainfall rate is one of the various flood triggering mechanisms considered in this study. Other
parameters such as soil moisture (SM), land use and topography can be helpful in accurate flood
predictions. Reductions in false flood alarms by using ancillary soil moisture information in flood
estimations was presented by [46]. The occurrence of the 25–31 January 2011 flood despite its lower
rainfall rates with respect to the 11–14 January 2011 3B42RT rainfall rates indicate the importance of
SM. Thus, future flood estimation studies should consider incorporating SM values.

The task of TRMM has already been terminated. Nevertheless, the methodology presented can be
implemented in follow-up missions such as the Global Precipitation Measuring Mission (GPM).
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Abstract: The extraction of urban water bodies from high-resolution remote sensing images,
which has been a hotspot in researches, has drawn a lot of attention both domestic and abroad.
A challenging issue is to distinguish the shadow of high-rise buildings from water bodies. To tackle
this issue, we propose the automatic urban water extraction method (AUWEM) to extract urban water
bodies from high-resolution remote sensing images. First, in order to improve the extraction accuracy,
we refine the NDWI algorithm. Instead of Band2 in NDWI, we select the first principal component
after PCA transformation as well as Band1 for ZY-3 multi-spectral image data to construct two new
indices, namely NNDWI1, which is sensitive to turbid water, and NNDWI2, which is sensitive to
the water body whose spectral information is interfered by vegetation. We superimpose the image
threshold segmentation results generated by applying NNDWI1 and NNDWI2, then detect and
remove the shadows in the small areas of the segmentation results using object-oriented shadow
detection technology, and finally obtain the results of the urban water extraction. By comparing the
Maximum Likelihood Method (MaxLike) and NDWI, we find that the average Kappa coefficients
of AUWEM, NDWI and MaxLike in the five experimental areas are about 93%, 86.2% and 88.6%,
respectively. AUWEM exhibits lower omission error rates and commission error rates compared with
the NDWI and MaxLike. The average total error rates of the three methods are about 11.9%, 18.2%,
and 22.1%, respectively. AUWEM not only shows higher water edge detection accuracy, but it also is
relatively stable with the change of threshold. Therefore, it can satisfy demands of extracting water
bodies from ZY-3 images.

Keywords: ZY-3 images; urban water bodies; automatic water extraction; NDWI; PCA
transformation; shadow detection

1. Introduction

Cities are the crystallization of highly developed civilization. As an important factor in the
urban ecosystem, water bodies play a critical role in maintaining stability of the urban ecosystem [1].
Their changes are closely related with people’s life. Negative changes may lead to disasters, pollution,
water shortage, or even epidemics [2]. Therefore, understanding the distribution and changes of urban
water has become the focus of people’s attention.

In recent years, with the development and application of remote sensing technology, it has played
an increasingly important role in natural resource surveying [3,4], dynamic monitoring [5,6], and
natural surface water planning [7,8], thus attracting researchers’ attention. Remote sensing images
enable us to observe the earth from a totally different perspective and monitor its real-time changes.
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Water bodies are common ground object in remote sensing images, the rapid acquisition of their
dynamic information is apparently valuable for water resource survey, water conservancy planning
and environmental monitoring and protection [9]. Among current water extraction technologies,
a mainstream method is using remote sensing data to gather urban water information in a timely
and accurate way [10]. Thus far, researchers have proposed many methods to extract water
using remote sensing images [10,11]. These models could be roughly divided into four categories:
(a) single-band or multiple-band threshold methods [12,13]; (b) water indices [14–16]; (c) linear
un-mixing models [17]; and (d) supervised or unsupervised classification methods [18,19].
Other methods that are not as frequent used as the above include water extraction technology based
on digital elevation models [20,21], microwave remote sensing imagery [22–24] and object oriented
technology [25,26]. In general, the water indices are most commonly used in practice because of their
simple, convenient and fairly accurate algorithm models [27].

The water indices are under constant refinement. The first model, Normalized Difference Water
Index (NDWI), proposed by McFeeters [16], is based on the principle of Normalized Difference
Vegetation Index (NDVI). Its basic idea is to extract water bodies by enhancing water information
and suppressing non-water information. Xu Hanqiu [17] found that the NDWI algorithm could
not effectively inhibit the impact of buildings and proposed a refined version, in which he used the
Shortwave Infrared (SWIR) instead of the NIR in the original NDWI algorithm. The new algorithm
was called the Modified Normalized Difference Water Index (MNDWI). It exhibits higher accuracy,
but it still could not distinguish shadows. Therefore, Feyisa G L [18] proposed a method called the
automated water extraction index (AWEI) to adapt to different environments. Five bands of Landsat5
Thematic Mapper (Band1, Band2, Band4, Band5, and Band7) were used to compute the index to
enhance the contrast between water and non-water information which could be used to model the
water images with or without shadows.

Most of the algorithms, however, are proposed based on medium- or low-resolution remote
sensing images. Because of resolution limitations, smaller water bodies cannot be extracted effectively,
especially in urban areas where the size of water bodies varies and there are many small artificial
lakes and rivers [28]. Therefore, we should prioritize the use of high-resolution remote sensing
images in those areas. The ZY-3 satellite is China’s first civil high-resolution stereo mapping satellite
launched in 9 December 2012. Equipped with four sets of optical cameras, it includes an orthographic
panchromatic time delay and integration charge-coupled device (TDI CCD) camera with the ground
resolution of 2.1 m, two front-view and rear-view panchromatic TDI CCD cameras with the ground
resolution of 3.6 m, and an orthographic multi-spectral camera with the ground resolution of 5.8 m.
The acquired data are mainly used for topographic mapping [29], digital elevation modeling [30] and
resource investigation [31]. Therefore, it is an ideal multi-spectral image data source for urban water
extraction [31].

Recently, with the increase of image resolution, most of the high-resolution remote sensing images
(such as those from WorldView-2, IKONOS, RapidEye and ZY-3 satellites) do not have so many
available bands for water extraction compared with those from LandsatTM/ETM+/OLI imagery,
rendering the MNDWI and AWEI algorithms useless. After all, most high-resolution remote sensing
images only have four bands (blue, green, red and near-infrared), lacking the SWIR necessary to
compute the MNDWI/AWEI indices [31]. It is therefore problematic to use the NDWI to extract urban
water from high-resolution images. For instance, it is difficult to remove shadows, especially those of
high-rise buildings in urban areas. The problem dramatically worsens when analyzing high-resolution
images [32], thus it is difficult to distinguish between water bodies and shadows [25,33].

To tackle urban water extraction issue, some scholars have pioneered on this subject and
proposed some preliminary solutions such as the object oriented technology to detect shadows by
computing their texture features [34]. It can achieve expected results, but is relatively complex and
time-consuming in the texture description and computation [35]. Therefore, it is not an optimal model
for the shadow detection. Another method based on Support Vector Machine (SVM) feature training
can be used to remove the impact of shadows on urban water extraction [31]. However, the SVM
training is time-consuming, especially when there are many training samples with high-dimension
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eigenvectors [36]. Some researchers combine the morphological shadow index (MSI) [37] and the
NDWI to extract urban water bodies from WorldView-2high-resolution imagery, in order to increase
the detection accuracy [38]. The principle of this method is simple, but since the urban water extraction
method is based on the NDWI algorithm, the detection accuracy is not very high, especially when
detecting small areas of water surrounded by lush vegetation. In those areas, the spectral features of
water will be severely contaminated and extremely unstable [39]. In addition, urban water bodies are
typically sediment-laden and algae polluted, and thus exhibit different optical features compared with
non-contaminated natural water bodies [31].

Therefore, to remove the limitations of traditional NDWI indices in water extraction and improve
the initial classification accuracy, we propose the NNDWI1, which is sensitive to turbid water bodies,
and NNDWI2, which is sensitive to water bodies whose spectral information is seriously disturbed by
that of vegetation, based on the analysis of water features and shadows. To remove the disturbance
of shadows of high-rise buildings to the water extraction results, and to better express the features
of shadows and water bodies, we use the Object-Oriented Technology to classify the water bodies
and shadows. Meanwhile, if the features expressed by the operators are too complex, it will not be
conducive to reduce the computational time. Thus, it is better to use operators that express the spectral
rather than textural features of ground objects in the algorithm in order to improve the computational
efficiency. To further improve the efficiency, we use thresholds rather than the time-consuming
classification algorithm to differentiate water bodies from shadows. The experimental results show
that the automatic urban water extraction method (AUWEM) algorithm can better identify shadows
and water bodies, and improve the urban water detection accuracy.

2. Study Areas and Data

2.1. Study Areas

To verify the feasibility of the automatic urban water extraction method (AUWEM) algorithm,
we select five images featuring different areas with different environments including lakes and rivers
within territory of China for experiments. The selected areas were located in Beijing, Guangzhou,
Suzhou and Wuhan. As for Wuhan, the city is an ideal place for experiment because of its large
amount of rivers and lakes as well as rich diversity of water bodies, so we select two different coverage
areas for experiment. Details of the experimental areas are described in the following Table 1, and the
corresponding images from ZY-3 satellite are detailed in Table 2.

Table 1. Description of studied areas.

City’s Name
and Location

Area Coverage
(Pixels)

Water Body
Type

Topography Climate
Color Infrared

Composite (4/3/2
Band Combination)

Beijing
(39.9◦ N, 116.3◦ E)

1479 × 1550
(77.1 km2)

Rivers
Polluted lakes

Clear lake
Plain

Warm temperate
semi humid
continental

monsoon climate

 

Guangzhou
(23◦ N, 113.6◦ E)

2351 × 2644
(209.1 km2)

Rivers
Ponds

Polluted lakes
Clear lake

Basin, plain
Typical monsoon
climate in South

Asia

 

Suzhou
(31.2◦ N, 120.5◦ E)

2351 × 2644
(209.1 km2)

Rivers
Ponds

Polluted lakes
Clear lake

Basin, plain, hills. Subtropical humid
monsoon climate

 

176



Water 2017, 9, 144

Table 1. Cont.

City’s Name
and Location

Area Coverage
(Pixels)

Water Body
Type

Topography Climate
Color Infrared

Composite (4/3/2
Band Combination)

Wuhan_1
(30.5◦ N, 114.3◦ E)

2245 × 2521
(190.4 km2)

Rivers
Ponds

Large polluted
lakes

Large clear lakes

Basin, plain, hills. Subtropical humid
monsoon climate

 

Wuhan_2
(30.5◦ N, 114.3◦ E)

2894 × 3396
(330.6 km2)

Rivers
Ponds

Large polluted
lakes

Large clear lakes

Basin, plain, hills. Subtropical humid
monsoon climate

 

Table 2. ZY-3 satellite Parameters.

Item Contents

Camera model Panchromatic orthographic; Panchromatic front-view and
rear-view; multi-spectral orthographic

Resolution Sub-satellite points full-color: 2.1 m; front- and rear-view 22◦ full
color: 3.6 m; sub-satellite points multi-spectral: 5.8 m

Wavelength
Panchromatic: 450 nm–800 nm Multi-spectral: Band1

(450 nm–520 nm); Band2 (520 nm–590 nm) Band3
(630 nm–690 nm); Band4 (770 nm–890 nm)

Width Sub-satellite points Panchromatic: 50 km, single-view 2500 km2;
Sub-satellite points multi-spectral: 52 km, single-view 2704 km2

Revisit cycle 5 days

Daily image acquisition Panchromatic: nearly 1,000,000 km2/day;
Fusion: nearly 1,000,000 km2/day

2.2. Experimental ZY3 Imagery and Its Corresponding Reference Imagery

ZY-3 Images used in the experiments can be queried and ordered from http://sjfw.sasmac.cn/
product/order/productsearchmap.htm. We use theZY-3 multi-spectral data to extract water. All image
data are Level 1A products, which have been adjusted through radiometric and geometric correction.
All the images used in the experiments were cloud free.ZY-3 satellite parameters are shown in Table 2.
The experimental image information is described in the following Table 3.

Table 3. Description of ZY-3 scenes.

Test Site
ZY-3 Scenes

Acquisition Date Path Row

Beijing 28 November 2013 002 125
Guangzhou 20 October 2013 895 167

Suzhou 17 December 2015 882 147
Wuhan_1 24 July 2016 001 149
Wuhan_2 28 March 2016 897 148

The reference imagery is used to evaluate the urban water classification accuracy. To acquire the
corresponding reference imagery, we manually delineate the water edge in high-resolution imagery,
which is obtained by fusion of ZY-3’s high-resolution Panchromatic and ZY-3’s Multispectral Images.
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During the experiment, we asked an experienced analyst to manually map out the water bodies.
To prevent arbitrariness, all referential images corresponding to five experimental areas were drawn
by a single person. It took about 10 days, including eight days of imagery creation and two days
of double-checking. Before manually mapping out water bodies and non-water areas, we collected
and studied a large amount of related samples so that relevant criteria can be set up to improve the
accuracy of water boundary mapping. Figure 1 shows the five referential images that are manually
drawn. Here, the water bodies are in blue, and non-water area areas are in black. The relevant criteria
for water body delineate are as follows:

1. Delineate precision of the fuzzy boundary of water body is within three pixels while the clear
boundary of water body is within one pixels.

2. Less than or equal to one pixels of water body information is not given to delineate.

3. We choose reference of higher resolution Google map image in order to distinguish between
water body and building shadow as well as the seemingly water body and non-water body.

4. Urban water system is basically interconnected with each, other except for the river intercepted
by bridge.

Figure 1. Manually drawn referential imagery.

3. Method

3.1. Satellite Image Preprocessing

We used in the study the level-1 imagery taken from ZY-3 satellite without Ortho-rectification,
therefore we used RPC+30m DEM to process the experimental images and applied Ortho-rectification
without control points. We used FLAASH (Fast Line-of-Sight Atmospheric correction model Analysis
of Spectral Hypercubus) for atmospheric correction [40]. All of the above steps were completed in
ENVI5.2 software.

The radiometric calibration coefficient of ZY-3 FLAASH atmospheric correction can be
downloaded from http://www.cresda.com/CN/Downloads/dbcs/index.shtml. The spectral
response function could be downloaded from http://www.cresda.com/CN/Downloads/gpxyhs/
index.shtml.

Figure 2 depicts the spectral curves of ground objects before and after atmospheric correction.
We can see from this figure that there is huge difference between the two spectral curves of pixels.
The one after the atmospheric correction is more consistent with the actual features of ground objects.
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Figure 2. Comparison of ground objects’ spectral curves before and after the atmospheric correction.

3.2. Normalized Difference Water Index (NDWI)

The NDWI was first proposed by McFeeters in 1996 and successfully applied to detect the surface
water in multi-spectral imagery from Landsat Multi-spectral Scanner (MSS) [14]. The definition is
as follows:

NDWI =
(Green − NIR)
(Green + NIR)

(1)

According to this equation and the spectral feature curves of ground objects, the NDWI index
value of water surface is greater than 0, the NDWI value of soil and other ground objects with high
reflectivity approximately equals 0, while the NDWI value of vegetation is below 0 because the
reflectivity of the vegetation on the infrared band is higher than on the green band. As a result,
the water can be easily extracted from multi-spectral images.

3.3. New Normalized Difference Water Indexes (NNDWI)

In our study, the computation of NNDWI comprises of two steps:

1. Use the ZY-3 Blue band (Band1) to replace the green band in Equation (1) to obtain NNDWI1, i.e.,

NNDWI1 =
(Blue − NIR)
(Blue + NIR)

(2)

2. Four bands of ZY-3 imagery were processed by the Principal Component Analysis (PCA)
transformation [41], use the first principle component after PCA transformation to replace the
Green band in Equation (1) to obtain NNDWI2, i.e.,

NNDWI2 =
(Component1 − NIR)
(Component1 + NIR)

(3)

where Component1 is the first principal component after PCA transformation. The PCA
transformation reflects the methodology of dimension reduction [41]. From the mathematic
perspective, it is to find a set of basis vectors which can most efficiently express the relations
among various data. From the geometrical perspective, it is to rotate the original coordinate axis
and get an orthogonal one, so that all data points reach the maximum dispersion along the new
axis direction. When applied to the image analysis, it is to find as few basis images as possible
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to preserve the maximum information of the original images, thus achieving the purpose of
feature extraction.

In our study, the initial water extraction results are generated by the superimposition of the
threshold segmentation results from two water indexes, namely NNDWI1 and NNDW2. Therefore,
NNDWI is expressed as follows:

NNDWI = (segmentation_NNDWI1) ∪ (segmentation_NNDWI2) (4)

In Equation (4), segmentation_NNDWI1 and segmentation_NNDWI2 represent the threshold
segmentation results generated by NNDWI1 and NNDWI2 index image, respectively.

The result generated by NNDWI integrates the water extraction results from both algorithms,
thus the omission caused by a singular index is avoided. As shown below in Figure 3, NNDWI2
algorithm is not sensitive to turbid water, whereas NNDWI1 is a complement because of its sensitivity
to turbid water. Therefore, in practice, these two algorithms can be combined to generate a composite
water extraction result instead of two separate ones, thus the subsequent water extraction accuracy
can be enhanced.

Figure 3. Different water extraction results generated by NNDWI1, NNDWI2 and NNDWI, respectively.

3.4. Shadow Detection Based on Object Oriented Technology

3.4.1. Shadow Objects

In the initial water extraction results generated by NNDWI, shadows are extracted along with
the water bodies. While analyzing the image data extracted using NNDWI, we find that the areas
of shadows are generally smaller than those of water bodies, except for some small artificial ponds
and lakes in the city. Therefore, in practice, we only need to detect objects that cover small areas.
These objects will encompass almost all possible shadows and small area water bodies. The model for
acquiring small-area objects can be described as follows:⎧⎨

⎩component = water i f area(component) > t , component ∈ NNDWI

component = shadow or water i f area(component) ≤ t, component ∈ NNDWI
(5)

where t indicates the set segmentation threshold, whose value is the number of pixels that enables
the maximum shadow objects; it is a minimum detectable size of water bodies that equals exclusion.
The number of pixels of the largest shadow area varies in different images, resulting in different values
of t, which should be set accordingly. The experimental statistics show that if we set 2000 < t < 5000,
the results will be satisfactory. component indicates the discrete objects in the water extraction results
generated using NNDWI, including water and shadow areas. area(component) indicates the object areas:
if area(component) > t, then it indicates the water objects, while, if area(component) ≤ t, then it indicates
either small area water or shadow objects.
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It is impossible to extract all the shadow pixels from the water extraction results generated by
using NNDWI. For better application of the Object Oriented Technology, the acquired shadow objects
are under morphological dilation [42], so that the dilated objects can better include shadow pixels in
the area. Meanwhile, to limit the dilation results in the actual shadow areas, we use the threshold
segmentation results on the near infrared band (Band4) of ZY-3 images as the constraint. (Due to
relatively low reflectivity of water and shadows on the near infrared band (Band4), the values of water
and shadow pixels are relatively small. The water and shadow areas are in dark black on this band. The
threshold segmentation can effectively enable the extraction of water and shadow objects. Therefore,
the threshold segmentation results of Band4 serve as a constraint.) Specifically, the constraint on the
dilation results is set by intersecting the dilated images and those under threshold segmentation on
Band4, expressed as below:

component2 = (dilate_component) ∩ (segmentation_Band4) (6)

In Equation (6), the dilate_component indicates dilation results of component (i.e., the objects of
water/shadow whose areas are below the threshold); and the segmentation_Band4 indicates threshold
segmentation results on the near-infrared band (Band4). How the dilation results are constrained by
way of intersection is shown in Figure 4.

Figure 4. Diagram of dilation constraint.

3.4.2. The Shadow Objects Description (The Description of Spectral Feature Relations between
Water-Body Pixels and Shadow-Area Pixels)

Generally, the water extraction results generated by the NNDWI only cover water and shadow
areas. Thus, we only need to analyze their features and find the proper ones. In the study, we find
that textural features can be used to effectively describe shadows and water bodies, but those of
ground objects (such as Gray Level Co-occurrence Matrix, GLCM) are complex and time-consuming
to compute and thus unfit for the classification of water bodies and shadows. As a result, we use the
spectral features of ground objects to describe the pixels of water and shadow areas and distinguish
between them.

Through an extensive analysis of the spectral feature curves of water bodies and shadows,
we find that, in general, the spectral relation of water pixels satisfies the following inequality:

Band2 > Band4 (7)

The spectral curves of shadow-area pixels are more complicated. When the sunshine is blocked
by buildings, there will be shadows. The spectral features of the pixels in the shaded areas typically
resemble those of other ground objects, such as vegetation, cement and soil. After analyzing the
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spectral features of those areas, we summarized five different spectral curve models, as shown in
Figure 5.

Figure 5. The spectral feature curves of the shadow-area pixels: (a–e) typical spectral curves of five
types of pixels.

Accordingly, we can set up the following model that shows the spectral relations of shadow pixels:⎧⎪⎨
⎪⎩

Band2 > Band1
Band3 > Band2
Band4 > Band3

(8)

⎧⎪⎨
⎪⎩

Band1 > Band2
Band4 > Band2
Band4 > Band3

(9)

⎧⎪⎨
⎪⎩

Band3 > Band2
Band3 > Band4
Band4 > Band2

(10)

If the spectral curves in the experimental results generated by the NNDWI index correspond with
the pixels shown in the above three models, they will be classified as shadow pixels, and vice versa.

3.4.3. The Shadow Objects Detection Method

In the experiments, the classification of each small-area discrete object is determined.
First, the spectral relation of each pixel of discrete objects is described to judge whether it satisfies the
constraint of a shadow pixel. The number of shadow pixels in each object is recorded. According to
extensive statistical experiments, we find that if the proportion of shadow pixels exceeds the threshold
T, then the object can be classified as a shadow area. Otherwise, the object is classified as a water body.
The judgment function can be expressed as:{

component2 = water i f m
n ≤ T

component2 = shadow i f m
n > T

(11)

where n indicates the total number of pixels of an object, and m indicates the number of its shadow
pixels. The threshold T is an empirical number optimized through experiments. In a statistical analysis
of the shadow pixels of the ZY-3 images, we find that when T equals 0.5, water and shadow objects can
be effectively differentiated.

3.5. Urban Water Extraction and Its Accuracy Evaluation

Figure 6 depicts the steps of the AUWEM algorithm. First, preprocess the imagery (by using
Ortho rectification and atmospheric correction). Second, use the NNDWI described in Section 3.3
to obtain the initial water extraction results. Third, use the shadow detection method of the Object
Oriented Technology detailed in Section 3.4 to detect shadow objects. Finally, remove detected shadow
objects to obtain the final results of urban water extraction. The overall flow chart of AUWEM is
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shown in Figure 6. In order to compare image classification accuracy, we use six indicators to describe
the extraction accuracy of different algorithms, including producer accuracy, user accuracy, Kappa
coefficient, omission error, commission error and total error.

Figure 6. The overall flowchart of AUWEM.
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4. Experimental Results and Analysis

4.1. Water Extraction Maps

To demonstrate the feasibility of the algorithm, we compare the water extraction results generated
by using NDWI algorithm and the supervised Maximum Likelihood (MaxLike) classifier was also
included in our comparison as the latter one is one of the most widely used methods in land cover
classification [16]. Table 4 shows the settings of threshold parameters in different algorithms that are
used to extract water from each area. To evaluate the accuracy of the three algorithms, high-resolution
fusion imageries are used as the accuracy reference data. We obtain the reference imageries by
manually delineating the water edge in fusion imagery, whose information is shown in Table 3.
We compare reference imageries with the classification results generated by the three algorithms.
For visual interpretation and analysis of classification results generated by different algorithm, the
correct classification of water pixels is colored in blue, correct classification of non-water pixels in black.
If there are erroneous classifications, corresponding pixels will be highlighted in white.

The experimental results are shown in Figure 7. To facilitate the observation and analysis,
we select a small area in yellow rectangular frame from the image, and the classification results are
shown in Figure 8. According to the results, the classification accuracy of AUWEM was better than
that of NDWI and MaxLike. The AUWEM algorithm excels in classifying mixed pixels of the water
edge (judging from the water classification results shown in Beijing, Wuhan_1and Wuhan_2), detecting
small pond water compared with NDWI and the MaxLike (judging from classification results shown
in Suzhou), and removing shadows of buildings (judging from the classification results shown in
Suzhou and Wuhan_2). The NNDWI algorithm is excellent in extracting water bodies that are turbid
or whose spectral information is seriously disturbed by vegetation. Therefore, it shows better edge
classification results compared with the NDWI algorithm. On the other hand, the classification results
of the MaxLike depend on selection of water samples. A limited number of samples will result in
unsatisfactory results, especially when the edge pixels are seriously affected by the mixed spectrum.
Similarly, small rivers in urban areas are usually flanked with trees, so their spectral information will
be seriously disturbed by that of the vegetation. Therefore, the NDWI and MaxLike are inadequate
to extract water bodies of small rivers. The Object-Oriented Technology is adopted to differentiate
shadows from water bodies by expressing their spectral features, in order to eliminate the influence of
high-rise urban buildings on water extraction results.

Table 4. Threshold setting of the three algorithms in different experimental areas. Among them, T, T1,
T2 and T3 are the threshold of NDWI, NNDWI1, NNDWI2 and Band4, respectively.

Method
Threshold

Beijing Guangzhou Suzhou Wuhan_1 Wuhan_2

AUWEM T1 = 0, T2 = 0,
T3 = 38

T1 = 0, T2 = 0,
T3 = 20

T1 = 0, T2 = 0,
T3 = 25

T1 = 0, T2 = 0,
T3 = 45

T1 = 0, T2 = 0,
T3 = 65

NDWI T = −0.04 T = −0.07 T = 0.07 T = 0.08 T = 0.02

MaxLike - - - - -
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Figure 7. Comparison of water extraction results of three algorithms in different experimental areas.
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Figure 8. Comparison of water classification results among different algorithms in local areas (a small
area in yellow rectangular frame from the image of Figure 8).

4.2. Water Extraction Accuracy

Accuracy of water extraction can be evaluated by visual interpretation and one-by-one pixel
comparison. The visual interpretation has been discussed in Section 4.1. In this section, we will evaluate
the classification accuracy by using some quantitative indicators. Table 5 shows the comparison of
water classification accuracy among three algorithms in different experimental areas. A statistical
analysis of Table 5 indicates that the classification accuracy of AUWEM is greater than that of NDWI
and MaxLike. AUWEM algorithm exhibits the greatest classification accuracy in five experimental
areas with the average Kappa coefficient of 93%; the NDWI exhibits the lowest classification accuracy
with the average Kappa coefficient of about 84.4%; and the MaxLike falls in between, with the
average Kappa coefficient of about 88.6%. As shown in the schedule, we use the detailed statistics
of the confusion matrix to describe the classification accuracy of the three algorithms in different
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experimental areas. Among them, Tables A1–A15 shows the detailed classification accuracy of the
three algorithms in different experimental areas.

Table 5. The statistics of accuracy of three algorithms in different experimental areas.

Classification
Algorithm

Beijing
(1479 × 1550)

Guangzhou
(2973 × 3495)

Suzhou
(2351 × 2644)

Wuhan_1
(2245 × 2521)

Wuhan_2
(2894 × 3396)

Kappa (%) Kappa (%) Kappa (%) Kappa (%) Kappa (%)

AUWEM 91.6924 95.5355 87.8783 96.3811 93.7445
NDWI 83.0431 85.2771 78.8652 84.6675 90.2501

MaxLike 84.3326 91.7285 85.6260 91.8418 90.7601

Figure 9 shows the histogram of water classification accuracy of three different algorithms in
the five experimental areas. From the histogram, we can find that the water extraction classification
accuracy of AUWEM algorithm is higher than that of NDWI and MaxLike. The commission error of
AUWEM is below 5% in most experimental area except in Suzhou (9.5%). The omission error rate of
AUWEM is significantly lower than that of NDWI and MaxLike in all the five areas. When both the
commission and omission error rates are low, the total error rate will be minimal. From the histogram,
we can find that the proposed algorithm exhibits the lowest total error rate, followed by the MaxLike
and NDWI. The approximate average total error rates of the three algorithms are about 11.9%, 18.2%
and 22.1%, respectively.

In terms of the water classification producer accuracy, the AUWEM algorithm ranks first with the
average accuracy of about 91.6%, followed by MaxLike with an average of about 84.8% and NDWI
with an average of about 82.9%. In terms of the user accuracy, MaxLike ranks first with the average
accuracy of about 96.6%, followed by the proposed algorithm with an average of about 96.4% and
NDWI with an average of about 91.2%.

Figure 9. A comparison of classification accuracy among different algorithms in five experimental
areas. (a) water commission error; (b) Water omission error; (c) Water total error; (d) Water producer
accuracy; (e) Water user accuracy; (f) Kappa coefficient.

4.3. An Analysis of Water-Edge Pixel Extraction Accuracy

In order to evaluate the edge detection accuracy of the three algorithms more objectively,
we design the algorithm below. The steps are as follows:

1. Use the reference image to acquire the water edge by applying the Canny operator.

2. Apply the morphological dilation to the acquired edge to establish a buffer zone centered around
the edge with a radius of four pixels.
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3. Determine the pixels in the buffer zone. Suppose that the total number of pixels in the buffer
zone is N, the number of correctly classified pixels is NR, the number of omitted pixels is No,
and the number of commission error is Nc, then:

A =
NR
N

× 100% (12)

EO =
NO
N

× 100% (13)

EC =
NC
N

× 100% (14)

where A + Eo + Ec = 100%. A indicates the proportion of correctly classified edge pixels (accuracy
of edge detection), Eo indicates the proportion of omitted edge pixels (omission error), and Ec is the
proportion of commissioned edge pixels (commission error). The edge detection results generated
by the approach indicate a comparative rather than absolute conclusion. After all, the reference
imageries we use are manually obtained so there will be limitations in visual observations
and statistical results are an approximate reflection of the algorithms’ edge extraction accuracy.
The process of obtaining the algorithm to acquire the water edge area for evaluation is shown
below in Figure 10.

Table 6 showed the statistics about the water edge detection accuracy of above methods in the
experimental areas. The statistics include the commission error, omission error and the accuracy
of edge detection. Comparison in Figure 11 clearly shows that the edge detection accuracy of the
AUWEM algorithm exceeds that of NDWI and MaxLike. The maximum and minimum rates of correct
classification of water edge pixels by AUWEM algorithm are 93.7691% (shown in Guangzhou) and
79.5798% (shown in Wuhan_2); the maximum and minimum correct rates of NDWI are 84.0917%
(shown in Suzhou) and 69.8310% (shown in Beijing); the maximum and minimum correct rates of
MaxLike are 85.8149% (shown in Guangzhou) and 69.7974% (shown in Wuhan_2).

Figure 10. Process of acquiring water edge area for evaluation. Edge of the reference images are
extracted and processed by morphological dilation to acquire the water edge for evaluation.

Figure 11. Comparison of water edge detection accuracy among different algorithms in five
experimental areas. (a) Commission Error; (b) Omission Error; (c) Accuracy of edge detection.
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Table 6. Statistics about water edge detection accuracy of different algorithms in five experimental areas.

Site Method Commission Error (%) Omission Error (%) A (%)

Beijing
AUWEM 1.8032 15.8446 82.3522

NDWI 0.2042 29.9648 69.8310
MaxLike 0.0738 29.9747 69.9515

Guangzhou
AUWEM 0.3417 5.8892 93.7691

NDWI 0.1438 21.4114 78.4448
MaxLike 0.0833 14.1019 85.8149

Suzhou
AUWEM 2.3455 12.5791 85.0755

NDWI 2.2140 13.6943 84.0917
MaxLike 0.9649 14.2155 84.8196

Wuhan_1
AUWEM 0.6422 9.8925 89.4653

NDWI 0.9452 27.8494 71.2054
MaxLike 0.0211 26.3919 73.5870

Wuhan_2
AUWEM 1.3827 19.0375 79.5798

NDWI 0.4743 27.8402 71.6855
MaxLike 0.0335 30.1691 69.7974

5. Discussion

5.1. Effect of PCA Transformation

By replacing Green in Equation (1) with the first principal component of PCA transformation,
we obtain the improved NNDWI2. The NNDWI2 computational result has good resistance to mixed
spectral interference, especially when the water bodies are eutrophicated or surrounded by dense
vegetation. The pixels of those water bodies exhibit the spectral information of non-water because they
are affected and interfered by the spectral information of vegetation like algae, thus their detection will
be severely disturbed. According to the classification results shown in Figure 12, the pixels of the water
bodies whose spectral information is interfered can be effectively classified in threshold segmentation
results of NNDWI2. The number of misclassified pixels generated using the algorithm is less than that
generated using NDWI and MaxLike. In addition, the water edge pixels in the images are effectively
classified, thus the overall water extraction accuracy is enhanced.

Figure 12. Comparison of results of classifying pixels of spectrally contaminated water bodies among
different algorithms. The yellow circle indicates an area clearly undetected by the NDWI algorithm.
The water body in this area is eutrophicated with a lot of algal vegetation that affects its spectral
information, making it hard for the NDWI to detect.
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5.2. Effect of Intersection

In Section 3.4.1, we set the constraint on dilation results by intersecting the dilated images and
those under threshold segmentation on Band4. However, how many pixels are in the result of the
segmentation prior to intersection, and how many pixels are there after the intersection? We choose
the following four urban areas for the experiment. The results are shown in the Figure 13. The value
changes of water body/shadow pixels before and after computing the intersection are shown in the
Table 7. The statistics show that the number of pixels increases after the computation in Figure 13a–c
where there are many shadows. After zooming in Figure 13a, we find that after the computation, the
building shadows correctly represent the shaded areas. However, the number of pixels is reduced in
Figure 13d after the computation, indicating that the computation can result in the removal of error
detections generated by the NNDWI algorithm. It can be explained by the experimental results in
Figure 14.

Figure 13. Intersection operation results. (a) First experimental results; (b) Second experimental results;
(c) Third experimental results; (d) Fourth experimental results.

Figure 14. Comparison between intersection result and NDWI result.
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Table 7. Statistics shows the changes of the number of water body/shadow pixels before and after
the computation of intersection. Nb represents the number of pixels of water/shadow before the
intersection, and Na represents the number of pixels of water/shadow after the intersection.

Image Name Image Size Nb Na Nb-Na

a 361 × 361 11,883 15,888 4005
b 327 × 335 12,336 17,630 5294
c 299 × 319 9923 12,218 2295
d 677 × 762 76,932 57,389 −19,543

As shown in Figure 14, the ground objects in the yellow rectangle are misclassified as water by
both NNDWI and NDWI. In fact, these objects are the roof surface of buildings. On the other hand,
the objects in this area can be correctly classified by using threshold segmentation result on Band4.
After morphological dilation of small-area objects, intersecting it with the images under threshold
segmentation on Band4 enables the correction of pixel classification in this area, thus the subsequent
classification accuracy of the water bodies will be enhanced.

5.3. Shadow Detection Ability of the Shadow Object Description Method

Since the shadow detection algorithm model is established on the premise of extracting water
and shadow, we cannot guarantee a sound result by solely relying on it, as shown in Figure 15.
The spectral features of the shadows are similar to those of such ground objects as cement surface, soil,
vegetation, etc. In our study, we find that the spectral features of such ground objects are presented in
the shaded areas. Therefore, it is not ideal to solely use the spectral relation model to detect shadows.
Otherwise, almost all of the objects other than water bodies will be detected as shadows. In that case,
the imagery is classified into water and non-water areas. However, when zooming in, we find that the
water edge detection accuracy is poor; the pixels in water edges cannot be detected properly. On the
other hand, when the shadow detection model is used in the NNDWI extraction results, the effect is
quite satisfactory, as shown in Figure 16.

Figure 15. Shadow detection results generated when solely applying the model. (a) First experimental
results; (b) Second experimental results.

Figure 16. The shadow detection results generated when combining the model with the NNDWI
extraction results. (a) First experimental results; (b) Second experimental results.

From the experiment described above, we can conclude that a combination of the model and
the NNDWI extraction results will enable us to effectively detect shadows. When applied solely,
the model is not competent in detecting shadows, resulting in misclassification.
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5.4. Threshold Setting and Stability of Algorithm in Correlation Computation

Although there are many problems concerning threshold setting in AUWEM algorithm, it is
necessary to set three thresholds, namely NNDWI1, NNDWI2 and Band4 segmentation thresholds.
The optimized segmentation threshold value of near-infrared (Band4) is obtained by gray histogram.
Before image histogram statistics, we use the Equation (15) to normalize the segmented image pixel
value into the range of (0~255). The standardized expression is shown as follows:

y = 255 × (x − xmin)

(xmax − xmin)
(15)

where y indicates the standardized value, x indicates all of the pixel values that need to be processed
on Band4, xmin indicates the minimum value on Band4, and xmax indicates the maximum value
on Band4.

NNDWI1 is more sensitive to the turbid water. When the threshold value is set to 0, the turbid
water will be effectively extracted. As for NNDWI2 threshold setting, we can analyze and discuss
in detail the following figures. Figure 17a is the false color image for experimental analysis, and
Figure 17b shows the pixel value of the first principal component after the PCA transformation on the
four bands of the image. It can be seen from the figure that the pixel values of water areas are below
0 in the first principal component (the maximum pixel value is −176.333), while the pixel values of
non-water areas are above 0 (the minimum pixel value is 39.8416); in the NNDWI2 calculation results,
as shown in Figure 17c, the pixel values of water areas are above 0 (the minimum and maximum pixel
values are 2.65607 and 25.17149, respectively), while the pixel values of non-water areas are below 0
(the minimum and maximum pixel values are −6.90065 and −0.44693, respectively). The difference
between the minimum value of water areas and the maximum value of non-water areas is 3.103 (in
some parts of the image, the actual difference is even greater). Therefore, the optimal segmentation
threshold of the images after the computation of NNDWI2 can be set to 0. This is also verified by other
experiments, and zero can be used as the best segmentation threshold of NNWI2 index image.

Figure 17. The different index of pixels after the PCA transformation, NNDWI2 and NDWI, respectively.

In Figures 18–21, we compare the water extraction accuracy among algorithms when the threshold
changes. The statistical results show that AUWEM algorithm will not have an obvious impact on
classification accuracy when the threshold is within the range of T ± T. (T is the selected or optimal
threshold. In Figures 18–20, T = 0.05, and in Figure 17, T = 3.) On the other hand, NDWI’s accuracy
is greatly affected when the threshold changes. By analyzing the accuracy data of NDWI in Figure 18,
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we can find that the water extraction accuracy changes drastically when the threshold changes, the
variance are 0.4639 (Beijing), 0.7902 (Guangzhou), 1.0588 (Suzhou), 0.2651 (Wuhan_1) and 0.4749
(Wuhan_2). Thus, the changes in threshold affect NDWI’s accuracy (especially in Guangzhou and
Suzhou). It shows that the algorithm is unstable. In Figures 19 and 20, we find that when the threshold
changes, the accuracy of NNDWI1 and NNDWI2 is almost unchanged. In Figure 21, we find that the
accuracy on Band4 is to some extent influenced by the changes in threshold, but such influence is
minimal, and the mean square deviation of the accuracy in the experimental areas corroborates with
the observation (variance are 0.0433 (Beijing), 0.0056 (Guangzhou), 0.0013 (Suzhou), 0.0011 (Wuhan_1)
and 0.0066 (Wuhan_2)). In summary of the statistical analysis of Figures 18–21, we can conclude that
when the thresholds change, the water extraction accuracy of AUWEM algorithm is more stable than
that of NDWI. Even though three threshold values need to be set, the setting is quite simple, so there is
no need to consider too many influencing factors.

When the threshold changes, the water extraction accuracy on Band4 is to some extent influenced.
Through the experimental analysis, we find that it is mainly caused by the way we compute intersection
in Section 3.4.1. The computation results in constraints on the dilation. The related analysis is shown
in Figure 22. From the figure, we can find that different threshold segmentation results cover different
areas, but the area variation is very small, within the range of T ± T. The threshold will not impact
on the water in terms of covering area and detection, thus barely affecting the detection accuracy.

Figure 18. A comparison among changes of NDWI’s water extraction accuracy when the threshold
changes. (a) Water extraction accuracy of Beijing; (b) Water extraction accuracy of Guangzhou;
(c) Water extraction accuracy of Suzhou; (d) Water extraction accuracy of Wuhan_1; (e) Water extraction
accuracy of Wuhan_2.

Figure 19. The changes in NNDWI1 when the threshold changes and Band4 and NNDWI2 remain
unchanged. (a) Water extraction accuracy of Beijing; (b) Water extraction accuracy of Guangzhou;
(c) Water extraction accuracy of Suzhou; (d) Water extraction accuracy of Wuhan_1; (e) Water extraction
accuracy of Wuhan_2.
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Figure 20. The changes in NNDWI2 when the threshold changes and Band4 and NNDWI1 remain
unchanged. (a) Water extraction accuracy of Beijing; (b) Water extraction accuracy of Guangzhou;
(c) Water extraction accuracy of Suzhou; (d) Water extraction accuracy of Wuhan_1; (e) Water extraction
accuracy of Wuhan_2.

Figure 21. The changes in Band4 when the threshold changes and NNDWI1 and NNDWI2 remain
unchanged. (a) Water extraction accuracy of Beijing; (b) Water extraction accuracy of Guangzhou; (c)
Water extraction accuracy of Suzhou; (d) Water extraction accuracy of Wuhan_1; (e) Water extraction
accuracy of Wuhan_2.

Figure 22. Comparison of intersection on Band4 under different thresholds as constraint. The yellow
segmentation area is larger than the green one, so according to the results in the figure, after the
intersection there will be water body or shadow objects that cover different areas and are to be detected.
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5.5. Summary

Although results are quite satisfactory in different experimental areas, some issues remain to be
considered, such as seasons, the sun’s height angle, components of the atmosphere, and the chemical
composition of water bodies. All of these factors have an impact on the reflection features. Different
atmospheric correction for subsequent image segmentation threshold may be different, thus affecting
the subsequent water detection accuracy; the same atmospheric correction method will exhibit different
atmospheric correction accuracy under different weather conditions, especially when there is heavy
haze. Heavy haze has been a serious issue in Chinese urban areas during wintertime in recent years.
The current atmospheric correction model may not necessarily work well when correcting atmospheric
haze. In some areas of the imagery, shadows and water bodies are adjacent. If water body area is large
enough, the whole area will be classified as water. Our algorithm is proposed for ZY-3 image data,
so whether it has a wider applicability or not needs to be validated by image data from other sources
and in different areas. These issues are worth of our follow-up study and verification.

6. Conclusions

We propose a new method for urban water extraction from high-resolution remote sensing
images. In order to improve the accuracy of water extraction, we improve the NDWI algorithm and
propose two new water indices, namely the NNDWI1 which is sensitive to turbid water, andNNDWI2
which is sensitive to water bodies whose spectral information is interfered by that of vegetation.
We superimpose NNDWI1 and NNDWI2 image segmentation results, and then use Object-Oriented
Technology to detect and remove shadows in the small areas, in order to obtain the final results of
urban water extraction. Our experiments test the accuracy of algorithms in five urban areas. According
to the results, the AUWEM algorithm has greater water extraction accuracy compared with NDWI
and the MaxLike, with an average Kappa coefficient of 93% and an average total error rate of about
11.9%. In contrast, the average Kappa coefficient and error rate of the MaxLike are about 88.6% and
18.2%, respectively; the average Kappa coefficient and error rate of NDWI is about 86.2% and 22.1%,
respectively. In addition, AUWEM exhibits greater accuracy when detecting water edge and small
rivers. It can effectively distinguish shadows of high buildings from water bodies to improve the
overall accuracy. More importantly, AUWEM has more stable detection accuracy than NDWI has
when the threshold changes. It can also be applicable for other water features extraction, and can be
applied to monitor and study the changes in water bodies in other places.
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Appendix A

Table A1. Statistic results of image water extraction based on maximum likelihood method in
Beijing area.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)

Water 34,961 11,657 46,618 74.9946 25.0054
No_water 1061 2,244,771 2,245,832 99.9528 0.0472

Total 36,022 2,256,428 2,292,450
User Accuracy (%) 97.0546 99.4834

Commission Error (%) 2.9454 0.5166
Overall Accuracy = 99.4452%; Kappa Coefficient = 84.3326%
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Table A2. Statistic results of image water extraction based on the NDWI index in Beijing.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)

Water 34,827 11,791 46,618 74.7072 25.2928
No_water 2125 2,243,707 2,245,832 99.9054 0.0946

Total 36,952 2,255,498 2,292,450
User Accuracy (%) 94.2493 99.4772

Commission Error (%) 5.7507 0.5228
Overall Accuracy = 99.3930%; Kappa Coefficient = 83.0431%

Table A3. Statistic results of image water extraction based on AUWEM in Beijing.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)

Water 40,929 5689 46,618 87.7966 12.2034
No_water 1571 2,244,261 2,245,832 99.9300 0.0700

Total 42,500 2,249,950 2,292,450
User Accuracy (%) 96.3035 99.7471

Commission Error (%) 3.6965 0.2529
Overall accuracy = 99.6833%; Kappa Coefficient = 91.6924%

Appendix B

Table A4. Statistic results of image water extraction based on maximum likelihood method
in Guangzhou.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)

Water 1,212,617 169,976 1,382,593 87.7060 12.2940
No_water 19,157 8,988,885 9,008,042 99.7873 0.2127

Total 1,231,774 9,158,861 10,390,635
User Accuracy (%) 98.4448 98.1441

Commission Error (%) 1.5552 1.8559
Overall accuracy = 98.1798%; Kappa Coefficient = 91.7285%

Table A5. Statistic results of image water extraction based on the NDWI index in Guangzhou.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)

Water 1,087,494 295,099 1,382,593 78.6561 21.3439
No_water 29,105 8,978,937 9,008,042 99.6769 0.3231

Total 1,116,599 9,274,036 10,390,635
User Accuracy (%) 97.3934 96.8180

Commission Error (%) 2.6066 3.1820
Overall accuracy = 96.8798%; Kappa Coefficient = 85.2771%

Table A6. Statistic results of image water extraction based on AUWEM in Guangzhou.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)

Water 1,304,001 78,592 1,382,593 94.3156 5.6844
No_water 26,733 8,981,309 9,008,042 99.7032 0.2968

Total 1,330,734 9,059,901 10,390,635
User Accuracy (%) 97.9911 99.1325

Commission Error (%) 2.0089 0.8675
Overall accuracy = 98.9863%; Kappa Coefficient = 95.5355%
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Appendix C

Table A7. Statistic results of image water extraction based on maximum likelihood method in Suzhou.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)

Water 415,717 76,225 491,942 84.5053 15.4947
No_water 50,948 5,673,154 5,724,102 99.1099 0.8901

Total 466,665 5,749,379 6,216,044
User Accuracy (%) 89.0825 98.6742

Commission Error (%) 10.9175 1.3258
Overall accuracy = 97.9541%; Kappa Coefficient = 85.6260%

Table A8. Statistic results of image water extraction based on the NDWI index in Suzhou.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)

Water 420,726 71,216 491,942 85.5235 14.4765
No_water 130,884 5,593,218 5,724,102 97.7135 2.2865

Total 551,610 5,664,434 6,216,044
User Accuracy (%) 76.2724 98.7428

Commission Error (%) 23.7276 1.2572
Overall accuracy = 96.7487%; Kappa Coefficient = 78.8652%

Table A9. Statistic results of image water extraction based on AUWEM in Suzhou.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)

Water 429,101 62,841 491,942 87.2259 12.7741
No_water 45,182 5,678,920 5,724,102 99.2107 0.7893

Total 474,283 5,741,761 6,216,044
User Accuracy (%) 90.4736 98.9055

Commission Error (%) 9.5264 1.0945
Overall accuracy = 98.2622%Kappa Coefficient = 87.8783%

Appendix D

Table A10. Statistic results of image water extraction based on maximum likelihood method in
Wuhan_2.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)

Water 1,562,974 182,267 1,745,241 89.5563 10.4437
No_water 9274 3,905,130 3,914,404 99.7631 0.2369

Total 1,572,248 4,087,397 5,659,645
User Accuracy (%) 99.4101 95.5408

Commission Error (%) 0.5899 4.4592
Overall accuracy = 96.6157%; Kappa Coefficient = 91.8418%

Table A11. Statistic results of image water extraction based on the NDWI index in Wuhan_2.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)

Water 1,526,202 219,039 1,745,241 87.4494 12.5506
No_water 146,867 3,767,537 3,914,404 96.2480 5.4944

Total 1,673,069 3,986,576 5,659,645
User Accuracy (%) 91.2217 94.5056

Commission Error (%) 8.7783 3.7520
Overall accuracy = 93.5348%; Kappa Coefficient = 84.6675%
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Table A12. Statistic results of image water extraction based on AUWEM in Wuhan_2.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)

Water 1,676,387 68,854 1,745,241 96.0548 3.9452
No_water 17,803 3,896,601 3,914,404 99.5452 0.4548

Total 1,694,190 3,965,455 5,659,645
User Accuracy (%) 98.9492 98.2637

Commission Error (%) 1.0508 1.7363
Overall accuracy = 98.4689%; Kappa Coefficient = 96.3811%

Appendix E

Table A13. Statistic results of image water extraction based on maximum likelihood method in
Wuhan_3.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)

Water 2,084,870 303,303 2,388,173 87.2998 12.7002
No_water 17,198 7,422,653 7,439,851 99.7688 0.2312

Total 2,102,068 7,725,956 9,828,024
User Accuracy (%) 99.1819 96.0742

Commission Error (%) 0.7201 3.9258
Overall accuracy = 96.7389%; Kappa Coefficient = 90.7601%

Table A14. Statistic results of image water extraction based on the NDWI index inWuhan_3.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)

Water 2,114,412 273,761 2,388,173 88.5368 11.4632
No_water 68,478 7,371,373 7,439,851 99.0796 0.9204

Total 2,182,890 7,645,134 9,828,024
User Accuracy (%) 96.8630 96.4191

Commission Error (%) 3.1370 3.5809
Overall accuracy = 96.5177%; Kappa Coefficient = 90.2501%

Table A15. Statistic results of image water extraction based on AUWEM in Wuhan_3.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)

Water 2,207,784 180,389 2,388,173 92.4466 7.5534
No_water 41,320 7,398,531 7,439,851 99.4446 0.5554

Total 2,249,104 7,578,920 9,828,024
User Accuracy (%) 98.1628 97.6199

Commission Error (%) 1.8372 2.3801
Overall accuracy = 97.7441%; Kappa Coefficient = 93.7445%
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Abstract: The floods are an annual phenomenon on the Pacific Coast of Ecuador and can become
devastating during El Niño years, especially in the Guayas watershed (32,300 km2), the largest
drainage basin of the South American western side of the Andes. As limited information on flood
extent in this basin is available, this study presents a monitoring of the spatio-temporal dynamics
of floods in the Guayas Basin, between 2005 and 2008, using a change detection method applied to
ENVISAT ASAR Global Monitoring SAR images acquired at a spatial resolution of 1 km. The method
is composed of three steps. First, a supervised classification was performed to identify pixels of open
water present in the Guayas Basin. Then, the separability of their radar signature from signatures of
other classes was determined during the four dry seasons from 2005 to 2008. In the end, standardized
anomalies of backscattering coefficient were computed during the four wet seasons of the study
period to detect changes between dry and wet seasons. Different thresholds were tested to identify
the flooded areas in the watershed using external information from the Dartmouth Flood Observatory.
A value of −2.30 ± 0.05 was found suitable to estimate the number of inundated pixels and limit
the number of false detection (below 10%). Using this threshold, monthly maps of inundation
were estimated during the wet season (December to May) from 2004 to 2008. The most frequently
inundated areas were found to be located along the Babahoyo River, a tributary in the east of the
basin. Large interannual variability in the flood extent is observed at the flood peak (from 50 to
580 km2), consistent with the rainfall in the Guayas watershed during the study period.

Keywords: flood; SAR; ENVISAT ASAR; rainfall; Guayas; Ecuadorian Pacific slope
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1. Introduction

El Niño Southern Oscillation (ENSO) has a strong influence on rainfall patterns on the Pacific
Coast of South America, from Ecuador to Chile, at an interannual time scale e.g., [1–4], affecting the
likelihood of droughts and floods [5]. Positive anomalies of sea surface temperatures along the coast
of Peru and Ecuador occurring during ENSO events induced torrential rains that cause high discharge
and large flood events [6]. In the Guayas Basin, located in the southwest of Ecuador, in the Pacific
slope of the Andes Cordillera, large flood events that occurred during the major El Niño episodes of
1965–1966, 1972–1973, 1982–1983, and especially 1997–1998, were responsible for many casualties and
had important socio-economic impacts on housing, agriculture, and fisheries [7].

Data acquired by in situ hydrometeorological networks and remotely sensed images are commonly
used for monitoring the spatial extent of the floods and even for forecasting and warning [8,9]. In spite
of the good spatial and temporal resolutions of multispectral images, their use is limited in tropical
areas as they are vulnerable to cloud cover and unable to detect water under dense vegetation cover.
In the Guayas Basin, the almost permanent cloud cover during the rainy season does not allow the
use of multispectral images, even the high frequency daily or the 8-day composite MODIS reflectance
products, to monitor the temporal variations of the flood extent. Synthetic Aperture Radar (SAR)
images, that provide useful information under all-weather conditions, including cloud cover, have been
widely used for flood mapping and wetland delineation, especially at L-band as this microwave
frequency band is able to penetrate dense vegetation cover e.g., [10–13]. Nevertheless, L-band images
acquired by sensors such as JERS-1, PALSAR onboard ALOS (repeat-period of 46 days), did not have
a sufficient temporal resolution to be used for flood monitoring. Images from PALSAR-2 on-board
ALOS-2, available since May 2014, were not considered as they only cover two rainy seasons in the
Guayas watershed. Several studies showed that SAR images acquired at the higher C-band frequency
can also be used for detecting floods in less vegetated areas e.g., [14–17]. SAR images acquired in
Wide Swath (WS) mode by the Advanced SAR (ASAR) onboard ENVISAT, at a spatial resolution of
150 m, were widely used for the monitoring of flood dynamics from local to regional scales [16–19].
Only 29 ASAR images were acquired in WS mode between November 2002 and March 2012 and just
14 during the rainy seasons due to acquisitions in other modes. No images were acquired during the
2004, 2005 and 2009 rainy seasons, and only two or three the other years, for a rainy season that last
6 months. The low number of available ASAR WS images is insufficient to allow the monitoring of
the time variations of the flood in the Guayas watershed. Images acquired by ASAR in Scan SAR
Global Monitoring (GM) mode at coarse spatial resolution (1 km), for a temporal resolution generally
better than one month, offered the opportunity to monitor inundation extents from regional to global
scales [20–22]. Before the launch of Sentinel-1 that has been providing high resolution images (20 m of
spatial resolution) with a temporal sampling of a few days since April 2014, ASAR images acquired in
GM mode had the advantages to provide frequent (twice or third a month) observations of the same
scene and to provide a complete observation of medium-size watershed in one acquisition.

In this study, we used ENVISAT ASAR images acquired in GM mode to monitor the floods
in the Guayas watershed between 2005 and 2008. We first present the study area and the datasets.
Then, we describe the change detection method used for determining the inundation extent in each
image. The last part presents a sensitivity analysis of the change detection method, the spatio-temporal
variations of the flood extent and the relationship between the time-series of rainfall and inundation
extent during the observation period.

2. Study Area

The Guayas River Basin, located in the southwestern part of Ecuador, is the largest tropical
agricultural watershed and estuarine system of the Pacific slope of South America. It extends between
latitudes 0◦ S and 3◦ S, and longitudes 81◦ W and 78◦ W and covers an area of 32,300 km2 (Figure 1).
Its watershed represents 13% of the total area of Ecuador where 40% of the Ecuadorian population
lives [23]. It corresponds to the most productive region of Ecuador for agriculture and aquaculture [24].
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Figure 1. The Guayas Basin (boundary in purple) is located in the southwest Pacific slope of Ecuadorian
Andes. The lowland (boundary in red) occupies 15,000 km2 of the 32,300 km2 of the watershed area,
and the floodplain 5000 km2. The mean annual rainfall isohyets map was elaborated for the 1963–2009
period using cokriging method.

Its climate is characterized by the occurrence of the rainy season from December to May.
The average precipitation in the Guayas basin for the 1963–2009 period is 1849 mm during the
hydrological year and 1130 mm during the rainy season. This value increased respectively to 4769 mm,
2412 mm and 6786 mm for the El Niño episodes of 82–83, 91–92 and 97–98, corresponding respectively
to ratios El Niño/Normal events of 2.6, 1.3 and 3.7 [25].

The altitude of this drainage basin ranges from sea level to 6310 m at Mount Chimborazo in the
Andes Cordillera. The lower plain of the Guayas Basin is the region corresponding to altitudes lower
than 200 m. Its area is ~15,000 km2 [23], i.e., ~46% of the surface of the watershed. In this lower plain,
the region likely to be affected by floods corresponds to almost flat areas (slopes ≤ 5%). They represent
30% of the lower plain or ~5000 km2.

The Daule, Babahoyo and Quevedo Rivers are the largest tributaries of western and eastern parts
that merge downstream to form the Guayas River and subsequently the Guayas Estuary that flow
into the Gulf of Guayaquil (Figure 1). The mean discharge to the sea of the Guayas River varies from
200 m3/s during the dry season to 1600 m3/s at the peak of flow [26,27]. It can reach up to 5000 m3/s
during strong ENSO events as 1982/1983 or 1997/1998 [26].

3. Datasets

3.1. ENVISAT ASAR GM Mode Images

ENVISAT mission was launched on 1 March 2002 by the European Space Agency (ESA). It orbits
at an average altitude of 790 km, with an inclination of 98.54◦, on a sun-synchronous orbit with a
35-day repeat cycle. It carried 10 scientific instruments including ASAR operating at a central frequency
of 5.331 GHz (C-band). This sensor offered multiple acquisition modes for SAR images at various
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spatial and temporal resolutions and alternating polarizations. Among them, the ScanSAR GM mode
acquired images in a swath of 405 km at a spatial resolution of 1 km and temporal resolution between
four and seven days when no other acquisition in a different mode was ordered [28]. This mode is very
useful for the monitoring of dynamic processes, such as soil moisture or floods, from regional to global
scales e.g., [20–22,29,30]. In this study, we used 92 ASAR images acquired in GM mode, with HH
polarization and 1 km spatial resolution, from December 2004 to September 2008, that encompass the
whole Guayas Basin (Figure 2). HH polarization is the more adequate polarization for flood mapping
on ASAR [31]. During the rainy season, there is generally one acquisition every two weeks at least that
covers the whole basin.

2003
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2008

0 60 120 180 240 300 360
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ar

Day of Year

ENVISAT ASAR Images Acquistion Date

Dry season
Rainy Season

Figure 2. Acquisition dates of ENVISAT ASAR images in GM mode over the Guayas Basin
between December 2004 and September 2008 for dry (orange squares) and rainy (blue dots) seasons.
These images were made available by ESA through the EOLi (Earth Observation Link) Earth
Observation Catalogue and Ordering Services [32].

3.2. Land Cover Map of Ecuador

A land cover map of the Ecuador was produced by the Ecuadorian Ministry of Agriculture
(Ministerio de Agricultura, Ganadería, Acuacultura y Pesca—MAGAP) in 2002 over the whole country
at the spatial scale of 1:250,000 using Landsat TM multispectral images acquired between 1999 and
2001 validated with a ground control assessment performed in 2001–2002. The main land cover types
present in the Guayas watershed are the following:

(i) forests (native and cultivated) occupying an area of 9206 km2 (29% of the watershed area),
permanent crops including banana, sugar cane, fruit trees, plantain, African palm, cacao,
and coffee occupying an area of 6087 km2 (20% of the watershed area),

(ii) annual crops including corn, rice, soybeans, and vegetables occupying an area of 9181 km2

(29% of the watershed area),
(iii) pastures occupying an area of 4130 km2 (13% of the watershed area), water bodies occupying an

area of 487 km2 (2% of the watershed area), urban areas occupying an area of 223 km2 (1% of the
watershed area).

More details about intra-class land cover repartition can be found in [33].

3.3. Surface Water Record from the Dartmouth Flood Observatory

The Dartmouth Flood Observatory (DFO) provides a unique source of information on floods due
to its global coverage [34]. It comprises the Surface Water Record (SWR), a comprehensive record of
satellite-observed changes in the Earth’s inland surface waters. This dataset compiles the observed
history of flooding, starting in the year 2000. Extent of surface water is mostly derived from NASA’s
MODIS Terra and Aqua sensors with, in some cases, additional information from Radarsat, ASTER,
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or other higher spatial resolution data [35]. Water areas are accumulated over 10 days to minimize the
effect of cloud cover. Inundation maps are made available at a spatial resolution of 250 m on 10◦ × 10◦

tiles. A color code indicates maximum flood extent each year. It is important to note, that using this
representation mode, it is impossible to know how many times a pixel was inundated during the
observation period. Besides, this dataset does not allow the monitoring of the variations of flood extent
during the hydrological cycle. A specific color indicates the reference water status (February, 2000,
from the Shuttle Radar Topography Mission Water Body—SWBD data). In the case of the Guayas
Basin, MODIS images during the rainy season cannot be used due to the cloud cover. So, this dataset
is limited to SWBD in this specific area completed with the inundation extent observed during the
two large flood events of 1998 and 2002. In our study, it is used as static information on the maximum
flood extent in the Guayas Basin. The flood extent image encompassing the eastern part of the basin
(east of 80◦ W of longitude) was downloaded at the Flood Observatory [36]. No data are available for
the western part that corresponds to the western tributaries of the Daule River and a part of its stream.

3.4. Rainfall

Monthly rainfall records from 310 meteorological stations located over the Pacific slope of the
Ecuadorian Andes (5◦ S–1.5◦ N and 77.5◦ W–81◦ W) were provided by INAMHI (National Institute of
Meteorology and Hydrology of Ecuador) from 1963 to 2009. A careful quality check of this data was
performed using the regional vector method similarly to what was performed in [3,4]. This dataset
was interpolated at a spatial resolution of 1 km using a co-kriging method as in [4].

4. Methods

The methodology used to process the time series of SAR images is composed of the following
three main steps: the preprocessing of the SAR images, the classification of the SAR images acquired
during the dry season for land cover purposes and assessment of the characterization of the radar
backscattering response between open water and non-inundated surfaces during the dry season,
and the flood detection during the dry season (Figure 3).

Figure 3. Schematic view of the processing of the ENVISAT ASAR images acquired in GM mode
between December 2004 and September 2008. The method is composed of three steps: a pre-processing
of the images, a supervised classification to determine the land cover using the images acquired during
the dry season (July–September), the change detection method applied to monitor the flood extent
during the wet season (December–May).
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4.1. ENVISAT ASAR GM Mode Images Preprocessing

The ASAR GM images were preprocessed with respect to the following steps: radiometric
calibration, incidence angle normalization, speckle reduction and geometrically correction using the
Next ESA SAR Toolbox (NEST) [37]. Images of radar backscattering coefficients (σ0 or sigma naught)
at the incidence angle θ of acquisition of each image were derived from the brightness amplitudes
expressed in Digital Numbers (DN) in the ASAR GM products using:

σ0(θ) =
DN2

K
sin θ (1)

where K is the absolute calibration constant [38].
The effect of the incidence angle on the surface backscattering was taken into account through a

normalization procedure [39]. The normalized backscatter coefficient is given by:

σ0
norm =

σ0(θ)

F(θ)
(2)

where F(θ) is a peculiar function to the target environmental conditions that has the following
form [39,40]:

F(θ) = cosα θ (3)

where α is a coefficient depending on the predominant scattering mechanism and the sensor
condition [41].

In the following, σ0
norm is noted σ0 for simplification.

Finally, the radar images were spatially filtered to reduce speckle effects using a classical Lee
filter [42] with a window size of 5 by 5 pixels. Examples of resulting images are presented in Figure 4a,b
for dry and rainy seasons, respectively.

Figure 4. Images of backscattering obtained after the pre-processing of ENVISAT ASAR images in GM
mode acquired during the (a) dry (14 July 2005); and (b) rainy (9 February 2006) seasons in the Guayas
Basin lowland. The boundary of the lowland is represented using a red line and open water appears
in blue.

4.2. Land Cover during the Dry Season Using a Supervised Classification

The change detection method used to identify flooded pixels during the wet season requires a
well-defined initial state corresponding to the backscattering during the dry season. It is necessary to
check the separability of the class corresponding to water from the other classes. Eleven supervised
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classifications were performed on 37 ASAR images acquired during the dry seasons, from July to
September, over 2005–2008 and not only the maximum of likelihood technique as done previously
in [43].

The feature space consists of all dry season backscattering coefficients for each given pixel.
Classifiers thus work in a large dimensional vector space and discriminate seasonal patterns of each
of the five classes present in the Guayas watershed according to the Landsat TM-based land use
map: water bodies (lakes, rivers), permanent crops (palm trees, cocoa, bananas, coffee), seasonal
crops (rice, corn, soy), grazing fields, cities. The training data were chosen using the land use map
defined in 2002 using Landsat TM images. The selected training sites (2292 pixels randomly selected
in the land use map) correspond to the five classes present in the Guayas watershed according to the
Landsat TM-based land use map. A 10-fold cross-validation was used to set the meta-parameters
(e.g., K in k-nearest neighbors) and report the corresponding accuracy as the performance metric for
each classifier in Section 5 (Results). As the results of the classification during the dry season are used
in the followings for detecting changes in backscattering related to floods, it is necessary to choose the
method that provides the best results in terms of accuracy. The separability between the classes was
assessed using:

(i) the M-statistics, originally introduced to discriminate burned and unburned pixels in
multi-spectral images [44], was also applied to SAR images in land use applications [45]. It is
computed as follows:

M =
μi − μj

σi − σj
(4)

where σk and μk are the mean and standard deviation of the kth class respectively. M values
greater than 1 indicate a reasonable separability increasing with the value of M.

(ii) the Jeffries-Matusita distance defined as follows [46]:

dJ−M(i, j) =
√

2(1 − e−α) (5)

with

α =
1
2
(
μi − μj

)T
(Ci + Cj

2

)−1(
μi − μj

)
+

1
2

ln

⎛
⎝ 1

2

∣∣Ci + Cj
∣∣√

|Ci|
∣∣Cj

∣∣
⎞
⎠ (6)

where Ck is the covariance matrix of the kth class. It varies from 0 (no separation) to
√

2–1.41
(complete separation).

4.3. Flood Detection

A change detection method was applied to the ASAR images acquired during the rainy seasons
between 2005 and 2008. For each pixel of coordinates (λ, ϕ) of any 55 ASAR images acquired during
the wet season at time t, we computed the following normalized anomaly of σ0 (γ), defined as follows:

γ(λ, ϕ, t) =
σ0(λ, ϕ, t)− 〈σ0(λ, ϕ, t)〉dry

std(σ0(λ, ϕ, t))dry
(7)

where <σ0(λ,ϕ,t)>dry and std(σ0(λ,ϕ,t))dry are the average and the standard deviation of σ0 during the
2005–2008 dry seasons, respectively.

Flooded pixels present lower backscattering than bare soil or vegetation covered ones as the
radar electromagnetic wave is specularly reflected by water surfaces. As a consequence, the lower
γ is, the more inundated the pixel is. As the vegetation cover in the lowland of the Guayas Basin is
not composed of forests, but of pastures, seasonal and permanent crops, the presence of water under
vegetation will cause a decrease in radar backscattering e.g., [14]. The risk to have std(σ0(λ,ϕ,t))dry close
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to zero is limited at the spatial resolution of 1 km. The only available external source of information on
the flood in the Guayas watershed is the SWR from the DFO. Most of the flooded areas present in the
SWR since 2000 have their extent included in the previous large flood events of 2002, and especially
1998. This dataset is commonly used for estimating flood extent limits when processing other remotely
sensed observations e.g., [47,48]. Our goal is to determine a threshold to discriminate changes caused
by the floods from changes in land cover, due to the vegetation growth, or due to the presence of soil
moisture. We determined the number of inundated and falsely inundated pixels in this watershed
using the surface water extent 2000–2014 from the DFO SWR for each value of γ varying from −1 to
−3 with a step of 0.05 as follows:

(i) for each ASAR image, a binary image representing the flood extent at time t is obtained: all ASAR
pixels with values lower or equal to γ are considered flooded and pixels with values greater than
γ not flooded.

(ii) annual maps of maximum flood extent are then obtained. In these maps, a pixel is considered to
be well identified as flooded if it is also inundated in the SWR whereas it is badly identified as if
it is not also identified as inundated in the SWR.

(iii) annual ratios of good and false detections are determined as the numbers of well and falsely
detected as inundated pixels divided by the numbers of pixels identified as inundated and
non-inundated in the DFO SWR, respectively.

Thresholds on good and false detections allow the determination of the value of the threshold on γ.
For every value of γ, the inundated area S is then estimated as follows:

S(t) = R2
e ∑

i∈A
δ(λi, ϕi, t) cos(ϕi)ΔλΔϕ (8)

where Re the radius of the Earth equals 6378 km, λi and ϕi are the longitude and latitude of the ith
pixel inside the Guayas watershed of area A, δ(λi,ϕi,t) equals one if the pixel is inundated and 0 if not,
Δλ and Δϕ are the grid steps in longitude and latitude, respectively, that are equal to 0.0045◦.

4.4. Relative Frequency of Inundation

A relative frequency of inundation (RFI) map, based on the time-series of inundation map derived
from the ASAR images acquired between December 2004 and June 2008, was estimated for the Guayas
Basin floodplain. Following a method similar to the one proposed by [49], the RFI, expressed in %, of a
pixel of geographical coordinates (λ;ϕ) is defined as follows:

RFI(λ; ϕ) =

N
∑

n=1
δ(λ, ϕ, n)

N
× 100 (9)

where N is the number of images acquired during the rainy season over the whole study period and
δ(λ,ϕ,n) equals one if the pixel is inundated and 0 if not.

5. Results

5.1. Land Cover from ASAR GM Images during the Dry Season

The performances of the 11 different techniques (i.e., k-nearest neighbors, linear and Gaussian
SVM, random forest, extremely random trees, adaboost, naive Bayes, logit, linear and quadratic
discriminants, ridge regression) were assessed in terms of multi-class accuracy (5 classes). Among them,
the k-nearest neighbor classification appears to be the most efficient and the most robust for
discriminating the classes based on their temporal patterns in the dry season with an accuracy
of 98.2% ± 0.7%. In the followings, all the results are presented for this supervised classification.
The resulting land cover map derived from the k-nearest neighbor method is presented in Figure 5.
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Figure 5. Land use from ENVISAT ASAR GM images acquired during the dry seasons (June to
November) between 2005 and 2008, as determined by k-nearest neighbors supervised classification.
The resulting classes are the followings: open water (blue), permanent crops (green), seasonal crops
(orange), grazing fields (yellow), cities (pink). The boundary of the lowland is represented using a
black line. Background image is from Google Maps.

The five classes correspond to open water (lakes and reservoirs) as the Guayas river stream
and its tributaries cannot be identified at a spatial resolution of 1 km, permanent crops composed of
tropical arboriculture (banana, oil palm, coffee and cacao trees), seasonal crops (mostly rice, corn, soya,
and shrubby vegetation), mostly pastures and sugar cane, towns, respectively.

The results of the class separability are presented in Table 1. It appears clearly that the different
classes are well separated from one another using both criteria, especially using the Jeffries-Matusita
distance. The Jeffries-Matusita distance between each pair of classes is higher than 1.40 except
between permanent crops and seasonal crops. In this case, its value is 1.34 which corresponds to a
good separation between the two classes as this value is quite close to the maximum value of the
Jeffries-Matusita distance (

√
2). Very good separability is also observed using the M-statistics (M > 1),

except for the separability with cities class, due to the large standard deviation (see Table 2) observed
in this class, a consequence of the low spatial resolution of the ENVISAT ASAR GM images (1 km).
However, even for this class, the M-statistics present values close to 1 or a little bit higher (Table 1).
In all cases, a good separability is observed between open water and the other classes.

Table 1. Results of the separability between classes obtained from a k-nearest neighbors
supervised classification performed on ENVISAT ASAR GM images acquired during the dry season
(July–September) between 2005 and 2008 using the M-statistics and the Jeffries-Matusita distance.

Separability between Classes
Open
Water

Permanent
Crops

Seasonal
Crops

Grazing
Fields

Cities

Open water M-statistics - 6.67 2.14 4.37 1.08
J-M - 1.41 1.41 1.41 1.41

Permanent crops M-statistics - - 1.55 2.91 0.98
J-M - - 1.34 1.41 1.41

Seasonal crops M-statistics - - - 1.20 0.90
J-M - - - 1.41 1.41

Grazing fields M-statistics - - - - 0.93
J-M - - - - 1.41

Cities
M-statistics - - - - -

J-M - - - - -
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Table 2. Results of the k-nearest neighbors supervised classification performed on ENVISAT ASAR
GM images acquired during the dry season (July–September) between 2005 and 2008. For each class,
average backscattering (dB), associated standard deviation (dB), and percentage of the watershed area
(%) are given.

Dry Season Classification
Class Name

Average
Backscattering (dB)

Standard Deviation of
Backscattering (dB)

Percentage of the
Watershed Area (%)

Open water −11.30 1.68 0.9
Permanent crops −8.63 1.29 15.0
Seasonal crops −6.19 1.70 54.0
Grazing fields −7.65 1.29 29.0

Cities −1.87 2.74 1.1

Using the results from the k-nearest neighbors supervised classification, land cover in the Guayas
watershed is dominated by seasonal crops (54%), characterized by σ0 = −6.19 ± 1.70 dB, followed by
grazing fields (29%), with σ0 = −7.65 ± 1.29 dB, permanent crops (15%), with σ0 = −8.63 ± 1.29 dB,
cities (1.1%), with σ0 = −1.87 ± 2.74 dB and open water (0.9%), with σ0 = −11.30 ±1.68 dB (Table 2
and Figure 6).

Figure 6. Average backscattering coefficient (dB) and associated standard deviation (dB) for each
class resulting from a k-nearest neighbors supervised classification performed during the dry season
(July–September) between 2005 and 2008: open water (blue), permanent crops (green), seasonal crops
(orange), grazing fields (yellow), cities (pink).

5.2. Flood Detection during the Rainy Season

Normalized anomalies of backscattering γ were computed for the 55 ASAR images acquired
during the rainy season using (7). We determined the number of pixels whose value is beyond the
threshold for each rainy season from 2005 to 2008 for threshold values varying from −1 to −3 with a
step of −0.05. These pixels are then considered as flooded and can be used to estimate annual maps of
inundation when stacking the binary images of floods during each year’s rainy season. The range of
the threshold values corresponds to intervals of confidence varying from 68.3% to 99.7% compared
to its value during the dry season, according to the three-sigma rule of thumb assuming a normal
distribution of the data.
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Examples of resulting maps for different threshold values are presented in Figure 7 for 2008
that was the wetter year of the observation period. Compared to the SWR from DFO (Figure 7a),
lower threshold values led to flooded areas in excess (for instance, thresholds of −1.0 and −1.5
in Figure 7b,c), whereas flood maps obtained using higher threshold values present very limited
inundated areas (for instance, thresholds of −2.5 and −3.0 in Figure 7e,f). The map obtained using γ

equals to −2.0 exhibits a similar pattern as the SWR (Figure 7a,d, respectively). To more accurately
determine the thresholds value, we compared the SWR and γ maps pixel by pixel. A pixel is considered
to be well identified as flooded if its value is below the threshold and is inundated in the SWR whereas
it is poorly identified as flooded if its value is lower or equal to the threshold but it is not identified as
inundated in the SWR. The results of the change detection method limited to the floodplain area are
presented on Figure 8. We fixed the following thresholds: as no large ENSO was recorded between 2005
and 2008, we considered that the minimum threshold value for inundated pixels should correspond
to a number of pixels higher than 50% of the number of inundated pixels of the SWR in the Guayas
floodplain during the wettest year of the study period. According to Figure 8a, it corresponds to
a minimum value of γ higher than −2.35. The corresponding ratios are 10.8%, 30.9%, 12.1% and
50.2% for 2005, 2006, 2007, and 2008, respectively. Similarly, the number of pixels falsely detected as
inundated should be lower than 10% of the number of inundated pixels of the SWR in the Guayas
watershed during the wetter year, considering the possible missed detection of flooded areas in
this dataset. According to Figure 8b, it corresponds to a maximum value of γ lower than −2.25.
The corresponding ratios are 3.7%, 7.1%, 2.2% and 9.5% for 2005, 2006, 2007, and 2008, respectively.
Using these criteria, γ varies between −2.25 and −2.35. Converted (7) into dB, it means that the
difference between (i) the change in backscattering between the dry season and the time t during the
rainy season; and (ii) the standard deviation of the backscattering during the dry season is greater
than 3.52, 3.63 and 3.71 dB for threshold values of −2.25, −2.30, and −2.35, respectively. According to
Table 2, these values are larger than the standard deviation of any of the five classes considered in this
study. As these classes were found be well separated, it is reasonable to consider that these thresholds
can be used for separating inundated and non-inundated pixels. Maximum annual flood extent
obtained using thresholds of −2.25, −2.30, −2.35 between 2005 and 2008 are presented in Figure 9.
Very similar patterns are observed with the flood extent decreasing with γ. The pattern of inundated
areas is very consistent with the hydrological characteristics of the Guayas floodplain. Areas detected
as flooded are present along the major tributaries to the Guayas (i.e., Babahoyo, Quevedo, Daule)
or in the wetlands such as the RAMSAR site Abras de Mantequilla wetland, located between the
Quevedo and Daule rivers, which plays a role in flood attenuation and streamflow regulation [50].
Large interannual variability can also be observed during the 2005–2008 time-span. A more detailed
analysis of the results is provided in Section 5.3.

Figure 7. Cont.
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Figure 7. Inundation in the Guayas watershed using the SWR from DFO (a). Normalized anomalies of
backscattering coefficients (γ) lower than a given threshold appear in light blue. The threshold values
equal −1.0 (b); −1.5 (c); −2.0 (d); −2.5 (e); and −3.0 (f) for 2008. Background image is from Google
Maps. Permanent water bodies appear in blue.

Figure 8. Cont.
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Figure 8. Percentage of pixels detected as inundated (a) and falsely identified as inundated during
the rainy seasons (December–June) from 2005 to 2008 as a function of the normalized anomaly of
backscattering though comparison with the SWR from DFO in the Guayas floodplain (b).

Figure 9. Cont.
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Figure 9. Maps of annual normalized anomalies of backscattering coefficients lower than a given
threshold (light blue) in the Guayas floodplain (black line). The threshold values γ equals to −2.25
in 2005 (a); 2006 (d); 2007 (g); and 2008 (j); −2.30 in 2005 (b); 2006 (e); 2007 (h); and 2008 (k); −2.35 in
2005 (c); 2006 (f); 2007 (i); and 2008 (l). Background image is from Google Maps. Permanent water
bodies appear in blue.

5.3. Time Variations of Inundated Areas

Using the thresholds determined in Section 5.2, monthly variations of inundation extent were
estimated in the Guayas Basin. These monthly variations were obtained as the cumulated extent of the
inundated areas observed each month using ASAR images. Time variations of inundated areas during
the wet seasons (December–May) from 2005 to 2008 are presented in Figures 10 and 11 for γ = −2.30.
During the observation period, small and disseminated flooded areas were present in December
(Figure 10a,g and Figure 11a,g) and January (Figure 10b,h and Figure 11b,h). Largest flood area extents
are observed between February and May (Figures 10c–f and 11i–l) with a large interannual variability.
Floods generally started in February in the upstream part of the Daule River and the central part of
the Quevedo River (Figure 10c,i and Figure 11c,i). Then, floods were mainly located along the central
and downstream parts of the Quevedo and Babahoyo Rivers in March and April (Figure 10d,e,j,k and
Figure 11d,e,j,k). Floods of smaller extent were detected in May along the Quevedo and Daule Rivers
(Figure 10f,l and Figure 11f,l). Inundated areas are most frequently observed along the Babahoyo and
Quevedo Rivers and in the Abras de Mantequilla wetland (225 km2 at 79◦45′ W and 1◦30′ S). In 2006
and 2008, flooded areas were also detected in the upstream part of the Babahoyo River and along the
Daule River (Figures 10g–l and 11g–l). In 2008, very extensive floods were detected in March and April
along the Quevedo and Babahoyo river streams.

Figure 10. Cont.
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Figure 10. Monthly maps of inundation for normalized anomalies of backscattering coefficients lower
than −2.30 (light blue) in the Guayas floodplain (black line) during the wet seasons of 2005 and 2006
(a–f) from December 2004 to May 2005; and (g–l) from December 2005 to May 2006. Background image
is from Google Maps. Permanent water bodies appear in blue.

Figure 11. Cont.
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Figure 11. Monthly maps of inundation for normalized anomalies of backscattering coefficients lower
than −2.30 (light blue) in the Guayas floodplain (black line) during the wet seasons of 2005 and 2006
(a–f) from December 2006 to May 2007; and (g–l) from December 2007 to May 2008. Background image
is from Google Maps. Permanent water bodies appear in blue.

RFI maps of the Guayas floodplain were estimated using ENVISAT ASAR GM images acquired
during the rainy seasons between December 2004 and June 2008 for the three threshold value used
earlier. As they exhibit very similar patterns, only the one obtained using the −2.30 threshold value is
presented in Figure 12. Four main areas of large flood occurrence (>25%): the junction between the
Babahoyo and Quevedo Rivers, in the upstream north east of Guayaquil, the north and south banks
of the Babahoyo River close to the city of Babahoyo, and the upstream eastern part of the floodplain.
Secondary maxima (15%) can also be observed along the Daule River.

Figure 12. RFI map derived from the ASAR-based inundation extent map for the −2.30 threshold
values applied to the normalized anomalies of backscattering coefficients (γ).

Figure 13 shows the time variations of flood extent and rainfall between 2005 and 2008.
The hydrological years 2006 and 2008 are characterized by larger flood events (318 and 585 km2

occurring in March 2006 and April 2008, respectively, as detected using ASAR images) than 2005 and
2007 (53 and 59 km2 occurring in January 2005 and March 2007, respectively). The total of rainfall for
the wet season (December–May) over the whole Guayas Basin for the same time-period were for 757,
1121, 950 and 1366 mm 2005, 2006, 2007 and 2008 respectively. In other terms, these totals of rainfall are
33%, 1% and 16% below the 1963–2009 average rainfall during the rainy season for 2005, 2006 and 2007,
respectively, and 20% above it in 2008, meaning that 2005 and 2007 were drier than usual wet seasons,
2006 was a normal wet season and 2008 was a wetter than usual rainy season. When comparing the
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inundated areas obtained using the change detection method to the total rainfall during the wet season,
a good consistency between these two hydrological variables can be noticed. A correlation of 0.75 was
found between these two variables at monthly time-scale, with the total amount of rainfall preceding
the flood of one month (inundation extent was set to zero between June and November of each year).

Figure 13. Time series of monthly rainfall (mm—blue bars) and inundation extent (km2) for
three threshold values applied to the normalized anomalies of backscattering coefficients (σ0) and
corresponding to a minimal (−2.35—green dots), a mean (−2.30—yellow dots) and a maximal
(−2.25—red dots) inundation area (km2).

6. Conclusions

ENVISAT ASAR GM images were used to monitor the spatio-temporal dynamics of the flood
in the Guayas watershed between 2005 and 2008 applying a change detection method based on the
difference in backscattering at C-band between the wet and the dry seasons. First, a supervised
classification method was applied to determine the possibility to separate open water from the
other classes. Among the different supervised classification techniques applied to determine the
land cover in the Guayas Basin using ASAR images acquired during the dry season, the k-nearest
neighbors technique provided the better results with an accuracy of 98.2% ± 0.7%. Open water, with a
mean backscattering of −11.30 ± 1.68 dB, was clearly separated from the other classes for both the
M-statistics and the Jeffries-Matusita distance criteria. This allows the use of the change detection
method. In spite of the coarse spatial resolution of these SAR images, inundated areas detection
provides consistent results with the sparse information currently available on the distribution of the
floodplain in this watershed. Flood most frequently occurred in the eastern part of the floodplain
(Andean part), along the Babahoyo river stream, but also on the western part (coastal reliefs) during
normal and wetter than usual years. The large interannual variability in the inundation extent, with
larger inundated areas detected in 2006 and 2008, was also found to be consistent with the temporal
distribution of the rainfall during the wet season.

This study is the first step toward understanding the spatio-temporal (at seasonal and interannual
time scales) dynamics of the flood in the Guayas Basin using multi-sensors and multi-resolution
SAR images and their relationship with ENSO on a longer time-scale. With the recent launches of
Sentinel-1A in April 2014, Sentinel-2A in June 2015 and Sentinel-1B in April 2016, satellite SAR (C-band)
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and multispectral images are now globally available at an unprecedented spatio-temporal resolution
of a couple of tens of meters every few days. These new datasets will allow better monitoring of land
cover and flood locations in watersheds such as the Guayas Basin.
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