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Preface to ”Symmetry in Many-Body Physics”

Symmetry plays a crucial role in many-body physics. However, finding an exact solution to

the problem of interacting particles very often presents a fundamental problem. Nevertheless, the

knowledge of basic symmetries plays an important role in finding the approximate solutions and

determines the accuracy of the used approximations. The purpose of this issue is to demonstrate

the principal role of exact and approximate symmetries in solving various problems of many-particle

physics, as well as in finding approximate solutions for the systems typical of condensed matter,

trapped Fermi and Bose gases, nuclear matter, and field theory.
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Symmetry in Many-Body Physics

Vanderlei S. Bagnato 1 , Rashid G. Nazmitdinov 2 and Vyacheslav I. Yukalov 1,2,*

1 Instituto de Fisica de São Carlos, Universidade de São Paulo, São Carlos 13560-970, Brazil
2 Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
* Correspondence: yukalov@theor.jinr.ru

The harmony of nature is expressed through the implementation of symmetry provid-
ing optimal structures for complex systems from snowflakes to graphene lattices. However,
sometimes nature breaks symmetry, for example: in sugar molecules, the predominance
of people with the heart on the left side, or in various phase transitions. Symmetry plays
a crucial role in many-body physics. For instance, chiral symmetry is important in the
unusual properties of graphene and the theory of strong interactions. Symmetry breaking
and restoration constantly occurs in the world around us. Usually, finding exact solution to
the problem of interacting particles presents a fundamental challenge. Therefore, we have
to restrict ourselves to approximate solutions that reflect the essential features of the entire
problem as a whole and contain an indication of the range of applicability of these solutions.
An important role in finding the approximate solutions is played by the knowledge of basic
symmetries that determine the accuracy of the used approximations. The purpose of this
issue is to demonstrate the principal role of exact and approximate symmetries in solving
various problems in many-particle physics, as well as finding approximate solutions for the
systems typical of condensed matter, trapped Fermi and Bose gases, nuclear matter, and
field theory [1–14].

The review article “Non-Thermal Fixed Points in Bose Gas Experiments”, by L. Madeira
and V.S. Bagnato, considers one of the most challenging tasks in physics for understanding
the route of an out-of-equilibrium system to its thermalized state. This problem can be
particularly overwhelming when one considers a many-body quantum system. Several
recent theoretical and experimental studies have indicated that some far-from-equilibrium
systems display universal dynamics close to the so-called non-thermal fixed point (NTFP),
following a rescaling of both space and time. This opens up the possibility of a general
framework for studying and categorizing out-of-equilibrium phenomena into well-defined
universality classes. This paper reviews the recent advances in observing NTFPs in exper-
iments involving Bose gases. A brief introduction is provided to the theory behind this
universal scaling, focusing on the experimental observations of NTFPs. The benefits of the
NTFP universality classes are presented, using the analogy with renormalization group
theory in equilibrium critical phenomena.

The review article “A Review of Many-Body Interactions in Linear and Nonlinear Plas-
monic Nanohybrids”, by M.R. Singh, discusses the many-body interactions in plasmonic
nanohybrids made from an ensemble of quantum emitters and metallic nanoparticles. A
theory of the linear and nonlinear optical emission intensity is developed by using the
many-body quantum-mechanical density matrix method. The ensemble of quantum emit-
ters and metallic nanoparticles interact with each other via the dipole–dipole interaction.
Surface plasmon polaritons are located near to the surface of the metallic nanoparticles. It is
shown that the nonlinear Kerr intensity enhances due to the weak dipole–dipole coupling
limits. On the other hand, in the strong dipole–dipole coupling limit, the single peak in the
Kerr intensity splits into two peaks. The splitting of the Kerr spectrum is due to the creation
of dressed states in the plasmonic nanohybrids within the strong dipole–dipole interaction.
Further, it is found that the Kerr nonlinearity is enhanced due to the interaction between
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the surface plasmon polaritons and excitons of the quantum emitters. Next, the effect
of the spontaneous decay-rate enhancement is predicted due to dipole–dipole coupling.
The enhancement of the Kerr intensity due to the surface plasmon polaritons can be used
to fabricate nanosensors. The splitting of one peak into two peaks can be used for the
fabrication of nanoswitches for nanotechnology and nanomedical applications.

In the paper “Spin Interference Effects in a Ring with Rashba Spin-Orbit Interaction
Subject to Strong Light-Matter Coupling in Magnetic Field”, by M. Pudlak and R. Nazmit-
dinov, the authors studied electron transport through a one-dimensional quantum ring,
subject to Rashba spin–orbit interaction and connected with two external leads in the
presence of external fields. They include optical radiation, produced by an off-resonant
high-frequency electric field, and a perpendicular magnetic field. By means of the Floquet
theory of periodically driven quantum systems the interference effects under these fields
are described in detail. Specific analytic conditions are found for reaching the spin-filtering
effect, caused by the interplay of the external fields and Rashba spin–orbit interactions.

The paper “Long-Time Bit Storage and Retrieval without Cold Atom Technology”,
by R. Friedberg and J.T. Manassah, reports computer investigations showing how the
duration of memory for storage and retrieval of a classical bit can be increased to 100 times
the decay time of an isolated atom, with no use of high-tech cold-atom preparations
recently developed in the light-matter field. This low-tech procedure can greatly enlarge
the number of experimenters able to enter this field. The role of symmetry in this procedure
arises in a careful interplay of incoherent and coherent excitations of a large collection of
two-level atoms, the level separation being matched by the dominant frequency of the
electromagnetic fields (short pulses and continuing field) applied to the system.

In the paper “Formation of Matter-Wave Droplet Lattices in Multi-Color Periodic
Confinements”, by M.R. Pathak and A. Nath, a new model is introduced that addresses the
generation of quantum droplets (QDs) in binary Bose–Einstein condensate (BEC) mixtures
with mutually symmetric spinor components, loaded in multi-color optical lattices (MOLs)
of commensurate wavelengths and tunable intensities. The considered MOL confinement
is the combination of the four-color optical lattice with an exponential periodic trap, which
includes the complete set of the Fourier harmonics. Employing the one-dimensional
(1D) extended nonlinear Schrodinger equation (eGPE), the exact analytical form of the
wavefunction, mean field/beyond mean field nonlinearities, and MOL trap parameters are
described. Utilizing the exact solutions, the formation of supersolid-like spatially periodic
matter-wave droplet lattices and superlattices are illustrated under the space-periodic
nonlinearity management. The precise positioning of the density maxima/minima of
the droplet patterns at the center of the trap and tunable Anderson-like localization are
observed by tuning the symmetry and amplitude of the considered MOL trap. The stability
of the obtained solution is confirmed using the Vakhitov–Kolokolov criterion.

The paper “Josephson-like Oscillations in Toroidal Spinor Bose-Einstein Condensates:
A Prospective Symmetry Probe”, by M.H. Figlioli Donato and S.R. Muniz, studies Josephson
junctions that are essential ingredients in the superconducting circuits used in many existing
quantum technologies. Additionally, ultra-cold atomic quantum gases have also become
essential platforms to study superfluidity. The analogy between superconductivity and
superfluidity is discussed concentrating on an intriguing effect caused by a thin finite
barrier in a quasi-one-dimensional toroidal spinor Bose–Einstein condensate (BEC). In this
system, the atomic current density flowing through the edges of the barrier oscillates similar
to the electrical current through a Josephson junction in a superconductor, but in that case
there is no current circulation through the barrier. It is also shown how the nontrivial
broken-symmetry states of spinor BECs change the structure of this Josephson-like current,
creating the possibility to probe the spinor symmetry, solely using measurements of this
superfluid current.

In the paper “Spontaneous Symmetry Breaking: The Case of Crazy Clock and Beyond”,
by M.C. Pagnacco, J.P. Maksimovic′, M. Dakovic′, B. Bokic, S.R. Mouchet, T. Verbiest, Y.
Caudano and Branko Kolaric, the authors describe the crazy-clock phenomenon involving
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the state I (low iodide and iodine concentration) to state II (high iodide and iodine concen-
tration with new iodine phase) transition after a Briggs–Rauscher (BR) oscillatory process.
While the BR crazy-clock phenomenon is known, this is the first time that crazy-clock
behavior has been linked and explained with the symmetry-breaking phenomenon, high-
lighting the entire process in a novel way. The presented phenomenon has been thoroughly
investigated by running more than 60 experiments, and evaluated by using statistical clus-
ter K-means analysis. The mixing rate, as well as the magnetic bar shape and dimensions,
have a strong influence on transition appearance. Although the transition for both mixing
and non-mixing conditions take place completely randomly, by using statistical cluster
analysis the authors obtain a different number of clusters (showing the time-domains
where the transition is most likely to occur). In the case of stirring, clusters are more
compact and separated, revealing new hidden details regarding the chemical dynamics of
nonlinear processes. The significance of the presented results is beyond oscillatory reaction
kinetics since the described example belongs to the small class of chemical systems that
show intrinsic randomness in their response and it may be considered a real example of a
classical liquid random number generation.

Interesting results are reported in the paper “Exact Solutions for Solitary Waves in a
Bose-Einstein Condensate under the Action of a Four-Color Optical Lattice”, by B. Halder, S.
Ghosh, P. Basu, J. Bera, B. Malomed and U. Roy who address the dynamics of Bose–Einstein
condensates (BECs) loaded into a one-dimensional four-color optical lattice (FOL) potential
with commensurate wavelengths and tunable intensities. This configuration lends system-
specific symmetry properties. The analysis identifies specific multi-parameter forms of
the FOL potential which admits exact solitary-wave solutions. This newly found class of
potentials includes more particular species, such as frustrated double-well superlattices
and bichromatic and three-color lattices, which are subject to respective symmetry con-
straints. The exact solutions provide options for the controllable positioning of density
maxima of the localized patterns, and tunable Anderson-like localization in the frustrated
potential. A numerical analysis is performed to establish dynamic and structural stability
of the obtained solutions, making them relevant for experimental realization. The newly
found solutions offer applications to the design of schemes for quantum simulations and
processing quantum information.

In the paper “Zeroth-Order Nucleation Transition under Nanoscale Phase Separation”,
by V.I. Yukalov and E.P. Yukalova, materials with nanoscale phase separation are consid-
ered. A system representing a heterophase mixture of ferromagnetic and paramagnetic
phases was studied. After averaging the over phase configurations, a renormalized Hamil-
tonian is derived describing the coexisting phases. The system is characterized by direct
and exchange interactions and an external magnetic field. The properties of the system
are studied numerically. The stability conditions define the stable state of the system. At
a temperature of zero, the system is in a pure ferromagnetic state. However, at a finite
temperature, for some interaction parameters, the system exhibits a zeroth-order nucleation
transition between the pure ferromagnetic phase and the mixed state with coexisting ferro-
magnetic and paramagnetic phases. At the nucleation transition, the finite concentration of
the paramagnetic phase appears via a jump.

The paper “Small-Angle Scattering from Fractional Brownian Surfaces”, by E.M.
Anitas, investigates materials with fractal-like geometry. Recent developments in nan-
otechnology have allowed the fabrication of a new generation of advanced materials with
various fractal-like geometries. Fractional Brownian surfaces (fBs) are often used as models
to simulate and characterize these complex geometries, such as the surfaces of particles
in dilute particulate systems (e.g., colloids) or the interfaces in non-particulate two-phase
systems (e.g., semicrystalline polymers with crystalline and amorphous phases). However,
for such systems, a realistic simulation involves parameters averaged over a macroscopic
volume. The author proposes a method, based on small-angle scattering technique, to
extract the main structural parameters of surfaces/interfaces from experimental data. The
method involves the analysis of scattering intensities and the corresponding pair distance

3
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distribution functions. This allows the extraction of information with respect to the overall
size, fractal dimension, Hurst and spectral exponents. The method is applied to several
classes of fBs, and it is demonstrated that the obtained numerical values of the structural
parameters are in good agreement with the theoretical ones.

The paper “Characteristic Length Scale during the Time Evolution of a Turbulent
Bose-Einstein Condensate”, by L. Madeira, A.D. Garci’a-Orozco, M.A. Moreno-Armijos,
F.E. Alves dos Santos and V.S. Bagnato, addresses the topic of quantum turbulence that is
currently highly studied. Quantum turbulence is characterized by many degrees of freedom
interacting non-linearly to produce disordered states, both in space and time. In this work,
the decaying regime of quantum turbulence in a trapped Bose–Einstein condensate was
investigated. An alternative way of exploring this phenomenon is presented, by defining
and computing a characteristic length scale, which possesses the relevant characteristics
to study the establishment of the quantum turbulent regime. To reconstruct the three-
dimensional momentum distributions, the inverse Abel transform was employed, as has
been successfully done in other works. The analysis is presented for both two- and three-
dimensional momentum distributions, discussing their similarities and differences. It is
argued that the characteristic length allows us to intuitively visualize the time evolution of
the turbulent state.

In the paper “Probing Many-Body Systems near Spectral Degeneracies”, K. Ziegler
discusses how the employment of the diagonal elements of the time correlation matrix can
be used to probe closed quantum systems that are measured at random times. This enables
one to extract two distinct parts of the quantum evolution, a recurrent part and an exponen-
tially decaying part. This separation is strongly affected when spectral degeneracies occur,
for instance, in the presence of spontaneous symmetry breaking. Moreover, the slowest
decay rate is determined by the smallest energy level spacing, and this decay rate diverges
at the spectral degeneracies. Probing of the quantum evolution with the diagonal elements
of the time correlation matrix is discussed as a general concept and tested in the case of
a bosonic Josephson junction. This reveals for the latter, characteristic properties at the
transition to Hilbert-space localization.

The paper “Morphology of an Interacting Three-Dimensional Trapped Bose-Einstein
Condensate from Many-Particle Variance Anisotropy”, by O.E. Alon, analyzes the charac-
teristic properties of a Bose–Einstein condensate (BEC) through the variances of observable
quantities. The variance of the position operator is associated with how wide or narrow
a wave-packet is, the momentum variance is similarly correlated with the size of a wave-
packet in momentum space, and the angular-momentum variance quantifies to what extent
a wave-packet is non-spherically symmetrical. The interacting three-dimensional trapped
BEC in the limit of an infinite number of particles was investigated, and its position, mo-
mentum, and angular-momentum anisotropies are described. Computing the variances
of the three Cartesian components of the position, momentum, and angular-momentum
operators, it is shown that there exist scenarios where the anisotropy of a BEC is different
at the many-body and mean-field levels of theory, despite having the same many-body
and mean-field densities per particle. This suggests a way to classify correlations via
the morphology of 100%-condensed bosons in a three-dimensional trap in the limit of an
infinite number of particles. Implications are briefly discussed.

The paper “Acoustic Plasmons in Graphene Sandwiched between Two Metallic Slabs”,
by L. Salasnich, studied the effect of two metallic slabs on the collective dynamics of
electrons in graphene positioned between the two slabs. It is shown that, if the slabs are
perfect conductors, the plasmons of graphene display a linear dispersion relationship. The
velocity of these acoustic plasmons crucially depends on the distance between the two metal
gates and the graphene sheet. In the case of generic slabs, the dispersion relationship of the
graphene plasmons is much more complicated, but it was found that acoustic plasmons
can still be obtained under specific conditions.

We hope that the papers of this Issue hold useful information and new ideas for the readers.
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Long-Time Bit Storage and Retrieval without Cold
Atom Technology

Richard Friedberg 1,* and Jamal T. Manassah 2,*

1 Department of Physics and Astronomy, Barnard College, Columbia University, New York, NY 10027, USA
2 Department of Electrical Engineering, City College of New York, New York, NY 10031, USA
* Correspondence: rfriedberg49@gmail.com (R.F.); jmanassah@ccny.cuny.edu (J.T.M.)

Abstract: We report computer studies showing how the duration of memory for storage and retrieval
of a classical bit can be increased to 100 times the decay time of an isolated atom, with no use of
high-tech cold-atom preparations recently developed in the light-matter field. We suggest that our
low-tech procedure can greatly enlarge the number of experimenters able to enter this field. The role
of symmetry in this procedure arises in a careful interplay of incoherent and coherent excitations of a
large collection of “two-level” atoms, the level separation being matched by the dominant frequency
of the electromagnetic fields (short pulses and continuing field) applied to the system.

Keywords: bit retrieval; long-time memory; Nyxion; continuous pump; coalescence; Aurora

1. Introduction

The subradiant regime of an ensemble of two-level atoms has been studied in [1–5],
and the use of this system as an optical memory device has been explored inter alia in [6–10].
We study in this paper the state of this ensemble after excitation by a short pulse up to the
edge of the subradiant regime; we call this dark state a “Nyxion” (Nyx was the goddess of
the night in Greek mythology).

We emphasize that we are not trying to compete with the startling achievements in
this field made possible by the controlled positioning of individual atoms in a cold-atom
trap. In particular, our system does not aim at storage and retrieval of quantum information.
We deal only with classical bit storage and retrieval. The value of our calculations depends
on their applicability to a system under quite ordinary conditions. We hope that the results
will stimulate significant work by experimenters who do not have access to the high-tech
methods of cold-atom trapping and manipulation.

In a system under ordinary conditions, without cold-atom technology, a single Nyxion
is stable only for a duration comparable to the longitudinal decay time Γ−1

1 of an isolated
atom. If a second Nyxion is produced by a new pulse within this duration, it can coalesce
with the first to produce a flash of light; without such coalescence the system remains dark.
This system can be used as an optical memory device in which the first Nyxion stores a
(classical) bit and the second Nyxion reads it. However, the device as described above
yields a memory lasting only for a time O(Γ−1

1 ).
We find, however, that the lifetime of the memory can be increased 100-fold by

supplementing the Nyxion producing pulses with a pump of well-chosen constant strength
(a “dc pump”).

The role of symmetry in this procedure arises in a careful interplay of incoherent
and coherent excitations of a large collection of “two-level” atoms, the level separation
being matched by the dominant frequency of the electromagnetic fields (short pulses and
continuing field) applied to the system.

This is a theoretical paper. Our findings are based on quasinumerical simulations.
Our calculations use the complete basis formed by the eigenfunctions of the Liénard–
Wiechert one-dimensional Green function, details of which can be found in [11–13]. These
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eigenfunctions are found analytically; the sums over many eigenstates constitute the
numerical calculation. The numerical part is by far the more computer intensive, as it must
be done independently for each value of the time T during a simulation.

2. Theoretical Model (Methods)

Consider a sample of two-level atoms arranged in the so-called slab geometry, inter-
acting with a classical electromagnetic field (see [11]). The atoms are taken as uniformly
distributed in the “long” dimension (thickness of the slab) from Z = −1 to Z = 1. The
evolution in time T is given [11] by

∂χ(Z, T)

∂T
= −[Γ2 − iΩLn(Z, T)]χ(Z, T) +

i

2
n(Z, T)ψ(Z, T) (1)

∂n(Z, T)

∂T
= −i[χ∗(Z, T)ψ(Z, T)− χ(Z, T)ψ∗(Z, T)] + Γ1(1 − n(Z, T))

− R(T)

2
(1 + n(Z, T)), (2)

ψ(Z, T) = iu0

∫ 1

−1
dZ′χ(Z′, T) exp(iu0|Z − Z′|), (3)

where χ (complex) and n (real) are, respectively, the active medium polarization and the
degree of excitation of the matter (n = 1 if the atoms are all in the ground state and n = −1
if all in the excited state), and ψ represents the normalized complex electric field.

2.1. Notation

All symbols in Equations (1)–(3) and their origin are detailed in [11]. However, in
order to make this exposition as self-contained as possible, we summarize as follows the
relations between the “normalized” (dimensionless) variables appearing in (1)–(3) and the
physical quantities they represent:

The physical thickness of the slab is L = 2z0, and the position variable z has the range
−z0 ≤ z ≤ z0. The dimensionless variable corresponding to z is Z = z/z0, which has the
range −Z0 ≤ Z ≤ Z0. (Similarly, z′, Z′.)

The physical resonant wavelength is λ0, and the corresponding wavenumber is
k0 = 2πc/λ0 where c is the speed of light in vacuo. The dimensionless partner of k0
is u0 = k0z0, so that exp(iu0Z) = exp(ik0z).

Physical time variables t, t0, etc., are converted to dimensionless times T, T0, etc.,
by multiplication with the inverse time C = 4πP2ρ/h̄ where P is the reduced density
matrix of the transition and ρ is the number of atoms per volume, assumed to be constant
throughout the slab.

Physical angular frequencies ω, ω0 have dimensionless partners Ω = ω/C, Ω0 =
ω0/C, so that exp(−iΩT) = exp(−iωt), etc. Likewise, the longitudinal and transverse
isolated-atom decay rates γ1, γ2 have dimensionless partners Γ1 = γ1/C, Γ2 = γ2/C.

The Lorentz shift in our units is ωL = (4π/3)P2ρ/h̄ = C/3 so that its dimensionless
partner is ΩL = ωL/C = 1/3.

2.2. Skeleton Formulas

A “skeleton” version of (1) and (2) is

∂χ(Z, T)

∂T
= +

i

2
n(Z, T)ψ(Z, T)

∂n(Z, T)

∂T
= −i[χ∗(Z, T)ψ(Z, T)− χ(Z, T)ψ∗(Z, T)] (4)

8
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which resembles the familiar magnetic precession equation ~̇B = ~H × ~B if we regard
ℜχ,ℑχ, n/2 as the x, y, z components of the Bloch vector [14] and ℜψ,ℑψ as the x, y
components of a transverse applied magnetic field.

The skeletal version of (3) would be the same as the original:

ψ(Z, T) = iu0

∫ 1

−1
dZ′χ(Z′, T) exp(iu0|Z − Z′|). (5)

in which ψ(Z, T) is displayed as an instantaneous function of χ at other positions, neglecting
retardation so that we write χ(Z′, T) instead of χ(Z′, T′). This can be justified only if
the propagation time L/c is too short to allow any significant evolution to take place in
accordance with (1) and (2) while the light signal is traveling through the thickness of
the slab. All our calculations throughout the paper are consequently contingent on this
assumption.

It should be understood that the quantities χ, ψ in (1)–(3) have the rapid temporal
oscillation exp(−iΩ0T) = exp(−iω0t) factored out. (This is equivalent to writing Bloch’s
Equation [14] in the rotating coordinate system.) On the other hand, the rapid spatial
oscillation is retained and appears in (3) and (5) through the prefactor u0 = k0z0 and the
exponential factor exp(iu0|Z − Z′|) = exp(ik0|z − z′|).

2.3. Limits on n

The reader may wonder how it is certain, from (1) and (2), that n always remains
within the interval from −1 to 1. This can be reasoned out as follows.

Resolve χ = χ1 + iχ2 and ψ = ψ1 + iψ2. Define the “Bloch vector” ~B to be (χ1, χ2, n/2).

Consider the skeletal forms (4). We wish to interpret them as ~̇B = ~H × ~B. Multiplying out
the expression for dn/dT, we find

(d/dT)
n

2
= χ1ψ2 − χ2ψ1 (6)

which is exactly in the desired form, with ~H = (ψ1, ψ2) (the fact that ~H changes with
time makes no difference to the argument). Turning to the skeletal expression for dχ/dT,
we have

(d/dT)χ1 = −n

2
ψ2

(d/dT)χ2 = +
n

2
ψ1 (7)

which is good as far as it goes, but the full analogue to Bloch’s equation would be

(d/dT)χ1 = −n

2
ψ2 + χ2ψ3

(d/dT)χ2 = +
n

2
ψ1 − χ1ψ3 (8)

and so far, we have introduced no quantity ψ3. What should we do?
The missing component ψ3 is in fact the large frequency Ω that has not appeared

because exp(−iΩT) has been factored out of χ, and hence out of ψ1, ψ2, as remarked

above. If we restore it, we obtain exactly the desired form (8). This shows that ~̇B = ~H × ~B
is instantaneously satisfied and the skeletal forms (4) will not cause (χ, n) to grow in
magnitude. Since n starts out between −1 and 1, it will remain so. This conclusion about n
remains true if the fast precession of χ and of ψ1, ψ2 is factored out as in (7).

The third component of H in NMR is usually a very strong unchanging magnetic field
which creates an energy difference between the “up” and “down” states of the dipole. The
corresponding quantity ψ3 = Ω is likewise (apart from the factor h̄) the energy difference
between the two resonant levels. (Physically, it is the incorporation of the frequency Ω into
all of the exciting pulses that selects the resonant levels 1 and 2 and renders all other atomic
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levels insignificant [15,16] except for the rôle of level 3 in realizing the incoherent pump,
see Section 2.4 below).

Now, we must consider the effect of the “nonskeletal” terms. In (1), we have the terms
in Γ2 and ΩL. The first of these simply causes the real decay of χ1 and χ2 independently.
The second is just a correction to the frequency Ω that was factored out. Being imaginary, it
does not change the magnitude of χ.

Finally, we look at the terms in Γ1 and R appearing in (2). The term in Γ1 drives n
toward the ground state n = 1. However, the ground state is never quite reached under the
influence of this term, because Γ1 is multiplied by the factor 1 − n, which vanishes at that
point. Hence, this term can cause only exponential decay toward n = 1, not beyond it.

Likewise, we study the term in R. R is never negative because it always consists of
a sum of positive quantities α (see below). Hence, it can only drive n toward the totally
inverted state n = −1. However, this state is not reached because R is multiplied by
1 + n. Hence, at most, n can only approach the inverted state exponentially. (Actually,
such an approach would trigger superradiance, which also would drive n away from total
inversion; however, the foregoing argument shows independently that the inverted limit
cannot be reached).

2.4. Pump

The pump (by which we mean the two pulses as well as the continuous (dc) pump) is
described by the last term in (2), in which R is a real function of T to be chosen at the start
of each simulation. This term creates only an incoherent excitation of the two-level system,
since n carries no phase. The incoherent pump may be achieved by adding a third level,
higher than the first two, which is driven by a resonant interaction from the first (ground)
level, but which decays with an extremely fast time constant to the second (middle) level,
much faster than any other time parameter in the problem. This rapid decay destroys the
initial 1–3 coherence, leaving the system in an incoherent mixture of levels 1 and 2. The
mixture is parametrized by the population difference n (n = 1 for all atoms in level 1,
n = −1 for all in level 2).

If the incoherence is perfect, the system is left in a state with χ = 0, from which (1)–(3)
provide no escape. This standstill, however, is unstable, and it requires only a minuscule
extra pulse at the 1–2 resonance frequency to activate a positive-feedback loop between the
polarization and the internal field, which stabilizes at a magnitude determined by n. We
do not give the stabilized value of χ analytically, as its calculation requires the nonlinear
methods of [11]. Thus, the only effect of level 3 is to produce the incoherent pumping
effect modulated by R(T); the Equations (1)–(3) are written only in terms of levels 1 and 2
(however, see the issues raised in our Conclusion).

In Equation (1), the transverse decay rate Γ2 (called ΓT in [11]) has been calculated [12,13,17]
to be 2.33/4 + Γ1/2, where the first (large) term is the normalized resonance width in a gas;
this is its value for the (J = 1) → (J = 0) transition in Helium-like atoms, in the statistical
approximation [13]. This value must be adjusted by the individual experimenter depending
on the multiplicities in the atomic transition under study. For the much smaller longitudinal
decay rate Γ1 appearing in Γ2 and in Equation (2), we take a convenient multiple .002 of Γ2
that lies in the range often studied by experimenters on gas lasers at ordinary conditions. Thus,
Γ2 = 1.001 × 2.33/4. In this paper, we fix the physical slab thickness to be L = 2.25λ0 where
λ0 is the resonance wavelength between levels 1 and 2.

The function R(T) is parametrized by six quantities α0, α1, α2, β, R0 and δ. The α’s are
each either 1 or 0 to indicate whether the corresponding input is to be applied or not. The
parameter β determines the delay between the time T0 = 5 when the dc pump, if α0 = 1,
and the first Nyxion, if α1 = 1, are turned on, and the time βT0 when the second Nyxion, if
α2 = 1, is turned on. (This means that the actual delay is only (β − 1)T0, but in this paper,
we shall always have β >> 1.) The reason for making T0 > 0 is only to show the rapid
excitation from the ground state in our graphs, for α1 = 1. The parameter δ controls the
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strength of the dc pump, when α0 = 1. (The purpose of the tanh function multiplying δ is
explained in Section 3 below).

We take for the complete form of the R-function

R(T) = R0[α1 sech2((T − T0)/Ts) + α2 sech2((T − βT0)/Ts) + α0δ tanh(2T/T0)]. (9)

The values T0 = 5 and Ts = 2 are fixed throughout the whole paper. Besides these,
there are four parameters that remain fixed during a simulation as T increases from T0 to its
value at the end: the three α’s and the overall coefficient R0 controlling the pump strength
R(T). To this we may add a fifth constant β, which controls the delay of the second Nyxion
pulse if α2 = 1, and a sixth, δ, which gives the relative strength of the dc pump if α0 = 1.

For our slab thickness 2.25λ0, we find a pump strength R0 = 3.6Γ2 to be suitable. It
is small enough so that the system remains dark after a single Nyxion generating pulse
(α1 = 1, α2 = α0 = 0) but large enough so that the noise coming from machine rounding
for a 32-bit word can be disregarded.

For our main results, we set the relative pump strength at δ = 0.001686. This choice
will be explained in Section 3.

3. Physics (Preliminary Results)

Suppose (α1 = 1, α2 = α0 = 0) that a single pulse is applied at T = T0 with no
continuous (dc) pump. With R0 = 3.6, the system is rapidly excited (Figure 1a) from the
ground state n = 1 to the superradiant threshold n = −0.2. (The reason that the threshold
is not at n = 0 is that when n becomes negative the transverse decay rate Γ2 must be
overcome to keep the system on the Bloch sphere; the laser amplification for a thin slab
such as we are studying is not strong enough to do this easily.) Afterward, the system
relaxes to ground (Figure 1b) at the rate Γ1. (Figure 1c shows the tiny emission coming
from the dark state shortly after reaching threshold).

 a  b  

 c 

Figure 1. α1 = 1, α2 = α0 = 0. Creation (a) and later decay (b) at rate Γ1 of single Nyxion with no
continuous (dc) pump; early subradiant emission (c) from “dark” state.

By adding a second Nyxion pulse, also of subradiant strength in itself (Figure 2a,b)
within this time (α1 = α2 = 1, α0 = 0, 5β < 1000), we can cause the second pulse to “read”
the bit that has been “stored” by the first pulse. The reading produces a superradiant flash
shown in Figure 2c.
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 a     b 

 c 

Figure 2. α1 = α2 = 1, α0 = 0 and 5β = 400. A bit “stored” at T = 5 (creation not shown here, similar
to Figure 1a) is “read” by a second pulse at T = 400 (a,b), and a superradiant flash (c) is produced.

However, suppose that instead of the first pulse, we apply the dc pump at T = T0
(α0 = 1, α2 = α1 = 0). The dc pump is much weaker (δ << 1) than the pulse would have
been, but it continues to operate. (The tanh function multiplying δ in (9) serves only the
purpose of softening the discontinuity which might generate irregularities in the calculations.
For practical purposes, we may think of it as a step function.) Under this continuous influence,
n decreases exponentially (Figure 3a) at the rate Γ1 toward the threshold level −0.2, at which
the dc pump is just strong enough to prevent the decay toward ground. By maintaining the
dc pump, one can prolong the excited state indefinitely in the ideal slab environment.

 a   b 

  c 

Figure 3. α1 = 0, α2 = α0 = 1, 5β = 100,000 and δ = 0.001687. The dc pump is turned on
at T = 5, without an accompanying pulse, but with the relative continuous (dc) pump strength
slightly greater than δcrit. Excitation grows (a) with time constant Γ1 toward steady-state value
n = −0.2. At T =100,000 = 100Γ−1

1 , a “reading pulse” is applied. An “Aurora” results, shown as a
temporary superexcitation of n (b) and an immediately following superradiant emission (c) in the
forward direction.
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The parameter δ has a peculiar influence on what happens if, after using the dc pump
alone as in the preceding paragraph to reach the state with n = −0.2, we apply a “second”
pulse at 5β, which now may be be taken as O(100Γ−1

1 ) (α0 = α2 = 1, α1 = 0, 5β = 100,000).
If δ is sufficiently high, the second pulse may produce a flash (the “Aurora”, Figure 3b,c)
although there was no input pulse at T = T0.

We have found by changing δ in steps of 10−7 that the Aurora never takes place when
δ < δcrit = 0.0016866. Therefore, we have set δ = 0.0016860 in our main calculations, so as
not to provoke an Aurora when α1 = 0. (See Figure 4: α0 = α2 = 1, α1 = 0, 5β = 100,000
and δ = 0.0016860).

 a   b 

  c 

Figure 4. (a–c) α1 = 0, α2 = α0 = 1, 5β = 100,000 and δ = 0.001686. Same parameters as in Figure 3
except that δ has been set slightly lower than δcrit. The Aurora following the “reading pulse” does not
take place (b,c).

4. Delayed Bit Retrieval (Final Results and Discussion)

For our main calculation, we set all three α0 = α1 = α2 = 1 and β = 20,000, δ =
0.0016860. The first input pulse at T = T0 rapidly excites the system (Figure 5a) to n = −0.2.
Meanwhile, the continuous (dc) pump has started to operate and maintains the excitation at
this level, which is its equilibrium point. At T = 5β = 100,000, a second Nyxion pulse is
applied (Figure 5b), and a flash is observed (Figure 5c), qualitatively resembling the Aurora
seen (Figure 3) without an input pulse when δ is set too high.

During the long delay while the dc is maintaining the excitation at n = −0.2, there
is no sign that the first pulse has had any effect. Everything looks just as though we had
set α1 = 0 as in Figure 4. However, there is a hidden effect, revealed (Figure 5) when the
second pulse is applied. Thus, we may consider the first pulse as the “input” of a bit which
is “read” by the second pulse. In the presence of the dc pump, the delay between storing
and reading is 100 times the isolated atom decay time Γ−1

1 , and the output signal (Figure 5c)
is 4–5 orders of magnitude greater than that produced (too small to see in Figure 4c but
shown by the underlying data from the simulation) in the absence of an input.

Thus, the simulations indicate that by including a dc pump in the function R(T), a bit of
information (pulse or no pulse at T = T0) can be read with essentially no error after a delay
as long as 100 times the isolated atom decay rate. What is more, the multiple 100 has been
chosen arbitrarily; there is no reason, within the framework of our calculations, that it could
not be made arbitrarily large. Perhaps the practical limit will have to do with the possibility
of experimentally achieving the ideal slab picture, or with the assumption (“pressure
broadening”) that Γ2 is so large that all broadening can be regarded as homogeneous.
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 a   b 

  c 

Figure 5. α1 = α2 = α0 = 1, 5β = 100,000 and δ = 0.0016860. Both continuous (dc) pump and
“storage” pulse are turned on together at T = 5. The initial reaction (a) is dominated by the initial
pulse. (Slight overshoot of n = −0.2 is corrected at T = 70.) After reaching n = −0.2, the system
does not decay as shown in Figure 1a,b, but is maintained by the dc pump at n = −0.2 until it is
discharged (b,c) by the “reading” pulse. The relative dc pump strength has been set below δcrit so that
the discharge would not have taken place in the absence of the initial storage pulse (compare with
Figure 4b,c).

5. Conclusions

We repeat that these theoretical predictions can in principle be tested experimentally
without cold-atom technology, and do not bear on the storage of quantum bits. We hope that
the present paper will encourage research in classical bit storage and retrieval on the part
of experimental scientists who seek to achieve a significant result with low-tech methods.

At the same time, we warn that the realization of an incoherent pump as described
in Section 2 may pose challenging problems in practice. Although first observed [4] in
1985, the production of subradiant states has always gained far less attention than that of
superradiant states.

Perhaps the most troubling possibility is the production of local pockets of quasi-
superradiance inherited from the initial 1 → 3 excitation. If such pockets are distributed
unevenly through the lateral extent of the slab, they will destroy the crucial assumption of
Section 2, that the value of χ at any time depends spatially only on Z. Perhaps this could be
prevented by selecting a substance for which the 3 → 2 transition is strongly inhomogeneously
broadened (in contrast to the 2 → 1 transition which is assumed essentially homogeneous).

On the other hand, a slight deviation from total incoherence in noninteracting atoms
is probably harmless—in fact, it may obviate the requirement of a 1 → 2 micropulse to kick
χ out of the null state.

It must be admitted that our scheme appears quite naive in comparison with some
recent studies of incoherent pumping [18,19]. On the other hand, we aim for less. We
are not trying to use subradiant pumping to target a particular sublevel of level 2. On
the contrary, we assume that Γ2 is large enough so that any such sublevels will merge
effectively into a single spectral line.

One can also hope that experimenters interested in our proposal will think of improve-
ments that would never have occurred to the present authors. We can only claim that if
the configuration described in (1)–(3) can be produced, our calculations indicate that some
interesting long-life advances in classical bit storage and retrieval will be possible.
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Abstract: Electron transport through a one-dimensional quantum ring, subjected to Rashba spin–
orbit interaction and connected with two external leads, is studied in the presence of external fields.
They include the optical radiation, produced by an off-resonant high-frequency electric field, and
a perpendicular magnetic field. By means of the Floquet theory of periodically driven quantum
systems the interference effects under these fields are described in detail. It is found analytically the
specific conditions to reach the spin-filtering effect, caused by the interplay of the external fields and
Rashba spin-orbit interaction.

Keywords: Rashba spin–orbit interaction; semiconductor quantum ring; Floquet theory; light–matter
coupling; magnetic field

1. Introduction

Progress in nanotechnology raised a tremendous activity in the field of quantum
electronics. In particular, a special attention is paid to the possibility to use spin–orbit
interaction (SOI) for the design of nanoelectronic devices, based on control of electron spin
without application of the magnetic field. In semiconductors there are two mechanisms of
SOI: the Dresselhaus SOI [1], caused by the inversion asymmetry of the crystal lattice; the
Rashba SOI [2], produced by the inversion asymmetry of a heterostructure. It is important
to note that the strength of the Dresselhaus SOI is determined exclusively by the material,
while the strength of the Rashba SOI can be by altered externally, for example, by means
of a gate voltage. Therefore, the vast majority of literature, devoted to spin-dependent
transport in nanostructures, is focused on materials with spin–orbit interaction of Rashba
type (e.g., Refs. [3,4]).

It was recently proposed to use a strong off-resonant optical field to manipulate spin-
orbit coupling [5]. In this case there is no real absorption of the wave. This is so-called
regime of strong light–matter interaction, when quantum nature of light can drastically
modify the properties of the matter itself. In fact, recent progress in laser physics provides
the possibility to use optical high-frequency fields to control various atomic and condensed–
mater structures, based on the Floquet theory of periodically driven quantum systems
(e.g., Refs. [6–8]). The concept of radiation-dressed states in atom [9] is the fundamental
background for this consideration. In this case, the hybrid electron-field object (dressed
electron) represents an elementary quasiparticle, which physical properties can differ
sufficiently from the “bare” electron.

Thanks to new generation of high-efficient lasers, this phenomenon may render pos-
sible its wide application in semiconductor physics. In particular, physical properties of
dressed electrons have been studied in quantum wells [10], quantum rings [11,12], and
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topological insulators [13,14]. Evidently, this phenomenon becomes quite attractive for
spintronics as well, since the spin of individual carriers can be controlled by optical means
with or without application of the magnetic field, indeed. From this point of view semi-
conductor quantum rings with the Rashba SOI represent a fertile ground in the regime of
strong light–matter coupling for applied physics, as well as for study of effects of different
geometric phases [15]. The control of electron spin by means of the optical method and by
a weak external magnetic field, and its consequences for transport properties in the above
system have been escaped in previous studies (see, e.g., Refs. [3,16–20] and references
therein). The main goal of this paper is to fill this gap in the case of the ring with the Rashba
SOI for dressed electrons in magnetic field.

2. Model

2.1. The Hamiltonian

To analyse the regime of strong light–matter interaction, we consider the
two-dimensional (2D) Hamiltonian describing ballistic electrons of charge −e(e > 0)
and the effective mass m, in the presence of the Rashba SOI, a magnetic field and a high-
frequency electric field:

Ĥ =
1

2m
ΠΠΠ2 + α(σσσ ×ΠΠΠ)z + gµσσσBBB + V(rrr) . (1)

Here σσσ is the vector of the Pauli spin matrices, ΠΠΠ = ppp+ eAAA, α is the strength of the Rashba
SOI. The vector potential of a linear polarised electromagnetic wave AAA = ([E0/ω] cos(ωt)−
By/2, Bx/2, 0) includes the magnetic field BBB, pointing in the z direction (perpendicular to
the plane). The electric field is characterised by the amplitude E0 and by the wave frequency
ω. We consider a narrow ring, characterised by a steep confining potential V(rrr). If the field
is time-independent and E0 = 0, in such a ring geometry the electron energy spectrum is
determined by the 1D Hamiltonian in polar coordinates (see also [17,21]):

Ĥ
(0)
R =

h̄2

2mR2

(
−i

∂

∂ϕ
+

Φ

Φ0

)2

+
h̄ωB

2
σz + h̄ωRσx(ϕ)

(
−i

∂

∂ϕ
+

Φ

Φ0

)
− i

h̄ωR

2
σy(ϕ) . (2)

Here, ωB = 2µB/h̄, ωR = α/R, σx(ϕ) = cos ϕσx + sin ϕσy, σy(ϕ) = cos ϕσy − sin ϕσx,
ϕ is the polar angle of the electron on the ring, Φ = πBR2 is the magnetic flux through the
ring, and the magnetic flux quantum Φ0 = h/e. Once we add a time-dependent electric
field the Hamiltonian of an irradiated ring takes the following form

Ĥ1D = ĤR +

[
2

∑
n=1

V̂neinωt + H.c

]
, (3)

where the stationary term is complemented by a field-induced constant energy shift

ĤR = Ĥ
(0)
R + E

(0)
shift , E

(0)
shift =

e2E2
0

4mω2 . (4)

The periodic term consists of two harmonics, raised by the irradiation,

V̂1 = − eE0

2mRω

(
sin ϕl̂z,Φ − ih̄

cos ϕ

2

]
− αeE0

2ω
σy , (5)

V̂2 =
e2E2

0
8mω2 , (6)

and we introduce the notation l̂z,Φ = −ih̄∂ϕ + h̄Φ/Φ0.
In the following we employ the high-frequency approximation for a periodically

driven quantum system (for a review see, e.g., Ref. [22]). Such the approach provides a
systematic high-frequency expansion for the effective Hamiltonian. In our analysis, we

18



Symmetry 2022, 14, 1194

consider only the leading terms in the high-frequency limit. As a result, we can reduce the
time-dependent Hamiltonian (3) to the effective time-independent one (see also [19]):

Ĥ = ĤR +
2

∑
n=1

[V̂n, V̂†
n ]

nh̄ω
+

2

∑
n=1

[V̂n, ĤR], V̂†
n ] + H.c.

2(nh̄ω)2 = Ĥ0 + V̂ , (7)

where

Ĥ0 =
l̂2
z,Φ

2m∗R2 + ωR

[
σx(ϕ)l̂z,Φ − ih̄

σy(ϕ)

2

]
−
(

eE0α

Rω2

)2 l̂z,Φ

mh̄
σz (8)

+
h̄ωB

2
σz + E

(0)
shift + E

(1)
shift , E

(1)
shift =

1
2m

(
h̄eE0

4mR2ω2

)2

V̂ =
h̄2

2mR2

[
V̂a + V̂b +

(
γ1 l̂z,Φ

2h̄

)2

cos 2ϕ

]
, (9)

V̂a =

[
3
16

γ2
1 cos 2ϕ − iγ2

1γ2

(
γ2

2 −
1
4

)
σx sin ϕ

]
, (10)

V̂b =

[
i
2

γ2
1 sin 2ϕ − 2γ2

1γ2

(
γ2

2 −
1
4

)
σx cos ϕ

]
l̂z,Φ

h̄
. (11)

Here, we introduce the following notations:

γ1 = eE0/(mRω2) , γ2 = mRα/h̄ , m∗ =
m

1 + 3(γ1/2)2 . (12)

The irradiation leads to the mass renormalization, i.e., m → m∗. It yields as well the

energy shift to the zero energy ∆E = E
(0)
shift + E

(1)
shift, and introduces the coupling between

the strength of the Rashba SOI and the ring radius by means of the parameter γ2.

2.2. The Eigenvalue Problem

The Hamiltonian (7) possess the azimuthal symmetry. The operator Ĵz = I ⊗ (−ih̄∂ϕ)+
h̄σz/2, defined in the laboratory frame, is an integral of motion [H, Ĵz] = 0. Let us anal-
yse, first, the eigenvalue problem for the Hamiltonian (8). It is convenient to trans-
form this Hamiltonian in the rotating frame by means of the unitary transformation
R = exp[i(σz/2)ϕ]. As a result, we obtain

ˆ̃H = RH0R+ =
X̂2

z,Φ

2m∗R2 +
α

R

[
σxX̂z,Φ − ih̄

σy

2

]
−
(

eE0α

Rω2

)2 X̂z,Φ

mh̄
σz +

h̄ωB

2
σz + ∆E . (13)

X̂z,Φ = −ih̄∂ϕ + h̄Φ/Φ0 − h̄
σz

2
. (14)

In the rotating frame the operator Ĵz takes the following form

ˆ̃Jz = RĴzR+ = I ⊗ (−ih̄∂ϕ) . (15)

Consequently, we search the eigenfunctions of the Hamiltonian (13) in a general form

Φs
j (ϕ) = eijϕχs

j , χs
j =

(
χs

1
χs

2

)
. (16)

Evidently, the eigenvalues of the operator Ĵ are expected to be half-integers in the
laboratory frame, that should be hold in the rotating frame as well (RR−1 = 1)

ˆ̃JzΦs
j (ϕ) = h̄jΦs

j (ϕ), j = λn + 1/2, n = 1, 2, 3, . . . . (17)
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Here, the orbital quantum number n corresponds to the electron rotation either in the
counterclockwise direction λ = +1, or in the clockwise one λ = −1. The solution of the
Schrödinger equation by means of the probe functions (16) yields the eigenenergies

Es
j = h̄ω0



(

j +
Φ

Φ0

)2

+
1
4
+ s

√

Ω2 +

(
m∗

m

)2

Q2
R

(
j +

Φ

Φ0

)2

+ ∆E; s = ±1 , (18)

where

Ω =
ωB

2ω0
−
[

1 + 2Q2
E

m∗

m

](
j +

Φ

Φ0

)
. (19)

Here, we introduce the following definitions: ω0 = h̄/(2m∗R2), QE = eE0α/(h̄ω2),
and QR = 2mαR/h̄. For the eigenfunctions we obtain two sets

χ
(s=1)
j =

(
sin γ

2
cos γ

2

)
, χ

(s=−1)
j =

(
cos γ

2
− sin γ

2

)
, (20)

where

tan γ =
αh̄/R

(
j + Φ

Φ0

)

Ω
=

QRm∗/m

1 + 2Q2
Em∗/m − ωB/[2ω0(j + Φ/Φ0)]

, (21)

γ is the angle between the local spin quantization axis and the z-axis. The high-
frequency (dressing) field decreases this angle relative to its value tan γ = QR, obtained
in Ref. [20] without the external electric field (E0 = 0) and Zeeman interaction. Evidently,
a proper choice of the Rashba coupling and parameters of the external high-frequency
electric field may lead to new features of the considered system (see below).

The eigenstates of the Hamiltonian (8) are defined in the laboratory frame as

Ψs
j (ϕ) = e−i σz

2 ϕΦs
j (ϕ) = eijϕe−i σz

2 ϕχs
j . (22)

Before proceeding further, there are a few comments required. The total effective
Hamiltonian (7) consists of the discussed Hamiltonian (8) and the term V̂. The terms (9)–(11)
are of order ∼γ2

1. In the high-frequency approximation, considered in our paper, γ1 ≪ 1.
Consequently, we neglect the contribution of the above terms, and will analyse the trans-
port properties of semiconductor quantum rings with the reduced Hamiltonian (8) (see
also the discussion in Ref. [19]). For a typical semiconductor (for example, GaAs) the
magnetic orbital effect is much enhanced in comparison with the magnetic spin effect
(see, e.g., Ref. [23]). Moreover, we will consider the effect of the weak magnetic field (see
below). Consequently, without loss of generality, we can neglect the Zeeman effect in
Equations (19) and (21) and obtain

Es
λ,n = h̄ω0

[(
λn +

1
2
+

Φ

Φ0

)2

+
1
4
+ s

∣∣∣∣λn +
1
2
+

Φ

Φ0

∣∣∣∣× (23)

×
√[

1 + 2Q2
E

m∗

m

]2

+

(
m∗

m

)2

Q2
R

]
,

where the energy shift ∆E is omitted, since it is the same constant for the electron dressed
levels. In the case: (i) E0 = 0; (ii) BBB = 0, the reduced energies Equation (23) are equivalent
to the energies obtained in Ref. [17]. These energies are maximised for the up spin states
| ↑〉, i.e., for s = 1; and the factor QR plays the important role in transport properties. The
external high-frequency electric field gives rise to the additional factor QE. As we will see
below, its interplay with the factor QR leads to novel phenomena in transport properties of
the semiconductor rings.
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3. Transport Properties

In this section, we investigate the effect of two factors, QR and QE, on the conductance
and the polarization of the ballistic current in our 1D model. To model realistic transport, it
is desirable to take into account the effects of disorder. Since we consider the high-frequency
limit (a semiclassical regime), there are different classical paths connecting the entrance
and exit attached leads. It seems reasonable to assume that only pairs with the same length
could contribute essentially to the conductance. In our consideration we assume a perfect
coupling between leads and ring, neglecting the backscattering effects. In other words, in
our model the interference effects arising from counterclockwise and clockwise waves.

Thus, the wave function of an incoming electron from the left lead, attached to the
ring, is split at the ring entrance into four partial waves. In particular, we consider that
electrons with Fermi energy EF move from the entrance to the exit with four different wave
numbers n ⇒ λns

λ. In this case the eigenstates (22) can be written as (see also the discussion
in Ref. [17])

Ψ1
+n(ϕ) = ein+1

+ ϕ

(
sin γ

2
cos γ

2 eiϕ

)
, (24)

Ψ−1
+n(ϕ) = ein−1

+ ϕ

(
cos γ

2
− sin γ

2 eiϕ

)
, (25)

Ψ1
−n(ϕ) = e−in+1

− ϕ

(
cos γ

2
− sin γ

2 eiϕ

)
, (26)

Ψ−1
−n(ϕ) = e−in−1

− ϕ

(
sin γ

2
cos γ

2 eiϕ

)
. (27)

They meet at the exit (a right attached lead), exactly opposite to the entrance. The
wave, propagating clockwise, travels the angle −π from the entrance to the exit. The wave,
propagating counterclockwise, travels the angle π from the entrance to the exit.

3.1. Conductance

In order to analyse the conductance we use the Landauer–Büttiker formalism. In this
case the conductance at zero temperature has the following form (see, e.g., Ref. [24])

G =
e2

h ∑
s,s′

Ts,s′ . (28)

Here, Ts,s′ = |ts,s′ |2 is the quantum probability of transmission between incoming
state with spin s′ and outgoing state with spin s; ts,s′ is the corresponding transmission
amplitude. Using the results from Appendix A, we arrive to the expression

G =
e2

h

[
1 +

1
2
[cos π(n−1

− − n+1
+ ) + cos π(n+1

− − n−1
+ )]

]
. (29)

The quantities ns
λ can be obtained from the solution of Equation (18) at the condition

Es
λ,n = EF for different spin orientation s = ±1.

n−1
− − n+1

+ = 1 + 2
Φ

Φ0
+

√[
1 + 2Q2

E

m∗

m

]2

+

(
m∗

m

)2

Q2
R , (30)

n+1
− − n−1

+ = 1 + 2
Φ

Φ0
−
√[

1 + 2Q2
E

m∗

m

]2

+

(
m∗

m

)2

Q2
R . (31)
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Taking into account Equations (30) and (31), we arrive to the final expression for
the conductance

G =
e2

h


1 − cos

(
2π

Φ

Φ0

)
cos π

√[
1 + 2Q2

E

m∗

m

]2

+

(
m∗

m

)2

Q2
R


 . (32)

Now we are ready to trace the conductance behaviour as a function of the following
variables: (i) the strength of the Rashba interaction α; (ii) the electric field E0; and (iii)
the magnetic field. As a typical example, we consider InGaAs-based quantum rings with
the following parameters: the effective mass m = 0.045me, radius R ≈ 200 nm, and the
strength of the Rashba SOI α ≈ 104 m/s. The effective mass and the radius determine the
energy scale h̄ω0 ≡ h̄2/(2mR2) ≈ 2.16 × 10−5 eV at m∗ = m. Assuming the maximal flux
Φ = 0.5Φ0 through the ring in our consideration, we obtain

µB =
eh̄

2me
× h̄

e

1
R2 ≪ h̄ω0 . (33)

Our approximation (neglecting the Zeeman term) is quite satisfactory, indeed.
At zero magnetic and electric fields the conductance is modulated by the strength QR

alone [17]. Taking into account that the amplitude

E0 =

√
2I

ε0c
, (34)

where I is the irradiance intensity, ε0 is the vacuum permittivity, we can enrich the inter-
ference of the conductance from the destructive to constructive and vice versa by altering
the intensity at a fixed value of the Rashba SOI α (see Figure 1). Once we switch on the
magnetic field, the conductance modulations are reversed (see Figure 2). Moreover, the
oscillations are removed with a proper choice of of the Rashba SOI strength.
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Figure 1. Conductance versus irradiation intensity I. Electron effective mass m = 0.045me, the Rashba
coupling constant α = 5 × 104 ms−1, and the ring radius is R = 200 nm. The dressing field has the
frequency ω = 1.6 × 1012 s−1, the magnetic flux Φ = 0.

Thus, the magnetic field provides the additional key element of possible ring-shaped
spintronic devices operated by light.
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Figure 2. Conductance versus irradiation intensity I for different Rashba coupling constant α. Electron
effective mass m = 0.045me and the ring radius is R = 200 nm. The dressing field has the frequency
ω = 1.6 × 1012 s−1, the magnetic flux Φ = 0.5Φ0.

To get deeper inside let us consider the minimum of the conductance at m∗ = m. At
zero magnetic field, we have the condition

cos π

√[
1 + 2Q2

E

m∗

m

]2

+

(
m∗

m

)2

Q2
R = 1 , (35)

which is subject to the equation

√[
1 + 2Q2

E

]2
+ Q2

R = 2n, n = 1, 2, . . . . (36)

By introducing the variables

sin γ =
QR

2n
, cos γ =

1 + 2Q2
E

2n
, (37)

we arrive to Equation (21) at ωB = 0. Thus, the single-valuedness of the eigenfunctions (20)
determines the character of the conduction modulations (35).

3.2. Spin-Filtering Effect

The question we address in this section is could we control the polarization of the
electron beam by means of our quantum ring with the aid of the intensity of the external
electric field and with the strength of the vertical magnetic field?

The spin polarization P, determined as

P =
T↑↑ + T↑↓ − T↓↑ − T↓↓
T↑↑ + T↓↑ + T↑↓ + T↓↓

, (38)

in virtue of the results for transmission probabilities T
σσ

′ (see Appendix A), yields

P = cos 2γ
sin
(

2π Φ
Φ0

)
sin π

√[
1 + 2Q2

E
m∗
m

]2
+
(

m∗
m

)2
Q2

R

1 − cos
(

2π Φ
Φ0

)
cos π

√[
1 + 2Q2

E
m∗
m

]2
+
(

m∗
m

)2
Q2

R

. (39)

From Equation (39) it follows that the presence of the magnetic field is the basic
condition for the polarization process, since P = 0 at Φ = nΦ0/2, n = 0, 1, 2, . . .. On the
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other hand, once the magnetic field takes, for example, the value Φ/Φ0 = 1/4, we can
require that

sin π

√[
1 + 2Q2

E

m∗

m

]2

+

(
m∗

m

)2

Q2
R = 1 . (40)

Without loss of generality we consider the case m∗ = m and obtain

sin γ =
QR

k
, cos γ =

(1 + 2Q2
E)

k
, k = 2n + 1/2, n = 0, 1, 2, . . . (41)

In this case the polarization is defined as

P = cos 2γ = [(1 + 2Q2
E)

2 − Q2
R]/k2 . (42)

At a fixed value of the strength of the Rashba SOI, we can define the value of the
intensity of the electric field that could provide the maximal polarization P = 1 (see
Figure 3).
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Figure 3. Spin polarization P versus the irradiation intensity I. The calculations are performed at the
magnetic flux Φ = 0.25Φ0; the dressing field frequency is ω = 0.8 × 1012 s−1. The solid (blue) line
corresponds to the strength α = 2× 104 m/s, while the dashed (red) line corresponds to α = 104 m/s.

For example, taking into account the definition of QE = eE0α/(h̄ω2) and the intensity (34),
we have at k = 1/2

2Q2
E =

√
Q2

R +
1
4
− 1 =

4I

ε0c

(
h̄ω2

eα

)2

. (43)

From Equation (43) it follows evidently that QE > 0 if the following relation takes
place (taking into account the definition QR = (2mR/h̄)α)

α >

√
3

2
Rω0 . (44)

Once this condition is fulfilled, the minimal value of the intensity is

I =
ε0c

4

(
h̄ω2

eα

)−2[√
Q2

R +
1
4
− 1

]
, (45)

that allows to observe the spin-filtering effect in our system. Altering the value of the
magnetic field, we can decrease, as well, the dynamic threshold intensity field at a fixed
value of the strength of the Rashba SOI (see Figure 4).

24



Symmetry 2022, 14, 1194

0 500 1000 1500 2000
-1.0

-0.5

0.0

0.5

1.0

IHW�cm
2L

P

Α=10
4
m s
-1

Α=2´10
4
m s
-1

Figure 4. Similar to Figure 3 at the magnetic flux Φ = 0.2Φ0.

4. Conclusions

The effect of a high-frequency optical field and an external magnetic field on quantum
transport through the one-dimensional quantum ring subject to Rashba SOI is manifested in
a rich variety of phenomena. To carry on our analysis of the external fields, we employed the
Floquet theory of periodically driven quantum system. In our consideration we assumed a
perfect coupling between leads and ring, neglecting the backscattering effects. In this limit,
several mechanisms, responsible for quantum interference effects have been proposed. In
particular, it shown that the conductance oscillations, produced by the ring irradiated by
the dressing field, can be reversed by the application of the weak magnetic field (compare
Figures 1 and 2). In other words, our system behaves like a diode, operating at a certain
intensity of the dressing field, that allows the current flow only at a certain value of the
external magnetic field. Finally, we formulated analytically the requirements to reach the
spin- filtering effects under the external fields (see Section 3.2). Our findings may provide
new capabilities for spintronics devices, exploiting the combined effect of optical and
magnetic fields.
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Appendix A. Transmission Probabilities

Let us consider the case of the incoming electron with spin ↑ (s = +1) [see Equation (20)]
entering the ring at ϕ = 0

| ↑〉 =
(

sin γ
2

cos γ
2

)
. (A1)
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Evidently, states of a particular spin split equally into the clockwise path (λ = −1)
and the counterclockwise path (λ = 1) in the ring

|Ψ(↑, ϕ)〉 = 1
2

exp[in+1
+ ϕ]

(
sin γ

2
cos γ

2 eiϕ

)
+

1
2

exp[−in−1
− ϕ]

(
sin γ

2
cos γ

2 eiϕ

)
(A2)

Additionally, in particular, we have at the exit of the ring

|Ψ(↑, π)〉 = 1
2

exp[in+1
+ π]

(
sin γ

2
cos γ

2 eiπ

)
+

1
2

exp[−in−1
− (−π)]

(
sin γ

2
cos γ

2 e−iπ

)
(A3)

Consequently, the probability amplitude without the spin flip for the incoming electron
with spin ↑ is

t↑↑ = 〈↑ |Ψ(↑, π)〉 , (A4)

which determines the corresponding transmission probability as

T↑↑ = |t↑↑|2 =
1
2

cos2 γ
[
1 + cos π(n−1

− − n+1
+ )
]

. (A5)

The amplitude of probability that the incoming electron with spin ↑ is outgoing with
the spin ↓ [see Equation (20)] is

t↓↑ = 〈↓ |Ψ(↑, π)〉 , | ↓〉 =
(

cos γ
2

− sin γ
2

)
, (A6)

which yields the following result

T↓↑ = |t↓↑|2 =
1
2

sin2 γ
[
1 + cos π(n−1

− − n+1
+ )
]

. (A7)

Let us consider the case of the incoming electron with spin ↓ (s = −1) [see Equation (20)]
entering the ring at ϕ = 0. In this case electron traverses the ring, and its wave function
[see Equations (25) and (26)] is

|Ψ(↓, ϕ)〉 = 1
2

exp[in−1
+ ϕ]

(
cos γ

2
− sin γ

2 eiϕ

)
+

1
2

exp[−in+1
− ϕ]

(
cos γ

2
− sin γ

2 eiϕ

)
. (A8)

It takes the following form at the exit of the ring

|Ψ(↓, ϕ)〉 = 1
2

exp[in−1
+ π]

(
cos γ

2
− sin γ

2 eiπ

)
+

1
2

exp[−in+1
− (−π)]

(
cos γ

2
− sin γ

2 ei(−π)

)
. (A9)

For the amplitude of probability that the incoming electron with spin ↓ is outgoing
with spin ↓ we have

t↓↓ = 〈↓ |Ψ(↓, π)〉 . (A10)

Consequently, the corresponding transmission probability is

T↓↓ = |t↓↓|2 =
1
2

cos2 γ
[
1 + cos π(n+1

− − n−1
+ )
]

. (A11)

The amplitude of probability that the incoming electron with spin ↓ is outgoing with
spin ↑ is

t↑↓ = 〈↑ |Ψ(↓, π)〉 . (A12)

It results in the following transmission probability

T↑↓ = |t↑↓|2 =
1
2

sin2 γ
[
1 + cos π(n+1

− − n−1
+ )
]

. (A13)

26



Symmetry 2022, 14, 1194

References

1. Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 1955, 100, 580. [CrossRef]
2. Bychkov, Y.A.; Rashba, E.I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 1984, 39, 78.
3. Bercioux, D.; Lucignano, P. Quantum transport in Rashba spin-orbit materials: A review. Rep. Prog. Phys. 2015, 78, 106001.

[CrossRef] [PubMed]
4. Pichugin, K.; Puente, A.; Nazmitdinov, R. Kramers degeneracy and spin inversion in a lateral quantum dot. Symmetry 2020,

12, 2043. [CrossRef]
5. Sheremet, A.S.; Kibis, O.V.; Kavokin, A.V.; Shelykh, I.A. Datta-and-Das spin transistor controlled by a high-frequency electromag-

netic field. Phys. Rev. B 2016, 93, 165307. [CrossRef]
6. Goldman, N.; Dalibard, J. Periodically Driven Quantum Systems: Effective Hamiltonians and Engineered Gauge Fields. Phys.

Rev. X 2014, 4, 031027. [CrossRef]
7. Holthaus, M. Floquet engineering with quasienergy bands of periodically driven optical lattices. J. Phys. B 2016, 49, 013001.

[CrossRef]
8. Meinert, F.; Mark, M.J.; Lauber, K.; Daley, A.J.; Nägerl, H.-C. Floquet Engineering of Correlated Tunneling in the Bose-Hubbard

Model with Ultracold Atoms. Phys. Rev. Lett. 2016, 116, 205301. [CrossRef]
9. Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G. Atom-Photon Interactions: Basic Processes and Applications; Wiley–VCH:

Hoboken, NJ, USA, 2004.
10. Teich, M.; Wagner, M.; Schneider, H.; Helm, M. Semiconductor quantum well excitons in strong, narrowband terahertz fields.

New J. Phys. 2013, 15, 065007. [CrossRef]
11. Joibari, F.K.; Blanter, Y.M.; Bauer, G.E.W. Light-induced spin polarizations in quantum rings. Phys. Rev. B 2014, 90, 155301.

[CrossRef]
12. Koshelev, K.L.; Kachorovskii, V.Y.; Titov, M. Resonant inverse Faraday effect in nanorings. Phys. Rev. B 2015, 92, 235426. [CrossRef]
13. Foa Torres, L.E.F.; Perez-Piskunow, P.M.; Balseiro, C.A.; Usaj, G. Multiterminal Conductance of a Floquet Topological Insulator.

Phys. Rev. Lett. 2014, 113, 266801. [CrossRef] [PubMed]
14. Mikami, T.; Kitamura, S.; Yasuda, K.; Tsuji, N.; Oka, T.; Aoki, H. Brillouin-Wigner theory for high-frequency expansion in

periodically driven systems: Application to Floquet topological insulators. Phys. Rev. B 2016, 93, 144307. [CrossRef]
15. Nagasawa, F.; Frustaglia, D.; Saarikoski, H.; Richter, K.; Nitta, J. Control of the spin geometric phase in semiconductor quantum

rings. Nat. Commun. 2013, 4, 2526. [CrossRef]
16. Molnár, B.; Peeters, F.M.; Vasilopoulos, P. Spin-dependent magnetotransport through a ring due to spin-orbit interaction. Phys.

Rev. B 2004, 69, 155335. [CrossRef]
17. Frustaglia, D.; Richter, K. Spin interference effects in ring conductors subject to Rashba coupling. Phys. Rev. B 2004, 69, 235310.

[CrossRef]
18. Citro, R.; Romeo, F.; Marinaro, M. Zero-conductance resonances and spin filtering effects in ring conductors subject to Rashba

coupling. Phys. Rev. B 2006, 74, 115329. [CrossRef]
19. Kozin, V.K.; Iorsh, I.V.; Kibis, O.V.; Shelykh, I.A. Quantum ring with the Rashba spin-orbit interaction in the regime of strong

light-matter coupling. Phys. Rev. B 2018, 97, 155434. [CrossRef]
20. Frustaglia, D.; Nitta, J. Geometric spin phases in Aharonov-Casher interference. Sol. State Comm. 2020, 311, 113864. [CrossRef]
21. Meijer, F.E.; Morpurgo, A.F.; Klapwijk, T.M. One-dimensional ring in the presence of Rashba spin-orbit interaction: Derivation of

the correct Hamiltonian. Phys. Rev. B 2002, 66, 033107. [CrossRef]
22. Eckardt, A.; Anisimovas, E. High-frequency approximation for periodically driven quantum systems from a Floquet-space

perspective. New J. Phys. 2015, 17, 093039. [CrossRef]
23. Heiss, W.D.; Nazmitdinov, R.G. Orbital magnetism in small quantum dots with closed shells. JETP Lett. 1998, 68, 915. [CrossRef]
24. Ihn, T. Semiconductor Nanostructures; Oxford University Press: New York, NY, USA, 2010.

27





Citation: Pathak, M.R.; Nath, A.

Formation of Matter-Wave Droplet

Lattices in Multi-Color Periodic

Confinements. Symmetry 2022, 14,

963. https://doi.org/10.3390/

sym14050963

Academic Editors: V.I. Yukalov, V. S.

Bagnato and Rashid G.

Nazmitdinov

Received: 12 April 2022

Accepted: 5 May 2022

Published: 9 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Formation of Matter-Wave Droplet Lattices in Multi-Color
Periodic Confinements

Maitri R. Pathak and Ajay Nath *

Indian Institute of Information Technology Vadodara Gujarat India, Gandhinagar 382028, India;
201773002@iiitvadodara.ac.in
* Correspondence: ajay.nath@iiitvadodara.ac.in

Abstract: In the paper, we introduce a new model that addresses the generation of quantum droplets
(QDs) in the binary Bose–Einstein condensate (BEC) mixture with mutually symmetric spinor com-
ponents loaded in multi-color optical lattices (MOLs) of commensurate wavelengths and tunable
intensities. The considered MOL confinement is the combination of the four-color optical lattice with
an exponential periodic trap, which includes the complete set of the Fourier harmonics. Employing
the one-dimensional (1D) extended Gross–Pitäevskii equation (eGPE), we calculate the exact analyti-
cal form of the wavefunction, MF/BMF nonlinearities, and MOL trap parameters. Utilizing the exact
solutions, the formation of supersolid-like spatially periodic matter-wave droplet lattices and superlat-
tices is illustrated under the space-periodic nonlinearity management. The precise positioning of the
density maxima/minima of the droplet patterns at the center of the trap and tunable Anderson-like
localization are observed by tuning the symmetry and amplitude of the considered MOL trap. The
stability of the obtained solution is confirmed using the Vakhitov–Kolokolov (VK) criterion.

Keywords: quantum droplets; multi-color periodic confinement; Bose–Einstein condensate

1. Introduction

Bose–Einstein condensates (BECs) and ultracold atoms confined in an optical lat-
tice (OL) trap constitute an ideal experimental platform for the quantum simulations of
emerging quantum many-body phenomena [1–5]. The experimental observation of the
zero-temperature quantum phase transition in a strongly interacting Mott insulator [6] and
weakly interacting Bose gas [7] utilizing the OL confinement provides a significant example
for the same. Further, the OL is widely used to investigate the fundamental physics prob-
lems: Anderson localization [8], negative temperature [9–11], supersolid phase [12], etc.,
and it also provides the basis for the development of quantum technologies: quantum mem-
ory [13], registers [14], optical lattice clocks [15], and entanglement [16]. Experimentally, the
OL trap is formed by the superposition of two counter propagating laser beams, resulting
in the generation of an artificial crystal of light with spatially periodic polarization patterns,
which is tunable through the power and period of the overlapping lasers [1,11]. Different
engineered forms of OL geometries such as bi-periodic, kagome, hexagonal, double-well
superlattices, etc., are regularly experimentally realized by interfering different sets of
laser beams [17]. A number of interesting physical phenomena have been reported in
the presence of the above-mentioned geometrically frustrated OLs, including frustrated
quantum magnetism at negative absolute temperature [18], many-body localization [19],
the exploration of the ionic Hubbard model with ultracold fermions [20], and Hund’s metal
in multicomponent Fermi systems [21].

Currently, a new class of quantum liquids, ultradilute quantum droplets (QDs), has
aroused a great deal of attention in the field of BECs [22–24]. Usually, the BEC dynamics is
studied in the presence of an external trap, since it is commonly known to exist in a gaseous
phase, and in the absence of a container (i.e., external trap), it expands. However, Petrov, in
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a pioneering theoretical proposal, pointed out that liquid-like QDs can be stabilized in a
weakly interacting binary BEC mixture in free space by realizing a subtle balance between
the attractive cubic mean-field (MF) interaction and quadratic repulsive beyond mean-field
(BMF) interaction generated due to the quantum fluctuations [25]. Like solitons, these
dilute QDs are a self-bound many-body state; however, bright solitons collapse under the
influence of the attractive cubic MF interaction. Different from that, QDs can be stabilized in
3D by counter balancing MF and BMF interactions. Based on this stabilization mechanism,
QDs are observed in Bose–Bose mixtures [26,27] and dipolar gases [28,29]. The idea of
droplet formation without any external trapping is not new, and this is studied in classical
liquid or liquid helium systems [30]. However, in comparison to classical liquids in which
droplets are generated due to a balance of repulsive interactions (generated due to high
density) with attractive van der Waals interactions [30], the formation of QDs is a quantum
phenomena with its formation dependent on the balance of the Lee–Huang–Yang (LHY)
interaction (due to quantum fluctuations), i.e., the BMF interaction with two-body MF
interactions. Further, the observed equilibrium density of QDs is 108 orders smaller than
liquid helium, and due to the realization in ultracold atoms, this provides versatile control
of the tunability of MF/BMF interactions and the geometry of the system.

In this work, we address the dynamics of QDs in a two-component binary BEC mixture
in the presence of external multi-color optical lattice (MOL) confinement through the spatial
periodic management of MF and BMF nonlinearities in 1D geometry. The QD dynamics is
extensively explored in the absence of any confinement, i.e., free space [31,32], and some of
us have recently reported the exact theoretical model for QDs in harmonic confinement [33].
However, the study of QDs in the presence of the OL or MOL has received less attention
in the current literature. In condensed matter physics, the periodic lattice is considered as
one of the fundamental problems, and even in the ultracold atoms domain, a variety of
solitonic structures have been investigated in OL traps, both analytically and numerically.
The study of QDs’ behavior in the presence of OL or MOL traps acts as a quantum test
bed for exploring advanced solid-state physics concepts, such as topological quantum
states, discrete systems, etc. Recently, Morera et al. illustrated the generation of QDs,
dimerized QDs, and a variety of phases in OL confinement [34,35], whereas the supersolid-
like crystallization of QDs was investigated in 1D [36] and on a periodic lattice in a quasi-2D
trapped dipolar BEC [37,38]. Further, the stability of QDs is also studied in OL, and the
existence of stable dipole QDs has been proposed [39]. The motivation for studying a
two-component BEC in the presence of the MOL is twofold: (i) constructing a family of OL
traps: the precise control of the intensity and period of overlapping laser beams results in
the formation of the OL, bi-color OL (BOL), frustrated bi-color double-well superlattice,
tri-color OL (TOL), and four-color OL (FOL); and (ii) a test bed for quantum simulation:
optical superlattice confinements comprise a clean controllable many-body test bed, and
a variety of physical phenomena [8,9,16] is observed in this trap. In principle, the multi-
color beams can be used to design a variety of optical superlattice potentials necessary
for supporting the existence of non-trivial QD patterns [40,41]. Therefore, theoretically,
it would be important to investigate the behavior of QDs in the presence of the MOL.
In this paper, we solve the 1D eGPE for the considered confinement and calculate the
non-trivial exact analytical form of the wavefunction, phase, MF/BMF nonlinearities, and
trap parameters. This reveals the specific form of the MOL and its correlation with the
MF/BMF nonlinearities, which provide tunability for the generation of various QDs density
profiles. As an illustration, we show the generation of supersolid-like density schemes in
QDs: periodic lattice, bi-periodic superlattice, and bi-periodic double-well superlattice. For
each of these patterns, we write the analytical solutions and identify the specific form of the
multi-color OL and its parameter domain. The controllable positioning of density maxima
at the center of the trap, compression, fragmentation, and Anderson-like localization of the
droplet patterns are also observed by tuning the symmetry of the considered trap.

In the following section, we present the analytical framework for solving the 1D eGPE
for a weakly interacting Bose–Bose mixture with equal masses and an equal number of
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atoms in the components under the MOL. The model for the calculated system variables is
explained by finding the MOL potential parameters, i.e., the amplitudes and periodicity,
the wavefunction, and the form of MF/BMF interactions. It is shown that with a suitable
choice of the laser intensity, one can construct the following experimentally relevant forms
of confinements: single-color OL, BOL, TOL, double-well superlattice BOL, and FOL.
Next, we study the characteristics of QDs under the influence of the above-mentioned
traps and illustrate the interesting supersolid-like periodic lattice and superlattice density
patterns in QDs. Finally, the stability of the obtained solutions is confirmed using the
Vakhitov–Kolokolov (VK) criterion.

2. The Model and Analytical Framework

We start by considering the two-component mass-balanced binary BEC under the
influence of the BMF (LHY corrections for quantum fluctuations) in the presence of spatially
varying MOL confinement. The choice of equal masses and an equal number of atoms in
the BEC mixture makes the result analysis clearer and easier. In the 1D configuration, the
QDs are observed under the subtle balance of the slightly repulsive MF interaction with the
attractive BMF. In this geometry, the MF and BMF interactions’ contribution to the energy
per particle is proportional to n and

√
n, where n is the density of the gas [31], and the

system is described by the following equations, the 1D eGPE [25,39]:

ih̄
∂ψ1

∂t
= − h̄2

2m

∂2ψ1

∂x2 + (Λs(x)|ψ1|2 + Λc(x)|ψ2|2)ψ1 − Γ(x)(|ψ1|2 + |ψ2|2)1/2ψ1 + v(x)ψ1, (1)

ih̄
∂ψ2

∂t
= − h̄2

2m

∂2ψ2

∂x2 + (Λc(x)|ψ1|2 + Λs(x)|ψ2|2)ψ2 − Γ(x)(|ψ1|2 + |ψ2|2)1/2ψ2 + v(x)ψ2. (2)

Here, v(x) is the external MOL confinement present in the considered system with ψ1
(ψ2) representing the wavefunctions of binary mixture components. In Equations (1) and (2),
we take the interaction strengths controlling the repulsion between the atoms in each
components to be equal: g11 = g22 ≡ g = 2h̄2as(x)/(ma2

⊥) and gc = g12. Here, Λs(x) =
(gc + 3g)/2 represents the self-interaction coefficients, whereas Λc(x) = (gc − g)/2 is the
cross interaction coefficients along with Γ(x) =

√
mg3/2/(πh̄) [39]. as(x) represent the

space-dependent inter- and intra-components’ atomic scattering lengths, which are tunable
through the Feshbach resonance technique [42]. Thus, the sign and strength of both (inter-
and intra-) components’ atomic scattering length, i.e., MF and BMF interactions, can be
experimentally modulated. Here, m is the mass of the BEC atoms and h̄ is the scaled
Planck’s constant.

Next, we reduce the dynamics of the considered system to the space-dependent
dimensionless single eGPE by assuming ψ1 = ψ2 = ψ0ψ, i.e., mutually symmetric spinor
components in the binary mixture [25,31]:

i
∂ψ

∂t
= −1

2
∂2ψ

∂x2 − g1(x)|ψ|ψ + g2(x)|ψ|2ψ + V(x)ψ. (3)

Equation (3) is the extended form of the Gross–Piteäevskii equation (GPE) with the
external confinement added. For the case, V(x) = 0, it becomes the 1D eGPE in free space,
which is extensively explored to investigate the QDs’ dynamics [23,24]. In the equation,
ψ(x, t) is the condensate wave function of the QDs having mass m, and g1(x) = Γ(x),
g2(x) = Λs(x) + Λc(x) are the magnitude coupling strengths of the two-component Bose–

Bose mixture representing BMF and MF interactions, respectively. Here, h̄g1(x)
Γ(x)

√
Λs+Λc
2mg2(x)

,
h̄(Λs+Λc)g2

1(x)

2g2(x)Γ2(x)
,

√
2g2(x)Γ(x)

(Λs+Λc)g1(x)
are the magnitudes of the scaling parameters x0, t0, ψ0, respec-
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tively [31]. To investigate the structure and dynamics of QDs in the presence of MOL, we
consider the form of the external trap:

V(x) =
4

∑
j=1

Vj cos2(jkx) + V5 exp[2(p1 cos2(kx) + p2 cos2(2kx))], (4)

which is a combination of the FOL with commensurate lattice periods and an exponential
periodic trap. The combination results in the generation of an MOL potential trap, which
becomes an FOL for V5 → 0. The choice of the exponential periodic trap ensures the
presence of the complete set of the Fourier harmonics in the considered trap combination.
Here, p1 and p2 are real constants. In Equation (4), k = 2πa⊥/λ is the scaled lattice
wave vector, which is commensurate for the four-color laser beams (k, 2k, 3k, 4k) with
a⊥ =

√
h̄/mω⊥, and ω⊥ is the transverse oscillator frequency. Here, Vj (j = 1, 2, 3, 4, 5)

represents the potential depths of each OL and is connected to the recoil energy: ER = 2π2 h̄2

mλ2

for the laser of wavelength (color) λ and mass m of BEC atoms [40]. Recently, ultracold
atoms were investigated in the FOL potential to obtain eightfold rotationally symmetric
OLs [43] and solitonic solutions [41]. In this paper, we considered the cigar-shaped Li7

BEC atoms trapped with transverse frequency ω⊥ = 2π × 710 Hz, atomic scattering length
as = −0.21 nm, and a CO2 laser of wavelength λ = 10.62 µm [44]. In the experiments,
various forms of OLs can be realized by tuning the applied magnetic field, the magnitude
of k, and the angle between superimposing laser beams [45].

In order to construct the analytical solution form of ψ for Equation (3), based on the
general similarity transformation scheme used for constructing matter-wave solitons in 1D
geometry [46,47], we start with following ansatz solution:

ψ(x, t) = A(x, t)U[η(x, t)]eiφ(x,t), (5)

where A(x, t), φ(x, t), and U[η(x, t)], being real functions, are the space- and time-modulated
amplitude, phase, and similarity variables, respectively. Using the ansatz solution, our goal
is to connect Equation (3) to the solvable differential equation:

− ∂2U

∂η2 − G1 | U(η) | U + G2 | U(η) |2 U = EU, (6)

such that we obtain the following consistency conditions on the amplitude and MF and
BMF nonlinearities for the chosen potential of Equation (4) (see Appendix A):

[A2(x, t)ηx(x, t)]x = 0, ηt(x, t) + ηx(x, t)φx(x, t) = 0, (7)

G1η2
x(x, t)− 2A(x, t)g1(x, t) = 0, G2η2

x(x, t)− 2A2(x, t)g2(x, t) = 0, (8)
At(x, t)

A(x, t)
+

1
2A2(x, t)

[A2(x, t)φx(x, t)]x = 0, (9)

Axx(x, t)

2A(x, t)
− φ2

x(x, t)

2
− φt(x, t)− 1

2
Eη2

x(x, t)− V(x) = 0. (10)

In Equation (6), E is the eigenvalue of the equation, G1, G2 denote the constantBMF/MF
interactions, which can take a positive or negative magnitude depending on the sign of the
inter- and intra-component atomic scattering length. Here, the function with the subscript
implies the partial differentiation of the function with respect to the subscripted variable.
The above set of consistency conditions are simultaneously solved to obtain the amplitude,
phase, and MF/BMF:

ηx(x, t) =
b(t)

A2(x, t)
, φz = − ηt(x, t)

ηx(x, t)
, g1(x, t) = G1

η2
x(x, t)

2A(x, t)
, g2(x, t) = G2

η2
x(x, t)

2A2(x, t)
, (11)
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where b(t) is an integration constant. It is evident from Equation (11) that the form of
MF/BMF nonlinearities and the phase is directly dependent on the amplitude, which will
be determined by solving the consistency Equation (11). For that purpose, we substitute
the trap expression from Equation (4) into the set of consistency Equations (7) and (11) and
choose η(x, t) = γ

∫ z
0 exp[p1 cos2(kx) + p2 cos2(2kx)]∂x, to obtain the exact analytical form

of the amplitude, phase, and nonlinearities:

A(x, t) =

√
b(t)

γ × exp[p1 cos2(kx) + p2 cos2(2kx)]
, (12)

θ(x, t) = [2p2
1k2 + 8p2

2k2 − 8k2(p1 + 4p2)]t, (13)

g1(x, t) =
G1γ3/2

2b(t)
exp[p1 cos2(kx) + p2 cos2(2kx)]

3
2 , (14)

g2(x, t) =
G2γ3

2b(t)
exp[p1 cos2(kx) + p2 cos2(2kx)]3, (15)

with the potential depths of each overlapping OL connected in the following manner:

V1 = p1k2
[
1 +

p2

2

]
, V2 = k2

[
p2

1
8

+ 4p2

]
V3 = − p1 p2k2

2
V4 = − p2

2k2

2
V5 =

Eγ2

2
. (16)

Equation (16) reveals a non-trivial correlation in between trap parameters p1 and p2,
and this is one of the important results of the article. In principle, by the suitable tuning of
these parameters, one can realize various forms of V(x): OL (Figure 1c), BOL (Figure 1d),
double-well superlattice (Figure 1e), frustrated double-well optical superlattice (Figure 1f),
bi-periodic frustrated double-well optical superlattice (Figure 1g), etc., and study the QDs’
profiles with precise knowledge of the MF/BMF interactions. In Equation (12), b(t) = b
(constant) = γ2.

The solution of Equation (6) can be given as: U[η] = 3(E/G1)

1+
√

1− E
µ0

G2
G2

1
cosh(

√
-Eη)

with

µ0 = −2/9, E < 0, G1 < 0, and G2 > 0 [25,31]. Thus, the complete solution of Equation (3)
can be written as:

ψ(x, t) =

√
b

γ × exp[p1 cos2(kx) + p2 cos2(2kx)]
× exp

[
i(2p2

1k2 + 8p2
2k2 − 8k2(p1 + 4p2)t)

]

3E
G1

1 +
√

1 − E
µ0

G2
G2

1
cosh(

√
-E(γ

∫ x
0 exp[p1 cos2(kx) + p2 cos2(2kx)]))

. (17)

Further, one can choose the solution of Equation (6) in terms of the Jacobi elliptic

function (cn) as: U(η) = B cn[β η, q] + D, with B =
√

2
(2q2−1) D > 0, D = G1

3G2
< 0,

β2 = −( 6G2
(2q2−1) ) D2, and q2 > 1/2 [48]. For this case, the complete wavefunction form of

Equation (3) becomes:

ψ(x, t) =

√
b

γ × exp[p1 cos2(kx) + p2 cos2(2kx)]
× exp

[
i(2p2

1k2 + 8p2
2k2 − 8k2(p1 + 4p2)t)

]

[
B cn(β (γ

∫ x

0
exp[p1 cos2(kx) + p2 cos2(2kx)]), q) + D

]
, (18)

where q is the modulus parameter for the Jacobi elliptic function cn. In principle, the cn
function can also possess a family of solutions for the range of the modulus parameter,
0 ≤ q ≤ 1/2, and at q = 0 will signify a periodic QD profile. Thus, it is worth indicating
that we constructed a large family of exact analytical solutions of the 1D eGPE for the
considered MOL trap configuration.
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Figure 1. Various potential profiles of the MOL by tuning parameters p1 and p2 of Equation (4)
for γ = 0.05, k = 0.84, E = −2/9 in the interval [−2π/k, 2π/k]: (a) for fixed p2 = 1, p1 varying
from −5 to +5; (b) for fixed p1 = 1, p2 varying from −5 to +5; (c) flipping of the OL phase by
the half-wavelength: p1 = 0, p2 = 0.1 (black solid line) and p1 = 0, p2 = −0.1 (dashed blue line);
(d) BOL: p1 = 0, p2 = 3.5 (black line); (e) triple-well optical superlattice: p1 = −5, p2 = 1 (red solid
line); (f) frustrated double-well optical superlattice: p1 = 1, p2 = −5 (blue solid line); (g) bi-periodic
frustrated double-well optical superlattice: p1 = 1, p2 = 4 (red solid line). The spatial co-ordinate is
scaled by the oscillator length.

3. Results

The exact expressions of the distributed confinement parameters are already solved in
Equation (16) where the parameters (p1, p2) can be widely tuned. We are now in a position
to analyze the relevant QDs’ profiles along with the corresponding confinement form. In
the following, we would like to perform a detailed study of the tuning of the trap under
consideration and of the density patterns of the QDs.

3.1. Potential Profiles and Corresponding Trap Parameters

From the constructed model, the general form of the potential can be written as:

V(x) = p1k2
[
1 +

p2

2

]
cos2(kx) + k2

[
p2

1
8

+ 4p2

]
cos2(2kx)− p1 p2k2

2
cos2(3kx)

− p2
2k2

2
cos2(4kx) +

Eγ2

2
exp[2(p1 cos2(kx) + p2 cos2(2kx))], (19)

where −2/9 < E < 0 and γ > 0. With suitable tuning of the physical parameters p1 and
p2, one can construct various potential profiles and obtain the exact analytical expression
of the wavefunction. Physically, p1 and p2 are connected to the power of overlapping laser
intensities. Figure 1 illustrates the various trap patterns by tuning of the trap parameters (p1,
p2). In Figure 1a,b, the variation of the potential profile is depicted for γ = 0.05, k = 0.84,
E = −2/9 in the interval [−2π/k, 2π/k]: (a) for fixed p2 = 1, with p1 varying from −5 to
+5; and in (b) for fixed p1 = 1, p2 varying from −5 to +5. This clearly indicates the various
shapes of the resultant potential by changing the magnitude of p1 and p2. For p1 = p2 = 0,
V(x) becomes constant, representing the free space scenario. Further, the trap takes the
form of the two-color BOL with periodicity (k, 2k) for p1 > 0 and p2 = 0, whereas if p2 6= 0,
then the MOL becomes a disordered double-well superlattice with frustration present both
in the inter- and intra-well separations [41]. Additionally, we observe interesting trap forms
for p1, p2 < 0. For p1 < 0 with p2 positive constant, this leads to the formation of the
triple-well superlattice, which is evident from Figure 1a.
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Similarly, we illustrate a half-wavelength shift of this double-well superlattice by
tuning p2 < 0 with p1 positive constant. For better insight into the tunability of the
generated MOL trap form, we plot the shape of the trap at some specific points and
illustrate the experimentally realizable trap configuration: (a) OL: for p1 = 0, p2 = 0.1
(black solid line) and the flipping of this OL by the half-wavelength for p1 = 0, p2 = −0.1
(dashed blue line) (Figure 1c); (b) BOL: overlapping of two OLs of frequency 3k and 4k
for p1 = 0, p2 = 3.5 (black solid line) (Figure 1d); (c) triple-well optical superlattice:
p1 = −5, p2 = 1 (red solid line) (Figure 1e); (d) frustrated double-well optical superlattice:
p1 = 1, p2 = −5 (blue solid line) (Figure 1f); (e) bi-periodic frustrated double-well optical
superlattice: p1 = 1, p2 = 4 (red line) (Figure 1g). Thus, potential Equation (19) consists
of the family of OLs, and in principle, the complete set of the Fourier harmonics can be
generated from it.

For γ2 < 1 or p1, p2 < 0, the higher-order terms of the exponential trap tend towards
zero, and the trap behaves as an FOL confinement. Utilizing Equation (19), we identify the
points in Table 1 at which the shape of the MOL becomes the OL, BOL, or TOL in the (p1, p2)
space for µ = 0 [41]. On the contrary, the FOL is obtained in the entire space, excluding the
points indicated in the table. It needs to be emphasized here that the constructed MOL trap
configuration provides a large variety of experimentally useful potential profiles with exact
analytical solutions, which may find applications for quantum information processing and
simulations [5,16,17]. We further illustrate the results by displaying various QD patterns in
the presence of the above-mentioned trap configurations.

Table 1. Various shapes of the MOL potential by tuning the magnitude of the power of the laser
beam, i.e., p1 and p2.

Multi-Color OL (for µ = 0)

p1 p2 Trap form

0 0 Free space

<1 0 OL (k)

0 6=0 BOL (2k, 4k)

>1 0 BOL (k, 2k)

8 −2 BOL (3k, 4k)
8 2 BOL (3k, 4k)

6=8 −2 TOL (2k, 3k, 4k)
6=8 2 TOL (2k, 3k, 4k)

Other points Other points FOL (k, 2k, 3k, 4k)

3.2. Periodic Lattice Density Patterns in QDs

In this section, we correlate the above-mentioned understanding of the confinement
engineering with the atomic condensate density for a variety of experimentally relevant
forms of the MOL confinement to investigate the droplet characteristics in it. As discussed
earlier, a family of OL traps can be constructed from (19), but we begin by investigat-
ing the generation of QDs in the presence of the two-color BOL(k, 2k) with competing
MF and BMF nonlinearities. The superposition of two-color OLs results in the forma-
tion of quasi-periodic optical superlattice confinement, which is used to study various
interesting physical phenomena: Anderson localization, frustrated quantum magnetism,
negative absolute temperature, etc. [10,18,19]. Motivated by that, we construct the BOL
with commensurate period (k, 2k) from potential Equation (20) by taking p2 = 0. Further,
the form of the MF and BMF nonlinearities is: g2(x) = (G2γ3/2b)exp[p1 cos2(kx)]3 and

35



Symmetry 2022, 14, 963

g1(x) = (G1γ3/2/2b)exp[p1 cos2(kx)]
3
2 , respectively, with b(t) = b (constant). Thus, the

resulting form of the potential from Equation (19) takes the form:

V(x) = p1k2 cos2(kx) +
(p1k)2

8
cos2(2kx) +

Eγ2

2
exp[2(p1 cos2(kx))], (20)

for which the wavefunction solution of Equation (3) can be given as:

ψ(x) =

√
b

γ × exp[p1 cos2(kx)]

3E
G1

1 +
√

1 − E
µ0

G2
G2

1
cosh(

√
-E(γ

∫ x
0 exp[p1 cos2(kx)))

×exp
[
i(2p2

1k2 − 8k2 p1)t)
]
. (21)

Using the above wavefunction, we illustrate the density profiles of QDs for ∓p1 for
the BOL potential Equation (20) in Figures 2 and 3, respectively. In these figures, each plot
(a–d) has two panels: the upper panel shows the density plot, and the lower panel consists
of a 2D plot of the density. In Figure 2a, initially, we take p1 = 0, making V(x) = constant,
i.e., the free space potential and with the MF interaction (G2 = 0.999999999) and the BMF
interaction (G1 = −1). As there is a subtle balance between MF and BMF, thus we observe
the flat top density profile, which is the signature feature of QDs.

Figure 2. Condensate density patterns for two-color BOL traps with p1 < 0 and p2 = 0: (a) p1 = 0
(free space); (b) p1 = −0.5; (c) p1 = −1; and (d) p1 = −1.50. Each plot of (a–d) has three panels:
the upper panel shows the density plot; the middle panel consists of a 2D plot of the density; the
lower panel indicates the corresponding trap profile. Here, the magnitude of the physical parameters:
b = 1, γ = 1, k = 0.84, G1 = −1, G2 = 0.999999999, E = −2/9. The spatial co-ordinate is scaled by
the oscillator length.

Similarly, condensate density has previously been illustrated in the free space potential,
and the observed pattern is in conformity with the physical situations reported in the
literature [32]. Here, the magnitude of other physical parameters: b = 1, γ = 1, k = 0.84,
E = −2/9. Next, we investigate the impact of p1 < 0 on the droplet density profile for the
same physical parameters. We took p1 = −0.5, −1, −1.5 and depict their corresponding
condensate density patterns in Figure 2b–d. It is evident from the figure that with p1
tending from 0 → −1.5, this leads to the expansion of the QDs, and due to the increase
in the lattice depth of the trap, it forms the lattice patterns in the QDs. Importantly, the
signature of the potential is superimposed over the flat density profile, and correspondingly,
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we observe periodic lattice density pattern on the QDs. We observe that for p1 < 0, the
density periodic lattice maxima are located at x = 0. However, to establish supersolidity in
the system, we need to show the spontaneous breaking of the translational symmetry and
the spontaneous breaking of the gauge symmetry in the considered system. However, in
absence of that, we term this supersolid-like periodic density patterns, as done in previous
studies on spinor BECs [38,49]. Further, we note that the decreasing magnitude of p1 also
results in the increase of the width of the QDs, i.e., leading to its expansion. Thus, in
principle, the depth and width of these formed periodic lattice density patterns in QDs are
connected to the magnitude of p1, and from the constructed analytical model, we reveal a
non-trivial correlation in between them.

Figure 3. Condensate density patterns for two-color BOL traps with p1 > 0 and p2 = 0 are depicted:
(a) p1 = 0 (free space); (b) p1 = 0.5; (c) p1 = 1; and (d) p1 = 1.5. Each plot (a–d) has three panels: the
upper panel shows the density plot; the middle panel consists of a 2D plot of the density; the last
panel represents the corresponding trap profile. Here, the magnitude of the physical parameters:
b = 1, γ = 1, k = 0.84, G1 = −1, G2 = 0.999999999, E = −2/9. The spatial co-ordinate is scaled by
the oscillator length.

In Figure 3, we illustrate the density variation of the wavefunction solution (21) for
p1 > 0 with its magnitude changing from 0 → 1.5 for the identical physical parameter as
taken in the case of p1 < 0. Here, we take the parameter values: b = 1, γ = 1, k = 0.84,
E = −2/9, G2 = 0.999999999, G1 = −1. We begin with p1 = 0 in Figure 3a, i.e., the free
space situation. Next, the magnitude of p1 increased to 0.5, resulting in the formation
of multiple peaks in the density profile, which are due to the presence of the OL trap
(Figure 3b). However, in comparison to p1 = −0.5 shown in Figure 2b, here, the number
of droplet lattice peaks is less and the width is compressed. Subsequently, we observe
a reduction in the width of the droplet and the number of density lattice wells with the
increase of p1 (Figure 3c,d). The condensate atomic density illustrates an Anderson-like
localization with the increasing magnitude of the laser intensity p1. This behavior was
confirmed by comparing the maximum amplitude of the density for ±p1. In comparison to
p1 < 0, in which the maximum amplitude remains the same (Figure 2), here, its magnitude
increases with p1 tending from 0 to 1.5, showing the localization of condensate atoms.
Further, in comparison to p1 < 0, we note here that the density periodic lattice minima are
located at x = 0 for p1 > 0.

In order to physically understand the reasons for the observation of the QDs’ density
patterns in Figures 2 and 3, we plot the profile of MF/BMF nonlinearities with respect to
the variation of the MOL trap parameters with p2 = 0 and p1 varying from −1.5 to +1.5
in Figure 4a. It is evident from the figure that the magnitude of MF and BMF interactions
remains comparable till p1 changes in the interval [−1.5, 0]. This is due to the negative
magnitude of p1, which is present in the exponential term of both interactions, and it
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ensures the observation of the flat top density profile in Figure 2a–d. Furthermore, the
increase in the depth of the QDs’ periodic lattice patterns is due to the potential depth of
the trap with changing the value of p1 from 0 to −1.5, which leads to the expansion of the
droplet profile. For p1 > 0 and its increase from 0 to +1.5, this leads to the amplification of
both MF/BMF amplitudes (due to the presence of the exponential factor); however, in this
region, the MF term dominates the BMF due to the exp[p1 cos2(kx)]3 term in it. This leads
to an imbalance of the MF and BMF interaction strengths, as is evident from Figure 4a, and
simultaneously, the system tends towards the soliton region with a dominant repulsive
MF. Since the balance of these nonlinearities is essential for the observation of the droplet
profile, the increase of p1 results in the gradual decrease of the flat top density profile
(see Figure 3) and the phenomena of the Anderson-like localization observed, which is a
characteristic feature of disordered optical lattices [40]. Thus, we illustrate an interesting
and non-trivial tunability of QDs’ density patterns by changing the sign (i.e., symmetry)
and potential depth of the BOL (k, 2k) confinement.

Figure 4. The profile of MF and BMF nonlinearities is plotted with respect to varying (a) p1 in the
interval [−1.5, 1.5] at x = 0 for p2 = 0 and (b) p2 in the interval [−1.5, 1.5] at x = 0 with p1 = 0.5.
Each inset plot depicts the variation of g1(x) (BMF, red line) and g2(x) (MF, blue line) for the indicated
magnitude of p1 and p2, respectively. Here, the magnitude of the physical parameters: b = 1, γ = 1,
k = 0.84, G1 = −1, G2 = 0.999999999, E = −2/9.

3.3. Double-Well Superlattice Density Patterns in QDs

In this section, we illustrate the formation, expansion, and compression of double-
well superlattice density patterns in QDs under the MOL confinement. For that purpose,
we take p2 6= 0 in the potential Equation (20) with γ = 1 and k = 0.84. Utilizing the
corresponding wavefunction solution from Equation (20), we plot the atomic condensate
density in Figure 5a–d for p2 = 0; p2 = −0.5, p2 = −1, and p2 = −1.5, respectively, for
p1 = 0.5, G1 = −1, G2 = 0.999999999, E = −2/9. It is evident from Figure 5a that the
periodic lattice density patterns are formed for p2 = 0 and p1 = 0.5. However, as p2
changes from 0 → −0.5, the double-well superlattice density patterns become visible in the
QDs’ profile (Figure 5b). The decreasing magnitude of p2 from −0.5 → −1.5 results in the
expansion of the QDs along with the increase in the depths of these double-well superlattice
density patterns. Further, in Figure 6, we depict the impact of p2 > 0 and p1 = 0.5 on
the QDs’ profile for the same physical parameter values. Here, we plot for (a) p2 = 0,
(b) p2 = 0.5, (c) p2 = 1, and (d) p2 = 1.5, respectively. In comparison to the double-well
superlattice density pattern of QDs for p2 = −0.5, we observe the formation of a bi-periodic
density lattice for the case of p2 = 0.5 (Figure 6b). The depth of this bi-periodic density
pattern increases, and the width of the droplet decreases with the increasing magnitude of
p2 from 0.5 → 1.5 (Figure 6c,d).

38



Symmetry 2022, 14, 963

Figure 5. Condensate density patterns for four-color BOL traps with p1 = 0.5 and: (a) p2 = 0
(BOL); (b) p2 = −0.5; (c) p2 = −1; and (d) p2 = −1.5. Each plot (a–d) has three panels: the upper
panel shows the density plot; the middle panel consists of a 2D plot of the density; the lower panel
indicates the corresponding trap profile. Here, the magnitude of the physical parameters: b = 1,
γ = 1, k = 0.84, G1 = −1, G2 = 0.999999999, E = −2/9. The spatial co-ordinate is scaled by the
oscillator length.

Figure 6. Condensate density patterns for four-color BOL traps with p1 = 0.5 and: (a) p2 = 0;
(b) p2 = 0.5; (c) p2 = 1; and (d) p2 = 1.5. Each plot (a–d) has three panels: the upper panel shows
the density plot; the middle panel consists of a 2D plot of the density; the lower panel indicates the
corresponding trap profile. Here, the magnitude of the physical parameters: b = 1, γ = 1, k = 0.84,
G1 = −1, G2 = 0.999999999, E = −2/9. The spatial co-ordinate is scaled by the oscillator length.

In order to physically understand the reasons for the observation of the QDs’ density
superlattice patterns in Figures 5 and 6, we plot the profile of MF/BMF nonlinearities with
respect to the variation of the MOL trap parameters with p1 = 0.5 and p2 varying from −1.5
to +1.5 in Figure 4b. In comparison to Figure 4a, in which p2 = 0, here, the double-well
superlattice trap is formed due to p2 6= 0. As discussed earlier, in this regime also, the
magnitude of MF and BMF interactions remains comparable till p2 changes from [−1.5, 0]
(shown in Figure 4b). This results in the observation of the flat top density profile as shown
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in Figure 6a–d. The superlattice QDs’ density patterns are due to the superlattice periodicity
of MF/BMF interactions and the corresponding resulting trap. For p2 > 0 and tending from
0 to +1.5, then the MF term dominates the BMF due to the exp[p1 cos2(kx) + p2 cos2(2kx)]3

factor. Similar to the previous regime, we observe a decrease in the flat top density profile
with the increasing magnitude of p2. However, different from the previous case, here,
the droplet density patterns are bi-periodic. Therefore, we observe that the compression
and expansion of the droplet density patterns are due to the spatial periodic management
of MF and BMF nonlinearities: g1(x, t) = [G1γ3/2/2b(t)]exp[p1 cos2(kx) + p2 cos2(2kx)]

3
2

and g2(x, t) = [G2γ3/2b(t)]exp[p1 cos2(kx) + p2 cos2(2kx)]3, respectively, with respect to
the changing sign of ±p2. Thus, we illustrate an interesting transition of the supersolid-like
double-well superlattice and bi-periodic density patterns in droplets from the starting
periodic density profile by changing the magnitude of p2 and MF/BMF nonlinearities.

3.4. Stability of QDs in MOL Confinement

In the above sections, we illustrated the generation of a variety of droplet density
patterns in the MOL confinement by tuning the magnitude of (p1, p2) in Equation (17). In
this section, we evaluate the stability of the obtained wavefunction solution (17), and for
that purpose, we employed the VK criterion, which is extensively utilized to determine the
stability of nonlinear Schrödinger equation solutions [50]. According to the VK criterion,
a solution is found to be stable if the slope of the number of atoms with respect to the
chemical potential, i.e., NE = dN/dE, is positive. Here, N is the normalization, and E
is the chemical potential of the system. For the case NE < 0, the solution is unstable,
whereas NE = 0 provides the instability threshold of the obtained solution. Now, using
Equation (17) and N =

∫ +∞

−∞
|ψ|2∂x, one can estimate the correlation between normalization

N and E as:

N =
4
3


ln




1 +
√

E
µ0√

1 − E
µ0


−

√
E

µ0


, (22)

where G2
G2

1
≈ 1 and G1 = −1. Equation (22) estimates the magnitude of N in the presence

of the MOL and is equal to the N reported for the free space [31,32]. Thus, even in the
presence of the MOL confinement, N is conserved, and the considered system shows a
continuous symmetry property according to Noether’s theorem [51]. In Figure 7, using
Equation (22), we plot NE with respect to E, where G1 = −1. It is evident from Figure 7a
that the magnitude of NE is positive with respect to its variation E, which indicates the
stable nature of the obtained solution.

Figure 7. (Color online) (a) For the VK stability criterion, the slope of normalization with the chemical
potential (NE) is plotted with respect to a varying chemical potential (E); (b) Im(Ω) is depicted as
a function of p1 and the wavenumber (l) keeping p2 = 0; (c) with p1 = 0.5, Im(Ω) is depicted as
a function of p2 and the wavenumber (l). Here, the magnitude of the physical parameters: b = 1,
γ = 0.05, k = 0.84, G1 = −1, G2 = 0.999999999, E = −2/9 with l varying from 0 to 3.

The small-scale fluctuations in the droplet under the MOL confinement can be esti-
mated by linearizing the 1D eGPE (3) around the ground state given by Equation (17) [32].
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We take ψ(x, t) = ψ0(x)+ δψ(x, t), where ψ0(x) is the stationary solution (17) and δψ(x, t) =[
δψR

δψI

]
<< 1 is the small perturbation with δψR; δψI are the real and imaginary parts of δψ.

With the substitution of δψ in Equation (3), this leads to the well-known Bogoliubov–de
Gennes (BdG) equation:

[
0 1
−1 0

]
∂

∂t

[
δψR

δψI

]
=

[
T 0
0 T′

][
δψR

δψI

]
, (23)

with T = − 1
2

∂2

∂x2 + 3ng2(x) − 1
2 g1(x)n1/2 + v(x), T′ = − 1

2
∂2

∂x2 + g2(x)n − 1
2 g1(x)n1/2 +

v(x), and n = |ψ0(x)|2. Here, we consider δψ = exp[i(lx − ωt)], and applying it in
Equation (23), then this yields the perturbation eigenmodes, where l denotes the wave
number and Ω stands for the frequency. The resulting dispersion relation can be given as:

Ω2 =
l4

4
+ l2

(
2V(x)− 4g1(x)n1/2 + 4ng2(x)

)
, (24)

by neglecting the l independent terms. From Equation (24), Ω is imaginary for 4g1(x)n1/2 >

2v(x) + 4ng2(x) + l2/4, and these are the instability region. In Figure 7b, Im(Ω) is depicted
as a function of p1 and the wavenumber (l), keeping p2 = 0, representing the two-color BOL
((k, 2k)) case, whereas in Figure 7c, we locate Im(Ω) with respect to the changing magnitude
of p2 and the wavenumber (l) with p1 = 0.5 for the MOL confinement. The magnitudes
of the other physical parameters: b = 1, γ = 0.05, k = 0.84, G1 = −1, G2 = 0.999999999,
E = −2/9.

4. Conclusions

In conclusion, we obtained a family of exact analytical solutions of the 1D eGPE for the
generation of QDs in the binary BEC mixture with mutually symmetric spinor components
in the presence of the MOL confinement. In the constructed model, the choice of the MOL
confinement, which is a combination of the FOL and exponential periodic trap, results
in the generation of various experimentally relevant trap profiles: OL, BOL, TOL, FOL,
symmetric and asymmetric double-well superlattice, etc., and the corresponding exact
wavefunction solution. From the constructed model, we identified the two parameters p1
and p2 for tuning the shape of the MOL confinement and revealed interesting potential
symmetry with its tuning. Further, by taking the spatial periodic variation of the competing
repulsive cubic MF and attractive quadratic BMF interactions, we illustrated the generation
of interesting supersolid-like periodic, bi-periodic, and double-well superlattice density
patterns in QDs under the BOL and MOL confinements. By tuning the symmetry of the BOL
trap, we demonstrated two possible types of periodic lattice density patterns of the droplets:
(a) at the central potential site (i.e., at x = 0), the maxima of the periodic density lattice
for p1 < 0 and p2 = 0 and (b) for p1 > 0 and p2 = 0, its minima x = 0. Interestingly, the
strength of (p1, p2) was identified as a key parameter for the fragmentation, compression,
and inter-well transport of droplets. We observed an Anderson-like localization for p1,
p2 > 0, i.e., the compression of the droplet, whereas the expansion of the droplet width
was noted for p1 > 0, p2 < 0, forming the MOL, as well as in two-color (p2 = 0) OL
confinements. This can be attributed to the change in the subtle balance of the MF and
BMF interactions, leading to a decrease in the flat top density profile and the observation of
localization. Finally, the stability of the obtained droplet solutions was confirmed using the
VK criterion and by the linear stability analysis.

The results of this paper can be tested experimentally by taking binary Bose gases with
mass-balanced two-mixture components under the influence of BMF interactions in the
presence of spatially varying MOL confinement with the present know-how. The shape of
the MOL confinement is dependent on the power of the laser intensity and the wavelength
of the laser light, which were connected with (p1, p2) in the present work. In particular, for
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typical values of the physical parameters, one can estimate the potential depths: ER = 2π2 h̄2

mλ2 .
As the constructed model is based on a 1D geometry, it may be interesting to explore the
impact in a 2D/3D confinement setup and droplet crossover to the 2D/3D configuration as
future extensions of the present work.
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Appendix A

We begin with the reduced one-component eGPE:

i
∂ψ

∂t
= −∂2ψ

∂x2 − g1(x, t)|ψ|ψ + g2(x, t)|ψ|2ψ + V(x)ψ (A1)

and our goal is to connect it to the solvable differential equation:

− ∂2U

∂η2 − G1 | U(η) | U + G2 | U(η) |2 U = EU. (A2)

which has the solution form: U[η] = 3(E/G1)

1+
√

1− E
µ0

G2
G2

1
cosh(

√
-Eη)

with µ0 = −2/9, E < 0, G1 < 0,

and G2 > 0 [25,31]. It is a standard mathematical technique to obtain solutions of nonlinear
differential equation [47,52].

For that purpose, we substitute an ansatz solution in (A1):

ψ(x, t) = A(x, t)U[η(x, t)]eiφ(x,t). (A3)

and separate out the imaginary and real parts of the equation:

∂A

∂t
U +

∂U

∂t
A + 2U

∂A

∂x

∂φ

∂x
+ 2A

∂U

∂x

∂φ

∂x
+ AU

∂2φ

∂x2 = 0, (A4)

−A
∂φ

∂t
U +

∂2 A

∂x2 U + 2
∂A

∂x

∂U

∂x
+ A

∂2U

∂x2 − AU

[
∂φ

∂x

]2

+ g1(x, t)A2|U|U + g2(x, t)A3|U|2U + V(x)UA = 0. (A5)

We obtain the following consistency conditions on the amplitude and MF and BMF
nonlinearities:

[A2(x, t)ηx(x, t)]x = 0, ηt(x, t) + ηx(x, t)φx(x, t) = 0, (A6)

G1η2
x(x, t)− 2A(x, t)g1(x, t) = 0, G2η2

x(x, t)− 2A2(x, t)g2(x, t) = 0, (A7)
At(x, t)

A(x, t)
+

1
2A2(x, t)

[A2(x, t)φx(x, t)]x = 0, (A8)

Axx(x, t)

2A(x, t)
− φ2

x(x, t)

2
− φt(x, t)− 1

2
Eη2

x(x, t)− V(x) = 0. (A9)
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Further, with a little algebra, we obtain the amplitude, phase, and MF/BMF:

A(x, t) =

√
b(t)

ηx(x, t)
, φz = − ηt(x, t)

ηx(x, t)
, g1(x, t) = G1

η2
x(x, t)

2A(x, t)
, g2(x, t) = G2

η2
x(x, t)

2A2(x, t)
, (A10)

where b(t) is an integration constant.
Next, we take η(x, t) = γ

∫ z
0 exp[p1 cos2(kx) + p2 cos2(2kx)]∂x and calculate the exact

analytical form of the amplitude, phase, and nonlinearities:

A(x, t) =

√
b(t)

γ × exp[p1 cos2(kx) + p2 cos2(2kx)]
, θ(x, t) = [2p2

1k2 + 8p2
2k2 − 8k2(p1 + 4p2)]t, (A11)

g1(x, t) =
G1γ3/2

2b(t)
exp[p1 cos2(kx) + p2 cos2(2kx)]

3
2 , g2(x, t) =

G2γ3

2b(t)
exp[p1 cos2(kx) + p2 cos2(2kx)]3. (A12)

Thus, the complete solution of Equation (3) can be written as:

ψ(x, t) =

√
b

γ × exp[p1 cos2(kx) + p2 cos2(2kx)]
× exp

[
i(2p2

1k2 + 8p2
2k2 − 8k2(p1 + 4p2)t)

]

3E
G1

1 +
√

1 − E
µ0

G2
G2

1
cosh(

√
-E(γ

∫ x
0 exp[p1 cos2(kx) + p2 cos2(2kx)]))

. (A13)
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Abstract: Josephson junctions are essential ingredients in the superconducting circuits used in many
existing quantum technologies. Additionally, ultracold atomic quantum gases have also become
essential platforms to study superfluidity. Here, we explore the analogy between superconductivity
and superfluidity to present an intriguing effect caused by a thin finite barrier in a quasi-one-
dimensional toroidal spinor Bose–Einstein condensate (BEC). In this system, the atomic current
density flowing through the edges of the barrier oscillates, such as the electrical current through
a Josephson junction in a superconductor, but in our case, there is no current circulation through
the barrier. We also show how the nontrivial broken-symmetry states of spinor BECs change the
structure of this Josephson-like current, creating the possibility to probe the spinor symmetry, solely
using measurements of this superfluid current.

Keywords: Josephson effect; Bose–Einstein condensate; spinor BEC; toroidal superfluid

1. Introduction

The Josephson effect [1,2] is one of the most relevant phenomena in superconductivity;
for his theoretical predictions, Brian D. Josephson received the Nobel Prize in Physics in
1973. In a superconductor, the phenomenon is characterized by the tunneling of Cooper pairs
through a junction, or a weak link, represented by a potential energy barrier between two
superconductor regions [3–5]. When a voltage V is applied to these regions, the electrical
current in the junction, Ij, oscillates according to the expression:

Ij = I0 sin(φ); with
dφ

dt
=

2eV

h̄
, (1)

where I0 is the current amplitude and φ is the angle representing the phase difference of the
order parameter between each superconducting region [4]. There is a conceptual analogy
between superconductivity and superfluidity [6], given by the lack of resistance in the flow
of the electrical current, or, equivalently, the lack of viscosity in the flow of a superfluid. In
fact, since superfluidity emerges naturally in Bose–Einstein condensates (BECs) produced
in dilute ultracold Bose gases [7–15], the analogue of the Josephson effect has already been
studied in experiments [16–19].

For scalar BECs [7,8] (i.e., condensates with a scalar order parameter: ψ =
√

neiθ),
the superfluid velocity is always proportional to the global phase gradient (∇θ), and it
represents the complete structural symmetry of the system. On the other hand, for spinor
BECs [9–11] (i.e., condensates with multi-component order parameter: [ψ]m = ψm), the
superfluid flow is related to the properties of their symmetry and topology, which can
generate nontrivial spatial spin textures and current distributions not found in scalar BEC
systems. In fact, there are many topological states in spinor BECs analogous to particles
and structures studied across several areas of physics, such as skyrmions, Dirac monopoles,
knot solitons, vortices, half-vortices [9,20–24], to name a few.
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Here, based on the analogy between superfluidity and superconductivity, we study a
Josephson-like oscillating current produced in toroidal spinor Bose–Einstein condensates
due to the presence of a thin finite energy barrier (Figure 1), and we show that the current
density at the edges of the barrier behaves similarly to Ij, and depends on the structural
symmetry of the spinor condensate.

Figure 1. Schematic illustration of the external potentials applied to the condensate: (a) effective
toroidal region T (with average radius R) where the potential Utrap confines the condensate; (b) re-
pulsive barrier UB = UB(ϕ), for ϕ the azimuthal angle in cylindrical coordinates (r, ϕ, z). Here, we
consider thin angular widths 2δ ≪ 2π.

2. General Modeling of Spinor BECs

For a system with atomic spin f = 1, the order parameter of a spinor BEC satisfies the
following vector Gross–Pitaevskii equation (GPE) [9]:

ih̄
∂

∂t
ψ =

[
− h̄2∇2

2M
+ Utotal − pfz + qf2

z + c0n + c1~F ·~f
]

ψ . (2)

In the equation, the bold fonts indicate matrix quantities related to the vector order pa-
rameter ψ = (ψ f (~r, t), . . . , ψ− f (~r, t))T , and where n = ψ†ψ = ∑m |ψm(~r, t)|2 = ∑m nm(~r, t)

is the number density, with spin components ψm(~r, t) =
√

nm(~r, t) eiθm(~r,t), ~F = ψ†~f ψ is
the spin density, and~f = (fx, fy, fz) is the spin operator (in the f = 1 representation). The
constants p ∝ |~B| and q ∝ |~B|2 are related to the linear and quadratic Zeeman effects, respec-
tively, when an external magnetic field, ~B, is applied. The system’s nonlinear interaction
“strength” is modeled by the coefficients c0 and c1 (see Reference [9] for details).

In this work, we consider a toroidal trapping potential, Utrap, with a repulsive barrier,
UB, restricted to a region of small azimuthal angle. Therefore, the total external potential is
given by Utotal = Utrap + UB, as sketched in Figure 1. We assume that Utotal provides the
necessary means to trap all the components of the spinor BEC in the torus. For instance, by
using the appropriate optical trapping techniques [25]. Optical traps have the advantage
of providing flexible control over the potential symmetry when combined, for example,
with digital holography [26,27], direct imaging [28], or phase-mapping [29] of sharp optical
patterns, to design almost arbitrary shapes. In fact, a toroidal optical potential with
a controllable energy barrier similar to the one described here has been demonstrated
in [30–32], and a toroidal potential with spinor BEC in [33].

The order parameter of a spinor BEC, represented as a column matrix, can always
be factored into ψ = ψ(~r, t) ζ, as the product of a scalar part, ψ(~r, t) =

√
n(~r, t) eiθ(~r,t), and

a normalized spinor part, ζ (with ζ†ζ = 1) [9]. This vector description has a gauge symmetry
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with artificial gauge fields related to ζ. These fields emerge naturally from the description,
and are analogous to the scalar and vector electromagnetic potentials [9,34]:

Φ = −iζ† ∂

∂t
ζ, (3)

~A = iζ†~∇ζ. (4)

In particular, the superfluid number current density,~J = n~v, depends linearly on the
vector potential ~A, as the superfluid velocity ~v of a spinor BEC is given by:

~v =
h̄

M
(~∇θ − ~A). (5)

Note that the action of the artificial vector potential is analogous to the electromagnetic
vector potential on the expression of the electrical current in a superconductor [4]. In
addition, some of the topological properties of the condensate are determined by the
circulation of ~v (i.e.,

∮
~v · ~dl), and, therefore, they may depend on artificial magnetic fluxes,

given by a synthetic magnetic field ~B ≡ h̄~∇× ~A [9].
In general, the current density of a spinor BEC is defined in the usual manner, replacing

the scalar order parameter by its vector form

~J =
h̄

M

(
ψ†~∇ψ − (~∇ψ†)ψ

)
=

h̄

M
Im{ψ†~∇ψ}, (6)

therefore,

~J =
h̄

M

f

∑
m=− f

Im{ψ∗
m(~r, t)~∇ψm(~r, t)} (7)

=
f

∑
m=− f

~Jm(~r, t) (8)

Alternatively, using the spin components ψm(~r, t), one could write

~Jm =
h̄

M
nm(~r, t)~∇θm(~r, t) = nm(~r, t)~vm(~r, t), (9)

where the velocity spin components are ~vm(~r, t) = h̄
M
~∇θm(~r, t).

3. Modeling the Potential Barrier and Defining Some Approximations

This section explains in detail how we define the potential barrier, UB, and its general
properties. Because we will use the quasi-one-dimensional (quasi-1D) limit for the geometry
of the condensate later, we consider the barrier UB(ϕ) is written in terms of a normalized
angular distribution f (ϕ), not depending on other spatial variables (r, z):

UB(ϕ) = U0 f (ϕ), with
∫ π

−π
f (ϕ)dϕ = 1. (10)

We consider that the barrier is effectively restricted to an angular range ϕ ∈ [−δ, δ],
such that: ∫ π

−π
f (ϕ)dϕ ≈

∫ δ

−δ
f (ϕ)dϕ ≈ 1. (11)

Integrating the GPE (2) along the arc ϕ ∈ [−δ, δ], with fixed (r, z) in the thin barrier
condition (δ ≪ π), leads to two dominant terms:

h̄2

2Mr2

[
∂ϕψ(δ)− ∂ϕψ(−δ)

]
≈
∫ δ

−δ
UB(ϕ)ψ(ϕ) dϕ, (12)
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where the left-hand side follows directly from the fundamental theorem of calculus, and
it is related to the momentum along the ϕ̂ direction (pϕ ϕ̂ = −ϕ̂(ih̄∂ϕ)/r). Note that we
simplified the notation ψ(r, ϕ, z) → ψ(ϕ), given that we consider (r, z) fixed parameters.

The remaining terms not computed in the last equation were neglected because for
small δ they are proportional to δ (i.e., these terms are O(δ) while the dominant terms are
proportional to the unit), and can be neglected as one takes the limit of δ → 0.

Additionally, in the limit of small δ, the integration of the barrier potential resembles
the integration of a Dirac’s delta (normalized) function, such that

lim
δ→0

[∫ δ

−δ
UB(ϕ)ψ dϕ

]
= U0 lim

δ→0

[∫ δ

−δ
f (ϕ)ψ dϕ

]
≈ U0 ψ(0). (13)

Here, it is important to emphasize that, in practice, the derivative of the potential
barrier must not exceed a limit given by the Landau critical velocity, otherwise, the flow is
dissipated and the system loses its superfluid properties [30,35]. To avoid such situations,
one may always choose a larger radius R (see Figure 1) so that the barrier UB(ϕ) is spatially
“smooth” enough. We discuss this condition in Section 6.

Finally, we consider one last approximation. If the number of atoms in the condensate
is kept the same, it is expected that the average cross-section area of T (at fixed ϕ) becomes
smaller when R is larger. So, for R big enough, the condensate would be trapped in small
∆r and ∆z ranges, and the number density would become approximately a function of only
one variable (quasi-1D approximation):

n(r, ϕ, z) →
{

n(ϕ), if (r, ϕ, z) ∈ T ;
0, otherwise.

(14)

Moreover, these conditions also restrict the direction of~J, such that:

~J ≈ Jϕ ϕ̂ =
h̄

Mr
Im{ψ†∂ϕψ}ϕ̂. (15)

In the next section, we discuss how the barrier potential, UB, acts on the current density
and the consequences of choosing an order parameter with defined parity.

4. Current Density and the Parity of the Order Parameter

Based on the discussion in the last section, we expect that, for relatively large R,
a toroidal condensate under the presented conditions, will behave similar to a quasi-1D
BEC with the current density effectively restricted to the ϕ̂ direction. Now, we are interested
in finding an expression for the current density Jϕ(δ) at the edges of the barrier UB (i.e., at
ϕ = ±δ). To help us find such an expression, we define the following quantity:

∆J(δ) := Jϕ(δ)− Jϕ(−δ). (16)

Its interpretation is quite simple: if we multiply it by the area, Ac, of the cross-section
of the condensate, it returns the rate of change in the number of atoms NB located inside
the barrier region:

∆J(δ) · Ac = − d

dt
NB. (17)

Using (15) and (16), one finds the following expression for ∆J(δ):

∆J(δ) ≈ h̄

MR
Im
{

ψ†(δ)∂ϕψ(δ)− ψ†(−δ)∂ϕψ(−δ)
}

. (18)

To simplify it, we use symmetry arguments observing the parity of the order parameter
ψ. It is noticeable that, in general, the GPE (2) admits both even and odd solutions (with
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respect to the variable ϕ), and if we choose an even distribution f (−ϕ) = f (ϕ), the order
parameter follows {

ψ(−ϕ) = ψ(ϕ) → even,
ψ(−ϕ) = −ψ(ϕ) → odd.

(19)

Moreover, it is easy to show that Jϕ is always an odd function if the parity of ψ is well
defined. This way, it is clear that ∆J(δ) allows us to calculate Jϕ(δ) directly:

∆J(δ) = 2Jϕ(δ). (20)

In particular, if we choose ψ(ϕ) to be even, one finds that:

ψ†(δ)∂ϕψ(δ)− ψ†(−δ)∂ϕψ(−δ) = ψ†(δ)
[
∂ϕψ(δ)− ∂ϕψ(−δ)

]
, (21)

and, using the Equations (12) and (13), we finally obtain:

Jϕ(δ) ≈
U0R

h̄
Im{ψ†(δ)ψ(0)}. (22)

Note that making ψ an even function is not the only way of finding such an approx-
imation for the current difference ∆J(δ). For instance, choosing RU0 big enough in the
complete expression for ∆J(δ),

∆J(δ) ≈ h̄

MR
Im
{[

ψ†(δ)− ψ†(−δ)
]
∂ϕψ(δ) +

2MR2

h̄2 U0ψ†(−δ)ψ(0)
}

, (23)

should effectively return the same ∆J(δ) value from the even case, regardless of whether
the parity of ψ is defined or not. However, choosing the even parity case for ψ leads
to a symmetrical constraint of the BEC global phase, as we show in the next section (see
Equations (31) and (38)).

Recalling what we mentioned before, it is always possible to factorize the order
parameter ψ = ψζ, and the scalar term can be written as ψ =

√
n eiθ . Applying such

factorization in (22), we find:

Jϕ(δ) ≈
U0R

h̄

√
n(δ)n(0) Im

{
ζ†(δ)ζ(0)ei[θ(0)−θ(δ)]

}
. (24)

According to reference [9], ζ is highly dependent on the symmetrical and topological
properties of the condensate. Therefore, we expect that Jϕ will also depend on such
properties. Nevertheless, for now, to keep the analogy between the Josephson current (1)
and Jϕ(δ) as simple as possible, we consider the case of a scalar BEC (i.e., ζ ≡ 1):

Jϕ(δ) ≈
{

U0R

h̄

√
n(δ)n(0)

}
× sin[θ(0)− θ(δ)] (25)

Note that the current density Jϕ at the edges of the barrier (ϕ = ±δ) is proportional to
the sine of the phase difference between the barrier region (ϕ ∼ 0) and the remaining region
(ϕ & δ or ϕ . −δ), and the analogy to the Josephson current is (mathematically) clear.

It is also possible to derive the time-evolution equation for the global phase difference
∆θ = θ(0) − θ(δ), similarly to the second equation in (1). Here, we use the following
relation between ∂tθ and the local average energy per particle δE/δn(~r) [7]:

− h̄
∂

∂t
θ =

δE

δn(~r)
, (26)
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where δE/δn(~r) is the functional derivative of the average energy of the condensate, E,
with respect to the number density [7], n(~r),

E =
∫

ψ∗
[
− h̄2∇2

2M
+ Utotal

]
ψ +

c0n2

2
d3r . (27)

If we consider the phase difference ∆θ = θ(0)− θ(δ),

∂

∂t
[∆θ] =

1
h̄

δE

δn

∣∣∣∣
ϕ=δ

ϕ=0
, (28)

we find that the difference of the local energy per particle (right-hand side of (28)) has the
same role to Jϕ(δ) as 2eV has to Ij in Equation (1).

5. The Broken-Symmetry Spinor BEC Case

This section discusses the current Jϕ(δ) beyond the scalar BEC case. For that, it
is convenient to define the function C(δ) as the quantity that characterizes such current
according to the spinor nature of the condensate:

C(δ) := Im
{

ζ†(δ)ζ(0)ei[θ(0)−θ(δ)]
}

. (29)

Note that, in general,
C(δ) 6= sin(∆θ), (30)

because the spinor part ζ may not be trivial (i.e., ζ 6≡ 1). Before discussing specific cases, we
recall some useful properties of spinor BECs applied to the system analyzed here.

Firstly, due to the defined parity of ψ, it is simple to show that the superfluid velocity
in the ϕ̂ direction (vϕ) is an odd function. Therefore, its circulation must always be zero
and the global phase circulation is proportional to the artificial magnetic flux:

∮
dθ =

∮
~A · ~dl =

1
h̄

∫∫
~B · ~dS, (31)

which, in several situations [9], might be proportional to integer multiples of 2π.
In addition, the time-evolution equation for ∆θ in the spinor BEC case is given by:

∂

∂t
[∆θ] =

(
1
h̄

δE

δn
+ Φ

)∣∣∣∣
ϕ=δ

ϕ=0
, (32)

where the average energy E is (for atomic spin f = 1):

E =
∫

ψ†

[
− h̄2∇2

2M
+ Utotal − pfz + qf2

z

]
ψ +

c0n2

2
+

c1~F
2

2
d3r , (33)

and it implicitly depends on the gauge field ~A.
Moreover, according to reference [9], spinor BECs are naturally described by broken-

symmetry states in the long-wavelength limit (i.e., when the characteristic dimensions of the
condensate are much larger than its healing length). Furthermore, the spinor part of these
states is characterized by the following type of expansion:

ζ = e−iαfz e−iβfy e−iγfz ζ0, (34)
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where the parameters (α, β, γ) are functions of time and space, and represent an arbitrary
unitary transformation ∼= SO(3) (i.e., they are Euler angles). For f = 1 condensates, such
transformation is equivalent to the following matrix:

e−iαfz e−iβfy e−iγfz =




e−i(α+γ)cos2 β
2 − e−iα√

2
sinβ e−i(α−γ)sin2 β

2
e−iγ√

2
sinβ cosβ − eiγ√

2
sinβ

ei(α−γ)sin2 β
2

eiα√
2
sinβ ei(α+γ)cos2 β

2


. (35)

The constant generator of the spinor part ζ0 is directly related to the order parameter of
a uniform condensate, whose possible states (ferromagnetic, polar, anti-ferromagnetic, and
others) have been studied and classified [9,10,36]. For generators with average spin in the ẑ

direction (ζ†
0
~f ζ0 = ζ†

0fzζ0ẑ = f0ẑ), the artificial electromagnetic potentials are [9]:

~A = f0

(
cos(β)~∇α + ~∇γ

)
, (36)

Φ = − f0

(
cos(β)

∂

∂t
α +

∂

∂t
γ

)
. (37)

So, we can rewrite (31) as:
∮

dθ = f0

∮
(cos(β)dα + dγ), (38)

which is a constrain between θ and the Euler angles (given that the parity of ψ is defined).
Now, we will show two examples of how such broken-symmetry states affect the

current Jϕ(δ)and how it differs from the scalar BEC case.

5.1. Ferromagnetic States

There are two families of ferromagnetic states in spinor ( f = 1) BECs, called positive and
negative, generated by ζferro+

0 = (1, 0, 0)T and ζferro−
0 = (0, 0, 1)T , respectively. Using (35),

one derives [9] the following spinor parts of the ferromagnetic states ζferro±:

ζferro+ = e−iγ




e−iαcos2 β
2

1√
2

sinβ

eiαsin2 β
2


 and ζferro− = eiγ




e−iαsin2 β
2−1√

2
sinβ

eiαcos2 β
2


, (39)

from which one can compute all the symmetrical and topological properties. With these
expressions, we directly find how the parameters (α, β, γ) act on C(δ):

Cferro±(δ) = cos2 β(0)
2

cos2 β(δ)

2
sin[∆θ ∓ (∆γ + ∆α)] +

1
2

sinβ(0)sinβ(δ)sin[∆θ ∓ ∆γ]

+ sin2 β(0)
2

sin2 β(δ)

2
sin[∆θ ∓ (∆γ − ∆α)], (40)

for ∆G := G(0)− G(δ), when G = θ, α or γ.
Note that Cferro±(δ) is not equal to sin[∆θ] in general. This shows that the current

Jϕ(δ) in BECs is sensitive to their nontrivial structural spinor properties. However, we
are still able to access the scalar limit, because Cferro±(δ) = sin[∆θ], if (α, β, γ) are constant
parameters. This situation corresponds to spinor BECs with trivial spinor parts (for instance,
in the ferromagnetic case, ζ = (1, 0, 0)T or (0, 0, 1)T), representing an effective scalar BEC
in a rotated reference frame.
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5.2. Polar State

The polar states are generated by ζ
polar
0 = (0, 1, 0)T . Such a family of states is unique

because they are closely related to scalar BECs (given that f0 = 0 and ~F = 0), while their
symmetrical and topological properties might be nontrivial [9]. Using (35), one finds the
spinor part of the polar states:

ζpolar =




− e−iα√
2

sinβ

cosβ
eiα√

2
sinβ


. (41)

Applying this expression in (29), we obtain Cpolar(δ):

Cpolar(δ) =
1
2

sinβ(0)sinβ(δ)sin[∆θ − ∆α] + cosβ(0)cosβ(δ)sin[∆θ]

+
1
2

sinβ(0)sinβ(δ)sin[∆θ + ∆α]. (42)

With a little algebraic work, we find that Cpolar(δ) ∝ sin[∆θ] in general. In this sense,
we might interpret such a relation as a signature of the partial analogy between polar states
and scalar BECs, because the current density Jϕ(δ) can be written in the following way:

Jϕ(δ) = Jmax(α, β) sin[∆θ], (43)

where the parameters (α, β) modulate the maximum value of Jϕ(δ).

6. Landau Critical Velocity, Lower Bound for R, and Experimental Protocol

This section discusses the effects of the Landau critical velocity on the parameters
of our model and shows that it defines a lower bound for R. We also introduce a simple
experimental scheme to test the theory, proposing an upper limit to how fast the barrier
height, U0(t), can be turned on. In addition, we discuss some relevant considerations and
practical suggestions for the experiments, particularly related to time-lapsed measurements
of the BEC density distribution, using specialized imaging techniques, from which the
analysis of the time evolution would lead to C(δ).

The Landau critical velocity is an upper limit for the velocity of particles in a superfluid,
before the appearance of dissipation (viscosity) [7,8,13,35]. It is set by the energy gap
between the ground state and the lowest elementary excitation leading to dissipation in the
fluid. In BECs, this critical velocity is typically in the same order of magnitude as the sound
velocity, being identical to it for a weakly-interacting homogeneous (uniform) scalar BEC.
According to the Bogoliubov theory for spin-1 spinor BECs [9], similarly to the scalar case,
this velocity vc is

vc ∼
√

gn

M
, (44)

where here g is usually a linear combination of the constants c0 and c1 from Equation (2), and
it depends on the broken-symmetry state of the condensate. For example, in a ferromagnetic
state, according to Sec. 5.2.1 in Ref. [9], g = c0 + c1.

Because Jϕ(ϕ) is an odd (anti-symmetrical) function in our formulation, from sym-
metry arguments alone, we expect Jϕ(0) = Jϕ(π) = Jϕ(−π) = 0, with the maximum
amplitudes symmetrically occurring in the interval |ϕ| ∈ [0, π]. Therefore, assuming that
the dominant contribution to the current occurs at ϕ = ±δ, because we are interested in the
superfluid regime, we impose |~v(δ)| < vc(δ) =

√
gn(δ)/M, where n(δ) is the total (local)

density at ϕ = ±δ. Moreover, we use Equation (5) to estimate |~v(δ)|:

|~v(δ)| ∼ h̄

MR
|∂ϕθ(δ)− iζ†(δ)∂ϕζ(δ)| ∼ h̄

MR

1
δ

. (45)
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Considering δ is a given angle (i.e., we chose δ in an experiment), we can estimate a
lower bound for R, such that the condensate is in the superfluid regime:

R >
√

2
h̄√

2Mgn(δ)

1
δ
=

√
2

ξ

δ
; with ξ ≡

√
h̄2/(2Mgn(δ)). (46)

Or, more intuitively:

R ≫ (Healing Length)
δ

(47)

if one wants the system to be far from the critical velocity.
As indicated previously in Equation (17), the currents Jϕ(±δ) are helpful to model the

rate of change in the number of atoms NB leaving the region inside the barrier. Conversely,
measuring this rate of change, i.e., monitoring NB(t), is a way to measure C(δ) as a function
of time. In principle, one could use non-destructive imaging techniques [37,38] to take
multiple snapshots of the condensate density distribution at different times. Depending
on the experimental parameters, such as the number of atoms and the radius R, the cross-
section Ac could be so small that the optical density of the atoms would make dispersive
(phase contrast) imaging [37] difficult, but this is exactly the conditions for which partial-
transfer absorption imaging (PTAI) [38] was developed. Therefore, in principle, one can
make these measurements even in the deep quasi-1D limit (i.e., extending the radius R as
necessary to fulfill the condition in Section 4).

According to Section 5, different types of spinor BECs (ferromagnetic, polar, and scalar,
with equivalent initial conditions for the density and velocity) should respond differently to
the application of the same potential barrier UB(ϕ). The details will depend on the specific
case, as well as the external magnetic field. Therefore, further theoretical, numerical, and
experimental studies are necessary, but they may unveil new ways of sensing the symmetry
of spinor BEC states, solely using measurements of C(δ).

As a simple example, we can imagine an experimental protocol starting initially with
the barrier turned off and a homogeneous condensate in equilibrium (n(0) = n(δ) and
∂tn(ϕ) = 0). At t = 0, the barrier is turned on and ramped up following a sufficiently fast
time protocol U0 = U0(t). The barrier causes a perturbation on the densities (and also on
NB and C(δ)), and, after a time t = τ, the system reaches a new equilibrium (∂tNB = 0 and
C(δ) = 0, ∀t > τ). For scalar BECs, the equilibrium is described by C(δ) = sin(∆θ) = 0,
with ∆θ = constant, which (as expected) simply implies in:

µ =

(
δE

δn

)

ϕ=δ

=

(
δE

δn

)

ϕ=0
. (48)

Finally, we briefly show here that the time protocol U0(t) must always have an up-
per limit that depends on the density’s perturbation and C(δ) at any given time so that
the condensate does not lose its superfluid properties. This upper limit is found using
Equation (24) to estimate |~v(δ)| and it corresponds to

U0(t) < vc(δ, t)
h̄

R

√
n(δ, t)

n(0, t)

1
|C(δ, t)| . (49)

7. Conclusions

In this manuscript, we used the parallel between superconductors and superfluids
to present a curious new effect in a superfluid, similar to the current oscillations in the
Josephson effect, but it happens without current flowing through the barrier. The result
was derived for BECs in toroidal traps with a thin finite repulsive barrier, and it works both
for scalar and spinor BECs.

Using a thin barrier approximation, in Equations (12) and (13), and assuming a defined
parity for the order parameter, we derived analytical expressions for the current density.
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We showed that the current at the edges of the barrier oscillates in a similar fashion to the
current flowing through a Josephson junction (1), but in our case, it happens without a
net circulation of the superfluid current. We also showed how the nontrivial symmetry
properties of spinor BECs could generate other current structures, beyond the typical
C(δ) = sin[∆θ] case, indicating that such current is sensitive to these properties, suggesting
that it could be used to probe spinor symmetry or, perhaps, provide precision measurements
related to the superfluid flow.

Throughout this work, we assumed the parity of ψ was defined, which is a strong
mathematical imposition to guarantee that Equation (24) is a reasonable approximation for
the current density. Moreover, this imposition implies that the circulation of the condensates
considered here is always zero, excluding several (θ, α, β, γ) configurations with nontrivial
symmetry and topology. However, as we discussed in Section 4, ensuring that the last
term in (23) is dominant should keep the structure of ∆J(δ) unchanged, regardless of the
parity of ψ. Therefore, it might be possible to derive a similar expression (24) for BECs
with nonzero circulation, such as the ones shown in experiments [30–33,39], and for spinor
BECs with nontrivial structure or topology [9,40–48].

Here, we also neglected the effects of fluctuations, either classical or quantum, which
can be relevant in the quasi-1D limit [49–51]. However, as we have shown previously
in Ref. [52], one can always play with the number of atoms and the aspect ratio of the
trapping potential to place oneself within the best range of parameters for the experiments.
Exercising this ability deliberately allows one to control the influence of thermal phase
fluctuations at finite temperatures. Therefore, interesting future directions would be to
explore the effects of finite temperature and thermal fluctuations, and the non-equilibrium
effects caused by quickly turning on the repulsive barrier in our proposed experimental
scheme. In Section 6, we discussed some considerations for an idealized protocol, but the
general spinor case is more complex and deserves a detailed analysis. For instance, our
simple estimate for the Landau critical velocity does not take into account other relevant
mechanisms of decay [33,39,53], especially at finite temperatures [54].

Therefore, further numerical, experimental, and theoretical studies are necessary and
may improve, expand, and, perhaps, help to classify (maybe in symmetry terms) the formu-
lation of this intriguing Josephson-like effect in toroidal spinor Bose–Einstein condensates.
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Abstract: One of the most challenging tasks in physics has been understanding the route an out-of-
equilibrium system takes to its thermalized state. This problem can be particularly overwhelming
when one considers a many-body quantum system. However, several recent theoretical and experi-
mental studies have indicated that some far-from-equilibrium systems display universal dynamics
when close to a so-called non-thermal fixed point (NTFP), following a rescaling of both space and time.
This opens up the possibility of a general framework for studying and categorizing out-of-equilibrium
phenomena into well-defined universality classes. This paper reviews the recent advances in ob-
serving NTFPs in experiments involving Bose gases. We provide a brief introduction to the theory
behind this universal scaling, focusing on experimental observations of NTFPs. We present the
benefits of NTFP universality classes by analogy with renormalization group theory in equilibrium
critical phenomena.

Keywords: non-thermal fixed points; out-of-equilibrium system; Bose–Einstein condensate; turbulence

1. Introduction

Although studying closed interacting quantum many-body systems is challenging,
some theories have successfully described aspects of these systems [1]. Quantum statisti-
cal mechanics provides a good description of many physical systems in thermodynamic
equilibrium. However, most natural phenomena occur under conditions outside equilib-
rium. This brings us to a new challenge in searching for descriptions of out-of-equilibrium
conditions that allow a reasonable understanding of the observations.

Some observables are insensitive to initial conditions and system parameters in cer-
tain situations, leading to universal phenomena. In the case of far-from-equilibrium initial
conditions, this can be observed well before an equilibrium or a quasi-stationary state is
reached. This has been investigated in a wide variety of systems such as the inflation in the
early Universe [2–6], heavy-ion collisions producing quark–gluon matter [7–10], and cold-
gas systems, in both theory [5,11–17] and experiments [18–21]. A universal spatio-temporal
scaling emerges, independent of the initial state or microscopic parameters.

It has been suggested that the universal scaling observed in these far-from-equilibrium
isolated systems is due to the presence of non-thermal fixed points (NTFPs) [4,5,9,13,22].
In the literature, it is possible to find evidence of non-thermal universality classes encom-
passing a variety of systems. These are far away from any phase transitions; hence, their
mechanism cannot be the same as that of the well-known critical phenomena and their
characteristic exponents. Another difference is that no fine-tuning of the parameters is
required to observe the characteristic scaling provided by nearby NTFPs, unlike in equi-
librium critical phenomena, where system variables need to be tuned to specific critical
values. This is evidenced by the universal scaling for several different initial states in
NTFP investigations.

Recently, with the advent of Bose–Einstein condensates (BECs) [23], the possibility of
carrying out controlled experiments has become a reality, opening a window of opportunity
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to investigate intrinsic properties of these systems or even classify them according to their
pattern of time evolution.

The production of an out-of-equilibrium BEC can be achieved experimentally in sev-
eral ways, one of them being via so-called “quantum quenching”. The system, initially in
equilibrium, is represented by a Hamiltonian H(α0), where α0 is a set of system parameters.
Then, an abrupt change is made to a new situation described by a Hamiltonian H(α1),
where α1 is a new collection of parameters. In this case, the system leaves the equilibrium
condition, having its previous state determined by H(α0) as its initial condition. Its tem-
poral evolution is unitary and governed by the new Hamiltonian H(α1). The operator
U = exp[−iH(α1)t/h̄] determines what happens until the system can decay to a new state
of H(α1). One example corresponds to abrupt potential changes, when only a few degrees
of freedom are present, allowing a simplified system evolution. This simplicity can change
when dealing with a system with many degrees of freedom, which is the case in a many-
body quantum system. Each subsystem can see the rest as a reservoir, and the final time
evolution can take quite complicated routes. There are many open questions, including the
fundamental question of how the system evolves temporally toward equilibrium, or even
how to quantify the out-of-equilibrium state and identify which system components are
determinant in the typical relaxation time for a new state of equilibrium.

Since there are many quench protocols that can be employed to produce out-of-
equilibrium BECs, some even preserving symmetries present in the equilibrium state,
the question of whether a system can approach a NTFP arises. In general, this depends
strongly on the chosen initial conditions, which should correspond to extreme out-of-
equilibrium configurations [24]. For example, in the case of a dilute Bose gas, this could
be achieved by populating only modes below a certain momentum scale Q. The initial
state, a constant momentum distribution for k < Q that drops abruptly at k = Q, is
strongly overpopulated at low momenta (compared to the final equilibrium distribution).
Hence, the subsequent dynamics is of particle transport toward lower momenta and
energy migration to high momenta. If the spatio-temporal scaling presented in Section 2 is
observed, then this is a “smoking gun” indicating a nearby NTFP [24].

In experiments, preparing and maintaining a closed system can be very challenging.
Cold-atom systems are, in this sense, very close to the ideal. Isolation allows experimental
access by external agents in a controlled manner. The isolation of trapped condensates and
the excellent control of quantum states are fundamental elements required to achieve long
coherence times, an essential feature in out-of-equilibrium studies since the coherence time
must be of at least the same order as the temporal scale of the dynamics involved.

Some clarification about the scope of this review is in order. We chose to focus our
attention on experiments involving Bose gases [18–21]. Although this corresponds only to
a small part of all research being conducted on NTFPs, we consider these examples to be
illustrative of the field. Notably, it is possible to present straightforward applications of the
theory without exploring its inner workings. For readers that wish to do so, we provide
references that may be helpful [17,24,25]. One of the motivations is to use cold-atom setups
to simulate the dynamics of currently inaccessible systems; for example, the inflation of the
early Universe. This is counter-intuitive because cold-atom systems are in the low-energy
regime, whereas the early Universe is at the other end of the energy spectrum. It is only
possible through the universal scaling due to the presence of NTFPs.

This paper is organized as follows. In Section 2, we introduce the universal scaling
provided by NTFPs and related quantities of interest. Section 3 presents four experiments
dealing with NTFPs in Bose gas systems: a quasi-one-dimensional Bose gas in Section 3.1;
a spin-1 condensate in Section 3.2; a homogeneous condensate in three-dimensions in
Section 3.3; and a turbulent harmonically trapped BEC in Section 3.4. Finally, a summary is
given in Section 4.
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2. Universal Scaling and NTFPs

Our goal in this section is to present the universal scaling function and its associated
exponents. The motivations, details, and derivations regarding the NTFP theory can be
found in [17,24,25] and the references therein. The theory developed for NTFPs is inspired
by equilibrium renormalization group theory where, in the vicinity of a phase transition,
the correlations are self-similar (independent of the resolution). Thus, scaling the spatial
resolution by a parameter s creates a correlation function that depends on the distance x
between two points behave according to C(x; s) = sζ f (x/s). In this way, the correlation
is characterized exclusively by a universal exponent ζ and a function f . A fixed point in
equilibrium critical phenomena corresponds to a situation where varying s does not change
C(x; s), meaning that the universal function is a power law, f (x) ∝ x−ζ . In physical systems,
this behavior is approximate, and information may be retained about characteristic scales.

Non-thermal fixed points in the dynamics of far-from-equilibrium systems are anal-
ogous to fixed points in critical equilibrium phenomena, with the distinction that the
former uses the time t as the scale parameter. Near NTFPs, the correlations take the form
C(x, t) = tα f (t−βx), now with two universal exponents. Universality classes, in this con-
text, correspond to the same exponents α and β and a scaling function f . Figure 1 shows a
schematic time evolution for a system that encounters an NTFP.

Initial conditions

Non-thermal fixed point

Equilibrium

No fine-tuning

Universal scalingT
im

e
ev
o
lu
ti
o
n

Figure 1. Illustration of the dynamics of a system passing near an NTFP. For several initial conditions
(the key idea being that no fine-tuning is needed), the system can pass near a non-thermal fixed point.
The correlation functions show a spatio-temporal scaling with a universal function when that occurs.
After some time, the system leaves the vicinity of the NTFP and reaches equilibrium.

In the case of cold bosonic gases, the momentum distribution can be used to character-
ize the time evolution of the system. Consider an isotropic momentum distribution, i.e., a
distribution that is only a function of k = |k| and time, n(k, t). The total number of particles
N(t) is obtained by integrating the momentum distribution,

N(t) =
∫

ddk n(k, t). (1)

We provide the d-dimensional expression, since we cover the cases d = 1, 2, and 3
in this review. The fluctuations in the total number of particles in cold-gas experiments
are relatively small due to the low temperatures involved and the high levels of control
that one can exert over these systems. However, unwanted losses occur mainly due
to the heating of the sample. For this reason, several experimental studies report the
momentum distribution normalized by the total number of particles at a given time,
n̄(k, t) ≡ n(k, t)/N(t). In theoretical and numerical investigations, N is a fixed number
and this distinction is irrelevant.
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The universal scaling displayed by a system in the vicinity of an NTFP is given by

n̄(k, t) =

(
t

t0

)α

f

[(
t

t0

)β

k

]
. (2)

where α and β are scaling exponents, f is a universal scaling function, and t0 is an arbitrary
reference time within the time interval where the scaling takes place. From this definition
of the scaling exponents, it is possible to see that the sign of α is related to the direction of
the particle transport. Positive values indicate particles migrating toward lower momenta,
whereas negative values increase the population of the high-momentum components.

Global Observables

Besides the important result of Equation (2), there are also global observables of
interest when dealing with systems that display universal scaling due to the presence of
nearby NTFPs. The main difference is that these quantities are computed in the infrared
(IR) scaling region, kD 6 (t/t0)

βk 6 kc, where kD is the smallest wave vector that can be
measured (inversely proportional to the largest length scale of the system D, typically its
size) and kc defines the cut-off where the universal scaling takes place.

One of the observables is the number of particles in the scaling region,

N̄(t) =
∫

k6
(

t
t0

)−β
kc

ddk n̄(k, t) ∝

(
t

t0

)α−dβ

. (3)

A necessary condition for Equation (2) to hold is that N̄(t) is constant during the time
interval where the universal scaling is observed. The time dependence N̄(t) ∝ tα−dβ can
be derived straightforwardly by inserting Equation (2) into Equation (3) and changing the
variables of integration.

The moments of the momentum distribution can also be computed in the region of the
universal scaling. The second moment has the physical interpretation of the mean kinetic
energy per particle in the scaling region,

M̄2(t) =
∫

k6
(

t
t0

)−β
kc

ddk
k2n̄(k, t)

N̄(t)
∝

(
t

t0

)−2β

. (4)

Its time dependence, M̄2 ∝ t−2β, can also be derived using Equations (2) and (3).
Hence, the sign of β is related to the direction of the energy transport. For β > 0, the energy
leaves the scaling region and migrates to higher momenta, whereas a negative sign indicates
an energy increase in the IR scaling interval.

These are not the only global observables that can be defined. For example, in Section 3.2
we encounter another quantity, relevant in the context of a spinor condensate.

3. Experiments

3.1. One-Dimensional Bose gas

The authors in [18] produced a one-dimensional Bose gas by strongly quenching a
three-dimensional one. They reported a universal scaling in the time-dependent momentum
distribution due to the presence of an NTFP.

These authors employed 87Rb atoms, which correspond to a repulsively interacting
Bose gas in a very elongated (quasi-1D) harmonic trap. At the beginning of the experiment,
the thermal gas was just above the critical temperature. During the quench, the trap depth
was ramped linearly, such that its final value was below the first radially excited state. This
causes the evaporation of atoms occupying higher energy states. Finally, the depth of the
trap was raised to close the trap. The resulting Bose gas was in a far-from-equilibrium
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condition, and its evolution was recorded after a time t. They were able to probe the system
using both the in situ density and the momentum distribution, which is the quantity of
interest for the universal scaling in the form of Equation (2).

Some aspects of the momentum distribution at early and late times were known.
The authors provided a quantitative description of the initial state in terms of solitonic
defects [14,26]. Since the quenching procedure is almost instantaneous, the initial state had
a large population of high-energy modes, which makes the observation of the universal
dynamics associated with NTFPs possible when the system relaxes. During the time
evolution of the system, a peak appears at low momenta, indicative of the formation of
the quasi-condensate. The system reaches a thermal quasi-condensate state at late times,
which is described by a Lorentzian function (its width is inversely proportional to the
temperature).

The normalized momentum distributions are shown in Figure 2a. As time progresses,
the distribution increases (decreases) at low (high) momenta, signaling the formation of the
quasi-condensate. In Figure 2b, the authors provide the scaled curves using Equation (2)
with α = 0.09(5) and β = 0.10(4). All curves, below a cut-off value kc indicated by a dashed
line in the figure, collapse into a single universal function. Both exponents are positive,
indicating that particles migrate toward the low-momenta region, and energy flows in the
high-momenta direction. This is consistent with the formation of a quasi-condensate after
the quenching procedure is performed. The theoretical study in [5] predicts a value of
β = 1/2, independent of the dimension d, for far-from-equilibrium dynamics in an isolated
Bose gas following a strong quench. The authors of [18] provide arguments for why this
theory does not apply fully to their system.

Figure 2. Universal scaling dynamics observed by the authors of [18]. (a) Time evolution of the
normalized momentum distributions. (b) Momentum distributions scaled according to Equation (2).
All the curves collapse into a single function, signaling the universal scaling. Reprinted by permission
from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature, Erne et al., Universal
dynamics in an isolated one-dimensional Bose gas far from equilibrium, © 2018.

As well as analyzing the momentum distributions, the authors also computed the num-
ber of particles and the mean kinetic energy per particle in the scaling region (Equations (3)
and (4)). The quantity N̄ was approximately constant in that region, which is consistent
with the time-dependence prediction of Equation (3), i.e., N̄(t) ∝ tα−dβ, since d = 1 and
the authors found α ≈ β. Moreover, the M̄2 ∝ t−2β behavior was also verified in the region
of interest. As expected, both quantities showed a different time dependence outside the
scaling region.

3.2. Spinor Bose Gas

The authors in [19] observed universal dynamics in a quasi-one-dimensional spinor
Bose gas [27] by analyzing spin correlations. They employed a 87Rb gas in the F = 1
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hyperfine state, which has three possible magnetic sublevels: mF = −1, 0, 1. Hence, it
behaves as a spin-1 system with ferromagnetic interactions [28]. Initially, all atoms are in
the mF = 0 state. The system is driven far from equilibrium by a sudden change in the
energy splitting of the sublevels, producing excitations in the Fx − Fy plane.

Although both this system and the one presented in Section 3.1 are quasi-one-dimensional
systems, the degrees of freedom and underlying physics are quite different. Hence, the func-
tion entering into the scaling described by Equation (2) is not as straightforward as being
simply the momentum distribution. For details regarding the function and the measure-
ments, the reader is referred to [19]. Here, we present only a brief overview.

First, the authors computed the mean spin length, 〈|F⊥(t)|〉, where F⊥ = Fx + iFy. A lo-
cal angle was defined and extracted using θ(y, t) = arcsin(Fx(y, t)/〈|F⊥(t)|〉). Fluctuations
were probed by means of a two-point correlation function, C(y, y′; t) = 〈θ(y, t)θ(y′, t)〉.
Finally, the desired function is the structure factor, which is the averaged Fourier transform:

fθ(k, t) =
∫

dy
∫

dȳ C(y + ȳ, y; t)e−2πikȳ. (5)

Although the derivation of the function defined in Equation (5) may seem more
intricate than the more familiar momentum distribution of Section 3.1, both are functions of
momentum and time and are determined by experimental parameters and the initial state.

In Figure 3a the authors present the time evolution of the structure factor. It is possible
to see a shift toward lower momenta as time passes. When the scaling of Equation (2)
is applied to the data, all the points collapse into a single universal curve, as shown in
Figure 3b. The exponents employed were α = 0.33(8) and β = 0.54(6).

Figure 3. Universal scaling in a spinor Bose gas [19]. (a) Time evolution of the structure factor
(Equation (5)). (b) After the scaling of Equation (2) has been applied, the curves collapse into a
universal function. Reprinted by permission from Springer Nature Customer Service Centre GmbH:
Springer Nature, Nature, Prüfer et al., Observation of universal dynamics in a spinor Bose gas far
from equilibrium, © 2018.

The authors also find a relevant global observable
∫

dk fθ(k, t), which is an approxi-
mately conserved quantity during the evolution. The arguments used in Section 2 can be
employed to derive its time dependence ∝ tα−β. The observed migration of the conserved
quantity toward lower momenta is consistent with β > 0.

Although the values of the exponents do not strictly correspond to α ≈ β, as one
would expect from α − dβ = 0, we should keep in mind that this system is composed of
Ns = 3 unidimensional Bose gases, for which there are no theoretical predictions. For other
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systems described by O(Ns) symmetric models and d > 2, the universal value of β ≈ 0.5
has been predicted [5].

3.3. Homogeneous Three-Dimensional Bose Gas

The authors of [20] observed a bidirectional dynamical scaling in a homogeneous
three-dimensional Bose gas [29]. While the systems described in Sections 3.1 and 3.2
only report universal scaling in the IR region, the authors of [20] also observed scaling in
the ultraviolet (UV) region of the momentum distribution, hence the term bidirectional.
Although the authors found a different set of exponents for the universal scaling in each
region, these do not correspond to two different NTFPs. Instead, they are a consequence
of particle transport toward small momenta and energy transport toward large momenta,
in agreement with NTFP theory [24].

In their experiment, the authors employed 39K atoms in a cylindrical box, producing
a homogeneous 3D Bose gas. Their experimental protocol depended on the depth of the
optical box trap and the s-wave two-body scattering length a, which characterizes the
interparticle interactions. First, a cloud containing the atoms just above the condensation
temperature was prepared. The idea was to quickly remove atoms and energy from
the system to produce a far-from-equilibrium state. This was achieved by turning off
the interactions (a → 0) and lowering the depth of the trap so that high-energy atoms
evaporated. Since there are no interactions, the system does not thermalize. This step
removed ≈77% of the atoms and ≈98% of the energy such that, if it were in equilibrium,
a significant fraction of the system would condense. Next, the system was closed again
by increasing the depth of the trap potential. At t = 0, interactions were turned on again
(a 6= 0) and thermalization began to take place. After a variable time t, the momentum
distribution n(k, t) was obtained through absorption images. For long enough times,
the system reaches equilibrium with both condensed and thermal components.

During thermalization, the total number of particles N and total energy E are con-
served, but there are two distinctive flows in opposite directions as time progresses. The ma-
jority of particles migrate toward the IR region, consistent with the condensate formation,
but a small fraction of the atoms transfer the energy in the UV direction.

The presence of a nearby NTFP allows for the universal scaling of Equation (2) in a
time interval between the initial and equilibrium states. In Figure 4a, the authors show the
unscaled n(k, t) profiles. The UV region is described well by the exponents α = −0.70(7)
and β = −0.14(2) (Figure 4b), while the IR region collapses into a universal function with
α = 1.15(8) and β = 0.34(5) (Figure 4c).

Figure 4. Universal bidirectional scaling in a homogeneous Bose gas [20]. (a) Momentum distributions
as a function of time. (b) Scaling provided by Equation (2) with α = −0.70(7) and β = −0.14(2),
which collapses the curves into a universal function for the UV region. (c) The top panel shows
the low-momenta region of the momentum distributions, while the bottom one depicts the scaling
of Equation (2) with α = 1.15(8) and β = 0.34(5). Reprinted by permission from Springer Nature
Customer Service Centre GmbH: Springer Nature, Nature Physics, Glidden et al., Bidirectional
dynamic scaling in an isolated Bose gas far from equilibrium, © 2021.
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For a d-dimensional system with a dispersion relation of the form ω(k) ∝ kz, energy
density conservation requires α/β = d + z [17,24]. Hence, the UV scaling, where α/β ≈ 5,
is consistent with energy-conserving transport with a quadratic dispersion relation in 3D.
Moreover, weak-wave turbulence predicts a value of β = −1/6 for the UV dynamics [30,31],
close to that observed in [20].

For the IR region, α/β ≈ 3, consistent with particle conservation in d = 3 dimensions.
While several theoretical investigations predict β = 1/2 for the IR region [4,5,17], certain
conditions may yield β = 1/3 [24,32].

The authors of [20] also investigated a dynamical scaling depending on the interactions
t → ta/a0, where a0 is a reference scattering length. The exponents obtained by this other
scaling were similar to those previously obtained.

3.4. Harmonically Trapped Three-Dimensional Bose gas

The authors in [21] investigated the emergence of universal scaling due to the presence
of NTFPs in a harmonically trapped three-dimensional Bose gas, driven to a turbulent state.

The experiment began with a cigar-shaped 87Rb BEC with a condensed fraction of
≈70% in equilibrium. The production of a far-from-equilibrium state was achieved by
a sinusoidal time-varying magnetic field gradient, such that it was not aligned with the
principal axes of the trap. This corresponds to rotations and distortions of the original
trap shape. The amplitude, frequency, and duration of the excitation could be varied and
controlled. At t = 0 the excitation was turned off, and the system was left to evolve in the
trap. After a time t, absorption images were taken to obtain the momentum distribution of
the system.

The emergence of a turbulent state depends on the parameters of the excitation proto-
col, as identified by a characteristic power-law behavior. Figure 5a shows the time evolution
of the momentum distribution of a turbulent state. As time passes, the distribution shifts
toward high momenta, indicating the depletion of the condensate. The scaling employing
Equation (2) with α = −0.50(8) and β = −0.2(4) is shown in Figure 5b, which collapses all
curves into a single function.
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Figure 5. Universal scaling in a turbulent harmonically trapped Bose gas [21]. (a) Momentum
distributions of the turbulent state. (b) Scaled momentum distributions with α = −0.50(8) and
β = −0.2(4). Figure taken from [21].

The momentum distributions of Figure 5a were obtained via absorption images of the
cloud, corresponding to two-dimensional projections of a three-dimensional system. Using
the inverse Abel transform [33] and some assumptions, the authors in [21] were able to
reconstruct the three-dimensional momentum distributions (see Figure 6a). The exponents
determined using the two-dimensional projections did not provide the universal scaling,
as evidenced by Figure 6b. The authors showed that the exponents obtained through the
scaling of a projection were related to those of the isotropic three-dimensional distribution
through α3D = 3α/2 (β remains the same). Using α = −0.75 and β = −0.2, the collapse
into a universal function was much better adjusted, as shown in Figure 6c.
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Figure 6. (a) Three-dimensional momentum distribution reconstructed with the inverse Abel trans-
form. (b) Scaling provided by Equation (2) with α = −0.50 and β = −0.2, which are the same
exponents as those employed in the two-dimensional projection. (c) Scaling using α = −0.75 and
β = −0.2, corresponding to the prediction of the exponents for the three-dimensional case. The col-
lapse is much better than that shown in panel (b). The figure is taken from [21].

The global observables of Equations (3) and (4) were also computed in [21]. The
authors observed a slight decrease in the particle number in the scaling region, N̄ ∝ t−0.1,
and an increase in the mean kinetic energy consistent with M̄2 ∝ t−2β. These obser-
vations are consistent with the energy leaving the IR region and the depletion of the
condensate. The authors also presented the benefits of merging quantum turbulence
phenomena into a universality class of dynamically scaling systems characteristic of
NTFPs [5,13,17,22,24–26,31,34,35].

4. Final Remarks

In this review, we focused on experiments with Bose gases that, due to the presence of
NTFPs, display the spatio-temporal scaling of Equation (2). Table 1 contains a summary
of the systems and related exponents. Although we discussed these experiments only
in terms of dimensionality, the number of components, and the signs of the exponents,
these systems cover a wide range of scenarios.

Table 1. Summary of the exponents α and β found in the experiments covered in this review [18–21].
We indicate the dimensionality d, the number of components Ns, and the two different sets of
exponents found in [20,21].

Bose Gas d Ns α β

1D [18] 1 1 0.09(5) 0.10(4)

Spinor [19] 1 3 0.33(8) 0.54(6)

3D Homogeneous [20]
IR region 3 1 1.15(8) 0.34(5)
UV region 3 1 −0.70(7) −0.14(2)

Turbulent, harmonically trapped [21]
2D projection 2 1 −0.50(8) −0.2(4)

3D reconstruction 3 1 −0.75 −0.2

A common aspect of the experiments presented in this review is the relation followed
by the scaling exponents, α ≈ dβ, in the IR region. This is not surprising, since according to
Equation (3), N̄ ∝ tα−dβ and N̄(t) must be conserved during the interval where the scaling
occurs. Nevertheless, verifying these theoretical predictions experimentally in systems that
are so different from each other strengthens the claim regarding NTFPs.

In equilibrium critical phenomena, renormalization group theory and fixed points
lead to critical exponents [36], which provide a unified description in terms of universality
classes sharing the same exponents. The experimental evidence provided by the studies
presented in this review is crucial to providing something similar in isolated far-from-
equilibrium systems. Hopefully, the interplay between theory and experiments may lead
to classification schemes based on universal properties, which would be important for
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various systems. This would allow, for example, cold-atom experiments to be employed to
simulate different systems of the same universality class.
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Abstract: In this work, we describe the crazy-clock phenomenon involving the state I (low iodide
and iodine concentration) to state II (high iodide and iodine concentration with new iodine phase)
transition after a Briggs–Rauscher (BR) oscillatory process. While the BR crazy-clock phenomenon is
known, this is the first time that crazy-clock behavior is linked and explained with the symmetry-
breaking phenomenon, highlighting the entire process in a novel way. The presented phenomenon has
been thoroughly investigated by running more than 60 experiments, and evaluated by using statistical
cluster K-means analysis. The mixing rate, as well as the magnetic bar shape and dimensions, have
a strong influence on the transition appearance. Although the transition for both mixing and no-
mixing conditions are taking place completely randomly, by using statistical cluster analysis we
obtain different numbers of clusters (showing the time-domains where the transition is more likely
to occur). In the case of stirring, clusters are more compact and separated, revealed new hidden
details regarding the chemical dynamics of nonlinear processes. The significance of the presented
results is beyond oscillatory reaction kinetics since the described example belongs to the small class
of chemical systems that shows intrinsic randomness in their response and it might be considered as
a real example of a classical liquid random number generator.

Keywords: crazy clock; Briggs–Rauscher reaction; state I to state II transition; symmetry breaking;
iodine; K-means analysis; random number generator

1. Introduction

The presence of symmetry around us inspired many scientists to search for beauty,
harmony, order, and regularity in nature and her fundamental laws [1,2]. Additionally,
phase transitions with and without spontaneously broken symmetries are widespread
concepts through different areas of physics and physical chemistry. The applications of
spontaneously broken symmetries cover a wide range of condensed matter science topics,
such as superconductivity, super-fluidity, Bose–Einstein condensation, nucleation physics,
self-assembly processes, morphogenesis, and chemical kinetics. In this account, we describe
spontaneous symmetry breaking in the case of the nonlinear Briggs–Rauscher reaction. We
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highlight the importance of symmetry breaking, in non-equilibrium and pattern formation
processes, which is of vital meaning to the understanding of the morphogenesis process
and for applications in several areas of biomimetics and nanoscience.

The Briggs–Rauscher (BR) [3] reaction is a hybrid oscillating reaction formed by
coupling two chemical oscillators, Bray–Liebhafsky [4,5] and Belousov–Zhabotinskii [6].
Since its discovery in 1973, the Briggs–Rauscher oscillating reaction has been one of the
most investigated oscillatory systems. It is probably due to its simplicity and exciting colour
alternation caused by changes in reaction kinetics (when starch is used as an indicator) [7].

BR reaction typically occurs within mixtures of H2O2, H2SO4, and KIO3. Additionally,
Mn(II) ions are added as a metal catalyst and malonic acid (H2MA) as an organic substrate.
Substitutions of chemicals are possible; different acids, organic substrates, and ions, such as
Ce(III) instead of Mn(II) catalyst, can be used to generate BR oscillations [7–10]. However,
the oscillatory behavior is not the only one that attracted the attention of non-linear scientists
in the Briggs–Rauscher reaction [11–15].

Indeed, as described elsewhere [16], after the well-controlled initial oscillatory behav-
ior, the reaction becomes chaotic. Depending on the initial conditions, particularly on the
ratio [H2MA]0/[IO3

−]0 [16,17], the reaction exhibits a sudden and unpredictable phase
transition. This transition, from state I (low concentration of iodide and iodine) to state II
(high concentration of iodide and iodine), happens randomly in practice, as the time spent
by the system in the state I is irreproducible (see Figure 1). The transition is characterized
by a “sharp and sudden” increase of iodine and iodide concentration, followed by the
formation of solid iodine. The observed stochastic feature, called a crazy clock (due to
the unpredictable time needed to provoke the transition), is linked to imperfect mixing
that affects convection and diffusion dynamics. The imperfect mixing results in extremely
complicated phenomena, which occur on multiple length and time scales [18]. Possible
kinetical consequences are the appearance of bifurcation, chaos, intermittent behavior, and
symmetry-breaking [18,19]. In the experiments of our previous paper [16], the mixing was
stopped after an intensive homogenization (stirring at 900 rpm) of the Briggs–Rauscher
solution in the oscillatory period. Herein, the experiments carried out with or without
specific mixing were maintained all the time. Additionally, we apply the statistical cluster
K-means analysis for the first time, by processing more than 60 experiments. Therefore, this
paper further studies the mixing effects in connection to the crazy-clock phenomenon in
the Briggs–Rauscher oscillatory reaction. It compares and processes statistically more than
#60 experiments obtained under identical initial concentrations of all reactants. Although
the BR crazy-clock phenomenon was previously detected [16], this behavior is linked
for the first time to symmetry-breaking, highlighting the entire process in a novel way.
Furthermore, the investigated crazy clock exhibits a truly random behavior that might be
considered as an example of a classical, liquid random number generator. Additionally,
the investigated system also belongs to the particular class of classical systems that shows
intrinsic randomness in their response (as also observed in colloid particles placed on an
oscillating surface) [20,21].
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Figure 1. Two independent measurements (a,b) of iodide potential vs. time obtained for BR reac-
tion under experimental conditions: [H2MA]0 = 0.0789 mol/dm3, [MnSO4]0 = 0.00752 mol/dm3, 
[HClO4]0 = 0.03 mol/dm3, [KIO3]0 = 0.0752 mol/dm3, [H2O2]0 = 1.176 mol/dm3, T = 37.0 °C. The ex-
periments were performed without stirring and without protection from light. τ* denotes the time 
from the end of the oscillatory mode to the occurrence of state I→state II transition. 

2. Materials and Methods 
2.1. Briggs–Rauscher Experimental Setup 

Since the time of the transition between state I and II is unpredictable, great attention 
must be paid to the experimental procedure. Only analytically graded reagents without 
further purification were used for preparing the solutions. Malonic acid was obtained 
from Acrōs Organics (Geel, Belgium), manganese sulphate from Fluka (Buchs, Switzer-
land), perchloric acid, potassium iodate, and hydrogen peroxide from Merck (Darmstadt, 
Germany). The solutions were prepared in deionized water with specific resistance 18 
MΩ/cm (Milli-Q, Millipore, Bedford, MA, USA). 

All experiments were done in a container not protected from light. Reactions were 
monitored electrochemically (unless specified in the text). An I-ion-sensitive electrode 
(Metrohm 6.0502.160) was used as the working electrode and an Ag/AgCl electrode 
(Metrohm 6.0726.100), as the reference. During the experiments, the temperature of the 
reaction container was regulated by a circulating thermostat (JULABO GmbH, Seelbach, 
Germany) and maintained constant at 37 °C. The reaction mixture was stirred by mag-
netic stirrer (Ingenieurbüro, M. Zipperrer GmbH, Cat-ECM5, Staufen, Denmark). 

Five independent series of measurements were carried (they differed in stirring bar 
size and shape, as well as mixing rate) with the identical solution composition [H2MA]0 = 
0.0789 mol/dm3, [MnSO4]0 = 0.00752 mol/dm3, [HClO4]0 = 0.03 mol/dm3, [KIO3]0 = 0.0752 
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Figure 1. Two independent measurements (a,b) of iodide potential vs. time obtained for BR reac-
tion under experimental conditions: [H2MA]0 = 0.0789 mol/dm3, [MnSO4]0 = 0.00752 mol/dm3,
[HClO4]0 = 0.03 mol/dm3, [KIO3]0 = 0.0752 mol/dm3, [H2O2]0 = 1.176 mol/dm3, T = 37.0 ◦C. The
experiments were performed without stirring and without protection from light. τ* denotes the time
from the end of the oscillatory mode to the occurrence of state I→state II transition.

2. Materials and Methods

2.1. Briggs–Rauscher Experimental Setup

Since the time of the transition between state I and II is unpredictable, great attention
must be paid to the experimental procedure. Only analytically graded reagents without
further purification were used for preparing the solutions. Malonic acid was obtained from
Acrōs Organics (Geel, Belgium), manganese sulphate from Fluka (Buchs, Switzerland),
perchloric acid, potassium iodate, and hydrogen peroxide from Merck (Darmstadt, Ger-
many). The solutions were prepared in deionized water with specific resistance 18 MΩ/cm
(Milli-Q, Millipore, Bedford, MA, USA).

All experiments were done in a container not protected from light. Reactions were
monitored electrochemically (unless specified in the text). An I-ion-sensitive electrode
(Metrohm 6.0502.160) was used as the working electrode and an Ag/AgCl electrode
(Metrohm 6.0726.100), as the reference. During the experiments, the temperature of the
reaction container was regulated by a circulating thermostat (JULABO GmbH, Seelbach,
Germany) and maintained constant at 37 ◦C. The reaction mixture was stirred by magnetic
stirrer (Ingenieurbüro, M. Zipperrer GmbH, Cat-ECM5, Staufen, Denmark).

Five independent series of measurements were carried (they differed in stirring bar size
and shape, as well as mixing rate) with the identical solution composition
[H2MA]0 = 0.0789 mol/dm3, [MnSO4]0 = 0.00752 mol/dm3, [HClO4]0 = 0.03 mol/dm3,
[KIO3]0 = 0.0752 mol/dm3 and [H2O2]0 = 1.176 mol/dm3 in 25 mL volume:
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(1) without mixing (number of conducted experiments #30);
(2) with mixing 100 rpm using cylindrical stirring bar 10 mm length, 4 mm diameter

(BRAND magnetic stirring bar, PTFE-coated cylindrical), (number of conducted ex-
periments #30);

(3) with mixing 300 rpm using cylindrical stirring bar 10 mm length, 4 mm diameter
(BRAND magnetic stirring bar, PTFE-coated cylindrical), (in triplicate);

(4) with mixing 100 rpm using cylindrical stirring bar 20 mm length, 6 mm diameter
(BRAND magnetic stirring bar, PTFE-coated cylindrical) (in triplicate);

(5) with mixing 100 rpm using triangular stirring bar 12 mm length, 6 mm diameter
(BRAND magnetic stirring bar, PTFE-coated triangular) (in triplicate).

2.2. Statistical Processing and Cluster Analysis

The obtained experimental results were analyzed in the open-source statistic software
“R” using “hclust” algorithm for the hierarchical cluster analysis (HCA) [22,23].

3. Results and Discussion

3.1. Effects of the Stirring Bar Shape and Dimensions on the State I→State II Transition

The BR oscillatory period is strongly reproducible, while the transition from state
I to state II occurred practically randomly (Figure 1), as previously reported by our
research group [16].

It is imperative to emphasize that in our measurements (Figure 1), unlike in other
crazy-clock reactions found in the literature [18,19,24], large time fluctuations (the order of
magnitude could be more than two hours) occur after a highly reproducible oscillatory pe-
riod. Two independent measurements and consequently obtained BR oscillograms exhibit
identical trends in oscillation amplitude and time between two neighboring oscillation
maxima τn−(n−1) = tn − tn−1, as it can be observed in Figures 1 and 2a,b. Conversion from
higher to lower potential of iodine electrode (or from low to high iodide concentration)
marks the transition from state I to state II (state I→state II). Furthermore, the choice of the
working electrode affects only the transition shape. However, the transition itself is very
noticeable due to the intense color change of the system from colorless to yellow accompa-
nied by solid iodine formation. This allows monitoring the state I→state II transition with
the naked eye.
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Figure 2. Briggs–Rauscher oscillation amplitude (a) and time between two neighboring oscillation
maxima τn−(n−1) = tn − tn−1 (b) in the two independent measurements presented at Figure 1. The
resulting BR oscillograms have the same number of oscillations (Nosc = 33) and identical oscilla-
tion period, however the time of state I→state II transition differs more than 10 times (as shown
at Figure 1).

The cause of this unexpected transition is still unknown. Previous work highlighted
the significance of mixing conditions for the appearance of state I→state II transition and
crazy-clock behavior [13,16]. Therefore, we want to reveal in detail the effect of mixing on
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the transition, by using stirring bars of different sizes and shapes and applying various
mixing rates (Figure 3).
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eter) (Figure 3d). This result implies that the transition is strongly connected a particular 
diffusion conditions and vortex type behavior created by using specific stirring rods. 
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Figure 3. Typical measurements with iodide-sensing and reference electrodes with different mixing
rates and different shapes of magnetic bar: (a) 100 rpm with magnetic stirring bar, PTFE-coated cylin-
drical, 10 mm length, 4 mm diameter (in inset), (b) 300 rpm with magnetic stirring bar, PTFE-coated
cylindrical, 10 mm length, 4 mm diameter (in inset), (c) 100 rpm with magnetic stirring bar, PTFE-
coated cylindrical, 20 mm length, 6 mm diameter (in inset), and (d) 100 rpm with magnetic stirring
bar, PTFE-coated triangular, 12 mm length, 6 mm diameter (in inset). The reactant concentrations are
identical as in Figure 1.

The transition from the state I to state II occurs only with a low stirring rate and a
stirring bar of small dimensions (namely, 100 rpm and a magnetic stirring bar made of PTFE-
coated cylindrical with a length of 10 mm and a diameter of 4 mm, Figure 3a). The results
also underline the importance of the particular magnetic bar shape and mixing rate that was
used (Figure 3a–d). Even with a low stirring rate (100 rpm), the transition does not occur
with a bar exhibiting a triangular section (bar 12 mm length, 6 mm diameter) (Figure 3d).
This result implies that the transition is strongly connected a particular diffusion conditions
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and vortex type behavior created by using specific stirring rods. Furthermore, we perform
a detailed statistical analysis to reveal the connection between the state I→state II transition
and the mixing rate (using the 10-mm long and 4-mm large cylindrical stirring bar). A set
of 60 experiments were performed without stirring and with stirring at a 100-rpm mixing
rate (30 experiments, each). The results (τosc and τ*) are tabulated (Tables S1 and S2) and
presented in Supplementary Materials. The τ* mean value with 95% confidence limit is for
no-mixing τ*no mix = (12 ± 4) min and for mixing conditions, τ*mix = (17 ± 5) min.

3.2. Statistical Analysis of Experimental Results and Evidence of Clustering

Is there a connection between the time that the system spends in the oscillatory regime
(τosc) and the time when the state I to state II transition occurs (τ*)? Or, in other words, are
the minor differences in oscillatory period duration responsible for a significant deviation
in transition appearance? The detailed exploration of the relation between BR oscillatory
time, τosc, and the time τ* of the occurrence of the state I→state II transition (Figure 1), with
and without stirring of the solutions, was performed by statistical cluster analysis (CA).
Cluster analysis performs subdivision of datasets based on the relationships among their
members (in our case datasets of τosc and τ*). The application of CA allows the separation
of data in clusters (namely, in groups) based on mutual distances, which reflect a degree of
similarity among data [25]. The greater the similarity in the cluster, the higher the distance
between the clusters, and hence the better the clustering. Our results combine a total of
60 experiments, obtained with no-mixing conditions (30 experiments) and with a mixing
rate of 100 rpm (30 experiments). They were analyzed in the open-source statistic software
“R” using “hclust” algorithm for the hierarchical cluster analysis (HCA) [22,23]. The HCA
divided the ratios τosc/τ* into three clusters for both mixing and no-mixing measurements
(Figure 4a,b). It can be noticed that the number of members of a particular cluster slightly
changes upon alteration of experimental conditions (Table 1).

It appears that the stirring effect causes an increase in the members of Cluster 1 and
Cluster 3, as well as decreasing in members in Cluster 2. The increase of members in Cluster
3 suggested that stirring has prolonged time for the state I→state II transition taking place
(Figure 4b.). It can be also seen from the τ* mean value for no-mixing τ*no mix = (12 ± 4) min
and mixing conditions, τ*mix = (17 ± 5) min. Furthermore, all clusters are more compact
and separated, in the case of stirring (if compared with those obtained without stirring).

The results presented in Table 1 clearly indicate that the investigated crazy-clock
exhibits a truly random behavior. The shift (Figure 4a,b, Table 1) in the position of the
cluster centroids towards higher τ* values (i.e., a delaying time to transition to happen)
can be observed for the case of applied stirring conditions. Due to a small number of
members, the centroid of Cluster 3, in both cases, was not calculated. Furthermore, there is
no significant change in the cluster’s centroid position regarding τosc oscillatory coordinate
for clusters. That leads to the conclusion that the transition from state I to state II is
independent of oscillatory time duration or, in other words, that the minor differences
in oscillatory period duration are not responsible for a significant deviation in transition
appearance. Therefore, we calculated the optimal number of clusters by a one parameter
(by parameter τ*) K-means analysis, for no-mixing and mixing conditions (Figure 5a,b,
respectively). The determination of optimal numbers of clusters was performed using
gap method in fviz_nbclust alghoritm [26]. In brief, the gap statistic compares the total
within intra-cluster variation for different values of k with their expected values under null
reference distribution of the data. The estimate of the optimal clusters will be value that
maximizes the gap statistic (i.e., that yields the largest gap statistic) [27].

As it can be seen from the Figure 5 the optimal number of clusters obtained by us-
ing one parameter K-means analysis is changed. The BR system which is not stirred
has one cluster (Figure 5a), while the stirring induces differentiation of two clusters
(see Figures 5b and 6). The dimensions refer to the first two components. The fitviz_cluster
function has been used to analyze the main components, after which the cluster is repre-
sented in the dimensions of the first two Principal Component Analysis (PCA) components.
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The clusters are well separated. This indicates that mixing introduced additional effects
responsible for a significant cluster separation revealing the existence of time domains
where the state I to state II transition is more likely to occur.
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Table 1. Clusters and Cluster centroids.

Exp. Condition Cluster
Number of

Cluster Members
Cluster Centroids in Minute

τosc τ*

1 15 1.686 3.036
without stirring 2 13 1.691 16.672

3 2 / /

1 16 1.681 5.893
with stirring 2 10 1.658 26.536

3 4 / /

3.3. The State I→State II Phenomenon and Its Relation to (Spontaneous) Symmetry Breaking

The appearance of clusters indicates the existence of time domains where the state I to
state II transition is more likely to occur. The stirring of the reaction mixture has a strong
indirect influence on the state I→state II transition, delaying the crazy-clock behavior,
shifting cluster centroids toward higher τ* values, and increasing the cluster separation
(i.e., time domain separation), as well. The existence of clusters could be connected to
different nucleation and growth mechanisms of iodine crystals in the case of mixing [28],
and further examination of solid iodine products would be the subject of future work.
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However, if we assumed that state I (low iodide and iodine concentration) is the
symmetric state, which under some conditions becomes absolutely unstable, then, reaching
the state II (high iodide and iodine concentration, with a new I2 solid phase) could be
considered as spontaneous symmetry breaking [29], see Figure 7. Such an observation of
state I to state II transition could also explain the persistence of the BR system “indefinitely”
in the state I, as obtained for strong mixing condition (see Figure 3).
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Namely, in the case of the symmetry-breaking process, the system must overcome
a sufficiently large energy barrier (as shown in Figure 7). Therefore, the system’s state
(state I, low iodide and iodine concentration) will remain unchanged until a sufficiently
large perturbation throws it over the energy barrier, ∆V, which separates the states. We
assume that ∆V corresponds to the energy threshold of the formation of solid iodine from
chemical reactions that principally occur in the BR solution after the oscillatory period.
It is well-known that the post-oscillatory period could be excitable [30,31], meaning that
a nonlinear system can be shifted (perturbed) from one state to another. It is usually
achieved by the addition of some stable intermediate or reactants, playing the role of an
external perturbation, to the reaction mixture [32]. Since, in our case, there is no external
perturbants/stimulus (all experiments are conducted under identical conditions, and the
system remained under constant temperature), the BR system should find an internal
stimulus to overcome the energy barrier. The mixing itself should not influence activation
energies of chemical reactions responsible for state I to state II transition. In other words, the
energy threshold (∆V) should be identical for mixing and no-mixing condition. However,
the system has behaved differently, and the state I to state II transition strongly depends
on the mixing conditions. Therefore, some phenomena related to mixing are accountable
for the obtained behavior. Figure 7 is a cartoon view that links thermodynamics (far from
equilibrium) with kinetic processes driven by the gradient of diffusion/concentration.
The changes in time of these local gradients are probably a source of fluctuations. When
fluctuations reach a certain threshold (such as a critical number of interacted dissipative
structures), a new order/phase spontaneously appears. Cluster analysis (Figures 4–6)
allows us to group different dissipation architectures as a function of time.
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depending on control parameter, µ and ordering parameter, ρ. ∆V corresponds to the energy
threshold of the formation of solid iodine from chemical reactions that occur in the BR solution after
oscillatory period.

The diffusion-driven instability combined with nonlinear chemical reactions (with
autocatalytic steps and radical reactions) is a broad concept and it could be responsible
for the “internal stimulus” necessary for passing the energy barrier. The diffusion-driven
instability is intensified by gaseous oxygen and carbon dioxide/carbon monoxide, which
are released in the BR solution during the oscillatory period [33]. Additionally, the possible
energetic coupling between physical and chemical processes, such as the nucleation of
gaseous phase (O2 and/or CO2), nucleation of solid iodine and particular chemical reac-
tions, could also be considered as an “internal stimulus” necessary for overcoming the
energy barrier and breaking symmetry [34–36].

This proposal is actually a reformulated original idea of Turing [37], where the inter-
play of chemical reactions and diffusion are responsible for pattern formation in living
systems. As suggested by Prigogine, the spontaneous appearance of a spatial organization
via diffusion-driven instability can be considered as a spontaneous symmetry-breaking
transition [38]. In the presented work, we deal with a bulk solution and there is no visible
spatial organization, but the spatial organization (spatiotemporal patterns) of the identical
process (state I→state II transition in Briggs–Rauscher reaction) in a thin layer, is very
recently found by Li and coworkers [15]. Therefore, this work indirectly links spontaneous
symmetry breaking and crazy-clock behavior (stochastic nature) in the bulk. The stochastic
nature of state I to state II transition and its relation to symmetry breaking (and pattern
formation), introduced a new approach in the investigation of crazy-clock behavior. On
the other hand, the investigation of chemical systems with stochastic nature and symme-
try breaking could improve our understanding of more complex phenomena in living
organisms, such as morphogenesis.

Additionally, this paper nominates state I→state II transition as an easily available
chemical system for intrinsic random number generator and thus, expands the potential
application of this crazy-clock reaction.
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4. Conclusions

In this work, we further investigated the crazy-clock phenomenon (state I to state II
transition) which occurs after a strongly reproducible Briggs–Rauscher oscillatory reaction.
The mixing rate, as well as the magnetic bar shape and dimensions, have a strong influ-
ence on the transition appearance. In order to better understand the stochasticity of the
mentioned process, we ran more than 60 experiments (30 experiments with mixing and
30 experiments with no-mixing conditions), and we applied the statistical cluster K-means
analysis. Although the transition for both mixing and no-mixing conditions are taking
place completely randomly, by using statistical cluster analysis, we obtained different
number of clusters pointing to different time-domains where the transition is more likely
to occur. Two-parameter analysis (by oscillatory time duration, τosc and by the moment
when the transition occurs, τ*) suggests that the state I→state II is independent of the
oscillatory time duration. Therefore, we performed a one parameter analysis (by τ*). In
the case of no-mixing, we found one cluster, while the statistical analysis of the results
for mixing conditions revealed two compact and well-separated clusters. The clustering
method reveals new hidden details regarding the chemical dynamics of nonlinear processes.
The state I to state II transition could be explained through a symmetry breaking approach,
and the necessity of the BR system to overcome a sufficiently large energy barrier. This
is the first link of the crazy-clock behavior to the symmetry breaking phenomenon. The
investigation of chemical systems with stochastic nature and symmetry breaking could
improve our understanding of more complex phenomena in living organisms and therefore
the scope of the presented results goes beyond oscillatory reaction kinetics. Furthermore,
the described example belongs to the small class of chemical systems that shows intrinsic
randomness in their response and it might be considered as a real example of a classical
liquid random number generator.
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Abstract: We address dynamics of Bose-Einstein condensates (BECs) loaded into a one-dimensional
four-color optical lattice (FOL) potential with commensurate wavelengths and tunable intensities.
This configuration lends system-specific symmetry properties. The analysis identifies specific multi-
parameter forms of the FOL potential which admits exact solitary-wave solutions. This newly found
class of potentials includes more particular species, such as frustrated double-well superlattices, and
bichromatic and three-color lattices, which are subject to respective symmetry constraints. Our exact
solutions provide options for controllable positioning of density maxima of the localized patterns,
and tunable Anderson-like localization in the frustrated potential. A numerical analysis is performed
to establish dynamical stability and structural stability of the obtained solutions, which makes them
relevant for experimental realization. The newly found solutions offer applications to the design of
schemes for quantum simulations and processing quantum information.

Keywords: four-color optical lattice; Bose-Einstein condensate; soliton

1. Introduction

A suitably prepared standing wave of laser radiation can form an optical lattice (OL),
which are broadly used for trapping and steering ultracold atoms [1–8]. Offering a versatile
platform for research in the area of matter waves, OLs have become the most appropriate
candidate for the realization of quantum simulations [9–11]. Further, ultracold atoms and
Bose-Einstein condensates (BECs) trapped in an OL are used as a basis for the development
of atomic clocks, quantum sensors, quantum computers, and a variety of other applications
in quantum technologies [12–14].

In particular, the study of BEC under the action of geometrically frustrated
OLs has drawn much interest [15–18]. Many complex phenomena have been found
in this connection, including Anderson-like localization and negative absolute
temperature [17,19–21]. Optical superlattices subjected to frustration offer potential for
the development of tools which can hold and mould robust matter-wave states, such as
solitons [22–26]. Theoretical studies in this direction are chiefly limited to a variety of
bi-color optical lattices (BOL). A more general form of multi-color OLs may offer additional
advantages, including the following points: (i) the color (wavelength) and intensity of the
constituent beams, building the effective optical potential, greatly influence the manner in
which the atoms are trapped; (ii) the formation of solitons requires a specific correlation
between the nonlinearity and the trap parameters, which the multi-color OL may help
to maintain; (iii) relations between intensities of the constituent beams may be used to
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optimize the creation of the self-trapped patterns. Thus, multi-color beams can be used to
design potentials necessary for holding complex soliton patterns.

The aim of this work is to introduce a four-color OL (FOL) with commensurate
wavelengths, which acts on a cigar-shaped (quasi-one-dimensional) BEC with the cubic
nonlinearity. The corresponding Gross-Pitaevskii equation (GPE) is used to find appropriate
relations between the nonlinearity and the potential parameters which help to support
solitons. We produce analytical solutions which identify the specific form of the FOL and
its parameter domain which provide tunability of the soliton-building scheme. Many
exact condensate wave functions are obtained, and the results are illustrated by several
characteristic examples. These solutions may be used for applications similar to those
proposed in previous works [27–32]. Stability of the exact wave functions is addressed
by means of direct simulations, adding random perturbations either to the underlying
stationary solution, or to the external trap (the latter implies the consideration of the
structural stability of the exact solutions). We thus find that our solutions are fully stable,
both dynamically and structurally.

2. Exact Analytical Model for Obtaining the Solitary Excitations under the Novel
FOL Trap

The FOL potential is produced by the combinations of four OLs with commensurate
wave numbers, l, 2l, 3l, and 4l, while the corresponding intensities of the laser beams,
V1,2,3,4, are treated as free parameters, with the intention to find appropriate relations
between them. The corresponding effective potential acting on atoms is

V(z) =
4

∑
j=1

Vj cos(jlz). (1)

The lattice depth may be compared to the recoil energy, ER = 2π2h̄2/
(

Mλ2), and
the scaled lattice wave-vector is given by l = 2πa⊥/λ, where λ is the wavelength, M
is the mass of the BEC atom, a⊥ = (h̄/(Mω⊥))1/2 and ω⊥ is the transverse frequency.
The dimensionless 1D-GPE has the form

[
i

∂

∂t
+

1
2

∂2

∂z2 − g(z, t)|ψ(z, t)|2 − V(z)− iτ(z, t)

]
ψ(z, t) = 0. (2)

Here, g(z, t) is the nonlinearity coefficient, which may be made space- and time-
modulated, while τ(z, t) represents the space- and time-modulated loss or gain of the con-
densate atoms. For illustration, we have exploited experimentally feasible parameters of Li7

BEC in the quasi-1D trapping configuration with transverse frequency ω⊥ = 2π × 710 Hz,
OL wavelength λ = 10.62 µm, and scattering length as = −0.21 nm corresponding to
attractive interactions between atoms [33]. By varying the applied magnetic field and angle
between the overlapping laser beams, it is possible to engineer the shape of the external
potential [34,35].

To produce a spatially localized solution of Equation (2), following the general scheme
used for engineering matter-wave configurations [36,37], we choose an ansatz,

ψ(z, t) = A(z, t)F(B(z, t))eiθ(z,t), (3)

such that the external potential is supposed to be found by precisely solving B(z, t), am-
plitude A(z, t), phase θ(z, t), and the condensate form factor F[B(z, t)]. We substitute this
ansatz into the GPE (2) and separate out the real and imaginary parts. To establish relations
between the physically relevant quantities like nonlinearity, amplitude, phase and external
trap for a solitary wave solution, the real part can be mapped to the following nonlinear
differential equation,

∂2F[B(z, t)]

∂B(z, t)2 − GF3[B(z, t)] = 0, (4)
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which introduces a constant G = 2g(z, t)A2(z, t)/B2
z(z, t) in the case of solitary wave

excitations. G is −1 for attractive and 1 for repulsive inter-atomic interactions. The last
consistency condition in Equation (4) is nothing but the elliptic equation, whose exact
solutions are well-known in the form of 12 Jacobian elliptic functions (cn[z, m], sn[z, m], etc.),
where m is the modulus parameter with 0 ≤ m ≤ 1 [38]. One can choose various shapes
of the elliptic functions from periodic (m = 0) to localized (m = 1), by varying the value
of its modulus parameter. Here, we will focus only on the localized forms of the elliptic
functions, that is, cn[z, 1] = sech[z], for the bright soliton case with attractive nonlinearity
and sn[z, 1] = tanh[z] for the dark soliton case with repulsive nonlinearity. In addition to
solving the above-mentioned equation, we also obtain the following consistency relations:

GB2
z(z, t)− 2A2(z, t)g(z, t) = 0,

Bt(z, t) + Bz(z, t)θz(z, t) = 0, [A2(z, t)Bz(z, t)]z = 0

2A(z, t)At(z, t) + [A2(z, t)θz(z, t)]z (5)

−2τ(z, t)A2(z, t) = 0

Azz(z, t)

2A(z, t)
− θ2

z (z, t)

2
− θt(z, t)− V(z) = 0,

where the subscripts stand, as usual, for partial derivatives. The above set of equations is
solved simultaneously to produce

B(z, t) =
c(t)

A2(z, t)
, θz(z, t) = − At(z, t)

Az(z, t)
, (6)

g(z, t) = GB2
z(z, t)/2A2(z, t),

where c(t) is an arbitrary positive definite function of time. These equations indicate a
direct dependence of phase and nonlinearity on the amplitude of the system which will be
determined by the trapping potential through the last equation of the system (5).

We substitute the expression of the external potential from Equation (4) into the set of
Equations (5) and (6) and obtain the amplitude, phase and nonlinearity in the following
exact forms:

A(z, t) =

√
c(t)

γ exp(b1 cos(lz) + b2 cos(2lz))
,

θ(z, t) =
1
16

(l2b2
1 + l2b2

2)t, τ(z, t) =
1
2

c′(t)
c(t)

, (7)

g(z, t) =
Gγ4

2c2(t)
exp(4b1 cos(lz) + 4b2 cos(2lz)).

We here introduce two real constants, b1 and b2, which help us to define the final form
of the FOL amplitudes:

V1 = (1 + b2)
l2b1

4
, V2 =

(
−b2

1
16

+ b2

)
l2, (8)

V3 = − l2b1b2

4
, V4 = − l2b2

2
4

.

This is one of the essential results of the present work. Constants b1 and b2 are thus
identified as the prime tuning parameters for controlling the trapping potential and conden-
sate density. For the attractive and repulsive interactions, assuming the commonly known
bright- or dark-soliton solutions of the elliptic equation (Equation (4)), the condensate wave
functions take, severally, the following form:
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ψ(z, t) =

√
c(t)

γ exp[b1 cos(lz) + b2 cos(2lz)]

×sech

[
γ
∫ z

0
exp(b1 cos(lz) + b2 cos(2lz))dz′

]
exp(iθ(z, t)),

ψ(z, t) =

√
c(t)

γ exp(b1 cos(lz) + b2 cos(2lz))
(9)

× tanh

[
γ
∫ z

0
exp(b1 cos(lz) + b2 cos(2lz))dz′

]
exp(iθ(z, t)).

We are now in a position to analyze the relevant potential profiles and the correspond-
ing condensate densities. Potential profiles are explained in Figures 1 and 2. Condensate
densities will be delineated in Figures 3 and 4 for some parameter domains of b1 and b2
with c = 0.1, g = 0.1, and l = 0.84.

Figure 1. Curves and points for l = 0.84 where the potential is not a FOL, but a TOL or a BOL. ‘×’
signifies no potential for b1 = b2 = 0. All other points in the (b1, b2) plane correspond to FOLs.

Figure 2. The variation of the FOL potential following the change of the tuning parameters for
l = 0.84: (a) for fixed b2 = 2, b1 varies from −4 to +4; (b) for fixed b1 = 2, b2 varies from−4 to +4.
Here and in the figures following below, the results are displayed in interval −14 < z < +14.
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Figure 3. Condensate density patterns for b1 > 0 and b2 > 0: (a) b1 = 1; b2 = 2, (b) b1 = 1; b2 = 3.5,
(c) b1 = 2; b2 = 1, and (d) b1 = 3.5; b2 = 1. Each plot of (a–d) has two panels: the upper panel shows
the contour plot of the density and the lower panel consists of a 2D plot of the density combined with
the corresponding potential profile.

Figure 4. Condensate density patterns for b1 < 0 or b2 < 0 or both: (a) b1 = −1; b2 = 1, (b) b1 = −3;
b2 = 1, (c) b1 = 1; b2 = −3, and (d) b1 = −1; b2 = −3. Each plot of (a–d) has two panels: the upper
panel shows the contour plot of the density and the lower panel consists of a 2D plot of the density
combined with the corresponding potential profile.

3. The Parameter Domain and Shape of the Tunable FOL

Figure 1 depicts the structure in the (b1, b2) space, produced by Equation (9), where
one obtains, as particular cases, a tri-color optical lattice (TOL), or a BOL. On the contrary,
FOL is obtained in the entire space, excluding the curves and points indicated in the figure.

The respective FOL potential, drawn in Figure 2, seems interesting enough. For b1 > 0
and b2 > 0, the FOL is a disordered double-well superlattice, featuring frustrations in terms
of both inter- and intra-well separations. Figure 2a,b reduces to a BOL at b1 = b2 = 0.
However, the transition to the domain of b1 < 0 or b2 < 0 makes the potential shapes quite
different. In the former case, a triple-well superlattice gradually appears at b1 < 0, whereas
in the latter case, a translational shift of the double-wells in the superlattice by half a period
is observed. The presently engineered FOL may be the most advanced trapping potential
for BEC, derived as an ingredient of exact solutions. It may find applications to the design
of quantum simulation, information and computation schemes [28–31]. We will further
illustrate the results by displaying density patterns.

4. Density Patterns Supported by the Engineered FOL

The density patterns in the domain of b1,2 > 0 are displayed in Figure 3, along with
the respective trapping profile, which help to understand the formation mechanism for the
patterns. The presence of the inter- and intra-well potential frustration helps one to realize
well-distinguished quantum clouds that may be employed for the design of enhanced atom-
interferometry (Figure 3a–c). When the intra-well frustration disappears, the previously
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separated clouds inside the double well become indistinguishable and the condensate starts
accumulating at the central frustrated site, causing Anderson-like localization (Figure 3d).
The wide tunability of the FOL and the corresponding mesoscopic clouds make it possible
to predict a variety of quantum states that may be useful for quantum technology [39–41].

In Figure 4, we illustrate the situation in the negative domain: b1 < 0 in Figure 4a,b,
b2 < 0 in Figure 4c, and b1,2 < 0 in Figure 4d. It produces several aligned, well-separated
spatial Schrödinger-cat states for b1 < 0 [42]. More negative b1 offers localization of the
cat-state at the central double well. For b2 < 0, the resulting triple-well super-lattice
generates an odd number of well-separated clouds. Interestingly, changing the sign of b1 at
b2 < 0 spatially translates the triple-well lattice by one period to create a single BEC cloud
at the center (Figure 4d). Thus, a transition from Figure 4d to Figure 4c splits the single
cloud into a set of three ones. In addition, a transition from Figure 4b to Figure 4a splits
the Schrödinger-cat state from one to three. Along with the above-mentioned possibilities,
this scheme of potential engineering offers an efficient scheme for designing quantum logic
gates [31,32,43–46]. To illustrate the temporal dynamics of one of the obtained solutions,
we choose the trap corresponding to b1 = 2 and b2 = 1 which shows a frustrated double-
well super-lattice. Condensate, trapped in this potential, is allowed to evolve in time
with a random noise of amplitude 10% of the maximum density. Condensate densities
are depicted in Figure 5a–c for t = 0, t = 10 ms, and t = 20 ms, respectively. One can
observe that the condensate is maintaining its shape after t =10 ms, but getting distorted at
t = 20 ms.

Figure 5. Condensate densities are depicted by filled plots at times (a) t = 0, (b) t = 10 ms, and (c)
t = 20 ms, along with the potential energy profile (solid-line curve) for b1 = 2 and b2 = 1. Initial
density (dotted curve) is merged with the densities in (b,c) for reference.

5. Dynamical Stability and Structural Stability of the Condensate

It is obviously necessary to check the dynamical and structural stability of the special
analytical solution produced above. The dynamical stability pertains to disturbance added
to the wave function, while the structural stability implies deformation of the external trap.
We addressed these problems separately by numerically solving the GPE with the help of
the split-step Fourier method [21,24,32]. The results are presented in Figure 6. In the former
case, we have added random white noise ℜw to the analytically obtained wave function,
while in the latter case, the noise is added to the external trap. The noisy form of the initial
wave function and potential are represented as

ψnoisy(z, t = 0) = ψ(z, t = 0) +ℜw

Vnoisy(z) = V(z) +ℜw. (10)

While the stability analysis was performed for a broad range of the parameters, here, we
choose b1 = 2 and b2 = 1 for the purpose of illustration. In Figure 6, the condensate
density profile, along with the external trap (not in scale), are depicted without the noise.
The wave function is numerically evolved for both the noisy configurations defined as per
Equation (10). Amplitude of noise ℜw varies from 0 to 5% of the maximum amplitude of
the initial wave function. In the first scenario, we monitored the evolution of the wave
functions, induced by the inputs ψnoisy(z, t = 0) and ψ(z, t = 0), with our model potential,
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V(z). To observe the stability of the stationary state, we computed deviation of the evolving
condensate density (DW). In the latter case, we monitored the evolution of the input wave
function (ψ(z, t = 0)) under the action of the potentials Vnoisy(z) and V(z), to observe
the structural deformation in the condensate density (DP). We simulated the evolution
for 10,000 time iterations with properly chosen space and time steps, dz = 0.277 µm and
dt = 0.22 µs, respectively. The deviation (maximum relative error) of the evolved noisy
data from their noise-free counterparts is shown for both kinds of the stability analyses in
Figure 6 by the upper curve (∗) and lower one,

⊕
. Observing the noisy density profile after

10,000 iterations, we conclude that the density patterns retain their shapes with minimal
deformation, which implies that the analytical solutions are indeed stable against both
kinds of the random perturbations (Figure 6). The observed relative perturbation in the
final configurations is near to 1% when the noise is initially added to the wave function,
and near to 2% when it is added to the trapping potential. Thus, the presented model and
its analytical solutions are physically relevant ones.

Figure 6. The numerical stability analysis of one of the obtained solutions with b1 = 2 and b2 = 1.
The condensate density is depicted by the dotted line, and the trap profile, V(z) (not in scale), is
superimposed on it (the solid line). The deviation of the noisy data from their noise-free counterparts
is shown for both kinds of the analyses: the dynamical stability, DW (the upper curve, composed of
symbols ∗), and the structural stability, DP (the lower curve, composed of symbols

⊕
).

6. Conclusions

In this paper, we reported the exact form of the four-color optical lattice (FOL) trap
for the BEC in one dimension, which makes it possible to produce exact solutions for
the trapped condensate. A variety of experimentally relevant trap profiles are reported,
including one-, two-, three-, and four-color OLs with tunable shapes. It is worthy to stress
that there are only two FOL-tuning parameters, b1 and b2, instead of four, making the
detailed analysis of the exact solutions feasible. For chosen trap parameters, the exact
condensate density is illustrated, and its variations after evolving in time are also shown.
By means of systematic simulations, we have established dynamical and structural stability
of the exact solutions. The stability against structural perturbations is especially important,
as the solutions are valid only for the specially designed form of the FOL potentials. This
class of FOL trapping potentials offers straightforward potential for use in applications,
such as quantum simulation and other quantum technologies [13,28–31,39–41].
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Abstract: Materials with nanoscale phase separation are considered. A system representing a
heterophase mixture of ferromagnetic and paramagnetic phases is studied. After averaging over
phase configurations, a renormalized Hamiltonian is derived describing the coexisting phases. The
system is characterized by direct and exchange interactions and an external magnetic field. The
properties of the system are studied numerically. The stability conditions define the stable state
of the system. At a temperature of zero, the system is in a pure ferromagnetic state. However, at
finite temperature, for some interaction parameters, the system can exhibit a zeroth-order nucleation
transition between the pure ferromagnetic phase and the mixed state with coexisting ferromagnetic
and paramagnetic phases. At the nucleation transition, the finite concentration of the paramagnetic
phase appears via a jump.

Keywords: nanoscale phase separation; quasi-equilibrium system; heterophase mixture; zeroth-order
transition; nucleation point

1. Introduction

Phase transitions are commonly characterized by the appearance of non-analyticities
in the system’s thermodynamic characteristics. The classification of phase transitions is
usually connected with the non-analyticities in the derivatives of thermodynamic potentials.
Thus, the non-analyticity in the first-order derivatives implies a first-order phase transition,
the non-analyticity in the second-order derivatives of a thermodynamic potential defines a
second-order phase transition [1].

Recently, the possible existence of zeroth-order phase transitions has been brought
to attention [2]; it is possible when a thermodynamic potential itself exhibits a discontinu-
ity. Zeroth-order phase transitions have been found in the physics of black holes [3–11],
holographic superconductors [12–15], and holographic ferromagnets and antiferromag-
nets [16,17]. The zeroth-order phase transition was also found for some spin models with
long-range interactions [18,19]. Note that for the systems with long-range interactions,
microcanonical and canonical ensembles are not necessarily equivalent [20].

Metal-insulator phase transitions in some materials, such as V2O3, were classified
as zeroth-order phase transitions, where the free energy is discontinuous [21,22]. These
phase transitions exhibit the phase coexistence and ramified fractal-like nanoscale phase
separation in the transition region [21–23].

In this way, the zeroth-order phase transitions can occur when at least one of the
features is present: either long-range interactions or nanoscale phase separation. Under
this kind of phase separation, the system represents a mixture of nanoscale regions of
different phases. The probabilistic weights of the phases are self-consistently defined by the
system parameters and thermodynamic variables. Such nanoscale mixtures are also called
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heterophase or mesoscopic, since the linear size of inclusions of one phase inside the matrix
of the other is larger than the interparticle distance but much smaller than the system
linear size. The appearance of mesoscopic heterophase mixtures under nanoscale phase
separation is a very widespread phenomenon arising around many phase transitions that
can be of first or second order. Numerous examples of materials exhibiting the existence
of such mixtures are given in the review articles [24–27]. Recently, the possibility of
superfluid dislocations inside quantum crystals has been discussed [28–30]. Different types
of nanoscale phase separation occur in electrolytes [31–35].

Here we shall concentrate on a heterophase mixture of ferromagnetic and param-
agnetic phases. There exist numerous examples of materials exhibiting the coexistence
of magnetic (ferromagnetic or antiferromagnetic) and paramagnetic phases. Thus, using
the Mössbauer effect, the coexistence of antiferromagnetic and paramagnetic phases is
observed in FeF3 [36], in CaFe2O4 [37], and in a number of orthoferrites, such as LaFeO3,
PrFeO3, NdFeO3, SmFeO3, EuFeO3, GdFeO3, TbFeO3, DyFeO3, YFeO3, HoFeO3, ErFeO3,
TmFeO3, and YbFeO3 [38,39]. Ferromagnetic cluster fluctuations, called ferrons or fluc-
tuons, can arise inside a paramagnetic matrix of some semiconductors [40–45]. In some
materials, magnetic cluster excitations can occur in the paramagnetic region above Tc or
above TN [46–52], causing the appearance of spin waves in the paramagnetic phase, for
instance, in Ni, Fe, EuO, EuS, Pd3Fe, and Gd [53–58]. The coexistence of ferromagnetic and
nonmagnetic phases was also observed in Y2Co7, YCo3, Co(SxSe1−x)2, Co(TixAl1−x)2, and
Lu(Co1−xAlx)2 [59,60]. In colossal magnetoresistance materials, such as La1−xCaxMnO3
and La1−xSrxCoO3, one observes the coexistence of a paramagnetic insulating, or semicon-
ducting, phase and a ferromagnetic metallic phase [61–63], while in La0.67−xBixCa0.33MnO3,
paramagnetic and antiferromagnetic phases coexist [64]. Nanoscale phase separation into
ferromagnetic and paramagnetic regions has been observed in the colossal magnetore-
sistence compound, EuB5.99C0.01 [65]. Many more examples can be found in the review
articles [24–27].

In the present paper, we consider a heterophase system with random phase separation,
where the regions of different phases are randomly distributed in space. By averaging
the phase configurations, we derive a renormalized, effective Hamiltonian of the mixture.
Keeping in mind a spin system, we pass to the quasi-spin representation. Specifically, we
consider a mixture of ferromagnetic and paramagnetic phases. Long-range interactions are
assumed, such that the mean-field approximation becomes, in the thermodynamic limit,
asymptotically exact. The existence of the ferromagnetic–paramagnetic mixture is due to the
competition between direct and exchange interactions. We treat the case when the system
is placed in an external magnetic field. We show that for some system parameters, there
occurs the following situation: at low temperatures, the system is a pure ferromagnet that,
when rising in temperature, can transfer into a mixture of ferromagnetic and paramagnetic
phases at a nucleation point. For some system parameters, this nucleation transition
happens to be a zeroth-order transition.

The plan of the paper is as follows. In Section 2, we recall the Gibbs method of
equimolecular surfaces that are used for describing the spatial phase separation. Section 3
explains how the statistical operator of the mixture with phase separation can be defined
by minimizing the functional information.The random spatial distribution of competing
phases requires the averaging over phase configurations. The results of this averaging are
summarized in Section 4. In Section 5, we pass from the field-operator representation to
spin representation. Although this conversion is based on the known Bogolubov canonical
transformation, it is necessary to recall it in order to elucidate the importance of taking
account of direct particle interactions, in addition to exchange interactions. Keeping in mind
long-range interactions, in Section 6, we derive the free energy of the mixture. Section 7
formulates the stability conditions that make it straightforward to separate stable states
from unstable ones. In Section 8, we present the results of the numerical calculations and
accompany them with discussions and conclusions.
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2. Spatial Phase Separation

The description of a two-phase system with spatial phase separation starts with the
Gibbs method [66] of equimolecular separating surfaces, where the system of volume V
and number of particles N is considered to be separated into two parts, with the total
volumes Vf and the particle numbers N f , so that

V = V1 + V2 , N = N1 + N2 . (1)

The regions V f occupied by different phases are assumed to be randomly distributed
in space. Their spatial locations are described by the manifold indicator functions

ξ f (r) =

{
1 , r ∈ V f

0 , r 6∈ V f
, (2)

where
Vf ≡ mes V f ( f = 1, 2) .

The Hilbert space of microscopic states of the system is the tensor product

H = H1
⊗

H2 (3)

of the weighted Hilbert spaces [24–26] corresponding to the phases f = 1, 2. The algebra of
observables in this space is given by the direct sum of the algebra representations on the
corresponding subspaces

A(ξ) = A1(ξ1)
⊕

A2(ξ2) . (4)

For instance, the system energy Hamiltonian reads as

Ĥ(ξ) = Ĥ1(ξ1)
⊕

Ĥ2(ξ2) , (5)

with the general form of the phase replica Hamiltonians

Ĥ f (ξ f ) =
∫

ξ f (r)ψ
†
f (r)

[
− ∇2

2m
+ U(r)

]
ψ f (r) dr+

+
1
2

∫
ξ f (r) ξ f (r

′) ψ†
f (r) ψ†

f (r
′) Φ(r − r′) ψ f (r

′) ψ f (r) drdr′ , (6)

where Φ(r) is an interaction potential, U(r) is an external potential, and the field operators
ψ f (r) are columns with respect to internal degrees of freedom, such as spin. The number-
of-particle operator is

N̂(ξ) = N̂1(ξ1) + N̂2(ξ2) , (7)

with the number-of-particle operators of each phase

N̂ f (ξ f ) =
∫

ξ(r) ψ†
f (r) ψ f (r) dr . (8)

Here and below, we set the Planck and Boltzmann constants to one.

3. System Statistical Operator

The general procedure of defining the statistical operator for a system is by minimizing
the information functional, taking account of the prescribed constraints. The latter is the
normalization condition

Tr
∫

ρ̂(ξ) Dξ = 1 , (9)

the definition of the system energy

Tr
∫

ρ̂(ξ) Ĥ(ξ) Dξ = E , (10)
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and of the total number of particles in the system

Tr
∫

ρ̂(ξ) N̂(ξ) Dξ = N . (11)

Here and in what follows, the trace operation is taken over the whole Hilbert space (3),
and Dξ implies the averaging over phase configurations describing the random locations
and shapes of separated phases.

The information functional in the Kullback–Leibler form [67,68] reads as

I[ ρ̂ ] = Tr
∫

ρ̂(ξ) ln
ρ̂(ξ)

ρ̂0(ξ)
Dξ + α

[
Tr
∫

ρ̂(ξ) Dξ − 1
]
+

+ β

[
Tr
∫

ρ̂(ξ) Ĥ(ξ) Dξ − E

]
+ γ

[
Tr
∫

ρ̂(ξ) N̂(ξ) Dξ − N

]
, (12)

with the Lagrange multipliers α, β = 1/T, and γ = −βµ, and with a trial statistical
operator ρ̂0(ξ) characterizing some a priori information if any. If no a priori information is
available, ρ̂0(ξ) is a constant. Then minimizing the information functional over ρ̂(ξ) yields
the statistical operator

ρ̂(ξ) =
1
Z

exp{−βH(ξ)} , (13)

with the grand Hamiltonian
H(ξ) = Ĥ(ξ)− µN̂(ξ) (14)

and the partition function

Z = Tr
∫

exp{−βH(ξ)} Dξ . (15)

Introducing the effective renormalized Hamiltonian by the relation

exp{−βH̃} =
∫

exp{−βH(ξ)} Dξ (16)

gives the partition function
Z = Tr exp{−βH̃} . (17)

Then we get the grand thermodynamic potential

Ω = −T ln Z . (18)

This picture describes a heterophase system where the phase-separated regions are
random in the sense that they are randomly located in space and can move and change
their shapes. In that sense, strictly speaking, the system is in quasi-equilibrium. However,
the averaging over phase configurations reduces the consideration to an effective system
equilibrium on average [24–26].

4. Averaging over Phase Configurations

In order to explicitly accomplish the averaging over phase configurations, it is nec-
essary to define the functional integration over the manifold indicator functions (2). This
functional integration has been defined and explicitly realized in papers [24,69–73]. Here
we formulate the main results of this functional integration over the manifold indica-
tor functions with the differential measure Dξ, which realizes the averaging over phase
configurations.

Theorem 1. Let us consider the functional
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A f (ξ f ) =
∞

∑
n=0

∫
ξ f (r1) ξ f (r2) . . . ξ f (rn) A f (r1, r2, . . . , rn) dr1dr2 . . . drn . (19)

The integration of this function over the manifold indicator functions gives

∫
A f (ξ f ) Dξ = A f (w f ) , (20)

where

A f (w f ) =
∞

∑
n=0

wn
f

∫
A f (r1, r2, . . . , rn) dr1dr2 . . . drn , (21)

while

w f =
1
V

∫
ξ f (r) dr =

Vf

V
(22)

defines the geometric probability of an f -th phase.

Theorem 2. The thermodynamic potential

Ω = −T ln Tr
∫

exp{−βH(ξ)} Dξ , (23)

after the averaging over phase configurations, becomes

Ω = −T ln Tr {−βH̃} = ∑
f

Ω f ≡ Ω(w) , (24)

where
Ω f = −T ln TrH f

{−βH f (w f )} ≡ Ω f (w f ) , (25)

and the renormalized Hamiltonian is

H̃ =
⊕

f

H f (w f ) ≡ H̃(w) , (26)

with the phase probabilities w f being the minimizers of the thermodynamic potential,

Ω = abs min
{w f }

Ω(w) , (27)

under the normalization condition

∑
f

w f = 1 , 0 ≤ w f ≤ 1 . (28)

Theorem 3. The observable quantities, given by the averages

〈 Â 〉 = Tr
∫

ρ̂(ξ) Â(ξ) Dξ (29)

of the operators from the algebra of observables (4),

Â(ξ) =
⊕

f

Â f (ξ f ) , (30)

with Â f (ξ f ) defined as in (19), after the averaging over phase configurations, reduce to the form

〈 Â 〉 = Tr ρ̂(w) Â(w) , (31)
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where the renormalized operator of an observable is

Â(w) =
⊕

f

Â f (w f ) , (32)

with Â f (w f ) defined as in (21), and the renormalized statistical operator is

ρ̂(w) =
1
Z

exp{−βH̃(w)} , (33)

with the partition function (17).

The proofs of these theorems are given in the papers [24,69–73].

5. Hamiltonian in Spin Representation

Since we aim to study the magnetic properties of a system with phase separation, it is
useful to transform Hamiltonian (6) into spin representation. For this purpose, we assume
that the system is periodic over a lattice with the lattice sites rj, where j = 1, 2, . . . , N, and
we expand the field operators over Wannier functions:

ψ f (r) = ∑
j

cj f ϕ f (r − rj) . (34)

Keeping in mind well-localized Wannier functions [74], we retain in the Hamiltonian
only the terms expressed through the matrix elements over Wannier functions containing
not more than two lattice sites, since the overlap of Wannier functions located at three or
four different lattice sites is negligibly small.

The remaining matrix elements are: the tunneling term

Tij f = −
∫

ϕ∗
f (r − ri)

[
− ∇2

2m
+ U(r)

]
ϕ f (r − rj) dr , (35)

the term of direct interactions

Φij f =
∫

| ϕ f (r − ri) |2 Φ(r − r′) | ϕ f (r
′ − rj) |2 drdr′ , (36)

and the term of exchange interactions

Jij f = −
∫

ϕ∗
f (r − ri) ϕ∗

f (r
′ − rj) Φ(r − r′) ϕ f (r

′ − ri) ϕ f (r − rj) drdr′ . (37)

Then the Hamiltonian (6) transforms into the form

H f = −w f ∑
ij

(Tij f + µδij)c
†
i f cj f +

+
1
2

w2
f ∑

ij

(
Φij f c†

i f c†
j f cj f ci f − Jij f c†

i f c†
j f ci f cj f

)
. (38)

To exclude self-interactions, one sets

Φjj f ≡ Jjj f = 0 . (39)
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Then we introduce spin operators following the method of canonical
transformations [75–77], generalized in the case of heterophase systems [78–80]. Keeping
in mind the particles with spin one-half, the operators cj f are to be treated as spinors

cj f =




cj f (↑)

cj f (↓)


 (40)

of two components, one with spin up and the other with spin down. When each lattice site
is occupied by a single particle, the unipolarity condition is valid

c†
j f (↑) cj f (↑) + c†

j f (↓) cj f (↓) = 1 . (41)

The canonical transformations introducing spin operators Sj f , acting on the space H f ,
read as

c†
j f (↑) cj f (↑) =

1
2
+ Sz

j f , c†
j f (↑) cj f (↓) = Sx

j f + i S
y
j f

c†
j f (↓) cj f (↓) =

1
2

− Sz
j f . (42)

Employing these canonical transformations and wishing to write the Hamiltonian in a
compact form, we define the average direct interactions

Φ f ≡
1
N ∑

i 6=j

Φij f , (43)

the average exchange interactions

J f ≡
1
N ∑

i 6=j

Jij f , (44)

and the effective chemical potentials

µ f ≡ µ +
1
N ∑

ij

Tij f . (45)

Then Hamiltonian (38) becomes

H f =
1
2

w2
f U f N − w2

f ∑
i 6=j

Jij f Si f · Sj f − w f µ f N , (46)

where

U f ≡ Φ f −
1
2

J f . (47)

For localized particles, the tunneling term Tij f is small and can be neglected. Hence,
as is seen from expression (45), µ f = µ. Then the last term in Hamiltonian (46) be-
comes −w f µN. Such linear scalar terms in w f can be omitted since they enter the
Hamiltonian (26) as w1µ + w2µ = µ, which is as a constant shift. The value (47) char-
acterizes an average potential acting on each particle in the system and is mainly due
to direct interactions that are usually much larger than the exchange interactions. It is
reasonable to assume that this average potential does not depend on the kind of magnetic
phases, so that U f = U. For generality, it is also necessary to take into account an external
magnetic field B0. As a result, we come to the Hamiltonian

H f =
1
2

w2
f UN − w2

f ∑
i 6=j

Jij f Si f · Sj f − w f ∑
j

µ0B0 · Sj f . (48)
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The main feature of the paramagnetic phase is, clearly, the absence of long-range
order. The direct way of taking this into account on the microscopic level is to notice that
the term of exchange interactions (37) essentially depends on the localization of Wanier
functions. From expression (37), it is evident that the better Wannier functions are localized,
the smaller the exchange term. Therefore, accepting that the paramagnetic exchange term
is very small, automatically degrades the long-range order. Keeping this in mind, we set to
zero the paramagnetic exchange interactions, Jij2 = 0. Then the Hamiltonian (48) yields for
the ferromagnetic phase

H1 =
1
2

w2
1UN − w2

1 ∑
i 6=j

Jij1Si1 · Sj1 − w1 ∑
j

µ0B0 · Sj1 , (49)

and for the paramagnetic phase

H2 =
1
2

w2
2UN − w2 ∑

j

µ0B0 · Sj2 . (50)

The external magnetic field is assumed to be directed along the z-axis

B0 = B0ez (B0 ≥ 0) . (51)

Recall that the total system Hamiltonian, according to (26), reads as

H̃ = H1
⊕

H2 . (52)

The order parameters can be defined by the averages

s f ≡
〈

2
N ∑

j

Sz
j f

〉
, (53)

which lie in the interval
0 ≤ s f ≤ 1 ( f = 1, 2) . (54)

For the ferromagnetic phase, there exist such low temperatures where

lim
B0→0

s1 > 0 (T → 0) , (55)

while for the paramagnetic phase at all temperatures, one has

lim
B0→0

s2 = 0 . (56)

Accepting that interparticle interactions are of a long-range order, Hamiltonian (49)
can be simplified by resorting to the mean-field approximation

Sz
i1Sz

j1 = Sz
i1 〈 Sz

j1 〉+ 〈 Sz
i1 〉 Sz

j1 − 〈 Sz
i1 〉〈 Sz

j1 〉 , (57)

where i 6= j. This reduces that Hamiltonian to the form

H1 =
1
2

w2
1

(
U +

1
2

Js2
1

)
N −

(
w2

1 Js1 + w1µ0B0

)
∑

j

Sz
j1 . (58)

6. Free Energy of Mixture

Defining the reduced free-energy in the standard way

F = − T

N
ln Tr e−βH̃ , (59)
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introducing the dimensionless parameters

u ≡ U

J
, h ≡ µ0B0

J
, (60)

where

J ≡ J1 =
1
N ∑

i 6=j

Jij1 , (61)

and measuring temperature in units of J, we come to the mixture free energy

F = F1 + F2 . (62)

Here the free energy of the magnetic component is

F1 =
1
2

w2
1

(
u +

1
2

s2
1

)
− T ln

[
2 cosh

(
w1h + w2

1s1

2T

) ]
, (63)

with the order parameter

s1 = tanh

(
w1h + w2

1s1

2T

)
, (64)

and the free energy of the paramagnetic component is

F2 =
1
2

w2
2 u − T ln

[
2 cosh

(
w2h

2T

) ]
, (65)

with the order parameter

s2 = tanh
(

w2h

2T

)
. (66)

Studying the properties of the free energy, it is convenient to represent it in the form
symmetric with respect to both phase components, introducing the quantity

g f ≡
1
N ∑

i 6=j

Jij f

J
. (67)

By definition, g1 = 1, while g2 → 0. Then the partial free energy

Ff = − T

N
ln Tr e−βH f (68)

becomes

Ff =
1
2

w2
f

(
u +

1
2

g f s2
f

)
− T ln

[
2 cosh

(
w f h + w2

f g f s f

2T

) ]
, (69)

with the order parameter

s f = tanh

(
w f h + w2

f g f s f

2T

)
. (70)

7. Stability Conditions

The statistical system is stable when it is in the state of the absolute minimum of the
thermodynamic potential, which in the present case is the free energy. The system is in the
mixed state, provided the free energy (62) corresponds to a minimum with respect to the
variables w1, s1, and s2. The variable w2 is expressed through the relation w2 = 1 − w1. For
convenience, it is possible to use the notation

w1 ≡ w , w2 = 1 − w (71)
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and consider only the variable w, instead of w1 and w2 connected by the normalization
condition. The conditions of the extremum are

∂F

∂s1
= 0 ,

∂F

∂s2
= 0 ,

∂F

∂w
= 0 . (72)

The first and second conditions give the expressions (64) and (66) for the order param-
eters s1 and s2. The third equation, due to the normalization condition, can be written as

∂F

∂w1
=

∂F

∂w2
.

Using the derivative

∂F

∂w f
= w f

(
u − 1

2
g f s2

f

)
− 1

2
hs f

results in the probability of the ferromagnetic component

w =
2u + h(s1 − s2)

4u − s2
1

. (73)

The extremum is a minimum provided the principal minors of the Hessian matrix are
positive. The Hessian matrix is expressed through the second derivatives

∂2Ff

∂w2
f

= u − 1
2

g f s2
f −

1 − s2
f

4T

(
h + 2w f g f s f

)2
,

∂2Ff

∂w f ∂s f
= −

1 − s2
f

4T
w2

f g f

(
h + 2w f g f s f

)
,

∂2Ff

∂s2
f

=
1
2

w2
f g f

(
1 −

1 − s2
f

4T
w2

f g f

)
.

For the considered system, we have

∂2F

∂w2 = 2u − 1
2

s2
1 −

1 − s2
1

4T
(h + 2ws1)

2 − 1 − s2
2

4T
h2 ,

∂2F

∂w∂s1
= − 1 − s2

1
4T

w2 (h + 2ws1) ,

∂2F

∂w∂s2
=

∂2F

∂s1∂s2
=

∂2F

∂s2
2
= 0 ,

∂2F

∂s2
1
=

1
2

w2

(
1 − 1 − s2

1
2T

w2

)
.

The minimum of the free energy implies the stability conditions that for the present
case become

∂2F

∂w2 > 0 ,
∂2F

∂s2
1
> 0 ,

∂2F

∂w2
∂2F

∂s2
1
−
(

∂2F

∂w∂s1

)2

> 0 . (74)

We need to solve the system of equations for the order parameter s1, given
in (64) and satisfying condition (55), for the order parameter s2, given in (66) and sat-
isfying condition (56), and for the probability of ferromagnetic phase w, defined in (73) and
satisfying conditions (28). If there occur several solutions, it is necessary to choose the solu-
tion that corresponds to the minimal free energy and satisfies the stability conditions (74).
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Furthermore, it is necessary to choose the state with the minimal free energy between
the free energy F of the mixture, free energy Ff er of the pure ferromagnetic phase

Ff er =
1
2

(
u +

1
2

s2
f er

)
− T ln

[
2 cosh

(
h + s f er

2T

)]
, (75)

with the order parameter

s f er = tanh
(

h + s f er

2T

)
, (76)

and the free energy of the pure paramagnetic phase

Fpar =
1
2

u − T ln
[

2 cosh
(

h

2T

)]
, (77)

with the order parameter

spar = tanh
(

h

2T

)
. (78)

8. Results and Discussion

We have derived the model of a mixed system describing the coexistence of different
phases when at least one of the phases represents nanoscale regions of a competing phase
inside a host phase. The spatial distribution of the phases is random. This picture is often
termed nanoscale phase separation. As a concrete example, we have studied the mixture
of ferromagnetic and paramagnetic phases, modeling a ferromagnet with paramagnetic
fluctuations. The choice of this example is dictated by the fact that spin models serve as
typical illustrations of phase transitions of different nature.

After averaging over phase configurations, we obtain a renormalized Hamiltonian,
taking into account the coexistence of mesoscopic phases. In the resulting effective picture,
thermodynamic potentials are represented as the sums of replicas characterizing different
phases. This, however, is not a simple sum of the terms corresponding to pure phases, as
in the case of the Gibbs macroscopic mixture, where, for instance, free energy is a linear
combination, in our case

FG = w1Ff er + w2Fpar . (79)

The separation of phases is connected with the existence of surface free energy. The
latter is not a microscopic notion and is not defined at the level of operators and microscopic
states. The surface free energy is a thermodynamic notion defined by the difference
between the actual free energy of the system and the free energy of the Gibbs macroscopic
mixture [81–83]. That is, the surface free energy is defined by the difference

Fsur = F − FG . (80)

In our case, this is
Fsur = F1 + F2 − w1Ff er − w2Fpar . (81)

Contrary to a pure phase needing a one-order parameter (that can be a vector or a
tensor), the mixed state requires, for its correct description, a larger number of parameters.
Thus, compared to the pure ferromagnetic phase, described by a single order parameter s f er,
the mixed ferromagnetic–paramagnetic state needs three parameters: the order parameter
(reduced magnetization) of the ferromagnetic component, s1, the order parameter (reduced
magnetization) of the paramagnetic component, s2, and the probability of one of the phases,
say w, with the probability of the other phase given by 1 − w.

In Figures 1–8, we present the results of the numerical investigation for different
parameters u and h. Only stable solutions are shown. The absence of F in a figure implies
that F is unstable. Depending on the values of the parameters, there can exist two types
of behavior.
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(i) At low temperatures, the system is a pure ferromagnet described by the free energy
Ff er and the order parameter s f er ≡ s1, with w ≡ 1. When increasing temperature,
Ff er gradually approaches Fpar corresponding to a paramagnet. The order parameter
s f er ≡ s1 has the form typical of the ferromagnetic magnetization. This behavior, for
instance, happens for u < 0.25 and all h > 0.

(ii) For u > 0.25, at low temperatures, below the nucleation temperature Tn, the system
is a pure ferromagnet, with the free energy Ff er, the order parameter s f er ≡ s1, and
w ≡ 1. At the nucleation temperature Tn, there appears a solution for the mixed
state with the free energy F and the order parameters s1 and s2. The free energy F is
lower than Ff er, but does not intersect it so that the nucleation is to be classified as a
zeroth-order transition.
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Figure 1. Free energies of the mixed state, F (solid line), ferromagnetic state, Ff er (dash–dotted line), and of the paramagnetic
state, Fpar (dashed line), for u = 0.3 and different magnetic fields: (a) h = 0.1; (b) h = 0.5.
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Figure 2. Order parameters s1 (a), s2 (b), and w as functions of dimensionless temperature T (c), for u = 0.3 and different
fields: (1) h = 0.01; (2) h = 0.1; (3) h = 0.2; (4) h = 0.3; (5) h = 0.5; (6) h = 1. The corresponding nucleation temperatures are:
(1) Tn = 0.15; (2) Tn = 0.24; (3) Tn = 0.34; (4) Tn = 0.44; (5) Tn = 0.66; (6) Tn = 1.42.
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Figure 3. Free energies of the mixed state, F (solid line), ferromagnetic state, Ff er (dash-dotted line), and of the paramagnetic
state, Fpar (dashed line), for u = 0.6 and different magnetic fields: (a) h = 0.1; (b) h = 0.5.
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Figure 4. Order parameters s1 (a), s2 (b), and w as functions of dimensionless temperature T (c), for u = 0.6 and different
fields: (1) h = 0.01; (2) h = 0.1; (3) h = 0.2; (4) h = 0.3; (5) h = 0.5; (6) h = 1. The corresponding nucleation temperatures are:
(1) Tn = 0.14; (2) Tn = 0.20; (3) Tn = 0.26; (4) Tn = 0.33; (5) Tn = 0.46; (6) Tn = 0.89.
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Figure 5. Free energies of the mixed state, F (solid line), ferromagnetic state, Ff er (dash–dotted line), and of the paramagnetic
state, Fpar (dashed line), for u = 0.8 and different magnetic fields: (a) h = 0.3; (b) h = 1. For h = 0.3, the mixed state is not
stable. For h = 1, the zeroth-order nucleation transition occurs at the nucleation temperature Tn = 0.72.
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Figure 6. Order parameters s1, s2, and w as functions of dimensionless temperature T, for u = 0.8 and different fields:
(a) h = 0.1 (solid line), h = 0.2 (dashed line); h = 0.3 (dash–dotted line); h = 0.5 (dotted line); (b) h = 0.01; h = 1; h = 2. The
corresponding nucleation temperatures are Tn = 0.14, Tn = 0.72, and Tn = 1.77; (c) h = 0.01; h = 1; h = 2; (d) h = 0.01;
h = 1; h = 2.

In this way, the nucleation transition is the transition of a system from a pure phase
into a mixed phase. In the considered case, this is the transition between the pure fer-
romagnetic phase and a mixed state, where ferromagnetic regions start coexisting with
paramagnetic fluctuations.

As follows from the figures, the zeroth-order nucleation transition is accompanied by
the abrupt appearance inside the ferromagnetic phase of a finite concentration of nanoscale
paramagnetic regions. Hence, when the concentration of the paramagnetic admixture
does not continuously grow from zero but increases by a jump, this suggests the possible
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occurrence of a zeroth-order nucleation transition. The appearance of paramagnetic regions
can be noticed by means of Mössbauer experiments.
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Figure 7. Free energies of the mixed state, F (solid line), ferromagnetic state, Ff er (dash–dotted line), and of the paramagnetic
state, Fpar (dashed line), for u = 1.5 and different magnetic fields: (a) h = 1; (b) h = 5. For h = 1, the mixed state is not
stable. For h = 5, the zeroth-order nucleation transition occurs at the nucleation temperature Tn = 4.55.
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Figure 8. Order parameters s1 (a), s2 (b), and w as functions of dimensionless temperature T (c), for u = 1.5 and different
fields: (1) h = 0.01; (2) h = 0.5; (3) h = 1; (4) h = 2; (5) h = 5; (6) h = 6. The nucleation temperatures are Tn = 4.55 for h = 5
and Tn = 6.4 for h = 6.

We show, numerically, that the nucleation transition can be of zeroth order. From one
side, this could be a consequence of approximations involved in the process of calculations.
From the other side, strictly speaking, nucleation is not a typical phase transition, because
of which, it is not compulsorily required to be classified as either first or second order.
Although, as is discussed in the Introduction, there are works showing that even classical
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phase transitions could be of zeroth order. Even more so is allowed for such a non-classical
transition as a nucleation transition.
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Abstract: Recent developments in nanotechnology have allowed the fabrication of a new generation
of advanced materials with various fractal-like geometries. Fractional Brownian surfaces (fBs) are
often used as models to simulate and characterize these complex geometries, such as the surface
of particles in dilute particulate systems (e.g., colloids) or the interfaces in non-particulate two-
phase systems (e.g., semicrystalline polymers with crystalline and amorphous phases). However,
for such systems, a realistic simulation involves parameters averaged over a macroscopic volume.
Here, a method based on small-angle scattering technique is proposed to extract the main structural
parameters of surfaces/interfaces from experimental data. It involves the analysis of scattering
intensities and the corresponding pair distance distribution functions. This allows the extraction of
information with respect to the overall size, fractal dimension, Hurst and spectral exponents. The
method is applied to several classes of fBs, and it is shown that the obtained numerical values of the
structural parameters are in very good agreement with theoretical ones.

Keywords: small-angle scattering; fractional Brownian surfaces; fractal dimension; Hurst exponent;
spectral exponent

1. Introduction

In recent years, various advanced techniques, such as printing [1,2], gas-phase (aerosol)
synthesis [3] or powder compact foaming [4], have been developed for large-scale prepa-
ration of fractal materials at nano and micro scales. An important feature for many
applications is the possibility to control the surface properties of such materials and of its
components as well as their symmetry and dimensionality, since it allows incorporating
advanced functionalities at a design stage.

For artificially created structures, interface roughness affects coherent dynamical
processes in quantum dots [5] while for solar cells, it increases their power conversion
efficiency [6]. For natural rough surfaces arising in materials science, chemistry, biology or
geology, the roughness is often useful for tuning superhydrophobicity [7], biocompatibil-
ity [8,9] or flexibility [7,10]. In addition to roughness, the third dimension has been proved
to be important for the interpretation of experimental data on singlet-triplet transitions
in the ground states of the two-electron quantum dots under a perpendicular magnetic
field [11,12].

Theoretically, for both artificial and natural surfaces and interfaces, a frequently
employed realistic model that aims to relate the observed physical/chemical/biological
properties with the roughness is based on the concept of fractional Brownian surface
(fBs) [13]. This has been successfully used in describing various rough structures, including
the contact zone between two distinct materials in layered composites [14], substrates
subjected to plasma-chemical etching [15] or soil structures [16,17].

A fBs is defined in terms of the Hurst exponent, and it is related to the fractal dimen-
sion [18] of the surface. This is one of the most fundamental parameters characterizing a
surface since it does not depend on the sampling length or on the instrument resolution.
Therefore, various methods for practical estimations of fractal dimension are commonly
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used, such as the wavelet based multifractal analysis [19], the root mean square method [20],
the variogram method [21], the structure function method [22] or the variation method [23].

However, for macroscopic volumes consisting of a large number of randomly dis-
tributed surfaces/interfaces, such real-space methods are not appropriate since the under-
lying microscopy techniques may introduce artefacts in sample preparation and can be
used to provide only information for small surface areas. To overcome this issue, one can
describe the average of the correlations among atoms positions by using an appropriate
statistical or ensemble average of the electron density distribution within the particle [24].

In this paper, small-angle scattering (SAS) technique is used to estimate the overall
shape, size and fractal dimension of 2D disordered fBs. This involves an analysis of scat-
tering intensity I(q) and its Fourier transform and the pair distance distribution function
(pddf; p(r)). Depending on the parameters sought, either I(q) or p(r) may be more conve-
nient for detailed analysis [25]. While symmetry and self-similarity characteristics provide
more pronounced effects in the reciprocal space, the determination of the shape and size
is more intuitive by using p(r). As such, in this work, the advantages provided by both
analyses are exploited.

In order to illustrate the general applicability of employing SAS technique in reveal-
ing structural properties of naturally occuring (i.e., statistically self-similar/affine) fractal
surfaces/interfaces, in this work, several classes of fBs observed on a regular grid are inves-
tigated. It is shown that the obtained fractal dimensions provide values for the Hurst and
spectral exponents in very good agreement with theoretical ones. The main steps on how
I(q) (and p(r)) can be employed to differentiate between various fBs are described in detail,
and similarities with SAS from exact self-similar surface fractals [26–28] are highlighted.

2. Theoretical Background

SASs of X-rays (SAXS) or neutrons (SANS) are experimental techniques used for
the investigation of structures with dimensions from 1 nm up to several hundreds of
nanometers [29]. In the case of SAXS, the incoming wave induce dipole oscillations
in the atoms, and the electrons are excited due to the high energy of X-rays. In turn,
the accelerated charges generate secondary waves, which then add up at large distances
and provide the scattering amplitude. This is related to the electron density distribution of
the scattering object by a Fourier transform. However, in a scattering experiment, due to
the high frequency, only the square of the amplitudes (scattering intensities) are recorded
as a function of the scattering angle [30].

In SANS, neutrons interact with the nuclei of the atoms and with unpaired electrons,
and they are sensitive to the isotopic composition of the sample. Neutrons can be used as a
magnetic probe (since they posses a magnetic moment), and this allows us to investigate
bulk properties of matter (due to their weak interaction with matter) [30]. In contrast
to SAXS, where scattering amplitudes increase regularly with atomic number, in SANS,
neutron-coherent amplitudes vary irregularly and are related by a Fourier transform to the
scattering length density distribution [31].

Therefore, SAXS and SANS have their own advantages depending on the sample
investigated. In particular, SANS is often used in combination with contrast-variation
to probe the structure of multicomponent macromolecular complexes. In the following,
the theoretical background is focused on SAXS but it applies to SANS as well when electron
density is replaced by a scattering length density distribution.

2.1. Small-Angle Scattering Technique

In SAS, the differential elastic cross-section per unit angle, i.e., the scattering inten-
sity, is obtained as the product between the scattering amplitude A(q) of the irradiated
volume and its complex conjugate A(q)∗. Here, q is the scattering vector with length
q = 4πλ−1 sin θ, λ is the radiation wavelength and 2θ is the scattering angle. Furthermore,
one considers a scattering process that involves a two-phase system consisting of a large
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number of disordered particles with rough surfaces described by fBs (see below) embedded
in a homogeneous matrix/solution.

Let us denote ρ(r) as the electron density for a particle of volume V in a fixed ori-
entation, i.e., the number of electrons per unit volume at position r. Then, the scattered
amplitude can be written as follows: A(q) =

∫ ∫ ∫
ρ(r) exp(−iq · r)dV, where dV is a

small volume element situated at position r and which contains ρ(r)dV electrons. Therefore,
the scattering intensity becomes the following [30]:

I(q) ≡ A(q)A(q)∗ =
∫ ∫ ∫

ρ̃2(r) exp(−iq · r)dV, (1)

where ρ̃2(r) =
∫ ∫ ∫

ρ(r1)ρ(r1 − r)dV is the convolution square [30,32].
In order to take into account the contribution of the matrix/solvent, the electron

density in Equation (1) shall be replaced by the difference between electron densities of
the particle and that of the matrix/solvent (ρ0), i.e., by ∆ρ = ρ − ρ0. This is also known in
the literature as the contrast. The random orientations of the particles over orientations are
taken into account such that 〈exp(−iqr)〉 = sin qr/qr. This results in the following [30]:

I(q) = 4π
∫ ∞

0
p(r)

sin qr

qr
dr, (2)

where p(r) = r2∆ρ̃2(r) is the pair distance distribution function (pddf) and provides
the number of different electron pairs found in the range (r, r + dr) within the particle.
Geometrically, p(r) is the distance histogram of the particle and has the property that
p(r) = 0 at r = 0 and at r > Dmax, where Dmax is the maximum dimension of the particle.
For a finite number N of point-like scatterers, Equation (2) can be approximated by the
following [33]:

I(q) = N + 2
Nbin

∑
i

p(ri)
sin qri

qri
, (3)

where Nbin is the number of bins, and p(ri) is the population at pair distance ri. This ap-
proach brings an important computational advantage since it can handle systems consisting
of a large number of scatterers in reasonable timescales [33].

2.2. Small-Angle Scattering from Fractal Surfaces

Within the class of fractal surfaces, one distinguishes three main subclasses of fractals.
Figure 1 provides a schematic illustration for 2D case for each subclass. The first subclass
(Figure 1 left) consists of a dense object with a fractal surface. The corresponding fractal
dimension of the mass is Dm = 2, the fractal dimension of the surface is 1 < Ds < 2 and the
fractal dimension of the pores (i.e., the surrounding) is Dp = 2 as for the mass. When
Ds → 1, the surface is perfectly smooth, while for Ds → 2, the surface is so folded that it
almost completely fills the plane. They are known in the literature as surface fractals. Such
surfaces are specific to erosion surfaces (materials or mountains), chemically dissolved
surfaces, thin films, corrosion surfaces, fractures, etc. [34].

The second subclass (Figure 1 middle) is a fractal resembling a branched cluster
or network and for which its surface is also a fractal. For this configuration, we have
Dm = Ds < 2 and Dp = 2. The higher the value of Dm, the more close the structure is,
while for Dm → 1, the object becomes a line. They are known as mass fractals, and they are
specific to polymer chains or various types of aggregates (carbon, soils, etc.).

The third class (Figure 1 right) is also a dense object but within which there exists a
distribution of pores or holes with a fractal structure. This is called a pore fractal, and it has
the properties that Dm = 2 and Ds = Dp < 2. The higher the value of Dp, the more porous
the structure becomes. As the name implies, they are specific to various porous structures,
such as carbon nanopores, bituminous coals, etc.
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Figure 1. Schematic representation of the three main classes of fractals that can be described in a SAS experiment.
(Left) Surface fractal (Dm = Dp = d and Ds < d). (Middle) Mass fractal (Ds = Dm < d and Dp = d). (Right) Pore/volume
fractal (Ds = Dp < d and Dm = d). Here, d = 2, and it represents the Euclidean dimension of the embedding space. See
main text for details.

The fractal dimension of the fractal surface is related to the power-law behaviour of
the scattering intensity (Equations (1)–(3)) by [35,36].

I(q) ∝ q−α, (4)

Here, α is the scattering exponent and carries out information about the fractal dimen-
sion: α = Dm for mass fractals [37], α = 4 − Ds [38] for surface fractals and α = Dp for
pore fractals [39]. These relations allow inferring the type of fractal from SAS data: if the
measured scattering exponent of I(q) vs. q is smaller than two, then we deal with a mass
fractal, while if it is higher than two (but smaller than three), we have scattering from a
surface fractal [35,36].

2.3. Fractional Brownian Surfaces

Let us consider a two dimensional Euclidean space. A fBs VH on R2 is a function for
which its increments have a Gaussian distribution with the variance of the following [40]:

〈
|VH(x)− VH(y)|2

〉
∝ |x − y|2H , (5)

where 〈· · · 〉 denotes an ensemble average over many samples of VH , 0 < H < 1 is a
parameter known as a Hurst exponent and x, y ∈ R2. The parameter H controls the
roughness of the surface: the larger its value, the smoother the surface. It is related,
together with the spectral exponent β (1 < β < 3), to the fractal dimension of the surface
by the following [40].

D = 3 − H = 2 +
3 − β

2
. (6)

Here, β is useful for the determination of the spectral density or the two point autocor-
relation function of VH , which provides information about the correlations in the surface in
turn.

3. Methodology for Generating the Fractional Brownian Surfaces and for Calculating
the Pair Distance Distribution Function

In the present paper, fractional Brownian surfaces (fBss) are generated at different
values of H (and implicitly of β) based on Equation (5) and by using the Fourier filtering
method suggested in Reference [41] (Figure 2). The obtained surfaces are discretized on a
rectangular grid and are recorded as elevation data relative to a plane at z = 0 (Figure 3).
The smallest distance between grid points is denoted by lmin. The length of the surface in
either x or y direction is denoted by a (Figure 3). In this approach, the resulting structure
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is a point-like distribution similar to the one shown in the middle of Figure 1 but with
“branches” not limited to a single plane. Instead, they are confined into a limited range
zmin < z < zmax, where zmin is the lowest elevation point, and zmax is the highest one (see
Figure 3, middle). Therefore, the model considers the space between the elevation planes
(through the heights of each point relative to the z = 0 plane), and fBs divides this space
into two non-fractal regions. This is similar to the division of the plane into two non-fractal
regions by the boundary of the disk in Figure 1 (Left). This separation gives rise to surface
fractals, and the parameter D in Equation (6) is related the surface fractal dimension Ds
described in Section 2.2. Note that although the resulting structure is embedded in the 3D
Euclidean space, the self-similarity properties are manifested only along two directions (x
and y).

Figure 2. Fractional Brownian surfaces on a square grid with dimensions x = y at various values of Hurst exponent H.
(a–c) 3D representation. (d–f) Density plot. (a,d,g) H = 0.9. (b,e,h) H = 0.6. (c,f,i) H = 0.3. The peaks and bottoms are
represented by light and dark regions along Oz-axis, respectively. (g–i) are the same as (d–f) but are represented in a single
color for better visualization of the variation of density plot roughness. (a) x ∨ y = 2.31z. (b) x ∨ y = 1.78z. (c) x ∨ y = 1.19z.
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The geometry of the fBss, investigated here, correspond to Hurst exponents H = 0.9,
H = 0.6 and, respectively, at H = 0.3, as shown in Figure 2. In this figure, the lighter the
region, the higher the surface and vice versa. For each H, the same random seed generator
was used in order to compare fBss of the same global features. As expected, the roughness
of fBss increases with decreasing H (Figure 2a–c), while large scale features are preserved,
i.e., the positions of maxima and minima are unchanged with H. This can be observed
more clearly in the density plots in Figure 2d–f. In addition, they provide another type of
method visualizing the variation of fBss roughness: the higher the value of H, the better the
local variations become in terms of visibility. An equivalent representation for illustrating
the differences in the local structural differences in fBss is shown in Figure 2g–i where a
single color is used for all H.

lmin

a

0 1 2 3 4 5 6

0

1

2

3

4

5

6

x

y
Figure 3. Schematic representation of fBS and the associated grid (6 × 6 points) at H = 0.9. (Left) fBs. Red—the highest
points (at 1.5); Blue—the lowest ones (at −1.5). (Middle) The corresponding grid used. The gray plane is at z = 0 and
stands as the reference level for the heights of the grid points. Red points are above the plane, and blue ones are below it.
(Right) Projection of the grid on the 2D xy plane. lmin is the minimum distance between the points in the grid, and a is the
length of the grid in either x or y direction.

Depending on their extension along x, y and z dimensions, fBss are simulated for
three main cases:

• Class I fBss (CI): distances between points are kept unchanged; thus, x, y and z are
of the same orders of magnitude. This corresponds to the classical structure of fBss,
as shown in Figure 1, with a globular-like shape.

• Class II fBss (CII): distances between points are stretched by the same amount along
x and y directions by a factor of b; thus, x = y ≪ z. This gives rise to fBss with
rectangular, planar-like shapes.

• Class III fBss (CIII): distances between points are stretched along a single direction by
a factor of b; thus, x or y ≪ z. This gives rise to fBss with rod-like shapes.

Therefore, in terms of the fractal dimension D in Equation (6) and on the classes
considered above, one should expect a behaviour of scattering intensities characterized
by different successions of power-law decays reflecting both the spatial and self-similarity
symmetries of fBss. In particular, for the power-law decays arising from the self-similarity
symmetry, one should expect a behaviour of the type I(q) ∝ q−D, where D < 2. Note that
a random surface fractal can be built based on fBss by assigning a volume/area to each
point such that their sizes follow a continuous power-law distribution similar to the case
of deterministic surface fractals and where the scattering units within the fractal have a
discrete power-law distribution of sizes [26,42].

The pddf p(r) is calculated by using the distance histogram approach suggested in
Reference [33]. This involves discretization of fBs (Figure 3, Middle), recording the position
of each point and calculating all the distances between them. To this aim, the dimensions
of the grid are equal to the maximum dimensions of fBs along its length, width and height.
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Finally, the pair distances are discretized in a histogram of a bin size commensurate with
the resolution of the data, and the scattering intensity is calculated by Equation (3) [33].

4. Results and Discussion

4.1. Pair-Distance Distribution Functions

The pair distance distribution functions (pddfs) at H = 0.9, H = 0.6 and H = 0.3 are
calculated as described in Section 2.1 and are presented in Figure 4. The image size used for
each class is 200 × 200 pixels, which corresponds to 4 × 104 point scatterers. For classes CII
and CIII, the stretching factor is b = 10. Although the pddfs are different within each class,
they, however, have a common feature that allows distinguishing fBss belonging to different
classes. For class CI and CII (Figure 4a,b), the pddfs have a symmetric bell-like shape
specific to globular or flat-like structures [30]. However, for class CIII (Figure 4c), the right
side of the bell becomes completely linear, which is specific to elongated structures [30].

Within class CI, the pddfs of fBss show that the maximum diameter Dmax occurs at
r/a ≃ 2.33 for H = 0.3, r/a ≃ 1.48 for H = 0.6 and at r/a ≃ 1.12 at H = 0.9 (Figure 4a).
This decrease in maximum dimension with increasing H arises from the contribution of
elevation along the z-axis, since in all cases the dimensions along x and y axes are kept fixed
(a = 200lmin). Such behaviour is in line with elevation data of fBss models as observed in
the legends of Figure 2d–i. Here, the smallest difference in height occurs at H = 0.9, while
the largest one occurs at H = 0.3. A second important feature of pddfs is that the position of
maximum shifts to the left and increases in height with increasing H. It shows that the value
of most common distances within fBss decreases as a consequence of decreasing elevation
of points along z-axis. However, the height increases of pddf reflects an increase in the
number of most common distances with H. Thus, the decrease in surface roughness gives
rise to a larger number of point-distances with similar values. Note that the globular type
of class CI fBss can be inferred also from the end region of pddf, which shows pronounced
decay followed by a flat region.
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Figure 4. Pddfs from fBss at various geometries. (a) Class CI: symmetric bell-like curves reveal the globular-like shape.
(b) Class CII with stretching factor b = 10: symmetric bell-like curves reveal planar-like structures, since one dimension is
kept fixed while the other two are stretched, by a factor of b = 10. (c) Class CIII with stretching factor b = 10: curves with
long linear domains reveal elongated structures.

The pddfs of fBss of class CII are shown in Figure 4b, and their behaviour is quite
similar to fBss of class CI. However, the position and height of maxima are now related to
the cross-sectional area, since they now provide the most common distances within the
surface. In addition, due to the increased length sizes along x and y directions, the values
of r/a at which the maximum diameter is attained also increased by a factor of b. Similarly,
the number of distances decreases by a factor of b relative to fBss of class CI as a consequence
of stretching the surface along the x and y directions. Note that the overall shape of the
pddfs resemble quite closely those of the structures strictly confined to a plane, such as 2D
DLA or surface fractals [25].
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The pddfs of class CIII fBss are shown in Figure 4c and are characterized by a linear
region with different slopes. One can relate it with the surface roughness of fBss: The
smoother the surface, the steeper is the slope. The variation of maxima position and of its
height is quite similar to class CI fBss. However, the maxima correspond to the cross section
here since one can find the most common distances within them. Moreover, the curves
are characterized by inflection points at r/a ≃ 1.25 for H = 0.9, r/a ≃ 1.30 for H = 0.6
and r/a ≃ 1.35 for H = 0.3, and this reveals an increase in cross-sectional area. This
is also in agreement with models shown in Figure 1: The lower the H, the rougher the
surface and, thus, the higher the surface area. Another particular feature for this class
is that the maximum size of the surfaces significantly varies with H, i.e., Dmax ≃ 16 at
H = 0.3, Dmax ≃ 10.7 at H = 0.6 and Dmax ≃ 7.8 at H = 0.9. One reason for this is the
variation of heights along the z direction on length scales comparable with only one other
direction (x or y). In particular, the length of z-range at H = 0.9 is about half of that for
H = 0.3 (see Figure 2d,f), which is reflected in the value of their maximum sizes.

4.2. Scattering Intensities

The scattering intensities from fBss demonstrated in Figure 1 are calculated according
to Equation (3) for the same classes and parameters H used for pddfs in Figure 4. The results
are presented in Figure 5 on a double logarithmic scale, and they show that, within the
calculated q-range, the scattering curves are characterized by the presence of a Guinier
region (i.e., a region where I(q) ∝ q0) at q . 2π/a, followed by one or more power-law
decays of the type described by Equation (4) at higher values. The scattering exponent
depends on the values of H; thus, it reveals the surface roughness, while a particular
succession of power-law decays or the presence of a single power-law decay is specific to
the class the fBss belong to.
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Figure 5. SAS from fBs at various grid geometries. (a) Three-dimensional. Fractal regions follow immediately the Guinier
region (i.e., the region where I(q) ∝ q0) and, thus, are completely visible. (b) Two-dimensional. Fractal regions are expected
to follow the region where I(q) ∝ q−2. (c) One-Dimensional. Fractal regions follow the region where I(q) ∝ q−1 and are
partially visible.

The SAS intensity curves for class CI fBss are shown in Figure 5a. The results show
that the length of the Guinier region increases with H and reflects the increase in the size
of fBss, which is in line with the corresponding pddfs shown in Figure 4a. Then, at each
H, the Guinier region is followed by a power-law decay. Here, the number of points is
chosen in such a manner that the length of the power-law regimes spans at least one order
of magnitude, as indicated in Reference [37]. The main feature of these power-law decays
is the dependence of the scattering exponent α on H in the form α = 3 − H(≡ D), and it
reflects the decrease in surface roughness by decreasing the fractal dimension (see discus-
sion in Section 2.2). This behaviour shows that the slope of scattering intensity following a
power-law decay can be used to differentiate between fBss of different roughness.

For the class CII fBss, within the calculated q-range, the proposed approach show a
Guinier region followed by a power-law decay I(q) ∝ q−2 for all H in the range 2π . qa .
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2πa/d, where d =
√

2|zmax + zmin|/b is a measure of the size of the cross-sectional area.
Here, zmax and zmin are given in the legends of Figure 1. However, since the dominant
contribution comes from equal dimensions x and y in this configuration, the overall size
changes insignificantly. Therefore, the corresponding scattering intensities in Guinier and
I(q) ∝ q−2 power-law decay are very similar. Since 2π/d ≃ 35.9 here is well beyond
the investigated q-range, one expects that to observe more pronounced differences for
qa & 35.9 (see Figure 5c), which would allow revealing the fractal dimension of each fBs.
This would require more extensive hardware resources than only a desktop computer.

For class CIII fBss, the Guinier region is followed first by a power-law decay I(q) ∝ q−1

in the range 2π . qa . 2πa/d, where d =
√

2|zmax + zmin| is a measure of the cross-section
size. This is subsequently followed by a second power-law decay, which is similar to those
from class I fBss. The succession of these types of power-law decays is a signature of an
elongated structure with rough surfaces. Similar to the classes CI fBss, here the roughness
also increases with decreasing H and is reflected in the value of the scattering exponent.

Note that for fractal surfaces with exact self-similarity, the power-law decay corre-
sponding to the fractal region has an exponent equal to the fractal dimension of the surface.
However, the simple power-law decay observed here is replaced by a succession of maxima
and minima superimposed on a simple power-law decay. For such systems, the periodicity
and number of these minima can be used to extract additional structural information such
as the fractal iteration number or the value of the scaling factor [26–28].

5. Conclusions

The main structural properties of fBss at nano-scales and micro-scales are studied in
both real and reciprocal space by exploiting the behaviour of pddfs and, respectively, of the
associated small-angle scattering intensities.

The proposed approach allows us to reveal the dependence of fractal dimension
and the overall size and shape of fBss on the Hurst (and implicitly, spectral) exponent.
The obtained values of these structural parameters (obtained from analysis of data in
Figures 4 and 5) are in a good agreement with the simulated ones (obtained from analysis
of Figure 1). In particular, the simulated fractal dimensions resulting from the slope of SAS
intensity at high q regions (see Figure 5) are in very good agreement with theoretical ones
(given by Equation (6)).

It is shown how the SAS technique can distinguish between fBss embedded in Eu-
clidean dimensions of different dimensionalities. The distinction is based on the presence
(for flat-like and rod-like fBss) or absence (for globular-like fBss) of a succession of two
power law-decays with different scattering exponents. The scattering exponent α of the first
power-law is an integer reflecting the Euclidean dimensionality (α = 1 for 1D and α = 2 for
2D), while the scattering exponent for the second power-law is α = 3 − H, reflecting the
fractal dimension. For both power-law regions, their lower bounds allow us to determine
the overall size and, respectively the cross-section size of fBs, as described in Section 4.2
Scattering intensities. Therefore, such a succession allows a structural characterization of
fBss at various scales.

The results shown here could be a starting point for a multi-scale analysis of more
complex structures involving fBss, such as mass fractals (see Figure 1 Middle) in which the
branches themselves are rod-like fBss. In this case, one should expect that the first power-
law decay will be replaced by a decay of the type I(q) ∝ q−Dm , where Dm is the fractal
dimension of the mass fractal. Other complex geometries can be modeled by considering
that the fBss form a closed surface over a domain with a given shape (i.e., ball, ellipsoid,
torus, etc.).
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Abstract: Quantum turbulence is characterized by many degrees of freedom interacting non-linearly
to produce disordered states, both in space and in time. In this work, we investigate the decaying
regime of quantum turbulence in a trapped Bose-Einstein condensate. We present an alternative
way of exploring this phenomenon by defining and computing a characteristic length scale, which
possesses relevant characteristics to study the establishment of the quantum turbulent regime. We
reconstruct the three-dimensional momentum distributions with the inverse Abel transform, as
we have done successfully in other works. We present our analysis with both the two- and three-
dimensional momentum distributions, discussing their similarities and differences. We argue that
the characteristic length allows us to intuitively visualize the time evolution of the turbulent state.

Keywords: quantum turbulence; Bose-Einstein condensate; out-of-equilibrium

1. Introduction

Turbulence is a process that occurs in many types of fluids and a broad range of
length scales, and it is characterized by chaotic changes in the flow velocity and pressure.
The field of quantum turbulence (QT) investigates turbulence in quantum fluids, mainly
liquid helium and trapped Bose-Einstein condensates (BECs) [1,2]. Many features of
classical turbulence are not entirely explained, to the extent that Feynman deemed it the
most important unsolved problem in classical physics [3]. Consequently, dealing with
QT may seem a challenging task [3]. However, turbulence in quantum fluids might be
more manageable than its classical equivalent because the vortex circulation is quantized
in the former and continuous in the latter. Furthermore, from a technical point of view,
the advances in cooling and tuning the interparticle interactions in trapped atomic BECs
make them attractive candidates for investigating quantum turbulence and connecting it
to related fields [4].

The first observation of turbulence in a trapped BEC, and its self-similar expansion,
dates to 2009 [5]. Since then, considerable progress has been made in identifying and
characterizing QT. A significant breakthrough in the area was the observation of a particle
cascade, which appears as a power law in the momentum distribution [6,7],

n(k) ∝ k−δ, (1)

where δ is a positive constant, and its value depends on the mechanism behind the genera-
tion of the turbulent state.

There are some intrinsic obstacles in determining the momentum range, where the
power law is observed and its characteristic exponent. The range of momentum scales
present in trapped BEC systems is small compared to superfluid helium, for example. The
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exponent of the power law depends on the mechanism behind the turbulence, and different
theoretical models predict exponents to be close together. Unfortunately, experiments do
not have the necessary precision to distinguish between them. Hence, strategies other
than the power law identification have been employed to identify and characterize QT.
Energy and particle fluxes have been used in simulations [8,9] and experiments [10,11] to
overcome some of these difficulties. Since turbulence and disorder are intimately related,
an approach based on the entropy of turbulent BECs has also been successfully applied [12]
as an alternative method to investigate and characterize quantum turbulence.

A typical scale used to study turbulence in liquid helium is the vortex line density. Its
time dependence provides evidence of the mechanism behind the turbulent regime [13]. In
some 4He experiments, where visualization techniques are well-developed, the geometry
and interactions of vortices can be directly observed [14]. In trapped BECs, where the
range of length scales available is much smaller, the visualization techniques have not yet
reached the same level of detail.

In this work, we employed a length scale associated with the momentum distribution
n(k) to study the onset of turbulence and the turbulent state. It is inspired by the integral
length scale, which is a quantity commonly used in classical turbulence. If we assume
isotropic flow, then the integral length scale LE can be written in terms of the incompressible
kinetic energy spectrum E(k) [13,15,16],

LE(t) ∝

∫ ∞

0 dk E(k, t)/k∫ ∞

0 dk E(k, t)
. (2)

Casting Equation (2) in this form also illustrates that it is the length scale that contains
most of the energy of the system.

It is known from numerical simulations that in some cases turbulence is mainly in
the form of waves, and in sother cases mainly in the form of vortices, depending on the
excitation protocol and boundary conditions of the system. Since moving vortices radiate
waves and strong waves can create vortices, the relative proportion of waves and vortices
depends on the particular experiment. In numerical simulations, one has access to the phase
of the wave function [17]. Thus, the circulation can be computed to distinguish vortices
from waves. Moreover, in the simulations, one can formally identify the compressible
kinetic energy, which comes from waves, and the incompressible kinetic energy related
to vortices. Unlike in the simulations, in the experiments, we cannot separate waves and
vortices so easily.

However, with current experimental techniques, we can measure the momentum
distribution n(k) independently of its origin: waves, vortices, or a combination of both.
Hence, with Equation (2) in mind, we define the following length scale,

L(t) =

∫ ∞

0 dk n(k, t)/k∫ ∞

0 dk n(k, t)
. (3)

Intuitively, L is associated with the scale where most of the particles reside. In this
work, we investigated the behavior of this quantity, and we showed that it is possible to
use it to study a turbulent BEC.

Besides the difficulties mentioned above, there is also an experimental challenge when
studying QT in trapped BECs. The momentum distribution of the cloud is obtained using a
two-dimensional (2D) projection of the three-dimensional (3D) condensate. We employed
the inverse Abel transform, an integral transform that connects the 2D projection of an
axially or spherically symmetric function to its 3D value, to reconstruct the momentum
distribution of the three-dimensional cloud. We showed that the results for the characteristic
length scale are qualitatively the same if calculated using the two-dimensional projection.
This indicates that it is possible to study some aspects of the turbulent states using the
experimental data directly, without reconstructing the three-dimensional cloud.
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This work is structured as follows. First, we provide the experimental details of how
the BECs are produced and excited. Then, we present the momentum distributions in both
two and three dimensions. These are used to compute the characteristic length scale and
other quantities related to it. We discuss both the implications of our findings regarding
the length scale and the projection of the cloud. In the Appendix A, we provide the Abel
transforms of momentum distributions relevant to our system.

2. Experimental Procedure

The first step is the production of a Bose-Einstein condensate in equilibrium. A
typical BEC contains ≈ 4 × 105 rubidium-87 atoms in the hyperfine state |F, mF〉 =
|2, 2〉, confined in a Quadrupole–Ioffe configuration (QUIC) magnetic trap of frequen-
cies ωr/2π = 130.7(8)Hz and ωx/2π = 21.8(2)Hz. Hereafter, we adopted the convention
of reporting the uncertainties as one standard deviation between parenthesis. Before any
excitation is applied, the BEC in equilibrium has a condensate fraction of 70(5)%. The
chemical potential at the center of the cloud is µ0/kB = 124(5) nK, and the healing length
is ξ = 0.15(2)µm.

In Figure 1a, we present schematically the protocol we employed to drive the BEC
out of equilibrium. Following the condensate production, an oscillating magnetic field
is applied while it is still in the trap. The field is produced by a pair of coils, placed in
an anti-Helmholtz configuration, with their axis tilted by a small angle of approximately
5◦ with respect to the axis of the trap. The excitation potential is given by Vexc(r, t) =
A[1 − cos (Ωt)]x′/Rx, where x′ is the coordinate in the rotated frame and Rx = 42µm is
the in-trap extent of the BEC along the x-axis of the trap. Since the perturbation is not
aligned with the axes of the trap, the oscillations generate deformations, displacements,
and rotations. Several excitation parameters can be varied, such as the amplitude A, total
excitation time, and perturbation frequency. In this work, we performed the parametric
excitation of fixed frequency Ω/(2π) = 132.8 Hz, close to the radial trapping frequency,
ωr/2π = 130.7(8)Hz.

Figure 1. (a) Schematic representation of the excitation protocol. The experiment begins with the
production of an unperturbed BEC in the trap. Then, a sinusoidal potential of amplitude A and
period τ is applied during texc. The system evolves during a time t, after which the trap is released,
and an absorption image is taken after a time-of-flight tToF. (b) Absorption images for an excitation
amplitude of A = 1.8 µ0 as a function of the holding time.

We increased the excitation amplitude until reaching a value where the momentum
distribution corresponds to an out-of-equilibrium state, and we look for turbulent character-
istics. The energy input to the condensate is related to both the total excitation time and the
amplitude of the perturbation. Larger amplitudes need less time to reach similar conditions
than it would take for smaller amplitudes. The range of amplitudes and excitation times to
obtain a turbulent state was the topic of investigation in previous works [18]. In this work,
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we chose to apply the excitation protocol during a time texc = 5τ, where τ = 2π/Ω. The
amplitude A is varied, ranging from 0 (no perturbation) to 2.2 µ0.

After the excitation is turned off, we hold the cloud for a time t inside the trap, often
called holding time, which is varied from 20 to 90 ms. During this time, the temporal
evolution of the momentum distribution n(k, t), which we are interested in, occurs. Next,
we turn off the trap potential and measure n(k, t) using absorption images taken from the
ballistic expansion of the cloud after a time of flight (ToF) of tToF = 30 ms. In Figure 1b, we
show typical absorption images corresponding to an excitation amplitude of A = 1.8 µ0
for different holding times t.

For each excitation amplitude and holding time, we perform several realizations of the
experiment and then average the results. In Figure 2, we show a typical two-dimensional
momentum distribution obtained from the absorption images. The distance that an atom
has traveled from the center of the cloud, after a time tToF, is given by r = h̄tToFk/m, where
m is the mass of a rubidium-87 atom. Thus, in practice, the ToF technique corresponds to
a Fourier transform of the spatial distribution, which yields the momentum distribution,
n(r) ∝ n(h̄tToFk/m). There are known shortcomings of the ToF technique, which do not
significantly impact the measurement of our momentum distributions, mainly because the
turbulent state is kinetically dominated [19]. For a more detailed discussion, the reader is
referred to Reference [12] and references therein. This technique has been used successfully
in the past to obtain the momentum distribution of turbulent trapped BECs [6,7].

Figure 2. Momentum distribution n(kx, ky) obtained from the absorption images of the cloud for an
excitation of amplitude A = 1.8 µ0 and t = 36.7 ms.

3. Momentum Distributions

We performed angular averages on the momentum distributions n(kx, ky, t) obtained
from the absorption images, such that the resulting profiles depend only on k = (k2

x + k2
y)

1/2.
The two-dimensional momentum distributions n2D(k, t) are normalized according to

2π
∫

dk k n2D(k, t) = 1. (4)

As discussed above, an experimental challenge when studying momentum distribu-
tions of trapped BECs is that the absorption images correspond to a projection of the cloud.
We overcome this difficulty by considering the symmetry of the trapped BEC in momentum
space. The inverse Abel transform [20–22] has been successfully used in the literature [6,7]
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to obtain the 3D momentum distribution from its two-dimensional projection. It is an
integral transform given by

n3D(k, t) = − 1
π

∫ ∞

k

dn2D(k
′, t)

dk′
dk′√

k
′2 − k2

. (5)

We normalized the distributions according to

4π
∫

dk k2 n3D(k, t) = 1. (6)

The signature of a particle cascade is a power law, n(k) ∝ k−δ. Equations (4) and (6),
together with dimensional analysis, suggest that if we observe a power law both in the
two-dimensional momentum distribution, n2D(k) ∝ k−δ2D , and in the three-dimensional
one, n3D(k) ∝ k−δ3D , then their exponents differ by one, δ3D − δ2D = 1. To go beyond
simple dimension analysis, in Appendix A, we derive this relation analytically for the
case where a power law is present over the whole k-range. Although this toy-model is
nonphysical, it sheds light on how we can reconstruct the three-dimensional momentum
distribution based on symmetry arguments.

In our system, the low-momenta region of n(k) is dominated by the presence of the
condensate, which corresponds to a Gaussian distribution. We show in Appendix A that the
inverse Abel transform of a Gaussian function is also a Gaussian with the same width. This
symmetry is extremely useful because we can work with the two-dimensional projections
for quantities related to the Gaussian shape without the need for 3D reconstruction. This is
the case of the temperature, which is related to the width of the Gaussian.

All the arguments presented above indicate that the power-law exponents in an ideal
situation would be related through δ3D − δ2D ≈ 1. However, the fact that we have the
power-law behavior superimposed with the condensate at the low-momenta region of the
momentum distribution alters this relation. Hence, we need to verify the exponents with
the experimental data.

A power law is simply a line in a log–log plot of the momentum distribution as
a function of k. We then look for a time window when, in a certain k-range, n(k) is
proportional to k−δ, the particle cascade characteristic of a turbulent cloud. We performed
the experiment described in Section 2 employing six different excitation amplitudes. For
only the three highest ones, A = 1.8, 2.0, and 2.2 µ0, we observed the appearance of a
power-law, around t ≈ 35 ms and in the region 10µm−16 k 6 15µm−1. We found the
exponents δ2D = 3.1(1) and δ3D = 3.8(2), which lead to δ3D − δ2D = 0.7(3). It is interesting
to see that even in our finite-sized non-homogeneous system inside an anisotropic trap, we
still have δ3D − δ2D close to one.

In Figure 3, we present the time evolution of both the two- and three-dimensional
momentum distributions for an excitation amplitude of A = 1.8 µ0 (which is qualitatively
the same for A = 2.0 and 2.2 µ0). As we wait after the external excitation has been turned off,
the distribution evolves, promoting the population from low to high momentum values, as
can be seen in Figure 3.

Some words regarding the values of the exponents we found are in order. To the best
of our knowledge, there is no theoretical work that describes all aspects of the experiments
we performed, mainly for two reasons. First, our condensate is produced in an anisotropic
trap. From the theoretical perspective, it is much easier to implement periodic boundary
conditions and describe, or simulate, bulk systems. Second, the route we take is the
inverse of most experiments. We begin with a BEC in equilibrium and then excite it,
while, for example, quench experiments usually start with a thermal gas and produce a
condensate [23,24]. However, after these considerations, we can compare the momentum
distributions and exponent we obtained with other works that share similarities with
our experiment.

One of the first predictions for the time evolution of the momentum distribution
describing Bose-Einstein condensation in a far-from-equilibrium system is given in Ref-
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erence [25]. The authors find a plateau in the lower momenta region and a power law at
higher momenta, akin to what we observe in our experiments; see Figure 3. Since then,
much progress has been made in characterizing turbulent flows in BECs. The advances and
state of the art concerning this topic can be found in Reference [26], for example. Here, we
will discuss two references that capture the essential physical aspects of our experiment.
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Figure 3. Time evolution of the momentum distributions for an excitation amplitude of A = 1.8 µ0.
We present the results obtained with both (a) the angular average of the absorption image and (b) the
three-dimensional reconstruction of the cloud using the inverse Abel transform. In both plots, we
include the curve corresponding to the power-law behavior characteristic of the turbulent states as a
guide to the eye.

The authors of [27] address the topic of turbulence in ultracold Bose gases under the
light of the so-called non-thermal fixed points [28]. They consider a variety of scenarios
and analyze each region of the momentum distributions. For strong turbulence and a freely
(without external energy input or dissipation) decaying initial state, scaling arguments
lead to δ3D = 5 prediction, which was confirmed by accompanying numerical simulations.
We did not expect quantitative agreement with their results, since we have dissipation
in our system, and there are no indications that we are in the strong turbulent regime.
Nonetheless, this is one of the few references that address the decay of turbulence.

Another interesting study that allows comparison, to some extent, to our work is
presented in Reference [29]. The authors performed numerical simulations employing the
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forced-dissipated Gross–Pitaevskii equation to study Bose-Einstein condensation under
non-equilibrium conditions. They observed that the momentum distribution for the late
time dynamics, that is, after the kinetic stage is over, displays an approximately constant
value at low-momenta, in accordance with our findings, and a power law in a higher
momentum region with the exponent δ3D = 4.4 (for some values of the nonlinear term).
This value is relatively close to what we observed in this work, δ3D = 3.8(2). We should
remark that the boundary conditions in their simulations and our experiments are different
and that we are exciting a BEC while they are looking at the inverse process. However, the
agreement warrants further investigations.

4. The Characteristic Length Scale

We computed the characteristic length scale given by Equation (3) using the experi-
mental data available,

L2D(t) =

∫ kd
kD

dk n2D(k, t)
∫ kd

kD
dk k n2D(k, t)

= 2π
∫ kd

kD

dk n2D(k, t),

L3D(t) =

∫ kd
kD

dk k n3D(k, t)
∫ kd

kD
dk k2 n3D(k, t)

= 4π
∫ kd

kD

dk k n3D(k, t), (7)

where kD∼0.05µm−1 and kd∼30µm−1 are the smallest and largest wave vectors we can
measure, respectively. It is worth noting that although our definition relies on n(k)/k, the
singular behavior when k → 0 will never be reached. The lower limit of the integrals,
kD, is inversely proportional to the largest length scale of the system, which can be large
concerning other scales, but always finite.

Using the momentum distributions obtained with different excitation amplitudes
and holding times, we can study the time evolution of the BEC, ranging from a slightly
perturbed cloud up to a turbulent state. In Figure 4, we present our results for the charac-
teristic length scale computed with both the two-dimensional projection of the cloud and
its three-dimensional reconstruction. Although they differ quantitatively, their qualitative
behavior is remarkably the same.

The L(t) value can be interpreted as the evolution of the length scale where most of
the particles are located. If we think of 1/k as being a weight in Equation (3), then L(t) is
related to the inverse of the momentum value for which n(k)/k is peaked. Nucleation of
excitations occurs during the excitation, whether in the form of vortices or waves. Then
the interaction of these excitations takes place, leading to different stages of deviation
from equilibrium.

For small excitation amplitudes, A = 0.8 µ0, the system is only slightly disturbed and
removed from equilibrium, but it does not have enough energy to reach what is considered
a disordered state. In this case, it evolves differently from the others, and the value of L is
approximately constant with time.

For intermediate perturbations, A = 1.4 and 1.6 µ0, there is a separation between
these results and the smallest amplitude, besides a clear dependence with time. For these
excitation amplitudes, we are in a regime best characterized as the onset of turbulence.
The characteristic length scale decreases on time, indicating the particle transfer to higher-
momenta, but slower than the higher excitation amplitudes.

In this work and previous investigations [12], we identified the highest excitation
amplitudes with turbulent clouds, A = 1.8, 2.0, and 2.2 µ0. The value of L(t) at the end of
the processes seems to depend on the amplitude and, more importantly, if we deal with a
moderate perturbation, the onset of turbulence, or a state with turbulent characteristics. It
is interesting to observe that the turbulent states quickly reach lengths comparable to the
healing length (ξ = 0.15(2)µm), where dissipation processes are expected to occur.
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Figure 4. Time evolution of the characteristic length scale for different excitation amplitudes com-
puted with (a) the two-dimensional projection of the cloud and (b) its three-dimensional reconstruc-
tion using the inverse Abel transform. Although the values computed with two-dimensional profiles
are higher, their qualitative behavior is the same.

The behavior of the characteristic length scale can be described by an exponential decay,

L(t) = L0 exp(−t/t0), (8)

where L0 is the extrapolation of the characteristic length scale to the instant when the
excitation was introduced, and t0 is its characteristic time.

In Figure 5, we present the values of L0 and t0 fitted to the functional form of
Equation (8) for different excitation amplitudes. We did not include the results for A = 0.8 µ0,
since we obtain a value of t0 ≈ 750 ms, of the same order as the lifetime of the condensate.
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Figure 5. (a) Extrapolation of the characteristic length scale to the instant when the excitation is
turned on, L0, and (b) the characteristic time of the particle transfer, t0, as a function of the excitation
amplitude. The results were obtained fitting the data to the functional form of Equation (8). Although
the analysis employing two- or three-dimensional momentum distributions produces different values
of L0, both approaches yield the same values for the characteristic time.

Figure 5a shows that the length containing most particles of the system is approxi-
mately the same with respect to the excitation amplitudes. However, if we perform the
analysis employing the two- or three-dimensional momentum distributions, we arrive
at different values for L0. A possible reason for this is that the inverse Abel transform
slightly shifts the n(k) profiles toward higher-momena—see Figure 3—which then implies
a smaller value of L0.

In Figure 5b, we present the characteristic time that the particle transfer takes as a
function of the excitation amplitude. It is observed that t0 decreases with amplitude, as
expected, since larger amplitudes lead to a faster formation of excitations and, therefore,
speed up the decay. It is possible to see that the results obtained in 2D and 3D are in
remarkable agreement. This opens the possibility of studying dynamical processes in 2D
without the need to reconstruct the three-dimensional cloud, depending on the quantity
of interest.

5. Discussion and Final Remarks

In this work, we defined and computed a characteristic length scale related to the
momentum distribution of a trapped BEC, which allowed us to identify distinct out-of-
equilibrium stages: a slightly perturbed cloud, the onset of turbulence, and the turbulent
state. This quantity complements the formal analysis of identifying a power-law in the
momentum distribution as a hallmark of turbulence.

We also focused our efforts on calculating this characteristic length scale using both
two- and three-dimensional momentum distributions. The former is obtained straightfor-
wardly from the experimental data, and the latter is reconstructed based on the symmetry
of the cloud. From a technical point of view, it is preferable to work only with the two-
dimensional distributions, since no assumptions about the symmetry of the cloud have
to be made. Although the length scales are affected by the inverse Abel transform, which
shifts the momentum distributions to higher momenta, the qualitative behavior calculated
in 2D and 3D is remarkably similar. The excellent agreement in the characteristic time of
the particle transfer indicates that the two-dimensional analysis may be appropriate to
investigate dynamical aspects of these systems.

One important remark is that isotropy is assumed through Equation (3) only for the
kinetically dominated regions in Fourier space. Such an assumption can be made even
for inhomogeneous cigar-shaped clouds. This is because such large-scale inhomogeneities
affect only regions in Fourier space up to the order of k ∼ 2π/Lmin, where Lmin is the
smaller linear size of the cigar-shaped cloud. In a previous work [11], we studied the
impact of anisotropy in the energy transfer during the evolution of turbulence in a trapped
BEC. Like the integral length scale, the energy flux can also be computed from the kinetic
energy spectrum. We found that the turbulent state can be identified and characterized
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in terms of the energy flux regardless of whether we employ the whole cloud or just a
region close to the major axis of the expanded cloud. We should note that the axial trapping
frequencies of this work and of Reference [11] are very close; however, in this work, we
employ a radial trapping frequency that is ≈0.7 smaller than the one used in Reference [11].
Thus, the BECs in this work are much less elongated and closer to a spherical shape than
the ones in Reference [11]. Therefore the range of validity for Equation (3) is even larger
than in previous works.

In future works, we intend to vary the excitation protocol to investigate the changes
in the characteristic length. Since there is a compromise between the excitation amplitude
and time [18], it may prove insightful to investigate situations where the same amount of
energy is introduced in the system but varying the time it takes to be injected from very
slow inputs up to abrupt changes.
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Abbreviations

The following abbreviations are used in this manuscript:

QT Quantum turbulence
BEC Bose-Einstein condensate
QUIC Quadrupole–Ioffe configuration
ToF Time-of-flight

Appendix A. The Abel Transform

We used the inverse Abel transform to reconstruct a three-dimensional momentum
distribution from its two-dimensional projection in the main text. It is insightful to take the
inverse route to see what the two-dimensional projection is of a known three-dimensional
n3D(k). In this appendix, we considered two relevant cases for our physical system that
possess analytical solutions.

The Abel transform is given by

n2D(k) = 2
∫ ∞

k
dk′

n3D(k
′)k′√

k
′2 − k2

. (A1)
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The first case we considered is a Gaussian normalized according to Equation (6),

nG;3D(k) =

√
2√

πσ3 e−k2/(2σ2). (A2)

Using Equation (A1), the normalized two-dimensional projection is

nG;2D(k) =
1
σ2 e−k2/(2σ2). (A3)

Hence, the Abel transform of a Gaussian is a Gaussian of the same width. This is very
convenient in the case of the temperature of the cloud, for example, since it is estimated
through the width of the Gaussian profile of the momentum distribution.

The second case we considered is a power-law with exponent δ3D,

nP;3D(k) = Ak−δ3D , (A4)

with A constant. The standard normalization procedure, Equation (6), is going to fail
because this momentum distribution is not valid in the entire domain. In reality, the
power-law would be observed over a certain k-range, ki 6 k 6 k f with ki 6= 0. How-
ever, this simplified example will have an interesting result as we will see. The Abel
transformation yields

nP;2D(k) =

√
πΓ
(

δ3D−1
2

)

Γ
(

δ3D
2

) Ak−(δ3D−1) ≡ A′k−δ2D , (A5)

where Γ is the gamma function, A′ is another constant, and δ2D = δ3D − 1. The conclusion
is that the bidimensional projection of a power-law with an exponent of δ3D in three
dimensions is also a power-law, but with the exponent increased by one.

Clearly, the momentum distributions we presented in the main text cannot be fully
described by these two simple examples. However, they provide indications of the expected
behavior of the projection procedure.
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Abstract: The diagonal elements of the time correlation matrix are used to probe closed quantum
systems that are measured at random times. This enables us to extract two distinct parts of the
quantum evolution, a recurrent part and an exponentially decaying part. This separation is strongly
affected when spectral degeneracies occur, for instance, in the presence of spontaneous symmetry
breaking. Moreover, the slowest decay rate is determined by the smallest energy level spacing,
and this decay rate diverges at the spectral degeneracies. Probing the quantum evolution with the
diagonal elements of the time correlation matrix is discussed as a general concept and tested in the
case of a bosonic Josephson junction. It reveals for the latter characteristic properties at the transition
to Hilbert-space localization.

Keywords: dynamics of closed quantum systems; random probing; separation of time scales; Hilbert-
space localization

1. Introduction

Symmetries play a central role in classical and in quantum many-body systems. They
determine the macroscopic behavior of these systems. Moreover, symmetries of macro-
scopic states reflect symmetries and spontaneous symmetry breaking of the underlying
system. For instance, the Hamiltonian of the Ising model has a global Z2 symmetry,
and with ferromagnetic nearest-neighbor spin–spin coupling its ground state is two-fold
degenerate with | ↑, . . . , ↑〉 and | ↓, . . . , ↓〉. Spin flip dynamics will create excited states
that are generically not Z2 symmetric. Moreover, we can prepare the initial state of the
Ising system in one of the ground states, e.g., in the state | ↑, . . . , ↑〉 that breaks the Z2
symmetry. Then the dynamics prefer the vicinity of the initial state because it would cost
too much energy to overcome the barrier to the other ground state | ↓, . . . , ↓〉, although
the Hamiltonian and the spin-flip operator obey the Z2 symmetry. As a result, the system
experiences dynamical symmetry breaking by which it prefers to remain in the vicinity of
a symmetry-broken state.

In the following we consider the unitary evolution of closed quantum many-body
systems. It is based on the idea that the extraction of information about the quantum
system in an experiment is limited. In other words, not all properties or degrees of freedom
of the quantum model are accessible by an experiment. Typical exceptions are the return
and transition probabilities for quantum states. Moreover, quantum systems have complex
dynamics. Although the evolution is deterministic, even for a few particles it can looks
erratic, similarly to a classical random walk. Such behavior suggests a statistical approach
to extract generic information about the quantum evolution, using averaged quantities.
A statistical approach is also supported by the fact that large sets of experimental data
are available whose properties can be treated statistically. This idea is not new and found
very successful realization in random matrix theory (RMT). It has been applied to many
physical systems, such as nuclei, atoms and mesoscopic systems [1–7]. The motivation for
RMT is that there is no way of knowing the Hamiltonian of even a relatively small many-
body quantum system, such as an atomic nucleus. On the other hand, the spectra of these
systems, complex though they are, have some characteristic features, such as level repulsion.
Thus, instead of guessing a specific Hamiltonian, a random ensemble of Hamiltonians
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is chosen, which describes the generic features of a class of quantum systems. The class
is characterized by the invariance of the random ensemble with respect to symmetry
transformations. These are typically orthogonal, unitary or symplectic transformations.
Another application of RMT has been recently proposed for the description of random
measurements. It is based on Dyson’s circular matrix ensemble [3,6,8,9]), which represents
random unitary matrices and has been used as a tool to determine the trace of powers of
the density matrix and the related Rényi entropy [10–14].

In contrast to these RMT approaches, we consider in the following a dynamical
approach in which only the time of a measurement is random, whereas the energy levels
{Ej} of the Hamiltonian H and the overlaps 〈Ej|Ψ0〉, 〈Ej|Ψ〉 of the energy eigenstates
{|Ej〉} with a given initial state |Ψ0〉 and a measured state |Ψ〉 are not random. This leads
to the time correlation matrix (TCM) as the central tool for the definition of the statistical
model, instead of the random ensemble of Hamiltonians in RMT. We employ this approach,
which was previously described in [15] to analyze the evolution of the return and transition
probabilities. In more concrete terms, for a given time tk we evaluate (in a calculation or in
a real experiment) the probability pk that the system is in a certain state. Then we evaluate
the probabilities {p1, p2, ...} at different discrete and randomly chosen times {t1, t2, ...}.
This can be translated into practical observations, for which it was assumed that each
experiment was prepared in the same initial state and all measurements were performed
for the same final state of the evolution at different times. These experiments provide an
ensemble of probabilities {p1, p2, ...} with the corresponding times {t1, t2, ...}.

For given overlaps 〈Ej|Ψ0〉, 〈Ej|Ψ〉 we can immediately predict some restrictions
for the evolution of the probability pk in the N-dimensional Hilbert space. When the
overlaps vanish for some of the eigenstates |En〉, the evolution cannot reach those states
and the accessible Hilbert space is restricted to the states |Ej〉 with j 6= n. This reduction
of the Hilbert space can be interpreted as Hilbert-space localization [16] or Hilbert-space
fragmentation [17]. This effect can be associated with spontaneous symmetry breaking,
induced by the choice of the initial and measured states. In the case that the overlaps with
some states are not strictly zero but very small, the access to those states may be negligible
and can be ignored. This corresponds to complex dynamical behavior and requires a
careful analysis. It is addressed briefly for the example of a bosonic Josephson junction in
Section 3, where the mirror symmetry of the junction is spontaneously broken.

This paper is organized as follows. After the definition of the TCM in Section 2 we
focus on the properties of its diagonal elements (Section 2.1). Then the effect of spectral
degeneracies on the diagonal TCM elements are discussed in Section 2.2. In Section 3, we
analyze the diagonal TCM elements in the specific example of a bosonic Josephson junction.

2. Time Correlation Matrix

We consider the transition amplitude from |Ψ0〉 to |Ψ〉

uk = 〈Ψ|e−iHtk |Ψ0〉 , (1)

which is based on the unitary evolution with the Hamiltonian H from the initial state |Ψ0〉.
The probability of measuring the state |ψ〉 at time tk is given by |〈Ψ|e−iHtk |Ψ0〉|2. In other
words, pk = |uk|2 is the probability of finding the quantum system in the state |Ψ〉 after the
unitary evolution from the initial state |Ψ0〉 over the time tk. Since the evolution is defined
by the Hamiltonian H, we consider its eigenstates {|Ej〉}j=1,...,N and its corresponding
eigenvalues {Ej}j=1,...,N and write the amplitude in spectral representation as

uk =
N

∑
j=1

〈Ψ|Ej〉〈Ej|Ψ0〉e−iEjtk ≡
N

∑
j=1

qje
−iEjtk . (2)
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Although the phases are not directly experimentally observable, their effects can be
detected through the interference of different quantum states. For instance, the product of
amplitudes at different times with probabilities of interfering amplitudes reads

u∗
k uk′ + u∗

k′uk =
1
2

(
|uk + uk′ |2 − |uk − uk′ |2

)
,

i(u∗
k uk′ − u∗

k′uk) =
1
2

(
|uk + iuk′ |2 − |uk − iuk′ |2

)
,

(3)

where the probabilities can be detected in interferometric measurements. These relations
suggest considering the correlation of the amplitudes uk and uk′ at different times through
the TCM 〈u∗

k uk′〉τ , where the average 〈...〉τ is taken from the distribution of times {tk}
as a result of inaccurate clocks: The time is measured by a clock in each laboratory by
counting time steps {τn}. These clocks have a limited accuracy, such that the time steps
vary randomly. This implies a sequence of measurements in each laboratory, where the
clocks indicate k time steps and a total evolution time tk = τ1 + · · ·+ τk for different values
of k. Now we can compare the measured sequences of different laboratories. This provides
a distribution of results for u∗

k uk′ due to different inaccurate clocks, where we assume that
the fluctuations of the time steps {τn} are independently and equally distributed. Then the
TCM is, as a spectral representation,

〈u∗
k uk′〉τ = ∑

j,j′
q∗j qj′〈eiEj(τ1+···+τk)e

−iEj′ (τ1+···+τk′ )〉τ (4)

= ∑
j,j′

q∗j qj′





〈ei(Ej−Ej′ )(τ1+···+τk)〉τ〈e−iEj′ (τk+1+···+τk′ )〉τ k′ > k

〈ei(Ej−Ej′ )(τ1+···+τk′ )〉τ〈eiEj′ (τk′+1+···+τk)〉τ k′ < k

〈ei(Ej−Ej′ )(τ1+···+τk)〉τ k′ = k

. (5)

When λj = 〈eiEjτ〉τ and λjj′ = 〈ei(Ej−Ej′ )τ〉τ the TCM elements become

〈u∗
k uk′〉τ = ∑

j,j′
q∗j qj′

{
λk

jj′λ
k′−k
j′ k′ ≥ k

λk′
jj′λ

∗
j

k−k′ k′ < k
. (6)

The TCM decays exponentially with |k − k′|, provided that |λj| < 1. Moreover, for
fixed |k − k′| the TCM is constant for the diagonal elements λjj = 1. This reflects the fact
that a unitary evolution between the same energy eigenstates gives just a phase factor
e−iEjτ (cf. Equation (2)). For different energy states, on the other hand, these phase factors
lead to a decay due to interference effects after the time average.

2.1. Diagonal Elements of the TCM

The diagonal TCM element 〈|uk|2〉τ is the probability of measuring the state |Ψ〉 at
time tk. Before time averaging, the expression |uk|2 is a diagonal element of the density
matrix ρ(tk) with respect to the state |Ψ〉. The trace of |uk|2 with respect to all states |Ψ〉 of
the underlying Hilbert space is the spectral form factor, often used for the characterization
of many-body quantum chaos [18–20]. We only mention this, but do not study it here.
In comparison with the spectral form factor, the diagonal elements of the TCM refer to
a specific measured state and to the time index k of the measurement. Thus, 〈|uk|2〉τ

might be useful when we analyze a large set of experimental data for a specific state at
different times.

According to Equation (6) the average transition probability 〈|uk|2〉τ reads

〈|uk|2〉τ = PN +
N

∑
j,j′=1;j′ 6=j

q∗j qj′λ
k
jj′ , PN =

N

∑
j=1

|qj|2 . (7)
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The term PN describes the recurrent behavior, which does not depend on time. It is
the asymptotic transition probability for k → ∞

PN = lim
k→∞

〈|uk|2〉τ , (8)

provided that the energy levels are not degenerated. The case of degenerate energy levels
is discussed in the next section. The second term in Equation (7) decays exponentially with
time due to |λjj′ | < 1, and only this term describes a change of the transition probability
during the evolution of the quantum system. This result provides a separation of the
diagonal elements of the TCM into a static recurrent term PN and a dynamic term that
decays quickly.

The recurrent term PN provides important information regarding the properties of the
quantum system. Since |qj|2 = |〈Ψ|Ej〉|2|〈Ψ0|Ej〉|2 is a product of the overlaps between the
energy eigenstate |Ej〉 with the initial state and with the measured state, it is a measure
of how much this energy eigenstate contributes to the transition |Ψ0〉 → |Ψ〉 during
the unitary evolution. This can be used, for instance, to describe localization with the
asymptotic behavior of the return probability to the initial state |Ψ0〉 → |Ψ0〉: With the
dimensionality N of the underlying Hilbert space, we get localization when limN→∞ PN >

0, whereas the absence of localization is characterized by limN→∞ PN = 0 [16]. This can be
understood by noting that the normalization of quantum states implies ∑

N
j=1 |〈Ψ0|Ej〉|2 = 1,

and that for a localized state, only a few energy eigenstates have nonzero overlaps with
|Ψ0〉. For a delocalized state, on the other hand, the overlaps are nonzero for a number
of order N of energy eigenstates. A special case is when all these overlaps are equal. In
that case we have |〈Ψ0|Ej〉|2 = 1/N due to the normalization, which implies PN = 1/N.
Anderson localization is associated with a random Hamiltonian [21]. According to the
above described picture, we can also consider Hilbert-space localization for a deterministic
Hamiltonian, which depends strongly on the initial state. For an energy eigenstate, the
system will always remain in the latter under unitary evolution. More generally, if the
initial state is a superposition of m energy eigenstates, the system will always remain
inside the m–dimensional Hilbert space, spanned by these energy eigenstates. In the
case, where the initial state is the eigenstate of H0 of the Hamiltonian H = H0 + ηH1.
η is a small parameter. ηH1 is a small perturbation. In that case, it is possible that this
perturbation provides an exponentially decaying evolution away the initial state. This
would be considered as exponential Hilbert-space localization.

In the subsequent discussion we focus on the diagonal elements of the TCM, since the
off-diagonal TCM elements decay exponentially with |k − k′| according to Equation (6).

2.2. Effect of Spectral Degeneracies

Assuming that there is a spectral degeneracy E1 = E2, we have λ12 = λ21 = 1, and
the diagonal TCM elements in Equation (7) read in this case

〈|uk|2〉τ =
N

∑
j,j′=1

q∗j qj′λ
k
jj′ = PN + q∗1q2 + q∗2q1 +

N

∑
j,j′=1;j′ 6=j;(j,j′) 6=(1,2),(2,1)

q∗j qj′λ
k
jj′ , (9)

such that the recurrent part of the transition probability becomes

lim
k→∞

〈|uk|2〉τ = PN + q∗1q2 + q∗2q1 = |q1 + q2|2 +
N

∑
j=3

|qj|2 . (10)

Thus, the effect of a spectral degeneracy is a change of the recurrent and the decaying
behavior, where the recurrent term changes by |q1 + q2|2 − |q1|2 − |q2|2. This means that
the diagonal elements of the TCM are very sensitive in terms of spectral degeneracies.
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After applying a discrete Fourier transformation to the decaying part of 〈|uk|2〉τ , we
obtain the function

Ũd(e
iω) = ∑

k≥1
eiωk

N

∑
j,j′=1;k′ 6=k;(j,j′) 6=(1,2),(2,1)

q∗j qj′λ
k
jj′

=
N

∑
j,j′=1;j′ 6=j;(j,j′) 6=(1,2),(2,1)

q∗j qj′
λjj′

e−iω−λjj′
,

(11)

which is a function of ω on the interval [0, 2π). In other words, Ũd(z) is a sum of poles
inside the unit circle due to |λjj′ | < 1. The poles λnn′ and λn′n approach the unit circle
when we get closer to a degeneracy of En and En′ . This should be visible in Ũd(e

iω). The
corresponding decay time Td = −1/ log |λnn′ | diverges due to |λnn′ | ∼ 1. Therefore, the
decay time Td is a measure of the distance from a spectral degeneracy; it diverges when we
approach the degeneracy. In general, we can define

Tm = max
j,j′=1,...,N

− 1
log |λjj′ |

(12)

as the largest decay time as a measure of level degeneracy.

3. Example: Bosonic Josephson Junction

In this section, we study the diagonal TCM elements of a bosonic Josephson junction
(BJJ) with N bosons as a closed quantum system. The motivation for choosing this example
is at least threefold: The model is (i) simple enough but not trivial, with interesting features
based on tunneling and boson–boson interaction; (ii) it can be solved exactly; and (iii)
it has been realized experimentally [22,23] with applications for commercial quantum
computers [24]. The BJJ consists of two identical wells filled with interacting bosons and
a tunneling junction between them. More formally, it is defined by the Bose–Hubbard
Hamiltonian [25]:

H = − J

2
(a†

l ar + a†
r al) + U(n2

l + n2
r ), nl,r = a†

l,ral,r , (13)

where a†
l,r (al,r) are the creation (annihilation) operators in the left and right wells, respec-

tively. The first term of H describes tunneling of atoms between the wells, and for U > 0
the second term represents a repulsive particle–particle interaction that favors energetically
a symmetric distribution of bosons in the double well. Without tunneling (i.e., for J = 0)
there are two-fold degenerate energy levels Ek = U[(N − k)2 + k2]/2 with eigenstates that
are superpositions of the product Fock state |k, N − k〉 (≡ |k〉 ⊗ |N − k〉) and its mirror
image |N − k, k〉. This two-fold degeneracy is similar to the two-fold degeneracy of the
Ising model, mentioned in the Introduction. In contrast to the Z2 symmetry of the Ising
model, the BJJ Hamiltonian has mirror-type symmetry due to the double well structure.
Individual tunneling of bosons between the wells plays the role of the symmetry-breaking
term, similarly to a local spin flip in the Ising model. Thus, an arbitrarily small tunneling
parameter J will lift the two-fold degeneracy of the Fock states. A difference between the
Ising model and the BJJ is that without tunneling in the latter, all energy levels are two-fold
degenerate. Therefore, the initial state can be prepared in any of these energy levels to
follow the evolution due to tunneling in the vicinity of degenerate levels. This is important
because the degenerate ground state may not be reached due to the energy conservation in
the closed quantum system.

For the following we use |Ψ0〉 = |0, N〉 as the initial state and |Ψ〉 = |N, 0〉 as the
measured state. Then we define the return probability (RP) and the transition probability
(TP) as

|ur,k|2 = |〈0, N|e−iHtk |0, N〉|2 , |ut,k|2 = |〈N, 0|e−iHtk |0, N〉|2 . (14)
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Since both states |Ψ0〉, |Ψ〉 are eigenstates of H in the absence of tunneling (J = 0),
we get

|ur,k|2 = 1 , |ut,k|2 = 0 (15)

for any k due to orthogonality. This reflects the fact that this pair of states breaks the
mirror symmetry of the double well. The opposite extreme is the BJJ without boson–boson
interaction (U = 0), which is more complex and will be discussed in the next subsection.
As we will see, this case can be described by simple functions for |ur,k|2, |ut,k|2. For
the interplay of tunneling and boson–boson interaction (J, U 6= 0), the behavior is more
complex and we rely on the time averaged expressions 〈|ur,k|2〉τ , 〈|ut,k|2〉τ with τk = τ̄ + τ′

k
and an exponential distribution for τ′

k:

〈...〉τ =
∫ ∞

0
... ∏

n≥1
e−τ′n dτ′

n , (16)

where the time is measured in units of h̄/J.

3.1. Non-Interacting Bosons

For U = 0 the spectrum of H consists of equidistant energy levels Ej = −J(N/2 − j)
(j = 0, 1, ..., N) and eigenstates

|Ej〉 =
2−N/2

√
j!(N − j)!

(a†
l + a†

r )
j(a†

l − a†
r )

N−j|0, 0〉 .

Then the RP and the TP at time tk for N bosons read

|ur,k|2 = |〈0, N|e−iHtk |0, N〉|2 = | cosN(Jtk/2)|2 ,
|ut,k|2 = |〈N, 0|e−iHtk |0, N〉|2 = | sinN(Jtk/2)|2 .

(17)

For the average TP we get tk = kτ̄ + τ′
1 + · · ·+ τ′

k and the exponential distribution of
Equation (16):

〈|ut,k|2〉τ = 2−2N
N

∑
l,l′=0

(
N

l

)(
N

l′

)
(−1)l+l′

[
e−i Jτ̄(l−l′)

1 − i J(l − l′)

]k

= 2−2N
N

∑
l=0

(
N

l

)2

+ 2−2N
N

∑
l,l′=0;l′ 6=l

(
N

l

)(
N

l′

)
(−1)l+l′

[
e−i Jτ̄(l−l′)

1 − i J(l − l′)

]k

, (18)

whereas the average RP is the same without the factor (−1)l+l′ . From these results we get
for the asymptotic value at k ∼ ∞ for both probabilities

PN ∼ 〈|ur,k|2〉τ ∼ 〈|ut,k|2〉τ ∼ 2−2N
N

∑
l=0

(
N

l

)2

, (19)

which reflects the mirror symmetry of the BJJ.

3.2. Interacting Bosons

Exact solutions exist for this model also for J, U 6= 0, but in contrast to the non-
interacting case they are complex and difficult to present in general. For instance, the
resolvent is a meromorphic function with polynomials of orders N and N + 1 [16,26].
Therefore, we only plot the results for the RP and the TP and their averaged counterparts
here. For transparency, we chose for all subsequent plots N = 20 bosons.

First, the evolutions of the RP and the TP are presented in Figure 1 for two values
(u = 1, 2) of the interaction parameter u = NU/J. This clearly reveals that the RP
dominates over the TP for increasing u, as we expected from the results of the two limits
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J = 0 and U = 0. It is interesting to note that in a mean-field (classical) approximation
of the BJJ there is a sharp phase transition in terms of the interaction parameter, where
the mean-field TP is completely suppressed when u ≥ uc = 2 [27]. The strong interaction
phase is also called the self-trapping phase. The analogue of the latter in the quantum BJJ
is Hilbert-space localization, reflected by the scaling behavior of the inverse participation
ratio [16]. This also indicates the existence of a critical uc.
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Figure 1. Signatures of a qualitative change in the evolution of a bosonic Josephson junction upon
increasing interaction strength u. The plots represent the dynamics of 20 bosons for u = 1, 2, where
the top panel gives the return probability |ur,k|2 and the bottom panel the transition probability |ut,k|2.

In Figure 2, the effect of time averaging on |ur,k|2 and |ut,k|2 for u = 1 is visualized. It
reflects the smoothing of the strongly fluctuating dynamics with a recurrent and a decaying
contribution according to Equations (7) and (9). It is obvious that the separation of the
recurrent and the decaying behavior is not feasible without time averaging.

The existence of a critical interaction strength uc ≈ 1.89... is demonstrated in Figure 3,
where the 〈|ur,k|2〉τ jumps upon increasing u at uc. Moreover, 〈|ut,k|2〉τ develops a charac-
teristic peak at uc. This behavior reflects the appearance of nearly degenerate energy levels,
as described in Section 2.2.

Finally, in Figure 4 the change of the time scales for the decay of the average TP
〈|ut,k|2〉τ is visualized for u = 1.7, ..., 2.2. The decay is reduced by increasing interaction
strength u. This reflects the fact that the splitting of the energy levels is reduced by the
interaction, as we expected.
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Figure 2. A comparison of the return probability |ur,k|2 and the average return probability 〈|ur,k|2〉τ

(top panel) and of the corresponding transition probabilities (bottom panel). The average was taken
with respect to the exponential distribution of Equation (16). The interaction parameter is u = 1, and
τ̄ = 1/10.
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Figure 3. The critical regime of the Hilbert-space localization with uc ≈ 1.89 is visualized with
〈|ur,k|2〉τ and 〈|ut,k|2〉τ at k = 70.
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Figure 4. Decay of 〈|ut,k|2〉τ for different interaction parameters u = 1.7, . . . , 2.2.

4. Discussion and Conclusions

Our analysis of the quantum unitary evolution was strictly focused on the result of
a single measurement in each of many identical experiments, which were subject of a
unitary evolution. Averaging with respect to the statistical outcome due to measurements
at randomly distributed times led to the TCM. We focused on the diagonal TCM elements to
study the evolution of the quantum system. The analysis of the off-diagonal TCM elements
was the subject of a previous work [15]. Similarly to the off-diagonal TCM elements, the
diagonal TCM elements revealed separation of the evolution into a static recurrent part and
a dynamic decaying part. We found that the decay rate of the latter is related to the spacing
between energy levels, which diverges when the spacing vanishes near a degeneracy. Thus,
the decay rate is a quantity that can be used to detect symmetry changes or the appearance
of spontaneous symmetry breaking. This was observed in the example of the BJJ: In this
model the energy levels were two-fold degenerate in the limit u → ∞. This is reflected in
Figure 4, where the decay decreases with increasing u.

Another interesting aspect of the BJJ is the transition to Hilbert-space localization [16].
This transition was also detected with the help of the average RP and average TP in Figure 3,
where the average RP experiences a jump to a higher value for u > uc. On the other hand,
the average TP has only a sharp peak near uc but has the same value away from uc.

We can conclude that time averaging over an ensemble of measurements is crucial
for extracting the (static) recurrent behavior and the (dynamic) decaying behavior. This
can be formulated in terms of the TCM. The separation of static and dynamic behavior is
generic for the unitary quantum evolution. The TCM provides a tool to analyze properties
of the quantum system, which are associated with spectral degeneracy in the case of phase
transitions. It can be applied to theoretical calculations and to experimental data, collected
from many experiments in identical quantum systems. We have demonstrated in the case
of the BJJ that the TCM approach delivers interesting generic information. The BJJ can be
considered as a building block of the Bose–Hubbard model on a lattice. Therefore, the
TCM approach should be applicable to more complex quantum models, including bosonic
and fermionic Hubbard models and quantum spin systems.
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Abstract: The variance of the position operator is associated with how wide or narrow a wave-packet
is, the momentum variance is similarly correlated with the size of a wave-packet in momentum space,
and the angular-momentum variance quantifies to what extent a wave-packet is non-spherically
symmetric. We examine an interacting three-dimensional trapped Bose–Einstein condensate at
the limit of an infinite number of particles, and investigate its position, momentum, and angular-
momentum anisotropies. Computing the variances of the three Cartesian components of the position,
momentum, and angular-momentum operators we present simple scenarios where the anisotropy of
a Bose–Einstein condensate is different at the many-body and mean-field levels of theory, despite
having the same many-body and mean-field densities per particle. This suggests a way to classify
correlations via the morphology of 100% condensed bosons in a three-dimensional trap at the limit of
an infinite number of particles. Implications are briefly discussed.

Keywords: Bose-Einstein condensates; infinite-particle-number limit; many-body theory; mean-field
theory; position variance; momentum variance; angular-momentum variance; solvable models;
harmonic-interaction model; anisotropy

1. Introduction

There has been an increasing interest in the theory and properties of trapped Bose–
Einstein condensates at the limit of an infinite number of particles [1–12]. Here, one
may divide the research questions into two, inter-connected groups. The first group of
research questions deals with rigorous results, mainly proving when many-body and
mean-field, Gross–Pitaevskii theories coincide at this limit, whereas the second group of
questions deals with characterizing correlations in a trapped Bose–Einstein condensate
based on the difference between many-body and mean-field properties at the infinite-
particle-number limit. In [2], it has been shown that the ground-state energy per particle
and density per particle computed at the many-body level of theory coincide with the
respective mean-field results. The infinite-particle-number limit is defined such that the
interaction parameter, i.e., the product of the number of bosons times the interaction
strength (proportional to the scattering length), is held constant. Similarly, in [3] it has been
shown that the reduced one-body and any reduced finite-n-body density matrix [13,14]
per particle are 100% condensed, and that the leading natural orbital boils down to the
Gross–Pitaevskii single-particle function. Analogous results connecting time-dependent
many-body and mean-field theories are given in [4,5] and developments for mixtures
in [9–11]. In [12], the many-boson wave-function at the infinite-particle-number limit has
been constructed explicitly.

The difference between many-body and mean-field theories at the limit of an infinite
number of particles, which as stated above coincide at the level of the energy, densities,
and reduced density matrices per particle, starts to show up in variances of many-particle
observables [6,7]. Of course, the wave-functions themselves differ and their overlap is
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smaller than one [8]. In evaluating the variances of many-particle observables two-body
operators emerge whose combination with the elements of the reduced two-body density
matrix can pick up even the tiniest depletion, which always exist due to the inter-particle
interaction [6,7]. Here, the quantitative difference between the many-body and mean-field
variances is a useful tool to benchmark many-body numerical approaches [15,16], whereas
the qualitative differences serve to define and characterize the nature of correlations in
100% condensed bosons at the infinite-particle-number limit.

Qualitative differences between the many-body and mean-field variances per particle
depend on both the system and observable under investigation and emerge because the
100% condensed bosons are interacting. In the ground-state of a one-dimensional double-
well potential, the mean-field position variance per particle increases monotonously with
the interaction parameter whereas, once about a single particle is excited outside the
condensed mode, the many-body position variance per particle starts to decrease [6]. In the
analogous time-dependent setup of a bosonic Josephson junction, the mean-field variance
is oscillating and bound by the size of the junction, whereas the many-body variance
increases to ‘sizes’ several times larger [7]. In two spatial dimensions additional features
come out. The position variance per particle in a thin annulus can exhibit a different
dimensionality [17] and both the position and momentum variances can exhibit opposite
anisotropies [18] when computed at the many-body and mean-field levels of theory in an
out-of-equilibrium quench dynamics. In two spatial dimensions the many-particle variance
of the L̂Z component of the angular-momentum operator becomes available, and used to
analyze the lack of conservation of symmetries in the mean-field dynamics [19].

In the present work we analyze the many-particle position, momentum, and angular-
momentum variances of a three-dimensional anisotropic trapped Bose–Einstein condensate
at the limit of an infinite number of particles, focusing on three-dimensional scenarios
that do not have (one-dimensional and) two-dimensional analogs. Mainly, the available
permutations between the three Cartesian components of a many-particle operator, such
as the position and momentum operators, allow one for various different anisotropies of
the respective mean-field and many-body variances than in two spatial dimensions [18].
Furthermore, anisotropy of the angular-momentum variance can only be investigated when
there is more than one component, and this occurs with the three Cartesian components of
the angular-momentum operator in three spatial dimensions.

The structure of the paper is as follows. In Section 2 theory and definitions are
developed. In Section 3 we present two applications where a common methodological line
of investigation is that the variances at the many-body level of theory can be computed
analytically. In Section 3.1, the anisotropy of the position and momentum variances
in the out-of-equilibrium breathing dynamics of a Bose–Einstein condensate in a three-
dimensional anisotropic harmonic potential are analyzed, and in Section 3.2, a solvable
model is devised which allows one to analyze the anisotropy of the angular-momentum
variances in the ground state of interacting bosons in a three-dimensional anisotropic
harmonic potential. All quantities are computed at the infinite-particle-number limit.
Finally, we summarize in Section 4.

2. Theory

The variances per particle of a many-particle observable Ô = ∑
N
j=1 ôj computed at the

many-body (MB) and mean-field, Gross–Pitaevskii (GP) levels of theory are connected at
the limit of an infinite number of particles by the following relation [6]:

Var|MB(Ô) = Var|GP(Ô) + Var|correlations(Ô). (1)

Here, Var|MB(Ô) = limN→∞

[
1
N (〈Ψ|Ô2|Ψ〉 − 〈Ψ|Ô|Ψ〉2)

]
, where Ψ is the solution of

the many-particle Schrödinger equation, and Var|GP(Ô) = 〈ψGP|ô2|ψGP〉 − 〈ψGP|ô|ψGP〉2,
where ψGP is the solution of the corresponding Gross–Pitaevskii equation. Recall that
the infinite-particle-number limit is defined such that the interaction parameter, i.e., the
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product of the number of bosons times the interaction strength, is kept fixed. Furthermore,
only in the infinite-particle-number limit the density per particle is identical at the many-
body and mean-field levels of theory, and thus (1) compares the variances per particle of
the same density per particle. The correlations term, Var|correlations(Ô), quantifying the
difference between the mean-field and many-body variances, depends on the elements
of the reduced two-body density matrix where at least one of the indexes corresponds
to a natural orbital higher than the condensed mode [6]. For non-interacting bosons the
correlations term obviously vanishes. As stated above, one is interested in qualitative
differences between Var|GP(Ô) and Var|MB(Ô) and their origin.

Consider a Bose–Einstein condensate for which the many-body variances of the three
Cartesian components of, say, the position operator are different and satisfy, without loss
of generality, the anisotropy

Var|MB(X̂) > Var|MB(Ŷ) > Var|MB(Ẑ). (2a)

We define the following classification with respect to the possible different anisotropies
of the respective mean-field position variances:

{1} :
{

Var|GP(X̂) > Var|GP(Ŷ) > Var|GP(Ẑ)
}

,

{1, 2} :
{

Var|GP(Ŷ) > Var|GP(X̂) > Var|GP(Ẑ);

Var|GP(X̂) > Var|GP(Ẑ) > Var|GP(Ŷ);

Var|GP(Ẑ) > Var|GP(Ŷ) > Var|GP(X̂)
}

,

{1, 2, 3} :
{

Var|GP(Ŷ) > Var|GP(Ẑ) > Var|GP(X̂);

Var|GP(Ẑ) > Var|GP(X̂) > Var|GP(Ŷ)
}

. (2b)

Naturally, the classification (2b) follows the classes of the S3 permutation group de-
noted by {1}, {1, 2}, and {1, 2, 3}. If the mean-field variances exhibit anisotropy other than
the anisotropy of the respective many-body variances, i.e., the ordering of the former does
not belong to the class {1}, we may interpret that the mean-field and many-body morpholo-
gies of the Bose–Einstein condensate with respect to the operators under investigation are
distinct. This implies that the correlations term in (1) becomes dominate for the variances
of these operators. In the present work we investigate manifestations of definition (2) utiliz-
ing the many-particle position (X̂, Ŷ, Ẑ), momentum (P̂X , P̂Y, P̂Z), and angular-momentum
(L̂X , L̂Y, L̂Z) operators for classifying the morphology of 100% condensed trapped bosons
at the limit of an infinite number of particles.

3. Applications

3.1. Position and Momentum Variances in an Out-of-Equilibrium Dynamics of a
Three-Dimensional Trapped Bose–Einstein Condensate

Consider N structureless bosons trapped in a three-dimensional anisotropic harmonic
potential and interacting by a general two-body interaction Ŵ(r − r′). The frequencies of
the trap satisfy, without loss of generality, ωx < ωy < ωz. We work with dimensionless
quantities, h̄ = m = 1. Using Jacobi coordinates, Qk = 1√

k(k+1)
∑

k
j=1(rk+1 − rj), k =

1, . . . , N − 1, QN = 1√
N

∑
N
j=1 rj, where r1, . . . , rN are the coordinates in the laboratory

frame, the Hamiltonian can be written as:

Ĥ(Q1, . . . , QN) = −1
2

∂2

∂Q2
N

+
1
2

(
ω2

xQ2
N,x + ω2

yQ2
N,y + ω2

z Q2
N,z

)
+ Ĥrel(Q1, . . . , QN−1). (3)

The ‘relative’ Hamiltonian Ĥrel collects all terms depending on the relative coordinates
Q1, . . . , QN−1, and Qk = (Qk,x, Qk,y, Qk,z). Suppose now that the bosons are prepared in the
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ground state of the non-interacting system. The ground-state is separable in the Jacoby co-

ordinates and reads Φ(Q1, . . . , QN) =
(ωx

π

) N
4
(

ωy

π

) N
4 (ωz

π

) N
4 e

− 1
2 ∑

N
k=1

(
ωxQ2

k,x+ωyQ2
k,y+ωzQ2

k,z

)

,

where the relation ∑
N
j=1 r2

j = ∑
N
k=1 Q2

k connecting the laboratory and Jacoby coordinates

is used. The solution of the time-dependent many-boson Schrödinger equation, ĤΨ(t) =

i
∂Ψ(t)

∂t , where Φ is the initial condition, reads Ψ(t) = e−iĤtΦ. Consequently, because of
the center-of-mass separability of the Hamiltonian Ĥ and of Φ, the position and momen-
tum variances per particle of the time-dependent state Ψ(t), for a general inter-particle
interaction Ŵ(r − r′), are those of the static, non-interacting system:

Var|MB(X̂) =
1

2ωx
, Var|MB(Ŷ) =

1
2ωy

, Var|MB(Ẑ) =
1

2ωz
,

Var|MB(P̂X) =
ωx

2
, Var|MB(P̂Y) =

ωy

2
, Var|MB(P̂Z) =

ωz

2
. (4)

In other words, the anisotropies Var|MB(X̂) > Var|MB(Ŷ) > Var|MB(Ẑ) of the position
operator and Var|MB(P̂Z) > Var|MB(P̂Y) > Var|MB(P̂X) of the momentum operator, when
computed at the many-body level of theory, hold for all times during the out-of-equilibrium
dynamics, see the constant-value (dashed) curves in Figures 1 and 2. We note that the
variances per particle (4) hold for any number of bosons due to the separability of the
center-of-mass. However, only at the limit of an infinite number of particles the density
per particle coincides within many-body and mean-field levels of theory and can thus be
exactly computed from the Gross–Pitaevskii equation.

What happens at the Gross–Pitaevskii level of theory? Can the mean-field variances
have different orderings than the many-body variances, i.e., belong to other anisotropy
classes based on the S3 permutation group, see (2b), than to {1}? If yes, then why and how?
The Gross–Pitaevskii or non-linear Schrödinger equation is given by[
− 1

2
∂2

∂r2 +
1
2

(
ω2

xx2 + ω2
yy2 + ω2

z z2
)
+ g|ψGP(r, t)|2

]
ψGP(r, t) = i

∂ψGP(r,t)
∂t , where g = 4πNas

is the coupling constant and as the s-wave scattering length of the above two-body interac-
tion Ŵ(r − r′). The initial condition, as above, is the ground state of the non-interacting

system, ψGP(r, 0) =
(ωx

π

) 1
4
(

ωy

π

) 1
4 (ωz

π

) 1
4 e−

1
2 (ωx x2+ωyy2+ωzz2). The Gross–Pitaevskii equa-

tion does not maintain the center-of-mass separability of the initial condition because of its
non-linear term, which, therefore, can lead to variations of the position and momentum
variances when computed at the mean-field level of theory.

Figures 1 and 2 display the Gross–Pitaevskii dynamics of the position and momentum
variances per particle, respectively, for four coupling constants, g = 0.18, 9.0, 18.0, and
27.0. To integrate the three-dimensional Gross–Pitaevskii equation we use a box of size
[−10, 10)× [−10, 10)× [−10, 10), a Fourier-discrete-variable-representation with 1283 grid
points and periodic boundary conditions, and the numerical implementation embedded
in [20]. The dynamics are computed for the four coupling constants g and depicted by the
oscillating (solid) curves in Figures 1 and 2. The left columns are for a 10% anisotropy of
the harmonic trap, i.e., ωx = 0.9, ωy = 1.0, and ωz = 1.1, and the right columns are for a
20% anisotropy of the harmonic trap, namely, ωx = 0.8, ωy = 1.0, and ωz = 1.2. We remark
that the expectation values per particle of the position (X̂, Ŷ, Ẑ) and momentum (P̂X , P̂Y, P̂Z)
operators computed at the mean-field and many-body levels of theory coincide at the limit
of an infinite number of particles and are all equal to zero in the present scenario.

For the smallest coupling constant, g = 0.18, we see that the mean-field variances os-
cillate with very small amplitudes around the respective constant values of the many-body
variances. This means that the mean-field anisotropy of the position variance, Var|GP(X̂) >
Var|GP(Ŷ) > Var|GP(Ẑ), and its many-body anisotropy, Var|MB(X̂) > Var|MB(Ŷ) >

Var|MB(Ẑ), are alike. A similar situation is found for the momentum variance, namely,
that the mean-field momentum anisotropy, Var|GP(P̂Z) > Var|GP(P̂Y) > Var|GP(P̂X), and
the many-body anisotropy, Var|MB(P̂Z) > Var|MB(P̂Y) > Var|MB(P̂X), are the same. Con-
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sequently, we may conclude that for small coupling constants the anisotropy class of the
position operator is {1} and, likewise, the anisotropy class of the momentum operator is
{1}, see (2). In other words, the contribution of the correlations term in (1) is marginal.
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Figure 1. Many-particle position (X̂, Ŷ, and Ẑ; in red, green, and blue) variance per particle as a
function of time computed at the limit of an infinite number of particles within many-body (dashed
lines) and mean-field (solid lines) levels of theory in an interaction-quench scenario. The harmonic
trap is 10% anisotropic in panels (a,c,e,g) and 20% anisotropic in panels (b,d,f,h). The coupling
constant g is indicated in each panel. Different anisotropy classes of the position variance emerge
with time. See the text for more details. The quantities shown are dimensionless.
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Figure 2. Many-particle momentum (P̂X , P̂Y , and P̂Z; in red, green, and blue) variance per particle as
a function of time computed at the infinite-particle-number limit within many-body (dashed lines)
and mean-field (solid lines) levels of theory in an interaction-quench scenario. The harmonic trap is
10% anisotropic in panels (a,c,e,g) and 20% anisotropic in panels (b,d,f,h). The coupling constant g is
indicated in each panel. Different anisotropy classes of the momentum variance emerge with time.
See the text for more details. The quantities shown are dimensionless.

The situation becomes more interesting for the larger coupling constants, g = 9.0, 18.0,
and 27.0. We begin with the position variances, Figure 1. The variances are found to
oscillate prominently, with much larger amplitudes than for g = 0.18, and, subsequently, to
cross each other. There are three ingredients that enable and govern this crossing dynamics.
The first, is that the amplitudes of oscillations of Var|GP(X̂), Var|GP(Ŷ), and Var|GP(Ẑ) are
slightly different already at short times, with the former being the larger and the latter
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being the smaller (more prominent for 20% than for 10% trap anisotropy). The second, is
that the respective frequencies of oscillations are also slightly different at short times, with
the former being the smaller and the latter being the larger. Both features correlate with
the ordering of the frequencies of the trap, ωx < ωy < ωz. The third ingredient is that the
three Cartesian components are coupled to each other during the dynamics, what impacts
the oscillatory pattern at intermediate and later times (more prominent for 10% than for
20% trap anisotropy, see Figure 1).

Combing the above, we find for the 10% trap anisotropy that around t = 4.0 Var|GP(Ẑ)
> Var|GP(Ŷ) > Var|GP(X̂) takes place, around t = 6.0 Var|GP(X̂) > Var|GP(Ŷ) >

Var|GP(Ẑ) holds (again), and around t = 7.0 Var|GP(Ẑ) > Var|GP(Ŷ) > Var|GP(X̂) oc-
curs. In other words, the anisotropy class of the position variance starts as {1} for t = 0,
changes to {1, 2} around t = 4, is back to {1} around t = 6, and becomes {1, 2, 3} around
t = 7. Furthermore, this pattern is found to be robust for different, increasing coupling
constants, see Figure 1. For 20% trap anisotropy we find a different crossing patten of
the position variances. The anisotropy class begins as {1} for t = 0, changes at around
t = 3.0 to {1, 2}, and immediately after, at around t = 3.75, it is {1, 2, 3}. Now, around
t = 7.0 there is a broad regime of anisotropy class {1, 2}. Another difference of a geomet-
rical origin between the dynamics in the 20% and 10% trap anisotropies can be seen for
g = 9, see Figure 1c,d. Here, the coupling constant is sufficiently large to lead to crossing
of all position variances for the 10% anisotropy trap, and, consequently, to the position
anisotropy class {1, 2, 3} (at around t = 7). On the other hand, for the 20% anisotropy trap
the coupling constant is just short of allowing all position variances to cross each other
and, clearly, the anisotropy class {1, 2, 3} cannot occur (as it happens at around t = 3.75
for the further larger coupling constants, g = 18 and 27). All in all, we have demonstrated
in a rather common (out-of-equilibrium quench) scenario the emergence of anisotropy
classes other than {1}, i.e., {1, 2} and {1, 2, 3}, for the position operator of a Bose–Einstein
condensate at the infinite-particle-number limit. Hence, the correlations term in (1) for the
position variance becomes dominant in the dynamics.

The results for the momentum variances per particle, see Figure 2, follow similar
and corresponding trends as those for the position operator, albeit the crossings of the
respective momentum curves take place during slightly narrower time windows than for
the position operator for the parameters used. Thus, for the 10% trap anisotropy we have
Var|GP(P̂X) > Var|GP(P̂Y) > Var|GP(P̂Z) around t = 4.25, Var|GP(P̂Z) > Var|GP(P̂Y) >

Var|GP(P̂X) in the vicinity of t = 6.0, and Var|GP(P̂Y) > Var|GP(P̂X) > Var|GP(P̂Z) around
t = 7.25. Therefore, the anisotropy class of the momentum variance starts at {1} for t = 0,
turns to {1, 2} around t = 4.25, returns to {1} for a wider time window around t = 6.0,
and changes to {1, 2, 3} around t = 7.25. For the 20% trap anisotropy we find, starting
from the anisotropy class {1} for t = 0, the class {1, 2, 3} at around t = 4.0, the class {1, 2}
at around t = 4.75, again the class {1} at around t = 6, and once more the class {1, 2, 3} at
around t = 9.5. As for the position variance, we find the pattern to be robust for different,
increasing coupling constants, see Figure 2. Furthermore, the above-discussed difference
of a geometrical origin between the position-variance dynamics in the 20% and 10% trap
anisotropies for g = 9 emerges also for the momentum variance, see Figure 2c,d. Here,
the coupling constant is sufficiently large to lead to crossing of all momentum variances
for the 10% trap anisotropy, but not for the 20% trap anisotropy. As a result, the former
system exhibits also the anisotropy class {1, 2, 3} for the momentum variance, whereas the
latter only the {1, 2} anisotropy class. Summarizing, we have demonstrated in a simple
scenario, of an out-of-equilibrium breathing dynamics, the emergence of anisotropy classes
other than {1}, namely, {1, 2} and {1, 2, 3}, for the many-particle position as well as many-
particle momentum operators of a trapped Bose–Einstein condensate at the limit of an
infinite number of particles. When these latter anisotropy classes describe the morphology
of the Bose–Einstein condensate, it implies that the correlations term in (1) governs the
position and momentum variance dynamics at the infinite-particle-number limit.
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3.2. Angular-Momentum Variance in the Ground State of a Three-Dimensional Trapped
Bose–Einstein Condensate

The possibility to learn on the relations governing correlations and variance anisotropy
between the different components of the angular-momentum operator opens up only in
three spatial dimensions. Here, in the context of the present work, the challenge is to find a
many-particle model where angular-momentum properties can be treated analytically at
the many-body level of theory and in the limit of an infinite number of particles. Such a
model is the three-dimensional anisotropic harmonic-interaction model, and the results
presented below build on and clearly extends the investigation of the two-dimensional
anisotropic harmonic-interaction model reported in [21]. The harmonic-interaction model
has been used quite extensively including to model Bose–Einstein condensates [22–36].
Finally, and as a bonus, we mention that the three-dimensional anisotropic harmonic-
interaction model can also be solved analytically at the mean-field level of theory, which is
useful for the analysis.

In the laboratory frame the three-dimensional anisotropic harmonic-interaction model

reads: Ĥ(r1, . . . , rN) = ∑
N
j=1

[
− 1

2
∂2

∂r2
j

+ 1
2

(
ω2

xx2
j + ω2
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j + ω2

z z2
j

)]
+λ0 ∑

N
1≤j<k(rj − rk)

2, i.e.,

it is obtained from the Hamiltonian (3) when the two-body interaction is Ŵ(r − r′) =
λ0(r − r′)2. Then, the ‘relative’ Hamiltonian is given explicitly by

Ĥrel(Q1, . . . , QN−1) = (5)
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The many-body ground state of Ĥ is readily obtained and given by
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As states above, it is also possible to solve analytically the three-dimensional anisotropic
harmonic-interaction model at the mean-field level of theory by generalizing [21,25]. The
final result for the mean-field solution of the ground state reads

ψGP(r) =

(√
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x + 2Λ

π

) 1
4
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π




1
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where Λ = λ0(N − 1) is the interaction parameter. For reference, ψGP(r) solves the Gross–

Pitaevskii equation
[
− 1

2
∂2

∂r2 +
1
2

(
ω2

xx2 + ω2
yy2 + ω2

z z2
)
+ Λ

∫
dr′|ψGP(r

′)|2(r − r′)2
]
ψGP(r)

= µψGP(r), where µ is the chemical potential. Note that both many-body and mean-field
solutions can be written as products of the respective solutions in one dimension along the
x, y, and z directions.

Before we arrive at the angular-momentum variances and for our needs, see below,
we make a stopover and compute the position and momentum variances per particle in the
model. At the many-body level we obviously have the result (4), since for the interacting
ground-state the center-of-mass is separable and, hence, the position and momentum

154



Symmetry 2021, 13, 1237

variances are independent of the two-body interaction. At the mean-field level we readily
find from (7) the result

Var|GP(X̂) =
1

2
√

ω2
x + 2Λ

, Var|GP(Ŷ) =
1

2
√

ω2
y + 2Λ

, Var|GP(Ẑ) =
1

2
√
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, (8)
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√
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x + 2Λ

2
, Var|GP(P̂Y) =

√
ω2

y + 2Λ

2
, Var|GP(P̂Z) =

√
ω2

z + 2Λ

2
.

The mean-field variances (8) depend on the interaction parameter Λ, unlike the
respective many-body variances (4). It turns out that this property would be instrumental
when analyzing the anisotropy of the angular-momentum variance below. We briefly
comment on the anisotropies of the position and momentum variances in the model.
Comparing the mean-field (8) and many-body (4) variances per particle we find that the
former belong to the anisotropy class {1} independently of the interaction parameter Λ

both for the position and momentum operators. For the mean-field variance of the ground
state at the infinite-particle-number limit to belong to an anisotropy class other than {1},
one would have to go beyond the simple single-well geometry, see the anisotropy of the
position variance in a double-well potential in two spatial dimensions [37].

We can now move to the expressions for the angular-momentum variances at the
limit of an infinite number of particles, by generalizing results obtained in two spatial
dimensions [21] to three spatial dimensions. The calculation at the mean-field level using (7)
readily gives
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In the absence of interaction these expressions boil down, respectively, to 1
4

(
ωy
ωz

−1
)2

ωy
ωz

,

1
4
( ωz

ωx
−1)

2

ωz
ωx

, and 1
4

(
ωx
ωy

−1
)2

ωx
ωy

, the angular-momentum variances of a single particle in a three-

dimensional anisotropic harmonic potential. We see that for non-interacting particles
and at the mean-field level the angular-momentum variances per particle depend on the
ratios of frequencies, not on their absolute magnitudes. In the first case these are the bare
frequencies of the harmonic trap whereas in the second case these are the interaction-
dressed frequencies (7) resulting from the non-linear term.

The computation of the many-body variances is lengthier. It amounts to computing
the angular-momentum variances for finite systems which exhibit an explicit dependence
on the number of bosons N, and then performing the infinite-particle-number limit where
several terms fall. Using [21] the final expressions for the correlations terms (1) are
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Hence, adding (9) and (10) we readily have from (1) the many-body variances per
particle at the infinite-particle-number limit, Var|MB(L̂X), Var|MB(L̂Y), and Var|MB(L̂Z).

We remark that the expectation values per particle of the angular-momentum operator
(L̂X, L̂Y, L̂Z), as well as the respective expectation values of the position and momentum
operators, computed at the mean-field and many-body levels of theory coincide at the limit
of an infinite number of particles and are all equal to zero in the ground state.

We investigate and discuss an example. Let the frequencies of the three-dimensional
anisotropic harmonic trap be ωx = 0.7, ωy = 5.0, and ωz = 10.5. Their ratios from large to
small are: ωz

ωx
= 15, ωy

ωx
= 7 1

7 , and ωz
ωy

= 2 1
10 . Then, the values of the angular-momentum

variances per particle at zero interaction parameter, Λ = 0, are given from large to small by
Var|GP(L̂Y) = Var|MB(L̂Y) =

72

15 ≈ 3.267, Var|GP(L̂Z) = Var|MB(L̂Z) =
432

1400 ≈ 1.321, and

Var|GP(L̂X) = Var|MB(L̂X) =
112

840 ≈ 0.144. Indeed, as the ratio of frequencies with respect
to two axes is bigger, the corresponding angular-momentum variance per particle with
respect to the third axis is larger, and vise versa.

What happens as the interaction sets in? Figure 3a depicts the many-body and mean-
field angular-momentum variances as a function of the interaction parameter Λ. We
examine positive values of Λ which correspond to the attractive sector of the harmonic-
interaction model, see, e.g., [21,25,29]. Let us analyze the observations. With increasing
interaction parameter the density narrows, along the x, y, and z directions. This is clear be-
cause the interaction between particles is attractive, and is manifested by the monotonously
decreasing values of the position variances per particle (8). Furthermore, the density be-

comes less anisotropic, because the ratios of the dressed frequencies
√
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,
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, and

√
ω2

z+2Λ√
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y+2Λ
monotonously decrease with increasing Λ. Consequently, the angular-momentum

variances per particle decrease with the interaction parameter as well, see Figure 3a. The
mean-field angular-momentum variances (9) are monotonously decreasing because of
the just-described decreasing ratios of the dressed frequencies. The many-body angular-
momentum variances are decreasing, at least for the values of interaction parameters
studied here, because the positive-value correlations terms (10) grow slower than the
mean-field angular-momentum variances decrease with Λ.

All in all, the anisotropy of the angular-momentum variance can now be determined.
We find the anisotropy Var|MB(L̂Y) > Var|MB(L̂Z) > Var|MB(L̂X) to hold for all interaction
parameters at the many-body level of theory. At the mean-field level of theory we find the
same anisotropy, namely, Var|GP(L̂Y) > Var|GP(L̂Z) > Var|GP(L̂X), to hold for small inter-
action parameters. However, then, at just about Λ = 5.0 the mean-field anisotropy changes
to Var|GP(L̂Y) > Var|GP(L̂X) > Var|GP(L̂Z), and this anisotropy continues for larger inter-
action parameters. Hence, we have found that the anisotropy of the angular-momentum
operator in the ground state of the three-dimensional anisotropic harmonic-interaction
model at the infinite-particle-number limit changes as a function of the interaction param-
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eter from the anisotropy class {1} to {1, 2}, see Figure 3a. In terms of the correlations
term (1), the anisotropy of the variance is governed then by many-body effects.
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Figure 3. Many-particle angular-momentum (L̂X , L̂Y , and L̂Z; in red, green, and blue) variance per
particle as a function of the interaction parameter Λ computed at the limit of an infinite number
of particles within many-body (dashed lines) and mean-field (solid lines) levels of theory for the
ground state of the three-dimensional anisotropic harmonic-interaction model. The frequencies of
the trap are ωx = 0.7, ωy = 5.0, and ωz = 10.5. Results at several translations r0 of the center
of the trap are shown in the panels: (a) r0 = (0, 0, 0); (b) r0 = (0.25, 0, 0); (c) r0 = (0, 0.25, 0);
(d) r0 = (0.25, 0.25, 0). Different anisotropy classes of the angular-momentum variance emerge with
the interaction parameter. See the text for more details. The quantities shown are dimensionless.

Still, can the above-found picture of angular-momentum variance anisotropy be made
richer? The answer is positive and requires one to dive deeper into the properties of angular-
momentum variances under translations. To this end, we employ and extend prior work in
two spatial dimensions [21]. Suppose now that the harmonic trap is located not in the origin
but translated to a general point r0 = (x0, y0, z0). The expectation values per particle of the
momentum and angular-momentum operators are still zero, whereas the expectation value
of the position operator is, of course, r0. Whereas the position and momentum variances are
invariant to translations, the angular-momentum variances are not, which open up another
degree of freedom to investigate the anisotropy class of the angular-momentum variances
in three spatial dimensions. Mathematically, the transformation properties of the angular-
momentum operator and its square combine in a non-trivial form those of the position and
momentum operators. Physically, in a similar manner that angular momentum is defined
with respect to a reference point, and it is different with respect to another reference point,
so does the variance of the angular-momentum operator which changes with respect to
distinct reference points.

Using the transformation properties of the angular-momentum operator (L̂X , L̂Y, L̂Z)
under translations, see Appendix A and [21], the final expressions for the translated
angular-momentum variances per particle read explicitly
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at the many-body level of theory and
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at the mean-field level of theory. Let us examine expressions (11) and (12) more closely. The
terms added to the translated angular-momentum variances at the many-body level depend
on the corresponding components of the translation vector but not on the interaction
parameter, whereas the added terms at the mean-field level of theory depend on and
increase with Λ, see Appendix A for more details. The combined effects can be seen in
Figure 3, compare panels Figure 3b–d with panel Figure 3a.

For the translation by r0 = (0.25, 0, 0), the angular-momentum variances Var|MB(L̂X ; r0)
and Var|GP(L̂X ; r0) are invariant quantities, Var|MB(L̂Y; r0) and Var|MB(L̂Z; r0) are shifted
by interaction-independent values, and Var|GP(L̂Y; r0) and Var|GP(L̂Z; r0) increase by
interaction-dependent values, see (11) and (12), and compare Figure 3a,b. The com-
bined effect is that now both Var|MB(L̂Y; r0) > Var|MB(L̂Z; r0) > Var|MB(L̂X; r0) and
Var|GP(L̂Y; r0) > Var|GP(L̂Z; r0) > Var|GP(L̂X; r0) hold for all interaction parameters Λ

in the range studied. Consequently, the anisotropy class of the angular-momentum vari-
ance per particle for r0 = (0.25, 0, 0) is {1} only.

Next, for r0 = (0, 0.25, 0), the angular-momentum variances Var|MB(L̂Y; r0) and
Var|GP(L̂Y; r0) are invariant quantities, Var|MB(L̂X; r0) and Var|MB(L̂Z; r0) are shifted by
interaction-independent values, and Var|GP(L̂X ; r0) and Var|GP(L̂Z; r0) grow by interaction-
dependent values, contrast Figure 3a,c. The combined effect is, of course, different than
with r0 = (0.25, 0, 0), and we discuss its main features, focusing on the regime of interaction
parameters larger than about Λ = 6, for which the two many-body curves Var|MB(L̂X ; r0)
and Var|MB(L̂Y; r0) cross, see Figure 3c. The many-body angular-momentum variances
satisfy Var|MB(L̂X ; r0) > Var|MB(L̂Y; r0) > Var|MB(L̂Z; r0) for all studied interaction param-
eters. So, the effect of this translation is to alter the order of the many-body variances, i.e., to
change the many-body anisotropy. Now, at the mean-field level, we find Var|GP(L̂X ; r0) >
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Var|GP(L̂Y; r0) > Var|GP(L̂Z; r0) up to about Λ = 12 and Var|GP(L̂X ; r0) > Var|GP(L̂Z; r0) >
Var|GP(L̂Y; r0) for the interaction parameters larger than about Λ = 12. All in all, for the
translation by r0 = (0.25, 0, 0) the above-described relations correspond, respectively, to
the anisotropy classes {1} and {1, 2} of the angular-momentum variances per particle.

Finally, for the translation by r0 = (0.25, 0.25, 0) non of the angular-momentum
variances is invariant, see (11) and (12). The many-body angular-momentum variances
Var|MB(L̂X ; r0), Var|MB(L̂Y; r0), and Var|MB(L̂Z; r0) are shifted by interaction-independent
values and the mean-field angular-momentum quantities Var|GP(L̂X; r0), Var|GP(L̂Y; r0),
and Var|GP(L̂Z; r0) increase by interaction-dependent values, see Figure 3d. We exam-
ine the overall effect, concentrating on the regime of interaction parameters larger than
about Λ = 2.5, where the two many-body curves Var|MB(L̂X ; r0) and Var|MB(L̂Z; r0) cross,
see Figure 3d. The many-body angular-momentum variances satisfy Var|MB(L̂Y; r0) >

Var|MB(L̂X ; r0) > Var|MB(L̂Z; r0) for all interaction parameters in the range studied. Once
again, the effect of the translation is to change the order of the many-body variances,
thereby altering the many-body anisotropy, compare panels Figure 3a,c,d. At the mean-field
level one finds Var|GP(L̂Y; r0) > Var|GP(L̂X ; r0) > Var|GP(L̂Z; r0) up to about Λ = 15, then
Var|GP(L̂Y; r0) > Var|GP(L̂Z; r0) > Var|GP(L̂X ; r0) till about Λ = 22.5, and Var|GP(L̂Z; r0) >
Var|GP(L̂Y; r0) > Var|GP(L̂X; r0) for all the interaction parameters larger than about Λ =
22.5 studied, see Figure 3d. Therefore, for r0 = (0.25, 0.25, 0) the above-discussed findings
imply that all anisotropy classes can be attained by the angular-momentum variances
per particle in the three-dimensional harmonic-interaction model at the infinite-particle-
number limit. These are, respectively, {1}, {1, 2}, and {1, 2, 3}. In other words, we have
shown that the correlations term (1) can dominate the angular-momentum properties of
a trapped Bose–Einstein condensate at the limit of an infinite number of particles, which
rounds off the present work.

4. Summary

The present work deals with a connection between anisotropy of and correlations in a
three-dimensional trapped Bose–Einstein condensate. The merit of treating the limit of an
infinite number of bosons is appealing, since the system is known to be 100% condensed in
this limit, and some of its properties, notably the density per particle, are identical at the
many-body and mean-field levels of theory.

We have analyzed the variances per particle of the three Cartesian components of the
position (X̂, Ŷ, Ẑ), momentum (P̂X , P̂Y, P̂Z), and angular-momentum (L̂X , L̂Y, L̂Z) operators
at the many-body and mean-field levels of theory. In general, for small interaction param-
eters the differences between the many-body and mean-field quantities are quantitative
whereas for larger interaction parameters qualitative differences emerge. We define the
anisotropy class of the variance according to the different orderings from large to small, or
permutations, of the three respective many-body and mean-field quantities. The anisotropy
class {1} implies the same ordering, the class {1, 2} implies that two of the components are
permuted, and the anisotropy class {1, 2, 3} means that the three components are permuted.

Two relatively transparent applications are presented, the first is the breathing of
an anisotropic three-dimensional trapped Bose–Einstein condensate, and the second is
the ground state of the anisotropic three-dimensional harmonic-interaction model. The
former exhibits different anisotropy classes of the position and momentum variances per
particle, because at the many-body level the variances are constant, while at the mean-field
level the variance of each component oscillates with a different amplitude and frequency,
and consequently different anisotropy classes occur in time. The latter application shows
different anisotropy classes of the angular-momentum variance per particle, owing to the
intricate transformation properties of the angular-momentum variance when the wave-
packet is translated from the origin. The challenge, which obviously goes beyond the
scope of the present work, would be the experimental observation of such anisotropies and
correlations. To access many-particle variances one would need to measure explicitly the
positions, momenta, or angular-momenta of, in principle, all particles in the Bose–Einstein
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condensate, rather than just the total density from which the expectation values of these
observables can be deduced.

To sum up, the anisotropy or morphology of a three-dimensional trapped Bose–
Einstein condensate can look quite different when examined through the ‘glasses’ of
many-body and mean-field theories, even for 100% condensed bosons at the limit of an
infinite number of particles. It would be interesting to conduct the investigation presented
here and analyze the results in more complicated numerical many-particle scenarios. Last
but not least, it is possible to envision classifying the morphology of a Bose–Einstein
condensate beyond that emanating from the variances of the position, momentum, and
angular-momentum operators. Furthermore, in four spatial dimensions one could expect
an additional richness of the variance [38].
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Appendix A. Translated Angular-Momentum Variances in Three Spatial Dimensions

at the Limit of an Infinite Number of Particles

Consider interacting bosons at the limit of an infinite number of particles trapped in
the ground state of the three-dimensional anisotropic harmonic potential (or any other
potential which is reflection symmetric in the x, y, and z directions) centered at the origin.
The expectation values per particle of the position, momentum, and angular-momentum
operators vanish. Suppose now that the harmonic trap is translated to the location r0 =
(x0, y0, z0). The translated and untranslated angular-momentum variances at the many-
body and mean-field levels of theory can, respectively, be related as follows:

Var|MB(L̂X ; r0) = Var|MB(L̂X) + y2
0Var|MB(P̂Z) + z2

0Var|MB(P̂Y),

Var|MB(L̂Y; r0) = Var|MB(L̂Y) + z2
0Var|MB(P̂X) + x2

0Var|MB(P̂Z), (A1a)

Var|MB(L̂Z; r0) = Var|MB(L̂Z) + x2
0Var|MB(P̂Y) + y2

0Var|MB(P̂X)

and

Var|GP(L̂X ; r0) = Var|GP(L̂X) + y2
0Var|GP(P̂Z) + z2

0Var|GP(P̂Y),

Var|GP(L̂Y; r0) = Var|GP(L̂Y) + z2
0Var|GP(P̂X) + x2

0Var|GP(P̂Z), (A1b)

Var|GP(L̂Z; r0) = Var|GP(L̂Z) + x2
0Var|GP(P̂Y) + y2

0Var|GP(P̂X).

The explicit expressions at the many-body and mean-field levels of theory are given
in the main text, see (11) and (12), respectively. We remind for reference that the position
and momentum variances are invariant to translations. Consequently, by subtracting the
Gross-Piteavskii (A1b) from the many-body (A1a) results, see (1), we readily find for the
translated correlations terms:

Var|correlations(L̂X ; r0) = Var|correlations(L̂X) + y2
0Var|correlations(P̂Z) + z2

0Var|correlations(P̂Y),

Var|correlations(L̂Y; r0) = Var|correlations(L̂Y) + z2
0Var|correlations(P̂X) + x2

0Var|correlations(P̂Z), (A2)

Var|correlations(L̂Z; r0) = Var|correlations(L̂Z) + x2
0Var|correlations(P̂Y) + y2

0Var|correlations(P̂X).
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The meaning of result (A2) is that the correlations terms of the translated angular-
momentum variances depend on the respective correlations terms of the momentum
variances and components of the translation vector r0. Consequently, the translated angular-
momentum correlations terms (A2) generally depend more strongly on the interaction
parameter than the untranslated ones. Indeed, Figure 3 plots some examples of angular-
momentum variances for different r0, and shows that, once translations of the trap are
included, the angular-momentum variances of a trapped Bose–Einstein condensate at the
limit of an infinite number of particles can belong to any of the anisotropy classes, {1},
{1, 2}, or {1, 2, 3}.
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Abstract: We study the effect of two metallic slabs on the collective dynamics of electrons in graphene
positioned between the two slabs. We show that if the slabs are perfect conductors, the plasmons
of graphene display a linear dispersion relation. The velocity of these acoustic plasmons crucially
depends on the distance between the two metal gates and the graphene sheet. In the case of generic
slabs, the dispersion relation of graphene plasmons is much more complicated, but we find that
acoustic plasmons can still be obtained under specific conditions.

Keywords: graphene; quantum many-body theory; acoustic plasmons

1. Introduction

In 2004, Graphene, a single layer of carbon atoms arranged in a two-dimensional
honeycomb lattice, was isolated and characterized [1]. Since then, many electrical, ther-
mal, chemical, optical, and mechanical properties of graphene have been studied, both
experimentally and theoretically [2–5]. Quite remarkably, under appropriate conditions,
the electrons in graphene behave as viscous fluids, exhibiting peculiar hydrodynamic
effects [6]. In particular, it has been shown that the plasmons of graphene display a linear
dispersion relation when, in the proximity of the graphene, a metallic slab screens the
Coulomb potential of electrons in graphene [7,8].

In this brief communication, we extend the predictions obtained in [7] by considering
a graphene sheet sandwiched between two metallic slabs. We find that, in this case, the
electrons of graphene are characterized by acustic modes whose dispersion relation is
linear in the long-wavelength regime. We obtain a simple analytical formula for the speed
of these acustic modes.

2. Graphene Sandwiched between Two Materials

The monolayer graphene is a honeycomb lattice of carbon atoms in two spatial dimen-
sions. Quasiparticles in graphene have the dispersion relation

Ek = ±vF h̄|k| − µ , (1)

where vF is the Fermi velocity, k is the two-dimensional (2D) quasiparticle wavevector, and
µ the chemical potential. The Fermi wavenumber kF depends on the chemical potential
µ through the relation kF = µ/(h̄vF). Note that, in 2D, kF =

√
4πn/g, with n as the

electron number density and g as the degeneracy. In graphene, g = 4: 2 for spin and 2, for
inequivalent valleys in the Brillouin zone, and the chemical potential µ = h̄vFkF is usually
µ ≃ 102 meV, while the Fermi velocity is vF ≃ 106 m/s [2,3,9].

We initially assume that the graphene is sandwiched between two slabs made of
generic materials, where L is the distance between the two slabs and d the distance between
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the lower slab and the graphene sheet. The Coulomb potential of charges in graphene is
influenced by the the two slabs. We choose the z axis perpendicular to the graphene sheet,
such that z = 0 fixes the position of graphene sheet. It follows that the lower slab is located
at z = −d and the upper slab at z = L − d.

Within the Random Phase Approximation (RPA) [10], the relative dielectric function
of graphene is given by

ǫg(q, ω) = 1 − Ṽ(q, ω) Π0(q, ω) , (2)

where Ṽ(q, ω) is the Fourier transform of the screened (by the presence of the two slabs)
Coulomb potential between quasiparticles of graphene and Π0(q, ω) is the first-order
dynamical polarization of non-interacting quasiparticles in graphene. Note that, for a very

small wavenumber, q =
√

q2
x + q2

y and a frequency ω, such that vFq ≪ ω ≪ 2µ/h̄ the

dynamical polarization reads [11,12]

Π0(q, ω) =
µ

πh̄2
q2

ω2 . (3)

The collective mode of plasmons in graphene is then obtained from the resonance
condition [10]

ǫg(q, ω) = 0 . (4)

3. Perfect Conductors

Let us suppose that the two slabs are perfect conductors. A straightforward application
of the method of image charges [13] gives the screened Coulomb potential between two
particles, with electric charge e located in the plane z = 0 at distance x2 + y2 as

V(x, y) = e2
+∞

∑
j=−∞

[ 1√
(x2 + y2) + (2jL)2

− 1√
(x2 + y2) + (2d − 2jL)2

]
, (5)

where x and y are Cartesian coordinates in the plane of graphene. Performing the Fourier
transform, we obtain

Ṽ(q) =
2πe2

q

+∞

∑
j=−∞

[
e−2q|j|L − e−2q|d−jL|

]
(6)

with q =
√

q2
x + q2

y. The series can be calculated explicity because is the sum of geometric

series. After straightforward calculations, we obtain

Ṽ(q) =
2πe2

q

(
1 − e−2qd − 2e−2qL + e−2q(L−d)

1 − e−2qL

)
. (7)

From Equations (2)–(4) the dispersion relation of plasmons in graphene can be
written as

ω2 =
µ

πh̄2 q2Ṽ(q) , (8)

or explicitly

ω =

√
2µe2

h̄2 q1/2

(
1 − e−2qd − 2e−2qL + e−2q(L−d)

1 − e−2qL

)1/2

. (9)

Thus, we have found an analytical formula for the dispersion relation of plasmons in
the graphene sheet.

It is important to observe that, for small q, one obtains

Ṽ(q) = 4πe2d

(
1 − d

L

)
− 4πe2

3
d2L

(
1 − 2

d

L
+

d2

L2

)
q2 + ... (10)
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Consequently, taking into account Equations (8) and (10), we finally obtain, for small
q, the linear dispersion relation

ω = cp q , (11)

where

cp =

√
4µe2d

h̄2

(
1 − d

L

)
(12)

is the speed of sound of acustic plasmons in graphene sandwiched between two ideal
metal gates. Equation (12) is the main result of this brief paper. The velocity cp can be
controlled by varying the chemical potential µ but also the two distances d and L. In the
limit L → +∞ from Equation (12), one finds

cp =

√
4µe2d

h̄2 (13)

which is the result of Reference [7], namely, the velocity of acustic plasmons in graphene
coupled to a single ideal metal gate.

4. Real Materials

For a generic material, the relative dielectric function ǫm depends on frequency ω and
wavevector q. We set ǫm,1(q, ω) and ǫm,2(q, ω) as the relative dielectric functions of lower
and upper materials, respectively. In this case, the derivation of the screened Coulomb
potential is slightly more complicated but still analytically possible [13,14]. We obtain

Ṽ(q, ω) = 2πe2

q

(
1 − r1(q,ω) e−2qd+r2(q,ω) e−2q(L−d)

1−r1(q,ω) r2(q,ω) e−2qL

+ 2 r1(q,ω) r2(q,ω) e−2qL

1−r1(q,ω) r2(q,ω) e−2qL

)
,

(14)

where

r1(q, ω) =
ǫm,1(q, ω)− 1
ǫm,1(q, ω) + 1

and r2(q, ω) =
ǫm,2(qω)− 1
ǫm,2(q, ω) + 1

. (15)

Note that for two perfect metal gates, where r1 = r2 = 1, Equation (14) exactly
becomes Equation (7).

4.1. Materials Sticked to Graphene

Setting L = 2d, in the limit d → 0 Equation (14) gives

Ṽ(q, ω) =
2πe2

ǫm(q, ω) q
, (16)

where

ǫm(q, ω) =
1
2
(ǫm,1(q, ω) + ǫm,2(q, ω)) . (17)

Equation (16) is the screened Coulomb potential in a graphene sheet between two
materials stuck onto it.

We adopt Equation (3) again, which is valid for q → 0 and vFq ≪ ω ≪ 2µ/h̄ [11,12],
and Equation (4). Then, for small q and assuming that ǫm is constant, we obtain

ω =

√
2e2µ

h̄2ǫm

√
q , (18)

which is the typical dispersion relation of plasmons in graphene exposed to two polar
substrates [8].
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4.2. Single Material Slab

In the absence of the upper slab, i.e., setting r2 = 0, from Equation (14), we find

Ṽ(q, ω) =
2πe2

q

(
1 − r(q, ω) e−2qd

)
(19)

removing the subindex 1 from r1(q, ω). Then, for small q and assuming that r is constant,
we obtain

Ṽ(q, ω) =
2πe2(1 − r)

q
+ 4πe2rd − 8πe2rd2 q + . . . (20)

Clearly, only if r = 1 (perfect conductor), the 1/q term drops out and one again finds
acoustic plasmons with the speed of sound given by Equation (13). More generally, the
small-q dispersion relation of plasmons reads

ω =

√
2µe2(1 − r)

h̄2 q +
4µe2rd

h̄2 q2 , (21)

which becomes acoustic-like under the condition

q ≫ (1 − r)

2dr
. (22)

For a real metal gate, the functional dependence of r(q, ω) is crucial. In this case, the
relative dielectric function ǫm can be approximated as [15]

ǫm(q, ω) = 1 +
q2

TF

q2 −
ω2

p

ω2 + iΓ ω
, (23)

where qTF is the Thomas–Fermi wavenumber, ωp is the plasma frequency, and Γ the
damping constant. Notice that the relative dielectric constant of a perfect conductor is
ǫm = −∞.

5. Conclusions

We have derived a simple formula for the speed of sound of the acustic modes of
electrons in a graphene sheet. The existence of these hydrodynamic effects is due to the
presence of metallic slabs, which induce a screening the Coulomb potential of electrons
in graphene. Our formula for the graphene sandwiched between two metallic slabs
generalizes the one obtained in Reference [7] in the case of graphene coupled to a single
metallic slab. In conclusion, it is important to stress that, very recently, acoustic plasmons
have been observed, with a real-space imaging, in single graphene sheet over a dielectric-
metal slab [14]. This graphene-dielectric-metal configuration is quite different with respect
to the one considered in the present paper. However, for the sake of completeness, in the
last section of our paper, we have also considered the effect of two generic slabs of the
screened Coulomb potential of two electrons in graphene.
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Abstract: In this review article, we discuss the many-body interactions in plasmonic nanohybrids
made of an ensemble of quantum emitters and metallic nanoparticles. A theory of the linear and
nonlinear optical emission intensity was developed by using the many-body quantum mechanical
density matrix method. The ensemble of quantum emitters and metallic nanoparticles interact with
each other via the dipole-dipole interaction. Surfaces plasmon polaritons are located near to the
surface of the metallic nanoparticles. We showed that the nonlinear Kerr intensity enhances due
to the weak dipole-dipole coupling limits. On the other hand, in the strong dipole-dipole coupling
limit, the single peak in the Kerr intensity splits into two peaks. The splitting of the Kerr spectrum is
due to the creation of dressed states in the plasmonic nanohybrids within the strong dipole-dipole
interaction. Further, we found that the Kerr nonlinearity is also enhanced due to the interaction
between the surface plasmon polaritons and excitons of the quantum emitters. Next, we predicted
the spontaneous decay rates are enhanced due to the dipole-dipole coupling. The enhancement
of the Kerr intensity due to the surface plasmon polaritons can be used to fabricate nanosensors.
The splitting of one peak (ON) two peaks (OFF) can be used to fabricate the nanoswitches for
nanotechnology and nanomedical applications.

Keywords: plasmonics; nano-optics; dipole-dipole interaction; density matrix method; dressed states;
Kerr effect; quantum dots; metallic nanoparticles

1. Introduction

Recently there has been considerable interest in studying the nonlinear properties of
plasmonic nanohybrids (PNHs) made of metallic nanoparticles and quantum emitters (i.e.,
quantum dots (QDs)) [1–15].

The dipole-dipole interaction in the linear properties of PNHs and photonic crystals
has been investigated [10–14]. The Kerr nonlinearity has been studied widely in quantum
optics using three-level and four-level atoms [15–49]. For example, giant Kerr nonlinearities
in atoms have been studied by using electromagnetically induced transparency. It was
shown that the Kerr nonlinear refractive index of a three-level Λ atomic type is greatly
enhanced inside an optical ring cavity. On the other hand, the enhancement of the Kerr
nonlinearity was also investigated in a four-level atomic system. Experimentally, the
enhancement of the Kerr-nonlinear coefficient was also observed in a three-level atomic
system such as Rb atom.

Singh [40] studied the nonlinear second harmonic generation in nanohybrids made
of a metallic nanoparticle and a QD. Some efforts have also been devoted to studying
the Kerr nonlinearity in metallic nanohybrids. Recently, some effort has been devoted
to studying the Kerr nonlinearity in PNHs [35–43]. For example, Terzis et al. [37] have
fabricated optical systems from QD and gold-metallic nanoparticles. Singh experimentally
and theoretically [42,43] have studied the nonlinear properties of metallic nanohybrids.
The nonlinear effects can also be used for electro-optical device applications such as light
modulators, optical switches, optical logic, and optical limiters. The nonlinear research
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in PNHs can create a revolutionary change in electronic and photonic nontechnology
and nanomedicine.

In this review article, we outline a theory we have developed of the linear and
nonlinear light emissions for PNHs by using the many-body quantum mechanical density
matrix method. A schematic diagram of a nanohybrid containing interacting metallic
nanoparticles (MNPs) and quantum emitters (QEs) is shown in Figure 1. In Section 1,
we surveyed the literature for the Kerr nonlinearity. In Section 2, a theory of the surface
plasmon polaritons due to the photon-plasmon interaction is discussed. In Section 3, the
dipole-dipole interaction in the ensemble of QEs and MNPs is explained. In Section 4, a
theory for the linear and nonlinear optical absorption intensity using the density matrix
method is outlined. In Section 5, we derive the expressions of the spontaneous decay rates
due to the dipole-dipole interaction. In Section 6, we show how we derived the expressions
of dressed states in the strong exciton-DDI coupling limit. In Section 7, we discuss the
simulation we performed on the nonlinear optical absorption intensity. Finally, in the last
Section 8, we have summarized the findings of the review article.

 

  

Figure 1. Schematic diagram of a nanohybrid which consists of a noninteracting metallic nanoparti-
cles (MNPs) and interacting quantum emitters (QEs).

2. Surface Plasmon Polaritons

Let us consider a situation where a probe with a frequency ωk and wave wavevector k
is applied to study the PL in the PNH. We know that the surface plasmons are present on
the surface of the MNP. The surface plasmons oscillate with a frequency ωp. The probe
photons interact with surface plasmons and this interaction creates new quasi-particles
called surface plasmon polaritons. Let us calculate the surface plasmon polaritons due to
the interaction of photon and surface plasmons interaction as follows.

The Hamiltonian of the surface plasmon and photons, and interactions between them
can be written as

HE = ∑
k

ℏωkc+k ck + ∑
k

ωpB+
k Bk +−∑

k

Gk

(
B+

k ck + Bkc+k
)

(1)

where c+k and ck are the photon creation and annihilation operators, respectively. Here
B+

k and Bk are the surface plasmon creation and annihilation operators, respectively. The
constant Gk is the coupling constant between the photons and plasmons. The first and
second terms are for noninteracting photon and plasmon Hamilton. The last term is
photon-plasmon interaction Hamiltonian.
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Plasmons and photons operators satisfy the following commutation relation.

[
Bk, B+

k

]
= δk, k′[

ck, c+k
]
= δk, k′

(2)

Note that in the interaction, the Hamiltonian has a mixture of photon and plasmon
operators. We aimed to diagonalize the Hamiltonian. The diagonalization of an interacting
Hamiltonian is a standard method in the many-body theory. We defined new quasi-particle
creation and annihilation operators p+ik and p−ik with i = 1, 2 We express the plasmon and
photon operators in terms of these quasi-particle operators as

Bk = u11 p1k + u12 p2k

B+
k = u∗

11 p+1k + u∗
12 p+2k

ck = u21 p1k + u22 p2k

c+k = u∗
21 p+1k + u∗

22 p+2k

(3)

New quasi-particle operators p+ik and p−ik with i = 1,2 are called surface plasmon
polariton operators, which have the combined effect of plasmons and photons.

The Hamiltonian in Equation (1) can be written in the simpler form for diagonalization.
It can be expressed as

H = ∑
k

Hk,

Hk = ℏωkc+k ck + ωpB+
k Bk − Gk

(
B+

k ck + Bkc+k
) (4)

We aimed to write the Hk in terms of SPP operators p+ik and p−ik . Replacing the plasmon
and exciton operators in terms of the SPP operators from Equation (3) into Equation (4) and
performing extensive mathematical manipulation, we obtained the following expression as

Hk = ℏω+
k p+1k p1k + ℏω−

k p+2k p2k (5)

where ω+
k and ω−

k are the energy of SPPs for the upper and lower branches, respec-
tively. Note that coupling between photons and plasmon splits the SPP spectrum into two
branches. The SPP spectrum is given by

ω±
k =

1
2

[
(ck + ωp)±

√
(ck − ωp)

2 + 4g2
k

]
(6)

where we replaced ωk = ck. Finally, we obtained the expression for the expansion coeffi-
cients as

u11 =

√
g2

k

(ωp−ω+
k )

2
+g2

k ,

u21 =

√
(ωp−ω+

k )
2

(ωp−ω+
k )

2
+g2

k

u22 =

√
g2

k

(ωp−ω−
k )

2
+g2

k ,

u12 =

√
(ωp−ω−

k )
2

ωp−ω−
k )2+g2

k

(7)

We then calculated the density of states (DOS) for SPPs. Later in the paper, we discuss
how the DOS was used for the calculation of the SPP decay rates. When summation over
wavevectors was converted into the integration, we needed to use the idea of the DOS

∑
k
=
∫

Dk(εk)dεk,

Dk(εk) =
Ω

3π2 k2 dk
dεk

(8)
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where Ω is the volume of the PNH. Here Dk is called the DOS. The expression of the DOS
can be expressed in term of the form factor Zk as

D(εk) = D0(εk)Zk(εk) ,

D0(εk) =
Ω

3π2
ε2

k

(ℏc)3,

Zk(εk) = (ℏc) dk
dεk

(9)

where D0 is the DOS of photons in free space.
Inserting Equation (6) into Equation (9) and after some mathematical manipulation,

the expression of the form factor Zk could be found as

Zk(ω
±
k ) =

(
(ωp − ω±

k ) + |gk|2

(ωp − ω±
k )

2

)
. (10)

We found that the form factor has a very large value when the surface plasmon
frequency is the resonance with the SPP frequency, which is an interesting finding.

3. Dipole-Dipole Interactions

When the probe field falls on the PNH, induced dipoles are created in the QEs and
MNPs. The dipole of one QE interacts with the dipoles of other QEs. This is called
dipole-dipole interaction (DDI). Following reference [10], the DDI Hamiltonian can be
written as

HQE
DDI =

1
2

N

∑
i〉j

Jij pi.pj (11)

where Jij is the DDI coupling constant and is found as

Jij =
1

∈b∈0 r3
ij

(12)

where pi and pj are the induced dipole moments in the ith-QE and jth-QE, respectively. Here
rij is the distance between the ith and the jth QEs. In the mean-field approximation [10,44–49],
the DDI Hamiltonian can be rewritten as

HQE
DDI = ∑

i

piE
QE
DDI (13)

where EQE
DDI is called the DDI electric field and is written as

EQE
DDI =

〈
1
2 ∑

j 6=i

Jij pj

〉
. (14)

Here, the DDI field EQE
DDI is the average dipole electric field created by all QEs on

the ith-QE and that EDDI has the effect of the long-range DDI (i.e., r−3). The average in
EDDI has been evaluated in references [30–36] by using the method of Lorentz [49], The
expression of the DDI field is found as and is written as

EQE
DDI =

λQD〈pi〉
3×4π∈0∈b ,

〈
pi

〉
=

PQE

4πR3
QE

(15)

where λQD is the DDI constant and
〈

pi

〉
is the average polarization of the ith-QE. Here PQE

is the polarization of the QE and RQE is the radius of the quantum emitter.
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The probe electric field includes polarizations in the QE and MNP. They are denoted
as PQE and PMNP. Due to these polarizations, the MNP produces the SPP field ESPP and
the QE produces an electric field denoted as EQE. Solving Maxwell’s equations in the quasi-
static approximation [50,51], one can find the following expressions for polarizations as

PQE = 4π ∈0∈b R3
QEζQE

(
EP + ESPP

)

ςQE =
[

ǫq−ǫb

ǫq+2ǫb

]

PMNP = 4π ∈0∈b R3
MNPζMNP

(
EP + EQE

)
,

ςMNP =
[

ǫm−ǫb
ǫm+2ǫb

]
(16)

Here ǫm, ǫq, and ǫb are the dielectric constant of the MNS, QE and background material,
respectively. The electric fields produced by these polarizations were found as

ESPP = PMNP

4π∈0∈br3,

EQE =
PQE

4π∈0∈br3

(17)

Putting Equation (16) into Equation (17), we obtained

ESPP = ΠSPP(EP + EQE)

ΠSPP =
R3

MNPgl ζMNP

r3

EQE = ΠQE(EP + ESPP)

ΠQE =
R3

QEglζQE

r3

(18)

The constant gl is called the polarization parameter and it has values gl = 1 and gl = −2
for PMNP ‖ r and PMNP⊥r. Note that both electric fields depend on r−3. Putting Equation
(18) into Equation (14), we obtained the expression of the DDI as

EQE
DDI = Φ

QE
DDI EP,

Φ
QE
CDDI =

λQD gl ςMNP

3

Φ
QE
DDI = Φ

QE
CDDI + Φ

QE
ADDI

Φ
QE
ADDI = Φ

QE
CDDIΠSPP

(19)

Similarly, following the above method, we could also calculate the dipole-dipole
interaction between MNPs as

EMNP
DDI = ΦMNP

DDI EP

ΦMNP
CDDI =

λMNPgl ςMNP
3

ΦMNP
DDI = ΦMNP

CDDI + ΦMNP
ADDI

ΦMNP
ADDI = ΦMNP

CDDIΠQE

(20)

Note that the Π-term and the Φ-term depend on r−3. The higher-order terms r−6 were
neglected because they are weak.

4. Linear and Nonlinear Plasmonics and Density Matrix Method

For this section, we calculated the plasmonic Kerr intensity. We considered that QD
has four energy levels. They are denoted as |1>, |2>, |3> and |4>. The energy difference
between levels |i> and |j> is expressed as εij. To study the Kerr nonlinearity, we applied
the probe field between |1〉 and |2〉. A schematic diagram of the four-level quantum emitter
is shown in Figure 2.
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|1⟩ ↔|2⟩ |2⟩ ↔ |3⟩ |3⟩ ↔ |4⟩
ொܲா

(1) (2) (3), , ,

(1) (1)
0

(2) (2)
0

(3) (3)
0

, ,

, , , , .χொா(ଵ) χொா(ଶ) χொா(ଷ)

ρ

21 212 h.c.  μଶଵ |1⟩ ↔ |2⟩ρଶଵ ρ |1⟩ ↔ |2⟩
(1) (2) (3)

21 21 21 21, , ,

(1) (2) (3)
21 21 21 212 , , , h.c.  

Figure 2. A schematic diagram of a four-level quantum dots (QDs) is plotted. Energy levels are
denoted as |1>, |2>, |3> and |4>. The probe field and SPP field are applied in the transition |1〉 ↔|2〉.
The DDI-MNP and DDI-QD fields are acting in the transitions |2〉 ↔ |3〉 and |3〉 ↔|4〉, respectively.

Following the method of reference [52,53], the expression of the polarization was
found as PQE

PQE

(
ωp

)
= P

(1)
QE

(
ωp

)
+ P

(2)
QE

(
ωp, ωp

)
+ P

(3)
QE

(
ωp, ωp, ωp

)
(21)

P
(1)
QE

(
ωp

)
=∈0 χ

(1)
QE

(
ωp

)
Ep

(
ωp

)

P
(2)
QE

(
ωp, ωp

)
=∈0 χ

(2)
QE

(
ωp, ωp

)
Ep

(
ωp

)
Ep

(
ωp

)

P
(3)
QE

(
ωp, ωp, ωp

)
=∈0 χ

(3)
QE

(
ωp, ωp, ωp

)
Ep

(
ωp

)
Ep

(
ωp

)
Ep

(
ωp

)
.

(22)

Here χ
(1)
QE, χ(2)QE, and χ

(3)
QE are the first, second the third-order expressions of the sus-

ceptibility. We know that the first-order susceptibility is responsible for the one-photon
phenomena, whereas second-order susceptibility is responsible for the two-photon phe-
nomena. Finally, the third-order susceptibility is responsible for the Kerr nonlinearity.

Fowling the method of references [52–55], the polarization of the QE can also be
expressed in terms of the quantum density matrix operator (ρ) as follows

PQE

(
ωp

)
= 2µ21

[
ρ21
(
ωp

)
+ h.c.

]
(23)

where µ21 is the matrix elements of the dipole moment between transition |1〉 ↔|2〉 and
ρ21 is the nonlinear density matrix operator (ρ) between transition |1〉 ↔|2〉. Expressing
the nonlinear density matrix as follows

ρ21 = ρ
(1)
21

(
ωp

)
+ ρ

(2)
21

(
ωp, ωp

)
+ ρ

(3)
21

(
ωp, ωp, ωp

)
. (24)

Putting Equation (24) into Equation (23), we obtained

PQE

(
ωp

)
= 2µ21

[
ρ
(1)
21

(
ωp

)
+ ρ

(2)
21

(
ωp, ωp

)
+ ρ

(3)
21

(
ωp, ωp, ωp

)
+ h.c.

]
. (25)
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We compared Equations (21) and (25) and we found the relation between the suscepti-
bility and the density matrix elements to be as follows

χ(1)(ωp

)
=

2µ21ρ
(1)
21 (ωp)+hc

∈0Ep(ωp)

χ(2)(ωp, ωp

)
=

2µ21ρ
(2)
21 (ωp ,ωp)+hc

∈0Ep(ωp)Ep(ωp)

χ(3)(ωp, ωp, ωp

)
=

2µ21ρ
(3)
21 (ωp ,ωp ,ωp)+hc

∈0Ep(ωp)Ep(ωp)Ep(ωp)

(26)

The above expression can be expressed in terms of the Rabi frequency as

χ(1)(ωp

)
=

2µ2
21ρ

(1)
21 (ωp)+hc

∈0ℏΩp ,

χ(2)(ωp, ωp

)
=

2µ3
21ρ

(2)
21 (ωp ,ωp)+hc

∈0ℏ
2Ω2

p
,

χ(3)(ωp, ωp, ωp

)
=

2µ4
21ρ

(3)
21 (ωp ,ωp ,ωp)+hc

∈0ℏ
3Ω3

p

(27)

Following the method reference [52], the intensity of the fluorescence (light emission
intensity) from the QE could be calculated in terms of the susceptibility as follows

I1ph =

[
ωp

2c∈0
√∈b

∣∣∣χ(1)
pp

(
ωp

)
Ep

(
ωp

)∣∣∣
2
]

I2ph =

[
ω2

p

2c2∈0
√∈b

∣∣∣χ(1)
pp

(
ωp, ωp

)
Ep

(
ωp

)
Ep

(
ωp

)∣∣∣
2
]

Ikerr =

[
ω3

p

2c3∈0
√∈b

∣∣∣χ(1)
pp

(
ωp, ωp, ωp

)
Ep

(
ωp

)
Ep

(
ωp

)
Ep

(
ωp

)∣∣∣
2
]

.

(28)

The expression of the intensity of the fluorescence is given in Equation (28) can be ex-
pressed in terms of the density matrix elements by putting Equation (26) into Equation (28)
as follows

I1ph =
4ωpωpµ2

21
2c∈0∈2

0
√∈b

∣∣∣ρ(1)21

(
ωp

)∣∣∣
2

I2ph =
4ωpωpµ2

21
2c∈0∈2

0
√∈b

∣∣∣ρ(2)21

(
ωp, ωp

)∣∣∣
2

Ikerr =
4ωpωpµ2

21
2c∈0∈2

0
√∈b

∣∣∣ρ(3)21

(
ωp, ωp, ωp

)∣∣∣
2

(29)

Note that the susceptibility (Equation (27)) and the fluorescence (Equation (29)) depend
on the density matrix elements. Next using the quantum density matrix method, we

evaluated the density matrix elements ρ
(1)
21 , ρ

(2)
21 , and ρ

(3)
21 for the first, second, and third-

order in the probe field, respectively.
We know that the probe electric field can be denoted in terms of the Rabi frequency

ΩP = µ21EP/h acting between transition |1〉 ↔|2〉. We consider that the SPP field repre-
sented in term of the SPP coupling constant ΠSPP is acting between transition |1〉 ↔|2〉.
Similarly, the DDI-MNP field ΦMNP

DDI is acting between transition |2〉 ↔|3〉 and the DDI-QD
field Φ

QE
DDI is acting between transition |3〉 ↔|4〉. To make the calculation simple, we

considered ΦDDI = Φ
QE
DDI = ΦMNP

DDI . The physics of the problem do not change due to
this approximation.

Three electric fields are falling on the QE: ET = EP +EMNP
DDI +EQE

DDI . These filed interact
with the exciton of the QE. Using the dipole and rotating wave approximation [52–55], the
interaction Hamiltonian between QE was found as

Hin = ℏΩPσ21 + ℏΩSPPσ21 + ℏΩMNP
DDI σ23 + ℏΩ

QE
DDIσ43 + h.c. (30)
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where
ΩP = µ21EP

ℏ
, ΩSPP = ΩPΠSPP,

ΩMNP
DDI = ΩPΦMNP

DDI , Ω
QE
DDI = ΩPΦ

QE
DDI

(31)

Here h.c. stands for the Hermitian conjugate. Here σij = |i><j| is the exciton creation
operators for | i〉 ↔|j〉. Parameter Ωp is called the Rabi frequency. The first term in Hint

is the exciton-probe field interaction. The second term is exciton-SPP field interaction.
The third term is exciton-DDI-MNP interaction. The last term is exciton-DDI-QE field
interaction.

With the help of Equation (30) and following the method of references [53–55] equa-
tions of motion for density matrix elements were found as follows

dρ11
dt = 2γ23ρ22 − iΩP(ρ12 − ρ21)

dρ22
dt = −2γ21ρ22 + iΩP(ρ12 − ρ21) + iΠSPP(ρ32 − ρ23)

dρ33
dt = 2γ31ρ22 + iΠSPP(ρ23 − ρ32) + iΦDDI(ρ43 − ρ34)∗

dρ12
dt = −d21ρ12 − iΠSPPρ13 + i(ρ22 − ρ11)ΩP

dρ13
dt = −d13ρ13 − iρ12ΠSPP + iρ23ΩP − iρ14ΦDDI

dρ23
dt = −d23ρ23 + i(ρ33 − ρ22)ΠSPP + iρ13ΩP − iρ24ΦDDI

dρ14
dt = −d14ρ14 − iρ13ΦDDI + iρ24ΩP

dρ24
dt = −d24ρ24 + iρ34ΠSPP − iρ23ΦDDI + iρ13ΩP

dρ34
dt = −d34ρ34 + iρ24ΠSPP + iΦDDI(ρ44 − ρ33)

(32)

where the parameters appearing in Equation (32) were found as

d21 = δ21 + iγ21, d23 = δ23 + iγ23, d34 = δ34 + iγ43,

d41 = δ41 + iγ41, d42 = δ42 + iγ42, d31 = δ31 + iγ31

δ21 = ω21 − ωp, δ34 = ω34 − ωd, δ23 = ω23 − ωs

δ42 = δ23 + δ34, δ14 = δ21 − δ23 − δ34, δ13 = δ21 − δ23

(33)

Here δij is called the field detuning. Physical quantity γij is the exciton decay rates.
We solved Equation (32) in a steady state. We know that density matrix elements

satisfy the condition ρ11 + ρ22 + ρ33 + ρ44 = 0. We tried to find the analytical expression of
the density matrix elements in the steady-state. We considered that initially the ground

state is filled and all excited states are empty: ρ
(0)
11 = 1 and ρ

(0)
22 + ρ

(0)
33 + ρ

(0)
44 = 0.

In the first order in the probe field, ΩP, we solved Equation (32) using the above initial
condition. After some mathematical manipulations, we obtained the following analytical

expression of one-photon density matrix element ρ
(1)
12 , as

ρ
(1)
12 = − iΩp

(
d13d14 − Φ2

DDI

)

d21
(
d13d14 − Φ2

DDI

)
+ d14Π2

SPP

. (34)

The second-order two-photon density matrix element ρ
(2)
12 was calculated in the sec-

ond order in the probe field, Ω2
P by solving Equation (32). After some mathematical

manipulations, we obtained the following analytical expression of the element ρ
(2)
12 ,
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ρ
(2)
12 = +

ρ
(1)
23 ΠSPPΩpd14 − ρ

(1)
24 ΠSPPΩpΦDDI

d21
(
d13d14 − d21Φ2

DDI

)
+ Π2

SPPd14
+

i
(

ρ
(1)
22 − ρ

(1)
11

)
Ωp

(
d13d14 − d21Φ2

DDI

)

d21
(
d13d14 − d21Φ2

DDI

)
+ Π2

SPPd14
(35)

ρ
(1)
24 = − iρ

(1)
23 ΦDDI d34

d24d34+Π2
SPP

,

ρ
(1)
24 = − iρ

(1)
23 ΦDDI d34

d24d34+Π2
SPP

,

ρ
(1)
22 =

2ΠSPPImα23
2γ21+4ΠSPPImα23

ρ
(1)
23 =

+iΠSPP(d24d34+Π2
SPP)(ρ

(1)
33 −ρ

(1)
22 )

d23(d24d34+Π2
SPP)+Φ2

DDI d34

,

α23 =
+iΠSPP(d24d34+Π2

SPP)
d23(d24d34+Π2

SPP)+Φ2
DDI d34

(36)

The third order Kerr density matrix element ρ
(3)
12 was calculated in the third order in the

probe field E3
P and E3

SPP by solving Equation (32). After some mathematical manipulations,

we obtained the following analytical expression of the element ρ
(3)
12 as

ρ
(3)
12 =

ρ
(2)
23 ΩpΠSPPd14 + iρ

(2)
24 ΩpΦDDIΛSPP

d21
(
d13d14 − d21Φ2

DDI

)
+ Π2

SPPd14
+

i(ρ
(2)
22 − ρ

(2)
11 )Ωp

(
d13d14 − d21Π2

SPP

)

d21
(
d13d14 − d21Φ2

DDI

)
+ Π2

SPPd14
(37)

ρ
(1)
13 = −

(
d14ΦDDI Ωp

d21(d13d14−Π2
SPP)+d14Φ2

DDI

)
,

ρ
(2)
24 = − iρ

(2)
23 ΠSPPd34

d24d34+Φ2
DDI

ρ
(2)
23 =

(
iρ

(2)
33 ΦDDI−iρ

(2)
22 ΦDDI+iρ

(1)
13 ΩP

)
(d24d34+Φ2

DDI)

(d24d34+Φ2
DDI)+Π2

SPPd34

,

ρ
(2)
22 =

ΩpIm
(

ρ
(1)
12

)

γ21

(38)

Note that the ρ
(1)
12 , ρ

(2)
12 , and ρ

(3)
12 depend on the SPP and DDI couplings.

We then calculated the linear fluorescence intensity due to the emission of one photon.
Inserting Equation (34) into Equation (29) we obtained linear fluorescence intensity as

I1ph =
4ωpωpµ2

21

2c ∈0∈2
0
√∈b

∣∣∣∣∣
iΩp

(
d13d14 − Φ2

DDI

)

d21
(
d13d14 − Φ2

DDI

)
+ d14Π2

SPP

∣∣∣∣∣

2

. (39)

Similarly, we calculated the nonlinear fluorescence intensity due to the emission of
two photons. Inserting Equation (35) into Equation (29) we obtained the two-photon
fluorescence intensity as

I2ph =
4ωpωpµ2

21
2c∈0∈2

0
√∈b

∣∣∣ρ(2)A

(
ωp, ωp

)
+ ρ

(2)
B

(
ωp, ωp

)∣∣∣
2

ρ
(2)
A

(
ωp, ωp

)
= +

ρ
(1)
23 ΠSPPΩpd14−ρ

(1)
24 ΠSPPΩpΦDDI

d21(d13d14−d21Φ2
DDI)+Π2

SPPd14

ρ
(2)
B

(
ωp, ωp

)
=

i
(

ρ
(1)
22 −ρ

(1)
11

)
Ωp(d13d14−d21Φ2

DDI)
d21(d13d14−d21Φ2

DDI)+Π2
SPPd14

.

(40)
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Finally, we evaluated the nonlinear fluorescence intensity due to the emission of three
photons. Inserting Equation (37) into Equation (29), we obtained three-photon fluorescence
intensity (i.e., Kerr intensity) as

Ikerr = I0

∣∣∣∣∣

(
ρ
(3)
A +ρ

(3)
A

)

d21(d13d14−d21Λ2
DDI)+Λ2

SPPd14

∣∣∣∣∣

2

ρ
(3)
A = ρ

(2)
23 ΩpΠSPPd14 + iρ

(2)
24 ΩpΦDDIΠSPP,

I0 =
4ω21ω21µ2

21
2c∈0∈2

0
√∈b

ρ
(3)
B = i(ρ

(2)
22 − ρ

(2)
11 )ΩP

(
d13d14 − d21Π2

SPP

)
.

(41)

We found that the one-photon, two-photon, and three-photon fluorescence intensity
depends on the SPP coupling and DDI couplings.

5. Exciton Decay Rates Due to Dipole-Dipole Interaction

The radiative decay rates γij appear in Equations (27)–(35). The radiative decay rate
γ21 is due to the spontaneous emission of exciton transition from |2〉 to |1〉. The decay rate
γ23 is due to the exciton decay from |2〉 to |3〉 because of the exciton-DDI-MNP interaction.
Similarly, the decay rate γ34 is also due to the exciton decay from |3〉 to |4〉 because of the
exciton-DDI-QD interaction.

The SPP dispersion relation ω±
k was evaluated in Equation (6) for the upper (+) and

lower (−) SPP spectrum. The lower mode of the SPP is responsible for the enhancement of
the SPP field. Hence, we consider the lower branch for the decay calculation. The spectrum
of the lower branch was denoted as ωs

k = ω−
k . Henceforth, we take out superscript (−) for

all terms.
The exciton interaction Hamiltonian with the probe, SPP, and DDI fields can be written

in the dipole and rotating wave approximation as

Hint = H0 + Hex−PP + Hex−SPP + HMNP
ex−DDI + HQD

ex−DDI (42)

where the first term is the Hamiltonian for the noninteracting excitons and SPPs. The
second term is due to the spontaneous emission coupling term due to the exciton-probe
field interaction. The third term is due to the exciton-SPP field interaction. Finally, the
fourth and fifth terms are due to the exciton-DDI field interaction. Their expressions were
found as

H0 = ∑
i=1,3

ℏωi1σi1 + ∑
k
ℏωs

k p†
k pk

Hex−PP = ∑
k

VPP

(
pkσ†

21 + p†
k σ21

)
,

Hex−SPP = ∑
k

VSPP

(
pkσ†

21 + p†
k σ21

)

HMNP
ex−DDI = ∑

k
VMNP

DDI

(
pkσ†

23 + p†
k σ23

)
,

HQE
ex−DDI = ∑

k
VQE

DDI

(
pkσ†

34 + p†
k σ34

)

(43)

where σij = |i><j| is the exciton creation operator for transition | i〉 ↔|j〉 where i and j

stand for 1, 2, 3, and 4. Meanwhile, the operators p†
nm,kz

pnm,kz
are the photon creation and
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annihilation operators, respectively. The coupling constant appearing in Equation (43) was
found as

VPP = i

(
µ2

21ℏωs
k

2∈0∈bVQE

)1/2

VSPP = i

(
µ2

21ℏωs
k

2∈0∈bVQE

)1/2[
ΠSPP

]

VMNP
DDI = i

(
µ2

23ℏωs
k

2∈0∈bVQD

)1/2[
ΦMNP

DDI

] ,

VQE
DDI = i

(
µ2

34ℏωs
k

2∈0∈bVQE

)1/2[
Π

QE
DDI

]

(44)

where VQE is the volume of the QE.
The Golden rule method of the quantum mechanical perturbation theory was used to

calculate the decay rates. It is written as

Γij = 2πℏ∑
k

∫
dωs

kDk(ω
s
k)|Vint(ω

s
k)|

2δ
(
ωs

k − εij

)
(45)

where Vint is the interaction term given in Equation (44) and Dk is the DOS which has been
calculated in Equation (8).

Putting Equations (44) and (8) into Equation (45) and doing extensive mathematical
manipulations, we obtained the decay rates for exciton as

ΓP = γ0Zk(ω21) = γ0

(
(ωp − ω21) + |gk|2

(ωp − ω21)
2

)
, γ0 =

(
ℏ3µ2

21ω3
21

π ∈0∈b ℏ
4c3

)
(46)

ΓSPP = γ0
∣∣ΠSPP

∣∣2Zk(ω21)

ΓMNP
DDI = γ0

∣∣ΛMNP
DDI

∣∣Zk(ω23)

Γ
QD
DDI = γ0

∣∣∣ΛQD
DDI

∣∣∣
2
Zk(ω34)

(47)

Here γ0 is the radiative decay rate when QD is in the vacuum. Please note the
following relationship γ21 = ΓP + ΓSPP, γ23 = ΓMNP

DDI and γ34 = Γ
QE
DDI . Note that the

radiative and nonradiative decay rates can have large values when exciton energies ε12, ε23,
and ε34 are close to εnm. This is an interesting finding of the paper.

6. Dressed States: Exciton-DDI Coupling

We show in the next section that in the strong coupling between the exciton and DDI
polaritons, the single peak in the Kerr absorption splits into two peaks. This phenomenon
can be easily explained by the physics of the dressed state. We calculated the energies and
eigenfunctions for exciton-DDI polariton Hamiltonian in the strong coupling. Note that
the DDI field is acting between states |2> and |3>. For simplicity we denoted |3> and |2>
as |a> and |b>, respectively. Here |a> and |b> are the ground state and the excited state
of the exciton.

The polariton energy of the kth mode was denoted as εk = εd and it was considered
that the energy of the DDI polariton is very close to exciton energy i.e., εk ∼ εba. This
means that only one mode of the polariton was acting with an exciton and we denoted
εk = εDDI . The interaction Hamiltonian between exciton and the DDI polaritons was
written as in the dipole and rotating wave approximation can be written as

HT = εaσaa + εbσbb + εd p+k pk − ℏΩDDI

(
σ+

ba pk + σ−
ba p+k

)
. (48)

Here p+k and pk are the DDI polariton creation and annihilation operators, respectively.
Here |a >< a| and |b >< b| are called the number operators for states |a> and |b>, respec-
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tively. The first two terms are the noninteracting Hamilton for the exciton and kth mode
DDI polariton. The last term is the exciton-polariton interaction Hamiltonian. The constant
ΩDDI is called the Rabi frequency for the DDI field.

We then calculated the eigenvalues and eigenfunctions of the total Hamiltonian as

HT |ϕk〉 = εT |ϕk〉 (49)

where are εT and |ϕk〉 are the eigenvalue and eigenket of the total Hamiltonian Hint. We
considered two states which have the same number of particles, i.e., nk. Therefore, we
choose |a, nk〉 and |b, nk − 1〉 states. The first has nk polaritons and zero excitons and the
second has one exciton and (nk − 1) polaritons. Note that both states form |a, nk〉 and
|b, nk − 1〉 form an orthonormal set and they satisfy the orthonormal conditions as follows

〈a, nk|a, nk〉 = 1, 〈b, nk − 1|b, nk − 1〉 = 1, 〈a, nk|b, nk − 1〉 = 0. (50)

The eigenket |ϕk〉 can be expressed as a linear combination of the orthonormal set
|a, nk〉 and |b, nk − 1〉 as

|ϕk〉 = αa|a, nk〉+ αb|b, nk − 1〉 (51)

where αa and αb are expansion constants. Inserting Equation (51) into Equation (49)
and using Equation (50), we obtained the following equations after some mathematical
manipulations as

( {
εT − (εa + εnk

)
} (

ℏΩa
√

nk

)

−
(
ℏΩa

√
nk

)
αa

{
εT − (εb + εnk−1)

}
)(

αa

αb

)
= 0. (52)

The determinant of the above equation gives the eigenvalues of energy εT as

∣∣∣∣
{

εT − (εa + εnk
)
} (

ℏΩa
√

nk

)

−
(
ℏΩa

√
nk

)
αa

{
εT − (εb + εnk−1)

}
∣∣∣∣ = 0. (53)

The above expression reduces to the following equation as

ε±T =

(
εb + εnk−1 + εb + εnk

2

)
± 1

2

√
(εd − εba)

2 + 4nkℏ
2|Ωddi|2. (54)

The ε+T and ε−T are eigenvalues for eigenkets
∣∣ϕ+

T

〉
and

∣∣ϕ−
T

〉
and they are called dressed

states. Putting, εnk
= nkεd and εba = εb − εa into the above expression, we obtained

ε±T =

(
εba

2
+

{
nk −

1
2

}
εd

)
± 1

2

√
(εd − εba)

2 + 4nkℏ
2|Ωddi|2. (55)

We then calculated the eigenkets
∣∣ϕ+

T

〉
and

∣∣ϕ−
T

〉
from Equation (48) for eigenvalues

ε+T and ε−T . The expansion coefficients α±a and α±b are provided in Equations (56) and (57).
Using orthonormalization properties given in Equation (50) and after some mathematical
manipulation, we obtained

α±b =

( {
ε±T − (εa + εnk

)
}2

{
ε±T − (εa + εnk

)
}2

+
(
ℏΩddi

√
nk

)2

)2

(56)

(
α±a
)2

=

(
ℏΩddi

√
nk{

ε±T − (εa + εnk
)
}2

+
(
ℏΩddi

√
nk

)2

)1/2

. (57)
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In most of the experiments, only one polariton was required to excite transition from
ground state |a〉 to the excited state |b〉. Therefore, we added nk = 1 in the above equations.
For this case, we obtained the following expression for the eigenvalues

ε±T =

(
δba

2
+ εba

)
± 1

2

√
(δba)

2 + 4ℏ2|Ωddi|2 (58)

Here δba = εba − εd is called the detuning parameter in quantum optics. When the DDI
polariton energy is in resonance with the exciton transition energy (i.e., δba = εba − εd = 0),
the above expression reduces to a simple form

ε±T = εab ± ℏ
2|Ωddi|2. (59)

We found that when the polariton energy is in resonance with the exciton energy, the
excited state splits into two dressed states

∣∣ϕ+
T

〉
and

∣∣ϕ−
T

〉
. The energy difference between

the two dressed state was proportional to the DDI coupling Ωddi = ΩPΦddi.

7. Results and Discussion

In this section, we discuss the numerical simulations performed on the SPP dispersion
relation, DOS of SPPs, and Kerr absorption intensity. The effect of the SPP and DDI cou-
plings on the Kerr absorption intensity are also investigated. In our numerical simulations,
we measured all physical qualities related to energy (frequency) are measured with respect
to the decay rate γ2. Some of the examples for the energy (frequency) physical quantities
are Rabi frequency (ΩP), exciton frequencies, probe detuning, and decay rates. In our
numerical simulations, we used γ23/γ21 = γ34/γ21=1 and ΩP /γ21 = 1. The probe detuning
(δp) and DDI detuning (δd) were measured with respect to the decay rate γ21.

We first calculated the dispersion relation for the SPPs and the density of states
for the SPPs. Here the dispersion relation means the relation between the energy and
wavevector of polaritons. The dispersion relation is calculated in Equation (6) and the DOS
is calculated in Equation (9). The results are presented in Figure 3a,b. The normalized SPP
energy (ω±

k /ωp) is plotted in Figure 3a as a function of a normalized wave vector (k/kp).
One can see that the SPP dispersion relation has a bandgap. The upper band does not
participate in the enhancements of the Kerr intensity because its properties are similar to
photons. On the other hand, the lower band plays an important role in plasmonics. The
behavior of this band is a mixture of plasmons and photons (i.e., SPPs). These materials
can be called the polaritonic bandgap materials, since they have a polaritonic bandgap in
their band structure. They are similar to photonic bandgap materials that have a bandgap
in their photonic dispersion relations.

The results for DOS are plotted in Figure 3b as a function of the normalized energy
(ω±

k /ωp). We found that the DOS has large values near the band edges. This means that
a large number of SPPs are located near the band edges. When a QE lies near the MNP,
excitons of the QE interact with the SPPs of MNPs. However, if the energy of the excitons
lies near the band edges, there will be huge exciton-SPP coupling since there are the huge
number of polaritons are located near the band edges.

Next, we studied the effect of the SPP field on the Kerr absorption intensity (Ikerr/I0).
The results are plotted in Figure 4a as a function of normalized detuning (δp/γ21 = δ21/γ21)
for different values of the SPP coupling (ΠSPP). For Figure 4a, we have considered that DDI
coupling is absent. The solid, dash, and dash-dotted lines were plotted for the detuning
parameter ΠSPP = 0.1, ΠSPP = 0.7, and ΠSPP = 1.5, respectively. Note that the SPP
coupling is unitless. Other parameters are taken as ΦDDI = 0.0. Her the DDI coupling is
also unitless. Note that at zero detuning (i.e., δp/γ21 = 0), the Kerr intensity has a peak.
The zero detuning means that the probe field frequency is in resonance with the exciton
frequency ω21 (i.e., ωp = ω21).
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Figure 3. (a) (left): The band structure of the SPPs is plotted as a function of the normalized energy and wavevectors.
(b) (right): The DOS of the SPPs is plotted as a function of the normalized energy.߱ଶଵ  ߱ = ߱ଶଵ)
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Figure 4. (a) (left): The Kerr absorption intensity (Ikerr/I0) is plotted as a function of the normalized probe detuning
δp = δ21. The solid, dash, and dash-dotted lines are plotted for ΠSPP = 0.1, ΠSPP = 0.7, and ΠSPP = 0.7, respectively.
(b) (right): The Kerr absorption intensity (Ikerr/I0) is plotted as a function of the SPP coupling ΠSPP (normalized unit) and
the probe detuning (normalized unit).

We found in Figure 4a that as the SPP coupling increases, the Kerr intensity also
increases. See the dotted and dash-dotted lines in the figure. This means that there is a large
enhancement in the Kerr intensity due to the presence of SPPs. The enhancement occurred
because the SPP coupling appears in the numerator of the Kerr intensity expression. See
Equation (41). Further, we predicted that the enhancement has smaller values when the
probe field is not in resonance with the exciton energy.

We also plotted a three-dimensional figure for the Kerr intensity (Ikerr/I0) as a function
of the SPP coupling (ΠSPP) and the probe detuning

(
δp/γ21

)
. The results are shown in

Figure 4b. Note that as the SPP coupling increases, the Kerr effect also increases. There is a
huge enhancement in the Kerr intensity due to the nonreality of the system.

The enhancement in both Figure 4a,b in the Kerr absorption intensity can be explained
as follows. When the SPP field (i.e., MNS) is absent (i.e., ΠSPP = 0 ), the Kerr intensity is
due to the contribution from three probe photons. However, the Kerr intensity has an extra
contribution due to the SSP coupling. The extra contribution to the Kerr intensity is due to
the three polaritons produced by the SPP field. The SPP contributions to the Kerr intensity
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are many times larger than the probe photons. In summary, we can say that the present
finding can be used to fabricate nanosensor devices for nanotechnology and nanomedical
applications by measuring the enhancement of the Kerr intensity.

Next, we investigated the effect of the DDI coupling (ΦDDI) on the Kerr intensity
(Ikerr/I0). The results are plotted in Figure 5a as a function of the probe detuning

(
δp/γ21

)
.

The solid, dash, and dash-dotted lines were plotted for the detuning parameter ΦDDI = 0.1,
ΦDDI = 0.5, and ΦDDI = 2.0 respectively. The SPP coupling parameter was taken as
ΠSPP = 0.1. The SPP and DDI coupling parameters were unitless. One can see from the
figure that for the DDI coupling ΦDDI = 0.5, the Kerr intensity was enhanced. When the
DDI coupling was further increased to ΦDDI = 2.0, the Kerr intensity decreased, and one
peak split into two peaks.
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Figure 5. (a) (left): The Kerr intensity (Ikerr/I0) plotted as a function of the probe detuning
(
δp = δ21

)
. The solid, dash and

dash-dotted lines are plotted for the detuning parameter ΦDDI = 0.1, ΦDDI = 0.5, and ΦDDI = 2.0, respectively. (b) (right):
The Kerr intensity (Ikerr/I0) plotted as a function of the probe detuning

(
δp = δ21

)
and the DDI coupling ΦDDI .

To make the effect of the DDI coupling on the Kerr intensity clearer, we plotted a
three-dimensional figure of the Ker nonlinearity in Figure 5b. Note that when the DDI
coupling is in the weak coupling limit, the Kerr intensity increases with the DDI coupling.
It reaches a maximum value at a certain value of the DDI (i.e., ΦDDI = 0.4). When the DDI
coupling increases further, the peak of the Kerr intensity splits into two-peaks. In summary,
we can say that when ΦDDI < 1.

The Kerr intensity has one peak. On the other hand, when ΦDDI > 1, the Kerr
intensity splits from one peak to two peaks. The condition ΦDDI < 1 is called the weak
coupling limit, whereas the condition ΦDDI > 1 is called the strong coupling limit. This is
an interesting finding of the paper.

We then defined the weak and strong DDI coupling limits. In the literature, the
weak coupling limit is defined when the Rabi frequency of the DDI electric field (ΩDDI)
is smaller than the decay rate (i.e., ΩDDI < γ21). Here the DDI Rabi frequency is defined
as ΩDDI = ΦDDIΩP. In this case, the DDI coupling ΦDDI is in the weak coupling limit.
On the other hand, the strong coupling limits are defined when the DDI Rabi frequency
is larger than the decay rate (ΩDDI < γ21). In this case, the DDI coupling is in the strong
coupling limit. The above definitions are the approximate definition and are not applied in
all problems. Note that in Figure 5b, the DDI coupling approximately satisfies the weak
and strong coupling limit criteria for the enhancement and the splitting of the peak.

The splitting from one peak to two peaks due to the strong DDI coupling limit is
explained by using the physics of dressed states, as discussed in Section 5. In the absence
of the DDI coupling, the Kerr intensity is due to the three photons emission from the
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transition |2〉 ↔|1〉. On the other hand, in the strong DDI coupling limit the excited state
|2〉 ↔|3〉 splits into two dressed states |2−〉 ↔|3〉 and |2+〉 ↔|3〉. Therefore, the Kerr
intensity emissions have two peaks due to transitions |2−〉 ↔|1〉 and |2+〉 ↔|1〉. We have
also found that the distance between the peaks increases as the DDI coupling increases.
This is because the energy splitting is directly related to the DDI coupling. See Equation
(59) for further details. In summary, we can say that the splitting of one peak (ON) into
two peaks (OFF) can be used to fabricate nanoswitching devices for nanotechnology and
nanomedical applications.

Finally, we provide comments on the giant nonlinearity found due to the Kerr effect
in the present work. We have shown that there is a huge (giant) enhancement in Kerr
nonlinearity due to the presence of SPPs. We have also found the due to the weak DDI
coupling, there is also an enhancement in the Kerr nonlinearity. The giant Kerr nonlinearity
found in plasmonic nanohybrids is of great importance in the context of quantum informa-
tion theory and its applications. In particular, the photon/phonon blockade can appear in
systems involving high Kerr-type nonlinearities [56,57]. Moreover, such systems can be
applied in the maximally entangled state’s generation [58] and as the source of quantum
steering [59]. Quite recently, the model involving Kerr nonlinearities was considered in the
context of the PT-symmetry breaking [60]. The present study can also be used for optical
pumping [61] and photon transparency [62].

8. Conclusions

A theory of the Kerr nonlinear tensity was developed by using the many-body quan-
tum mechanical density matrix method for plasmonic nanohybrids. We showed that the
Kerr intensity enhances in the weak dipole-dipole coupling limits. On the other hand,
in the strong dipole-dipole coupling limit, the single peak in the Kerr intensity splits
into two peaks. Further, we found that the Kerr nonlinearity is also enhanced due to
the SPP coupling. Next, we determined the spontaneous decay rates are enhanced due
to the dipole-dipole coupling. The enhancement of the Kerr intensity due to the sur-
face plasmon polaritons can be used to fabricate nanosensors. The splitting of one peak
(ON) two peaks (OFF) can be used to fabricate the nanoswitches for nanotechnology and
nanomedical applications.
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