
Recent 
Developments of 
Nanofluids

Rahmat Ellahi

www.mdpi.com/journal/applsci

Edited by

Printed Edition of the Special Issue Published in Applied Sciences

applied sciences



Recent Developments of Nanofluids

Special Issue Editor
Rahmat Ellahi

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade



Special Issue Editor

Rahmat Ellahi

University Islamabad (IIUI)

Pakistan

Editorial Office

MDPI

St. Alban-Anlage 66

Basel, Switzerland

This edition is a reprint of the Special Issue published online in the open access journal Applied

Sciences (ISSN 2076-3417) from 2016–2018 (available at: http://www.mdpi.com/journal/applsci/

special issues/nanofluids).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, F.M.; Lastname, F.M. Article title. Journal Name Year, Article number, page range.

First Edition 2018

ISBN 978-3-03842-833-6 (Pbk)

ISBN 978-3-03842-834-3 (PDF)

Articles in this volume are Open Access and distributed under the Creative Commons Attribution

(CC BY) license, which allows users to download, copy and build upon published articles even

for commercial purposes, as long as the author and publisher are properly credited, which ensures

maximum dissemination and a wider impact of our publications. The book taken as a whole is c© 2018

MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons

license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).



Table of Contents

About the Special Issue Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Preface to ”Recent Developments of Nanofluids” . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Tasawar Hayat, Tehseen Abbas, Muhammad Ayub, Taseer Muhammad and Ahmed Alsaedi

On Squeezed Flow of Jeffrey Nanofluid between Two Parallel Disks
doi:10.3390/app6110346 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Waris Khan, Taza Gul, Muhammad Idrees, Saeed Islam, Ilyas Khan and L.C.C. Dennis

Thin Film Williamson Nanofluid Flow with Varying Viscosity and Thermal Conductivity on
a Time-Dependent Stretching Sheet
doi:10.3390/app6110334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Sajid Hussain, Asim Aziz, Taha Aziz and Chaudry Masood Khalique

Slip Flow and Heat Transfer of Nanofluids over a Porous Plate Embedded in a Porous
Medium with Temperature Dependent Viscosity and Thermal Conductivity
doi:10.3390/app6120376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Constantin Fetecau, Dumitru Vieru and Waqas Ali Azhar

Natural Convection Flow of Fractional Nanofluids Over an Isothermal Vertical Plate with
Thermal Radiation
doi:10.3390/app7030247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Noor Saeed Khan, Taza Gul, Saeed Islam, Ilyas Khan, Aisha M. Alqahtani and

Ali Saleh Alshomrani

Magnetohydrodynamic Nanoliquid Thin Film Sprayed on a Stretching Cylinder with Heat
Transfer
doi:10.3390/app7030271 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Liaqat Ali, Saeed Islam, Taza Gul, Ilyas Khan, L. C. C. Dennis, Waris Khan and

Aurangzeb Khan

The Brownian and Thermophoretic Analysis of the Non-Newtonian Williamson Fluid Flow
of Thin Film in a Porous Space over an Unstable Stretching Surface
doi:10.3390/app7040404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Ningbo Zhao and Zhiming Li

Viscosity Prediction of Different Ethylene Glycol/Water Based Nanofluids Using a RBF
Neural Network
doi:10.3390/app7040409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Saman Rashidi, Javad Aolfazli Esfahani and Rahmat Ellahi

Convective Heat Transfer and Particle Motion in an Obstructed Duct with Two Side by Side
Obstacles by Means of DPM Model
doi:10.3390/app7040431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Rahmat Ellahi

Special Issue on Recent Developments of Nanofluids
doi:10.3390/app8020192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

iii





About the Special Issue Editor

Rahmat Ellahi, Ph.D., Professor, Ex-Chairperson (Mathematics and Statistics), accomplished

researcher, teacher and a prolific scholar has key role in promotion of science at national and

international levels. He has successfully achieved great height of academics, from the University of

Punjab, Quaid-i-Azam University, Islamabad, Pakistan and University of California Riverside, USA as

his Alma mater. He has published around 200 papers in the journals of USA, Germany, UK, Canada

etc. His research particularly upgraded science capacity of several Universities of the world such as

USA, Canada, Romania, Iran, South Africa, Saudi Arabia and Pakistan etc. His work has been cited

more than 7700 times at Google Scholar having 48 h-index. He is an author of 06 books published at

national and international levels. Besides, he edited 03 special issues for ISI impact factor journals.

He is editor/editorial board member for 14 international journals and referee for more than

235 international journals. Approved Supervisor of Higher Education Commission of Pakistan (HEC)

for MS/M. Phil/Ph.D. Students since 2006. He has successfully supervised 23 research students

(06 Ph.D. and 17 MS). His leadership in academics is further reflected through the research collaboration

with more than 50 international leading scientists all over the world such as USA, Canada, South

Africa, India, Saudi Arabia Iran, Turkey and Romania etc.

He has been continuously honored with annual Research Productivity Award based on his excellent

scientific achievements by PCST, Ministry of Science and Technology since 2009 to date. PCST has

honed him with 5th top most Productive Scientist of Pakistan Award “Category A” in consecutive

three years.

He has organized 08 international conferences; delivered 20 seminars and attended 25 conferences

as key speaker and participant. As a referee he has investigated 33 research projects submitted at HEC

and USEFP under NRUP and Fulbright Grant (for Pakistan and Poland Scholars).

He has received 05 (03 international and 04 national) awards and several honors. He is actively

involved in different professional and academia bodies/institutes at national and international levels.

He also established strong research collaboration with more than 50 prominent researchers. Dr. Ellahi

has established 04 new departments; Mathematic, Statistics, Physics and Quality Enhancement Cell

at IIUI Pakistan. In summary, Dr. Rahmat Ellahi appears to be a superb individual encompassing

all facets of a great educationist. As a matter of fact he is an outstanding candidate and it is because

of his remarkable contributions towards society, teaching, research, development and promotion

of scientific cooperation, international collaboration, human resource development and updating

education systems with the latest trends.

v





Preface to ”Recent Developments of Nanofluids”

This book contains nine chapters. First eight chapters have independent strength and point of

emphasis depending on the pen of authors whereas Editorial is given in chapter nine. Extensive uses

of realistic applications are commonly given in each chapter. For the best understanding of readers, a

relevant list of references is also given at the end of each chapter for further study.

I wish to thank excellent reviewers for their suggestions and critical reviews on submitted

manuscripts. I was fortunate enough to have prominent scholars who contributed with their original

research work. I applaud all of them on successful completion of this book.

Errors and omissions if any are requested to point out which will be gratefully acknowledged in

the next possible Edition. Particularly, suggestions for improvement, scope and format of the book

will be highly appreciated.

I express my gratitude to MPDI for publishing this book especially I also want to express my

gratitudes to Ms. Jennifer Li, my family and friends for their helpful cooperation.

Rahmat Ellahi

Special Issue Editor

vii





Article

On Squeezed Flow of Jeffrey Nanofluid between Two
Parallel Disks

Tasawar Hayat 1,2, Tehseen Abbas 1,*, Muhammad Ayub 1, Taseer Muhammad 1

and Ahmed Alsaedi 2

1 Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan;
fmgpak@gmail.com (T.H.); mayub@qau.edu.pk (M.A.); taseer@math.qau.edu.pk (T.M.)

2 Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics,
Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; aalsaedi@hotmail.com

* Correspondence: tehseen@math.qau.edu.pk; Tel.: +92-51-9064-2172

Academic Editor: Rahmat Ellahi
Received: 7 September 2016 ; Accepted: 31 October 2016 ; Published: 11 November 2016

Abstract: The present communication examines the magnetohydrodynamic (MHD) squeezing flow
of Jeffrey nanofluid between two parallel disks. Constitutive relations of Jeffrey fluid are employed
in the problem development. Heat and mass transfer aspects are examined in the presence of
thermophoresis and Brownian motion. Jeffrey fluid subject to time dependent applied magnetic
field is conducted. Suitable variables lead to a strong nonlinear system. The resulting systems are
computed via homotopic approach. The behaviors of several pertinent parameters are analyzed
through graphs and numerical data. Skin friction coefficient and heat and mass transfer rates are
numerically examined.

Keywords: squeezing flow; Jeffrey fluid; nanoparticles; magnetic field

1. Introduction

The homogenous mixture of ultrafine nanometer-sized particles and convectional heat transfer
base liquids is termed as nanofluid. Nanomaterials have a key role in the industrial and engineering
processes like processing of coolants for the nuclear reactors, transformer coolant and radiation
therapy in cancer treatment etc. Furthermore, the magneto-nanofluid is very helpful in various sectors
including sterilizing devices, oil recovery from the underground reservoirs, gastric medications, and
tumor elimination with hyperthermia. The small sized nanoparticles (which are mostly metallic,
nonmetallic, metal-oxides) are good thermal conductors. For this reason, the nanofluid in comparison
to the base fluid has greater thermal efficiency. Choi [1] proposed the idea of nanofluid. He argued
that the addition of nanoparticles into the base fluid enhances the thermal performance of base fluid.
Buongiorno [2] provided expressions including thermophoresis and Brownian motion. Later on,
numerous researchers discussed the flows of nanofluid under different geometries. The relevant
literature can be seen through the investigations [3–20] and several studies therein.

Squeezing flow between the parallel disks has received the attention of recent researchers due
to widespread applications of such flows in various mechanical engineering disciplines. The flow is
generated because of two parallel approaching surfaces in relative motion. The parallel approaching
surfaces phenomena along with the relative motion is mostly used by the engineers in the modeling of
flow of oil in bearings, determination of capacity of load-bearings, compression and injection modeling,
etc. (see [21,22]). Stefan [23] reported the squeezing flow for lubrication approximation. Domairry and
Aziz [24] studied magnetohydrodynamic squeezing flow of viscous liquid bounded by parallel disks.
Siddiqui et al. [25] examined squeezing flow subject to an applied magnetic field. Rashidi et al. [26]
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performed an analysis of hydrodynamic squeezing flow by developing series solutions. Some other
investigations on squeezing flow can be seen in the studies [27–30].

The prime interest in the present communication is to venture further into the regime of the
squeezing flow of non-Newtonian nanofluid. Therefore, the explicit contribution here is as follows:
firstly, to formulate the relevant problem for constitutive relations of the Jeffrey fluid model; secondly,
to analyze Brownian motion and thermophoresis; thirdly, to consider magnetohydrodynamics of
nanofluid; and fourthly, to entertain the idea of permeable characteristics of lower disks. The upper
impermeable disk moves towards the lower disk with time-dependent velocity. Problem formulation
is made through small magnetic Reynolds number approximation. The homotopy analysis technique
(HAM) [31–40] is applied to obtain the convergent solutions of the governing equations. The present
study has been arranged as follows. The next section presents problem development. Section 3
depicts the development convergent series solutions. Analysis for convergence and discussion have
been examined in Sections 4 and 5, respectively. Section 6 gives the main outcomes of the present
study. Note that the considered Jeffrey fluid, although capturing the salient features of relaxation and
retardation time, is not able to predict the shear thinning/shear thickening and normal stress effects.

2. Formulation

Consider magnetohydrodynamic squeezing flow of a Jeffrey nanofluid between the two parallel
disks. The distance between the parallel disks is h(t) = H(1 − αt)1/2. The upper disk is at z = h(t),
whereas the lower permeable disk is at z = 0. A magnetic field B(t) = B0(1 − αt)−1/2 is taken
transverse to the flow. Here, the induced magnetic field is neglected for a small magnetic Reynolds
number [41–43]. Brownian motion and thermophoresis phenomena are accounted. The governing
equations for Jeffrey nanofluid are differences in traffic flow
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with the associated boundary conditions

u = 0, w = −w0, T = Tw, C = Cw at z = 0,
u = 0, w = ∂h

∂t , T = Th, C = Ch at z = h (t)

}
. (6)

Here, u and w denote the velocity components along the r- and z- directions, respectively, p
the pressure, ν = μ/ρ the kinematic viscosity, μ the dynamic viscosity, ρ the density of base fluid, σ
the electrical conductivity, λ1 the ratio of relaxation and retardation times, λ2 the retardation time,
respectively, T the temperature, τ = (ρc)p / (ρc) f the ratio of effective heat capacity of nanoparticles
and heat capacity of fluid, (ρc)p the effective heat capacity of nanoparticles, (ρc) f the heat capacity
of fluid, C the concentration, Tm the mean fluid temperature, α = k/ (ρc) f the thermal diffusivity, k
the thermal conductivity, DB the Brownian diffusion coefficient and DT the thermophoresis diffusion
coefficient. Consider

u =
αr

2 (1 − αt)
f ′(η), w = − αH√
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f (η), η =

z
H
√

1 − αt
, (7)
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Equations (2)–(6) after elimination of pressure gradient yield
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Here, Pr denotes the Prandtl number, Le the Lewis number, Nb Brownian motion parameter,
S the suction/blowing parameter, Nt the thermophoresis parameter, β the Deborah number, M the
Hartman number and Sq the squeezing parameter. These quantities are expressed as follows:
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The dimensionless forms of skin friction coefficients are
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3. Homotopic Solutions

3.1. Zeroth-Order Deformation

Here, we construct the convergent series solutions of the incoming nonlinear systems. For these,
the initial approximation and auxiliary linear operators are taken in the form
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f̂ (0; Þ) = S, f̂ ′ (0; Þ) = 0, θ̂ (0; Þ) = 1, φ̂ (0; Þ) = 1, (33)
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Here, Þ∈ [0, 1] indicates the embedding parameter and h̄ f , h̄θ and h̄φ the non-zero
auxiliary parameters.

3.2. mth-Order Deformation Equations

L f [ fm (η)− χm fm−1 (η)] = h̄ fR f
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R f
m (η) = f ′vm−1 − Sq (1 + λ1)

(
η f ′′′m−1 + 3 f ′′m−1 − 2 ∑m−1

k=0 fm−1−k f ′′′k

)
+β

2

(
η f v

m−1 + 5 f iv
m−1 + ∑m−1

k=0 f ′′m−1−k f ′′′k − 3 ∑m−1
k=0 f ′m−1−k f iv

k

)
− M2 (1 + λ1) f ′′m−1,

(43)

Rθ
m (η) =

1
Pr

θ′′m−1 + Sq

(
m−1

∑
k=0

fm−1−kθ
′
k − ηθ′m−1

)
+ Nb

m−1

∑
k=0

θ′m−1−kφ
′
k + Nt

m−1

∑
k=0

θ′m−1−kθ
′
k, (44)

Rφ
m (η) = φ′′

m−1 +
Nt
Nb

θ′′m−1 + PrLeSq

(
m−1

∑
k=0

fm−1−kφ
′
k − ηφ′

m−1

)
, (45)

χm =

{
0, m ≤ 1,
1, m > 1.

(46)

The general solutions ( fm, θm,φm) consisting of the special solutions ( f ∗m, θ∗m,φ∗
m) are

fm (η) = f ∗m (η) + B∗
1 + B∗

2η+ B∗
3η

2 + B4η
3, (47)

θm (η) = θ∗m (η) + B∗
5 + B∗

6η, (48)

φm (η) = φ∗
m (η) + B∗

7 + B∗
8η, (49)
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where the constants B∗
i (i = 1 − 8) are computed through the boundary conditions (41) and (42)

with values
B∗

1 = f ∗m (η)|
η=0

, B∗
2 = ∂ f ∗m(η)

∂η

∣∣∣
η=0

,

B∗
3 = −3 f ∗m (η)|

η=1
+ ∂ f ∗m(η)

∂η

∣∣∣
η=1

− 3B∗
1 − 2B∗

2 ,

B∗
4 = 2 f ∗m (η)|

η=1
− ∂ f ∗m(η)

∂η

∣∣∣
η=1

+ 2B∗
1 + B∗

2 ,

B∗
5 = − θ∗m (η)|η=0 , B∗

6 = θ∗m (η)|η=0 − θ∗m (η)|η=1 ,
B∗

7 = − φ∗
m (η)|η=0 , B∗

8 = φ∗
m (η)|η=0 − φ∗

m (η)|η=1 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(50)

4. Convergence Analysis

Clearly, the approximate series solutions involve the nonzero auxiliary parameters h̄ f , h̄θ and h̄φ.
To get the appropriate values of h̄ f , h̄θ and h̄φ, the h̄−curves are plotted at 20th order of deformations.
Figures 1 and 2 clearly show that the convergence zone exists inside the ranges −1.30 ≤ h̄ f ≤ −0.15,
−1.45 ≤ h̄θ ≤ −0.25 and −1.40 ≤ h̄φ ≤ −0.20 for lower disk case (η = 0) and −1.10 ≤ h̄ f ≤ −0.15,
−1.35 ≤ h̄θ ≤ −0.25 and −1.35 ≤ h̄φ ≤ −0.10 for upper disk case (η = 1) . Table 1 depicts that 16th
order of deformations is sufficient for convergent homotopic solutions for lower disk, whereas the
18th order of deformations is necessary for convergent homotopic solutions regarding upper disks
(see Table 2).

Figure 1. h̄ -Curves for f , θ and φ at the lower disk.

Figure 2. h̄ -Curves for f , θ and φ at the upper disk.
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Table 1. HAM solution convergence at the lower disk when S = 0.2, M = Nt = 0.2, Nb = 0.5 and
Sq = Le = Pr = 1.0.

Order of Deformations f ′′ (0) −θ′ (0) −φ′ (0)

1 1.90121 0.08358 0.98916
5 1.98026 0.72074 1.07442

10 1.98313 0.71628 1.09068
16 1.98318 0.71623 1.09150
25 1.98318 0.71623 1.09150
35 1.98318 0.71623 1.09150
50 1.98318 0.71623 1.09150

Table 2. HAM solution convergence at the upper disk when S = 0.2, M = Nt = 0.2, Nb = 0.5 and
Sq = Le = Pr = 1.0.

Order of Deformations − f ′′ (1) −θ′ (1) −φ′ (1)

1 1.82591 1.11083 1.06417
5 1.82053 1.23444 1.08069

10 1.81966 1.24300 1.07502
18 1.81965 1.24304 1.07475
25 1.81965 1.24304 1.07475
35 1.81965 1.24304 1.07475
50 1.81965 1.24304 1.07475

5. Discussion

This portion explores the effects of various pertinent parameters including Deborah number
(β), Lewis number (Le), Brownian motion parameter (Nb), Prandtl number (Pr), thermophoresis
parameter (Nt) and squeezing parameter (Sq) on temperature θ (η) and concentration φ (η) profiles.
Figure 3 shows the the impact of Deborah number (β) on the temperature field θ (η). It is observed that
the temperature field θ (η) decreases with the increase in the Deborah number (β). Figure 4 illustrates
the impact of Brownian motion parameter (Nb) on temperature field θ (η). Here, temperature field
θ (η) is increased by enhancing Brownian motion parameter. Variation of thermophoresis parameter
(Nt) on temperature field θ (η) is sketched in Figure 5. Larger values of thermophoresis parameter
(Nt) show higher temperature fields. Physically larger (Nt) causes an enhancement in temperature
distribution. This is because of a stronger thermophoretic impact. Figure 6 shows temperature against
Pr. Lower temperature is noticed for larger Pr. Figure 7 indicates that larger squeezing parameter (Sq)
guarantees a decay in temperature θ (η). Figure 8 elucidates the impact of Deborah number (β) on
the concentration profile φ (η). The concentration field φ (η) is decreased by increasing the Deborah
number (β). Figure 9 shows the impact of Brownian motion parameter (Nb) on concentration
profile φ (η). Concentration profile is reduced for larger values of Brownian motion parameter
(Nb) . Figure 10 shows behavior of thermophoresis parameter (Nt) on concentration field φ (η).
Here, concentration field is enhanced for larger thermophoresis parameter. Figure 11 elucidates the
concentration for variation of Lewis number (Le) . Obviously larger (Le) leads to a large concentration
field. Figure 12 sketched the concentration field φ (η) against Prandtl number (Pr). Larger (Pr) shows
concentration field. Figure 13 declares that the increasing values of squeezing parameter (Sq) lead to
higher enhancement. Table 3 is developed to validate the present results with the previously published
results in a limiting sense. From this Table, we analyzed that the present HAM solution have good
agreement with the previous solution by Hashmi et al. [6] in a limiting sense. Table 4 consists of skin
friction at the lower and upper disks. Here, the skin friction coefficient at the lower and upper disks
are higher for increasing Deborah number and squeezing parameter. Table 5 is computed to examine
the numerical data of local Nusselt number at the lower and upper disks for several embedding
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parameters. It is observed that local Nusselt number enhances at both lower and upper disks for larger
Lewis number while the reverse is found for Prandtl number. Table 6 depicts numerical data of local
Sherwood number at the lower and upper disks for various values of pertinent parameters. Here, we
noticed that local Sherwood number increases at both lower and upper disks for increasing values of
squeezing parameter.

Figure 3. Plots of θ(η) for β.

Figure 4. Plots of θ(η) for Nb.

Figure 5. Plots of θ(η) for Nt.
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Figure 6. Plots of θ(η) for Pr.

Figure 7. Plots of θ(η) for Sq.

Figure 8. Plots of φ(η) for β.
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Figure 9. Plots of φ(η) for Nb.

Figure 10. Plots of φ(η) for Nt.

Figure 11. Plots of φ(η) for Le.
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Figure 12. Plots of φ(η) for Pr.

Figure 13. Plots of φ(η) for Sq.

Table 3. Comparative values of f ′′ (1) for different values of M when Sq = 1.0, S = 2.0 and
β = λ1 = 0.0.

M
f ′′ (1)

HAM Hashmi et al. [6]

0.0 7.533166 7.53316579
2.0 8.263872 8.26387230
3.0 9.097326 9.09732573
5.0 11.34929 11.3492890
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Table 4. Skin friction coefficient at the lower and upper disks via S, β, λ1, M and Sq.

S β λ1 M Sq Cf 1 Cf 2

0.0 0.1 0.3 0.2 1.0 3.649479 3.590709
0.2 − − − −− 2.287085 2.097308
0.4 − − − − 0.795248 0.681540
0.2 0.0 0.3 0.2 1.0 2.002700 1.851550
− 0.1 − − − 2.280654 2.092601
− 0.2 − − − 2.554007 2.344925
0.2 0.1 0.0 0.2 1.0 2.232063 2.087393
− − 0.1 − − 2.248280 2.089086
− − 0.2 − − 2.264478 2.090822
0.2 0.1 0.3 0.0 1.0 2.279427 2.091703
− − − 0.5 − 2.287085 2.097308
− − − 1.0 − 2.309896 2.114041
0.2 0.1 0.3 0.2 0.5 2.175138 2.081827
− − − − 1.0 2.280654 2.092601
− − − − 1.5 2.385315 2.105140
− − − − 2.0 2.489154 2.119203

Table 5. Numerical data for local Nusselt number at the lower and upper disks for several values of S,
M, Sq, Nt, Nb, Le and Pr.

S M Sq Nt Nb Le Pr θ′ (0) θ′ (1)

0.0 0.2 1.0 0.2 0.5 1.0 1.0 0.77442 1.21503
0.5 − − − − − − 0.63707 1.28291
1.0 − − − − − − 0.52424 1.34412
0.5 0.0 1.0 0.2 0.5 1.0 1.0 0.63707 1.28291
− 0.5 − − − − − 0.63707 1.28291
− 1.0 − − − − − 0.63707 1.28291
0.5 0.2 0.0 0.2 0.5 1.0 1.0 0.69050 1.39050
− − 1.0 − − − − 0.63707 1.28291
− − 2.0 − − − − 0.58798 1.18403
0.5 0.2 1.0 0.0 0.5 1.0 1.0 0.71036 1.17119
− − − 0.5 − − − 0.53789 1.46215
− − − 1.0 − − − 0.39954 1.79063
0.5 0.2 1.0 0.2 0.5 1.0 1.0 0.71623 1.24304
− − − − 1.0 − − 0.54547 1.56082
− − − − 1.5 − − 0.40812 1.92538
0.5 0.2 1.0 0.2 0.5 0.5 1.0 0.63610 1.28096
− − − − − 1.0 − 0.63707 1.28291
− − − − − 1.5 − 0.63816 1.28511
0.5 0.2 1.0 0.2 0.5 1.0 0.5 0.80131 1.13712
− − − − − − 1.0 0.63707 1.28291
− − − − − − 1.5 0.50384 1.43981
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Table 6. Numerical data for local Sherwood number at the lower and upper disks for several values of
S, M, Sq, Nt, Nb, Le and Pr.

S M Sq Nt Nb Le Pr φ′ (0) φ′ (1)

0.0 0.2 1.0 0.2 0.5 1.0 1.0 0.99838 1.10381
0.5 − − − − − − 1.23601 1.03275
1.0 − − − − − − 1.49070 0.96658
0.5 0.0 1.0 0.2 0.5 1.0 1.0 1.23601 1.03275
− 0.5 − − − − − 1.23601 1.03275
− 1.0 − − − − − 1.23601 1.03275
0.5 0.2 0.0 0.2 0.5 1.0 1.0 1.12380 0.84379
− − 1.0 − − − − 1.23601 1.03275
− − 2.0 − − − − 1.33266 1.19929
0.5 0.2 1.0 0.0 0.5 1.0 1.0 1.07964 1.11899
− − − 0.5 − − − 1.58185 0.73579
− − − 1.0 − − − 2.39964 0.26741
0.5 0.2 1.0 0.2 0.5 1.0 1.0 1.09150 1.07475
− − − − 1.0 − − 1.07083 1.10001
− − − − 1.5 − − 1.06200 1.12874
0.5 0.2 1.0 0.2 0.5 0.5 1.0 1.19159 0.96141
− − − − − 1.0 − 1.23601 1.03275
− − − − − 1.5 − 1.27885 1.10206
0.5 0.2 1.0 0.2 0.5 1.0 0.5 1.12319 1.00307
− − − − − − 1.0 1.23601 1.03275
− − − − − − 1.5 1.33897 1.08419

6. Conclusions

Magnetohydrodynamic (MHD) squeezing flow of Jeffrey nanofluid between two parallel disks is
examined. The key points of presented analysis are mentioned below:

• Larger values of Deborah number correspond to lower temperature and concentration profiles.
• Both temperature and concentration profiles are higher for larger values of

thermophoresis parameter.
• Effects of Brownian motion parameter on temperature and concentration profiles are quite the

opposite from each other.
• Larger values of Prandtl number show opposite trends for temperature and

concentration profiles.
• Effects of squeezing parameter on temperature and concentration profiles are quite opposite to

each other.
• The present analysis reduces to a Newtonian nanofluid flow situation when β = λ1 = 0.
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Abstract: This article describes the effect of thermal radiation on the thin film nanofluid flow of
a Williamson fluid over an unsteady stretching surface with variable fluid properties. The basic
governing equations of continuity, momentum, energy, and concentration are incorporated. The effect
of thermal radiation and viscous dissipation terms are included in the energy equation. The energy
and concentration fields are also coupled with the effect of Dufour and Soret. The transformations
are used to reduce the unsteady equations of velocity, temperature and concentration in the set of
nonlinear differential equations and these equations are tackled through the Homotopy Analysis
Method (HAM). For the sake of comparison, numerical (ND-Solve Method) solutions are also
obtained. Special attention has been given to the variable fluid properties’ effects on the flow of
a Williamson nanofluid. Finally, the effect of non-dimensional physical parameters like thermal
conductivity, Schmidt number, Williamson parameter, Brinkman number, radiation parameter, and
Prandtl number has been thoroughly demonstrated and discussed.

Keywords: Williamson fluid; unsteady flow; nanofluid film; HAM and numerical method

1. Introduction

The fluid flow on a nonlinear stretching surface has attracted the attention of several investigators
due to its numerous applications in the fields of engineering and industry, such as oil filtering processes,
paper making processes, polymer making, food manufacturing and preserving processes, etc. The flow
provides more effective results in the manufacturing of good quality products in the engineering field
when heat is transferred to it, for instance via metallurgical processes, wire and fiber coating, heat
exchange equipment, the polymers extrusion process, the chemical polymer process, good quality
glass manufacturing and crystal growing, and so on. In case of a slow cooling rate and stretching
rate of electrically conducted fluids, magneto hydrodynamic (MHD) flow provides the best quality
products [1]. Sakiadis [2] was the pioneer to study the flow on a linearly stretched surface when
the fluid was at rest. Crane [3] examined the flow on the stretching sheet and obtained a similar
solution to the problem. He also obtained a closed form exponential solution to the linear flow on the
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stretching sheet. The suction and blowing process together with heat and mass transmission rate over
the stretched sheet were formulated by Gupta and Gupta [4]. Elbashbeshy [5] inspected the flow on the
stretched surface with inconstant heat flux. Aziz [6] investigated the flow on an unsteady stretching
sheet and observed the heat radiation effect. Mukhopadyay [7] later considered thermal radiation’s
effect on a vertically stretched surface with a porous medium. Shateyi and Motsa [8] discussed
heat and mass transfer rates over a horizontal stretched surface numerically. Aziz [9] investigated
momentum and the heat effect on an electric current providing and incompressible fluid over a linear
stretching surface. Hady et al. [10] extended the abovementioned work and discussed heat transfer
and radiation effect on viscous flow of a nanofluid over a non-linearly stretched surface. Pavlov [11]
examined the MHD flow of a viscous fluid with constant density over a linear stretched surface.
Bianco et al. [12] investigated the second principle of thermodynamics applied to a water–Al2O3

nanofluid. They studied that how the generation of entropy within the tube varies if inlet conditions,
particle concentrations, and dimensions are changed. Nadeem et al. [13–16] investigated a variety
of fluid models on the stretching surface by taking linear as well as exponential sheets. Such flow
nowadays has many applications in the fields of physics, chemistry, and engineering; processes
such as the cooling of an electro-magnetic fluid on a stretching sheet can be used to make a good
quality thinning copper wire. Suction and blowing processes, and heat and mass transferring with
time-dependent surface, were analyzed by Elbashbeshy and Bazid [17].

The viscosity effect and thermal conductivity behavior of the fluid are taken as constant in all of
the studies discussed above. The physical properties of a fluid strongly depend on the temperature.
Experimentally, it has been proven that the magnitude of viscosity is directly related to the temperature
of gases and inversely proportional in the case of liquids. However, the thermal conductivity property
of the fluid is directly proportional to the temperature. Variable viscosity, thermal conductivity, or a
combination of these two are studied in several research articles; for instance, Grubka and Bobba [18]
measured the flow on a horizontally moving stretched sheet while the temperature of the surface was
considered variable. Chen and Char [19] obtained the particular solution for the variable heat flux on a
surface when force was applied. Pop et al. [20] and Pantokratoras [21] investigated varying viscosity’s
and heat transfer’s effect, respectively, on moving plates. It is also shown that the effect of temperature
is inversely proportional to fluid viscosity. Abel et al. [22] investigated the flow of visco-elastic fluids
on a porous stretching surface with variable fluid viscosity. The temperature function is inversely
related to fluid viscosity and a fourth-order RK method was used to solve the combined nonlinear
equations. Makinde and Mishra [23] investigated the combined effects of variable viscosity, Brownian
motion, and thermophoresis in the water base nanofluids past a stretching surface. They used a
shooting method for the solution of coupled differential equations and discussed the effect of flow
parameters. Mukhopadhyay et al. [24] examined the MHD effects of heated fluids of variable viscosity
on a stretched surface. It is also assumed that fluid viscosity is related linearly to temperature. The
equations related to flow pattern are simplified by using scaling group transformations and then a
numerical method was used to solve the resulting non-linear ordinary differential equations. Fourier’s
Law illustrates the association between energy fluctuation and the gradient of temperature, while
Fick’s Law shows the association between the mass fluctuation and concentration gradient. However,
in 1873, Dufour showed that the energy fluctuation is also affected by configuration gradient, so it was
named the Dufour effect or the diffusion-thermo effect. Soret observed that mass fluctuation is created
by temperature gradient, so it is called the thermal diffusion effect. This effect is very important in the
flow when there is a density difference. Hayat et al. [25] examined the Soret and Dufour effects over an
exponential stretching surface with a spongy medium. Alam et al. [26] examined the 2D free convection
flow over the semi-infinite perpendicular porous surface containing the effects of Soret and Dufour
numbers. Kafoussias and Williams [27] studied the mixed convection flow and considered the heat and
mass transmission, keeping the temperature flux variable and observing the Soret and Dufour effects,
respectively. Chamkha and Ben-Nakhi [28] considered the mixed convection pattern flow over the
perpendicular permeable porous surface in view of the effects of magnetic and thermal radioactivity
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and discussed the Soret effect and Dufour effect. The effects of Soret number and Dufour number
on free convective flow over a stretched surface were investigated by Afify [29] with heat and mass
transmission. Beg et al. [30] considered the effect of Soret and Dufour numbers over a free-convective
saturated spongy surface in the presence of MHD heat and mass transmission. El-Kabeir et al. [31]
investigated the effects of Dufour and Soret numbers over a non-Darcy spherically porous natural
convection MHD heat and mass transmission. The special effects of Soret number and Dufour number
of non-Darcy instable mixed convective MHD flow over the stretched medium, considering heat and
mass transmission, were investigated by Pal and Mondal [32]. Yasir et al. [33] analyzed the effects
of variable viscosity and thermal conductivity on a thin film flow over a shrinking/stretching sheet.
Aziz et al. [34] investigated thin film flow and heat transfer on an unsteady stretching sheet with
internal heating. Qasim et al. [35] discussed heat and mass transfer in a nanofluid over an unsteady
stretching sheet using Buongiorno’s model. Prashant et al. [36] analyzed thin film flow and heat
transfer on an unsteady stretching sheet with thermal radiation and internal heating in presence of
external magnetic field. The published work is incomplete, though for both of these physical parameter
there exist numerous industrial and mechanical applications. The few other investigations in this
direction were made by Ellahi et al. [37], Akbar et al. [38,39], Shehzad et al. [40], and Zeeshan et al. [41].

The current work is the study of thin film flow of a Williamson nanofluid with the combined
effect of varying thermal conductivity and viscosity on a time-dependent stretching sheet. The effect
of Dufour and Soret numbers is discussed in detail. Also, the effects of Schmidt number and Brinkman
number, thermal contamination, and viscous dissipation are considered. Applying these suppositions
and similarity transformation on the governing partial differential equations (PDEs) of the flow is
converted to non-linear ordinary differential equations (ODEs) and then solved through HAM [42–48].
The related work to the given flow is also discussed in [49–51].

The literature survey shows that there have been several investigations on nanofluids. However,
so far, no study has been reported about the analysis of thin film flows of a Williamson nanofluid flow
in two dimensions. The present study aims to analyze the variable thermal conductivity and viscosity
of a two-dimensional thin film Williamson nanofluid past a stretching sheet.

2. Materials and Methods

Consider a two-dimensional flow of Williamson fluid that has constant density, variable viscosity,
and a temperature gradient over an unsteady stretched surface, in which heat and mass are transmitted
instantaneously. The flow coordinates are selected in such a manner that the x-axis is parallel to
the plate and the y-axis is vertical to it. The stretching velocity of the sheet is in the direction of
the x-axis with magnitude U (x, t) = bx

1−at , in which b > 0 is the stretching velocity constraint and
defined in [37–39]. If b < 0 then it will become a shrinking velocity constraint. The temperature

field is defined as Ts(x, t) = T0 − Tre f

[
bx2

2υ

]
(1 − at)−

3
2 , and the magnitude is inversely proportional

to the distance from the surface. Similarly, the concentration field for the given flow is defined as

Cs(x, t) = C0 − Cre f

[
bx2

2υ

]
(1 − at)−

3
2 , where T0 represents the temperature at the surface, Tref indicates

the reference temperature, and Cref indicates the reference concentration, respectively, as shown

in [27–30], such that 0 ≤ Tre f ≤ T0 and 0 ≤ Cre f ≤ C0. The local Reynolds is defined as bx2

υ(1−at) .
Firstly, the sheet is fixed to the origin; after that some outer force is applied to stretch the surface in the
direction of the x-coordinate axis at a velocity U (x, t) = b

1−at in time 0 ≤ a < 1.
Taking the above suppositions into consideration, the governing equations of continuity, velocity,

temperature, and concentration can be expressed as:

∂u
∂x

+
∂v
∂y

= 0, (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
1
ρ

∂

∂y

(
μ(T)

∂u
∂y

)
+

√
2Γ
ρ

∂

∂y

[
μ(T)

∂u
∂y

]
∂u
∂y

, (2)
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ρcp

[
∂T
∂t + u ∂T

∂x + v ∂T
∂y

]
= ∂

∂y

[
k(T) ∂T

∂y

]
− ∂qr

∂y + μ(T)
[(

∂u
∂y

)2
+
√

2Γ
(

∂u
∂y

)3
]

+ρDmkT
cs

∂2C
∂y2

, (3)

[
∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

]
= Dm

∂2C
∂y2 +

DmkT
Tm

∂2T
∂y2 . (4)

The boundary conditions are:

u = U, v = 0, T = Ts, C = Cs, (5)

∂u
∂y

=
∂T
∂y

=
∂C
∂y

= 0 v =
dh
dt

= 0, (6)

where μ(T) = μ0

(1−γ)
T−T0

Tre f (
bx2
2ν )

indicates the variable viscosity in which μ0 is the fluid viscosity at

reference temperature T0 and the coefficient γ expresses the strength of the dependency between μ

and T. K(T) = K1

(
1 − ε

(
T−T0

Tre f (
bx2
2ν )

))
represents the temperature-dependent thermal conductivity,

in which ε is the variable thermal conductivity parameter. The kinematics viscosity is represented as
υ = μ0

ρ , Γ > 0 is the time constant, u and v are the velocities along the x-axis and y-axis, respectively,
T and C represent the temperature and concentration fields, respectively, ρ indicates the density of the
fluid, Cp designates the specific heat, Cs represents the absorption susceptibility, liquid film thickness

is denoted by h (t), qr = − 16σT3
s

3k
∂T
∂y indicates the radiative heat fluctuation, the Stefan–Boltzmann

constant is specified by σ, the species concentration molecular diffusivity is represented by Dm, Tm

represents the mean temperature, the thermal diffusion ratio is denoted by kT, and k designates the
thermal conductivity of the liquid film.

We introduced the following transformations for the velocity, temperature, and concentration fields:

ψ(x, y, t) = x
√

υb
1−at f (η) , u = ∂ψ

∂y = bx
(1−at) f ′ (η) = β2xν

h2 f ′ (η) ,

v = − ∂ψ
∂x = −

√
υb

1−at f (ξ) = −νβ
h f (η) ,η =

√
b

υ(1−at)y = β
h y,

T(x, y, t) = T0 − Tre f

[
bx2

2υ

]
(1 − at)−

3
2 θ (η) , C(x, y, t) = C0 − Cre f

[
bx2

2υ

]
(1 − at)−

3
2 ϕ (η) ,

(7)

where a prime number specifies the derivative with respect to η and ψ (x, y, t) is the stream function;

β = h(t)
√

b
υ(1−αt) is the non-dimensional thickness of the nano liquid film and h(t) is the uniform

thickness of the fluid film, which gives dh
dt = −βa

2
[
υ
b
] 1

2 (1 − αt)−
1
2 .

Plugging the similarity variables from Equation (7) into Equations (1)–(6) satisfies the continuity
equation, and the leftover equations are converted to couple nonlinear differential equations:

f ′′′ + λ f ′′ f ′′′ + (1 + Λθ)
[

f f ′′ − ( f ′
)2 − S

(
f ′ + η

2
f ′′
)]

= 0 (8)

(1 + εθ+ Nr) (1 + Λθ) θ′′ − Pr (1 + Λθ)
(

S
2
(
3θ+ ηθ′

)− fθ′ + 2 f ′θ
)
+

Br

(
( f ′′ )2 + λ ( f ′′ )3

)
+ Pr (1 + Λθ) Duϕ′′ = 0,

(9)

ϕ′′ + ScSrθ′′ − Sc

(
S
2
(
3ϕ+ ηϕ′)+ 2 f ′ϕ− fϕ′

)
= 0. (10)

The boundary conditions are transformed to:

f (0) = 0, f ′(0) = 1, f (β) = Sβ
2 , f ′′ (β) = 0,

θ(0) = ϕ(0) = 1, θ′(β) = ϕ′(β) = 0.
(11)
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Here Λ = γ(Ts − T0) represents the variable viscosity parameter, Pr = ρυcp
k is the Prandtl number,

S = a
b is the non-dimensional measure of unsteadiness, Du = DmkT

υcpcs

(Cs−C0)
(Ts−T0)

is the Dufour number,

Sc =
υ

Dm
is used for the Schmidt number, Sr =

DmkT
υTm

(Ts−T0)
(Cs−C0)

represents the Soret number, Br =
μ0U2

0
k(Ts−T0)

is the Brinkman number Nr =
16T3

∞σ1
3kk∗ indicates the thermal radiation parameter, and λ = Γx

√
2b3

υ(1−at)3

is the Williamson fluid constant.

Solution by HAM

In order to solve Equations (8)–(10) under the boundary conditions (11), we use the Homotopy
Analysis Method (HAM) with the following procedure. The solutions having the auxiliary parameters
� regulate and control the convergence of the solutions.

The initial guesses are selected as follows:

f0(η) = η, θ0(η) = 1 and ϕ0(η) = 1. (12)

The linear operators are taken as L f , Lθ and Lϕ:

L f ( f ) = f ′′′, Lθ (θ) = θ′′ and Lϕ(ϕ) = ϕ′′, (13)

which have the following properties:

L f (c1 + c2η+ c3η
2) = 0, Lθ(c4 + c5η) = 0 and Lϕ(c6 + c7η) = 0, (14)

where ci(i = 1 − 7) are the constants in general solution:
The resultant non-linear operatives Nf , Nθ and Nϕ are given as:

Nf [ f (η; p)] = ∂3 f (η;p)
∂η3 + λ

∂2 f (η;p)
∂η2

∂3 f (η;p)
∂η3

+ (1 + Λθ(η; p))
[

f (η; p) ∂2 f (η;p)
∂η2 −

(
∂ f (η;p)

∂η

)2 − S
(

∂ f (η;p)
∂η + η

2
∂2 f (η;p)

∂η2

)]
,

(15)

Nθ [ f (η; p), θ(η; p),ϕ(η; p)] = (1 + εθ(η; p) + Nr)(1 + Λθ(η; p)) ∂2θ(η;p)
∂η2 −

Pr(1 + Λθ(η; p))
[

S
2

(
3θ(η; p) + η

∂θ(η;p)
∂η

)
+ 2θ(η; p) ∂ f (η;p)

∂η − f (η; p) ∂θ(η;p)
∂η

]
+Br

[(
∂2 f (η;p)

∂η2

)2
+ λ
(

∂2θ(η;p)
∂η2

)3
]
+ PrDu(1 + Λθ(η; p)) ∂2ϕ(η;p)

∂η2 ,

(16)

Nϕ [ f (η; p), θ(η; p),ϕ(η; p)] = ∂2ϕ(η;p)
∂η2 + ScSr

∂2θ(η;p)
∂η2 −

Sc

[
S
2

(
3ϕ(η; p) + η

∂ϕ(η;p)
∂η

)
+ 2ϕ(η; p) ∂ f (η;p)

∂η − f (η; p) ∂ϕ(η;p)
∂η

]
.

(17)

The basic idea of HAM is described in [32–35]; the zero-order problems from Equations (8)–(10) are:

(1 − p)L f [ f (η; p)− f0(η)] = p� f Nf [ f (η; p)] (18)

(1 − p)Lθ [θ(η; p)− θ0(η)] = p�θNθ [ f (η; p), θ(η; p),ϕ(η; p)] (19)

(1 − p)Lϕ [ϕ(η; p)−ϕ0(η)] = p�ϕNϕ [ f (η; p), θ(η; p),ϕ(η; p)]. (20)

The equivalent boundary conditions are:

f (η; p)|η=0 = 0, ∂ f (η;p)
∂η

∣∣∣
η=0

= 1, ∂2 f (η;p)
∂η2

∣∣∣
η=β

= 0,

θ(η; p)|η=0 = 1, ∂θ(η;p)
∂η

∣∣∣
η=β

= 0, ϕ(η; p)|η=0 = 1, ∂ϕ(η;p)
∂η

∣∣∣
η=β

= 0
, (21)
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where p ∈ [0, 1] is the imbedding parameter, and � f , �θ and �ϕ are used to control the convergence of
the solution. When p = 0 and p = 1 we have:

f (η; 1) = f (η), θ(η; 1) = θ(η) and ϕ(η; 1) = ϕ(η). (22)

Expanding f (η; p), θ(η; p) and ϕ(η; p) in Taylor’s series about p = 0, we get

f (η; p) = f0(η) +
∞
∑

m=1
fm(η)pm,

θ(η; p) = θ0(η) +
∞
∑

m=1
θm(η)pm,

ϕ(η; p) = ϕ0(η) +
∞
∑

m=1
ϕm(η)pm.

, (23)

where

fm(η) =
1

m!
∂ f (η; p)

∂η

∣∣∣∣
p=0

, θm(η) =
1

m!
∂θ(η; p)

∂η

∣∣∣∣
p=0

and ϕm(η) =
1

m!
∂ϕ(η; p)

∂η

∣∣∣∣
p=0

. (24)

The secondary constraints � f , �θ and �ϕ are chosen in such a way that the series in Equation (23)
converges at p = 1, we obtain:

f (η) = f0(η) +
∞
∑

m=1
fm(η),

θ(η) = θ0(η) +
∞
∑

m=1
θm(η),

ϕ(η) = ϕ0(η) +
∞
∑

m=1
ϕm(η).

(25)

The m th-order problem satisfies the following:

L f [ fm(η)− χm fm−1(η)] = � f R f
m(η),

Lθ [θm(η)− χmθm−1(η)] = �θRθ
m(η),

Lϕ [ϕm(η)− χmϕm−1(η)] = �ϕRϕ
m (η).

(26)

The corresponding boundary conditions are:

fm(0) = f ′m(0) = θm(0) = ϕm(0) = 0,
f ′′m(β) = θ′m(β) = ϕ′

m(β) = 0.
(27)

Here

R f
m(η) = f ′′′m−1 + λ

m−1
∑

k=0
f ′′m−1−k f ′′′k +

[
f ′′m−1 −

m−1
∑

k=0
f ′m−1−k f ′k − S

(
f ′m−1 +

η
2 f ′′m−1

)]
+

Λ
[

m−1
∑

k=0
θm−1−k f ′′k − m−1

∑
k=0

θm−1−k
k
∑

l=0
f ′k−l f ′l − S

(
m−1
∑

k=0
θm−1−k f ′k +

η
2

m−1
∑

k=0
θm−1−k f ′′k

)]
,

(28)

Rθ
m(η) = (1 + Nr) θ

′′
m−1 + (ε+ Λ (1 + Nr))

m−1
∑

k=0
θm−1−kθ

′
k + εΛ

m−1
∑

k=0
θm−1−k

k
∑

l=0
θk−lθ

′′
l −

Pr
[

S
2
(
3θm−1 + ηθ′m−1

)
+ 2

m−1
∑

k=0
θm−1−k f ′k −

m−1
∑

k=0
fm−1−kθ

′
k

]
−

ΛPr
[

S
2

(
3

m−1
∑

k=0
θm−1−kθk + η

m−1
∑

k=0
θm−1−kθ

′
k

)
+ 2

m−1
∑

k=0
θm−1−k

k
∑

l=0
θk−l f ′l −

m−1
∑

k=0
θm−1−k

k
∑

l=0
fk−lθ

′
l

]
+

Br

[
m−1
∑

k=0
f ′′m−1−k f ′′k + λ

m−1
∑

k=0
f ′′m−1−k

k
∑

l=0
f ′′k−l f ′′l

]
+ PrDu (1 + Λ)

[
ϕ

′′
ω−1 +

m−1
∑

k=0
θm−1−kϕ

′′
k

]
,

(29)

Rϕ
m (η) = ϕ

′′
m−1 + SrScθ

′′
m−1 − Sc

[
S
2
(
3ϕm−1 + ηϕ′

m−1
)
+

m−1
∑

k=0
f ′m−1−kϕk −

m−1
∑

k=0
fm−1−kϕ

′
j

]
, (30)
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where

χm =

{
0, if p ≤ 1
1, if p > 1

3. Results

The Figure 1 represent geometry of the problem. The convergence of the series given in
Equation (25), f (η), θ(η), and ϕ(η) entirely depend upon the auxiliary parameters � f , �θ and �ϕ,
the so-called �-curve. This is selected in such a way that it controls and converges the series solution.
The probable section of � can be found by plotting �-curves of f ”(0), θ’(0) and ϕ’(0) for 20th order
HAM approximated solution. The valid regions of � are −1.7 < � f < 0.1, −2.1 < �θ < 0.1 and
−1.5 < �ϕ < 0.1, and it is plotted in Figures 2 and 3. The comparison of HAM and numerical
methods has been shown graphically in Figures 4–6 and numerically in Tables 1–3. The behavior of the
thermophysical parameters involved in non-dimensional velocities, temperature, and concentration
field is discussed in Figures 7–21.

Figure 1. Geometry of the problem

Figure 2. The combined graph of �-curves f ”(0) θ’(0), Pr = 10, Br = 0.8, Nr = 0.8, Du = 0.8, Sc = 0.4,
ε = 0.8, Sr = 0.4, λ = 0.8, Λ = 1, β = 1, S = 0.3.
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Figure 3. The graph of �-curve ϕ′ (0), Pr = 10, Br = 0.8, Nr = 0.8, Du = 0.8, Sc = 0.4, ε = 0.8, Sr = 0.4,
λ = 0.8, Λ = 1, β = 1, S = 0.3.

Figure 4. The comparison between HAM and numerical solutions for velocity profile f (η), when
� = −0.28, Pr = 10, Br = 0.1, Nr = 0.1, Du = 0.1, Sc = 0.1, ε = 0.1, Sr = 0.1, λ = 0.1, Λ = 0.1, β = 1, S = 0.1.
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Figure 5. The comparison between HAM and numerical solutions for temperature fields θ(η), when
� = −0.45, Pr = 10, Br = 0.7, Nr = 0.3, Du = 0.3, Sc = 0.9, ε = 0.9, Sr = 0.1, λ = 0.1, Λ = 0.1, β = 1, S = 0.2.

Figure 6. The comparison between HAM and numerical solutions for concentration fields ϕ(η), when
� = −0.25, Pr = 10, Br = 0.1, Nr = 0.1, Du = 0.1, Sc = 0.1, ε = 0.1, Sr = 0.1, λ = 0.1, Λ = 0.1, β = 1, S = 0.1.
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Table 1. Comparison between HAM and numerical solutions for velocity field f (η) when � = −0.28,
Pr = 10, Br = 0.1, Nr = 0.1, Du = 0.1, Sc = 0.1, ε = 0.1, Sr = 0.1, λ = 0.1, Λ = 0.1, β = 1, S = 0.1.

η HAM solution Approximation f(η) Numerical Solution NN Absolute Error

0 0.000000 0.000000 0.0
0.1 0.0953944 0.0946811 7.1 × 10−4

0.2 0.182398 0.180273 2.1 × 10−3

0.3 0.262182 0.258722 3.4 × 10−3

0.4 0.335840 0.331586 4.3 × 10−3

0.5 0.404397 0.400129 4.2 × 10−3

0.6 0.468820 0.465392 3.4 × 10−3

0.7 0.530019 0.528247 1.8 × 10−3

0.8 0.588856 0.589430 5.7 × 10−4

0.9 0.646152 0.649575 3.4 × 10−3

1 0.702691 0.709230 6.5 × 10−3

Table 2. Comparison between HAM and numerical solutions are shown for temperature field θ(η)

when � = −0.45, Pr = 10, Br = 0.1, Nr = 0.1, Du = 0.1, Sc = 0.1, ε = 0.1, Sr = 0.1, λ = 0.1, Λ = 0.1, β = 1,
S = 0.1.

η HAM Solution of θ(η) Numerical Solution NN Absolute Error

0 1.0000 1.00000 0.00000
0.1 1.004 1.00417 1.7 × 10−4

0.2 1.00688 1.00706 1.9 × 10−4

0.3 1.00886 1.009 1.8 × 10−3

0.4 1.01015 1.01023 1.6 × 10−3

0.5 1.01095 1.01096 7.1 × 10−4

0.6 1.01139 1.01135 4.2 × 10−4

0.7 1.0116 1.01153 2.5 × 10−4

0.8 1.01168 1.01159 1.6 × 10−4

0.9 1.0117 1.01159 1.1 × 10−4

1 1.01171 1.01159 1.1 × 10−4

Table 3. Comparison between HAM and numerical solutions are shown for concentration field ϕ(η)

when � = −0.25, Pr = 10, Br = 0.1, Nr = 0.1, Du = 0.1, Sc = 0.1, ε = 0.1, Sr = 0.1, λ = 0.1, Λ = 0.1, β = 1,
S = 0.1.

η HAM Solution ϕ(η) Numerical Solution NN Absolute Error

0 1.00000 1.000000 0.000000
0.1 0.986139 0.985513 6.3 × 10−4

0.2 0.973868 0.973001 8.7 × 10−4

0.3 0.963145 0.962308 8.4 × 10−4

0.4 0.953932 0.953301 6.3 × 10−4

0.5 0.946195 0.945867 3.3 × 10−4

0.6 0.939906 0.939913 7.5 × 10−6

0.7 0.935041 0.935364 3.2 × 10−4

0.8 0.931582 0.93216 5.8 × 10−4

0.9 0.929513 0.930258 7.4 × 10−4

1 0.928825 0.929628 8.0 × 10−4
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Figure 7. Variants in velocity field f (η) for various values of S, when � = −0.25, Pr = 10, Du = 0.7,
Sc = 0.7, λ = 0.7, Λ = 0.7, β = 1.

Figure 8. The variation of temperature scale gradient θ(η) for different quantities of S, when � = −0.25,
Pr = 10, Br = 0.7, Nr = 0.7, Du = 0.7, Sc = 0.7, ε = 0.7, Sr = 0.7, λ = 0.7, Λ = 0.7, β = 1.
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Figure 9. Variations in concentration field ϕ(η) occur for different numbers of S, when � = −0.25,
Pr = 10, Br = 0.7, Nr = 0.7, Du = 0.7, Sc = 0.7, ε = 0.7, Sr = 0.7, λ = 0.7, Λ = 0.7, β = 1.

Figure 10. Variation in velocity field f (η) for various values of Pr, when � = −0.25, Du = 0.7, Sc = 0.7,
λ = 0.7, Λ = 0.7, β = 1, S = 0.7.
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Figure 11. The variation of temperature scale gradient θ(η) for different values of Pr, when � = −0.25,
S = 0.7, Br = 0.7, Nr = 0.7, Du = 0.7, Sc = 0.7, ε = 0.7, Sr = 0.7, λ = 0.7, Λ = 0.7, β = 1.

Figure 12. Variations in concentration field ϕ(η) occur for different values of Pr, when � = −0.25,
S = 0.7, Br = 0.7, Nr = 0.7, Du = 0.7, Sc = 0.7, ε = 0.7, Sr = 0.7, λ = 0.7, Λ = 0.7, β = 1.
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Figure 13. Variations in velocity field f (η) for various values of Du, when � = −0.25, Pr = 10, Sc = 0.7,
λ = 0.7, Λ = 0.7, β = 1, S = 0.7.

Figure 14. The variation of temperature scale gradient θ(η) for different values of Du, when � = −0.25,
S = 0.7, Br = 0.7, Nr = 0.7, Pr = 10, Sc = 0.7, ε = 0.7, Sr = 0.7, λ = 0.7, Λ = 0.7, β = 1.
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Figure 15. Variations in concentration field ϕ(η) occur for different values of Du, when � = −0.25,
S = 0.7, Br = 0.7, Nr = 0.7, Pr = 10, Sc = 0.7, ε = 0.7, Sr = 0.7, λ = 0.7, Λ = 0.7, β = 1.

Figure 16. Variations in concentration field ϕ(η) occur for different values of Sr, when � = −0.25,
S = 0.7, Br = 0.7, Nr = 0.7, Pr = 10, Sc = 0.7, ε = 0.7, Du = 0.7, λ = 0.7, Λ = 0.7, β = 1.
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Figure 17. The variation of temperature scale gradient θ(η) for different values of Sc, when � = −0.25,
S = 0.7, Br = 0.7, Nr = 0.7, Pr = 10, Du = 0.7, ε = 0.7, Sr = 0.7, λ = 0.7, Λ = 0.7, β = 1.

Figure 18. Variations in concentration field ϕ(η) occur for different values of Sc, when � = −0.25,
S = 0.7, Br = 0.7, Nr = 0.7, Pr = 10, Sr = 0.7, ε = 0.7, Du = 0.7, λ = 0.7, Λ = 0.7, β = 1.
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Figure 19. Variations in velocity field f ′(η) for various values of Λ, when � = −0.25, Pr = 10, Sc = 0.7,
λ = 0.7, Du = 0.7, β = 1, S = 0.7.

Figure 20. The variation of temperature scale gradient θ(η) for different values of Λ, when � = −0.25,
S = 0.7, Br = 0.7, Nr = 0.7, Pr = 10, Du = 0.7, ε = 0.7, Sr = 0.7, λ = 0.7, Sc = 0.7, β = 1.
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Figure 21. Variations in velocity field f ′(η) for various values of λ, when � = −0.25, Pr = 10, Sc = 0.7,
Λ = 0.7, Du = 0.7, β = 1, S = 0.7.

4. Discussion

In this work, numerical values are assigned to the physical parameters involved in the velocity,
temperature, and concentration profiles. The numerical outcomes for velocity, temperature, and
concentration profiles are presented in this section. An efficient numerical method called the ND-solve
method has been used to solve the transformed Equations (8)–(10) subject to the boundary conditions in
Equation (11). The paper examined the effects of governing parameters on the transient velocity profile,
temperature profile, and concentration profile. For this purpose the SRM approach has been applied for
various values of flow controlling parameters S = 0.7, Pr = 10, Du = 0.7, Sr = 0.7, Sc = 0.7, Λ = 0.7, λ = 0.7
to obtain a clear insight into the physics of the problem. Therefore, all the graphs and tables correspond
to the values above and the rest will be mentioned. The behavior of the non-dimensional unsteady
parameter S for velocities, temperature, and concentration field during fluid motion is studied in
Figures 7–9. The unsteady parameter S is inversely related to the stretching constant of the velocity
field, whereas it is directly related to the stretching constants of the temperature and concentration
fields. Therefore, by increasing the values of S the value of the velocity field is decreased while the
values of the temperature and concentration fields increase. An increase in Pr leads to an increase in
kinematic viscosity and a decrease in velocity. The reason is that the rise in viscosity tends to increase
the resistance force and as a result the velocity profile descends (Figure 10). Figure 11 shows the effect
of Prandtl number Pr in temperature fields; the same effect is observed for velocity fields. The thermal
diffusion falls with the rise in Prandtl number Pr and as a result the thermal boundary layer becomes
thinner and the temperature decreases. This variation in thermal diffusivity is due to the difference of
temperature fields; the fluid is highly conductive. Therefore, a fluid with greater Pr and larger heat
capacity increases the heat transfer, the same as in [21]. This variation in thermal diffusivity is due to
the difference of temperature fields. The same effect for concentration field is exposed in Figure 12.
The behavior of Dufour number Du is discussed in Figures 13–15. The Dufour number is actually the
ratio of temperature and concentration difference. The Soret effect is a mass flux due to a temperature
gradient and the Dufour effect is enthalpy flux due to a concentration gradient and appears in the
energy equation. It was also observed that the effect of Du and Sr on the temperature and concentration
fields is opposite. In Figure 13 it is shown that increasing the value of Dufour number Du decreases
the velocity profile. Since the Dufour number Du has an inverse relationship with thermal diffusion,
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we conclude that the falls in fluid velocity are due to the smaller thermal diffusion. However, it is clear
in Figure 14 that the temperature field increases for greater values of Du. Physically, the Dufour effect
has a direct relationship with the concentration gradient of energy flux and, as a result, temperature
increases for larger values of Du. The concentration field decreases with increasing values of the
Dufour number Du, as shown in Figure 15. The Soret number is the reciprocal ratio of the Dufour
number; due to this property the reverse physical behavior of the Soret Sr and Dufour numbers Du

has been noticed in the concentration field and is shown in Figure 16. The effects of Schmidt number
Sc on the temperature field and concentration field are discussed in Figures 17 and 18, respectively.
Figure 17 exhibits the effect of Schmidt number on temperature fields: an increase in the value of Sc

increases the temperature field. The influence of the Schmidt number Sc on the concentration field
is shown in Figure 18. Increasing the Schmidt number Sc reduces the concentration boundary layer,
because the increase in Schmidt number Sc means lower molecular diffusivity, which decreases the
concentration boundary layer. It is observed that an increase in Sc leads to a decrease in the heat
transfer rate at the surface. The variable viscosity parameter Λ plays a significant role in the flow, as
shown in Figures 19 and 20. The viscosity of the fluid is directly related to the cohesive and adhesive
forces. So by increasing the cohesive and adhesive forces, the fluid resistance is increased, which results
in a decrease in the fluid velocity f ’(η), as shown in Figure 19. On the other hand, it is inversely related
to the temperature field, as shown in Figure 20, i.e., increasing the temperature of the fluid decreases
the viscosity. This is because increasing the values of temperature causes the cohesive and adhesive
forces of the fluid to become weaker. Due to this, the thickness of the fluid decreases. The effect of the
Williamson parameter λ on the velocity profile is exhibited in Figure 21. The velocity reduces when
λ is augmented because a rise in relaxation time causes higher resistance in the fluid flow and as a
result reduces the velocity field. The comparison of HAM and numerical solutions for the velocity,
temperature, and concentration fields are shown in Tables 1–3 and a closed agreement between these
two methods has been observed.

5. Conclusions

The governing equations are modeled and solved for the thin film flow of nanofluid.
A non-Newtonian Williamson fluid is used as a base fluid in the presence of thermal radiation.
The nonlinear coupled equations have been solved using HAM and are compared with the
numerical solutions.

The key points of this work are:

• The variable effects of the fluid properties on the flow of a Williamson nanofluid are plotted
through graphs and tables.

• The Dufour and Soret effects during thin film nanofluid motion are considered in the presence of
thermal radiation.

• Experimental values of the Prandtl number have been used to produce the most accurate results
for the Williamson nanofluid.

• The accuracy of the HAM results has been verified via numerical solutions.

Author Contributions: Taza Gul and Waris Khan modeled the problem and solved it; Muhammad Idrees,
Waris Khan and L.C.C. Dennis contributed to the discussion of the problem; Saeed Islam, Ilyas Khan, L.C.C. Dennis
contributed in the English corrections, All the authors read and approved the final manuscript.
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Nomenclature

x, y Cartesian coordinates
U0 Stretching velocity
b Stretching velocity constraint
Ts Temperature field
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Cs Concentration filed
T0 Surface temperature
Tre f Reference temperature
Cre f Reference concentration
μ(T) Variable viscosity
μ0 Fluid viscosity at reference temperature
γ Dependency strength
K(T) Temperature-dependent thermal conductivity
ε Variable thermal conductivity parameter
υ Kinematics viscosity
Γ Time parameter
u, v Velocity components
T Temperature field
C Concentration field
ρ Fluid density
Cp Specific heat
h (t) Liquid film thickness
qr Radiative heat fluctuation
σ Stefan–Boltzmann constant
Dm Concentration molecular diffusivity
Tm Mean temperature
kT Thermal diffusion ratio
k Thermal conductivity of the liquid film
ψ Stream function
β Non-dimensional thickness of the nano liquid film
Λ Variable viscosity parameter
Pr Prandtl number
S Non-dimensional measure of unsteadiness
Du Dufour number
Sc Schmidt number
Sr Soret number
R Radiation constant
Br Brinkman number
Nr Thermal radiation parameter
λ Williamson fluid constant
Cs Concentration vulnerability

References

1. Chakrabarti, A.; Gupta, A.S. Hydromagnetic flow and heat transfer over a stretching sheet. Quart. J.
Appl. Math. 1979, 37, 73–78.

2. Sakiadis, B.C. Boundary layer behaviour on continuous moving solid surfaces. I. Boundary layer equations
for two-dimensional and axisymmetric flow. II. Boundary layer on a continuous flat surface. III. Boundary
layer on a continuous cylindrical surface. Am. Inst. Chem. Eng. J. 1961, 7, 26–28. [CrossRef]

3. Crane, L.J. Flow past a stretching sheet. Z. Appl. Math. Phys 1970, 21, 645–647. [CrossRef]
4. Gupta, P.S.; Gupta, A.S. Heat and mass transfer on a stretching sheet with suction or blowing. Can. J.

Chem. Eng. 1977, 55, 744–746. [CrossRef]
5. Elbashbeshy, E.M.A. Heat transfer over a stretching surface with variable surface a heat flux. J. Phys. D 1998,

31, 1951–1954. [CrossRef]
6. Abd El-Aziz, M. Radiation effect on the flow and heat transfer over an unsteady stretching sheet. Int. Commun.

Heat Mass Transf. 2009, 36, 521–524. [CrossRef]
7. Mukhopadyay, S. Effect of thermal radiation on unsteady mixed convection flow and heat treansfer over a

porous stretching surface in porous medium. Int. Commun. Heat Mass Transf. 2009, 52, 3261–3265. [CrossRef]

35



Appl. Sci. 2016, 6, 334

8. Shateyi, S.; Motsa, S.S. Thermal radiation effects on heat and mass transfer over an unsteady stretching
surface. Math. Probl. Eng. 2009, 2009, 13. [CrossRef]

9. Abd El-Aziz, M. Thermal-diffusion and diffusion-thermo effects on combined heat and mass transfer
by hydromagnetic three-dimensional free convection over a permeable stretching surface with radiation.
Phys. Lett. 2007, 372, 263–272. [CrossRef]

10. Hady, F.M.; Ibrahim, F.S.; Abdel-Gaied, S.M.; Eid, M.R. Radiation effect on viscous flow of a nanofluid and
heat transfer over a nonlinearly stretching sheet. Nanoscale Res. Lett. 2012, 7, 229. [CrossRef] [PubMed]

11. Pavlov, K.B. Magnetohydromagnetic flow of an incompressible viscous fluid caused by deformation of a
surface. Magn. Gidrodin. 1974, 4, 146–148.

12. Bianco, V.; Manca, O.; Nardini, S. Second Law Analysis of Al2O3-Water Nanofluid Turbulent Forced
Convection in a Circular Cross Section Tube with Constant Wall Temperature. Adv. Mech. Eng. 2013, 920278.
[CrossRef]

13. Nadeem, S.; Haq, R.U.; Noreen, S.A.; Khan, Z.H. MHD three-dimensional Casson fluid flow past a porous
linearly stretching sheet. Alex. Eng. J. 2013, 52, 577–582. [CrossRef]

14. Nadeem, S.; Ul Haq, R.; Lee, C. MHD flow of a Casson fluid over an exponentially shrinking sheet. Sci. Iran.
2012, 19, 1550–1553. [CrossRef]

15. Nadeem, S.; Ul Haq, R.; Akbar, N.S.; Lee, C.; Khan, Z.H. Numerical Study of Boundary Layer Flow and
Heat Transfer of Oldroyd-B Nanofluid towards a Stretching Sheet. PLoS ONE 2013, 8, e69811. [CrossRef]
[PubMed]

16. Nadeem, S.; Ul Haq, R.; Khan, Z.H. Numerical study of MHD boundary layer flow of a Maxwell fluid past a
stretching sheet in the presence of nanoparticles. J. Taiwan Inst. Chem. Eng. 2014, 45, 121–126. [CrossRef]

17. Elbashbeshy, E.M.A.; Bazid, M.A.A. Heat transfer over an unsteady stretching surface with internal heat
generation. Appl. Math. Comput. 2003, 138, 239–245. [CrossRef]

18. Grubka, L.J.; Bobba, K.M. Heat transfer characteristics of a continuous stretching surface with variable
temperature. J. Heat Transf. 1985, 107, 248–250. [CrossRef]

19. Chen, C.K.; Char, M.I. Heat transfer of a continuous, stretching surface with suction or blowing. J. Math.
Anal. Appl. 1988, 135, 568–580. [CrossRef]

20. Pop, I.; Gorla, R.S.R.; Rashidi, M. The effect of variable viscosity on flow and heat transfer to a continuous
moving flat plate. Int. J. Eng. Sci. 1992, 30, 1–6. [CrossRef]

21. Pantokratoras, A. Further results on the variable viscosity on flow and heat transfer to a continuous moving
flat plate. Int. J. Eng. Sci. 2004, 42, 1891–1896. [CrossRef]

22. Abel, M.S.; Khan, S.K.; Prasad, K.V. Study of visco-elastic fluid flow and heat transfer over a stretching sheet
with variable viscosity. Int. J. Non-Linear Mech. 2002, 37, 81–88. [CrossRef]

23. Makinde, O.D.; Mishra, S.R. On Stagnation Point Flow of Variable Viscosity Nano fluids Past a Stretching
Surface with Radiative Heat. Int. J. Appl. Comput. Math 2015. [CrossRef]

24. Mukhopadhyay, S.; Layek, G.C.; Samad, S.K.A. Study of MHD boundary layer flow over a heated stretching
sheet with variable viscosity. Int. J. Heat Mass Transf. 2005, 48, 4460–4466. [CrossRef]

25. Hayat, T.; Muhammad, T.; Shehzad, S.A.; Alsaedi, A. Soret and Dufour effects in three-dimensional flow
over an exponentially stretching surface with porous medium, chemical reaction and heat source/sink. Int. J.
Numer. Methods Heat Fluid Flow 2015, 25, 762–781. [CrossRef]

26. Alam, M.S.; Ferdows, M.; Ota, M.; Maleque, M.A. Dufour and Soret effects on steady free convection and
mass transfer flow past a semi-infinite vertical porous plate in a porous medium. Int. J. Appl. Mech. Eng.
2006, 11, 535–545.

27. Kafoussias, N.G.; Williams, E.W. Thermal-diffusion and diffusion thermo effects on mixed free-forced
convective and mass transfer boundary layer flow with temperature dependent viscosity. Int. J. Eng. Sci.
1995, 33, 1369–1384. [CrossRef]

28. Chamkha, A.J.; Ben-Nakhi, A. MHD mixed convection-radiation interaction along a permeable surface
immersed in a porous medium in the presence of Soret and Dufour’s effects. Heat Mass Transf. 2008, 44,
845–856. [CrossRef]

29. Afify, A.A. Similarity solution in MHD Effects of thermal diffusion and diffusion thermo on free convective
heat and mass transfer over a stretching surface considering suction or injection. Commun. Nonlinear Sci.
Numer. Simul. 2009, 14, 2202–2214. [CrossRef]

36



Appl. Sci. 2016, 6, 334

30. Be’g, O.A.; Bakier, A.Y.; Prasad, V.R. Numerical study of free convection magnetohydrodynamic heat
and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects.
Comput. Mater. Sci. 2009, 46, 57–65. [CrossRef]

31. El-Kabeir, S.M.M.; Chamkha, A.J.; Rashad, A.M.; Al-Mudhaf, H.F. Soret and Dufour effects on heat and mass
transfer by non-Darcy natural convection from a permeable sphere embedded in a high porosity medium
with chemically-reactive species. Int. J. Energy Technol. 2010, 2, 1–10.

32. Pal, D.; Mondal, H. Effects of Soret Dufour, chemical reaction and thermal radiation on MHD non-Darcy
unsteady mixed convective heat and mass transfer over a stretching sheet. Commun. Nonlinear Sci.
Numer. Simul. 2011, 16, 1942–1958. [CrossRef]

33. Khan, Y.; Wu, Q.; Faraz, N.; Yildirim, A. The effects of variable viscosity and thermal conductivity on a thin
film flow over a shrinking/stretching sheet. Comput. Math. Appl. 2011, 61, 3391–3399.

34. Aziz, R.C.; Hashim, I.; Alomari, A.K. Thin film flow and heat transfer on an unsteady stretching sheet with
internal heating. Meccanica 2011, 46, 349–357. [CrossRef]

35. Qasim, M.; Khan, Z.H.; Lopez, R.J.; Khan, W.A. Heat and mass transfer in nanofluid over an unsteady
stretching sheet using Buongiorno’s model. Eur. Phys. J. Plus 2016, 131, 1–16. [CrossRef]

36. Prashan, G.M.; Jagdish, T.; Abel, M.S. Thin film flow and heat transfer on an unsteady stretching sheet with
thermal radiation, internal heating in presence of external magnetic field. Phys. Flu. Dyn. 2016, 3, 1–16.

37. Ellahi, R.; Hassan, M.; Zeeshan, A. Aggregation effects on water base Al2O3—Nanofluid over permeable
wedge in mixed convection. Asia-Pac. J. Chem. Eng. 2016, 11, 179–186. [CrossRef]

38. Akbar, N.S.; Raza, M.; Ellahi, R. CNT suspended CuO + H2O nano fluid and energy analysis for the peristaltic
flow in a permeable channel. Alex. Eng. J. 2015, 54, 623–633. [CrossRef]

39. Akbar, N.S.; Raza, M.; Ellahi, R. Copper oxide nanoparticles analysis with water as base fluid for peristaltic
flow in permeable tube with heat transfer. Comput. Methods Progr. Biomed. 2016, 130, 22–30. [CrossRef]
[PubMed]

40. Shehzad, N.; Zeeshan, A.; Ellahi, R.; Vafai, K. Convective heat transfer of nanofluid in a wavy channel:
Buongiorno’s mathematical model. J. Mol. Liq. 2016, 222, 446–455. [CrossRef]

41. Zeeshan, A.; Hassan, M.; Ellahi, R.; Nawaz, M. Shape effect of nanosize particles in unsteady mixed
convection flow of nanofluid over disk with entropy generation. J. Process Mech. Eng. 2016, 1–9. [CrossRef]

42. Liao, S.J. Homotopy Analysis Method in Nonlinear Differential Equations; Higher education press: Beijing,
China, 2012.

43. Liao, S. Beyond Perturbation: Introduction to the Homotopy Analysis Method; Chapman & Hall/CRC: Boca Raton,
FL, USA, 2003.

44. Liao, S.J. An optimal homotopy-analysis approach for strongly nonlinear differential equations.
Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2003–2016. [CrossRef]

45. Liao, S. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 2004, 147, 499–513.
[CrossRef]

46. Abbasbandy, S.; Shirzadi, A. A new application of the homotopy analysis method: Solving the
Sturm—Liouville problems. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 112–126. [CrossRef]

47. Abbasbandy, S. Homotopy analysis method for heat radiation equations. Int. Commun. Heat Mass Transf.
2007, 34, 380–388. [CrossRef]

48. Abbasbandy, S. The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled
KdV equation. Phys. Lett. A 2007, 361, 478–483. [CrossRef]

49. Das, K. Effects of thermophoresis and thermal radiation on MHD mixed convective heat and mass transfer
flow. Afr. Math. Union Springer-Verl. 2012, 24, 511–524. [CrossRef]

50. Qasim, M. Soret and Dufour effects on the flow of an Erying-Powell fluid over a flat plate with convective
boundary condition. Eur. Phys. J Plus 2014, 129, 1–7. [CrossRef]

51. Mahesh, K.; Gireesha, B.J.; Rama, S.R.G. Heat and Mass Transfer in a Nanofluid Film on an Unsteady
Stretching Surface. J. Nanofluids 2015, 4, 1–8.

© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

37



Article

Slip Flow and Heat Transfer of Nanofluids over
a Porous Plate Embedded in a Porous Medium with
Temperature Dependent Viscosity and
Thermal Conductivity

Sajid Hussain 1, Asim Aziz 2,*, Taha Aziz 3 and Chaudry Masood Khalique 3

1 Department of Mathematics, Capital University of Science and Technology, Islamabad 44000, Pakistan;
prsajid@yahoo.com

2 College of Electrical and Mechanical Engineering, National University of Sciences and Technology,
Rawalpindi 46070, Pakistan

3 International Institute for Symmetry Analysis and Mathematical Modeling,
Department of Mathematical Sciences, North-West University, Mafikeng Campus,
Private Bag X 2046, Mmabatho 2735, South Africa; tahaaziz77@yahoo.com (T.A.);
Masood.Khalique@nwu.ac.za (C.M.K.)

* Correspondence: aaziz@ceme.nust.edu.pk; Tel.: +92-3325-464-647

Academic Editor: Rahmat Ellahi
Received: 20 September 2016; Accepted: 3 November 2016; Published: 14 December 2016

Abstract: It is well known that the best way of convective heat transfer is the flow of nanofluids
through a porous medium. In this regard, a mathematical model is presented to study the effects
of variable viscosity, thermal conductivity and slip conditions on the steady flow and heat transfer
of nanofluids over a porous plate embedded in a porous medium. The nanofluid viscosity and
thermal conductivity are assumed to be linear functions of temperature, and the wall slip conditions
are employed in terms of shear stress. The similarity transformation technique is used to reduce
the governing system of partial differential equations to a system of nonlinear ordinary differential
equations (ODEs). The resulting system of ODEs is then solved numerically using the shooting
technique. The numerical values obtained for the velocity and temperature profiles, skin friction
coefficient and Nusselt’s number are presented and discussed through graphs and tables. It is shown
that the increase in the permeability of the porous medium, the viscosity of the nanofluid and the
velocity slip parameter decrease the momentum and thermal boundary layer thickness and eventually
increase the rate of heat transfer.

Keywords: nanofluids; variable viscosity; variable thermal conductivity; partial slip; heat transfer;
porous plate

1. Introduction

The heat transfer due to fluid flow is an important factor in problems in industries, such as
heat exchangers, the recovery of petroleum resources, fault zones, catalytic reactors, cooling systems,
electronic equipment manufacturing, etc. The heat transfer characteristics in the boundary layer
are influenced by a number of factors, including flow geometry, the viscosity of a fluid, thermal
conductivity, bounding surface characteristics, boundary conditions, flow medium and the orientation
and intensity of the applied magnetic field [1–3]. Maxwell first proposed that the thermal conductivity
of the fluid can be increased by including solid particles in the flow domain [4]. Following Maxwell,
extensive research has been conducted to study the heat transfer characteristics of fluid flow in
a porous medium. It is beyond the scope of this work to revisit the vast amount of literature on
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different Newtonian and non-Newtonian fluids’ flow within a porous medium. A comprehensive
literature on forced/natural convective heat transfer in porous medium can be found in [5,6].

The introduction of nanofluids by Choi [7] offered new possibilities of heat transfer enhancement,
and a number of studies were conducted to study the effects of the thermal properties (mainly
thermal conductivity), viscosity and convective heat transfer performance of nanofluids. Experiments
performed by Wang et al. [8] and Keblinski et al. [9] showed that the effective thermal conductivity
of nanofluids increases under macroscopically stationary conditions. Buongiorno [10] performed
a detailed analysis on convective transport in nanofluids. A comprehensive literature survey on
transport and heat transfer characteristics of nanofluids was presented in the review articles of
Keblinski et al. [11] and Wang and Mujumdar [12]. It has been demonstrated that nanofluids can have
significantly better heat transfer characteristics than the conventional fluids depending upon the type,
size and concentration of nanoparticles and the nanofluids’ transport through the porous media.

Nield and Kuznetsov [13,14] first studied the effects of porous media, thermophoresis and
Brownian motion on the convective heat transfer of nanofluids. Sun and Pop [15] found the numerical
solution of the steady-state free convection heat transfer behavior of nanofluids inside a triangular
enclosure saturated by a porous media. It was observed that the heat transfer rate increases with
the increase in nanoparticle volume concentration at a low Rayleigh number, whereas the opposite
trend was observed for a high Rayleigh number. Khan and Aziz [16] studied the double-diffusive
free convection from a vertical plate to a porous medium saturated with a binary base nanofluid.
The influence of the internal heat source on the onset of Darcy–Brinkman convection in a porous layer
filled with a nanofluid was presented by Yadav et al. [17]. They showed that the porous medium has
stabilizing effects on the modeled system. Khan et al. [18] studied the free convection of nanofluids
along a vertical plate in porous media. Servati et al. [19] studied numerically the force convective
MHDflow of a nanofluid in a channel partially filled with porous media. The steady mixed convection
boundary layer flow of nanofluids past a vertical flat plate embedded in porous media was discussed
by Ahmad and Pop [20]. Recently, Cimpean and Pop [21] presented a detailed study on the flow of
three different nanofluids (Cu−water,Al2O3−water and TiO2−water) in an inclined channel saturated
by a porous media. A review article detailing the literature on the convective heat transfer of nanofluids
in porous media and some recent investigations on nanofluids models and related topics can be found
in [22–26].

It can be seen from the available literature that limited or no attention has been given to the slip
wall condition and the effects of variable thermophysical properties on the flow and heat transfer
characteristics of nanofluids. Wall slip has far-reaching implications for many branches of science,
engineering and industry. These include rheometric measurements, material processing and fluid
transportation [27,28]. Moreover, many processes in engineering occur at high temperature, and
it is well known that the thermophysical properties of fluids may change with temperature and
become important for the design of reliable equipment, nuclear plants, gas turbines and various
propulsion devices or aircraft, missiles, satellites and space vehicles. On the basis of these applications,
Khan et al. [29] studied the flow and heat transfer of carbon nanotubes (CNTs) subjected to Navier slip
and uniform heat flux boundary conditions. Zheng et al. [30] extended the idea and studied the effects
of velocity slip and temperature jump on MHD flow and heat transfer of nanofluids over a porous
shrinking sheet. Moreover, Zhenga et al. [31] presented an investigation for the flow and radiation heat
transfer of a nanofluid over a porous sheet with velocity slip and temperature jump in a porous medium.
Uddin et al. [32] analyzed numerically the g-Jittermixed convective unsteady slip flow of nanofluids
past a permeable linear porous sheet embedded in a Darcian porous media with variable viscosity.
Noghrehabadi et al. [33] observed the effects of partial slip boundary conditions on the flow and heat
transfer of nanofluids. Bhaskar et al. [34] carried out an analysis to investigate the influence of variable
thermal conductivity and partial velocity slip on the hydromagnetic two-dimensional boundary layer
flow of nanofluids over a porous sheet with a convective boundary condition. Noghrehabadi et al. [35]
carried out a study on the effects of variable thermal conductivity and viscosity on the natural
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convective heat transfer of nanofluids over a vertical plate. Comprehensive studies and lists of
important references on the wall slip condition and variable thermophysical properties of nanofluids
are presented in [36–41].

In the present work, a mathematical model is presented to study the effects of partial slip, variable
viscosity and variable thermal conductivity on steady boundary layer flow of a nanofluid over a
porous sheet in a Darcy-type porous medium. The wall slip conditions are employed in terms of shear
stress, with viscosity and thermal conductivity as linear functions of temperature. Similarity solutions
are obtained, and the reduced system of ordinary differential equations is solved numerically using
the shooting method. The numerical results obtained for the velocity and temperature profiles are
influenced appreciably by the presence of variable viscosity, variable thermal conductivity, porous
medium, velocity and temperature slip and suction/injection parameters. The effects of various
parameters on velocity and temperature profiles, as well as skin friction and the rate of heat transfer
are presented and discussed through graphs and tables.

2. Mathematical Model of the Problem

We consider the steady two-dimensional laminar boundary layer flow with heat transfer of
an incompressible nanofluid over a semi-infinite porous plate in a porous medium. The surface of the
plate is at constant temperature Tw and admits the partial slip condition. The viscosity and the thermal
conductivity of the nanofluid are considered to vary linearly with temperature. The x-axis is along the
surface of the plate, and the y-axis is perpendicular to it. All body forces are neglected, and there is
a constant suction/injection velocity Vw at the surface of the plate. The flow far away from the plate is
uniform and in the direction parallel to the plate. The velocity and temperature outside the boundary
layer are u∞ and T∞, respectively. The geometry of the flow model is given in Figure 1.

Figure 1. Schematic representation of the geometry.

In view of the above assumptions, the continuity, momentum and energy equations for the flow
along with heat transfer are:

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

=
1

ρn f

∂

∂y

[
μn f (T)

∂u
∂y

]
− μn f (T)

ρn f k
(u − u∞), (2)

u
∂T
∂x

+ v
∂T
∂y

=
1

(ρCp)n f

∂

∂y

[
κn f (T)

∂T
∂y

]
. (3)
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In the above system of equations, u and v represent velocities in the x and y directions,
respectively; k is the permeability of the medium; T is the nanofluid temperature; μn f (T) the nanofluid
temperature-dependent viscosity; ρn f the nanofluid density; (Cp)n f is the specific heat at constant
pressure; and κn f (T) is the thermal conductivity of the nanofluid.

The appropriate partial slip boundary conditions for velocity and temperature are:

u = L1
∂u
∂y

, v = Vw at y = 0; u → u∞ as y → ∞, (4)

T = Tw + D1
∂T
∂y

at y = 0; T → T∞ as y → ∞. (5)

Here, L1 = LRex is the velocity slip factor, and D1 = D
√

LRex is the thermal slip factor with L and
D the initial values of velocity and thermal slip factors; and Rex = u∞x

ν f
is the local Reynolds’s number

with ν f =
μ f
ρ f

the kinematic viscosity of the base fluid. Vw shows the mass transfer at the surface with
Vw > 0 for injection and Vw < 0 for suction.

Following Maxwell [4], Bhaskar et al. [34] and Arunachalam [42], the nanofluid’s physical
parameters are taken as:

ρn f = (1 − φρ f + ρs), (ρCp)n f = (1 − φ(ρCp) f + φ(ρCp)s), (6)

μn f = μ∗
n f

[a + b(Tw − T)] , κn f (T) = κ∗n f

[
1 + ε

T − T∞

Tw − T∞

]
, (7)

μ∗
n f

= μ f (1 − φ)−2.5,
κ∗n f

κ f
=

(κs + 2κ f )− 2φ(κ f − κs)

(κs + 2κ f ) + φ(κ f − κs)
. (8)

In Equations (6)–(8), φ is the nanoparticle volume fraction coefficient, ρ f the density of the base
fluid, ρs the density of the nanoparticles, (Cp) f the specific heat capacity of the base fluid, (Cp)s the
specific heat capacity of the nanoparticles, μ∗

n f
and κ∗n f

the constant values of the coefficient of viscosity
and thermal conductivity of the nanofluid, respectively, and a, b and ε the constants with b > 0, μ f , κ f
and κs the coefficient of viscosity, thermal conductivity of base fluid and nanoparticles, respectively.

3. Solution of the Problem

We introduce the relation for u, v and T as:

u =
∂ψ

∂y
, v = −∂ψ

∂x
, θ(η) =

T − T∞

Tw − T∞
, (9)

where the stream function ψ(η) and dimensionless similarity variable η are defined by (see, for
example, Bhattacharyya et al. [43])

ψ = ν f R
1
2
ex f (η), η =

y
x

R
1
2
ex . (10)

Equations (9) and (10) together with Equations (6)–(8) reduce the boundary value
problem (2)–(5) to:

(a + A − Aθ) f ′′′ + (1 − φ)2.5(1 − φ + φ
ρs

ρ f
)(

1
2

f f ′′)− Aθ′ f ′′ − k∗(a + A − Aθ)( f ′ − 1) = 0, (11)

(1 + εθ)θ′′ + εθ′2 + Pr(
k f

kn f

)

(
1 − φ + φ

(ρCp)s

(ρCp) f

)(
1
2

f θ′
)
= 0, (12)

f (η) = S, f ′(η) = δ f ′′(η) at η = 0; f ′(η) → 1 as η → ∞ (13)
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θ(η) = 1 + Δθ′(η) at η = 0; θ(η) → 0 as η → ∞, (14)

where A = b(Tw − T∞) is the viscosity parameter, k∗ = 1
Dax Rex

is the permeability parameter,

Dax = k
x2 is the local Darcy number, Pr =

ν f
α f

is the Prandtl number, α f =
k f

(ρCp) f
is the diffusivity

parameter, ε is the thermal conductivity parameter, δ = Lu∞
ν f

is the velocity slip parameter and

Δ = Du∞
ν f

is the thermal slip parameter.
The important physical quantities of interest are the skin friction coefficient CF (rate of shear stress)

and the local Nusselt number Nux (rate of heat transfer at the surface). The skin friction coefficient and
the Nusselt number are defined as:

CF =
τw

ρU2
w

, Nux =
xqw

k f (Tw − T∞)
, (15)

where the local wall shear stress τw and the heat transfer from the plate qw are given by:

τw = −μn f (
∂u
∂y

)y=0, qw = κn f (
∂T
∂y

)y=0 (16)

with u the flow velocity parallel to the porous plate and y the distance to the plate. Using Equation (16),
the dimensionless forms of Equation (15) become:

Cf R1/2
ex (1 − φ)2.5 = − f ′′(0), Nux R−1/2

ex (
k f

kn f

) = −θ′(0). (17)

4. Numerical Method for Solution

The nonlinear coupled ordinary differential Equations (11) and (12) subject to boundary
conditions (13) and (14) form the two-point boundary value problem and are solved numerically
using the shooting method. In order to use the shooting method, first we convert (11) and (12) to a
system of first order differential equations:

f ′ = p, p′ = q, θ′ = z, (18)

q′ = 1
(a + A − Aθ)

[
(1 − φ)2.5(1 − φ + φ

ρs

ρ f
)(−1

2
f q) + Azq + k∗(a + A − Aθ)(p − 1)

]
, (19)

z′ = 1
(1 + εθ)

[
−εz2 − Pr(

k f

kn f

)

(
1 − φ + φ

(ρCp)s

(ρCp) f

)(
1
2

f z
)]

. (20)

The boundary conditions become:

f (0) = S, p(0) = 1 + δq(0), θ(0) = 1 + Δz(0). (21)

In order to solve the initial value problem (19)–(21) with the shooting method, we require an initial
guess for q(0) and z(0). The required values of q(0) and z(0) are chosen randomly, and numerical
solutions are obtained using fourth order Runge–Kutta method. The numerical values for q(0) and
z(0) are adjusted using Newton’s method to give better approximation to the solution. The step size is
taken as 0.01, and the process is repeated until the solutions achieve the accuracy of 10−6. To ensure
the numerical accuracy, we have compared our results with the results of Bhattacharyya et al. [43]
for velocity and temperature profiles with A = ε = φ = 0, a = 1, S = 0.2, δ = Δ = 0.1 and Pr = 0.3.
The comparison is shown in Figure 2 and is found to be in excellent agreement.
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Figure 2. Comparison of the results for the velocity f ′(η) profiles for different values of permeability
parameter k∗, with Bhattachaaya et al. [43].

The thermophysical properties of the base fluid and nanoparticles are given in Table 1

Table 1. Thermophysical properties of base fluid and nanoparticles [44].

Physical Properties Units
Base Fluid Nanoparticles (Solid)

Water Cu (300-K)

Density ρ (kg/m3) 997.1 8933
Specific heat Cp (J/kg·K) 4179 385

Thermal conductivity κ (W/m·K) 0.613 401

5. Numerical Results and Discussion

In this section, the numerical results calculated for the velocity and temperature profiles are
presented through graphs and tables. The computations are performed to study the effects of the
variation of permeability parameter k∗, nanofluid volume concentration parameter φ, velocity slip
parameter δ, thermal slip parameter Δ, suction and injection parameter S, viscosity parameter A and
variable thermal conductivity ε on the velocity and temperature profiles of the Cu-water nanofluid.
The behavior of the skin friction coefficient and Nusselt number with the variation in physical
parameters is also shown in Table 2.
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Table 2. Values of skin friction = − f ′′(0) and Nusselt number = −θ′(0).

κ∗ A φ ε S δ Δ − f ′′(0) −θ′(0)

a = 1

0.2 0.2 0.2 0.3 0.2 0.1 0.1 0.5844 0.2513
0.8 0.9158 0.2678

0.1 0.2 0.2 0.3 0.1 0.1 0.1 0.6139 0.6594
0.4 0.8145 0.6951
0.9 1.0470 0.7290

0.4 0.1 0.2 0.3 0.1 0.1 0.1 0.7858 0.7996
0.6 0.8780 0.8098
1.5 1.0186 0.8239

0.4 0.2 0.0 0.3 0.1 0.1 0.1 0.7815 0.9284
0.05 0.7880 0.8621
0.2 0.8145 0.6951

0.4 0.2 0.2 0.1 0.1 0.1 0.1 0.8158 0.7709
0.4 0.8139 0.6639
0.8 0.8115 0.5693

0.4 0.2 0.2 0.3 0.1 0.1 0.1 0.7742 0.6135
0.2 0.8145 0.6951
0.3 0.8553 0.7794

0.4 0.2 0.2 0.3 0.2 0.1 0.1 0.8145 0.6951
0.3 0.7163 0.7404
0.6 0.6007 0.7869

0.4 0.2 0.2 0.3 0.2 0.1 0.1 0.8145 0.6951
0.3 0.8052 0.6188
0.6 0.7949 0.5292

The influence of the permeability parameter k∗ on the velocity and temperature profiles in the
presence of slip at the boundary is depicted in Figures 3 and 4. The velocity and temperature profiles
are plotted for several values of permeability parameter k∗ for the Cu-water nanofluid. It is observed
that the velocity of the nanofluid increases with the increase in the permeability of the medium
and consequently decreases the thickness of the momentum boundary layer. This is due to the
fact that the increase in permeability reduces the magnitude of the Darcian body force (inversely
proportional to the permeability) and enhances the motion of the fluid in the boundary layer. In other
words, progressively less drag is experienced by the flow, and flow retardation thereby decreases.
From Figure 4, it is noticed that the temperature θ(η) at a fixed distance from the plate decreases with
the increase in k∗. The permeability parameter is inversely proportional to the density of the base fluid,
hence the increase in k∗ causes a decrease in the density and temperature of the nanofluid within the
boundary layer. In conclusion, the increase in the permeability of the porous medium decreases the
thickness of momentum and thermal boundary layers and eventually increases the heat transfer rate.
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Figure 3. Velocity f ′(η) profiles for different values of permeability parameter k∗.

Figure 4. Temperature θ(η) profiles for different values of permeability parameter k∗.

The effect of nanoparticle volume concentration parameter φ on the velocity and temperature
profiles of the Cu-water nanofluid is shown in Figures 5 and 6. It is observed that the velocity of
the fluid decreases, whereas the temperature of the nanofluid increases with the increase in volume
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concentration parameter φ. This illustrates the agreement with the physical behavior of the nanofluids,
i.e., the increase in the volume of nanoparticles causes an increase in the thermal conductivity of the
fluid, which leads to the increase in the thickness of the thermal boundary layer.
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Figure 5. Velocity f ′(η) profiles for different values of volume fraction coefficient φ.
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Figure 6. Temperature θ(η) profiles for different values of volume fraction coefficient φ.

Figures 7 and 8, respectively, show the nanofluid velocity and temperature profiles for different
values of viscosity parameter A. The comparison of curves in Figure 7 shows that the velocity of
the nanofluid initially increases with the increase in viscosity parameter A. This increase in velocity
corresponds to a reduction in the thickness of the momentum boundary layer. Moreover, the cross-over
point is also observed for velocity profiles in Figure 7. The velocity profiles exhibit opposite behaviors
after crossing the cross-over point, that is the velocity decreases with the increasing values of viscosity
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parameter A after the crossing-over point. This corresponds to an increase in the thickness of the
boundary layer. It is observed from Figure 8 that the increase in the viscosity parameter enhances the
heat transfer rate and decreases the thickness of the thermal boundary layer. The impact of A on the
velocity profiles is more pronounced than on the temperature profiles.
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Figure 7. Velocity f ′(η) profiles for different values of viscosity parameter A.
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Figure 8. Temperature θ(η) profiles for different values of viscosity parameter A.

Figures 9 and 10 depict the velocity and temperature profiles for the specified values of thermal
conductivity parameter ε. It is noticed that the variation in ε greatly affects the temperature profiles,
as compared to the velocity profiles. The variation in velocity profiles show an opposite effect as
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the variation in viscosity parameter A, i.e., the increase in thermal conductivity initially causes the
decrease in fluid velocity and shows the opposite behavior after the cross-over point; whereas an
increase in ε results in an increase in thermal conductivity, thereby raising the fluid temperature across
the boundary layer. It would also increase the thermal boundary layer thickness.

Figure 9. Velocity f ′(η) profiles for different values of thermal conductivity parameter ε.
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Figure 10. Temperature θ(η) profiles for different values of ε.

In Figure 11, the effect of velocity slip parameter δ on the velocity profile of the Cu-water nanofluid
is presented. The comparison of the curves shows that the increase in the velocity slip at the boundary
increases the fluid velocity within the boundary layer. This is due to the positive value of the fluid
velocity adjacent to the surface of the plate and results in a reduction of the momentum boundary
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layer thickness. Moreover, the increase in magnitude of the slip parameter allows more fluid to slip
past the plate, and accordingly, the flow through the boundary layer will increase. The temperature
profiles in Figure 12 show the decrease in temperature and thermal boundary layer thickness with an
increase in velocity slip parameter δ.
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Figure 11. Velocity f ′(η) profiles for different values of velocity slip parameter δ.
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Figure 12. Temperature θ(η) profiles for different values of velocity slip parameter δ.

Figure 13 depicts the decrease in the thickness of the thermal boundary layer with the increase
in thermal slip parameter Δ. This is because the increase in the thermal slip parameter causes less
transfer of heat from the sheet to the fluid, which leads to a decrease in the boundary layer temperature.
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Moreover, the momentum equation is dependent on θ(η), but no significant effect of thermal slip
parameter Δ on the velocity profiles is noticed.
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Figure 13. Temperature θ(η) profiles for different values of thermal slip parameter Δ.

The behavior of the velocity and temperature distribution for variation of suction (S > 0)
and blowing (S < 0) parameter in the presence of slip conditions at the boundary are plotted in
Figures 14−17. For S > 0, the fluid velocity increases as the fluid particles are sucked in the porous
wall, which in turn reduces the thickness of the momentum boundary layer. On the other hand, for
the case of blowing, i.e., S < 0, the opposite trend is observed. When suction S > 0 is increased, it
refers to bringing the fluid close to the wall. This causes a decrease in the temperature profile and also
decreases the thermal boundary layer. This entire phenomenon causes an increase in the rate of heat
transfer. An opposite trend can be seen for the case of blowing S < 0.
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Figure 14. Velocity f ′(η) profiles for different values of suction parameter S > 0.
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Figure 15. Temperature θ(η) profiles for different values of suction parameter S > 0.
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Figure 16. Velocity f ′(η) profiles for different values of blowing parameter S < 0.

The behavior of the skin friction coefficient and Nusselt number with the variation in different
thermophysical parameters is shown in Table 2. It is evident that the skin friction coefficient increases
with increasing values of permeability parameter k∗, viscosity parameter A, nanofluid volume
concentration parameter φ and suction parameter S; whereas a decreasing trend is observed for
increasing values of thermal conductivity parameter ε, velocity slip parameter δ and thermal slip
parameter Δ. The increasing values of the skin friction coefficient correspond to the thinning of the
velocity boundary layer; whereas the decreasing values of the skin friction coefficient correspond to
fluid velocity at the surface approaching the free stream velocity. The negative value of the temperature
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gradient at the plate −θ′(0) is proportional to the rate of heat transfer at the surface of the plate. The rate
of heat transfer at the surface is increasing for increasing values of permeability parameter k∗, viscosity
parameter A, suction parameter S and velocity slip parameter δ. The rate of heat transfer decreases
with the increase in the volume concentration parameter φ, the thermal conductivity parameter ε and
the thermal slip parameter Δ.
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Figure 17. Temperature θ(η) profiles for different values of blowing parameter S < 0.

6. Conclusions

In the present research, we investigated the slip effects on the steady flow and heat transfer
of nanofluids over a porous sheet embedded in a Darcy-type porous medium. The viscosity and
the thermal conductivity of the nanofluids were considered as linear functions of temperature, and
wall slip conditions were employed in terms of shear stress. The governing system of equations was
reduced to the ordinary differential equations by suitable similarity transformations, and the reduced
system was solved numerically using the shooting method. The influence of key thermophysical
parameters on the velocity and temperature profiles, as well as on the skin friction coefficient and
Nusselt number were presented and discussed through graphs and tables. The present model exploited
a number of simplifications in order to focus on the principal effects of permeability, variable viscosity,
variable thermal conductivity, nanofluid volume concentration and slip parameters. In our work, we
showed that the increase in the permeability of the porous medium, the viscosity of the nanofluids
and the velocity slip parameter decreased the momentum and thermal boundary layer thickness and
eventually increased the rate of heat transfer; whereas the opposite trend was observed for the increase
in the thermal conductivity parameter. The present simplified model can be generalized to reveal the
effects of effective dynamic viscosity on the slip flow and heat transfer of nanofluids for the viscosity
models proposed by Abu-Nada [45], Khanafer and Vafai [46] and Corcione [47]. Moreover, the analysis
can be extended to include the results for different water-based nanofluids, and a comparison can be
generated on the heat transfer characteristics of different nanofluids. Clearly, there is an opportunity
to consider/extend this problem with non-Newtonian nanofluid models and to perform experimental
work on these systems.
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Abstract: The studies of classical nanofluids are restricted to models described by partial differential
equations of integer order, and the memory effects are ignored. Fractional nanofluids, modeled by
differential equations with Caputo time derivatives, are able to describe the influence of memory on
the nanofluid behavior. In the present paper, heat and mass transfer characteristics of two water-based
fractional nanofluids, containing nanoparticles of CuO and Ag, over an infinite vertical plate with a
uniform temperature and thermal radiation, are analytically and graphically studied. Closed form
solutions are determined for the dimensionless temperature and velocity fields, and the corresponding
Nusselt number and skin friction coefficient. These solutions, presented in equivalent forms in terms
of the Wright function or its fractional derivatives, have also been reduced to the known solutions of
ordinary nanofluids. The influence of the fractional parameter on the temperature, velocity, Nusselt
number, and skin friction coefficient, is graphically underlined and discussed. The enhancement
of heat transfer in the natural convection flows is lower for fractional nanofluids, in comparison
to ordinary nanofluids. In both cases, the fluid temperature increases for increasing values of the
nanoparticle volume fraction.

Keywords: free convection; thermal radiation; fractional nanofluids; exact solutions

1. Introduction

Natural convection flows have been extensively studied due to their multiple engineering
applications. Such flows over an infinite plate are usually met in different engineering processes,
including petroleum resource gas production, and geothermal reservoirs, thermal insulation, etc.
(see [1–3]). The effects of thermal radiation are also important in geophysics, and geothermic, chemical,
and ceramics processing, and they have been investigated by many researchers. A short presentation
of the main results, up until 2007, is given by Ghosh and Beg [4], who studied the convective radiative
heat transfer over a hot vertical surface in porous medium. Moreover, the effects of thermal radiation
on nanofluid flows have been studied by many scholars. Mondal et al. [5] considered the unsteady
magneto-hydrodynamic axi-symmetric stagnation-point flow over a shrinking sheet with Navier
slip, and the temperature-dependent thermal conductivity. Magneto-hydrodynamic (MHD) flows
of nanofluids, with radiation heat transfer over a flat plate with a variable heat flux and first-order
chemical reaction, were studied by Zhang et al. [6]. A numerical study on Cu-water and Ag-water
nanofluids, focusing on the radiation effects over a stretching sheet, was made by Abd Elazem et al. [7].
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Nowadays, it is well known that one way of enhancing the thermal conductivity of fluids is by
suspending the metallic particles, such as alumina, gold, copper, iron, or titanium, in fluids [8]. These
particles, also called nanoparticles, have a diameter of less than 100 nm and the obtained solution is
named nanofluid. The concept of a nanofluid seems to have been introduced by Choi [9], and based
on his work, many researchers have focused their attention on the heat transfer in natural convection
flows of nanofluids. Khan and Aziz [10] have studied the natural convection flow of a nanofluid over
a vertical plate with a uniform surface heat flux. Turkyilmazoglu [11] provided exact solutions for the
MHD slip flow of a nanofluid over a stretching/shrinking sheet, while Bachok et al. [12] studied the
heat transfer characteristics on a moving plate in a nanofluid. Interesting exact solutions have also
been obtained by Turkyilmazoglu and Pop [13], for the velocity and temperature fields corresponding
to the natural convection flow of some nanofluids, past an infinite vertical plate with radiation effects.
Radiation and magnetic effects on the natural convection flow of a nanofluid, past an infinite vertical
plate with a heat source, have been studied by Mohankrishna et al. [14]. Ellahi [15] studied the effects of
MHD and temperature-dependent viscosity on the flow of a non-Newtonian nanofluid in a pipe, while
an analysis of the flow and heat transfer of water and ethylene glycol-based Cu nanoparticles between
two parallel disks with suction/injection effects, has been provided by Rizwan Ul Haq et al. [16].
Of course, the list of such studies can continue, but we close it with some of the most interesting
analytical and numerical results that have been obtained in [17–27].

However, none of these papers took into consideration the fractional derivatives in their governing
equations, although the fractional models have been found to be quite flexible in describing the complex
behavior of many materials. More recently, it seems that fractional partial differential equations may
be used to describe some physical phenomena more accurately, when compared to the corresponding
partial differential equations. Our interest here is to provide exact solutions for the temperature and
velocity fields corresponding to the radiative natural convection flow of fractional nanofluids over an
infinite vertical plate with heat and mass transfer, and to investigate the enhancement of heat transfer
in such a flow, utilizing the fractional model. The associated skin friction coefficient and Nusselt
number will be also determined. These solutions, which are presented in equivalent forms in terms
of the Wright functions or its fractional derivatives, are reduced to similar solutions, corresponding
to ordinary nanofluids [13]. Finally, the influence of the fractional parameter on the thermal and
hydrodynamic response of physical interest, is graphically underlined and discussed.

2. Statement of the Problem

Let us consider the unsteady free convection flow and heat transfer of a nanofluid, modeled by
the Caputo time-fractional derivative, past an infinite vertical plate situated in the (x1, z1)-plane of a
fixed Cartesian coordinate system Ox1y1z1. At the initial moment t1 = 0, the fluid and the plate are
at rest, with a constant ambient temperature T∞. We also consider the radiation effect and assume
the radiative heat flux to be applied, perpendicular to the plate. Since the plate is infinite, all of the
physical quantities describing the fluid motion are functions of y1 and t1. The fluid is a water-based
nanofluid containing nano particles of CuO or Ag, whose thermo-physical properties are given in
Table 1 [13,28].

Table 1. Thermo-physical properties of water and nanoparticles.

Basic Fluid/Nanoparticles ρ (Kg/m3) Cp(J/Kg K) k (W/m·K) β × 105 (1/K)

Pure water 997.1 4179 0.613 21
Copper oxide (CuO) 6320 531.8 76.5 1.80

Silver (Ag) 10,500 235 429 1.89
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Assuming a small difference between the fluid temperature T(y1, t1) and the stream temperature
T∞, and adopting the Rosseland approximation [5], the radiative heat flux qr(y1, t1) can be linearized to:

qr(y1, t1) = −16σ∗T∞
3

3k∗
∂T(y1, t1)

∂y1
, (1)

where σ∗ is the Stefan-Boltzman constant and k∗ is the mean absorption coefficient.
In the following, we consider the nanofluid model proposed by Tiwari and Das [29], and take

into consideration the usual Boussinesq’s approximation. In this case, the governing equations can be
written as [13]:

ρn f
∂u1(y1, t1)

∂t1
= μn f

∂2u1(y1, t1)

∂y1
2 + g(ρβ)n f [T(y1, t1)− T∞]; y1, t1 > 0, (2)

(ρcp)n f
∂T(y1, t1)

∂t1
= kn f (1 +

16σ∗T∞
3

3kn f k∗ )
∂2T(y1, t1)

∂y1
2 ; y1, t1 > 0. (3)

If no slipping exists between the fluid and the plate, the appropriate initial and boundary
conditions are:

u1(y1, 0) = 0, T(y1, 0) = T∞; y1 ≥ 0, (4)

u1(0, t1) = 0, T(0, t1) = Tw; t1 > 0, (5)

u1(y1, t1) → 0, T(y1, t1) → 0 as y1 → ∞. (6)

In the above relations, u1(y1, t1) is the fluid velocity in the x1-vertical direction, Tw is the constant
plate temperature (Tw > T∞ or Tw < T∞ corresponds to the heated or cooled plate, respectively), g is
the acceleration due to gravity, ρn f is the density of the nanofluid, μn f is the dynamic viscosity of the
nanofluid, and βn f is the thermal expansion coefficient of the nanofluid. Their expressions, as well as
the expression of (ρcp)n f , are given by:

ρn f = (1 −ϕ)ρ f +ϕρs, μn f =
μ f

(1 −ϕ)2.5 , (7)

(ρβ)n f = (1 −ϕ)(ρβ) f +ϕ(ρβ)s, (ρcp)n f = (1 −ϕ)(ρcp) f +ϕ(ρcp)s (8)

where ϕ is the nanoparticle volume fraction, ρ f is the density of the base fluid, ρs is the density of the
solid particle, and cp is the specific heat at constant pressure. The effective thermal conductivity of the
nanofluid, corresponding to the Hamilton and Crosser model, is given by [28,30]:

kn f

k f
=

ks + 2k f − 2ϕ(k f − ks)

ks + 2k f +ϕ(k f − ks)
, (9)

where kn f , k f , and ks are the thermal conductivities of the nanofluid, the fluid, and the solid particles,
respectively.

Next, the non dimensional variables and functions are introduced as:

t =
ν f

L2 t1, y =
y1

L
, u =

L
ν f

u1, θ =
T − T∞

Tw − T∞
, L =

[
ν f

2

gβ f (Tw − T∞)

]1/3

, (10)

Equations (2)–(6) take simplified dimensionless forms, as follows:

∂u(y, t)
∂t

=
1
a1

∂2u(y, t)
∂y2 + a2θ(y, t); y, t > 0 (11)
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∂θ(y, t)
∂t

=
1
a3

∂2θ(y, t)
∂y2 ; y, t > 0, (12)

u(y, 0) = 0, θ(y, 0) = 0; y ≥ 0, (13)

u(0, t) = 0, θ(0, t) = 1; t > 0, (14)

u(y, t) → 0, θ(y, t) → 0 as y → ∞, (15)

where:

a1 = (1 −ϕ)2.5[(1 −ϕ) +ϕ
ρs
ρ f
], a2 =

1−ϕ+ϕ
(ρβ)s
(ρβ) f

1−ϕ+ϕ
ρs
ρ f

,

a3 = Pr
1−ϕ+ϕ

(ρcp)s
(ρcp) f

kn f
k f

+Nr
, Pr =

μ f cp f
k f

, Nr = 16σ∗T∞
3

3k∗k f
,

(16)

where Pr is the Prandtl number and Nr is the radiation parameter.
The fractional model of the nanofluid is described by the fractional differential equations:

cDα
t u(y, t) =

1
a1

∂2u(y, t)
∂y2 + a2θ(y, t); y, t > 0, (17)

cDα
t θ(y, t) =

1
a3

∂2θ(y, t)
∂y2 ; y, t > 0, (18)

together with the initial and boundary conditions given by Equations (13)–(15). The operator cDα
t

represents the Caputo time-fractional derivative, defined as [31]:

cDα
t u(y, t) =

1
Γ(1 − α)

t∫
0

(t − s)−α ∂u(y, s)
∂s

ds ; 0 ≤ α < 1. (19)

The Caputo derivative is:

L{cDα
t u(y, t)}(q) = qαu(y, q)− qα−1u(y, 0) i f u(y, q) = L{u(y, t)}(q) (20)

and:

lim
α→1

cDα
t u(y, t) =

∂u(y, t)
∂t

(21)

3. Solution of the Problem

In order to determine the solution of the fractional partial differential Equations (17) and (18),
with the initial and boundary conditions (13)–(15), the Laplace transform technique will be used.
Equation (18) is not coupled to the momentum equation. Consequently, we shall firstly determine the
temperature field.

3.1. Determination of the Temperature Field

Applying the Laplace transform to Equation (18), and bearing in mind the corresponding initial
and boundary conditions, we find that:

a3qαθ(y, q) =
∂2θ(y, q)

∂y2 ; y > 0, (22)
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where q is the transform parameter and the Laplace transform θ(y, q) of θ(y, t) has to satisfy the
following conditions:

θ(0, q) =
1
q

; θ(y, q) → 0 as y → ∞. (23)

The solution to the problems (22) and (23) is:

θ(y, q) =
1
q

exp
(−y
√

a3qα
)
; y > 0. (24)

Applying the inverse Laplace transform to Equation (24), and using Equation (A1) from the
Appendix A, we find that:

θ(y, t) = Ψ
(

1,
−α

2
;−y

√
a3t−

α
2

)
for 0 < α ≤ 1, (25)

where:

Ψ(a,−b; z) =
∞

∑
n=1

zn

n!Γ(a − nb)
; b ∈ (0, 1), (26)

is the Wright function [32]. For α = 1, Equation (25) becomes:

θ(y, t) = er f c
(

y
√

a3

2
√

t

)
; y, t > 0. (27)

Of course, a simple analysis clearly shows that this result is in accordance with that obtained by
Turkyilmazoglu and Pop [13], Equation (3.19).

3.2. Calculation of the Velocity Field

Applying the Laplace transform to Equation (17), and taking into consideration the corresponding
initial and boundary conditions, we find that:

∂2u(y, q)
∂y2 − a1qαu(y, q) = −a1a2

1
q

exp
(−y
√

a3qα
)
; y > 0 (28)

where the Laplace transform u(y, q) of u(y, t) has to satisfy the conditions:

u(0, q) = 0; u(y, q) → 0 as y → ∞. (29)

A particular solution of Equation (28) is:

up(y, q) =
a1a2

a1 − a3

1
qα+1 exp(−y

√
a3qα), (30)

while its general solution is:

u(y, q) = A exp
(
y
√

a1qα
)
+ B exp

(−y
√

a1qα
)
+

a1a2

a1 − a3

1
qα+1 exp

(−y
√

a3qα
)
. (31)

Considering the conditions of (29), it results that:

u(y, q) = a1a2
a1−a3

1
qα+1 [exp(−y

√
a3qα)− exp(−y

√
a1qα)]; 0 < α < 1. (32)
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Applying the inverse Laplace transform to Equation (32), using the convolution theorem and the
Equality (A1), we find that:

u(y, t) = a1a2
a1−a3

1
Γ(1−β)

t∫
0

1
(t−s)β

[
Ψ
(

1, β−1
2 ;−y

√
a3sβ−1

)
− Ψ
(

1, β−1
2 ;−y

√
a1sβ−1

)]
ds, (33)

where β = 1 − α.
Now, using the identitiy (A2) from the Appendix A, we can present our solution in an interesting,

but equivalent, form:

u(y, t) =
a1a2

a1 − a3

{
cDβ

t

[
tΨ
(

2,
β− 1

2
;−y
√

a3tβ−1
)]

− cDβ
t

[
tΨ
(

2,
β− 1

2
;−y
√

a1tβ−1
)]}

, (34)

in terms of the Caputo derivative of the Wright functions.

3.3. Nusselt Number and Skin Friction

In order to determine the two entities of physical interest, namely the Nusselt number Nu and
the skin friction coefficient Cf , we use the relations:

Nu = Lqw
k f (Tw−T∞)

= − Lkn f
k f (Tw−T∞)

∂T(y1,t1)
∂y1

∣∣∣
y1=0

=

− kn f
k f

∂θ(y,t)
∂y

∣∣∣
y=0

= − kn f
k f

lim
y→0+

L−1
{

∂θ(y,q)
∂y

}
.

(35)

Cf =
τw

ρ f

( ν f
L

)2 =
μn f

ρ f

( ν f
L

)2
∂u1(y1,t1)

∂y1

∣∣∣
y1=0

=

μn f
μ f

∂u(y,t)
∂y

∣∣∣
y=0

= 1
(1−ϕ)2.5 lim

y→0+
L−1
{

∂u(y,q)
∂y

}
,

(36)

where qw is the constant heat flux from the surface of the plate and τw is the skin friction or shear stress
on the boundary.

Introducing Equations (24) and (32) into (35) and (36), respectively, we find that:

Nu =
kn f

k f

√
a3

t−α
2

Γ
(
1 − α

2
) , Cf =

a1a2√
a1 +

√
a2

t
α
2

Γ
(
1 + α

2
) 1

(1 −ϕ)2.5 . (37)

Using the identity (A3) from the Appendix A, we also provide equivalent forms for Nu and
Cf , namely:

Nu = 2
kn f

k f

√
a3

π
cD

1+α
2

t (t1/2), Cf =
1

(1 −ϕ)2.5
a1a2√

a1 +
√

a2

cD1−α
2

t (t), (38)

in terms of the Caputo derivatives of t1/2 and t.

4. Validation

In order to bring to light the accuracy of the results that have been obtained, it is suitable to show
that they are in accordance with similar solutions from the existing literature. For that, let us use β = 0
in Equation (34). It corresponds to α = 1, and the solution corresponding to the same unsteady natural
convection flow of ordinary nanofluids, has to be obtained. When the Caputo derivative of zero order
is the identity operator, Equation (34) becomes:

u(y, t) =
a1a2

a1 − a3

{[
tΨ
(

2,
−1
2

;−y
√

a3

t

)]
−
[

tΨ
(

2,
−1
2

;−y
√

a1

t

)]}
. (39)
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On the other hand (see also Equation (A2)):

er f c
(

y
√

a
2
√

t

)
= Ψ
(

1,
−1
2

;−y
√

a
t

)
=

∂

∂t

[
tΨ
(

2,
−1
2

;−y
√

a
t

)]
(40)

and then:

tΨ
(

2,
−1
2

;−y
√

a
t

)
=

t∫
0

er f c
(

y
√

a
2
√

s

)
ds, (41)

where er f c(·) is the complementary error fucntion of Gauss.
Now, by introducing Equation (41) in (39), and by using Equation (A4), we get the velocity field

as the simple form:
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Finally, bearing in mind the notations of Turkyilmazoglu and Pop [13], as well as their rescaling
relation from equality (2.11), it is easy to show that our solution (42) is identical to Equation (3.20),
from [13].

With regards to the Nusselt number Nu and the skin friction coefficient Cf , we use α = 1 in
Equation (38) and use Equation (A5). The expressions corresponding to the ordinary nanofluid are:

Nu =
kn f

k f

√
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πt
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√
t
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(43)

As expected, by changing a1, a3, and t, by 1
a1

, 1
a3

, and τ1, respectively, we recover the
solutions (3.21), from [13].

5. Numerical Results and Discussion

The natural convection flow of water-based fractional nanofluids over an infinite vertical plate
with thermal radiation and a uniform temperature on the boundary, is analytically studied. Closed
form solutions for the dimensionless temperature and velocity fields, and the two entities of physical
interest, the Nusselt number and skin friction coefficient, are determined in equivalent forms, in
terms of the Wright function or its fractional derivatives. It is worth pointing out that all of these
solutions have been immediately reduced to the known solutions, based on the literature for ordinary
nanofluids. A table containing the thermo-physical properties of copper oxide (CuO) and silver (Ag) is
also included for later use.

In order to bring to light the influence of the fractional parameter on the heat and mass transfer
in the natural convection flow of the above-mentioned fractional nanofluids, and therefore to obtain
some physical insight into the present results, some numerical calculations have been carried out for
different values of the fractional parameter α, radiation parameter Nr, and the nanoparticle value
fraction ϕ. For comparison, the diagrams of dimensionless temperature and velocity fields, and the
Nusselt number and skin friction coefficient corresponding to fractional nanofluids (for different values
of the fractional parameter α ∈ (0, 1)) and those of ordinary nanofluids (when α = 1), are depicted in
Figures 1–4. As was expected, in all cases, the diagrams corresponding to the fractional nanofluids
tend to superpose over those of ordinary nanofluids, when α → 1 .

Profiles of the dimensionless temperature θ(y, t) against y are presented in Figure 1a–c, for the
different values of the fractional parameter α and the CuO nanoparticle volume fraction ϕ. The fluid
temperature, as it results from these figures, increases with respect to α, up to a critical value of y
(less than 0.5), and then decreases. Consequently, in terms of the plate proximity, the heat transfer
is stronger when the thermal boundary layer is thinner for fractional nanofluids, in comparison to
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the ordinary ones. An opposite trend appears at a later point in time. With respect to the volume
fraction ϕ, the temperature is an increasing function for both ordinary and fractional nanofluids, and
it smoothly decreases from the maximum value of one on the boundary, to the zero value far away
from the plate. In Table 2, the temperature at different values of y and of the fractional parameter α, is
given for nanofluids containing nanoparticles of CuO or Ag, and these values are in full accordance
with those resulting from Figure 1. Furthermore, as results from this table, the Ag nanoparticles induce
larger temperature values and a lower heat transfer to ordinary or fractional nanofluids, in comparison
to CuO nanoparticles.

The effect of enhancing the heat transfer rate against ϕ with the fractional parameter α, for
CuO-water and Ag-water nanofluids, is presented in Figure 2, in the absence or presence of thermal
radiation. For both fractional nanofluids, the Nusselt number Nu is an increasing function with respect
to α. It is also an almost linearly increasing function of ϕ. Further, the heat transfer rate for the
CuO-water fractional nanofluid is always a little higher than that corresponding to Ag-water fractional
nanofluid. However, the difference between them increases with increasing values of ϕ.

The influence of the fractional parameter α and of the nanoparticle volume fraction ϕ, on the
dimensionless velocity u(y, t) against y, is brought to light by Figure 3a–c; which is also seen for a
nanofluid with CuO nanoparticles. Near the plate, the nanofluid velocity increases up to a maximum
value and then asymptotically decreases to the zero value for y values greater than 2.5, but it is a
decreasing function with respect to the two parameters α and ϕ. Consequently, the boundary layer
thickness is lower for ordinary nanofields, in comparison to fractional nanofluids. From a physical
point of view, it means that the nanofluid viscosity decreases for increasing values of α or ϕ, and the
ordinary nanofluids exhibit a stronger capacity in flow. This implies that the viscoelasticity strengthens
the flow resistance with a decrease in the fractional parameter [33]. The variation of the skin friction
coefficient Cf , against the nanoparticle volume fraction ϕ, is presented in Figure 4, for the same
nanofluids at different values of α and Nr, equal to zero or one.

Table 2. Values of the dimensionless temperature for ϕ = 0.2, t = 0.5, and different values of the
fractional parameters α and y.

y
CuO Ag

α = 0.1 α = 0.5 α = 0.85 α = 1 α = 0.1 α = 0.5 α = 0.85 α = 1

0 1 1 1 1 1 1 1 1
0.1 0.86341 0.84348 0.84816 0.87689 0.86675 0.84694 0.85013 0.87864
0.2 0.74363 0.72536 0.75925 0.77086 0.74937 0.73083 0.76448 0.7768
0.3 0.64057 0.62803 0.65475 0.6609 0.648 0.63504 0.66273 0.6691
0.4 0.55187 0.54341 0.55664 0.55868 0.56041 0.55166 0.56628 0.56886
0.5 0.47551 0.46851 0.46887 0.46476 0.48472 0.47766 0.47961 0.47635
0.6 0.40976 0.40218 0.39111 0.38035 0.4193 0.4119 0.4025 0.39275
0.7 0.35313 0.34379 0.32302 0.30608 0.36274 0.35376 0.33461 0.31872
0.8 0.30436 0.29277 0.26415 0.24213 0.31383 0.30272 0.27556 0.25448
0.9 0.26234 0.2485 0.21388 0.18821 0.27154 0.25821 0.22481 0.19985
1 0.22613 0.2103 0.17148 0.14371 0.23496 0.2196 0.1817 0.15432

The variation of the skin friction coefficient Cf , against the nanoparticle volume fraction ϕ,
is presented in Figure 4, for the same nanofluids at different values of α and Nr, equal to zero or one.
In both cases, i.e., in the absence or presence of radiation, the skin friction coefficient is a decreasing
function with respect to the fractional parameter α. Considering its variation with respect to ϕ,
two different situations appear. In the absence of radiation (Figure 4b), it is an increasing function
with respect to ϕ, and its values are always greater for Ag-water fractional nanofluid compared to
CuO-water fractional nanofluid. In the presence of radiation, when Nr = 1 (Figure 4a), the shear stress
on the plate decreases up to a critical value of ϕ (about 0.1), and then increases. Furthermore, up to
this value of ϕ, it is smaller for Ag-water fractional nanofluid in comparison to CuO-water fractional
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nanofluid, and a reverse situation is presented at a later point in time. Throughout this study, the value
of Pr has been taken as 6.067.

Figure 1. Variation of the dimensionless temperature θ(y,t) with the fractional parameter α and the
CuO nanoparticle volume fraction ϕ. (a) for ϕ = 0; (b) for ϕ = 0.1; (c) for ϕ = 0.2.

(a) (b)

Figure 2. Values of the Nusselt number against the nanoparticle volume fraction ϕ for the two
water-based nanofluids. (a) for Nr = 1; (b) for Nr = 0.
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Figure 3. Variation of the velocity u(y,t) with the fractional parameter α and the nanoparticle volume
fraction ϕ. (a) for ϕ = 0; (b) ϕ = 0.1; (c) for ϕ = 0.2.

(a) (b)

Figure 4. Values of the skin friction coefficient Cf against the nanoparticle volume fraction ϕ for two
water-based fractional nanofluids. (a) for Nr = 1; (b) for Nr =0.

6. Conclusions

An analytical study of the natural convection flow of some water-based fractional nanofluids
over an infinite vertical plate with thermal radiation and a uniform temperature on the boundary,
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is developed using the Caputo time-fractional derivative. The closed forms of solutions for the
dimensionless temperature and velocity fields, and the corresponding Nusselt number and skin
friction coefficient, are established in equivalent forms, in terms of the Wright function and its fractional
derivatives. They have been reduced to the solutions obtained in [13], corresponding to ordinary
nanofluids, when the fractional parameter α → 1 .

In order to get some physical insight into the results, which have been obtained for CuO-water
and Ag-water fractional nanofluids, some numerical calculations and graphical representations have
been presented in Table 2 and Figures 1–4, for different values of the fractional parameter α, radiative
parameter Nr, and the nanoparticles volume fraction ϕ. The main findings are:

The enhancement of heat transfer in the natural convection flows is lower for fractional nanofluids,
in comparison to ordinary nanofluids. The thermal boundary layer is thicker for fractional nanofluids.
In both cases, the fluid temperature increases and the heat transfer declines for increasing values of the
nanoparticle volume fraction ϕ.

The flows of water-based fractional nanofluids are faster than the ordinary nanofluids.
A decrease in the fractional derivative parameter increases the thickness of the velocity boundary

layer. From a physical point of view, it means that the nanofluid viscosity increases with the decreasing
of α.

The dimensionless velocity of water-based fractional nanofluids, as well as that of ordinary
nanofluids, is a decreasing function with respect to the nanoparticle volume fraction ϕ.

The skin friction coefficient in the natural convection flow is higher for fractional nanofluids, in
comparison to ordinary nanofluids.

The enhancement of heat transfer in natural convection is stronger for Cu-water fractional
nanofluids, when compared with Ag-water fractional nanofluids.

In the presence of radiation, Ag-water fractional/ordinary nanofluids achieve a lower skin friction
coefficient near the plate, relative to Cu-water fractional/ordinary nanofluids.

Our study shows that the nanofluids described by fractional derivatives have a significantly
different behavior than ordinary nanofluids. The same conclusions were obtained in the
references [33,34]. Even if the models studied in these articles are different from the model studied
here, the obtained results showed that the fractional parameter has a strong influence on the heat
transfer process.
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Abstract: The magnetohydrodynamic thin film nanofluid sprayed on a stretching cylinder with heat
transfer is explored. The spray rate is a function of film size. Constant reference temperature is
used for the motion past an expanding cylinder. The sundry behavior of the magnetic nano liquid
thin film is carefully noticed which results in to bring changes in the flow pattern and heat transfer.
Water-based nanofluids like Al2O3-H2O and CuO-H2O are investigated under the consideration
of thin film. The basic constitutive equations for the motion and transfer of heat of the nanofluid
with the boundary conditions have been converted to nonlinear coupled differential equations with
physical conditions by employing appropriate similarity transformations. The modeled equations
have been computed by using HAM (Homotopy Analysis Method) and lead to detailed expressions
for the velocity profile and temperature distribution. The pressure distribution and spray rate are also
calculated. The comparison of HAM solution predicts the close agreement with the numerical method
solution. The residual errors show the authentication of the present work. The CuO-H2O nanofluid
results from this study are compared with the experimental results reported in the literature showing
high accuracy especially, in investigating skin friction coefficient and Nusselt number. The present
work discusses the salient features of all the indispensable parameters of spray rate, velocity profile,
temperature and pressure distributions which have been displayed graphically and illustrated.

Keywords: magnetohydrodynamic; nanoliquid thin film; Al2O3-H2O; CuO-H2O; spray; heat transfer;
stretching cylinder; homotopy analysis method; numerical method; residual errors; skin friction
coefficient; nusselt number

1. Introduction

Recently heat transfer technology is related with the cooling applications of miniaturized high
heat flux components. The fluids traditionally used for heat transfer applications such as water, oils
and ethylene glycol have comparatively low thermal conductivity and do not meet the required
demand as an efficient heat transfer agent. The conventional technique for increasing heat dissipation
is to increase the area available for exchanging heat with a heat transfer fluids, but this process
needs an undesirable increase in the size of thermal management system. So by taking into account
the rising demands of modern technology, comprising chemical production, power stations and
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microelectronics, there is a need to propose new types of fluids which are more effective with respect
to heat exchange performance. For this purpose nanofluids are constructed to ensure effective thermal
conductivity enhancements and to fulfill the rising demands of cooling/heating and other needs.
Nanofluid is a dispersion consisting of nanometer-sized particles, called naoparticles. Nanoliquids
are dispersions formulated as a violent encounter of moving nanoparticles in a base liquid. These
particles utilized in nanofuids are generally constructed from metallic elements (Al, Cu), oxides
(Al2O3), nitrides (AlN, SiN) or nonmetallic elements (graphite, carbon nanotubes) and a liquid of
conduction nature like water or ethylene glycol usually used as the base fluid. Oily products, biofluids
and polymer suspensions may are used as base fluid. Nanoparticles have the diameters in the range
1 and 100 nm. For ensuring improved transfer of heat enhancements, nanofluids generally include
up to 5 % volume fraction of nanoparticles. Due to strange characteristics of nanoliquids that make
them capable in many applications in hybrid-powered engines, pharmaceutical processes, fuel cells,
including microelectronics and heat transfer. It has been widely used in engineering devices for
ship-sand in boiler flue gas reduction of temperature and defense, in space, in machining, in grinding,
nuclear reactor and heat exchanger, chiller, domestic refrigerator and engine vehicle thermal/cooling
management. Nanofluids makes better the thermal conduction of the base liquid extremely, therefore
in the analysis of flow of nanofluids the researchers are deeply interested. Nanofluids are also very
consistent and have no supplementary issues like additional pressure drop, erosion and sedimentation.
For the first time Choi [1] introduced the nanofluid technology. Utilizations in the superconducting
magnets and super fast computing are facing problems in thermal management. Thermal properties of
nanofluids are extensive research area during the past few decades for their perspective technological
applications in electronics cooling and heat transfer. Yu et al. [2] analyzed the thermal transport
properties of ethylene glycol-based nanofluids experimentally by measuring the thermal conductivity
and viscosity. In another study Yu et al. [3] investigated experimentally the rheological effects and
heat transfer properties of Al2O3 nanofluids based on the mixtures 45 vol. % ethylene glycol and
55 vol. % water. With the discovery of carbon nanotubes (CNTs) in 1991, carbon-based nanomaterials
are popular for their unique physical, thermal, mechanical and electrical properties. Chen et al. [4]
employed a green method to make composites of multi-walled carbon nanotubes (MWNTs) decorated
with silver nanoparticles (Ag-NPs). In case of graphene, a single atomic layer of graphite, which is
a two dimensional form of carbon, is found to show good crystal quality and to have ballistic electronic
transport at room temperature. It has been evolving as a fascinating material having unique physical,
chemical and mechanical properties as investigated by Xie and Chen [5]. Nanofluids containing
graphene oxide nanosheets have substantially higher thermal conductivities than the base fluid as
analyzed by Yu et al. [6]. It is very necessary to know more about heat transfer properties of fluids
due to the different speculated applications. It is a fact that the study of heat transfer techniques
can enhance the comprehensive understanding of physical phenomena like convection and boiling.
The effective thermal conductivity is one of the most controversial topics in nanofluids. In addition,
the physical nature is still far from being well understood due to its complexity and diversity. After
detailed analysis, Brownian motion induced convection and effective conduction through percolating
nanoparticle paths are taken to be the two most probable mechanisms that yield the improved heat
conduction in nanofluids. Through a mechanistic point of view, although the effects of some parameters
such as the average size of nanoparticles and nanoparticles concentration have been discussed in
literatures [1–4], yet an overall mechanistic description is not available. It is a problem to investigate the
effective thermal conductivity of nanofluids analytically due to the extremely complicated mechanisms
of heat transfer and the interrelationship between thermal conductivity and the size of nanoparticles
and the nanoparticles concentration. Therefore the clear mechanism of heat transfer is still not known
in nanofluids. To fill this gap Xiao et al. [7] attempted to derive the analytical expressions for effective
thermal conductivity of nanofluids while taking into account the effect of heat convection due to the
Brownian motion of nanoparticles based on the fractal theory. Similarly Cai et al. [8] investigated the
advances of nanoparticles researches by introducing the fractal theory presenting the fractal model of
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thermal conductivity of nanofluids under the consideration of fractal distribution of nanoparticles sizes
and heat convection between nanoparticles and liquids due to the Brownian motion of nanoparticles in
fluids, in which the nanoparticles are assumed to be dispersed. Buongiorno [9] considered a detailed
discussion about the nanofluid. Ellahi [10] explored the effects of MHD and temperature dependent
viscosity on the flow of a non-Newtonian nanofluid in a pipe. Khan and Pop [11] elaborated the
motion of a nanofluid passing a stretching surface. The effects of wall behavior for the peristaltic
flow of a nanofluid were described by Mustafa et al. [12]. Akbar and Nadeem [13] investigated the
endoscopic exploration of peristaltic flow of a nanofluid. Nowar [14] solved the problem of peristaltic
flow of a nanofluid in the regime of Hall current and porous medium. A vast study exploring different
aspects of nanofluid may be consulted in the references [15–23].

A magnetic nanofluid is a special substance having the combined features of fluid and magnetic
characteristics. These fluids are practiced resulting in numerous distinguished utilizations like
magneto-opticle wavelength filters, and other substances related to optic like nonlinear materials
and tunable fiber filters, gratings and switches. Several types of physical characteristics of such
fluids are changed by the help of varying the intensity of magnetic field. Nanofluids related to
magnetism assume presently a broad application in several departments such as biomedicine, medicine
and in sink float isolation. Too many biomedical uses that contains nanofluids, like drug supply,
magnetic cell separation and negative growth in magnetic resonance imaging are most important.
Magnetohydrodynamic (MHD) motions are significant due to their use in power generators, MHD
accelerators, refrigerations coils, transmissions lines, electric transformers and heating elements. Due to
the scope of this notion, several researchers have done their work on magnetohydrodynamic motions.
It is a proved statement that energy transfer is possible due to composition (concentration) gradient
and mass transportation is occurred due to temperature gradient. These contributions of MHD motion
are utilized in levitation and pumping of fluids in mechanical engineering, controlling of liquid
motion and transpiration procedures and aerodynamics. In extrusion process, investigation of transfer
of heat in boundary layer flow past the stretching surfaces has wide uses. The cooling technique
has to be controlled completely because the standard of final product relies the rate of transfer of
heat. The desired quality of manufactured product may be achieved by the magnetohydrodynamic
motion in electrically conducting liquid which can control the influence of cooling. Important
industrial applications of the problem of viscous motion and transfer of heat past a stretching
sheet are, for example, in few technical procedures like glass fiber production, manufacturing of
foods and paper, continuous casting, wire drawing, in metallurgical techniques, such as crystal
making, preparing of plastic and rubber sheets, enameling and painting of bronze threads and many
others. The issues in molten form after some time stretched from a slit to obtain the required size
during the manufacturing of these sheets. Due to the cooling stretching rate in the process and the
process of stretching the final product with the required properties is prepared. Chamkha et al. [24]
analyzed the Brownian motion and thermophoretic influences on the mixed convection MHD motion
of a nanoliquid past a stretching porous medium. During suction/injection the discussion of time
dependent magnetohydrodynamic motion of a nanoliquid past a vertical stretching surface is carried
out by Kandasmy et al. [25]. Enough research work on motion past stretching surfaces has been carried
out. Sakiadis [26] was the first one who considered the flow on continuous flat and solid surfaces.
Crane [27] investigated the flow past an extensible surface by assuming the surface velocity varying
in a linear way with an extent of space from the slit. Vajravelu et al. [28] determined the solution of
the problem of magnetohydrodynamic motion of a non-Newtonian liquid past a stretching surface.
Abu-Nada [29] examined the impacts of variable properties of Al2O3 water nanoliquid on the
improvement of transfer of heat in natural convection. Nasrin and Alim [30] investigated the heat
generation by nanofluid of variable properties with flat plate solar collector.

Thin film fluid flows are the subject of considerable attention in research. Khan et al. [31]
reported the influences of variable properties of a thin liquid film motion past a contracting/expanding
space. Recently, The behavior of flow and transfer of heat of a second-grade fluid through a porous medium
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past a stretching sheet is discussed by Khan et al. [32]. In another study, Khan et al. [33] investigated
thermophoresis and thermal radiation with heat and mass transfer in a magnetohydrodynamic thin
film second grade fluid of variable properties past a stretching sheet. Aziz et al. [34] reported thin film
motion and transfer of heat on a time dependent stretching sheet with internal heating. The thin film
Williamson nanofluid flow with varying viscosity and thermal conductivity on a time dependent sheet
was analyzed by Khan et al. [35]. Qasim et al. [36] discussed transfer of heat and mass in a nanofluid
past a time dependent stretching surface using Buongiorno’s model. Prashant et al. [37] presented
transfer of heat on a time dependent stretching surface with thermal radiation, internal heating in case
of external magnetic field for a thin film flow. Kumari et al. [38] investigated transfer of heat and mass
in a nanofluid past an unsteady stretching surface.

During past several years, a prominent revolution has been occurred in the analysis of motion and
transfer of heat past slender cylinders. The inevitable needs of the utilization of slender objects
which minimizes the drag and producing complete lift to support the body in some situations.
In case of slender cylinder, the radius is possible to have same as the boundary layer thickness
and the motion is taken as axisymmetric instead of two dimensional and the transverse curvature
term existing in the governing equation which by force affects the velocity and temperature fields.
Related to this notion, the coefficient of skin friction and rate of transfer of heat at the wall are
affected too by the normal curvature. Motion past a cylinder and the corresponding transfer of heat
characteristics have extensive applications like preparing of heat exchanger tubes, chimney stacks,
cooling towers, offshore structure, thin film condensation and paper production. It is also utilized
in petroleum industries, plasma studies and geothermal energy extractions. Wang [39] was the the
first to analyze the flow in viscous case past a stretching hollow cylinder by evaluating the third order
non-linear complicated system. The motion of a fluid outside a stretching cylinder by using Keller-box
technique for the solution is elaborated by Ishak et al. [40]. Wang [41] obtained the similarity solution
of a natural convective study over a non-horizontal stretching cylinder. The numerically solution
of the problem of MHD motion and transfer of heat of Newtonian liquid past a stretching cylinder
is obtained by Elbashbeshy [42]. Ashorynejad et al. [43] reported the motion of a nanofluid with
transfer of heat and magnetic field past a stretching cylinder. Rangi and Ahmad [44] analyzed the
motion and transportation of heat of a Newtonian incompressible liquid past a stretching cylinder with
variable fluid property. Sheikholeslami [45] discussed the effect of uniform suction of a nanofliquid
motion and transfer of heat past a stretching cylinder. Wang [46] explored the liquid film sprayed
on a stretching cylinder. Koo and Kleinstreuer [47] described the viscous dissipation effects in micro
channels. Koo [48] investigated the computational fluid flow with transfer of heat used in micro
systems. Other investigations about nanofluids and different interesting problems with respect to
different aspects are exist in the references [49–54].

The literature survey shows that there is a large amount of investigations about the nanofluids.
Still there is no exploration to discuss the magnetohydrodynamic thin liquid film sprayed on
a stretching cylinder with transfer of heat features of CuO-H2O nanofluid. To fill this gape in this regard,
claim is exist for the first try to analyze the sprayed liquid thin film effect on magnetohydrodynamic
two dimensional CuO-H2O nanofluid past a stretching cylinder with heat transfer. Employing
appropriate transformations the basic constitutive systems of equations of the problem are converted to
dimensionless form. The problem has been solved by using a powerful analytic tool HAM (Homotopy
Analysis Method) [55–58]. The influences of all the emerging parameters on spray rate, velocity profile
as well as temperature and pressure distributions have been demonstrated in figures.

2. Materials and Methods

Basic Equations

A motion of a steady and axi-symmetric sprayed liquid thin film CuO-H2O nanofluid past
a stretching cylinder in two dimensions is considered in the presence of magnetic field. The magnetic
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field is uniform of intensity B0 acting in the radial way. The Reynolds number due to magnetic
field (Rem = σn f μeWwδ, where σn f , μe, Ww and δ stand for the electrical conductivity of the nanofluid,
magnetic permeability, surface velocity and thickness of the fluid film respectively) is taken less in
magnitude as compared to the applied magnetic field. Ignoring viscous dissipation by taking it very
less in amount. When the material stretches, the thickness of the cylinder reduces but the outer radius a
of the cylinder remains fixed. An axisymmetric spray in a radial direction having velocity V condenses
as a film and is dragged along through the help of outer surface of the cylinder. Also, it is suppose that
the base fluid and the nanoparticles are in thermal equilibrium prevailing the absence of slip. Selecting
z-axis along the cylinder and r-axis is taken radially, as depicted in Figure 1.

Figure 1. Geometry of the Physical Model.

According to the above statement, in cylindrical coordinates (r, z), the equations of continuity,
momentum and energy, governing the film in scalar form are:

∂(ru)
∂r

+
∂(rw)

∂z
= 0, (1)

ρn f

(
u ∂u

∂r + w ∂u
∂z

)
= −∂P

∂r
+ μn f

(
1
r

∂u
∂r − u

r2 +
∂2u
∂r2

)
, (2)

ρn f

(
u ∂w

∂r + w ∂w
∂z

)
= μn f

(
1
r

∂w
∂r + ∂2w

∂r2

)
− σn f B2

0w, (3)

ρn f

(
u ∂T

∂r + w ∂T
∂z

)
=

kn f

(ρCP)n f

(
1
r

∂T
∂r + ∂2T

∂r2

)
, (4)

where the components of velocity are u(r, z) and w(r, z), the magnetic induction is B =
(

B0, 0, 0
)

,
P expresses the pressure and T is the fluid temperature. Further, ρn f , μn f , (CP)n f and kn f are the density,
viscosity, heat capacitance and thermal conductivity of the nanofluid respectively. The subscript “nf ”
is used for the nanofluid. The effective density (ρn f ) and the heat capacitance (ρCP)n f which are the
relation between base fluid and nanoparticles are defined as

ρn f = ρ f (1 − φ) + ρsφs, (5)

(ρCP)n f = (ρCP) f (1 − φ) + (ρCP)sφ, (6)

where φ describes the solid volume fraction and the subscript “s" is used for nanosolid particles.
The boundary conditions are

u = Uw, w = Ww, T = Tw, at r = a, (7)
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∂w
∂r

=
∂δ

∂r
=

∂T
∂r

= 0, u =
dδ

dz
at r = b, (8)

where Uw = −ca, Ww = 2cz, Tw(z) = Tb − Tre f

[
cz2

νn f

]
.

The subscript “w" is used for condition at the surface, c > 0 is the stretching rate, a is the outer
radius of the cylinder and b is the outer radius of the film. νn f =

μn f
ρn f

is the kinematic viscosity of
the nanofluid, Tb is the temperature at the outer radius of the film surface and Tre f is the reference

temperature such that 0 ≤ Tre f ≤ Tb. The argument cz2

νn f
in Tre f

[
cz2

νn f

]
shows the stretching velocity

along z-axis [31–38].
Introducing the transformations for nondimensional variables f, θ and similarity variable ζ as

u = −ca
f (ζ)√

ζ
, w = 2czf′(ζ), T(z) = Tb − Tre f

[
cz2

νn f

]
θ(ζ), ζ =

(
r
a

)2
. (9)

For the outer radius b of the film,

ζ =
(

b
a

)2
= β1, (10)

where β1 is the nondimensional film thickness parameter. Equation (9) automatically satisfies mass
conservation Equation (1). Utilizing Equations (9)–(10) in Equations (3), (4), (7) and (8) yield the
following four Equations (11)–(14)

ζf′′′ + f′′ − ReB1(1 − φ)2.5
(

f′2 − ff′′
)
− Mf′ = 0, (11)

ζθ′′ + θ′ − RePr
(

B2
B3

) (
2f′θ − fθ′

)
= 0, (12)

f = f′ = θ = 1 at ζ = 1, (13)

f′′ = θ′ = 0 at ζ = β1, (14)

where prime (′) is the derivative with respect to ζ. Re =
ca2

2νn f
, Pr =

μn f (ρCP) f

ρ f K f
and M =

a2B2
0σn f

4μn f
are respectively the stretching Reynolds number, Prandtl number and magnetic field parameter.
The parameters B1, B2, B3 are defined as

B1 =
ρs

ρ f
φ(1 − φ), (15)

B2 =
(ρCP)s

(ρCP) f
φ(1 − φ), (16)

B3 =
kn f

k f
=

2k f + ks − 2(k f − ks)φ

2k f + ks + (k f − ks)φ
, (17)

k f and ks denote the thermal conductivity of the base fluid and nanosolid particles respectively.
A subscript “f ” is used for base fluid.

Evaluating Equation (2) for the pressure P

P
ρn f

=
P∞

ρn f
− (ca)2 f 2

2ζ
− 2cνn f f ′, (18)

=⇒
P − P∞

cμn f
= −ReB1(1 − φ)2.5 f 2

ζ
− 2 f ′. (19)
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The shear stress on the outer film surface is zero, i.e.,

f′′(β1) = 0. (20)

On the cylinder the shear stress is

τ =
ρn f νn f 4cz f ′′(1)

a
=

4cμn f z f ′′(1)
a

. (21)

Estimation of skin friction coefficient (Cf ) and heat transfer coefficient (Nu) which are very
important through the industrial application point of view are also calculated in this study.
The equation defining the skin friction (Cf ) is

Cf =
2τw

ρw2
w

, (22)

where
τw = μn f

(
∂w
∂r

)
r=a

, (23)

i.e.,

τw =
ρn f νn f 4cz f ′′(1)

a
=

4cμn f z f ′′(1)
a

. (24)

Using Equation (22), one obtains:

Cf = | 1
A1(1 − φ)2.5 f ′′(1)|, (25)

The equation defining the Nusselt number (Nu) is:

Nu =
aqw

k(Tw − Tb)
, (26)

where qw is the surface heat flux and is given by

qw = −kn f

(
∂T
∂r

)
r=a

. (27)

=⇒
qw = −2kn f

(Tw − Tb)

a
θ′(1). (28)

Using Equation (26), one obtains

Nu = −2
kn f

k f
θ′(1). (29)

The deposition velocity V in terms of film thickness β1 is given by

− ca
f (β1)√

β1
= −V. (30)

Mass flux m1 is another interesting quantity which is in connection with the deposition per axial
length is

m1 = V2πb. (31)

The normalized mass flux m2 is

m2 =
m1

2πa2c
=

m1

4πνRe
= f(β1). (32)
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The Brownian motion bears a leading role in the effective thermal conductivity. The effective
thermal conductivity is made of particle’s conventional static and a Brownian motion part and describes
the influences of size, volume fraction, temperature dependence, the type of particle and the base fluid
combinations [47].

ke f f = kstatic + kBrownian, (33)

kstatic
k f

= 1 +
3
(

kp
k f

− 1
)

φ(
kp
k f

+ 2
)
−
(

kp
k f

− 1
)

φ
, (34)

where kstatic denotes the static thermal conductivity which depends on the Maxwell classical correlation.
The enhanced thermal conductivity component generated due to micro-scale convective transfer of heat
of a particles’s Brownian motion and influenced by ambient fluid flow is obtained through simulating
Stoke’s motion with a nanoparticle. Utilization of empirical functions (β and f ) [48] combines the
interaction among nanoprticales with the temperature influence in the model, giving to

kBrownian = 5 × 104βφρ f Cp, f

√
KbT
ρpdp

f (T, φ). (35)

The thermal interfacial resistance (Kapitza resistance) [49,50] exists with the adjacent layers of
the both types of materials; the thin barrier layer has a prominent activity in weakening the effective
thermal conductivity of the nanoparticle. Li [51] revisited the work of Koo and Kleinstreuer [52]
composing a new g′-function by using β and f functions having the effects of particle diameter,
temperature and volume fraction. The empirical g′-function is reliant to the used nanofluid [52]. Also,
by proposing Rf = 4 ×10−8 km2/W as a thermal interfacial resistance, the actual kp in Equation (34)
changed to another one, which is kp,e f f and has the form

Rf +
dp

kp
=

dp

kp,e f f
, (36)

For Al2O3-H2O and CuO-H2O, the function is

g′
(

T, φ, dp

)
=
(

c1 + c2ln(dp) + c3ln(φ) + c4ln(φ)ln(dp) + c5ln(dp)2
)
+(

c6 + c7ln(dp) + c8ln(φ) + c9ln(φ)ln(dp) + c10ln(dp)2
)

ln(T), (37)

where the coefficients ci (i = 1, 2, 3, ..., 10) are dependent on the type of nanoparticles. With ci (i = 1, 2, 3,
..., 10), Al2O3-H2O and CuO-H2O keep an R2 of 96 % and 98 %, respectively [52] (see Tables 1 and 2).
The KKL(Koo-Kleinstreuer-Li) correlation becomes

kBrownian = 5 × 104φρ f Cp,g

√
KbT
ρpdp

g′(T, φ, dp). (38)

Koo and Kleinstreuer [47] also analyzed the laminar motion of nanofluid in micro heat-sinks by
utilizing the effective nanofluid thermal conductivity model. For the effective viscosity because of
micro mixing in dispersions, they proposed:

μe f f = μstatic + μBrownian = μstatic +
kBrownian

k f
× μ f

(Pr) f
, (39)

where μstatic =
μ f

(1 − φ)2.5 is the nanofluid viscosity utilized in many studies [53,54].
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Table 1. Thermophysical quantities of water and nanoparticles [47].

Thermophysical Quantities Pure Water Al2O3 CuO

ρ(Kg/m3) 997.1 3970 6500
Cp(J/KgK) 4179 765 540
K(W/mk) 0.613 25 18

dp(nm) - 47 29
σ(Ωm )−1 0.05 10−12 10−10

Table 2. Coefficients values of the Al2O3-H2O and CuO-H2O [47].

Coefficients Values Al2O3-H2O CuO-H2O

c1 52.813488759 −26.593310846
c2 6.115637295 −0.403818333
c3 0.6955745084 −33.3516805
c4 4.17455552786 × 10−2 1.915825591
c5 0.176919300241 6.42185846658 × 10−2

c6 −298.19819084 48.40336955
c7 −34.532716906 −9.787756683
c8 −3.9225289283 190.245610009
c9 −0.2354329626 10.9285386565
c10 −0.999063481 −0.72009983664

3. Solution of the Problem by HAM

Using the initial approximate values and auxiliary linear operators for the velocity and
temperature fields in the following form

f0(ζ) = ζ, θ0(ζ) = 1, (40)

Lf = f′′′, Lθ = θ′′, (41)

having the properties of operators

L f [C1 + C2ζ + C3ζ2] = 0, Lθ [C4 + C5ζ] = 0 (42)

with constants Ci (i = 1–5).

3.1. Zeroth-Order Deformation Problems

Introducing the nonlinear operators ℵ f and ℵθ as

ℵ f [ f (ζ, p)] = ζ
∂3 f (ζ,p)

∂ζ3 + ∂2 f (ζ,p)
∂ζ2 − ReB1(1 − φ)2.5

[(
∂ f (ζ,p)

∂ζ

)2 − f (ζ, p) ∂2 f (ζ,p)
∂ζ2

]
− M ∂ f (ζ,p)

∂ζ , (43)

ℵθ [ f (ζ, p), θ(ζ, p)] = ζ
∂2θ(ζ, p)

∂ζ2 +
∂θ(ζ, p)

∂ζ
− RePr

(
B2
B3

) [
2 ∂ f (ζ,p)

∂ζ θ(ζ, p)− f (ζ, p) ∂θ(ζ,p)
∂ζ

]
, (44)

where p is an embedding parameter such that p∈[0, 1].
The equations of zeroth-order deformation are prepared as

(1 − p)L f [f(ζ, p)− f0(ζ)] = phℵ f [f(ζ, p)], (45)

(1 − p)Lθ [θ(ζ, p)− θ0(ζ)] = phℵθ [f(ζ, p), θ(ζ, p)], (46)

where h is denoting the auxiliary non-zero parameter. Equation (45) has the boundary conditions

f(1, p) = 1, f′(1, p) = 1, f′′(β1, p) = 0. (47)
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The boundary conditions for Equation (46) are

θ(1, p) = 1, θ′(β1, p) = 0. (48)

p = 0 ⇒ f(ζ, 0) = f0(ζ) and p = 1 ⇒ f(ζ, 1) = f (ζ), (49)

p = 0 ⇒ θ(ζ, 0) = θ0(ζ) and p = 1 ⇒ θ(ζ, 1) = θ(ζ), (50)

f (ζ, p) becomes f0(ζ) to f (ζ) when p assumes the values from 0 to 1. Similarly, θ(ζ, p) becomes θ0(ζ)
to θ(ζ) when p assumes the values from 0 to 1. Using Taylor series expansion and Equations (45) and (46),
one obtains

f(ζ, p) = f0(ζ) +
∞

∑
m=1

fm(ζ)pm, fm(ζ) =
1

m!
∂mf(ζ, p)

∂pm |p=0, (51)

θ(ζ, p) = θ0(ζ) +
∞

∑
m=1

θm(ζ)pm, θm(ζ) =
1

m!
∂mθ(ζ, p)

∂pm |p=0 . (52)

The convergence of the series is sharply relying on h. Suppose h is taken by choice in a such type
that the series converges at p = 1, so Equations (51) and (52) result in

f(ζ) = f0(ζ) +
∞

∑
m=1

fm(ζ), (53)

θ(ζ) = θ0(ζ) +
∞

∑
m=1

θm(ζ). (54)

3.2. m-th Order Deformation Problems

By taking m times derivative with respect to p of Equations (45) and (47) then dividing by m! and
substituting p = 0, yield the below simplifications

L f [fm(ζ)− χmfm−1(ζ)] = hRf
m(ζ), (55)

fm(1) = f ′m(1) = f ′′m(β1) = 0, (56)

Rf
m(ζ) = ζ f ′′′m−1 + f ′′m−1 − ReB1(1 − φ)2.5

m−1

∑
k=o

[
f ′m−1−k f ′k − fm−1−k f ′′k

]
− M f ′m−1. (57)

By taking m times derivative with respect to p of Equatoins (46) and (48), then dividing by m! and
substituting p = 0, yield the below simplifications

Lθ [θm(ζ)− χmθm−1(ζ)] = hRθ
m(ζ), (58)

θm(1) = θ′m(β1) = 0, (59)

Rθ
m(ζ) = ζθ′′m−1 + θ′m−1 − RePr

(
B2
B3

) [
2 f ′m−1−kθk − fm−1−kθ′k

]
, (60)

χm =

{
0, m ≤ 1
1, m > 1.

(61)

If f∗m(ζ) and θ∗m(ζ) are the particular solutions, then the general solutions of Equations (55) and (58)
in terms of special solutions are represented as follows:

fm(ζ) = f∗m(ζ) + C1 + C2ζ + C3ζ2, (62)

θm(ζ) = θ∗m(ζ) + C4 + C5ζ. (63)
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4. Results and Discussion

The Equations (11) and (12) with boundary conditions in Equations (13) and (14) are evaluated
by the symbolic computer application MATHEMATICA using HAM program and Equation (19) is
computed through HAM solution. It is interested to describe the impact of all the parameters on
the non-dimensional velocity profile f (ζ), temperature distribution θ(ζ) and pressure distribution
P−P∞
cμn f

(ζ). The rate of spray m2(β1) is also discussed. The geometry of the problem is shown in Figure 1.
Liao [55–57] introduced h curves for the convergence of the series solution to get the acceptable
results of the problems. Therefore, the acceptable h-curves for f (ζ) and θ(ζ) are drawn in the ranges
−2.30 ≤ h ≤ −0.50 and −2.50 ≤ h ≤ 0.50 in Figures 2 and 3 respectively. The fact is known about the
shear stress and rate of transfer of heat that they depend on the types of nanofluids. The type of the
nanofluid has a direct relation with cooling and heating techniques. These qualities are achieved easily
and quickly by choosing CuO as nanoparticles compared to Al2O3 as nanoparticles. In this research
CuO-H2O is used to elaborate the impact of indispensable parameters.

Figure 2. h curve of f (ζ).

Figure 3. h curve of θ(ζ).

5. Discussion

5.1. Velocity Profile

It is elucidated that motion of the fluid slows down near the stretching surface and it enhances
far away from stretching cylinder. The salient characters in the film sprayed on a cylinder are the
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thin film nanofluid parameter β1 and the stretching Reynolds number Re. Concentrating first the
contribution of the thin film nanofluid parameter β1, which has the close relation to the rate of mass
spray. It affects the flow behavior completely. From Figure 4, it is evident that the velocity faces
retardation with greater quantities of film thickness parameter β1. The axial velocity f (ζ) is found
to enhance with thinning of the nanoliquid film. With the increase of film thickness the mass of the
fluid increases which is difficult to move. Motion automatically stops when thickness of the fluid film
is high. Too much effort is required for the movement of the thick film liquid. It is very difficult to
make motion in the sea compared to the flow in a pipe. The nanoparticle volume fraction parameter φ

has a negligible effect on the motion witnessed by Figure 5. Velocity does not change with increasing
values of φ. Figure 6 demonstrates that the axial velocity f (ζ) goes to decrease by the large values of
Reynolds number Re. The reason is that the Reynolds number is the ratio of the inertia force to the
viscous force so, when the Reynolds number becomes higher the inertial force overcomes the flow in
contrast to viscous forces. Hence for the greater values of Reynolds number Re velocity retards and
the motion decays gradually to the ambient. The inertial forces are very powerful and they do not
allow the liquid atoms/molecules to flow. Strong viscous forces have strong resistance to the motion
of the fluid. Boundary layer flow of fluid motion decreases with strong inertial forces. Figure 7 is
prepared for the parameter M demonstrating magnetic field. As the values of M increases on surface
during the flow, the motion decreases which results in to retard the motion profiles. Generally, the
momentum boundary layer is made thin by greater quantities of M since the use of magnetic field
to a fluid capable for conduction generates a force of resistivity called Lorentz force. This force is
responsible for bringing the retardation in the movement of the fluid. This force decelerates the motion
horizontally and overcomes the motion layer related to axial velocity f (ζ). This characteristic remains
up to some heights and then the action is converted to slowing down. The magnetic field parameter
keeps an additional influence on the motion. It is clear that magnetic field produces more restriction to
the fluid. In fact, magnetic field is in contrast to the transportation.

Figure 4. Non-dimensional velocity f (ζ) sketch for h = - 0.10, M = 0.10, Re = 0.70, φ = 0.04, Pr = 6.80 and
various values of β1 (CuO-H2O).
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Figure 5. Non-dimensional velocity f (ζ) sketch for h = −1.10, β1 = 1.70, M = 0.10, Re = 0.70, Pr = 6.80
and various values of φ (CuO-H2O).

Figure 6. Non-dimensional velocity f (ζ) sketch for h = −1.10, β1 = 1.70, M = 0.10, φ = 0.04, Pr = 6.80
and greater quantities of Re (CuO-H2O).

Figure 7. Non-dimensional velocity f (ζ) sketch for h = −1.10, β1 = 1.70, M = 0.10, Re = 0.70, φ = 0.04,
Pr = 6.80 and greater quantities of M (CuO-H2O).
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5.2. Temperature Profile

The thermal investigation has a prominent application in the cooling of the cylinder. The thin
film parameter β1 has a special role in the temperature distribution. The non-dimensional temperature
θ(ζ) is high at the surface and it is growing small along the transversely distance within the thermal
boundary layer. The dimensional temperature θ(ζ) decelerates for greater quantities of film thickness
parameter β1 which is obvious in Figure 8. Transfer of heat is improved for the thinning of the
nanofluid film. But in the present case, it is depreciating. The reason is that with the thickness of the
fluid film the mass of the fluid is greater which exhaust the amount of temperature. Heat penetrates in
the fluid as a result the environment is cool down. Thick film fluid needs more heat as compared to
the thin film fluid. The volume fraction parameter φ is displayed in Figure 9. No sensitivity occurs
in temperature for greater quantities of the volume fraction parameter φ. Figure 10 predicts that the
temperature θ(ζ) depreciates for the big quantities of Reynolds number Re. It is due to the fact that
greater Reynolds number signifies that inertial forces exist as the overcoming agents in contrasting
the the viscous forces. These inertial forces are very powerful and due to these forces the particles
(atoms and molecules) of the fluid remains tightly. Too much heat energy is required in order to break
down the bonds between atoms and molecules of the fluids. Due to these forces the boiling point
of fluids increase. Figure 11 indicates that temperature distribution enhances with various values
of magnetic field parameter M. Due to the application of magnetic the Lorentz force is generated
which increases the temperature of the fluid. This force supports and favors the temperature. Since
the magnetic field is imposed perpendicularly so with the increasing magnetic field effect the fluid
is controlled and bounded. Figure 12 witnesses the influence of Prandtl number Pr describing that
θ(ζ) decreases with larger values of Pr since for the larger quantities of Pr the thermal boundary
layer decreases which displays that effective cooling is achieved quickly for nanofluid. The influence
is even more clear for high Prandtl number because the motion layer size is comparatively small.
For the greater quantities of Pr the liquid keeps low thermal conductivity which causes thinner thermal
boundary layer resulting in the enhancement of the rate of transfer of heat at the surface. Prandtl
number defines the ratio of momentum diffusivity to thermal diffusivity. Those liquids which have
minimum Prandtl number have good thermal conductivity consequently, possess thick boundary layer
structures for diffusing heat.

Figure 8. Non-dimensional temperature θ(ζ) sketch for h = −0.10, M = 2.00, Re = 5.00, φ = 0.04,
Pr = 6.80 and various values of β1 (CuO-H2O).
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Figure 9. Non-dimensional temperature θ(ζ) sketch for h = −1.10, β1 = 1.70, M = 0.10, Re = 0.70,
Pr = 6.80 and various values of φ (CuO-H2O).

Figure 10. Non-dimensional temperature θ(ζ) sketch for h = −1.10, β1 = 1.10, φ = 0.04, M = 0.10,
Pr = 6.80 and greater quantities of Re (CuO-H2O).

Figure 11. Non-dimensional temperature θ(ζ) sketch for h = −2.50, β1 = 1.70, φ = 0.04, M = 0.10,
Pr = 6.80 and greater quantities of M (CuO-H2O).
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Figure 12. Non-dimensional temperature θ(ζ) sketch for h = −1.10, β1 = 1.10, M = 0.10, φ = 0.04,
Re = 0.70 and various values of Pr (CuO-H2O).

5.3. Pressure Distribution

This section describes the characteristics of pressure P−P∞
cμn f

(ζ) in terms of various parameters.
Pressure has important contribution in fluid motion and blood flow. Blood circulates in the veins due
to pressure. In atmosphere, pressure is inevitable to exist. There are so many machines working due to
pressure. Figure 13 indicates that pressure enhances for the greater values of thin film parameter β1.
Pressure distribution is less in magnitude in the wider part of the channel of the motion. The pressure
becomes strong with the greater size of film and more power is required to overcome the stress
generated due to the thickness of film. The pressure and the film thickness posses a huge force in
joint collaboration. This force is very important and is used to help in moving the vehicles/objects
over water, in windmills when the fluid flow and objects motion are in the same direction otherwise
this force opposes the motion (in case of opposite directions) of the bodies/boats/ships. Figure 14
demonstrates that with the rise of volume fraction parameter φ the pressure distribution P−P∞

cμn f
(ζ) rises

because with the addition of nanoparticles the concentration increases, consequently the pressure
enhances. When the concentration increases then the fluid becomes thick as a result collision of
atoms/molecules increase and exert a great pressure with one another and on the walls of vessel.
This characteristic of fluid is very useful for blood flow and for the concentration in medicine. Thick
blood runs fast in moving down through pipe due to pressure when injected to the patient. Apart from
this, almost all the chemical reactions are made at high pressure. At high pressure, cooking is done
easily compared to low pressure. The pressure distribution P−P∞

cμn f
(ζ) reduces with greater quantities of

Reynolds number Re as it is depicted by Figure 15. Pressure automatically goes to minimum value
in the wider way of motion due to inertial effects. Due to inertial forces the particles of the fluids are
packed tightly and firmly and high pressure is required to make motion from the rest. Pressure has no
effect on these attractive forces. High pressure is required to overcome these intermolecular forces.
The impact of magnetic parameter M lies in Figure 16. It states that pressure distribution P−P∞

cμn f
(ζ) is

low due to the Lorentz force in the wider channel of the flow. The magnetic is applied perpendicular
to the flow of fluid. Lorentz force capture the fluid in the boundary layer. To compete the Lorentz force
due to strong magnetic field, pressure must be high in order to make the motion of the fluid.

83



Appl. Sci. 2017, 7, 271

Figure 13. Non-dimensional Pressure P−P∞
cμn f

(ζ) sketch for h = −0.10, M = 0.10, Re = 0.70, φ = 0.04,
Pr = 6.80 and various values of β1 (CuO-H2O).

Figure 14. Non-dimensional Pressure P−P∞
cμn f

(ζ) sketch for h = −1.10, β1 = 1.70, M = 0.10, Re = 0.70,
Pr = 6.80 and various values of φ (CuO-H2O).

Figure 15. Non-dimensional Pressure P−P∞
cμn f

(ζ) sketch for h = −1.10, β1 = 1.70, M = 0.10, φ = 0.04,
Pr = 6.80 and greater quantities of Re (CuO-H2O).
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Figure 16. Non-dimensional Pressure P−P∞
cμn f

(ζ) sketch for h = −0.10, β1 = 1.70, M = 0.10, Re = 0.70,
φ = 0.04, Pr = 6.80 and greater quantities of M (CuO-H2O).

5.4. Spray Distribution

A stretching cylinder is sprayed by a nanoliquid CuO-H2O as a coolant and protecting paint or
film. Figure 17 expresses the normalized spray rate m2 which is related functionally to the film size β1.
It is evident that the film size enhances at once by the rate of spray, but it does not occur linearly. If the
deposition spray is not uniform, then it is possible to affect the film outer surface.

Figure 17. Rate of spray m2(β1) sketch for h = 0.10, M = 0.10, Re = 0.70, φ = 0.04, Pr = 6.80 and various
values of β1(CuO-H2O).

5.5. Numerical Comparison, Residual Error Sketches and Tables

In order to obtain the accuracy of the achieved results a proper mechanism is adopted. HAM
solution is compared with the numerical method solution which shows an excellent agreement with
one another. In Figures 18 and 19 the HAM solution graphs of velocity and temperature overlap with
the graphs of numerical method solution. To be more authentic the HAM solution, the residual error
Res graphs are drawn in Figures 20 and 21. Similarly to achieve more precision of HAM solution the
comparison Table of HAM solution and numerical method solution is prepared in Table 3. The residual
error Table 4 also shows the accuracy of results numerically.
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Figure 18. Comparison of the velocity solution of HAM with numerical method solution when
h = −0.55, β1 = 2.00, M = 0.10, Re = 0.70, φ = 0.04, Pr = 1.10 for (CuO-H2O).

Figure 19. Comparison of the temperature solution of HAM with numerical method solution when
h = −0.55, β1 = 2.00, M = 0.10, Re = 0.70, φ = 0.04, Pr = 1.10 for (CuO-H2O).

Figure 20. Residual errors sketch of the velocity solution of HAM when β1 = 2.00, M = 0.10, Re = 0.70,
φ = 0.04, Pr = 1.10 and various values of h for (CuO-H2O).
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Figure 21. Residual errors sketch of the temperature solution of HAM when β1 = 2.00, M = 0.10,
Re = 0.70, φ = 0.04, Pr = 1.10 and various values of h for (CuO-H2O).

Table 3. Comparison of solution of HAM with numerical method solution.

Velocity Temperature
ζ f (ζ) Numerical Values Errors ζ θ(ζ) Numerical Values Errors

0.0 1. 1. −4.44089 × 10−16 0.0 1.0 1.0 −6.30818 ×10−8

0.1 1.09826 1.09814 0.000124947 0.1 0.885877 0.880696 0.00518123
0.2 1.19347 1.19308 0.000389778 0.2 0.7963263 0.79091 0.00541687
0.3 1.2862 1.28551 0.000692582 0.3 0.7273 0.723303 0.00399767
0.4 1.37694 1.37595 0.000987247 0.4 0.675195 0.672662 0.00253345
0.5 1.46611 1.46485 0.0012588 0.5 0.636847 0.635206 0.00164092
0.6 1.5541 1.55259 0.00150777 0.6 0.609527 0.608145 0.00138164
0.7 1.64121 1.63947 0.0017406 0.7 0.590937 0.589388 0.00154869
0.8 1.72772 1.72575 0.00196426 0.8 0.579203 0.577345 0.00185881
0.9 1.81386 1.81167 0.00218373 0.9 0.572877 0.570793 0.002084
1.0 1.89982 1.89742 0.00240171 1.0 0.570928 0.568784 0.00214339

Table 4. Results achieved by HAM and Residual Errors.

Velocity Temperature
ζ f (ζ) Residual Errors ζ θ(ζ) Residual Errors

0.0 1. −0.64363 0.0 1.0 1.53209
0.1 1.09667 −0.456915 0.1 0.931831 1.64776
0.2 1.18735 −0.29789 0.2 0.875176 1.71672
0.3 1.27298 −0.162766 0.3 0.828685 1.75179
0.4 1.35444 −0.0481967 0.4 0.791164 1.76305
0.5 1.43248 0.0487658 0.5 0.761557 1.75834
0.6 1.50783 0.130716 0.6 0.738932 1.74376
0.7 1.58112 0.199934 0.7 0.722468 1.72407
0.8 1.65293 0.258415 0.8 0.711444 1.70297
0.9 1.72381 0.307909 0.9 0.705227 1.6833
1.0 1.79423 0.349941 1.0 0.703266 1.6673

5.6. Skin Friction Coefficient (Cf ), Nusselt Number (Nu) Sketches and Tables Showing Comparison with the
Published Experimental Work

It is experimental proved that the shear stress and rate of heat transfer change by using different
kinds of nanofluids. From this, it is concluded that the type of nanofluid is most important in the
cooling and heating processes. By selecting CuO as nanoparticle the higher Nusselt number and
smaller skin friction coefficient can be achieved. Therefore in the present study CuO-H2O is used to
investigate the effects of various parameters. The thermo-physical properties of the nanoliquid are
taken to be functions of the volume fraction and the thermal conductivity is modeled based on the
effective medium theory. The Prandtl number Pr for the base liquid water is usually around 7. Using
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the definition of Prandtl number and the thermo-physical properties of water as listed in Table 1 along
with μ f = 1 × 10−3 Pa s at 20 ◦C, the Prandtl number of water is evaluated to be Pr = 6.8173. This value
has been used throughout the computations.

Effects of CuO-H2O nanofluid on skin friction coefficient (Cf ) and Nusselt number (Nu) are
demonstrated in Figures 22 and 23. The quantity Cf related to the surface drag is shown as a function
of the Reynolds number Re for different values of φ. Figure 22 presents the scenario that the skin friction
coefficient (Cf ) decreases with the increase of nanoparticle volume fraction φ. Figure 23 highlights the
effect of nanoparticle volume fraction φ on Nusselt number Nu as a increasing function of Reynolds
number Re. The reason is that the inclusion of nano-sized particles in water like cooling liquids
greatly enhances their thermal conductivity thereby causing an increase in the heat transfer rates.
The significant variation in Nusselt number against volume fraction in case of CuO-H2O is observed.
The type of nanofluid is a key factor for heat transfer enhancement. The higher values of Nusselt
number are obtained by selecting CuO nano-sized particles. Tables 5 and 6 show the comparison of
the effects of different kinds of nanoparticles on skin friction coefficient (Cf ) and Nusselt number (Nu)
in terms of various values of Reynolds number Re against the variation of volume fraction φ. Both the
Tables numerically show the published experimental results and the present study results which show
an excellent correlation.

Figure 22. Skin friction coefficient (Cf ) when h = −0.40, β1 = 2.00, M = 0.10, Pr = 6.80 and various
values of φ against Reynolds number Re for (CuO-H2O).

Figure 23. Nusselt number (Nu) when h = −0.40, β1 = 0.10, M = 0.10, Pr = 6.80 and various values of φ

against Reynolds number Re for (CuO-H2O).
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Table 5. Comparison of the effects of different kinds of nanoparticles on skin friction coefficient (Cf )
as a function of Reynolds number Re when φ = 0.04.

Parameter Sheikhoeslami [45] Sheikhoeslami [45]
Present Study (When h = −0.20,

β1 = 0.50, M = 0.10, Pr = 6.80)

Re CuO Al2O3 CuO
0.1 0.679741 0.703897 0.577056
1 1.194617 1.224377 0.215528
2 1.579317 1.615502 0.384453

Table 6. Comparison of the effects of different kinds of nanoparticles on Nusselt number (Nu) as
a function of Reynolds number Re when φ = 0.04.

Parameter Sheikhoeslami [45] Sheikhoeslami [45]
Present Study (When h = −0.40,

β1 = 0.10, M = 0.10, Pr = 6.80)

Re CuO Al2O3 CuO
0.1 1.846686 1.70097 0.227864
1 4.324278 4.113995 2.25099
2 5.996721 5.711652 4.40516

6. Conclusions

This article explores the analytical solution of magnetohydrodynamic thin film CuO-H2O
nanofluid sprayed on a stretching cylinder accompanying transfer of heat. The solution of the problem
has been achieved by using analytical technique HAM (Homotopy Analysis Method) for the velocity
profile and temperature distribution. Pressure distribution and rate of spray are also investigated.
From the given figures, it is clear that the types of nanofluids and various parameters have an effective
contribution in the flow, transfer of heat, pressure distribution and rate of spray. The solution has
been displayed in the diagrams and the influences of all the parameters included in the problem on
the CuO-H2O nanofluid have been described graphically for checking their effects on velocity profile,
temperature distribution and pressure distribution accompanying spray distribution. It is predicted
that the model of the problem can be used in technical procedures, cooling/heating techniques and in
the modeling of coating processes by employing the constitutive equations of the problem. The findings
of the research are the following:

(i) The velocity depreciates for the thin film nanofluid parameter β1, Reynolds number Re and
magnetic field parameter M.

(ii) Temperature diminishes for the thin film parameter β1, Prandtl number Pr and it enhances for
the Reynolds number Re and it elevates for the magnetic field parameter M.

(iii) Volume fraction parameter φ has no sensitive effect on velocity and temperature.
(iv) Pressure depreciates for the Reynolds number Re and magnetic field parameter M while it elevates

for the thin film parameter β1, volume fraction parameter φ.
(v) Film size β1 enhances with the spray rate, but nonlinearly.
(vi) Comparisons of HAM solution with the numerical method solution for velocity and temperature

are performed and the results are found to be in good agreement.
(vii) The residual errors show the authentication of the present work.
(viii) Skin friction coefficient (Cf ) as a function of Reynolds number Re decreases with the increase of

nanoparticle volume fraction φ.
(ix) Nusselt number Nu as a function of Reynolds number Re increases with the increase of

nanoparticle volume fraction φ.
(x) The present study shows an excellent agreement with the published experimental work.
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Abstract: This paper explores Liquid Film Flow of Williamson Fluid over an Unstable Stretching
Surface in a Porous Space . The Brownian motion and Thermophoresis effect of the liquid film flow on
a stretching sheet have been observed. This research include, to focus on the variation in the thickness
of the liquid film in a porous space. The self-similarity variables have been applied to convert
the modelled equations into a set of non-linear coupled differential equations. These non-linear
differential equations have been treated through an analytical technique known as Homotopy
Analysis Method (HAM). The effect of physical non-dimensional parameters like, Eckert Number,
Prandtl Number, Porosity Parameter, Brownian Motion Parameter, Unsteadiness Parameter, Schmidt
Number, Thermophoresis Parameter, Dimensionless Film Thickness, and Williamson Fluid Constant
on the liquid film size are investigated and conferred in this endeavor. The obtained results through
HAM are authenticated, from its comparison with numerical (ND-Solve Method). The graphical
comparison of these two methods is elaborated. The numerical comparison with absolute errors are
also been shown in the tables. The physical and numerical results using h curves for the residuals of
the velocity, temperature and concentration profiles are obtained.

Keywords: Thermophoretic effect and Brownian motion, thin film, porous medium, Williamson
fluid, unsteady stretching sheet, HAM, ND-solve methods

1. Introduction

In the existing literature most of the study is related to Newtonian Fluids and very little
attention is paid to the Non-newtonian fluids. Therefore Williamson Fluid has been selected from
the class of non-newtonian shear thickening and shear thinning fluids, which has many uses in
the field of industry and engineering. The flow of Pseudoplastic Fluids experimentally describe by
Williamson [1] with verified results. The analytical study of Williamson Fluid can be found in the
investigation of Dapra and Scarpi [2]. Thermophoresis (also Thermomigration, Thermodiffusion,
the Soret Effect, or the Ludwig-Soret Effect) is a phenomenon observed in mixtures of mobile particles
where the different particle types exhibit different responses, to the force of a temperature gradient.
The term Thermophoresis most often applies to aerosol mixtures, but may also commonly refer to the
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phenomenon in all forms of matter. The term Soret Effect normally applies to liquid mixtures, which
behave in different, less well-understood mechanisms than gaseous mixtures. Thermophoresis may
not apply to thermomigration in solids, especially multi-phase alloys. The phenomenon is observed
at the scale of one millimeter or less. An example that may be observed by the naked eye with good
lighting is when the hot rod of an electric heater is surrounded by tobacco smoke, the smoke goes
away from the immediate vicinity of the hot rod. As the small particles of air nearest the hot rod are
heated, they create a fast flow away from the rod, down the temperature gradient. They have acquired
higher kinetic energy with their higher temperature. When they collide with the large, slower-moving
particles of the tobacco smoke they push the latter away from the rod. The force that has pushed the
smoke particles away from the rod is an example of a Thermophoretic Force. Brownian motion or
Pedesis is the random motion of particles suspended in a fluid (a liquid or a gas) resulting from their
collision with the fast-moving atoms or molecules in the gas or liquid. Transfer of heat energy play an
important role in almost all of the industrial processes. It is used to save energy and reduce processing
time in industrial processes. It is also used to raise the thermal rating and increase the working
life of equipment. The Liquid Film Flow of Williamson Fluid in a Porous Space over an Unstable
Stretching Surface has focused the interest of several researchers because of its many uses in the fields
of engineering and industries. The hydrodynamics of a thin liquid film over an unsteady stretching
sheet is studied by Wang et al. [3] and Cramer et al. [4] for the first time. The effect of surface mass
transfer mixed convection flow is explored by Selim et al. [5]. Das [6] analyzed the impact of thermal
radiation on MHD slip flow over a flat plate with variable fluid properties. The effects of radiation
and heat transfer on MHD flow of Viscoelastic Liquid and heat transfer over a stretching sheet is
studied by Siddeshwar et al. [7]. Nadeem and Hussain [8] solved the problem of flow and heat transfer
analysis of Williamson Nanofluid . Hassanien et al. [9] worked on Variable viscosity and thermal
conductivity effects on heat transfer by natural convection from a cone and a wedge in porous media.
Aziz et al. [10] considered thin film flow and heat transfer on an unsteady stretching sheet with internal
heating. Qasim et al. [11] used Buongiorno’s model to investigate heat and mass transfer in Nanofluid.
Mahesh et al. [12] studied Heat and Mass Transfer in Nanofuid over an unsteady stretching surface.

Ellahi et al. studied Nanofluid over different phenomena mentioned in [13–17]. A detailed
data on thin film Williamson Nanofluid Flow with Varying Viscosity and Thermal Conductivity on
a Time-Dependent Stretching Sheet is given by Khan et al. [18]. The present research is the study of
liquid film flow of Williamson Fluid in a porous medium over an unsteady stretching sheet with the
combined effect of Thermophoresis and Brownian motion. The self-similarity variables has been used
to convert the modelled equations into a set of non-linear coupled differential equations. The flow
of fluid in a porous medium has also a significant role in the field of engineering and especially in
Bio-engineering. The purification of liquids through filtration, human lungs, blood filtration are the
application of porous media. The flow of fluid in a porous medium on a stretching sheet can be seen
in [19,20]. These non-linear differential equations has been tackled through a powerful analytical
method known as Homotopy Analysis Method (HAM) [21–28]. The relevant work can also be found
in [29–35]. The effect of physical non-dimensional parameters like Porosity Parameter, Unsteadiness
Parameter, Prandtl Number, Schmidt Number, and Dimensionless Film thickness on the liquid film
size has been investigated and discussed. The results achieved by the HAM and numerical ND-Solve
method are compared and presented in the form of figures and tables with absolute error to make
understandable for readers.

2. Mathematical Formulation of Model

Suppose a two dimensional incompressible Liaquid Film Flow of Williamson Fluid on a Porous
Unsteady Stretching Sheet with thermal radiation, where heat and mass are transferred simultaneously.
The coordinate axes are chosen in such away that the x-axis is parallel to the plate while the y-axis
is perpendicular to it. The stretching velocity of the sheet is in the direction of the x-axis which
have magnitude Uw = αx

1−γt , in which α > 0 is the stretching velocity constraint and γ ∈ [0, 1].
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The temperature Tw(x, t) = T0 − Tre f (
αx2

2ν )(1 − γt)−1.5, where T0 elaborates the temperature at the

surface and Tre f depicts the reference temperature. Similarly, Cw(x, t) = C0 − Cre f (
αx2

2ν )(1 − γt)−1.5

is the volume concentration, where C0 illustrates the concentration at the surface and Cre f shows

the reference concentration. The time dependent term αx2

ν(1−γt) , indicates the local Reynold number
which reliant on the stretching velocity Uw(x, t). Initially the sheet is fixed with the origin and then
an external force is applied to stretch the surface in the positive x-axis at the rate α

(1−γt) in time t with
velocity Uw(x, t), where γ ∈ [0, 1]. Now use the above conditions, to get the following equations as:

Continuity Equation,

∂u
∂x

+
∂v
∂y

= 0, (1)

Momentum Equation,

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 + 20.5Γν

∂2u
∂y2

∂u
∂y

− νφ

K
u, (2)

Energy Equation,

∂T
∂t + u ∂T

∂x + v ∂T
∂y = α ∂2T

∂y2 + τ[DB(
∂C
∂y

∂T
∂y ) +

DT
T∞

( ∂T
∂y )

2] + ν
Cp
[( ∂u

∂y )
2 + 20.5Γ( ∂u

∂y )
3], (3)

Concentration Equation,

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

(
∂2T
∂y2 ), (4)

along with the BCs,

u = Uw, T = Tw, v = 0, C = Cw, y = 0,

∂ u
∂ y

=
∂ C
∂ y

=
∂ T
∂ y

= 0, v =
dh
dt

= 0, y = h(t).
(5)

u and v are the flow velocities along x and y axis respectively, the Specific heat at constant pressure
is represented by Cp, the Thermal diffusivity of the base fluid is indicated by α = k

(ρc)p , Γ > 0 is the

Time constant, the Fluid density is represented by ρc, τ = (ρc)p
(ρc) f and the local nanoparticle Volume

fraction is denoted by C . Also the Thermophoretic diffusion coefficient is indicated by DT , ρ is the
Density, while the Brownian diffusion coefficient is shown by DB. T is the local Temperature and the
Film thickness is denoted by h(t).

Now define the following similarity transformations as:

ξ = (
α

ν(1 − γt)
)0.5y,

ψ(x, y, t) = (
να

1 − γt
)0.5x f (ξ),

T(x, y, t) = T0 − Tre f (
αx2

2ν
)(1 − γt)−1.5θ(ξ),

C(x, y, t) = C0 − Cre f (
αx2

2ν
)(1 − γt)−1.5φ(ξ).

(6)

ψ(x, y) is the Stream function which is defined as: u = ∂ ψ
∂ y , v = − ∂ ψ

∂ x . β is Non-dimensional film

thickness and is described as β = ( α
ν(1−γt) )

0.5(h(t)) [29,30].
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Also dh
dt = − γ

2 β( ν
α )

0.5(1 − γt)−0.5. Now put the values in the above equations we get a system of
nonlinear coupled boundary value problems as:

d3 f (ξ)
dξ3 + λ

d2 f (ξ)
dξ2

d3 f (ξ)
dξ3 + f (ξ) d2 f (ξ)

dξ2 − ( d f (ξ)
dξ )2 − S( d f (ξ)

dξ + ξ
2

d2 f (ξ)
dξ2 )− Kr

d f (ξ)
dξ = 0,

d2θ(ξ)
dξ2 + Pr f (ξ) dθ(ξ)

dξ − 2Pr d f (ξ)
dξ θ(ξ)− Pr( S

2 (3θ(ξ) + ξ
dθ(ξ)

dξ )) +

PrNb dφ(ξ)
dξ

dθ(ξ)
dξ ) + PrNt( dθ(ξ)

dξ )2 + PrEc((
d2 f (ξ)

dξ2 )2 + λ( d2 f (ξ)
dξ2 )3) = 0,

d2φ(ξ)
dξ2 + Sc( dφ(ξ)

dξ f (ξ)− 2 d f (ξ)
dξ φ(ξ)− S

2 (3φ(ξ) + ξ
dφ(ξ)

dξ ) + Nt
Nb

d2θ(ξ)
dξ2 = 0, (7)

along with transformed boundary conditions,

d2 f (β)

dξ2 = 0,
d f (0)

dξ
= 1, f (0) = 0, f (β) =

Sβ

2
,

dθ(β)

dξ
= 0, θ(0) = 1,

dφ(β)

dξ
= 0, φ(0) = 1. (8)

where

λ = ΓUw(
2α

ν(1−γt) )
0.5, Kr =

ν2φ(1−γt)
αK ,

S = γ
α , Pr = νρCp

k , Ec =
U2

w
Cp(Tw−T0)

,

Sc = ν
DB

, Nb = τDB(Cw − C∞), Nt = τDT(Tw−T∞)
νT∞

. (9)

3. Materials and Methods

In this section high accuracy of the applied method is applied to system of nonlinear boundary
value problems obtained from the new modeled phenomenon. As a result, we see that this method
gives best approximation and takes very less time to produce good results.

Solution of Problem

For the solution of system (7) an analytical technique, called Homotopy Analysis Method (HAM)
is used. To apply this method we first find the initial guesses f0(ξ), θ0(ξ), φ0(ξ) from the following as:
Zeroth order problem:

d3 f0(ξ)
dξ3 = 0, f0(0) = 0, d f0(0)

dξ = 1, d2 f0(β)
dξ2 = 0,

d2θ0(ξ)
dξ2 = 0, θ0(0) = 1, dθ0(β)

dη = 0,

d2φ0(ξ)
dξ2 = 0, φ0(0) = 1, dφ0(β)

dξ = 0, (10)

which gives the solution as

f0(ξ) = ξ, θ0(ξ) = 1, φ0(ξ) = 1. (11)

The linear operators are chosen as ψ f = d3 f (ξ)
dξ3 , ψθ = d2θ(ξ)

dξ2 and ψφ = d2φ(ξ)
dξ2 with the

following properties

ψ f (C1 + C2ξ + C3ξ2) = 0, ψθ(C4 + C5ξ) = 0, ψφ(C6 + C7ξ) = 0, (12)

where Ci, i = 1 − 7 are constants. The resultant non-linear operators ℵ f , ℵθ and ℵφ are chosen as:

ℵ f (ξ;℘) = d3 f (ξ)
dξ3 + f (ξ) d2 f (ξ)

dξ2 + λ
d2 f (ξ)

dξ2
d3 f (ξ)

dξ3 − ( d f (ξ)
dξ )2 − S( d f (ξ)

dξ + ξ
2

d2 f (ξ)
dξ2 )− Kr

d f (ξ)
dξ , (13)
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ℵθ [ f (ξ;℘), θ(ξ;℘), φ(ξ;℘)] = d2θ(ξ)
dξ2 + Pr f (ξ) dθ(ξ)

dξ − 2Pr d f (ξ)
dξ θ(ξ)− Pr( S

2 (3θ(ξ) + ξ
dθ(ξ)

dξ )) +

PrNb dφ(ξ)
dξ

dθ(ξ)
dξ ) + PrNt( dθ(ξ)

dξ )2 + Ec((
d2 f (ξ)

dξ2 )2 + λ( d2 f (ξ)
dξ2 )3), (14)

ℵφ[ f (ξ;℘), θ(ξ;℘), φ(ξ;℘)] = d2φ(ξ)
dξ2 + Sc( dφ(ξ)

dξ f (η)− 2 d f (ξ)
dξ φ(ξ)−

S
2 (3φ(ξ) + ξ

dφ(ξ)
dξ )) + Nt

Nb
d2θ(ξ)

dξ2 . (15)

The basic idea of HAM is described in [21–28],
Zeroth-order problems:

(1 − ℘)ψ f [ f (ξ;℘)− f0(ξ)] = ℘h̄ fℵ f [ f (ξ;℘)], (16)

(1 − ℘)ψθ [θ(ξ;℘)− θ0(ξ)] = ℘h̄ℵθ [ f (ξ;℘), θ(ξ;℘), θ(ξ;℘)], (17)

(1 − ℘)ψφ [φ(ξ;℘)− φ0(ξ)] = ℘h̄φℵφ[ f (ξ;℘), θ(ξ; p), φ(ξ;℘)]. (18)

The equivalent BCs are:

f (0;℘) = 0, d f (0;℘)
dξ = 1, d2 f (ξ;℘)

dξ2 = 0,

θ(0;℘) = 1, dθ(0;℘)
dξ = 0, φ(0;℘) = 1, dφ(β;℘)

dξ = 0. (19)

where ℘ ∈ [0, 1] is the imbedding parameter, h̄ f , h̄θ and h̄φ are used to control the convergence of the
solution. When ℘ = 0 and ℘ = 1, then:

f (ξ; 1) = f (ξ), θ(ξ; 1) = θ(ξ) , φ(ξ; 1) = φ(ξ). (20)

Expanding f (ξ;℘), θ(ξ;℘) and φ(ξ;℘) in Taylor’s series about ℘ = 0 as:

f (ξ) = f0(ξ) + ∑m=∞
m=0 fm(ξ)℘m,

θ(ξ) = θ0(ξ) + ∑m=∞
m=0 θm(ξ)℘m,

φ(ξ) = φ0(ξ) + ∑m=∞
m=0 φm(ξ)℘m. (21)

where

fm(ξ) =
1

m!
dm f (ξ;℘)

dξm

∣∣∣
℘=0

,

θm(ξ) =
1

m!
dmθ(ξ;℘)

dξm

∣∣∣
℘=0

,

φm(ξ) =
1

m!
dmφ(ξ;℘)

dξm

∣∣∣
℘=0

. (22)

The secondary constraints h̄ f , h̄θ and h̄φ are selected in such away that the series (21) converges at
℘ = 1. Use ℘ = 1 in (21) to get:

f (ξ) = f0(ξ) + ∑m=∞
m=0 fm(ξ),

θ(ξ) = θ0(ξ) + ∑m=∞
m=0 θm(ξ),

φ(ξ) = φ0(ξ) + ∑m=∞
m=0 φm(ξ). (23)
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The mth -order problem satisfies the following:

ψ f [ fm(ξ)− χm fm−1(ξ)] = h̄ f R f
m(ξ),

ψθ [θm(ξ)− χmθm−1(ξ)] = h̄θ Rθ
m(ξ),

ψφ [ϕm(ξ)− χmφm−1(ξ)] = h̄φRφ
m(ξ). (24)

The boundary conditions for this problem are:

d2 fm(β)
dξ2 = 0, d fm(0)

dξ = 1, fm(0) = 0, fm(β) = Sβ
2 , dθm(β)

dξ = 0, θm(0) = 1,

dφm(β)
dξ = 0, φm(0) = 1. (25)

Here

R f
m(ξ) =

d3 fm−1
dξ3 + λ ∑m−1

k=0
d2 fm−1−k

dξ2
d3 fk
dξ3 +

[
fm−1

d2 fm−1
dξ2 − ∑m−1

k=0
d fm−1−k

dξ
d fk
dξ − S

(
d fm−1

dξ + ξ
2

d2 fm−1
dξ2

)]
−

Kr d fm−1
dξ ,

(26)

Rθ
m(ξ) =

d2θm−1
dξ2 + Pr

[
− S

2

(
3θm−1 + ξ

dθm−1
dξ

)
− 2 ∑m−1

k=0 θm−1−k
d fk
dξ + ∑m−1

k=0 fm−1−k
dθk
dξ

]
+

Ec

[
∑m−1

k=0
d2 fm−1−k

dξ2
d2 fk
dξ2 + λ ∑m−1

k=0
d2 fm−1−k

dξ2 ∑k
�=0

d2 fk−1
dξ2

d2 f�
dξ2

]
+ Nt ∑m−1

k=0
dθm−1−k

dξ
dθk
dξ

+Nb( dθm−1
dξ

dφm−1
dξ ), (27)

Rφ
m(ξ) =

d2φm−1
dξ2 + Sc

[
∑m−1

k=0 fm−1−k
dφj
dξ − 2 ∑m−1

k=0
d fm−1−k

dξ φk − S
2

(
3φm−1 + ξ

dφm−1
dξ

)]
+ Nt

Nb
d2θm−1

dξ2 , (28)

where

χm =
0, i f ℘ ≤ 1
1, i f ℘ > 1.

(29)

4. Representation of Achieved Results in the Form of Figures and Tables

In this section the results achieved by HAM are shown in the form of figures and tables.
The convergence of the series given in (21), f (η), θ(η) and φ(η) entirely depend upon the auxiliary
parameters h̄ f , h̄θ and h̄φ which are called h̄-curves. It is selected in such a way that it controls
and converges the series solution. The probable selection of h̄ can be found by plotting h̄-curves
of f ′′(0), θ′(0), φ′(0). The valid region of h̄ is −1.5 < h̄ f < −0.5, −1.5 < h̄θ < −0.5 and
−1.5 < h̄φ < −0.5. Here η = ξ is chosen.

5. Results and Discussion

In this paper the Liquid Film Flow of Non-newtonian Williamson Fluid over an Unstable
Stretching Surface in a Porous Space has been investigated. Thermophoresis and Brownian Motion
Effect has been countered to the liquid film flow. The governing equations have been transformed
through suitable similarity variables into nonlinear coupled differential equations with physical
conditions. The solution of the coupled problem has been obtained by using an analytical approach
called, HAM. The solution of the coupled problem and fast convergence of this method is mainly
focused. This paper has examined the consequences of governing parameters on the transient velocity,
temperature, and concentration profiles. Figure 1 illustrates the geometry of model used. Comparisons
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are carried out between the obtained results and the results achieved by numerical N-Desolve method
for velocity, temperature, and concentration profiles (shown in Figures 2–4). The effects of physical
parameters appear in the problem, are shown graphically and discussed. Figures 5–7, elaborate the
behavior of the non-dimensional unsteady parameter S for velocity, temperature and concentration
field during fluid motion in a porous medium past over a Unsteady Stretching Sheet. The unsteady
parameter S is inversely related to the stretching constant of the velocity field, where as it is directly
related to the stretching constants of the temperature and concentration fields. Therefore, when
the values of S are increasing the values of the velocity field are decreasing while the values of the
temperature and concentration fields increase. Physically, unsteadiness S produce buoyancy forces in
the way of the flow field. These forces resist the fluid flow and therefore, the velocity field falls and the
temperature distribution as well as the concentration profile is boosted. The effect of the Williamson
Fluid constant λ on the velocity field is illustrated in Figure 8. The velocity is found to reduce when λ

is augmented. Because rise in relaxation time causes higher resistance to the fluid flow and as a result
reduces the velocity field. Also increase in λ increase the temperature due to increase in resistance
to the fluid flow as shown in Figure 9. Non-dimensional porosity parameter Kr have direct relation
to viscosity parameters. So a rise in non-dimensional porosity parameter reduces fluid motion as
explained in Figure 10. Physically, larger values of Kr generate larger open space and create hurdle to
flow and as a result the flow field is retarded. The resistance force produces larger values of Kr which
increase the temperature and concentration profiles shown in Figures 11 and 12.

Figure 1. Illustrates the physical geometry of the used model.

Figure 2. The comparison between HAM and numerical solutions for velocity profile f (η), when
h = −0.25, λ = 0.9, kr = 0.9, Pr = 0.5, Ec = 0.5, Nb = 0.5, Nt = 0.6, β = 1 and Sc = 0.6.
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Figure 3. The comparison between HAM and numerical solutions for temperature profile θ(η), when
h =−0.47, λ = 0.2, S = 0.2, kr = 0.2, Pr = 1, Ec = 0.6, Nb = 0.4, Nt = 0.5, β = 1, Sc = 0.5.

Figure 4. The comparison between HAM and numerical solutions for concentration profile φ(η), when
h = −0.6, λ = 0.2, S = 0.2, kr = 0.2, Pr = 1, Ec = 0.6, Nb = 1, Nt = 0.1, β = 1 and Sc = 0.5.

Figure 5. Variations in the Velocity field f (η) for various values of S, when h = −0.25, λ = 0.9, kr = 0.9,
Pr = 0.5, Ec = 0.5, Nb = 0.5, Nt = 0.6, β = 1, Sc = 0.6.
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Figure 6. Variations in the Temperature gradient θ(η) for different values of S, when h = −0.8, λ = 0.1,
kr = 0.5, Pr = 0.5, Ec = 0.5, Nb = 0.5, Nt = 0.6, β = 1, Sc = 0.6.

Figure 7. Variations in the Concentration field φ(η) for different values of S, when h = −0.6, λ = 0.5,
kr = 0.5, Pr = 0.5, Ec = 0.5, Nb = 0.5, Nt = 0.6, β = 1, Sc = 0.6.

Figure 8. The effect of λ on f ′(η), when h = −0.25, kr = 0.7, Pr = 0.5, Ec = 0.5, Nb = 0.5, Nt = 0.6,
β = 1, Sc = 0.6.
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Figure 9. The effect of λ on θ(η), when h = −0.6, S = 0.5, kr = 0.5, Pr = 0.5, Ec = 0.5, Nb = 0.5,
Nt = 0.6, β = 1, Sc = 0.6.

Figure 10. Indicates the effect of Kr on f (η) for h = −0.25, S = 0.5, Pr = 0.5, λ = 1, Ec = 0.5,
Nb = 0.5, Nt = 0.6, β = 1, Sc = 0.6.

Figure 11. Shows the effect of β on θ(η) for h = −0.7, λ = 1, S = 0.5, kr = 0.5, Pr = 0.5, Ec = 0.5,
Nb = 0.5, Nt = 0.6, and Sc = 0.6.
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Figure 12. Shows the effect of Kr on θ(η) for h = −0.25, λ = 0.1, S = 0.1, Pr = 0.5, Ec = 0.5, Nb = 0.5,
Nt = 0.6 and Sc = 0.6.

The effect of Prandtl number Pr has been shown in the Figure 13, describing that for larger
values of Pr decreases the temperature θ(η). The increase in Prandtl number reduces the thermal
boundary layer due to which the temperature decreases.The influence of the Schmidt number Sc is
depicted in Figures 14 and 15, showing that temperature and concentration fields decrease when
the parameter Sc increases because Schmidt number Sc is reciprocal to the molecular diffusivity.
It indicates that as the values of of the Eckert number Ec increase the fluid temperature also increases
while its converse effect has been observed in the solute concentration illustrated in Figures 16 and 17.
Physically, Ec is connected with the viscous dissipation term in the equation of energy, therefore,
larger values of Ec should lead to increase the quantity of heat being produced by the shear forces
in the fluid and as a result raises the fluid temperature. Figures 18 and 19, illustrate the effects
of Brownian motion parameter Nb on the dimensionless temperature and concentration profiles.
The fluid temperature increases as the value of increase of Brownian motion parameter increase while
converse effect on the solute concentration. The increase in the value of thermophoresis parameter,
increase both temperature and concentration as illustrated in Figures 20 and 21. The fluid flow is
also falling when the thickness of film is increased. Larger values of thickness β generate the friction
force and as a result the flow motion falls down. Increase in the film thickness deliver more fluid
in the boundary layer region and cooling effect is produced, which absorbs the heat transfer from
the sheet to the fluid and temperature profile drops down. Concentration has vital application in
thermal conductivity and chemical reactions. The concentration profile φ(ξ) is reliant on film size β

and increases with larger values of β indicated in Figures 22–24. The h-curves of f ′′(0), θ′(0), and φ′(0)
for the 4th-order HAM approximated solution are elaborated in Figures 25–27. Figures 28–31 indicate
h curves of the residuals for velocity, temperature and concentration profiles respectively. Table 1
illustrates the symbols used in the manuscript. In Tables 2–4 the results are compared, which are
achieved by HAM and Numerical(ND-Solve method) for velocity, temperature and concentration
profiles. The residuals gained by HAM are also depicted in Table 5.
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Figure 13. The effect of Kr on φ(η) for h = −0.9, λ = 0.5, S = 0.7, Pr = 0.5, Ec = 0.5, Nb = 0.7,
Nt = 0.1, β = 1 and Sc = 0.5.

Figure 14. Shows the effect of Pr on θ(η) for h = −0.7, λ = 0.7, S = 0.7, kr = 0.1, Ec = 0.5, Nb = 0.5,
Nt = 0.2, β = 1 and Sc = 0.2.

Figure 15. Shows the effect of Sc on θ(η) for h = −0.9, λ = 0.7, S = 0.7, kr = 0.7, Pr = 30, Ec = 0.7,
Nb = 0.5, Nt = 0.7, β = 1 and Sc = 0.1.
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Figure 16. Shows the effect of Sc on φ(η), for h = −0.6, λ = 0.5, S = 0.5, kr = 0.5, Pr = 0.5, Ec = 0.5,
Nb = 0.5, Nt = 0.5, β = 1 and Sc = 0.6.

Figure 17. Shows the effect of Ec on θ(η), for h = −0.6, λ = 0.1, S = 0.1, kr = 0.9, Pr = 15, Nb = 0.5,
Nt = 0.6, β = 1 and Sc = 0.1.

Figure 18. presents the effect of Ec on φ(η) for h = −0.7, λ = 0.5, S = 0.7, kr = 0.2, Pr = 10, Nb = 0.7,
Nt = 0.1, β = 1 and Sc = 0.5.
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Figure 19. Illustrates the effect of Nb on θ(η), when h = −0.5, λ = 0.7, S = 0.7, kr = 0.7, Pr = 30,
Ec = 0.7, Nt = 0.5, β = 1 and Sc = 0.7.

Figure 20. Indicates the effect of Nb on φ(η), for h = −0.9, λ = 0.5, S = 0.7, kr = 0.5, Pr = 0.5,
Ec = 0.5, Nt = 0.7, β = 1 and Sc = 0.5.

Figure 21. The effect of Nt on θ(η), when h = −0.5, λ = 0.7, S = 0.7, kr = 0.7, Pr = 30, Ec = 0.7,
Nb = 0.5, β = 1, and Sc = 0.7.
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Figure 22. The effect of Nt on φ(η), for h = −0.9, λ = 0.5, S = 0.7, kr = 0.5, Pr = 0.5, Ec = 0.5,
Nb = 0.7, β = 1 and Sc = 0.5.

Figure 23. Shows the effect of β on f (η), for h = −0.7, λ = 1, kr = 0.5, Pr = 0.5, Ec = 0.5, Nb = 0.5,
Nt = 0.6, β = 0.1 and Sc = 0.6.

Figure 24. The effect of β on θ(η), for h = −0.7, λ = 1, S = 0.5, kr = 0.5, Ec = 0.5, Nb = 0.5, Nt = 0.6
and Sc = 0.6.
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Figure 25. Illustrates the effect of β on φ(η) for h = −0.25, λ = 0.5, S = 0.1, kr = 0.5, Ec = 0.5,
Nb = 0.5, Nt = 0.6 and Sc = 0.6.

Figure 26. Depicts h curves of f ′′(0), when λ = 0.9, kr = 0.9, Pr = 0.5, Ec = 0.5, Nb = 0.5, Nt = 0.6,
β = 1 and Sc = 0.6.

Figure 27. Shows h curves of θ′(0), for λ = 0.2, S = 0.2, kr = 0.2, Pr = 1, Ec = 0.6, Nb = 1, Nt = 0.1,
β = 1 and Sc = 0.5.

108



Appl. Sci. 2017, 7, 404

Figure 28. Elaborates h curves of φ′(0), when λ = 0.2, S = 0.2, kr = 0.2, Pr = 1, Ec = 0.6, Nb = 0.4,
Nt = 0.5, β = 1, Sc = 0.5.

Figure 29. Illustrates h curves of the residuals for the velocity profile f (η), when λ = 0.6, S = 0.6, Kr =
0.4, Pr = 1, Ec = 0.4, Nb = 0.6, Nt = 0.5, Sc = 0.5, β = 1.

Figure 30. Indicates h curves of the residuals for the temperature profile θ(η), when λ = 0.6, S = 0.6,
Kr = 0.4, Pr = 1, Ec = 0.4, Nb = 0.6, Nt = 0.5, Sc = 0.5, β = 1.
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Figure 31. Shows h curves of the residuals for the concentration profile φ(η), when λ = 0.6, s = 0.6;
Kr = 0.4, Pr = 1, Ec = 0.4, Nb = 0.6, Nt = 0.5, sc = 0.5, β = 1.

Table 1. Shows the Nomenclature.

Alphabet Defined as Alphabet Defined as

x horizontal coordinate (m) Tr Reference temperature
y vertical coordinate (m) T0 initial temperature of the fluid (K)
u horizontal velocity component (m/s) T temperature (K)
v vertical velocity component (m/s) Uw Velocity of the stretching sheet
S Unsteadiness parameter T1 final temperature of the fluid (K)

Tw Temperature at the sheet T temperature (K)
K thermal diffusivity (m2) t time (s)
S Unsteadiness parameter f Dimensionless Velocity
b stretching parameter(constant) k

′
permeability coefficient of the porosity

f (ξ) nondimensional variable for velocity Cw Nanoparticle volume fraction at sheet
Pr Prandtl number Ec Eckert number
Kr nondimensional porosity parameter Sc Schmidt number
Nb Brownian motion parameter DB Brownian diffusion coefficient
Cp specific heat at constant pressure (kJ kg−1 K−1) Nt Thermophoresis parameter

Greek symbols Defined as Greek Symbols Defined as

φ Dimensionless nanoparticle volume fraction ξ Similarity variable
ν kinematic viscosity of the fluid ρ f Density of base fluid
ρ density (kg m−3) (ρc)p Heat capacity of the nanoparticle material
Γ Time constant α Thermal diffusivity of the base fluid
ρp Nanoparticle mass density (ρc) f Heat capacity of the base fluid
ν Kinematic viscosity of the base fluid λ Williamson fluid constant
β non-dimensional film thickness θ Dimensionless temperature
ψ non-dimensional stream function (′) differentiation w. r. t. ξ

Table 2. HAM, Numerical Solution and their absolute Error are shown for f (η), when h = −0.47,
λ = 0.2, kr = 0.2, Pr = 1, Ec = 0.6, Nb = 0.4, Nt = 0.5, S = 0.2, β = 1 and Sc = 0.5.

η
Numerical Solution for HAM Solution for

Absolute Errorf (η) f (η)

0 0 0 0
0.1 0.0952761 0.0955184 2.4 × 10−4

0.2 0.182152 0.182958 8.1 × 10−4

0.3 0.262045 0.263561 1.5 × 10−3

0.4 0.336198 0.338462 2.3 × 10−3

0.5 0.405709 0.408698 2.9 × 10−3

0.6 0.471556 0.47522 3.6 × 10−3

0.7 0.534618 0.5389 4.3 × 10−3

0.8 0.595686 0.600535 4.6 × 10−3

0.9 0.655482 0.660862 5.4 × 10−3

1 0.714666 0.720558 5.8 × 10−3
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Table 3. HAM, Numerical Solution and their absolute Error are elobarated for θ(η), when h = −0.5,
λ = 0.2, kr = 0.2, Pr = 0.5, Ec = 0.6, Nb = 0.4, Nt = 0.5, S = 0.2, β = 1 and Sc = 0.7.

η
Numerical Solution for HAM Solution for

Absolute Error
θ(η) θ(η)

0 1 1 1.4 × 10−8

0.1 0.907342 0.90737 2.8 × 10−5

0.2 0.82775 0.827596 1.5 × 10−4

0.3 0.759861 0.759482 3.8 × 10−4

0.4 0.702621 0.702067 5.5 × 10−4

0.5 0.655233 0.654586 6.5 × 10−4

0.6 0.617098 0.616438 6.7 × 10−4

0.7 0.587786 0.587169 6.2 × 10−4

0.8 0.567002 0.566451 5.5 × 10−4

0.9 0.554573 0.554078 4.9 × 10−4

1 0.550428 0.549956 4.7 × 10−4

Table 4. HAM, Numerical Solution and their absolute Error are depicted for φ(η), when h = −0.6,
λ = 0.2, kr = 0.2, Pr = 1, Ec = 0.6, Nb = 1, Nt = 0.1, S = 0.2, β = 1, and Sc = 0.5.

η
Numerical Solution for HAM Solution for

Absolute Error
φ(η) φ(η)

0 1 1 2.9 × 10−9

0.1 0.940581 0.941167 5.9 × 10−4

0.2 0.890316 0.8912 8.8 × 10−4

0.3 0.848224 0.849209 9.8 × 10−4

0.4 0.813465 0.81443 9.6 × 10−4

0.5 0.785325 0.786207 8.8 × 10−4

0.6 0.763201 0.76398 7.8 × 10−4

0.7 0.74659 0.747277 6.9 × 10−4

0.8 0.735082 0.735705 6.2 × 10−4

0.9 0.728352 0.728942 5.9 × 10−4

1 0.726151 0.726734 5.8 × 10−4

Table 5. Illustrates the residuals achieved by HAM for system of coupled differential equations forming
in velocity, temperature and concentration profiles.

η
Residuals for Residuals for Residuals for

f (η) θ(η) φ(η)

0 −2.0 × 10−1 −3.7 × 10−1 5.1 × 10−2

0.1 −1.2 × 10−1 −7.9 × 10−2 2.4 × 10−2

0.2 −4.9 × 10−2 3.2 × 10−3 2.2 × 10−2

0.3 −4.9 × 10−4 2.5 × 10−2 2.9 × 10−2

0.4 3.3 × 10−2 2.9 × 10−2 3.2 × 10−2

0.5 5.2 × 10−2 2.1 × 10−2 2.3 × 10−2

0.6 6.1 × 10−2 5.9 × 10−3 2.2 × 10−3

0.7 5.9 × 10−2 −1.3 × 10−2 −2.6 × 10−2

0.8 4.9 × 10−2 −3.3 × 10−2 −5.5 × 10−2

0.9 3.3 × 10−2 −4.6 × 10−2 −7.3 × 10−2

1 9.9 × 10−3 −4.9 × 10−2 −8.7 × 10−2

6. Conclusions

The main conclusion of this endeavor is the study of liquid film in a porous medium considering
non-Newtonian Williamson fluid on an unstable stretching surface. The effect of Thermophoresis
and Brownian motion has been countered to the liquid film flow. The solutions of the problems have
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been achieved by using analytical technique, HAM for velocity, temperature and concentration fields
respectively. The influences of all parameters included in the problem have been described and the
solutions are displayed in the diagrams for checking their effects on velocity, temperature as well as
concentration fields. The coupled problem has been solved by using an analytical method HAM. The
h curves for the residuals of velocity, temperature and concentration have been sketched.
The main concluded points are derived as,

(1) Increasing thickness parameter β produce the friction force and as a result velocity of the fluid
film falls down.

(2) The larger values of β transport more fluid in the boundary layer region and cooling effect is
produced which absorbed the heat transfer from the sheet and as a result the temperature reduces.

(3) The Eckert number Ec is allied with the viscous dissipation term and lead to incrrease the quantity
of heat being produced by the shear forces in the fluid. Therefore, larger values of Ec raises the
temperature field.

(4) The larger values of Prandtl number Pr reduces the thermal boundary layer due to which the
temperature field reduces.

(5) Higher values of Porosity parameter Kr generate larger open space and create hurdle to flow and
as a result the flow field reduces.
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Abstract: In this study, a radial basis function (RBF) neural network with three-layer feed forward
architecture was developed to effectively predict the viscosity ratio of different ethylene glycol/water
based nanofluids. A total of 216 experimental data involving CuO, TiO2, SiO2, and SiC nanoparticles
were collected from the published literature to train and test the RBF neural network. The parameters
including temperature, nanoparticle properties (size, volume fraction, and density), and viscosity
of the base fluid were selected as the input variables of the RBF neural network. The investigations
demonstrated that the viscosity ratio predicted by the RBF neural network agreed well with the
experimental data. The root mean squared error (RMSE), mean absolute percentage error (MAPE),
sum of squared error (SSE), and statistical coefficient of multiple determination (R2) were respectively
0.04615, 2.12738%, 0.46007, and 0.99925 for the total samples when the Spread was 0.3. In addition,
the RBF neural network had a better ability for predicting the viscosity ratio of nanofluids than the
typical Batchelor model and Chen model, and the prediction performance of RBF neural networks
were affected by the size of the data set.

Keywords: nanofluids; viscosity; RBF neural network; ethylene glycol/water

1. Introduction

As a very important heat transfer medium, ethylene glycol/water mixtures are widely used
in many different kinds of industrial equipment including car radiators, air conditioning systems,
and liquid cooled computers [1]. In the past few decades, with the rapid development of various
compact heat exchange components, the conventional ethylene glycol/water mixtures have been
unable to effectively meet the ever-increasing demand for cooling due to their lower thermal
conductivity. Therefore, how to develop enhanced heat transfer technology has become a very
important problem in the fields of thermal engineering [2].

Nanofluids, a special liquid-solid mixture containing a base fluid and nanoparticles (usually less
than 100 nm), have drawn increasing attention recently because of their advantages in thermal
conductivity and stability [3]. Many investigations indicated that nanofluids could be an effective
technology to improve the heat transfer performance of systems using ethylene glycol/water mixtures
as coolant [4]. For example, the experimental results of Vajjha and Das [5] showed that at the
temperature of 299 K, the thermal conductivities of the 60:40 (by weight ratio) ethylene glycol/water
mixture could be increased by about 12.3% by adding ZnO nanoparticles (29 nm) with a volume
fraction of 2%. Sundar et al. [6] experimentally investigated the effects of Fe3O4 nanoparticles (13 nm)
on three different kinds of ethylene glycol/water mixtures with weight ratios of 20:80, 40:60, and
60:40. They found that at the temperature of 60 ◦C and the nanoparticle volume fraction of 2%,

Appl. Sci. 2017, 7, 409 114 www.mdpi.com/journal/applsci



Appl. Sci. 2017, 7, 409

the thermal conductivity enhancements of the above three ethylene glycol/water mixtures were 46%,
42%, and 33%, respectively.

Thermo-physical parameters are very important factors that affect the heat and mass transfer
performance of nanofluids [7–9]. Due to the fact that viscosity can significantly affect the flow
internal resistance, inlet Reynolds number, and pressure drop, many experimental investigations
have been carried out regarding the viscosity of different nanofluids. As reported by Azmi et al. [10],
the viscosity of the 40:60 (by volume ratio) ethylene glycol/water mixture could be increased obviously
by dispersing TiO2 nanoparticles. For example, the viscosity enhancement was about 12% when
the nanoparticle volume fraction changed from 0.5% to 1.5%. Sundar et al. [11] investigated the
viscosity variations of Fe3O4-ethylene glycol/water nanofluids with different nanoparticle fractions
and working temperatures. Their experimental results indicated that the viscosity of ethylene
glycol/water based nanofluids could be increased by increasing the nanoparticle volume fraction and
decreasing temperature. At a nanoparticle volume fraction of 1%, the viscosity of the base fluid could
be enhanced by 2.9 times. Chen et al. [12], Jamshidi et al. [13], Kulkarni et al. [14], Rudyak et al. [15],
Namburu et al. [16], Lim et al. [17], Chiam et al. [18], and Li et al. [19] respectively measured the
viscosity of various ethylene glycol/water mixture based nanofluids with the effects of different
factors. According to their experimental results, it was found that a suspension of nanoparticles could
enhance the viscosity of the base fluid in different degrees. Additionally, temperature, base fluid, and
nanoparticle properties including volume fraction, size, type, and shape were the important factors
affecting the enhancement of nanofluids’ viscosity.

For the basis of the experimental research, the modeling and prediction of viscosity is also very
important for understanding the rheological behavior of nanofluids. Murshed and Estellé [20] reviewed
the latest developments of viscosity models for nanofluids. Their analysis indicated that although
many theoretical models and empirical correlations have been developed for nanofluid viscosity, only
a few of them were used for ethylene glycol/water based nanofluids. Additionally, since the effects of
different factors on nanofluid viscosity were usually coupled and uncertain, it was still very difficult to
accurately describe the viscosity characteristics of different nanofluids in a wide range of nanoparticle
volume fractions, sizes, temperatures, etc. Therefore, how to develop an effective solution for the
viscosity prediction of nanofluids is a hot topic in the field of nanofluids.

Artificial neural networks (ANN), a black box data analysis approach, has a strong nonlinear
mapping ability to establish the relationship between input and output variables without considering
the detailed physical process. Due to the advantages of ANNs such as high speed, simplicity, and large
capacity, various ANNs were put forward to solve the modeling and prediction problems of nanofluid
viscosity [21]. Selecting five variables (temperature, nanoparticle volume fraction, nanoparticle size,
viscosity of the base fluid, and relative density of the base fluid) and nanoparticles as the input,
Yousefi et al. [22] developed a diffusional neural network (DNN) to predict the viscosity of six different
types of nanofluids. As reported in their analysis, DNN could be used for predicting the viscosity
of nanofluids with satisfactory accuracy. On this basic, Mehrabi et al. [23] analyzed the application
of a Fuzzy C-Means-based Adaptive neuro-fuzzy inference system (FCM-ANFIS) for the viscosity
prediction of various water based nanofluids. They found that the FCM-ANFIS predicted values
agreed well with the experimental data. Attracted by the better nonlinear mapping and recognition
abilities of ANN, Zhao et al. [24,25] investigated the feasibility of RBF neural networks for predicting
the viscosity of two water based nanofluids containing Al2O3 and CuO nanoparticles. Their results
demonstrated that ANN was an effective tool in comparison with the traditional model-based approach
for describing the enhancement behavior of nanofluid viscosity. They indicated that the addition of
temperature as an input variable could improve the prediction performance of the RBF neural network.

To the best of the authors’ knowledge, there are few publications that study the modeling
and prediction of different ethylene glycol/water based nanofluids using ANN. Considering the
advantages of RBF neural networks that are easier to design, and have faster training speed, higher
training accuracy, stronger generalization ability, and stronger tolerance for input noise [26], this paper
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selects a RBF neural network as a competitive method for predicting the viscosity characteristics of
different ethylene glycol/water based nanofluids with different influence factors. Firstly, the basis
theory and modeling process of the RBF neural network are introduced briefly. On this basis, the
available measurements from various published studies are obtained to establish the data sample
sets and train the RBF neural network for determining the network configuration. Finally, the RBF
neural networks’ predicted results are compared with the experimental data to evaluate the prediction
performance of the proposed model.

2. Basic Theory of a RBF Neural Network

Benefiting from the inspiration of the human brain’s structure and activity mechanism, many
different artificial neural networks have been developed for different purposes including classification
and regression. In the fields of curve-fitting and nonlinear predictive modeling, the RBF neural network
proposed by Broomhead and Lowe [27] can exhibit a good ability because of its high accuracy and
stability [28].

Figure 1 presents the basic structure of a typical three-layer RBF neural network. The input and
output layers respectively correspond to the dendrite and synapse of biological neurons, which are
used to mathematically describe the modeling object. The hidden layer, similar to the function of
the cyton, plays a role of intermediation to process the input-output information and deliver it to the
output layer. The connections between different layers are established through a series of artificial
neurons and weights.

···

x1

x2

xn

··· ···

y1

y2

yq

···

R1

R2

R3

···

Rm

wjk

Input layer Hidden layer Output layer

wij

Figure 1. A typical three-layer RBF neural network.

Theoretically, the modeling process of the RBF neural network is to solve the mapping from Xn

to Yq (n, q ≥ 1) in Euclidean space. Assuming that the input vector of the RBF neural network is X,
the response of the kth neuron in the output layer (yk ∈ Yq) can be obtained by using the following
linear weighting function [29].

yk =
m
∑

j=1
ωjkRj(X), (k = 1, 2, · · · , q) (1)

where ωjk is the connection weight between the jth hidden layer neuron and the kth output layer
neuron. m and q are the numbers of neurons in the corresponding layer, respectively.

Different from many other ANNs, the response of the RBF neural network’s jth hidden layer
neuron is usually determined by the RBF. When it selects a Gaussian function, the corresponding
Rj(X) can be defined as,
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Rj(X) = exp(−‖X−cj‖2

2σ2
j

), (j = 1, 2, · · · , m) (2)

where ‖‖ is the Euclidean distance between the input vector X and the jth neuron center cj. σj is the
width of the jth neuron.

Analyzing Equations (1) and (2), it can be easily found that the key of RBF neural network training
is how to determine ωjk, cj, and σj. In the past few decades, different unsupervised and supervised
algorithms have been developed to solve this problem [30]. In this study, the network parameters are
updated by using an orthogonal least squares (OLS) approach, of which the minimizing function is
shown in Equation (3). More detailed information about OLS can be found in [31].

minJ =
q

∑
k=1

(|ynk − ydk|2) (3)

where ynk and ydk are the network output and desired output of the kth output layer node, respectively.

3. Modeling Implementation of a RBF Neural Network

According to the above theory, the modeling process of the RBF neural network involves three
main parts which are data preparation, training, and testing. Figure 2 depicts the basic applied flow
chart of the RBF neural network for predicting the relative viscosity of ethylene glycol/water based
nanofluids. The specific implementations are discussed in the following.

Figure 2. Implementation process of a RBF neural network for viscosity prediction.
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3.1. Preparation of Viscosity Data

As previously mentioned, many experimental investigations have been published to discuss
the effects of different factors including temperature and nanoparticle properties (such as type, size,
concentration, and shape) on the viscosity of ethylene glycol/water based nanofluids. Considering the
integrity of the measuring information, a total of 216 viscosity data involving TiO2, CuO, SiO2, and
SiC are obtained to establish the sample sets. The detailed information of the nanofluids regarding
nanoparticle diameter (dp), nanoparticle volume fraction (φp), nanoparticle density (ρp), temperature
(T), and viscosity of the base fluid (μ f ) and nanofluids (μn f ) are listed in Table 1. According to
the modeling principle, 198 data (about 90%) are selected to train the RBF neural network, and the
remaining 18 data (about 10%) are used to test the performance of the trained RBF neural network.

Table 1. Viscosity information of ethylene glycol/water based nanofluids.

Nanofluids
TiO2-EG

[12]
SiO2-EG/W a

[13]
SiO2-EG/W b

[13]

CuO-EG/W c

[14]
SiO2-EG [15]

CuO-EG/W c

[16]
SiC-EG/W d

[19]

dp (nm) 25 10 10 30/45/50 18.1/28.3/45.6 29 30
φp (%) 0.1–1.8 0.1 0.1 1–6 0.6–8.4 1–4 0.1–0.5

ρp (kg/m3) 4230 2650 2650 6310 2650 6310 110
T (◦C) 20.1–60.2 28.45–59 28–59 −35–50 25–59 0–40 10–50

μf (mPa.s) 3.87–23 0.98–1.68 1.6–3.11 2.33–99.5 4.08–18.5 4.35–11.5 9.2–11.34
μnf/μf 0.81–1 1–1.15 1.05–1.13 1.1–4.65 1.04–2.02 1.14–2.09 1.13–1.29

No. of data 27 11 10 80 31 12 45
a EG/W: 25:75 by volume ratio; b EG/W: 50:50 by volume ratio; c EG/W: 60:40 by weight ratio; d EG/W: 40:60 by
weight ratio.

To improve the learning and training performances of the RBF neural network, the following
equation is used to normalize the input and output variables.

x′ = x − xmin

xmax − xmin
(4)

where x is the original value, x’ is the normalized value, and xmax and xmin are the corresponding
maximum and minimum of x.

3.2. Configuration of a RBF Neural Network

Considering the nonlinear characteristics of the ethylene glycol/water based nanofluid viscosity
ratio with different factors, a three layer RBF neural network is developed in the present investigation.
Temperature, nanoparticle diameter, nanoparticle volume fraction, nanoparticle density, and viscosity
of the base fluid are selected as the input variables. The objective output of the RBF neural network
is the viscosity ratio between the nanofluids and the base fluid. Therefore, the basic structure of
the developed RBF neural network for predicting the viscosity ratio of ethylene glycol/water based
nanofluids is 5-m-1, as illustrated in Figure 3. For the neurons, the numbers in the hidden layer (m)
and other parameters are determined in the training process.
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Figure 3. RBF neural network developed in this study.

3.3. Evaluation Criteria

To effectively evaluate the training and prediction performance of the RBF neural network,
the following four important parameters are used.

Root mean squared error (RMSE),

RMSE = (
1
t

t

∑
l=1

|Pl − Ql |2)
1/2

(5)

Mean absolute percentage error (MAPE),

MAPE =
100%

t

t

∑
l=1

∣∣∣∣Pl − Ql
Pl

∣∣∣∣ (6)

Sum of squared error (SSE),

SSE =
t

∑
l=1

(Pl − Ql)
2 (7)

Statistical coefficient of multiple determination (R2),

R2 = 1 −

t
∑

l=1
(Pl − Ql)

2

t
∑

l=1
(Pl)

2
(8)

where P is the desired value, Q is the network output value, and t is the number of samples.
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4. Results and Discussion

For the RBF neural network, the Spread is usually a very important factor influencing the training
process. Figure 4 shows the relationships of the mean square error (MSE) and the number of hidden
layer neurons with different Spreads. Analyzing the results reported in Figure 4, it is found that for
the same converged target, the neuron numbers in the hidden layer need to be increased obviously
with the decrease of the Spread. When the Spread varies from 1 to 0.1, the corresponding neuron
configuration of the RBF neural network are 5-38-1, 5-40-1, 5-56-1, 5-67-1, and 5-105-1, respectively.
With the decrease of the Spread, the CPU time for computing the RBF neural network will also increase.
At a Spread of 1, 0.5, 0.3, 0.2, and 0.1, the corresponding CPU times are 6.318, 6.396, 8.798, 10.827, and
15.772 s, respectively. In addition, Table 2 lists the values of four evaluation criteria for predicting
the viscosity ratio of ethylene glycol/water based nanofluids by using the RBF neural network with
different Spreads. It can be seen from Table 2 that although all R2 are within the acceptable level of
0.99, the prediction performance of the RBF neural network is still affected by the value of the Spread,
especially for the testing samples. Based on the comprehensive considerations of modeling complexity,
prediction accuracy, and CPU time, the RBF neural network with the neuron configuration of 5-56-1
and Spread of 0.3 is used in this study. The related weights and biases of the 5-56-1 RBF neural network
can be found in Table 3.
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Figure 4. The relationships of mean square error (MSE) and the number of hidden layer neurons with
different Spreads.

Table 2. Performance evaluation of RBF neural networks with different Spreads.

Object Evaluation
Criteria

Spread

1 0.5 0.3 0.2 0.1

Training samples

RMSE 0.04651 0.04460 0.04630 0.04502 0.04400
MAPE (%) 2.3335 2.27321 2.09967 1.93784 2.00530

SSE 0.42829 0.39383 0.42454 0.40125 0.38337
R2 0.99925 0.99932 0.99927 0.99930 0.99934

Testing samples

RMSE 0.09190 0.07035 0.04443 0.05124 0.10061
MAPE (%) 4.65795 3.90042 2.43228 2.67720 4.27471

SSE 0.15201 0.08908 0.03553 0.04727 0.18221
R2 0.99590 0.99760 0.99904 0.99872 0.99508

Total samples

RMSE 0.05183 0.04728 0.04615 0.04557 0.05117
MAPE (%) 2.52721 2.40881 2.12738 1.99945 2.19442

SSE 0.58030 0.48291 0.46007 0.44852 0.56558
R2 0.99906 0.99921 0.99925 0.99927 0.99908
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Table 3. Weight and bias coefficients of the developed RBF neural network.

Neuron

Hidden Layer Output Layer

Weights (wij)
a and Biases Weights (wij)

b and Biases

T dp φp ρp μf Biases μnf/μf Biases

1 0.1616 0.6000 0.5952 1.0000 0.0817 2.7752 1.5072 0.0163
2 −0.4874 0.6000 0.7143 1.0000 0.6859 2.7752 2.5903
3 0.6452 0.5660 0.3214 0.4200 0.0973 2.7752 0.0601
4 0.8200 0.6000 0.7143 1.0000 0.0233 2.7752 3.4089
5 0.4080 0.6000 0.0119 0.0174 0.1053 2.7752 −0.4782
6 −0.1629 0.6000 0.7143 1.0000 0.2041 2.7752 24.6321
7 0.4080 0.5660 0.9881 0.4200 0.1861 2.7752 −0.1055
8 0.7818 0.2000 0.0119 0.4200 0.0211 2.7752 −0.0298
9 −0.5716 0.6000 0.5952 1.0000 1.0000 2.7752 −2.4385

10 0.4892 0.6000 0.1190 1.0000 0.0403 2.7752 0.0877
11 0.3270 0.6000 0.7143 1.0000 0.0559 2.7752 2.0103
12 −0.1629 0.6000 0.1190 1.0000 0.2041 2.7752 −16.7539
13 0.8159 0.6000 0.0595 0.0174 0.0925 2.7752 0.2123
14 0.3264 0.6000 0.0595 0.0174 0.1075 2.7752 1.5469
15 0.4080 0.9120 0.4762 0.4200 0.1861 2.7752 0.1479
16 0.9620 0.5660 0.5714 0.4200 0.0410 2.7752 0.2334
17 0.4080 0.3620 0.1548 0.4200 0.1861 2.7752 −0.0212
18 −0.1629 0.6000 0.5952 1.0000 0.2041 2.7752 −75.1746
19 −0.4905 0.6000 0.1190 1.0000 0.6952 2.7752 −0.0522
20 −0.4874 0.6000 0.5952 1.0000 0.6859 2.7752 −3.3888
21 0.9819 0.5000 0.0476 0.6704 0.0389 2.7752 0.0377
22 −0.1629 0.6000 0.4762 1.0000 0.2041 2.7752 115.2566
23 0.6540 1.0000 0.7143 1.0000 0.0301 2.7752 1.0610
24 0.6540 0.9000 0.7143 1.0000 0.0301 2.7752 −1.1272
25 −0.3251 0.6000 0.5952 1.0000 0.3582 2.7752 0.2584
25 −0.5685 0.6000 0.7143 1.0000 0.9855 2.7752 2.1391
26 −0.5716 0.6000 0.4762 1.0000 1.0000 2.7752 1.2104
27 0.4080 0.3620 1.0000 0.4200 0.1861 2.7752 0.4979
28 0.4080 0.9120 1.0000 0.4200 0.1861 2.7752 0.2536
29 0.6562 0.5000 0.2143 0.6704 0.0945 2.7752 −0.0974
30 0.3270 0.6000 0.5952 1.0000 0.0559 2.7752 −3.6703
31 0.4080 0.9120 0.0714 0.4200 0.1861 2.7752 0.1275
32 0.4080 0.3620 0.4762 0.4200 0.1861 2.7752 0.2454
33 0.4553 0.2000 0.0119 0.4200 0.0172 2.7752 0.1747
34 1.0000 0.2000 0.0119 0.4200 0.0161 2.7752 0.1852
35 0.1616 0.6000 0.4762 1.0000 0.0817 2.7752 −0.5112
36 0.8169 0.6000 0.1190 1.0000 0.0234 2.7752 0.4325
37 −0.4874 0.6000 0.4762 1.0000 0.6859 2.7752 1.6740
38 −0.1629 0.6000 0.3571 1.0000 0.2041 2.7752 −107.8889
39 0.3270 0.6000 0.4762 1.0000 0.0559 2.7752 1.4652
40 0.1632 0.6000 0.0595 0.0174 0.1139 2.7752 0.9067
41 0.8169 0.6000 0.5952 1.0000 0.0234 2.7752 −6.2589
42 0.8169 0.6000 0.4762 1.0000 0.0234 2.7752 5.5200
43 0.5739 0.5000 0.0119 0.6704 0.1182 2.7752 0.0349
44 0.4080 0.3620 0.8095 0.4200 0.1861 2.7752 −0.1272
45 0.4892 0.6000 0.5952 1.0000 0.0403 2.7752 0.6498
46 −0.1629 0.6000 0.2381 1.0000 0.2041 2.7752 61.3817
47 0.3283 0.5000 0.0119 0.6704 0.2312 2.7752 0.0577
48 0.4080 0.5660 0.3095 0.4200 0.1861 2.7752 −0.1083
49 0.2448 0.6000 0.0595 0.0174 0.1096 2.7752 −1.7397
50 −0.4855 0.9000 0.7143 1.0000 0.6804 2.7752 −0.7083
51 −0.4886 1.0000 0.7143 1.0000 0.6896 2.7752 0.6218
52 −0.0007 0.6000 0.7143 1.0000 0.1252 2.7752 −0.7176
53 −0.5692 0.9000 0.7143 1.0000 0.9885 2.7752 −0.0385
54 0.6514 0.6000 0.2381 1.0000 0.0302 2.7752 −0.1993
55 0.8169 0.6000 0.3571 1.0000 0.0234 2.7752 −2.0841
56 0.1616 0.6000 0.5952 1.0000 0.0817 2.7752 1.5072

a Weight connection from the input layer to the hidden layer; b Weight connection from the hidden layer to the
output layer.
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Figure 5 compares the predicted viscosity ratio of the RBF neural network and the experimental
data involving the training and testing samples. It can be seen that all the prediction errors of the
RBF neural network are within the ±10% error bands. As shown in Table 2, the values of the four
evaluation criteria are RMSE = 0.04630, MAPE = 2.09967%, SSE = 0.42454, and R2 = 0.99927 for the
training samples, and RMSE = 0.04443, MAPE = 2.43228%, SSE = 0.03553, and R2 = 0.99904 for the
testing samples, which preliminarily indicates that the RBF neural network has a good ability to predict
the viscosity ratio of ethylene glycol/water based nanofluids.
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Figure 5. Scatter plots of (a) training and (b) testing μnf/μf for the RBF predicted results and
experimental data.

To further evaluate the prediction performance of the RBF neural network for nanofluid viscosity,
the following typical viscosity models which consider the effects of nanoparticle Brownian motion and
aggregation are selected for analysis.

Batchelor model [32]:
μn f = (1 + 2.5φp + 6.25φ2

p)μ f (9)

Chen model [33]:

μn f = [1 − φp

0.605
(

ra

rp
)

1.2
]
−1.5125

μ f (10)

where rp and ra are the radius of nanoparticle and nanoparticle aggregation, respectively.
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Figure 6 and Table 4 respectively compare the prediction performances of the different models for
the total viscosity data. It is easily seen that the RBF neural network has a better prediction accuracy
than the above two typical models. The main reason is that the Batchelor model and Chen model
cannot fully quantitatively describe the relationship between the nanofluid viscosity ratio and the
various factors including the nanoparticle properties, temperature, and base fluid.
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Figure 6. Prediction relative errors of different models for the total viscosity data.

Table 4. Performance evaluation of different modes for the total viscosity data.

Evaluation Criteria RBF Neural Network Batchelor Model Chen Model

RMSE 0.04615 0.82200 0.77129
MAPE (%) 2.12738 24.2349 21.79539

SSE 0.46007 145.94871 128.49640
R2 0.99925 0.76244 0.79085

Moreover, Tables 5–7 respectively present the comparisons between the predicted viscosity ratio of
the RBF neural network and the corresponding experimental data of Chen et al. [12], Jamshidi et al. [13],
and Namburu et al. [16]. It can be seen that there is good agreement between the RBF predicted and
the experimental viscosity ratio of the different ethylene glycol/water based nanofluids. At the
temperature range of 20–40 ◦C, the maximum and minimum prediction errors of the RBF neural
network are respectively 5.788% and 0.434% for the experimental data of Chen et al. [12]. For the
viscosity ratio of the SiO2-ethylene glycol/water (50:50 by volume ratio) nanofluid provided by
Jamshidi et al. [13], the RBF neural network can accurately predict the viscosity ratio with an
average error of 1.772% at the nanoparticle volume fraction of 0.1%. Moreover, the comparisons
shown in Table 7 further illustrate that the developed RBF neural network has high accuracy
(average error: 2.097%) for predicting the viscosity ratio of CuO-ethylene glycol/water (60:40 by
weight ratio) nanofluids.
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Table 5. Comparisons of the RBF predicted viscosity ratio of TiO2-ethylene glycol nanofluids with the
experimental data of Chen et al. [12].

T (◦C) φp (%) Experiment (P) RBF Prediction (Q) |P−Q|
P ×100%

60.17 1.8 0.994 0.990 0.434
55.26 1.8 1.000 1.023 2.330
50.03 1.8 1.000 1.005 0.488
45.27 1.8 0.994 0.974 2.090
40.21 1.8 1.000 0.961 3.875
35.17 1.8 1.000 0.985 1.529
30.16 1.8 0.994 1.025 3.055
25.19 1.8 1.000 1.041 4.068
20.12 1.8 0.994 0.995 0.082
60.17 0.4 0.852 0.850 0.270
55.10 0.4 0.862 0.872 1.217
50.03 0.4 0.862 0.855 0.829
45.12 0.4 0.857 0.830 3.173
40.07 0.4 0.847 0.825 2.603
35.17 0.4 0.852 0.848 0.424
30.16 0.4 0.847 0.880 3.868
25.19 0.4 0.847 0.881 4.038
20.12 0.4 0.837 0.819 2.193
60.17 0.1 0.833 0.822 1.268
55.10 0.1 0.828 0.846 2.220
50.19 0.1 0.828 0.833 0.609
45.12 0.1 0.819 0.810 1.011
40.07 0.1 0.814 0.806 1.020
35.17 0.1 0.814 0.824 1.284
30.16 0.1 0.814 0.847 4.039
25.19 0.1 0.814 0.836 2.675
20.12 0.1 0.805 0.758 5.788

Table 6. Comparisons of the RBF predicted viscosity ratio of SiO2-ethylene glycol/water (50:50 by
volume ratio) nanofluids with the experimental data of Jamshidi et al. [13].

T (◦C) φp (%) Experiment (P) RBF Prediction (Q) |P−Q|
P ×100%

28.65 0.1 1.082 1.099 1.549
38.18 0.1 1.076 1.073 0.258
47.91 0.1 1.064 1.063 0.067
55.81 0.1 1.100 1.098 0.202
61.28 0.1 1.132 1.078 4.746
28.45 0.1 1.128 1.098 2.703
36.55 0.1 1.119 1.082 3.323
45.07 0.1 1.054 1.056 0.196
50.95 0.1 1.091 1.078 1.243
58.85 0.1 1.134 1.095 3.432

Table 7. Comparisons of the RBF predicted viscosity ratio of CuO-ethylene glycol/water (60:40 by
weight ratio) nanofluids with the experimental data of Namburu et al. [16].

T (◦C) φp (%) Experiment (P) RBF Prediction (Q) |P−Q|
P ×100%

9.970 1.000 1.204 1.181 1.940
20.305 1.000 1.187 1.217 2.547
29.860 1.000 1.170 1.174 0.308
40.196 1.000 1.136 1.123 1.195
0.006 2.000 1.596 1.511 5.307
10.146 2.000 1.596 1.508 5.504
20.288 2.000 1.528 1.528 0.019
30.040 2.000 1.477 1.459 1.216
−0.199 3.000 1.817 1.789 1.566
10.137 3.000 1.783 1.809 1.451
20.082 3.000 1.749 1.803 3.085
29.620 4.000 2.089 2.068 1.028
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Figure 7 compares the experimental viscosity ratio of Rudyak et al. [15] with the predicted values
of the RBF neural network for the SiO2-ethylene glycol nanofluids at T = 25 ◦C as a function of the
nanoparticle volume fraction and diameter. It can be found from Figure 7a that the RBF predicted
viscosity ratio of nanofluids are obviously enhanced with the increase of the SiO2 nanoparticle volume
fraction and the decrease of the nanoparticle size, which are consistent with the experimental results.
All the prediction relative errors are within ±8%, as shown in Figure 7b. On this basis, Figure 8
illustrates the comparisons between the RBF predicted values and the corresponding experimental
data of Li et al. [19]. The results indicate that the RBF neural network developed in this study can be
applied successfully for predicting the effects of the nanoparticle volume fraction and temperature on
the viscosity ratio of SiC-ethylene glycol/water (40:60 by weight ratio) nanofluids with a satisfactory
accuracy. In addition, a similar analysis is performed for the CuO-ethylene glycol/water (60:40 by
weight ratio) nanofluids as a function of temperature, which is presented in Figure 9. It is demonstrated
that the viscosity ratio characteristics of the above nanofluids are effectively predicted by the RBF
neural network in a wide range of nanoparticle volume fractions (from 1% to 6%) and temperatures
(from −35 to 50 ◦C). The maximum prediction relative errors are only 4.2%. All the above analyses
further demonstrate that the RBF neural network is one of the potential tools to quantitatively establish
nonlinear relationships between inputs and outputs.
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Figure 7. (a) Predicted comparisons and (b) relative errors of the RBF predicted μnf/μf and the
experimental data [15] for SiO2-ethylene glycol nanofluids at T = 25 ◦C.
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Figure 8. (a) Predicted comparisons and (b) relative errors of the RBF predicted μnf/μf and the
experimental data [19] for SiC-ethylene glycol/water (40:60 by weight ratio) nanofluids at dp = 30 nm.
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Figure 9. (a) Predicted comparisons and (b) relative errors of the RBF predicted μnf/μf and the
experimental data [14] for CuO-ethylene glycol/water (60:40 by weight ratio) nanofluids at dp = 30 nm.

Table 8 shows the prediction performance of the RBF neural network using different viscosity data
sets. It is worth noting that the data sets are selected randomly. From Table 8, we found that the size of
the data set can affect the modeling and prediction of the RBF neural network significantly. With the
decrease of the data set size, the prediction accuracy will decrease. This may mean that to accurately
predict the viscosity of ethylene glycol/water based nanofluids using the RBF neural network, a large
enough data set is necessary.

Table 8. Performance evaluation of the RBF neural network with different viscosity data.

Evaluation Criteria 216 Data 200 Data 160 Data 120 Data

RMSE 0.04615 0.07017 0.09547 0.37982
MAPE (%) 2.12738 2.88920 3.64470 8.75159

SSE 0.46007 0.98468 1.45844 17.31116
R2 0.99925 0.99832 0.99505 0.90323

5. Conclusions

To accurately predict the viscosity ratio between ethylene glycol/water nanofluids and a base
fluid, a RBF neural network based model was developed and evaluated in the present study. Based on
the comparative analysis, the following conclusions were obtained.

(1) Considering the complex effects of different factors including temperature, nanoparticle
properties (such as volume fraction, density, diameter), and viscosity of the base fluid on the
viscosity ratio and the effect of Spread on modeling performance of the RBF neural network, the
final network structure was determined to be 5-56-1 neurons.

(2) By comparing the RBF predictive values and the experimental data published in various studies,
it was demonstrated that the RBF neural network not only exhibited good modeling accuracy
(RMSE = 0.04615, MAPE = 2.12738%, SSE = 0.46007, R2 = 0.99925), but also could effectively
predict the influences of temperature, nanoparticle volume fraction, and diameter on the viscosity
ratio of different ethylene glycol/water based nanofluids.

(3) Compared to the typical viscosity models, namely the Batchelor model and Chen model, the RBF
neural network has a good ability to predict the viscosity ratio of different ethylene glycol/water
based nanofluids. However, the prediction performance can be affected by the size of the data set.
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(4) The present investigation may play an active role for developing the modeling of nanofluid
viscosity. However, how to extend the application of ANN to predict other thermo-physical
properties of nanofluids is still worthy of study in the future.
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Abstract: In this research, a two-way coupling of discrete phase model is developed in order to track
the discrete nature of aluminum oxide particles in an obstructed duct with two side-by-side obstacles.
Finite volume method and trajectory analysis are simultaneously utilized to solve the equations
for liquid and solid phases, respectively. The interactions between two phases are fully taken into
account in the simulation by considering the Brownian, drag, gravity, and thermophoresis forces.
The effects of space ratios between two obstacles and particle diameters on different parameters
containing concentration and deposition of particles and Nusselt number are studied for the constant
values of Reynolds number (Re = 100) and volume fractions of nanoparticles (Φ = 0.01). The obtained
results indicate that the particles with smaller diameter (dp = 30 nm) are not affected by the flow
streamline and they diffuse through the streamlines. Moreover, the particle deposition enhances as
the value of space ratio increases. A comparison between the experimental and numerical results
is also provided with the existing literature as a limiting case of the reported problem and found in
good agreement.

Keywords: concentration; deposition; two-way coupling; side-by-side obstacles; discrete phase
model (DPM)

1. Introduction

Investigations of the momentum and heat transfer specifications in an obstructed duct with
multiple obstacles has many thermal applications including compact heat exchangers, flow around
arrays of nuclear fuel rods, cooling of electronic devices, oil or gas flows in reservoirs, chimney stacks,
power generators, etc. [1]. The heat transfer improvement in all mentioned applications is an essential
need. Nanofluids are recognized as high heat transfer performance fluids, which can be used in many
cooling systems including cooling of electronic components, oil coolers, inter coolers, and coolant
in microchannel heat sink [2,3]. The particulate fouling as a destructive phenomenon in nanofluids
should be taken into consideration as it can affect the favorable improved thermal properties of these
fluids. Accurate understanding of the particle motion is essential to supress the destructive effects of
this phenomenon.

In past years, researchers used different models for simulating nanofluid flow for different
problems. These models are single-phase approach, Eulerian model, volume of fluid model, mixture
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model, and Eulerian–Lagrangian approach (Discrete phase model). Vanaki et al. [4] reviewed these
models. They concluded that the Eulerian-Lagrangian approach is more precise and reliable for
simulating the nanofluid because it takes into account the interactions between two phases by
considering the Brownian, drag, gravity, and thermophoresis forces between them. Moreover, this model
has ability to predict particle distribution and calculate concentration of nanoparticles in domain.
He et al. [5] performed a comparison between single-phase and Lagrangian trajectory approaches for
simulating the nanofluid flow in a tube. They found that the Lagrangian trajectory approach predicts a
higher heat transfer coefficient in comparison with the single-phase one as the Lagrangian trajectory
approach considers the dynamic of particles and the interactions between liquid and particulate
phases. Mirzaei et al. [6] used the Eulerian–Lagrangian approach to investigate the nanofluid flow
in a microchannel. They reported the same findings about the greater prediction of heat transfer
coefficient by this model in comparison to the single-phase one. In another study, Bahremand et al. [7]
studied the nanofluid turbulent flow in helically-coiled tubes. They used the Eulerian-Lagrangian
approach. Besides the numerical study, they performed an experimental work on this problem to
benchmark the accuracy of the numerical model. They observed that the Eulerian–Lagrangian model
presents the results with higher accuracy in comparison to the single-phase one. Some researchers
studied the flow and heat transfer in an obstructed channel. Turki et al. [8] studied the convective
heat transfer across an obstructed duct with a built-in heated square obstacle. Their results indicated
that the Strouhal number increases with an enhance in the Richardson number. Mohammadi Pirouz
et al. [9] simulated the heat exchange in a duct with wall-mounted square obstacles. They reported
that the flow accelerates near faces with a decrease in the distance between obstacles. This leads to
enhance in the heat transfer rate from obstacles. Heidary and Kermani [10] investigated the influences
of nanofluid on heat transfer improvement in an obstructed duct. They applied the single-phase
approach for modelling the nanofluid for this problem. They observed about 60% enhancement for
heat transfer in the duct by using the nanoparticles and the blocks. Readers are referred to the most
significant studies on nanoparticles in [11–20] and several references therein. Recently, Shahmohamadi
and Rashidi [21] analytically studied how nanofluids flow through a rotating channel with a lower
stretching porous wall under the influence of a magnetic field. They reported that the nanoparticle
additives have considerable influence on the flow. In other research, Shahmohamadi et al. [22]
investigated tribological performance of carbon nanoparticles dispersed in polyalphaolefin PAO6 oil.
They concluded that the presence of nanoparticles causes a higher lubricant viscosity.

Previous researchers concluded that the Eulerian–Lagrangian model (Discrete phase model)
is a superior model to simulate the nanofluid, as it can predict particle distribution and calculate
concentration and deposition of nanoparticles in the domain. Enhancement of heat transfer is a very
important problem for an obstructed duct with multiple obstacles as it has many thermal applications
such as compact heat exchangers. Nanofluids can be introduced as an option to achieve this target.
The particulate fouling phenomenon in nanofluids should be taken into consideration as it can affect
the favorable improved thermal properties of these fluids. This paper simulates the convective heat
transfer and particle motion and deposition in an obstructed duct with two side-by-side obstacles by a
two-way coupling of DPM model. The present research represents the first study about the application
of two-way coupling of DPM model to simulate nanofluid in this geometry.

2. Formulation of the Problem

2.1. Physical Characteristic

A view of the computational domain is disclosed in Figure 1. A two-dimensional obstructed
duct with two side-by-side obstacles is modelled. Computational domain is subjected to a free
stream with parabolic speed and uniform temperature (Th = 310 K). It is assumed that the stream
is incompressible, time dependent, and laminar. The obstacles and duct walls are kept at constant
temperature (Tc = 300 K). Two side-by-side obstacles with sides D are mounted in the duct. S is the
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gap between the centers of the obstacles. The upstream and downstream lengths of the duct are
fixed as 30D and 60D, respectively. The duct height is considered to be 16D. The gravity is in the
stream-wise direction.

Figure 1. Computational domain and coordinate system.

The interactions between the liquid and aluminum oxide particles are taken into account for the
simulations. Moreover, the collisions between particles are ignored. Note that for particles in the
range of nanometer with low values of volume fraction, the chances that any two random particles
would be close enough to interact with each other are extremely low [23]. Accordingly, the interactions
between the particles in the range of nanometer can be ignored. However, for particles with higher
diameter (e.g., 0.5 μm), it is better to consider the effects of particle-particle interactions. It should be
stated that in DPM, it is not possible to track all physical particles. Instead, representative particles or
parcels should be tracked. Any parcel is representative of specified number of actual particles with the
same physical property, which is characterized by the particle flow rate along each calculated particle
trajectory. 5000 parcels [24] are assumed at Φ = 0.01 for this research. Finally, it should be stated that
all simulations are performed for the fixed values of Reynolds number (Re = 100) and volume fractions
of nanoparticles (Φ = 0.01) at variable particle diameter (30 nm–0.5 μm) and space ratio (S/D = 1.5–4.5).

2.2. Governing Equations

For two-way coupling of Eulerian-Lagrangian approach, the liquid phase is treated as a
continuum by using the Eulerian approach, while the dispersed particles can be tracked by applying a
Lagrangian approach. The heat, mass, and momentum can be exchanged between two phases [25,26].
The equations for two phases are presented separately as follows:

2.2.1. Liquid Phase

• Mass conservation equation:
∂u
∂x

+
∂v
∂y

= 0 (1)

where x and y are Cartesian coordinate components. Moreover, u and v are velocity components
in x and y directions, respectively.

• Momentum equation:

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+ μ

(
∂2u
∂x2 +

∂2u
∂y2

)
+ Svx (2)

ρ

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)
= −∂p

∂y
+ μ

(
∂2v
∂x2 +

∂2v
∂y2

)
+ Svy (3)

where ρ, μ, p, and t are density of water, viscosity of water, pressure, and time, respectively.
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• Energy equation:

ρCp

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)
= k
(

∂2T
∂x2 +

∂2T
∂y2

)
+ Sh (4)

where Cp, k, and T are heat capacity of water, heat conductivity of water, and temperature,
respectively. Moreover, the terms of Sv and Sh show the momentum and heat exchanges between
two phases, respectively, and can be defined as [27,28]

Sv = ∑
np

−mp

δV
d Vp

dt
(5)

Sh = ∑
np

mp

δV
Cp

dTp

dt
(6)

where parameters with subscript of “p” are related to the particle phase. Accordingly, mp,
np, and δV are the particle mass, the number of particles in a cell volume, and the cell
volume, respectively.

2.2.2. Particle Phase

For each particle suspended in the liquid, a differential form of force balance equation is utilized
to obtain the trajectory of solid phase. The interaction forces between fluid and solid phases contain
the drag, Brownian, gravity, and thermophoresis forces. The dynamic equations of solid phase are

dXp

dt
= Vp (7)

dVp
dt =

18μ f

d2
pρpCc

(Vf − Vp)

Drag force

+
g(ρp−ρ f )

ρp

Gravitational force

+ ς
√

πS0
Δt

Brownian force

− 36μ2Cs(k f /kp+Ct+Kn)
ρ f ρpd2

p(1+3CmKn)(1+2k f /kp+2CtKn)
∇T
T

Thermophoretic force

(8)

where subscripts of “f” and “p” demonstrate the liquid and solid phases, respectively. X and V indicate
the location and velocity of the particles, respectively. Moreover, g, k, t, ρ, and μ are gravitational
acceleration, heat conductivity, time, density, and viscosity, respectively.

Cc in drag force term denotes the Cunningham correction and is determined by

Cc = 1 +
2λ

dp

[
1.257 + 0.4e−(1.1d/2λ)

]
(9)

where dp and λ are the particle diameter and fluid mean free path, respectively. Moreover, Kn
in thermophoresis force terms is the Knudsen number. The constant values of Cm, Ct, and Cs,
are respectively allocated as 1.14, 2.18, and 1.17 [29]. ς in Brownian force is the zero-mean, unit-variance
independent Gaussian random numbers. Finally, S0 is the spectral intensity of Brownian force and is
calculated as follows [30,31]:

S0 =
216νKBTf

π2ρ f d5
p

(
ρp
ρ f

)2
Cc

(10)

where KB is the Boltzmann constant (=1.38 × 10−23 J K−1).
The energy equation for the solid phase is presented as

mpCp

(
dTp

dt

)
= hAp(Tf − Tp) (11)

where Ap is the particle surface area. Moreover, h is the heat transfer coefficient and is defined by [32]:
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h =
k f

dp

(
2 + 0.6Re0.5

p Pr0.3
f

)
(12)

where Prf and Rep are the Prandtl number of the liquid phase and particle Reynolds number, respectively.

3. Boundary Conditions

3.1. Liquid Phase

At the entrance of the duct, a parabolic velocity and a uniform temperature are used for velocity
and temperature fields, respectively. Accordingly, the boundary condition at this section is defined by

u = U0(1 − (2y/D)2), v = 0, T = Th (13)

where U0 is the velocity at the center of the duct.
Along the surfaces of the duct and obstacles, no-slip condition and constant temperature are

considered for velocity and temperature fields, respectively. The boundary conditions for these regions
are expressed by

u = 0, v = 0, T = Tc (14)

At exit of the duct, zero gradient boundary conditions are used for both velocity and temperature
fields. The boundary conditions for this section are expressed by

∂u
∂x

= 0,
∂v
∂x

= 0,
∂T
∂x

= 0 (15)

Eventually, it is supposed that there is no flow across the duct and the temperature is constant at
initial time. This condition can be introduced by

u = 0, v = 0, T = Th (16)

3.2. Solid Phase

In this research, the escape boundary is considered at the entrance and exit sections of the duct.
Based on this boundary, the trajectory computations are stopped when a particle exits from the domain.
The temperature of particles in the entrance section is fixed at 310 K and the particle temperature drops
to 300 K by colliding the particles with a surface. Eventually, the reflect boundary with a restitution
coefficient of 1 is considered for all surfaces containing the surfaces of the duct and obstacle.

3.3. Physical Parameter

Physical parameters involved in this study are introduced in this section.
The local surface Nusselt number based on the channel width is calculated by

Nu =
hH
k f

=
∂T∗

∂n∗

∣∣∣∣
on obstacle

(17)

where n and H are the normal direction to the channel walls and the width of the channel, respectively.
Note that kf in the above equation is the thermal conductivity of the fluid. Also, superscript “*” denotes
the non-dimensional variables. T* and n* are defined by

T∗ = T − Tc

Tm − Tc
, n∗ = n

H
(18)

where Tc is the temperature on the walls of the duct. Moreover, Tm is mean temperature, defined by
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Tm =
1

Hum

+ H
2∫

− H
2

uTdy (19)

where um is the mean velocity, calculated by

um =
1
H

+ H
2∫

− H
2

udy (20)

The heat flux can be evaluated by

q′′
on the wall = h(Tm − Tc) = k f

∂T
∂n

(21)

Surface-mean Nusselt number is calculated by

Nu =
1
A

∫
A

NudA (22)

where A indicates the surface of the duct. Finally, the time-mean Nusselt number is calculated as

〈
Nu
〉
=

1
t

t∫
0

Nudt (23)

where t is the time duration.

3.4. Definitions

The following concepts are used in this research:
Reflect boundary condition: This type of boundary usually used as particle boundary condition

at wall, symmetry, and axis boundaries [33]. It should be stated that the particle rebounds off of the
boundary in regard with a variation in its momentum as specified by the coefficient of restitution.
Coefficient of restitution is defined by

Coefficient of restitution =
V2,n

V1,n
(24)

where V1,n and V2,n are the particle velocities before and after particle-wall collision. This boundary
has a restitution coefficient of 1.

Trap boundary condition: This type of boundary usually used as particle boundary condition at
wall boundaries [33]. The trajectory calculations are terminated and the destiny of the particle is saved
as trapped. This boundary has a restitution coefficient of 0.

Escape boundary condition: This type of boundary usually used as a particle boundary condition
at all flow boundaries containing pressure and velocity inlets, pressure outlets, etc. [33]. The particle is
considered as having “escaped” when it collisions the boundary in question. Trajectory calculations
terminate for this type of boundary.

Deposition: The deposition is defined as the ratio of the number of deposited (trapped) particles
on all involved surfaces containing obstacle and duct surfaces to the number of particles injected to the
duct at specific time.

Concentration (Solid volume fraction): The void fraction of each cell in discrete particle model
can be determined by

ε = 1 − ∑ Vi
ΔV

(25)
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where Vi is the volume of ith particle in the cell. Moreover, the summation is taken over all the particles
in the cell volume ΔV = ΔxΔydp. This means that the two-dimensional domain is regarded as a pseudo
three-dimensional one with a thickness of one particle diameter dp [34].

Parcel: In DPM, it is not possible to track all physical particles. Instead, representative particles
or parcels should be tracked. A particle in each parcel is representative of the entire particles on that
parcel and motion and heat exchange equations are solved only for this particle and extended to
others. After solving the equations for particle, a Gaussian distribution function is used to make the
connection between the particle and parcel parameters with

θparcel = ∑ NparticleGwθparticle (26)

Gw =
( a

π

) 3
2 exp

⎛⎜⎝−a

∣∣∣xprcel − xparticle

∣∣∣2
Δx2

⎞⎟⎠ (27)

where θ is particle or parcel variable. Gw and N denote the Gaussian function and number of particles.

4. Numerical Results and Discussion

In the current computation, a finite volume method is utilized to discretize the equations
of liquid and solid phases. Moreover, the pressure and velocity terms are stored at node center
and node faces, respectively by using the staggered grid arrangement. The coupling between the
pressure and velocity terms is achieved by SIMPLE algorithm of Patankar [35]. For using SIMPLE
algorithm, the mass conservation and momentum equations for fluid are combined to drive the
pressure-correction equation. The convection, diffusion, and time terms are discretized by applying a
first order upwind scheme, a central difference algorithm, and a first order implicit method, respectively.
Finally, the convergence is passed when the values of residuals reduced to ≤10−4 for all equations
except the energy equation. This considered value is set at 10−6 for energy equation. All simulations are
performed by the commercial software Ansys-Fluent. Figure 2 shows the procedure of the numerical
solution in Fluent for this problem.

Figure 2. Procedure of numerical solution in Fluent for this problem.
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4.1. Grid Study and Validation

A non-uniform square mesh is generated throughout the domain with a more density around the
obstacles surfaces. A schematic view of this mesh with a near zone around the obstacles is disclosed
in Figure 3. Various mesh sizes are explored to certify the sensitivity of the numerical outputs to the
mesh resolution. The results of this test for the mean Nusselt number on the top wall of the duct at Re
= 100, S/D = 1.5, dp = 30 nm, and Φ = 0.01 are presented in Table 1. Note that δ/D in this table indicates
the ratio of smallest cell size (δ) to side of the obstacle (D). It is observed that the difference in the mean
Nusselt number between Cases 3 and 4 is 0.23%. Hence, the cell number of Case 3 is selected for the
subsequent calculations.

(a) (b)

Figure 3. Mesh distribution (a) whole domain (b) near the obstacles.

Table 1. The grid study at Re = 100, S/D = 1.5, dp = 30 nm, and Φ = 0.01.

No. Grid Number δ/D
〈
Nu
〉

Percentage Difference

1 2375 0.05 3.342 1.34%
2 4750 0.033 3.387 1.01%
3 9500 0.025 3.421 0.23%
4 19,000 0.02 3.429 —-

To examine the accuracy of the numerical results, the numerical outputs are benchmarked with
experimental results obtained by Heyhat et al. [36]. The case for validation is aluminum oxide-water
nanofluid flow with dp = 40 nm and Φ = 0.01 in a straight tube. The results of comparison between the
experimental and numerical results are presented in Figure 4 for the variations of pressure drop ratio
with Reynolds number. The pressure drop ratio is defined as the ratio of pressure drop of nanofluid to
that of pure water. This comparison showed good agreement between the experimental and numerical
results with a relative error about 5%.
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Figure 4. The ratio of pressure drop for Al2O3-water nanofluid versus Reynolds numbers at dp = 40 nm
and Φ = 0.01.
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4.2. Discussion

In this part, the results are discussed for various values of parameters containing the space ratio
and particle diameter.

The particle dispersions inside the duct for different particle diameters at Re = 100, Φ = 0.01,
and S/D = 3.5 are shown in Figure 5. This figure shows the locations of injected particles at a specific
time, which are superimposed on vorticity contours. It is observed that the particles with diameters
of 30 nm are dispersed at entire of the duct. Brownian force generated between the liquid molecules
and the suspended particles causes the randomized dispersion of the particles. This force is larger in
comparison to the inertial forces for smaller values of particle diameter. The particles with smaller
diameter (dp = 30 nm) are not affected by the flow streamline and they diffuse through the streamlines.
However, the particles with larger diameters (i.e., 0.1 and 0.25 μm) accumulate in the vorticity regions
around the perimeter of the vortices. It should be stated that the larger particles are under the influence
of forces created by the vortices and vortical flow field. Finally, the inertia forces of particles dominate
the centrifugal forces formed by the flow for the particles with diameter of 0.5 μm and this causes the
exit of particles from the vortices path line and tends them toward the duct surfaces.

(a)

(b)

(c)

(d)

Figure 5. Dispersion of the particles inside the duct for (a) dp = 30 nm; (b) dp = 0.1 μm; (c) dp = 0.25 μm;
(d) dp = 0.5 μm at Re = 100, S/D = 3.5, and Φ = 0.01.

Figure 6 discloses the concentration contours for different values of space ratio at Re = 100,
dp = 30 nm, and Φ = 0.01. It is observed that the concentrations of particles for all values of space
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ratio are almost constant with a very low deposition near the duct surface for the regions before
the obstacles. For these regions, the concentration for most parts of the duct keeps constant at the
entrance concentration (Φ = 0.01). Note that the particles impacting to the duct walls bounce from the
wall due to the reflect assumption of boundary but the flow. Moreover, thermophoretic force for the
current case where the liquid temperature is higher than the wall temperature pushes the particles
back toward the wall [37]. This causes a deposition of particles near the duct surface. This figure also
discloses that the mass diffusion boundary layer is very narrow but is growing along the duct length.
Finally, the particles concentration enhances in the recirculating wake region at the downstream of the
obstacles. This means that the particles with this size are affected by the flow in the near wake region
and some particles are distributed inside the vortex pathways.

(a)

(b)

(c)

(d)

0.010000186

0.01
0.010000031
0.010000062
0.010000093
0.010000124
0.010000155

Figure 6. Concentration contours for (a) S/D = 1.5; (b) S/D = 2.5; (c) S/D = 3.5; (d) S/D = 4.5 at Re = 100,
dp =30 nm, and Φ = 0.01.

Effects of particle diameters on the particle deposition at Re = 100, Φ = 0.01, and S/D = 1.5 are
disclosed in Figure 7. The deposition is defined as the ratio of the number of deposited particles on
the all involved surfaces containing surfaces of obstacle and duct to the number of particles injected
to the duct. It can be observed that the particle deposition enhances with an enhance in the particle
diameter. This may be justified by the effect of gravity force on the particle deposition that becomes
more significant for higher values of particle diameters. The particle deposition percentages are about
1.1%, 1.8%, 2.7%, and 4.6% for dp = 30 nm, 0.1 μm, 0.25 μm, and 0.5 μm, respectively. Note that the trap
boundary condition with a restitution coefficient of 0 is considered as the particle boundary condition
on the surfaces of the duct and obstacles for evaluating particle deposition because for the reflect
boundary, the particle deposition is zero as the restitution coefficient is equal to 1.
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Figure 7. Particle deposition for different particle diameters at Re = 100, Φ = 0.01, and S/D = 1.5.

The effects of space ratio values on the particle deposition at Re = 100, Φ = 0.01, and dp = 0.1 μm
are disclosed in Figure 8. It is observed that the particle deposition enhances with an enhance in the
value of space ratio. As mentioned earlier, the particles are affected by the flow in the near wake region
for dp = 0.1 μm. As the space ratio value increases, the distances between obstacles and duct walls
decrease and the wake region of each obstacle transfers to the regions near the duct walls. Hence,
the number of particles near the center of the duct reduces considerably and this leads to an increase
in the number of particles that deposit on the duct’s surfaces. The particle deposition percentages are
about 1.8%, 2.3%, 3.1%, and 4.3% for S/D = 1.5, 2.5, 3.5, and 4.5, respectively.
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Figure 8. Particle deposition for different values of space ratio at Re = 100, Φ = 0.01, and dp = 0.1 μm.

Figure 9 discloses the variations of mean Nusselt number on the top wall of the duct with different
values of space ratio at Re = 100 and two values of volume fraction of nanoparticles. It can be observed
that the mean Nusselt number enhances as the space ratio enhances. Generally, the heat transfer
rate enhances by mounting the obstacle inside the duct because mixing of the hot liquid in center
of the duct with cold liquid around the wall amends due to the oscillations generated by vortex
shedding. As mentioned earlier, the distances between the walls of obstacles and duct decrease with
an increase in the space ratio and accordingly, the oscillations generated by vortex shedding transfer to
the regions around the duct walls. It worth noting that the fluid mixing near the duct wall increases
with an increase in the space ratio, causing a higher temperature gradient around the duct wall and
subsequently, a more efficient convection heat transfer. There are about 45% and 41% increments in the
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mean Nusselt number for Φ = 0 and 0.01, respectively when the space ratio is increased in the range of
1–2.5. Finally, the mean Nusselt number enhances about 10% by using the particles in the liquid with
Φ = 0.01 and dp = 30 nm. This can be justified by positive effects of Brownian diffusion of particles and
the drag of them on heat transfer improvement. Moreover, the thermal conductivity of nanofluid is
more than that of the pure water case and this leads to a higher heat transfer rate.
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Figure 9. Variation of mean Nusselt number with space ratios for Re = 100, dp = 30 nm, and two values
of solid volume fraction of nanoparticles.

5. Conclusions

This paper used a two-way coupling of discrete phase model to track the discrete nature of
aluminum oxide particles in an obstructed duct with two side-by-side obstacles. The effects of particle
diameters and space ratios of obstacles on the dispersion and concentration of particles were evaluated.
The obtained results showed that the particles with smaller diameter (dp = 30 nm) are not affected
by the flow streamline and they diffuse through the streamlines. However, the particles with larger
diameters (i.e., 0.1 μm and 0.25 μm) accumulate in the vorticity regions around the perimeter of
the vortices. It was concluded that the particle deposition increases with an increase in the particle
diameter. The particle deposition percentages are about 1.1%, 1.8%, 2.7%, and 4.6% for dp = 30 nm,
0.1 μm, 0.25 μm, and 0.5 μm, respectively. Moreover, about 45% and 41% increments in the mean
Nusselt number were observed for Φ = 0 and 0.01, respectively when the space ratio is increased in the
range of 1–2.5. Finally, it was found that the mean Nusselt number enhances about 10% by using the
particles in the liquid with Φ = 0.01 and dp = 30 nm.
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1. Introduction

Recent advances in nanotechnology have allowed the development of a new category of fluids
termed nanofluids. A nanofluid refers to the suspension of nanosize particles, which are suspended
in the base fluid with low thermal conductivity. The base fluid, or dispersing medium, can be
aqueous or non-aqueous in nature. Typical nanoparticles are metals, oxides, carbides, nitrides,
or carbon nanotubes. These shapes may be spheres, disks, rods, etc. By using these additives,
one can increase the heat transfer coefficient and consequently enhance the heat transfer value and
performance of base fluids. Some of these fluids can be considered Newtonian fluids, but in many
applications the Newtonian model is not very accurate; therefore, it has generally been acknowledged
that non-Newtonian fluids exhibiting a nonlinear relationship between the stresses and the rate of
strain are more appropriate in technological applications as compared to Newtonian fluids. Many
industrial fluids are non-Newtonian in their flow characteristics and are referred to as rheological fluids,
such as slurries (china clay and coal in water, sewage sludge, etc.) and multiphase mixtures (oil-water
emulsions, gas-liquid dispersions, such as froths and foams, butter). Further examples displaying a
variety of non-Newtonian characteristics include pharmaceutical formulations, cosmetics and toiletries,
paints, synthetics lubricants, biological fluids (blood, synovial fluid, salvia), and food stuffs (jams,
jellies, soups, marmalades), etc. Moreover, simulation of boundary layer flow of nanofluids is another
aspect of this special issue that has various applications in engineering and industrial disciplines.

Existing literature indicates that despite a vast range of application, the investigation on proposed
title was still scant. Consequently, researchers are invited to contribute their original research and
review articles with this hope that this special issue will also serve as a forum for presenting innovative
and new developments quite relevant for the scope of this special issue as specified in keywords.

A total of 12 papers were submitted for possible publication in this special issue. After a
comprehensive peer review, only eight papers qualified to get the acceptance for final publication.
The rest of papers could not be accommodated. The submissions were technically correct, but were
not considered appropriate for the scope of this special issue. The authors are from geographically
distributed countries such as China, Romania, South Africa, Iran, Pakistan, Malaysia, and Saudi Arabia.
This reflects the great impact of the proposed topic and the effective organization of the guest editorial
team of this special issue.

2. Nanofluids: Techniques and Applications

The effect of thermal radiation on the thin film nanofluid flow of a Williamson fluid over an
unsteady stretching surface with variable fluid properties is investigated in [1]. Special attention has
been given to the variable fluid properties. Analytical solutions of nonlinear governing equations are
achieved by means of homotopy analysis method. Experimental values of the Prandtl number have
been used to produce the results for the Williamson nanofluid, whereas the accuracy of the HAM results
has been verified via numerical solutions. The effects of non-dimensional physical parameters—such as
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thermal conductivity, Schmidt number, Williamson parameter, Brinkman number, radiation parameter,
and Prandtl number—have been thoroughly demonstrated and discussed. A comparison is also made
for the validation of obtained results.

In the paper “On Squeezed Flow of Jeffrey Nanofluid between Two Parallel Disks”, Hayat et al. [2]
presented the magnetohydrodynamic (MHD) squeezing flow of Jeffrey nanofluid between two parallel
disks. Constitutive relations of Jeffrey fluid are employed in the problem development. Heat and mass
transfer aspects are examined in the presence of thermophoresis and Brownian motion. Jeffrey fluid
subject to time dependent applied magnetic field is conducted. Suitable variables lead to a strong
nonlinear system. The resulting systems are computed via a homotopic approach. The behaviors of
several pertinent parameters are analyzed through graphs and numerical data. Skin friction coefficient
and heat and mass transfer rates are numerically examined. They found that the larger values of
Deborah numbers correspond to lower temperature and concentration profiles. Both temperature and
concentration profiles are higher for larger values of thermophoresis parameter. The present analysis
reduces to a Newtonian nanofluid flow situation as a limiting case of this model.

It is well known that the best way of convective heat transfer is the flow of nanofluids through
a porous medium. In this regard, a mathematical model is presented in [3] to study the effects of
variable viscosity, thermal conductivity and slip conditions on the steady flow and heat transfer of
nanofluids over a porous plate embedded in a Darcy-type porous medium. The nanofluid viscosity and
thermal conductivity are assumed to be linear functions of temperature, and the wall slip conditions
are employed in terms of shear stress. The similarity transformation technique is used to reduce
the governing system of partial differential equations to a system of nonlinear ordinary differential
equations. The resulting system of ODEs is then solved numerically using the shooting technique.
The numerical values obtained for the velocity and temperature profiles, skin friction coefficient,
and Nusselt number are presented and discussed through graphs and tables. It is shown that the
increase in the permeability of the porous medium, the viscosity of the nanofluid, and the velocity slip
parameter decrease the momentum and thermal boundary layer thickness and eventually increase
the rate of heat transfer. Moreover, the analysis can be extended to include the results for different
water-based nanofluids, and a comparison can be generated on the heat transfer characteristics
of different nanofluids. Clearly, there is an opportunity to consider/extend this problem with
non-Newtonian nanofluid models and to perform experimental work on these systems.

The studies of classical nanofluids are restricted to models described by partial differential
equations of integer order, and the memory effects are ignored. Fractional nanofluids, modeled by
differential equations with Caputo time derivatives, are able to describe the influence of memory on
the nanofluid behavior. In the paper [4], the heat and mass transfer characteristics of two water-based
fractional nanofluids, containing nanoparticles of CuO and Ag, over an infinite vertical plate with
a uniform temperature and thermal radiation, are analytically and graphically studied. Closed
form solutions are determined for the dimensionless temperature and velocity fields, as well as the
corresponding Nusselt number and skin friction coefficient. These solutions, presented in equivalent
forms in terms of the Wright function or its fractional derivatives, have also been reduced to the known
solutions of ordinary nanofluids. The influence of the fractional parameter on the temperature, velocity,
Nusselt number, and skin friction coefficient is graphically underlined and discussed. The enhancement
of heat transfer in the natural convection flows is lower for fractional nanofluids, in comparison to
ordinary nanofluids. In both cases, the fluid temperature increases for increasing values of the
nanoparticle volume fraction.

The magnetohydrodynamic thin film nanofluid sprayed on a stretching cylinder with heat transfer
is explored in [5]. The spray rate is a function of film size. Constant reference temperature is used
for the motion past an expanding cylinder. The sundry behavior of the magnetic nano-liquid thin
film is carefully noticed which results in to bring changes in the flow pattern and heat transfer.
Water-based nanofluids like Al2O3-H2O and CuO-H2O are investigated under the consideration
of thin film. The basic constitutive equations for the motion and transfer of heat of the nanofluid
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with the boundary conditions have been converted to nonlinear coupled differential equations with
physical conditions by employing appropriate similarity transformations. The modeled equations have
been solved using homotopic approach and lead to detailed expressions for the velocity profile and
temperature distribution. The pressure distribution and spray rate are also calculated. The residual
errors show the authentication of the present work. The CuO-H2O nanofluid results from this study
are compared with the experimental results reported in the literature and are found to have excellent
agreement. The present work discusses the salient features of all the indispensable parameters of spray
rate, velocity profile, temperature, and pressure distributions which have been displayed graphically
and illustrated.

In [6], the Brownian motion and thermophoresis effect of the liquid film flow over an unstable
stretching surface in a porous space is presented. The main focus is on the variation in the thickness
of the liquid film in a porous space. The graphical comparison of these two methods is elaborated.
The physical and numerical results using h curves for the residuals of the velocity, temperature,
and concentration profiles are obtained. The key observations concluded that higher values of porosity
parameter generates larger open space and create hurdle to flow and as a result the flow field reduces.
The larger values of Prandtl number reduces the thermal boundary layer due to which the temperature
field reduces while the Eckert number is allied with the viscous dissipation term and lead to an increase
the quantity of heat being produced by the shear forces in the fluid. Therefore, larger values of Eckert
raise the temperature field. It is also seen that the larger values of thickness parameter transport more
fluid in the boundary layer region and cooling effect is produced which absorbs the heat transfer from
the sheet and, as a result, the temperature reduces.

A radial basis function (RBF) neural network with three-layer feed forward architecture
was developed in [7] to effectively predict the viscosity ratio of different ethylene glycol/water
based nanofluids. A total of 216 experimental data involving CuO, TiO2, SiO2, and SiC
nanoparticles were collected from the published literature to train and test the RBF neural network.
The parameters—including temperature, nanoparticle properties (size, volume fraction, and density),
and viscosity of the base fluid—were selected as the input variables of the RBF neural network.
The investigations demonstrated that the viscosity ratio predicted by the RBF neural network agreed
well with the experimental data. In addition, by comparing the RBF predictive values and the
experimental data published in various studies, it was demonstrated that the RBF neural network not
only exhibited good modeling accuracy but also could effectively predict the influences of temperature,
nanoparticle volume fraction, and diameter on the viscosity ratio of different ethylene glycol/water
based nanofluids. Compared to the typical viscosity models, namely the Batchelor model and Chen
model, the RBF neural network has a good ability to predict the viscosity ratio of different ethylene
glycol/water based nanofluids. However, the prediction performance can be affected by the size of the
data set. The present investigation may play an active role for developing the modeling of nanofluid
viscosity. However, how to extend the application of ANN to predict other thermo-physical properties
of nanofluids is still worthy of study in the future.

A two-way coupling of discrete phase model is developed in order to track the discrete nature of
aluminum oxide particles in an obstructed duct with two side-by-side obstacles is explored in [8]. Finite
volume method and trajectory analysis are simultaneously utilized to solve the equations for liquid
and solid phases, respectively. The interactions between two phases are fully taken into account in the
simulation by considering the Brownian, drag, gravity, and thermophoresis forces. The effects of space
ratios between two obstacles and particle diameters on different parameters containing concentration
and deposition of particles and Nusselt number are studied for the constant values of the Reynolds
numbers and volume fractions of nanoparticles. The obtained results indicate that the particles with
smaller diameter (dp = 30 nm) are not affected by the flow streamline and they diffuse through the
streamlines. Moreover, the particle deposition is enhanced as the value of the space ratio increases.
A comparison between the experimental and numerical results is also provided with the existing
literature as a limiting case of the reported problem and found in good agreement.
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3. Future Trends in Nanotechnology

Even as with the completion of this special issue, the material that advances the state-of-the-art
of experimental, numerical, and theoretical methodologies or extends the bounds of existing
methodologies to new contributions in applied nano-technology is still insufficient. Nanofluids
strengthen solar energy applications such as heat exchanger design and medical applications including
cancer therapy and safer surgery by heat treatment. Nanofluid technology can also help to develop
better oils and lubricants for practical applications.
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