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Tiago Ribeiro, Fernando Gonçalves, Inês S. Garcia, Gil Lopes and António F. Ribeiro

CHARMIE: A Collaborative Healthcare and Home Service and Assistant Robot for Elderly Care
Reprinted from: Appl. Sci. 2021, 11, 7248, doi:10.3390/app11167248 . . . . . . . . . . . . . . . . . 51

Jun Wang, Mingquan Yang, Fei Liang, Kangrui Feng, Kai Zhang and Quan Wang

An Algorithm for Painting Large Objects Based on a Nine-Axis UR5 Robotic Manipulator
Reprinted from: Appl. Sci. 2022, 12, 7219, doi:10.3390/app12147219 . . . . . . . . . . . . . . . . . 81

Kui Xiao, Wentao Yu, Weirong Liu, Feng Qu and Zhenyan Ma

High-Precision SLAM Based on the Tight Coupling of Dual Lidar Inertial Odometry for
Multi-Scene Applications
Reprinted from: Appl. Sci. 2022, 12, 939, doi:10.3390/app12030939 . . . . . . . . . . . . . . . . . . 107

Jin-Gu Kang, Yong-Sik Choi and Jin-Woo Jung

A Method of Enhancing Rapidly-Exploring Random Tree Robot Path Planning Using 
Midpoint Interpolation
Reprinted from: Appl. Sci. 2021, 11, 8483, doi:10.3390/app11188483 . . . . . . . . . . . . . . . . . 125
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Method for Robot Manipulator Joint Wear Reduction by Finding the Optimal Robot Placement 
in a Robotic Cell
Reprinted from: Appl. Sci. 2021, 11, 5398, doi:10.3390/app11125398 . . . . . . . . . . . . . . . . . 239

Piotr Cybulski, Zbigniew Zieliński
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Robotics and intelligent systems are key technologies to promote efficient and inno-
vative applications in the most diverse domains (industry, healthcare, agriculture, con-
struction, mobility, etc.), performing and supporting activities that are not suitable to be
performed by humans. Such activities are frequently time-consuming, repetitive tasks
with low added value, physically demanding, and/or dangerous. Nevertheless, robotics
and intelligent systems face several scientific and technological challenges related to their
integration and interoperability with other systems, safety, flexibility, reconfigurability and
autonomy. These challenges are especially relevant when robots operate in real unstruc-
tured environments and share the workspace with humans and other equipment.

This Special Issue collects research achievements, ideas, and applications of advanced
intelligent robotic systems, covering diverse technologies and application domains. Gener-
ally, the contributions cover optimal path planning strategies and innovative designs for
mobile manipulators, the integration of robotic and intelligent systems, grasping, manip-
ulation, teleoperation, haptics, user experience approaches for collaborative robots, and
multi-agent systems.

In the last few years, we addressed the emergence of mobile manipulators as versatile
robotic machines, combining the best abilities of mobile robots and robotic manipulators.
An interesting study reports a mobile manipulator unified framework for motion planning
considering joint limits, joint velocity limits, self-collisions, and singularities [1]. A novel
path planning strategy for the autonomous navigation of a mobile manipulator operating
in inspection processes is proposed in [2]. A mobile manipulator, which operates as a
healthcare and domestic assistant, demonstrated its capability to perform generic service
tasks in non-standardized healthcare and domestic environments [3]. In [4], a robot-based
framework is proposed to automatically plan trajectories designed for painting large objects,
e.g., a car roof. A Simultaneous Localization and Mapping (SLAM) framework used to
solve the problem of the poor positioning accuracy of mobile robots, by fusing horizontal
and vertical lidar data with Inertial Measurement Unit (IMU) data, eliminates the motion
distortion of the dual-lidar odometry [5]. A robot path planning method using midpoint
interpolation increased the efficiency of optimization by minimizing the planning time [6].
An interesting study presents a design of a mobile robot with omnidirectional tracks,
combining the advantages of a typical track drive with the omnidirectional Mecanum
wheels [7].

A dual-arm robotic manipulator demonstrated the ability to manipulate large and
heavy objects avoiding obstacles by using a hierarchical manipulation planner [8]. A
position/force controller used to grasp objects through a robotic manipulator, find the
position of the object to be grasped accurately, and apply the appropriate force to each
finger to handle the object properly is proposed in [9]. In [10], a haptic teleoperation of
impact hammers in mining operations is proposed, where the 3D model of the environment

Appl. Sci. 2023, 13, 1352. https://doi.org/10.3390/app13031352 https://www.mdpi.com/journal/applsci1
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is used to estimate repulsion forces that are transferred to the operator via haptics so that
the hammer does not collide with the structures of the mine. A multi-order attentional
spatial interactive convolutional neural network for haptic recognition is detailed in [11].
It was validated on the recognition of letter shape (A–Z) with complex contours from a
haptic acquisition platform based on three-scale pressure arrays. In [12], the optimization
of robot placement was studied to reduce the overall robot joint wear, where a proper robot
base placement results in an overall reduction in the wear of the joints of a robotic arm.
An algorithm for verifying the correctness of multi-agent systems modeled as tracking
bigraphical reactive systems and checking whether a behavior policy for the agents meets
non-functional requirements is presented in [13]. A review of the recent literature on
augmented reality-supported collaborative robotics from a human-centered perspective
to solve issues related to operators’ needs is proposed in [14]. The study elaborates on
a structured framework driven by User eXperience approaches to design augmented
reality interfaces.
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Abstract: The motion of nonholonomic mobile manipulators (NMMs) is inherently constrained by
joint limits, joint velocity limits, self-collisions and singularities. Most motion planning algorithms
consider some of the aforementioned constraints, however, a unified framework to deal with all
of them is lacking. This paper proposes a motion planning solution for the kinematic trajectory
tracking of redundant NMMs that include all the constraints needed for practical implementation,
which improves the manipulability of both the entire system and the manipulator to prevent sin-
gularities. Experiments using a 10-DOF NMM demonstrate the good performance of the proposed
method for executing 6-DOF trajectories while satisfying all the constraints and simultaneously
maximizing manipulability.

Keywords: motion planning; trajectory tracking; mobile manipulator; joint constraints; self-collision
avoidance; manipulability

1. Introduction

A mobile manipulator is a robotic system that consists of a standard robot manipula-
tor mounted on a mobile platform. This system integrates the dexterity provided by the
manipulator with the extended workspace provided by the platform. Additionally, the com-
bination of both subsystems usually introduces kinematic redundancy, which increases
flexibility and dexterity. Therefore, mobile manipulators are suitable to perform delicate
tasks over a large space, such as welding large parts or painting large, curvy surfaces.

The practical applications of robotic systems commonly define tasks by either a point-
to-point movement or a continuous path of the end-effector in task space (also known as
operational space). This paper aims to solve the latter, and in particular, focuses on the
task space trajectory tracking problem. A trajectory is a path on which a timing law is
specified, for instance in terms of velocities and/or accelerations [1]. In other words, not
only is the end-effector’s pose profile defined, but so is its velocity profile. To accomplish
this, a motion planning algorithm that exploits the capabilities of both the manipulator and
the mobile platform and that coordinates their movements is required. The redundancy
of mobile manipulators can be used to perform additional subtasks or satisfy system con-
straints. These constraints include joint limits, joint velocity limits, joint velocity boundary
constraints (i.e., the constraints on the initial and final joint velocities), and self-collision
avoidance. Furthermore, for task space trajectory tracking to be achievable, it is important
that the system is kept away from singularities. All these requirements make the motion
planning for trajectory tracking a challenging problem.

There exist recent efforts in solving the motion planning of mobile manipulators [2,3].
Liao et al. [2] presented an optimization-based solution that not only handles constraints
at the position level, but can also set a target joint configuration for the manipulator at

Appl. Sci. 2021, 11, 6509. https://doi.org/10.3390/app11146509 https://www.mdpi.com/journal/applsci3
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the end of the trajectory. A heuristic approach was proposed by Santos et al. [3] that is
simple to implement and can accomplish additional constraints such as joint limits and
manipulability improvement. Nonetheless, these methods do not deal with constraints at
the velocity level and are only applicable to mobile manipulators with omnidirectional
platforms. The present work focuses on the motion planning of mobile manipulators with
nonholonomic mobile platforms. The movement of this type of platform is constrained by
the rolling without slipping condition, which inhibits the platform from instantly moving
in any arbitrary direction [4].

The motion planning of NMMs has also been studied in the literature using different
approaches [5–10]. De Luca et al. [7] implemented the reduced gradient method for
NMMs. This method finds a permutation matrix that helps reduce the velocity input to
the subspace of commands that satisfy the given task. The remaining velocity inputs are
used to maximize an objective function. Even though this method is computationally more
efficient than the projected gradient approach, it is difficult to find such a permutation
matrix for highly redundant robots since the Jacobian must be pre-analyzed by hand.
Jia et al. [9] studied an adaptive motion distribution and coordinated control between the
manipulator and the mobile platform to minimize the end-effector’s positioning error.

In task space trajectory tracking, it is important that the motion planning algorithm
moves the system away from singularities. This is because the system is in kinematic
singularity, and the dexterity of the structure is reduced because the robot’s end-effector
cannot be moved in a certain direction. In addition, when the system is in the neigh-
borhood of a singularity, small velocities in the task space may cause large velocities in
the joint space [1], which is unacceptable because this would result in the failure of the
trajectory tracking task, and even damage the mobile manipulator. For these reasons,
the manipulability maximization was been included in multiple motion planning methods
for NMMs [5,6,8–10]. Bayle et al. [5,6] maximized the system’s manipulability using the
projected gradient method. Huang et al. [8] studied the coordination of the platform and
the manipulator, simultaneously considering the mobile platform stability and the manipu-
lator’s manipulability. Although these techniques can successfully follow the end-effector
path while considering additional criteria, none of these consider joint constraints.

Furthermore, the solution of the task space trajectory tracking problem must not
only consider joint limits but also joint velocity limits. This is because if a joint reaches
its velocity limit, the end-effector might not be able to comply with the desired velocity
profile. To the authors’ knowledge, the literature of motion planning for trajectory tracking
in task space with NMMs that includes joint constraints is limited. Zhang et al. [10]
proposed formulating the motion planning problem as an optimization problem where
the manipulability is maximized and the joint limits and joint velocity limits are included
as constraints. This optimization problem is reformulated as a quadratic programming
problem and converted into a linear variational inequality problem, that can be solved by
different numerical methods. This approach is effective but does not consider boundary
constraints for joint velocities. These constraints are also relevant because, for a given task,
zero joint velocities are expected at the start and end of the trajectory. Additionally, NMMs
are not only subject to physical limits but also to self-collisions, especially between the
manipulator and the mobile platform, which are not included in their work.

An important remark is that maximizing the manipulability of the whole system
might result in poor manipulability for the arm alone, even though the manipulability
for the whole system is preserved or improved [6,10]. Additionally, it is important that
both the robot arm subsystem and the whole mobile manipulator system maintain a
certain level of manipulability once a coordinated task is completed. After completing
an arbitrary path, a subsequent task might only require the arm to manipulate an object.
If the arm is in a configuration with low manipulability, executing such a task might not
be feasible. For these reasons, in this work, we propose a new manipulability measure
for mobile manipulators that, when maximized, and as demonstrated in our experiments,
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intrinsically improves the manipulability of the robot arm as well as the manipulability of
the whole system.

The solution to the motion planning of NMMs for trajectory tracking presented in this
work includes joint constraints (range and maximum velocities), self-collision avoidance
and manipulation capability preservation. Figure 1 summarizes how all these constraints
are included in our solution. Both the particular and homogeneous solutions of our
proposed scheme are weighted to avoid joint limits and self-collisions while the trajectory
is tracked. The homogeneous solution is used to maximize the manipulability by exploiting
the redundancy of the system. To satisfy joint velocity boundary constraints, the step size
for searching the maximum manipulability is varied. The joint velocity limits are satisfied
by restraining the maximum step size based on the allowable self-motion.

Figure 1. Summary of the proposed motion planning approach.

Experimental results demonstrate that our method can successfully solve the motion
planning problem of NMMs under all the mentioned constraints. This work focuses
on task space trajectory tracking at kinematic level. In other words, the outputs of the
motion planning algorithm are the joint positions and velocities that will be fed to a joint
space dynamic controller for motion control. Then, the motion controller is responsible
for suppressing the model uncertainties and external disturbances to guarantee that the
actual joint positions follow the ones output by the motion planning algorithm. In the
experiments shown in this paper, we use the built-in motion controller of the commercial
manipulator and leave the design of our own motion controller for future research.

The contributions of this work are detailed as follows:

• A motion planning solution for NMMs that allows to include joint physical constraints
and the execution of a secondary task is presented.

• Multiple constraints required for the practical implementation of task space trajectory
tracking are included in a unified solution. These constraints include joint limits, joint
velocity limits, joint velocity boundary constraints and self-collision avoidance.

• A new manipulability measure for mobile manipulators is presented. It is demon-
strated that the maximization of this measure simultaneously improves the manipula-
bilities of the whole system and the robot arm.

This paper is organized as follows. Section 2 describes the kinematic modeling of
NMMs. Section 3 describes the motion planning problem for trajectory tracking and
presents the proposed solution. In Section 4, the concepts that are employed to satisfy each
of the mentioned constraints are described and included in the motion planning algorithm.

5
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Experimental results using 6-DOF tasks are presented in Section 5 to validate the efficacy
of our approach. Finally, Section 6 concludes the paper.

2. Kinematic Modeling

The kinematic modeling described here follows the procedure of De Luca et al. [7]
and Bayle et al. [6]. For a general procedure of kinematic modeling of wheeled mobile
manipulators, please refer to Bayle et al. [5].

Let r ∈ Rm be the end-effector’s position and/or pose in the task space. The configura-
tion vector q, also known as the generalized coordinates of the mobile manipulator, is given
by the combination of the platform configuration vector qp and the robot arm configuration
vector qa. Figure 2 illustrates these configuration vectors. A frame x′y′ is attached to
the mobile platform at the center of the wheels’ axle (xp, yp), with respect to the world
reference frame xy, with its x′ axis pointing in the forward direction and the y′ axis pointing
in the direction parallel to the wheels’ axle. The angle between the x axis of the world
reference frame and x′ attached to the platform is denoted as θp. Then, the platform config-

uration is given by qp =
[
xp yp θp

]T ∈ R3. The robot arm configuration is given by the

position of its joints as qa =
[
qa1 qa2 . . . qna

]T ∈ Rna . Finally, the configuration vector

of the mobile manipulator is q =
[
qp

T qa
T]T ∈ Rn with n = 3 + na. The end-effector’s

position/pose is a function of the configuration vector defined by the kinematic map:

r = f (qp, qa), (1)

x

y

O

x′
y′

(xp, yp)
θp

ωp

vp

qa1

qa2

qan

Figure 2. Nonholonomic mobile manipulator schematic.

The wheeled platform movement is constrained under the rolling without a slipping
assumption on both wheels, which can be expressed as the following nonholonomic
constraint:

q̇p = G(qp)up, (2)

where up =
[
vp ωp

]T ∈ R2 is the velocity input of the platform, consisting of the linear
and angular velocities of the platform, which are known as pseudo velocities or quasi-
velocities. The columns of matrix G(qp) span the admissible velocity space for a given
platform configuration. The matrix G(qp) for a differential-drive platform is defined as

G(qp) =

⎡⎣cos θp 0
sin θp 0

0 1

⎤⎦,

On the other hand, the robotic arm kinematics at the velocity level is not constrained
for any configuration, and therefore, the generalized velocities of the arm are equal to the
velocity inputs of the arm:

q̇a = ua. (3)
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The velocity input vector for the entire NMM can be constructed as u =
[
up

T ua
T]T ∈

Rδm , with δm = 2 + na. The dimension δm is called the mobility degree of the mobile ma-
nipulator and indicates the space dimension of the admissible generalized velocities [6].
Using (2) and (3), the map from the velocity input vector u to the generalized velocities
q̇ =
[
q̇p

T q̇a
T]T can be written as

q̇ = S(q)u, (4)

with:

S(q) =
[

G(qp) 0
0 Ina

]
,

where G(qp) maps the platform’s velocity input vector up =
[
vp ωp

]T to the platform’s

generalized velocities q̇p =
[
ẋp ẏp θ̇p

]T , and matrix Ina is an identity matrix of size na
that sets the arm’s generalized velocities equal to its input velocities q̇a = ua.

The differential kinematics of the NMM is obtained by differentiating the relation (1)
with respect to time:

ṙ =
[

Jp(qp) Ja(qa)
][q̇p

q̇a

]
=
[

Jp(qp) Ja(qa)
]
S(q)u

= J(q)S(q)u = J̄u,

(5)

where the matrices Jp ∈ Rm×3 and Ja ∈ Rm×na are the Jacobians of the platform and the arm,
respectively. The matrix J ∈ Rm×n is the Jacobian of the mobile manipulator, and J̄ ∈ Rm×δm

is a reduced version of the Jacobian in which the admissible velocities of the platform
under the nonholonomic constraint have been included. Equation (5) follows the same
form as the differential kinematics of standard manipulators; therefore, the well-known
methodologies for the motion planning of redundant manipulators can be extended to
NMMs in terms of J̄, including concepts for joint limits avoidance, self-collisions avoidance
and manipulability maximization.

3. Motion Planning Method

The motion planning problem for task space trajectory tracking consists of finding the
input velocities u, given the desired end-effector’s position/pose rd(t) ∈ Rm for t ∈ [t0, t f ],
such that r(t) follows rd(t). If the task space velocity of the end-effector is set as

ṙ = ṙd + K(rd − r), (6)

where K ∈ Rm×m is a positive definite matrix, then the convergence of r(t) to rd(t) is
guaranteed. Consequently, the motion planning problem is turned into solving the input
velocities u from the underdetermined linear equations (5) where ṙ is set according to (6).

During the execution of the trajectory, the movement of the joints that get closer to
a position constraint (joint limit or self-collision) must be penalized (slowed down). This
can be achieved by using a weighting matrix. In this work, we define the weighted input
velocity and the reduced weighted Jacobian as follows:

J̄W = J̄W
1
2 (q) and u = W

1
2 (q)uW , (7)

where W(q) ∈ Rδm×δm is a configuration-dependent positive semidefinite matrix. It is
constructed so that its elements penalize the motion of the joints based upon the system
constraints. We choose W(q) as a diagonal matrix in this paper; furthermore, we drop the
notational dependency of W on q to simplify the expression in the subsequent derivation.

Using (7), the system (5) can be rewritten as

ṙ = J̄WuW . (8)

7
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Because of the kinematic redundancy, i.e., m < δm, infinite solutions to uW exist.
The solution to (8) can be decomposed as a sum of a particular solution and a non-zero
homogeneous solution. The particular solution satisfies the end-effector’s task, while
the homogeneous solution changes the manipulator configuration without changing the
end-effector’s position/pose.

One way to solve the redundant system (8) is to formulate the problem as a constrained
optimization problem [1], where the goal is to minimize a cost function and satisfy the
constraint (8). We propose the minimization of the quadratic cost function:

g(uW ) =
1
2
(uW − W

1
2 u0)

T(uW − W
1
2 u0);

this choice is aimed to find a vector of velocities uW that is as close as possible to W
1
2 u0,

where u0 ∈ Rδm is a velocity vector that is used to satisfy an additional task such as
maximizing the manipulability. The choice of u0 will be presented shortly. Notice that the
physical constraints are also imposed to u0 by weighting it similarly to how J̄W is obtained
in (7). By using the method of Lagrange multipliers to minimize g(uW ) with the equality
constraint (8), the following solution is obtained:

uW
∗ = J̄†

W ṙ + (I − J̄†
W J̄W)W

1
2 u0, (9)

where J̄†
W is the Moore–Penrose pseudoinverse of the matrix J̄W such that J̄W J̄†

W = I,
I − J̄†

W J̄W is the orthogonal projection into the null space of J̄W . The first term of (9) is the
particular solution, and the second term is the homogeneous solution. It is trivial to show
that I − J̄†

W J̄W projects u0 onto the null space of J̄W by multiplying both sides of (9) by J̄W .
The velocity input vector is then recovered using the second part of (7):

u = W
1
2 J̄†

W ṙ + W
1
2 (I − J̄†

W J̄W)W
1
2 u0. (10)

The degree of kinematic redundancy at the velocity level is relevant for this solution to
be feasible, since it defines the number of simultaneous constraints that can be satisfied in
the differential kinematics inversion without J̄W losing its rank. The degree of redundancy
for NMMs is calculated as R = δm − m. Whilst analyzing the matrix W

1
2 for three different

cases, it is possible to understand the expected behavior of solution (10). Let z represent
the number of elements that are zero in the diagonal of W

1
2 , i.e., the number of joints that

are forced to stop due to z simultaneously activated constraints. When z < R, both the
particular and homogeneous solutions exist, and therefore, the secondary task will still be
considered. When z = R, the system is not redundant anymore and only the particular
solution exists. Finally, when z > R, the system (8) has no solution. Therefore, for the
solution (10) to exist, the condition z ≤ R is necessary.

Our proposed solution (10) has an advantage over the projected gradient solution
used in [5,6], because it includes the physical constraints and penalizes both the particular
and homogeneous solutions. Furthermore, in contrast with the weighted least-norm
method [11], this solution takes advantage of the redundant joints that have not been
penalized, due to physical constraints, in attempt to satisfy the task defined by u0.

In this paper, the matrix W is constructed to satisfy joint position constraints (joint
limits and self-collision avoidance), which is discussed in Section 4.2. The vector u0 is
designated to locally maximize a proposed new manipulability measure for mobile manip-
ulators, as discussed in Section 4.1. To satisfy the joint velocity constraints, the particular
and homogeneous solutions are analyzed. Because the particular solution is in charge
of following the end-effector’s task, it cannot be modified. On the other hand, the ho-
mogeneous solution can be varied to satisfy the joint velocity constraints. Furthermore,
the homogeneous solution must also consider the admissible velocity commands with

8
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respect to the nonholonomic constraints [7]. Taking these two points into account, we
define vector u0 as

u0 = ±α(t)β(t)ST(q)∇qF(q), (11)

where α(t) is a scalar coefficient that is adjusted online to satisfy joint velocity limits
(Section 4.3.2), β(t) is a positive variation factor used to satisfy joint velocity boundary
constraints (Section 4.3.1), S(q) is defined in (4), and ∇qF(q) is the gradient of the objective
function F(q) : R3+na → R, which is set to a manipulability measure. The product α(t)β(t)
is the step size of the gradient step ascent/descent, and the sign of u0 defines whether the
objective function F(q) will be maximized (+) or minimized (−).

Replacing (11) in (10), the final form of the proposed solution for u is:

u = up + α(t)β(t)uh,

with

up = W
1
2 J̄†

W ṙ,

uh = W
1
2 (I − J̄†

W J̄W)W
1
2 ST(q)∇qF(q),

(12)

where the positive sign for the gradient step descent has been used because we are inter-
ested in maximizing the manipulability. Notice that when the sign of α(t) is positive, the
objective function F(q) is maximized. However, for some cases, α(t) could be negative for
short periods of time to respect joint velocity limits, as explained in Section 4.3.

4. Manipulability Maximization and Constraints Satisfaction

In this section, the details for manipulability maximization are described, the weight-
ing matrix W is defined so that it penalizes the joint movement to avoid both joint limits
and self-collisions, and a scheme to satisfy joint velocity limits as well as joint velocity
boundary constraints is presented.

4.1. Manipulability Maximization

The term manipulability, introduced by Yoshikawa [12], describes the ability of a
robotic system to provide end-effector’s velocities in any direction for a given configuration.
The manipulability of wheeled mobile manipulators was studied in detail in [5]. There exist
different algebraic measures to characterize the manipulability of a robotic system [5,12–14].
The most widely used measure, known as the manipulability measure and noted here
as Ω, is given by Ω = σ1σ2 . . . σm, where σ1, σ2, . . . , σm are the singular values of the
system Jacobian J(q). Therefore, Ω is the manipulability measure for system configuration
q. The measure Ω is proportional to the volume of the manipulability ellipsoid [12].
Furthermore, it can be shown that Ω has the following property:

Ω =
√

det(J(q)JT(q)) (13)

By definition, Ω ≥ 0, and Ω = 0 if and only if rank(J(q)) < m. The elements of ∇qΩ

are given mathematically by

∂Ω
∂qi

= −1
2

Ω · trace

((
J JT)−1

(
∂J
∂qi

JT + J
(

∂J
∂qi

)T))
,

with i = 1, 2, . . . , n.

(14)

As mentioned before, we are not only concerned with improving the manipulability of
the whole system but also that of the arm alone. In this work, we present a new manipulabil-
ity measure that better expresses the manipulability of a mobile manipulator, because both
the manipulability of the arm and the whole system are intrinsically considered.

9
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Let us define the manipulability of the whole system, denoted as Ωp+a, and the manip-
ulability of the robot arm, denoted as Ωa, to be the measures obtained using Equation (13)
with the Jacobians J̄ and Ja from Equation (5), respectively. Notice that by using the reduced
Jacobian J̄, the platform’s nonholonomic constraints are included in the manipulability mea-
sure of the whole system. Our proposed manipulability measure for mobile manipulators
is defined as

ΩMM = Ω̂p+aΩ̂a, (15)

where Ω̂p+a and Ω̂a are the normalized manipulabilities computed by dividing them by
their respective maximum values over all the possible configurations of the system:

Ω̂p+a =
Ωp+a

Ωp+amax

and Ω̂a =
Ωa

Ωamax

.

The normalized values are used in our proposed measure to make sure that all its
components are in the same scale. This normalization also makes the measures invariant
to units and chosen reference frame [14,15].

Notice that J̄ =
[

Jp Ja
]
S(q) ∈ Rm×δm in (5) indicates the relation between J̄ and Ja.

Hence, the singular values of J̄ are not necessarily the same as the singular values of Ja.
There are cases where Ja is rank-deficient while J̄ is not. For these cases, the whole system
manipulability Ωp+a �= 0 even though the arm is in a singular configuration. Therefore,
the measure Ωp+a fails to express the ability of the arm alone to provide end-effector’s
velocities in any direction. As a result, maximizing the measure Ωp+a might result in the
poor manipulability of the arm, even though the manipulability of the whole system is
preserved or improved. This is an issue that has been discussed in the literature [6,10].

On the other hand, our proposed measure ΩMM is defined by the product of the
singular values of J̄ and Ja, i.e., the product of the manipulability ellipsoids of J̄ and
Ja. Therefore, it encapsulates the abilities of the whole system and the arm to provide
end-effector’s velocities in any direction. If any of the singular values of Ja or J̄ is zero,
e.g., the arm is in a singularity, the measure ΩMM = 0. Hence, the measure ΩMM is a
better representation of the manipulability of mobile manipulators because it intrinsically
considers the manipulability of the arm and the whole system.

Using the product rule, the gradient of ΩMM is calculated as

∇qΩMM =
1

Ωp+amax
Ωamax

(Ωa∇qΩp+a + Ωp+a∇qΩa). (16)

Analyzing the right hand side of (16), it is clear that the manipulability of the arm
subsystem affects the gradient of the whole system. Likewise, the manipulability of the
whole system affects the gradient of the arm subsystem. Therefore, maximizing ΩMM,
i.e., setting ∇qF(q) = ∇qΩMM in our solution (12) will simultaneously improve the
manipulabilities of the arm and the whole system. In the experiments section (Section 5),
a comparison is performed among the different objective functions for manipulability
maximization to demonstrate the advantages of the proposed manipulability measure.

The reader may have noticed that because our proposed motion planning solution
(12) multiplies W

1
2 with the gradient ∇qF(q), the direction of the original gradient that

maximizes the manipulability is changed. However, as our goal is to push the system
away from singularities by gradually improving the manipulability rather than finding the
shortest path towards its maximum value, it is sufficient to prove that the weighted vector
W

1
2 u0 also points in a direction that increases the manipulability as the unweighted gradient

u0 does. Since W
1
2 is positive semidefinite, we have uT

0 W
1
2 u0 ≥ 0 for all u0. This implies

that the weighted gradient also points in a direction that increases the manipulability.

10
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4.2. Joint Position Constraints

Joint position constraints are common requirements in the motion planning of robotic
systems. In this work, joint limits and self-collision avoidance are considered. These
constraints are included in the proposed solution (12) using matrix W, which we define as
the product of three terms as follows:

W = WJlimWColT−1
q ,

where WJlim is the weighting matrix for joint limits constraints, WCol is the weighting
matrix for self-collision avoidance, and the matrix Tq (known as the Jacobian normalization
matrix), is used to normalize the velocity commands u as follows [12]:

Tq = diag
(

1
u1max

,
1

u2max

, . . . ,
1

uδmmax

)
,

where uimax is the ith maximum velocity command. The weighting of this matrix handles
the differences in units and scales among all the joints.

For mobile manipulators, matrices WJlim and WCol should be constructed only consid-
ering the arm. This is because there is no limit to the movement of the mobile platform
along each degree of freedom. Likewise, the movement of the mobile platform cannot be
used to avoid self-collisions because the platform moves the base of the arm. Therefore,
in this work, the structure of both weighting matrices was designed to take this into account.
To simplify the presentation, let Wg represent either WJlim or WCol . Wg is a diagonal δm × δm
matrix with the following form:

Wg =

[
I2 0
0 Wa

]
,

where I2 is an identity matrix of size 2 (for the case of the differential drive) and Wa is a
diagonal na × na matrix given by

Wa =

⎡⎢⎢⎢⎣
w1 0 0 . . . 0
0 w2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . wna

⎤⎥⎥⎥⎦,

where each element of the diagonal matrix Wa is defined using a performance criterion H(q).
In the next two subsections, two separate criterion functions for joint limits and self-

collision avoidance are defined. These two criterion functions have common properties.
The values of H(q) and |∂H(q)/∂qi| become very large as the constraints are violated.
When constructing matrix Wa using these criterion functions, the joint movement towards
or away from a constraint must be contemplated [11,16]. Under this consideration, the ele-
ments of Wa are given by

wi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

1+
∣∣∣∂H(q)

∂qi

∣∣∣ , if Δ
∣∣∣∂H(q)

∂qi

∣∣∣ > 0

1, if Δ
∣∣∣∂H(q)

∂qi

∣∣∣ ≤ 0,

with i = 1, 2, . . . , na,

(17)

where Δ|∂H(q)/∂qi| is the change rate of |∂H(q)/∂qi| with respect to time, and is numer-
ically calculated during implementation. With this choice, a value of one is assigned to
wi, indicating that no penalty is imposed on the ith joint, if the ith joint is not moving
(Δ|∂H(q)/∂qi| = 0), or it moves away from a constraint (Δ|∂H(q)/∂qi| < 0). On the other
hand, wi tends towards zero if the movement of the ith joint gets closer to a constraint.

11



Appl. Sci. 2021, 11, 6509

Hence, the element wi penalizes the movement of the ith joint by means of (12) if it moves
towards a constraint and stops the joint if it is too close to it.

4.2.1. Joint Limits Avoidance

To construct the weighting matrix for joint limits avoidance WJlim, a well-known
criterion function [17] is used:

HJlim(q) =
na

∑
i=1

1
4γ

(q+i − q−i )
2

(q+i − qi)(qi − q−i )
,

where qi is the ith joint angle, q−i and q+i are its lower and upper limits, respectively, and γ is
a scalar constant that adjusts the rate of change of HJlim(q). This criterion function increases
as the joint gets closer to its limits and goes to infinity at the joint bounds. The elements of
the gradient of this function are given by

∂HJlim(q)
∂qi

=
1

4γ

(q+i − q−i )
2(2qi − q+i − q−i )

(q+i − qi)2(qi − q−i )
2

. (18)

Each element ∂HJlim(q)/∂qi is equal to zero if qi is at the middle of its joint range and
goes to infinity at either limit.

4.2.2. Self-Collision Avoidance

To construct the weighting matrix for self-collision avoidance WCol , an exponential
function of the distance between two collision points is used as the criterion function [16]:

HCol(q) = ρe−c1d(q)d(q)−c2 ,

where ρ > 0 controls the amplitude of HCol(q), and c1, c2 > 0 control the rate of decay. This
function has a maximum value when the distance d between two links is zero, and expo-
nentially decreases as this distance increases. The distance between two collision points is
defined as d(q) = ‖pl1 − pl2‖2, where pl1 and pl2 represent the position vectors, referred
to a common frame, of the collision points on two nonadjacent links. pl1 and pl2 can be
calculated from the configuration vector q through forward kinematics.

The elements of the gradient of HCol(q) are given by

∂HCol(q)
∂q

=
∂HCol(q)

∂d
∂d
∂q

, (19)

where each of the partial derivatives is given by

∂HCol(q)
∂d

= −ρe−c1dd−c2(c2d−1 + c1), (20)

∂d
∂q

=
1
d
[JT

1 (pl1 − pl2) + JT
2 (pl2 − pl1)], (21)

where J1 and J2 are the associated Jacobian matrices of pl1 and pl2, respectively. The col-
lision points are chosen from the surface of the links for which the collision distance is
computed. For the case of potential collisions between the arm and the mobile platform,
pl2 is picked as a point fixed on the surface of the mobile platform (pl2 does not move with
respect to the arm). By using a frame attached to the mobile platform as the common frame,
and selecting pl2 as a fixed point, (21) reduces to:

∂d
∂q

=
1
d
[JT

1 (pl1 − pl2)]. (22)

When constructing matrix Wa, the partial derivative ∂d/∂q in (19) was calculated using
(21) or (22) depending on whether the collision is evaluated between two moving links or
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a moving link and a fixed one, respectively. Each element ∂H(q)/∂qi tends toward zero as
the distance between two evaluated collision points increases, and tends towards infinity
as the distance gets closer to zero. Because d = 0 is not admissible, i.e., the two links are in
contact, the chosen points must contemplate a threshold.

Multiple pairs of potential collision points might exist in a robotic system. Let Nc be
the number of potential collision point pairs that are evaluated. A self-collision matrix
WColj

is constructed for each distance dj, with j = 1, 2, . . . , Nc. The weighting matrix that
includes the contribution of each evaluated pair is finally obtained by

WCol =
Nc

∏
j=1

WColj
. (23)

With this combination, the ith diagonal element of the matrix WCol penalizes the
movement of the ith joint. In contrast with the combination of collision weighting matrices
proposed in [16], the combination (23) guarantees that the joints are stopped if they attempt
to decrease any of the collision distances dj to a value of zero. Since some potential
collisions are taken care of by the joint limits, the number of points considered in (23) is
small, and therefore the computation cost can be relieved.

4.3. Joint Velocity Constraints

In a task space trajectory tracking problem, joint constraints at the velocity level are
as important as joint limits and self-collision avoidance. These constraints include joint
velocity boundary constraints and joint velocity limits. Satisfying joint velocity boundary
constraints is a requirement for the end-effector to stop at the beginning and end of the
task, i.e., the initial and final joint velocities must be zero. Joint velocity limits must be
considered because the motion planning algorithm might generate joint velocity commands
that are out of bounds in order to follow the task space velocity profile. These unfeasible
velocities cannot be achieved by the real joints. Therefore, the trajectory tracking will fail if
the joint velocity limits are not respected.

4.3.1. Joint Velocity Boundary Constraints

To satisfy joint velocity boundary constraints, the initial and final joint velocities
must be zero. up in (12) is directly associated with the end-effector’s task; therefore, it
implicitly satisfies the boundary constraints. However, uh in (12) does not necessarily
satisfy them, because the manipulability maximization task is dependent on the mobile
manipulator configuration at the initial and final poses. In this work, we propose using a
time-varying self-motion magnitude to handle these constraints. The objective is to avoid
non-zero values of uh only at the beginning and end of the trajectory. With this in mind, it
is proposed to set the variation factor β(t) to increase from zero to one at the beginning of
the trajectory, maintain a value of one for most of the trajectory, and then decrease from
one to zero at the end of the trajectory.

Let tb be the blending time for β(t) to increase from zero to one, and t f be the trajectory
execution time. To achieve a smooth transition, a 5th order polynomial β1(t) = a0 +
a1t + a2t2 + a3t3 + a4t4 + a5t5 is used when t < tb. The decrement in β(t) at the end
of the trajectory, when t > t f − tb, is the complement of the polynomial β1(t) and is
defined by β2(t) = 1 − β1(t − t f + tb). By imposing the conditions β1(0) = 0, β1(tb) = 1,
β̇1(0) = 0, β̇1(tb) = 0, β̈1(0) = 0, β̈1(tb) = 0, the values of the coefficient of β1(t) are found.

13



Appl. Sci. 2021, 11, 6509

After finding the polynomial coefficients, the self-motion magnitude variation factor is
given by

β(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a3t3 + a4t4 + a5t5, if t < tb

1, if tb ≤ t ≤ t f − tb
1 − (a3(t − t f + tb)

3+

a4(t − t f + tb)
4+

a5(t − t f + tb)
5)

if t > t f − tb,
(24)

with:
a0 = 0, a1 = 0, a2 = 0,

a3 =
10
t3
b

, a4 = −15
t4
b

, a5 =
6
t5
b

,

The blending time tb is chosen by the user. Figure 3 shows the shape of β(t) for
t f = 15(s), tb = 2.5(s).

Figure 3. Example shape of self-motion variation factor β.

4.3.2. Joint Velocity Limits

To satisfy joint velocity limits, the maximum magnitude of self-motion is determined
such that the velocity limit for each joint is not violated [18], namely:

|uip(t) + αβuih(t)| ≤ u+
i , (25)

where u+
i is the ith joint velocity limit with i ∈ 1, 2, . . . , δm. Therefore, to avoid exceeding

the joint velocity limits, α(t) must be selected such that it satisfies (25). The upper and
lower limits of α(t) can be found using this equation. For each joint, it can be shown that
the maximum and minimum values of α(t), denoted by αimax (t) and αimin(t), respectively,
are given by

αimax (t) = max
(u+

i − uip(t)
β(t)uih(t)

,
−u+

i − uip(t)
β(t)uih(t)

)
, (26)

αimin(t) = min
(u+

i − uip(t)
β(t)uih(t)

,
−u+

i − uip(t)
β(t)uih(t)

)
. (27)

Then, αmax(t) and αmin(t) for all the joints are:

αmax(t) = min
(
α1max (t), α2max (t), . . . , αδmmax (t)

)
, (28)

αmin(t) = max
(
α1min(t), α2min(t), . . . , αδmmin(t)

)
, (29)

where αmax(t) is the self-motion magnitude limit. In [18], the maximum value of αmax(t)
and minimum value of αmin(t) are calculated for the whole trajectory, and the upper bound
of αmax(t) or lower bound of αmin(t) is used as the step size to take advantage of the
maximum admissible velocities. In our approach, a suitable initial value αs is selected
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through experimentation and the upper and lower limits of α are calculated for each time t.
The value of α at time t is then given by

α(t) =

⎧⎪⎨⎪⎩
αmax(t), if αs > αmax(t),
αmin(t), if αs < αmin(t),
αs, otherwise.

(30)

This technique, in contrast with using the maximum/minimum self-motion for the
entire trajectory, prevents sudden joint accelerations due to the use of maximum velocities
in every step. Note that for some cases α(t) may be negative if αmax(t) is negative, which
means that the joint velocity limits cannot be satisfied without decreasing the manipulability
of the system. The task can be executed as long as the system is still away from any
singularity. The reader may have noticed that β(t) is in the denominator of (26) and (27),
and as shown in Section 4.3.1, β(t) is zero at the beginning and the end of the trajectory.
For these two cases, αmin = −∞ and αmax = ∞, but this does not cause instability in the
system because by following (30), the value of α(t) is set to αs.

It is also possible to detect whether a task can be accomplished or not by using the
limits of α(t). If the inequality αmax(t) < αmin(t) is true, then a suitable value of α(t) which
avoids the joint velocity limits does not exist, because even the particular solution will
violate them. In other words, the given task space trajectory cannot be accomplished
without violating at least one of the joint velocity limits. For these situations, the task space
trajectory must be replanned with a longer execution time t f or with lower end-effector’s
maximum velocities.

5. Experiments

Experiments were carried out to verify the efficacy of our scheme to solve the motion
planning problem for trajectory tracking at the kinematic level. In this section, the results
for the tracking of two trajectories, a Lissajous trajectory (see Section 5.4), and an elliptic
trajectory (see Section 5.5), are analyzed. These trajectories were picked to demonstrate
the ability of our approach to comply with the different constraints introduced in this
manuscript while improving the manipulabilities of the whole system and the robot arm.
For the Lissajous trajectory, a comparison of different objective functions for manipulability
maximization is made to highlight the advantages of the proposed manipulability measure
for mobile manipulators.

The experiments were performed using a 10-DOF NMM developed by the Industrial
Technology Research Institute (ITRI), as shown in Figure 4. This NMM is composed of
a differential-drive wheeled mobile platform, a prismatic joint mounted on top of the
platform, and a Universal Robots UR5 6-DOF robotic arm attached to the prismatic joint.
From this point forward, the UR5 arm’s joints are denoted as qai with i = 1, 2, . . . , 6 and the
prismatic joint as zpj. The respective Denavit–Hartenberg (DH) parameters are shown in
Table 1. The joint limits and joint velocity limits are shown in Table 2.

Figure 4. Nonholonomic mobile manipulator used for the experiments.

15



Appl. Sci. 2021, 11, 6509

Table 1. D-H parameters.

Joint a (m) α (rad) d (m) θ (rad)

mob. plat. 0 0 0 θp
zpj −0.049 0 zpj+0.5562 0
qa1 0 π/2 0.08916 qa1 + π
qa2 −0.425 0 0 qa2
qa3 −0.39225 0 0 qa3
qa4 0 π/2 0.1093 qa4
qa5 0 −π/2 0.09465 qa5
qa6 0 0 0.0823 qa6

Table 2. Joints physical constraints.

Joint qmin qmax umax

vp −∞ ∞ 0.3 (m/s)
ωp −∞ ∞ π/2 (rad/s)
zpj 0 (m) 0.25 (m) 0.025 (m/s)
qa1 −1.7453 (rad) 0.0175 (rad) π (rad/s)
qa2 −π/2 (rad) 0.4363 (rad) π (rad/s)
qa3 0 (rad) π (rad) π (rad/s)
qa4 −2π (rad) 2π (rad) π (rad/s)
qa5 −2π (rad) 2π (rad) π (rad/s)
qa6 −2π (rad) 2π (rad) π (rad/s)

The Jacobian of the arm Ja used for calculation of Ω̂a in (15) was constructed only
using the UR5 arm without the prismatic joint. If the prismatic joint were included, the arm
would be allowed to stretch for most tasks since it would always be able to move the
end-effector vertically using the prismatic joint, i.e., the manipulability is not affected when
the arm is horizontally stretched. Stretching the arm for most tasks is an undesirable
behavior, and therefore, the manipulability maximization of the UR5 arm without the
prismatic joint is a suitable selection. The Jacobian Ja is calculated with respect to the frame
XaYaZa shown in Figure 4.

Due to the lack of a reliable positioning system, the odometry of the wheels was
used in the experiments to compute the position and orientation of the mobile platform,
and the forward kinematics were used to compute the end-effector’s pose, which in turn
was fed back to the motion planning algorithm. Therefore, the errors presented in the
experiments are not the real-world errors, but the errors in the trajectory in which it
is assumed that a reliable positioning system exists. Furthermore, as mentioned in the
introduction section, the scope of this work is the motion planning of NMM for trajectory
tracking at the kinematic level; therefore, the objective of the presented experiments is to
validate the proposed algorithm at the kinematic level. Problems inherent to the dynamic
behavior of the system, including vibrations of the mechanical structure, friction from the
ground, etc., have an impact on the real end-effector tracking error, but they are out of
scope of this paper and not considered in the algorithm. For these reasons, the simulation
results of the position and orientation errors along the trajectory are also shown in this
manuscript to highlight the performance of our motion planning algorithm.

An important remark is that the system vibrations due to the NMM mechanical
structure greatly affected the performance of the motion planning algorithm when the
system was close to its joint limits or self-collision constraints. This behavior was not
observed when performing the simulations. To address this issue, a moving average filter
with a window size of five was used to filter the gradients of the criterion functions for
joint limits avoidance and self-collision avoidance. This filter diminished the impact of
such vibrations on the motion planning algorithm.
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5.1. Orientation Error for 6-DOF Tasks

In all the experiments, 6-DOF tasks were performed. For a 6-DOF task (m = 6),
where the position and orientation of the end-effector are considered, the expression
rd − r (mentioned in Section 3) has a specific definition that depends on the orientation
representation, i.e., r̃ = rd − r does not hold for all orientation representations [1]. In this
work, unit quaternions are used to describe the end-effector’s orientation because of their
efficiency and nonsingular representation for all orientations [1,19–21].

A unit quaternion Q = [w + xi + yj + zk] is represented in scalar-vector form by
Q = {s, v} with s ∈ R and v ∈ R3, where s and v are called the scalar and vector elements
of Q, respectively. The desired and current pose are defined using unit quaternions for
orientation as rd =

[
Pd Qd

]T and rc =
[
Pc Qc

]T , where Pd =
[
xd, yd, zd

]
and

Pc =
[
xc, yc, zc

]
are the desired position and current position, respectively, and Qd =

{sd, vd} and Qc = {sc, vc} are the desired orientation and current orientation, respectively.
The position error eP is defined as eP = Pd − Pc. The orientation error can be described in
terms of the quaternion ΔQ = {Δs, Δv}, where [1]:

Δs = scsd − vT
d vc,

Δv = scvd − sdvc − vd × vc.
(31)

If the desired orientation and current orientation are aligned, i.e., with zero orientation
error, then ΔQ = {1, 0}. Consequently, it would be sufficient to define the orientation error
to be Δv. It is also important to follow a convention for the sign of the quaternion because
Q = {s, v} and −Q = {−s,−v} represent the same orientation. A common convention is
to keep the scalar quaternion element positive. Take this into account and the orientation
error is defined as follows:

eO =

{
Δv, if Δs ≥ 0
−Δv, if Δs < 0.

(32)

Separating the position and orientation errors, the motion planning control law (6) is
rewritten as

ṙ = ṙd +

[
KP 0
0 KO

][
eP
eO

]
, (33)

where KP and KO are positive definite diagonal 3 × 3 matrices. Note that eO in (32) is not
an angle difference but its size represents the size of the orientation error that, as shown
in [1,22], can achieve the convergence of the orientation error.

5.2. Evaluated Self-Collision Pairs

The types of self-collision can be significantly reduced by setting the joint limits
properly. In addition, collisions among the first three links and the last three links can
be taken care of by maximizing the arm manipulability, because the 6-DOF manipulator
has poor manipulability if the arm is retracted to the point where the wrist is close to
the base of the arm. Therefore, only the self-collision between the arm and the mobile
platform needs consideration. Such a type of collision takes place when the elbow of the
manipulator collides with the top of the platform, or when the wrist collides with the front
of the platform. The distances associated with these potential self-collisions are depicted in
Figure 5. Given that the platform is fixed with respect to the arm, setting frame XpYpZp
(located on the center of the wheels’ axle, as shown in Figure 4) as the reference frame
allows to use (22), where pl1 is a point in the arm’s elbow or wrist, correspondingly, and pl2

is a fixed point with respect to XpYpZp:
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Figure 5. NMM’s self-collision distances.

As illustrated in Figure 5, to prevent the elbow collision, a collision pair between the
z component of pelbow with respect to frame XpYpZp and a point located at 0.5 (m) from
the origin of frame XpYpZp in the Zp direction is selected. The distance for this pair is
named delbow. To prevent wrist collision, a collision pair between the x component of pwrist
with respect to frame XpYpZp and a point located at 0.37 (m) from the origin of frame
XpYpZp in the Xp direction is selected. The distance for this pair is named dwrist. The wrist
collision is only evaluated if the wrist height hwrist, the z component of pwrist with respect
to frame XpYpZp, is lower than 0.5 (m), otherwise, its associated weighting collision matrix
is assigned to identity. This was done to avoid restricting the movement of the joints that
reduce dwrist when the wrist is above the top of the mobile platform. All these parameters
were chosen based on the physical dimensions of the NMM, and the second point in each
of the collision pairs was selected so that when delbow and dwrist are zero, a gap still exists
between the potentially colliding links.

5.3. Common Parameters of the Simulations and Experiments

For all the experiments, the selected feedback gain matrices in (33) are KP = 10I3×3
and KO = 20I3×3, where I is an identity matrix. The initial value of α(t) in (30) is set
to αs = 3, and the blending time is set to tb = 0.2t f for the variation factor β(t) in (24).
The parameters for self-collision avoidance in (20) are ρ = 1 × 10−3, c1 = 50 and c2 = 1.
The starting configuration of the robot arm is qa =

[
0 −80 110 −120 −90 0

]
(◦).

Furthermore, a sampling time ts = 0.02(s) was used for the simulations and experiments.

5.4. Lissajous Trajectory

The Lissajous trajectory was picked to demonstrate the ability of the proposed ap-
proach to track a trajectory for which the nonholonomic constraints greatly affect the
movement of the system. The proposed Lissajous trajectory is defined by

rd(t) =
[

Pd(t)
Qd(t)

]
=

⎡⎢⎢⎣
x0
y0
z0
Q0

⎤⎥⎥⎦+
⎡⎢⎢⎣

A cos(s(t) + π/2)
B cos(2(s(t) + π/2) + π/2)

C cos(2s(t))− C
0

⎤⎥⎥⎦,

where [x0, y0, z0]
T is the end-effector’s starting position, s(t) is the trajectory timing variable,

and A, B and C define the size of the path. The orientation is set to be the same for the entire

18



Appl. Sci. 2021, 11, 6509

trajectory, i.e., Q(t) = Q0. Notice that this is a 6-DOF trajectory because the orientation is
constrained for the entire trajectory.

The starting configurations of the mobile platform and prismatic joint for this trajectory
were set to xp = −0.1 (m), yp = −0.13 (m), θp = −90(◦) and zpj = 0.2 (m). With this con-
figuration, the end-effector’s initial pose is given by P0 =

[
−0.009 −0.6491 0.9884

]
(m)

and Q0 = {0, 0i + 1j + 0k}. A trapezoidal velocity profile [1] was used for the derivative
of the timing variable ṡ(t). The parameters for the path size were set to A = 1.3 (m),
B = 1.3 (m) and C = 0.27 (m), and an execution time t f = 64(s) was chosen. Figure 6a,b
show snapshots of the NMM’s movement along the Lissajous trajectory, in simulations and
experiments, respectively.

Figure 7 compares the trajectory tracking results between the simulation and the
experiment. In the simulation, the position and orientation errors are kept small during the
whole trajectory, as shown in Figure 7b,c. This demonstrates the good tracking performance
at the kinematic level of our proposed motion planning algorithm. The observed larger
errors in the experiments, as exhibited in Figure 7e,f, are due to the vibrations of the system
during the experiments. Furthermore, as mentioned before, the control of the dynamic
behavior of the system is beyond the scope of this work. Nevertheless, the position errors
in the experiments are kept below 2 × 10−3 (m) and the orientation errors below 1.5 × 10−3.
Likewise, we observe that the obtained trajectories in the simulation (Figure 7a) and the
experiment (Figure 7d) are fairly similar.

Figure 8 illustrates the experiment results. Note that the negative joint velocity limit
−u+

i is denoted as u−
i in the pertinent figures. The manipulabilities of both the arm and

the complete system are kept high during the execution of the trajectory, and their final
values are higher than at the start of the trajectory, as shown in Figure 8b. It is important
to remark that there are no potential self-collisions during the execution of this trajectory.
Even though dwrist is negative at the beginning of the trajectory, as shown in Figure 8c,
the wrist is above the top of the mobile platform and therefore the joint movements were
not restricted, as explained in Section 5.2.

(a)

(b)

Figure 6. Snapshots of the NMM’s motion for the Lissajous trajectory tracking: (a) simulations; and (b) experiments.
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(a) (b) (c)

(d) (e) (f)

Figure 7. Tracking performance comparison between simulations and experiments for the Lissajous trajectory. End-effector’s
trajectory in simulations (a) and experiments (d). Position errors in simulations (b) and experiments (e). Orientation errors
in simulations (c) and experiments (f). Notice that the position and orientation errors, panels (b,c), respectively, are small in
the simulations. In addition, notice that the trajectories in simulations (a) and experiments (b) are quite similar. The reason
for the larger errors obtained in the experiments (panel (e,f)) are discussed in Section 5.4.

Figure 8d–i demonstrate the fulfillment of the joint limits and joint velocity boundary
constraints. All the joints are kept within their corresponding limits. Notice that the
movement of qa1, Figure 8f, is restricted in the time interval t = (29, 32)(s) to respect its
lower limit. This time interval corresponds to the trajectory section between snapshots
number three and four in both Figure 6a,b. For this section of the trajectory, the movement
of the end-effector in the XY plane is taken care of by the platform due to the restriction
imposed to qa1. We observe in Figure 8e that the velocity limits of the prismatic joint are
respected. The remaining joints do not reach their respective limits as shown in Figure 8f–h.
Furthermore, as seen in Figure 8d,e,i, the velocity profiles for all the joints are smooth and
satisfy the boundary constraints, i.e., the initial and final joint velocities are equal to zero.

To demonstrate the advantages of the proposed manipulability measure ΩMM, a com-
parison of the manipulability maximization results using different objective functions
in simulations of the Lissajous trajectory tracking is shown in Figure 9. Here, a task is
considered as failed when none of the constraints are satisfied, and thus the simulation is
stopped. These results were obtained by using the same parameters shown in Section 5.3
with the only change being the objective function.

The Lissajous trajectory tracking fails when the objective function is set to maximize
the manipulability of the arm, i.e., F(q) = Ω̂a, as shown in Figure 9a. The manipulabilities
of both the arm and the whole system start a fast decay after t = 44s. This decrement in
the manipulabilities is the result of restricting the homogeneous solution to respect the
joint velocity limits. Consequently, the arm manipulability is not maximized anymore and
the system moves towards singularity, ultimately failing the task. The results of setting
the objective function to the manipulability of the whole system, i.e., F(q) = Ω̂p+a, are
shown in Figure 9b. In this case, the task succeeds, however, the manipulability of the arm
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deteriorates, and at the end of the trajectory has a value close to zero. This is the behavior
discussed in previous studies [6,10].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Experiment results for the Lissajous trajectory tracking: (a) mobile platform’s trajectory; (b) normalized manipu-
lability measures; (c) self-collision distances; (d) mobile platform’s velocity commands; (e) prismatic joint’s position and
velocity; (f–h) arm’s joint positions; and (i) arm’s joint velocities. Notice that all the joint limits and velocity limits are
respected (panels (d–i)). Furthermore, the manipulabilities of both the arm and the whole system are improved (panel (b)).
See Section 5.4 for a detailed discussion of this figure.

Figure 9c shows the results of maximizing a linear combination of the manipulabilities
of the arm and the whole system, i.e., F(q) = 0.5Ω̂p+a + 0.5Ω̂a. Figure 9d shows the
results of maximizing the proposed manipulability measure for mobile manipulators,
i.e., F(q) = ΩMM from Equation (15). Both objective functions preserve the manipulability
of the arm. However, it is clear that maximizing the proposed measure has better results
overall. First, the manipulability of the arm is higher along the trajectory in Figure 9d
compared to the arm manipulability obtained with the linear combination in Figure 9c.
Secondly, the obtained final manipulabilities have improved with respect to the initial ones
in Figure 9d. On the other hand, the linear combination improves the manipulability of the
whole system, but not that of the arm with respect to the values at the start of the trajectory,
as shown in Figure 9c.
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(a) (b)

(c) (d)

Figure 9. Lissajous trajectory’s comparison of objective functions for manipulability maximization in simulations: (a) maxi-
mization of the manipulability of the arm; (b) maximization of the manipulability of the whole system; (c) maximization of
a linear combination of the manipulability of the arm and the whole system; and (d) maximization of the proposed mobile
manipulator manipulability measure. This figure demonstrates the advantages of the manipulability measure for mobile
manipulators (panel (d)) presented in Section 4.1. See Section 5.4 for a detailed discussion of this figure.

5.5. Elliptic Trajectory

The elliptic trajectory was picked to demonstrate the ability of the proposed approach
to comply with joint velocity limits and to prevent self-collisions. This trajectory consists
of moving the end-effector from an initial pose r0 =

[
P0 Q0

]T to a desired final pose

rd =
[
Pd Qd

]T using an elliptic path. The trajectory position is defined by

Pd(t) =

⎡⎣ A cos(s(t)) + cx
B sin(s(t)) + cy

m(s(t)− s0) + z0

⎤⎦,

where A, B, cx, cy and s0 are calculated using the XY coordinates of P0 and Pd, such that the
elliptic path is centered at the closest point to the origin, while it covers a 90◦ angle between
the start and end points. The trajectory’s Z coordinate follows a straight line between the
points (z0, s0) and (zd, sd), where z0 and zd are the Z coordinates of P0 and Pd, respectively;
s0 and sd are the starting and ending angles of the elliptic path, respectively; and m in the
equation above is the slope of this line. A fifth-order polynomial profile [1] was used for
the timing variable s(t). The orientations and rotational velocities along the trajectory were
computed using quaternion polynomials [23]. This technique has two main advantages: a
smooth velocity profile is obtained, and the rotational velocities and accelerations in the
task space are included as boundary constraints.
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The starting configuration of the mobile platform and prismatic joint for this trajectory
was set to xp = −1.3 (m), yp = 0.56 (m), θp = 0(◦), and zpj = 0.24 (m). With this
configuration, the end-effector’s initial pose is given by P0 =

[
−0.781 0.669 1.028

]
(m)

and Q0 = {0, 0.7071i − 0.7071j + 0k}. The final pose was selected to have position Pd =[
1.55 −1.0 0.26

]
(m) and orientation Qd = {0.2706, 0.6533i + 0.6533j − 0.2706k}, and an

execution time t f = 20(s) was chosen. Figure 10a,b show snapshots of the NMM’s
movement along the elliptic trajectory, in simulations and experiments, respectively.

Figure 11 compares the trajectory tracking results between the simulation and the ex-
periment. The small position and orientation errors obtained in the simulation (Figure 11b,c)
again demonstrate the good tracking performance of the proposed approach. In the experi-
ment, the position errors are kept below 1.5 × 10−3 (m) and the orientation errors are kept
below 1 × 10−3 as depicted in Figure 11e,f. Once again, the vibrations of the system played
a role in the larger errors seen in the experiment.

(a)

(b)

Figure 10. Snapshots of the NMM’s motion for the elliptic trajectory tracking: (a) simulations; and (b) experiments.
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(a) (b) (c)

(d) (e) (f)

Figure 11. Tracking performance comparison between simulations and experiments for elliptic trajectory. End-effector’s
trajectory in simulations (a) and experiments (d). Position errors in simulations (b) and experiments (e). Orientation errors
in simulations (c) and experiments (f). Notice that the position and orientation errors, panels (b,c), respectively, are small in
the simulations. In addition, notice that the trajectories in simulations (a) and experiments (b) are quite similar. The reason
for the larger errors obtained in the experiments (panel (e,f)) are discussed in Section 5.5.

Figure 12 illustrates the experiment results. The manipulabilities of both the arm and
the complete system are again improved at the end of the trajectory compared to the initial
configuration, as shown in Figure 12b. However, we notice how both manipulabilities
decreased during the time interval t = (8, 15)(s). This behavior is due to the value of α(t)
(manipulability maximization step size) being negative for this span of time in order to
respect the joint velocity limits, as discussed in Section 4.3.2. Notice that vp (Figure 12d)
and żpj (Figure 12e) are kept at their maximum values during this span of time. It would
not be possible to track this particular trajectory while respecting the joint velocity limits
without stretching the arm; hence, the manipulabilities of the complete system and the
arm decreased.

We observe in Figure 12c how the self-collision distance of the elbow gets close to zero.
In this trajectory, the elbow needs to get close to the platform in order for the end-effector
to track the desired trajectory. The motion planning algorithm gradually stopped the
elbow to prevent the collision with the platform, as shown by the slow decay of delbow.
To achieve this, the movement of the prismatic joint was restricted, as shown in Figure 12e.
The wrist also moves towards the front of the platform, as shown by the decrement in dwrist
in Figure 12c. This potential self-collision is also prevented by limiting the movement of
qa2 and qa3, as shown in Figure 12f,g.

Figure 12d–i show that the joint limits, joint velocity limits and joint velocity boundary
constraints are also satisfied. All the joints were kept within their respective limits, as
shown in Figure 12e–h. As depicted in Figure 12d,e, the platform’s linear velocity and the
prismatic joint’s velocity are kept within their limits. Once more, the velocity profiles are
smooth and the initial and final velocities for all the joints are zero.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. Experiment results for the elliptic trajectory tracking: (a) mobile platform’s trajectory; (b) normalized manipulabil-
ity measures; (c) self-collision distance; (d) mobile platform’s velocity commands; (e) prismatic joint’s position and velocity;
(f–h) arm’s joint positions; (i) arm’s joint velocities. Notice that all the joint limits and velocity limits are respected (panels
(d–i)). The potential self-collisions described in Section 5.2 are prevented (panel (c)). Furthermore, the manipulabilities of
both the arm and the whole system are improved (panel (b)). See Section 5.5 for a detailed discussion of this figure.

6. Discussion

A scheme was proposed to solve the motion planning of NMMs considering joint
limits, joint velocity limits, joint velocity boundary constraints, and self-collision avoidance
while maximizing the manipulabilities of both the robot arm and the whole system.

The proposed solution uses a weighted input velocity vector and a weighted Jacobian
to penalize the movement of joints that get close to a position constraint. A proposed
quadratic cost function is minimized when solving the motion planning problem for
redundant NMMs. This cost function includes a secondary task to be satisfied that is also
weighted to comply with the position constraints. The maximization of an introduced
manipulability measure for mobile manipulators is used as the secondary task to push
the system away from singularities. In the experiments section, it is demonstrated that
maximizing this new measure simultaneously improves the manipulability of the whole
system and that of the manipulator alone.

This work focuses on the motion planning for trajectory tracking at the kinematic
level, which must not only comply with joint position constraints, but must also respect
joint velocity constraints and joint velocity boundary constraints. Joint velocity boundary
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constraints are satisfied by varying the magnitude of the homogeneous solution at the start
and end of the trajectory. The manipulability maximization at these points is not necessarily
zero; hence, using an adequate variation in the magnitude of self-motion is needed. Joint
velocity limits are satisfied by evaluating the maximum allowable self-motion for each
joint. Using this information, the step size of the gradient ascent/descent is limited when
required, and consequently, the joint velocity limits are not exceeded.

The experiments for 6-DOF trajectories were conducted to verify the efficacy of the
proposed scheme. The results demonstrate that the proposed approach can solve the
motion planning problem for NMMs to perform trajectory tracking at the kinematic level
while considering the constraints required for real implementation including manipulation
capability preservation or improvement.

The experiments designed in Section 5 consider an open environment without ob-
stacles, because this is the scope of our manuscript. However, the proposed solution can
be extended to prevent collisions with obstacles by including collision pairs between the
robot arm and these obstacles, using the same definitions as in Section 4.2.2. This will
penalize the movement of the arm’s joints that get closer to an obstacle in the environment.
Nevertheless, in the case of the platform, stopping it is not an efficient approach. In this
case, an additional task can be added to the solution to push the platform away from
the obstacles. One way to achieve this is by using a task priority scheme [24] using the
nullspace of the motion planning algorithm.

Even though our work focuses on NMMs, our approach can be effortlessly adapted
for use with holonomic mobile manipulators. Future work will focus on dynamic modeling
and controller design to deal with system vibrations and tire slip such that the tracking
errors of the system can be reduced.
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Abstract: Wind energy represents the dominant share of renewable energies. The rotor blades of a
wind turbine are typically made from composite material, which withstands high forces during rota-
tion. The huge dimensions of the rotor blades complicate the inspection processes in manufacturing.
The automation of inspection processes has a great potential to increase the overall productivity and
to create a consistent reliable database for each individual rotor blade. The focus of this paper is set
on the process of rotor blade inspection automation by utilizing an autonomous mobile manipulator.
The main innovations include a novel path planning strategy for zone-based navigation, which
enables an intuitive right-hand or left-hand driving behavior in a shared human–robot workspace.
In addition, we introduce a new method for surface orthogonal motion planning in connection
with large-scale structures. An overall execution strategy controls the navigation and manipulation
processes of the long-running inspection task. The implemented concepts are evaluated in simulation
and applied in a real-use case including the tip of a rotor blade form.

Keywords: mobile manipulation; large-scale inspection; wind turbine production; autonomous
navigation; surface-orthogonal path planning; intelligent robot; flexible production

1. Introduction

Wind energy has gradually taken the dominant share of renewable energies. The
worldwide capacity increased from 7600 MW in 1998 to 93 GW in 2020 [1]. The main
components of a wind turbine are: a rotor equipped with wing-shaped blades, a nacelle
that houses a drive train, and a tower [2]. The rotor blades transform the wind energy into
rotary energy and must be lightweight, robust, and long-lasting. Therefore, they are made
from composite materials, such as glass or carbon fiber material with a resin-like epoxy.
During rotation, extremely high forces affect the blades. Therefore, it is important to avoid
imperfections during the manufacturing process.

In the production of glass fiber reinforced structural components, the fiber structure
is fixed by enclosing laid semi-finished glass fibers with a resin matrix [3]. Imperfections
in the alignment of the structure or during the fiber reinforcement change the structural
properties and thus reduce the quality of the composite material. Currently, such imper-
fections are detected with help of ultrasonic [4,5], thermal [6,7], or radar [8,9] techniques,
whereby a differentiation has to be made in pre- and post-resin-injection inspections. If
an imperfection is detected after the resin injection, no corrections are possible, and the
component is, therefore, a reject. In research, radar imaging has gained a lot of attention for
inspection tasks of fiber composite material. In contrast to other methods based on x -rays,
thermal imaging, or ultrasonic imaging, radar imaging is non-invasive and provides a high
resolution combined with a high penetration depth [10]. Millimeter wave radar scans can
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be used to generate a detailed layer-by-layer visualization of a rotor blade [9]. Therefore,
it is possible to locate imperfections in 3D. However, the underlying algorithms for the
3D reconstruction require a surface orthogonal sensor alignment and a low measurement
uncertainty of the sensor pose during the scanning process. These requirements exclude a
manual execution with handheld devices.

Figure 1 shows a schematic of the manufacturing of a rotor blade, including the two
main components: aeroshells and shear webs. The typical diameter of a wind turbine
rotor, including the blades, has increased from 54 m (2005) to 158 m (2017) for onshore
and from 76 m (2005) to 164 m (2015) for offshore installations [11]. The huge dimensions
of the rotor blades complicate the inspection processes, which is why they are mostly
performed manually by human workers. The automation of the inspection processes
has great potential to increase the overall productivity and to create a consistent reliable
database for each individual rotor blade. Such an automation approach must be large-
scaled and flexible to cover the high variety of rotor blade dimensions.

Figure 1. Schematic of the manufacturing of a wind turbine blade [12].

An autonomous industrial mobile manipulator (AIMM) [13] combines the flexibility of
an industrial robot arm (manipulator) with the mobility of an autonomous mobile robot
(AMR). Equipped with various sensors, AIMMs are capable of autonomous navigation,
even in dynamic and large-scale production environments. Furthermore, the perceived data
can be used to realize a shared human–robot workspace, which is of particular importance
for manual labor-dominated production types. One of the first AIMMs was introduced in
1984: MORO [14]. MORO was capable of navigating on the shopfloor and executing pick
and place tasks. Based on this pioneering work, many further developments were carried
out, focusing on different industrial applications: part feeding [15–17], transportation
and assembly [18–20], as well as large-space manufacturing [21–23]. In recent years,
inspection robots have become more present in different domains, such as the oil and gas
industry [24,25], the power industry [26,27], and civil infrastructure [28]. Therefore, the idea
to utilize an AIMM for inspection tasks is obvious. In contrast to recent developments in
the area of inspection robots, our approach focuses on the motion planning addressing the
surface orthogonal sensor alignment and the special requirements of a shared human–robot
workspace in an industrial context.

Therefore, we make use of the AIMM OMNIVIL [29]. OMNIVIL consists of a self-built
mobile platform. The mobile platform was designed to address the needs in a dynamic
production environment, such as positioning, accuracy, and maneuverability. Therefore,
the platform is based on four Mecanum wheels [30], whereby a pivoting axle guarantees
continuous ground contact. The collaborative manipulator UR5 is mounted on top of
the mobile platform. The sensor concept includes various sensor types to perceive the
environment and the internal state of the robot. The workspace monitoring concept
and the localization and positioning capabilities of the mobile platform were evaluated in
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various experiments ranging from static to highly dynamic scenarios [29]. The collaborative
manipulator is equipped with an RGB-D camera (Intel-RealSense 435) and a radar module
that works at 80 GHz with a 24 GHz bandwidth. Figure 2 shows the AIMM OMNIVIL.

Figure 2. The AIMM OMNIVIL.

In this paper, we present an automated inspection process for wind turbine rotor blade
manufacturing executed by the AIMM OMNIVIL. The focus is set on the robot control
setup rather than the composite material analysis. Therefore, this work addresses motion
planning, environmental perception, and the human–robot interaction. The following
strategies are implemented towards a fully autonomous inspection of a rotor blade: (1) a
novel path planning strategy for a zone-based navigation concept that enables an intuitive
right or left driving behavior of the mobile platform without limiting the planning based
navigation; (2) a novel method for surface orthogonal motion planning in connection with
large scale structures; (3) therefore, the large-scale structures are divided into feasible
subparts based on a workspace analysis, including the reachability and manipulability
of the manipulator; (4) an overall execution strategy that controls the corresponding
navigation and manipulation processes of the long-running inspection task.

The rest of the paper is structured as follows. Section 2 presents the control system,
including the zone-based segmentation of the production environment, the path planning
strategy, and the surface orthogonal motion planning. In Section 3, two experiments are
carried out to validate the path planning strategy and the overall execution of the rotor
blade inspection. Section 4 concludes the paper.

2. Robot Control System

2.1. Zone-Based Segmentation of the Production Environment

The general concept of zone-based navigation is inspired by zone management within
an industrial production environment. The approach is based on virtual navigation
zones [29]. Instead of using infrastructural markers, the zones can be defined in a given
map by using 2D polygons. For each zone, a predefined robot behavior can be set with
different parameter settings for maximum velocity, maximum acceleration, goal tolerance,
warning indicators (visual and acoustic), or even different kinematic models reaching from
the differential to holonomic models.

For instance, Figure 3a shows a zone-based segmentation of a 60 × 60 m production
environment. The coloring represents the different cost levels of the zones ranging from
green (minimum cost value) to red (maximum cost value). In Figure 3b, the zones are
colored with an individual color for each zone. Figure 3c shows the corresponding lay-
ered costmap [31] configuration in hierarchical order. The ordering of the layers allows
modulating the costs by overwriting them only when and where required.

31



Appl. Sci. 2021, 11, 9271

Figure 3. Zone-based segmentation of a production environment. (a) Zone-based segmentation of a 60 × 60 m environment
colored from green (minimum cost value) to red (maximum cost value); (b) same zone setup, but with individual zone
colors of layer hierarchy; (c) hierarchical ordered costmap layers.

The standard configuration of a layered costmap configuration includes a static, an
obstacle, and an obstacle inflation layer. This default configuration does not fulfil the
requirements of a dynamic production environment, including different manufacturing
and transportation zones as well as a shared human–robot workspace. The implemented
approach is based on the concept of layered costmaps described in [32], whereby each layer
tracks the data to a specific functionality. With the cost value Ωi

xy = {0, 1, . . . , 254, 255} for
a cell ci

xy at position Pc
j =
(

xj, yj
)
, the layer i contributes to the Master costmap as follows:

The Static layer contributes to the master costmap by analyzing an a priori created 2D
occupancy grid map G. The layer provides information about free and occupied spaces in
the production environment by Equation (1):

Ω1
xy =

⎧⎨⎩
0, G(x, y) == Free

254, G(x, y) == Occupied
255, G(x, y) == NoIn f ormation

(1)

with Free, Occupied, and NoInformation reflecting the related values of the occupancy grid
map implementation.

The Zone layers, Corridor (2), Restricted (3), Station (4), and Prohibition (5), contribute
to the zone-based navigation layout of the production environment. The dimensions of the
zones are provided in form of a polygon list. The corridor zone should be the preferred
zone for the implemented path planner; therefore, the cost value of the corresponding cells
is set to a small value of Ω2

xy = 10. The robot is allowed to enter restriction zones, but
only if necessary. Therefore, the cost value for the corresponding cells is set to Ω3

xy = 100.
The same condition applies to the station zones. Since a motion of the robot through a
restriction zone is from higher preference than a motion through a station zone, the cost
value of the corresponding cells is set to Ω4

xy = 120. The robot is not allowed to enter a
prohibition zone; therefore, the cost value of the corresponding cells is set to Ω5

xy = 250.
The Guard Rail layer is based on the inflation layer described in [32]. Originally, the

inflation layer was designed to create a buffer zone around lethal obstacles to avoid the
robot coming too close to the obstacles. We applied that method to define a buffer zone
at the borders of the corridor zones. The robot uses these guard rail zones as a guide
for navigating inside the corridor zones. The robot will navigate with a high preference
alongside the edge between the guard rail zone and the corridor zone. The developed
method is further explained in Section 2.2. The inflation radius is adjustable and defines
the width of the guard rail zone. The corresponding cells are set to the cost value Ω6

xy = 12.
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The Human layer contributes the information of a multilayer and redundant workspace
monitoring system (WMS) described in [29]. The WMS uses RGB and thermal images
as well as Lidar data. The multilayer sensor setup is improved by the implementation
of redundant algorithms for human co-worker detection based on neural networks. The
fused confidence intervals between 0 and 1 are provided as a 2D heatmap in form of an
occupancy grid map. The corresponding cells in the costmap M are called human cells
and assigned with the cost value Ω7

xy = 200. A threshold of 0.5 is used for the confidence
level to neglect low confidence detections. An area with an adjustable radius around each
human cell is defined as a human safety zone. The Human layer calculates the Euclidean
distance between the current robot position and each human cell to determine if the robot
is inside a human safety zone. Following the concept of the navigation zones, the robot will
preventively change its motion behavior if it is inside a human safety zone. In addition, the
human cells are inflated to create a buffer zone around the human co-workers. The radius
of these buffer zones is smaller compared to the human safety zones. The cost value of the
corresponding cells is set to Ω7

xy = 200. Theoretically, the robot is allowed to plan close
to a human, but it is highly cost inefficient. Figure 4 shows an exemplary scenario of an
occupancy grid map provided by the WMS and the resulting costmap, including the buffer
zones in blue and one visualized human safety zone in red.

Figure 4. Human layer. (a) Occupancy grid map provided by the WMS; (b) costmap M with buffer zones around the human
cells in blue and one exemplary visualized human safety zone (red circle); (c) costmap and occupancy grid map overlayed.

The Obstacle layer tracks the data from the 2D Lidar sensors. The Lidar data is
provided in form of an array S, including the sensor readings. The sensor readings are
converted into the costmap space to determine the corresponding cells. Analog to the Static
layer, the obstacle layer contributes to the master layer by following Equation (2).

Ω8
xy =

⎧⎨⎩
0, MLidar(x, y) == Free

254, MLidar(x, y) == Occupied
255, MLidar(x, y) == NoIn f ormation

, (2)

where MLidar is the sensor readings in the costmap space. The Obstacle Inflation layer adds
an adjustable buffer zone around the obstacle. Therefore, the distance between the obstacle
and the planned path is increased.

2.2. Cost Adaption Based on Search Expansion Direction

Common industrial navigation concepts are based on line following strategies [33]
using passive [34] or active [35] landmark detection. These methods are approved in in-
dustrial environments, but not as flexible as desired. The well-known planning algorithms
A* [36] or Dijkstra [37] provide the most cost-efficient path available from a start position
to a goal position, given a costmap. The presented navigation concept segments the pro-
duction environment in zones of different cost levels. The resulting costmap is provided
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to the path planner, resulting in a high preference for the corridor zone, without limiting
the robot in the manner of a line follower. However, a line follower behavior is socially
desirable for the corridor zone. This is particularly true for a shared human–robot produc-
tion environment. In [38], the cell costs were slightly reduced for cells on the right side of a
corridor. As a result, the pass speed of the human and the robot was significantly increased
which indicates an optimized human–robot collaboration. The social behavior of right or
left driving is widely used in public and industrial environments. Such a predictable and
intuitive behavior of the robot is a key feature for beneficial human–robot cooperation.

Instead of manipulating the costs before the actual planning process, our approach
is applied while planning and takes the expansion direction of the planning algorithm
into concern. As a result, the desired left or right driving behavior can be applied to any
zone and in any direction. The aim is that the global planner prefers a path right next to
the previously mentioned guard rail zone. This behavior is comparable to a line follower,
without limiting the robot to a particular line motion. Figure 5 shows a horizontal and a
vertical example scenario of a planning procedure in a grid-based costmap.

 
Figure 5. Exemplary planning scenario. (a) Horizontal; (b) vertical.

The start cell for the planning procedure is set to the middle of the corridor zone.
During the search for a valid path, a check is performed for each expanded cell of the
corridor zone; if the cell is a neighbor of the guard rail zone, the cell is called a cell of
interest. Each cell of interest can be either declared as a left-hand or right-hand driving cell.
The cell type is determined by taking the expansion direction of the search algorithm into
concern. The expansion direction can only be determined if a neighbored cell of interest
exists. In Figure 5a, the cells at positions (7,4) and (9,8) are right-hand driving cells. The
expansion direction is visualized with a red arrow. The cells at positions (9,4) and (7,8) are
left-hand driving cells. The cells at (8,4) and (8,8) do not feature a specific type, since they
had no neighbored cell of interest when they were expanded. In Figure 5b, the cells at (5,7)
and (11,5) are right-hand driving cells. The cells at (5,5) and (11,7) are left-hand driving
cells, and the cells at (5,6) and (11,6) of no type.

During search expansion the path potential is stored in form of a grid-based potential
map Φ. The potential map Φ holds the information for each expanded cell of how much
it costs to reach that cell from the start cell. Cells that are not expanded yet, are set to a
clearly identifiable default value ϕ. Algorithm 1 shows our approach applied to realize a
right-hand driving behavior.
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Algorithm 1. Calculation of Potential Map for right-hand Driving

1: function calculateCellPotential(cell c, costmap M, potential_map Φ)
2: if c is not inside the corridor zone then

3: Φ(c.x, c.y) = calculateCostsToReachCell(c, M, Φ)
4: end if

5: if M(c.x, c.y − 1) equal cost of GuardRailZone and Φ(c.x + 1, c.y) not equal ϕ then

6: Φ(c.x, c.y) = Φ(c.x + 1, c.y) + corridor_cell_cost/4
7: else if M(c.x, c.y + 1) equal cost of GuardRailZone and Φ(c.x − 1, c.y) not equal ϕ then

8: Φ(c.x, c.y) = Φ(c.x − 1, c.y) + corridor_cell_cost/4
9: else if M(c.x − 1, c.y) equal cost of GuardRailZone and Φ(c.x, c.y − 1) not equal ϕ then

10: Φ(c.x, c.y) = Φ(c.x, c.y − 1) + corridor_cell_cost/4
11: else if M(c.x + 1, c.y) equal cost of GuardRailZone and Φ(c.x, c.y + 1) not equal ϕ then

12: Φ(c.x, c.y) = Φ(c.x, c.y + 1) + corridor_cell_cost/4
13: else

14: Φ(c.x, c.y) = calculateCostsToReachCell(c, M, Φ)
14: end if

15: end function

In this example, the right-hand driving behavior is applied to the corridor zone. The
function calculateCostsToReachCell symbolizes the standard calculation of an expanded cell
in the potential map, as shown in Equation (3):

potential = Φ
(
cprev.x, cprev.y

)
+ M
(
cexp.x, cexp.y

)
+ Ωmv, (3)

where cexp is the expanded cell, cprev is the previous cell, and Ωmv is the cost value to move
from one cell to a neighboring cell. The function is triggered in case the expanded cell is
not part of the corridor zone or the expanded cell is not determined as a right-hand driving
cell. Therefore, in these cases, the default behaviors of the global planners are not changed.

If the expanded cell is part of a corridor zone and neighbors a guard rail zone, the cell
is of interest and further analyzed. Four cases are differentiated:

1. The guard rail zone is a neighbor in the negative y-direction in the costmap;
2. The guard rail zone is a neighbor in the positive y-direction in the costmap;
3. The guard rail zone is a neighbor in the negative x-direction in the costmap; or
4. The guard rail zone is a neighbor in the positive x-direction in the costmap.

Depending on the relative position of the expanded cell in relation to the guard rail
zone and the already expanded cells stored in the potential P, the cell is defined as a
right-hand driving cell. In the case of a right-hand driving cell, the calculation of the cell
potential is changed from Equation (3). The applied formula is shown in Equation (4):

potential = Φ(xi, yi) + MCorridor / 4 (4)

The coordinates xi, yi, with i = {1, 2, 3, 4}, reflect the above mentioned four cases.
MCorridor is the cost value of a cell inside the corridor zone.

The presented approach can be applied to any zone in any direction, as long as a
particular cost gradient is present between the zone and the guard rail zone. Figure 6
shows an example scenario for a large-scale planning scenario in a simulated production
environment. The red dot represents the start position and the green dot the goal position.
The costmap is divided into navigation zones according to Section 2.1. Figure 6a shows the
default behavior of the implemented A* planner. As desired, the resulting path is mostly
located inside the corridor zone. Figure 6b shows the resulting right driving behavior by
applying our approach.
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Figure 6. A* based global path planning in a 60 × 60 m sized grid-based costmap. (a) Default behavior; (b) right
driving behavior.

2.3. Large-Scale Surface Orthogonal Motion Planning

The addressed inspection task requires a high positioning accuracy of the radar
module (<200 μm) in reference to the workpiece frame for each scan process. Therefore,
the large-scale inspection task is executed in asynchronous mobile manipulation mode.
The workpiece is divided into smaller subsegments, which can be inspected standalone
with the motion capabilities of the manipulator. At each subsegment, the following process
steps are performed:

1. Surface reconstruction;
2. Sensor waypoint generation;
3. Motion planning.

The approached positions of the mobile platform are determined by analyzing the
reachability of the manipulator in its workspace and segmenting the workpiece accordingly.

2.3.1. Surface Reconstruction

To plan a path on a surface, the geometrical shape of the surface must be known.
Especially for inspection tasks, it cannot be assumed that the actual state of the workpiece
still corresponds to its computer-aided design (CAD) data. In our implementation, the
surface is reconstructed from a point cloud using the Point Cloud Library [39] (PCL). The
point cloud is provided by the RGB-D camera at the end effector of the manipulator. In
the first step, the point cloud is down-sampled, and then the surface is reconstructed by
applying B-spline fitting [40]. Figure 7 shows the reconstructed surface of an exemplary
rotor blade segment.

36



Appl. Sci. 2021, 11, 9271

Figure 7. Surface reconstruction. (a) Dense point cloud of a rotor blade segment; (b) point cloud after down-sampling;
(c) reconstructed surface (front view); (d) reconstructed surface (top view).

2.3.2. Waypoint Generation

The surface orthogonal motion planning is inspired by the approach presented in [41],
which addresses an inspection task of a landscape with an unmanned aerial vehicle (UAV).
For this purpose, the landscape is rasterized into a grid. The grid resolution depends on the
technical parameters of the sensor, the desired image resolution, and the desired overlaps
of the individual images. The centers of the grid cells are shifted along the normal of the
ground surface. This approach was adapted for the creation of 6D waypoints, representing
surface orthogonal 6D poses of the radar sensor. Figure 8 shows the three steps of the
implemented waypoint generation method, applied to the reconstructed surface of Figure 7.
Figure 8a shows the centers of the grid cells. These are projected onto the reconstructed
surface (see Figure 8b). The projected centers are shifted along the surface normal to the
desired distance from the surface. The z-axis of the 6D waypoints are aligned with the
negative surface normals (see Figure 8c).

Figure 8. Grid-based waypoint generation. (a) Centers of the grid cells; (b) projection of grid onto the reconstructed surface;
(c) 6D waypoints.

2.3.3. Path Planning

The 6D waypoints can be considered as nodes in a complete graph. A Hamiltonian
cycle [42] in this graph visits all waypoints. The search for the shortest Hamiltonian cycle
in a complete and weighted graph is called the traveling salesman problem (TSP). This
problem is NP-complete, and there is no known efficient algorithm to solve it [43]. One
approximation approach is the algorithm according to Christofides [44]. The implemented
approach is shown in Algorithm 2.
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Algorithm 2. Factor 3/2 approximation of the travelling salesman problem

1: function approximateTSP(Graph G, costfunction Ω)
2: choose a root node r ε V(G) as base v
3: calculate the minimum spanning tree T for G with MST − Prim(G, Ω, r)
4: calculate the perfect matching with minimum weight m for odd v ε V(G)
5: add E(m) to T
6: determine the Euler cycle Γ in m + T
7: the Hamiltonian cycle H is the ordered list of nodes visited on Γ, multiple nodes are skipped
8: return H
9: end function

The path length is limited to a maximum of one and a half times the optimal solution.
The algorithm first calculates a minimum spanning tree [43] (MST). A minimum perfect
match is formed between the nodes of the MST with an odd degree. This is possible
because there is always an even number of nodes with an odd degree. In the path planning
implementation, the Blossom-V implementation from [45] is used for this purpose. The
edges of the matching are added to the MST, such that the degree of all nodes is even.
Thus, a Euler cycle can be formed in the graph. By truncation, i.e., deleting multiple visited
nodes, the approximate solution of the TSP is formed.

2.3.4. Positioning of the Mobile Platform

The mobile platform must be positioned in such a way that the surface orthogonal
planned path of the end effector lies in a workspace region with high reachability. The
method used to determine the characteristics of the manipulator’s workspace is described
in [29]. The size of the chosen suitable area of the manipulator workspace directly affects
the segmentation of the workpiece in local subsegments.

The workpiece segmentation consists of the following steps:

1. Create the scanning grid accordingly to the workpiece size (see Figure 9a);
2. Project the scanning grid onto the surface of the workpiece (see Figure 9b);
3. Reflect the projected points alongside the surface normal (see Figure 9c); and
4. Cluster the reflected points into processable local scan areas (see Figure 9d).

 
Figure 9. Process of workpiece segmentation. (a) Scanning grid; (b) projection onto surface; (c) reflection alongside surface
normal; (d) clustering into local scan areas.

The reflected points represent positions of the manipulator’s end-effector. The aim
of the workpiece segmentation is to find a set of neighbored projected points, whereby
the corresponding reflected points are inside the defined workspace of the manipulator.
Therefore, a list of position tuples ΛPR is created, whereby each tuple consists of a projected
point and the corresponding reflected point. By continuously expanding in the domain of
the projected points and checking the reachability of the corresponding reflected points,
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the tuples of list ΛPR are clustered into suitable local scan areas. The implemented method
is described in detail in Algorithm 3.

Algorithm 3. Segmentation of the workpiece into subsegments

1: function segmentWorkpiece(CADModel Ψ, Workspace Y, Distance d, ClusterList ΛPR)
2: create sampling grid S accordingly to 3D bounding box size of Ψ
3: project grid points si ε S onto surface of Ψ
4: reflect projected points alongside the corresponding surface normal to distance d from surface of Ψ
5: create a list LPR with corresponding pairs of projected and reflected points
6: ascendingly order LPR based on Euclidean distance between projected point and workpiece frame I
7: while LPR not empty do

8: initialize empty cluster CPR
9: add position pair at first position of LPR to CPR and remove pair from LPR

11: initialize filter dimensions
12: set current search direction to Ix-direction
13: while not all search directions are exhausted do

14: extend filter in search direction
15: if filter dimension is beyond the bounding box of Ψ then

16: mark current search direction as exhausted
17: reset filter dimensions
18: end if

19: find all position pairs Li in LPR where the reflected point is inside filter bounds
20: calculate bounding box dimension B of all reflected points ε Li
21: if B ⊆ Y then

22: add Li to CPR and delete Li from LPR
23: else

24: reset filter dimension
25: mark search direction as exhausted
26: end if

27: switch search direction
28: end while

29: add CPR to ΛPR
30: end while

31: end function

The mobile platform is positioned in such a way that the center of the calculated
scan area li = (xI , yI)

T is located at the center of the system’s reachable workspace
ri = (xR, yR)

T . Therefore, the centers ci are translated alongside the x-axes of the workpiece
coordinate system I. Depending on the approach direction of the mobile platform, the
translation is performed in x+- or x−-direction. The shifted positions l∗i are converted
into 2D poses Li = (xI , yI , θI)

T by adding an orientation accordingly to the translation
direction. The 2D poses are transformed into the world coordinate system W, resulting in
the required 2D goal poses for the navigation task.

2.4. Task Management

The inspection of a large-scale rotor blade is a long-running task. Therefore, we
designed a task management system in form of a nested state machine. The state machine
uses the SMACH framework [46]. The main state machine includes two nested state
machines managing the manipulation and the navigation task. Figure 10 shows the task
management system.
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Figure 10. Task management system. State machines in blue and ROS nodes in orange.

The main state machine requires as input the model of the workpiece (CAD File), the
desired distance between the radar sensor and the surface of the workpiece (DistanceSR)
and the characteristics of the used manipulator (ManipulatorInfo). The ManipulatorInfo
consists of the suitable area of the manipulator workspace, including the corresponding
maximum reach of the manipulator.

The workpiece segmentation and the position determination of the platform at the
local scan subsegments is executed a priori. The workpiece segmentation provides the local
scan areas (ScanAreasInfo). Each ScanAreaInfo consists of the area center (ScanAreaCenter)
and the dimensions (ScanAreaDim) in reference to the workpiece coordinate system. The
platform positioning converts the centers of the local scan areas into 2D navigation goals
(PosesGoal) in reference to the world coordinate system.

The navigation and manipulation state machines are triggered sequentially for each
pair of navigation goal (PoseGoal) and local scan area (ScanAreaDim). The navigation state
machine takes care about the path planning and path execution processes. The move
base flex [47] framework is implemented to change between different motion behaviors of
the mobile platform depending on the current navigation zone. The manipulation state
machine is divided into three process steps. The point cloud executor gathers the point
cloud data at the local scan pose (PoseScan) and crops it accordingly to the dimensions of
the local scan area. The waypoint generator determines the 6D end-effector waypoints
(WaypointsEE), orthogonal oriented to the surface of the workpiece. The manipulation
executor controls the motion of the manipulator.

3. Experiments and Discussions

3.1. Production Environment Navigation

We evaluated the presented zone-based navigation concept in the multi-robot simula-
tor Gazebo [48]. Therefore, we created 10 different production environments of the size
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60 × 60 m. Each simulated production environment features an individual navigation zone
layout, comparable to the layout shown in Figure 6. In each simulated production environ-
ment, we defined 10 start-goal-position tuples, which resulted in a total of 100 tuples. The
tuples were divided into five groups:

• Tuples TRR from restricted-to-restricted zone;
• Tuples TSS from station-to-station zone;
• Tuples TSC from station-to-corridor zone;
• Tuples TCS from corridor-to-station zone;
• Tuples TCC from corridor-to-corridor zone.

The five groups are equally distributed across the 10 simulated environments, resulting
in two tuples for each group per environment.

For each tuple, we manually annotated the desired path Pi with i = {1, 2, . . . , 100}.
Each path Pi fulfills two criteria. The first one is the reduction in the overall costs of the path
by preferring the corridor zone. The second one respects the desired right-hand driving
behavior alongside the corner between the corridor zone and the guard rail zone.

The experiment compares the performance of the default A* and Dijkstra implementa-
tion of the robot operating system (ROS) [49] with our adapted version, later called A*zone
and Dijkstrazone.

The deviation between a planned path A and the corresponding manually annotated
path B ε Pi is represented by the average mean square error aMSE. The calculation is given
in Equation (5):

aMSE =
∑n

i=0 d2
i

n
, (5)

where di is the Euclidean distance between each of the n positions ai ε A and its closest
neighbored position bi ε B. Figure 11 shows the experimentally determined results for each
of the 10 simulated production environments averaged over all five start-goal-position
tuple groups.

 

Figure 11. Average mean square error over all paths for each simulated environment.

As expected, the aMSE is significantly higher for the default implementations of
A* and Dijkstra. This result is caused by the right-hand driving criteria of the manu-
ally annotated reference paths. In addition to the aMSE, we analyzed the following
performance parameters:

1. The required process time;
2. The number of expanded cells; and
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3. The path length.

The required process time indicates the additional computation effort caused by the
implementation of Algorithm 1. The number of expanded cells reflects the efficiency of
reaching the goal cell. The overall path length shows the additional path caused by the
desired right driving behavior. Table 1 shows the performance parameters averaged over
all 100 start-goal-position tuples.

Table 1. Comparison of the evaluated planning approaches. Performance parameters averaged over
100 start-goal-position tuples in 10 simulated environments.

Approach
aMSE

[m]
Processing Time

[ms]
Expanded Cells

Path Length
[m]

A* 15.72 56.2 401,497 62.43
Dijkstra 13.78 53.3 596,325 62.22
A*zone 0.11 49.8 355,200 71.04

Dijkstrazone 0.06 49.1 545,255 72.84

The default implementations of A* and Dijkstra provide the most cost-efficient path.
The cost efficiency is mainly influenced by the cost levels of the different zones. Inside a
zone, the length of the path is the factor of influence. Therefore, the average path length
of the default implementations is approximately 14% smaller compared to our approach.
With an average aMSE of 0.11 m for A*zone and 0.06 m for Dijkstrazone, our approach
proved to provide consistent paths following the concept of right-hand driving.

The general difference in processing time between the approaches A*, A*zone and
Dijkstra, and Dijkstrazone is caused by the calculation of the heuristic. Therefore, the
average processing time for A*zone is 2.5% greater than that for Dijkstrazone, even though
the number of expanded cells is approximately 35% smaller.

The additional computation effort needed to determine the right-hand driving cells
at each expansion step does not increase the overall processing time. Quite the opposite,
the approach A*zone needs approximately 11% less average processing time. This decrease
correlates with the number of expanded cells, which is also approximately 11% smaller
than that of A*. The same applies to the approach Djikstrazone, which results in 9% less
expanded cells and a corresponding decrease in the overall processing time. Table 2 shows
a comparison of the five start-goal-position tuple groups by evaluating the number of
expanded cells normalized to the resulting path length for each tuple.

Table 2. The number of expanded cells normalized to the path length.

Approach TRR TSS TSC TCS TCC

A* 7643 9801 2836 8852 3298
Dijkstra 10,366 11,294 6261 11,663 6425
A*zone 6170 7745 1695 7963 1623

Dijkstrazone 8219 8818 4401 10,115 4496

The goal zone has a high impact on the efficiency of the evaluated path planners. If
the goal position lies within the corridor zone (TSC, TCC), the number of expanded cells is
significantly lower compared to a goal position outside the corridor zone (TRR, TSS, TCS),
by comparing columns TSC, TCC with other columns of Table 2. This behavior is caused
by the cost levels of the zones and the nature of the path planning algorithms. Since
the cost level of the corridor zone is relatively low the planners will expand inside the
corridor zone with a high preference, before starting to expand inside a restricted or station
zone. The A* and A*Zone implementations provide a lower number of expanded cells
for each paths group, as highlighted by the bold font in Table 2, which is caused by the
additional heuristic.
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Our right-hand driving approach results in an additional decrease in the number
of expanded cells. This is caused by the effect of our method on the behavior of the
path planning algorithms. Figure 12 shows a comparison of a path p ∈ TSC and the
corresponding expansion potentials for each of the evaluated approaches.

 

Figure 12. Path potentials of a path related to a start-goal-position tuple t ∈ TSC. Start position in red
and goal position in green. (a) Dijkstra; (b) DijkstraZone; (c) A*; (d) A*Zone.

The relatively low-cost cells at the edge between the corridor zone and the guard rail
zone let the path planning algorithms concentrate their expansion towards a particular
direction. Since the corridor zone is designed to connect typical station areas in the
industrial environment, our method reduces the number of cells that are expanded in the
corridor zone. Therefore, our method provides a higher expansion efficiency which results
in lower computational effort compared to standard implementations of Dijkstra or A*.

3.2. Evaluation in Real-World Use-Case

The presented concept is evaluated at a typical rotor blade form, which features a
length of 11 m. Due to space limitations of the experiment environment, only the tip of the
form is used throughout the experiment. Figure 13a shows the 3D model of the tip. The tip
has the dimensions 2.0 × 0.8 × 0.9 m3 (LxHxW). Figure 13b,c show the real-world form
equipped with glass fiber mats and a setup for vacuum generation.
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Figure 13. Rotor blade forms. (a) 3D model of the tip of the rotor blade form; (b) rotor blade form
used in the real-world experiment (side view); (c) rotor blade form used in the real-world experiment
(top view).

Figure 14a shows the analyzed workspace of the used Universal Robot UR5 displayed
as a cut in the x, y-plane of the manipulator coordinate frame R. Since the end-effector
will be downward oriented most of the time during inspection and accordingly to [29],
the used geometric primitive to analyze the workspace is a downward facing hemisphere.
Each analyzed voxel has the edge length of 50 mm. Figure 14b shows the same cut, with a
threshold at 50% reachability applied.

Figure 14. Workspace analysis of the manipulator for the inspection task at the corresponding height. (a) Cut through the
x,y-plane; (b) Cut through the x,y-plane with reachability threshold of 50%; (c) chosen workspace area at height zr = 0.1 m.

The chosen suitable workspace area consists of two layers in z-direction to cover the
curved shape of the blade tip form. The area is shown in Figure 14c and of size: 0.45 m in
x-direction, 0.7 m in y-direction, and 0.1 m in z-direction of the coordinate system R.

In addition, the so-called max reach value maxreach of the mobile manipulator is
calculated. The maxreach symbolizes the maximum distance the manipulator is able to reach
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into the workpiece alongside the robot coordinate system R. The calculation is given in
Equation (6):

maxreach = DMW − (dRPF + dPFW), (6)

where DMW is the distance between the origin of R and the reachable voxel, which is
located at the maximum distance alongside the x-axis of R. The distances dRPF and dPFW
depend on the hardware setup and the minimum safety distance between the platform
and the workpiece. The distance dRPF describes the distance between the origin of R and
the front of the mobile platform. The distance dPFW describes the safety distance between
the front of the mobile platform and the workpiece.

Based on the method presented in Section 2.3.4, the workpiece is segmented in in-
spectable subsegments taking the maximum reach maxreach of the hardware setup into
account. Figure 15a shows the colored subsegments. Figure 15b shows the corresponding
poses of the mobile platform as black arrows for each subsegment. Figure 15c shows the
mobile manipulator executing the scan process at a subsegment of the work piece.

 

Figure 15. Evaluation in a real use-case. (a) Work piece segmentation; (b) visualization of the navigation zone setup and the
platform positioning; (c) actual execution of the scanning process.

At each local subsegment, the surface reconstruction (cf. Section 2.3.1) is executed.
Therefore, an RGB-D camera provides a point cloud of the work piece. A crop box filter
removes all points, which are related to the ground or the robot itself. In the next step,
a HSV filter is applied to the remaining points to remove points related to the yellow
corner tape of the vacuum setup (cf. Figure 15c). The resulting point are clustered by
their Euclidean distance to determine the points belonging to the scanning surface. A
down sampled version of the resulting point cloud is used for the surface reconstruction.
Figure 16 shows the complete pipeline for a point cloud captured at a local subsegment.

The waypoint generation (cf. Section 2.3.2) is based on the surface reconstruction.
Figure 17a shows the approached 3D positions of the end-effector in the robot coordinate
frame R during the inspection process of one local subsegment. Figure 17b shows the
surface-orthogonal orientation of the end-effector at each 3D position.
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Figure 16. Processing pipeline of the surface reconstruction at a local workpiece subsegment.

 
Figure 17. Execution of inspection process at one local subsegment of the work piece. (a) 3D positions of the end-effector;
(b) orientation of the end-effector at each 3D position.

The 3D positions of the end-effector are shifted alongside the calculated surface normal
by the amount of the chosen scanning height. The resulting 3D positions reflect the surface
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of the workpiece (see Figure 18a). Figure 18b shows the path of the end-effector during the
inspection process.

 
Figure 18. Execution of inspection process at one local subsegment of the work piece. (a) 3D positions of the end-effector
shifted alongside the surface normal by the amount of the scanning distance; (b) path executed by the end-effector during
the inspection process.

The pose information of each local subsegment is transformed into the static global
frame map. Therefore, the localization capabilities of the mobile manipulator OMNIVIL are
used, as described in [29]. Figure 19a shows the approached 3D positions of the end-effector
in the map frame. The positions are colored accordingly to their related local subsegment.
Figure 19b shows the surface-orthogonal orientation of the end-effector at each 3D position.

Figure 19. Execution of inspection process of the complete work piece. (a) 3D positions of the end-effector; (b) orientation
of the end-effector at each 3D position.

Figure 20a shows the shifted end-effector positions, which reflect the concave and
convex shape of the scanned surface. The middle part of the form is not covered due to the
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limited maximum reach of the used manipulator UR5. Figure 20b shows the path of the
end-effector executed at each local subsegment.

Figure 20. Execution of inspection process of the complete work piece. (a) 3D positions of the end-effector shifted
alongside the surface normal by the amount of the scanning distance; (b) path executed by the end-effector during the
inspection process.

4. Conclusions

This study presented a method for the automation of the large-scale inspection pro-
cess of wind turbine blades in manufacturing. The focus was set on the control of the
autonomous mobile manipulator. It provided insights into related research fields, including
autonomous navigation and surface orthogonal motion planning. The presented methods
are applicable to various tasks related to large-scale inspection.

The developed approach realized autonomous navigation including a zone-based
segmentation of the production environment. The common approach of a layered costmap
was extended to fulfil the needs of a collaborative human–robot industrial environments.
In addition, a new method was presented, which manipulates the cost values during
the search expansion of a path planner. The method was applied to the state-of-the-art
algorithms A* and Dijkstra and was used to realize a right-hand driving behavior of the
mobile manipulator in corridor zones. An experiment in a simulation environment showed
the superior efficiency and reliability of the method. The actual inspection process was
performed in an asynchronous mode by the mobile manipulator. Therefore, a method was
developed to segment the workpiece into smaller subsegments, which can be inspected
by the manipulator. The motion planning at the local subsegments used a surface recon-
struction based on point cloud data. The resulting waypoints were considered nodes in a
complete graph. The problem to find the shortest path was solved by applying algorithms
related to the traveling salesman problem. The developed system was evaluated in a
real-use case.

Further improvements will focus on the segmentation of the production environment.
The segmentation can be performed automatically by taking documentation of the factory
layout into a concern or by identifying workstations by the robot itself. Furthermore, the
generation of the workpiece model should be performed by the robot itself.
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Abstract: The global population is ageing at an unprecedented rate. With changes in life expectancy
across the world, three major issues arise: an increasing proportion of senior citizens; cognitive and
physical problems progressively affecting the elderly; and a growing number of single-person house-
holds. The available data proves the ever-increasing necessity for efficient elderly care solutions such
as healthcare service and assistive robots. Additionally, such robotic solutions provide safe healthcare
assistance in public health emergencies such as the SARS-CoV-2 virus (COVID-19). CHARMIE is
an anthropomorphic collaborative healthcare and domestic assistant robot capable of performing
generic service tasks in non-standardised healthcare and domestic environment settings. The combi-
nation of its hardware and software solutions demonstrates map building and self-localisation, safe
navigation through dynamic obstacle detection and avoidance, different human-robot interaction
systems, speech and hearing, pose/gesture estimation and household object manipulation. Moreover,
CHARMIE performs end-to-end chores in nursing homes, domestic houses, and healthcare facilities.
Some examples of these chores are to help users transport items, fall detection, tidying up rooms, user
following, and set up a table. The robot can perform a wide range of chores, either independently or
collaboratively. CHARMIE provides a generic robotic solution such that older people can live longer,
more independent, and healthier lives.

Keywords: service robot; assistant robot; collaborative robot; healthcare; elderly care; intelligent
systems; COVID-19

1. Introduction

The world’s population is consistently growing older, with the over-65 age group
overgrowing all other age groups. The predicted worldwide growth in the elderly popula-
tion is from 702 million in 2019 to over 1.5 billion by 2050 [1]. In 2014, the over-55-years
old population outnumbered persons aged 15 to 24 years old, and by 2035 it is expected
that the ages 0 to 14 will also be outnumbered [2]. The elder age group is estimated to
continuously grow and outnumber all youth and child populations under 24 years old
by 2050. It is estimated that the percentage of elderly people (the over-65 age group) in
the European Union will grow from 19% to 29% over the next approximately 50 years [3].
Population ageing and public health expenses primarily dedicated to older dependent
persons presents significant challenges, with implications not just on the social aspect but
also economically [4]. The World Health Organization (WHO, Geneva, Switzerland) even
developed a global strategy and action plan on ageing and health that focused, among
other strategic objectives improving measurement, monitoring, and research on healthy
ageing [5].
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These statistics/data prove the growing need for efficient elderly care solutions re-
garding therapy, rehabilitation, companions and activity planning, but most importantly,
healthcare robotics [6–9] that are capable of aiding in day-to-day tasks, collaboratively or
independently. Healthcare generic service and assistive robots can provide practical help
to increase the elderly population’s life quality, improving cognitive and physical health.
These robots can play an essential role concerning healthcare support and independent
life, especially when problems related to ageing start to appear. Moreover, service robots
provide safe healthcare assistance in public health emergencies such as the SARS-CoV-2
virus (COVID-19) [10–12].

The Collaborative Healthcare/Home Assistant Robot by Minho Industrial Electronics
(CHARMIE), represented in Figure 1, is an anthropomorphic healthcare and domestic
service and assistive robot capable of performing tasks in non-standardised environmental
settings. The social goal of the CHARMIE project is the development of a robot capable of
aiding in nursing homes, healthcare facilities and domestic houses, among other settings.
The scientific objective of CHARMIE is the development of a multifaceted anthropomorphic
robot capable of performing a broad set of tasks based solely on machine learning solutions
that allow the robot to learn how to perform and improve tasks via observation and
trial-and-error direct interaction with the environment.

   
(a) (b) (c) 

Figure 1. CHARMIE (Collaborative Healthcare/Home Assistant Robot by Minho Industrial Electronics) different vari-
ations. (a) Conceptual sketch of the anthropomorphic robot. (b) Developed anthropomorphic design. (c) Primary
prototype assembled.

Some service robots are already being implemented in geriatric care [13]. The de-
velopment of such robots is encouraged with funding from the European Union with
projects such as Hobbit [14], ENRICHME [15], ARNA [16] and Sobi [17]. These four robots
go beyond the simpler pet-like social companion robots already possessing sensors and
actuators that allow them to perform more complex tasks. Focusing on enhancing older
people’s well-being, some examples of tasks already performed are user entertainment,
object manipulation and transportation, empathic and social human-robot interaction, mon-
itoring persons and home-related chores. MOnarCH [18] presents a multi-robot cognitive
system whose operation is already being tested in hospitals. It targets the development of
a novel framework to model mixed human-robot societies and its demonstration using a
network of heterogeneous robots and sensors in an oncological hospital’s pediatric area. It
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can handle uncertainties introduced by people and robots, generate natural interactions
and engage in educational entertainment activities. However, the previously mentioned
robots only solve tasks using pre-programmed methods and cannot generalise to different
task variations or significant environmental changes.

Robotics competitions can be used for benchmarking specific functionalities and in-
tegrated systems [19,20]. RoboCup@Home [21,22] is no exception and is regarded as a
top competition with numerous state-of-the-art contributions in the field of service and
assistive robotics. The goal is to foster the development of versatile domestic service
robots that operate safely in daily life non-standardised environments. Some of the robots
achieving the best results in the latest competitions are Walking Machine [23], RoboFEI [24],
CATIE [25], Homer [26] and AMIGO [27]. Recent years have shown robots solving a
wide range of different domestic tasks, like watering plants, taking the trash out, storing
groceries, serving breakfast, cleaning and setting up a table. These tasks provide broad
coverage of multidisciplinary subjects such as Navigation, Mapping, Person Recognition,
Person Tracking, Object Recognition, Object Manipulation, Speech Recognition, Gesture
Recognition and Cognition. Even though the tasks referred fit the domestic environment
standards, these can straightforwardly be adapted to healthcare purposes and environ-
ments due to their genericness. Regarding cognition, RoboCup@Home teams are already
using machine learning technique primarily based on supervised learning to solve tasks
such as face recognition [28], body pose estimation [29,30] and object detection [31,32].

The presented robot, CHARMIE, is an anthropomorphic general service and assistive
robot that focuses on healthcare and domestic environments to aid elderly people and
healthcare employees. The purpose of CHARMIE is to provide a robotic solution capable
of providing healthcare support and more independent life, assisting both the elderly’s
cognitive and physical health. It can perform a wide range of tasks in almost all non-
standardised indoor environments and some outdoor environments. The primary focus
regarding environments are nursing homes, hospitals, healthcare facilities, and domestic
houses. These show the highest necessity and opportunity to integrate a robotic system
capable of helping elderly people and healthcare workers. The capability of a wide range of
tasks allows this robot to help in various domains, such as pick and place tasks, goods trans-
portation, following workers/patients/users, speech communication (hearing and talking),
visual analysis of the environment, navigation, object recognition and manipulation. The
cooperative and collaborative aspect is demonstrated by the robot’s ability to perform tasks
parallel to user chores and even aid in tasks that the user cannot perform alone. The generic
tasks described can be easily adapted to the robot’s purpose. An example of pick and place
tasks adapted to the purpose and environment can be: (i) delivering food trays to patients
in hospitals; (ii) collecting crutches from residents in nursing homes; (iii) transporting boxes
of medicines between different areas in healthcare facilities; and (iv) setting and cleaning
up a table or loading a washing machine at a house. The variety of different tasks these
generic robots can perform allows the robot to help in various ways, whichever best suits
the user’s present needs.

2. Materials and Methods

To perform the wide variety of non-standardised chores, CHARMIE’s system and
hardware went through different development choices regarding hardware components
and related dependencies. The complexity required by some tasks dictated that the robot’s
system and hardware solutions had to contemplate a significant number of degrees of
movement. From the omnidirectional platform to the arms, all components were dimen-
sioned, envisioning the complex movements the robot must make. An example is pushing
wheeled trolleys that force the robot to adjust the position of both arms throughout the
action and the platform movement that must fit the moving object. Additionally, the
anthropomorphic shape of CHARMIE allows users to be more receptive to interact with
the robot, as described in [33]. From a practical perspective, it is easier to interact with the
real world if the robot has the same shape as a human since the environment is optimised
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for human-shape interaction. From a social perspective, creating a small human’s physical
appearance gives the impression users are interacting with a small, friendly robot, which
translates into a sense of friendliness and proximity to its users. Even though, at the
moment, CHARMIE is not fully anthropomorphic, some parts are, such the arm. The final
objective is to reach the anthropomorphic level presented in Figure 1a,b.

2.1. System and Hardware

As described in Figure 2, CHARMIE’s hardware [34] can be divided into four sections:
(i) the motion platform; (ii) the robot arms; (iii) the lifting mechanism and torso; and
(iv) the robot head. The goal is to provide solutions that best fit generic service tasks
to improve elderly care. Thus, [34] provides a more in-depth description of hardware
sections (i) and (ii). One aspect that must also be referred to regarding the robot’s design
is its anthropomorphic design. One study concerning robot shape indicates that the
robot’s visual design is directly related to the number of human-robot interactions initiated
by humans [35]. The anthropomorphic shape grants the people who interact with the
robot a greater sense of comfort or friendliness than differently shaped robots. Different
shapes made human users more reluctant to interact with the robot due to fear of the
unknown and its movement. Having the shape of a human body allowed the robot to
have a higher number of interactions, resulting in more tasks performed by the robot, thus
helping more significantly its users, both the elderly and healthcare workers. Another
significant advantage of the anthropomorphic shape is that every day-to-day human
environment is refined to the human body height-wise, weight-wise, and shape-wise. This
aspect facilitates robot interaction with day-to-day environments without requiring an
adaptation of the world to best fit the robot’s capabilities. With this shape, the concept is
precisely the opposite: adjust the developed robot shape to enhance its interaction with
human environments, rather than adapting every human environment the robot must
interact with.

Figure 2. CHARMIE’s four hardware sections, namely robot head, robot arms, the lifting mechanism and torso and the
motion platform on both the physical robot and the anthropomorphic implementation.

2.1.1. Motion Platform

For service and assistive robots that operate in highly dynamic environments with
humans working beside them, it is a significant advantage to have a platform that allows
movement in any direction at any point in time. The locomotion system is the only
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part of CHARMIE that is not intended to be anthropomorphic (bipedal) for stability and
simplicity reasons. The motion platform developed uses four omnidirectional wheels with
individual suspension systems. This design was conceived with the robot’s predicted
interaction environments in mind, mainly large/medium indoor environments such as
hospitals, healthcare facilities, nursing homes and houses. The wheels are 203 mm double
aluminium omnidirectional wheels with roller bearings. When motion platforms use three
omnidirectional wheels, and the center of mass is considerably high, the platform may be
at risk of falling under certain circumstances. If a linear momentum is applied in the 120◦

gap between wheels the robot may lose balance and end up falling. With the addition of
the fourth wheel and consequential reduction of the degree gap between wheels the robot
significantly improved in safety and stability. However, with this addition, it is possible
for a wheel to occasionally lose contact with the floor due to slight surface irregularities or
slopes. Locomotion wise, this translates into unpredictable and incorrect movement. Thus,
a compact MacPherson [36], Figure 3a, suspension system was developed to overcome floor
irregularities, small bumps, and slope variations while improving its control smoothness.
The motion platform is a regular octagonal shape with a 54 cm diameter designed so
CHARMIE fits through every standard door frame size. It is purposely heavy (~20 kg
without batteries) to guarantee a low centre of mass for safety reasons, ensuring the robot
does not fall if an external force pushes it. Additionally, this motion platform can transport
a load of approximately 65 kg, as shown in Figure 3b. In [34], a more in-depth analysis of
the motion platform and suspension system is presented.

  
(a) (b) 

Figure 3. (a) MacPherson suspension system designed for CHARMIE to improve stability and guarantee all four wheels are
in contact with the floor surface. Image from [34]. (b) CHARMIE’s motion platform load transportation experimental test.
The platform was tested, moving for approximately 5 min while maintaining the movement performance and stability. The
load in the picture shows an average adult human weight of approximately 65 kg.

2.1.2. Lifting Mechanism and Torso

A significant number of the tasks that generic service and assistive robots must
perform involve object manipulation. The motion platform allows the robot to move
throughout the environment on the x-axis and y-axis. To interact at different heights with
objects such as cabinets with shelves at different heights or with users, from children
to adults, it is of extreme value to implement a system that allows the robot to have a
z-axis DOF (Degree of Freedom). By implementing a lifting system, the workspace of the
redundant manipulators attached to the torso increases. Moreover, the robot can move
up and down in its z-axis, allowing it to interact with objects at different heights, from
picking/placing objects from/to the floor to interacting with objects on tables, counters and
shelves, among others. In the elderly care context, the robot needs to collect things from
the floor. This is primarily due to older people having significant difficulties in lowering
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themselves to pick up something from the floor, which sometimes leads to falls or injuries
that can be avoided with the proposed robot solution.

The initial lifting system solution shown in Figure 4a,b consists of a ball screw spindle
mechanism. The torso that is in the threaded shaft has two linear bearings connected to
aiding beams that go from the motion platform to the head. By activating the motor, the
torso moves linearly up and down, providing the lifting mechanism. In this system, only
the torso moves, and the only parts assembled to the torso are the redundant manipulators.

  
(a) (c) (e) 

   
(b) (d) (f) 

Figure 4. The different lifting mechanisms implemented in CHARMIE. The top three images show the lifting mechanisms
at a higher elevation, and the bottom three images show the lifting mechanism at lower heights. (a) Initial ball screw spindle
lifting mechanism on top position. (b) Initial ball screw spindle lifting mechanism on the bottom position. (c) Height
changing ball screw spindle lifting mechanism on top position. (d) Height changing ball screw spindle lifting mechanism
on the bottom position. (e) Anthropomorphic lifting mechanism on top position. (f) Anthropomorphic lifting mechanism
on the bottom position.

Moreover, two new different systems were developed to overcome the problems
the initial elevation system had. The first, shown in Figure 4c,d, resembles the lifting
mechanism presented by AMIGO [37,38]. Similarly to the initial lifting system, a ball screw
spindle mechanism lifts the torso. However, in this implementation, an aluminium tube
is connected to the threaded shaft. This system allows the torso to be assembled in the
aluminium tube, which with three slider rails can move the torso up and down in a linear
movement. The two main differences from the AMIGO elevation system to the initial lifting
system design are: (i) instead of moving just the torso and consequently the redundant
manipulators in the z-axis, it also moves the head; and (ii) the variation of the robot’s
height. As previously described, this system can adjust the torso height to best fit its goals.
CHARMIE can pick objects from the floor in its lower position, and in its higher position, it
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can place its arms height-wise, similar to an average size adult human. Since the head is
now also present on the torso in this solution, all sensors and the multimodal user interface
can alter their height. This system can now move the head height-wise, positioning the
camera height to better analyse the environment using the computer vision system. In
the initial implementation system, the only degree of freedom was a rotation on the neck
so the robot could look up and down. Often, this DOF proved insufficient to analyse
the environment since, at times, the robot needed to place its head at the height of what
it had to analyse for better results. Computer vision wise, object and user detection are
simplified by allowing the robot to position itself at the best angle. This system grants this
movement that improved all computer vision-related tasks significantly. The multimodal
user interface previously connected to the head can now also move up and down to best fit
the user’s height. The other advantage of this system is the ability to change the robot’s
height. Psychologically, it is highly advantageous to alter the robot’s height according to the
person with which it interacts. Similarly to a human body, when the robot moves down to
pick an object from the floor, it moves all of its body with that purpose. The initial solution
could only move the arms, not following the anthropomorphic ideology. The field tests
developed demonstrated that people were more interactive with this version of the robot
due to it being more anthropomorphic. The robot altered its height to be slightly smaller
than the user it was interacting with. Creating a sense of inferiority to the human reduces
the users’ reluctance to intervene with the robot. This way, CHARMIE can operate most
features in a domestic environment while at the same time having a friendly appearance

The second lifting mechanism under testing, shown in Figure 4e,f is based on the
human’s legs. For this elevation system, the following requirements were taken into
consideration: (i) structural integrity to support the robot’s weight; (ii) anthropomorphic
look; (iii) self-locking actuation to reduce energy consumption; and (iv) allowing the robot
to squat, increasing its workspace and making it able to interact with objects on the floor.
This lifting mechanism has the same advantages as the first lifting mechanism, all of the
upper body can move up and down, and the robot’s height can change, with the addition
of resembling the human body even more. Although the mechanical system’s complexity
increases substantially in this iteration, a design based on the same mechanical principles
is being made, which results in a more straightforward and more reliable solution with a
significant increase in robustness. Thus, this mechanism was developed to encompass only
1 DOF that controls the ankles, the knees and the hips of the robot, allowing a complete
squatting movement. In [34], a more in-depth analysis of this anthropomorphic lifting
mechanism is presented.

2.1.3. Robotic Arm

The arm’s design objective was to develop an affordable, lightweight component with
a human-like design. The initial design demonstrates an autonomous robotic manipulator
with four degrees of freedom, named the Robotic Arm for Collaboration with Humans
in Industrial Environment (RACHIE) [39]. This robot’s primary goal was to perform a
simplified service pick and place task with human interaction to sort cans according to
their colour and shape. By simplifying some of the tasks that generic service robots must
perform, it allowed the development of a robotic arm that fulfilled all of the objectives
previously stated. However, this manipulator did not provide the degrees of freedom
necessary for some generic service robot tasks’ complexity. The desired solution, to also
comply with the anthropomorphic objective, should present similarities to a shoulder,
elbow and hand redundant manipulator [40].

The solution implemented in CHARMIE is based on the InMoov arm [41], initially
designed by Gaël Langevin. InMoov consists of the first Open Source 3D printed life-size
robot. The main differences between the original InMoov arm and CHARMIE’s arm reside
on the bicep and shoulder. The whole arm is printable on a 12 × 12 × 12 cm 3D, and its
PLA parts weigh around 1.414 kg, with the actuators weighing around 0.766 kg. The whole
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weight of the arm is approximately 2.2 kg. From shoulder to the hand, the arm measures
75 cm and can lift a maximum load of around 400 g.

This arm can be divided into three main parts: (i) hand and forearm; (ii) bicep; and
(iii) shoulder. Most generic service robots with robotic manipulators tend to use grippers
to simplify this task. However, the anthropomorphic hand presents more DOFs that
allow the robot to best use the hand according to the object, providing greater dexterity
capability [42,43]. The hand is composed of five fingers, similar to a human hand, to
provide different ways to pick up various objects. Each finger has a different number of
joints, as can be seen in Figure 5a. The thumb has two DOF, the index and middle finger
have three DOF, and the ring and little finger have four DOF. Each finger has one actuator
(servo motor) that moves all DOF of the respective finger. The movement is based on a
pulley mechanism, similar to tendons, where the motors are located in the robot’s forearm,
as shown in Figure 5b with fishing line tendons leading to the fingers. So, regarding
kinematic architecture, this is an underactuated hand since, in total, it has seventeen DOF,
but only five actuators. The wrist has one servo motor responsible for rotating the hand.
The bicep has two servo motors, one responsible for lifting and lowering the forearm,
and the second responsible for rotating the bicep and the forearm. The shoulder has
two individual DOF for moving the whole arm parallel to the robot body and lifting the
whole arm perpendicular to the body. In total, as shown in Figure 5c this redundant
manipulator has 22 DOF with 10 actuators, which define the movement of the arm. The
Denavit-Hartenberg parameters for the arm are described in the Table 1.

   
(a) (b) (c) 

Figure 5. (a) An assembly of a finger, with three degrees of freedom but only one actuator, using fishing line as tendons.
From top to bottom, the finger starts closed and opens until it is fully stretched. (b) The interior of the forearm has five
servos actuators that individually control each finger. (c) The complete assembly of CHARMIE’s arm.

Table 1. Denavit-Hartenberg from CHARMIE’s robot arm.

θ (deg) d (mm) l (mm) α (deg)

θ1 0.00 40.02 −90.0
θ2 + 90 66.10 0.00 90.0
θ3 + 90 287.83 31.04 90.0
θ4 − 26.6 0.00 0.00 −90.0

θ5 283.03 59.74 0.0
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The four parameters are described as: θi the rotation around the Zi−1 axis by the angle
between the links, di the translation along the Zi−1 axis of the distance between the links,
li the translation along the Xi axis (rotated Xi−1 axis) of the length of the link, and αi, the
rotation about the Xi axis of the twist angle.

For elderly care specifically, the arm and hand allow the robot to perform essential
tasks. Picking up objects from the floor, low tables, counters and shelves and transporting
them to the desired place ease many tasks that otherwise would either not be done or be
done with many risks associated. With the addition of the anthropomorphic hand, the
robot can easily interact with everyday objects specifically designed for the human hand
with different types of grips and grasps. In Figure 4 solutions with both two arms and one
arm are presented. The real-world robot and real-world tasks only uses one arm, as can be
seen in Figure 5c, whereas the simulated robot already uses the two arms.

2.1.4. Robotic Head

The robot head holds the RGB-D camera, the multimodal user interface and the
microphone. From a human interaction perspective, the head is the part of the robot the
users look at when communicating with the robot, so it must be appealing and functional.
Since the robots’ head height could not be adjusted in the initial lifting mechanism system,
a DOF was introduced to simulate a neck, so the robot could rotate its head, similar to a
yes nod movement. This movement allows the robot to adjust its RGB-D camera angle to
see objects at different heights. In the medium position, parallel to the motion platform,
it can see objects on tables, shelves and people with an above-average size, as can be
seen in Figure 6a. In the minimum position, at −60◦ from the horizontal field of view, it
can see objects on the floor touching the front of the robots motion platform, as can be
seen in Figure 6b. Lastly, at +30◦ degrees, it can see objects and people higher than the
robot in a higher position, as can be seen in Figure 6c. For now, if the robot needs to see
further to the sides, it rotates its motion platform, so it is always facing what it is trying to
analyse. With the addition of the two new lifting mechanisms, the same system is used
just for the RGB-D cameras. This camera is responsible for all visual related tasks such as:
(i) user recognition; (ii) pose detection and tracking; (iii) gesture recognition; (iv) obstacle
detection in navigation; (v) mapping; and (vi) object learning and recognition. Both the
microphone and the multimodal user interface were part of the initial lifting system head.
Being able to adapt both systems’ height to the user’s height allowed a cleaner interaction
overall. The microphone is placed at the same height as the users head, allowing better
voice recognition in environments with a significant noise level.

   
(a) (b) (c) 

Figure 6. CHARMIE’s field of view using the neck DOF. (a) Parallel to the motion platform (0◦). (b) Looking down to see
objects near the motion platform or on the ground (−60◦). (c) Looking up to see items on top shelves (+30◦).

Moreover, the multimodal user interface also best fits the users’ height to be more
comfortable to interact with. Thus, from the initial lifting mechanism onwards, these
two systems are now part of the lifting mechanism, since it is unnecessary to rotate them
similarly to the RGB-D camera.
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2.2. Components

To accomplish generic service and assistive tasks to aid in day-to-day life, for both the
elderly and healthcare workers, CHARMIE must safely navigate in healthcare-related and
domestic environments, perceive and track its human users, recognise gestures or poses
and detect and manipulate different everyday objects. To achieve this, CHARMIE has a set
of sensors and actuators that best fit both its environment and its tasks. With the sensorial
data, the robot must perform some low-level cognitive functions that, when combined,
allow the robot to perform more complex chores, both independently and collaboratively.
The low-level functions can be classified into four groups of tasks: (i) map building and
self-localisation; (ii) navigation; (iii) human-robot interaction; and (iv) object detection and
manipulation. The training of all systems that require neural networks is made off-line and
the main processor is a MSI Cubi 2 mini-PC with Core-i5 processor and 4 GB RAM.

2.2.1. Sensor System

To move safely according to the operating environment and with the purpose to
perform the necessary tasks, CHARMIE must have an adequate perception of the following
low-level functions:

• Map building and self-localisation;
• Safe navigation (obstacle detection and avoidance);
• Human-robot interaction (user and pose/gesture detection);
• Object detection and subsequent manipulation.

For map-building and self-localisation, CHARMIE uses two sensors: (i) 2D LiDAR
(HOKUYO URG-04LX-UG01) mounted on the motion platform; and (ii) an RGB-D camera
(Microsoft Kinect) located on the robot head. The laser range finder provided a 2D map
of the environment near the floor, whereas the RGB-D camera provided a 3D map. The
combination of both technologies allowed the robot to take advantage of the positive sides
of both technologies. The 2D map could detect small objects on the floor or at the motion
platform height, while the 3D map illustrates the complete environment map.

For safe navigation in various indoor environments such as hospitals, nursing homes
and domestic houses, the robot uses the same sensors as the mapping and self-localisation
tasks. Again, the combination of the 2D laser range finder and the RGB-D camera lets
the robot detect different types of obstacles and react appropriately. The 2D detects all
small objects on the floor that are harder to detect using the RGB-D camera, and the 3D
information can detect all other objects at every height. In the motion platform, the motors
have encoders embedded to close the control loop. Besides, the motion platform has current
and voltage sensors for every motor. These sensors allow CHARMIE to know whether
a wheel is not touching the floor, if a motor is stuck and if the robot is pushing against
an object.

For human-robot interaction, CHARMIE uses the RGB-D to detect its users, their pose
and some specific recognisable gestures. Recent works developed on this robot already
started using a different RGB-D camera (Intel® RealSense™ Depth Camera D455). One of
the goals of CHARMIE is to communicate with its human users, both healthcare workers
and older people, the same way humans communicate with each other by talking and
hearing. Thus, the primary way to communicate with the robot is to speak some set
of instructions that are interpreted and converted into tasks. This communication skill
allows users who have not been familiarised with technology to easily interact and take
the most advantage possible of CHARMIE. The robot has an MV5 Digital Condenser
Microphone that allows the robot to hear 360◦ and a JBL GO Speakers. To overcome some
difficulties that this communication system may present in particular situations, the robot
has a multimodal user interface in its body so users can select the necessary tasks.

For object detection, the robot uses its RGB-D camera. The objects that need to be
detected are usually on the floor, on counters and tables, or hand delivered by a user
to the robot. Thus the focus lies primarily on objects that are either between 50 cm to
120 cm or laying on the floor. To grasp objects that are hand-delivered or on counters the
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robot adjusts its lifting mechanism to best accommodate its redundant manipulators to
the object’s position. The same happens to the objects on the floor. That is why all lifting
mechanisms can place themselves so that the robot arms can pick objects from the floor.

The robot’s sensory system setup [44] is presented in Figure 7, where each sensor
location is described on both implementations of CHARMIE’s body. In the head, at a
maximum height when the lifting mechanism is at the top position, the RGB-D camera is
at 1.50 m which can rotate, tilting the head up and down. The initial RGD-D camera used
is the Microsoft Kinect for all the tasks. However, with the recent acquisition of the Intel®

RealSense™ Depth Camera D455 camera for CHARMIE, some human pose estimation
tasks have already been developed using the new camera. The microphone, the speaker
and the multimodal user interface lay on the torso with a maximum height of 1.30 m. The
laser range finder is on top of the motion platform at approximately 25 cm of height. All
the sensors related to the motors (voltage, current and encoders) are attached to the motors.

 
Figure 7. CHARMIE’s sensorial description with all sensors’ location used on both the physical robot and the anthropomor-
phic implementation.

2.2.2. Map Building and Self-Localisation

To perform mapping of the environment, it is necessary to detect the points of interest
known as keypoints. Additionally, to calculate travelled trajectory, it is necessary to
quantify the movement occurred in-between frames. Rather than using all the pixels
from an image to detect keypoints, the FAST [45] algorithm presents a computationally
more efficient strategy than other similar solutions. This algorithm works by creating an
adjustable bounding circle on every pixel that might resemble a corner. To be a corner,
three nearby pixels inside the bounding circle must have a higher intensity than the fourth
with a factor μ. Also, inside the bounding circle, there must be a set of collinear points with
intensity higher than μ. These two conditions must be satisfied to consider this region a
corner, and thus a keypoint. Next, to estimate the visual odometry using just the camera,
since Microsoft Kinect does not have an IMU (Inertial Measurement Unit), the selected
algorithm uses monocular odometry. It detects the keypoints using the FAST algorithm on
consecutive frames and associates these between frames using essential matrix estimate
through LMeds algorithm.

The method selected to build the 3D map of the environment was using OctoMap [46],
based on octrees to group all points. This method loses part of the detail, which translates
into higher computational efficiency. For CHARMIE’s purpose, it is more valuable to have
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a time-efficient algorithm than to have 3D mapping with great detail, since the robot only
needs the map to safely navigate to the desired position. Figure 8 shows a point cloud
converted into an OctoMap in three different perspectives representing an object on top
of a table and a guitar next to the wall. Figure 9 shows an example of a complete indoor
environment (office) mapped by CHARMIE.

   
(a) (b) (c) 

Figure 8. Three different perspectives (a–c) of the same two objects, a toy on a desk and a leaning guitar on a wall converted
into an OctoMap to simplify mapping high detail objects.

  
(a) (b) 

Figure 9. A complete map of an indoor environment, more precisely, an office. After some movement inside the office,
CHARMIE created the OctoMap. In the middle of the image, a desk can be seen, two pillars on the bottom are speakers,
and the remaining information is mainly regarding the walls. (a,b) demonstrate two different angles of the map.

The mobile platform’s self-localisation is done using Adaptive Monte Carlo Localiza-
tion (AMCL) [47]. In this algorithm, the robot’s pose is represented as a set of multiple
hypotheses concerning a prior known map. AMCL combines the information from the
mobile platform’s odometry and the 2D LiDAR. It starts by performing global localisation,
so it is immune to the initial position and, after knowing its location, only performs local
tracking using adaptive particle filters.
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2.2.3. Navigation (Obstacle Detection and Avoidance)

To safely navigate a previously mapped environment, CHARMIE must detect dynamic
and static obstacles that might not be in the environment map and navigate accordingly to
overcome these.

Regarding obstacle detection, the robot uses the same sensors as in the mapping
function, the 2D LiDAR and the RGB-D camera. The 2D LiDAR is used for small obstacles
at the motion platform height. It starts by checking if there is any obstacle inside a 1.50 m
radius and calculates both the obstacle position relative to the robot and its size. The
RGB-D camera starts with the same principle regarding the 1.50 m radius, calculates its
position relative to the robot and size, creating a virtual obstacle from the floor to the robot’s
height. In Figure 10, an example of the same image from three different angles is displayed,
showing an example of data fusion between the RGB camera and the Depth camera. The
obstacles derived from the sensors are combined in a temporary virtual obstacle map that
is constantly updated. By applying this method in consecutive frames, the direction of
movement of dynamic obstacles is also added to the virtual obstacle map.

   
(a) (b) (c) 

Figure 10. Three different perspectives (a–c) of three human users interacting with CHARMIE. The robot fuses the RGB and
Depth cameras’ information to create a 3D view of the environment.

After parameterising all the static and dynamic obstacles in a nearby radius and
defining a target location, CHARMIE uses dynamic non-linear systems [48,49] as a dis-
tributed control architecture that generates navigation. Task constraints are component
forces that are cast together into the vector field of this dynamical system. For example,
the directions ϕ = ψobs (where obstacles are from the robot’s viewpoint) and the directions
ϕ = ψtar (where the target is) are constraints represented by repulsive and attractive forces
acting on the heading direction. The attractive force attracts the system to the desired
heading direction value, whereas the repulsive forces prevent the system from moving in
an undesired direction. As the robot moves, the directions to the target and obstacles in the
world variates, and consequently, the attractor and repellers move in the vector field.

As stated above, the virtual obstacle map foresees the direction and size of all obstacles
that must influence the robot’s trajectories according to the robot’s reference. So, a repulsive
force is applied to all obstacles:

fobs,i(φ) = λi(φ − ψi) exp

[
−(φ − ψi)

2

2σ2
i

]
, i = 1, 2, . . . (no o f obstacles), (1)

where φ is the robot direction, ψi is the obstacle direction, thus (φ − ψi) is the obstacle
direction relative to the robot. σ is the angular magnitude on which a repulsive force acts,
defined as:

σN = arctan
[

tan
(

Δθ

2

)
+

Rrobot
di

]
(2)

63



Appl. Sci. 2021, 11, 7248

where Δθ is the angle the robot occupies, Rrobot is the robot radius and di is the distance
from the robot’s centre to the obstacle. λi is the maximum repulsion force, defined as:

λi = β1 ∗ exp
[
− di

β2

]
(3)

where β1 controls the maximum repulsion strength, and β2 controls the decay rate with
increasing distance. The repulsors contributions from all obstacles are summed, creating
the repulsor vector field. To get the target position, it starts by transforming the target
coordinates into the target direction and apply an attractive force as:

ftar(φ) = −λtar ∗ sin(φ − ψtar) (4)

where ψtar is the target direction and λtar is the attraction force magnitude. To finish the
dynamic field vector system, all contributions are added.

dφ

dt
=

N

∑
i=1

fobs,i(φ) + ftar(φ) (5)

In Figure 11, two different scenarios regarding nearby objects are presented. Figure 11a
shows three obstacles in red that can be seen inside the maximum security distance circle.
Consequently, the repulsors are created considering their distance to the robot and their
size, represented in the second graph. In the first graph, the attractor (pink) and the sum of
all repulsors (green) are totalled to create the dynamic field vector system (black) that yields
the angle to which the robot should rotate to avoid the obstacles. Similarly, in Figure 11b,
all the graphs shown represent the same variables as in Figure 11a.

  
(a) (b) 

Figure 11. Two different variations (a,b) of the dynamic field vector system are displayed depending on the various obstacles
that the robot faces. The blue and red 2D graph on the right of both images represents the 2D LiDAR data. The bottom
graph represents the velocity graph with one attractor to the desired speed. The middle graph represents the influence of
the various obstacles the robot faces and consequential repulsors. The top graph represents the angle attractor (pink), the
sum of all repulsors (green) and the final dynamic field vector system (black).

The difference between the two images lies in the increase in the obstacle size at the
right. This translates into a more aggressive repulsor on the right side, represented in blue
in the middle graph. Consequently, both the sum of all repulsors (green) and the dynamic
field vector system (black) will also be more aggressive. The third graph of each image
represents the speed of the robot, also manipulated by an attractor.
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To fit CHARMIE’s medium-term objective of using machine learning algorithms to
solve all of the proposed tasks, a different implementation of the robot’s autonomous
movement using reinforcement learning was developed. Deep reinforcement learning
is primed to revolutionise the field of artificial intelligence. It represents a step towards
building autonomous systems with a higher-level understanding than any other learning
technique. The application of deep reinforcement learning to robotics allows robots to
learn control policies directly from real-world sensorial information through trial-and-error
interactions. The tasks performed by service robots such as CHARMIE can be characterised
by long-term planning, high-dimensional continuous action-space, and in most cases,
incomplete information. Even though this is a problem for some reinforcement learning
algorithms, novel solutions such as those presented in [50–53] already solve a wide range
of simulated tasks similarly characterised. The algorithm selected to implement into
CHARMIE’s motion platform is based on Q-Learning [54,55]. The reinforcement learning
setup consists of an agent (CHARMIE motion platform) interacting with the environment
(simulated indoor environment) in discrete timesteps. At each timestep, the agent receives
an observation, takes an action and receives a scalar reward. The agent uses its sensory
information, the 2D LiDAR, to navigate towards the target position avoiding the obstacles
that come up in its way, similarly to [56]. A mapless motion planner can be trained
end-to-end with no manually designed features nor prior demonstrations through this
reinforcement learning method. This trained planner can be directly applied to never before
seen environments. In Figure 12, it is demonstrated the evolution of how the reinforcement
learning algorithm, without any previous knowledge about the environment, solved three
iterative complexity mazes. The first more straightforward maze is learnt just by trial-and-
error, and the two following mazes use the knowledge gathered from the previous maze.

 

Figure 12. Trajectory evolution throughout the learning process of a differential robot autonomously
solving a maze using Q-Learning. Image from [54].

2.2.4. Human-Robot Interaction (User and Gesture Detection)

One of the biggest concerns regarding the CHARMIE project is to provide communi-
cation tools to ease communication with users, both older people and healthcare workers.
To initialise a communication process, the robot must first recognise its users and their
pose/gestures. The functionalities regarding user detection demonstrate solutions using
the RGB-D camera, both with and without the depth image. The initial 2D visual user
detection algorithm focuses on detecting faces, then crop and align the detected faces
and recognise which previously trained, or new users are attempting to communicate.
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For this purpose, a Multi-task Cascaded Convolutional Network (MTCNN) [57] is used.
It consists of three convolutional networks with different architectures with increasing
complexity attached to each other, where the output of the previous net is the input of the
next. The first network is known as P-Net (Proposal Network), which generates different
proposals of where the faces must be, used as inputs to the following network. Next, the
R-Net (Refinement Network) analyses the proposals and filters false positives. The final
network, O-Net (Output Network), creates the final output, the detected face’s image and
its facial landmarks.

To classify the faces, the detected faces output by the MTCNN are introduced as input
in an Inception-ResNet v1 neural network [58], transforming it into an image representation
vector in space, also known as embedding. This network combines the Inception and
ResNet architectures. The Inception architecture uses multiple inception modules, which
have different convolutional-layers with different kernel sizes operating in parallel. These
filter the same level layer in the architecture, concatenating in the next level, finding
various features with fewer convolutional-layers. This process makes the network less
deep without losing information. The Resnet network introduces residual connections. In
traditional neural networks, a layer feeds data to the next one, but with this algorithm, it
sends direct information to a deeper layer. These blocks improve two areas. The training
time, given that skip-connections can jump layers without training and the lost information
when making gradient descent since more deep networks have a hard time being accurate
without overfitting or working more straightforward tasks.

The last step is implemented through an SVC-C (Support Vector Classification), with
training and a test dataset. This supervised learning algorithm separates the different
sample classes, known as embeddings, using a hyperplane where the margins are optimised
through support vectors. Figure 13a shows an application of the MTCNN algorithm,
detecting different famous people’s faces. It was trained to detect 64 different personalities
with the “Labeled Faces in the Wild dataset” [59]. Only using information from the 2D
camera it could successfully identify all of the trained people on the test set with certainty
percentages of over 60% in the worst cases. Additionally, Figure 13b shows the testing
dataset’s mapping with PCA (Principal Component Analysis), where the same label/output
images are projected close to each other while distanced from different ones. For better
visualisation purposes, the photos also have a colour differentiation filter. Even though it
can detect 64 different personalities, to maintain the same levels of accuracy, CHARMIE is
set to detect 20 different people.

  
(a) (b) 

Figure 13. (a) The MTCNN algorithm’s output using “Labeled Faces in the Wild dataset” [59] of nine different personalities.
(b) The PCA graph from Tensorboard from the MTCNN test dataset.
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When updating to 3D user recognition technology, some works that use the same
camera (Microsoft Kinect) [60] show algorithms that can overcome different face poses,
expressions, illumination and disguises. Other solutions, such as FaceNet [61], demonstrate
a deep convolutional network trained to directly optimise the embedding itself. The depth
solution CHARMIE employs to recognise a small number of users uses various deep
convolutional neural networks, similar to the one with just the RGB that integrates both the
RGB and the depth image. Figure 14a demonstrates a classification example of two users
using the depth information in addition to the RGB. The lack of different trained users can
justify the significantly higher values of certainty compared to the 2D solution. However,
some problems, such lightning and the pictures of users, can be successfully filtered with
the depth camera’s addition. An example of the lightning condition being filtered is shown
in Figure 14a right image. Figure 14b shows the two images input to the neural networks,
the RGB and the depth matrix.

  
(a) (b) 

Figure 14. (a) The output of the 3D user recognition system. The image on the right demonstrates
the neural networks filtering bad lighting. (b) Two examples of RGB and depth images used as input
to train the 3D user recognition system.

After recognising the users, the robot is establishing an interaction with, CHARMIE
analyses their poses. Essential information can be interpreted from the pose: (i) the human’s
position, standing, sitting and laying, among others; (ii) an estimate of their intention to
perform an action; (iii) whether they are pointing at something; and (iv) an analysis of their
motion when doing collaborative tasks. Skeleton tracking processes depth image data to
determine multiple skeleton joints’ positions on a human body.

The cameras distinguish a human from the background and identify the position of
several features or joints, such as the head, knees, elbows and hands. Once identified, the
software connects the joints into a humanoid skeleton and tracks their position in real-time,
providing the X, Y and Z coordinates for each of the skeleton points. The addition of
depth cameras [62] allows the skeleton tracking system to remove uncertainties between
overlapping or occluded objects or limbs, making the method more robust to different
lighting conditions than a 2D camera-based algorithm [63]. The algorithm used is based on
the Skeleton Tracking SDK by cubemos. It provides fast and highly accurate 2D and 3D
human pose estimation that allows tracking of 18 joints simultaneously (two ankles, two
knees, two hips, two wrists, two elbows, two shoulders, one between the chest and the neck,
one nose, two eyes and two ears). Due to the artificial intelligence algorithms, it can track
up to five people in real-time. Figure 15 shows the skeleton-fitting pose estimation overlaid
on the users. It can detect high-speed movements and estimate a joint location, even when
hidden from the camera. Figure 15c shows that the robot with pose only estimation can
detect when a person raises their arm in the air to ask for assistance.
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(a) (b) (c) 

Figure 15. Three different situations (a–c) where CHARMIE estimates the humans’ pose to further analyse whether the
users require its help, their position, their movement and their intention to act.

The joints tracked by the algorithm also allow the agents to communicate or transmit
information using different gestures. Some technologies like optical flow provide solutions
to track movement between images. This demonstrates the movement from people or
animals, as long as it is in a different direction from the camera’s movement and allows
2D verification of the movement direction. FlowNet2 [64] presents an end-to-end solution
based on convolutional neural networks to estimate optical flow. It uses various methods
that allow estimating movements at both quick and slow speeds. All of the methods
have different purposes, and their combination, despite providing good results, is very
computationally expensive. So, LiteFlowNet [65] introduces a different end-to-end con-
volutional neural network architecture to estimate optical flow. This network, used by
CHARMIE for gesture recognition, uses an optimised neural network structure whose goal
is to have results with the precision of FlowNet, but with a lower computational expense.
In Figure 16, the human agent performs a gesture, from (a) to the (c), where it shows the
palm of the hand to the robot, then closes the fist and brings it to its chest. The robot can
detect different sets of movements that can be configured and associated with a specific
task the user intends the robot to do.

   
(a) (b) (c) 

Figure 16. Optical flow image from a known gesture. From (a–c), the user shows the palm, then closes it and brings it to its
chest. The different colours represent both different moving directions and speed.

Apart from the visual human-machine interfaces, the robot has two more commu-
nication systems. One is through speaking and listening, similar to a human-human
conversation. CHARMIE uses CMU Sphinx tools from Carnegie Mellon University for
speech recognition and Emic 2 Text-to-Speech Module to perform text to speech conversion.
All conversations with the robot must be made using the English language. The most
significant advantage of this method is that the users do not need any prior knowledge
regarding the robot to successfully communicate with it. The robot recognises sequences of
keywords from the human. Even though a robot may not understand the entire conver-
sation from a user, it understands keywords and confirms if the information received is
correct by asking the user if what is understood is the correct answer. Some examples of
keywords are names of its users, names of different rooms, names of objects, and actions.
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The robot’s response may vary according to its perception, location, priorities, whether it
is performing a task or moving somewhere. Every sentence a user says to the robot must
start with the word “CHARMIE”, so the robot knows whether the conversation is towards
it or not. In the video, in Appendix A, it is possible to see CHARMIE introducing himself
and some conversations with users.

The last human-machine interface the robot has is a multimodal user interface. In
environments where there is significant noise level, the user presents difficulties speaking,
or the user cannot make a predefined gesture, this system can be used. A tablet with a
menu lets users select all features that the previous human-robot interactions presented at
the robot’s torso, with the addition of being available in languages other than English.

2.2.5. Object Detection and Subsequent Manipulation

For learning and recognising objects, both healthcare-related and household items,
CHARMIE uses the supervised learning algorithm named YOLO (You Only Look Once) [66].
YOLO is a state-of-the-art, real-time object detection system known for its high-speed and
accuracy. The YOLOv3 [67] algorithm starts by separating the image into a grid. Each
grid cell predicts several boundary boxes around objects that score highly with predefined
classes. Each boundary box has a respective confidence score of how accurate it assumes
the prediction must be and detects only one object per bounding box. The boundary
boxes are generated by clustering the ground truth boxes’ dimensions from the original
dataset to find the most common shapes and sizes. Unlike other models, YOLO looks
at the entire image when testing, so its prediction reflects the image’s global context. It
makes predictions with a single network evaluation, unlike systems such as R-CNN which
requires thousands evaluation systems for a single image. This makes it extremely fast;
more than a thousand times faster than R-CNN and a hundred times faster than Fast
R-CNN. However, YOLO is not ideal to use with models where large datasets may be hard
to obtain. Even with its high speed, YOLO is not fast enough to run on embedded devices
such as a Raspberry Pi. To help make YOLO even faster, the algorithm creators defined a
YOLO architecture variation called Tiny-YOLO. This architecture is approximately 442%
faster than YOLO and can achieve 244 FPS on a single GPU. Since Tiny-YOLO is a more
compact version, this also means that it is less accurate. The architecture that is used in
YOLOv3 is called DarkNet53 [67]. With its 53 layers of convolutions and no max-pooling,
its main job is to perform feature extraction. A BatchNormalization and a leaky RELU
follow each convolution operation. Darknet53 architecture is proved to be an extremely
efficient network regarding object classification. CHARMIE uses Tiny-YOLOv3 architecture
to detect different healthcare-related and household objects. Figure 17 shows some of the
things that the robot has already learnt to detect, like bottles, cans and bags of chips. To
introduce new objects into CHARMIE’s database, CHARMIE records a video of the item,
collecting all the frames. This information is later used to retrain Tiny-YOLOv3.

y

  
(a) (b) 

Figure 17. Two different outputs (a,b) from the YOLO detection algorithm that detect and locate
various pre-trained household objects simultaneously in real-time.
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To grasp the detected objects, CHARMIE uses its redundant manipulator, the robot
arm. Some objects with unusual shapes and whose shape changes, such as a bag of chips,
have different programmed collection algorithms. Nevertheless, for most of the items, the
picking-up system is similar. After detecting the desired object, CHARMIE calculates the
inverse kinematics to place the robot arm and the lifting mechanism in the best position to
collect the object. Then the hand-closing is performed according to the object’s physical
properties. Figure 18 demonstrates an example of picking a can. As stated, the robot
moves its platform and lifting mechanism to best fit the item’s position, as can be seen in
Figure 18a. The arm is moved right next to the object that wants to be manipulated, as can
be seen in Figure 18b, and moving the hand right next to it, as can be seen in Figure 18c. In
this case, it starts by using the thumb as a back wall, as can be seen in Figure 18d, and then
it starts closing the fingers one by one from the index finger to the little finger, as can be
seen in Figure 18e. This movement allows the robot to pick up the can, similar to how a
human picks it up, as can be seen in Figure 18f.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 18. A step-by-step demonstration of CHARMIE’s process of picking the desired item to furtherly be used in
subsequent tasks.
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3. Results

CHARMIE performs a wide range of tasks as a service and assistant robot combining
the four low-level functions previously stated. When developing algorithms to perform
new tasks, the central focus lies mostly on how helpful these are for elderly or healthcare
workers. By aiding both, CHARMIE can provide a higher quality of life for older people.
Some central problems the robot tries to tackle regard tasks: (i) where older people have
a lack of mobility (picking objects from the floor); (ii) where they have a lack of strength
(carrying heavy objects); (iii) that are safety-related (if a person falls and cannot get up);
and (iv) that happen on a day-to-day basis and that may require a lot of energy and include
injury risks. As stated, CHARMIE can perform a wide variety of tasks. Of those, five chores
that encompass different scenarios and different interactions are thoroughly explained.

3.1. Help Me Carry This Bag

One of the most severe difficulties for older people is carrying heavy objects. A
common practice among the elderly is to shop for groceries with higher regularity, which
translates to less weight but more trips to the stores. For now, CHARMIE is only intended
for indoor use, with some exceptions. Thus, groceries-carrying tasks are idealised to receive
the bags at the environment entrance and be further transported to the desired location.
Figure 19 shown all the steps CHARMIE underwent to complete this task. Additionally,
this task can be seen in the video in Appendix A.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 19. A step-by-step demonstration of CHARMIE’s “Help me carry this bag” task. From receiving a task from the first
user, collecting the bag, navigating to the desired location and hand-delivering it to the second user.
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The user starts by initialising the dialogue requesting help from the robot to collect
and transport the grocery bags, as can be seen in Figure 19a. It must indicate where the
robot must transport the loads, and optionally if these must be given to another known
user. After receiving this information, CHARMIE expresses that it is ready to receive
the bag for transportation, and asks the user to place it in its hand, as can be seen in
Figure 19b. The robot detects when the user places the load in its hand through human
pose estimation and confirms it via the force the arm actuators’ must provide, as can be
seen in Figure 19c. Furthermore, the robot starts moving to the delivery location while
performing safe navigation with static and dynamic obstacle avoidance, as can be seen in
Figure 19d. If the robot does not have to deliver the grocery bags to another user, it analyses
the table surface and tries to find an empty spot to drop the bags. In the situation of not
having an open space for the bags, the robot would wait for a user to clarify where the
bags should be placed. If the robot’s task is to hand in the bag to a human user, it searches
for the user when arriving at the desired location. If no user is there to receive it, the robot
tries to place it on the table. Otherwise, the robot moves in the user’s direction and asks if
he/she is available to receive the bag, as can be seen in Figure 19e. If the answer is no, the
robot patiently waits until the user is available. When the user confirms its availability, the
robot extends its arm in the human’s direction and asks the user to collect the bag, as can
be seen in Figure 19f. Afterwards, the robot returns to the initial user to verify whether
there are more grocery bags to transport.

3.2. Can You Find This Item and Bring It to Me

With ageing, older people tend to have more difficulties getting up from a sitting
position. Additionally, with mental health deterioration, there is a tendency for memory
to start failing and forgetting an object’s placement. One of the main chores CHARMIE
performs is to collect things and return them to the user. Some examples of objects might
be medicine boxes, cans, bottles, cellphones and remote controllers. A variation of this task
is when a user does not know the exact location of the object it asks the robot to retrieve. In
the example provided for this task, a scenario is presented where the user is laying in bed,
not feeling very well and needing to drink some water.

The user starts by calling CHARMIE, and upon arrival the robot sees that the person
is laying in bed and stays alert to the task it must do. Through dialogue, the user indicates
that he/she is not feeling very well, and cannot get up, but needs to drink some water. In
this situation, the user can say where the drink is or say the location and the robot must find
it. CHARMIE starts moving towards the kitchen through safe navigation. When arriving at
the kitchen, if the user stated where the drink is, the robot goes directly to that location. If
the user did not define the area, the robot must look around the kitchen searching, starting
with open spaces like the counters, tables and open shelves. After detecting the specified
drink, the robot picks up the object with its redundant manipulators and, if possible, closes
the opened kitchen cabinets. In Figure 18a scenario is displayed where CHARMIE has
various drinks and objects placed on a table, and it must analyse and collect the required
drink. The robot returns to the user and asks if it is available to receive the drink. When
the user is available, the robot extends the arm in the human’s direction, and waits for the
user to collect it through pose estimation. After finishing, the robot asks whether the user
is feeling better and if it needs anything else.

3.3. Check on the Patients

One of the major causes of serious injuries in the elderly has to do with falls. The
reflexes to protect themselves start to degrade, and older people lose balance and movement
capabilities, which may cause serious falls. In situations where the person lives alone, this is
extremely dangerous, since the person is only analysed for potential injuries when someone
goes to their house. One of CHARMIE’s most safety-related tasks consists of patrolling
indoor areas and, through pose estimation, understanding if a person is in danger. The
robot can patrol nursing homes or hospitals at night to check if the patients are laying on
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their beds, lowering the detection time for an older person who fell. CHARMIE can also
check if a person is not on the bed or even sitting down needing some assistance. In cases
where older people live without any health professional, the robot can quickly send an
alert message to the emergency contacts.

In the nursing home patrolling task, CHARMIE uses the known environment mapping
where the patient rooms are defined. By patrolling the bedrooms, the robot starts by very
calmly opening or pushing the door and slowly moving inside the bedroom to not scare or
wake up the patients. As displayed in Figure 20, the robot may encounter various scenarios
when estimating the human’s pose to evaluate patient safety.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 20. The different possible scenarios CHARMIE may encounter when patrolling nursing homes and the respective
pose estimation output. (a) shows an elderly person laying in bed over the covers. (b) shows an elderly person laying under
the covers, covered from the waist down. (c) shows an elderly person laying under the covers, covered from the neck down
with one arm outside the covers. (d) shows an elderly person sitting in bed. (e,f) show an elderly person who fell from the
bed and is laying on the floor.
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The first possible scenario is the detection of a patient laying in bed. However, this
scenario may present some different variations. The first, displayed in Figure 20a, shows
the pose detection of a patient laying on the bed without any covers. The second, shown in
Figure 20b, demonstrates a patient laying in bed but covered from the waist down. The
third, Figure 20c, shows a patient laying in bed but covered from the neck down with
an arm also showing. In the first two cases, the pose estimation algorithm can detect
properly that the user is safely laying in bed, but the third example does not always detect
successfully. Thus, when the robot cannot estimate the pose, it analyses the bed height
variation to differentiate between the patient laying in bed and the bed being empty. If the
patient is not laying in bed and no pose estimation is made inside that room, two different
situations may occur, the patient is either missing or sleeping deep inside the covers. If the
patient is laying on the bed, the robot calmly leaves the room and slightly closes the door.
By analysing the bed height variation, should it detect there is no patient in the room, it
sends an emergency warning to the healthcare workers that a patient might be missing.
Another scenario results when a patient is sitting on the bed, Figure 20d, and requires
non-emergency help. In this case, CHARMIE also summons a healthcare professional but
in a different way to the first case. The last scenario displays the worst case: an elderly
person has fallen out of bed and cannot get up, as can be seen in Figure 20e,f. If CHARMIE
detects this scenario, it immediately sends an emergency message to all of the healthcare
professionals. This recognition process is repeated throughout all of the rooms in the
nursing home. For an older person who lives by themselves, this recognition system can
be temporarily programmed.

3.4. Store the Groceries” or “Clean up the Room

CHARMIE can also execute some tasks regarding cleaning and tidying up. Even
though these tasks do not require carrying heavy loads, they involve a different physical
restriction that may end in injury. When tidying a room, older people may have to place
themselves in positions, such as picking objects from the floor or stretching to reach the top
or bottom shelves that may lead to accidents. With the goal of helping the elderly, and at
the same time freeing healthcare workers to focus on more critical patient-related chores,
CHARMIE can analyse these environments that need to be cleaned. By perceiving which
objects are out of place, the robot can collect and place those in areas previously indicated.
To describe this task, two different variations are presented.

To store some groceries laying on the kitchen table, the correct places for every object
need to have been previously indicated to the robot. After the bags have been unloaded,
the robot analyses the various things it must store. If an object is not in the robot’s database,
CHARMIE asks the user the correct spot to place the item. When the robot is storing this
product, it captures images from different angles to later add to its training data. The
remaining known products are packed in the correct place using CHARMIE’s redundant
manipulators. If the robot comes across a full shelf when attempting to place an item, the
robot returns the item to the kitchen table and informs the user.

When cleaning a specific room, the robot starts by analysing the environment, extract-
ing all the information regarding all objects on the floor or tables. With its depth image, the
robot can differentiate objects from flat surfaces and save their location. Similarly to the
storing groceries example, the robot has to already know the object’s place. Contrary to the
groceries examples, the places where the items go are varied height-wise, which forces the
robot to adapt its height to successfully manipulate the out of place objects.

3.5. Follow Me” and “Lay the Table

Another beneficial task of a service robot is to follow a user who needs help performing
a task. At times, CHARMIE might be in a different compartment than where the user needs
it to complete the next job. Therefore, to ease the whole process, the user might request
CHARMIE to follow him/her to the new room. This chore is particularly useful in large
indoor environments where following a user is significantly more efficient than looking for
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the worker. In the following process, the robot can avoid static and dynamic obstacles or
even calculate a new trajectory when it realises it cannot pass.

In Figure 21, extracted from the video in Appendix A, all of the steps regarding the
“Follow Me” task can be seen. The user starts by asking the robot to follow him/her to
navigate to the compartment where help is needed, as can be seen in Figure 21a. The
robot uses both the 2D LiDAR and the RGB-D camera to lock the user it is following, as
can be seen in Figure 21b. During the process, the robot can navigate narrow spaces and
even avoid collisions with humans that pass between the followed user and CHARMIE,
as can be seen in Figure 21c,d. Almost at the end of the route, a new obstacle comes
up, the robot detects that the followed user has an insuperable barrier similar to a wall
(represented by the black cardboard demonstrated in the video in Appendix A that the
robot cannot surpass, as can be seen in Figure 21e. Thus the robot, using the environment’s
map, calculates an alternative route to get back to its user, as can be seen in Figure 21f. In
the return path, CHARMIE finds novel obstacles that it can successfully overcome.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 21. A step-by-step demonstration of CHARMIE’s “Follow Me” task. From receiving the task to navigating behind
the human user while avoiding static and dynamic obstacles that cross the path between the robot and the user. When the
robot cannot continue following the user, it recalculates a new trajectory.
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As an example of a collaborative duty, the robot can lay the table with a human user.
The methodology used is similar to the storing/cleaning tasks but with the collaboration
twist. When this task is selected, CHARMIE knows that it needs five items to lay on the
table: a plate, a fork, a spoon, a knife and a cup. The robot analyses the objects already laid
on the table by a worker or a human user. Furthermore, it complements the user’s work by
signalling which items it will distribute while analysing whether the human user forgot
one item on a previously laid set.

4. Conclusions

A description of hardware and software solutions for healthcare and domestic collab-
orative service and assistant robot, CHARMIE, is presented in this article. Additionally,
results from the development of the initial prototype and the first set of user trials in a
controlled laboratory setting focusing on developing an assistive care robot for older adults
are described. The focus of the chores presented displays several different scenarios where
CHARMIE can directly impact the quality of life of older people, mainly regarding physical
safety, but also concerning social interactions and mental health. The majority of the robot’s
tasks designed for geriatric care involve fall detection and prevention, such as patrolling
through nursing or domestic homes and picking up objects from the floor. In addition
to the tasks demonstrated, CHARMIE can also work as a social company robot, asking
questions throughout the day, allowing the user to play some games in its multimodal
user interface and reminding the users of their schedules. Even though most tasks mainly
aid the elderly, these chores can be adapted to be more oriented to healthcare workers or
people with reduced mobility.

From a different perspective, due to the difficulties brought by the COVID-19 pan-
demic and its associated lockdowns, robots such as CHARMIE provide a safer solution to
overcome this disease’s challenges. Robots provide a superlative solution, since the virus
cannot replicate itself in a robot as it does in a human and drastically reduces person-to-
person contacts. Elderly care facilities and all other healthcare-related environments are
particularly at risk of heavy breakouts since these encompass a very vulnerable population.
Without a robotic solution, residents without the virus inside such facilities face a higher
chance of contamination, which may happen through asymptomatic healthcare profession-
als. In addition to all of the social and mental health tasks social robots can perform, service
and assistant robots such as CHARMIE can provide more direct help not only to patients,
but also to healthcare professionals in a wide range of healthcare facilities. The longevity of
the virus has dictated that all healthcare workers undergo very long working shifts, with
low sleeping schedules, and in many situations being away from their families. This can
lead to healthcare workers reaching a state of high fatigue and burnout in overburdened
health systems, which can be eased if some of the tasks are performed by healthcare robots
such as CHARMIE. Some examples of tasks are: transporting goods, providing patients
information, patrolling the facilities, and sending an alert when any unexpected patient
behaviour is detected. Additionally, due to the COVID-19 pandemic, the desired tests
meant to be performed on real world environments, in this case in two nursing homes,
two domestic homes and one hospital, initially scheduled for 2020 had to be indefinitely
postponed as mandated by the national public health committee.

As short-term and middle-term objectives, novel concepts and tasks are projected to
be developed and implemented in CHARMIE. The robot can successfully detect falls and
prevent some scenarios where older people might fall by picking up items from the floor.
However, one of the most significant difficulties regarding movement and mobility of older
people happens when trying to get up from a sitting position, which is more aggravated
in single-person households. This scenario happens several times during the day: getting
out of bed, after a meal, when getting up from the sofa where the elderly do not have
enough strength or apply too much force and lose balance, which results in dangerous
falls. The goal is to provide active help to older people when trying to stand up. Another
goal is to increase the robot’s working area in buildings with more than one floor. Since

76



Appl. Sci. 2021, 11, 7248

these healthcare facilities are commonly prepared for people with reduced mobility or
wheelchairs, it is uncommon to have rooms that can only be accessed through stairs. Since
the motion platform cannot overcome stairs, the goal is to create a system that allows
the robot to successfully move between floors using elevators. The map would consist
of all the floors in the building, and the robot must move to the elevator to switch floors.
However, this task encompasses many steps that are still being worked on, such as calling
the elevator, pressing the correct buttons and entering and leaving without colliding with
other users. In order to benchmark all of these different tasks, it is intended to apply for
RoboCup@Home participation. The CHARMIE project had already done so in 2017, as the
video in Appendix A is the qualification video, part of the necessary qualification material.
The video demonstrates CHARMIE performing some of the tasks previously described.

The desirable long-term goals for the CHARMIE project can be divided into two
categories. From a technological perspective, it is intended to create the necessary hardware
and software solutions to transport broader wheeled objects such as hospital beds and
wheelchairs that may have patients. It is extremely challenging to move these wheeled
platforms with human patients on top. The robot must adapt its omnidirectional way
of motion to the wheeled object, detect obstacles further away and analyse the patient
pose. All this must be performed while considering all the strong safety measures that
come with patient transportation. Additionally, as previously stated, it is intended to use
machine learning algorithms for a wide range of tasks allowing the robot to learn how to
perform and improve chores via observation and trial-and-error direct interaction with the
environment. However, these household and healthcare tasks usually consist of long-term
planning, high-dimensional continuous action-space, simulation to real-world transition
problem and, in most cases, incomplete information. Such issues require highly complex
reinforcement learning algorithms to be solved. This methodology enables adaptative
learning, using reinforcement learning based service and assistive elderly care chores like
those previously described. From a global perspective, it is planned to start thoroughly
testing CHARMIE in real healthcare and domestic environments. All functions, such as
map building, self-localisation, obstacle detection and avoidance, human-robot interaction,
object detection and manipulation, will be executed in a hospital, two nursing homes, and
two domestic houses. This will allow a qualitative and quantitative evaluation from the
developers and users of how the robot can perform in such environments. The final results
will comprise a fitting framework for a socially assistive robot for end-to-end chores whose
final goal is to enhance all its users’ quality of life.
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Appendix A. Video Link

Link to the MinhoTeam qualification video for RoboCup@Home 2017 in Nagoya,
Japan. It displays some of the tasks described in this article and all of CHARMIE’s func-
tionalities: https://youtu.be/n0ZariVsIj0 (accessed on the 2 April 2021).
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Featured Application: The proposed algorithm for painting large objects based on a nine-axis

UR5 robotic manipulator can be applicable in many automobile repair shops where paint jobs

can be performed. With the help of a nine-axis UR5 robotic manipulator with the proposed al-

gorithm, vehicles can be automatically painted with the least amount of human manual labor.

Simultaneously, the quality and efficiency of the paint jobs can be drastically improved, since

the UR5 robot maintains its consistency, accuracy, and proficiency while conducting paint jobs.

Abstract: An algorithm for automatically planning trajectories designed for painting large objects is
proposed in this paper to eliminate the difficulty of painting large objects and ensure their surface
quality. The algorithm was divided into three phases, comprising the target point acquisition phase,
the trajectory planning phase, and the UR5 robot inverse solution acquisition phase. In the target
point acquisition phase, the standard triangle language (STL) file, algorithm of principal component
analyses (PCA), and k-dimensional tree (k-d tree) were employed to obtain the point cloud model
of the car roof to be painted. Simultaneously, the point cloud data were compressed as per the
requirements of the painting process. In the trajectory planning phase, combined with the maximum
operating space of the UR5 robot, the painting trajectory of the target points was converted into
multiple traveling salesman problem (TSP) models, and each TSP model was created with a genetic
algorithm (GA). In the last phase, in conformity with the singularities of the UR5 robot’s motion space,
the painting trajectory was divided into a recommended area trajectory and a non-recommended
area trajectory and created by the analytical method and sequential quadratic programming (SQP).
Finally, the proposed algorithm for painting large objects was deployed in a simulation experiment.
Simulation results showed that the accuracy of the algorithm could meet the requirements of painting
technology, and it has promising engineering practicability.

Keywords: genetic algorithm; principal component analyses; standard triangle language; traveling
salesman problem; trajectory planning

1. Introduction

In recent years, UR5 robots have been widely popularized in industrial production
fields such as painting, assembly, and micromanipulation [1]. In the above-mentioned
fields, the painting process is the integral manufacturing procedure for automatically
coating large objects, and it is one of the essential technologies for improving the surface
quality of painted objects, which can then offer better performances under different working
conditions [2–4]. Painting feasibility and trajectory planning are critical in the painting field.

To paint large objects, some engineers tried to mount UR5 robots on a mobile platform
to enlarge the workspace of the UR5 robots [5,6], while other engineers tried to widen
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the workspace by changing the structure of the UR5 robots [7]. However, the method of
changing the structure of the UR5 robots entails enormous cost, and the UR5 robot with
changed structure offers low adaptability. Thus, this paper proposes a UR5 robot which is
mounted on an zyz three-axis motion platform to achieve the painting of large objects.

A well-designed trajectory can improve painting efficiency. Bureerat, S. et al. employed
the MRPEIL-DE algorithm to optimize the trajectory of a six degree-of-freedom (DOF) UR5
robot [8]. Yin, S. et al. utilized mechanical learning methods to devise an energy-saving
trajectory for industrial UR5 robots [9]. Serralheiro, W. et al. proposed employing a non-
based trajectory planning method for time-energy optimization of a completely wheeled
mobile UR5 robot [10]. Kazim, I.J. et al. compared improving the artificial potential field
(APF) by the traditional particle swarm optimization (PSO) algorithm and the serendipity-
based PSO (SBPSO) algorithm to control the path of a universal robot UR5 with collision
avoidance [11]. Kazim, I.J. et al. utilized differential evolution (DE) optimization with the
MATLAB toolbox, which has an applied robot operating system (ROS), to quantify the
contour tracking performance of a collaborative universal manipulator robot (UR5) [12].
Al-Shanoon, A. et al. proposed a novel reliable framework for deep ConvNet combined
with visual servoing using a single RGB camera [13]. Balanji, H.M. et al. proposed a novel
calibration framework based on a single camera and computer vision techniques using
ArUco markers [14]. Vivas, A. et al. designed the implementation of the control of a real
UR5 robot from Matlab/Simulink using ROS [15]. Araki, R. et al. proposed a 6D pose
estimation method for an object from a single RGB image for a robotic grasping task [16].

Nonetheless, most of the above-mentioned algorithms neither consider the singulari-
ties of the kinematics of the UR5 robot’s joints nor meet the requirements of the painting
process. Therefore, this paper proposes a painting algorithm which can generate a painting
trajectory satisfying the painting of large objects. The painting algorithm employs the
standard triangle language (STL) file, algorithm of principal component analyses (PCA),
and k-dimensional tree (k-d tree) to create a digital model of the object to be painted. The
digital model is converted into multiple traveling salesman problem (TSP) models, and
each TSP model is created with a genetic algorithm (GA). The painting trajectory offers
high precision and efficiency.

2. Construction of a Point Cloud Model of the Target Object

STL files are popular in computer graphics application systems, and their file formats
are simple and widely harnessed in machine vision and 3D reconstruction [17,18].

2.1. STL File Parsing

A STL file consists of multiple triangles and can be divided into the American Standard
Code for Information Interchange (ASCII) format and binary format as per the storage
format. The STL file obtained in this paper was suitable for ASCII. The analysis of a STL
file in the ASCII format is shown in Figure 1.

Solid<name> 
Facet normal: ni,nj,nk 
Outer loop 
Vertex  v1x,v1y,v3z 
Vertex  v1x,v1y,v3z 
Vertex  v1x,v1y,v3z 
End loop 
End facet 
........ 
End solid<name> 

Figure 1. Parsing of a STL file in ASCII format.
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In Figure 1, ηi, ηj, and ηk represent the x, y, and z components of the triangle patch
normal vector, respectively; vix, viy, and viz represent the x, y, and z coordinates of the i-th
triangular patch, respectively.

2.2. Filling Triangles

The STL file only contains the coordinates of the vertices of the triangles, and the
coordinates of all points in the model cannot be obtained. To obtain the full 3-dimensional
information of the model, the triangles must be filled. This paper utilized the depth-first
search (DFS) to fill the triangles. The triangle is represented by S. The center of the triangle
is represented by o. Lengths of the 3 sides of the triangle is represented by l1, l2, and l3. The
triangle S is later separated into 3 smaller triangles S1, S2, and S3. The algorithm model
and the main flowchart of the filling process are shown in Figures 2 and 3.

Figure 2. The model of the algorithm that fills triangles inside an STL file.

Filling process starts

The triangle  is inserted into the empty 
stack

< minimum 
height ?

Is the stack empty?

Filling Process 
ends

Coordinates of are 
recorded

, , and  are inserted 
into the stack

An empty stack for 
the purpose of 

containing triangles 
is established

The triangle  at the bottom of the 
stack is obtained and the triangle  

is taken out of the stack

 The minimum distance 
from  to the 3 sides of the 

triangle 

No, the stack is not empty

Yes, the stack is empty

No

Yes

 

Figure 3. The filling process of the DFS algorithm.
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The stopping condition of DFS recursion is that the minimum height corresponding to
the three sides of the triangle is less than the specified minimum height. This requirement
is shown in Equation (1), where the minimum triangle height hmin is given.

S > max(l1, l2, l3) · hmin/2 (1)

The area of the triangle in Equation (1) is difficult to directly calculate. Therefore,
Heron’s formula, which is shown in Equation (2), is introduced, and the area is calculated
from the lengths of the sides. The recursive stop condition is shown in Equation (3).

S =
√

ε(ε − l1)(ε − l2)(ε − l3)
ε = (l1 + l2 + l3)/2

(2)

S ≥ 2 · max(l1, l2, l3) · hmin (3)

The initial vertices are randomly selected as (10, 10, 0), (520, 100, 0), and (260, 410, 0),
and hmin equals 0.05. The filling results are shown in Figure 4a.

Figure 4. (a) The triangle filling results; (b) the improved triangle filling results.

However, there are a large number of unfilled lines in Figure 4a, and the filling effect
is not satisfactory. After the filling process had been analyzed, it was found that the
point filling method was harnessed in the filling, which could result in the points on the
straight lines from the center of the triangle to the vertices of the triangle not being filled. If
the number of filling points needs to be increased, the coordinates of the recorded point
during the filling process can be changed into the coordinates of each point above the line
connecting the recorded point and the vertex of the triangle with the same initial value
condition and iteration termination condition. The final filling result is shown in Figure 4b.
Compared to Figure 4a, Figure 4b is better filled, but the time taken to fill Figure 4b was
much longer than to fill Figure 4a. If the accuracy is not high or the time is short, point
filling is recommended. For high-precision conditions, linear filling is recommended.

2.3. Determining the Normal Vector of a Target Point on the Painting Trajectory

In order to ensure that the painting area is uniform during the painting process, it is
necessary to ensure that the axis of the end of the spray gun coincides with the normal
vector of the target point on the painting trajectory. Thus, the normal vectors of the target
model must be obtained. As is shown in Figure 3, the target points on the painting trajectory
can be divided into two types, which include the trajectory points obtained through the
filling algorithm and the vertices of the original triangle.

The points obtained by filling are still coplanar with the original triangles. The normal
vectors of the points obtained by filling can be determined with the normal vector of the
plane. The normal vectors of the triangles can be directly extracted from the STL file.
However, for the normal vectors of the vertices of the original triangle, there is a common
vertex of multiple triangles. Ergo, the normal phase of the plane cannot be employed
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instead of the normal phase of the points. In this paper, local plane fitting and principle
component analysis (PCA) estimation methods were harnessed to create the normal vectors
of the target points [19–21]. In order to acquire the target point field conveniently, the
k-d tree algorithm was harnessed to store the coordinates of the target points [22]. The
step-by-step algorithm is shown in Figures 5 and 6.

1. A local point that is less than r from the target point 
is taken.  
2. A sphere is created by employing the local points 
with a target point as the origin of the 3 dimensional 
Cartesian System and the coordinates of a local point 
with the target point being the origin are x’, y’ and z’. 
3. The tangent plane is fit with the local points. On the 

tangent plane: 2 2 2 1x y zn n n+ + = . 

4. The minimum sum of the squares of the distances 
between the normalized local points and the tangent 
plane is taken as the objective function. 
5. Feature matrix S is constructed as per the objective 

function: 
=

 

6. The eigenvector corresponding to the minimum 
eigenvalue of the S matrix is taken as the normal 
vector of the points.

Figure 5. The PCA method to estimate the target point normal vector.

1. The variance of the target point set O in X, Y, Z 
dimensions is calculated. 
2. The dimension k with the largest variance and the 
median p under the dimension are selected. 
3. k, p are harnessed to divide O into O1, O2. 
4. If the number of element values in the set O1, O2 is 
greater than 1, the set O1, O2 is divided repeatedly. 

Figure 6. The k-d tree stores cloud data.

In the actual processing procedure, the normal vector of the target model should take
its external normal phase, and the external normal vector of the model can be determined

by Equation (4), where
¯
p is the center of all target points, and ||x||2 is the second norm of

the vector x.

n =

{
n|‖(p + n)− p‖2 ≥ ‖(p − n)− p‖2
−n|‖(p + n)− p‖2 < ‖(p − n)− p‖2

(4)

2.4. Determining the Pose of a Target Point on the Trajectory

In the actual painting process, the pose matrix is often deployed to describe the rotation
of the target point in space. During the inverse kinematics calculation of the UR5 robot,
the pose of the target point needs to be described by the matrix, and Rodrigues’ rotation
formula can determine the pose of the target point by the axis direction of the target point.

The diagram of Rodrigues’ rotation formula is shown in Figure 7, where X1, Y1, and
Z1 represent the three axes, with O being the origin of the 3-dimensional Cartesian system
after rotating.
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Figure 7. The schematic diagram of Rodrigues’ rotation formula.

The rotation matrix R is shown in Equation (5),

E cos θ + (1 − cos θ)rT × r + sin θ ×

⎡⎣ 0 −rz ry
rz 0 −rx
−ry rx 0

⎤⎦ (5)

where E represents the third-order identity matrix, and θ represents the angle created by
vectors n and n0. In Equation (5), r is the vector product of vectors n and n0; n0 = [0 0 1]T,
and n is the normal vector of the point.

2.5. Compression of the Data of Target Points

The design of the painting process parameters ensures that the end of the spray gun
will produce a circle with a radius of r at a specified distance. During the painting process,
it is necessary to ensure that the trajectory coverage during painting is 0.4. The painting
model is shown in Figure 8, and the coverage of Figure 8, denoted by p, is shown in
Equation (6).

p =
4r2 · arccos(d/2r)− d

√
r2 − d2/4

2πr2 (6)

Figure 8. The painting model.

When the painting trajectory is executed, not all target points are to be painted. Only
the path of key points should be painted. The distance between key points should meet the
requirements of painting uniformity. In Figure 8 and Equation (6) d is employed to reduce
the time and space complexity of the trajectory planning. The compression formula for the
data points is shown in Equation (7).

k = f loor
(

d/
(√

3
))

Px = round(Px/k) · k
Py = round

(
Py/k
)
· k

pz = round(pz/k) · k

(7)
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where Px, Py, and Pz represent the x-y-z coordinates of the target points in the point cloud,
floor represents the floor function, which takes as input a real number q, and gives out as
output the greatest integer less than or equal to q, and round represents the round function,
which rounds off a numeric value to its nearest integer.

3. Nine-Axis UR5 Robot Forward Kinematics Model

The space that the UR5 robot covers is limited, and large-size objects may not be
painted at once. When an area that needs to be painted is outside the working space
of the UR5 robot, the D-H parameters of the UR5 robot must be changed, or auxiliary
equipment must be added to help with the painting. The former is costly. Changing joints
is not conducive to the popularization of UR5 robots. The proposed 6-DOF UR5 robot is
installed on a 3-axis motion platform that moves horizontally, laterally, and vertically to
assist painting. The 3D drawing of the UR5 robot is shown in Figure 9. The 9-axis UR5
robotic manipulator includes the 3-axis motion platform that has 3 prismatic pairs and the
UR5 robot that has 6 revolute pairs. The 6-DOF UR5 robot selected in this paper is a UR5
robot, which is shown in Figure 10.

 

Figure 9. 3D drawings of the UR5 robot.

 
Figure 10. The UR5 robot.

87



Appl. Sci. 2022, 12, 7219

The pose of the actual UR5 robot end T is shown in Equation (8).

T = Trans(tx, ty, tz)Rot(x, π)TrobotTtoolTdis

Trans(tx, ty, tz) =

⎡⎢⎢⎣
1 0 0 tx
0 1 0 ty
0 0 1 ts
0 0 0 1

⎤⎥⎥⎦

Rot(x, π) =

⎡⎢⎢⎣
1 0 0 0
0 cos π sin π 0
0 − sin π cos π 0
0 0 0 1

⎤⎥⎥⎦
(8)

in which tx, ty, and tz represent the movement of the motion platform along the x, y, and z
axes, respectively, and Trans represents the movement operator. Rot represents the rotation
matrix of the x-axis. Ttool, which is shown in Figure 11, represents the pose of the end-
effector relative to its installation center. Tdis, which is also shown in Figure 11, represents
the end fixture of the UR5 robot’s position. Ttool is determined by the structure of the
end-effector, and Tdis is determined by the parameters of the end fixture of the UR5 robot’s
position. The UR5 robot system has 9 axes which are described in Figure 11. Axes 1 to 6 are
the 6 joints of the UR5 robot. Axes 7 to 9 are the three-dimensional Cartesian coordinate
system of the motion platform.

 

 

Figure 11. Ttool, Tdis, and the 9 axes of the UR5 robot system.

88



Appl. Sci. 2022, 12, 7219

Figure 12a is the structural diagram of the 6-DOF UR5 robot composed of 6 revolute
pairs, represented by 1, 2, 3, 4, 5, and 6 and 0 represents the end fixture of the UR5 robot.
In order to analyze the pose change of the UR5 robot’s end fixture coordinates relative to
the end-effector, the D-H model is harnessed to establish the kinematics forward solution
model of the UR5 robot.

 
(a) (b) 

Figure 12. (a) The schematic structure of the UR5 robot (b) detailed explanation of θi, di, ai, and αi.

The UR5 robot’s pose change matrix in the D-H model is shown in Equation (9).

i−1
i T = Rot(z, θi)Trans(0, 0, di)Trans(ai, 0, 0)Rot(x, αi)

Rot(z, θi) =

⎡⎢⎢⎣
cos θi sin θi 0 0
− sin θi cos θi 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (9)

In Equation (9), θi is the angle for which xi−1 spins around zi to become xi; di is
the distance between xi−1 and xi along zi; ai is the distance between zi and zi+1 along xi,
and αi is the angle for which zi spins around xi to become zi+1. Rot(z, θi) represents the
rotation matrix of the z-axis; θi, di, αi, and ai are shown in Figure 12b. i−1

i T is shown in
Equation (10), where s represents the sine function and c represents the cosine function.

i−1
i T =

⎡⎢⎢⎣
cθi −sθicαi sθisα aicθi
sθi cθicαi −cθisα aisθi
0 sαi cαi di
0 0 0 1

⎤⎥⎥⎦ (10)

Trobot, which represents the pose of the UR5 robot, is obtained via Equation (11). The
UR5 robot’s pose should satisfy Equation (12), and the D-H parameters of the UR5 robot
are shown in Table 1.

Trobot =
6

∏
i=1

i−1
i T (11)

Trans(x, y, z)−1 · Rot(x, π)−1 · T · Ttool
−1 =

6
∏
i=1

i−1
i T

(12)

Table 1. The D-H parameters of the UR5 robot.

i θi di/mm αi αi/mm

1 −2π to 2π 89.2 π/2 0
2 −2π to 2π 0 0 425
3 −2π to 2π 0 0 392.3
4 −2π to 2π 109.2 π/2 0
5 −2π to 2π 94.7 −π/2 0
6 −2π to 2π 82.3 0 0
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4. The Inverse Solution Model of Kinematics of the 9-Axis UR5 Robot

Nevertheless, since the system that controls the UR5 robot and the system that controls
the motion platform are separated, communication between the systems may cause prob-
lems, such as delays and errors. In order to improve painting accuracy, the motion platform
cannot be moved frequently. During the painting process, each time the motion platform is
moved, the UR5 robot paints an area. After the painting is completed, the motion platform
is moved again. The recommended operating space of the UR5 robot is shown in Figure 13.

Figure 13. The working area of the UR5 robot.

The recommended working area in Figure 13 represents the feasible area recom-
mended by the UR5 robot. The area between the maximum working area, which is
represented by Max. working area in Figure 13, and the recommended feasible area
represents the non-recommended feasible area that the UR5 robot may not reach. The
non-recommended area represents the singularity of the UR5 robot. The non-recommended
area takes the largest cylinder contained in the green area in Figure 13 as the largest area
for each painting procedure.

However, the recommended area in Figure 13 is not a complete ball, and the cylindrical
area with a diameter of 151 mm is not recommended. If this area is removed, the volume of
the largest cylinder obtained is 0.25 times that without removal. Therefore, the platform
will be moved slightly. In order to move the platform as little as possible, the green area is
assumed to be a complete ball when the maximum cylinder is calculated.

In order to prevent the UR5 robot from colliding with the platform, it is necessary to
keep the end of the UR5 robot below its installation center during the movement of the
UR5 robot. The area under the side wall of the machine is taken as the effective area. The
volume of the cylinder included in Figure 13 is shown in Equation (13).

V = π(rcosθ)2 · (163 − rsinθ) (13)

where r, θ, and V represent the maximal length of the UR5 robot, the radian of the inter-
section of the cylinder, and the maximum machining space of the UR5 robot, respectively.
When θ equals −0.54 rad, the volume of the cylinder is the largest. At this time, the
cylinder has a radius of 727 mm and a height of 602 mm. Due to the existence of the non-
recommended area, the UR5 robot inverse kinematics model is divided into a recommended
area inverse kinematics model and a non-recommended area inverse kinematics model.
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4.1. Inverse Solution Model for Recommended Regions

The three joint axes of the UR5 robot, joint axes 2, 3 and 4, which are shown in
Figure 14, are parallel, and their spatial structure satisfies the Pieper criterion. The closed-
form solution method can be harnessed to solve the angular sequence of the UR5 robot
joint under the target pose constraints.

 

Figure 14. The axes of the UR5 robot.

Equation (14) determines the pose of the end-effector of the UR5 robot.

6



i=1

i−1
i T = (Trans(tx, ty, tz)Rot(x, π))−1 · T · (Ttool · Tdis)

−1 =

⎡⎢⎢⎢⎣
nx ox ax x

′

ny oy ay y
′

nz oz az z
′

0 0 0 1

⎤⎥⎥⎥⎦ (14)

The main idea of the closed-form solution is creating the constraint equation estab-
lished by matrix changes. The constraint matrix of the UR5 robot, which is shown in
Equation (15), is established in accordance with Equation (11). The third row of the left and
right sides of Equation (15) is expanded to establish Equation (16). Equation (16) can be
regarded as the equation set of θ1, θ5, and θ6.

The procedure for finding the values of θ2, θ3, and θ4 is similar.

L = (0
1T−1)Trobot =

6

∏
i=2

i−1
i T = R (15)

⎡⎢⎢⎣
cθ6sθ5
sθ6sθ5

cθ5
d2 + d3 + d4 + d6cθ5 + a5sθ5 + a6cθ6sθ5

⎤⎥⎥⎦
T

=

⎡⎢⎢⎣
nycθ1 + nxsθ1
oycθ1 + oxsθ1
aycθ1 + axsθ1
ycθ1 + xsθ1

⎤⎥⎥⎦
T

(16)

By employing Equations (15) and (17), the result can be obtained in Equation (18),

L = (0
1T−1)0

6T(4
5T−1)(5

6T−1) =
4

∏
i=2

i−1
i T = R (17)
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R =

⎡⎢⎢⎣
cθ234 0 −sθ234 a3 · cθ23 + a3 · cθ2 + a4 · cθ234
−sθ234 0 cθ234 −a3 · sθ23 − a3 · cθ2 − a4 · cθ234

0 −1 0 d2 + d3 + d4
0 0 0 1

⎤⎥⎥⎦ (18)

where θi1i2···in is defined in Equation (19).

θi1i2···in =
n

∑
j=1

θij (19)

In Equation (18), θ234, θ23, and θ2 can be acquired by the fourth column of R in
Equation (17); θ2, θ3, and θ4 can be obtained afterwards. In Equations (16) and (18), s
represents the sine function and c represents the cosine function. Nonetheless, the solution
involves a large number of inverse trigonometric functions, and the range of the angles
within which the UR5 robot’s joints move is −2π to 2π, which results in multiple solutions.
Therefore, the solution with the smallest Euler distance from the initial joint angle sequence
is selected.

4.2. The Inverse Solution Model for Non-Recommended Regions

In a non-recommended area, the UR5 robot may not be able to achieve certain poses.
It is necessary to move the motion platform to match the position of the UR5 robot. Then,
the inverse solution model of the manipulator can be changed to obtain the minimum
joint rotation radian and the number of movements of the manipulator’s motion platform
under posture and pose constraints. This problem is a nonlinear optimization problem with
constraints. Sequential quadratic programming (SQP) is an iterative method for constrained
nonlinear optimization. When the input value is close to the real solution, the algorithm
has a second-order convergence speed and can quickly solve the target solution [23,24].

4.2.1. The Objective Function and Constraints

In the process of solving the inverse kinematics, in order to avoid singularities, the
platform is allowed to move slightly. The number of movements of the platform and the
total arc of the UR5 robot joint give the objective function, which is shown in Equation (20).

f =

√√√√i=6

∑
i=1

(θi
r − θi)

2 + Kd

(
(xr − tx)

2 +
(
yr − ty

)2
+ (zr − tz)

2
)

(20)

where θi
r and θi are the actual joint curvature and the starting point arc of the UR5 robot.

The target point Kd represents the number of movements of the platform; xr, yr, and zr

represent the actual moving distance.
The error es is allowed in the actual working situation. The constraint condition should

be that the Euler distance between T and the target pose T’ is less than es, which is shown
in Equation (21). √√√√j=3

∑
j=1

(
0
6T j4 − 0

6T
′
j4

)2
− es ≤ 0 (21)

During the painting process, an error es’ between the end axis of the spray gun and
the target point axis is allowed. The pose constraints are shown in Equation (22).∣∣∣∣arccos

(
n · n0

|n| · |n0|

)∣∣∣∣ < es
′

(22)

where n is the normal direction of T to the z axis, and n0 is the normal direction of T’ to the
z axis.
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4.2.2. The Solution Process of the SQP Algorithm

The SQP algorithm decomposes the problem into the quadratic programming (QP)
sub-problem, obtaining the descending direction d by solving the current angle sequence θk
in the QP problem and updating θk+1 via d until the Karush–Kuhn–Tucker (KKT) condition
is satisfied or the maximum number of iterations is reached. The specific solving process of
the algorithm is described below.

(1) The Lagrange function L(θk, λ) of the current angular sequence θk is constructed,
and the expression of L(θk, λ) is shown in Equation (23).

L(θk, λ) = f (θk) + λg(θk) (23)

where λ is the Lagrangian multiplier, and λ ≥ 0.
(2) The descending direction d of the current angular sequence θk is obtained. Equation (23)

is converted into the solution to d, which is shown in Equation (24).

mind ∇ f (θk)
Td + dT Hkd

2
st : g(θk) +∇g(θk)

Td ≤ 0
(24)

In Equation (24), Hk represents the Hassel matrix of the Lagrangian function L(θk, λ).
(3) The angle sequence in which θk+1 equals θk plus d is updated, and whether the result

of the solution satisfies the KKT condition or reaches the maximum number of iterations is
determined. If the KKT condition is satisfied, the iteration is stopped. Step 2 is repeated if
the KKT condition is not satisfied. The KKT condition is shown in Equation (25) [25].

∇ f (θk) + λg(θk) = 0
λ ≥ 0

g(θk) = 0
λg(θk) = 0

(25)

In the KKT condition, the third condition means that the result of the solution satisfies
the constraint. If g(θk) equals 0, the KKT condition becomes �f (θk), which equals 0. If g(θk)
is smaller than 0 and λ equals 0, the KKT condition also becomes �f (θk), which equals 0.

5. The Painting Trajectory

During the painting process, not only should the trajectory of the motion platform be
planned, but the trajectory of the UR5 robot’s movement should also be planned. During
the painting process, the posture of the UR5 robot end is shown in Equation (26).

Trans(x, y, z) · Rot(x, p) · Trobot = T · Tdis
−1 · Ttool

−1 (26)

Since Rot(x, π) only affects the directions of the x-axis and z-axis of the 3-dimensional
Cartesian system of the UR5 robot system, it does not change the range of the UR5 robot’s
operating space. Equation (26) can be transformed into Equation (27).

Trans(x, y, z) · Trobot
′
= T · Tdis

−1 · Ttool
−1 (27)

where T’UR5 robot equals Rot(x,π)·TUR5 robot.

5.1. The Trajectory of the Motion Platform

When the size of the object to be painted exceeds the maximum painting area of the
UR5 robot, the auxiliary movement of the motion platform is required to complete the
painting. During the painting process, the motion platform is moved to bring the UR5
robot close to the target area, and the UR5 robot paints the area. After painting, the motion
platform is moved again, and the UR5 robot paints another area. Then, the trajectory
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planning of the motion platform is optimized by taking the least number of movements of
the motion platform as the objective function.

Because the UR5 robot’s permitted painting space is a cylinder and the height of the
painted object is generally less than the maximum height of the painting space, the model
can be projected onto the xy plane. The model can be transformed to cover all target points
with the fewest circles.

5.1.1. The Minimum Envelope Rectangle of the Target Points

Since the number of target points is large, in order to simplify the calculation, a
rectangle enveloping the target points—instead of a set of target points—is harnessed.
The solution model, which is shown in Figure 15, is created by employing the minimum
rectangle method of the main direction target points. The dotted section in the figure
represents the target points; the blue line represents the main direction of the target points,
and the red rectangle represents the minimum envelope rectangle of the target points.

Figure 15. The minimum envelope rectangle of the target points.

The method for obtaining the principal direction of the plane is shown in Equation (28).

θ =
atan2(2M11, M20 − M02)

2
(28)

in which θ is the minimum angle between the major axis direction and the direction of the
positive side of the x-axis, and Mpq is the p + q order center moment of the projection surface.

Mpq is shown in Equation (29).

Mpq = ∑
x

∑
y
(x − x)p(y − y)q (29)

where x and y represent the center coordinates of the original target point.

5.1.2. The Minimum Number of Movements of the Motion Platform

When a circle fills a rectangle, the effective filling area of each circle is generally
rectangular. Then, the model can be simplified again by filling the target rectangle with
the smallest number of rectangles inside the circle. The filling model is generally shown
in Figure 16. The smaller rectangle in the figure represents the target rectangle that needs
to be filled. The larger rectangle represents the largest filled area, and the circular areas
outside the largest rectangle represent the areas not recommended for use by the UR5 robot.
Each circle represents the maximum processing range of the system each time. Px and Py
represent the vertical distance and horizontal distance between the target rectangle and the
largest filled area; l and h represent the length and width of the effective rectangle inside
each circle.
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Figure 16. The schematic diagram of the filling model.

The size of the rectangle inside the circle indicates the effective area size of the circle.
The length and width of the maximum inscribed rectangle in the circle are both

√
2r. The

length and width of the inscribed rectangle of the circle are generally close to
√

2r when the
target rectangle is selected. The constraints of the filled model are shown in Equation (30).

n =
[
lmax/

√
2r
]
+ 1

n
∑

i=1
ln ≥ lmax√

4r2 − l2
i ≥ hmax

(30)

where [lmax/
√

2r] represents the largest integer that does not exceed lmax√
2r

.
Since the number of circles in Figure 16 is an integer, there are many kinds of Px, Py,

h1, and h2 satisfying Equation (29). However, the UR5 robot’s non-recommended area may
cause the movement of the motion platform. The minimum number of target points in the
non-recommended area during processing is the optimization goal, and the optimal Px, Py,
h1, and h2 are obtained by employing the exhaustive method.

5.1.3. The Movement Sequence of the Motion Platform

Reasonably planning the movement sequence of the motion platform can reduce the
movement of the motion platform. During processing, the initial point of the motion
platform is at zero. The movement sequence planning model of the motion platform can
be transformed into a TSP model starting from zero and returning to zero after accessing
all target circle centers. Because the number of points is low, the problem lies in creating a
small TSP model. The problem can be directly solved by employing the example method.
Since each axis of the motion platform is controlled by a separate motor, the Halton distance
between two points is taken as the weight when creating the TSP model.

5.2. The Kinematic Trajectory of the UR5 Robot

According to Figure 8, some painting areas overlap, and, therefore, the greedy principle
is harnessed to include as many target points as possible for each time of painting. The
painting process requires uniform motion during the painting process, and, therefore, the
shorter the total painting path is and the shorter the painting time is, the higher the painting
efficiency is.
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When each area is painted, the painted model can be transformed into a TSP model that
finds the shortest path which can access all of the target points [26]. When different areas
are painted, in order to prevent the UR5 robot from colliding with the processed objects,
the UR5 robot’s joints must be moved after returning to the origin of the 3-dimensional
Cartesian system. Then, the UR5 robot kinematics trajectory planning model can be
transformed into the solution of multiple TSP models.

However, due to the large number of points to be painted, this model is a large TSP
model. Genetic algorithms (GA) are harnessed to create each TSP model [27,28].

5.2.1. The TSP Model Based on the Genetic Algorithm

A genetic algorithm-based computational model that simulates the evolutionary
process of natural selection and genetic mechanisms of Darwin’s theory of evolution is
proposed. The genetic algorithm does not need continuous function limitation and has
a better global optimal solution. The core method of GA is to evaluate the fitness of all
individuals in each generation of the population and select some individuals for genetic
selection, crossover, and mutation to form the next generation population. The main
solution steps of the genetic algorithm are shown in Figure 17.

Figure 17. The solution steps of the genetic algorithm.

5.2.2. Operations Related to the Genetic Algorithm

(1) Coding method: all target points are encoded into one chromosome GiGj . . . GwGk,
and Gi in the chromosome represents the i-th number of the target point. In this genetic
algorithm, each individual has one and only one chromosome.

(2) Weight: the Euler distance between two points is taken as the weight between the
two points.

(3) Chromosome distance and individual fitness: the fitness of the individual f equals

N/
n
∑

i=2
di(i+1), where N represents the gain coefficient. The value of N only affects the value

of fitness and does not affect the final TSP solution result.
(4) Selection operation: the fitness of the population is calculated; the best individual

is screened, and the coding method of the individual is retained. For the remaining
individuals, the individual distribution function is calculated in accordance with their
individual fitness. The maximum and minimum normalization algorithms are employed
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to normalize the distribution function to 0-1. The selection operation process is shown in
Figure 18.

1: An empty population vector of n is created. 
2:The population records the best optimal individual 
3: A random number of 0-1 is generated. 
4:The maximum number of points is found which is less than or equal to 

the random number in line with the distribution function 
5:The population records the points’ numbers 
6: If the size of the population is less than n, steps 3, 4, and 5 are repeated. 
7: The population is output.

Figure 18. The selection operation process.

(5) Crossover operation: in order to ensure the positive optimization of the genetic
algorithm, crossover operations are performed only on non-optimal individuals in the
population. The crossover operator uses the Order Crossover operator. The crossover
algorithm is shown in Figure 19, where Pc represents the crossover probability.

1: Two individual parent 1 and parent 2 are selected in the 
population in order. Their individual chromosomes are 
G1G2…Gn and GnGn 1…G1. 

2: A random P number within 1 is generated. 
3: If P > Pc, parent 1 and parent 2 are output and the cross 

operation of the individual is finished. 
4: Cross positions start and end are randomly generated. 
5: Individual chromosomal gene fragments are generated: 

offspring 1: … Gstart …Gend  … and offspring 2: … Gend…Gstart  
…  

6: The unknown gene fragments in offspring1 are filled in 
conformity with the genetic order of the parent 2 and the 
unknown gene fragments in offspring 2 are filled as per the 
genetic order of the parent1.The genes in the offspring are not 
duplicated during the filling process. For example, if n = 5, 
start = 2 and end = 3, offspring 1 s chromosomal is G5G2G3G4G1 
and offspring 2 s chromosomal is G1G4G3G2G5. 

7: Offspring 1 and offspring 2 are output.

Figure 19. The crossover algorithm.

(6) Mutation operation: in order to prevent the GA from falling into a local optimal
solution, an adaptive mutation rate is harnessed. The equation for calculating the mutation
probability is shown in Equation (31),

Pm =

{
K1( fmax− f )

fmax− favg
, f ≥ favg

k2 , f < favg
(31)

where f max represents the maximum fitness of the group; f is the fitness of the individuals
to be crossed. K1 and K2 are the adaptive parameters. The mutation operation is shown in
Figure 20.
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1: One individual in the population in order is selected. The 
individual’s chromosome is G1G2…Gn 
2: A random P number within 1 is generated. 
3: If P > Pc, this individual is output and the cross operation of the 
individual is finished. 
4: Cross positions start and end are randomly generated. 
5: The genes are reversed from start to end in an individual and the 
chromosome of this individual will become G1…Gstart  1 Gend  …Gstart 

Gend + 1…Gn 
6: This individual is output. 

Figure 20. The mutation operation.

6. Simulation Experiments

The spray gun of model WA-101 was adopted as the painting equipment, and the offset
distance of the spray gun from the UR5 robot end axis was Ttool = Trans (5.5, 94.5, 165.5).

The painting process requirements are described in this paragraph. The distance
between the fixture and the target point was Tdis, which equals Trans (0, 0, 113), and
the end of the spray gun generated a circle with a radius of 50 mm at this distance. The
maximum position error of the target point was 5 mm, allowing a 5◦ error between the
gun’s end axis and the target’s normal vector.

6.1. The Pose Acquisition of the Target Objects

The analysis of the STL file of a car is shown in Figure 21, and the point cloud model
of the car is shown in Figure 22. The shapes and sizes of Figures 21 and 22 are the same as
the actual three-dimensional model. The target extraction algorithm proposed in this paper
has promising practicality.

 
Figure 21. The STL analysis model of a car.

 
Figure 22. The point cloud model of the car.

The part of the car roof where z coordinates are larger than 1000 mm was taken for the
target points for painting. The normal vector at the end of the target point was created by
employing the PCA algorithm, as is shown in Figure 23 (because the performance of the
computer graphics card was not satisfactory, and only the normal phase of some points is
shown in the figure). As can be seen from Figure 23, the normal vectors of the target points
conform to the shape of the roof, and the algorithm can better establish the normal vectors

98



Appl. Sci. 2022, 12, 7219

of the target points. After the variable r in Equation (6) had been given a value of 50, the
model of the compression points of the car roof, which is shown in Figure 24, was achieved
as per Equation (7). After Figures 23 and 24 are compared, it is clear that the size and shape
of the target points remain unchanged after compression.

Figure 23. Normal vectors of target trajectory points.

 
Figure 24. Compressed point cloud data.

6.2. Simulation of the Establishment of the Motion Platform Trajectory

After Equation (27) is given values Ttool and Tdis, the distribution of points at the ends
of the UR5 robot joints is shown in Figure 25. By utilizing the smallest rectangle model in
Figure 15, the smallest rectangle containing the target points was obtained, which is shown
in Figure 26.

Figure 25. Distribution of points at the ends of the UR5 robot’s joints.

 
Figure 26. The minimum envelope rectangle.

99



Appl. Sci. 2022, 12, 7219

The rectangle in Figure 26 has a width of 2635 mm and a length of 1959 mm. Data
in Figure 26 were extracted and employed in Figure 16 and Equation (30) to obtain the
preliminary partition model of the target points, which is shown in Figure 27.

Figure 27. The preliminary partition model of the target points.

The model in Figure 27 was created by the exhaustive method. The result is shown in
Figure 28, which describes the minimum number of target points in the non-recommended
area when h1 and h2 are determined. The blue areas in the figure represent an invalid
combination that does not satisfy Equation (30). In this optimal combination, h1 equals 980
mm; h2 equals 980 mm; Px equals 7 mm; and Py equals 3 mm.

Figure 28. Statistical results of the objective function.

The model in Figure 27 was given values Px, Py, h1, and h2 to obtain the partition
model of the target points which are shown in Figure 29. The red circles in Figure 29 are the
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maximum processing area and the non-recommended processing area of the UR5 robot. C1
represents the coordinates of the i-th circle, and the coordinates of Ci are shown in Table 2.

Figure 29. The partition model of the target points.

Table 2. The center point Ci.

Ci X/mm Y/mm

1 469 2685
2 465 1611
3 461 537
4 1451 552
5 1447 1622
6 1443 2691

All of the possibilities in Figure 29 were iterated, and the processing order with the
smallest total movement of the motion platform was taken. The final painting order of the
UR5 robot was C1 C2 C3 C6 C5 C4. The painting intervals of the UR5 robot are shown in
Figure 30. The dots in different colors in Figure 30 represent different painting intervals.

Figure 30. The painted zones of target points.

6.3. The Establishment of the Motion Platform Trajectory

The target points with the same color in Figure 30 were introduced into and utilized
in GAs, and the population number was set to 5000. The maximum number of iterations is
25,000, and the cross probability was 0.9. K1 equals 0.15, and K2 equals 0.2 in the selection
probability. The GA solution process is shown in Figure 31, and the final painting trajectory
is shown in Figure 32.
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Figure 31. The iterative process of the genetic algorithm.

Figure 32. The final painting trajectory.

6.4. The Inverse Kinematics Simulation of the UR5 Robot

When the UR5 robot found its inverse kinematics, it generated multiple solutions.
When the UR5 robot’s inverse kinematics were being solved, the angle values of the target
points on the previous painting trajectory were harnessed as the initial angle values, and
the target points on the final painting trajectory in each colored area with the smallest
radian changes from the initial angle values were selected. The solution was the inverse
kinematics of the target points. The position errors and axis errors of the statistical UR5
robot simulation are shown in Figures 33 and 34, respectively.

Figure 33. The UR5 robot’s position errors.
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Figure 34. The UR5 robot’s axis errors.

As per Figures 33 and 34, the errors are within the technical requirements of painting
large objects, and the algorithm has satisfactory engineering practicability. Since the main
solution in this paper was an analytical solution, when the joint radian of the UR5 robotic
manipulator’s motion platform in the recommended area needed to be solved, an iterative
method was harnessed to solve Equations (14) to (18).

7. Discussion and Conclusions

This paper proposes an algorithm that employs a nine-axis robotic manipulator to
automatically paint large objects. With the proposed algorithm, automatic processing of
complex objects is achieved. The algorithm is divided into three aspects that consist of
extraction of the target model, the establishment of the inverse kinematics model of the
manipulator, and the planning of the target trajectory.

In the section of the proposed algorithm for extracting the target model, as per the
STL file of the target trajectory, the triangles of the target trajectory are extracted. A full 3D
data point cloud model is obtained with a triangle-based filling algorithm. Subsequently,
the PCA algorithm is harnessed to identify the normal vectors of the target points inside
the point cloud model. With the normal vectors, Rodrigues’ rotation formula is harnessed
to extract the pose of each point of the painting trajectory. Finally, the number of target
points is compressed to reduce the time and space complexity of the algorithm so that the
painting process requirements can be satisfied.

In the section of the proposed algorithm where the inverse kinematics model of the
manipulator is established, in conformity with the processing range of the robot, the inverse
solution algorithm is divided into the inverse solution of the recommended region and the
inverse solution of the non-recommended region. The corresponding inverse kinematics
model is established by employing the closed-form solution method and SQP, respectively.

During the planning of the painting trajectory, in line with the point cloud model of the
target points, the minimum envelope rectangles of the target points are found. The target
points are divided into different painting areas in accordance with the minimum rectangles.
For each painting area, a TSP trajectory planning model based on GA is harnessed to plan
the robot’s painting trajectory with which the inverse kinematics model of the UR5 robot
is created.

Not only does the trajectory created by the proposed algorithm consider the singu-
larities of the kinematic joints of the UR5 robot joints, but it also helps the UR5 robot
to paint large objects with precision and efficiency. Multiple reliable simulations of the
painting process on the car roof surface were conducted, and the results show that the
algorithm can meet the technical requirements of painting and that the algorithm has
promising practicability.

The proposed algorithm has several benefits. The trajectory created by the proposed
algorithm allows the motion platform of the UR5 robotic manipulator to have the least
amount of movement while the UR5 robot paints a large object. Therefore, the proficiency
of the painting process can be significantly improved. The standard triangle language
(STL) file, algorithm of principal component analyses (PCA), and k-dimensional tree (k-d
tree) were employed to obtain the point cloud model of the car roof to be painted. The
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point cloud model was later converted into multiple traveling salesman problem (TSP)
models, each of which was created with genetic algorithms (GAs). In this way, the UR5
robot could identify the object to be painted and generate a trajectory to paint the large
object more efficiently.

However, limitations still exist in the current research. The closed-form solution
method and SQP were employed to establish the inverse kinematics model of the UR5
robot. SQP is not intelligent enough and still requires a myriad of training solutions. If a
more intelligent neural network model had been utilized, the preparation time for the entire
painting process would have been reduced. In this research, only the painting trajectory
was created, but the dynamics and velocity-planning of the UR5 robot were not involved.
Therefore, future studies need to focus on a more intelligent neural network model that
helps to establish the inverse kinematics model of the UR5 robot as well as the dynamics
and velocity-planning of the UR5 robot.
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Featured Application: This paper fuses different sensors to form a general high-precision SLAM

framework for multi-scene applications. The algorithm framework in this paper can be extended

to the fields of autonomous driving, robot navigation, and 3D reconstruction.

Abstract: Simultaneous Localization and Mapping (SLAM) is an essential feature in many applica-
tions of mobile vehicles. To solve the problem of poor positioning accuracy, single use of mapping
scene, and unclear structural characteristics in indoor and outdoor SLAM, a new framework of tight
coupling of dual lidar inertial odometry is proposed in this paper. Firstly, through external calibration
and an adaptive timestamp synchronization algorithm, the horizontal and vertical lidar data are
fused, which compensates for the narrow vertical field of view (FOV) of the lidar and makes the
characteristics of vertical direction more complete in the mapping process. Secondly, the dual lidar
data is tightly coupled with an Inertial Measurement Unit (IMU) to eliminate the motion distortion of
the dual lidar odometry. Then, the value of the lidar odometry after correcting distortion and the
pre-integrated value of IMU are used as constraints to establish a non-linear least-squares objective
function. Joint optimization is then performed to obtain the best value of the IMU state values,
which will be used to predict the state of IMU at the next time step. Finally, experimental results are
presented to verify the effectiveness of the proposed method.

Keywords: simultaneous localization and mapping; dual lidar inertial odometry; IMU; time
synchronization; tight coupling

1. Introduction

Simultaneous localization and mapping (SLAM) require building a map of an un-
known environment by a mobile vehicle and simultaneously localizing the vehicle in such a
map [1–3]. SLAM is essential for vehicles to fulfill many tasks, including vehicle rescue [4]
and exploration [5]. The perception of the unknown external environment by various
onboard sensors provides vital information for SLAM. Thus, integrating different sensors
to develop a practical SLAM framework that can be applied in multiple scenes is essential.

Generally, both vision-based and lidar-based SLAM [6–10] are used. Although the
vision-based SLAM can obtain high-precision positioning [11–13], the vision sensors are
vulnerable to light change in the environment and cannot work in dark or untextured
scenes. In comparison, lidar is not affected by light and can usually measure the angle and
distance of obstacles with higher accuracy. Therefore, this paper focuses on the design of
lidar-based SLAM to adapt the multi-scene applications.

In recent years, many different lidar-based SLAM schemes have been proposed.
Among them, the Lidar Odometry and Mapping in Real-time (LOAM) method, where a
single-line lidar and a motor are used to form a multiline lidar to realize low-drift and
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low-calculation real-time positioning and mapping, has been studied extensively [14]. In
the LOAM method, SLAM is divided into two parts: lidar odometry and lidar mapping.
In the lidar odometry part, to reduce the computation, the plane smoothness of the lidar
point cloud, which is utilized to distinguish the edge points, is calculated according to the
curvature and then invalid point clouds are discarded to improve the feature of point cloud.
After the point cloud information is obtained through feature extraction, a scan-to-scan
method [15] is proposed to realize feature matching between frames, including edge points
and planar points matching. To eliminate the motion distortion of lidar, linear interpolation
is utilized. After the distortion is eliminated, the pose transformation of the lidar point
cloud data of two adjacent frames is acquired to obtain the lidar odometry. Then, after
accumulating a certain number of point cloud data, lidar mapping is performed through
a map-to-map matching method [16]. Although LOAM can create a high-precision point
cloud map, it cannot remove moving people or objects during feature extraction. Further-
more, in an environment with fewer feature points, it is easy for the lidar odometry to fail,
resulting in positioning and mapping with worse accuracy.

To solve the above problems, a Lightweight and Ground-Optimized Lidar Odometry
and Mapping on Variable Terrain (LeGO-LOAM) [17] is proposed. Its core comprises four
modules: point cloud segmentation and denoising, feature extraction, lidar odometry, and
lidar mapping. Firstly, the point cloud segmentation technology [18] solves the defects of
moving people or objects in LOAM mapping and filters out noise. Then, feature extraction
is applied to obtain planar and edge features from the segmented point cloud. The lidar
odometry module uses the features to find out the optimal pose transform between two
consecutive scans with the help of a two-step Levenberg–Marquardt (LM) optimization
method [19]. The extracted features are further processed by a scan-to-map [20] matching
method to obtain a global point cloud map in lidar mapping. LeGO-LOAM optimizes
LOAM to a certain extent, but in large scenes (e.g., long corridors) or environments with
few feature points, the low frequency of lidar and less characteristic information can lead
to significant errors in positioning and mapping.

Some recent research has used low-cost IMU [21–23] to assist lidar for SLAM. The
simplest way to integrate the IMU with lidar is loose coupling [24], in which IMU is
regarded as an independent module to assist the lidar. The authors of [25] loosely couple
IMU and optional GPS measurement with lidar through the Extended Kalman Filter (EKF)
to improve computational efficiency and accuracy. However, the IMU error will continue
to accumulate in the case of long distances, so the localization error is still increasing in
such cases. To solve this problem, IMU and lidar are generally coupled via a tight coupling
method that usually offers improved accuracy. A tightly coupled lidar inertial odometry
and mapping framework (LIO-Mapping) is introduced in the literature [26]. It comprises
the state optimization for the odometry and the refinement with rotational constraints.
Results showed that this method outperformed the state-of-the-art lidar-only and loosely
coupled methods. Since LIO-Mapping is designed to process all sensor measurements,
real-time performance is not achieved. The authors of [27] proposed a tightly coupled
Lidar Inertial Odometry via Smoothing and Mapping (LIO-SAM) based on LeGO-LOAM.
LIO-SAM performs highly accurate, real-time mobile vehicle trajectory estimation and
map building, suitable for multi-sensor fusion and global optimization. Although the tight
coupling of lidar and IMU can improve the localization accuracy, lidar sensors have certain
drawbacks. Conventional lidar can only be used to scan the environment in a narrow range
of vertical angles and the point cloud feature information obtained is limited. For example,
in an indoor corridor or staircase environment, lidar can receive the point cloud information
of the sidewall, but only a tiny part of the point cloud information is obtained from the
floor and ceiling. In such cases, the matched lidar features can easily cause ill-constrained
pose estimation and incomplete mapping.

Aiming to broaden the FOV of lidar, lidars can be actuated in a number of ways. The
periodic nodding and continuous rotation can be adopted and the resulting configurations
can potentially enlarge the FOV. While the implementation of this method depends on
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a complex mechanical structure, the localization accuracy is relatively low [28,29]. More
recently, a new design for a 3D sensor system was introduced [30], involving construction
from a 2D range scanner coupled with a passive linkage mechanism, such as a spring.
However, the system requires reasonably continual excitation to induce motion of the sen-
sor head. Therefore, the system is not considered appropriate for electric ground vehicles
operating with infrequent accelerations on smooth terrain. In order to solve the above
problems, some researchers have started investigating the use of multiple 3D lidars for
better coverage of the environment. In [31], a high-precision lidar odometry system was
proposed to achieve robust and real-time operation under challenging perceptual condi-
tions. In this system, the two lidars are mounted at 180 degrees to each other to make up for
the self-similar areas with low lidar observability. The authors of [32] proposed a system to
achieve robust and simultaneous extrinsic calibration, odometry, and mapping for multiple
lidars, while [33] proposed a scheme to combine multiple lidars with complementary FOV
for feature-based lidar-inertia odometry and mapping. While the above methods can work
well in single-scene applications, their adaptability to different environments was not
considered, especially the environments that need to perceive height information.

This paper proposes a high-precision SLAM framework based on tight coupling of
dual lidar inertial to overcome the above problems. In this framework, the horizontal lidar
and the vertical lidar are integrated to broaden the FOV. Then the dual lidar and IMU are
tightly coupled to improve the localization accuracy. In the outdoor environment, this
paper introduces GPS measurements to further improve positioning accuracy. The main
contributions of this paper include:

1. A general high-precision SLAM framework is provided by fusing different sensors. It
can adapt to multi-scene applications, such as a corridor with fewer features, stairs
with height, and complex outdoor environments.

2. The horizontal and vertical lidars are fused by external calibration and adaptive time
synchronization algorithms to solve the narrow vertical FOV of the lidar.

3. To improve the positioning accuracy of SLAM in the environment with height infor-
mation (e.g., stairs), the dual lidar odometry and IMU are tightly coupled. The dual
lidar odometry measurement and IMU pre-integration are jointly optimized to obtain
more accurate IMU state values, which will be used to eliminate the motion distortion
of the dual lidar to improve the localization accuracy.

4. In addition, several practical experiments are carried out to verify the feasibility and
effectiveness of the proposed method.

2. Prerequisites

2.1. IMU State Prediction and Pre-Integration

Usually, the frequency of IMU is much higher than lidar. IMU can obtain the accelera-
tion and angular velocity at each time step, which can be used to predict the next state of
IMU through integration.

In general, the IMU states at time t can be modeled as:

XW
t = [pt, vt, Rt, bt] (1)

where XW
t represents the state in the world frame W at time t; pt, vt, and Rt represent

the position, velocity, and rotation matrix, respectively, at time t; and ât and ω̂t are the
acceleration and angular velocity of the raw IMU measurements (ât and ω̂t are affected by
a slowly varying bias, bt).

The next state, XW
t+Δt, is predicted through the integration of IMU, where Δt is the

interval between two consecutive IMU measurements. The state prediction value of the
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IMU is then used to infer the motion of the vehicle. The velocity, position, and rotation of
the vehicle at time t + Δt can be computed by Equation (2) [27]:

vt+Δt = vt + gΔt + Rt(ât − ba
t − na

t )Δt

pt+Δt = pt + vtΔt + 1
2 gΔt2 + 1

2 Rt(ât − ba
t − na

t )Δt2

qt+Δt = qt ⊗
[ 1

2 Δt
(
ω̂Δt − bω

Δt − nω
Δt
)

1

] (2)

where g is gravitational acceleration; ba
t is the varying bias of the acceleration ât; and na

t is
the white noise of the acceleration ât. The quaternion qt under Hamilton notation (which
corresponds to Rt) is used; ⊗ is used for the multiplication of two quaternions; bω

t is the
varying bias of the angular velocity ω̂t; and nω

t is the white noise of the angular velocity ω̂t.
The motion state of IMU between the i-th and the j-th time steps can be represented

by the IMU pre-integrated measurement value Δpij, Δvij, Δqij, which can be computed by:

Δvij = RT
i
(
vj − vi − gΔtij

)
Δpij = RT

i

(
pj − pi − viΔtij − 1

2 gΔt2
ij

)
Δqij = q−1

i ⊗ qj =
j−1
∏

k=i

[ 1
2 Δtij

(
ω̂k − bω

k − nω
k
)

1

] (3)

where Δpij, Δvij, Δqij is the position, velocity, and rotation matrix of the IMU, respectively,

which has the covariance CIi
Ij

in the error-state model. Due to space limitations, we invite
readers to refer to the descriptions in [26,34] to understand the detailed derivation of
IMU pre-integration.

2.2. Segmentation and Feature Extraction

Before extracting features, to filter out the noise, the point cloud is segmented to reduce
noise interference. Dt = {d1, d2, . . . , dn} is the point cloud information acquired at time t;
dτ is a point in Dt; Dt is projected onto a range image; the point dτ represents a pixel of the
image; and the pixel value rτ represents the Euclidean distance from the point dτ to the
lidar. An image-based segmentation method [17] is applied to the range image to group
points into many clusters. Points of the same category have the same label (the ground
is a particular category). Features are then extracted from ground points and segmented
points, with the corresponding edge points and plane points obtained by calculating the
curvature E of each point. To evenly extract features from all directions, the range image
is divided horizontally into several equal sub-images. Then, the points are sorted in each
row of the sub-image based on their curvature values, E. The curvature E is computed
by Equation (4).

E =
1

|S|·‖rτ‖
‖ ∑

λ∈S,λ �=τ

(rλ − rτ)‖ (4)

where S is the set of continuous points dτ from the same row of the range image; λ is a
point in the set S; Eth is a threshold which is set to distinguish different types of features;
the points are called with E > Eth edge features; and the points are called with E < Eth
planar features.

3. Multi-Sensor Fusion

3.1. Hardware System Description

The configuration of our system is shown in Figure 1, with the left model obtained
through Unigraphics NX and the designed equipment in our paper shown on the right. The
designed equipment is a scanning arm composed of various sensors that can be installed
on a backpack or a vehicle. The sensor suite used in the scanning arm includes two 10 HZ
Velodyne VLP-16 lidars, a 200 HZ YIS510A IMU, and a 5 HZ HY-269 GPS. The panoramic
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camera prepares for the follow-up research. The lidar has a horizontal FOV of 360◦ with 0.4◦

resolution, a vertical FOV 15◦ with 2◦ resolution, and an accuracy of ±3 cm. The Roll/Pitch
of IMU accuracy is 0.25◦, HY-269 GPS is a small-volume positioning and directional receiver,
and the positioning accuracy of GPS is 1.2 m.

τ λ

 

Figure 1. A CAD (Computer Aided Design) model of the scanning arm is shown on the left, with a
photograph of the scanning arm shown on the right.

3.2. System Overview

In this paper, horizontal and vertical lidars are fused to make up for the shortcomings
of lidar’s narrow FOV. When indoors, accurate positioning information is obtained through
the tight coupling of dual lidar inertial odometry. When outdoors, GPS measurements
are added, providing a relatively accurate initial position for positioning, thereby further
improving outdoor positioning accuracy.

Figure 2 provides a brief overview of our proposed framework. Firstly, after obtaining
the IMU data, the IMU state prediction and pre-integration are updated, as detailed in
Section 2.1. IMU pre-integration is used to construct a factor graph constraint, which will
be used for joint optimization. Secondly, the dual lidar point clouds are obtained through
external calibration and an adaptive timestamp synchronization algorithm, as detailed in
Section 3.3. Since lidar has continuous measurement, the lidar measurement is obtained in
continuous motion and it is almost certain that motion distortion will occur. When dual lidar
point cloud is received, deskewing is applied on the dual lidar raw point cloud to obtain
deskewed dual lidar point cloud [14]. To be ground-optimized and reduce the amount of
calculation, point cloud segmentation is applied to filter out noise (e.g., moving people or
objects) and the planar points and edge points are distinguished by calculating the curvature
of the lidar point, as detailed in Section 2.2. After feature extraction, the dual lidar point
cloud is registered to construct the lidar odometer factor. Then, the sliding window factor
graph optimization method of local finite frame is used, with the IMU pre-integration factor
and lidar odometer factor jointly optimized to realize the mutual parameter optimization
of the dual lidar and IMU. Joint optimization is taken to obtain a maximum a posteriori
(MAP) estimation of the IMU states, as detailed in Section 3.4, avoiding the drift from IMU
propagation. To further improve outdoor positioning accuracy, GPS is introduced in this
framework. When GPS is loosely coupled with IMU through an Unscented Kalman Filter
(UKF), GPS measurements are used to further improve the positioning accuracy of IMU,
with the optimized IMU state then used for the state estimation of IMU at the next time
step. GPS measurements are added, providing a relatively accurate initial position for
localization, thereby further improving outdoor localization accuracy [25]. However, the
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drift of lidar inertial odometry grows very slowly; in practice, GPS measurements are used
when the estimated position covariance is larger than the received GPS position covariance.
Finally, the output of the figure is the global map and localization.

 
Figure 2. An overview of our proposed framework.

3.3. Fusion of Horizontal Lidar and Vertical Lidar

To accurately fuse the horizontal and vertical lidar data, their individual coordinate
systems must be transformed into a unified coordinate system, which is termed “frame
coordinate system”. The horizontal lidar coordinate system is used as the frame coordinate
system; the vertical lidar coordinate system is registered in this frame coordinate system
through external parameter calibration, with the external parameters obtained by the CAD
model of the scanning arm. This paper adopts the adaptive time synchronization algorithm
to ensure that the timestamps of the horizontal and vertical lidars can be simultaneously
output. The fusion process of dual lidar is divided into two parts: (1) external parameter
calibration of the horizontal and vertical lidars and (2) the adaptive time synchronization
algorithm. Both parts are described as follows.

3.3.1. External Parameter Calibration of Horizontal Lidar and Vertical Lidar

Assuming that L1 is the horizontal lidar coordinate system and L2 is the vertical lidar
coordinate system, the horizontal lidar coordinate system is used as the frame coordinate
system and the vertical lidar coordinate system L2 is registered in this frame coordinate
system L1 through the rotation matrix R

L1
L2

and translation matrix HL1
L2

, which can be
computed by Equation (5):

L1 = R
L1
L2

× L2 + HL1
L2

(5)

where R
L1
L2

is the rotation matrix and HL1
L2

is the translation matrix which can be obtained by
external parameters. From the hardware structure of the scanning arm, the vertical lidar
coordinate system first rotates around the y-axis and then translates to the horizontal lidar
coordinate system, where

R
L1
L2

=

⎡⎣ cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎤⎦ (6)
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where the angle of the rotation matrix θ = −77.94
◦

and the translation matrix HL1
L2

= (x, 0, z),
with x = −0.177 m and z = −0.213 m.

The point cloud of the lidar after external parameter calibration in the frame coordinate
system is shown in Figure 3, with the point clouds of the vertical and horizontal lidars not
affecting each other.

θ θ

θ θ

θ

 
Figure 3. Dual lidar point clouds’ information after external parameter calibration.

3.3.2. The Adaptive Time Synchronization Algorithm

In this paper, the lidar time synchronization is achieved through hardware time syn-
chronization and GNSS is used as the master clock. However, there is a time offset between
the two lidars. As the time offset is constant, an adaptive timestamp synchronization
algorithm is used to solve it. The adaptive time synchronization algorithm is used to
match its timestamp and realize the simultaneous localization and mapping of the lidars.
The timestamps of the dual lidar is shown in Figure 4, where lidar_201/scan represents
the timestamp of the horizontal lidar and lidar_202/scan represents the timestamp of the
vertical lidar.

θ θ

θ θ

θ

 

Figure 4. Timestamps of dual lidar.

The output of the adaptive time synchronization algorithm only depends on the
timestamp, not on the arrival time of dual lidar point cloud messages. It means that the
adaptive time synchronization algorithm can be safely used on dual lidar point cloud
messages that have suffered arbitrary processing delays. As shown in Figure 5, time goes
from left to right, with the first row representing the horizontal lidar timestamp and the
second row representing the vertical lidar timestamp. Each dot represents the lidar point
cloud with the timestamp. The blue dot represents the pivot of the lidar point clouds,
with the broken line linking the dual lidar point clouds in a set. Suppose the horizontal
lidar point clouds’ queue is PLP and the vertical lidar point clouds’ queue is PVP, with
lidar point clouds inserted in a topic-specific queue (PLP or PVP) as they arrive. Once
each topic-specific queue contains at least one message, the latest message is found at the
head of the queues, known as the pivot. Assume that the queue with pivots is PLP, which
matches PVP, being the smallest difference between the timestamps, T. The two queues are
combined into a set; finally, this set is synchronous output.
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Figure 5. Timestamp matching of dual lidar.

3.4. Tight Coupling of Dual Lidar and IMU

Although the fusion of dual lidar makes up for the shortcomings of lidar’s narrow
FOV, the localization accuracy is improved. However, lidars mounted on moving vehicles
suffer from motion distortion, which directly affects the localization accuracy. IMU can
accurately measure the three-axis acceleration and three-axis angular velocity of moving
vehicles, and provide a priori information for lidar odometry. However, in the case of
long or short distances, the IMU error will continue to accumulate, which directly affects
positioning accuracy. In this paper, the tight coupling of dual lidar and IMU is proposed to
solve the above problems. The process is divided into two parts: (1) external parameter
calibration of horizontal lidar and IMU and time synchronization, and (2) joint optimization,
which are described as follows:

3.4.1. External Parameter Calibration of Horizontal Lidar and IMU and Time Synchronization

Similar to Section 3.3, the external parameters of the lidar and IMU are also obtained
based on the CAD model. To accurately fuse data from the horizontal lidar, the vertical
lidar, and the IMU, the IMU coordinate system I is also registered in this frame coordinate
system L1 through the rotation matrix R

L1
I and the translation matrix HL1

I . It can be seen
from the structure of the scanning arm in Figure 1 that the IMU is located directly under the
horizontal lidar. Therefore, the IMU coordinate system can be registered in the horizontal
lidar coordinate system only by translation, where

R
L1
I =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ (7)

where the translation matrix HL1
I = [−0.62.66, 0,−0.125].

In this paper, YIS510A IMU is used, which supports trigger correction of its internal
clock by PPS signal. Lidar-IMU time synchronization is achieved through hardware time
synchronization, with GNSS used as the master clock. GNSS can output PPS signals to
unify the clock source of lidar-IMU and achieve time synchronization.

3.4.2. Joint Optimization

In this paper, a fixed-lag smoother and marginalization are introduced to obtain the
optimal state. The fixed-lag smoother maintains a certain amount of IMU state in the
sliding window, and the sliding window can effectively control the amount of calculation.
When the new state enters the sliding window, the past state is marginalized. The state
variable to be estimated for the whole window is X = [XW

η , . . . , XW
κ ,ZL1

I ], where XW
η is the

state of IMU at the starting point η of the sliding window; XW
κ is the state of IMU at the end

of the sliding window; and Z
L1
I = [RL1

I , HL1
I ] is the external parameter between lidar and

IMU. Then, the following cost function with a Mahalanobis norm is minimized to obtain
the MAP estimation of the states X,

X = min
X

1
2

⎧⎪⎨⎪⎩‖uo(X)‖2 + ∑
χ∈QLβ

‖uφ(χ, X)‖2
Cχ

Lβ

+ ∑
ς∈{η,...,κ−1}

‖uγ(Z
ς
ς+1, X)‖2

C
Iς
Iς+1

⎫⎬⎭ (8)
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where uo(X) is the prior information from marginalization [26]. uφ(χ, X) is the residual
of the relative lidar constraints that can be represented as point-to-plane distance [26],
where χ ∈ Qβ is the residual for each relative lidar measurement with the previous
correspondences. β ∈ {η+ 1, . . . , κ}, η + 1 and κ are the timestamps of the lidar sweep
next to the starting one and the current lidar sweep in the window, with the covariance
matrix Cχ

Lβ
determined by the lidar accuracy [35]. uγ(Z

ς
ς+1, X) is the residual of the IMU

constraints, where

uγ(Z
ς
ς+1, X) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RT
ς

(
pς+1 − pς − vςΔt − 1

2 gΔt2
ς,ς+1

)
− Δpς,ς+1

RT
ς

(
vς+1 − vς − gΔtς,ς+1

)
− Δvς,ς+1

2
[
Δqς,ς+1

−1 ⊗ q−1
ς ⊗ qς+1

]
xyz

ba
ς+1 − ba

ς

bω
ς+1 − bω

ς

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

uγ(Z
ς
ς+1, X) can be obtained by IMU state prediction (Equation (2)) and IMU pre-integration

(Equation (3)), and
[
Δqς,ς+1

−1 ⊗ q−1
ς ⊗ qς+1

]
xyz

stands for the vector part of a quaternion.

With the continuous-time linearized propagation of the error states and the IMU noise
parameters, the covariances CIς

Iς+1
of the pre-integration measurements and biases can be

estimated. The cost function, in the form of a non-linear least-square, can be solved by the
Gauss–Newton algorithm. Ceres Solver [36] is used for solving this nonlinear problem.

It can be seen from Section 3.2 that the new states X are obtained by the joint optimiza-
tion, which is used as the next state of the IMU, avoiding the drift from IMU propagation.
The state of the IMU is applied to deskewing, thereby eliminating the motion distortion of
the dual lidar.

4. Experiment

4.1. Data Acquisition Equipment

To verify the performance of the proposed high-precision SLAM framework based on
the tight coupling of Dual Lidar Inertial Odometry (HSDLIO) for multi-scene applications,
this paper describes a series of experiments to qualitatively and quantitatively analyze our
proposed framework. The device runs on an industrial computer with a processor of i7-9700
through the port and network port, and the system configured of the industrial computer is
ubuntu16.04. The scanning arm is installed on the backpack, with the industrial computer
and battery installed in the backpack. The small display screen of the backpack shows the
localization and mapping in real-time, with the backpack equipment shown in Figure 6.
Data of three representative environments are collected, including the featureless corridor,
stairs with height, and complex outdoor environments. To illustrate the effectiveness of the
HSDLIO algorithm, LeGO-LOAM and LIO-SAM algorithms are compared with it.

 

Figure 6. Backpack collection equipment.
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4.2. Indoor Experiment 1

Indoor experiment 1 was carried out in a corridor with few feature points. Since there
was no GPS signal indoors, SLAM was mainly carried out through the tight coupling of
dual lidar odometry and IMU.

To highlight the performance of the HSDLIO algorithm, LeGO-LOAM and LIO-SAM
algorithms are compared with it. Figure 7a shows the environment map of the corridor,
while Figure 7b–d shows the overall mapping of LeGO-LOAM, LIO-SAM, and HSDLIO
algorithms in the corridor scene, with the white points representing backpack motion
trajectories. Compared with the HSDLIO algorithm in Figure 7d, the overall mapping of
LeGO-LOAM (Figure 7b) has a significant deviation and the structure is unclear. Figure 8a,b
shows that the mapping of LeGO-LOAM is incomplete because the lidar has a considerable
drift in a scene with fewer feature points. The mapping results of LIO-SAM (Figure 7c) is
close to the real environment, with its structure complete. The main reason is that LIO-SAM
tightly couples the horizontal lidar and IMU to make up for the lidar drift. However,
Figure 9a,b indicates the mapping result of HSDLIO is more abundant than LIO-SAM in
the top surface and ground information. The reason is that HSDLIO fuses horizontal and
vertical lidars so that its angle of FOV in both horizontal and vertical directions is 360◦. The
dual lidars and IMU are tightly coupled to make up for the lidar drift.

  
(a) (b) 

  
(c) (d) 

Figure 7. (a) Corridor scene for experiment 1. (b) Mapping results of LeGO-LOAM in the corridor
scene, with the mapping of LeGO-LOAM having a significant deviation and the structure incomplete.
(c) Mapping results of LIO-SAM in the corridor scene, with LIO-SAM having a complete mapping
structure but lacking information on the top and ground. (d) Mapping results of HSDLIO in the
corridor scene, with HSDLIO having a complete mapping structure.

116



Appl. Sci. 2022, 12, 939

  
(a) (b) 

Figure 8. Comparison of mapping details at the corner of the corridor, where (a) the mapping of
LeGO-LOAM has a significant deviation and (b) the mapping of the HSDLIO structure is clearer and
more complete than LeGO-LOAM.

  
(a) (b) 

Figure 9. Comparison of mapping details at the top of the corridor, where (a) the mapping of
LIO-SAM lacks top information and (b) the mapping of HSDLIO shows finer structural details of
the environment.

In the long corridor scene, compared with LeGO-LOAM and LIO-SAM, the structure
of HSDLIO mapping is more complete and the point cloud information on the ground and
top surface is richer. To verify the positioning accuracy of the HSDLIO, the trajectories
of LeGO-LOAM, LIO-SAM, and HSDLIO are compared in Figure 10. It can be observed
in Figure 10 that the LeGO-LOAM trajectory has drifted. The main reason is that in the
LeGO-LOAM algorithm, the lidar odometry error continues to increase in a long corridor
environment with fewer feature points. Both LIO-SAM and HSDLIO use the tight coupling
of IMU and lidar for positioning, which improves positioning accuracy. HSDLIO further
improves the accuracy of positioning through the tight coupling of dual lidars and IMU.

To further improve the positioning accuracy of HSDLIO, the relative translational error
(RTE)—the distance from the start point to the end point—is introduced. In all experiments,
the data collection started and ended at the same point; when the positioning accuracy of
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the device is very high, the start and end point will coincide. The RTE, when the backpack
returns to the start point, is shown in Table 1. The RTE can be computed by Equation (10):

RTE =
√

x2
o + y2

o + z2
o (10)

where xo = xs − xe, yo = ys − ye, zo = zs − ze, xs, ys, and zs are the coordinates of the
starting point and xe, ye, and ze are the coordinates of the end point. The result of LeGO-
LOAM is not shown because its trajectory has severely shifted. Table 1 shows that the
error of HSDLIO in the x and y direction is similar to LIO-SAM, but the accuracy in the z
direction is higher than LIO-SAM and the RTE of HSDLIO is smaller than LIO-SAM.

Figure 10. Comparison of LeGO-LOAM, LIO-SAM, and HSDLIO trajectories. The red line is the
trajectory of HSDLIO, the blue line is the trajectory of LIO-SAM, and the black line is the trajectory of
LeGO-LOAM, with the latter having drifted.

Table 1. Relative translational error when the backpack returns to the starting point (meters).

Algorithm LeGO-LOAM LIO-SAM HSDLIO

xo Fail 0.079 0.077

yo Fail 0.092 0.090

zo Fail 0.121 0.001

RTE Fail 0.171 0.118

4.3. Indoor Experiment 2

Indoor experiment 2 aimed to show the effectiveness of HSDLIO in the indoor envi-
ronment with a certain height information. In this experiment, the backpack was carried
up and down four flights of stairs. Figure 11a shows the stairs scene, while Figure 11b–d
shows the overall mapping of LeGO-LOAM, LIO-SAM, and HSDLIO algorithms. The white
points are backpack localization trajectories. LeGO-LOAM (Figure 11b) cannot obtain the
structure of the stairs. Because the vertical FOV of the horizontal lidar is relatively narrow,
the mapping result of LIO-SAM (Figure 11c) does not show the height information. With
the help of the vertical lidar and the tight coupling of the IMU, the mapping of HSDLIO
(Figure 11d) is the most complete and accurate, which is closer to the real stairs’ scene.

Figure 12 shows the trajectories obtained by LeGO-LOAM, LIO-SAM, and HSDLIO.
The red, black, and green lines represent the trajectories of HSDLIO, LeGO-LOAM, and
LIO-SAM, respectively, with the trajectory of HSDLIO approximating the real trajectory.
LeGO-LOAM has no IMU correction, which causes the drift of the trajectory. Although
the trajectory of LIO-SAM does not drift, due to the narrow vertical FOV of the horizontal
lidar, a significant error occurs in the z direction information. Comparing the height
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information of LIO-SAM and HSDLIO in the z direction in Figure 13, it can be seen
that when going up and down four floors of stairs, the localization results of LIO-SAM
provide no height information and also indicate a great drift, while HSDLIO provides
accurate height information. Therefore, the tight coupling of dual lidars and IMU makes
the advantages of HSDLIO clearly apparent. Table 2 shows that the error of HSDLIO in
the x and y direction is smaller than LIO-SAM, but the accuracy in the z direction is much
higher than LIO-SAM and the RTE of HSDLIO is much smaller than LIO-SAM.

  

 

 
(a) (b) (c) (d) 

Figure 11. (a) Stairs scene for experiment 2. (b) Mapping results of LeGO-LOAM in the stairs scene,
with LeGO-LOAM’s mapping result having failed. (c) Mapping results of LIO-SAM in the stairs
scene, with LIO-SAM’s mapping results lacking height information. (d) Mapping results of HSDLIO
in the stairs scene, with the mapping of HSDLIO the most complete and accurate.

 
Figure 12. Comparison of LeGO-LOAM, LIO-SAM, and HSDLIO trajectories. The red line is the
trajectory of HSDLIO, the blue line is the trajectory of LIO-SAM, and the black line is the trajec-
tory of LeGO-LOAM. While LeGO-LOAM’s trajectory drifted and LIO-SAM’s trajectory produced
cumulative errors in the z direction, the trajectory of HSDLIO approximated the real trajectory.

4.4. Outdoor Experiment

The outdoor experiment was carried out on a city street. This scene has rich feature
points, so the drift of lidar odometry grows very slowly. The localization accuracy of
LeGO-LOAM, LIO-SAM, and HSDLIO have very little difference, but the mapping of
HSDLIO can provide finer structural details.
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Figure 13. Comparison of the height information of LIO-SAM and HSDLIO in the z direction. The
trajectory of HSDLIO provides height information from going up and down four floors of stairs,
while LIO-SAM failed to position in the z direction.

Table 2. Relative translational error when the backpack returns to the starting point (meters).

Algorithm LeGO-LOAM LIO-SAM HSDLIO

xo Fail 0.033 0.011

yo Fail 0.036 0.024

zo Fail 0.062 0.004

RTE Fail 0.078 0.026

The trajectories obtained by LeGO-LOAM, LIO-SAM, and HSDLIO are shown in
Figure 14. Because there is more feature information outdoors, the drift of lidar odometry
grows very slowly. LeGO-LOAM can obtain relatively accurate localization only through
horizontal lidar. In LIO-SAM and HSDLIO, GPS measurement is introduced by loosely
coupling with IMU through UKF, which can provide relatively accurate initial positioning.
The localization accuracy of HSDLIO and LIO-SAM is higher than LeGO-LOAM. The
available data in Table 3 further supports the performance of the HSDLIO algorithm.

Figure 14. Comparison of LeGO-LOAM, LIO-SAM, and HSDLIO trajectories. The red dashed line is
the trajectory of HSDLIO, the blue dashed line is the trajectory of LIO-SAM, and the black dashed
line is the trajectory of LeGO-LOAM.
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Table 3. Relative translational error when the backpack returns to the starting point (meters).

Algorithm LeGO-LOAM LIO-SAM HSDLIO

RTE 0.082 0.036 0.031

The 3D city street scene is shown in Figure 15a. In Figure 15a–d, the marks in the
white circle represent trees and the marks in the yellow circle represent the building
structure. Figure 15b–d shows the overall mapping of LeGO-LOAM, LIO-SAM, and
HSDLIO algorithms in the city street scene, with the white points being their localization
trajectories. Figure 15b,c shows that the overall effect of the mapping lacks building height
information, while the structure of buildings and trees is blurred. The mapping details are
analyzed at the marker, compared with the mapping results of LeGO-LOAM and LIO-SAM
(Figure 15b,c), while the HSDLIO mapping result is shown in Figure 15d. It can be seen in
Figure 15d that the structure of the trees and buildings is complete and has finer details.

  
(a) (b) 

  
(c) (d) 

Figure 15. (a) City street scene, with the marks in the white circle representing trees and the marks
in the yellow circle representing the building structure. (b) The mapping results of LeGO-LOAM
in the city street scene provide a lack of building height information and the structure of buildings
and trees is blurred. (c) The mapping results of LIO-SAM in the city street scene provide a lack of
building height information, though the mapping of trees is relatively clear. (d) The mapping results
of HSDLIO in the city street scene show that the point cloud features of the trees and the building
structure are finer and more complete, including finer structural details.

To further demonstrate the advantages of HSDLIO mapping, the mapping details
of the building are shown in Figure 16, with the mapping results of LeGO-LOAM and
LIO-SAM lacking the structural details and height information of the building. However,
the mapping result of HSDLIO show finer structural details and more height information
of the building.
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(a) 

 
(b) 

 
(c) 

Figure 16. Comparison of mapping details in the city street scene showing that (a) the mapping
of LeGO-LOAM lacks structural details of the building, (b) the mapping of LIO-SAM lacks the
height of the building structure, and (c) the mapping of HSDLIO provides finer structural details of
the building.

5. Conclusions

This paper proposes a high-precision SLAM framework for multi-scene applications.
In this framework, dual lidars are fused to make up for the shortcomings of lidars’ narrow
FOV and hence improve the completeness of mapping. Meanwhile, dual lidars and IMU
are tightly coupled to improve the localization accuracy. Extensive experiments were
carried out and the results showed that compared with the commonly used LeGO-LOAM
and LIO-SAM methods, our proposed method can produce more precise localization and
more accurate mapping results with more details.
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Abstract: It is difficult to guarantee optimality using the sampling-based rapidly-exploring random
tree (RRT) method. To solve the problem, this paper proposes the post triangular processing of the
midpoint interpolation method to minimize the planning time and shorten the path length of the
sampling-based algorithm. The proposed method makes a path that is closer to the optimal path
and somewhat solves the sharp path problem through the interpolation process. Experiments were
conducted to verify the performance of the proposed method. Applying the method proposed in this
paper to the RRT algorithm increases the efficiency of optimization by minimizing the planning time.

Keywords: robot path planning; RRT; midpoint interpolation; triangular rewiring; path smoothness

1. Introduction

Recent path planning research for the robot has encompassed a wide range of
topics [1,2]. Path planning is an important capability for autonomous mobile robots. A
robot must be able to identify a path from its current position to its destination in order
to move successfully. A mobile robot must be able to discover an optimal or sub-optimal
collision-free path in the environment from the starting position to the destination [3].

Path planning is the formulation of a route for a mobile robot to proceed from a starting
point to a destination point in Euclidean space as efficiently as possible while avoiding both
static and dynamic obstacles and maintaining optimality, clearance, and completeness [4].
An optimal path is one with the ideal path length, a clear path is one without obstacles for
the mobile robot to collide with, and a complete path is one in which the robot can move
from the start point to the destination point without colliding with obstacles.

Furthermore, it is indeed possible for the robot to be able to optimize its path by
determining the quickest and safest path to its destination point in order to save time and
energy. However, an algorithm that generates the optimal path increases the computation,
and an algorithm that quickly generates a path does not guarantee the optimal path [5].

It is difficult to ensure optimality with the sampling-based rapidly-exploring random
tree (RRT) algorithm [6]. As shown in Figure 1a, the RRT algorithm is a path planning
algorithm that involves repeatedly adding a randomly sampled position as a child node in
a tree with the starting point as the root node until the destination point is reached. The
tree extends out in the shape of a stochastic fractal, as shown in Figure 1b, and has an
algorithm used to locate the destination point.

The RRT algorithm and other sampling-based algorithms [7,8] offer the benefit of
planning a path in a shorter time with less computing than traditional path planning
algorithms like the visibility graph- [9], cell decomposition- [10], and potential field-based
algorithms [11]. On the other hand, it does not ensure optimality and has the drawback of
having probabilistically assured completeness. The latter is also known as probabilistic
completeness [12], which implies that completeness is assured when the number of random
samples is infinite but not always when the number of random samples is limited. The
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goal of this research is to enhance the RRT algorithm, which ensures completeness and
performs better than the related algorithms.

 
(a) (b) 

Figure 1. Overview of the rapidly-exploring random tree (RRT) algorithm: (a) planned path R from starting point qstart

through waypoints q1, q2, q6 to destination qgoal (qi is a point on the path); (b) process of finding destination point by
stochastic fractal shape from the root node (S) as a starting point.

To solve these problems, the main idea of the proposed post triangular processing
of midpoint interpolation method is effective in path planning algorithms that do not
guarantee optimality, such as the RRT algorithm that has a locally piecewise linear shape
and can be used as a post-processing method after a path has been planned using one of
these algorithms. It may also be used for different route planning methods since it is a
post-processing technique that has no impact on calculation time.

The sampling-based path planning algorithm’s primary strength is the fast planning
speed based on the small amount of computation compared to the traditional path planning
algorithms [7].

Performance verification using simulation in various environments and mathematical
modeling were used to validate the performance of the proposed method in this paper.
The case in which the proposed algorithm is applied to the sampling-based path planning
method and the case in which it is not applied are compared through simulation. Here, the
planning time and path length of the first complete path to reach a destination point from a
starting point are evaluated.

This paper is organized as follows: Section 2 reviews some related works. Section 3
introduces the proposed post triangular processing of the midpoint interpolation method.
Various experimental environments are constructed for path planning in Section 4 to exam-
ine the effectiveness and improvements of the proposed method. Finally, the conclusions
are presented in Section 5.

2. Related Works

In this section, we introduce the previous works about the RRT algorithm in Section 2.1
and the Triangular Rewiring Method for the RRT Algorithm in Section 2.2, respectively.

2.1. RRT

This section shows the pseudocode of the RRT algorithm used in the experiment of
this paper that was designed based on [6] in which the RRT algorithm was proposed. In
1998, LaValle proposed the RRT algorithm, which is a representative sampling-based path
planning algorithm [6]. It is designed to have many degrees of freedom and is useful for
planning a path under non-holonomic constraints.

As shown in Figure 2, when a random sample is generated in the configuration
space, the node nearest to the position of the random sample is identified among the nodes
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constituting the tree with the starting point as the root node. A new node is generated at the
random sample position and inserted into the tree if the random sample position is nearer
than the step length. The process of tree extension is repeated until the destination point
is reached. The RRT algorithm implemented for the proposed method and comparison
experiment is Algorithm 1.

Algorithm 1 Pseudocode of RRT Algorithm

Input:

qstart ← start point
qgoal ← goal point
λ ← step length
C ← position set of all (measured) boundary points in all (known) obstacles
N ← number of random samples
Output:

R ← result of path R
Initialize:

T ← Null tree<node, edge>
Procedure RRT
Begin

1 T ← Insert root node<qstart> to T
2 While n ← 0 To N Do

3 Generate n-th random sample
4 qrand ← position of n-th random sample
5 qnear ← position of the nearest node in T from qrand
6 If not isInside(qnear, qrand, λ) Then

7
qnew ← intersection point between line segment connecting qrand and qnear,

and circle with radius λ centered at qnear
8 Else qnew ← qrand
9 If not isTrapped(qnew, qnear, C) Then

10 T ← Insert node<qnew> and edge<qnew, qnear> to T
11 If isInside(qnew, qgoal, λ) Then

12 T ← Insert node<qgoal> and edge<qnew, qgoal> to T
13 P ← path from last inserted node{qgoal} to root node{qstart} in T
14 If [length of R] > [length of P] Then R ← P
15 T ← Delete node<qgoal> and edge<qnew, qgoal> from T
End

Figure 2. Process of the RRT algorithm: When creating the new node qnew at a position separated by
step length λ in direction of random sample position (qrand) based on qnear node (position) closest to
random sample position (qrand) in tree T with starting point qstart as the root node.

In order to overcome the limitations on optimality and convergence time [6], RRT-
Connect can find a connected path more quickly by setting the start point and the destina-
tion point as the root of a separate tree, and further expanding the two trees alternately [7].
Rapidly-exploring Random Tree Star (RRT*) [13] was developed to overcome the limitation
that the path generated from RRT does not guarantee convergence to the optimal path.
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Informed-RRT* that can find a connected path quickly by enhancing the sampling probabil-
ity inside the elliptical region with the start point and the destination point as the respective
focal points [14]. The RRT*-Connect algorithm combines the advantages of RRT-Connect
and RRT* [15]. RRT*-Smart [16], Quick-RRT*[17], and the proposed algorithm in [8] can
show closer optimality by finding and connecting linearly connectable ancestor nodes to
random samples through triangular inequality in the process of adding random samples.

2.2. Triangular Rewiring Method for the RRT Algorithm

This section shows the principle and pseudocode of the Triangular Rewiring Method
for the RRT algorithm.

The triangular rewiring method is used to rewire the component based on the trian-
gular inequality concept [8]. The triangular inequality-based RRT algorithm is a rewiring
of the RRT method that is based on the concept of triangular inequality between nodes in
path planning; thus, it is closer to the optimum than the RRT.

The triangular rewiring method not only can find a better initial solution but also can
converge to a better solution rapidly.

The pseudocode for the triangular rewiring method is shown in Algorithm 2. This
iterative process continues until no qancestor exists (when no parent node exists for the
previous qancestor, i.e., when qancestor is qstart) or an obstacle exists between qchild and qancestor.
The method for triangular rewiring is as follows: the node with the position qparent and
the edge connecting the qchild and qancestor nodes are deleted. After the edge is deleted, the
qancestor node is updated with the qparent node, and the parent node of the qancestor is updated
with the qancestor node. The existing qparent node is then deleted. Then, the Trapped method
is used to check if it collides with an obstacle between the qchild node and the updated qparent
node. Then, in tree T, the last created qparent is inserted as the parent node of qchild.

Algorithm 2 Pseudocode of Triangular Rewiring Method for RRT Algorithm

Input:

qchild ← Position {qnew/qnewA/qnewB}
qparent ← Position qnear
T ← Tree {Tmerged/Ta/Tb}
C ← Position Set C
Output:

{Tmerged/Ta/Tb} ← Result of T
Begin triangular Rewiring Procedure

1 qancestor ← Position of Parent Node of qparent in T
2 If Not isTrapped(qancestor, qchild, C) then

3 T ← Delete Node<qparent>, Edge<qparent, qchild> and Edge<qparent, qancestor> from T
4 qparent ← qancestor
5 qancestor ← Position of Parent Node of qancestor in T
6 While Not qancestor = Null do
7 If Not isTrapped(qancestor, qchild, C) then

8 T ← Delete Node<qparent> and Edge<qparent, qancestor> from T
9 qparent ← qancestor
10 qancestor ← Position of Parent Node of qancestor in T
11 Else

12 Break
13 T ← Insert Edge<qparent, qchild> to T
14 Else

15 T ← Insert Node<qchild> and Edge<qchild, qparent> to T
End triangular Rewiring Procedure

3. Proposed Post Triangular Processing of the Midpoint Interpolation Method

The proposed post triangular processing of the midpoint interpolation method can be
applied to path planning algorithms that do not guarantee optimality, such as the RRT algo-
rithm, and rewiring and midpoint interpolation based on the triangular inequality principle.
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The assumptions of the proposed method are as follows:

1. The destination point may change gradually over time, but there is only one start
point and one destination point for each tree.

2. If the mobile robot cannot perform the omnidirectional motion, local planning or
kinodynamic planning is performed separately on the path planning result.

The basic principle is that the node serving as a waypoint in the planned path checks
whether an obstacle collides with its own grandparent node, and if it is free from obstacle
collision, the grandparent node rewires to the parent node. If it is not free from obstacle
collision, as shown in Figure 3, the locally piecewise linear path created between the
node, its parent node, and its grandparent node is made a more optimal path through the
interpolation process. In this process, a new node is interpolated into the path and deviates
from the piecewise linear path, so it has the advantage of being able to somewhat solve
the sharp path problem (the problem facing a mobile robot that has kinematic constraints
because the slope is not smooth).

 

(a) (b) 

Figure 3. Summary of post triangular processing of the midpoint interpolation method: (a) line segment γ with node q0

and its grandparent node q2 in tree R is not free from obstacle collision; (b) Parent node q1 of q0 is deleted, and qa between
q0 and q1, and qb between q1 and q2 are inserted as waypoints of a new path between q0 and q2.

This post triangular processing of the midpoint interpolation method was designed
based on the polygon approximation algorithm [18,19], so, as shown in Figure 4, the path
is calculated through a constant value called ε (the threshold of minimum clearance) (ε > 0).
It determines how closely the obstacle is approximated or, in other words, how close to the
optimal path it is. Here, in Figure 4, d follows Equation (1):

dn(qi) =

{
(dn−1(qi))/2, n > 0(

2
√

s(s − α)(s − β)(s − γ)
)

/γ, n = 0
(s = (α + β + γ)/2) (1)

 
(a) (b) 

Figure 4. Interpolation function of post triangular processing of the midpoint interpolation method: (a) height d0 of the
triangle formed by waypoints q0, q1, and q2 of the path is greater than ε (interpolation continuation); (b) height d1 of the
triangle formed by midpoints mF(q0,1) and q1 of q0 and q1 and midpoint mF(q0,1) is the midpoint of q0 and q1, also mF(q1,1)
is the midpoint of q1 and q2.
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Here, ξ() is a function that receives the node as a variable and returns the par-
ent node of that node. The n-squared (n ≥ 0) of the ξ() function can be expressed as

ξn(qi) :=

n︷ ︸︸ ︷
(ξ ◦ ξ ◦ . . . ◦ ξ)(qi), and if n is 0, ξ0(qi) := qi holds.

For the waypoint qi, the value of d decreases by 1/2 as interpolation proceeds (n).
The initial value d0 is the height of the triangle formed by the three line segments α, β,
and γ (γ < α + β), and the value of dn becomes (dn−1)/2. Based on qi, let α be the line
segment from itself to the parent node, β be the line segment from the parent node to the
grandparent node, and γ be the line segment from itself to the grandparent node. This d
value serves as a measure to confirm the clearance of the obstacle compared to ε. This is
because the smaller the d, the closer the path is to the obstacle.

Equation (1) converges to 0 when n becomes infinitely large in dn, so epsilon receives
only a value greater than 0 (positive number) from the user. ε is always greater than dn
when n is infinitely large. i.e., d is always smaller than epsilon at some point when n
becomes infinitely large. This can be expressed as Equations (2) and (3) as follows:

lim
n→∞

dn(qi) = lim
n→∞

dn−1(qi)

2
= lim

n→∞

d0(qi)

2n = lim
n→∞

C

2n = 0, (2)

∴ lim
n→∞

dn(qi) = 0 , ε > 0 → ε > lim
n→∞

dn(qi). (3)

However, since optimality and clearance are opposite attributes, the closer ε is to 0
as shown in Figure 5, the more similar the path or path length is to the visibility graph,
but it is not a smooth path [20]. The farther away it is from 0 (within a significant value
where the path is modified), the farther it is from the optimum, but a smooth (kinetic) path
is made, so ε should be set to a suitable value according to the environment.

  
(a) (b) (c) 

Figure 5. Variations according to ε values in post triangular processing of midpoint interpolation method (ε value of (a) >
ε value of (b) > ε value of (c)): (a) When ε value is set relatively large; (b) When ε value is set relatively medium (smooth
path); (c) When ε value is set relatively small (closer to the optimal path).

The following Algorithm 3 shows the pseudocode of the proposed post triangular
processing of the midpoint interpolation method. It is mainly composed of the post
triangular function (Algorithm 4) and interpolation function (Algorithm 5).

The input values of the post triangular processing of the midpoint interpolation
method consist of the path R planned through a path planning algorithm, such as the
RRT algorithm, the obstacle area information C, and the threshold value ε of the mini-
mum clearance.

The fmodify is a variable that determines whether the input path R has been modified
by this method, and if the path is modified even once, the entire process is repeated. If the
path modification does not occur in the process of repeating, the algorithm is terminated. t
refers to the index of the currently focused waypoint of R. That is, if t is 0, it is the starting
point, which is the first point of R.
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Algorithm 3 Pseudocode of Proposed Post Triangular Processing of Midpoint Interpolation Method

Input:

R ← path from {RRT/ . . . }
C ← position set of all (measured) boundary points in all (known) obstacles
ε ← threshold value of minimum clearance
Output:

R ← modified path R
Initialize:

fmodify ← true
Procedure postTriProcOfMidInterpolation
Begin

1 While fmodify Do

2 fmodify ← false // is the path modified

3 t ← 0 // index of the currently focused point

4 qchild ← first point in R
5 qparent ← next point of qchild in R
6 While not [qparent is the last point in R] Do

7 qancestor ← next point of qparent in R
8 If not isTrapped(qchild, qancestor, C) Then

10 R ← postTriangular(R, ε, t, fmodify)
11 Else

12 R ← interpolation(R, C, ε, t, fmodify)
13 qchild ← t-th point in R
14 qparent ← next point of qchild in R
End

In R, when the first focusing point is qchild, the next point of that point qchild is qparent, and
the next point of that point qparent is qancestor. It is determined whether the distance between
qchild and qancestor is free from obstacle collision (isTrapped() function). If it is free from
collision, it is called postTriangular(); otherwise, it is called interpolation(). postTriangular()
connects qchild and qancestor as in the triangular rewiring method [8], and the qparent between
them is deleted from the path. interpolation() finds (interpolates) the points between
qchild and qparent and between qparent and qancestor that are free from obstacle collision when
connected and rewires qchild, qancestor, and those two points are found. If R and t are updated
due to postTriangular() or interpolation(), qchild (the t-th waypoint of R), qparent, and qancestor
are updated accordingly. If qparent is the last point in R, fmodify is checked. Otherwise, the
above process is repeated for the updated qchild and qancestor.

Here, path modification by postTriangular() deletes the waypoints and makes a more
optimal path but has the effect of sharpening the path shape, and path modification by
interpolation() creates a new waypoint between the waypoints. Adding/inserting has the
effect of making a more optimal path while also smoothing the path shape. Of course, due
to the effect of making a more optimal path, path modification by postTriangular() is more
efficient than that by interpolation().

The input values of postTriangular() of the post triangular processing of the midpoint
interpolation method consist of the path R, the focusing point index t, and the path
modification fmodify from the post triangular processing of midpoint interpolation method.

Rewiring is performed on the t-th waypoint qchild of R, the next point qparent, and the
next point qancestor of that point again. First, the path between qchild and qparent and the path
between qparent and qancestor are deleted. Then the path is inserted between qchild and qancestor.
Finally, fmodify returns “true” because the path has been modified. Here, Path <A, B> means
a partial path from Waypoint A to Waypoint B in the complete path.
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Algorithm 4 Pseudocode of Proposed Post Triangular Function

Input:

R ← path R from postTriProcOfMidInterpolation
t ← point index t from postTriProcOfMidInterpolation
fmodify ← boolean fmodify from postTriProcOfMidInterpolation
Output:

R ← modified path R
fmodify ← result of boolean fmodify //return by reference

Procedure postTriangular From postTriProcOfMidInterpolation
Begin

1 qchild ← t-th point in R
2 qparent ← next point of qchild in R
3 qancestor ← next point of qparent in R
4 R ← Delete path<qchild, qparent> and path<qparent, qancestor> from R
5 R ← Insert path<qchild, qancestor> to R
6 fmodify ← true
End

The goal of the proposed post triangular processing of midpoint interpolation method
is to find an interpolation point (mF(q0), mF(q1)) free from obstacle collisions between
waypoints (q0~q1, q1~q2) while descending in the direction of the midpoint (q1), as shown
in Figure 6 in the interpolation process.

 
(a) (b) 

Figure 6. Details of post triangular processing of the midpoint interpolation method: (a) midpoint mF(q0,1) of waypoint q0,
q1 of path and midpoint mF(q1,1) of q1, q2 are not free from obstacle collision; (b) midpoint mF(q0,2) of interpolation point
mF(q0,1), q1 and midpoint mF(q1,2) between q1, interpolation point mF(q1,1) is free from obstacle collision.

However, the interpolation point mF follows Equation (4):

mF(qi, k) =

{ (
mF(qi ,k−1).x+ζ(qi).x

2 , mF(qi ,k−1).y+ζ(qi).y
2

)
, k > 0

qi, k = 0
(4)

When the k-th interpolation point of the interpolation point qi is mF(qi,k), the 0-th
interpolation point becomes itself qi, and the first interpolation point is the midpoint of qi
and the point ξ(qi) next to qi, and the second interpolation point becomes the midpoint of
mF (qi,1) and ξ(qi). That is, mF(qi,k) (k > 0) becomes the midpoint between mF(qi,k − 1) and
ξ(qi). The following Algorithm 5 shows the pseudocode of interpolation() of the proposed
post triangular processing of the midpoint interpolation method.
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Algorithm 5 Pseudocode of Proposed Interpolation Function

Input:

R ← path R from postTriProcOfMidInterpolation
C ← position set C from postTriProcOfMidInterpolation
ε ← threshold value ε from postTriProcOfMidInterpolation
t ← point index t from postTriProcOfMidInterpolation
fmodify ← boolean fmodify from postTriProcOfMidInterpolation
Output:

R ← modified path R
t ← updated point index t // return by reference

fmodify ← result of boolean fmodify // return by reference

Initialize:

qchild ← t-th point in R
qparent ← next point of qchild in R
qancestor ← next point of qparent in R
Procedure interpolation From postTriProcOfMidInterpolation
Begin

1 d ← altitude of the triangle consisting of qchild, qparent, and qancestor with base <qchild, qancestor>
2 ma ← midpoint between qchild and qparent
3 mb ← midpoint between qparent and qancestor
4 While true Do

5 If d >= ε Then

6 If not isTrapped(ma, mb, C) Then

7 R ← Delete path<qchild, qparent> and path<qparent, qancestor> from R
8 R ← Insert path<qchild, ma>, path<ma, mb>, and path<mb, qancestor> to R
9 fmodify ← true
10 Break
11 Else

12 d ← d / 2
13 ma ← midpoint between ma and qparent
14 mb ← midpoint between mb and qparent
15 Else

16 t ← t + 1
17 Break
End

The input values of interpolation() of the post triangular processing of midpoint in-
terpolation method consist of the path R, the obstacle area information C, the focusing
point index t, and the path modification fmodify from the post triangular processing of the
midpoint interpolation method.

From the t-th waypoint qchild of R, the next point qparent, and the next point qancestor of
that point, the height d of the triangle is obtained, ma is the midpoint of qchild and qparent,
and mb is the midpoint of qparent and qancestor. If the path between ma and mb is free from
obstacle collision (isTrapped()), the path between qchild and qparent is deleted, and the path
between qchild and ma, the path between ma and mb, and the path between mb and qancestor
are inserted. Moreover, since the path is modified, fmodify returns “true,” and the method
terminates. If the line segment between ma and mb is not free from obstacles, the value of d
decreases by 1/2, ma is updated to the midpoint of ma and qparent, and mb is updated to the
midpoint of mb and qparent. It is then determined whether ma and mb are free from obstacles
again. This repeated process proceeds until a case is found in which ma and mb are free
from obstacles or d becomes smaller than ε. If d becomes smaller than ε, the value of t is
increased by 1 and the method is terminated.

Figure 7 shows the overall flowchart of the proposed post triangular processing of
the midpoint interpolation method. Here, ξt(qgoal) denotes the t-th next waypoint from the
starting point qgoal of the path R, and ξt+n(qgoal) is the n-th next waypoint in the ξt(qgoal).
That is, there are n waypoints between ξt(qgoal) and ξt+n(qgoal). In the flowchart shown in
Figure 7, the stop condition follows the sequence:
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1. Check whether the t-th ancestor node and the (t + 2)-th ancestor node of qgoal are
collision-free (Here, when t is 0, the 0-th ancestor means itself(qgoal)).

2. If the result of Step 1 is not collision-free, compare the dk(ξt(qgoal)) value of the t-th
ancestor node of qgoal with ε.

3. If dk(ξt(qgoal)) is less than ε, the value of t is incremented by 1, and if the parent node
(t + 1) of the t-th ancestor node of qgoal after t is incremented is qstart, the algorithm is
stopped (if f is False).

 

Figure 7. Flowchart of post triangular processing of midpoint interpolation method.

The stopping criterion of the proposed algorithm is based on ε. As shown in
Figures 4 and 7, when the value of dk(ξt(qgoal)) becomes smaller than the ε, the algorithm
stops the loop. As Equations (1) and (2) and Figure 6 show, the value dk(ξt(qgoal)) de-
creases deterministically.

4. Experimental Results

The path between the RRT in various environment maps through simulation and
the RRT algorithm to which the proposed post triangular processing of the midpoint
interpolation method is applied were used to validate the performance of the method
proposed in this paper, and the path planning results were compared.

The performance measures compared were the average values after repeating the trial
100 times (sampling position was changed for each trial) of the path length (px) and the
planning time (ms) of the first complete path (the first complete path to reach a destination
point from a starting point).

Various environment maps have been examined and used to validate the performance
of the proposed path planning algorithms in related works. Since the efficiency of the
performance measures expected during the experiment varies somewhat based on the
composition of obstacles (e.g., number, location, shape), it is important to choose which
environment map to utilize carefully.
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The four environment maps used in the experiment are shown in Figure 8. The four
environment maps were created by partially referring to the experimental environment
proposed by Han in 2017 [21]. All environment maps were 600 × 600 px in size, with a
30 px step length. The start points (S) are represented by green circles, while the destination
points (G) are represented by purple circles. Obstacles are black polygons with yellow
contours (blue in the experimental results).

  
(a) (b) 

  
(c) (d) 

Figure 8. Environment maps for experiments: (a) Map 1; (b) Map 2; (c) Map 3; (d) Map 4.

Map 1 of Figure 8a appears to be an efficient environment for validating optimality
and completeness but a weak environment for sampling-based path planning algorithms
like the RRT algorithm. Many samplings are required since the probability of finding a
solution is low. Map 2 of Figure 8b appears to be an efficient environment for validating
the optimality and completeness of the path planning algorithm. Map 3 of Figure 8c is
an environment that is efficient for validating the optimality and the planning time of the
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path planning algorithm, as it consists of obstacles (50 vertices) that approximate circles.
Map 4 of Figure 8d is an environment that is efficient for validating the optimality and the
planning time of the path planning algorithm but a weak environment for sampling-based
path planning algorithms such as the RRT algorithm.

The number of samples and planning time required increase drastically when the path
to the destination point is narrow or there are few entrances since the sampling-based path
planning algorithm depends on probabilistic completeness.

The specification of the computer used in the simulation is shown in Table 1. The
simulator used for the simulation [8] was developed based on C# WPF (Microsoft Visual
Studio Community 2019 Version 16.1.6 Microsoft .NET Framework Version 4.8.03752),
and only a single thread was used for calculations except for the visual part. Generally,
depending on the specification of the computer, the result of performance measurements,
such as planning time, may vary during the simulation.

Table 1. Computer performance for simulation.

H/W Specification

CPU Intel Core i7-6700k 4.00 GHz (8 CPUs)
RAM 32,768 MB (32 GB DDR4)

We validate the experimental results (path length, planning time) in the four environ-
ment maps in which the post triangular processing of the midpoint interpolation method
(ε: 50, 30, 10 px) is applied to the RRT algorithm and its path planning results. Since ε
requires a higher amount of computation as it gets smaller, it was set to a value close to the
30 px step length of the experimental environment.

The experimental results for each map consist of a figure and table. The figure is a
path planning result for each algorithm shown in the case of a single trial (the figure for
each algorithm is not the result of repeated trials). The table shows an average value of the
results of planning time and path length from the path planning repeated trials. There may
be a significant difference between the performance observed visually and the numerical
results in the table for one of the repeated trials. The form of the planned path for each
algorithm is shown in the figure for visual reference. Furthermore, the proposed post
triangular processing of the midpoint interpolation method is used to see whether there is
a region where the piecewise linear path is smoothed.

The path planning results are shown in Figure 9 for Map 1 among the specified
environment maps for each algorithm. In terms of appearance, the one to which the post
triangular processing of the midpoint interpolation method (ε: 10 px) was applied seems to
have a smoother slope compared to those of the other algorithms, and the path length with
the method (ε: 10 px) seems to be the shortest.
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(a) (b) 

 
(c) (d) 

Figure 9. Experimental results of Map 1: (a) RRT; (b) proposed method (ε: 50 px) applied; (c) proposed method (ε: 30 px)
applied; (d) proposed method (ε: 10 px) applied.

The path planning results (average values after repeating the trial 100 times) are
shown in Table 2 for Map 1 among the specified environment maps for each algorithm.
When applying the post triangular processing of the midpoint interpolation method (ε:
10 px), the path length becomes 62% (1224/1994(%)) compared to the RRT, which is the
shortest of all the algorithms, and the planning times are all similar.

Table 2. Experimental results of Map 1 (numbers in parentheses (averages of repeating trial 100 times)
are relative ratios to RRT results (values less than 1 are counted as 1)).

Performance RRT
Proposed Method

(ε: 50 px)
Proposed Method

(ε: 30 px)
Proposed Method

(ε: 10 px)

Path length (px) 1944 (100%) 1403 (72%) 1325 (68%) 1224 (62%)
Planning time (ms) 697 (100%) 698 (100%) 698 (100%) 698 (100%)
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The path planning results are shown in Figure 10 for Map 2 among the specified
environment maps for each algorithm. In terms of appearance, the one to which the post
triangular processing of midpoint interpolation method (ε: 10 px) was applied seems to
have a smoother slope compared to those of the other algorithms, and the path length with
the method (ε: 10 px) seems to be the shortest.

 
(a) (b) 

  
(c) (d) 

Figure 10. Experimental results of Map 2: (a) RRT; (b) Proposed method (ε: 50 px) applied; (c) Proposed method (ε: 30 px)
applied; (d) Proposed method (ε: 10 px) applied.

The path planning results (average values after repeating the trial 100 times) are
shown in Table 3 for Map 2 among the specified environment maps for each algorithm. By
applying the post triangular processing of midpoint interpolation method (ε: 10 px), the
path length becomes 74% (730/986(%)) compared to the RRT, which is the shortest of all the
algorithms, and the planning time is similar to that of the RRT algorithm when the method
(ε: 50 px) is applied. However, the absolute time difference is 1 ms, which seems to be large
when the method is applied because it is an environment that requires less planning time.
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Table 3. Experimental results of Map 2 (numbers in parentheses (averages of repeating trial 100 times)
are relative ratios to RRT results (values less than 1 are counted as 1)).

Performance RRT
Proposed Method

(ε: 50 px)
Proposed Method

(ε: 30 px)
Proposed Method

(ε: 10 px)

Path length (px) 986 (100%) 780 (79%) 752 (76%) 730 (74%)
Planning time (ms) 10 (100%) 10 (100%) 11 (110%) 11 (110%)

The path planning results are shown in Figure 11 for Map 3 among the specified
environment maps for each algorithm. In terms of appearance, the one to which the post
triangular processing of midpoint interpolation method (ε: 10 px) was applied seems to
have a smoother slope compared to those of the other algorithms, and the path length with
the method (ε: 10 px) seems to be the shortest.

 
(a) (b) 

 
(c) (d) 

Figure 11. Experimental results of Map 3: (a) RRT; (b) Proposed method (ε: 50 px) applied; (c) Proposed method (ε: 30 px)
applied; (d) Proposed method (ε: 10 px) applied.

The path planning results (average values after repeating the trial 100 times) are
shown in Table 4 for Map 3 among the specified environment maps for each algorithm. By
applying the post triangular processing of midpoint interpolation method (ε: 10 px), the
path length becomes 82% (505/613(%)) compared to the RRT, which is the shortest of all
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the algorithms, and the planning time is the most similar to that of the method (ε: 10 px),
as it takes 16% more time than the RRT algorithm. However, the absolute time difference is
2 ms, and since it is an environment that requires less planning time, the difference appears
to be large when the method is applied.

Table 4. Experimental results of Map 3 (numbers in parentheses (averages of repeating 100 times) are
relative ratios to the RRT results (values less than 1 are counted as 1)).

Performance RRT
Proposed Method

(ε: 50 px)
Proposed Method

(ε: 30 px)
Proposed Method

(ε: 10 px)

Path length (px) 613 (100%) 535 (87%) 512 (83%) 505 (82%)
Planning time (ms) 6 (100%) 7 (116%) 8 (133%) 8 (133%)

The path planning results are shown in Figure 12 for Map 4 among the specified
environment maps for each algorithm. In terms of appearance, the one to which the post
triangular processing of the midpoint interpolation method (ε: 30 px) was applied seems to
have a smoother slope compared to those of the other algorithms, and the path length with
the method (ε: 10 px) seems to be the shortest.

 
(a) (b) 

  
(c) (d) 

Figure 12. Experimental results of Map 4: (a) RRT; (b) Proposed method (ε: 50 px) applied; (c) Proposed method (ε: 30 px)
applied; (d) Proposed method (ε: 10 px) applied.
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The path planning results (average values after repeating the trial 100 times) are
shown in Table 5 for Map 4 among the specified environment maps for each algorithm. By
applying the post triangular processing of the midpoint interpolation method (ε: 10 px),
the path length becomes 77% (1190/1536(%)) compared to the RRT, which is the shortest of
all the algorithms, and all the planning times are similar.

Table 5. Experimental results of Map 4 (numbers in parentheses to (averages of repeating 100 times)
are relative ratios to RRT results (values less than 1 are counted as 1)).

Performance RRT
Proposed Method

(ε: 50 px)
Proposed Method

(ε: 30 px)
Proposed Method

(ε: 10 px)

Path length (px) 1536 (100%) 1284 (83%) 1261 (82%) 1190 (77%)
Planning time (ms) 1752 (100%) 1753 (100%) 1753 (100%) 1753 (100%)

Consequently, the post triangular processing of the midpoint interpolation method
(ε: 10 px) performed well in the path length aspect for all maps, demonstrating that the
proposed method is efficient in terms of optimality.

5. Conclusions

In this research, the post triangular processing of the midpoint interpolation method
minimized the planning time and shortened the path length of the sampling-based algorithm.

The proposed post triangular processing of the midpoint interpolation method was
closer to the optimal path and somewhat solved the sharp path problem through the inter-
polation process. Furthermore, all path planning algorithms that plan a locally piecewise
linear path could apply the proposed algorithm. This strength has significance in that it
can be applied not only to the algorithm presented in this paper but also to various path
planning algorithms. We validated the performance of the proposed method after it was
applied to the RRT algorithm and its path planning results through simulation. It was
verified that the path length was shortened by 18–38% (average 26%) depending on the
threshold ε when applied to the RRT algorithm in the four different environment maps.
As a result, the RRT algorithm applying the proposed post triangular processing of the
midpoint interpolation method showed a more optimal path.

The proposed post triangular processing of the midpoint interpolation method is based
on a general global planning case in which a robot first discovers a global path from its
start point to its destination point before beginning to navigate. In dynamic environments,
not only local planners but also global planners must deal with kinodynamic problems in
real-time. Furthermore, the method proposed in this paper is more efficient in terms of the
optimality of robot path planning, but optimality is not guaranteed. Future work should
determine how to make a path that is closer to the optimal path.
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Abstract: This article deals with the design and testing of mobile robots equipped with drive systems
based on omnidirectional tracks. These are new mobile systems that combine the advantages of a
typical track drive with the advantages of systems equipped with omnidirectional Mecanum wheels.
The omnidirectional tracks allow the robot to move in any direction without having to change the
orientation of its body. The mobile robot market (automated construction machinery, mobile handle
robots, mobile platforms, etc.) constantly calls for improvements in the manoeuvrability of vehicles.
Omnidirectional drive technology can meet such requirements. The main aim of the work is to
create a mobile robot that is capable of omnidirectional movement over different terrains, and also
to conduct an experimental study of the robot’s operation. The paper presents the construction
and principles of operation of a small robot equipped with omnidirectional tracks. The robot’s
construction and control system, and also a prototype made with FDM technology, are described.
The trajectory parameters of the robot’s operation along the main and transverse axes were measured
on a test stand equipped with a vision-based measurement system. The results of the experimental
research became the basis for the development and experimental verification of a static method of
correcting deviations in movement trajectory.

Keywords: omnivehicle; omnitracks; Mecanum rollers; FDM

1. Introduction

In 2018, the world mobile robot market was worth USD 19 billion [1]. On the basis
of the latest forecast, it is estimated that by 2023 its value will have nearly tripled. These
robots have already moved from closed research centres and innovation fairs to the reality
of everyday life. Autonomous transport vehicles used for supplies in storage facilities,
autonomous mowers in house gardens, smart vacuum cleaners in homes, teleoperated
robots, or bomb disposal robots are not only becoming a common element in company
equipment, but also a commodity purchased by the average consumer [2,3]. Terrestrial
mobile robots can be categorised using a number of criteria, and their constructed systems
differ in terms of locomotion types. They can be wheeled, stepping, tracked, or ball
balancing robots [4].

Wheeled robots are the most recognized, investigated and frequently used group of
mobile robots. They achieve the highest speeds on flat surfaces. Their downside, however,
is their poor ability to operate in difficult terrain, with some of them being vitiated by a
significant turning radius [5]. Currently, research on improving their mobility in difficult
terrain is being conducted. One new solution that has been proposed are hybrid wheeled–
stepping robots [6–8].

At the opposite end of the robot spectrum are stepping robots, i.e., devices that are
characterised by the best adaptation to overcome obstacles in terrain. Important disad-
vantages of their most common versions is low movement speed and complex problems
related to the stepping control methodology (e.g., problems with maintaining balance
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during dynamic stepping in unknown terrain) [9]. In recent years, research on improving
the movement speed of stepping robots has been conducted [10,11].

Tracked robots can be classified as a compromise between wheeled and stepping
robots. Tracks allow for the mobility of the robot in difficult terrain, while also helping them
to maintain a satisfactory movement speed. This type of locomotion has been recognised,
investigated and used to a significantly higher degree than stepping systems [12].

Ball-balancing robots, also called ballbots, are robots in which the wheelset system is
a ball [13]. This locomotion type, apart from ensuring holonomic control, is a successful
solution in robot locomotion that is used to demonstrate technology, and in toys or pre-
sentation robots. It is visually attractive. The ballbot group also encompasses robots with
a spherical outer casing, or a casing resembling a spherical shape [14,15]. Due to such a
construction, these robots can not only achieve a high speed, but can also overcome water
obstacles in difficult terrain.

Mobile robotics is now at the stage of dynamic development, where it quickly adapts
to novel technological solutions while maintaining some previously used ones. Various
simple solutions are successfully used in modern applications. Paper [16] addresses the
issues of the hybridization of animals and machines, as well as the use of robots for
research on animals. Many of their functions, such as the movement of a mechanical fish,
are performed by simple mechanical systems. Paper [17] describes the construction of a
mobile robot, in which the stepping movements of 4 legs are produced by a single drive.

An example use of an existing and well-investigated solution can be seen in Mecanum
wheel systems. They were patented in 1972 by Swedish engineer Bengt Erland Ilon [18].
The wheels, due to top free rotation rollers oriented at 45◦ on the wheel circumference, as
well as appropriate steering, allow vehicles to move in any direction on a flat surface [19]
(Figure 1). Another alternative is the use of transversal rollers oriented at 0◦—although
such a solution means that the implementation of an optimal wheel with a minimum gap
may require an expensive manufacturing process [20].”

Figure 1. Mecanum wheel [21] (a), and the URANUS mobile robot with Mecanum wheels (b) [22].

A four-wheeled robot with Mecanum wheels (Figure 1b), which is driven by four
independent motors, can move in any direction on a plane without the necessity to ro-
tate [19,23,24]. A robot equipped with Mecanum wheels is holonomic, so the number of
controlled degrees of freedom is equal to the number of degrees of freedom that are held.
This is of particular significance in the case of robots that operate in very limited spaces.
Fork-lifts and transport robots with Mecanum wheels, which are therefore able to move in
any direction, can be used in storage facilities and production halls in which there is a lot
of equipment and a large number of storage racks in a small space.

Apart from the whole array of advantages, Mecanum wheels also have considerable
disadvantages: robots and vehicles equipped with such wheels need flat, even and clean
surfaces. However, there have been many investigations aimed at improving the locomo-
tion of such systems in difficult terrain [25]. The vibration of rotating rollers, which occurs
during motion, is another drawback of Mecanum wheels. The reason for this vibration is
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the cyclical shifting of the load between the subsequent rollers of a wheel [26]. In most
applications, the vibration will not have a significant impact on the robot’s operation, how-
ever, in some specific uses it can have a significant influence on it [27]. Another potential
issue is the distribution of load on the floor surface. Due to their structure, Mecanum
wheels have a small wheel-surface contact area. To improve the force distribution and
to prevent defects of the surface on which the robot moves, additional, surplus wheels
are used in numerous applications for the purpose of reducing the impact of load on the
surface. In some applications, non-driven castor wheel types are used, with additional
driven Mecanum wheels being used in some others [28].

In recent years, research has been conducted on the possibility of combining Mecanum
wheels with a classical drive track. Mobile robots with such a track system have all the
advantages of vehicles with Mecanum wheels, but do not take on their disadvantages.
They can move on uneven, dirt-covered terrain and can carry heavier loads due to the
multiple number of rollers in the tracks. Systems with such a drive can be used as mobile
storage robots, automated construction machines (excavators, drilling rigs) [29], inspection
or rescue robots, transport platforms and bomb disposal robots. The use of multidirectional
tracks in the construction of mobile robots significantly increases their maneuverability.

In 1999, in Isod’s work [30], the issue of multidirectional tracked robots was discussed.
Such attempts to transfer the properties of Mecanum wheels to tracked wheels were made
in 2015 and are described by Zhang [31].

In 2017, a German company, IVA Johann GmbH, in cooperation with scientists from
the Bremer Institut für Produktion und Logistik, presented a commercial prototype of a
mobile robot equipped with multidirectional tracks [29]. In 2018, the results of simulation
research conducted by Zhang [32] on a platform equipped with multidirectional tracks were
published. In 2020, Fang published research results involving the construction and tests of a
fork-lift equipped with multidirectional tracks, which was designed to transport loads of a
maximum of 2 tons [33]. During the research, which was both experimental and numerical,
it was shown that a robot with multidirectional tracks preserves its holonomic characteristic.

The paper published by Huang discussed mobility in difficult terrain [34]. During
movement along the robot’s main axis, multidirectional tracks preserve the robot’s ability to
overcome terrain obstacles, such as embankments, stairs, thresholds or curbs. In the case of
transverse movement to the robot’s main axis, the ability to overcome thresholds and steps
was significantly reduced. Due to the ability to overcome obstacles while travelling along
the main axis, the new robot will replace systems with Mecanum wheels in warehouse
facilities and production halls that may have floors with uneven surfaces, thresholds
and kerbs.

Simulation research results on rectilinear motion in the transverse direction of a robot
with multidirectional tracks are presented in [33]. It was demonstrated that the robot’s
motion trajectory becomes curved during such motion, which was also confirmed by the
experimental research discussed in [32]. Deviations from the rectilinear path depend on
the robot’s mass, and such deviations increase with a decrease in system mass. An article
written by Huang [34] also discusses research on the transverse motion of a robot on a
smooth and slippery surface and includes the problems resulting therefrom.

Primarily robots with longitudinally symmetric non-overlapping tracks were investi-
gated in the publications referred to above, and only in one case were robots with symmetric
and partly overlapping tracks scrutinized. However, the publications do not discuss issues
related to the applications of non-symmetric tracks, nor do they discuss other track systems.
Research on the influence of load on driving properties has been conducted for robots with
a mass of a maximum of 5 tons. The issue of vibration during the locomotion of robots
with multidirectional tracks was not discussed. No attempt to compensate for deviations
of direction during locomotion was made.

In this paper is developed a new mobile robot with a drive system that uses multi-
directional tracks. The research encompasses the ability of a prototype to perform basic
manoeuvres, i.e., motion along the main and transverse robot axes. A static method of im-
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proving motion parameters by correcting control parameters was developed and verified.
The tests were conducted on a prototype made with fused deposition modelling (FDM) 3D
printing technology on a test bench equipped with a vision-based measurement system.

2. Materials and Methods

2.1. Construction of a Mobile Robot with Multidirectional Tracks

A classical vehicle with a track drive system (excavator, bulldozer, tank, armoured
personnel carrier, bomb disposal robot, etc.) is made of a body and two continuous track
systems located symmetrically to the body (Figure 2a). A vehicle with a drive system with
multidirectional tracks is equipped with four continuous track systems, which can usually
be positioned in various ways with regards to the vehicle’s body. The typical schemes of
continuous track positions encompass tracks that are completely overlapping (Figure 2b),
tracks that are partially overlapping (Figure 2c), as well as systems with non-overlapping
tracks (Figure 2d).

Figure 2. Schemes of track positions with two and four continuous tracks: (a) symmetrical system,
(b) symmetrical system with completely overlapping tracks, (c) system with partially overlapping
tracks, (d) system with non-overlapping tracks.

It was assumed that the mobile robot to be constructed would have the structure of
a symmetrical system with completely overlapping tracks, i.e., it will be made of a body
and four parallel track drive systems of equal length with completely overlapping tracks
(Figure 2b).

During contact between the continuous track and the surface, tractive force is gener-
ated. This force is necessary for a vehicle to move. A large surface-track contact area and
an appropriately adjusted track preload result in a lower unit pressure of the track when
compared to the wheel. A standard, single continuous track system is made of a track
located between the drive wheels, idler, road wheels and return rollers (Figure 3a). In some
track vehicles (e.g., excavators), there are solutions in which the drive wheels and idlers
also take the load-carrying capacity (Figure 3b). This type of powertrain was also selected
for the designed mobile robot. However, due to the large radius of the drive wheels and
idlers in relation to their spacing, no extra road wheels were used (Figure 3c).

Tracks in the continuous track system are composed of a closed sequence of several
dozen links that are connected to one another with rotating pairs. In the case of multidirec-
tional tracks, each link is equipped with an additional rotating roller positioned at angle γ

(usually 30◦ < γ < 60◦) to the link axis. The view of a single link with length a, width b, and
height h, and also a cylindrical roller with radius rr,, is presented in Figure 4.

The designed mobile robot is equipped with four independent continuous track
systems with multidirectional tracks that have only drive wheels and idlers. It is a four-
degrees-of-freedom system. The drive is transferred from the rotating drives to the drive
wheels using belts. In the middle part of the robot’s body, at point R, the local x’y’ coordinate
system is located. The kinematic scheme of the robot is shown in Figure 5.
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Figure 3. Continuous track system: (a) standard system, (b) system with drive road wheels, idlers
and road wheels, (c) system with drive road wheels and idlers without road wheels.

Figure 4. View of a single multidirectional track link: 1—link, 2—roller.

It was assumed that the designed robot would be used indoors (residential buildings,
offices, warehouse facilities, production halls, etc.). Therefore, its dimensions must be
adapted to overcome the typical obstacles seen in such places: doors, thresholds, staircases,
etc. The robot should move at a maximum speed of vR = 0.2 m/s, which is the speed
considered acceptable for a robot moving in a ‘human environment’ [35]. This means that
the maximum track speeds 1, 2, 3, 4:

vR = v1 = v2 = v3 = v4 (1)

The resulting basic dimensions are described in Table 1.
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Figure 5. Kinematic scheme of the robot with a continuous track system that has multidirectional tracks.

Table 1. Dimension and construction assumptions of the mobile robot.

Dimension Name and Symbol Value Dimension Name and Symbol Value

robot mass mr 6 kg working load u 2 kg
track link height a 45 mm track link width b 40 mm

roller radius rr 10 mm distance between the axis of the roller
and the plane of the track link hr

5 mm

roller mounting angle γ 45◦ distance between pairs of continuous
track systems c 270 mm

distance between the continuous
track systems in pair d 80 mm distance between the axes of the

driving and idler wheels e 225 mm

belt wheel radius on drive wheel rks 60 mm belt wheel radius on motor rs 15 mm

Figure 6 shows an overview of the developed solid model of the robot and the detailed
views of the solid model of the track system.

Figure 6. General view (a) and bottom view (b) of the solid model of the robot with the continuous track system with
multidirectional tracks.
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Figure 7 shows the views of a single continuous multidirectional track with its own
drive system. The continuous track system is composed of a track, an idler and a drive
wheel. In each track segment there is one cylindrical rotating roller. The drives are located
in the central part of the robot. The active moment is shifted to the drive wheel using
transmission with a toothed belt.

Figure 7. View of the continuous track system with multidirectional tracks: (a) side view and (b) front
view (1—idler, 2—link with a rolling roller, 3—track, 4—motor pulley, 5—drive wheel, 6—toothed belt).

The track drive systems, track links, rollers and the body of the robot were made using
incremental FDM technology. The material used is PET-G, which is a polymer characterised
by low shrinkage and high mechanical resistance. The free rollers rotate on steel axes.
There are plastic slip rings between the rollers and the mount, which is connected to the
track plate. The rollers consist of a printed core, onto which the tyres are pulled. The tyres
of the rollers, also made using FDM technology, are made of thermoplastic polyurethane
with a Shore scale hardness of 40D. The view of the finished prototype of the mobile robot
is presented in Figure 8.

Figure 8. View of the finished robot prototype equipped with a continuous track system with
multidirectional tracks.

The motor is connected to the drive wheel by a reduction pulley transmission system
with a reduction ratio of ik = rs/rks = 0.25. For the assumed maximum robot motion speed
vr (Table 1), the maximum angular velocity of the motor ωs was determined from the
following equation:

ωs =
vr

rks ik
= 10.67 rad/s (2)

The rated active moment of motor Ms was selected using the simplified method of
the experimental measurements of the robot’s motion resistance in the longitudinal and
transverse direction using a tensometric force sensor. The highest motion resistance was
measured experimentally during motion in the direction perpendicular to the main axis,
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and is expressed as the maximum force that excites motion in a set direction, which was
FT = 13 N. It was assumed that the motor moment Ms should be greater than:

Ms >
rkFT

4
(3)

On the basis of the calculations made to design the prototype construction, POLOLU-
2274 motors were selected with a torque of Ms = 0.57 Nm, and a nominal speed of
ns = 21.99 rad/s. Each motor is equipped with a magnetic encoder that provides 48 counts
per revolution, and therefore one complete revolution of the wheel will provide 2249 pulses,
with a drive wheel accuracy of Δφs = 0.0007 rad.

2.2. Control System of the Mobile Robot with Multidirectional Tracks

For the purpose of exciting the set robot motion, it is necessary to have an appro-
priately designed system and control algorithms. The mobile robot has four drives that
independently excite the motion of each track (Figures 5 and 8). Thus, a control system is
required to control the robot. The control system should have four control regulators of
speed ωsi of motor i (i = 1, 2, 3, 4), which start the drive wheels of the continuous tracks. In
the robot prototype, the speed control of the used DC motors will have the form of a pulse
width modulation (PWM) signal. The general scheme of the developed robot’s control
system is presented in Figure 9.

Figure 9. General block diagram of the mobile robot’s control system.

Motor i, which excites the motion of the continuous track system i, is individually
controlled using a PIDi regulator operating in the feedback loop with a frequency of 50 Hz.
The value of vR(t) is the set speed of the entire robot, the value of ωTi(t) is the value of
the set speed of track motor i (i = 1, 2, 3, 4), Ei(t) is the control error, Ui(t) is the steering
signal, Pi(t) is the PWM value responsible for motor control DC, ωMi(t) is the actual motor
rotational speed, Θi(t) is the motor rotation angle measured with an encoder, while ωi(t) is
the motor angular speed. The scheme of the speed regulator of continuous track system i is
presented in Figure 10.

A RoboTrack control program was developed to control the movement of the robot.
The program is run on an external PC.
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Figure 10. Scheme of the speed regulator controlling continuous track system i (i = 1, 2, 3, 4).

The programme is responsible for planning the robot’s motion trajectory and for
sending the set speed values ωTi(t) for particular motors i to the robot’s control system
based on speed values set by the user. RoboTrack also ensures the on-line registration
of ride parameters. Communication between the external PC and the mobile robot is
performed with a Bluetooth communication link

The excitation of the robot’s motion along the set trajectory requires a suitable control
of speeds v1, v2, v3, v4 of tracks 1, 2, 3, 4. This paper discusses robot motion along two
trajectories: a straight line μw at constant speed vRx along the longitudinal axis, and a
straight line μp at constant speed vRy along the robot’s transverse axis (Figure 11). In the
case of motion along the longitudinal axis at speed vRx, the tracks should move at the same
speeds (Figure 11):

v1 = v2 = v3 = v4 = vRx (4)

while during motion along the transverse axis at speed vrx, the tracks’ speed takes the
following values:

v1 = v3 = vRy v2 = v4 = −vRy. (5)

Figure 11. Scheme of the control system of continuous track system i (i = 1, 2, 3, 4) for motion along
trajectory μw (a) and trajectory μp (b).

2.3. External Measurement Test Bench

The mechanical prototype proposed in this paper is not able to develop self-localization [36].
The localization of the mobile robot is determined with an external measurement test
bench, the general scheme and view of which are presented in Figure 12. The vision-based
measurement system was made of a camera located perpendicularly to the measured area.
The ELP-USBFHD04H-MFV camera with a resolution of 1920 × 1080 px was located at the
height h = 1.95 m with regard to the main coordinate system xy (Figure 12).
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Figure 12. Robot motion test bench: (a) general scheme, (b) test bench view.

The measuring accuracy of the bench was checked using a printed calibration sheet
with ArUco markers (Figure 13). The position reading error δl of the marker was less than
0.008 m and the orientation angle error δα was no more than 0.5◦.

Figure 13. Calibration sheet with ArUco markers.
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The vision-based system records and analyses images with a frequency of 25 Hz
(frames/s). In order to allow for the detection of the robot’s position in a camera image,
the vision marker ArUco was placed on its top surface (Figure 14). The ArUco marker
is a print on a flat tile with white and black rectangles. Owing to the precisely defined
distribution of these areas, the marker can transfer its ID number, and it is therefore possible
to recognize its presence in a ready image, as well as to determine its linear and angular
position. For known dimensions, it is also possible to conduct a programmable estimation
of its location in three-dimensional space. The middle of the marker is located in point
R on the robot’s body (Figure 14). During the measurement, the whole marker must be
located in the camera vision area—this efficiently reduces the observation area to the area
of the following dimensions: a = 0.75 m, b = 1.30 m.

Figure 14. ArUco marker view on the robot’s body.

The robot is controlled by RoboTrack software (Figure 15), which allows robot motion
to be controlled and track and motor motion to be registered. The software was integrated
with a VisionM module that allows the covered distance to be measured and recorded.
This module is based on OpenCV libraries that are extended with OpenCV Contrib [37]
modules. Its task is the online analysis of individual image frames recorded by a camera
placed on the test stand. The module provides data on the angular orientation of the
tracked robot, its current location and the distance covered, which are recorded in real time.

Figure 15. Data flow at the measurement test bench.

2.4. Static Correction Method of the Robot’s Locomotion Direction

During the motion of the mobile robot with the continuous track system with multi-
directional tracks travelling at a constant speed, the phenomenon of curved trajectories
may take place [24,27]—the middle R of the robot’s body deviates from the trajectory,
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and the orientation angle αR of the body changes. The deviations from the straight-line
trajectory depend on the robot’s mass, and they increase with the system’s mass [27].
During movement along the transverse axis, the problems with maintaining straight line
movement become even more significant when the robot moves on a slippery surface. This
disadvantageous phenomenon can be prevented by the introduction of suitable corrections
to the set speeds of particular continuous tracks.

For the purpose of maintaining the robot’s motion along the set straight line trajectory,
the fixed orientation angle αR of the robot’s body should be ensured by introducing suitable
corrections of track speeds.

A difference in the orientation αR of the body, i.e., between the real and set robot
position, results from the robot’s body rotation at constant angular speed ωr. The rotation
can be reduced by forcing the body to rotate in the opposite direction by making appropriate
changes in track set speeds.

A simplified model of the change in the robot’s body orientation and motion direction
(Figure 16) was proposed, which entails the introduction of virtual tracks located between
tracks 1 and 2,—marked as L12, with 3 and 4 being marked as R34. The speed vk of the virtual
tracks excites the corrective rotation of the body, which eliminates the change of orientation,
can be determined from Equations (6) and (7). These equations take into consideration the
change in the angle ΔαP of the orientation at time Δt, structural dimension c describing
the distance between the pairs of continuous tracks, and an empirical adjustment factor cf
resulting from the surface type and the adhesion of the rotating rollers:

ωR =
Δ ∝R

Δt
(6)

vk = −ωRc f
1
2

c (7)

Figure 16. Illustration of the change in angular orientation αR of the robot’s body under the influence
of angular speed ωr, and also the description of this change using a method of eliminating the change
in orientation by introducing corrective speeds vk in virtual tracks R and L.

In the case of the robot’s motion along the longitudinal axis, the correction of track
speed involves its suitable increasing or decreasing by value vk according to the following
formula (Figure 17a):

v1 = v2 = vRx + vk v3 = v4 = vRx − vk (8)
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Figure 17. Illustration of track speed correction for the purpose of maintaining constant robot
orientation during motion: (a) along the longitudinal axis along trajectory μw, (b) along the transverse
axis along trajectory μp.

Speed correction vk for motion along the robot’s transverse axis consists of differenti-
ating the speed on each pair of tracks according to formula (Figure 17b):

v1 = −v4 = vRy − vk v2 = −v3 = vRy + vk (9)

2.5. Experiment Plan

A number of experimental tests of the mobile robot were carried out on the test stand
in order to verify the operation of the proposed drive systems and to determine the basic
kinematic properties of the movement.

The tests encompassed a number of rides on straight line trajectory μz located along
the longitudinal and transverse axes of the robot. Various measurements of the location,
the linear and angular speeds of the robot’s body, the rotation angle and angular speeds of
the drive wheels, and also the speed of the tracks were conducted during the rides. The
research was conducted on a specially designed test bench equipped with a vision-based
location measurement system. Figure 18 presents the scheme of the experiment carried out
on the measurement test bench.

Ride tests were conducted at two stages. In the first part of the experiment, the
set values of the linear speeds of all the tracks did not take into account the correction
parameters. In the second part of the experiment, the speeds of particular drives were
differentiated by the correction value, which was calculated on the basis of the proposed
model of ride trajectory correction.
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Figure 18. General scheme of the conducted tests of the robot’s ride tests on a set straight line
trajectory along the longitudinal axis (a) and along the transverse axis (b) of the robot (l1, l2—lengths
of set trajectory, μT—set trajectory, μR—real trajectory, xR(t), yR(t)—coordinates of point R on the
robot’s body, αr(t)—body coordination angle).

3. Results

The results of the measurements obtained during the investigated robot rides along
the longitudinal and transverse robot axes are presented and discussed below. The tests
and measurements were carried out on the designed measurement test bench (Figure 12).
The length of the tested trajectory was limited by the area of the test bench. The trajectory
waveforms μR (xR, yR), the dependence of change Δα on time, and the change of the
coordinates xR, yR over time were plotted on the basis of the stationary measuring system,
while the speeds of the individual tracks were determined on the basis of the angles
indicated by the encoders in relation to time.

3.1. Robot Ride Tests

The tests of the robot’s rides along the longitudinal axis were conducted in accordance
with the scheme shown in Figure 18a. The robot moved along the planned straight-line
trajectory μt by length L1 = 1.2 m at the constant speed vRx = 0.12 m/s.

The scheme presented in Figure 18b shows the plan of the research on the robot’s rides
along the transverse axis. The robot moved along the planned straight-line trajectory μt by
length L2 = 1.2 m at constant speed vRy = 0.12 m/s.

During the research, the waveforms of real ride trajectories μR (xR, yR), the changes of
body orientation angle Δα, coordinates xR, yR of point R on the robot’s body, and the real
linear speeds v1, v2, v3, v4 of the tracks calculated on the basis of encoder indications were
measured and registered. Figures 19–22 show the measurement results for rides along the
longitudinal axis, while Figures 23–26 depict the measurement results of the robot’s rides
along the transverse axis.
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Figure 19. Trajectory μR (xR, yR) of point R movement on the robot’s body during the ride along the
longitudinal axis.

Figure 20. Waveforms of changes in angle Δα of the robot’s body orientation at time t during the
ride along the longitudinal axis.

Figure 21. Plots of coordinates xR, yR of point R on the robot’s body during the ride along the
longitudinal axis.

Figure 22. Waveforms of real linear speeds v1, v2, v3, v4 of tracks 1, 2, 3, 4 of the robot during the ride
along the longitudinal axis.
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Figure 23. Trajectory μR (xR, yR) of point R movement on the robot’s body during the ride along the
transverse axis.

Figure 24. Waveforms of changes in angle Δα of the robot’s body orientation to time t during the
ride along the transverse axis.

Figure 25. Plots of coordinates xR, yR of point R on the robot’s body during the ride along the
transverse axis.

Figure 26. Waveforms of real linear speeds v1, v2, v3, v4 of tracks 1, 2, 3, 4 of the robot during the ride
along the transverse axis.

158



Appl. Sci. 2021, 11, 11778

The experiment showed that during the rides the real, linear speeds of tracks vi
adopted the values of the set speeds, vRx and vRy. In the case of longitudinal motion, the
largest speed errors occurred at the start-up of the robot’s motion. After the stabilisation
of speed, the errors took significantly smaller values (Figure 22). In the case of transverse
motion, the values of the track speed errors occurring at the start-up were comparable to
the deviations observed during the whole ride (Figure 26). It should, therefore, be noted
that no such error jump between the set and real speed in transverse motion was observed.
Despite the speed jump at start-up, the maximum deviation between the real and set speed
Δvi was Δvi =0.02 m/s for the longitudinal motion, and Δvi =0.03 m/s for the transverse
motion (Figures 22 and 26).

In both longitudinal and transverse motion, deviations from the planned trajectory
were observed in the form of a curved ride and a change in the orientation of the robot’s
body (Figures 20 and 24). The location error of point R was determined to be ΔyR = yRT – yR.
In both the longitudinal and transverse motion, the set trajectory is a straight line over-
lapping with the X axis of the measurement test bench coordinate system. Due to this, for
both rides the theoretical location of point R in relation to the Y axis is yRT = 0. Location
deviation ΔyR = yR.

In the case of the longitudinal motion, the final location error of point R was ΔyR= 0.037 m
(Figure 21), while the orientation change was Δα =5◦ (Figure 20) at time t = 10 s.

During the transverse motion, the robot did not cover the whole planned distance
(L2 = 1.2 m), and the measurement was interrupted after it had covered the distance of
0.7 m (Figure 25) because the robot overstepped the measurement area boundary in the
direction of the y axis. In the case of the transverse motion, the final orientation change
was Δα = 35◦ (Figure 24), and the location error of point R was ΔyR= 0.36 m (Figure 25) at
time t = 10.8 s.

The analysis of the waveforms of changes in the orientation angle Δα of the robot’s
body at time t indicated that they had a linear nature. This was confirmed by the conducted
statistical analyses. The value of the Pearson linear correlation starts to be higher at 0.97
onwards for both the longitudinal and transverse motions.

3.2. Tests of Robot Rides with Consideration for the Static Correction Method of Ride Direction

The phenomenon of the change in the angle Δα of body orientation had a linear
nature, and therefore the application of the static correction method set out in Section 2.5
was justified. On the basis of the planned changes of orientation angle Δα during a ride
(Figures 20 and 24), the values of speed vkw, corrections for the longitudinal motion, and
vkw for the transverse motion, were calculated using Formulas (6) and (7).

In the calculations, the adaptation factor cf was taken into account. For the given
robot’s dimensions, the value of the c parameter was 0.16 m. With consideration for the
type of substrate (track link rollers made of TPU filament with a hardness of 40D moving
on ceramic tiles), the value of the factor was determined, empirically, to be cf = 4.4.

The corrective speed values, obtained using Formula (7), were vkw = 0.04 m/s for the
longitudinal motion and vkp = 0.35 m/s for the transverse motion. The corrective speed
value vkp = 0.35 m/s were restricted to 0.2 m/s due to the limitations of the drive and
control systems of the used equipment.

For the obtained values of the corrective speed, two more tests of the robot’s rides
along the longitudinal and transverse axes were conducted. Figures 27–30 present the
results of the measurements for the rides along the longitudinal axis, while Figures 31–34
show the results for the measurements of the robot’s rides along the transverse axis.
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Figure 27. Trajectory μR (xR, yR) of point R movement on the robot’s body during the ride along the
longitudinal axis with ride direction correction.

Figure 28. Waveforms of changes in angle Δα of the robot’s body orientation at time t during the
ride along the longitudinal axis with ride direction correction.

Figure 29. Plots of coordinates xR, yR of point R on the robot’s body during the ride along the
longitudinal axis with ride direction correction.

Figure 30. Waveforms of real linear speeds v1, v2, v3, v4 of tracks 1, 2, 3, 4 of the robot during the ride
along the longitudinal axis with ride direction correction.
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Figure 31. Trajectory μR (xR, yR) of point R movement on the robot’s body during the ride along the
transverse axis with ride direction correction.

Figure 32. Waveforms of changes in angle Δα of the robot’s body orientation to time t during the
ride along the transverse axis with ride direction correction.

Figure 33. Plots of coordinates xR, yR of point R on the robot’s body during the ride along the transverse
axis with correction.

Figure 34. Waveforms of real linear speeds v1, v2, v3, v4 of tracks 1, 2, 3, 4 of the robot during the ride
along the transverse axis with correction.
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The measurements showed that the obtained linear speeds of the tracks vi assume
values close to the set speeds vRx and vRy, which were corrected by values vkw and vkp.
The differences between real value vi and set value vRx for the longitudinal motion were
Δvi < 0.02 m/s (Figure 30), disregarding the temporary error jump at the start-up. For the
transverse motion, the same value was Δvi < 0.04 m/s (Figure 34). In this case, analogically
as in the transverse motion without correction, no temporary error jump of speed at start-
up was recorded. Therefore, the worsening ability to maintain the set speed vi of the tracks
in the transverse motion was observed, which was probably caused by the occurrence of
low friction between the surface and the track.

Both in the case of the transverse and longitudinal motion, there was a significant
flattening of the trajectory curve (Figures 27 and 31). In the presented case, the final change
of orientation angle Δα of the body during longitudinal movement after the introduction
of corrective speeds vkw was 1.4◦ (Figure 28), while the final point R location error was
ΔyR= 0.01 m (Figure 29). A fourfold improvement of the drive parameter Δα was obtained
(Table 2).

Table 2. Comparison of the conducted measurement results based on the distance of 0.7 m for the
transverse motion, and 1.2 m for the longitudinal motion.

Longitudinal Motion Transverse Motion

Ride without
Direction Correction

Ride with Direction
Correction

Ride without
Direction Correction

Ride with Direction
Correction

Δα = 0.085 rad Δα = 0.025 rad Δα = 0.549 rad Δα = 0.207 rad
Δvi < 0.02 m/s Δvi < 0.02 m/s Δvi < 0.03 m/s Δvi < 0.04 m/s

ωR = 0.009 rad/s ωR = 0.003 rad/s ωR = 0.052 rad/s ωR = 0.024 rad/s

In the case of transverse motion without speed correction, the robot did not cover
the whole planned distance (Figure 25). Moreover, the measurement was stopped after
covering 0.7 m at time t = 9 s (Figure 33), because the robot crossed the boundary of the
measuring field in the direction of the Y axis. The same part of the trajectory was taken into
account when analysing lateral movement while both considering and not considering, the
correction of the driving (Figure 33).

The change of body orientation Δα after t = 9 s, i.e., at the time equal to the longi-
tudinal drive without speed correction was 11◦ (Figure 32), while the location error was
ΔyR = 0.07 m (Figure 33).

In the transverse motion, the observed improvement trajectory curve was smaller
than in the case for longitudinal motion. This resulted from, among other things, a 50%
decrease in the required corrective speed vkp, which took place for equipment-related
reasons. The so-reduced correction is not perfectly efficient and therefore it did not allow
for the complete improvement of the robot’s trajectory. The obtained improvement (over
a threefold reduction of error Δα (Table 2)), however, proved the correctness of the used
method in the transverse motion of the robot.

The obtained measurement results of drive parameters were statistically analysed and
are presented in Table 2.

4. Discussion

The paper presents a solution for a robot equipped with completely overlapping
multidirectional tracks with a symmetrical roller position. A light robot prototype was
designed and constructed using additive manufacturing technology to be later used in
experimental research on a specially constructed test measurement bench. The robot’s
parameters were examined along the longitudinal and transverse axes.

The experimental research without ride direction correction confirmed the occurrence
of the effect of motion trajectory deviation during transverse motion. Similar effects of
the trajectory curve were observed during the simulation tests of the robot with non-
overlapping tracks [27] and with partly overlapping tracks [24].
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The data quoted in the references indicate a 3.8% deviation between the theoretical
speed and the one obtained in the dynamic simulation during transverse motion, and less
than a 1% deviation in the main motion. In these references, no quantitative data was
presented regarding the change in the angular orientation of the robot.

The data obtained during the conducted experiment showed a deviation increment of
0.016 rad/s in the longitudinal motion, and 0.133 rad/s in the transverse motion.

Such significant values of the trajectory curve probably result from the mechanical
imperfections of the prototype, which were probably due to the adopted drive system’s
structure without idling rolls and the used manufacturing technology. The fact that the
track links and rollers were made of TPU filament, were of 40D hardness in the Shor scale,
and had a low friction coefficient resulted in low adhesion of the robot to the surface. It
was shown that this effect could be corrected using a suitable control system. The pro-
posed static method of ride direction correction performed this role. The application of
the continuous track speed correction allowed the angular deviation during longitudi-
nal motion to be reduced to 0.007 rad/s, and to 0.019 rad/s during transverse motion.
Despite the used correction by a value smaller than would result from the transverse
motion calculations, a significant improvement in trajectory parameters was observed. This
confirms the correctness of the used method and creates opportunities for further research
and experiments.

The downside of the used correction method is the fact that it is a static method,
which means that it requires earlier experimental tests of a robot on a particular type of
surface, with the results needing to be used as the basis for the determination of efficient
correction parameters. The application of a dynamic method of ride direction correction
would improve the performance even more, and, in effect, eliminate the consequences
of deviations in trajectory during robot motion. In further research stages, the prototype
will be equipped with additional body orientation angle measurement sensors, which will
allow the use of dynamic motion direction correction.

5. Conclusions

The key considerations of this paper were the design and testing of a mobile robot
with an omnidirectional track. The research confirmed the ability of the robot to drive
omnidirectionally while maintaining a fixed body orientation. The use of multidirectional
tracks in the construction of mobile robots significantly increases their manoeuvrability.

The obtained results clearly show that vehicles equipped with continuous track sys-
tems with multidirectional tracks can still be improved. The application of the approach,
involving the compensation of mechanical imperfections with the use of additional sensors
and appropriate control, will allow for an even more precise maintenance of the set motion
direction. The mechanical design of the track system also had a great influence on the accu-
racy of the robot’s movement. Introducing additional road wheels and idlers or changing
the material and geometry of the rollers in the track links will improve the contact between
the track and the ground.

The development of systems equipped with continuous track systems could be used,
inter alia, in the construction of equipment operating on narrow construction sites with
numerous obstacles. Tracked machines, which are able to move in the transverse direc-
tion, would facilitate manoeuvring and contribute to reducing the number of accidents.
Another potential area of application is the transport of small, yet heavy loads, in very
limited spaces—in this case a uniform load distribution on the whole track could be of key
significance for the usability of such vehicles.
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Abstract: Robotic manipulation of a bulky object is challenging due to the limited kinematics and
payload of the manipulator. In this study, a robot realizes the manipulation of general-shaped bulky
objects utilizing the contact with the environment. We propose a hierarchical manipulation planner
that effectively combined three manipulation styles, namely, pivoting, tumbling, and regrasping. In
our proposed method, we first generate a set of superimposed planar segments on the object surface
to obtain an object pose in stable contact with the table, and a set of points on the object surface for
the end-effectors (EEFs) of a dual-arm manipulator to stably grasp the object. Object manipulation
can be realized by solving a graph, considering the kinematic constraints of pivoting and tumbling.
For pivoting, we consider two supporting styles: stable support (SP) and unstable support (USP).
Our proposed method manipulates large and heavy objects by selectively using the two different
support styles of pivoting and tumbling according to the conditions on the table area. In addition, it
can effectively avoid the limitation arising due to the arm kinematics by regrasping the object. We
experimentally demonstrate that a dual-arm manipulator can move an object from the initial to goal
position within a limited area on the table, avoiding obstacles placed on the table.

Keywords: non-prehensile manipulation; manipulation planning; pivoting; robotics

1. Introduction

Humans often manipulate large and heavy objects utilizing the contact of the object
with environment. Although robotic manipulation of general-shaped large and heavy
objects is challenging, we aim to realize a robot manipulating such objects by effectively
utilizing the contact of the object with a table (Figure 1). Among the manipulation styles
using contact with a table, pivoting refers to the style of inclining and rotating an object
on its vertex. Pivoting enables a robot to manipulate a bulky object with a relatively
small manipulating force because the robot does not need to lift the object [1]. Moreover,
the pivoting gait, which is a manipulation style, enables a robot to move an object by
pivoting it multiple times by changing its rotational vertex. In addition, to start the
pivoting gait from the designated initial pose of the object, a robot may once tumble the
object by rotating it on its edge.

Pivoting gait has been explored for moving a simple box-shaped object [2,3]; however,
this study aims to realize the robotic manipulation of a general-shaped object by combining
pivoting, tumbling, and regrasping (Figure 2). Let us consider the example shown in
Figure 3, where a robot moves a blue-colored object to the designated location on a table,
with avoiding an obstacle (red colored). In this case, the robot first tumbles the object to
an upright posture and then passes through the narrow passage using the pivoting gait.
For realizing such combined manipulation, we need to determine the object face required
to contact with table and the grasping pose of the object. In addition, a robot may change
the grasping pose multiple times, and such changes of the grasping pose are referred
as regrasping.
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Figure 1. A dual-arm robot manipulates a piano by pivoting on the object’s vertex (marked by a
yellow dot).

(a) Pivoting (b) Tumbling (c) Regrasping

Figure 2. Manipulation of a piano by (a) pivoting, (b) tumbling, and (c) regrasping.

Figure 3. Motion sequence for moving a piano forward and avoiding collision with an obstacle (red
colored). Both the initial and goal object poses are in SP, whereas the intermediate object pose is in
USP. The yellow trajectory indicates the motion of the object’s CoM.

Our proposed planner comprises offline and online phases. In the offline phase, we
first preprocess the mesh model of a general-shaped object clustered into superimposed
segments [4] in order to determine the object’s contact surface with table and the contact
surfaces with the end-effectors (EEFs). In the online phase, we propose a hierarchical
motion planning method to determine the motion of both the object and the robot. Hierar-
chical planning includes task level planning and motion level planning. In the task level,
we sample the object configurations on the table considering the kinematic constraints of
pivoting and tumbling. At this level, the planner constructs a graph, where each node
in the graph represents an object pose and a grasp configuration, and each edge in the
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graph indicates a primitive motion to transform the object poses or grasp configurations.
The purpose of primitive motion is to realize either pivoting, tumbling, or regrasping.
On the other hand, in the motion level, the robotic manipulation motions are generated.
Here, the pivoting and tumbling motions are generated by predicting the object’s future
dynamics using model predictive control (MPC), considering the kinematic constraints for
maintaining contact with the environment.

Furthermore, this study expands the feasible object poses used in motion planning
to both stable placements (SP) and unstable placements (USP). Here, SP indicates that the
vertical projection of the object’s center of mass (CoM) is included in the object’s supporting
area. The robot can easily regrasp the object in SP. On the other hand, in USP, a robot can
manipulate an object within a limited support area, which offers more choice for avoiding
collision in a narrow space. Despite this advantage, it is difficult to regrasp the object in
USP because USP not only requires contact with the environment but also contact with
the EEFs. If contact between the object and the EEFs is lost during USP, the object will fall.
To solve this problem, the two EEFs sequentially change the contact point position, i.e., the
left EEF moves to the desired position while the right EEF maintains contact with the object
and vice versa.

The contributions of this work are as follows:

• A manipulation plan for pivoting a general-shaped object is proposed;
• Multiple motions, including tumbling, pivoting, and regrasping, are combined to

better manipulate the object;
• Pivoting gait is planned in both SP and USP.

This reminder of this paper is organized as follows. Section 2 reviews the related work.
Section 3 provides an overview of the proposed method. The required preprocessing of
the object model to manipulate a general-shaped object is presented in Section 4. Section 5
introduces the manipulation planning design. It describes the sampling of the object
configurations and the design of primitive motions, such as pivoting, regrasping, tumbling,
which are combined into a graph. The performed simulation and experiments are detailed
in Section 6. Finally, Section 7 summarizes the results and discusses the future work.

2. Related Works

2.1. Non-Prehensile Manipulation

The non-prehensile manipulation allows a robot to manipulate an object without
firmly grasping it by taking advantage of contact with environment [5]. Examples of
non-prehensile manipulation include pushing [6], tumbling [7], scooping [8], tilting [9],
throwing [10], catching [11], batting [12], sliding [13] and pivoting [14].

Pivoting is efficient for manipulating heavy objects because the weight of the object
is mostly supported by the table. Aiyama et al. [15] first proposed the manipulation of a
heavy object by pivoting. Doshi et al. [16] and Raessa et al. [17] proposed motion planners
to reorient an object by pivoting. Yoshida et al. [18,19] proposed a motion planner planning
an object path during the pivoting gait. Shi et al. [20] proposed a tumbling motion planner.
In addition, there have been some research on motion planning combining the pivoting
gait with other manipulation styles. Fakhari et al. [21] proposed the manipulation planner
combining the pivoting gait with tumbling. Murooka et al. [22,23] combined pivoting,
pushing and tumbling. In all the above mentioned works, the pivoting gait was planned
for a simple box shaped objects. On the other hand, this is a first trial on planning the
motion of a general shaped object by combining pivoting, tumbling and regrasping. In
addition, our planner considers both SP and USP to efficiently manipulate an object.

2.2. Regrasp Planning

There are several studies on the manipulation planner with regrasping an object [24–29].
Berenson et al. [30], and Bouyamane et al. [31] presented regrasp planners with a change in
contact state between the object and the environment. Harada et al. [32] proposed a regrasp
planning for dual-arm robots. Hayashi et al. [33] implemented manipulation planning to
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wrap-up fabric by incorporating two robot arms with regrasping. Wan et al. [34] proposed
manipulation planning, which determines a sequence of dual-arm robot motion, to reorient
an object with regrasping.

2.3. Grasp Planning

The grasp planning searches for a grasping pose of an object satisfying the force/form
closure [35–38] or grasp stability condition [39–41]. In many regrasp planner, multiple
grasping poses are calculated by using a grasp planner [4,42,43], before executing the
motion planner. Then, a robot regrasps an object by switching among multiple grasping
poses. To provide steady grasps, many elements must be considered, such as contact zones,
object surface curvatures, mechanics of robot hands, and so on [44–48]. For two-fingered
robot gripper, Jones et al. [49] and Wolter et al. [50] proposed grasp planners. Surface
segmentation was used to determine the grasping points for a parallel-jaw gripper [42,51].
This study uses grasp planners for a parallel-jaw gripper [4] to determine the contact points
on a general-shaped object manipulated by a dual-arm manipulator with ball-shaped EEFs.
Cooperating two manipulators with the EEFs enables a robot to grasp a large object which
may be too large for a gripper to grasp.

3. Steps of the Proposed Motion Planner

In this study, we assume that the 3D shape of the object is given. In addition, we
assume that a dual-arm robot with ball-shaped EEFs manipulates the object at two contact
points. To manipulate the object to the target pose, a hierarchical manipulation planner
is built at the task and motion levels, which outputs the planned motions. The proposed
motion planner is designed according to the following steps:

• Before executing the motion planner, the 3D model of the target object is analyzed to
obtain the information necessary for the manipulation planner.
This information includes the potential rotational vertices used for pivoting, edges
used for tumbling, base surfaces for stably contacting the table, and the contact points
between the object and EEFs;

• Task level planning then is performed. We discretize the object poses on a table.
The object configurations along with their grasp configurations are saved in the graph
nodes. In this phase, we consider object poses in both SP and USP;

• Finally, in motion level planning, primitive motions, such as pivoting, tumbling,
and regrasping, are planned for moving the object to the target location.
In the motion level, the designed motions include pivoting, tumbling, and regrasping.
MPC is implemented to generate the motions because it can find the motions required
for maintaining contact between the object and environment. If we cannot find any
feasible motion in this level, we go back to the task level planning.

4. Object Model Analysis

To manipulate a general-shaped object, we preprocess its 3D-shape model and obtain
the necessary information for manipulation planning. We aim to determine the following:

• A set of object vertices, which are the potential rotational vertices during pivoting;
• A set of object edges, which are the potential rotational edges during tumbling;
• A set of stable object placements;
• A set of grasp configurations for the dual-arm manipulator.

Superimposed segments are implemented when preprocessing the 3D-shape model
of the object [4]. These segments often generate numerous grasp configurations. However,
as numerous grasp configurations increase the calculation load of the manipulation planner,
we reduce the number of grasp configurations by checking the collisions with the EEFs
and evaluating the grasp stability, as described in the next subsection.

170



Appl. Sci. 2021, 11, 9103

4.1. 3D Surface Model Processing for Grasp Planning

By calculating the convex hull of the model, its vertices, which are the potential
rotational vertices used for pivoting, can be obtained (see Figure 4a). The rotational vertices
are the supporting feet of objects during pivoting gait. In addition, the edges, which are
the potential rotational edges used for tumbling, can be obtained from the convex hull.

(a) (b)

Figure 4. Object model analysis. (a) Vertices of the object (red points). (b) Contact points sampled on
the object surface. The facets segmented by the superimposed segments are denoted by different
colors. The contact points on the green surface are removed due to collision between the object and
the EEF.

Superimposed segments are implemented to process a mesh model for contact and
grasp planning. It analyzes the object model by peeling it into facets where the facets are
allowed to be overlapped by each other. In addition to superimposed segments, the ray-
shooting method [52] and simple segments [42] can also be used for analyzing mesh models.
The ray-shooting method samples a contact point on the mesh surface and finds the candi-
date counter contact point by shooting a ray from the sampled point along the reversed
normal direction. The simple segments method is similar to the superimposed segments
while the difference lies in if the overlapping of facets is considered. The comparison
among the three methods has been researched in [4] which showed that the superimposed
segments can find more grasps while the time cost of it is faster than that of the ray-shooting
method and is not significantly worse than that of the simple segments.

In superimposed segments, given a triangulated CAD model [53], a seed triangle
is initialized and is compared with the surrounding triangles by evaluating the differ-
ences between surface normals of triangles. If the difference is smaller than a threshold,
the neighboring triangle is clustered into the same facet. Otherwise, a new facet based on
the neighboring triangle is built. After dealing with the initial facet, the algorithm selects a
new seed and repeats the clustering until all the triangles are scanned. As a result, a set of
facets are generated by the superimposed segments, where each face can be a candidate
contact surface with the table in SP. When placing an object on the table, we define SP
if the vertical projection of the object’s CoM on the table is included in the support area.
During SP, the robot is allowed to regrasp the object without influencing the stability of
the object.

In addition, a set of contact points with the EEFs are computed by sampling the
surface of the object model. To evenly distribute the contact points on the surface, sampling
is initially performed over the entire surface. The sampled points are then repeatedly
distributed as contact points on the superimposed facets. Further, some of the undesired
sampling points are removed based on the following: (1) they are too close to the boundary
of the facet, (2) they are close to each other, and (3) there is undesired collision between the
object and the EEF. Examples of the sampled contact points are shown in Figure 4b.

4.2. Grasp Planning

In this study, a dual-arm robot with ball-shaped EEFs grasps the object at two contact
points on nearly parallel facets with opposite contact normal vectors. By inspecting the
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candidate contact points on these facets, the planner computes the potential contact pairs.
Among several grasping point candidates, we further analyze and select a feasible one for
a given object pose. We check whether each grasp point candidate leads to collision among
the links of the robot or between a link and the environment. In addition, we check whether
the inverse kinematics (IK) is solvable and whether the grasp stability can be satisfied by
checking the wrench cone generated by the contacts with the EEFs and the environment.

Figure 5 shows examples of the selected contact points. Given an object configuration,
the surface normals of the object are compared with those of the table. The contact pairs
on surfaces with normals r1 and r2 are removed because collision occurs between the EEF
and table when the EEF contacts the bottom of the object. On the other hand, the surface
normals of the object are also compared with the EEF’s rotational vector (e1 and e2).
The contact pairs on surfaces with normals r3 and r4 are removed because they are too
far to be reached by the EEF. As a result, only the contact pairs on the facets with surface
normals g1 and g2 (green) remain.

Figure 5. Selection of grasps with respect to the surface normals of the object and the rotational vector
of the EEF (e1 and e2). The contact pairs on surfaces with normal vectors r1 and r2 are removed
because collision occurs between the table and EEF if the EEF contacts the bottom of the piano.
The contact pairs on surfaces with normal vectors r3 and r4 are removed because they are too far to
be reached by the EEFs. The contact points on the surface with normal vectors g1 and g2 remain.

4.3. Grasp Stability

When pivoting, the object contacts two EEFs of the robot (see Figure 6). In addition,
the object contacts the environment, such as the table. Considering these contacts, we
can evaluate the grasp stability, which is the ability of an object to balance the external
wrenches We by the force vector f applied at each contact point:

G f = −We, (1)

where G denotes the grasp map that maps the contact forces to the total object wrench.
If an object contacts the environment with a vertex, we define f = [ f T

0 f T
1 f T

2 ]
T , where f0, f1,

and f2 are the force vectors applied by the environment and the two EEFs, respectively. On
the other hand, if an object contacts the environment with two vertices during USP, one
EEF will be sufficient to balance the external wrench. In this case, f0 and f1 are the force
vectors applied by the environment, and f2 is the force vector exerted by the EEF. This
property allows us to regrasp the object in USP. Contact force fi = [ foi, fti, fni]

T , (i = 0, 1, 2)
must lie within friction cone FCi:

FCi =
{

fi :
√

f 2
oi + f 2

ti ≤ μi fni

}
, (2)
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where μi is the friction coefficient at the i-th contact point. In this study, we approximate
the friction cone using a six-sided polyhedral cone. By calculating the Minkowski sum [54]
of the force at each contact point, we obtain the grasp wrench space (GWS, Ws) [55].

Ws =
{

ws : ws = ∑3
i=1 G fi + wg, fi ∈ FCi

}
, (3)

where wg indicates the wrench generated by the gravitational force. The stability s can be
evaluated by calculating the minimum distance between the origin in the wrench space
and the convex hull of the set Ws. In this work, if the origin is inside of the GWS, the grasp
is considered stable. In the physical world, the s indicates the ability to resist external
wrenches We and it can be calculated by:

s = min
d∈convexhull(Ws)

||d||. (4)

Based on the grasp stability, we select the stable grasp configurations.

Figure 6. Object, EEFs, and environment.

5. Hierarchical Manipulation Planning

We plan the motions to manipulate an object on which information is available. We
propose hierarchical planning, which includes task and motion level planning. The manip-
ulation planner constructs a graph. In task level planning, we design the discrete object
poses on a table, which along the grasp poses are saved in the nodes. In motion level
planning, we plan the motions for moving the object and changing the grasp configurations.
Primitive motions, such as pivoting, tumbling, and regrasping, are represented by the
edges of the graph. Further, given the initial and goal configuration of the object, we search
the graph and find a motion sequence to manipulate the object to the goal position.

Different from previous planners [2,3,19], we consider tumbling and regrasping in
addition to the pivoting gait. Moreover, we consider the SP and USP of the object. Object
motion in USP allows object movement within a limited table area. However, the object may
easily fall if the robot regrasps it in USP. To avoid this problem, we design the regrasping
motion in USP, such that the robot sequentially changes the contact position of each EEF.

5.1. Task Level Planning

In task level planning, we sample the object poses on a table, and save information on
the object configurations and the related grasp configurations in the nodes. The object poses
are not sampled randomly on the table because pivoting includes a kinematic constraint
that the object must be rotated around a fixed point on the table, which is also the object’s
rotational vertex. In the graph, we sample new object poses with respect to the pivoting
and tumbling motions (see Figure 7). In pivoting motion, we discretize the object pose
when rotating about the vertical line including the object vertex. The rotation is discretized
in θt intervals. We repeat such sampling for all the vertices in the current base surface. By
sequentially changing the rotational vertices, the object can be moved through pivoting
gait along a certain direction (see Figure 8).
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Figure 7. Sampling new object configurations through pivoting and tumbling at one object vertex.

Figure 8. Examples of moving an object to certain direction through pivoting gait. The red dashed
arrows indicate rotating directions. θi indicates the amount of yaw rotation in the i-th sequence.

To sample new object configurations by tumbling, the object is rotated around an
object edge until the object moves from one SP to another (see Figures 2b and 7). Tumbling
enables a change in the support surface, which provides more choice in the path planning
of the object, in case an obstacle is present (see Figure 3).

In this study, most of the object poses are designed in SP. However, within a limited
table area, such as the boundary of the table, it is difficult to place the object in SP. For such
an area, we sample the object pose in USP where an EEF of the robot assists in holding
the object. To retain an object in USP, we check the grasp stability, discussed in Section 4.3,
to select the contact points of the EEFs. Here, it is to be noted that sampling the object
poses in USP corresponds to pivoting the object assuming the double support (DS) gait
mode, as discussed in [3]. On the other hand, sampling the object poses in SP corresponds
to pivoting the object assuming the quadruple support (QS) gait mode. Figure 9 shows the
difference between the DS and QS gait modes. Refer [3] for the details on the DS and QS
gait modes.

(a) Quadruple support (QS) mode. (b) Double support (DS) mode.

Figure 9. Changes in the object’s rotational vertices (a) in the QS mode when four vertices are in
contact with the table and (b) in the DS mode when two vertices are in contact with the table.
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Figure 10a shows the sampled object poses on the table. Each node indicates an object
pose; the red ones denote SP, whereas the blue ones denote USP. The red and blue edges
indicate pivoting and tumbling motion, respectively. For better manipulation performance
in the real physical world, we also evaluate the change in the angle between the EEF and
the contact surface normal during pivoting motion.

(a) (b)

Figure 10. The graphs generated at the task level. The object poses are first sampled and shown in the left graph, then the
right graph is built by combining grasp configurations. (a) Graph of the sampled object poses. The red nodes indicate the
object poses in SP, whereas the blue nodes indicate USP. The red and blue edges indicate pivoting and tumbling motion,
respectively. (b) Grasps combined with the graph shown in (a). Each node includes information on both the object pose and
grasp configuration. Yellow edges are added, which indicate the regrasping to change the grasp poses.

Combining the corresponding grasp configurations with the object configuration, we
can generate the graph shown in Figure 10b. In this graph, each node includes information
on the grasp configurations and the object pose related to Figure 10a.

The detailed explanations of the graph are shown in Figure 11, where the blue rectangular
part in Figure 10b is amplified. A node contains information on both an object and a grasp
configuration. Nodes insides a light blue circle (which is drawn only for explanations in
Figure 11 and is not included in the graph) indicate they share the same object pose but
different grasp configurations. Three primitive motions are represented by edges where
yellow, red, and blue edges imply regrasping, pivoting, and tumbling, respectively. The
configurations saved in nodes can be transferred by the edges connecting them. For example,
in Figure 11b, the grasp configurations of two nodes are changed by a yellow edge which
implies regrasping. The design of SP and USP is also reflected in the graph where blue nodes
indicate USP, see Figure 11b and red nodes indicate SP, see Figure 11c,d. What is more, there
are fewer nodes within the right blue circle in (a) because there are fewer grasps as the contact
surface in the current object pose is small, see Figure 11d.
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Figure 11. (a) Portion of the graph in the rectangle depicted in Figure 10b. The nodes within the light
blue circle share the same object pose and each node indicates the grasp configuration for the object
pose. Nodes are connected by edges which correspond to primitive motions. (b) An object pose and
a corresponding grasp pose. (c) Two grasp poses can be changed by the yellow edge connecting
them. (d) The object pose in (d) can be changed to (b) or (c) by tumbling.

5.2. Motion Level Planning

After sampling the object poses on the table and generating the corresponding grasps,
the motions to move the object and change the grasp poses are generated in motion
level planning. The primitive motions include the following:(i) pivoting motion, which
is a transfer motion to change the object configuration without changing the grasps, (ii)
tumbling motion, which includes both transfer and transit motions to rotate the object
around one edge and change its base surface, and (iii) regrasping of an object in SP
involving transit motion, which changes the grasp configurations without affecting the
object configuration, and regrasping of an object in USP, which involves both transit and
transfer motions.

5.2.1. Pivoting

Pivoting motion is designed by raising the object up on a vertex, rotating it around
the vertex, and placing it down. A property of pivoting motion is that two object poses
must share the same rotational vertex. Figure 8 displays 2D examples in which pivoting
gait is used to move an object in the direction indicated by arrows.

In Figure 6, the contact point between the object and table is denoted by p0. Here, we
assume point contact with friction at each contact point. Due to contact with table at a fixed
vertex (p0), the object motion is constrained as follows:

SDB0

[
ṗB
ωB

]
= S
[

ṗ0
ω0

]
= o. (5)

Contact between the object and i-th EEF (i = 1, 2) is constrained as follows:

SDBi

[
ṗB
ωB

]
= SDHi

[
ṗHi
ωHi

]
= ṗi, (6)

where S is a selection matrix that selects the linear velocity and DBi transforms the linear
and angular velocity from ΣB to ΣW . Details on the S and D matrices can be found in our
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previous work [3]. The object is accelerated by the force ( f1, f2) applied by the two EEFs.
The dynamic of the object’s rotational motion can be obtained as

r1 × f1 + r2 × f2 + rcom × mog = Ioω̇B + ωB × IoωB, (7)

where ri = pi − p0, (i = 1, 2), and rcom = pcom − p0 where pcom denotes the position vector
of the object’s CoM. mo and Io indicate the mass and moment of inertia of the object,
respectively. ωB and ω̇B indicate the angular velocity and angular acceleration of the object
in frame ΣB, respectively.

In the motion level, the robot motions to move the object between the object poses
designed in the nodes are generated by MPC with respect to the kinematics (5), (6), and the
dynamic (7). Figure 12b depicts an example of the generated motions for pivoting a piano.
In MPC, we define the state vector as xk = [ΨB ωB]

T
k where ΨB indicates the Euler angles

of the object in ΣB and select the input vector as uk = [ f1 f2]
T
k . During the object’s rotation

on the vertex p0, the prediction of the state is obtained by,

xk+1 = Axk + Buk + D, (8)

where A, B, and D are coefficient matrices defined as

A =

[
I3 W

O3 I3

]
, B =

[I−1
o WT2/2[r1×] I−1

o WT2/2[r2×]
I−1

o T[r2×] I−1
o T[r2×]

]
, (9)

D =

[I−1
o WT2/2[rcom×]mg
I−1

o T[rcom×]mg

]
, (10)

where the matrix W transforms the angular velocity to the velocity of the Euler angles.
The future states and free variables appear in the prediction horizon (Np) are defined

as Xk = [xk, xk+1, · · · , xk+np−1]
T and Uk = [uk, uk+1, · · · , uk+np−1]

T , respectively. The MPC
tracks a reference by solving the following optimization problem,

Jmpc =
α

2

∥∥∥Xk+1 − Xre f
∥∥∥2

+
β

2
‖Uk‖2, (11)

where α and β are the weights. Xre f is the reference trajectory of the object and it is
provided by the object configuration saved in nodes of the graph. The first and the second
terms in (11) evaluate the state error and the amount of the manipulating force of the
EEF, respectively.

(a) (b)

Figure 12. Example of pivoting motion to move a piano. (a) Two poses of the piano. (b) Transforma-
tion of the object poses shown in (a) through pivoting motion. The object is tilted, rotated around one
vertex, and then placed down.
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5.2.2. Tumbling and Regrasping

Changing the base surface of the object improves the obstacle avoidance performance.
The object’s base surface is the support surface between the object and the table. The
proposed method has better collision-avoidance capability since pivoting gait is performed
with the combination of tumbling and regrasping. By tumbling, we can control the area of
support polygon and it contributes to the case when a manipulated object passes through a
narrow passage. In addition, by regrasping, we may avoid the collision between the robotic
arms and the environment. An example of the object motion is shown in Figure 13, where
the gaits 1 cannot avoid the collision with the red obstacle since the object is not tumbled.
If the object is tumbled to the right as shown in the right of Figure 13, the supporting
polygon can be changed. Such a change allows the object to be moved without colliding
the obstacle by performing the gaits 2. Tumbling motion contributes to change the type of
gaits adaptively according to the environment.

Figure 13. A change of the object’s supporting base improves the ability of collision avoidance.
The object motion following the gaits 1 cannot avoid a collision with the red obstacle. If the object
is tumbled, the supporting base will be changed. Such a change allows the object to be moved
without colliding the obstacle by performing the gaits 2. To pass a narrow passage, gaits 2 is more
area-efficient than gaits 1.

For changing the object’s base surface, we design tumbling motion, which is a special
case of pivoting when the rotation passes through the object’s edge. Rotating an object up
to SP is simple, where one EEF rotates the object around one edge (the line connecting the
two supporting vertices) of the object until it moves to SP. The kinematics and dynamics
of tumbling motion can be derived through minor modifications in (5)–(11). However,
rotating an object up to USP is more complex. This is because to maintain an object in
USP, the EEF must contact and hold the object, which leads to difficulty in changing the
grasp poses. To solve this problem, we incorporate multiple arms to achieve regrasping by
sequentially using different arms to contact the object. Figure 14 depicts a tumbling motion
where the object is rotated to USP in the boundary of the table. If the right EEF does not
contact the object, it will fall from the table. The tumbling motion is designed as follows:
First, the left EEF contacts and rotates the piano (see motion l1). Meanwhile, the right EEF
moves to the desired position, which is also the right EEF’s grasp pose for contacting the
object in USP (see motion r1). The left EEF rotates the object until it contacts the right EEF.
Next, the right EEF alone holds the object. The stability is evaluated by calculating the
contact wrench of the contact between the right EEF and the object, as well as that between
the object and table, as mentioned in Section 4.3. The left EEF then leaves the object and
moves to the desired grasp configuration (see motion l2). Compared to regrasping with a
gripper, which can only regrasp an object in SP, a multi-arm robot can regrasp an object in
both SP and USP.
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Figure 14. Tumbling motion by incorporating two manipulators.

In addition to regrasping an object in USP, regrasping motion in SP is also designed.
When an object is in SP, we can easily plan the motions for regrasping without affecting the
object pose. The regrasp motions are denoted by the yellow edges in Figures 10b and 11a.

5.3. Graph Searching

Given the initial and goal poses of the object, grasps of these object poses can be
determined by data provided by object analysis introduced in Section 4. Then, we look for
the same object and grasp configurations that are embedded in nodes of the graph. If the
new object poses and their grasp configurations can not be found in the graph, new nodes
will be created and be connected with the graph. The reachability of new nodes can be
guaranteed by the controllability of pivoting motion [18], which proved that a sequence of
three pivoting motions can move the object to an arbitrary object configuration with the
same base surface in the neighborhood.

Weights are manually assigned to edges in the graph. As the object can be efficiently
moved by pivoting and we expect the robot finishes the placement of the object quickly,
we set the weight of edges representing pivoting to a small value 0.1. The weight of
edges indicating regrasping is set to 0.5 and the weight of edges indicating tumbling
is set t 1. A relative large weight is designed to edges related to tumbling because the
tumbling is mainly designed for changing the object’s supporting base instead of moving
the object. Knowing the initial and goal configurations, we search the weighted graph to
find a path. A solution path includes sequences of discrete object and grasp configurations.
Intermediate configurations are added to ensure a smooth motion during pivoting and
tumbling by the MPC introduced in Section 5.2. In a lower-level motion planning, we use
rapidly exploring random tree (RRT) to sample the space considering grasp configurations.
At this level, if configurations with feasible inverse kinematics and obstacle clearance
cannot be found, we go back to the graph, remove certain nodes and edges which caused
the problem and re-search the graph for a new path.

6. Simulation and Experiments

In this study, the target object is a toy piano sized 0.425 × 0.45 × 0.205 m with a weight
of 3.1 kg. The piano is placed on a table, which is in front of the robot, and the size of
the table surface is 0.9 × 0.6 m. We use a dual-arm Yaskawa Motoman SDA5F robot to
manipulate the object. The two EEFs of the robot are the same and ball-shaped. They are
produced by a 3D printer where the diameter of the ball is 4 cm. In addition, to increase
the friction between the EEFs and the object, anti-slip stickers are added to the tip of EEFs.
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6.1. Object Analysis

A mesh piano model is processed by the superimposed segments offline. The com-
putational costs and the results of the analysis of the mesh model are shown in Table 1.
The results are obtained by executing the process on a desktop PC where the CPU is Intel
Core i7-9700K @ 3.60 GHZ and a memory in size of 8 GB. The program is performed using
Python 3.6.

Table 1. Performance of superimposed segments.

Process Computational Costs Results Number

Superimposed segments 0.354 s Faces of the object 262
Sampling 0.075 s Contact points 388

Refine samples and plan contact pairs 2.115 s Contact pairs 107

The number of faces of the object generated by the superimposed segments is 262
which is large. This is because curvatures of the object, for example, the legs of the
piano, can be separated to many faces, see Figure 4b. It is a time-consuming process to
refine samples and plan contact pairs where bad samples are removed due to the rules
mentioned in Section 4.1 and collision checking between the EEFs and the object. The time
cost is reasonable because a mesh-to-mesh collision detection is implemented. After the
refinement, contact pairs are created based on the remaining samples.

Contact pairs under a given object configuration can be refined by grasp stability
and collision checking between the EEFs and the environment by the rules discussed in
Sections 4.2 and 4.3. In Figure 10b, the total number of sampled object configurations is
310 and the number of feasible grasp configurations after the refinement is 4207 where
the process of the refinement costed 9.362 s. The time cost of the refinement is relatively
high but acceptable since we only need to do it once and offline. If the refinement is not
implemented, the evaluation of the grasp stability will be performed 33,170 (107 × 310)
times and cost over one minute.

6.2. Simulation

In the simulation, the target is to move the piano to the goal pose, which is far from the
robot (see Figure 15). The robot first grasps the piano placed on the table (see Figure 15a).
Further, it pivots the piano around one vertex under the front right leg (see Figure 15b).
Here, we define the left and right sides of the object and those of the robot according to the
view from the robot. In Figure 15c, the piano is placed on the table and the rotational vertex
is changed from right to left. Then, through pivoting motion, the piano is placed in the pose
shown in Figure 15d. Note that both arms of the robot are close to their kinematic limits
and the robot cannot further move the object forward. However, the robot changes its
grasp configuration and grasps the rear of the object (see Figure 15e,f). Thereby, the robot
can pivot the piano to move it forward and successfully place it in the goal position (see
Figure 15g,h). By changing the grasp configuration, the piano is moved forward by as
much as 12.5 cm (see Figure 15d,h).

This simulation demonstrates that regrasping motion extends the scope of feasible
placements of the object manipulated by the robot.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15. Manipulation of the piano by the robot for moving it forward by pivoting. The support vertices are marked as
black dots. The initial configurations are shown in (a). The robot manipulates the object by pivoting in (b–d). When the
joint configurations are close to the limits (d), regrasping is performed in (d–f). After regrasping, the robot moves the object
to the goal pose, see (f–h).

6.3. Experiment 1: Pivoting Gait

In the first experiment, we perform the simulated pivoting gait in a real scenario.
The inputs are the initial and target poses of the piano. The system automatically plans the
grasp, pivoting motion, and regrasping motion. Figure 16 depicts the experimental process.
The robot first grasps the piano (see Figure 16a) and pivots it around the right (from the
robot view) rotational vertex (see Figure 16b). Further, the robot changes the rotational
vertex to the left (see Figure 16c) and pivots the piano (see Figure 16d,e). In Figure 16e, both
the arms are close to the limit of the robot workspace; hence, the robot cannot further move
the piano forward. Pivoting gaits generated by the graph MPC [3] faces such limitations
and the object cannot be placed in the target location. To solve this problem, regrasping
is planned in this work and the robot changes the grasp poses to grasp the rear part
of the object (see Figure 16f,g) and successfully pivots the piano to the target pose (see
Figure 16h–j. Table 2 compares the performances of two methods where only the proposed
planner can generate motions to move the object to the target location.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 16. Experiment 1: The robot manipulates the object by pivoting in (a–d) and regrasping the object in (e–g). In (e),
without regrasping, the robot cannot further move the object forward because the robot arms are close to the kinematic
limit. However, after regrasping, the robot can move the object forward for two pivoting steps, see (h–j). The yellow dots
indicate the object vertices that contact the table.
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Table 2. Performances of the graph MPC and the proposed planner.

Methods for Generating Motions Ability to Regrasp Error (x-axis)

The graph MPC No −12.5 cm
The proposed planner Yes 0

In the experiment, after moving the piano a few steps, the robot cannot further move
the object with the initial grasp poses because of the robot workspace. To continue moving
the object, the robot finds a new grasp configuration, regrasps the piano, and manipulates
it to the target location. Compared with the pivoting gaits generated by the graph MPC [3],
the regrasping motion enables further motion of the object by as much as 12.5 cm along
the x-axis.

6.4. Experiment 2: Object Orientation

Experiment 2 tests a combination of regrasping and pivoting during the rotation of the
piano around the z-axis in the world frame (see Figure 17). The initial pose of the piano is
shown in Figure 17a and the support vertices are marked as yellow dots. The robot grasps
the piano, pivots it around one of its support vertices, and places it down in a pose where a
rotation of −45 degrees in the z-axis is performed (see Figure 17a–c). Further, the robot
changes the grasp poses to different contact surfaces as depicted in Figure 17d,e to avoid
self-collision of the robot and maintain the EEF in a reachable pose. After regrasping,
the robot rotates the piano by another −45 degrees around the z-axis and places it down
(see Figure 17f). In Figure 17g,h, a new regrasping motion is performed after which the
robot pivots the piano to the target pose (see Figure 17i,j).

Experiment 2 shows that to perform a relatively large change in the object orientation,
the robot needs to contact different surfaces of the object; with a combination of regrasping
and pivoting, the robot successfully manipulates the object to the target pose.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 17. Experiment 2: the robot changes the orientation of the object by pivoting and regrasping. The robot first rotates
the object by pivoting in (a–c). Then the robot regrasps the object at its new contact surfaces, see (c–e) and pivots the object,
see (e,f). In (f–h), the robot changes the grasp configurations and finally pivots the object to the goal pose, see (h–j).

6.5. Experiment 3: Obstacle Avoidance

In the third experiment, the robot moves the piano to the target pose considering
the environment where an obstacle exists and the limited support surface (see Figure 18).
Different from the sheering method [2], which cannot find a feasible path to avoid collision,
changing the object’s base surface by tumbling can realize better collision avoidance be-
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tween the object and the obstacle. Moreover, the USP design allows the robot to manipulate
the object within a narrow support surface without falling.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 18. Experiment 3: An obstacle is placed in front of the object, see (a,b). The robot tumbles the object using the robot’s
right EEF, whereas the left EEF moves to the desired position and waits for contacting the object (c,d). After the left EEF
holds the object, the right EEF moves to the desired grasp pose (e,f). Note that the object is close to the boundary of the
table and it is in a USP pose where the object will fall if there is no support from the EEF. After regrasping, the robot moves
the object by pivoting it in the DS mode (g,h) and then places it in SP (i). The robot moves the object in the QS mode (j,k)
and tumbles the object to change its support surface (l,m). Finally, the robot regrasps (m,n) and moves the object to the goal
position (o,p). There is no collision between the object and obstacle during these motions.

A grey pen holder is placed in front of the piano as an obstacle (see Figure 18a).
The poses of the obstacle and the piano are input to the system. As the obstacle is very close
to the piano, the piano cannot avoid collision by performing the pivoting gait using the
sheering method. Therefore, the robot tries to tumble the piano. The right EEF moves to a
new grasp configuration and prepares for the tumbling motion, whereas the left EEF moves
to the planned grasp configuration preparing to catch and hold the object after rotation (see
Figure 18b,c). The robot utilizes the right EEF to rotate the piano (see Figure 18d). Once
the piano is in contact with the left EEF, the right EEF leaves the piano and moves to a new

183



Appl. Sci. 2021, 11, 9103

grasp pose (see Figure 18e,f). As a result, after the rotation, regrasping is performed by
sequentially incorporating the right and left EEFs to hold the piano, which is an advantage
of the dual-arm robot. Note that as the supporting table is narrow and the piano is near the
table boundary, sufficient space is not available for the piano to be placed in SP and the
left EEF is used to keep the piano in USP. For example, if the left EEF does not hold the
piano, the piano will fall from the table (see Figure 18e). The USP design allows the robot to
manipulate the object within a limited support space. Subsequently, the robot performs the
pivoting gait designed for the USP, which is the DS gait mode (see Figure 18g,h). The robot
places the piano in SP when there is sufficient space on the table, and then changes the
grasp configurations (see Figure 18i,j). After regrasping, the robot pivots the piano for two
steps along the y-direction (see Figure 18k,l) and then tumbles the piano to change the
support surface through the right EEF (see Figure 18m). Finally, the robot regrasps the
object and pivots it for two steps along the x-direction, and places it at the target location
(see Figure 18n–p). During the entire process, there is no collision between the object and
the obstacle.

Experiment 3 demonstrates that changing the object’s base surface improves the
collision avoidance performance in pivoting gait. In addition, the USP design enables the
robot to move the object within a limited support space. Moreover, the multiple arms
incorporated to sequentially contact the object achieve regrasping in USP.

7. Conclusions

In this study, we proposed a manipulation plan for moving a general-shaped large
object. With superimposed segments, the object model was first analyzed, and the contact
between the object and EEFs, as well as that between the object and environment were de-
termined. Utilizing the object’s contact with the environment, we realized the manipulation
of a bulky object through pivoting, tumbling, and regrasping. In the plan, the object config-
urations in both SP and USP were considered, enabling the robot to manipulate the object
within a limited support area. The proposed approach takes advantage of the kinematic,
dynamic, and gait modes of the pivoting gait published in our previous work [3], which is
related to motion planning for moving the object in both SP and USP. In this study, this
pivoting gait is further improved by combining regrasping and tumbling. The efficiency of
the proposed method was demonstrated through experiments in which the robot moved
an object to the goal configuration, avoiding the kinematic limits of the robot arms and
exhibiting better collision avoidance performing compared to those reported in prior works.
The proposed approach can be employed to automate the manipulation of large objects by
dual-arm manipulators. In future, we intend to manipulate more complex-shaped objects,
using one EEF to perform pivoting, and planning motions in more complex environment
for testing the planner’s performance. Quantitative analysis based on computational costs,
stability, number of gaits, tumbles and regrasps to finish a task will be researched.
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Abstract: In the design of a controller for grasping objects through a robotic manipulator, there
are two key problems: to find the position of the object to be grasped accurately, and to apply
the appropriate force to each finger to handle the object properly without causing undesirable
movement of it during its manipulation. A proportional-integral-derivative (PID) controller is widely
used to grasp objects in robotics; however, its main shortcomings are its sensitivity to controller
gains, sluggish response, and high starting overshooting. This research presents three coupled
(position/force) controllers for object manipulation using an assembled robotic manipulator (i.e.,
a gripper attached to a robotic arm mounted on a mobile robot). Specifically, an angular gripper
was employed in this study, which was composed of two independent fingers with a piezoelectric
force sensor attached to each fingertip. The main contributions of this study are the designs and
implementations of three controllers: a classic PID controller, a type-I controller, and a type-II fuzzy
controller. These three controllers were used to find an object to be grasped properly (position) and
apply an equivalent force to each finger (force).

Keywords: robotics; manipulation; intelligent control

1. Introduction

Due to uncertainty on localization, mobile robot manipulation faces two key problems
when trying to manipulate objects: firstly, computing the correct position at which the
mobile robot needs to be for grasping an object, and secondly, calculating the specific
position at which the object to be grasped is.

Specifically, object manipulation through a robotic arm involves three actions: (i) mov-
ing the robot and positioning it at a place where its arm’s configuration space intercepts the
object’s position (Figure 1a); (ii) planning and execution of the arm’s trajectories—that is, to
move the robotic arm towards a position where the object is inside the gripper’s configura-
tion space, i.e., where the gripper (end effector) may grasp the object [1,2] (Figure 1b); and
(iii) tuning the gripping action—i.e., closing the gripper in order to take and manipulate
the object properly [3–5] (Figure 1c). The first two actions are called the pre-grasping stage,
and the last action is named the grasping stage.

The gripper and their controller are key components at the grasping stage in order
to manipulate objects accurately. Parallel motion grippers and angular motion grippers
are the most commonly used in robotics for object manipulation [6]. Parallel grippers
usually have only one motor; therefore, their fingers move simultaneously in order to
handle objects. Recently, the use of grippers with angular motions has increased. Thanks
to their configuration, these grippers extend the gripping range of objects, and different
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configurations may be calculated to handle an object; therefore, these grippers might
provide dexterous object manipulation similarly to human fingers. Detailed reviews
regarding several types of grippers can be found in [7–9].

Figure 1. Actions prior to the object’s manipulation: (a) moving the robot so the object’s position is
within the arm’s configuration space, (b) object detection and position estimation, and (c) planning
and execution of trajectories to drive the arm close to the object.

Focusing on controllers, the PID controller has been widely used in control systems [10–13]
due to its simplicity and robustness. In the last few years, there has been increasing interest
in using fuzzy logic in different control systems [14–20]. Moreover, fuzzy logic has been
used for implementing several applications. For instance: in a multicriteria decision-
making process [21], energy consumption for bipedal walking robots [22], and search
engine systems [23]. Fuzzy logic uses fuzzy values and rules to cope with uncertainty, just
as humans do. These fuzzy values and rules may be implemented based on the user’s
experience instead of using complex mathematical models.

In the present work, an angular gripper with two independent fingers was used.
Prior to the manipulation stage, the actions described in Figure 1 were done. The object’s
position, initially unknown, was obtained by a perception system and was used to bring
the arm close to the object. However, at this stage of the work, no visual surveying has
been used. Instead, a tactile feedback control is performed. The object’s dimensions were
used to estimate the gripper’s initial opening. Once the object was between gripper fingers,
angular position and (when object do contact) pressure forces were used to control the
motion of each finger independently. The pressure forces were obtained by piezoelectric
sensors on the fingertips.

The contributions of this work can be summarized as follows: The implementation of
three switching force and position controllers (a PID, a fuzzy type-I and a fuzzy type-II)
for grasping tasks with a two-fingered gripper (independent fingers). The evaluation and
comparison of those controllers, via simulation and a real arm manipulator. A communi-
cation protocol to control and switch between controllers over an ROS. Finally, a control
process over a two-fingered angular finger gripper that centers the object in order to apply
equivalent forces with both fingers.

This paper begins by analyzing some relevant related work (Section 2). Next it presents
the details of the system (Section 3). The communication of the gripper with an ROS is
described in Section 4. The grasping stage and the design of the proposed controllers
are described in Section 5. Experiments and results are presented in Section 6. Finally,
conclusions are given in Section 7.

2. Related Work

Controller design for grasping objects in robotics has been an important research topic
in the last few years. In this context, proportional-integral (PI) controllers and proportional-
integral-derivative (PID) controllers have been designed and implemented to be used in
the grippers of robotic arms. For instance, a two-finger gripper for the manipulation of
deformable objects was implemented [24]. This gripper used a PI parallel force controller
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with prediction models in order to regulate the force exerted by the robot on the object;
thus, the risk of damaging the objects during the grip was reduced.

In order to manipulate objects, a force sensor and a flex sensor can be placed in a
gripper [25]. This gripper should be controlled only by a motor that opens and closes the
gripper. An algorithm and a control strategy are used to apply force to the object without
damaging it.

In [26], a griper with two parallel fingers with two phalanges each and a fixed base
was used to manipulate objects. The gripper was controlled only by a motor that provided
different torques, and a touch sensor was placed on the fixed surface to measure the
pressure applied to the object. In order to manipulate objects, a force sensor can be placed
on each finger of a parallel gripper controlled by a single motor [27].

Other studies have tested the designs of controllers using either simulated grippers
or simulated robotic hands. For instance, the authors of [28] simulated and manufactured
a prototype of a robotic hand with five fingers. To control the kinematic and dynamic
movements of each finger, a PID controller was used. They generated a path for each
finger in the configuration space, achieving fast motion towards the target angle with a
small error signal and little overshooting. However, as described by the authors, when
they tested it in a real prototype, the overshooting signal was larger than in the simulation,
and was mainly produced by disturbances in some inputs. Moreover, when the reference
value was set to a long period of time, small oscillations occurred, again only in the real
prototype. Furthermore, the authors of [29] made a mathematical analysis of the contact
forces for a robotic finger of three degrees of freedom. The authors proposed two simulated
PID controllers; one was used to achieve position and the other to regulate strength. Both
controllers were tuned using fuzzy logic.

Regarding using fuzzy logic in control design, the effects of membership functions
(triangular, trapezoidal, and Gaussian) on a fuzzy control scheme for a three-finger system
have been analyzed [30]. Moreover, another study [31] used a fuzzy control scheme in
order to manipulate objects. This control scheme was composed of two fuzzy controllers.
The first controller was employed to ensure a stable grip and the second to prevent slipping.
In [32], a three-finger gripper to manipulate strawberries without damaging them was
developed. A fuzzy controller was designed to compute the force to be exerted on the
strawberry. The inputs for this controller were the readings of a capacitive sensor placed
on each finger of the gripper. Due to a single motor on the mechanical gripper, the three
fingers might be operated simultaneously. Likewise, Reference [33] proposed a fuzzy
controller with a gripper using only a single servo motor in order to grasp unknown objects.
The authors showed the effectiveness of the controller with three different types of object
hardness: soft, moderate, and hard.

Similarly to PI and PID controllers, simulations have been used to test fuzzy controllers.
For example, in [34] simulated a fuzzy controller with tactile information to manipulate
objects with a two-finger gripper. This simulation was effective; nevertheless, the controller
needs to be implemented in a gripper for real applicability. Another study [35] implemented
a fuzzy controller to reduce the impacts of forces during the object manipulation. Moreover,
the authors developed a fuzzy controller of conformity, in which a mass-spring-damper
system determines a desired level of conformity. A simulated robotic hand was used to
test the performance of the fuzzy conformance controller.

As can be seen, previous works have had at least one of the following shortcomings:
most of them used parallel grippers, not requiring specifically centering the object but
limiting the dexterity possible while grasping, and most of the works were tested only in
simulated environments or had high variations while testing with real grippers. Conse-
quently, in this work is presented an approach to control the position and force of each
individual motor over a two-independent finger gripper in order to increase dexterity; in
other words, a robot can adjust grasping by only adjusting the forces and positions of its
fingers. Three controllers have been implemented and tested, a PID controller, a fuzzy
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type-I controller, and a fuzzy type-II controller. In the following sections, implementations
and tests are described.

3. System Description: The Robotic Manipulator

The robotic manipulator assembled in this research is shown in Figure 2. As can be
noticed, this robotic manipulator is composed mainly of the following components:

• A two-independent-finger gripper. The gripper is composed of two Dynamixel AX-12
servo motors manufactured by CrustCrawler Robotics. Regarding the fingers, each
finger is 10.16 cm long and is made of aluminum. Furthermore, they can be open
up to 22.86 cm. An FFS-MT piezoelectric force sensor was placed at each fingertip
(Figure 2b) The sensing force range for this sensor goes from 0 to 10 N, with an output
resolution of 0.1 mV, providing a stable output over the range of force exerted. In
addition, the output of this sensor exhibits linear behavior, as described in [36].

• A three-degrees-of-freedom arm. The arm is operated through Dynamixel servo
motors. These servo motors each include a micro-controller, which obtains the differ-
ent states of the servo motor (e.g., speed, position, temperature, and voltage). The
maximum lifting capability is 900 g. A data acquisition board (Arduino) and a 12 V
battery were placed on the back of the robotic arm (Figure 2a). The data acquisition
board processes the signals from each force sensor and sends them to the computer.

• An iRobot Create. The robotic arm and gripper are mounted on an iRobot Create
(mobile base). The iRobot allows moving the robotic arm from one place to another;
therefore, objects may be repositioned.

Figure 2. (a) An arm with three degrees of freedom, placed on a mobile robot (iRobot Create). On the
back of the robot is a data acquisition board, as well as a 12 V battery to power the system. (b) Force
sensors placed on each fingertip of the gripper.

4. Communication with an ROS

In this work, an ROS was used to communicate with all different systems of the
robot. Software packages called nodes run independently from each other. In order to
exchange information, the nodes send messages, enclosed in the form of topics. Messages
are received from publishers and sent to subscribers directly from the master server of the
ROS. Therefore, nodes do not directly communicate with each other.

Figure 3 shows a reduced scheme of the nodes and their communication messages
on the robotic platform. Two nodes are used to communicate with the hardware: (a) the
serial_node receives signals from piezoelectric-force sensors on each finger and encapsulates
the signal in a message, which is sent to the ROS; and (b) the dynamixel_manager reads from
the ROS the commands for each motor and returns messages about the state of these. A
node called Force_Position_controller is in charge of reading “sensor signals” topics and
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writing commands to “motor-speed” topics. It is at this node where all control computation
is performed.

Figure 3. Communication structure of the gripper in the ROS. Nodes at the left are connected directly
to hardware, whereas the node in the right (the controller) only communicates with hardware through
messages sent to the public memory of ROS (at the center of the figure).

5. Grasping Stage

As has been stated in Section 1, the grasping stage refers to the action of closing the
gripper to take and manipulate the object properly. In order to arrive at this stage, some
considerations have to be taken into account.

Generally, mobile robotic manipulators dispose of a perception system that provides
the object’s information (position, shape, color, etc.) to the arm control system. The
perception system can be composed of cameras, laser range finders, depth cameras, or a
combination of these sensors. Once the perception system recognizes an object, it sends its
information to the position and arm controllers to do the pre-grasping stage. In this work,
those stages were realized. In other words, an object’s size and position were calculated
and the arm was driven to reach the object. However, due to uncertainty in: (a) the relative
position of the mobile base, (b) associated with onboard sensors, and (c) due to the control
and motion of the arm’s joints, the position of end-effector can be slightly different than
planned. Therefore, the object’s position relative to the gripper can be one of those shown
in Figure 4. Namely, the object could be placed in the center, shifted to the right, or shifted
to the left between the two fingers. To avoid perception obstruction, as commonly happens
with mobile robots, it was decided to not use visual surveying, and instead we used gripper
sensor grasping control. The robotic arm used in this work has two-independent fingers
with angular motion. Each finger was provided with a piezoelectric force sensor, imposing
then, the use of one controller for each finger.

5.1. Problem Statement

Since the initial position of the object is practically known, the first thing that the
gripper must do is to find and center the object. Three cases could be present: (i) the initial
position of the object is in the center between the fingers; the (ii) the initial position of the
object is near to the left finger; (iii) the initial position of the object is near to the right finger
(Figure 4).

Then, before the gripper fingers can apply force to the object, it must be centered. If
not, the differences in torques while exerting force with unbalanced fingers position can:
damage the object or the motors, or make the object slide. Since, at the beginning, none
of the force sensors are in contact, it was decided to divide the control system into two
different objectives. The former, solving angular positions of the fingers about the object
(angular position), and the latter, taking into account the force sensors when they are active.
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To deal with these two objectives, it was decided to design a PID position controller and a
PID force controller, commuting between them the issues regarding position errors. Once
we designed and applied those controllers, and considering the global task of firm and
safely handling, the performances of these controllers were not very satisfying. Thus, to
compare results, but above all, to increase performance, it was decided to design two fuzzy
controllers (one Mamdani type and another type-II). Their advantage over PID controllers
is that it is possible to have a different output for each fuzzy-controller, and to avoid sensors’
noise, which affects system performance.

Control objectives. Considering that the robotic arm has its gripper near to the
object’s position, and taking into account the structure of the gripper, the objective of
the gripper control system is to achieve firm and delicate object manipulation with the
measurement of the angular position and force exerted by each finger. Then, (see Figure 4),
it was necessary to design two-feedback laws, position control and force control, such that:

lim
t→∞

ep(t) ≤ h = lim
t→∞

(Re fpos − Posω(t)) ≤ h, h = ±2Re fpos (1)

lim
t→∞

e f (t) = 0 = lim
t→∞

(Re f f orce − F(t)) = 0 (2)

Figure 4. Initial conditions for the object’s position being: (a) at the center with respect the fingers,
(b) near the left finger, and (c) near to the right finger.

5.2. Design and Implementation of the Controllers

To manipulate an object, the forces applied by the fingers generally are sufficient to
counteract gravitational and inertial components of the load force acting on the finger-
tips [37]. Due to the architecture of the two-independent-finger gripper used on the robotic
manipulator, the controllers should perform two main tasks: (i) to place and keep the object
at the desired position (i.e., position control), and (ii) to regulate the force applied to the
object (i.e., a force control). To accomplish these tasks, three controllers are proposed: a
hybrid PID controller (position–force), a type-I fuzzy controller (Mamdani), and a type-II
fuzzy controller.

These controllers might use the following inputs provided by the robotic manipulator:
two readings from angular positions (right PosRω(t) and left PosLω(t)) and two readings,
one each from the force sensor of each finger (right FR(t) and left FL(t)).

On the other hand, the controllers produce a speed command as an output, i.e.,
two speeds, MR(t) and ML(t), which will be applied to the right and left servo motors,
respectively.
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5.3. Position–Force Hybrid PID Controller

As mentioned previously, PID controllers are widely used in the industry for imple-
menting control systems. Due to its operational ease and low cost, the first implemented
controller is based on a hybrid PID scheme; i.e., it consists of two PID controllers: a position
PID and a force PID operating in a switching mode as shown in Figure 5. It is important to
remark that either of the gripper fingers uses this control scheme.

Figure 5. Control scheme of the hybrid PID controller.

The first controller is responsible for placing and keeping the object at desired position.
This controller works as follows: it switches on when the object is not centered, and it
switches off when the object is centered. On the other hand, the force controller ensures
that the fingers will apply enough force to manipulate an object firmly. This controller
works when the position controller is switched off; i.e., the position error is zero.

5.3.1. Position Control

A discrete PID algorithm is used to implement the position PID in the ROS. This
algorithm replaces the derivative term using a backward difference method and the integral
term using a rectangular integration method. The discrete form of position algorithm for
PID is given as:

up(t) = up(t − 1) + [Kpp +
Kpp Tsp

Tip

+
Kpp Tdp

Tsp

]ep(t)

+ [−Kpp +
Kpp Tsp

Tip

+
2Kpp Tdp

Tsp

]ep(t − 1) +
Kpp Tdp

Tsp

ep(t − 2) (3)

where up(t) is the control input, Kpp is the proportional gain, Tip is integral time, Tdp is
derivative time or rate time, and e(t) stands for the error between the reference and process

output. The values of Kpp = 0.000001, Kip =
Kpp Tsp

Tip
= 0.0001, and Kdp =

Kpp Tdp
Tsp

= 0.001

were chosen using the Ziegler-Nichol tuning rule. Tsp is the sampling period and
ep(t) = Re fpos − Posω(t) is the position error.

In this case, the position reference is the center of the gripper. When the position
error is sufficiently small ep(t) ≤ h with h = ±2%Re fpos, a change is sent to the force
PID controller.
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5.3.2. Force Control

The force PID controller has a similar structure to the position PID controller.

u f (t) = u f (t − 1) + [Kp f + Ki f + Kd f ]e f (t) + [−Kp f + Ki f − 2Kd f ]e f

(t − 1) + Kd f e f (t − 2)

where Kp f = 0.5, Ki f =
Kp f Ts f

Ti f
= 0.005, and Kd f =

Kp f Td f
Ts f

= 0.001 are the proportional,

integral, and derivative gains, respectively. u f (t) is the control input, Ti f is integral time,
Td f is derivative time or rate time, and Ts f is the sampling period. e f (t) = Re f f orce − F(t)
is the force error. The Re f f orce is computed according to the object’s weight and material;
thus, damage on the object might be reduced.

5.4. Type-I and Type-II Fuzzy Controllers

Fuzzy control provides a formal methodology for representing, manipulating, and
implementing human heuristic knowledge about how to control a system. There are type-I
fuzzy systems and type-II fuzzy systems.

Generally, in a type-I fuzzy controller, crisp input values are translated to fuzzy input
values (fuzzification). These fuzzy input values are computed using rules to produce fuzzy
output values (inference process). Finally, these fuzzy output values are mapped to crisp
output values (defuzzification). It can be noticed that there are two conversions from crisp
values to fuzzy values in a fuzzy controller. To achieve these conversions, it is necessary to
define fuzzy sets. A type-I fuzzy set is an extension of a classical set (see Figure 6a). In a
classical set, an element can (membership value = 1) or cannot (membership value = 0) be a
member of a set (see blue lines in Figure 6a). Conversely, an element can be a member of a
type-I fuzzy set at different membership values; i.e., the membership value can range from
0 to 1 (see red lines in Figure 6a). There are four basic membership functions: singleton,
triangular, trapezoidal, and Gaussian distribution curve.

Figure 6. Membership functions of (a) type-I FLS and (b) interval type-II FLS.

Frequently, these membership functions can be designed using knowledge from ex-
perts; nevertheless, other studies have used genetic algorithms [38,39] when the defining
parameters is challenging. Consequently, type-I fuzzy sets might deal with more uncertain-
ties than classical sets due to the definitions of membership functions.

Regarding the inference process, rules are implemented in order to map the fuzzy
inputs to fuzzy outputs. These rules are expressed as IF–THEN statements. The “IF” part
is composed of antecedents, which connect the fuzzy inputs, whereas the “THEN” part is
composed of consequents, which connect the fuzzy outputs. Generally, the antecedents are
defined using two basic operators: and; or. During the inference process, it is frequently
the case that more than two rules are fired according to their strengths; therefore, an
aggregation operation is performed to join the rules that were fired. These fired rules will

194



Appl. Sci. 2021, 11, 9827

define the fuzzy outputs. Finally, the fuzzy outputs are translated to crisp output values
using a defuzzification method.

According to [40], type-I fuzzy controllers might face uncertainties in: (i) their control
inputs due to noise affecting the sensors; (ii) their control outputs because of a change
in the characteristics of the actuators; (iii) linguistic uncertainties because experts might
have different meanings for the linguistic labels. Therefore, they implemented rules using
the same antecedents and by changing the consequents. Interval type-II fuzzy controllers
might cope with these uncertainties. Fuzzy inputs and fuzzy outputs of an interval type-II
fuzzy controller are implemented using interval type-II fuzzy sets. These sets add a second
level of membership functions; therefore, these interval type-II fuzzy sets have upper and
lower membership functions (see Figure 6b). Additionally, a footprint of uncertainty can be
seen in these sets, which is the area between the upper and lower membership functions.

Interval type-II fuzzy controllers perform fuzzification, inference, and defuzzification
processes. Furthermore, the interval type-II fuzzy controllers execute the fuzzification and
evaluation of rules, as the type-I fuzzy controllers do. The key differences between interval
type-II and type-I fuzzy controllers are: (i) interval type-II fuzzy controllers use interval
type-II fuzzy sets in the antecedents and consequents of the rules; and (ii) after evaluating
the rules, interval type-II fuzzy controllers perform a reduction from type-II fuzzy sets to
type-I fuzzy sets using a type-reducer. Once this reduction is carried out, a defuzzifier is
applied to obtain the crisp output.

5.4.1. Type-I Fuzzy Controller for Position and Force Control

Figure 7 presents the design of the type-I fuzzy controller. As can be seen, the controller
works as follows:

1. Firstly, crisp values are obtained from each finger of the gripper. Specifically, angular
positions (PosRω(t), PosLω(t)) and the two readings of force sensors (FR(t) FL(t)) of
each finger are inputs to the fuzzy controller.

2. Secondly, these crisp values are translated into input-linguistic values using trape-
zoidal membership functions. This stage is called fuzzification.

3. Thirdly, rules are evaluated to compute the output-linguistic values. This process is
called fuzzy inference.

4. Finally, the output-linguistic values are translated into two crisp values—MR(t)
and ML(t), which are the speed values for the right and left servo motors using a
defuzzification method.

Figure 7. Block diagram of the type-I fuzzy controller with the gripper.

Eight fuzzy input sets were designed and implemented using trapezoidal membership
functions for transforming the angular positions and force readings into linguistic values.
Focusing on force readings, four trapezoidal membership functions were implemented to
transform FR(t) and FL(t) into the following four possible linguistic values: Sensor X O f f
(SXO), Sensor X So f t Touch (SXTS), Sensor X Touch Hard (SXTH), and Sensor X Squeeze
(SXSQ), where X is R for the right sensor and L for the left sensor.
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Regarding the angular positions of the motor, four trapezoidal membership functions
were implemented in order to transform PosRω(t) , PosLω(t) into the following linguistic
values: Very Open X Motor (VOXM), Open X Motor (OXM), Center X Motor (CXM), and
Closed X Motor (CLXM), where X is R for the right motor and L for the left motor.

On the other hand, in terms of fuzzy output sets, sixteen singleton membership func-
tions were used for the two outputs of the fuzzy inference, eight for each finger. Moreover,
it can be seen from Figure 8 that the linguistic labels are named R1, R2, R3, R4, R5, R6, R7,
and R8 for the right finger and L1, L2, L3, L4, L5, L6, L7, and L8 for the left finger. These
linguistic values are ordered from the lowest speed value to the highest possible speed
value of the command motor.

Figure 8. Type I membership functions for the inputs FR(t) and PosRω(t) and for the output MR(t).

Table 1 presents the fifty fuzzy rules that were created using th fuzzy sets. The rules
have the following structure: IF FL AND FR AND PosLω(t) AND PosRω(t), THEN ML(t),
MR(t). As can be seen, these rules correspond to the type of Mamdani fuzzifier using
minimum implication, i.e., the “AND” operator for connecting the antecedents.

In order to design the set of fuzzy rules, two basic scenarios were considered: the
gripper has an object between its fingers, and there is no object between the gripper fingers
(see Figure 9). In the first scenario, the gripper might be located at different positions with
respect to the center of the object to be grasped. Specifically, there are three basic cases that
the gripper might face in terms of the position of the object to be grasped:
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• Case 1. The object is located on the left side concerning the center of the gripper
(Table1: rules 1–3).

• Case 2. The object is at the center of the gripper (Table 1: rules 4–9).
• Case 3. The object is located on the right side with respect to the center of the gripper

(Table 1: rules 6, 10–11).

Figure 9. Cases for the design of the fuzzy rules.

Table 1. Fuzzy rules for the type-I fuzzy controller.

IF FL Operator FR Operator PosLω(t) Operator PosRω(t) THEN ML(t), MR(t)

1 SLTS AND SRO AND OLM AND CRM THEN L4, R2
2 SLTS AND SRTS AND OLM AND CRM THEN L4, R3
3 SLTS AND SRTS AND OLM AND CLRM THEN L2, R2
4 SLTS AND SRTS AND OLM AND ORM THEN L4, R4

. . . . . . . . .
25 SLTS AND SRO AND OLM AND ORM THEN L4, R2
26 SLTS AND SRO AND CLM AND CRM THEN L3, R3
27 SLTS AND SRO AND CLLM AND CLRM THEN L3, R2
28 SLTS AND SRO AND OLM AND CRM THEN L4, R2

. . . . . . . . .
47 SLTH AND SRO AND CLLM AND CLRM THEN L4, R4
48 SLO AND SRTH AND CLM AND CRM THEN L4, R2
49 SLO AND SRTH AND CLLM AND CLRM THEN L4, R2
50 SLO AND SRTH AND CLM AND CLRM THEN L4, R2

On the other hand, in the second scenario, there are two cases:

• Case 4. The gripper fingers are open (Table 1: rule 12).
• Case 5. The gripper fingers are closed (Table 1: rule 13).

Additionally, there are other cases in which the object might be located at a position
which is between two cases (Table 1: rules 14–50); i.e., the object might be located at a
position between the left region (case 1) and the center point (case 2).

It is important to note that during the evaluation of rules, several rules might be fired;
therefore, “maximum aggregation” is applied in this case. Finally, to obtain the two speed
values, MR(t), ML(t), “center of gravity” was used as the defuzzifaction technique.

5.4.2. Type-II Fuzzy Controller for Position and Force Control

Figure 10 shows the interval type-II fuzzy input sets for the four inputs < FR(t), FL(t),
PosRω(t), and PosLω(t) >; and interval type-II fuzzy output sets for the two outputs < MR(t)
and ML(t) >. Both types of fuzzy sets are for the right finger. It can be seen that upper
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membership functions were added to both types of fuzzy sets (fuzzy input sets and fuzzy
output sets) defined in the type-I fuzzy controller.

Figure 10. Type II (upper and lower) membership functions for the inputs FR(t) and PosRω(t), and
for the output MR(t).

The fuzzy rules for the type-II fuzzy controller are the same as those implemented
for the type-I controller. These rules correspond to the Mamdani fuzzifier and employ
minimum implications. However, the type-II fuzzy controller uses 50 fuzzy rules for the
upper membership functions and 50 rules for the lower membership functions. Table 2
shows a summary of these rules. As mentioned earlier, a key difference between type-I
and type-II controllers is that type-II uses a type-reducer to transform type-II fuzzy sets to
type-I fuzzy sets.

The type-II fuzzy controller employs the Karnik–Mendel (KM) algorithm as the type-
reducer. The KM algorithm [41,42] computes the lower and upper intervals of the type-II
fuzzy outputs for the left and right motors. For instance, the command for the left motor
Yi (output) is composed of two intervals [yi, ȳi], where yi is the lower left command motor,
and ȳi is the upper left command motor. Therefore, the KM algorithm corresponding to
the left motor works as follows:

1. Firstly, the lower left motor (yl) is computed in the following manner:

(a) yi
l is sorted in ascending order, where yi

l is the lower left motor.
(b) yl is computed as

yl =
∑M

i=1 f i
l yi

l

∑M
i=1 f i

l

(4)
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where f i
l =

f̄ i+ f i

2 and f̄ i, f i are the firing intervals. Let y′l = yl .
(c) Find S, such that yS

l ≤ y′l ≤ yS+1
l .

(d) Find y′l =
∑M

i=1 f i
l yi

l
∑M

i=1 f i
l

with f i
l = f i for i ≤ S and f i

l = f̄ i for i > S. Let y′′l = yl .

(e) If y′′l �= y′l ., go to step 6. If y′′l = y′l , set yl = y′′l , and stop.
(f) Let y′l = y′′l , and go to step 3.

2. Secondly, the upper left motor (yu) is calculated using the previous steps; but
yu, y′u, y′′u , yi

u, yU
u , yU+1

u , f i
u and U instances are used instead of yl , y′l , y′′l , yi

l , yL
l , yL+1

l , f i
l

and L instances.
3. Finally, the defuzzification process is performed; i.e., the average of yl and yu is

computed to be used as the crisp value for the left motor (Yf inal):

Yf inal = (
yu + yl

2
). (5)

These steps are repeated using the lower and upper intervals for the right motor to
compute the crisp value for the right motor.

Table 2. Fuzzy rules for interval type-II fuzzy controller. Fi stands for lower membership, Fi stands for upper membership,
ML(t) is [yi

L
, yi

L], and MR(t) is [yi
R

, yi
R].

IF FL Operator FR Operator PosLω(t) Operator PosRω(t) THEN ML(t), (MR(t)

[F1, F1
] = SLO AND SRO AND VOLM AND VORM THEN [y1

L
, y1

L]=[0.4, 0.8]
SLO AND SRO AND VOLM AND VORM [y1

R
, y1

R]=[0.5, 0.9]
... ...

[F34, F34
] = SLTH AND SRTH AND CLM AND CRM THEN [y34

L
, y34

L ]=[2.0, 2.8]
SLTH AND SRTH AND CLM AND CRM [y34

R
, y34

R ]=[1.1, 1.9]
... ...

[F50, F50
] = SLO AND SRTH AND CLM AND CLRM THEN [y50

L
, y50

L ]=[2.0, 2.8]
SLO AND SRTH AND CLM AND CLRM [y50

R
, y50

R ]=[0.5, 0.9]

6. Results and Discussion

The robotic manipulator performs a set of actions in order to grasp an object firmly. The
configuration of sensors placed at the fingertips, i.e., a sensor surrounded by a foamy sur-
face, permits the grasping of different objects with diverse shapes. For instance, Figure 11
shows the process of grasping a solid plastic box. The set of actions can be divided into
three stages:

• Stage 1. The main goal of this stage is to center the object with respect to the center
of the gripper. Assuming that the position of the object is known, the gripper starts
approaching the object. Once the gripper has touched the object, it proceeds to position
the object according to its center (the center of the gripper). This stage is known as
“positioning” (Figure 11a–e).

• Stage 2. Once the object has been centered according to the gripper, the fingers apply
specific forces grasp firmly the object; consequently, the object is less vulnerable to
falling. As soon as the object has been grabbed, the base of the robot begins rotating
for 4.6 s, which is sufficient time for the base to rotate approximately 180 degrees. At
this stage, the force PID, type-I, and type-II have to regulate the force to be applied.
This stage is known as “force” (Figure 11f–j).

• Stage 3. Finally, once the base of the robot has stopped, the arm moves down so that
the gripper can release and position the object on the table (Figure 11k,l).
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Figure 11. Sequence of actions to grasp an object during the experiments: (a–e) approaching and
centering the object; (f–j) grasping and moving the object; (k,l) object’s release.

Figure 12 presents the results from grasping a solid plastic box with a width of 6 cm.
This action involved the three stages explained earlier. It is important to recall that the
hybrid PID is composed of a position PID and a force PID; consequently, these two PIDs
were switched on and off according to the action being performed. These changes are
indicated at the bottom of Figure 12. Data were continuously collected for 18 s at a sampling
rate of 100 Hz.

It can be seen that the controllers coped with two key control tasks to grasp an object
firmly: positioning and force. Regarding the positioning, the three controllers computed
position references for each finger of the gripper at stage 1. It can be noticed from Figure 12
that to locate the object at the middle of the gripper, type-I and type-II fuzzy controllers
decreased their initial position reference values for the left finger and increased their initial
position reference values for the right finger. The three controllers obtained 1.8 rads as
the reference position for the left finger, whereas the three controllers obtained a position
reference of 3.4 rads for the right finger. In terms of force, the force regulation reference was
60 mV for both fingers. This reference value avoided damage to the object and excessive
forces being exerted by the gripper motors. It can be seen that the type-I controller achieved
the reference value for the left finger faster than type-II and PID controllers. Moreover,
type-II and PID controllers did not achieve the force reference for the right finger. It is
important to remark that from 3.62 s to 6.073 s, the hybrid PID switched from a positioning
control task to a force control task, whereas the fuzzy controllers performed both control
tasks (positioning and force regulation) simultaneously.
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Figure 12. Performance of each controller at each stage. In the above chart are the responses in positioning of motor left
and motor right, ML and MR, respectively. In the below chart are the responses of sensor left and sensor right, SL and SR,
respectively.

Focusing on stage 2, it can be seen that the three controllers achieved the reference
values in terms of position for both fingers. However, regarding force, the three controllers
achieved values for the left finger close to the reference, but only the type-I fuzzy controller
obtained values for the right finger close to the reference. Additionally, the hybrid PID
controller generated various oscillations during this stage. This fact might be related to the
switching between the PIDs.

Particularly, as is shown in Figure 12, there are some spikes in the PID controller’s
force graph. These spikes correspond to a commutation between PID controllers from force
to position. In other words, while the force controller was handling the object, it moved
out of the centered position, making commutation necessary to center the object again.
Therefore, force sensors measure the inverse force response in relation to the finger motion;
i.e., when a spike in force is downward for the right finger, this spike is upward for the left
finger, corresponding to an action to center the object.

Finally, the fuzzy controller achieved the reference values in terms of position for both
fingers. Regarding the force, the fuzzy controllers obtained values for the left finger close
to the reference. It is important to note that the hybrid PID controller generated oscillations
at this stage.

For comparison purposes between the PID, fuzzy type-I and fuzzy type-II controllers,
20 experiments were carried out, obtaining the average values of: rise time tr and settling
time ts. Table 3 shows the values of the rise time, the settling time, the setpoint, and the
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type of response. In the same table, it can be observed that all responses were overdamping
and the PID had the higher values of tr and ts, indicating poor performance.

Table 3. Performances ts and tr in a hybrid PID controller, and in type-I and type-II fuzzy controllers.

Controller Position MR Position ML Force SR Force SL

tr

PID 2.93 6.53 11 3.31

Fuzzy I 3.009 3.000 3.00 3.00

Fuzzy II 2.705 3.31 3.91 3.31

ts

PID 3.67 10.76 7.5 4.5

Fuzzy I 3.31 3.5 3.3 4.2

Fuzzy II 3.61 3.9 6 4.5

Setpoint 3.4 rad 1.8 rad 60 mV 60 mV

Response Overdamping Overdamping Overdamping Overdamping

In order to perform a preliminary comparison of these controllers, the integral absolute
error (IAE) and integral time of absolute error (ITAE) were computed. It can be seen from
Table 4 that the type-I fuzzy controller obtained the lowest IAE and ITAE values, whereas
the hybrid PID controller resulted in the highest IAE and ITAE values.

Table 4. Comparison among the hybrid PID controller, and the type-I and type-II fuzzy controllers.

Controller IAE ITAE

Hybrid PID 10,278.5 47,901.75

Type-1FLC 684 6366.08

Type-2FLC 4864.25 31,878.23

7. Conclusions

In this paper, a hybrid position-force PID controller, a type-I fuzzy controller, and a
type-II fuzzy controller were designed and implemented to grasp an object through a three-
fold arm with an independent two-finger gripper. From the results, it can be concluded
that the hybrid PID controller generated oscillations in stages 2 and 3 of manipulating the
object due to switching between the position PID and the force PID. On the other hand, few
oscillations were generated over the three stages of object manipulation with the type-II
fuzzy controller. Moreover, it was able to calculate values close to the references in terms of
position for both fingers; but in terms of force, it was able to calculate the appropriate value
only for the left finger. As for the type-I fuzzy controller, it obtained the best performance,
because few oscillations were generated in the three stages of object manipulation, and
its tr and ts values are practically the same. Despite the type-II fuzzy controller having a
lower tr in the position controller, it had a higher ts in the force controller and it had more
oscillations. The type-I fuzzy controller was able to calculate values close to the reference
values in terms of position and force for both fingers.
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Abstract: Impact hammers are used to reduce the size of blasted ore in mining operations. In
underground mines, tele-operated impact hammers are used to reduce the size of boulders placed on
the orepass’s grizzlies. An impact hammer consists of a hydraulic arm with 4 degrees of freedom,
powered with a hydraulic impact hammer as an end-effector. The tele-operation of impact hammers
is difficult due to the latency of communications, the poor visibility of the environment, and the used
2D interfaces. This may result in a collision with the hammer and the infrastructure, idle strokes,
and non-optimal operation. To address these issues, this paper proposes the haptic tele-operation
of impact hammers. The proposed haptic tele-operation system is based on a 3D model of the
environment, which is used to estimate repulsion forces that are transferred to the operator via a
haptic device, so that the hammer does not collide with the structures of the mine. The system also
allows identifying the oversized boulders deposited on the grizzly and notifying the operator every
time the orepass is blocked, as well as providing different 3D views of the environment. A proof of
concept is presented using a scaled setup, where it is validated that the use of the proposed system
allows for providing a better and more efficient tele-operation experience.
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1. Introduction

Underground mines commonly use orepass systems as a safe and economic method
to transport blasted ore, i.e., broken rocks, between production levels. In each orepass, a
steel grate, called a grizzly, is used to control the size of the material entering the orepass.
Material that is too large cannot pass through the grizzly and has to be broken using impact
hammers. Impact hammers, also known as rock breakers, rock-breaking manipulators,
rock-breaking hammers, or pedestal-mounted breaker booms, consist of an hydraulic arm
with 4 degrees of freedom (rotation, lift, tilt, and breaker joints) powered with a hydraulic
impact hammer as an end-effector. Figure 1 shows a diagram of the operating environment
of an impact hammer. It shows a possible arrangement of sensors to obtain data from the
material over the grizzly.

In modern mining facilities, impact hammers are usually tele-operated from a control
room located in a safe place, away from the operation area. Under this schema, the operator
actuates the electro-valves that control the hydraulic system using joysticks and buttons via
a data network. To compensate for this lack of direct vision of the environment, cameras and
video transmission equipment are often installed in the operation area. However, the data
network and video stream encoding and decoding introduce a delay, or latency, between
what the operator sees, and what is actually happening, which adds difficulties to tele-
operation [1,2]. Due to the mentioned latency, the poor visibility of the environment, and the
used 2D visualization interfaces, hammer tele-operation requires highly skilled operators
that are trained to deal with these two phenomena. A typical operating environment can be
observed in Figure 2. This figure shows a frontal loader dumping material onto the grizzly,
and a tele-operated impact hammer fragmenting rocks.
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Figure 1. A rock breaking hammer environment with sensors, which includes: A hydraulic rock
breaker, a grizzly with material, and sensors pointing to the working area.

 

Figure 2. Real impact hammer in operation, while material is dumped onto the grizzly.

Normally an operator handles more than one impact hammer, and due to the in-
termittent nature of this operation, sometimes the operator does not notice immediately
that an orepass is being obstructed. This often causes the fragmentation process to take
longer than it should because it is more difficult to clear a stoked orepass than a few rocks
over the ore pass’s grizzly, generating a delay in the mine’s production chain. In addition,
the described, standard tele-operation of impact hammers does not allow the operator to
properly perceive the actions of the impact hammer in the environment because its sensors
are limited to visual cameras that provide a 2D representation of the environment. This
issue may cause damage to the impact hammer, for example, when the tool is activated
without being in contact with the rock, which causes idle strokes in the air, or when the
hammer collides with the environment (e.g., with the grizzly). In order to address these
drawbacks, assistive tele-operation technology can be used for: (i) Enhancing the oper-
ator’s perception by adding other sensing modalities (e.g., range sensors), (ii) notifying
the operator every time that an orepass is blocked to have a shorter reaction time, and
(iii) giving haptic feedback to the operator to avoid collisions of the hammer’s end-effector
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with the surrounding environment. Using these improvements, the operator could make
better decisions that result in a more precise operation, extended lifetime of the equipment,
and higher throughput of the mineral transport system.

There is very little literature related to the automation or tele-operation of impact
hammers. According to [3], previous works concerning the automation or modernization of
impact hammers are few. First attempts to automate impact hammers date back to 1998 [4],
and the first tele-operated impact hammer was reported in 2000 [5].

Most of the reported work addressing tele-operation of impact hammers uses 2D
cameras, and in some cases time-of-flight cameras (TOF) or stereo cameras. According
to [3], TOF’s low resolution is insufficient for this task, and stereo cameras obtain a single
view of the scene. To the best of our knowledge, there are no previous works using 3D
LIDAR (Laser Imaging Detection and Ranging) in this application, nor works reporting the
use of haptic devices for the tele-operation of impact hammers.

Regarding the autonomous operation of impact hammers, the reported results are
very poor. In [3], an average success rate of 34% is obtained in the task of breaking rocks,
which does not make it possible for the application of this technology in a real mining
environment. For this reason, we believe that a good intermediate step to full-automation,
which improves the current technology used for the tele-operation of impact hammers, is
haptic tele-operation.

In this context, this paper proposes the haptic tele-operation of impact hammers
for improving the efficiency of the fragmentation process. The proposed haptic tele-
operation system is based on a 3D model of the environment, which is used to estimate
repulsion forces that are transferred to the operator via a haptic control device, so that
the hammer does not collide with the structures of the mine. The repulsion forces are a
function of the distances between the hammer’s end-effector and the environment. The 3D
model of the environment is built using point clouds acquired using range sensors, and
updated continuously.

The proposed system also allows identifying the oversized boulders deposited on the
grizzly and notifying the operator every time the ore pass is blocked. Moreover, thanks to
the use of 3D sensors and cameras placed on opposite sides of the hammer (see Figure 1), it
is possible to show the operator the environment from different viewpoints and a 3D model
of the rocks to be crushed. With this information, the operator can make better decisions.

We do believe that the use of point clouds for improving tele-operation in mining
applications will increase in the following years, thanks to the popularization of 3D scan-
ning sensors, and the availability of libraries for processing this data (e.g., [6,7]). Field
applications, as the one described here, will use this haptic technology.

In other industries, the use of point clouds (obtained using range sensors) for obtaining
haptic feedback in tele-operation applications is not new, although most reported papers
describe systems that operate in controlled or semi-controlled environments, which is not
the case for underground mining. In ref. [8], a method of haptic feedback in real time, using
streaming point clouds from RGB-D cameras, without using contact sensors and without
preprocessing the data, is proposed. The concept of virtual world is used, in which the
simulated robot can move freely. In this virtual world, the tip of the virtual effector or
HIP (haptic interface point) is related to the movement desired by the user. This effector,
in turn, is wrapped in a zone of influence called proxy, which is forbidden to interact
with the point cloud. Therefore, if the effector tries to enter the point cloud (or be in a
position very close to it), a difference between the position of the virtual effector or HIP
with the center of the proxy will be produced. This difference in positions will result in a
feedback force vector, which will cause the effector’s motion to change direction. The work
described in ref. [9] is based on the described feedback system, and introduces the concept
of delay in tele-operation, where the motion is first performed in virtual space and then
executed in the real world. This implementation and testing of the system were performed
by teleoperation of a KUKA industrial robot, where the virtual world was created using
point clouds obtained with an RGB-D camera. This work confirms that haptic feedbacks
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increase the operator’s accuracy by reducing the errors in the desired trajectory of the end
effector, decreasing the collisions with the environment, and reducing the operation time.
In ref. [10], a haptic system based on distances measured using a stereo camera, is evaluated
on a robotic arm used to transport an object without colliding with obstacles. In ref. [11], a
3D virtual environment is recreated by a Kinect sensor used to calculate haptic forces based
on potential fields. The paper evaluates the path generated when operating a robot arm
with 7 degrees of freedom.

This paper is organized as follows. In Section 2, the proposed haptic tele-operation of
impact hammers is described. Section 3 presents results, both in simulation and in reality,
which are discussed in Section 4. Finally, in Section 5, conclusions of this work are drawn.

2. Haptic Teleoperation of Impact Hammers

2.1. Overall System Architecture

The proposed haptic tele-operation system is composed of eight sub-modules (see
Figure 3). The Point Cloud Server acquires and merges the data from the two LIDARs,
and segments it in three different point clouds, each one corresponding to measurements
associated to reflections on the infrastructure, hammer, and material. These point clouds,
and the acquired images, are sent to the User Interface where the different visualization
are generated for the user. The Collision Point Cloud Generation module receives the point
clouds and generates a so-called collision point cloud, which represents the points in the
space to be avoided during tele-operation. The Haptic Feedback Calculation module estimates
possible future collisions using the collision point cloud, the current commands on the
end-effector (ueef), and the state of the hammer’s joints (x), and it generates haptic feedback
information (f ) for the haptic controller and haptic control interface. The Haptic Controller
receives this feedback and generates the haptic force to be applied on the Haptic Device
to alert the user of the limitation of the commands. At the same time, the Haptic Control
Interface receives the control command on the end effector, which is the result of the operator
force on the Haptic Device and the haptic force on the joystick, and the haptic feedback to
limit the commands in case of any risky situation, for example, when the operator in spite of
the haptic feedback decides to perform a risky task. Finally, these commands are converted
from the Cartesian space (ueef) to the joint space (ujoints) using the Inverse Kinematics of the
machine to handle the articulation actuators directly.

2.2. Sensors

Sensors are located above the grizzly, on opposite sides, to generate complementary
points of view of the working space (see Figure 1), and to provide a better representation of
the material over the grizzly when both views are combined. In each side, a 3D LIDAR
and camera are used. These sensors provide a streaming of point clouds and images.
Point clouds are used to build a 3D model of the environment, and images are used for
visualization purposes.

2.3. Point Cloud Server

This module first merges the point clouds acquired by the different 3D LIDARs into a
single cloud. This point cloud is down sampled to generate a voxel grid representation of
the space. Then, all the voxel grid points are separated in three different categories (see
Figure 4):

1. Environment points that include all points that do not change in the operation
of the system (e.g., point of the floor, points of the grizzly, and point over other
parts of the structure of the mine). These points are used to build the 3D model of
the environment;

2. Hammer points that correspond to the points generated by the LIDAR’s reflections
on the impact hammer, which are generated when certain parts of the hammer are
positioned in the scanning area of the sensors;
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3. Material points that correspond to any other point detected, which should correspond
to the material over the grizzly.

 

Figure 3. Overall view of the haptic tele-operation framework.

 

Figure 4. Point cloud categorization. Environment points (in gray) and material points (in red).
Hammer points in blue, showed over the end-effector model (in yellow).
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During the system’s initialization, the environment model is generated by successively
integrating point clouds from the environment, without considering the ones corresponding
to material or the impact hammer. This results in a very dense point cloud that is first
filtered for deleting isolated points that could be generated by noise on the sensors. Once the
noise has been eliminated, the cloud is voxelized in 3D square voxels, reducing the number
of point and maintaining the occupancy information of the environment in the space.
Finally, this cloud is saved as the environment model. Figure 5 shows the main modules
of the described process. Sensors 1 and 2 correspond to the 3D LIDARs used to capture
the model of the environment through point clouds. The Point Cloud Integration module
corresponds to the process of joining the point clouds of both sensors and performing the
task of integrating these successive point clouds over time. The Noise Filtering module is
responsible for removing noise. The Voxelization & Occupancy Grid module is in charge of
voxelizing the point cloud in order to eliminate repeated points and to show the occupancy
of the space. And finally, the Save Model in Memory module stores the resulting point cloud
in memory for later use.

Figure 5. Processes to obtain the point cloud of the environment.

During operation, the environment model is used for determining the points that
belong to the material model and hammer model. In each iteration, each new point cloud is
voxelized and contrasted with the point cloud of the environment model. This comparison
allows to subtract the points belonging to the environment. Once subtracted from the
environment points, the resulting point cloud contain the hammer-points and material-
points. Hence, to obtain the material-points, a new filtering process should be performed
to subtract the hammer-points. This is done by first estimating the spatial region where
the hammer is located, which is obtained using the current state of the hammer’s joints
and the kinematic model of the hammer. This way, all those points within this space will
be classified as belonging to the hammer and therefore eliminated. Figure 6 shows the
process used to obtain the point cloud of the material. Sensors 1 and 2 correspond to the 3D
LIDARs used to capture the working environment. The Point Cloud Concatenation module
is in charge of joining the point clouds coming from both sensors. The Voxelization module
is in charge of voxelizing the point cloud resulting from the union of both sensors, thus
eliminating repeated points. The Environment Model Points corresponds to the point cloud
stored in memory, which only contains points corresponding to the grizzly. The Subtraction
of Environment Points module compares the current point cloud with the point cloud stored
in memory, and removes the points that are found in both models. Finally, the Material
Points module is in charge of publishing the points resulting from the previous module,
which correspond to the material on the grizzly.
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Figure 6. Processes to obtain the Point Cloud of the material.

2.4. Collision Point Cloud Generation

The generation of a collision point cloud has the goal of using it for avoiding collisions
between the impact hammer and surrounding environment.

The collision point cloud always includes the environment point cloud, and the
material cloud, depending on if the user wants to avoid the material or not. For instance,
when the hammer’s end-effector needs to be placed in the rock to be broken, the user
chooses not to include the material cloud. This is done by just pressing a button on the
haptic device.

The generation of collision points starts with a dilation operation over the environment
point cloud, and applies over the material point cloud, which is implemented in each case
using as structuring element cube of 3 × 3 × 3 points. The dilation of the input point cloud
by the cube of 3 × 3 × 3 (which corresponds to a cube of 27 points), can be understood as
the locus of the points covered by the cube of 3 × 3 × 3 point when the center of it, moves
within the input point cloud. The dilation operation is defined as follows:

A
⊕

B = ∪b∈B Ab (1)

where A is the initial point cloud, and B is the structuring element (cube 3 × 3 × 3).
This means that for each initial point, 26 extra points are created, which will surround

the initial point (27 points in total). Figure 7 shows the dilation operation, and the result of
this operation on a single voxelized point.

Figure 7. (A): Single voxelized point; (B): 3 × 3 × 3 structuring element with origin in central point;
and (C): result of dilatation operation.

At the end of the morphological dilation, a new point cloud is obtained, with multiple
repeated points because the implemented dilation algorithm does not check if there is
already a point in the space where the new points are generated. To eliminate this redundant
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data and to increase the algorithm’s performance, the resulting cloud is voxelized again.
Figure 8 shows the process to obtain the collision points.

 
Figure 8. Processes to obtain the collision point cloud.

As mentioned, the collision point cloud is composed of two parts. The first part will
come from the processing of the point cloud belonging to the environment model. As this
model is static and was previously calculated in a previous module, it is only processed
once to generate the cloud of collision points belonging to the environment. The second
part will come from the processing of the point cloud belonging to the material. As this
point cloud is dynamic (it is expected to change frequently), the process of obtaining the
collision point cloud is performed in each execution cycle. In this case, for performance
reasons, the dilatation operation is performed once per cycle.

In the case of requiring to generate a thicker collision point cloud, several dilation
iterations should be performed in the same cycle. This would result in a larger safety
distance between the real object and end effector. Figure 9 shows a comparison between
the point cloud of the generated grizzly model and the point cloud resulting from the
dilation process.

  
(a) (b) 

Figure 9. (a) The original collision cloud generated with the environment points. (b) The resulting
collision point cloud after applying the dilation process.

Therefore, the resulting collision cloud will be the concatenation of points from the
static processing (performed only once at the beginning of the program) of the environment
model, with that of the dynamic processing of the material (performed in each cycle). This
point cloud will result in a more homogeneous cloud, filling the empty spaces due to the
imperfection of the sensors.
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It must be emphasized that at any moment, the user can choose using just the environ-
ment model for the generation of the collision point cloud, not including the point clouds
associated to the material. This is normally made just before placing the hammer on the
rock to be broken. The user makes the selection of this operation mode by just pressing a
button in the haptic device.

2.5. Haptic Feedback Calculation

This module generates the haptic feedback that will restrict the movement of the
joystick axes and the movement of the impact hammer. For this purpose, a so-called virtual
collision region is generated around the end effector, which represents the space of the
possible future positions of the end-effector, considering the direction in which it moves.
The intersection of the virtual collision region with the collision point cloud will indicate
possible collisions of the end-effector with the environment.

For simplicity, in this work two different geometries are used for representing the
virtual collision region: A rectangular cuboid and a semi-sphere, which are positioned at the
end-effector point that is located on the tip of the chisel. Figure 10 shows these geometries,
which are oriented with respect to the direction of movement of the end-effector. In this
simulation, the yellow arrow corresponds to the direction of motion of the end-effector.

 

Figure 10. The yellow arrow shows the direction that the end-effector is moving. The yellow cuboid
and green half-sphere are oriented according to the direction of motion of the effector.

As mentioned, the intersection of the virtual collision region with the collision point
cloud will indicate how close is the effector to collide if the current direction and velocity
of movement are maintained. The orientation of the virtual collision region has a direct
relation to the direction of displacement of the end-effector, and the region it represents
indicates the possible future positions in which the effector will find itself in future time
steps.

The length of the cuboid is selected as the maximum distance that the effector will
move before stopping (inertia of the system). The height and width of the cuboid are
slightly larger than the height and width of the end-effector. These values make it possible
to distinguish when the end-effector is in an apparent collision state with the collision point
clouds, and therefore perform subsequent actions on the effector to avoid the collision.
However, it could happen that a sudden movement in the actuation of the controls would
produce an abrupt change on the movement direction of the end-effector, resulting in a
collision that cannot be detected by the cuboid. To avoid this situation, the semi-sphere
region will act as a safety region, detecting these particular cases, where the effector is not
in a collision direction, but very close to the objects.
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Thus, depending on the positions of the virtual collision region with respect to the
collision point cloud, three different cases can be identified:

1. Rectangular cuboid and semi-sphere regions without intersection with the collision
point cloud (see Figure 11a). In this case the impact hammer can continue its trajectory;

2. Rectangular cuboid intersects the collision point cloud (see Figure 11b). In this case,
the velocity will be reduced according to the distance to the obstacle (see explanation
in next sub section);

3. Semi-sphere region intersects the collision point cloud and the cuboid does not (see
Figure 11c). In this case the velocity will be reduced to 50% (see explanation in next
sub section).

  

(a) (b) (c) 

Figure 11. (a) Rectangular cuboid and semi-sphere regions without intersection with a collision point
cloud. (b) Rectangular cuboid intersects the collision point cloud. (c) Semi-sphere region intersects
the collision point cloud and the cuboid does not. The yellow rectangle represents the cuboid. The
green semi-circle represents the semi-sphere. The white arrow corresponds to the hammer direction.

The output of haptic feedback (f ) has three values: A Boolean indicating if the cuboid
intersects the collision point cloud or not, a Boolean value indicating if the semi-sphere
intersects the collision point cloud or not, and a normalized value that indicates a level of
safety of executing a command.

The level of safety parameter (S) is calculated using the distance from the end-effector
to the collision point cloud (DistEP), as the percentage of the cuboid region lying outside
the intersection with the collision point cloud. To calculate this percentage, a max distance
(DistMAX) is predefined. This distance is considered as a deceleration distance by the
end effector when it moves with the maximal allowable speed and it stops. Thus, S is
calculated as:

S = min
{

DistEP
DistMax

, 1
}

. (2)

2.6. Haptic Control Interface

This module limits the end-effector’s actuation orders. Depending on the distances
between the virtual collision region and collision point cloud, the maximum allowed speed
will change, so that the effector does not collide and is not damaged. According to the cases
defined in the former sub section:
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1. Rectangular cuboid and semi-sphere regions without intersection with the collision
point cloud. In this case no constraint action is performed, the end effector can reach
maximum velocity;

2. Rectangular cuboid intersects the collision point cloud. In this case, the resulting
end-effector velocity ( uee f limited ) will be reduced depending on the level of safety
parameter as:

uee f limited = uee f ·S2. (3)

The use of the square of S is inspired by the fact that the kinetic energy depends on
the square of the speed.

Thus, the magnitude of the commands on the end-effector will decrease its maximum
allowable speed as it gets closer to the collision point-cloud, arriving with velocity tending
to zero as it touches the collision point cloud.

3. Semi-sphere region intersects the collision point cloud and the cuboid does not. In
this case the end effector speed is limited to 50% of the maximum speed. In other
words, if a higher effector speed is attempted under this condition, the system will
automatically limit the speed. In case the effector movement is attempted at a lower
speed, the system will not make any adjustment to the speed.

2.7. Inverse Kinematics

This module adapts desired velocities on the end-effector to the corresponding joint
velocities. To do this task, the Jacobian pseudo inverse of the kinematic model is calculated
using the current state of the machine to perform this conversion as:

ujoints = Jpseudo inv·uee f (4)

where uee f corresponds to a vector with the velocities on some axis of the Cartesian space,
{x, y, z, pitch} in this case; ujoints corresponds to the speed on each articulation on the
machine {q0, q1, q2, q3} related to its respective joint, and Jpseudo inv corresponds to the
pseudo-inverse of the Jacobian of the kinematic model of the arm, which is shown in
Figure 12.

Figure 12. Simulated kinematic model of the impact hammer. J1, J2, J3, and J4 correspond to the
hammer joints. The X-axis is shown in red, the Y-axis in green, and the Z-axis in blue.
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The pseudo inverse method is implemented to reduce the dimension of the Jacobian,
which is originally declared in Cartesian space {x, y, z, roll, pitch, and yaw}. The kine-
matic model of impact hammer is generated by a kinematic tool (moveit) and allows for
simplifying the number of the states on the Cartesian space to {x, y, z, pith}.

2.8. Haptic Controller

The haptic control has the task of alerting the user of possible collisions using the
haptic device. The form of warning that has been implemented is to restrict the range of
movement of haptic device (control axes). In this way, as the effector gets closer to collision,
the restriction to the movement of the axes will be greater, exerting a counter force to the
user if they want to pass the calculated limits.

Therefore, the restriction of movements to the axes of the haptic device will allow
on the one hand to alert the user of possible collisions (and how close the hammer is to
collision), and on the other hand, it will be able to slow down the hammer by limiting the
possible movement actions.

In the same way as the haptic control interface, the limitation sent to the haptic
controller depends on three states of haptic operation:

Rectangular cuboid and semi-sphere regions without intersection with the collision
point cloud: The haptic control does not exert any counteracting force to the operator’s
actuation. In this case, the user will not feel any restriction on the movement of any of the
control axes;

4. Rectangular cuboid intersects the collision point cloud: In this case the movement of
each axis is limited, depending on the remaining distance to the object to collide. The
axel movement limitation is:

Axismaxpossible pose = Distobject·
(

Axismaxpose − Axisinitpose
)
+ Axisinitpose. (5)

Thus, as the effector approaches the object to collide (distance in range {0,1}), the
control will limit the movement of its axes, opposing the user’s action. In case the user
operates under the calculated limit, he/she will not feel the movement limitations of
the control.

5. Semi-sphere region intersects the collision point cloud and the cuboid does not. When
this condition is activated, the movement is limited to 50%, which means that the
operator will feel that the control only allows them to move the axes, normally the
first half in each axis. When trying to exceed the second half, the haptic control will
exert a repulsive force opposite to the operator’s direction.

2.9. User Interface

The user interface is used to provide the operator with multiple perspectives of the
grid material. Here the operator can move the point cloud presented to him, and adjust the
view to their liking, in order to improve the perception of the objects within the hammer
workspace. The visual output of this interface is in the form of a visualization of the
point clouds, previously processed by the modules described above. Figure 13 shows the
interface implemented in this project. The interface shows the model of the UR5 robot,
which can be rotated as desired by the user of the interface, and the cloud of collision points
(in yellow). This interface includes visual signals to inform the operator of the current
operation conditions.
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Figure 13. User interface. The yellow shows the visual output of the processing of the point clouds
obtained by the sensors.

3. Results

3.1. Experimental Setup

As a proof of concept, we built a realistic laboratory setup. The testing environment
used for validation consists of a real, scaled grizzly with real rocks. The scales of both
elements are in relation of 1:3. For the impact hammer, an UR5 robotic arm was used with
a scale of 1:5, just as a real impact hammer. For having a similar kinematic model rather
than a real rock breaker, two articulations of the UR5 were fixed, and the other four were
tele-operated (see Figure 14). The UR5 robot was mounted, related to the grizzly, in the
configuration used in a real mining operation. Figure 15 shows how the UR5 robot was
installed for the experimental tests. Next to it, there is a metallic test grizzly to scale, with
material (rocks) on it.

 

Figure 14. Articulated model of the adapted UR5. The green joints (J1, J2, J3, and J4) correspond to
the articulated joints. The red (J5 and J6) correspond to the fixed joint of the kinematic model.

217



Appl. Sci. 2022, 12, 1428

 

Figure 15. Experimental operation of the rock breaker set-up.

Two mounting-bases, each one containing a camera and a 3D LIDAR, are placed
around the operation environment. This allows for the sensors to be located above the
operational set-up, pointing to the grizzly and covering it completely (see Figure 16). In this
work, Livox model MID-40 3D LIDARS and Arecont model AV5225 PMIR visible spectrum
cameras are used.

 

Figure 16. Experimental set-up.

To test the haptic part, 2 Brunner CLS-E controls were used, which allowed up to
four joints to be controlled simultaneously (each joystick has 2 degrees of freedom). For
convenience, these were installed on a chair used for the tele-operation. Figure 17 shows
an operator using the UR5 robot, the Brunner haptic controls (installed on a chair), and the
user interface.
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Figure 17. User operating the UR5 arm, using the haptic controls (installed on a chair), and the
user interface.

3.2. System Configurations to Be Tested

The main purpose of the reported experiments is to validate that the haptic system
facilitates the control of the impact hammer to perform the task of positioning the tip
of the end-effector above the rock, without colliding. That means that it improves the
tele-operation experience.

Several tests are recorded doing this task with different configurations of the haptic
system in order to study the impact of this feature. In particular, three different configura-
tions of the system are tested. The configuration combines a different feature of the haptic
system, which are:

1. Type of control: Determine how the machine will control the arm (impact hammer). In
normal tele-operation, the user directly controls each joint of the arm. In the proposed
system, the user directly controls the pose of the end-effector;

2. Use of the 3D reconstruction of the environment: This feature considers the use of the
3D reconstruction to get a multi-view of the operational environment. In normal tele-
operation of the impact hammer, just one or two views are used, which are obtained
directly by the cameras;

3. Use of haptic feedback: This feature will give the operator the feedback of the joystick
to avoid colliding with the grill or other rocks

Finally, these features are combined in different configurations, A to D, which are
defined in Table 1.

Table 1. Types of system’s configurations used in tests.

Configuration Id Type of Control Use 3D Reconstruction Use Haptic Feedback

Configuration A Joints No No
Configuration B End effector No No
Configuration C End effector Yes No
Configuration D End effector Yes Yes
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3.3. Tasks

Predefined tasks are elaborated to generate a set of tests that can be replicated by
different operators. This way, a predefined task contains the following information:

1. The initial state of the arm;
2. The target position;
3. A collision point cloud: The same collision space will be used in the same task. This

way the operator has the same level of difficulty for avoiding the grizzly and rocks.

The experiment consists of generating the predefined environment test and giving
the operator a target position. The operator has to move the arm using the different
configurations of the system. An example of a pre-defined task is shown in Figure 18.

 

Figure 18. A pre-defined experimental test (Task 1): The arm tip is located out of the grill. The
avoiding environment (the point cloud in boxes) consists of a single rock over the grill. The green
circle corresponds to the target goal.

3.4. Experimental Results

Each configuration was evaluated using two different tasks, executed by two different
non-expert operators. In total, 20 trials were carried out. The obtained results are shown in
Table 2.

Table 2. Table with metrics of performance of different tasks with different configurations.

Task and
Configuration Id

Average
Success Rate

Average Reaching
Time [s]

Average Tip Path
Length [m]

Task 1, conf. A 0% — —
Task 1, conf. B 25% 28.66 0.947
Task 1, conf. C 100% 20.07 1.005
Task 1, conf. D 100% 10.70 0.633
Task 2, conf. A 25% 47.16 1.920
Task 2, conf. B 50% 37.80 1.077
Task 2, conf. C 80% 34.45 1.250
Task 2, conf. D 100% 24.71 1.080
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A task is considered successful if the operator was able move the end effector to the
target position with a precision of at least 0.015 [m], without colliding with the grizzly or
rocks. If the operator cannot reach the target position, the task is considered a failure.

Table 2 shows the average success rate, representing the percentage of successful tasks.
The average reaching time shows how many seconds it takes for the operator to reach the
target. The average tip path length represents the distance in meters that the tip of the
end-effector has to move to reach the desired target position. It can be observed that the
success rate increases as more features are integrated into the system. In Task 1 conf. A, the
operators were not able to achieve the target point without colliding with the rocks. The
integration of more features allows the operator to complete the task and reduce collisions.
Configuration D allows complete completion of the task without collisions because the
haptic system does not allow commands that generate collisions to be executed.

In order to illustrate how the system operates, Figure 19 shows the trajectories of the
tip for a different configuration when executing task 2. It can be seen that the trajectory
becomes simpler as more features of the system are added.

  
(a) (b) 

  
(c) (d) 

Figure 19. Different hammer tip trajectory paths of task 2 (same operator). The path is on a cyan line.
(a) Conf. A (user controls each joint of the arm). (b) Conf. B (user controls the pose of the end-effector).
(c) Conf. C (user controls the pose of the end-effector and 3D reconstruction of the environment)
(d) Conf. D (user controls the pose of the end-effector, 3D reconstruction of the environment, and
haptic feedback).
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4. Discussion

The reported experiments show that the developed haptic tele-operation system allows
for improving the tele-operation experience of the user. The processing of the different
point clouds acquired using 3D LIDARs manages to correctly separate the rocks from
the grizzly. The haptic controller and control interface manage to provide enough force
feedback to the operator to get their attention, so that they can perceive elements close to
the end-effector, thus increasing the perception of the environment in the operating area. In
addition, the user interface improves the visual perception of the elements, improving the
control over the robot, even if the haptic feedback part is not used.

The results depicted in Table 2 allow for comparing the different configurations, and
in this way the different features that the proposed haptic tele-operation system includes.

When comparing configurations, A and B, a significant improvement of the perfor-
mance of the task is observed when the end-effector controller is used (configuration B). The
main reason for this, is that controlling an arm by actuating directly the joints is a difficult
task that requires much preparation and practice. This way, controlling the end-effector
makes the operation more affordable for new users.

When comparing configurations B and C, it can be observed a slight improvement in
the case of using a 3D model of the environment (configuration C). The reason for this is
that in case B, the operator cannot change the perspective, and therefore, in some cases
it is not possible to have a proper visualization to avoid colliding. When the operator
uses configuration C, they have the possibility of changing the viewpoint and in this way
avoid collisions.

Finally, when comparing configurations C and D, a more notorious performance
improvement is detected in the case of using haptic feedback. The reason for that is that
the operator does not have to worry about colliding with the environment or rocks. This
produces that the operator is able to increase the speed, and can move the arm without
worrying about collisions.

By comparing the different configurations using the hammer tip trajectories (see
Figure 19), it is possible to visualize the effect of each configuration on the end effector
path. In this aspect, configuration A and B generate a larger deviation when approaching
the target, due to the poor perspective that make it more comfortable to first raise the
end-effector and then approaching the target from a higher position in order to get a better
perspective. In contrast, configurations C and D generate a path that approach the end-
effector directly to the target, as they are able to manage the perspective, but then finish
with different maneuvers of positioning. In particular, configuration D presents a slight rise
over the rock when approaching as a result of haptic feedback that allow the operator to
perform fine maneuvers more easily, unlike configuration C which tends to perform wider
maneuvers at the final stage of the positioning process.

Similar to [9–11], the results show that using a haptic system improves the performance
and safety of performing a certain task using a robot manipulator. In addition to analyzing
the number of collisions, our study evaluates the level of precision of the task being
executed, and this type of consideration is not studied in other works and it is relevant for
the context of this type of task in particular, which is positioning the chisel for breaking rock.
In addition, our system uses the virtual environment to generate multi-perceptive views to
aid in performing a task. This feature is not analyzed in the other studies describing haptic
tele-operation based on point-clouds [9–11].

It should also be noted that although the development is intended for industrial
environments with a real impact hammer, a small-scale robotic arm was used for the
laboratory tests, which implies different behaviors due to the different construction of these
elements (electric vs. hydraulic). This may imply that for final implementation, major
adjustments may be needed for the control and haptic feedback modules of the system.
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5. Conclusions

This paper addressed the haptic tele-operation of impact hammers. The proposed
haptic tele-operation system is based on a 3D model of the environment, which is used
to estimate repulsion forces that are transferred to the operator via a haptic device, so
that the hammer does not collide with the structures of the mine. The system also allows
for identifying the oversized boulders deposited on the grizzly, notifying the operator
every time the orepass is blocked, as well as providing them with different 3D views of
the environment.

A proof of concept was presented using a scaled setup. The reported experiments show
that the use of a 3D model of the environment and the use of haptic feedback improves
the tele-operation experience. When using the proposed system, operators were able to
increase the success rate of the tele-operation task, and at the same time to reduce the
completion time and the length of the path that the end-effector must follow.

As part of our future work, we will validate the tele-operation system using a real
impact hammer operating in a real production environment of an underground mine. In
that environment, it is expected that several aspects of the operation will emerge which are
not reproducible or were not considered in our laboratory environment. The analysis of
these new experiments allows for improving and adapting the haptic feedback algorithm
to be applied in production systems. In addition, the system will be validated with expert
rock breaker operators in order to be able to quantify the real operational impact of its use.
Given that a professional operator has a higher level of expertise in controlling the hammer
with the current limitations of traditional systems, the performance improvement could be
different in relation to a non-expert operator.

Further improvement will focus on the use of haptic feedback to develop assistive
tele-operation to guide the operator to follow optimal trajectories. Assistive tele-operation
requires defining hammer tip trajectories for successful positioning and providing hap-
tic feedback when the operator uses commands that move the hammer tip away from
these trajectories.
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Abstract: In haptic recognition, pressure information is usually represented as an image, and then
used for feature extraction and classification. Deep learning that processes haptic information in
end-to-end manner has attracted attention. This study proposes a multiorder attentional spatial
interactive convolutional neural network (MoAS-CNN) for haptic recognition. The asymmetric
dual-stream all convolutional neural network with integrated channel attention module is applied
for automatic first-order feature extraction. Later on, the spatial interactive features based on the
overall feature map are computed to improve the second-order description capability. Finally, the
multiorder features are summed to improve the feature utilization efficiency. To validate the MoAS-
CNN, we construct a haptic acquisition platform based on three-scale pressure arrays and collect
haptic letter-shape (A–Z) datasets with complex contours. The recognition accuracies are 95.73% for
16 × 16, 98.37% for 20 × 20 and 98.65% for 32 × 32, which significantly exceeds the traditional first-
and second-order CNNs and local SIFT feature.

Keywords: haptic recognition; convolutional neural network; channel attention; spatial interactive
second-order feature; multiorder feature

1. Introduction

Haptic interpretation is an important component of perception, providing real-time
feedback on changes in the external environment, and has been widely used in practical
applications, such as smart machines, wearable devices, and human–computer interac-
tion [1,2]. The essence of haptic recognition is the recharacterization and feature extraction
of pressure information to obtain multiple properties of the contact object, which is the
basis for subsequent actions such as grasping, manipulating, and moving. The generic
method is to consider the haptic information as a two-dimensional image. Therefore,
visual data-based approaches are introduced for understanding haptic information. SIFT,
SURF, chain code and other descriptors combined with clustering are applied for haptic
recognition [3,4]. Pohtongkam et al. applied the BoW technique using SIFT for feature
extraction and k-nearest neighbors (KNN) for evaluation to achieve object recognition by a
tactile glove [5]. These local feature methods require manual feature design for specific task
and are labor-intensive. Recent research has proved that convolutional neural networks
(CNNs) are suitable for two-dimensional information and can automatically learn features
and recognize objects [6,7]. Therefore, the haptic information can be ported to the CNN for
automatic recognition. Gandarias et al. proposed classical transfer CNN models combined
with transfer learning to identify large items [8]. Polic et al. designed a CNN encoder
structure to reduce the dimensionality of the optical-based tactile sensor image output [9].
Cao et al. trained an end-to-end CNN for tactile recognition using residual orthogonal
tiling and pyramid convolution ensemble [10].

Although the existing CNN methods can achieve better recognition performance than
traditional artificial features, there are still the following challenges. Firstly, the size and pixels’
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amount of haptic image depend on the density and area of the pressure sensor, and thus
they are at least two orders of magnitude lower than visual RGB images [11,12]. Current
mainstream CNNs are constructed for high-resolution visual images. The nonlinear fitting
capability is enhanced by deepening the network [13]. However, the low-resolution haptic
image limits the configured network depth, so the features extracted by shallow CNN are
insufficient. Secondly, the inevitable nonideal effects of the sensing element itself reduce the
accuracy of the original information mapping. Due to the flexible requirements and complex
manufacturing process of the sensing elements, the pseudo-outputs caused by elastic coupling
and restricted response range are inevitable, resulting in blurred pressure images [14]. In
addition, the fineness of the haptic image relies on the sensitivity and response range of the
sensor, which is much lower than that of the visual image. Different objects show similar
shapes, so more distinguishable features are needed. The traditional shallow CNNs are not
adequate in feature extraction capability and feature utilization efficiency.

To address the low-resolution and blur problem in haptic perception, a multiorder
attentional spatial interactive convolutional neural network (MoAS-CNN) is proposed and
a pressure information acquisition platform is built (flowchart of the overall framework is
shown in Figure 1). The former improves the nonlinear fitting capability of the network
by deepening the network and adding channel responses to enhance the representation
of first-order high-level features; introducing spatial interactive second-order features to
enhance the representation of edges and fusing multiorder features to enhance the efficiency
of feature utilization. The latter validates the proposed method by constructing haptic letter
shapes with complex edges.

 
Figure 1. Flowchart of the overall framework.

The remainder of the paper is organized as follows. Section 2 discusses the nonideal
characteristics about haptic images and the inadequacy of shallow CNN. In Section 3, the
MoAS-CNN is proposed and each part is described. The Section 4 is dedicated to validate the
proposed method using a three-scale sensor array and comparison experiments with other
first-order and second-order CNNs. The discussion and conclusion are in Sections 5 and 6.
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2. Problem of Insufficient Shallow CNN for Haptic Images

The original haptic information mapping of the sensing elements plays a crucial role
in recognition. However, the following challenges remain. The density and area limitations
as well as elastic coupling cannot be avoided due to the complex process and adhesion
requirements of the sensor. In addition, the depth of field of an image depends on the
sensitivity and response range of the sensing element. The resulting pixel and mapping
quality of haptic images are both lower than those of visual images. The letter shape has
complicated edges, which can sufficiently illustrate the issue. As shown in Figure 2a, the
haptic images of 26 letter shapes are acquired by a 32 × 32 array sensor. It can be observed
that the haptic images are low-resolution accompanied by blurring. Different categories
show similar shapes, such as “V” and “Y,” “O” and “D.” The haptic image has only one
channel and is grayscale, so the histogram is used as a quantitative measurement. As
shown in Figure 2b, the grayscale distribution of different categories is in statistics, and the
histograms of different letter shapes are easily confused. To further quantify the similarity,
the Bhattacharyya coefficient is used as the proxy between each of the 26 letter shapes and
is calculated as:

Cor(IA, IB) =
n

∑
i=1

√
IB(x, y)IA(x, y) (1)

where I (x, y) denotes the gray value of the haptic image at (x, y). A large positive number
indicates a strong correlation between different pressure images and potential confusion.
As shown in Figure 2c, different haptic shapes show strong positive interactions. Most of
the correlation coefficients are in the range of 0.7–0.85, with certain categories reaching
above 0.9, including K and X, G and Q, and O and U.

 

Figure 2. Nonideal effects of haptic images. (a)The letter-shape samples obtained by a 32 × 32 sensor
array, (b) the grayscale distribution histograms of the samples, (c) the Bhattacharyya coefficient of the
26 letter shapes.

The current mainstream CNNs are designed for visual images that improve feature
fitting by deepening the network. However, these nonideal effects of haptic images lead to a
reduction in the differences between categories, so more distinguishable features are desired.
Nevertheless, constrained by the sensor density and integrated area, the pixels of a haptic
image are usually at 102 (RGB is above 104), making it impossible to improve nonlinear fitting
by deepening the network, and only shallow networks can be configured [10,11]. Therefore,
shallow CNNs with more powerful fitting ability need to be explored.

3. Haptic Recognition Method

3.1. MoAS-CNN Framework

Aiming to improve the feature description and utilization efficiency of the network, a
shallow MoAS-CNN is constructed. Figure 3a illustrates the proposed structure, where
spatial interactive-based second-order features enhance the nonlinear response of the
network and a hybrid strategy of summing up the multiorder features makes the extracted
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features fully utilized. It consists of three parts: first-order feature extractor, second-order
feature generation, and multiorder feature hybridization.

 
Figure 3. The MoAS-CNN framework. (a) The overall framework, (b) the squeeze–excitation channel
attention module, (c) the spatial interactive feature generation and multiorder summation.

In particular, for low-resolution pressure inputs, the samples contain limited informa-
tion and additional dimensionality reduction of the features is not expected. In our case,
the pooling layers are removed and only the convolutional layers are retained to reduce
the feature dimensionality loss [15,16]. An all-convolutional dual-stream neural network
with the channel attention module inserted is constructed as a first-order feature extractor.
The channel attention module based on squeeze and excitation operations is added for im-
proving the first-order feature response. For second-order response, a cross-stream spatial
interactive feature is generated to improve the feature nonlinear description. High-order
features have been proved to be more sensitive to texture and edges [17,18]. Six {3 × 3}
convolutional kernels (steam1) and three {5 × 5} convolutional kernels (steam2) are applied.
Multiorder features are fused to enhance the utilization of different orders of features by
summation. Features of different orders have different emphases, and complementary uti-
lization promotes the overall nonlinearity of the network without wasting information [19].
This is beneficial for applications where the original information mapping is not sufficient
or the network depth is limited.

3.2. All-Convolutional Neural Network-Based First-Order Feature Extractor with Channel
Attentional Module Inserted

An asymmetric all-convolutional dual-stream CNN is configured as a feature extractor
to automatically extract first-order features. CNN streams of different structures focus
on respective priorities, which can fully mine image features. Mathematically, the feature
maps at ith layer are calculated as:

f i = ϕ(wi ⊗ f i−1 + bi) (2)

where ϕ denotes the activation function ReLU, and w and b represent the convolutional
kernels and bias [20].

To highlight the emphasized parts of the features, the channel attention module
including squeeze and excitation operations is inserted after the convolution layer [21].
As shown in Figure 3b, the feature maps are assigned scaling according to the channel
importance to improve the feature representation. For a set of features f∈Rh×w×c, the
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squeeze operation is performed to obtain the global distribution Z{1 × 1 × c}, reflecting the
features response over the channels. The specific mathematical expression is as follows:

Z = GP( f c)
h×w ,

GP( f c) =
h
∑

i=1

w
∑

j=1
f c(i, j)

(3)

Here, the global average pooling is chosen to compress the feature into real numbers
by spatial dimension. For excitation operation, Z is fed into two fully connected layers to
further learn factor S:

S = ϕ( f c(Z)) (4)

where ϕ denotes the activation function ReLU and fc represents the fully connected layer. These
attention scalings are assigned to the initial feature map to obtain the rescaled feature map f̃ i:

f̃ i = Si × f i (5)

The attentional module is capable of suppressing the 2D features with lower response
in the channel domain and instead increase the 2D features with higher response. After the
squeeze and excitation, the feature maps are visualized in Figure 3b, and the “light and
dark” changes of some feature maps can be clearly observed.

3.3. Spatial Interactive Second-Order Feature

To increase the nonlinear expression of the network, a cross-flow spatial interactive
feature is proposed as a second-order response. In contrast to traditional second-order features
captured by different channels at the same location, spatial interactive features in this work
are generated by convolving single-channel feature maps at different streams with each other.
Different stream branches focus on different extraction priorities, so the proposed method
concerns more on the intrinsic relationship between the overall features in different streams.
For tiny and low-resolution pressure inputs, further exploration of the interactions between
different streams is necessary in the presence of network depth limitation.

The cross-flow spatial interactive feature generation is shown in Figure 4a. The
extracted first-order features of stream1 and stream2 are represented as f stream1 and f stream2.
To make the interstream interaction more adequate, the original features of stream1 f stream1

are reconstructed without loss as f 1-reconstruction. Specifically, the f stream1 are split by interval
sampling and stitched together, transforming the information on width and length to the
channel dimension with no information loss (shown in Figure 5). In the case of this work,
the dimension of the f stream1 {20 × 20 × 64} is adjusted to f 1-reconstruction {5 × 5 × 1024}.
The reconstructed feature of stream 1 f 1-reconstruction and the features of stream2 f stream2 are
subjected to an interactive operation, achieving a second-order feature.

The obtained second-order feature is performed in a sum pooling step to finally obtain
the cross-flow spatial interactive feature f 2-order:

f 2nd-order =
nc

∑
i=1

( f 1-reconstruction ⊗ f stream2) (6)

To further improve the cross-flow spatial interactive feature representation, f 2-order:is nor-
malized by element-wise signed square root followed by L2 regularization as f 2-order-norm [16]:

f 2nd-order-norm =
sign( f 2-order)×

√
f 2-order∥∥∥∥sign( f 2-order)×

√
f 2-order

∥∥∥∥
2

(7)

where sign represent the symbolic function.
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Figure 4. The generation of cross-flow spatial interactive feature. (a) The generation of proposed
spatial interactive feature; (b) traditional second-order feature generation.

 
Figure 5. Schematic diagram of first-order feature reconstruction.

3.4. Multiorder Feature Hybrid

Different orders of features have different emphases and can be utilized in a more
complementary way. Without adding additional parameters, the multiorder feature hybrid
strategy is proposed to enhance the efficiency of feature utilization. The features of different
orders are summed to obtain the fused features, as shown in:

y f usion = f steam1 + f steam2 + g( f steam1 � f steam1) + g( f steam2 � f steam2) (8)

where yfusion stands for the fused feature and the g(•) is regularization (batch normalization
here [22]). Intuitively, as shown in the upper right part of Figure 3c, only segmented
linear functions are obtained when no second-order terms are added, which means that
the nonlinearity appears only in a few 1D subspaces of the 2D plane R2. However, if the
second-order terms are added, nonlinearity exists R2 .

= [0, ∞)2. The multiorder features
allow the efficiency of feature utilization to be enhanced while keeping the network depth
constant, facilitating the nonlinear fitting of the network.

4. Results

4.1. Experiment Setup

As shown in the upper part of Figure 1, a data-acquisition system containing three-
scale pressure arrays, a force gauge, a motor driver, and a microcontroller is set up. To
demonstrate the effectiveness of the proposed method, we choose letter shapes with
complex contours as task targets. The stamp (0.8 cm × 1.0 cm, 1.0 cm × 1.5 cm) with
raised letter shape is fixed on the force gauge to press the sensor array. The output matrix
is normalized to the range 0–255 to form haptic grayscale images. The reliability of our
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prototype allowed us to collect 500 samples for each letter-shape category using three scales
of 16 × 16; 20 × 20; and 32 × 32 arrays, in a random pressure range of 0–5 kPa, angle and
position. The data samples of each letter shape are shown in Figure 6. To avoid overfitting,
data augmentation is applied to expand the sample quantity to 1500 per letter category. All
the CNNs are constructed with MatConvNet framework of Matlab 2017 on an Intel Core
i5-6500@3.2GHz CPU. The specific parameters of the network are set as shown in Table 1.
The weights are initialized by the Xaiver initialization scheme and optimized by Adam
algorithm with hyperparameters ε = 10−8, 0.9, 0.999 [23,24]. The three-scale datasets are
put into the MoAS-CNN with fivefold crossover to verify the performance of MoAS-CNN.
The learning rate is 0.001, batch size 50, and training epoch 120.

Figure 6. The dataset of 26 letter-shape samples (A–Z).

Table 1. Detailed parameters of CNNs.

Method MoAS-CNN Bilinear CNN Traditional
CNNLayer Stream1 Stream2 Stream1 Stream2

Input 32 × 32 × 1 32 × 32 × 1 32 × 32 × 1

Conv1
3 × 3 × 8

5 × 5 × 16
3 × 3 × 8

5 × 5 × 16
3 × 3 × 8

3 × 3 × 16 3 × 3 × 16 3 × 3 × 16

CA module
Global Pooling Global Pooling

/FC: 1 × 1 × 16
FC: 1 × 1 × 16

FC: 1 × 1 × 16
FC: 1 × 1 × 16

Conv2
3 × 3 × 32

5 × 5 × 32
3 × 3 × 32

5 × 5 × 32
3 × 3 × 32

3 × 3 × 32 3 × 3 × 32 3 × 3 × 32

Conv3
3 × 3 × 64

5 × 5 × 64
3 × 3 × 64

5 × 5 × 64 5 × 5 × 643 × 3 × 64 3 × 3 × 64
second-

order(output) 14 × 14 × 1 64 × 64 × 1 /

FC1 1 × 1 × 120 1 × 1 × 120 1 × 1 × 120
FC2 1 × 1 × 26 1 × 1 × 26 1 × 1 × 26

4.2. Performance of MoAS-CNN

The training and test process in each epoch are recorded. The training losses and test
losses are shown in Figure 7a. It can be seen that the losses of all datasets decrease signifi-
cantly and stabilize after 80 epochs. Accordingly, as shown in Figure 7b, the recognition
accuracies achieved are 95.73% for 16 × 16, 98.37% for 20 × 20 and 98.65% for 32 × 32. This
can be attributed to the fact that more information is captured through higher density and
larger area, and thus the extracted features are more separable.
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Figure 7. The performance of MoAS-CNN on three-scale datasets. (a)The losses in training and
testing process, (b) the recognition accuracies in training and testing process.

We also record the gradients for all three datasets simultaneously, as shown in
Figure 8a–c. The gradient values become larger in the backpropagation, and there is no
gradient disappearance. Among them, the gradient value of Conv1 is the largest in the
32 × 32 dataset, making the loss converge quickly. There is no overfitting or underfitting,
which indicates that our model and datasets are reasonable.

  
Figure 8. Gradient distribution on 16 × 16, 20 × 20, 32 × 32 datasets during training.

Figure 9 shows the test confusion matrix of the 32 × 32. Obviously, shapes with simple
contours are more distinguishable, e.g., I. Conversely, complex contours are more prone to
confusion, especially with similar categories, e.g., Q and G (mean Bhattacharyya correlation
coefficient of 0.89).

4.3. Contribution of Spatial Interactive Second-Order Feature and Multiorder Hybrid

To further explore the contribution of the proposed spatial interactive second-order
feature and hybrid order strategy, individual streams of MoAS-CNN as well as different
structures are compared, and the results are shown in Figure 10. To validate the spatial
interactive second-order features, we compared the recognition accuracies for f stream1 and
f stream1 + f stream1⊗f stream1 with f stream2 and f stream2 + f stream2⊗f stream2, respectively. Due to
the introduction of the spatial interactive features, the accuracy of stream1 increased by3.36%,
4.11%, and 1.96% on the three scales, and stream2 was 1.98%, 2.54%, and 1.75%. This fully
demonstrates the effectiveness of the spatial interactive-based second-order feature.
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Figure 9. Confusion matrix of MoAS-CNN on 32 × 32 dataset.

To verify the effectiveness of the multiorder fusion features, the multistream first-order
model f stream1 + f stream2 and the multiorder hybrid f stream1+ f stream2+ f stream1⊗f stream2 are
compared. The results showed that the recognition accuracies were promoted by 2.26%,
2.54%, and 1.69%, respectively. Furthermore, it can be seen from the results of stream1
and stream2 that the accuracy is improved by replacing the large convolutional kernels
with multiple layers of small convolutional kernels. This can be attributed to the increased
depth of the network, where high-level features are more fully exploited.

f
f

f f f
f f

f f f
f f
+f f

Figure 10. The contributions of cross-flow spatial interactive feature and multiorder hybrid strategies.
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4.4. Performance Comparison

For a more comprehensive and fair comparison, a traditional first-order CNN, a
bilinear based second-CNN, and a local feature SIFT method are chosen [16,25]. The bilinear
CNN based on the traditional bilinear method with same parameters as the proposed
method is constructed and the same for the first-order CNN (detailed in Table 1). The
results are shown in Figure 11. It can be seen that the accuracies of MoAS-CNN are
significantly higher than those of other methods on all sensor scales, especially for smaller-
scale pressure arrays. This result illustrates the effectiveness of the proposed MoAS-CNN
for low-resolution haptic image. For 16 × 16, the MoAS-CNN obtained 95.73%, while the
traditional bilinear CNN was 92.46%, traditional CNN 89.79%, and local feature method
67.24%. Since the inputs of both 16 × 16 and 20 × 20 scales are too small to be applied in
SIFT, which can only extract 3–5 key points, the recognition effect is very limited.

Figure 11. Performance comparison with other first-order, second-order and traditional local feature methods.

For the samples that the model failed to identify, the true labels and predicted prob-
abilities are shown in Figure 12, marked in orange. These haptic images are collected in
a random pressure range of 0.5–3 kPa, angle and position. The inference value of some
letter categories with similar shapes are very close, indicating that the differences between
features are not obvious. As a comparison, 10 volunteers (7 males and 3 females, age [20,30]
are invited to identify the misclassified samples and the results are marked in green. It can
be observed that some samples were not recognized by the neural network or humans, as
shown in Figure 12a–f, and others were recognized by humans, but not by neural networks,
as in Figure 12g–i. No volunteer can completely reclassify all failed samples. The misclassi-
fication can be mainly attributed to the following: firstly, the restricted sensor density leads
to fine edges not being captured; secondly, the elastic coupling of the flexible sensors causes
the unpressed pixels around the pressed pixels to be deformed, producing pseudo-outputs.
Thirdly, features are not sufficiently mined through the MoAS-CNN and the features of
similarly shape categories are not learned separately.
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Figure 12. Comparison of recognition results between MoAS-CNN and human for some difficult
samples. (a) Inference results of sample with label “C”, (b) inference results of sample with label “G”,
(c) inference results of sample with label “E”, (d) inference results of sample with label “M”, (e) in-
ference results of sample with label “K”, (f) inference results of sample with label “K”, (g) inference
results of sample with label “V”, (h) inference results of sample with label “N”, (i) inference results of
sample with label “H”.

5. Discussion

Haptic technology provides real-time feedback on external force changes through
flexible sensors mounted on or inside mechanical surfaces, providing an aid to scene under-
standing beyond vision. Therefore, recognition based on haptic information has become
important for smart devices and has wide application prospects in human–computer inter-
action, intelligent machinery, and biomedicine. The intelligence level of human–computer
interaction is improved by adding haptic perception. In addition, distribute pressure data
feedback and analysis is important in many industrial sensing fields. Generally, the haptic
information is converted into a grayscale image and then transferred to image-processing
methods for subsequent recognition. However, compared with visual images, haptic im-
ages are still challenging because of their small dimensions, low resolution, and blurred
edges. The experimental results show that MoAS-CNN can realize accurate haptic per-
ception, and the highest accuracy of haptic letters with complex shapes was 98.65%. The
cross-stream spatial interactive feature as a second-order response and multiorder feature
fusion can significantly improve the extraction of haptic shapes by the network.
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Although the proposed model has proven to be accurate and effective, it does have
limitations. Through the analysis of the misclassified samples, some different classes with
similar shapes cannot be clearly classified by the network. This may be attributed to
two factors. Firstly, the feature extraction of the proposed method for haptic images is in-
sufficient, and some information is lost in the extraction of high-level semantic information,
especially for images with lower resolution, such as 16 × 16. Secondly, the characteristics
of the haptic task itself, including the low resolution of the sensor array, the small number
of pixels, and the blurred edge, lead to inaccurate mapping of the original shape, and the
multiple meanings of individual images, resulting in lower-than-average recognition rates
for some categories.

More importantly, smallness and low-resolution inputs are also present for practical
vision tasks due to factors such as suboptimal raw data and environmental interference.
Therefore, we tried to validate our method on another small general-purpose dataset
CIFAR-10 [26], and the recognition accuracy was 98.81%. Compared with the current
state-of-the-art results, it is lower than the largest-scale visual transformer methods [27,28]
and essentially on par with the deeper CNN architecture [29]. This study is based on touch
recognition based on a single image after touch completion. In the future, we plan to
study recognition methods based on multiple dynamic touches and further improve the
recognition performance of touch perception through reasonable optimization algorithms.

6. Conclusions

A framework called MoAS-CNN is proposed to address the challenge of low-resolution
haptic recognition based on a pressure sensor array. The three contributions of our recogni-
tion model are to firstly apply a dual-stream CNN integrated with the channel attention
module to automatically extract first-order features and increase the response and number
of features. Secondly, a spatial interactive second-order feature is introduced to depict the
second-order information to improve the feature extraction capability without additional
feature downscaling. Thirdly, by exploring the complementarity of features of different
orders, a multiorder hybrid strategy is developed to enhance the efficiency of feature extrac-
tion. To validate the model, a self-built acquisition platform based on a three-scale pressure
array was built and haptic images of letter shapes (A–Z) with complex edges were collected.
The results showed that 95.73%, 98.37%, and 98.65% accuracy was achieved at the scales of
16 × 16, 20 × 20, and 32 × 32, respectively. The accuracy of the proposed method has a
significant advantage over traditional second- and first-order CNN-based methods, as well
as manual feature methods. Furthermore, in addition to haptics, low-resolution inputs are
common in practical applications because of the inherent limitations of various types of
sensing elements and nonideal factors. Our approach provides a new general framework
that can be easily extended to different systems.
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Ulica Jána Bottu č. 2781/25, 917 24 Trnava, Slovakia; roman.ruzarovsky@stuba.sk

* Correspondence: tomas.kot@vsb.cz

Abstract: We describe a method for robotic cell optimization by changing the placement of the robot
manipulator within the cell in applications with a fixed end-point trajectory. The goal is to reduce the
overall robot joint wear and to prevent uneven joint wear when one or several joints are stressed more
than the other joints. Joint wear is approximated by calculating the integral of the mechanical work of
each joint during the whole trajectory, which depends on the joint angular velocity and torque. The
method relies on using a dynamic simulation for the evaluation of the torques and velocities in robot
joints for individual robot positions. Verification of the method was performed using CoppeliaSim
and a laboratory robotic cell with the collaborative robot UR3. The results confirmed that, with
proper robot base placement, the overall wear of the joints of a robotic arm could be reduced from
22% to 53% depending on the trajectory.

Keywords: robot; manipulator; robotized workplace; robotic cell; optimization; wear

1. Introduction

The design of robotized work cells or lines is a complex multidisciplinary task that
is influenced by many external factors and conditions. During the designing process, it
is necessary to make many decisions that greatly affect the resulting performance of the
workplace and its properties, including the cycle time, velocity of individual parts, dynamic
effects, vibrations, lifetime, ground area, and energy consumption.

Crucial for the design of a robotic cell is the selection of an appropriate industrial or
collaborative robot and its placement in relation to other subsystems. The length of the de-
signing stage of robotic cells is still shortening, which leads to the copying of existing layouts
of workplaces with similar parameters and their adaptation to the actual requirements.

Any type of advanced optimization is almost impossible in this approach. However,
this is the phase where it is possible to achieve some interesting savings of energy con-
sumption, ground area, or the lifetime of some systems. The recent progress in complex
simulation tools, such as Tecnomatix, Matlab—Robotics System Toolbox, CoppeliaSim
(V-Rep), Gazebo, and Webots; methods for the creation of digital twins of the designed robo-
tized workplace; and whole manufacturing lines [1] open up new room for the realization
of complex multicriteria optimizations in the early stages of design.

Optimizations of robotized workplaces to achieve the reduction of running costs
are currently mostly realized in systems that are already in operation. These typically
include modifications of the end-point trajectory according to a chosen criterion, such as
the manipulation time [2,3] or the overall productivity and running costs of the robot [4].

The optimization of the kinematic properties of the manipulator movement can also
lead to the reduction of torques in individual joints and, thus, also the reduction of the
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overall energy consumption. For example, the authors in [5] used interval analysis to find
the global minimum jerk trajectory of a robot manipulator in a joint space using cubic
splines, resulting in a smoother and vibration-free robot movement.

A similar approach was proposed in [6], where the objective function included not
only the integral of the squared jerk values but also the total execution time of the trajectory.
The authors in [7] used the 12-phase sine profile for trajectories of a fast-moving robot,
which leads to a more stable and accurate movement without sudden changes of torques,
albeit at the cost of a slightly higher overall energy consumption. Trajectory optimization
with the single goal of cycle time reduction using the chicken swarm optimization (CSO)
method was described in [8].

Another optimization goal is the reduction of the workplace layout size [9] because
the usable area of the factory building is extremely valuable. There are also some methods
for the multicriteria optimization of robotic work cells or lines for energy consumption—
even for lines with up to 12 robots, based on the Gurobi simplex method [10]. Another
method of multi-robot cell optimization for time and energy reduction using a custom
mechatronic model of the robots in Modelica/Dymola was described in [11]. The authors
in [12] proposed a methodology for assembly line energy consumption optimization
based on the implementation of energy-optimal trajectories, and, in [13], this method
was improved by modification of the actuator brake release time for additional energy
consumption reduction.

A systematic methodology for the on-site identification and energy-optimal path
planning of an industrial robot is presented in [14] with a focus on a specific type of ABB
industrial robot. Improved robot programming reduced the energy consumption compared
to the built-in controller routines by up to 4%.

Further improvements and torque reduction for a robotized work cell can also be
achieved by modification of the position and orientation of the robot base in relation to
the optimized trajectory [15]. This can be interesting, especially for applications where it
is not possible to modify the end-point trajectory and velocity for technological reasons
(the application of adhesives, edging, welding, etc.). In these cases, it is necessary to
create a complex simulation model—a digital twin of the workplace [16,17] and perform a
multicriteria optimization.

The Concept of Robot Wear

Gearboxes are often mentioned as the component that is frequently responsible for
a failure of rotary machines [18], including industrial robots [19]. The most critical com-
ponents of a gearbox are the gears and bearings. The deterioration of a gear appears
at the teeth [20,21], harmonic drive gears are damaged by fatigue fractures [22], and
bearings are typically subjected to failures at the rolling elements or the inner or outer
race [21]. The damage accumulates over time and is caused mainly by load (forces and
velocity) [23,24], high temperature [25], bad lubrication [26], or manufacturing defects. The
performance, accuracy, and lifetime of a robot relies on the good condition of these critical
components [27].

The authors in [28] proposed a method for estimating the wear of a robot by monitor-
ing the temperatures in the joints, while [29] suggested a more complex solution, where
other parameters are also monitored in order to predict the lifetime of a multi-component
system. Other common properties monitored to predict the lifetime of a machine include
vibrations and noise [21]. A generic framework for predictive maintenance based on sim-
ulation models with degradation curves discovered from real data was proposed in [27].
Our approach, on the contrary, attempts to minimize wear by the use of a quite simple
simulation in the design stage of a robotized workplace instead of monitoring an already
existing one.

As mentioned above, the gearbox in the robot manipulator joint can be considered the
most important source of the wear of the joint. The electric motor in the joint is subject to
deterioration as well [30]. As far as the above-mentioned sources of wear are concerned,
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the most important is the load combined with movement velocity, because a higher velocity
creates higher temperatures. This applies to both the gearbox and the motor. The influence
of bad lubrication or manufacturing defects are almost impossible to anticipate or even
simulate and, thus, are not considered in this work.

A typical robot joint contains structural bearings that provide the mutual rotational
movement of the joints. However, obtaining the values of the reacting forces required to
calculate the wear of these bearings is not an easy task, even when using a dynamic simula-
tion. This requires an exact simulation model of the robot with a detailed representation of
the inner parts and mechanisms, accurate values of the mass properties, acceptably realistic
values of the friction coefficients, and a good dynamic simulation engine. Although it is
usually possible to obtain 3D models of commercially available industrial and collaborative
robots, and sometimes even simulation models prepared for common simulation systems,
these models typically are simplified and do not contain the inner mechanisms of the arms.

On the other hand, wear of the gearbox and motor can be expressed as torque that the
motor must generate (and that the gearbox must transfer to the joint) over some trajectory
of motion. These values depend on physical quantities that are much easier to obtain from
a simulation—the overall path of motion (kinematics) and the required driving torque
required to achieve the given acceleration (dynamics).

The hypothesis of our research is that the lifetime of a robot in a robotized workplace
can be improved in the design stage by designing the workplace (namely the location of
the robot) in such a way to ensure lower wear of the robot joints.

2. Materials and Methods

To determine the optimal placement of a robot manipulator within a robotic cell with
the goal of reducing and balancing joint wear, it is necessary to propose a suitable optimiza-
tion criterion, the whole optimization process, and an experiment to verify the results.

2.1. Optimization Criterion

In this work, we consider only the wear of the robot drive chain (see the previous
section). We will also restrict the following notation to rotational joints (which are much
more common than translational joints in robotics) and to six degrees of freedom (the most
common number in robotics); however, the principles can be applied in general.

An industrial or collaborative robot in a robotized workplace usually performs a
limited set of movements. Typically, there is a given trajectory that the robot end-point
should follow during the work cycle, and the robot joints are controlled using inverse
kinematics to adhere to this trajectory. The idea of wear being caused by a torque acting over
a trajectory corresponds with the concept of mechanical work, which can be expressed as

W =
∫ φ2

φ1

τdφ, (1)

where τ is the magnitude of the torque vector, φ is the angle of rotation about the vector
representing the joint axis, and φ1 and φ2 are the starting and ending angles of rotation,
respectively.

The integral (1) is path-dependent and the mechanical work is defined as the change
of energy. Thus, if we assume φ1 = φ2, which is true for a closed-loop trajectory of the
robot end-point (all individual joints have to start and end in the same angle of rotation),
the resulting value of W would always be equal to zero. It is, thus, more convenient to
express mechanical work as the integral of mechanical power over time

W =
∫ φ2

φ1

τdφ =
∫ t2

t1

τωdt, (2)
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where ω is the angular velocity of motion and t1 and t2 are the starting and ending time,
respectively. However, this integral (2) is still path-dependent, and the calculation would
result in W = 0. Thus, it is necessary to introduce the absolute value of both the torque
and the angular velocity

W =
∫ t2

t1

|τω|dt, (3)

which allows us to calculate the work over the whole trajectory, while in fact, considering
the trajectory divided into segments separated by the change of direction of movement
or the change of the sign of τ. This modification moves away from the concept of the
conservation of energy toward the concept of wear caused by mechanical work. The idea
is that the drive chain of a robot joint is worn down even when the torque is negative (the
motor is actively braking) or when the angle of rotation is decreasing or moving back.

The simulation is numerical with a definitive value of Δt (simulation step size) instead
of dt. Therefore, the integral (3) is replaced by a sum

W =
n

∑
i=0

|τiωi|Δt, (4)

where i = 0, 1, . . . , n is the simulation step, τi is the instant torque, and ωi is the instant
angular velocity in the i-th simulation step. The mathematical meaning of the value W is
shown in an example in Figure 1.

Figure 1. Example of the time progression of joint torque τ and angular velocity ω; the dotted area
represents the meaning of the value W calculated as the integral of absolute value |τω|.

The value of W was calculated individually for each joint over the whole robot
trajectory, yielding W1, W2, . . . , W6 for the most common number of 6 degrees of freedom.

We attempted to optimize two factors:

• to minimize the overall wear of all joints, and
• to balance the wear of all joints.

Therefore, it is necessary to consider the values Wj together. However, the joints
of a robot manipulator are typically not equal from the mechanical point of view, and
their capabilities are different—the lower joints are larger and stronger, and the joints
near the end-effector are lighter. The same magnitude of W could, in reality, mean much
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higher stress and wear for a smaller joint than for a larger one. We, therefore, introduce a
variable called the relative wear factor wj, which is calculated by normalizing the individual
Wj values

wj =
Wj

τmj ωmj

, wj ≥ 0, (5)

where j = 1, 2, . . . , 6 is the joint number, τmj is the maximal permissible torque, and ωmj is
the maximal angular velocity of the j-th joint (both values are specified by the manufacturer
of the robot).

To minimize the overall wear of the robot, we chose to use the arithmetic mean of the
relative wear factors of all joints and to find the minimal value of this mean,

A =
1
6

6

∑
j=1

wj, (6)

and balance is achieved by finding the minimal value of the standard deviation

σ =

√√√√1
6

6

∑
j=1

(
wj − A

)2. (7)

The chosen fitness function (optimization criterion) f f places the same weight on both
these factors; therefore,

f f =
A
2
+

σ

2
. (8)

2.2. Optimization Process

The proposed method requires a simulation model capable of evaluating the move-
ment of a robot manipulator through a given end-point trajectory while computing the
values of joint angles and torques in individual time steps. This is possible, for example,
in the popular robotic simulation system CoppeliaSim (formerly known as V-Rep), which
was also chosen for our work.

The scripting capability of CoppeliaSim allows programming a robot’s end-point
movement through a given trajectory and time, and the built-in physics engine (i.e., Bullet
2.78) is able to check for collisions and evaluate joint torque values. The inverse kinematics
(IK) are calculated using the integrated pseudoinverse IK solver. The CoppeliaSim API
(Application Programming Interface) framework (RemoteAPI) can be used to remotely
configure the simulation, which, in our case, includes particularly the process of changing
the robot placement relative to the trajectory, as we are trying to determine the optimal
placement of the robot. A custom application was written in Visual C++ for this purpose.

Due to the long simulation times in CoppeliaSim, especially in the cases when the
IK calculation fails (the robot cannot reach some parts of the given trajectory), all valid
positions of the robot relative to the given trajectory were pre-calculated in the C++ ap-
plication and CoppeliaSim was used only to calculate the fitness function value in those
positions. The valid locations were found using a simple kinematic simulation inside the
C++ application, which can quickly verify the ability of the robot to fulfill a given task from
the specific location, including collision checking.

The search space is represented as a discrete 3-dimensional grid with the spacing in all
three dimensions equal to s = 0.03 m. The system returns the valid robot positions as a list
of points, where each point represents the location of the center of the robot base (see the
coordinate system in Figure 2a) in the workspace. Verification of the whole robot trajectory
in this simulation system took approximately 1800-times less time than the same task in
CoppeliaSim, and invalid robot locations were discarded even faster.
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(a) (b)

Figure 2. The UR3 robot. (a) The simulation model in the CoppeliaSim environment with a path
representing the end-point trajectory and a coordinate system in the center of the robot base. (b) The
real robot used in the experiments.

For the reproducibility of the research, this supplementary custom simulation system
is not necessary, as its main purpose is simply to shorten the overall simulation time.
However, it is necessary to have an external application or a script in CoppeliaSim that
successively places the robot in the locations from the above-mentioned search space (grid),
executes the CoppeliaSim simulation, and calculates and stores the results.

The reason for choosing a 3-dimensional grid for the potential locations of the robot
base instead of a 2-dimensional plane (representing the factory floor) is that the proposed
method is intended to be as general as possible, and limiting the search to a 2-D grid could
likely miss some interesting solutions. In reality, robots are commonly mounted on a stand,
table or a console; therefore, the height of the robot can be chosen. However, the results can
be easily limited to, for example, a 2-dimensional plane, if the actual application requires
such a limit.

2.3. Experiment Setup

The proposed method was demonstrated and verified on a Universal Robots UR3 col-
laborative robot with 6 degrees of freedom (see Figure 2), first in a CoppeliaSim simulation
configured according to the previous chapter, and finally also on a real physical robot. The
values of the maximal allowed joint torque τmj and joint angular velocity ωmj (5) for the
UR3 robot are listed in Table 1.

Five testing movement paths of the robot end-point were demonstrated, each in two
variants with different velocities of the end-point (0.1 and 0.2 m/s), giving a total number
of ten trajectories labeled A1, A2, B1, B2, . . ., E2; where A–E is the path type, 1 stands for
0.1 m/s, and 2 stands for 0.2 m/s.

Table 1. The joint parameters for the UR3 robot; τmj is the maximal permissible torque, and ωmj is
the maximal permissible angular velocity of the j-th joint.

j τmj [Nm] ωmj [s−1]

1 56 π
2 56 π
3 28 π
4 12 2π
5 12 2π
6 12 2π
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The trajectories are a combination of real use-cases and artificially created simple
trajectories that contain various elements (linear segments of different lengths, circle arcs,
sections with frequent speed, direction changes, etc.), see Figure 3. Various velocities of the
end-point cause a difference in the solution of possible robot base locations, because every
robot has some velocity limits for individual joints (see Table 1), and they also represent
different cases regarding the proposed wear factor calculation.

(a) trajectories A1, A2 (b) trajectories B1, B2

(c) trajectories C1, C2 (d) trajectories D1, D2 (e) trajectories E1, E2

Figure 3. Visualization of the five testing robot end-point paths; the UR3 robot is shown as a
scale reference.

The selected trajectories were of a smaller size, and there were no obstacles in the
environment (except for the table that the robot was mounted onto), which leads to a larger
number of different valid robot locations relative to the trajectory and, thus, also a larger
data set of results.

The chosen robot UR3 is a small robot with a reach of only 500 mm and although
using larger trajectories combined with several obstacles in the environment would be
possible, the valid locations of the robot would be very limited and it would be difficult
to make a statistical evaluation. In general, the proposed optimization method does not
depend on the size of the trajectory. A longer trajectory, requiring a longer time to traverse,
would produce larger values of the discrete integral (4); however, this is true for all robot
locations relative to the particular trajectory, and thus the optimization remains valid.

In a real case, the simulation model would have to contain also all collision objects
in the workplace, which could limit the valid robot locations considerably—the principle
of the method is, however, still applicable. The concept of choosing the robot location is
demonstrated on Figure 4 for the trajectory A1. The figure shows the grid of valid robot
locations—each blue point represents a possible position of the robot base; the robot is able
to reach the whole trajectory from each of these valid locations. For better clarity, the robot
is shown in several selected locations.
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Figure 4. Example of a grid of valid robot locations for a given trajectory (A1). Each blue point
represents a possible position of the robot base center point; the robot is displayed in four distinct
sample locations. GCS represents the global coordinate system.

3. Results

For each of the ten trajectories, the values of w0, w1, . . . , w6 (5), and then f f (8) were
calculated based on the CoppeliaSim simulation for each particular possible robot location
in the grid. The important values are summarized in Table 2, particularly the lowest fitness
function value f f

B in the best robot location, which should, thus, be the selected location
for the robot, provided it is physically possible. The table also shows the percentage of
improvement that the best location offers compared to the worst location,

impB
W = 100 ×

(
1 −

f f
B

f f
W

)
, (9)

which theoretically represents the greatest possible improvement in robot wear reduction.
If we consider a random robot location versus the best one, the average improvement can
be calculated compared to the average value

impB
A = 100 ×

(
1 −

f f
B

f f
A

)
. (10)

Figure 5 shows the distribution of f f values in all possible robot locations for each
trajectory in the form of a standard box-plot diagram. The height of each shaded rectangle
represents the interquartile range (third quartile minus first quartile), which indicates that
50% of all f f values lie inside the rectangle. The small circles in each column represent the
outliers—the topmost one corresponds to the worst location with f f

W .
Arrangements of the robot locations in the 3D space around the corresponding tra-

jectories are displayed in Figure 6—the color coding indicates the f f values using the
gradient red–yellow–green, where green is the best location ( f f

B), and red is the worst
( f f

W). This image also shows the positions of the best (“B”), worst (“W”), and three other
robot locations (“1”, “2”, and “3”) that will be used later in the experiments on a real robot.
Note that the small cubes rendered in Figure 6 as a visual representation of the possible
robot locations are shifted away from the ideal grid positions by a small random offset
(less than half the grid spacing). This is to achieve better visual clarity by preventing moiré
patterns and reducing the concealment of more distant cubes.
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Table 2. Results for the 10 testing trajectories showing the number of valid robot locations n, the
fitness function value in the best location f f

B, in the worst location f f
W , the average value f f

A; and
improvement of the best location against the worst impB

W (9) and the average impB
A location (10).

Traj. n f f
B f f

W f f
A impB

W impB
A

A1 800 0.0730 0.2053 0.1239 64.4% 41.1%
A2 564 0.0773 0.1577 0.1046 51.0% 26.1%
B1 2265 0.0217 0.1090 0.0461 80.1% 52.9%
B2 2236 0.0210 0.1067 0.0448 80.3% 53.1%
C1 2365 0.0769 0.1998 0.1239 61.5% 37.9%
C2 2214 0.0757 0.1828 0.1170 58.6% 35.2%
D1 866 0.0907 0.1994 0.1163 54.5% 22.0%
D2 828 0.0841 0.1829 0.1097 54.0% 23.3%
E1 2224 0.0279 0.1028 0.0532 72.8% 47.4%
E2 2151 0.0247 0.0984 0.0502 74.9% 50.7%

Figure 5. Statistical distribution of the f f values in all possible robot locations for the ten testing trajec-
tories (standard box-plot diagram—each box is bounded by the first and third quartile, the horizontal
line represents the median, the × represents the arithmetic mean, and circles represent outliers).

To better demonstrate the meaning of the proposed optimization criterion, Figure 7
shows, for the two trajectories A1 and B1, the individual values of the relative joint wear
factors w1, w2, . . . , w6 (5) for the best (wj

B) and worst (wj
W) robot location, together with

the corresponding total fitness function value f f (8). In the first example (trajectory A1), it
is clear that, in the worst location, the third joint was extremely stressed and the six wi

W

values differ quite considerably. In the best location, joints 2, 3, and 6 have almost the same
wi

B values and, although the relative wear factor of the 6th joint increased, the overall f f
B

value was much lower.
A similar situation can be seen in the second image (trajectory B1). Here, the relative

wear factor values in the best location are not so well balanced–the overall fitness function
value was reduced considerably nonetheless because the average value A (Equation (6))
lowered.
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The reason for the big improvement in the third joint relative wear factor w3 for both
these trajectories can be seen in Figure 8—the green and red solid lines show the immediate
power values for the best and worst robot location, respectively. The difference in the
magnitude is evident.

(a) trajectory A1 (b) trajectory B1 (c) trajectory C1

(d) trajectory A2 (e) trajectory B2 (f) trajectory C2

(g) trajectory D1 (h) trajectory E1

(i) trajectory D2 (j) trajectory E2

Figure 6. All valid robot locations in the grid; the color-coding indicates the f f values using the
gradient red–yellow–green, where green is the best location (B) and red is the worst (W). Locations
numbered 1, 2, and 3 are the three other locations used in the experiment with a real robot.
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(a) trajectory A1 (b) trajectory B1

Figure 7. Detailed comparison of the components forming the fitness function value in the best (B, green) and worst (W,
red) robot locations for two selected trajectories; displayed are the relative wear factors of each joint (wj) and the total fitness
function value ( f f ).

(a) trajectory A1

Figure 8. Cont.
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(b) trajectory B1

Figure 8. Comparison of the angular velocity ω3, torque τ3, and immediate power ω3τ3 of the third
joint during the whole trajectories A1 and B1 for the best (B) and worst (W ) robot locations.

4. Verification on a Real Robot

To experimentally verify the impact of the chosen fitness function on the real wear
of the robot joints, it would be necessary to perform simultaneous long-term testing on
multiple robots and then analyze the mechanical degradation of important components
of the joint construction. This type of experiment was not feasible for us at this moment.
Instead, we used experiments on a real robot to verify the accuracy of dynamical simulation
in CoppeliaSim.

The real experiments were performed on the same robot as was previously used
for the simulations—the Universal Robots UR3 collaborative robot. The robotic arm was
mounted on a table (Figure 2), and, instead of changing the robot base location relative to
the trajectory, the trajectory was appropriately shifted in relation to the robot. There were
no tools nor other equipment mounted to the output interface flange, which corresponds
to the simulation model described above.

The robot controller (CB3 controller, firmware version 3.10.0) provides state messages
via the RTDE (Real-Time Data Exchange) protocol based on TCP/IP communication. This
protocol allows reading the actual state of the robot with a frequency of 125 Hz. The
RTDE messages can be configured and include the actual and target values of kinematic
parameters, such as the position, velocity, and acceleration, as well as the currents of
individual joints, the overall current of the whole robot, and the target torque values—
which are needed for our experiment.

The experiment was executed for the optimal (best) robot location found by the
simulation, for the worst robot location, and for three other locations that were manually
selected from the set of possible locations to cover various sections of the whole space. The
locations are hereafter referred to as “B” (best), “W” (worst), and “1”, “2”, and “3” (the
other locations). The three numbered locations are sorted from the lowest to the highest
f f values according to the simulation results (a lower f f value indicates a better robot
location). For each trajectory and robot location, the robot was programmed to go through
the whole trajectory five times in a row. During this time, the integral (sum) was calculated
according to (4), and the final value was then divided by five.

All tested real robot locations are depicted in Figure 6. Numerical values of the f f
values in all five locations for all ten trajectories are listed in Tables 3 and 4. Table 3 shows
the results from the simulation, the values here are sorted from lowest to highest (“B”, “1”,
“2”, “3”, and “W”). Table 4 shows the values from real experiments—as can be seen, the

250



Appl. Sci. 2021, 11, 5398

best locations were identical; the worst locations were also mostly identical, except for
trajectory D2.

Table 3. Fitness function values in the five robot locations for individual trajectories—results from
the simulation. Color gradient red–yellow–green is used for better visual representation of the value
(green is the best, red is the worst).

B 1 2 3 W

A1 0.0730 0.1256 0.1281 0.1241 0.2054
A2 0.0774 0.1025 0.1156 0.1434 0.1578
B1 0.0217 0.0357 0.0389 0.0484 0.1090
B2 0.021 0.0289 0.0310 0.0588 0.1068
C1 0.0770 0.1074 0.1195 0.1421 0.1998
C2 0.0758 0.0939 0.1040 0.1160 0.1828
D1 0.0907 0.1045 0.1077 0.1187 0.1995
D2 0.0841 0.0967 0.1157 0.1203 0.1830
E1 0.028 0.0358 0.0388 0.0642 0.1028
E2 0.0247 0.0371 0.0585 0.0606 0.0985

Table 4. Fitness function values in the five robot locations for individual trajectories–results from
the real robot. Color gradient red–yellow–green is used for better visual representation of the value
(green is the best, red is the worst).

B 1 2 3 W

A1 0.0506 0.0799 0.0815 0.0848 0.1343
A2 0.054 0.0752 0.0799 0.0900 0.1155
B1 0.019 0.0312 0.0317 0.0278 0.0681
B2 0.0191 0.0263 0.0280 0.0348 0.0679
C1 0.0635 0.0760 0.0828 0.0874 0.1176
C2 0.0621 0.0625 0.0810 0.0808 0.1124
D1 0.078 0.0877 0.0940 0.0783 0.1015
D2 0.0777 0.0869 0.1038 0.0857 0.0958
E1 0.0239 0.0310 0.0348 0.0457 0.0599
E2 0.025 0.0355 0.0481 0.0446 0.0621

Table 5 shows the ratios between the real and simulated values; ideally, these values
should all be equal to 1. In general, it can be stated that the f f values acquired by the
real experiments were lower than the values from the simulation, and the average ratio
was r = 0.745 with the standard deviation equal to σr = 0.126. Figure 9 displays a
comparison of the simulated and real values in the form of a bar graph, together with the
ratio r. In this image, it can be observed that, for the same trajectory, the ratio r typically
lowers (deteriorates) with increasing the f f values. This will be further discussed in the
Discussion section.
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(a) trajectory A1 (b) trajectory A2

(c) trajectory B1 (d) trajectory B2

(e) trajectory C1 (f) trajectory C2

(g) trajectory D1 (h) trajectory D1

(i) trajectory E1 (j) trajectory E2

Figure 9. Comparison of the fitness function values acquired from simulation and experiments on
the real robot; the black lines represent the ratio between the values.
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Table 5. Ratios between the real and simulated values of fitness function in the five robot locations
for individual trajectories. Color gradient red–white is used for better visual representation of the
value (white is the ideal ratio of 1.0, red is the ratio 0.5).

B 1 2 3 W

A1 0.6932 0.6359 0.6362 0.6833 0.6541
A2 0.6985 0.7334 0.6912 0.6278 0.732
B1 0.8743 0.8722 0.8168 0.5735 0.6244
B2 0.9056 0.9096 0.9025 0.5915 0.6359
C1 0.8246 0.7075 0.6933 0.6151 0.5887
C2 0.8199 0.6657 0.7792 0.6965 0.6149
D1 0.8594 0.8393 0.8728 0.6591 0.5087
D2 0.9243 0.8984 0.8968 0.7126 0.5238
E1 0.8541 0.8658 0.8960 0.7118 0.5825
E2 1.0100 0.9590 0.8224 0.7360 0.6303

5. Discussion

The paper describes the grid approach to finding the optimal robot location, where
all possible robot locations are evaluated using a simulation in CoppeliaSim, and then the
location with the best (lowest) fitness function f f value is selected. In our case, there was
an additional preprocessing step that found all valid robot locations using a simple and
fast custom-made simulation system to increase the speed of the process. This step is not
required, and therefore the research can be reproduced without this custom simulation
system.

The grid approach can alternatively be replaced by using some optimization algo-
rithms, for example, the Particle Swarm Optimization (PSO) [31], which could further
reduce the time needed to find the optimal solution. However, PSO would not provide the
same type of comprehensive analysis of the whole space around the trajectory, and could
also possibly return a local minimum instead of the global one.

The method was demonstrated and tested on ten sample trajectories and the collabo-
rative robot UR3. As can be seen from the results in Table 2, the percentage improvement
in the fitness function between the worst and the best possible robot location ranged from
54% to 80.3%. This is mostly a theoretical improvement, as the worst-rated locations would
likely be not chosen by the system integrator or workplace project architect for other rea-
sons (they are typically on the edge of the working area of the robot or close to a singular
configuration). If we instead compare the best robot location to the average f f value of all
possible locations, the improvement still ranges from 22% to 53.1%; therefore, it is clear
that some interesting reduction in the robot joints wear can be achieved by selecting the
optimal robot location instead of a “random” one.

This method can be used in practice, provided there is a dynamic model of the
selected robot available for some suitable simulation system (for example, CoppeliaSim). It
is necessary to properly define the whole simulation model of the workplace, including
any potential obstacles, otherwise, the returned optimal robot location could be invalid
due to a collision. Nonetheless, it is still important to verify that the optimal location is
feasible from the point of view of energy connections and other similar restrictions that
cannot be included in the simulation.

The dynamic model should include all properties and phenomena that noticeably
affect the torque values in joints of the robot, as the torques are one of the main inputs for
the proposed method. It is, thus, necessary to properly define and simulate also the payload
in the end-effector, including any technological forces caused by the effector during, for
example, cutting, milling, and spraying. The simulation system CoppeliaSim chosen in our
demonstration is capable of simulating all these effects.
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Experiments on a real robot UR3 verified that the simulation model in CoppeliaSim
matched the reality acceptably well. The absolute values of f f acquired by the simulation
and from the real robot differed approximately by the scale factor of 0.745 ± 0.126.

The difference between simulation and reality was caused especially by the simulation
model of the UR3 robot, which is likely not absolutely perfect as far as mass proper-
ties are concerned, and also by the dynamic simulation engine, which performed some
simplifications. More important is that, in the relative evaluation of individual robot lo-
cations, the real experiments led to very similar results as the simulation—as can be seen
in Tables 3–5. There were some distinct deviations only in one path of robot end-point
movement (trajectories D1, D2). It can be, thus, stated that, to improve the robot joints
wear, potentially expensive and time-consuming real-world experiments are not necessary;
a simulation suffices.

To demonstrate and analyze the source of the difference between the values from the
simulation and from the real robot, Figure 10 shows an example of the simulated torque
τsim

3 and velocity ωsim
3 values directly compared with the values from the real robot (τreal

3 ,
ωreal

3 ), for the third joint of the robot during the B1 trajectory. The absolute value of τreal
3 was

generally lower than the absolute value of τsim
3 , which was likely caused by inaccurate mass

parameters of the robot links in the simulation model. This is the reason why the f f values
from the real robot were mostly lower than the values from the simulation (see Table 5).
The noise in the ωsim

3 values was caused by the discrete character of the simulation.
Figure 10b shows that, for the worst robot location, the τreal

3 values differed signifi-
cantly from τsim

3 in several peaks that correspond to moments with noticeable acceleration
in the movement. This is probably caused by some simplifications in the dynamics engine
in the simulation system or by some advanced algorithms in the control system of the
real robot. Generally, in worse robot locations (with higher f f values), the robot joints
must perform movements with higher acceleration, which causes this additional source of
difference between the simulation and reality.

(a) trajectory B1, the best robot location

Figure 10. Cont.
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(b) trajectory B1, the worst robot location

Figure 10. Comparison of the real and simulated values of angular velocity ω3 and torque τ3 of the
third joint during the whole trajectory B1. (a) Robot placed in the best location. (b) Robot placed in
the worst location.

The proposed optimization process of a robotized workplace can be applied in the
design phase when it is easy to make modifications to the workplace layout. Another
option is to use the optimization for an existing workplace when other types of optimization
are not possible (the trajectory is fixed, etc.).

6. Conclusions

The goal of this paper was to present a methodology for the optimization of a robot
manipulator base position relative to the given trajectory of movement of the manipulator
end-point. The optimization algorithm was based on the principle of minimization of the
chosen fitness function, which comprises the arithmetic mean and standard deviation of
the relative wear factors of all robot joints (8). The goal was to balance and minimize the
wear of the drive chain in the robot joints, where the wear is approximated as the amount
of mechanical work done by the joint, while also taking into account the abilities of the
particular joint (the maximal permissible torque and velocity).

Future work will include verification on different types of robots and with various
payloads. To verify the real impact on the wear of robot joints and, thus, the reduction of
the robot lifetime, a long-term experiment would have to be performed simultaneously on
at least two identical robots. One robot would be placed in a location with a good (low)
f f value and the other—reference—robots would perform the same task from locations
with higher f f values. Afterward, the robots would have to be partially disassembled to
analyze and compare the mechanical degradation of the joints.

The cases when the workplace is used alternately for several different tasks and, thus,
the robot performs more than one movement trajectory could also be addressed. The
trajectories could either be combined into one for the simulation, or the method could be
applied to each trajectory separately and then the results would be combined, for example
by interpolation using weight coefficients given by the frequency of use of the trajectories.

Although this method does not require extremely precise dynamic simulation, this
aspect could also be improved by creating a more accurate dynamic model of the robot,
for example using some of the dynamic parameter identification method [32]. However,
the simulation of friction and other complex phenomena will always be simplified in
commonly available simulation systems.
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Abstract: Widespread access to low-cost, high computing power allows for increased computeri-
zation of everyday life. However, high-performance computers alone cannot meet the demands
of systems such as the Internet of Things or multi-agent robotic systems. For this reason, modern
design methods are needed to develop new and extend existing projects. Because of high interest
in this subject, many methodologies for designing the aforementioned systems have been devel-
oped. None of them, however, can be considered the default one to which others are compared to.
Any useful methodology must provide some tools, versatility, and capability to verify its results.
This paper presents an algorithm for verifying the correctness of multi-agent systems modeled as
tracking bigraphical reactive systems and checking whether a behavior policy for the agents meets
non-functional requirements. Memory complexity of methods used to construct behavior policies
is also discussed, and a few ways to reduce it are proposed. Detailed examples of algorithm usage
have been presented involving non-functional requirements regarding time and safety of behavior
policy execution.

Keywords: multi-agent systems; bigraphs; design; verification; modeling; non-functional requirements

1. Introduction

With the increase of computational power and its availability comes the desire to
incorporate it more into our daily life. Current ideas on how to do this include the Internet
of Things, multi-agent systems (in which particular cases are swarms of robots), or smart
objects and places (e.g., cities, homes, cars). All of them require new ways to design
large-scale (i.e., consisting of a significant number of elements) software and physical
systems that consider both how individual components interact and how a system as a
whole works. There are various unresolved problems related to this. There is no consensus
on what elements of the real world should be modeled and which of their capabilities
should be taken into account in general. What is worse, among different design methods
elements of the real world are used differently. Finally, the results of these methods are
often incomparable, or at least, there is no common way to evaluate multi-agent system
design methods. Regardless, any method for designing complex systems must offer a
specific range of capabilities to be considered useful.

The concept of agent is applied to entities that have autonomy and are placed in a
changing environment. Multi-agent systems [1,2] are structures within which agents can
be identified. One of the advantages of designs using agents is that they can be represented
at different levels of detail, from abstract entities (like mathematical structures) to actual
robots. For this reason, among others, the concept of multi-agent system is used in various
contexts. This term may be used to characterize a group of machine learning methods [3,4].
It can also be used to highlight attributes of certain models and simulation approaches [5–7].
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The term also refers to a subgroup of robotics solutions [8–11] that make use of widely
understood autonomous robots to perform assigned tasks. In this work, we will focus
on multi-agent robotic systems (MARS). The literature [12–16] is replete with examples
of various applications of multi-agent robotic systems. There are also methodologies
and tools [10,17] to design such systems. There is no consensus on how to design such
systems in general and current solutions come from different areas of science. The most
common paradigms used to design MARS include software design patterns [16], control
theory [12,13], optimization theory or combinations of the above [15]. Some examples are
utilizing mathematical logic in MARS design [18], but they are much less common. Due
to the lack of agreement on how to design MARS and the fact that results produced by
different methodologies are difficult to compare, we will try to evaluate them based on
their capabilities. In this paper, we will be interested not so much in how to design MARS
but rather how the following questions can be answered about an existing project:

• Is the project correctly designed? We want to assure the syntactic correctness, i.e.,
the correct use of formal tools such as mathematical logic, differential equations, or
pi-calculus. We also care about semantic correctness, i.e., the ability to transform a
formal model into a real solution (implementable on robots).

• How does one perform a simulation illustrating MAS operation?
• Have non-functional requirements been met? Those regarding safety and speed of

task execution in particular.

Verifying the correctness of a model is the simplest and most solutions can be verified
using the tools they were made with. Verifying whether a designed system accomplishes a
given task is much more difficult. The vast majority of methodologies in the literature use
simulation for this purpose. Exceptions can be found among models that highly formalize
the internals of agents, how they operate, and the course of a task itself. Verification
by simulation also gets complicated as the model becomes more abstract. The simplest
designs in this regard are those based on methods commonly used in other areas of science
(such as differential equations or graph theory) or made using tools integrated with a
simulator. Verification of non-functional requirements is a difficult part of the design.
Methodologies commonly found in the literature such as RE4Gaia [19], TROPOS [20],
DIAMOND [21], or Adelfe [22] take into account non-functional requirements during
design process. They usually aim to enable design of multi-agent systems in general (not
just multi-agent robotic systems). Successive stages in most of these methodologies are
not closely coupled together. By loosely coupled process, we understand a design process
where a designer’s interpretation of how the system works plays a significant role the
whole time. In other words, one cannot treat the results of one stage as an input that the
next stage will automatically transform into a form acceptable by yet another stage. When
it comes to verification of system requirements, it should be noted that none of the above
methodologies offer formal guarantees regarding the system’s functionality as the methods
dedicated to specific tasks do. An example of a such method can be found in [13] where a
formal guarantee is given for robots to move keeping at least a specified distance from each
other (an example of a non-functional requirement). In [12] a guarantee of fulfillment of
functional requirements is presented where a task is guaranteed to be carried out if certain
conditions are satisfied.

Using bigraphs [23] to design multi-agent systems is a relatively new approach to modeling
this kind of system. The bigraph theory was published by Robin Milner in 2008 but has already
been extended with a notion of overlapping locations [24] and probability [25]. Bigraphs are
currently found useful in areas such as system of systems design [26], IoT [27], and wireless
network modeling [28]. Currently, there are a few tools that support modeling systems with
bigraphs, the most notable of them are Bigraphical Model Checker [29] (discontinued), Bigraph
Framework for Java [30], and BigraphER [31]. The first two of them focus on checking the
reachability of certain states of a system [29,31]. At the same time, the last one provides
means to analyze various aspects of a modeled system (especially useful in this regard is
underlying OCaml library bigraph). We believe that BigprahER [31] provides the most advanced
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set of utilities to model systems with bigraphs available at the moment. Multi-agent systems
design methodologies [32,33] involving bigraphs are scarce, and most of them do not consider
generating behavior policies based on a constructed model. As an exception to this, one may
point out BigActor methodology described in [34] that uses bigraphs mixed with the notion of
actors [35] or our methodology [36] based on bigraphs with tracking.

In [36] we have proposed a methodology based on bigraphs with tracking [23] that
enables design of multi-agent systems. We have chosen tracking bigraphs primarily be-
cause they allow for analysis of objects’ activities over time without introducing another
layer of abstraction (as it was done, for example, in [34]). Our methodology is devoid of
some of the drawbacks we mentioned earlier, such as loose coupling between design stages
or the designer’s interpretation of systems internals on all stages of the design process.
Moreover, successive stages of the methodology are module-like which means their im-
plementations can be adjusted to project needs. The methodology’s main disadvantages
are high computational complexity, limitation of system’s agents to entities that can be
fully controlled, and the fact that the operation of a designed system is determined before
it is started. It also does not offer universal guarantees of task successful completion as
presented in [12,13,18]. Putting our work in a broader context, we can place our method-
ology in a group of bottom-up [37] methods of MAS design with a note that it focuses
on global goals rather than individual ones. In fact, agents in our approach do not have
preferences that can affect their actions. A distinguishing feature of our proposition is the
lack of abstractions outside the bigraphs framework, typically agents’ internal mechanics
are modeled with BDI (Belief, Desire, and Intention) [32,38] or actors [34].

This work is an extension of the methodology proposed in [36]. This paper aims
to demonstrate how to verify the correctness of a design, check the fulfillment of non-
functional requirements, and visualize behavior policies. We have developed an algorithm
to automatically verify the correctness of a model and construct successive simulation
states. We also described how to verify whether non-functional requirements are satisfied
by a behavior policy for agents in the system. An example implementation [39] of the
algorithm has been prepared. We also addressed the memory complexity of operations
performed during behavior policy generation. We discussed how it influences the feasibility
of projects and suggested a few ways to reduce the memory complexity. Finally, a tool [40]
has been implemented that incorporates all of the mentioned memory complexity reduction
strategies and a tool [41] to illustrate constructed behavior policies.

2. Methods and Materials

In this section, we will introduce all terms and definitions that are necessary to
understand examples presented in Section 3. Section 2.1 is devoted to basic informal
definitions that will be used throughout the rest of this article. Sections 2.2–2.4 aim to
quickly acquaint the reader with the methodology described in detail in [36] and for that
reason micro-examples are included at the end of each of these subsections. Section 2.5 is
dedicated to an algorithm for verification and visualization of behavior policies. Since the
algorithm is the key of this article, examples of its usage are presented in Section 3.

2.1. Basic Concepts

Before formal definitions, we will introduce the following concepts:

• Task—A collection of objects from the real world along with the actions they can
perform, the initial state, and the target-desired (final) state(s). An example of a task
might be:
“In an area that is a 3 × 3 grid, there are two robots in opposite (diagonally) cells. Each
robot can move to vertically and horizontally adjacent cells and connect to a second
robot if both are in the same cell. The goal of the task is for both robots to connect
with each other.”

• Mission—a realization of a task.
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• Task element—a real-world entity that is relevant to the subject matter being modeled.
Elements can be people, robots, areas, data sources, and receivers, etc.

• Passive object—a task element that can participate in activities without initializing
them. It may contain other passive objects. We are not interested in their behavior, but
we take into account the passage of time for them. The number of passive objects is
constant during a mission.

• Active object (agent)—a task element that can participate in activities by initializing
them. It can contain other active and passive objects. We are interested in their
behavior, and we take into account the passage of time for them. We can control them.
It is assumed that the number of agents during a mission is constant.

• Environment—a task element that can participate in activities without initializing
them. It can contain passive and active objects and be owned by at most one other
object. We are not interested in its behavior, and do not consider the passage of time
for it.

• Behavior Policy—A set of planned actions for all agents that meets the
following requirements:

– Implementing a behavioral policy solves a given task;
– All agents start the mission at the same time;
– Agents can complete a mission at different points in time;
– All agent activities must be performed continuously (without time gaps);
– All agents that participate in a cooperative activity must start performing it at

the same moment.

• Scenario—Mission using a specific behavioral policy.

2.2. Bigraphs

Through this article we will extensively use bigraphs, concrete bigraphs to be precise.
Concrete bigraphs allow identifying its nodes and edges with support (more about that
later). In contrast, abstract bigraphs lack the mentioned identifiers. In the rest of this article,
whenever we refer to a bigraph, we will have a concrete bigraph in mind. A bigraph
consists of two graphs: a place graph and a link graph. Place graph is intended to model
spatial relations between system elements. A link graph is a hypergraph that can be used
to model interlinking between the elements.

Formally a bigraph is defined as:

B = (VB, EB, ctrlB, GP
B , GL

B) : I → O

• VB—a set of vertices identifiers;
• EB—a set of hyperedges identifiers. A union of both of these sets makes the

bigraph support;
• ctrlB : VB → K—a function assigning a control type to vertices. K denotes a set of

control types and is called a signature of the bigraph;
• GP

B = 〈VB, ctrlB, prntB〉 : m → n and GL
B = 〈VB, EB, ctrlB, linkB〉 : X → Y denote a

place and a link graph respectively. A prntB function defines hierarchical relations
between vertices, roots, and sites. A linkB function defines linking between vertices
and hyperedges in the link graph;

• I = 〈m, X〉 and O = 〈n, Y〉 denotes the inner face and outer face of the bigraph B. By
m, n we will denote sets of preceding ordinals of the form: m = {0, . . . , m − 1}. Sets X
and Y represent inner and outer names respectively. When any of the elements of an
interface is omitted it means it is either equal to 0 (when interface lacks an ordinal) or
it is empty (when there is no set of names). For example, interface I = m means it has
no inner names.

An example of graphical representation of a bigraph is presented in Figure 1.
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(a)

(b)
Figure 1. An example of a bigraph and its constituents. The right part represents a place graph (the
upper part of the figure) and a link graph (the lower part of the figure). They share a signature which
defines control types (letters in nodes) and arity of each control (number of unique links that can be
connected to a node with specified control). Ports and inner names can be attached to either edges or
outer names, that is why there are only three edge identifiers in the link graph. On the left there is the
bigraph made from the superposition of them both. (a) A bigraph. (b) A place graph and a link graph.

Reaction rules are used to model dynamics in bigraphical systems. In this paper, we
will use (simplified) tracking reaction rules. Reaction rule consists of a pattern (redex) to be
found in an input bigraph that shall be replaced with another bigraph (reactum).

Formally, a tracking reaction rule is a quadruple:

(Bredex : m → O, Breactum : m′ → O, η, τ)

where:

• Bredex—a bigraph called redex;
• Breactum—a bigraph called reactum;
• η : m′ → m—a map between sites from reactum to sites in redex;
• τ : Vreactum → Vredex—a map of reactum’s node identifiers onto redex’s node identi-

fiers. It allows one to indicate which elements of an input bigraph are “residues” in
an output bigraph.

Bigraphical Reactive System (BRS) is a tuple (B,R) where B denotes a set of bigraphs
with empty inner face and R is a set of reaction rules defined over B. If R consists of rules
with tracking then a pair (B,R) makes a Tracking Bigraphical Reactive System (TBRS).

Having a TBRS we can generate a Tracking Transition System (TTS). A Tracking
Transition System is a 7-tuple: LT = (Agt, Red, Lab, Apl, Par, Res, Tra) where:

• Agt—a set of bigraphs;
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• Red—a set of redexes used to construct the TTS;
• Lab—a set of labels;
• Apl ⊆ Agt × Lab—an applicability relation;
• Par : VVb

r r ∈ Red, b ∈ Agt—a participation function. It indicates which vertices in
an input bigraph correspond to elements in the redex of a transition;

• Res : V
Vb2
b1

b1, b2 ∈ Agt—a residue function. It maps vertices in an output bigraph
that are residue of an input bigraph to the vertices in the input bigraph;

• Tra ⊆ Apl × Agt × Par × Res—a transition relation.

As we said at the beginning of this section, we will use a simple example to illustrate
how the formal definitions can be used in practice. The system for our example consists
of two areas and two agents (we do not care whether they are humans, robots, or other
autonomous entities). Areas will be denoted by controls A and B while agents will be
represented with controls U. We assume that agents can move from an area of type A to an
area of type B in two ways, which differ in execution speed. Thus Tracking Bigraphical
Reactive System of the system above consists of three bigraphs and two reaction rules. The
elements of B set are described in Table 1 and the reaction rules are defined in Table 2. The
Tracking Transition System of this TBRS is defined in Table 3.

Table 1. Elements of the B set for the introductory example.

Graphical Representation Name Description

s0 The initial state of the system.

s1 The state where only one of the
agents has moved to the B area.

s2 The state where both agents has
moved to the B area.

Table 2. Elements of the R set for the introductory example. The η function for the first rule and
both τ functions are identities. The first rule represents an action that allows a single agent to move
between areas. The second rule is for an action where two agents move both at once. The second rule
is only reasonable if underlying mechanism differs to that of the first rule.

Graphical Representation Name

r1

r2
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Table 3. The Tracking Transition System for the introductory example. Each row defines a single
transition in the system.

Apl Agt Par Res

〈s0, r1〉 s1 {(0, 0), (1, 1), (3, 2)} {(0, 0), (1, 2), (2, 3), (3, 1)}
〈s0, r1〉 s1 {(0, 0), (2, 1), (3, 2)} {(0, 0), (1, 1), (2, 3), (3, 2)}
〈s0, r2〉 s2 {(0, 0), (1, 1), (2, 2), (3, 3)} {(0, 0), (1, 3), (2, 1), (3, 2)}
〈s1, r1〉 s2 {(0, 0), (1, 1), (2, 2)} {(0, 0), (1, 2), (2, 3), (3, 1)}

2.3. State Space

Having a Tracking Transition System we can transform it into a state space of the
modeled system. A state space can be later used to generate a behavior policy for agents
(as defined in Section 2.1) in the system.

We assume the following about modeled systems:

1. A number of passive and active objects is constant during whole mission;
2. A system cannot change its state without an explicit action of an agent (alone or in

cooperation with other agents);
3. No actions performed by agents are subject to uncertainty;
4. A mission can end for each agent separately in different moments. In other words,

agents do not have to finish their part of the mission all at the same time;
5. In case of actions involving multiple objects (whether these are active or passive), it is

required of all participants to start cooperation at the same moment.

A state space SS of a system consisting of no objects and ns states is defined as:

SS = (S, E, L, I, C, T, Mf )

where:

• S ⊂ N—a set of states in the state space. It corresponds to bigraphs in the Tracking
Transition System;

• E ⊆ S × S—a multiset of ordered pairs of states. Elements in this set are directed
edges representing transition relations between states;

• L—a set of labels of changes in the system. It will usually consist of reaction rule names
from the Tracking Transition System the state space originated from. To determine
what changes, in what order, have led to a specific state we will additionally introduce
set H = {lt|l ∈ L, t ∈ N}. Elements of the H set indicate what action (label) took place
in what order (index value).

• I = {N2
1 × · · · × N2

na}—a set of possible state-at-time (SAT) configurations. The
interpretation of elements in such a set is as follows. The first element in each of inner
tuples denotes id of an object (either passive or active) in the system. The second
element in each inner tuple is meant to represent time at which the object specified
by the id is at. For example, for no = 2 the element ix = 〈(1, 777), (2, 123)〉 denotes a
situation where the object with id 1 is at the moment 777 while the object with id 2 is
at the moment 123.

• C = (I × 2H) ∪ {0}—a set of possible mission courses. 0 denotes the neutral element,
i.e., ∀x∈Cx + 0 = 0 + x = x. For the rest of the elements of C set the + symbol serves
only as an associative conjunction operator and does not denote any meaningful
operation. In other words for the rest of the elements the following formula is true:
∀x,y∈C\{0}x + y = y + x.

• T = { fi : C × N → C|i ∈ N} ∪ { fnull}—a set of functions defining progress of a
mission. The fnull function returns 0 regardless of input. Additionally, we will denote
by Ti,j ⊂ T a set of all mission progress functions from the i state to the j state.

• Mf : E → T—a bijective mapping of edges to mission progress functions.
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Going back to our introductory example, we will now convert the Tracking Transition
System from Table 3 into a state space of the system. We will not define all of the formal
elements and rather focus on the key ones. The S consists of three elements S = {0, 1, 2}
that correspond to bigraphs s0,s1 and s2 respectively. The L consists of two elements that
correspond to reaction rules in TBRS i.e., L = {r1, r2}. Knowing that there are only two
agents in the system (so there are two objects in total) elements of the set I will be of
the form 〈〈i1, x〉, 〈i2, y〉〉. The elements i1, i2 of a tuple correspond to identifiers of objects
(in this case i1, i2 ∈ {1, 2}) and x and y elements indicate a moment of time at which
each object is at. We will clarify how to utilize the C set in the next subsection. As it
was mentioned earlier, the action represented by the r1 reaction rule takes 2 units of time
while the r2 reaction takes only 1 unit of time. How these values are obtained depends
on a project and may be subject to many factors such as resolution of time need to be
considered (whether these are minutes, seconds or hours) or variability (or lack thereof) of
time needed to execute actions represented by reaction rules. Knowing this, the elements
of the T set are listed in Table 4. Subsequent elements of this set correspond to transitions
in TTS. The permutation being a result of application of a transition function corresponds
to permutation of vertices corresponding to objects in res function. It is also worth noting
that f3 function requires both agents to be at the same time (variable z) in order to return
something other than 0.

Table 4. Mission progress function definitions for the state space presented in Figure 2. The action
represented by r1 reaction rule is assumed to take 2 units of time while the action r2 takes only 1 unit
of time.

Function Function Definition

f1 f1(c, t) =

{
[〈(b, y), (a, x + 2)〉, H′ ∪ {r1t+1}] : c = [〈(a, x), (b, y)〉, H′]

0 : c = 0

f2 f2(c, t) =

{
[〈(a, x), (b, y + 2)〉, H′ ∪ {r1t+1}] : c = [〈(a, x), (b, y)〉, H′]

0 : c = 0

f3 f3(c, t) =

{
[〈(a, z + 1), (b, z + 1)〉, H′ ∪ {r2t+1}] : c = [〈(a, z), (b, z)〉, H′]

0 : c �= [〈(a, z), (b, z)〉, H′]

f4 f4(c, t) =

{
[〈(b, y), (a, x + 2)〉, H′ ∪ {r1t+1}] : c = [〈(a, x), (b, y)〉, H′]

0 : c = 0

Figure 2. The state space generated from Tracking Transition System defined in Table 3. Mission
progress functions definitions are defined in Table 4.

2.4. Behavior Policy

We define a behavior policy as a schedule of actions for each object from the beginning
of a mission to its end that meets all the requirements listed in Section 2.1.
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Having a state space, we can view a behavior policy as a walk (in graph theory sense)
indicating what changes (and who did them) are required in order to reach a desired state.

To construct a proper policy behavior based on a state space, we need to define the
following elements. Please note that by series we will understand a finite sum of elements.

• Kt
s = c1 + · · ·+ cm = ∑i=1···m ci ci ∈ C, s ∈ {0, · · · , ns − 1}, t ∈ N—a series, where

summands are mission courses leading to the state s;
• NK(Kt

s) ∈ N—a function returning a number of elements in a given series. According
to the earlier definition, for any series Kt

s this function returns a value of m (the greatest
index of ci);

• Fi,j(x, t) = ∑k∈Ti,j
fk(x, t) i, j ∈ {0, · · · , ns − 1}, t ∈ N—a series, whose summands

are mission progress functions from the i to the j state;
• Mt

K =
[
Kt

0 · · · Kt
ns−1

]
, t ∈ N—a matrix whose elements are series indicating pos-

sible walks leading to each state. Index t denotes a number of steps made in a state
space. By a step we understand a transition between vertices (including the situation
where traversal does not change the vertex);

• Mt
F =

⎡⎣ F0,0(x, t) · · · F0,ns−1(x, t)
· · · · · · · · ·

Fns ,0(x, t) · · · Fns−1,ns−1(x, t)

⎤⎦—a matrix of transitions between states.

Furthermore, we define two operations:

• Kt
s ◦ Fi,j(x, t) = ∑k∈Ti,j ∑l=1···NK(Kt

s)
fk(cl , t)—a convolution of the series defined above;

• M
t+1
K = Mt

K ·Mt
F—a multiplication of the matrices defined above. Elements of the

new matrix are defined by the formula:

Kt+1
s =

ns−1

∑
k=0

Kt
k ◦ Fk,s(x, t)

In order to generate all walks consisting of a specified number of steps from an
initial state to a final state one must define the initial state, as a M0

K matrix and multiply
subsequent results by Mi

F the specified number of times. The result will be a Mx
K matrix,

whose summands in the ith column will indicate all possible walks with x steps that end in
the ith state of the state space. If the element in the specified column is equal to 0, it means
there is no such walk.

Summarizing our introductory example, we will demonstrate how to use the state
space from Figure 2 with transition functions definitions listed in Table 4 to determine all
sequences of actions that lead to the state denoted as s2. Each sequence is equivalent to
behavior policy that, when applied, results in moving both agents to the area of type B.

To determine such sequences, we create two matrices, a matrix of transitions Mt
F and

matrix of initial state M0
K. Having both of them, we can multiply subsequent Mt

K matrices
by corresponding Mt

F matrices and check whether the third state (recall that numbering
starts from 0) is reachable. By reachable, we understand having a value other than 0 in the
specified column of the Mt

K matrix.
Definitions of both matrices are listed below:

M
t
F =

⎡⎣ fnull f1 + f2 f3
fnull fnull f4
fnull fnull fnull

⎤⎦
M

0
K =
[
[〈(1, 0), (2, 0)〉, ∅] 0 0

]
The 〈(1, 0), (2, 0)〉 tuple in the first column of M0

K matrix denotes that we have two ob-
jects. The zeros in both tuples indicate that each object starts the mission at the same moment.

Subsequent Mt
K matrices allow us to determine how a system changes when a specified

number of actions occur. For example, M1
K gives us information about how the system

evolves when one action occurs (analogously M2
K for two actions etc.).
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In our example M1
K and M2

K are of the form:

M
1
K = M

0
K ·M0

F =
[
[〈(1, 0), (2, 0)〉, ∅] 0 0

]
·

⎡⎣ fnull(c, 0) f1(c, 0) + f2(c, 0) f3(c, 0)
fnull(c, 0) fnull(c, 0) f4(c, 0)
fnull(c, 0) fnull(c, 0) fnull(c, 0)

⎤⎦
M

1
K =
[
0 [〈(2, 0), (1, 2)〉, {r11}] + [〈(1, 0), (2, 2)〉, {r11}] [〈(1, 1), (2, 1)〉, {r21}]

]
M

2
K = M

1
K ·M1

F = M
1
K ·

⎡⎣ fnull(c, 1) f1(c, 1) + f2(c, 1) f3(c, 1)
fnull(c, 1) fnull(c, 1) f4(c, 1)
fnull(c, 1) fnull(c, 1) fnull(c, 1)

⎤⎦
M

2
K =
[
0 0 [〈(1, 2), (2, 2)〉, {r11, r12}] + [〈(2, 2), (1, 2)〉, {r11, r12}]

]
The interpretation of each of the above Mt

K matrices is as follows. The M1
K matrix

indicates that with just one action there are two ways for the system to be in the state where
one of the agents move to the area of type B and the other one will not take any action
(as it is pointed out by the fact that its time is equal to 0). Both ways require specified
agent to carry out the action represented by the r1 rule. The same matrix also gives us
information that with one action there is a possibility to reach s2 state if both agents engage
in cooperative execution of r2 rule. Finally, the M2

K points out two walks in the state space
that lead to the s2 state. Both involve performing the action associated with r1 rule two
times (each time by a different agent).

It is worth pointing out that in a software implementation of the above algorithm
labels should denote specific transition functions rather than reaction rules. While for
this particular example it was sufficient to indicate what “kind” of changes (i.e., reaction
rules) need to occur in the system for automated generation of behavior policies it is
necessary to distinguish exactly what transformation (including who participated in a
specific transformation) is required.

For more detailed examples we refer to [36].

2.5. Verification and Visualization of Behavior Policies

Below we will describe the algorithm to verify and illustrate the behavior policy. It
consists of 4 phases. At the beginning of the discussion about each phase formal elements
not introduced so far will be defined. Subsequent phases will be discussed so that newly
introduced definitions will be directly used in the discussed phase. A diagram of rela-
tionships between phases is presented in Figure 3, from which it can be seen that the
implementation of all the other phases is necessary for the execution of Phase 1. In contrast,
Phases 4 and 2 are independent of the others.

Figure 3. Diagram of relationships between phases of the algorithm. The direction of an arrow
indicates the phase required by the phase from which the arrow emerges.
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2.5.1. Phase 4—Applying a Single Transformation to Constructed State and Checking
Correctness Beforehand

Phase 4 of the algorithm is responsible for verifying the correctness of the model and
for expanding the scenario’s state at a particular point in time.

Input:

• A currently constructed state—a bigraph;
• A map of unique identifiers to vertices of the currently constructed state (a bijection);
• The reaction rule to be applied to the constructed state;
• A map of unique identifiers to rule’s redex vertices (bijection);
• State at the previous moment in time—a bigraph;
• A mapping of unique identifiers to state vertices at a previous point in time;
• First new unique identifier—used when a new task element appears after a transformation.

Output:

1. Option 1—the model is correct:

• Newly constructed state—bigraph;
• Mapping of unique identifiers to vertices of the newly constructed state;
• First new unique identifier.

2. Option 2—the model is incorrect:

• Information about the failed transformation. Whether the given reaction rule
could not be applied to the state at the previous point in time or to the currently
constructed state (given the mappings of unique identifiers to vertices).

Formal definitions:

• X ⊆ N—a set of unique identifiers (UIs) of task elements; It is used to track the
environment and objects involved between system transformations. The idea behind
this set is to assign to each task element a unique identifier, which makes it possible to
check whether the task elements marked as taking part in a reaction rule are present
in a given scenario state. The reaction rules themselves allow only to check whether
alike (rather than the same) elements exist in both a reaction rule and a bigraph.

• CorrRed : R → Red—a function that assigns reaction rules to their corresponding redexes;
• Mx ⊂ XVb b ∈ Agt ∪ Red—a set of functions assigning unique identifiers to elements

of the support of a bigraph, which is either a scenario state or a redex of a reaction rule;
• IsUpdatePossible : Agt × Mx × Red × Mx → {true, f alse}—a function that deter-

mines whether it is possible to apply a reaction rule to a given state, taking into
account the mapping of the UIs to the state’s vertices and the mapping of the UIs to
the redex vertices of that rule;

• Update : Agt × Mx ×R× Mx × X → Agt × Mx × X—a function that transforms the
current state.

The flowchart of the Phase 4 algorithm is shown in Scheme 1. The input arguments of
this algorithm and its results are described in Tables 5 and 6 respectively.

Table 5. Input data for the Phase 4 algorithm.

Variable Description

s ∈ Agt Currently constructed scenario state
ms ∈ M Mapping of UIs to vertices of currently constructed state s
r ∈ R Reaction rule
mr ∈ Mx Mapping of UIs to redex r vertices
s0 ∈ Agt State at the previous moment in time
m0 ∈ Mx Mapping of UIs to vertices of s0
nx ∈ X The first new UI
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Table 6. Output data of the Phase 4 algorithm.

Variable Description

ress ∈ Agt Constructed state extended by application of the provided reaction rule
resm ∈ Mx Mapping of UIs to the vertices of ress
resx ∈ X The first new UI

Start

rl = CorrRed(r)

c1 = IsUpdatePossible(s0, m0, rl , mr)

c1 = true? End—error (previous state)

c2 = IsUpdatePossible(s, ms, rl , mr)

c2 = true? End—error (current state)

ress, resm, resx = Update(s, ms, r, mr, nx)

End—ok

yes

no

yes

no

Scheme 1. Flowchart of the Phase 4 algorithm. The purpose of this phase is to check if a reaction rule
extended by a map of unique identifiers to its vertices can be applied to the scenario state for the
previous moment in time and the currently constructed one. If it is impossible to perform either of
the mentioned operations it means that the model is incorrectly constructed. If both operations are
feasible, the currently constructed state is modified based on the given reaction rule and the map of
unique identifiers to its vertices.

2.5.2. Phase 3—Constructing Scenario State at a Given Moment of Time

Phase 3 of the algorithm is responsible for constructing the state of the scenario at a
given point in time.

Input:

• State at the previous moment in time—bigraph;
• A map of unique identifiers to state elements at the previous moment in time;
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• A set of walk elements combined with a UIs mapping to the vertices of the redex of the
reaction rule associated with this walk element, a UIs mapping to the vertices of the
input state and the smallest new UI from which new task elements will be numbered.

• A linear order relation defined on the above set;
• State-At-Time configuration of the system at the previous moment in time;
• A moment of time for which the system state is constructed;
• Number of objects.

Output:

1. Option 1—the model is correct:

• A subset of the walk elements (given as input) that have not been used to
construct the state at the given point in time;

• State at the given moment in time;
• Mapping of unique identifiers to state elements at the given point in time;
• State-at-time configuration at the set point in time.

2. Option 2—the model is incorrect:

• A currently constructed state with its UIs mapping that could not be transformed
(if it is the cause of the Phase 4 error);

• The state from the previous moment in time with its UIs mapping that could not
be transformed (if it is the cause of the Phase 4 error);

• Reaction rule with UIs mapping to its redex vertices, which was not success-
fully applied.

Formal definitions:

• A ⊂ 2N—A collection of sets of mission object identifiers. The same identifiers are
used in SAT configurations

• WM ⊂ N× T × Mx × Mx × X × (A ×N)—an extended walk consisting of:

1. A positional number;
2. A transition function;
3. A map of UIs to redex vertices. The redex is associated with the reaction rule

corresponding to the above transition function;
4. A map of UIs to vertices of the output state of the extended walk element;
5. First new UI assigned to a new task element created by applying the reaction

rule (useful only if the reaction rule corresponding to the transition function
creates new environment elements);

6. A set of object identifiers involved in the walk element along with the duration
of that transformation. In other words, it is information about which objects are
involved in the transformation represented by the walk element and how long it
will take.

• <WM —linear order relation on the elements of the extended walk.
We will assume the following rule for ordering the elements of a walk:

∀e1 = (l1, f1, m1,r, m1,in, n1, (A1, d1)), e2 = (l2, f2, m2,r, m2,in, n2, (A2, d2)) ∈ WM

e1 <WM e2 ↔ l1 < l2

• FirstM : 2WM → WM × 2WM —a function that returns the “smallest” element of the
walk and the “truncated” walk;

• CorrTra : T → Tra—a function that assigns transition functions to transitions from TTS;
• ObjectsU : I × (A × N) → I—SAT configuration update function. Takes a current

configuration and a set of objects for which the time will be changed along with the
value by how much. The result is the new SAT configuration;

• ObjectsF : I × N → A—a function that determines for which objects activities are
scheduled later than the moment of time for which the scenario state is constructed.
Takes a SAT configuration and the moment of time for which the state is generated;
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• CorrR : Tra → R—a function assigning reaction rules to transitions from TTS.

The flowchart of Phase 3 of the algorithm is shown in Scheme 2. The input arguments
for the algorithm are described in Table 7. The auxiliary variables, some of which are also
outcomes of Phase 3, are described in Table 8. The outcome of Phase 3 is described in Table 9.

Table 7. Input data for the Phase 3 algorithm.

Variable Description

s0 ∈ Agt State at the previous point in time.
m0 ∈ Mx Mapping of UIs to vertices of s0.
W ⊆ WM,<WM A walk and the linear order relation on its elements.
i0 ∈ I The SAT configuration at the previous moment of time.
d ∈ N The moment of time for which the scenario state is constructed.
no ∈ N Number of objects.

Table 8. Auxiliary variables of Phase 3 algorithm.

Variable Description

sc ∈ Agt Current constructed state. The initial value is s0.
mc ∈ Mx Mapping of UIs to vertices of sc.
ic ∈ I SAT configuration of the currently constructed state.

The initial value is i0.
Ao ∈ A A set of object identifiers, skipped in the constructed state. The initial

value is the empty set.
Wc ⊆ W A collection of usable walk elements.

The initial value is W.
Wo ⊆ W A collection of unused walk elements.

The initial value is the empty set.

Table 9. Output data of Phase 3 algorithm.

Variable Description

Wo ⊂ W Unused walk elements that will be used to construct subsequent scenario
states.

sc ∈ Agt System state.
mc ∈ Mx Mapping of UIs to vertices of sc.
ic ∈ I SAT configuration at time d.

Noteworthy are the conditions checked in the subsequent steps of Phase 3 of the
algorithm. Comments for each of them are given below.

1. The first condition checked is if we have reached the end of a walk. If so, then surely
the state currently constructed is the state for the given moment of time.

2. Do we omit actions of all mission objects? If so, the state constructed so far is the state
for the given moment of time.

3. Do any objects involved in the current action belong to the set of skipped objects? If
so, we omit this walk element.

4. Will all objects involved in the current action have finished before the moment d? If
not, we disregard that activity in the currently constructed state and add those objects
to the set of skipped objects.

5. If Phase 4 is not completed correctly, it means that the model is incorrect.
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Start

1

2Wo = Wo ∪ WcEnd—ok

(nw, t f , mr , m f ull , nx , (Ad, nd)), Wc = First(Wc)

in = ObjectsU(ic, (Ad, nd))

3

A f = ObjectsF(in, d)

Wo = Wo ∪ {(nw, t f , mr , m f ull , nx)}

4Ao = Ao ∪ A f

ttra = CorrTra(t f )

ic = in

r = CorrR(ttra)

result = Phase4(sc, mc, r, mr , s0, m0, nx) 5

sc, mc, _ = result

End—error

Wc �= ∅Wc = ∅

Ao = no

Ao �= no

Ao ∩ Ad = ∅

Ao ∩ Ad �= ∅

A f ∩ Ad = ∅

A f ∩ Ad �= ∅

Phase 4 ends with error

Phase 4 ends without error

Scheme 2. Flowchart of the Phase 3 algorithm. The goal of this phase is to construct the state of a scenario at a given point
in time. This phase runs in a loop until there are no available walk elements or when an execution of Phase 4 ends with an
error. It takes subsequent elements of the input walk and updates both the current SAT configuration and a scenario state. If
the mission objects will not have finished the activity represented by the currently processed walk element before or at the
specified moment of time then the SAT configuration and state updates are not performed. The same thing happens if an
activity involves objects participating in other activities that would end in a future and that have already been skipped.
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2.5.3. Phase 2—Extending a Previously Constructed Walk

Phase 2 of the algorithm is responsible for extending a walk to the form acceptable by
Phase 3.
Input:

• A walk resulting from the algorithm presented in Section 2.4;
• Number of objects.

Output:

• Extended walk.

Formal definitions:

• W ⊂ N× T—a walk. The first element denotes the positional number of the transition
function that is the second element of the tuple;

• <W—linear order relation on the elements of the set W.
As in the case of the set WM, we define the order relation by the following rule:

∀e1 = (n1, f1), e2 = (n2, f2) ∈ W e1 <W e2 ↔ n1 < n2

• First : 2W → W × 2W—a function that returns the “smallest” walk element and a
truncated walk;

• Trans : Tra × Mx × X → Mx × Mx × X—a function that transforms a mapping of
unique identifiers based on the given transition and the first new identifier (in case
new environment elements appear in the output state of the transition and need to be
tagged). The results are: a new UIs map to the redex of the reaction rule corresponding
to the provided transition, a UIs mapping to the output state of the transition, and a
new smallest UI;

• U ⊂ I I—a set of functions that update SAT configurations;
• CorrU : T → U—a function that assigns transition functions to their corresponding

SAT configuration update functions;
• TimeU : I × U → I—a SAT configuration update function;
• TimeD : I × I → A ×N—a time difference function for individual objects between

SAT configurations. Returns information about which objects are involved in the
transformation and how long it takes.

The flowchart of the Phase 2 algorithm is shown in Scheme 3. Input arguments are
described in Table 10; auxiliary variables and the result of this phase are discussed in Table 11.

Table 10. Input data for the Phase 2 algorithm.

Variable Description

W,<W A walk with a linear order relation on its elements.
no Number of objects.

Table 11. Auxiliary variables of the Phase 2 algorithm.

Variable Description

nx ∈ X The value of a first new UI. The initial value is the number of vertices of
the input state of the first walk element.

m f ull ∈ Mx The current UIs mapping to the vertices of the last processed output
state. The initial value is a function that assigns consecutive natural
numbers to the vertices of the input state of the first element of the walk.

Wr ⊆ WM Elements of the extended walk. The initial value is the empty set. This is
the result of this phase.

Wc ⊆ W A subset of walk elements that have not been processed yet. The initial
value is W.

ic ∈ I Current SAT configuration. The initial value is ((1, 0), . . . , (no, 0)).
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Start(nw, ft), Wc = First(Wc)

fu = CorrU(t f )

in = TimeU(ic, fu)

Ad, nd = TimeD(ic, in)

ttra = CorrTra( ft)

mr, m′
f ull , n′

x = Trans(ttra, m f ull , nx)

Wr = Wr ∪ {(nw, ft, mr, m f ull , nx, (Ad, nd))}

nx = n′
x

m f ull = m′
f ull End

Wc �= ∅

Wc = ∅

Scheme 3. Flowchart of the Phase 2 algorithm. The goal of Phase 2 is to expand each element of
a provided walk to the form acceptable by Phase 3. Each element of the walk is coupled with the
duration of its corresponding activity along with the identifiers of the objects (not unique identifiers
of task elements) that participate in the activity and two bijections. The first function maps unique
identifiers to vertices of the redex of the reaction rule associated with the currently processed walk
element. With this function, we know exactly who is participating in the activity. The second function
maps unique identifiers to the output state of a processed TTS transition (derived from the walk
element). With this function, we know exactly which task element corresponds to which vertex after
applying the reaction rule. The second function is used in the next iteration of Phase 2.

2.5.4. Phase 1—Constructing All Scenario States and Checking the Correctness of a
Given Walk

Phase 1 of the algorithm is its entry point. It is responsible for verifying a model and
constructing scenario states at successive moments in time.
Input:

• Number of objects;
• A walk with a linear order relation on its elements.

Output:

1. The model is correct:

• A set of scenario states at consecutive moments in time with corresponding map-
pings of unique identifiers to the vertices of these states and SAT configurations;

2. The model is incorrect:

• The moment of time for which the scenario state could not be generated;
• The element that could not be transformed (constructed state or state at some

point in time);
• The reaction rule corresponding to the unsuccessful transformation;
• The UIs mapping of the element that could not be transformed and the redex of

the above reaction rule.
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Phase 1 input parameters are described in Table 12. The auxiliary variables along with
the outcome are discussed in Table 13. The flowchart of the Phase 1 algorithm is shown in
the Scheme 4.

Table 12. Input data for the Phase 1 algorithm.

Variable Description

W,<W A walk with a linear order relation on its elements.
no Number of objects.

Table 13. Auxiliary variables for the Phase 1 algorithm.

Variable Description

Wc ⊆ WM A set of extended walk elements that have not been
used yet. The initial value is the empty set but it is
properly initialized with the result of Phase 2.

d The current moment of time for which a scenario
state is constructed. The initial value is 1.

s ∈ Agt The scenario state at the time d − 1. The initial value
is the input state of the first walk element W.

ms ∈ Mx Mapping of UIs to vertices of the state s. The initial
value is a bijection of consecutive natural numbers
on the vertices of s.

is ∈ I SAT configuration for the scenario state at the time
d − 1. The initial value is ((1, 0), . . . , (no, 0)).

Sr ⊂ N× Agt × Mx × I A collection of states at successive moments in time
with their corresponding UIs mapping and SAT con-
figurations. The initial value is the empty set. This is
the result of this phase.

Start

Wc = Phase2(W)

Sr = Sr ∪ {(d − 1), s, ms, is}

End—ok

result = Phase3(s, ms, Wc, d, no)

End—error

Wc, s, ms, is = result d = d + 1

Wc = ∅

Wc �= ∅

Phase 3 ends with an error

Phase 3 ends without error

Scheme 4. A flowchart of the Phase 1 algorithm. The goal of Phase 1 is to verify a model and construct the subsequent
states of a scenario using a provided walk. In the first step the walk is extended to the form acceptable by Phase 3. Then the
model verification and construction of successive scenario states is performed in a loop. The loop is executed until Phase 3
ends with either an error or when there are no more elements of the walk to further construct states of the scenario from.
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3. Results

This section will provide example use cases of the algorithm discussed in the previous
section. The first two examples show in detail how the algorithm detects errors in a model
and how it constructs successive scenario states. The next examples present how to check
the fulfillment of non-functional requirements for systems designed with our methodology.
Finally, the problem of memory complexity of convolution operation performed during a
construction of walks in a state space is discussed. We also provide a few propositions how
to address this issue.

3.1. Model Verification Example
3.1.1. Introduction

The first example will demonstrate how the algorithm can detect that a system is
incorrectly designed.

A task (as defined in Section 2.1) for this example consists of six elements, two actions
that can be performed, and one goal. The task elements comprise three areas with two
robots and an object to be carried between the areas. The goal of the task is for the robots
(denoted by vertices with the control B) to move the object (denoted by a vertex with the
control O) from the area AT1 to the area AT3. The initial state of this system is shown in
Figure 4. We will use two reaction rules to generate a tracking bigraphical reactive system:
mov1 and mov2 depicted in Figure 5a,b, respectively.

Figure 4. The initial state of a system in the example of verifying model correctness.

(a) (b)
Figure 5. Reaction rules for the example of verifying a model. All residue functions are identities. (a) Reaction rule mov1.
(b) Reaction rule mov2.

The elements of a tracking transition system for this example are shown in Table 14.
If we categorize the task elements as presented in Table 15 then we can transform the

TTS from Table 14 into the state space as in Figure 6. However, this will not be a valid state
space because no time is taken into account for the object being moved (i.e., it is not treated
as a passive or active object as defined in Section 2.1).

3.1.2. Using the Algorithm for Model Verification

Walk S0
f1−→ S1

f2−→ S2 can be represented as W = {(0, f1), (1, f2)}. Assuming that both
actions associated to the reaction rules take 1 unit of time to complete, in Phase 2 both
elements of set W will be transformed to form:
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1. (0, f1, {(0, 0), (1, 1), (2, 2), (3, 3)}, {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}, 6, ({1}, 1))
2. (1, f2, {(2, 0), (3, 1), (4, 2), (5, 3)}, {(0, 0), (1, 1), (2, 3), (3, 2), (4, 4), (5, 5)}, 6, ({2}, 1))

The method of constructing mr and m′
f ull functions that result from Trans function in

Phase 2 is shown below.
The rule of constructing mr function:

∀x ∈ {0, . . . , nx −−− 1} mr(x) = par−1(m f ull(x))

where par−1 is the inverse function to par being an element of ttra. In this case, the functions
f1, f2, . . . , f8 correspond to the subsequent rows in Table 14.

The rule of constructing m′
f ull function:

∀x ∈ {0, . . . , nx −−− 1} m′
f ull(x) = res−1(m f ull(x))

res−1 is the inverse function of res which is an element of ttra.
Table 16 lists the successive steps of the algorithm that will lead to a detection of an

error in the model. The reason why this model is incorrect is not because the redex of the
rule mov2 is not in the 0 state but because the moved object is categorized as an element of
the environment, thus we do not take into account the passage of time for it. As a result,
the reaction rules create the appearance of being independent of each other when in fact the
execution of mov2 rule is dependent on the execution of the rule mov1. To fix the model, the
relocated object needs to be categorized as a passive object and one need to add a reaction
rule allowing a robot that is in AT3 area to wait until the object being moved is in AT2 area.

Table 14. Tracking transition system for the first example.

Input State Label Output State Par & Res

mov1 {(0, 0), (1, 1), (2, 2), (3, 3)}
{(0, 0), (1, 1), (2, 3), (3, 2), (4, 4), (5, 5)}

mov2 {(0, 2), (1, 3), (2, 4), (3, 5)}
{(0, 2), (1, 4), (2, 5), (3, 3), (4, 0), (5, 1)}

Table 15. Categorization of task elements for the first example. Note that this produces an incorrect
model because the moved object is considered an environment element.

Category of Task Elements Elements Belonging to the Category

Environment {AT1, AT2, AT3, O}
Passive objects ∅
Active objects (agents) {B}

Figure 6. Incorrect state space for the task from the first example.
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Table 16. Subsequent steps of the algorithm in the model validation example.

Phase Step Result/Comment

1 Sr = Sr ∪ {((d − 1, s, ms, is))} Sr =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
0, ,

{(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)},

((1, 0), (2, 0))

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
1 Phase3(. . . )

3
nw, t f , mr, m f ull , nx, (Ad, nd), Wc =

FirstM(Wc)
nw = 0
t f = f1
mr = {(0, 0), (1, 1), (2, 2), (3, 3)}
m f ull =

{
(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)

}
nx = 6
Ad = {1}
nd = 1
Wc = Wc \ {e1} = {e2}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 1), (2, 0))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f ) ttra = first row of Table 14

3 ic = in ic = (1, 1), (2, 0)

3 r = CorrR(ttra) r = reaction rule mov1

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 0), (1, 1), (2, 3), (3, 2), (4, 4), (5, 5)}
(mc is calculated in the same way as m′

f ull in Phase 2)
nx = 6

3
nw, t f , mr, m f ull , nx, (Ad, nd), Wc =

FirstM(Wc)
nw = 1
t f = f2
mr = {(2, 0), (3, 1), (4, 2), (5, 3)}
m f ull =

{
(0, 0), (1, 1), (2, 3), (3, 2), (4, 4), (5, 5)

}
nx = 6
Ad = {2}
nd = 1
Wc = Wc \ {e2} = ∅

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 1), (2, 1))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f ) ttra = second row of Table 14

3 ic = in ic = ((1, 1), (2, 1))

3 r = CorrR(ttra) r = reaction rule mov2

4 rl = CorrRed(r) rl =

4 c1 = IsUpdatePossible(s0, m0, rl , mr) c1 = f alse

The pattern does not occur in the bigraph .

1 End—error
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3.2. Example of Scenario States Visualization
3.2.1. Introduction

The second example will demonstrate the problem of visualizing a scenario and how
our algorithm can help in solving it. A task for this example is composed of three areas
and two robots of the same type. The initial state of the system is presented in Figure 7.
The tracking bigraphical reactive system for the purpose of this example consists of two
reaction rules, r1 and r2, shown in Figure 8a,b, respectively. The goal of the task is to move
the two robots from the area AT1 to the area AT3.

Figure 7. The initial state of a system for the scenario visualization example.

(a) (b)
Figure 8. Reaction rules for the example of scenario visualization. (a) Reaction rule r1. τ = {(0, 0), (1, 2), (2, 1)}. (b)
Reaction rule r2.τ = {(0, 0), (1, 1), (2, 2)}.

Tracking Transition System generated from this TBRS is defined in Table 17.
The tracking Transition System from Table 17 can be transformed into a state space as in

Figure 9. Now, suppose that a walk chosen for the behavior policy is of the form:

S0
f1−→ S1

f3−→ S2
f5−→ S4

f8−→ S5

The above walk never “passes” through a state where both robots are in AT2 area.
(that is, through the state S3). Such a situation must occur for the following reasons. For a
walk representing four activities (because it consists of four arcs), that can correspond only
to reaction rules from Figure 8 a course of a mission for each robot must take the form of
moving from an AT1 area to an AT2 area and then from AT2 to AT3 area. Since the activities
represented by the reaction rules are not cooperative (each of the reaction rules involve
only one agent) the movements will be performed in parallel. We also know that the time
required to perform both activities will be the same for both agents (because agents are
of the same type and perform the same type of activity) so the successive movements
will end at the same moment. Because of all that, during a mission there must occur a
situation where both robots are at an AT2 area at the same time. Therefore, the algorithm
for constructing subsequent scenario states must be able to construct states that are not
“on” a provided walk.
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Table 17. Tracking Transition System for the second example.

Input State Label Output State Par & Res

r1 par = {(0, 0), (1, 2), (2, 3)}
res = {(0, 0), (1, 3), (2, 2), (3, 1), (4, 4)}

r1 par = {(0, 0), (1, 1), (2, 3)}
res = {(0, 0), (1, 3), (2, 1), (3, 2), (4, 4)}

r2 par = {(0, 1), (1, 2), (2, 4)}
res = {(0, 1), (1, 4), (2, 2), (3, 0), (4, 3)}

r1 par = {(0, 1), (1, 3), (2, 1)}
res = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)}

r1 par = {(0, 3), (1, 4), (2, 0)}
res = {(0, 3), (1, 0), (2, 4), (3, 1), (4, 2)}

r2 par = {(0, 1), (1, 2), (2, 4)}
res = {(0, 0), (1, 1), (2, 3), (3, 4), (4, 2)}

r2 par = {(0, 1), (1, 3), (2, 4)}
res = {(0, 0), (1, 1), (2, 2), (3, 4), (4, 3)}

r2 par = {(0, 1), (1, 2), (2, 3)}
res = {(0, 0), (1, 3), (2, 4), (3, 0), (4, 2)}

Figure 9. The state space generated from Tracking Transition System from Table 17.

3.2.2. Using the Algorithm to Construct Scenario States

The walk S0
f1−→ S1

f3−→ S2
f5−→ S4

f8−→ S5 can be presented as:

W = {(0, f1), (1, f3), (2, f5), (3, f8)}

281



Appl. Sci. 2021, 11, 8291

A linear order relation on the set W has the form:

<W=

⎧⎪⎨⎪⎩
((0, f1), (1, f3)), ((0, f1), (2, f5)), ((0, f1), (3, f8)),

((1, f3), (2, f5)), ((1, f3), (3, f8)),

((2, f5), (3, f8))

⎫⎪⎬⎪⎭
Assuming that execution of each reaction rules takes one unit of time, in Phase 2 the

consecutive elements of set W will be transformed to the following form:

• e1 = (0, f1, {(0, 0), (2, 1), (3, 2)}, {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)}, 5, ({2}, 1))
• e2 = (1, f3, {(3, 0), (2, 1), (4, 2)}, {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}, 5, ({2}, 1))
• e3 = (2, f5, {(0, 0), (1, 1), (3, 2)}, {(0, 3), (1, 4), (2, 2), (3, 0), (4, 1)}, 5, ({1}, 1))
• e4 = (3, f8, {(3, 0), (1, 1), (4, 2)}, {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}, 5, ({1}, 1))

Knowing the above, we can define an extended walk.

WM = {e1, e2, e3, e4}

The linear order relation remains unchanged between elements, i.e,:

<WM= {(e1, e2), (e1, e3), (e1, e4), (e2, e3), (e2, e4), (e3, e4)}

Steps of the algorithm to construct the subsequent scenario states are presented in
Table 18.

Table 18. Successive steps of the algorithm in the example of visualizing a scenario.

Phase Step Result/Comment

1 Sr = Sr ∪ {((d − 1, s, ms, is))} Sr =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
0, ,

{(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)},

((1, 0), (2, 0))

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
1 Phase3(. . . )

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 0
t f = f1
mr = {(0, 0), (2, 1), (3, 2)}
m f ull = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5
Ad = {2}
nd = 1
Wc =
Wc \ {e1} =
{e2, e3, e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 0), (2, 1))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f ) ttra = first row of Table 17

3 ic = in ic = ((1, 0), (2, 1))

3 r = CorrR(ttra) r = reaction rule r1

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error
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Table 18. Cont.

Phase Step Result/Comment

3 sc, mc, nx = result sc =

mc = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 1
t f = f3
mr = {(3, 0), (2, 1), (4, 2)}
m f ull = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5
Ad = {2}
nd = 1
Wc = Wc \
{e2} = {e3, e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 0), (2, 2))

3 A f = ObjectsF(in, d) A f = {2}
3 Ao = Ao ∪ A f Ao = ∅ ∪ {2} = {2}
3 Wo = Wo ∪ {(nw, t f , mr, m f ull , nx, (Ad, nd))} Wo = ∅ ∪ {e2}
3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 2

t f = f5
mr = {(0, 0), (1, 1), (3, 2)}
m f ull = {(0, 3), (1, 4), (2, 2), (3, 0), (4, 1)}
nx = 5
Ad = {1}
nd = 1
Wc = Wc \
{e3} = {e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 1), (2, 1))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f ) ttra = fifth row of Table 17

3 ic = in ic = ((1, 1), (2, 1))

3 r = CorrR(ttra) r = reaction rule r1

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 3
t f = f8
mr = {(3, 0), (1, 1), (4, 2)}
m f ull = {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}
nx = 5
Ad = {1}
nd = 1
Wc =
Wc \ {e4} = ∅

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 2), (2, 1))

3 A f = ObjectsF(in, d) A f = {1}
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Table 18. Cont.

Phase Step Result/Comment

3 Ao = Ao ∪ A f Ao = {2} ∪ {1} = {1, 2}
3 Wo = Wo ∪ {(nw, t f , mr, m f ull , nx, (Ad, nd))} Wo = {e2} ∪ {e4}
3 End—ok

1 Wc, s, ms, is = result Wc = {e2, e4}
s =

ms = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
is = ((1, 1), (2, 1))

1 d = d + 1 d = 2

1 Sr = Sr ∪ {((d − 1, s, ms, is))} Sr = Sr ∪

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
1, ,

{(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)},

((1, 1), (2, 1))

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
1 Phase3(. . . )

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 1
t f = f3
mr = {(3, 0), (2, 1), (4, 2)}
m f ull = {(0, 0), (3, 1), (2, 2), (1, 3), (4, 4)}
nx = 5
Ad = {2}
nd = 1
Wc = Wc \
{e2} = {e4}

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 1), (2, 2))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f ) ttra = third row of Table 17

3 ic = in ic = ((1, 1), (2, 2))

3 r = CorrR(ttra) r = reaction rule r2

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 0), (3, 1), (4, 3), (1, 2), (2, 4)}
nx = 5

3 nw, t f , mr, m f ull , nx, (Ad, nd), Wc = FirstM(Wc) nw = 3
t f = f8
mr = {(3, 0), (1, 1), (4, 2)}
m f ull = {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}
nx = 5
Ad = {1}
nd = 1
Wc =
Wc \ {e4} = ∅

3 in = ObjectsU(ic, (Ad, nd)) in = ((1, 2), (2, 2))

3 A f = ObjectsF(in, d) A f = ∅

3 ttra = CorrTra(t f ) ttra = eighth row of Table 17
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Table 18. Cont.

Phase Step Result/Comment

3 ic = in ic = ((1, 2), (2, 2))

3 r = CorrR(ttra) r = reaction rule r2

3 result = Phase4(sc, mc, r, s0, m0, nx) Phase 4 completed without error

3 sc, mc, nx = result sc =

mc = {(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)}
nx = 5

3 End—ok

1 Wc, s, ms, is = result Wc = ∅
s =

ms = {(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)}
is = ((1, 2), (2, 2))

1 d = d + 1 d = 3

1 Sr = Sr ∪ {((d − 1, s, ms, is))} Sr = Sr ∪

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
2, ,

{(0, 3), (3, 0), (4, 1), (1, 4), (2, 2)},

((1, 2), (2, 2))

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
1 End—ok

The result of the algorithm contains a state where both robots are in AT2 area despite
the fact that the walk has not passed through such state. A Gantt diagram for this scenario
is shown in Figure 10. Both robots are performing actions r1 and r2 in parallel.

Time

1 2 3

O1 r1 r2

O2 r1 r2

Figure 10. A Gantt diagram for the scenario from the second example. Activities marked as t in the
row preceded by Ox denote involvement of the element x (x is the unique identifier of a task element
given at its first appearance or at the beginning of a scenario) during the activity t. Only elements
that are active objects are included in the diagram.

Functions tupled with each state allow to “track” task elements between states. For
example, the function ms = (0, 0), (1, 1), (2, 2), (3, 3), (4, 4) for the state at time 0 indicates
that the object tagged with the unique identifier 2 (the argument of ms function) is rep-
resented by the vertex with identifier 2 (the value of ms function for argument 2). The
support of a bigraph itself does not track its elements between transitions, as can be seen
by comparing the state of the system at time 0 and time 1. For example, knowing that there
is one area of each type, we have no doubt that a vertex with the control AT1 represents
the same object in both states even though the support element assigned to each vertex is
different between states. However, we do not have such certainty for vertices with controls

285



Appl. Sci. 2021, 11, 8291

of the type B. Unique identifiers point to unique objects between states, even if those objects
have changed the controls representing them.

Here is an example based on the elements of set Sr from Table 18 how to use a unique
identifier mapping. For the state at time 1, the UI with the value of 3 points to the vertex
with identifier 1. This means that it is the same task element that in the state at time 0 is
represented by the vertex with identifier value of 3 and the same element that at time 2 is
represented by the vertex with support 0.

3.3. Example of Verifying the Fulfillment of Non-Functional Requirements

The last example is intended to demonstrate how non-functional requirements can
be defined for systems designed using our methodology and determine whether these
requirements have been satisfied.

For this example, we will define a task of relocating items in a warehouse. The goal
of this task is for two robots to deploy items of different types from the warehouse to
unloading areas. The initial state of the task is depicted in Figure 11. The interpretation
of each control is shown in Table 19. Six reaction rules are defined for this system; all of
them are listed and described in Table 20. For this example, the graphical representation of
reaction rules is omitted because it will not be relevant.

Figure 11. The initial state of a system in the example of checking whether non-functional require-
ments are met.

Table 19. Interpretation of controls in the example of checking whether non-functional requirements are satisfied.

Control Real World Object

A Robot
MA Warehouse area—robots can move between them.

B Beacon—indicates the warehouse area where robots should return after relocating objects.
M Warehouse—it stores objects to be moved.

OT1 Object of type 1
OT2 Object of type 2
DT1 Type 1 unloading area—the location where objects of type 1 are to

be relocated.
DT2 Type 2 unloading area—the location where objects of type 2 are to

be relocated.
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Table 20. System reaction rules for the example of checking whether non-functional requirements
are satisfied. A value in the third column is the amount of time required to execute a rule.

Label Description ΔT

mov Moving a robot between warehouse areas. 1
stay A robot remains in the warehouse area where it is located. 1
get1 A robot retrieves a type 1 object from the warehouse. 2
get2 A robot retrieves a type 2 object from the warehouse. 2
set1 A robot deposits a type 1 object into an unloading area. 2
set2 A robot deposits a type 2 object into an unloading area. 2

The state space for the system consists of 666 states (vertices) and 5325 transitions
(arcs). Due to the size of this example, the graphical representation of the state space and
elements of the tracking transition system will not be presented. It is worth discussing
here the increase in the size of a state space as the number of system elements increases. If
one were to expand the current system to three robots, two type 1 objects, and three type
2 objects, the number of states increases to 5765 and the number of transitions to 70,701.
Such a significant increase in the size of a system suggests that it is reasonable to consider
ways of limited construction of a state space that will remain useful in later stages of the
development of behavior policies.

Moving on to behavior policies for the agents in the task above. First walks solving the
task are 15 steps long. However, these solutions are using only one robot, as can be observed
in the action schedule presented in Figure 12. A mission performed using behavior policy
based on such a walk takes 21 units of time.

Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

O1 mov mov get1 mov set1 mov get2 mov set2 mov get2 mov set2 mov mov

Figure 12. Schedule of actions for a scenario based on a walk of the length of 15 arcs.

3.3.1. Non-Functional Requirement—Length of a Mission

Now let us assume that one of the non-functional requirements imposed on the task is
to limit the length of a mission to the maximum of 20 units of time. There is no walk of the
length 15 that satisfies this requirement. Knowing that the current solutions use only one
robot we can try to improve them by extending the walks to 18 steps. This way the second
robot can move one of the objects to an unloading area. A schedule of actions constructed
with a walk of 18 steps is presented in Figure 13.

Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

O1 mov mov get1 mov set1 mov get2 mov set2 mov mov

O2 mov mov get2 mov set2 mov mov

Figure 13. A schedule of actions for a scenario created with a walk of the length of 18 arcs.
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It is important to note that simply lengthening a walk does not guarantee an improved
result. For example, if the walk underlying the schedule in Figure 12 is lengthened by
three transition functions, all corresponding to the reaction rule stay, it will not yield any
improvement in the quality of a solution.

Checking whether non-functional requirements are fulfilled should be done in Phase 1
after Phase 3 has been successfully completed. This step is not shown on Scheme 4 but this is
how it was implemented in [39].

3.3.2. Non-Functional Requirement—Collision Avoidance

Another example of a non-functional requirement will be related to safety of mission
execution. This time we impose a requirement that there should be no collisions between
robots that are in the process of moving objects.

One of the advantages of using bigraphs is that they allow one to define patterns to
be found in other bigraphs. These patterns are of “minimal satisfying phenomenon” type.
One cannot define an “all but” type pattern in bigraph notation. In other words, you can
define a pattern like “minimum three people in a room” but you cannot define a (single)
pattern that detects “less than three people in a room”.

Let us assume that a collision-free mission will be guaranteed if the robots moving the
objects are not in the same area. Such a requirement can be defined as “if two robots, at least
one of which is moving an object, are in the same area then the scenario is unacceptable”.
Bigraph patterns able to detect such a situation are shown in Figure 14.

Identical to the previous non-functional requirement, this requirement can be verified
in Phase 1 after a successful completion of the Phase 3.

(a) (b)
Figure 14. Bigraph patterns to detect whether a collision between robots may occur during a scenario.
The two patterns differ only in type of the relocated object. (a) The first pattern. (b) The second pattern.

3.4. Memory Complexity

As we have already mentioned, the size of a system grows much faster than the num-
ber of task elements. The same is true for the memory complexity of matrix multiplication
operations described in Section 2.4. We have tested how limiting the number of results
of convolution operation affects memory usage of the tool [40]. All measurements were
done using multi-threaded F# implementation on a PC with 64 bit Ubuntu 20.04 operating
system installed and the previous example regarding non-functional requirements was
used for testing. We carried out three different tests reducing the number of results to 500,
10,000, and leaving the number of results unlimited. In the first case, the peak memory
usage was about 700 MB before walks of the length of 15 arcs were found. The second case
resulted in memory consumption around 15 GB before similar walks were found. The last
case did not succeed on a machine with 64GB of RAM.

To deal with the memory complexity, we propose three methods to reduce the number
of results:
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• First N—a result of the convolution operation performed during a matrix multipli-
cation is limited to the first N results. This way of searching for behavior policies is
suitable when the first results found satisfy non-functional requirements;

• Best N—a result of the convolution operation is constrained to the N best results
evaluated using an evaluation function (discussed below). This method of searching
for walks is useful when a desired walk should have a certain length;

• All—the result of a convolution operation is not constrained in any way. Useful only
for small systems to verify model correctness.

In the case of best N method, there is a need is to define an evaluation function
for partial solutions. We propose a SAT configuration evaluation function based on the
involvement of task objects. The evaluation function returns a higher score the more objects
are involved equally. The formula for calculating the evaluation function value can be
expressed as below:

E(i) = m = 0, ∀(oid ,t)∈im = m +
t

tmax
i ∈ I

tmax −−− The largest engagement of any object.

Table 21 shows the values of the proposed evaluation function for a few example SAT
configurations.

Table 21. Partial solution evaluation function values for random SAT configurations.

i tmax E(i)

((1, 2), (2, 2), (3, 2)) 2 3
((1, 6), (2, 0), (3, 0)) 6 1
((1, 2), (2, 4), (3, 0)) 4 1.5
((1, 1), (2, 1), (3, 4)) 4 1.5
((1, 3), (2, 2), (3, 1)) 3 2
((1, 1), (2, 1), (3, 0)) 1 2

The prepared tool [40] for walk construction offers six strategies for finding solutions:

• All first found—Returns all walks leading to the goal state with the shortest length;
• First N found—returns all walks leading to the target state. The matrix multiplication

operation is constrained by first N method;
• First N best found—returns all walks leading to the target state. The matrix multiplica-

tion operation is constrained by best N method;
• All up to a certain length—returns all walks leading to the target state of a length no

greater than a given value;
• First N up to a certain length—returns all walks leading to the target state with a length

no greater than a given value. The matrix multiplication operation to find walks in a
state space is constrained by first N method which results in each set of walks of the
same length being allowed to have a count of at most N elements;

• Best N up to a certain length—returns all walks leading to the target state with a length
no greater than a given value. The matrix multiplication operation to find walks in a
state space is constrained by best N method which results in each set of walks of the
same length being allowed to have a count of at most N elements.

We summarized all of the above strategies in Table 22.
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Table 22. Summary of the proposed strategies for finding walks in a state space. The second column denoted as MNoR
stands for Maximum Number of Results. The value of N is equal to a number of results of the same length. The value of L
is equal to the maximum length of a result.

Strategy MNoR Pros Cons

All first found Unlimited Perfect for assuring correctness
of the model as this strategy
gives all existing walks to the de-
sired destination state.

Unfeasible for anything but
small systems due to large mem-
ory consumption.

First N found N The fastest of all strategies since
it does not sort results and can
shrink an output of convolution
operation. Perfect when the qual-
ity of a result is not important or
when all results are expected to
have similar quality.

Does not care about quality of
returned results at all.

First N best found N With a good evaluation function
this strategy can return the best
results. Perfect when model has
already been validated and the
developer is looking for a behav-
ior policy of a certain quality.

Slower than first N found since
results are sorted with an evalua-
tion function.

All up to a certain length Unlimited Gives a glimpse of how the
length of a walk impacts the way
a mission is executed. Since it
is an extension of all first found
it allows for throughout correct-
ness testing.

Only for tiny systems. This is the
most memory consuming strat-
egy because it not only returns
all found results but the search is
continued until results have spec-
ified length.

First N up to a certain length N × L Allow for insight into how the
length of a result impacts the
way a mission is executed. Very
fast as it is an extension of first
N found.

Does not care about the quality
of returned results at all.

Best N up to a certain length N × L It gives good insight how the
quality of results varies with the
length of a walk. Perfect when
the developer is looking for a be-
havior policy that he or she has
no expectations about.

It is slower than first N found up
to a certain length strategy due to
sorting of results.

4. Discussion

In this paper, we presented an algorithm to verify multi-agent system models based
on tracking bigraphical reactive systems. Our algorithm can detect incorrectness of a model
and unfulfillment of non-functional requirements. The algorithm considers a model to
be incorrect if activities planned to be executed in parallel are not independent of each
other. In this article, we presented two examples of utilizing the algorithm to check if
a behavior policy meets non-functional requirements regarding time and safety of task
execution. We also demonstrated how to generate successive states of a scenario, which is
a task realization using a selected behavior policy, based on the the behavior policy. Finally,
we discussed memory complexity of operations essential to behavior policies generation
and proposed a few ways to reduce it. One of the suggested methods is to limit results to a
certain number of the best ones. We gave an example of an evaluation function that allows
ranking partial results (in our case, these are behavior policies that when executed do not
meet functional requirements). The evaluation function is applicable to tasks of any kind
and size.
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This work complements our previous publication, which focused solely on designing
multi-agent systems with tracking bigraphs. The methodology enables the design of a
broad range of systems from warehouse robots to drone swarms performing a task without
human intervention. One can also consider designing software systems where programs
act as agents and operations performed by these programs could represent transition
functions. The functional programming paradigm intuitively fits this kind of design.

The main drawback of our methodology is the lack of adaptability of behavior policies.
This means there can be no deviation from scheduled actions when executing a behavior
policy. It also means that agents in a modeled system have to be fully controllable in the
real world. The biggest drawback of the algorithm presented in this article is that it verifies
the correctness of a model looking for errors in a single behavior policy. Thus, the more
behavior policies that are checked, the more confident we are that the model is correct.

As for directions of further development, the primary goal should be to improve the
generation speed of tracking reactive systems as it is the main limitation of the methodology
right now. One way to achieve it is to develop a method of partial construction of a tracking
bigraphical reactive system that consists of bigraphs necessary to manufacture a good
quality walk in state space. If the method of reducing the number of states is automatic, i.e.,
it will not require the designer to specify bigraphical patterns, it is going to significantly
speed up the development of behavior policies. Right now our method can only be applied
to relatively small systems because the explosion of states makes it impossible to efficiently
search for walks in the state space of a modeled system.
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Abstract: The fourth industrial revolution is promoting the Operator 4.0 paradigm, originating
from a renovated attention towards human factors, growingly involved in the design of modern,
human-centered processes. New technologies, such as augmented reality or collaborative robotics are
thus increasingly studied and progressively applied to solve the modern operators’ needs. Human-
centered design approaches can help to identify user’s needs and functional requirements, solving
usability issues, or reducing cognitive or physical stress. The paper reviews the recent literature
on augmented reality-supported collaborative robotics from a human-centered perspective. To this
end, the study analyzed 21 papers selected after a quality assessment procedure and remarks the
poor adoption of user-centered approaches and methodologies to drive the development of human-
centered augmented reality applications to promote an efficient collaboration between humans and
robots. To remedy this deficiency, the paper ultimately proposes a structured framework driven
by User eXperience approaches to design augmented reality interfaces by encompassing previous
research works. Future developments are discussed, stimulating fruitful reflections and a decisive
standardization process.

Keywords: User eXperience; human–robot interaction; human–robot collaboration; human-centered
design; augmented reality; human factors

1. Introduction

The creation of intelligent, assisted, and automated machines is characterizing the
modern factory aiming at two main aspects: a more conscious distribution of roles between
machines and humans, and a more flexible process control to achieve an efficient and
optimized production. In this context, high standards of quality, production flexibility,
and innovation push towards human-centered design (HCD) approaches, focused on the
centrality of the human factors (HF). HF refers to environmental, organizational, and
job-related aspects, as well as human individual characteristics, which can highly affect
health and safety during the interaction with current technologies. Introducing HF in the
design process is the scope of HCD, which is defined as “an approach to systems design and
development that aims to make interactive systems more usable by focusing on the use of the system
and applying human factors/ergonomics and usability knowledge and techniques” [1]. Today,
HCD can be generically used for any type of applications to guarantee the satisfaction of
user needs and the coherence with the ergonomics principles while designing any type
of human–system interaction. HCD enables new ways to define requirements and recom-
mendations to properly design complex systems according to a user-oriented approach.
The final goal is to guarantee a valuable User eXperience (UX), which involves “the user’s
perceptions and responses that result from the use and/or anticipated use of a system product or
service” [1], including usability in terms of “the achievement of specified goals with effectiveness,
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efficiency and satisfaction in a specified context of use”, but also considering users’ emotions
and affections [2].

The current frameworks related to the application of HF and HCD in system design
need to be further developed with the advent of Operator 4.0 (O4.0) concept, framing
a smart and skilled operator performing highly specialized tasks aided by emerging
technologies as and if needed [3], in order to reshape the industrial tasks based on the
human-machine partnership and to renovate the industrial systems according to Industry
4.0 paradigm. Indeed, the O4.0 idea is introducing new assistive technologies, such as
augmented reality (AR), virtual reality (VR), or mixed reality (MR) in modern industries,
making them enabling technologies for the design and development of an effective human–
machine cooperation. However, to achieve such challenging objectives, technologies must
be centered on the figure of the modern Operator 4.0 according to new framework, able
to focus on the interface design for collaborative tasks, involving humans and robots.
Primarily, a precise distinction among such technologies can be summarized as follows:

- Augmented reality, as defined by Azuma et al., “supplements the real world with
virtual (computer-generated) objects that appear to coexist in the same space as the
real world” [4];

- Virtual reality implies a full immersion into a fictious and digitally generated world
which shuts out completely the physical world [5];

- Mixed reality combines both the previous technologies while enabling a strict inter-
action between the digital and physical world. Thus, the user interaction with the
computer-generated environment provides feedbacks and vice versa [6].

Secondly, attention has to be paid to the technological development of modern compa-
nies, where novel forms of support and training can be introduced to enrich the operator’s
knowledge and encouraging the proper use of new, emerging tools, such as robots [7].
Considering all that, the proper design of AR and VR interfaces becomes crucial to promote
the new-born paradigm of the Operator 4.0. In order to achieve higher task precision
and market responsiveness, industrial collaborative robots and AR devices are gradually
entering the shop floor level to assist operators [8]. Contextually, designing a collaborative
working environment for O4.0 requires the adoption of the HCD approach in order to con-
sider the O4.0 know-how and know-to-cooperate: the former refers to human capability to
run the process, whilst the latter deals with their attitude to cooperate with other agents [9].
Hence, agents’ intentions, action’s adaptability, and safety concerns are steadily part of
human–robot interaction (HRI). The latter is a field of study concentrated on the design of
robotic systems for use by or with humans which seeks to improve the human–machine
collaboration while developing innovative and usable user interfaces. Finally, the analysis
of the state of the art highlights the need for defining a new HCD framework tackling the
new O4.0 requirements to improve the design of AR interfaces, according to UX interface
design, but applied them specifically for HRI scopes. Therefore, this review also proposes
a framework to design AR interfaces as a natural outcome of this review work, due to the
lack in the existing literature.

The review moves from the analysis of the different levels of HRI, namely coexistence,
cooperation, and collaboration [10]. Coexistence refers to humans and robots sharing com-
mon workspace and time, but using different resources. Cooperation is characterized by a
common workspace, time, and shared aim, with sequential or simultaneous tasks, on the
same resources, but does not involve a direct contact between humans and robots. Finally,
collaboration is the highest level of interaction that envisages common workspace, time,
and shared aim, with sequential or simultaneous tasks on the same resources, involving a
direct physical contact between humans and robots.

This distinction demonstrates how specific UX issues can be identified for each level
of HRI. Thus, as shown in Figure 1 and according to the distinction just made, technologies
such as AR could be selectively used to support specific targeted tasks of the human–robot
interaction. Moreover, regardless of HRI nature, in [10] the authors suggest to integrate a
human-centered view to the robot-centered and robot cognition-centered views, meaning

296



Appl. Sci. 2021, 11, 10448

to harmonize the HF and human–machine interaction principles with technological and
decisional capability aspects. Based on [11], it could be stated that:

- The human-centered view is primarily concerned “with how a robot can fulfil its task
specification in a manner that is acceptable and comfortable to humans”;

- The robot-centered view “emphasizes the view of a robot as a creature, i.e., an autonomous
entity that is pursuing its own goals based on its motivations, drives and emotions, whereby
interaction with people serves to fulfil some of its ‘needs’”;

- The robot-cognition view considers “the robot as an intelligent system (in a traditional AI
sense), i.e., a machine that makes decisions on its own and solves problems it faces as part of
the tasks it needs to perform in a particular application domain.”.

Figure 1. Main AR applications areas according to the three levels of HRI.

Such considerations are valid even if multiple humans and robots are involved in the
interaction. All these terminological and conceptual distinctions demonstrate the intrinsic
complexity of a HRI task and the need of a structured approach to appropriately encompass
all its peculiarities.

However, in practice, collaborative robots (i.e., “cobots”) are currently regulated by
the ISO 10218 technical specification document [12], providing a precise interpretation of
their roles and natures, and defining the safety requirements for industrial collaborative
systems. The main focus is actually for safety as addressed by ISO 15066 [13], neglecting
other human implications. We could say that the focus is on the robot-centered view, and
only marginally on the robot cognition-centered view where the human-centered aspects
are only considered for safety purposes.

In this context, the use of AR technologies as task support tools force us to pay
attention to the human-centered view by supporting HRI at different levels (i.e., coexis-
tence, cooperation, and collaboration), thanks to the creation of specific, contextual human
knowledge on the ongoing process, and the promotion of know-how development and
know-to-cooperate abilities [9]. Indeed, an effective AR interface should define their con-
tents according to the level of interaction realized between the operator and the robots,
since each level is characterized by a different form of interaction that requires specific
features in the AR interface to properly support the tasks. Indeed, AR introduces digitized
information into the real working environment to augment the UX, promoting system us-
ability and object visibility, while reducing the operator’s physical and cognitive workload.
Current AR applications are provided mainly through tablets since head-mounted display
are still far from being industrially reliable, especially as for ergonomic aspects. The state
of art in literature regarding AR-supported HRI highlighted different application areas:
visualizing robot actions or faults to support troubleshooting [14]; controlling robots com-
bining head and eye gaze; visual simultaneous localization and mapping algorithms [15];
understanding the impact of AR cues on human attention [16]; supporting human–robot
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collaborative assembly [17]; providing workspace and robot’s volume monitoring [8,18];
improving interaction efficiency by reducing the physical strength (especially in heavy-duty
industries) or letting older people to continue working in production facilities [19]; and by
helping operators to have an immediate comprehension of the robot intentions in a quick
and intuitive way (e.g., making visible the robot’s planned motion and task state) [20,21]
or adapting the AR contents to the specific environmental or task conditions [22,23].

However, the majority of existing AR solutions looks at technology and robots, while
neglecting the human aspects [10]. The main problem in AR-supported HRI is the lack
of user friendly and intuitive interfaces implemented in accordance with the interaction
design principles to guide users. While there are some attempts to design user-centered
AR interfaces for different applications [24–28], for robotics applications, AR interfaces are
usually developed by technology experts and not by UX designers. As a result, interfaces
are technology-driven and not user-driven and they usually appear not fully centered on
the users’ perspective [10].

Only recently, a limited number of papers focused on the need to apply structured
HCD methods to the design of HRI, focusing on the understanding and satisfaction of
human needs. For instance, a UX-oriented methodology has been recently defined to
investigate the human–robot dialogue and map the interaction with robots in performing
shared tasks, eliciting the requirements for a valuable HRI design [10]. Similarly, another
study has considered the role and relevance of UX in HRI and defined the actual trends
concerning the inclusion of UX related to socially interactive robots [29]. Another work also
proposes an innovative user-centered design tool to design AR platforms for maintenance
operations [30]. Despite this, they did not specifically focus on the design of AR interfaces
to support human–robot collaborative tasks, where a limited attention is paid to user
perception, ergonomics, and usability issues. Contrarily, the nature of AR and the role
that such applications can assume in the context of O4.0 requires great attention to human
aspects. Interdisciplinary research is also advisable to achieve high-quality HRI.

In this context, the paper provides two main contributions:

1. A systematic review on AR-supported applications for human–robot collaborative
tasks in industry, focusing on human aspects. As a result, the reader can understand
whether and how UX approaches are currently adopted in the design of AR-supported
collaborative solutions, as well as the main benefits and challenges of the application
of UX methods in this field;

2. A UX-driven framework to design user-centric AR interfaces for industrial HRI,
discussing also the main potential future developments, after having revealed the
lack of such structured framework in literature.

2. Methodology

2.1. Systematic Literature Review

A systematic literature review (SLR) approach has been adopted to investigate the
literature relevance of HCD and UX-based methodologies applied to HRI in collaborative
tasks. Replicability and objectivity have been considered as basic principles in carrying
out the research: the review follows the PICOC framework proposed by [18], thanks to
its systematicity and completeness. PICOC [31] stands for a list of items to consider in
the analysis, respectively population, intervention, comparison, outcomes and context. It has
been chosen to outline the key concepts of the research. For this review, hereafter the
considered items:

• Population consists of AR-supported industrial collaborative tasks;
• Intervention involves the HCD and UX approaches to design AR application for indus-

trial collaborative tasks;
• Comparison can be done considering current design approaches and similar set-ups;
• Outcomes can be measured in terms of common Key Performance Indicators (KPI) like

time to complete the operation, task’s cognitive demand or physical workload;
• Context includes industrial human–robot applications.
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2.2. Research Questions

The goal of the study is to provide a comprehensive overview of how UX has been
used in the field of AR-supported collaborative applications for industry. Bearing this in
mind, the authors formulated three research questions (Qi) according to the PICOC results:

• Q1: What are the state of the art UX approaches in AR-supported collaborative solutions?
• Q2: What are the main benefits of adopting UX approaches in designing AR-supported

collaborative solutions?
• Q3: What are the main challenges in designing AR-supported collaborative solutions?

2.3. Search and Selection Process

The search was conducted on the Scopus database, since it encompasses different
digital libraries, such as IEEE or ACM, and provides high quality, indexed papers. The
inclusion criteria are:

� Typology: the study considers articles on international journals and papers on confer-
ence proceedings, or books;

� Topics: the study contains the keywords “augmented reality” + “human robot interaction”
or “human robot collaboration” + “user experience” or “user interface”. The search has
been applied to “Title”, “Abstract”, and “Keywords” (TAK) fields. No reference to
the “Mixed Reality” term was included since it subsumes both AR and VR;

� Year: the study has not been limited in terms of the publication year.

According to [18], the following exclusion criteria have been defined:

� Language: the paper is not written in English;
� Scope: the paper is out of scope and focuses on different research domain;
� Accessibility: the paper is not available.

Seeing the high specificity of the “user experience” and “user interface” keywords, the
initial search returned 27 papers. No secondary documents nor patents were found. No
further papers’ selections in terms of field of application of AR-supported collaborative
tasks were provided, since the main interest is analyzing the current general sensibility
towards the UX approaches.

After the above-mentioned selection process, only 21 papers were admitted. The
results from inclusion and exclusion criteria, and the number of papers found at each step,
are shown in Table 1.

Table 1. Search and selection results.

Search String Database Date Found

TITLE-ABS-KEY ((augmented AND reality) AND
(human AND robot AND interaction OR human
AND robot AND collaboration) AND (user AND

experience OR user AND interface))

Scopus 30/04/2021 27

Exclusion Criteria Found

Language 27
Scope 23

Accessibility 21

Afterwards, the selected papers have been evaluated by a structured quality assess-
ment procedure using three quality criteria (QC) similarly to [18]:

• QC1: It reflects the quality of the journal on which the paper is published, where Qi
refers to the quartile score, according to Scimago Journal Ranking [32]. A score of
1 was assigned to Q1 journals, 0.5 to Q2, and 0.25 to Q3. If the journal belongs to Q4,
or if it does not belong to a specific quartile yet or it is part of a conference proceeding,
a “/” is assigned counting as 0;
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• QC2: It reflects the relevance of the specific paper. A value of 1 is assigned if the paper
specifically has “User Experience”, “User Interface”, or “Human-centered Design”
as one or more paper keywords. This choice was made to further understand if the
paper was intended to be searchable for UX, HCD, or UI-related topics;

• QC3: It reflects the citation impact. It considers the number of total citations of the
paper (c) compared to the maximum number of citations of the most cited paper (mc)
among those included in the review. Certainly, this criterion will not be quantitatively
relevant for the most recent works, but it helps to understand the most significant
works as recognized from the scientific community. As a consequence, a final score
ranging from 0 to 1 has been determined for each paper (i) included in the review:

QC3(i) = c(i)/mc

The final aim is to focus the review attention on papers which match at their best
the intentions of the authors and to allow the reader to select the best referenced articles
according to such criteria.

3. Review Results

The results of the quality assessment are shown in Table 2, listed from the highest-
quality paper to the lowest-quality paper: the final quality score is the direct sum of the
results obtained according to the three considered criteria. The table highlights how there
is still little attention given to the current topic, which has been tackled starting from
the last few years. As for publications in the last year, it must be considered that still-
ongoing studies have to be published and papers’ impact in terms of citations need more
time to be evaluated. The majority of collected studies are quiet below the half of the
maximum allowed quality score, indicating that, according to quality criteria, there is still
need of further research in this field. Considering QC2 scores, nearly half of the selected
research papers do not include any reference to any of the HCD keywords, remarking the
abovementioned lack of a UX sensibility.

As shown in Figure 2, in the last five years the attention towards AR solutions applied
to robotics has noticeably increased. It can be related to the introduction on the market of
several proprietary software development kits (e.g., ARKit, ARCore) from major vendors
in 2017, which stimulated a general enthusiasm in AR applications development, and the
contemporary commercialization of the Microsoft Hololens, from late 2016. These two facts
pushed the academic and industrial interest on AR topics and potentials. In fact, previous
tools did not provide effective augmented–cognitive interaction and lack in proactively
supporting operators on receiving only the relevant information at their smart devices
from nearby machines [33].

Figure 2. Papers by publication year (on the left) and total citations per year (on the right).
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Table 2. Quality assessment on selected papers.

Paper
Year of

Publication
Publication
Destination

QC1 QC2 QC3 Quality

Hietanen, A., Pieters, R., Lanz, M., Latokartano, J.,
Kämäräinen, J.-K. [8] 2020 Journal 1 1 0.53 2.53

Papanastasiou, S., Kousi, N., Karagiannis, P., Gkournelos,
C., Papavasileiou, A., Dimoulas, K., Baris, K., Koukas, S.,

Michalos, G., Makris, S. [34]
2019 Journal 1 1 0.53 2.53

De Pace, F., Manuri, F., Sanna, A., Fornaro, C. [18] 2020 Journal 1 1 0 2

Huy, D.Q., Vietcheslav, I., Gerald, S.G.L. [35] 2017 Int. Conference / 1 0.33 1.33

Materna, Z., Kapinus, M., Beran, V., Smrž, P.,
Zemčík, P. [36] 2018 Int. Conference / 1 0.26 1.26

Aschenbrenner, D., Li, M., Dukalski, R., Verlinden, J.,
Lukosch, S. [37] 2018 Int. Conference / 1 0.26 1.26

de Tommaso, D., Calinon, S., Caldwell, D.G. [38] 2012 Journal 1 0 0.13 1.13

Bazzano, F., Gentilini, F., Lamberti, F., Sanna, A., Paravati,
G., Gatteschi, V., Gaspardone, M. [39] 2016 Journal / 1 0.13 1.13

Cao, Y., Wang, T., Qian, X., Rao, P.S., Wadhawan, M., Huo,
K., Ramani, K. [40] 2019 Int. Conference / 1 0.1 1.1

Materna, Z., Kapinus, M., Beran, V., Smrž, P., Giuliani, M.,
Mirnig, N., Stadler, S., Stollnberger, G., Tscheligi, M. [41] 2017 Int. Conference / 1 0.06 1.06

Kyjanek, O., Al Bahar, B., Vasey, L., Wannemacher, B.,
Menges, A. [42] 2019 Int. Conference / 1 0.03 1.03

Leutert, F., Herrmann, C., Schilling, K. [43] 2013 Int. Conference / 0 1 1

Ji, Z., Liu, Q., Xu, W., Yao, B., Hu, Y., Feng, H.,
Zhou, Z. [44] 2019 Int. Conference / 1 0 1

Frank, J.A., Moorhead, M., Kapila, V. [45] 2016 Int. Conference / 0 0.83 0.83

Green, S.A., Chase, J.G., Chen, X.Q., Billinghurst, M. [46] 2010 Journal / 0 0.56 0.56

Jones, B., Zhang, Y., Wong, P.N.Y., Rintel, S. [47] 2020 Int. Conference / 0 0.03 0.03

Xin, M., Sharlin, E. [48] 2006 Int. Conference / 0 0.2 0.2

Fuste, A., Reynolds, B., Hobin, J., Heun, V. [49] 2020 Int. Conference / 0 0 0

Chan, W.P., Hanks, G., Sakr, M., Zuo, T., Machiel Van Der
Loos, H.F., Croft, E. [50] 2020 Int. Conference / 0 0 0

Krauß, M., Leutert, F., Scholz, M.R., Fritscher, M., Heß, R.,
Lilge, C., Schilling, K. [6] 2021 Journal / 0 0 0

Diehl, M., Plopski, A., Kato, H., Ramirez-Amaro, K. [51] 2020 Int. Conference / 0 0 0

Figure 3 depicts the main subject areas dealt by the selected papers. One can infer
that the design of AR applications supporting collaborative tasks do not merely involve
engineering considerations on technologies or infrastructure’s deployment, but also other
field of study, such as psychology, neurosciences, and social sciences (i.e., tackling interac-
tion issues from the human point of view or determining the most useful physiological
parameters to consider in the evaluation of a specific interface).
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Figure 3. Papers by subject’s area.

In conclusion, the relevant works being selected have been carefully considered against
the research questions (Q1, Q2, and Q3) as presented in the following sections.

3.1. What Are the State of the Art UX Approaches in AR-Supported Collaborative Solutions?

The current trends in the design of collaborative tasks supported by AR technologies
do not systematically show a great attention to UX topics. Hietanen et al. [8] proposed an
interactive user interface to assist O4.0 in performing robot-assisted tasks comparing two
separate implementations of the same system: a projection-mirror setup, and a wearable
device (i.e., Microsoft Hololens). No prior UX assessment was proposed; as part of the sub-
jective evaluation, a final questionnaire including 13 questions divided into six categories
(respectively: safety, information processing, ergonomics, autonomy, competence, and relat-
edness) was submitted to roughly understand mental and physical stress. Comments from
users were collected to deepen the subjective impression, without using any structured
method to collect the perceived workload, as used for instance in different contexts. A
more structured approach is presented by Papanastasiou et al. [34]: the paper emphasizes
the need of a seamless integration between the human operator and his robotic counterpart
by monitoring both working entities through sensors and wearable devices. This led to
the re-design of the workplace from the human point of view to promote both the robot’s
operability and operator’s mobility, without any barrier to separate them; a multi-stage
iterative process has been followed, starting from technical and functional specifications as
well as safety requirements. A digital simulation is included for supporting cell setup and
risk assessment.

De Pace et al. [18] placed attention on AR devices’ usability as enabling tools. The
authors reported how usability, workload, and likability can be investigated thanks to
the standardized questionnaire (e.g., NASA-TLX [52], System Usability Scale (SUS) [53],
AttrakDiff [54]). The same intention is expressed by Huy et al. [35], who introduced a novel
AR handheld device inspired by the abovementioned multimodality perceptive interface,
incorporating hand gesture mapping, haptic buttons, and laser pointers. The system can
suggest available options to the operator and wait for a response instead of traditional
inputs by keyboard or mouse; a usability investigation is eventually foreseen to improve
the interface effectiveness with the help of user’s feedbacks.

Materna et al. [36] evaluated the idea of spatial augmented reality (SAR) through
a UX study. The outlined approach works towards avoiding continuous switching of
attention during demanding tasks, thanks to a correct distribution of information along
the operations and a shared workplace, to be usable also for non-expert users. Process
simplification was also addressed by Aschenbrenner et al. [37] to reduce the installation
time of hybrid robot–human production lines, and by De Tommaso et al. [38] that defined a
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new process of skill transfer between human workers and robots. Similarly, Fuste et al. [49]
presented a holistic UX framework (called “Kinetic AR”) for visual programming of robotic
motions using AR: the goal was to guarantee a low entry barrier to intricate spatial hard-
ware programming. The UX approach was achieved through interviews to robotic system
integrators, manufacturers, and end-users with different expertise, to finally identify the
goals and requirements to be accomplished. Communications and interactions were also
investigated by Bazzano et al. [39], using 3D immersive simulation to support the de-
sign and validation of natural HRI in generic usage contexts, comparing an AR interface
and a non-AR one. Among others, subjective observations were gathered through the
SASSI methodology [55] to evaluate speech interaction in both interfaces. Information
on completion times, overall satisfaction, ease of use, perceived time requested, and sup-
port information were collected, and their statistical relevance was given by running an
independent sample t-test.

As a result of the review, one can state that there are few preliminary attempts to
include UX in the design of AR applications for HRI purposes, as summarized in this
paragraph, but a reference, ready to use model that is able to integrate the users’ subjective
evaluation and the analysis of the quantitative human–robot performance is still missing.

The main weaknesses of the current attempts are:

- User testing is usually based on the collection of deconstructed data regarding device
or interface usability, system likability, cognitive and physical workload, or the overall
subjective sense of safety in performing the selected operation, without a robust
reference model;

- Even if a good attention in using multimodal interfaces to optimize HRI is arising, this
trend is not mature enough to enhance human sensorial capabilities by integrating
different sensors (e.g., force/torque sensors, microphones, cameras, smartwatches,
and AR glasses);

- AR application design does not consider the user perspective and does not help in
the improvement of the ease of use of industrial workplaces, avoiding uncomfortable
conditions (e.g., extra lightning and noise).

These results highlight the need of a structured framework to design AR interfaces for
HRI and pushes towards its definition.

3.2. What Are the Main Benefits of Adopting UX Approaches in Designing AR-Supported
Collaborative Solutions?

After the first analysis, the review focused on the analysis of the benefits related to
the adoption of UX-based approaches in the design of AR applications for HRI: these
approaches generally turn into a detailed evaluative UX phase, where subjective question-
naires represent the main source of information. Table 3 summarizes the most significant
papers dealing with such an aspect, also reporting the main areas of applications.

Within the context of laboratory object manipulation tests, Frank et al. [45] focused on
the user interaction effectiveness of a mobile augmented interface and on virtual graphics
appearing as task’s visual cues to reduce cognitive burden on end-users. The proposed
system can automatically intercept an operator’s intention on virtual objects (i.e., drag
and drop of models in the space), thus reducing the human involvement while operating
with the collaborative companion. No defined UX approach was adopted: a revision of
the overall interface was conducted through a final questionnaire after the user-testing
phase to identify possible criticalities. A concurrent interface simplification without losing
its functionalities in the human–robot collaboration is indeed of extreme importance, in
opposition to what has been defined by [42], where high cognitive functionalities are
purposely omitted from the proposed interface.

A further critical point in AR-supported collaborative tasks is the choice of the correct
interface to use, which is usually conducted without a precise validation tool or methodol-
ogy. In De Pace et al. [18], a series of interesting UI studies resembling HCD approaches
were collected concerning whether exocentric or egocentric interfaces are the best in limit-
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ing the level of mental and physical involvement in controlling the manipulator. Another
study by Chan et al. [50] reconsidered AR-based interfaces for human–robot collabora-
tion on large-scale labor-intensive manufacturing tasks (carbon-fiber-reinforced-polymer
production) where the accent is on the perceived workload and efficiency. Indeed, as
stated in other studies [18], the lowest physical and temporal demand is registered with
appropriately designed AR solutions, reducing user’s effort and sense of frustration while
cutting down operational time. Such an approach does not explicitly make reference to a
structured and systematic HCD methodology, but it relies on NASA-TLX questionnaire
results. Similar conclusions were reported by Diehl et al. [51], where application circum-
stances for the choice of best device are examined, starting from users’ feedback on robot’s
time and area of manipulation up to user sense of safety.

In Xin et al. [48], a collaborative task concerning playing board games was explored
and evaluated by examining various interaction opportunities arising when humans and
robots collaborate. This interesting analysis was related to two contrasting robotic behav-
ioral conditions which have been tested: a human-centric condition where robot behavior is
more accustomed to human obedience, and a robot-centric one where suggestions coming
from the operator are neglected. Statistical results on the final user testing phase related to
a custom questionnaire allows for a reinforced idea of the centrality of a human-centric
condition to increase the sense of collaboration of O4.0.

Moreover, Palmarini et al. [56] stressed that safety is deemed as one of the most
relevant aspects in human–robot collaborative systems and context-awareness information
is unavoidably important to enhance user perception. Analogously, Quintero et al. [57]
proposed two separate approaches to draw AR paths, respectively, a free space and a
surface trajectory one. Such proposals could be effectively integrated to optimize robot’s
programming phases with a UX sensibility, reducing programming time, and allowing
the worker to selectively inspect different robot trajectories and to work on them in a
user-friendly interface. For an optimal collaboration, robot intention is another source of
essential information within a HCD approach: a general indifference on the topic emerges
from actual selection, although Liu et al. [58] described a temporal and-or graph (T-AOG)
to allow the human understanding of the robot’s internal decision-making process, to
supervise its action planner, or to monitor its latent states (i.e., forces and moments exerted
while interacting).

Table 3. Papers focusing on added value related to adoption of UX approaches in HRI.

Paper Benefits Adopted UX Tools Area of Application

J. A. Frank, M. Moorhead,
and V. Kapila [45]

End-user’s intentions understanding
to reduce operator cognitive burden Custom questionnaire Object manipulation

W. P. Chan, G. Hanks, M. Sakr,
T. Zuo, H. F. Machiel Van Der

Loos, and E. Croft [50]

The system’s final application must
be considered to prevent wrong

choices in terms of interfaces and to
avoid physical and cognitive

repercussion on the user

NASA-TLX
Large-scale,

labor-intensive
manufacturing tasks

C. P. Quintero, S. Li, M. K. Pan,
W. P. Chan, H. F. Machiel Van

Der Loos, and E. Croft [57]

Reducing robots’ programming
operation time and cognitive demand Custom questionnaire Robot programming

As emerged from the review findings, several benefits derived from a UX-based
approach when implementing AR-supported collaborative tasks, both objective and sub-
jective: a systematic cognitive and physical relief on the operator, an increased working
efficiency, a reduction in operational time and sense of frustration when interacting with
shop floor interfaces, and an improved sense of safety and inclusiveness while collaborating
with the robotic counterpart. Such conclusions were mainly reported after a user testing
campaign in which standard or customized questionnaires were designated to collect final
tester impressions to be subsequently reanalyzed by the papers’ authors.
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3.3. What Are the Main Challenges in Designing AR-Supported Collaborative Solutions?

The literary review highlighted that the design, development, and use of AR technolo-
gies to improve HRI in industrial contexts is a hot topic from a technological point of view;
however, there is a lack of models to deepen the UX and only a limited number of papers
have proposed the adoption of UX methods to support the design of AR application in this
field, according to user-centered principles. As reported by recent market forecasts, the
mixed reality market size (including both augmented and virtual reality technologies) is
expected to grow by USD 125.19 billion during 2020–2024 [59], up to USD 1.45 trillion to
by 2030 [60]. This rapid growth entails big challenges from both a technical and technolo-
gies viewpoint and a human viewpoint. Some issues, just considered so far, need to be
investigated and faced: from privacy problems to safety requirements. This means that the
design of AR-supported applications in the context of HRI will consider how to manage
the robots’ and operators’ data collected and how to assure the proper privacy and safety
levels. Considering current applications [61], one can reflect on both critical success factors
and challenges related to future robust industrialization. If compared to industrial software
systems, current AR hardware readiness seems to still be far from a mature adoption in
industry. Thus, human-centered design methods are required to balance industrial system
requirements with human needs and social concerns; in this sense AR is so close to human
abilities, also affecting and empowering them. Another challenge is the integration of
AR devices within modern manufacturing systems: data exchange to and from the AR
application should be compliant with robotics and automation standards to assure a full
adoption in industry. In regard to this topic, only few research attempts have been made
(e.g., AutomationML [62]) which are still far from the inclusion of AR data.

Moreover, a proper UX evaluation framework for AR-supported collaborative tasks
needs to be defined. A first attempt has been made considering UX analysis in the design
of HRI applications using a structured approach [10], but not including AR tools. On
this topic, the main challenge is to define a systematic and coherent way to interpret
data coming from different equipment and returning AR digital contents to the O4.0, in
an adaptive and intelligent way, considering the UX, and further enhancing the human
physical, sensorial, and cognitive capabilities by means of human cyber–physical system
integration [63]. In this direction, a further challenge is promoting socially embedded
human–robot collaborations where human communications can be used to adapt service
robots to the user needs accordingly: it consists of giving the robots the concept of emotional
tuning and to emphatically communicate with machines [64].

Moreover, the estimation of those variables affecting trust in HRI is necessary to design
new, effective AR interfaces providing situational awareness and spatial dialog, and to
determine functional elements to improve human confidence in robots. This evaluation
should be included in a comprehensive approach considering validated metrics for an
overall UX assessment [65]. Contextually, the assessment of human cognitive and physical
efforts in developing collaborative tasks has an absolute relevance.

Finally, in the context of AR-supported human–robot collaborative operations, user
testing needs a more statistically reliable base, including both academic and industrial stud-
ies and increasing the number and typology of people involved to assess the effectiveness
of AR in HRI tasks [18]. The results mainly imply the definition of new UX-based methods
to design AR interfaces from a multiple users’ point of view, involving novice and expert
users, and the benchmark of the most suitable wearable interfaces to be used together with
industrial robots.

4. Discussion on Review Results

From the current analysis, a substantial lack of structured methods to design user-
centered AR applications for HRI have emerged. Despite several attempts in other various
contexts (tourism, mobile application games, etc. [24–28]), UX-driven methodology are
poorly adopted in HRI, and this led to the design of interfaces which are far from real
users’ needs.
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On this base, the authors believe that it is crucial to promote UX-driven design
processes to develop successful AR interfaces, especially for collaborative tasks involving
humans and robots, to fully support the O4.0. Only the adoption of a proper HCD
framework allows considering the real needs of the operators in a specific context of use,
focusing not only on safety and ergonomics issues, but on the overall UX aspects (e.g.,
usability, intuitiveness, satisfaction, cognitive load, and emotional response) with the
final aim to have a renovated human–robot relationship where both subjects are actively
participating and transmitting knowledge to the equivalent counterpart, according to a
win–win approach.

For these purposes, the review results suggest defining a structured UX-driven process
to design AR interfaces for HRI tasks. The review represents a nonlinear and iterative
process aiming at assisting the AR interface designer in implementing a valuable communi-
cation with robots, during the execution of HRI tasks. As depicted in Figure 4, the process
must be made up of three main steps:

1. Requirements Gathering;
2. AR Interface Design and Prototyping;
3. UX Assessment.

Figure 4. The need of a UX-driven process for AR interface design to support HRI tasks.

The process starts with the need to define a new AR interface for collaborative tasks,
and brings to the interface definition, before the AR interface development. Such a process
goes a step further with respect to a few recent studies [10,34].

The first step to be investigated consists of requirement gathering from user research.
It is a vital part of any UX-driven processes because it is the act of understanding the users
and their needs, making sense of who the user is, what he/she wants, and how he/she
will perform a certain task. It mainly consists of a deep, accurate user analysis based
on the context research to be carried out in a not invasive way using a set of UX design
techniques. The most suitable techniques for user understanding are user observation,
focus groups, and interviews [66]. User observation consists of observing users in their
natural environment without affecting their normal behaviors and performance, with
the aim to understand the users’ needs and widely used when users belong to specific
categories. It can also be done using video analysis, but in some industrial contexts video
recording is not always possible. Such analysis is frequently combined with focus groups
or interviews, which can provide a deeper insight about the users’ habits and behaviors
since they actively involve users to collect, in different ways, qualitative data about their
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needs, expectations, or fears. The mixed approach combining different techniques is very
useful since it allows combining quantitative and qualitative data. After that, the list of
executed tasks can be easily defined, reporting also the actors involved for each task (e.g.,
humans, robots) and the time span. These actions finally led to the definition of design
specifications considering functional, technical, and safety aspects. A different set of UX
design techniques can be validly adopted, from user scenarios and personas to experience
maps, as proposed by [10]. User scenarios are stories to show how users might act to
achieve a goal in a system or environment. They are valuable aids for designers to visualize
aspects of their solutions which users might appreciate most in their contexts of use and
with their unique needs and motivations. Personas represent the target users by a set
of probable users and flesh out their experiences to reflect realistic situations. Finally,
experience maps represent a synthetic visualization of an entire end-to-end experience that
generic users (i.e., personas) go through to accomplish a certain goal, and they allow a
better understanding of human behaviors.

The second aspect to be investigated is the AR interface design and prototyping.
Design consists of the definition of the interface functions as well as the items, while
prototyping presents the design in a concrete way by representing the interface in action
with the simulation of the final interaction between the user and the system. In this
context, wireframes are very powerful as a visual representation of the interface pages;
clickable wireframes are the simplest form of interactive prototype, created by linking static
wireframes together. Moreover, using digital tools, wireframes can be updated and easily
reused and layouts can be easily changed based on user feedback to repeat the testing
process. Low-fidelity prototypes allow one to easily define the following information
architecture, also comparing possible alternative solutions, and to optimize the design itself
in an iterative way.

Finally, the third aspect to include consists of the UX assessment. Different evaluation
techniques exist to investigate more closely the user’s behavior and perception on a final
prototype or products. One of the most spread is user testing, that can lead to both
quantitative and qualitative data [67]. Quantitative tests carry out measurements (e.g.,
execution time, number of errors, and number of tasks completed) while performing a
specific task on the user interface. User testing sessions often include post-test evaluation
questionnaires (e.g., System Usability Scale (SUS) [53], UEQ Questionnaire [68], or meCUE
questionnaire [69]) and allow the gathering of many opinions in a short time, as well as
being adaptable to multiple application areas. In addition, physiological measurements
allow us to investigate in real time the level of physical and cognitive workload as well as
stress of the operator during the interaction. Examples of adoption of these tools for the
design of modern systems is provided by [70].

Based on the review results, it is also possible to identify some trends of future
implementation of a successful UX-driven design process, as depicted above. First of
all, the UX assessment needs to be included in the analysis of the real human activity
during collaborative task execution, to understand the level of attention and physical
and cognitive responsiveness through wearable devices, in order to understand the real
UX. Secondly, non-intrusive sensors and smart interfaces are required to carry out a
bi-directional communication flow from-to machines and robots and create a synergic
collaboration, in order to overcome the current vision based on separate entities with
incompatible characteristics. Further, flexible data management is necessary to manage
the crescent complexity and the larger amount of data coming from the shop floor and the
operator, in order to successfully integrate AR-supported collaborative tasks in the overall
productive chain. Finally, it is worth understanding the impact of AR on user perceptions,
ergonomics, and human–robot interactions.

5. Conclusions

This paper reviews the overall condition of industrial collaborative tasks supported by
AR technologies, pushed by the growing interest of industry in the AR market registered
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in the last 5 years and the need to define new ways to make the Operator 4.0 successfully
work in the factories of the future, interacting with robots. In this context, AR interfaces can
help to improve human–robot communication and interaction at different levels, thanks
to the possibility to show contextual and digital information and data when and where
needed. However, there is a lack of a proper framework to design AR interface, including
the operators’ UX, specifically designed for HRI. The paper starts with a review of the
state of the art, focusing on the inclusion of HF and UX design principles in the design of
AR interfaces to support HRI. In the paper, a SLR approach was used to collect the most
interesting papers in this field, considering the recent scientific literature. After identifying
the focus of the current study, 27 papers were gathered and assessed according to proper
quality control parameters previously defined. At the end of the selection process, 21
papers were deemed suitable to answer the three research questions: Q1: What is the state
of art related to UX approaches in AR-supported collaborative solutions?; Q2: What are the main
benefits of adopting UX approaches in designing AR-supported collaborative solutions?; Q3: What
are the main challenges in designing AR-supported collaborative solutions?

As a result, the research highlighted the lack of reliable and systematic user-centered
methodologies to design AR applications for human–robot collaborative tasks. This fact is
limiting the acceptance of such solutions and slowing down the technological integration
of smart devices within the Operator 4.0 paradigm. Several added values of AR application
to Operator 4.0 scenario are then presented, starting from the reduction of the worker ‘s
cognitive workload thanks to the interface simplification and adequate usability tests, up
to the realization of a shared workplace where a synergic collaboration could take place,
in which both actors can reciprocally be understood and learn from the corresponding
counterpart. From the discussion of the review results, the paper finally highlights the need
of structured UX-driven processes to design successful AR interfaces for human–robot
collaborative tasks, made up of different phases organized in an iterative cycle, including
typical UX design tools and techniques for interface design, that are not currently used
in AR interface design for industrial purposes. The research also defined the main trends
of development for future applications, considering the need of non-intrusive human
monitoring devices and smart tools to enable fruitful communication between operators
and the on-going process at the shop floor.
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