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Artificial Intelligence Applied to Medical Imaging and
Computational Biology

Leonardo Rundo 1, Andrea Tangherloni 2 and Carmelo Militello 3,*

1 Department of Information and Electrical Engineering and Applied Mathematics (DIEM),
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3 Institute of Molecular Bioimaging and Physiology, Italian National Research Council (IBFM-CNR),

90015 Cefalù, Italy
* Correspondence: carmelo.militello@cnr.it

The Special Issue “Artificial Intelligence Applied to Medical Imaging and Computational
Biology” of the Applied Sciences Journal has been curated from February 2021 to May
2022, which covered the state-of-the-art and novel algorithms and applications of Artificial
Intelligence methods for biomedical data analysis, ranging from classic Machine Learning
to Deep Learning.

Medical imaging and computational biology continuously pose new fundamental
medical and biological questions that often give rise to novel challenges in Artificial In-
telligence. Moreover, the amount of biomedical data is constantly increasing due to the
different image acquisition modalities and high-throughput technologies [1,2]. In these
research fields, there is thus an increasing need for the application of cutting-edge computa-
tional approaches that generally involve Machine Learning or Computational Intelligence
techniques, able to provide high-performance and specialized services in medical con-
texts [3]. Machine Learning and Computational Intelligence techniques can effectively
perform image processing operations (such as segmentation [4–10], classification [11–14],
and quantification [15–18]), in the fields of neuroimaging and oncological imaging. Al-
though manual approaches often remain the golden standard in several tasks, Machine
Learning can be exploited to automate and facilitate the work of researchers and clinicians.
In addition, these fields often present new clustering and classification challenges, as well
as combinatorial problems, which can be effectively addressed using novel strategies based
on Machine Learning and Computational Intelligence techniques.

More recently, Deep Learning approaches [4,5,7,11,14,19] were shown to be very suc-
cessful in computer vision and bioinformatics tasks owing to their ability to automatically
extract hierarchical descriptive features from input images or gene expression data. They
have also been used in the oncological, neuroimaging, and microscopy imaging domains
for automatic disease diagnosis [12,13], tissue segmentation [16,20], and even synthetic
image generation. However, the main issue remains the relative sample paucity of the
typical datasets that leads to a poor generalization of the employed deep Artificial Neural
Networks, considering the high number of required parameters. Consequently, parameter-
efficient design paradigms specifically tailored to biomedical applications ought to be
devised, also by exploiting Computational Intelligence based techniques (e.g., Evolutionary
Computation, Swarm Intelligence, and neuroevolution).

In this context, advanced Machine Learning techniques were suitably exploited to com-
bine heterogeneous sources of information, allowing for multiomics data integration [21,22].
Such kinds of analyses represent a significant step towards personalized medicine.
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Evaluation of Post-Stroke Impairment in Fine Tactile Sensation
by Electroencephalography (EEG)-Based Machine Learning
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Abstract: Electroencephalography (EEG)-based measurements of fine tactile sensation produce large
amounts of data, with high costs for manual evaluation. In this study, an EEG-based machine-learning
(ML) model with support vector machine (SVM) was established to automatically evaluate post-
stroke impairments in fine tactile sensation. Stroke survivors (n = 12, stroke group) and unimpaired
participants (n = 15, control group) received stimulations with cotton, nylon, and wool fabrics to the
different upper limbs of a stroke participant and the dominant side of the control. The average and
maximal values of relative spectral power (RSP) of EEG in the stimulations were used as the inputs
to the SVM-ML model, which was first optimized for classification accuracies for different limb sides
through hyperparameter selection (γ, C) in radial basis function (RBF) kernel and cross-validation
during cotton stimulation. Model generalization was investigated by comparing accuracies during
stimulations with different fabrics to different limbs. The highest accuracies were achieved with
(γ = 21, C = 23) for the RBF kernel (76.8%) and six-fold cross-validation (75.4%), respectively, in the
gamma band for cotton stimulation; these were selected as optimal parameters for the SVM-ML
model. In model generalization, significant differences in the post-stroke fabric stimulation accuracies
were shifted to higher (beta/gamma) bands. The EEG-based SVM-ML model generated results
similar to manual evaluation of cortical responses to fabric stimulations; this may aid automatic
assessments of post-stroke fine tactile sensations.

Keywords: stroke; fine tactile sensation; electroencephalography; machine learning; evaluation

1. Introduction

Approximately 50% of stroke survivors have reported persistent sensory deficiencies
for both somatosensation and proprioception [1,2]. For example, they often have difficulties
in perceiving pain, temperature, pressure, posture, and light touch [3]. Sensory deficiencies
have profound negative impacts on the functional ability and independency in daily living,
which further affect motor recovery after stroke [4,5]. Fine tactile sensation is an elementary
somatosensory function for obtaining external information through touch [6]. Previous
studies have shown that fine tactile sensation also provide valid spatial references for body
positions to reduce postural sway [7], and it may act as an indicator to enhance sensory
feedback in position control [8,9]. However, rehabilitation for sensory functions has been
overlooked in the traditional practices, when compared with efforts for motor restoration;
this is attributed to the lack of effective evaluation measures for sensory impairments [10].

Appl. Sci. 2022, 12, 4796. https://doi.org/10.3390/app12094796 https://www.mdpi.com/journal/applsci3
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Objective and efficient assessments of sensory impairments are important for long-
term post-stroke rehabilitation with repeated measurements during follow up [11]. How-
ever, subjective and manual measurements have been used traditionally for sensory im-
pairment assessments [12]. For example, the Fugl–Meyer assessment (FMA) [13] and
Semmes–Weinstein monofilament test [14] are commonly used in current evaluations of
fine tactile sensations because of the ease of interpretation of the assessment results. Addi-
tionally, the measurement process highly relies on the personal experiences of the assessor,
where achieving consistency in measurements is challenging when the stroke population
increases during long-term service [15].

Neuroimaging techniques have been introduced to provide objective data for sensory
impairment assessments [16]. The common neuroimaging techniques include functional
magnetic resonance imaging (fMRI), positron emission tomography (PET), neuromolecular
imaging, and electroencephalography (EEG), among others [17–23]. These approaches
characterize neural circuitry changes during post-stroke sensorimotor recovery; however,
such medical equipment is expensive and the preparations before neuroimaging-based
examinations are complicated compared to the traditional clinical assessments [24]. Among
these techniques, owing to the advantage of high temporal resolution, EEG has been ap-
plied to detect transient sensory neural responses during fine tactile stimulations [25,26].
For example, Ahn et al. compared the effects of different tactile exploration tasks, i.e.,
passively or actively moving a tactile board, on post-stroke brain activation using EEG [27].
The sensory motor rhythm indicated by the EEG relative powers from the right prefrontal
and parietal lobes during active tactile perceptions were significantly greater than those
in the damaged left hemisphere during passive tactile perception [27]. In our previous
work [28], post-stroke sensory impairment of fine tactile sensation was measured quantita-
tively via EEG during textile fabric stimulation, i.e., simulation of the common fabric–skin
touch. We observed EEG relative spectral power (RSP) differences after stroke, i.e., RSP
intensities in different frequency bands between unimpaired and stroke populations [28].
However, neuroimaging-based measurements usually generate large amounts of data,
whose interpretations still heavily rely on human professionals, which is time consuming
and labor demanding [29,30].

Neuroimaging data interpretation by machine-learning (ML) techniques has been a
promising approach to reduce manpower workload in data interpretations [31]. ML is a
technique that can help develop an automatic predictive model by learning the relationships
between features and targets from a given set of historical data before application to
repeated analyses on massive data [32]. Various ML algorithms, e.g., linear discriminant
analysis (LDA), artificial neural network (ANN), and support vector machine (SVM), are
being explored for the detection, classification, and characterization of neuroimaging data,
e.g., EEG [31]. For instance, Jochumsen et al. classified single-trial movement intentions
associated with different hand grasp types using the EEG spectra as input features to
an LDA model [33]. Usama et al. distinguished correct/error feedbacks during hand
and foot movements by feeding the EEG waveform features into an ANN model [34].
Limited classification accuracies were obtained in both studies: 41–86% [33,34]. This may
be attributed to insufficiencies in feature mapping by simple linear transformation of the
LDA, leading to inefficient construction of the optimal decision function (classification
boundary) for multichannel EEG [35,36]. Although ANN-based models offer nonlinear
feature mapping abilities during classifications, overfitting often occurs when there are
several hyperparameters, e.g., numbers of hidden layers and nodes, to be determined
during network optimization [36]. In contrast to the ANN, SVM-based models reduce the
disadvantages of overfitting of the classification results with the help of kernel functions [37].
SVM with kernel functions effectively minimize model complexities via implicitly realizing
nonlinear transformations of the feature spaces without explicit mathematical expressions,
so that only specific hyperparameters related to the kernel functions of the SVM need to
be optimized during model development [38]. In the SVM-ML models, several kernel
functions are commonly used, namely linear, polynomial, and radial basis function (RBF)
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kernels. For example, Liu et al. extracted the spectrum features from subject-related
EEG frequency bands and channels, and the SVM with linear kernel was applied to each
subject’s EEG-based motor imagery classification [39]. Ghumman et al. investigated the
classification performance of SVM with a polynomial kernel in multiclass motor imagery
EEG [40]. Bousseta et al. used SVM with RBF kernel to classify the EEGs of imagined hand
movements [41]. These studies reported a classification range of 67–92.8% [39–41]. Among
the practical applications of the kernel functions mentioned above, the RBF kernel is a
common choice in SVM-ML models because of its better performance on the nonlinearities
in feature mapping capabilities with less hyperparameters compared to the other two types
of kernel functions [42,43].

Automatic evaluations of neuroimaging data by SVM-ML techniques have not been
fully explored in literature, e.g., fine tactile sensation. Kim et al. extracted the powers of the
alpha and gamma bands as features representing EEG during touch with different objects,
i.e., fabric, glass, and paper [44]. However, they only evaluated the tactile perception of
unimpaired persons and obtained limited classification performance (68.1%) with the LDA
model [44]. The purpose of this study was to automatically evaluate and assess post-stroke
impairments in fine tactile sensation using a new EEG-based SVM-ML model.

2. Methodology

In this study, an SVM-ML model was established based on EEG measurements of
cortical responses to fine tactile stimulations to the upper limbs in persons who have
experienced stroke and in unimpaired participants via stimulations with different types of
fabrics (cotton, nylon, and wool). The SVM-ML model was first developed and optimized
using EEG RSP features with cotton fabric stimulation as the baseline input for classifying
the responses from multiple upper limb groups, i.e., stimulation to the (1) affected sides of
persons after stroke (SA), (2) unaffected sides of persons after stroke (SU), and (3) dominant
sides of unimpaired participants (UD). Then, the generalization performance of the model
was evaluated using the EEG RSP features during stimulations with different fabrics with
and without considering arm differences.

2.1. EEG Acquisitions during Fabric Stimulations

After obtaining ethical approval from the Human Subjects Ethics Sub-committee
(HSESC) of the Hong Kong Polytechnic University, twelve survivors of chronic stroke
were recruited as the “stroke group”, and fifteen unimpaired participants were recruited
as the “control group”, whose demographic details are listed in Table 1. The inclusion
criteria of stroke group were: (1) individuals must be at least six months after the singular
and unilateral brain lesion due to stroke; (2) the lesions occurring due to stroke were
experienced in the subcortical area, to ensure the detectable EEG from the cortical area. All
unimpaired participants were right-handed. No significant difference was found in age
between the stroke and control groups (p > 0.05) by the independent t-test after verifying
normality evaluations via the Shapiro–Wilk test [45].

Table 1. Demographic characteristics and clinical scores of the stroke and control groups [28].

Measure Stroke Group (n = 12) Control Group (n = 15)

Age in years 55.1 ± 16.0 46.4 ± 17.4
Gender (male/female) 11/1 5/10

Stroke type (ischemic/hemorrhagic) 10/2 -
Affected side (right/left) 6/6 -

Years since stroke 14.9 ± 5.8 -
FMA (upper extremity) 42.5 ± 15.2 -

FMA (light touch on forearm) 1 ± 0 -
MAS (elbow) 1.1 ± 0.7 -

Note: Data are given as mean ± standard deviation. MAS: Modified Ashworth scale; FMA: Fugl–Meyer
assessment [28].
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The experimental setup and protocol for the fabric fine tactile stimulation are shown
in Figure 1. The three types of fabrics, i.e., cotton, nylon, and wool of the same size and
different textural properties, were alternatively placed on the skin surface of the ventral
forearm of the upper limb, i.e., a single stimulation trial (Figure 1c). Each trial consisted of
a 30 s baseline measurement, i.e., no fabric stimulation to the skin, followed by alternative
stimuli with the three different fabrics in a random sequence for 13 s stimulation with each
fabric and 60 s gaps in between. The stimulation trial was repeated thrice for each target
forearm. The whole brain EEG with 64 channels (BP-01830, Brain Products Inc., Gilching,
Germany) based on the 10–20 system [46] was captured during the stimulation trials at a
sampling frequency of 1000 Hz. Each subject was required to stay awake and calm during
the EEG measurements while wearing ear plugs and an eye mask, whose purpose was to
minimize visual and audio disturbances from the environment. The detailed experimental
procedure is described in [28].

Figure 1. Electroencephalography (EEG) experimental setup and protocol. (a) Participant wearing
the EEG cap, ear plugs, and eye mask, is seated in a chair and tested with their hands comfortably
placed on the table. The areas of each fabric stimulation are the ventral forearms. The three fabric
samples, namely cotton, nylon, and wool, are placed on the table. (b) Illustration of fabric stimulation.
The nylon fabric is placed on the ventral forearm. (c) Protocol for fabric stimulation.

2.2. EEG-Specific Feature Extraction for the SVM-ML Model

In this work, the RSPmean and RSPmax values in different frequency bands were
selected as the EEG features for input to the SVM-ML model as they represent the average
and maximal cortical changes, respectively, during fabric stimulations based on manual
recognition from the previous study [28]. During the real-time EEG recording, the sampling
frequency was 1000 Hz. In the preparation of the EEG RSP features, a Butterworth bandpass
filter from 0.1 to 100 Hz was first applied to the EEG to eliminate irrelevant high-frequency
components. Then, an additional Butterworth notch filter from 49 Hz to 51 Hz was applied
to eliminate the 50 Hz noise from the environment. Following this, the filtered EEG was
segmented into different epochs, i.e., 30 s pre-stimulus baseline and three 13 s stimuli with
different fabrics. The numbers of EEG samples after segmentation were 108 from the SA
group (12 participants × 3 trials × 3 fabric stimuli), 108 for the SU group (12 participants ×
3 trials × 3 fabric stimuli), and 135 for the UD group (15 participants × 3 trials × 3 fabric
stimuli). Next, the EEG samples were transformed into their power spectra by Pwelch
estimation [47], and the entire frequency band (0.1–100 Hz) of each segmented EEG epoch
was decomposed into five frequency bands, i.e., delta (0.5–4 Hz), theta (4–8 Hz), alpha
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(8–12 Hz), beta (12–30 Hz), and gamma (30–100 Hz) [48]. Finally, the RSP [49] of each
frequency band for each fabric stimulus was calculated using the following equations:

P(f1, f2) =
∫ f2

f1

p(f)df (1)

RSP(f1, f2) =
P(f1, f2)

P(0.1, 100)
− Pbaseline(f1, f2)

P(0.1, 100)
, (2)

where p(f) is the power spectral density; f1 and f2 are the low and high cutoff frequencies
of a given EEG frequency band, respectively; P(f1, f2) is the power spectrum from f1 to f2;
and Pbaseline is the power spectrum of the EEG segments during the baseline test in each
trial. The above spectral analysis of the raw EEG signals was implemented offline with the
EEGLAB v12 toolbox in MATLAB (The MathWorks Inc., Natick, MA, USA).

After obtaining the RSP value from each EEG channel, the RSPmean and RSPmax values
were acquired to represent the RSP features of the multichannel EEG, where RSPmean is
the average value of the RSPs of all the channels in a given frequency band of a signal
epoch, and RSPmax is the highest value among all the EEG channels. Then, the RSPmean
and RSPmax of the 62-channel EEG (ground and reference channels were neglected), which
covered the entire cortical area, were calculated for each frequency band. To minimize
the diversity of the ranges for the RSPmean and RSPmax, the original RSPmean and RSPmax
were further normalized as in the following equation according to z-score normalization,
which scales all the RSPmean and RSPmax values in varying ranges with a zero mean and
unit standard deviation [50]:

RSPi
′ = RSPi − μRSP

σRSP
, (3)

where RSPi is the original spectral feature, i.e., RSPmean or RSPmax; μRSP is the mean of
RSPi; σRSP is the standard deviation of RSPi; and RSPi

′ is the normalized spectral feature.
The normalized features were then used as the inputs to the SVM-ML model.

2.3. SVM-ML Model Configuration

Figure 2 shows the configuration of the SVM-ML model, including optimization of the
SVM RBF kernel function and k-fold cross-validation (CV) strategy. The normalized EEG
features (i.e., RSPmean and RSPmax) during stimulation with cotton fabric were adopted
as the baseline inputs for model establishment. This is because cotton is the most widely
used fabric that is in intimate contact with skin in daily living and provides minimum
stimulation intensity with a comfortable feeling compared to other fabrics [51]. In addition,
compared to nylon and wool, the textile physical properties of cotton fabric as quantitatively
measured by the fabric touch tester (FTT) [52] were neutral with equivalent distances in
the aspects of smoothness, thickness, etc. [28]. Therefore, the EEG RSP features evoked by
the cotton fabric were used as the baseline inputs to configure the SVM-ML model.

The RBF kernel function of the SVM-ML model was determined by optimizing the
classification boundaries that achieved the best accuracy on the RSP features related to
cotton stimulation. For an RBF kernel, two hyperparameters, namely the kernel scaling
parameter γ and regularization parameter C [53], are optimized in the SVM-ML model
development to classify the different upper-limb groups. The search for optimal (γ, C)
was conducted by a “grid search” approach [54]. The candidate values of (γ, C) were first
defined as exponentially increasing sequences (γ = 2−15, 2−13, . . . , 29; C = 2−5, 2−3, . . . , 215),
which were the ranges adopted by most EEG-based SVM-ML studies to identify the optimal
(γ, C) values [42,55,56]. Following this, different pairs of γ and C (13 × 11 = 143 pairs)
values were generated, and each pair was used to construct the RBF kernel of the SVM.
The classification accuracies with the different hyperparameter pairs were evaluated by
three-fold CV according to the greatest common divisor of the number of stroke patients
(i.e., n = 12) and unimpaired controls (i.e., n = 15); this is a common pilot estimation
approach used in previous studies [57]. The value pair that achieved the best classification

7



Appl. Sci. 2022, 12, 4796

accuracy was then adopted as the optimal hyperparameters for model configuration. The
above SVM algorithm was implemented using the Scikit-learn toolbox, an open-source ML
toolbox in Python [58].

Figure 2. Configuration flowchart for the SVM-ML model. RSP: relative spectral power; SVM: support
vector machine; RBF: radial basis function; Acc: accuracy; LOO: leave-one-out; CV: cross validation.

The grid search results of γ and C are displayed in Figure 3, where Figure 3a–e present
the accuracies of different (γ, C) pairs for distinguishing the UD, SA, and SU groups with
the RSPmean and RSPmax of the 62-channel EEG in the delta, theta, alpha, beta, and gamma
bands, respectively, as input features. The coordinates and values of the highest accuracy
for each frequency band are indicated by the red dots in Figure 3a–e. Among all the
accuracies, the model with the highest accuracy of 67.4% (γ = 23, C = 29) was achieved in
the gamma band.

As the sensorimotor cortex is the main response area for sensory stimulations [59],
the classification performance achieved by including only the EEG channels covering the
sensorimotor cortex was evaluated in the SVM-ML model configuration. The RSPmean
and RSPmax of the corresponding 21-channel EEG (i.e., FC1–FC6, FCZ, C1–C6, CZ, CP1–
CP6, CPZ), which cover the sensorimotor area [60], were used as the inputs to the model.
Figure 4 shows the accuracies with the RSP features for the 21-channel EEG, and the highest
accuracy of 76.8% (γ = 21, C = 23) was obtained for the gamma band as well.

The accuracies of the SVM-ML model for classifying the UD, SA, and SU groups with
the RBF kernel hyperparameter pairs in the different bands are summarized in Table 2.
Compared to other frequency bands, the gamma band has the best average accuracy
performance for both channel set selections. The average and peak accuracies of the gamma
band of the 21-channel EEG were better than those of the 62-channel EEG. Therefore, the
hyperparameter pair (γ = 21, C = 23) from the 21-channel EEG was selected as the optimal
RBF kernel hyperparameters.

After the RBF kernel function was determined, the k-fold CV was also configured
using the RSP features of the 21-channel EEG as inputs to improve generalization of the
SVM-ML model. Compared to the simple train/test split, the k-fold CV ensures that each
sample from the original dataset has the chance of appearing in the training and testing set,
which results in less biased evaluations [61]. Since the partition of k folds is random, the
k-fold CV was performed 10 times to calculate the mean estimate to decrease the variance
of accuracy estimations of the one-shot k-fold CV [62–64]. Typically, the configuration of
k is 5 or 10, as these values have been shown to be the bias-variance trade-off for model
evaluation [61,65]. In our experiment, different selections of k from 2 to 10 were employed
to compare the influence of k on model performance. In addition, the leave-one-out CV,
where k is the number of samples in the dataset, was used as a complementary comparison
to different k-fold CV. Although the leave-one-out CV is more computationally expensive
compared to the above strategies, i.e., five-fold and ten-fold CV, it offers an unbiased
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evaluation of the model performance as each sample is given the opportunity to represent
the entirety of the test dataset [61].

Figure 3. Grid search results of γ and C in the SVM-ML model with RBF kernel using the 62-channel
EEG RSP features of the delta, theta, alpha, beta, and gamma bands. Acc: accuracy. Peak Acc: highest
classification accuracy of the SVM-ML model in the predefined range of (γ, C); Peak Loc: location (γ,
C) corresponding to the highest classification accuracy of the SVM-ML model.

The accuracies of the SVM-ML model for distinguishing between the UD, SA, and
SU groups with different k-fold CV strategies in the different frequency bands are shown
in Table 3. The model achieved the highest accuracy of 75.4% in the gamma band by
six-fold CV. For the leave-one-out CV, the model obtained the highest classification accu-
racy of 74.4% in the gamma band as well. Therefore, the six-fold CV was selected as the
optimal evaluation strategy for the model when using the RSP features of the 21-channel
EEG as inputs.
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Figure 4. Grid search results of γ and C in the SVM-ML model with RBF kernel using the 21-channel
EEG RSP features of the delta, theta, alpha, beta, and gamma bands. Acc: accuracy. Peak Acc: highest
classification accuracy of the SVM-ML model in the predefined range of (γ, C); Peak Loc: location (γ,
C) corresponding to the highest classification accuracy of the SVM-ML model.

2.4. Generalization of the SVM-ML Model

Using the RSP features during stimulation with cotton fabric as the baseline inputs,
the SVM-ML model was established. Then, we first investigated the generalization per-
formance of the model for classifying the upper-limb groups with the inputs of different
fabrics, i.e., nylon, wool, and cotton. The measured RSP features in the respective stimula-
tions were then input to the developed model, and the achieved accuracies are summarized
in Table 4. The classification accuracies of the different fabric stimulations were not nor-
mally distributed (p < 0.5, Shapiro–Wilk test) in each frequency band. Significant intergroup
differences in the accuracies (p < 0.001, Kruskal–Wallis test) with respect to fabric stimula-
tion were observed in the delta, theta, alpha, beta, and gamma bands. The model achieved
the highest classification accuracies of 75.4%, 83.5%, and 84.3% for the cotton, nylon, and
wool stimulations, respectively, in the gamma band.

10



Appl. Sci. 2022, 12, 4796

Table 2. Accuracies of the SVM-ML model for classifying the three upper-limb groups with the RBF
kernel hyperparameter pairs in different frequency bands.

Number of
EEG Channels

Delta Theta Alpha Beta Gamma

62

Average Acc 33.5% ± 0.05 37.8% ± 0.05 35.8% ± 0.03 38.2% ± 0.04 44.7% ± 0.11

Peak Acc 38.5% 51.8% 40.0% 47.6% 67.4%

Peak Loc (γ, C) (2−3, 25) (23, 21) (2−5, 21) (2−7, 27) (23, 29)

21

Average Acc 39.1% ± 0.06 35.6% ± 0.04 33.2% ± 0.06 41.3% ± 0.07 49.2% ± 0.16

Peak Acc 57.3% 49.3% 38.5% 57.8% 76.8%

Peak Loc (γ, C) (2−3, 211) (23, 213) (2−13, 210) (2−5, 213) (21, 23)

Note: Average Acc: average classification accuracy of the SVM-ML model with all the RBF kernel hyperparameter
pairs; Peak Acc: highest classification accuracy of the SVM-ML model in the predefined range of (γ, C); Peak Loc:
location (γ, C) corresponding to the highest classification accuracy of the SVM-ML model.

Table 3. Accuracies of the SVM-ML model for classifying the three upper-limb groups with different
k-fold CV strategies in the different frequency bands.

CV
Accuracy

Delta Theta Alpha Beta Gamma

2-fold 49.6% ± 0.07 38.1% ± 0.06 27.6% ± 0.06 50.7% ± 0.07 73.8% ± 0.05

3-fold 49.1% ± 0.06 33.3% ± 0.07 26.0% ± 0.05 51.0% ± 0.05 74.5% ± 0.04

4-fold 49.7% ± 0.06 34.7% ± 0.06 23.9% ± 0.05 50.1% ± 0.05 74.8% ± 0.04

5-fold 49.7% ± 0.06 32.4% ± 0.05 26.1% ± 0.05 51.2% ± 0.04 75.0% ± 0.03

6-fold 53.2% ± 0.05 35.0% ± 0.06 22.2% ± 0.05 50.8% ± 0.05 75.4% ± 0.04

7-fold 46.7% ± 0.06 32.6% ± 0.05 32.9% ± 0.05 48.2% ± 0.06 72.6% ± 0.04

8-fold 47.0% ± 0.07 31.3% ± 0.06 28.9% ± 0.06 47.2% ± 0.06 74.8% ± 0.04

9-fold 49.5% ± 0.07 31.4% ± 0.06 27.8% ± 0.06 49.1% ± 0.06 74.7% ± 0.05

10-fold 51.7% ± 0.07 33.0% ± 0.06 25.9% ± 0.06 50.0% ± 0.05 74.8% ± 0.05

LOO 51.3% 28.2% 12.8% 53.8% 74.4%
Note: Data are given as mean ± SD. CV: cross validation; LOO: leave-one-out.

Table 4. Overall accuracies of the SVM-ML model for classifying different fabric stimulations.

Fabric
Stimulation

Accuracy

Delta Theta Alpha Beta Gamma

Cotton 53.2% ± 0.05 35.0% ± 0.06 22.3% ± 0.05 50.8% ± 0.05 75.4% ± 0.04

Nylon 21.0% ± 0.04 40.6% ± 0.05 51.4% ± 0.04 63.2% ± 0.03 83.5% ± 0.02

Wool 30.3% ± 0.04 25.6% ± 0.06 43.0% ± 0.05 69.2% ± 0.04 84.3% ± 0.03

Significance
(p-value) <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 ***

Note: Data are given as mean ± SD. The significant differences are indicated by ‘***’ (p < 0.001, Kruskal–Wallis test).

The comparison of the overall accuracies of the SVM-ML model with respect to fabric
stimulation in each band are shown in Figure 5. Significant differences in the accuracies
were observed in the delta, theta, alpha, beta, and gamma bands for pairwise comparisons
among the three different fabric stimulations (p < 0.001, Kruskal–Wallis with Bonferroni
post-hoc test), except for the difference between nylon and wool in the gamma band
(p > 0.05, Kruskal–Wallis with Bonferroni post-hoc test). The models with nylon and wool
achieved significantly higher accuracies in the beta and gamma bands than those with
cotton (p < 0.001, Kruskal–Wallis with Bonferroni post-hoc test).
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Figure 5. Comparisons of the overall classification accuracies of the SVM-ML model with respect
to fabric stimulations in the delta, theta, alpha, beta, and gamma bands. The significant intergroup
differences are indicated by ‘***’ (p < 0.001, Kruskal–Wallis with Bonferroni post-hoc test).

The generalized performance of the model was also evaluated by considering the
arm differences during stimulations with different fabrics (Table 5). The classification
accuracies of each upper-limb group during stimulations with different fabrics are not
normally distributed (p < 0.5, Shapiro–Wilk test). Significant differences in the accuracies
(p < 0.001, Kruskal–Wallis test) with respect to fabric stimulations were observed in each
band, except for the SU group in the gamma band (p > 0.05, Kruskal–Wallis test). The
highest classification accuracy for each upper-limb group was achieved in the gamma band.

Table 5. Accuracies of the SVM-ML model for classifying the three upper-limb groups with different
fabric stimulations.

Fabric
Stimulation

Accuracy

Delta Theta Alpha Beta Gamma

SA

Cotton 47.9% ± 0.09 28.8% ± 0.11 28.5% ± 0.10 48.9% ± 0.10 59.7% ± 0.08

Nylon 26.8% ± 0.09 31.9% ± 0.08 54.1% ± 0.11 64.3% ± 0.10 76.2% ± 0.06

Wool 22.9% ± 0.09 21.7% ± 0.08 51.1% ± 0.11 53.6% ± 0.08 78.9% ± 0.04

p-value <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 ***

SU

Cotton 48.3% ± 0.08 40.9% ± 0.13 27.0% ± 0.09 69.3% ± 0.05 91.0% ± 0.04

Nylon 15.5% ± 0.07 40.5% ± 0.13 61.7% ± 0.04 74.9% ± 0.01 91.2% ± 0.03

Wool 50.3% ± 0.03 27.8% ± 0.08 40.1% ± 0.04 84.9% ± 0.04 91.6% ± 0.01

p-value <0.001 *** <0.001 *** <0.001 *** <0.001 *** >0.05

UD

Cotton 51.4% ± 0.14 31.6% ± 0.10 22.0% ± 0.12 35.3% ± 0.12 78.0% ± 0.10

Nylon 24.0% ± 0.09 51.9% ± 0.07 39.2% ± 0.10 53.7% ± 0.05 83.4% ± 0.01

Wool 19.8% ± 0.09 30.0% ± 0.11 36.9% ± 0.10 71.9% ± 0.08 84.1% ± 0.06

p-value <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 ***

Note: Data are given as mean ± SD. The significant intergroup differences are indicated by ‘***’ (p < 0.001,
Kruskal–Wallis test).

Based on the results in Table 4 and Figure 5, the comparisons of the accuracies of the
SVM-ML model with respect to fabric stimulations when considering arm differences are
presented in Figure 6. In the SA group (Figure 6a), significant differences in accuracies with
respect to the fabric stimulations were obtained in the higher frequency bands, i.e., beta
(p < 0.001, Kruskal–Wallis with Bonferroni post-hoc test) and gamma (p < 0.05, Kruskal–
Wallis with Bonferroni post-hoc test) bands. No significant differences were found between
nylon and wool in the delta, theta, and alpha bands (p > 0.05, Kruskal–Wallis with Bonfer-
roni post-hoc test). In the SU group (Figure 6b), significant differences in accuracies with
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respect to fabric stimulations were found in the delta (p < 0.001, Kruskal–Wallis with Bonfer-
roni post-hoc test), alpha (p < 0.001, Kruskal–Wallis with Bonferroni post-hoc test), and beta
(p < 0.05, Kruskal–Wallis with Bonferroni post-hoc test) bands. No significant difference
was observed between cotton and nylon in the theta band (p > 0.05, Kruskal–Wallis with
Bonferroni post-hoc test). In the UD group (Figure 6c), significant differences in accuracies
with respect to fabric stimulations were found in almost all frequency bands (p < 0.001,
Kruskal–Wallis with Bonferroni post-hoc test), except for the difference between nylon and
wool in the gamma band (p > 0.05, Kruskal–Wallis with Bonferroni post-hoc test).

Figure 6. Comparisons of the classification accuracies of the SVM-ML model with respect to fabric
stimulations when considering arm differences, i.e., (a) SA, (b) SU, and (c) UD. The significant
differences are indicated by ‘*’ for p < 0.05 and ‘***’ for p < 0.001 (Kruskal–Wallis with Bonferroni
post-hoc test).

3. Discussion

In this study, the EEG-based SVM-ML model was built using the RSP features during
stimulation with cotton fabric as the baseline inputs. The model’s generalization perfor-
mance was investigated by comparing the classification accuracies during stimulations
with different fabrics.

3.1. SVM-ML Configuration
3.1.1. RBF Kernel Determination

The grid search results of the hyperparameter pair (γ, C) for the RBF kernel (Figures 3
and 4) showed that the highest classification accuracies were obtained in the predefined
range of the hyperparameter pair. Similar boundaries of the hyperparameter pair (γ, C)
were also applied in other SVM-based studies, e.g., Chang et al. used the boundaries of
(e−8 ≤ γ ≤ e8, e−8 ≤ C ≤ e8) [66], and Hsu et al. selected the boundaries of (2−15 ≤ γ ≤ 23,
2−5 ≤ C ≤ 215) [42]. This showed that the selected optimal hyperparameter pair (γ, C) was
in the traditional search space, and the SVM-ML model with the general search space was
feasible for classifying the RSP features extracted from EEG during sensory assessments.
The kernel scaling parameter γ determines the complexity of the classification decision
function of the model [67]. For smaller values of γ, the decision function is nearly linear,
and for larger values of γ, the function becomes more curved [67]. The optimal value of
γ (21) chosen by the model was close to the upper boundary of the preset γ range, which
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suggested that there was a relatively strong nonlinearity among the EEGs of multiple upper-
limb groups in the original feature space, and the model obtained the “curved” decision
function by mapping the raw EEG to a higher dimensional space. The regularization
parameter C defines the penalty degree of the model for the percentage of deviation from
the misclassified trained data [67]. As the value of C increases, its penalty degree for the
model becomes larger, and the percentage of deviation of the misclassified data is smaller
during the training phase. The optimal value of C (23) selected by the model was relatively
lower compared to the predefined range of C. This suggested that the model tolerated a
greater percentage of misclassified training data when searching for the optimal decision
function, indicating that there was an overlap among the different groups of EEG data
points near the decision function. Meanwhile, the model with the optimal hyperparameter
pair (γ, C) achieved an accuracy of 76.8%, which was comparable to those reported in
studies on multiclass classification of EEG using SVM-ML models with accuracies exceeding
71.0% [68,69].

3.1.2. EEG Channel Selection

It was observed that the overall accuracies of the model with the 21-channel EEG were
better than those of the 62-channel EEG when not considering arm differences (Table 2).
The 21-channel EEG covers the sensorimotor cortex, which is the main response area to
sensory stimulations [70,71]. The accuracies based on the 21-channel EEG suggested that
direct cortical processing from the sensorimotor cortex was sufficient to capture the sensory
differences generated by different fabric samples through the SVM-ML model. Previous
studies have demonstrated that significant RSP variations for different EEG bands during
sensory stimulations were mainly captured in the sensorimotor cortex for both unimpaired
and stroke populations [28,72,73]. On the contrary, involuntary attention activities beyond
the sensorimotor cortex were involved in passive fabric stimulation experiments [28]. This
could be a hurdle to the recognition of cortical responses to fabric stimulations using the
SVM-ML model. Meanwhile, voluntary cognitive activities were also found to disturb mea-
surement of cortical responses to sensory stimulations [73,74]. For example, in post-stroke
sensory evaluation by a subjective questionnaire, stroke persons with sensory impairments
could distinguish different fabric stimulations because of the compensation of cognitive
processing, e.g., individual experiences, to the residual sensory pathways [28]. In this work,
the voluntary cognitive activities were minimized by asking the participants to stay awake
but mentally inactive during the fabric stimulations. Therefore, the EEG RSP features of
the sensorimotor cortex detected by the 21-channel EEG were sufficient for representing
the differences in direct cortical responses to fine tactile sensations.

Table 2 also shows that when identifying different fabric stimulations without consid-
ering arm differences, the model achieved better overall accuracies in higher bands, i.e., the
beta and gamma bands. This was consistent with the results of previous neurophysiologic
research into how the human brain reacts to tactile sensations induced by fabrics [74,75].
The cortical responses of the brain to tactile sensations are elicited by skin–fabric interac-
tions, which are characterized by the EEG beta and gamma band activations [76]. Beta
oscillations have been shown to be involved in the phasic locking process between the pri-
mary and secondary somatosensory cortex in response to tactile sensation [77]. Meanwhile,
it was observed that the neuronal assemblies of the sensorimotor cortex were joined in
large-scale networks oscillating in the beta band during maintenance of a sustained hand
lever press activity [78]. This phenomenon suggested that the primary somatosensory and
primary motor cortex were bound together in a beta-synchronized cortical network [78].
Furthermore, Greco et al. found that beta oscillations in the sensorimotor cortex served as
an informative feature characterizing affective tactile stimulation by interactions with dif-
ferent fabrics [79]. Singh et al. demonstrated that pleasant and unpleasant tactile sensations
present different beta-oscillation patterns [74]. The gamma oscillations of the sensorimotor
cortex were also observed in response to tactile sensation. This may reflect the timing code
and temporal organization for higher-order somatosensory processing, which is important
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for sensory binding [80,81]. In addition, the study by Aya et al. showed that gamma
oscillations were simultaneously evoked in the primary and secondary somatosensory
cortex during sensory stimulations, thus suggesting that it is critical for forming functional
cortico-cortical connections and for conveying somatosensory information from the primary
and secondary somatosensory cortex [82]. Bauer et al. found that tactile-stimuli-induced
gamma oscillations in the somatosensory cortex were enhanced and prolonged by spatial
tactile attention [83]. This indicated that gamma-band synchronization was instrumental in
the somatosensory system for processing behaviorally relevant stimulations [83]. Therefore,
the RSP variations in the beta and gamma bands were sensitive input features for the
SVM-ML model for both unimpaired and stroke persons.

3.2. K-Fold Cross Validation

During determination of k in CV, the model attained the highest accuracy with six-
fold CV in the gamma band (Table 3). This was also observed in terms of approximately
identical accuracies of the different numbers of k in the gamma band, which indicated that
the SVM-ML model achieved stable classification performance with good generalization
capacity for different combinations of training and testing datasets owing to the different
k-fold CV strategies [84]. Furthermore, the model with the leave-one-out CV achieved an
accuracy similar to the k-fold CV technique in the gamma band. This demonstrated the
model’s unbiased evaluation capability as a special case of k-fold CV, in which each sample
has a chance to represent the entire test dataset [85]. However, the computational cost of the
leave-one-out CV was greater than those of other configurations of k in the k-fold CV when
evaluating the SVM-ML model performance. This was in line with previous studies [85,86]
that investigated the computational efficiencies of k-fold and leave-one-out CV. Thus, it
was preferable to use the optimal k-fold CV, i.e., six-fold CV during model evaluations.

4. Generalization of the SVM-ML Model

4.1. Different Fabric Stimulations

In the evaluation of model generalization, the wool and nylon fabrics in the gamma band
achieved significantly higher accuracies than that of cotton fabric (Table 4 and Figure 5). This
was attributable to the differences in their stimulation intensities on the skin. According to
the study by Chen et al., neural oscillations in higher frequency bands, e.g., gamma band,
were lower when executing an easy task; however, they increased to higher levels to obtain
more information from the sensory environment when the task was difficult [87]. Cotton
is the most familiar fabric that is in direct contact with skin in daily life, and it provides
the lowest stimulation intensity during passive involuntary touch [28]. However, wool and
nylon offer more stimulating sensory experiences because of their textile physical properties,
which may require additional neural effort and cortical resources to evoke cortical responses
to stimulations [28]. This was further supported by the study by Jiao et al., who found that
wool elicited a relatively intense tactile stimulation in the form of scratching, resulting in the
sensation of discomfort [88]. They also discovered that touching wool fabric elicited higher
EEG RSP responses than cotton and nylon fabrics [88]. Hoefer et al. also observed that nylon
induced significant higher event-related potential (ERP) signals than cotton, implying that
there was less distraction and better cortical resources during tactile sensation [76]. As a result,
the model achieved relatively higher accuracies with the RSP features of nylon and wool
compared to cotton.

4.2. Different Upper-Limb Groups

When considering arm differences, the model yields various patterns for the compar-
ison of accuracies between stimulations with different fabrics (Table 5 and Figure 6). It
was observed that the significant differences in the accuracies for classifying post-stroke
stimulations with different fabrics shifted to higher frequency bands, i.e., the beta and
gamma bands, compared to the UD group. This pattern difference in the classification of
stimulations with different fabrics among the different upper-limb groups was similar to
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that for manual investigations comparing the EEG RSP differences between stroke and
unimpaired persons. In the manual evaluations, the post-stroke representative power spec-
tra to fine touch stimulation shifted to higher frequency bands, i.e., the beta and gamma
bands [28]. The sensitivity of the EEG-based RSP features and their capability for feature
mapping by the RBF kernel allowed the SVM-ML model to detect similar pattern as manual
evaluations. As the input features of the model, the average and maximal values of the
RSPs represent the significant differences in RSPs among multiple upper-limb groups. The
differences in the EEG RSP patterns in response to fabric stimulations have been discovered
in previous manual investigations and were mainly related to neuroplastic changes after
stroke [89]. For example, when the damage to the brain neurons result in post-stroke
sensorimotor function deficiencies, the cortex composed of various neural subsets could be
rewired [90,91]. Neural compensation to lesional functions can lead to redistributed pat-
terns of the cortical responses to external stimulations [92]. Meanwhile, the SVM with RBF
kernel can find the optimal decision boundary among multiple upper-limb groups owing
to its sufficient feature mapping capability. It implicitly transforms the original RSP features
to a high-dimensional feature space with fewer hyperparameters to be determined, which
guarantees the generalization capability of the model when supplying new input data [37].
Previous studies have also demonstrated that the SVM with RBF kernel achieves minimal
classification error rates in different clinical scenarios while controlling the complexity
of the model [36,93,94]. Therefore, based on the sensitivity of the RSP features and the
feature mapping capability of the RBF kernel, the proposed model was expected to achieve
similar performance as in manual inspection for distinguishing between unimpaired and
post-stroke persons.

5. Conclusions

In this study, an EEG-based SVM-ML model was established using the RSP features
of the EEG signals, i.e., RSPmean and RSPmax, during stimulation with cotton fabric as
the baseline input. The observations demonstrated that the RSPmean and RSPmax were
sensitive to fabric stimulations and could be used as representative input features to the
model. The generalization performance of the model was investigated by comparing the
classification accuracies during stimulations with different fabrics while considering arm
differences. The model determined that the significant differences in the accuracies of fabric
stimulations after stroke were shifted toward higher bands, i.e., beta and gamma bands,
similar to the differences in RSP patterns between post-stroke persons and unimpaired
participants as in manual investigations, thereby implying that the model could imitate
manual evaluations of cortical responses to fabric stimulations; this ability is expected to
aid in automatic assessments of post-stroke fine tactile sensation.
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Abstract: Background: Segmentation is, in many Pathomics projects, an initial step. Usually, in
supervised settings, well-annotated and large datasets are required. Regarding the rarity of such
datasets, unsupervised learning concepts appear to be a potential solution. Against this background,
we tested for a small dataset on lung cancer tissue microarrays (TMA) if a model (i) first can be
in a previously published unsupervised setting and (ii) secondly can be modified and retrained to
produce meaningful labels, and (iii) we finally compared this approach to standard segmentation
models. Methods: (ad i) First, a convolutional neuronal network (CNN) segmentation model is
trained in an unsupervised fashion, as recently described by Kanezaki et al. (ad ii) Second, the model
is modified by adding a remapping block and is retrained on an annotated dataset in a supervised
setting. (ad iii) Third, the segmentation results are compared to standard segmentation models
trained on the same dataset. Results: (ad i–ii) By adding an additional mapping-block layer and by
retraining, models previously trained in an unsupervised manner can produce meaningful labels.
(ad iii) The segmentation quality is inferior to standard segmentation models trained on the same
dataset. Conclusions: Unsupervised training in combination with subsequent supervised training
offers for histological images here no benefit.

Keywords: histopathology; lung cancer; supervised segmentation; unsupervised segmentation

1. Introduction

After the emergence of immunohistochemistry in the 1980s, molecular pathology
in the 2000s, and next-generation sequencing in the 2010s, the implementation of image
analysis tools into the methodical arsenal of pathology appears to be the next level of
development. Digital Pathology, Computational Pathology, and Pathomics are several
names for this new branch of expertise, and each term represents a slightly different
focus [1–3]. Pathomics, for example, focuses on the extraction of image features that
can act as biomarkers in the context of, e.g., neoplastic diseases. In this context, image
segmentation is one of the early but essential steps. On the basis of segmented images,
image features are extracted and used in further analysis [1]. With machine learning-
based image segmentation techniques such as convolutional neuronal networks (CNNs),
high-quality and reliable image segmentation is possible. These CNN-based segmentation
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approaches typically comprise four development phases: Phase 1 is the creation of a well-
labelled dataset; phase 2 is the choice of the model architecture; phase 3 is the design or
choice of an appropriate loss function; and phase 4 is choosing or defining an appropriate
optimiser [4]. For phase 1, in a usual supervised setting, to avoid overfitting, typically, large
annotated datasets are necessary. Creating a representative, large training database tends
to be tedious, especially the segmentation tasks; therefore, good datasets are scarce [3,5–7].
To overcome this limitation, several publicly available databases are available online—for
example, the Atlas of Digital Pathology [8]. Unfortunately, such databases do not help with
more specific questions than segmenting different, non-neoplastic tissues. In addition, rare
entities cannot be covered. Many technically different methods have been implemented
to overcome the dependency on laboriously generated huge databases. These methods
either reduce the number of annotated data needed or are completely independent of
labelled data. In addition to approaches based on generated features, of particular interest
in this study are machine learning methods that learn the features independently [5,9,10].
On one hand, some methods apply machine learning on small datasets, such as few-shot
learning [11,12] or zero-shot learning [13,14]. On the other hand, there are completely
unsupervised learning methods for classification or segmentation tasks [5].

Against this background, recent publications by Kanezaki et al. on unsupervised
image segmentation are of substantial interest. They describe a framework to train CNN
segmentation models that is completely unsupervised [15,16].

In this work, (i) we tested this approach for the segmentation of non-small cell lung
carcinoma in tissue microarrays as an example. Furthermore, (ii) we addressed the problem
that unsupervised segmentation leads to undefined labels. To map the labels by the
unsupervised training to known, meaningful labels (e.g., adenocarcinoma), we tested a
second training step with a small human-labelled dataset.

2. Materials and Methods

2.1. Data Collection and Management

Whole-slide tissue specimens of formalin-fixed paraffin-embedded tumour tissue and
tissue microarrays (TMAs) were retrieved (Institute of Pathology, Medical Faculty Heidel-
berg, Heidelberg University) and used in a completely anonymous manner. No patient
information—for example, age or sex—was included. Only the histological diagnoses
(e.g., normal lung tissue, adenocarcinoma of the lung, squamous cell carcinoma of the
lung) were used. This study was approved by the local ethics committee (#S-207/2005 and
#S315/2020).

2.2. Whole-Slide Image and TMA Image Preparation

The whole tissue sections (haematoxylin–eosin(HE)-stained) and TMAs (HE-stained
and stained by immunohistochemistry (IHC) for panCK) were scanned by a Leica whole-
slide scanner or by a PreciPoint M8-scanner. The resulting whole-slide images were saved
in the .svs format. For model training and validation, the TMA cores were automatically
cropped and saved to 2600 × 2600 pixel-sized images by using QuPath implemented
functions [17]. The whole-slide images were automatically cropped into tiles of the same
size by a QuPath script published by Peter Bankhead.

2.3. Training and Validation Dataset (Dataset #1)

Dataset #1 was used for model training and validation. It is based on IHC-HE-TMA
core pairs. In this case, every core has a clinical label (normal tissue, adenocarcinoma,
squamous cell carcinoma). This dataset was created in a multi-step approach: Step #1:
From the included TMA paraffin block, two subsequent sections were produced: the first
was HE-stained and the second was IHC-stained (panCK). Both slides were scanned, and
the TMA cores were extracted as described above. Step #2: On the basis of their location on
the TMA grid, the HE- and the IHC-stained cores can be assigned to each other (e.g., TMA
grid position A-1 in HE stain corresponds to TMA grid position A-1 in panCK stain). Next,

22



Appl. Sci. 2022, 12, 3718

these images, containing a single TMA core each, were registered, resulting in the IHC-HE-
TMA core pair. For registration, the airlab tool published by Sandkuehler et al. was used
(https://github.com/airlab-unibas/airlab accessed on 1 February 2022). Step #3: The IHC-
positive area of each image (containing epithelium) was extracted by using a combination
of colour deconvolution [18] and thresholding, resulting in a map for background tissue
and IHC-positive tissue. Based on the clinical annotation (every TMA grid position is
assigned to one case), the IHC-positive areas are assigned to the defined labels: 1 non-
tumourous tissue (NT), 2 adenocarcinoma (ADC), and 3 squamous cell carcinoma (SqCC).
IHC-negative areas are assigned based on thresholding to the labels background (0) and
non-tumourous tissue (1). Notably, based on this assignment approach, IHC-positive
epithelium in normal tissue is labelled 1 together with the IHC-negative tissue in the same
cases. The label ratio between the area per label is approximately 19.2 (background (BG))
to 4.7 (normal tissue or non-tumourous tissue (NT)) to 1.5 (adenocarcinoma (ADC)) to 1.0
(sqqmous cell carcinoma (SqCC)). Because of the image pair production in steps #1 and
#2, the labels produced in step #3 can be used for the HE-stained images. By doing so, the
advantage here is that segmentation data are produced without the need for human experts
to have laboriously drawn each class per TMA core. However, this advantage is at the cost
of errors due to, for example, poor registration or false thresholding between IHC-negative
and -positive areas. The multi-stage process only produces a rough visual inspection of
the results. In summary, dataset #1 contained n = 247 images (n = 108 for NT, n = 84 for
ADC, n = 55 for SqCC). Nine examples are shown in Figure 1. This dataset was used for
the training and validation of the modified and retrained unsupervised models (hereafter
Kanezaki models) and the supervised model (a UNet-Variant). Dataset #1 is available at
HeiData: https://heidata.uni-heidelberg.de/privateurl.xhtml?token=0129f05c-b1a7-492
7-a841-2440eb0b3cc4.

Figure 1. Example for training and validation dataset (dataset #1). Based on registered pairs of HE-
and IHC-stained sections from TMA cores, tumour segmentation or rather tumour mask generation
is performed by a combination of colour deconvolution and thresholding. (A) Composite image of
nine HE-stained TMA cores. For each of the three classes (NT, ADC, SqCC), there are three images.
(B) Corresponding IHC(panCK)-stained images were registered on the HE-stained cores. Based
on the IHC-positive area and the diagnosis per core, the according image and image regions were
labelled: 0 background, 1 normal tissue or non-tumourous (NT), 2 adenocarcinoma (ADC), and
3 squamous cell carcinoma (SqCC)

2.4. Testing Dataset (Dataset #2)

Dataset #2 was used for model testing only and was based on manual segmentation
(examples shown in Figure 2). Therefore, TMA images were manually annotated, seg-
mented, and further prepared in QuPath [17]. For this manual segmentation, the following
labels were defined (in accordance with the definitions for dataset #1): 0 background,
1 non-tumourous tissue (NT), 2 adenocarcinoma (ADC), and 3 squamous cell carcinoma
(SqCC). The ratio between the area per label was approximately 3.7 (background) to 1.2 (NT)
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to 1.1 (ADC) to 1.0 (SqCC). Dataset #2 contained n = 40 images (n = 3 for NT, n = 18 for
ADC, n = 19 for SqCC) and is available at HeiData: https://heidata.uni-heidelberg.de/
privateurl.xhtml?token=0129f05c-b1a7-4927-a841-2440eb0b3cc4.

Figure 2. Example for testing dataset (dataset #2). Example of human-labelled ground truth images
used for testing the models. (A) Composite image of nine TMA cores. For each of the three classes
(NT, ADC, Sqcc), there were three images. (B) Composite image of corresponding labelled images
with 0 for background, 1 for normal tissue or non-tumourous tissue (NT), 2 for adenocarcinoma
(ADC), and 3 for squamous cell carcinoma (SqCC).

2.5. Model Training

Machine learning was performed in Python with PyTorch [19]. For supervised learn-
ing, the Segmentation Models toolbox from Yakubovskiy et al. [20] was used (https:
//github.com/qubvel/segmentation_models.pytorch, accessed on 1 February 2022). For
unsupervised training, the models and scripts from Kanezaki et al. [15] were adapted
(https://github.com/kanezaki/pytorch-unsupervised-segmentation, accessed on 1 Febru-
ary 2022) and used.

2.6. Loss Functions

Against the background of unbalanced labels and heterogeneously shaped objects,
different loss functions selected from the plethora of published functions were used. These
loss functions are differently well suited for imbalanced datasets. Furthermore, the loss
functions are differently well suited for different models [21,22] (Table 1).

Table 1. List of different loss functions here tested. A set of loss functions is tested against the
background of imbalanced labels and heterogeneous objects.

Loss Function Source

Cross-Entropy Loss Pytorch implementation [19]
Dice Loss Pytorch implementation [19]
Focal Loss pytorch-toolbelt implementation [23]

Tversky Loss pywick implementation [24]
Boundary loss proposed by Bokhovkin et al. [25]

Surface Loss with Cross-Entropy Loss proposed by Kervadec et al. [26]
Surface Loss with Focal Loss proposed by Kervadec et al. [26]

2.7. Segmentation Quality Assessment

The segmentation quality per image was evaluated by calculating the accuracy and the
F1 score, each in its scikit-learn implementation [27]. As ground truth for the calculations,
the validation set (see Section 2.3) and the test set (see Section 2.4) were used.
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3. Results

3.1. How Can Labels from a Model Trained in an Unsupervised Manner Be Converted to
Meaningful Labels?

For unsupervised image segmentation, Kanezaki et al. (Figure 3) published a training
approach in 2018 based on similarity [15] and another in 2020 based on differentiable
feature clustering [28]. Here, we use the first approach and the framework described for it,
which we refer to as the Kanezaki framework. It starts with a high number of classes and
minimises the label classes in every training epoch, until a predefined number of classes
is reached. The label classes are merged based on the similarity in the segmented image
region. Finally, there are a given number of label classes segmented per image. However,
these labels do not correspond to meaningful labels. Which label class (e.g., 1) belongs to
which histological structure (e.g., alveolar epithelium) is unclear. We mapped such a model
to defined classes by a two-step process.

First, the Kanezaki training approach was reproduced using the histological images
available. The excised HE-stained cores were used in random order for training. As we
have described, the approach of Kanezaki et al. starts with a predefined number of labels—
in our case, 100. Next, at each epoch, the number of labels was reduced or the labels were
merged. The training process ended when the previously specified expected number of
labels was reached or undercut. Because, in our setting, the classes ‘background’, ‘tumour
stroma’, ‘squamous cell carcinoma’, and ‘adenocarcinoma’ were expected, the number of
expected labels was set to 10.

Figure 3. Schematic of the remapping approach. Kanezaki et al. described an approach for unsu-
pervised segmentation [15]. This leads to meaningless morphological labelling. For example, the
epithelial and stromal structures are segmented. In this manner, homogeneous labels (in terms of
texture, for example) are created. Depending on the resolution, this can lead to tumour formation and
splitting of the tumour stroma into different partial labels. The main hypothesis of the underlying
work is that labels such as ‘adenocarcinoma’ are composed of a distinct set of morphological labels
produced by unsupervised training. The approach described herein is divided into two main parts.
(A) First, a CNN model (e.g., consisting of several convolutional and batch normalization blocks) is
trained in an unsupervised manner, as described by Kanezaki et al. This training was performed on
the image batches to ensure that all classes were represented. (B) An additional block was added to
the model to map the classes of the model to patho-histological labels. The mapping was trained in a
supervised manner. There were four components for the label frequency vectors per TMA core.

For the CNN model, a simple model composed of a linear combination of convolution
and batch normalisation blocks was used, as described by Kanezaki et al. [15]. This simple
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CNN model is henceforth referred to as concise_CNN (visualised in Figure A1A). Other
more complex segmentation models, such as UNets or FCNs, have also been trained in
this framework. However, only concise models with a few layers (called concise_UNET
and concise_FCN; visualised in Figure A1B,C) converged. Standard UNet-variants such
as those published in Yakubovskiy et al. (henceforth called Standard_UNET) cannot be
trained [20].

Second, to map the labels to meaningful labels, a fully connected layer is added to
the model previously trained in an unsupervised setting. This layer is supposed to map
the learned labels to given, defined labels, such as ‘stroma’. The extended model is then
retrained again in a supervised setting on a small, labelled dataset. This two-step approach
is performed for three image sizes (256 × 256, 512 × 512, and 1024 × 1024 pixels), to test
whether the image or object size affects the segmentation performance.

3.2. Do Different Loss Functions Affect Retraining?

The used lung cancer datasets (dataset #1 based on IHC annotations (Section 2.3) and
dataset #2 based on manual segmentation (Section 2.4)) are highly heterogeneous. For
example, the background area (label 0) was three-times more frequent than the other three
labels (1–3) in the overall dataset. In a single image, the ratio of, e.g., adenocarcinoma to
stroma can easily exceed 1 to 10. Furthermore, the shape and histological characteristics
of tumour formations of one entity (e.g., SqCC) can be diverse. To compensate for the
imbalanced dataset with regard to the area per label, we compared different error functions
and metrics.

The loss functions are as follows: (1) the PyTorch-implemented weighted cross-entropy
loss function [19]; (2) the dice loss and (3) the focal loss function (with the pytorch-toolbelt
implementation [23]); (4) the Tversky loss function (with its pywick implementation [24]);
(5) the boundary loss function proposed by Bokhovkin et al. [25]; and (6) the surface loss
function proposed by Kervadec et al. [26].

As a readout, the segmentation quality was measured by calculating the accuracy and
the F1 score. These parameters were assessed for the validation dataset (being 0.25 for
dataset #1) and the test dataset (dataset #2). Notably, there is a morphological or quality
difference between IHC-based and manual segmentation. Thus, for the models, it is a
certain transfer task, because the training, validation, or test data differ.

Independent of the image size, the segmentation quality reaches its highest value
when the cross-entropy loss function is used alone or in combination (for both validation
and testing). Notably, the segmentation quality was only moderate even for the best models.
For example, for the validation dataset (see Table 2), we observed unbalanced cross-entropy
with an accuracy of 0.88 ± 0.11 and an F1 score of 0.63 ± 0.19; for balanced cross-entropy,
we observed an accuracy of 0.82 ± 0.13 and an F1 score of 0.47 ± 0.16; and for surface
loss (in combination with balanced cross-entropy), as described by Kervadec et al. [26], we
observed an accuracy of 0.86 ± 0.22 and an F1 score of 0.39 ± 0.12).

3.3. In Comparison, What Are the Results of an Often-Used Segmentation Model Trained in a
Supervised Manner?

For comparing the segmentation quality, a standard UNet-variant [20] was trained.
This model was trained and validated on dataset #1 (Section 2.3) and tested on dataset #2
(Section 2.4) under the same conditions as described above for the Kanezaki models. Differ-
ent image sizes and error functions were used to visualise their effects on the segmentation
quality (measured with accuracy and the F1 score).
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Table 2. Retrained unsupervised segmentation results. An adapted Kanezaki model was retrained
on different image sizes (256 × 256 and 512 × 512 pixels) with five different loss functions: (1) cross-
entropy, (2) dice loss, (3) focal loss, (4) Tversky loss, and (5) boundary loss function. The validation
set corresponds to 0.25 from dataset #1 (compare Section 2.3) and the test set corresponds to the entire
dataset #2 (compare Section 2.4). As a metric for the segmentation quality, the accuracy and F1 score
are calculated.

Image
Size

Loss Function
Validation Set
(Accuracy/F1)

Test Set
(Accuracy/F1)

25
6

Cross-Entropy
(balanced)

0.82 ± 0.13 0.47 ± 0.16 0.63 ± 0.21 0.37 ± 0.09

Cross-Entropy
(unbalanced)

0.88 ± 0.11 0.63 ± 0.19 0.59 ± 0.21 0.43 ± 0.16

Surface Loss
(with Cross-Entropy)

0.86 ± 0.22 0.39 ± 0.12 0.51 ± 0.17 0.33 ± 0.10

Surface Loss
(with Dice Loss)

0.32 ± 0.12 0.28 ± 0.11 0.44 ± 0.23 0.30 ± 0.11

Focal Loss 0.88 ± 0.12 0.63 ± 0.21 0.59 ± 0.20 0.43 ± 0.18
Tversky Loss 0.87 ± 0.12 0.62 ± 0.21 0.57 ± 0.19 0.39 ± 0.16

Dice Loss 0.86 ± 0.12 0.60 ± 0.21 0.61 ± 0.16 0.37 ± 0.21
Boundary Loss 0.13 ± 0.07 0.15 ± 0.06 0.27 ± 0.17 0.17 ± 0.06

51
2

Cross-Entropy
(balanced)

0.86 ± 0.12 0.53 ± 0.17 0.60 ± 0.11 0.40 ± 0.08

Cross-Entropy
(unbalanced)

0.87 ± 0.12 0.56 ± 0.18 0.60 ± 0.16 0.37 ± 0.10

Surface Loss
(with Cross-Entropy)

0.86 ± 0.11 0.56 ± 0.20 0.66 ± 0.16 0.41 ± 0.10

Surface Loss
(with Dice Loss)

0.28 ± 0.09 0.26 ± 0.08 0.33 ± 0.10 0.25 ± 0.07

Focal Loss 0.88 ± 0.12 0.58 ± 0.21 0.64 ± 0.18 0.36 ± 0.11
Tversky Loss 0.88 ± 0.11 0.56 ± 0.20 0.60 ± 0.17 0.36 ± 0.10

Dice Loss 0.88 ± 0.11 0.54 ± 0.20 0.60 ± 0.15 0.37 ± 0.10
Boundary Loss 0.13 ± 0.08 0.14 ± 0.06 0.20 ± 0.11 0.15 ± 0.07

3.4. How Does the Training Dataset Size Affect the Segmentation Quality of the Models Trained
under Unsupervised and Supervised Conditions?

To test whether the segmentation performance of the models tested depends on the
size of the training data as expected, the modified concise_CNN and the UNet-model were
pretrained with eight subsets of different size from the previous datasets (see x-axis in
Figure 4: The first subset, named selection, was a manual image selection with three images
per diagnosis (NT, ADC, and SqCC) from dataset #2 (see Section 2.4). The other eight subsets
were named with 1.0, 0.75, 0.5, 0.25, 0.1, 0.05, and 0.01, respectively, after the fractions
from dataset #1 (see Section 2.3). In addition, to test the effect of the pretraininig of the
UNet-model, two UNet-models differing in the means of pretraining were tested: one naive
for histological images and henceforth referred to as UNet_naive (orange bars in Figure 4),
and the other with a ResNet-model [20] pretrained on a image tile classification task with
the classes normal tissue, adenocarcinoma, and squamous cell carcinoma, hereafter referred
to as UNet_histo (green bars in Figure 4).

All models were trained with the surface loss function (with the combination of
boundary loss and cross-entropy loss) [26] for 50 epochs. All image tiles used for training
and testing had a size of 256 × 256 pixels.

Segmentation quality was assessed based on the testing images (dataset #2), as in the
prior section.

27



Appl. Sci. 2022, 12, 3718

Figure 4. Effect of the number of images used for training. Three models were trained on eight
different datasets. The three models are: a small CNN variant as described by Kanezaki et al. [15]
(called concise_CNN), trained in an unsupervised approach and then modified and retrained as
described in this work to produce histologically meaningful labels; two UNet models [20] with a
ResNet backbone pretrained on a tissue classification task (called UNet_histo) and with a ResNet
backbone without pretraining (called UNet_histo). The eight datasets are a manual selection (with
nine images, three per diagnosis; compare Figure 1) from dataset #1 (called selection), and seven
increasingly larger fractions from dataset #2 (called 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, and 1.0) Subsequently,
the different models were tested using dataset #2. As a segmentation metric, the F1 score is plotted.

The models trained on dataset #2 had equal segmentation quality, as in the prior section.
For the Concise_CNN, the accuracy was 0.49 ± 0.22 and the F1 score was 0.31 ± 0.10. For
the UNet_naive, the accuracy and the F1 score were 0.53 ± 0.20 and 0.35 ± 0.12. Finally, for
the UNet_histo, the accuracy was 0.63 ± 0.18 and F1 score was 0.40 ± 0.10 (right end of
the box plot in Figure 4). Notably, no statistically significant differences were observed in
the accuracy and F1 score for the models in the range 0.1 to 1.0: for 0.1 of dataset #1, the F1
score was 0.30 ± 0.11; for the UNet_naive, it was 0.33 ± 0.09; and for the UNet_histo, it was
0.31 ± 0.07. Only for the small fractions (0.01 and the nine images from the selection) were
the models’ performance reduced (left end of the box plot in Figure 4). For the selection
with nine images, there was a trend for better performance of the Kanezaki model, since
its accuracy (0.43 ± 0.23) and F1 score (0.29±0.10) were not reduced as much as those
for the UNet models (for UNet_naive, 0.26 ± 0.06 and 0.20 ± 0.04, respectively, and for
UNet_histo, 0.13 ± 0.19 and 0.20 ± 0.07, respectively)

3.5. Does the Model Architecture Trained in an Unsupervised Manner Influence the
Segmentation Quality?

Kanezaki et al. [15] demonstrated that with their approach, different CNN models
can be trained. As we have described, complex models such as the UNet variant by
Yakubovskiy et al. [20] do not converge. However, simple model variants for FCN and
UNet can be trained and do converge. To compare three different architectures, we first used
the unsupervised Kanezaki approach to train the aforementioned models, which consist of
a linear combination of convolution blocks (called concise_CNN; sketched in Appendix A
Figure A1A), a relatively simple FCN variant (called concise_FCN; Appendix A Figure A1B),
and a relatively simple UNet variant (called concise_UNet; Appendix A Figure A1C).
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Next, these three models were retrained in a supervised setting (as described in
Section 4.1). To test if there is an advantage of such pretrained models for smaller datasets,
we performed retraining by using two training datasets: (i) a manual selection of nine
images (three per NT, ADC, and SqCC; called selection) and (ii) the entire dataset #1.

Regarding segmentation quality measurement, these models were again tested on
dataset #2 (the testing dataset).

For very small retraining datasets (selection; n = 9 images), the Concise_CNN shows
better results if only the last layers are retrained (accuracy 0.53 ± 0.21 and F1 score
0.34 ± 0.11). For the more complex concise_FCN (accuracy 0.50 ± 0.24 and F1 score
0.30 ± 0.10) and concise_UNet (accuracy 0.43 ± 0.11 and F1 score 0.24 ± 0.09), the models
only show moderate segmentation quality, if the entire models are retrained (Figure A2A).

For larger retraining datasets (dataset #1; n = 247 images (with 0.8 for training and 0.2
for validation)), there was no significant difference for all three models (Figure A2B). The best
model was the simple_FCN. The accuracy was 0.63 ± 0.21 and the F1 score was 0.38 ± 0.10
when only the last layers were retrained, and the accuracy was 0.61 ± 0.15 and the F1 score
was 0.387 ± 0.07 when all layers were retrained. The worst model was the simple_CNN. For
retraining only the last layers, the accuracy was 0.57 ± 0.17 and the F1 score was 0.36 ± 0.10.
For retraining all layers, the accuracy was 0.57 ± 0.19 and the F1 score was 0.37 ± 0.10.

Notably, segmentation results were more than 0.1 worse than the results for the complex
UNet model variants, such as the Standard_UNET (compare Table 3) by Yakubovskiy et al. [20].

Table 3. Supervised segmentation results. A UNet model was trained on different image sizes
(256x256 and 512x512 pixels) with five different loss functions: (1) cross-entropy, (2) dice loss, (3) focal
loss, (4) Tversky loss, and (5) boundary loss function. The validation set corresponds to 0.25 from
dataset #1 (compare Section 2.3) and the test set corresponds to the entire dataset #2 (compare
Section 2.4). As a metric for the segmentation quality, the accuracy and the F1 score are calculated.

Image
Size

Loss Function
Validation Set
(Accuracy/F1)

Test Set
(Accuracy/F1)

25
6

Cross-Entropy
(balanced)

0.86 ± 0.13 0.52 ± 0.20 0.71 ± 0.17 0.43 ± 0.08

Cross-Entropy
(unbalanced)

0.89 ± 0.11 0.64 ± 0.23 0.64 ± 0.19 0.45 ± 0.16

Surface Loss
(with Cross-Entropy)

0.87 ± 0.12 0.57 ± 0.17 0.86 ± 0.17 0.41 ± 0.08

Surface Loss
(with Dice Loss)

0.78 ± 0.18 0.41 ± 0.08 0.57 ± 0.16 0.34 ± 0.07

Focal Loss 0.88 ± 0.11 0.63 ± 0.23 0.70 ± 0.17 0.42 ± 0.08
Tversky Loss 0.88 ± 0.12 0.64 ± 0.23 0.70 ± 0.19 0.42 ± 0.09

Dice Loss 0.88 ± 0.12 0.54 ± 0.65 0.71 ± 0.22 0.51 ± 0.21
Boundary Loss 0.13 ± 0.14 0.06 ± 0.16 0.24 ± 0.04 0.19 ± 0.03

51
2

Cross-Entropy
(balanced)

0.86 ± 0.12 0.47 ± 0.09 0.70 ± 0.14 0.44 ± 0.08

Cross-Entropy
(unbalanced)

0.90 ± 0.10 0.66 ± 0.22 0.66 ± 0.15 0.42 ± 0.10

Surface Loss
(with Cross-Entropy)

0.90 ± 0.12 0.59 ± 0.19 0.68 ± 0.12 0.42 ± 0.08

Surface Loss
(with Dice Loss)

0.90 ± 0.09 0.54 ± 0.14 0.66 ± 0.14 0.40 ± 0.17

Focal Loss 0.91 ± 0.10 0.61 ± 0.19 0.66 ± 0.15 0.40 ± 0.08
Tversky Loss 0.90 ± 0.11 0.65 ± 0.21 0.66 ± 0.19 0.43 ± 0.13

Dice Loss 0.90 ± 0.10 0.64 ± 0.21 0.64 ± 0.16 0.39 ± 0.08
Boundary Loss 0.11 ± 0.06 0.12 ± 0.05 0.23 ± 0.11 0.15 ± 0.05
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3.6. Are the Labels Learned in an Unsupervised Fashion Already Meaningful?

As we have described, the models trained without supervision produce a predefined
number of labels that are not directly connected to labels defined by humans. These labels
are based on texture or morphological similarity. To test whether these labels alone correlate
to the known structures (e.g., tumour glands) or more to the diagnoses of non-tumourous
tissue (NT), adenocarcinoma (ADC), or squamous cell carcinoma (SqCC), in this context,
the frequency of these labels per diagnosis was examined.

The basic idea was that each TMA core has its own label composition or frequency
that correlates with the diagnosis. For example, a TMA core from a case with ADC should
contain (only) the labels NT and/or ADC. To test this assumption in principle, for human-
generated labels, we plotted the label composition (frequency of labels per TMA core)
against the known diagnosis per TMA kernel (see A1-2 in Figure 5). Plotting the label
frequency per diagnosis (A1 in Figure 5) or running a principal component analysis (PCA)
to compare the frequency vectors per TMA core (A2 in Figure 5) verifies this assumption. As
expected, cases with, for example, a diagnosis of ADC differ in that only in these cases does
the label ADC occur alongside the image background (BG) and non-tumourous tissue (NT).

Figure 5. Segmentation results for different models trained. Kanezaki et al. [15] described a
method for training CNN models in an unsupervised fashion, resulting in some labels that are not
assigned to certain structures by a human. For testing whether these labels or a combination are
already meaningful, the label frequency per TMA core was analysed with respect to the known
diagnosis per core (normal tissue (NT), adenocarcinoma (ADC), and squamous cell carcinoma
(SqCC)). (A1,A2) For testing whether the label frequency per TMA core could correlate with the
diagnosis, the label frequency of the manually annotated TMA cores was examined. (A1) shows the
label frequency (background (BG), normal tissue (NT), adenocarcinoma (ADC), and squamous cell
carcinoma (SqCC)) plotted against the diagnosis. (A2) shows a PCA (two components) for the label
frequency vector per TMA core. (B1,B2) For the labels produced by a simple CNN model (previously
called concise_CNN) trained in an unsupervised manner, the label frequency was also analysed in
regard to the known diagnosis per TMA core. (B1) shows the frequency distribution per label and
diagnosis. (B2) shows a PCA (two components) for the label frequency vectors per TMA core.
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In the next step, we examined the label frequency for the labels generated by the
model after unsupervised training. Here, it can be seen that neither plotting the label
frequency per diagnosis (B1 in Figure 5)) nor a PCA analysis (B2 in Figure 5) show a reliable
correlation between label composition and diagnosis. A distinction between ADC and
SqCC is not possible on this basis. Based on these plots, only TMA cores with and without
tumour infiltration can be distinguished. A comparable analysis for the standard UNet [20]
trained in a supervised setting also showed no sharp separation of diagnosis based on
label frequency (compare Appendix A Figure A3). This fits well with the overall moderate
segmentation quality of the models trained and validated. In the unsupervised trained or
retrained models, the small network size might be causative. In the standard UNet, the
training database may not be sufficiently large.

4. Discussion

Digital and complex medical data are available from various medical specialities.
For patients with tumours, for example, there are molecular data, and radiological and
pathological image data [10,29]. The analysis of these vast data from one field—or, better,
combined—leads to an opportunity to find next-generation, data-driven biomarkers [29].
In pathology, Pathomics is the subdiscipline dedicated to mapping image data to clinical
information such as nodal status. In other words, new image-based biomarkers are being
sought in Pathomics. In this context, the segmentation of histological images (e.g., in
tumour and stroma) is an early and major step in many projects [1,4]. For supervised
segmentation approaches, the scarcity of large, properly annotated datasets is a common
obstacle [3,7,30]. Not only is annotation tedious per se, but in many cases, the number of
available images is limited. For example, managing thymoma, a rare disease, significantly
limits the number of cases to be included [31]. Data augmentation techniques alone have
usually not solved the problem of small numbers [7,10]. In addition to supervised training
approaches, there are weakly supervised and unsupervised approaches that can help
to overcome this constraint. However, mapping the results produced by unsupervised
approaches to meaningful labels is a non-trivial task. Against this background, we tested,
in the complex setting of the distinction between pulmonary (solid-growing) ADC and
(non-keratinising) SqCC [32], whether a segmentation model could (i) be trained in an
unsupervised approach and (ii) modified and retrained in a supervised setting to produce
meaningful histological labels such as ‘ADC’ or ‘SqCC’. In the best case, these labels should
handle the aforementioned non-trivial distinction between solid-growing ADC and non-
keratinising SqCC. (iii) We compared the the segmentation results to standard segmentation
models for the same datasets.

(Ad i), we show that unsupervised image segmentation techniques or training frame-
works as described by Kanezaki et al. can be used for the unsupervised segmentation of
histological images (Figure 3A) [15,16]. Here, only aspects such as the ratio of filter size to
object size in the image need to be considered.

(Ad ii), we demonstrate that these models can be extended by another block, which
can, after a second supervised training, remap (by a linear combination) the produced
labels to meaningful labels such as ‘ADC’ or ‘SqCC’ (Figure 3B). Our new contribution
is that a simple linear combination of the different labels previously recognised based on
unsupervised training is applied to predict difficult labels such as ‘ADC’.

(Ad iii), finally, we compare the results to conventional training approaches and
demonstrate that our approach of remapping the labels is not superior to conventional
supervised learning. It is indeed inferior and there are only limited settings where it can be
useful.

4.1. Unsupervised Segmentation in Pathology and the Problem of Obtaining Meaningful Labels
(Ad i)

Image segmentation is, for many projects in the realm of Digital Pathology or Path-
omics, an important early step. There is a legion of different approaches that, based on
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the training setting, can be broadly categorised as fully supervised, weakly supervised,
and unsupervised approaches. For the supervised training approaches, the necessary
annotations are time-consuming and tedious to produce. Indeed, the shortage of such
annotated datasets is a well-known obstacle [3,7,30]. Needing less annotated data for
weakly supervised or no annotated data at all for unsupervised methods sounds, in this
context, very promising. In addition, by using unsupervised approaches, the need to tailor
to every project a well-annotated training set for machine learning models will be reduced
to gathering a fitting image collection [10].

Regarding weakly supervised approaches in pathology, generative adversarial net-
works can be used (after training in a weakly supervised setting) to generate synthetic data
based on a small dataset [5,33]. However, this would mean adding a training cost-intensive
step before the actual segmentation model training.

Regarding unsupervised image segmentation, in pathology, there are several pub-
lished approaches [5,9]. These approaches cover a vast methodological spectrum with,
for example, the combination of feature extraction and subsequent clustering [9,34] or the
application of auto-encoders for classification or staining adaption [5,35–37].

In a nutshell, there are various working, published, easily adaptable, unsupervised
approaches for segmenting (histological) images into different morphological regions. This
would then overcome the problem of data scarcity. Unfortunately, this advantage brings a
new problem. The labels generated based on morphological aspects (e.g., ‘blue granular
area’) cannot in every case be simply mapped to (histologically) meaningful labels such as
‘carcinoma’. One solution to this is to assign names to the labels by human experts. For
example, we could allow the expert to define blue areas with many small cells as lymphoid
infiltration. However, this expert approach only works if exactly one label is generated
per annotation. A multiphase process such as a tumour consisting of tumour cells, stroma,
and inflammatory infiltrate, etc., will not be nameable in this manner. For such multiphase
entities, the true annotation can be considers as a combination of the morphological labels.
However, this linear combination is too simplistic for many areas, as the context is then
missing. For example, a homogeneous, blue area can be part of the sky or a blue car. In this
regard, there are works that use graphs to include the neighbourhood relationships of the
individual labels. For example, Pourian et al. used graphs of regions to combine the visual
and spatial characteristics of different image parts to meaningful image-part groupings [38].
Alternatively, Wigness et al. used local graphs to combine labels in image regions [39].

Our approach, by contrast, is a simple linear combination of the different labels
generated by unsupervised learning based on morphological similarity (by a adding a fully
connected layer to a CNN model; see B in Figure 3). This linear combination is in analogy
to the pathological thinking of tissue or organs as a combination of different structures
such as epithelium, stroma, blood vessels, etc. [40,41]. However, this approach ignores
neighbourhood relations or local aspects.

4.2. CNN Models Previously Trained in an Unsupervised Manner Can Be Adapted to Produce
Meaningful Histological Labels (Ad ii)

As we have discussed, unsupervised training approaches can be used for histological
images, but they produce distinct regions or labels based on morphology (e.g., reddish
area with little texture) without histologically meaningful labels (such as, e.g., ‘fibrosis’).
We have successfully trained several CNN model variations (a combination of convolu-
tional blocks (called concise_CNN), a shallow UNET variant (called concise_UNET), and
a shallow FCN variant (called concise_FCN)) in an unsupervised approach, as described
by Kanezaki et al. [15,16]. The produced image regions, or rather labels, however, are
not mapped to the conventional histological structures. For instance, gland structures are
composed of an epithelial layer (one label) and the luminal space (another label). Patholo-
gists would usually annotate these structures together as a gland, in analogy to the typical
thinking of tissues and organs as combinations of a limited number of substrata [40,41].

32



Appl. Sci. 2022, 12, 3718

For remapping the labels produced by the model trained in an unsupervised manner,
we added a block (a fully connected layer) and then trained it on mapping the labels
to human-produced annotations (compare B in Figure 3). However, this again neces-
sitates the presence of (a small amount of) annotated data. Notably, this approach is
therefore no longer an unsupervised but a weakly supervised approach. By adding another
block and retraining, we can show that a model can produce meaningful annotations.
However, compared to other segmentation models (such as the UNet implementation by
Yakubovskiy et al. [20]) trained on the same dataset, the approach proposed here leads to
inferior results.

4.3. The Combination of Unsupervised and Subsequent Supervised Label Mapping Is Not Better
than Conventional CNN-Based Segmentation (Ad iii)

The inferior segmentation results in combination with again the need of a labelled
dataset argue against the herein proposed remapping of labels by adding an additional
block and by retraining with a small annotated dataset (compare Figure 3).

There are several potential explanations for the rather moderate segmentation results
of the proposed remapping approach:

(1) The model complexity is maybe not fitting with the task. Of note, the used
framework for unsupervised training described by Kanezaki et al. [15,16] only works
with shallow CNN models. Large models such as the UNet model implemented by
Yakubovskiy et al. [20] do not converge.

(2) Another idea would be that the ratio of the CNN filter size to the object size in
the images is either too small or too large. Therefore, we tested different images sizes
(256 × 256, 512 × 512, and 1024 × 1024 pixels) and found no significant difference. Likewise,
it would be possible in principle that the CNN models trained in this way were too shallow.
However, this is contradicted by the fact that the tumour sub-type differentiation also did
not work well in the UNet models used by other groups [20], which are frequently used
and perform well.

(3) The task itself is non-trivial since neither models adapted as described nor standard
segmentation models can make the distinction between different tumour types, particularly
between (non-keratinising) SqCc and (solid) ADC. In the used dataset, on which a work
on tumour classification has been published recently [32], the models can only distinguish
background from tissue and normal tissue from tumour parts. Of course, the models
trained supervised perform better (see Tables 2 and 3); however, their segmentation results
are also only moderate with assigning mixed labels (such as ADC and SqCC) per tumour
infiltration. This could be due to several reasons. For example, the task of distinguishing
between a non-glandular growing ADC and a non-keratinising SqCC is non-trivial, even
for an experienced pathologist, on the basis of HE-stained images alone. Moreover, unlike
the previously published work on this dataset for classification [32], where each image
must be assigned to one class, now, each pixel must be assigned the correct label.

(4) Finally, maybe the labels or morphological clusters segmented by the models
after unsupervised training are found within non-neoplastic and neoplastic structures. For
example, glandular structures are found in both. To test this, we looked at the distribution of
morphological labels generated by such a model compared to the diagnoses per TMA core
(see Figure 5). Based on plotting for every TMA core the frequency of the labels background
(BG), normal tissue (NT), adenocarcinoma (ADC), and squamous cell carcinoma (SqCC)
in a two-dimensional PCA, we were able to classify the TMA cores into the three classes
of normal tissue, adenocarcinoma, and squamous cell carcinoma (see Figure 5A1,A2).
Interestingly, for the models initially trained unsupervised and then retrained and for
the UNets trained supervised, based on the label distribution, such a classification is not
possible (see Figure 5B1,B2 and Appendix A Figure A3A,B). This is an argument for the
assumption that solely morphological labels are not enough for the herein analysed task, in
line with the discussion in the section above.
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The limitations described above raise the question of whether the method can be
improved. Increasing the complexity of the models pretrained in an unsupervised man-
ner alone seems not promising, since even complex models such as UNets are not able
to adequately solve the task. The most promising approaches, in view of the work of
Pourian et al. [38] or Wigness et al. [39], seem to involve the neighbourhood when combin-
ing the individual labels into meaningful histological annotations. This should certainly be
followed up in future work. Moreover, the approach described here should certainly be
tested on a simple histological task as a proof of principle.

4.4. Are There Arguments for Using the Herein Proposed Remapping Approach?

Regarding the only moderate segmentation quality on one hand and the greater effort
of retraining on the other hand, one could ask if there are arguments for using such an
approach. Having a well-annotated dataset at hand, there are no arguments against using
a standard supervised training setting. Of course, large and good datasets are rather scarce
for histology [3,5–7]. The approach proposed herein, which, in combination, is more akin to
weakly supervised approaches, might provide an initial advantage if there is only a dataset
of limited size. Moreover, in a scenario in which there is only a small dataset, one could
also consider using methods such as generative adversarial networks to produce synthetic
data, on which then the segmentation model is trained [5,33].
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Appendix A

Figure A1. Schematic representation of the models used. The models (A–C) were first trained
in an unsupervised fashion and subsequently trained on mapping the labels to meaningful la-
bels. In contrast, the model in (D) was trained solely in a supervised fashion. (A) Concise_CNN:
Schematic plot of the simple CNN model used by Kanezaki et al. [15], which is composed of a
linear combination of convolutional, ReLu, and batch normalization layers. (B,C) Concise_UNET
and Concise_FCN: Schematic representation of concise UNET and FCN model variants. (D) Stan-
dard_UNet: Schematic representation of the UNet model designed by Yakubovskiy et al. [20], here
used for supervised segmentation.
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Figure A2. Segmentation results for different models trained. Kanezaki et al. [15] described a
method for training CNN models in an unsupervised fashion. In this approach, different CNN models
can be trained. Here, a simple CNN model composed of several convolution blocks (simple_CNN),
a simple FCN variant (simple_FCN), and a simple UNet variant (simple_UNet) are trained and
retrained on two datasets (A,B). Furthermore, in the retraining, only the last layers (last) or the entire
model (all) are retrained. (A) The models are retrained on a selection of nine images (three images
per diagnosis: NT, ADC, and SqCC). (B) The models are retrained on the entire dataset #2.

Figure A3. Segmentation results for a UNet model. The labels produced per image by a UNet
model [20] trained in a supervised fashion are plotted. (A) shows the label frequency (back-
ground (BG), normal tissue (NT), adenocarcinoma (ADC), and squamous cell carcinoma (SqCC))
plotted against the diagnosis. (B) shows a PCA (two components) for the label frequency vector
per TMA core.
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Abstract: Sophisticated segmentation of the craniomaxillofacial bones (the mandible and maxilla) in
computed tomography (CT) is essential for diagnosis and treatment planning for craniomaxillofacial
surgeries. Conventional manual segmentation is time-consuming and challenging due to intrinsic
properties of craniomaxillofacial bones and head CT such as the variance in the anatomical structures,
low contrast of soft tissue, and artifacts caused by metal implants. However, data-driven segmentation
methods, including deep learning, require a large consistent dataset, which creates a bottleneck in their
clinical applications due to limited datasets. In this study, we propose a deep learning approach for
the automatic segmentation of the mandible and maxilla in CT images and enhanced the compatibility
for multi-center datasets. Four multi-center datasets acquired by various conditions were applied
to create a scenario where the model was trained with one dataset and evaluated with the other
datasets. For the neural network, we designed a hierarchical, parallel and multi-scale residual block
to the U-Net (HPMR-U-Net). To evaluate the performance, segmentation with in-house dataset
and with external datasets from multi-center were conducted in comparison to three other neural
networks: U-Net, Res-U-Net and mU-Net. The results suggest that the segmentation performance of
HPMR-U-Net is comparable to that of other models, with superior data compatibility.

Keywords: segmentation; mandible; craniomaxillofacial bone; deep learning; neural network;
multi-center

1. Introduction

Segmentation of the craniomaxillofacial bones, such as the mandible and maxilla,
in computed topography (CT) images is one of the crucial steps for generating three-
dimensional (3D) models that are required for the diagnosis and treatment planning of
craniomaxillofacial deformities, craniofacial tumor resection, or free flap reconstruction of
the mandible [1,2]. Additionally, 3D segmentation of organs at risk (OARs) in head and
neck (H&N) CT including the mandible is a critical step in radiotherapy planning for H&N
cancer treatment [3].

The conventional segmentation task is performed manually using professional soft-
ware, which is labor-intensive and time-consuming in clinical practice [4,5]. Additionally,
manual segmentation has limitations such as low reproducibility and operator variability.
Moreover, accurate segmentation of head CT is challenging owing to the complexity of the
anatomical structures, the low contrast of soft tissue, artifacts caused by mental implants,
and variations between individual patients [6]. In specific, weak and false edges of condyles
appearing in CT images adversely affect the accurate segmentation of the mandible [7].
Figure 1 shows examples of the difficulties in segmenting the mandible and maxilla.
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Figure 1. Difficulties in mandible and maxilla segmentation. (a) Metal artifacts caused by dental
implants (b) Difficulty in distinguishing mandibular and maxillary teeth, or mandible and midface
(c) Low intensity and thin edges in condyle (d) Inter-patient anatomical variance.

Automatic segmentation can improve efficiency and reliability, reducing segmentation
time and clinician workload [7]. Numerous studies exist on automatic or semi-automatic
segmentation of the mandible from CT scans, including OARs. In the Medical Image
Computing and Computer-Assisted Intervention (MICCAI) 2015 Head and Neck Auto
Segmentation Challenge [8], various approaches were proposed for the segmentation of
OARs including the mandible. The use of public datasets, such as the Public Domain
Database for Computational Anatomy (PDDCA) version 1.4.1, which was provided for
the challenge, and how to evaluate the model performance have been a standard in head
CT segmentation research. Most of these approaches utilize atlas-based methods [9] or
model-based methods [10].

Atlas-based methods performs segmentation on novel data by image registration using
the prior knowledge from the structures of interest [11]. Although atlas-based methods
are popular and widely used for anatomy segmentation, they are sensitive to anatomical
variations as they use a fixed set of atlases [12]. Moreover, they are computationally
expansive and require many minutes to complete one registration task [13].

Statistical model-based methods utilize a statistical appearance model [14]. The models
that best represent the shape or appearance variations in the structure of interest, which
are obtained from training with a set of images and segmentations, are selected for a
new patient image [15]. However, the shape or appearance described by the statistical
model is limited to specific shapes, which gives it less flexibility unless large training sets
are employed.

In some studies, atlas-based and statistical model-based methods have been combined
with each other or with another method, leading to various other approaches for automatic
mandible segmentation. Albrecht et al. [16] used a multi-atlas to obtain an initial segmen-
tation of the OAR and an active shape model to refine the initial segmentation. Aghdasi
et al. [17] employed anatomic landmarks and prior knowledge for segmentation. Chuang
et al. [18] proposed a registration-based semi-automatic mandible segmentation pipeline
that uses a nonlinear diffeomorphic method to register preprocessed test CT scans on the
reference templates.

Recently, as convolutional neural networks (CNNs) have become more effective in
computer vision, research on deep learning for medical image segmentation has increased
exponentially [19]. The first deep learning-based algorithm utilizing a CNN for the segmen-
tation of OARs in H&N CT was proposed by Ibragimov et al. [20], who employed a network
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with three convolution layers. Tong et al. [21] then incorporated a CNN with the pretrained
shape representation model. Beyond simple CNNs, U-Net [22] has been one of the most
popular CNNs for medical image segmentation. Compared with other CNNs, U-Net,
with a simple and flexible structure, shows an outstanding performance in segmentation
extracting image features by multi-scale recognition and fusion [23]. Several approaches
have been developed by applying the U-Net structure as a baseline for mandible segmenta-
tion. Qiu et al. [1] used three U-Nets for orthogonal planes with dice loss to segment the
mandible. AnatomyNet [13] was proposed to segment OARs from H&N CT, which was
built on a 3D U-net architecture. A two-stage segmentation framework for OAR in CT was
also proposed, which employs two 3D U-Nets for localization and segmentation [24].

Several studies have utilized U-Net with other structures together as well. Both a faster
regional CNN and attention U-Net for localization and segmentation have been introduced
by Lei et al. [24]. A recurrent segmentation CNN was proposed that embeds the CNN into
a recurrent neural network for segmentation of the mandible from CT [7]. An attention
mechanism, which has been advanced with deep learning models in computer vision,
has been incorporated to U-Net for segmentation. Squeeze-and-excitation blocks were
incorporated into U-Net for prostate zonal segmentation of multi-institutional MRI datasets,
enhancing both intra- and cross-dataset generalization [25]. An attention gate model that
can be integrated into CNN models was proposed to automatically learn to focus on target
structures [26]. Focus U-Net with attention gate for spatial and channel-based attention
was proposed for fast and accurate polyp segmentation [27].

However, there is an inevitable and considerable pitfall in data-driven methods includ-
ing deep learning, which is the lack of data compatibility; that is, the method may fail to
accurately segment images with varying properties, such as those acquired using different
CT scanners and imaging protocols [28]. The compatibility of dataset in the models refers
to the ability of models to inference the input images that have different distributions in
the latent space from the multi-center training dataset [28]. In general, datasets are limited
so that they cannot fully represent the general patient population in the clinic [29]. As a
result, models trained on the specific center domain do not perform well on a different
center domains with disparate data distribution [30]. This drawback is more significant
when applying deep learning clinically on images from other institutions. For example, it
is known that the Hounsfield units measurement varies between scanners [31]. The results
of models targeted to CT can vary depending on the imaging parameters, the scanner type,
calibration, or the scan date [29,32,33]. That is, multicenter data tend to have different
data distributions, making trained neural network impractical. With consideration for this
variability, it has been recently been required to test the artificial intelligence model with an
external dataset [32]. From these limitations in clinical applications, data compatibility in
deep learning for medical images has been an essential challenge to be addressed.

To solve this problem, research has been conducted to utilize multicenter data in
neural network training [33,34]. Another potential solution to this problem is transfer
learning [35–37], which trains with more easily obtained datasets from different domains
to enhance performance [38]. However, these approaches have limitations for clinical use,
as available medical data are scarce compared to natural images and are not sufficient for
deep learning. Furthermore, labeling is more challenging with medical data.

In this study, we propose a framework for automated 3D segmentation of the mandible
and maxilla using deep learning. We aim not only to accurately delineate the mandible
and maxilla from CT, but also to improve the compatibility of multicenter data so that the
model performs well on new domain data. To this end, we employed four multi-center
datasets acquired by various conditions, with one used to train the models, and three
used to evaluate the performance of the segmentation and the data compatibility. For the
neural network, we applied residual connections [39] to U-Net, as it has been empirically
and theoretically determined that the generalization is improved in residual networks
compared with non-residual networks [40,41].
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2. Materials and Methods

2.1. Data

We utilized four datasets: two of them from different centers (CenterA and CenterB)
including mandible and maxilla segmentations and two public datasets (PDDCA and
TCIA) for OAR segmentation in H&N CT. The CenterA dataset was randomly divided into
training, validation, and test datasets, consisting of 146, 10, and 15 sets at the patient level,
respectively. The training dataset was used to train the models, whereas the validation
dataset was used to tune the hyperparameters of the models and check the validity of
the training process. The test dataset from CenterA and other datasets were completely
separated from the training and validation datasets, and were used for evaluating the
performance of the models. Specifically, the PDDCA, TCIA, and CenterB datasets are
external datasets that were used to evaluate the models for dataset compatibility. Detailed
data characteristics of all datasets, including the number and size of slices, pixel spacing,
and slice thicknesses, are presented in Table 1.

Table 1. Properties of the datasets.

Dataset CenterA PDDCA † TCIA † CenterB

No. of sets
171

(Train: 146, Validation: 10,
Test: 15)

15 28 15

Acquisition type MDCT MDCT MDCT CBCT
Target structure Mandible & Maxilla OARs OARs Mandible & Maxilla

No. of slices 166–450,
208 ± 32

109–263,
154 ± 36

61–110,
93 ± 12 432

Slice size [pixel] 512 576 512 512

Pixel spacing [mm] 0.36–0.49,
0.44 ± 0.03 0.98–1.27, 1.11 ± 0.10 0.94–1.27, 1.04 ± 0.10 0.40

Slice thickness [mm] 0.50–1.04,
0.99 ± 0.07 2.0–3.0, 2.73 ± 0.31 2.50 0.40

† denotes the public dataset. ‘No. of slices’, ‘Pixel spacing’, and ‘Slice thickness’ are indicated as the range, the
average, and the standard deviation across the cases or the exact value if they are all same.

CenterA and CenterB datasets include CT images and the corresponding segmentation
of the mandible and maxilla provided by the clinical experts of oral and maxillofacial
surgery department and orthodontic department, respectively. Targets in CenterA datasets
were delineated manually by an expert surgeon (B.Y.H.) from Kyung Hee University
Hospital, Seoul, Korea. Ethical approval was received from the institutional review board
(IRB) (approval number KH-DT19033) for CenterA dataset. CenterB dataset was built with
15 sets of dental CBCT (i-CAT 17-19TM, Imaging Science International) from Chungang
University Hospital, Seoul, Korea (approval number 1922-007-362). Those CT images were
segmented by two well-trained biomedical engineers supervised by a clinical expert.

The PDDCA dataset is a public dataset for OAR segmentation in the H&N region of CT
images released at the 2015 MICCAI H&N radiotherapy OAR segmentation challenge [8]
provided and maintained by Dr. Sharp at Harvard Medical School. The CT scans in the
dataset are available via the Cancer Imaging Archive (TCIA) and are originally from the
radiation therapy oncology group (RTOG) 0522 study, which includes multi-institutional
clinical studies from patients with stage III or IV H&N carcinoma [42]. The dataset consists
of 48 H&N CT images with nine OAR structures manually re-segmented by experts for
uniform quality and consistency. In the challenge, the dataset was divided into 25 training
sets, 10 off-site test sets, and 5 on-site test sets. In this study, we employed 15 test sets with
mandible annotation.

The TCIA dataset [43] contains 31 CT scans from TCIA [44] and segmentations for
21 OARs, in which we only used mandible segmentation. They were delineated by an
experienced radiographer, with additional peer arbitration by another radiographer and a
radiation oncologist. Both the PDDCA and TCIA datasets include a selected part of the
Head–Neck Cetuximab open source dataset [45]; owing to different selection criteria and
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different train/validation/test set division, there are five scans present in both PDDCA and
TCIA test sets.

Examples of all datasets are illustrated in Figure 2. CenterA dataset is different from
the PDDCA and TCIA datasets in terms of pixel spacing, slice thickness, and the scan range
of the CT images. Comparatively, the PDDCA and TCIA datasets include a wider range
of bodies that target OARs. CenterB uses cone beam CT (CBCT), which is fundamentally
different from multidetector CT (MDCT) datasets, meaning the performance of a model
trained with MDCT may be hindered when inferencing CBCT. Generally, seg mentation of
CBCT is more laborious and time-consuming than MDCT as the edge of the image is more
blurred and noisy. Additionally, CenterB dataset includes many cases with orthognathic
surgery or orthodontics, which makes segmentation more difficult owing to the noise
caused by surgery plates or orthodontic appliances (Figure 3). By externally testing using
datasets, including PDDCA, TCIA, and CenterB datasets, with various characteristics, it
was possible to evaluate the compatibility of the models.

Figure 2. Example cases of the datasets.

All datasets were preprocessed using the same procedure. A threshold of −1000 and
2500 HU was employed for each scan and normalized between zero and one. Both CT scans
and segmentation slices were cropped to fit the skull. All CT and segmentation volumes
were resampled to be isotropic (512 × 512 × 512). For a fair evaluation, the predicted
segmentations were conversely uncropped and resampled into the original spacing and
thickness before the evaluation metrics were calculated. For the PDDCA and TCIA datasets,
we only used the range of the mandible for the training dataset, while using the entire
range of slices for the validation and testing.
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Figure 3. Examples of noises caused by surgical plates, orthodontic device, and dental implants in
CenterB dataset, which make it more challenging to delineate the CT images.

Datasets were input to the models as 2.5D [46], in which the input was a volume of
images consisting of the target slice and its adjacent slices, and the segmentation map corre-
sponding to the center target slice was produced as an output of the model. This method
enables the use of adjacent context information in 3D, whilst lowering the computational
power required relative to 3D inputs. The proposed approach is applicable to mandible
and maxilla segmentation as the adjacent upper and lower spatial information is important
for distinguishing the mandible and maxilla in a slice that appears similar. In this study,
the 11 slices, composed of one target slice and five upper and lower slices, were input for
one slice of the segmentation map.

2.2. Framework and Network Architectures

The overall framework and detailed architectures of neural networks are displayed in
Figure 4. Preprocessed CT scans are input to the neural network as 2.5D, which outputs
one segmentation mask map for each target slice. This process was repeated for all slices in
each patient scan. Afterwards, the segmented volume for each patient was post-processed.

For the neural network, we applied a hierarchical, parallel, and multi-scale residual
(HPMR) block [47] to U-Net to enhance the data compatibility of the CNN model. This
block was first designed to enhance the performance of a CNN for landmark localization
with limited computational resources. The starting point of the architecture is a residual
bottleneck block [39] that enables the stable optimization of a deeper model by assisting
the propagation of information both forward and backward, improving performance. The
other basis for the architecture is the inception block [48], which concatenates features from
parallel paths with different receptive field sizes. Compared to the inception residual block,
the HPMR block has a smaller number of parameters with the advantage of a parallel
path. Compared to the existing research, we combined HPMR block to U-Net and showed
its performance on the segmentation task. We used HPMR block for efficient learning to
utilize advances of residual bottleneck block and parallel path with the lower number of
parameters compared to using inception blocks.

We compared U-Net with HPMR blocks (HPMR-U-Net) to its base component archi-
tecture, U-Net, and U-Net with residual blocks (Res-U-Net) to verify the effects of HPMR
blocks. Additionally, modified U-Net (mU-Net) [49] was selected as another state-of-the-art
segmentation CNN model for comparison because it requires minimum increase of network
parameters. Its residual block is composed of deconvolution and activation operations to
pass features to the skip connection of the U-Net adaptively with the object size. mU-Net is
designed not only to extract high-level features of large object edges, but also high-level
global features of small objects. We hypothesized that the increase in the complexity of
model, i.e., the increased number of parameters in the neural network, would hinder
the data compatibility of the model. It is well known that overfitting, which impedes
the data compatibility of a model, occurs when the number of parameters increases [50].
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Therefore, we chose a simpler neural network with lower number of parameters than other
state-of-the-art neural networks for comparison.

Figure 4. Overall framework and block architectures of neural networks. (a) Overall framework. The
numbers above the boxes refer to the channel number of the feature maps. The orange boxes for each
neural network are represented in (b–e), with (b) block architecture of U-Net, (c) block architecture of
Res-U-Net, (d) block architecture of mU-Net, and (e) block architecture of HPMR-U-Net.

All networks were trained using PyTorch framework in Python under the same
conditions for comparison. They were trained with a batch size of 10 for 30 epochs. We
employed cross entropy loss as a loss function and Adam optimization with a learning rate
of 10−5. Training and evaluation were performed on the computer hardware resources of a
Nvidia GeForce RTX 3090 with 24 GB memory and 16 of DIMM DDR4 Synchronous 2666
MHz with 32 GiB in a Linux environment.

2.3. Performance Evaluation

To evaluate the regular segmentation performance of the models, an in-house test
was conducted with the separated test portion of CenterA dataset, with the ground truths
and output segmentations from the models compared. Additionally, an external test was
performed to evaluate the data compatibility in the models. Output segmentations for CT
scans in external datasets (PDDCA, TCIA, and CenterB) were obtained and compared with
the ground truths. The external test characterizes how the model can be utilized generally in
varied data, which is common in clinical settings. In the absence of maxilla segmentations
in the PDDCA and TCIA datasets, only mandible segmentations were considered. To
quantitatively evaluate the segmentation performance of the models, we used the Dice
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coefficient (DC), 95% Hausdorff distance (95HD) and average surface distance (ASD) as
evaluation metrics. Additionally, we qualitatively evaluated the segmentation results of
the models by visualizing them in 3D.

The DC measures the degree of volumetric overlap between two volumes. It is
defined as

DC =
2|GT ∩ OUT|
|GT|+ |OUT| , (1)

where GT and OUT are the labeled voxel sets of the manual segmentation ground truth
and output segmentation from the model, respectively.

The 95HD and ASD are distance-related metrics, with 95HD being the 95th percentile
of the Hausdorff distance (HD) between the GT and OUT points. HD measures the distance
of a point in the GT to the nearest point in the OUT. It is defined as

max
gt∈GT

min
out∈OUT

‖gt − out‖. (2)

The 95th percentile is used to eliminate the impact of outliers from a small subset of
inaccurate points when evaluating the overall segmentation performance. ASD measures
the average distance between the GT and the OUT, defined as:

ASD =
1
2

{
∑out∈OUT d(out, GT)

|OUT| +
∑gt∈GT d(gt, OUT)

|GT|

}
, (3)

where d(out, GT) is the minimum distance of a voxel on OUT to the voxels on GT, and
d(gt, OUT) is the minimum distance of voxel gt on GT to the voxels on OUT.

3. Results

Tables 2 and 3 display the calculated evaluation metrics between the ground truths and
the model outputs for the in-house and external tests. In the in-house test with the CenterA
dataset, although the scores of HPMR-U-Net were not the best among the models, the score
differences were lower compared to those for the other datasets. From the result, it can be
inferred that the performance of HPMR-U-Net for the CenterA dataset was comparable to
that of the other models. In the external tests, the scores of HPMR-U-Net ranked first for
all external datasets. The results indicate that HPMR-U-Net has the highest performance
among the models in this study for the external datasets. Comparing results among external
datasets, the differences in scores were the largest in the CenterB dataset, where CenterB
dataset may have the largest characteristic difference in the image obtained by CBCT as
compared to CenterA dataset acquired by MDCT.

Table 2. Results of in-house and external tests for mandible segmentation. The best case is bolded.

In-House Test External Test

CenterA PDDCA TCIA CenterB

DC
[%]

95HD
[mm]

ASD
[mm]

DC
[%]

95HD
[mm]

ASD
[mm]

DC
[%]

95HD
[mm]

ASD
[mm]

DC
[%]

95HD
[mm]

ASD
[mm]

U-Net 98.3
± 0.4

0.4
± 0.1

0.0
± 0.0

63.4
± 20.2

7.3
± 5.8

1.8
± 3.5

62.8
± 26.3

9.6
± 11.8

3.2
± 7.9

61.2
± 17.9

33.7
± 26.1

4.1
± 4.0

Res-U-
Net

98.2
± 0.4

0.4
± 0.1

0.1
± 0.0

51.3
± 20.1

13.5
± 12.3

2.0
± 1.8

46.3
± 25.5

18.0
± 19.8

6.5
± 13.5

48.5
± 13.1

28.8
± 20.6

4.1
± 3.3

mU-
Net

98.4
± 0.3

0.4
± 0.0

0.0
± 0.0

72.3
± 21.6

5.6
± 6.4

1.5
± 3.5

71.4
± 27.8

8.4
± 12.9

2.5
± 5.0

63.6
± 14.7

22.5
± 18.9

2.6
± 2.2

HPMR-
U-Net

97.4
± 0.4

0.4
± 0.1

0.1
± 0.0

86.5
± 3.9

1.8
± 1.3

0.2
± 0.1

86.4
± 6.2

2.8
± 7.7

0.3
± 0.7

77.7
± 4.1

3.4
± 0.6

0.7
± 0.2
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Table 3. Results of in-house and external tests for maxilla segmentation. The best case is bolded.

In-House Test External Test

CenterA CenterB

DC
[%]

95HD
[mm]

ASD [mm]
DC
[%]

95HD
[mm]

ASD [mm]

U-Net 96.5
± 0.8

0.4
± 0.1

0.1
± 0.0

75.0
± 5.7

9.0
± 8.8

1.1
± 0.8

Res-U-Net 96.2
± 0.8

0.4
± 0.1

0.1
± 0.0

67.6
± 12.3

17.1
± 18.1

2.5
± 3.4

mU-Net 96.5
± 0.7

0.4
± 0.0

0.1
± 0.0

75.9
± 5.1

8.6
± 7.9

1.0
± 0.7

HPMR-U-
Net

90.2
± 19.5

0.5
± 0.1

0.1
± 0.0

82.8
± 3.2

2.7
± 1.6

0.4
± 0.2

Figures 5–8 show 3D rendered ground truths and the highest DC cases of the output
segmentations converted to isosurfaces from volumes for each dataset. Corresponding to the
results of the quantitative tests, the ground truth and the outputs for the CenterA dataset are
similar for all models, as shown in Figure 5. By contrast, for the external datasets, there are
visually noticeable differences in the output segmentations of HPMR-U-Net and other models.

Figure 5. Sample case in the CenterA dataset. White and blue indicate the mandible and
maxilla, respectively.

Figure 6. Sample case in the PDDCA dataset. White and blue indicate the mandible and maxilla,
respectively. PDDCA has no maxilla ground truth.
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There were prominent decreases in quality of segmentations from other models for
the external datasets. For the PDDCA dataset in Figure 6, the DC scores for the mandible of
U-Net and mU-Net were 0.0%, as the model could not find the mandible at all, that is, they
were unable to distinguish between the mandible and the maxilla. There were also many
losses in the segmentations of the mandible and maxilla in the outputs of Res-U-Net. By
contrast, the outputs of HPMR-U-Net were more intact and closer to the ground truth. As
the teeth were included in the CenterA dataset segmentations that were used in training,
the teeth were also segmented, despite not being in the ground truth. The results for
the TCIA dataset in Figure 7 are also similar to those of the PDDCA dataset. U-Net and
Res-U-Net failed to segment the mandible, which resulted in a 0.0% DC. Additionally,
mU-Net included many portions of the maxilla in the mandible output and lost a large
portion of the segmentations. However, HPMR-U-Net exhibited high performance with a
DC of 91.7%. As displayed in Figure 8 for the CenterB dataset, HPMR-U-Net also showed
the highest performance among the models, with many lost sections in the other models.
Furthermore, the other models were more unable to accurately separate the mandible and
maxilla compared to HPMR-U-Net.

Figure 7. Sample case in the TCIA dataset. White and blue indicate mandible and maxilla, respectively.
TCIA has no maxilla ground truth.

Figure 8. Sample case in CenterB dataset. White and blue indicate the mandible and
maxilla, respectively.

48



Appl. Sci. 2022, 12, 1358

Figure 9 shows rendered color maps in 3D for the distance from the ground truths
to the output segmentations of the best DC case for the mandible in CenterA dataset
to thoroughly examine the differences among the model outputs for this dataset. There
were no significant differences, but the distances in the mandibular foramen were slightly
different. This part is challenging to segment accurately owing to its small size, and the
distance was less in the outputs of HPMR-U-Net than the other models.

Figure 9. Color maps of surface distance from the ground truths to the output segmentations of the
best dice coefficient case in the CenterA dataset for the mandible. The pieces of images on the right
side are enlargement of mandibular foramen.

4. Discussion & Conclusions

The four neural networks compared in this research exhibited similar performance
in the CenterA dataset, which was the domain used for training. Among other neural
networks, U-Net and Res-U-Net were considered for the comparison because U-Net is a
basic component of HPMR-U-Net, in which showing a difference would represent that
HPMR block is effective compared to other basic architectures. Additionally, mU-Net was
selected for the comparison as a state-of-the-art neural network for segmentation. We chose
comparably simple neural networks because we hypothesized that the data compatibility
of the more complex model with larger number of parameters would be worse because
of overfitting. CenterA dataset was set as the train dataset because it was MDCT datasets
in which easier to make ground truths than CBCT. With training with a dataset easier to
constitute, we aimed to show the performance for other institutional MDCTs and CBCTs.

PDDCA and TCIA datasets were used for examples of MDCT and CenterB dataset for
CBCT. For the external datasets of PDDCA, TCIA, and CenterB, HPMR-U-Net displayed
significantly higher performance compared to the U-Net, Res-U-Net, and mU-Net models
in both quantitative and qualitative evaluations.

All networks produced comparable results for data from the same cohort of the
training dataset; however, they exhibited different results for data from out of the training
dataset cohort. While the performances of other networks were degraded in the external
datasets, HPMR-U-Net produced segmentation of the mandible and maxilla similar to
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the ground truths. From these results, HPMR-U-Net infers a high data compatibility for
mandible and maxilla features in CT images.

The assumed differences in the data cohorts were reflected in the results. For the
PDDCA and TCIA datasets, the performance degraded significantly, and the mandible and
maxilla were not classified accurately. This is due to their slice thickness being different
from that of CenterA dataset, even though they are MDCT. The inter-slice information is
important to classify a pixel in a slice as the mandible or maxilla. The results for CenterB
dataset were the worst among the external datasets for all models. The segmentation of
CenterB dataset is more challenging as it is CBCT, which is not only different from the
in-house dataset, but also contains more noise. Additionally, CenterB dataset contains
variances in anatomical structure caused by surgeries and noise from surgical plates,
orthodontic device, and dental implants (Figure 3). It is remarkable that the score difference
between HPMR-U-Net and other models is significant for CenterB. For CBCT, which is
a different image protocol than MDCT that was used to train, there was a significant
degradation of performance in other models, but minimal degradation in HPMR-U-Net.
This demonstrates that HPMR-U-Net is more robust than other models to various data
domains that may be different from the training data.

We assume that one of the reasons for the better performance of HPMR-U-Net com-
pared to Res-U-Net is the number of parameters. The higher the complexity of the hypoth-
esis space of the deep neural network, the worse is the generalizability, according to the
principle of Occam’s razor [51]. The number of parameters in HPMR-U-Net is 12,042,179,
which is smaller than Res-U-Net with 17,118,019, U-Net with 28,959,299, and mU-Net with
35,230,019. The HPMR block could efficiently decrease the overall number of parameters,
which as a result could enhance the generalizability of the model while maintaining its
segmentation performance.

In future work, an attempt will be made to improve the performance in external
datasets for actual clinical applications when the neural network is trained with only
one data domain. Additionally, the structure of the neural network with residual con-
nections and HPMR block can be analyzed theoretically to establish the reason for the
greater generalizability, which may lead to the design of a stronger neural network for
generalization.

In this study, we applied deep learning to accurately segment the mandible and maxilla
from CT and improve the compatibility in the segmentation model. To achieve this, we
utilized HPMR-U-Net and compared its results with those of U-Net, Res-U-Net, and mU-
Net with in-house and external tests. The results show that the segmentation performance
of HPMR-U-Net in the in-house test dataset was comparable to that of the other models.
In particular, the data compatibility of HPMR-U-Net was superior to other models in the
external datasets of PDDCA, TCIA, and CenterB, which have varying properties such as
image protocol, pixel spacing, slice thickness, and target range.
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Abstract: Unsupervised segmentation techniques, which do not require labeled data for training and
can be more easily integrated into the clinical routine, represent a valid solution especially from a
clinical feasibility perspective. Indeed, large-scale annotated datasets are not always available, under-
mining their immediate implementation and use in the clinic. Breast cancer is the most common cause
of cancer death in women worldwide. In this study, breast lesion delineation in Dynamic Contrast En-
hanced MRI (DCE-MRI) series was addressed by means of four popular unsupervised segmentation
approaches: Split-and-Merge combined with Region Growing (SMRG), k-means, Fuzzy C-Means
(FCM), and spatial FCM (sFCM). They represent well-established pattern recognition techniques
that are still widely used in clinical research. Starting from the basic versions of these segmentation
approaches, during our analysis, we identified the shortcomings of each of them, proposing improved
versions, as well as developing ad hoc pre- and post-processing steps. The obtained experimental
results, in terms of area-based—namely, Dice Index (DI), Jaccard Index (JI), Sensitivity, Specificity,
False Positive Ratio (FPR), False Negative Ratio (FNR)—and distance-based metrics—Mean Absolute
Distance (MAD), Maximum Distance (MaxD), Hausdorff Distance (HD)—encourage the use of unsu-
pervised machine learning techniques in medical image segmentation. In particular, fuzzy clustering
approaches (namely, FCM and sFCM) achieved the best performance. In fact, for area-based metrics,
they obtained DI = 78.23% ± 6.50 (sFCM), JI = 65.90% ± 8.14 (sFCM), sensitivity = 77.84% ± 8.72
(FCM), specificity = 87.10% ± 8.24 (sFCM), FPR = 0.14 ± 0.12 (sFCM), and FNR = 0.22 ± 0.09 (sFCM).
Concerning distance-based metrics, they obtained MAD = 1.37 ± 0.90 (sFCM), MaxD = 4.04 ± 2.87
(sFCM), and HD = 2.21 ± 0.43 (FCM). These experimental findings suggest that further research would
be useful for advanced fuzzy logic techniques specifically tailored to medical image segmentation.

Keywords: medical image segmentation; breast cancer; pattern recognition; machine learning; clinical
feasibility; magnetic resonance imaging; computer-assisted segmentation

1. Introduction

The use of advanced imaging technologies has significantly improved the quality of
medical care delivered to patients, allowing medical imaging to be an essential part of
today’s healthcare system [1]. In fact, medical imaging comprises techniques for acquiring
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images that convey detailed information about the anatomy and physiology of the imaged
organs [2]. Moreover, many imaging-enabled tools were developed, supporting clinicians
in several tasks of the care process: assisted segmentation [3,4], diagnosis support [5],
treatment response assessment [6], radiomic analyses [7,8]. For these reasons, computer-
assisted image analysis is considered an essential instrument in the clinical workflow [9,10].

Despite the technological progress characterizing the modern era, some medical tasks,
such as image annotation, are still performed manually, often via time-consuming and
operator-dependent procedures. As an example, the Gross Tumor Volume (GTV) seg-
mentation for radiotherapy treatments is usually delineated by means of a fully manual
procedure [11,12]. Considering that dozens of slices have to be contoured, this manual
process is extremely time-consuming. Moreover, operator dependence is critical in terms of
result reproducibility. Indeed, these manual procedures are strongly dependent on clini-
cian’s knowledge and experience: this means that a remarkable intra- and inter-operator
variability can seriously affect the segmentation and quantification results.

In this scenario, computer-assisted approaches (automatic or semi-automatic) allow
us to mitigate some of the typical drawbacks of manual procedures. Semi-automatic seg-
mentation techniques involve a minimal level of user interactions and exploit automated
algorithms to produce accurate and repeatable results. User interaction, for example, may
involve the selection of an approximate initial ROI, which is subsequently used to segment
the image [13]. As a consequence, semi-automatic approaches provide more reproducible
measurements—compared to fully-manual ones—with a significant reduction of the seg-
mentation time. In particular, fully-automatic segmentation approaches do not require any
user interaction. Most existing fully-automatic approaches exploit machine learning or
deep learning techniques—such as Support Vector Machines (SVMs) or deep Convolutional
Neural Networks (CNNs)—to successfully handle the variability characterizing biomedical
data [14,15]. In this scenario, supervised learning techniques are, in general, more complex
since they require high computation times and a large amount of labeled data for training.
Furthermore, it is important to point out that—from a clinical feasibility perspective—
machine learning approaches, which do not require training, are advantageous: the amount
of labeled data needed to adequately train and evaluate the approaches based on deep
learning is not always available [16,17].

The aim of this work is to show the potential of unsupervised pattern recognition
techniques, which do not require training and can be more easily integrated into care
routine, especially from a clinical feasibility perspective. For this reason, supervised
approaches—such as CNNs—were not treated here. As a relevant case study, we consider
the segmentation of contrast-enhancing masses on DCE-MRI. It is worth noting that, in [18],
classical unsupervised techniques, both automatic and semi-automatic, allowed us to obtain
results comparable or superior to the deep learning approaches.

From experimental evidence, it is possible to observe that fuzzy clustering techniques
significantly outperformed direct region detection approaches (i.e., split-and-merge and
region growing) and crisp k-means. FCM and sFCM obtained comparable results, although
the integration of spatial information into the sFCM allowed for the best performance.
Therefore, the explicit management of segmentation uncertainty via multiple degrees of
class memberships, along with spatial information, represented the best computational
framework for the problem at hand. The main contributions of this study are:

• unsupervised segmentation methods, based on classic pattern recognition techniques,
can still provide an effective solution despite the prevalence of supervised approaches,
such as deep CNNs;

• the use of traditional unsupervised approaches—requiring no training—is an advan-
tage in terms of of immediate clinical feasibility;

• fuzzy clustering techniques significantly outperformed direct region detection ap-
proaches and crisp k-means;

• the integration of spatial information into the FCM algorithm achieved the best
performance;
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• with the goal of providing a guide for beginners, as well as possibly enabling new
future extensions from other researchers, this study provides all the technical informa-
tion needed to understand both the functioning of each of the studied algorithms and
the implemented workflow.

The remainder of this work is organized as follows. Section 2 introduces the theoretical
background about unsupervised segmentation approaches, focusing on the algorithms
used in this study. A detailed description of the performed analysis and of the implemented
processing steps is proposed in Section 3, where the exploited DCE-MRI dataset is also
described. Section 4 formulates the metrics used to evaluate the performance of the
analyzed approaches. Section 5 illustrates the experimental results, including a discussion
about the comparison of the proposed techniques. Finally, discussion and conclusions are
provided in Section 6.

2. Theoretical Background

A number of algorithms and techniques for image segmentation have been developed
and implemented over the years, and a large amount of literature papers about this non-
trivial task were proposed. The aim of this section is to present a brief overview about
theoretical notions of literature approaches from which this work drawn inspiration. For
this reason, we decided for a comprehensive description, to provide the reader with all
the technical information needed to understand the functioning of each of the investigated
algorithms, as well as the implemented workflow.

The segmentation involves the image partitioning into homogeneous and meaningful
sub-regions. By a formal point of view, the segmentation of an image I involves the
identification of a finite set of regions R1,R2, . . . ,RN as in Equation (1):

N⋃
i=1

Ri = I′ (1)

with the following constraints:

Ri ∩Rj = ∅, for i �= j, (2)

P(Ri) = TRUE, for i = 1, 2, . . . , N, (3)

P(Ri ∪Rj) = FALSE, for i �= j. (4)

With more details, P is an appropriate logical predicate leading the segmentation
process. Equation (1) states that the union of all the sub-regions resulting from segmentation
process. Equation (2) points out that the intersection of two different sub-regions is the
empty set: this means that the segmented sub-regions do not overlap each other. According
to Equation (3), the result of the logical predicate P on all the pixels belonging to the same
sub-region is always TRUE; in other words, all the pixels belonging to the same region
share the same characteristics according to the predicate P. As a consequence, Equation (4)
states that the result of P on the union of two distinct sub-regions is FALSE.

It is important to clarify that each type of medical image has a specific set of features
reflecting its own properties: in fact, each image is the result of a complex interaction
between the human body and the scanner (i.e., X-rays for CT, magnetic fields for MRI,
radioactive decay for nuclear medicine exams) [19]. As a consequence, not all the segmen-
tation techniques obtain the same results on all image types, but some algorithms yield
better results when applied on a specific kind of image. Furthermore, it is necessary to
point out that, typically, an approach that works very well with one type of image does
not mean that it continues to perform well even on different images. As a matter of fact,
bioimages exhibit a very high variability, as they depend on various factors, both intrinsic
(e.g., patients) and extrinsic (e.g., imaging modalities, acquisition parameters). Accordingly,
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ad hoc modifications might be required at the level of both the segmentation approach and
the pre-/post-processing phases.

In what follows, we outline the techniques investigated and compared for contrast-
enhancing mass segmentation on DCE-MRI.

2.1. Split-and-Merge Combined with Region Growing

The simplest segmentation approaches use a global threshold applied on pixel intensity
to partition the original image: pixels with an intensity greater than threshold T are assigned
to one region, while those below the threshold T are assigned to another one [20–23]. In
this way, a binary image is created providing the segmentation of the original image with
respect to the chosen threshold value. Split-and-Merge and Region Growing (SMRG) is
basically a threshold-based approach that combines Split-and-Merge (SM)—composed of a
first split (top-down) phase of the image followed by a merge (bottom-up) phase—with RG
for the refinement of the identified regions [23].

The SM algorithm represents a valid alternative to thresholding, because it can find
homogeneous regions in terms of uniformity criteria [24–27]. Unlike SM, the RG algorithm,
starting from one or more seed-points, identifies an ROI through a growing procedure
guided by appropriate similarity properties that describe ROI intensity features. Generally
SR and RG are used individually for image segmentation, but the use of both together
allows us to exploit the overall potential [28,29].

With more details, the idea behind the SM algorithm involves successive splits of
the whole image into disjoint regions lead by a logical predicate P. The algorithm starts
with an arbitrary partition R of the original image (i.e., the whole image) and yields an
output composed of uniform sub-regions Ri, for i = 1, 2, . . . , n, according to the logical
criterion expressed by P. At the generic step t, if P(Ri) = FALSE, each region Ri is split
into four sub-regions (also called ‘quad-regions’): this process iteratively continues until a
quad-region such that P(Ri) = TRUE or with an area smaller than a certain threshold is
found. The logical predicate chosen for this work allows us to find the quad-regions with a
mean intensity that is greater than the threshold value yielded by the Otsu’s method [30]. If
only splitting is used, the final partition contains adjacent regions with identical properties:
this drawback can be overcome by merging only adjacent regions where the combined
pixels satisfy the predicate P.

After the initial rough ROI identification obtained by means of SM, the RG algorithm
expands this initial region to properly identify the lesion. According to the classic RG
algorithm, each region begins its own growth from a single pixel (seed-point). Instead,
when the SM is exploited, the seed-point can be obtained by using the ROI yielded by the
SM algorithm (more correctly, a seed-region) [23]: the seed-region is iteratively grown by
evaluating, for each pixel on the boundary, its 8-neighborhood as candidate for the growth.
A stopping rule is necessary for interrupting the growing procedure if no more pixels match
the membership criterion, which often refers to the proximity of the pixel intensities.

2.2. K-Means

Classification refers to data labeling into disjoint sets according to a common set
of features. Among these, clustering algorithms can be used to determine the natural
structures in the data. Clustering algorithms can use more sophisticated properties of the
image: in digital imaging, this means that spatial and/or spectral features concerning pixels
can be exploited [31].

K-means is an unsupervised clustering technique that aims at partitioning an input
set of N observations into k clusters [32]. Let X = {x1, x2, . . . , xN} be a set of vector
observations such that xi ∈ R

n for i = 1, 2, . . . , N. In image segmentation, each component
of a vector x represents a numerical pixel attribute: if segmentation is based on gray-scale
intensity alone, the n-dimensional observation xi ∈ R

n degenerates into the scalar value
xi ∈ R representing the intensity of the i-th pixel. The final purpose of k-means is to
partition the N observations into k < N disjoint cluster sets C = {C1, C2, . . . , Ck} such that
the sum of the distances from each point in a set to the mean of that set is minimum. From
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a mathematical point of view, k-means turns classification into an optimization problem
with the following cost function in Equation (5):

J (X ,V) = argmin
c

( k

∑
i=1

∑
x∈Ci

|x − vi|2
)

, (5)

where vi is the centroid of the samples in the set Ci for i = 1, 2, . . . , k. The function J (X ,V)
has no analytical solution: as a result, k-means proceeds by iteratively finding the minimum
of its cost function. In particular, at each iteration t the centroid values of the prototype set
V̂ (t)) are updated according to Equation (6).

v̂(t)i =
1

|C(t)
i | ∑

x∈Ci

x′, (6)

where |C(t)
i | is the number of objects belonging to the i-th at the step t.

2.3. Fuzzy C-Means

Biomedical images are characterized by an intrinsic uncertainty, thus causing not
well-defined regions (e.g., blurry boundaries or poor anatomical details). This aspect
makes thresholding approaches and crisp approaches (such as k-means) not always suit-
able. Therefore, the natural fuzziness characterizing the Fuzzy C-Means (FCM) clustering
approach allows to reach better segmentation results than the hard partitioning offered by
k-means [33–36].

The FCM algorithm is an unsupervised clustering technique that searches for the
optimal partition of an input data set. The idea leading the FCM classification process is that
of minimizing the intra-cluster variance as well as maximizing the inter-cluster variance,
in terms of a distance metrics between the feature vectors. Formally, the FCM technique
searches for the optimal partition of an input data set X = {x1, x2, . . . , xN} of N objects into
C clusters. With respect to the k-means algorithm in which each point is assigned to one
cluster only, FCM allows each object to belong to multiple clusters with different degrees of
membership. This ‘soft’ classification allows us to define a fuzzy partition, P defined as a
fuzzy set family P = {Y1, Y2, . . . , YC} such that each point can have a partial membership
to multiple clusters. In mathematical terms, the matrix U = [uik] ∈ RC×N denotes a fuzzy
C-partition of the data set X by means of C membership functions ui : X → [0, 1], whose
values uik := ui(xk) ∈ [0, 1] represent membership grades of each element xk to the i-th
fuzzy cluster Yi, and have to hold the constraints in Equation (7):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 ≤ uik ≤ 1
C
∑

i=1
uik = 1, ∀k ∈ 1, 2, . . . , N

0 <
N
∑

i=1
uik < N, ∀i ∈ 1, 2, . . . , C

. (7)

Although hard clustering works well on compact and well-separated groups of data,
in many real-world situations clusters overlap each other: as a result, assigning them with
gradual memberships by exploiting a soft computing approach may be more appropriate.
Computationally, the FCM algorithm assigns to the sample xk the membership function
values using the relative distance (i.e., intensity value similarity) of xk from the C prototype
points V = {v1, v2, . . . , vC} identifying the centroids of the C clusters. Such as k-means
algorithm, FCM may be rewritten as an optimization problem with respect to the objective
function in Equation (8).

Jm(U,V ;X ) =
C

∑
i=1

N

∑
k=1

(uik)
m|xk − vi|2, (8)
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where:

• m is the fuzzification constant (i.e., a weighting exponent such that 1 ≤ m < ∞)
controlling the fuzziness of the classification process. If m = 1, the FCM algorithm
degenerates to a k-means clustering: in general, the higher the m value the greater
will be the fuzziness degree (the most common value is m = 2);

• U is the fuzzy C-partition of the set X ;
• |xk − vi|2 is the Euclidean distance between the elements xk and the centroid vi ∈ V .

Considering that the optimization problem described by FCM does not have a closed-
form solution, the minimum of the cost function Jm(U,V ;X ) has to be found iteratively. In
particular, at each iteration t, the centroid values of the prototype set V̂ (t) and the elements
of the matrix Û(t) are updated according to Equations (9) and (10), respectively.

v̂(t)i =

N
∑

j=1
(û(t)

ij )mxj

N
∑

j=1
(û(t)

ij )m
, (9)

û(t)
ik =

(
C

∑
j=1

( |xk − v̂(t)i |
|xk − v̂(t)j |

) 2
m−1

,

)−1

, (10)

with m > 1 and xk �= v̂(t)j , ∀j, k.
At each iteration, each object xk is compared with the elements of the centroid vector

and is assigned to the nearest cluster. The process stops when the convergence condition
(i.e., the matrix norm distance between Û(t+1) and Û(t) is less than a fixed value (i.e.,
minimum improvement in the objective function J between two consecutive iterations ε) or
the maximum number of iterations Tmax is reached. After the convergence, a defuzzification
is applied to assign each pixel to the cluster with the highest membership degree, thus
achieving a binary classification.

2.4. Spatial Fuzzy C-Means

The traditional FCM clustering does not take into account spatial relationship among
neighboring pixels, making it sensitive to noise and other imaging artifacts [37,38]. Breast
lesions generally tend to grow in an isotropic way, preserving a pseudo-spherical appear-
ance [39]. Relying on those features, it is expected that neighbouring pixels in a digital
image are highly correlated and that the probability that they belong to the same cluster is
great. Therefore, the use of the sFCM, taking advantage of spatial relationship of neigh-
bouring pixels, can help image segmentation [40,41]. The spatial function used by sFCM is
defined in Equation (11):

hij = ∑
k∈N (xj)

uik, (11)

where N (xj) represents a square neighborhood (in the spatial domain) around the pixel xj.
The term hij represents the probability that the pixel xj belongs to i-th cluster: as a result,
the spatial function of a pixel for a cluster is large if the majority of its neighbourhood
belongs to the same cluster. The contribution of the spatial function modifies the classic
FCM membership function according to Equation (12):

u′
ij =

up
ijh

q
ij

C
∑

k=1
up

kjh
q
kj

, (12)

where p and q control the relative importance of both functions. In a homogeneous region,
the spatial functions simply emphasizes the original membership and the clustering remains
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unchanged. On the other hand, for a noisy pixel this formula reduces the weighting of
a noisy cluster by the labels of its neighboring pixels: as a result, misclassified pixels
from noisy regions can easily be corrected. The sFCM clustering process involves two
steps at each iteration: the former, which is the same as that in standard FCM, allows for
calculating the membership function in the features domain, while the latter maps the
membership information of each pixel into the spatial domain and allows to calculate the
spatial functions for each pixel of the image. At this point, the FCM iteration proceeds
with the new membership that is incorporated with the spatial function and stops when
the maximum difference between cluster centers at two successive iterations is lower
than a certain threshold. After the convergence, a defuzzification scheme (i.e., maximum
membership) is applied.

3. Materials and Methods

As introduced in Section 1, the purpose of this work is to present an in-depth analysis
of classical unsupervised segmentation algorithms, developing them appropriately to adapt
them to the clinical case addressed (i.e., breast lesions detection), thus improving the overall
performance.

This section, along with showing the characteristics of the DCE-MRI dataset analyzed,
describes the processing pipeline of the proposed analysis. It is necessary to point out that
particular attention was paid to the optimization of each step for the specific case study,
basically on three different levels:

• pre-processing: obtaining images with similar characteristics for the downstream pro-
cessing steps;

• segmentation: optimization of the parameters of the investigated segmentation
algorithms;

• post-processing: definition of appropriate region properties (based on connected-
components) to refine the segmentation results.

3.1. MRI Dataset Description

The analysis of this study was performed on a clinical DCE-MRI dataset composed
of 50 patients with breast cancer: a total of 599 slices were processed. The main details on
MRI acquisition parameters are reported in Table 1 , while in Figure 1 the phases related to
some benign and malignant lesions are shown. The dataset includes patients with different
stages of breast cancer, allowing us to cover a wide clinical scenario: as matter of fact, this
dataset contains various levels of segmentation difficulty with some scans showing low
contrast and large inhomogeneities. Lesions with a non-homogeneous enhancement region,
masses with an irregular shape or necrotic core are also included.

Table 1. Some characteristics of the DCE-MRI dataset used for this work.

Characteristic Value

Scanner manufacturer General Electric (GE)
Scanner model Signa HDxt
MRI sequence DCE-MRI

Time Repetition [ms] 37.720
Time Echo [ms] 17.640

Slice thickness [mm] 2
Interslice spacing [mm] 1
Slice pixel spacing [mm] 0.6875

Matrix size [pixels] 512 × 512
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Figure 1. Examples of DCE-MRI phases related to four breast cancer patients (one per row): malignant
lesions are shown on rows 1 and 3, while benign lesions are shown on rows 2 and 4. Among phases,
for segmentation purposes the clinician selected the strongest one. In particular, for these lesions, the
4th, 3rd, 4th, and 3rd phase was chosen, respectively.

3.2. The Proposed Analysis

Clinical knowledge points out that breast lesions in DCE-MRI appear hyperintense
compared to the adipose and muscle surrounding tissues. Furthermore, anatomical atlases
and diagnosis reports also refer that breast lesions have the tendency to grow in an isotropic
manner, preserving a pseudo-spherical shape [39]. Relying on these morphological features,
in this study we decided to start the segmentation from the central slice, which should be
the one with the largest area: adjacent slices were processed successively. The idea behind
this choice is to segment initially the slice in which the lesion appears more evident, finding
the centroid of the connected-component identifying the lesion. On slices different from
the central one, the lesion ROI was found by identifying the connected-component with
the centroid that has the minimum distance from the centroid found for the central slice.
The whole segmentation process can be summarized as follows:

• dataset loading: all DCE-MRI images (belonging to the selected patient) and its ground-
truth are loaded;

• ROI selection: a bounding box containing the lesion is manually drawn in the central
image: in this way, the algorithm analyzes only the pixels within the box, reducing
computational times and avoiding classification mismatches;

• pre-processing: necessary to reduce noise and provide images with similar characteris-
tics for the next processing steps;

• lesion segmentation: once the images are pre-processed, the MR image stack of each pa-
tient is segmented by all the analyzed methods (i.e., SMRG, k-means, FCM, and sFCM);

• post-processing: performed to refine the segmentation and to properly identify the ROI
from each binary mask obtained in the previous step;
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• performance evaluation: the final masks are stored and performance metrics (i.e., area-
based and distance-based metrics) are calculated comparing the masks against the
ground-truth.

In addition to the well-known segmentation techniques, also the exploited pre- and
post-processing operations are widely used by the international community in the field
of medical imaging. In fact, the literature offers many works that use the same pre-
processing [42,43] and post-processing [44,45] steps in the image analysis phases (before
segmentation), as well as in the refinement phases (after segmentation), with
excellent results.

Figure 2 shows the flow diagram of the implemented and proposed analysis. Each
processing block is described in the following subsections. All the methods were developed
using the MatLab environment (Natick, MA, USA). The code is available via GitHub: https:
//github.com/carmilitello/UnsupervisedSegmentation.git (accessed on 9 November 2021).

3.2.1. Dataset Loading and ROI Selection

This step selects the MRI series to be analyzed. The data loading step, even though
does not represent a real processing step, is essential for each algorithm—both supervised
and unsupervised—to obtain the data to process. Moreover, the concept of ‘supervision’
refers generally to the training phase of an algorithm by requiring labeled data. For these
reasons, the ‘unsupervised’ nature of the algorithm used here is preserved. In order
to reduce computational times and improve segmentation performance, a minimal user
interaction is needed. In fact, by manually tracing a rectangular bounding-box on the
image, the operator provides to approximately select the initial ROI containing the breast
lesion [13]. Once traced, this ROI is used to crop all the slices of the MR image stack

The manual selection of the initial ROI containing the lesion is useful to reduce
the processing time (since only a portion of the whole image is processed), as well as
to exclude regions containing pixels with characteristics similar to the lesion that could
complicate the algorithm performance, thus invalidating the final result. Moreover, the
initial, interactive input provides the clinician with the ability of confidently controlling the
entire segmentation process, which is generally preferred compared to a fully automatic
process [18,46]. Moreover, considering that the method works on an ROI—selected by the
clinician—it is assumed that the tumor is always present within the ROI.
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Figure 2. Flow diagram of the proposed analysis for breast lesion segmentation.

3.2.2. Pre-Processing

In order to improve segmentation results, some pre-processing operations are applied
after the ROI selection (Figure 3). In particular, the aim of this preliminary phase is to
perform denoising and data pre-processing, allowing us to achieve reliable results during
the segmentation phase.

The first pre-processing operation deals with noise reduction [47]. The use of median
or average (with Gaussian or flat kernels) filters is a common choice in MR image processing.
For instance, median filtering was applied to facilitate the ROI identification by reducing the
outlier introduced by anatomical peculiarities [48] or also deal with small patient shifts [49].
We used Gaussian kernels having the form in Equation (13), which are the only circular
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symmetric kernels that are also separable and that allow you to reduce noise by altering
the image less than the average filter.

G(r) = ke−
r2

2σ2 , (13)

where r, σ and k represent the radius, the standard deviation and the normalization factor
of the Gaussian function G, respectively. Kernel normalization, obtained by multiplying
its coefficients by k—obtained as the inverse of the sum of all kernel coefficients—has two
purposes: (i) the average value of an area of constant intensity would equal that intensity in
the filtered image (as it should) and (ii) it prevents the introduction of biases during filtering
(i.e., the sum of the pixels in the original and filtered images will be the same). For the
purpose of this work, a Gaussian kernel with r = 5 and σ = 0.6 was chosen: this standard
deviation value performed denoising without an excessive blurring of the original image.

Centering

(data centering by subtracting the mean value)

Gamma correction

(threshold- based gamma correction with γ=0.6)

Smoothing

(denoising with a Gaussian filter with σ=0.6)  

Figure 3. Flow diagram of the pre-processing steps approach.

The next pre-processing step subtracts the mean value from the original image. This is
a very helpful step in signal processing because it emphasizes signal variations by shifting
its mean to zero. For this reason, during the pre-processing phase, the algorithm removed
this bias from the original image amplifying gray level variations. Once the mean value
subtraction, the pixels resulting in a negative value have to be clipped to zero in order to
avoid visualization problems in the following steps.

After noise reduction and mean subtraction, the last step performs a modified gamma-
transformation to stretch the original image histogram. The general form of a gamma
transformation is defined in Equation (14):

s = crγ, (14)

where c and γ are positive constants. Power-law curves with fractional values of γ map
a narrow range of dark input values into a wider range of output values, and vice versa
for bright input values. When c = γ = 1 the gamma transformation reduces to the
identity transformation. The modified gamma transformation proposed in this work used
c = 1 and γ = 0.7, by means a piece-wise function in which the final value of each pixel
depends on a certain threshold value θ. In particular, the function mapping the initial
value of a pixel r(x, y) into its final value s(x, y) is defined in Equation (15). The value of θ,
used for the piece wise gamma selection, is the one suggested by the Otsu’s thresholding
method [30]. Figure 4 shows the results of each pre-processing step applied on two (one
per row) DCE-MRI breast lesions.

s(x, y) =

{
r(x, y) if r(x, y) ≤ θ)

r(x, y)γ if r(x, y) > θ)
. (15)
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Figure 4. Examples of pre-processing steps on two breast lesions (one per row): (1st column) DCE-
MRI breast image (after cropping); (2nd column) Gaussian smoothing result; (3rd column) centering
result; and (4th column) gamma correction result. With respect to the position in the DCE-MRI
sequence, all images have been rotated 90° clockwise, in order to improve the graphic representation
and allow all the images relating to a specific lesion to be displayed in a single line.

3.2.3. Segmentation

After pre-processing, the segmentation involves the partitioning of a digital image into
multiple sets of pixels, according to the specific clinical purpose. Nowadays, segmentation
of digital images still remains one of the most challenging topics in image processing: in
fact, medical image segmentation is often still performed manually, via time-consuming
and operator-dependent procedures.

As indicated in Section 3.2.1, to start the segmentation process, it is necessary to
select the ROI containing the lesion in the central image. The central slice—which is
generally the one with the largest tumor section—is determined automatically after the
operator sets the range of the initial and final slices containing the tumor. Starting from
the selected ROI in the central slice, the ROIs in the adjacent slices are determined starting
from the centroid of the segmented lesion in the previous slide. By doing so, the ROIs (set
automatically) in the adjacent slices are centered (or almost) with the lesion section they
contain. After the segmentation, a check is made to verify that the lesion does not touch
the ROI boundary. In fact—considering that the ROI size is set equal to that of the ROI in
the previous slice—it could happen that the selected ROI is too small and, consequently,
the lesion was cropped. If so, the ROI is enlarged in order to fully contain the lesion section
and repeated segmentation.

The segmentation is sequential: starting from the central slice, all the upper slices are
processed first and then the lower ones. All the segmentation steps are the same for both
the central slice and the other slices. The only difference lies in the different definition of the
ratios—defined in Equations (18) and (19)—used in the post-processing steps, differentiated
with the goal of optimizing the segmentation result.

SMRG Setting

There are several parameters controlling the SMRG behavior.
First of all, the splitting predicate P, a logical predicate fundamental to achieve sat-

isfactory outputs. In order to identify breast lesions, homogeneity criteria are defined in
terms of the mean value μ of each quad-regions. Here, the logical predicate in Equation (16)
was used:
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P :=

{
TRUE if (μ > 0.1) ∧ (μ < 0.6)
FALSE otherwise

. (16)

The minimum block dimension ρmin sets the minimum quad-region size beyond
which no further splitting is carried out: the best results are found with minimum block
dimensions of 4 × 4 pixels, because small regions are detected too. After the splitting phase,
the final partition will contain adjacent regions with identical properties: this drawback
can be addressed by merging only adjacent regions whose combined pixels satisfy the
predicate P.

Finally, a stopping rule interrupts the growing procedure if no more pixels match
the membership criterion. For the aim of this work, a reasonable stopping rule uses a
similarity criterion between the candidate pixel to be incorporated and the pixels already
belonging to the region. The criterion for the stopping rule is defined in terms of absolute
distance between the regional mean of each quad-region and the threshold provided by
the Otsu’s method [30] on the original cropped image, both of them calculated without the
contribution of null pixels.

Clustering Setting

Here, the optimal setting used for k-means, FCM and sFCM clustering algorithms
is reported, in terms of the following parameters: (i) number of clusters; (ii) maximum
number of iterations; (iii) minimum improvement in objective function between two con-
secutive iterations; (iv) exponent for the fuzzy partition matrix (only for fuzzy approaches);
(v) < p, q > parameters (only for fuzzy approaches).

Regarding the number of clusters, the lower the partition fuzziness, the better the
segmentation result: the best clustering is achieved when Vpe is minimal. If the partition
entropy for C = 2 is lower than the one obtained for C = 3, the lesion does not include any
necrotic region: if so, pixels belonging the brightest cluster are turned to 1 and the others
to 0. Otherwise, the two brightest clusters are fused together and their pixels are turned
to 1, allowing for the inclusion of necrotic cores into the preliminary mask. Considering
that, sometimes breast lesions can include an inner necrotic region that appears darker (i.e.,
hypo-intense) with respect to the rest of the lesion. In those cases where a binary clustering
(C = 2) does not allow for properly detecting a necrosis, the number of clusters might be
increased (C = 3). The choice of the optimal number of clusters to be used in k-means, FCM
and sFCM is automatically set by evaluating the partition entropy for both cases C = 2 and
C = 3. The partition entropy Vpe is a cluster validity function defined as in Equation (17):

Vpe =

− N
∑

j=1

C
∑

i=1
uij log u2

ij

N
. (17)

The 〈p, q〉 parameters, dealing with FCM and sFCM clustering, control the relative
importance of both functions defined in Equations (10) and (11), respectively. In particular,
with 〈p, q〉 = 〈1, 1〉, we sFCM is equivalent to the traditional FCM. As a matter of fact, to
properly weight spatial information, the values 〈p, q〉 >= 〈1, 2〉 were used. The choice was
guided by the analysis and results obtained in [18], tackling a similar problem on DCE-MRI
images. All these parameters are reported in Table 2.

At the end of the segmentation of each slice, the algorithm also verifies whether or
not the contour of the detected lesion touches the boundaries of the initial rectangular
bounding-box: if so, the shape of the lesion results in a cut version of the original one. For
this reason, when the lesion intersects the boundaries of the original m × n rectangular
crop, the algorithm shifts and expands the bounding-box itself until the boundaries of both
the lesion and the crop do not intersect each other.
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Table 2. Parameters setting for k-means, FCM and sFCM clustering algorithms.

Unsupervised Number of Maximum Number Minimum Exponent of Fuzzy 〈p, q〉
Algorithm Clusters of Iterations Tolerance Partition Matrix Parameters

k-means 2 or 3 100 N.A. N.A. N.A.
FCM 2 or 3 100 1 × 10−5 2.0 <1,1>
sFCM 2 or 3 100 1 × 10−2 2.0 <1,2>

3.2.4. Post-Processing

The result of the segmentation process is a binary image in which a label is assigned
to each pixel: 0 if the pixel does not belong to the mask, and 1 otherwise. The aim of the
post-processing phase is to properly choose, among the connected-components resulting
from the previous step, the only one representing the lesion. The post-processing itself
consists of several sub-steps allowing for removing connected-components that do not
meet specific morphological criteria (Figure 5).

Small area removal

Remove connected component with area< (0.75*
mean area of all the connected regions)

 

Eccentricity- based selection

 Remove component with 0.3< eccentricity< 0.95 

"Ratio_central" maximization

 Maximize the ratio (μi * si)/ εi for all the remaining
connected components

Central slice Other slices

Small area removal

Remove connected component with area< (0.75*
mean area of all the connected regions) 

Eccentricity- based selection

 Remove component with 0.3< eccentricity< 0.95 

"Ratio_other" maximization

 Maximize the ratio (μi * si)/ (di)2 for all the remaining
connected components 

Figure 5. Diagram of the post-processing steps for both central slice and other slices.

The first post-processing phase allows us to extract all the connected-components
from the raw binary mask. For each connected-component, a list of morphological features
(i.e., extreme points, area, centroid, eccentricity, mean intensity and solidity) are computed
that the algorithm is going to exploit in the following steps. In order to remove spurious
connected-components with an area that is too small to be considered as a lesion, an area-
based selection is performed: all the connected-components with an area smaller than
0.75 × meanArea of all the connected-components. In such a way, spurious regions with a
very small area are removed, reducing the number of valid candidates to be analyzed in
the following steps.
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Clinical evidence allows us to state that breast lesions generally grows in an isotropic
way preserving a pseudo-spherical appearance [39]. As a consequence, their particular
shape can be described in terms of eccentricity, which is defined as the ratio of the distance
between the foci of an ellipse and its major axis length. Eccentricity values lay in the
range [0, 1]: the extreme values represent degenerate cases identifying a circle and a line
segment, respectively. The aim of this post-processing step is to delete from the list of the
lesion candidates the regions with eccentricity lower than 0.3 and higher than 0.9 (these
threshold values were determined experimentally). Eccentricity values close to 1 relate
to very elongated lesions, while eccentricity values close to 0 relate to almost perfectly
round shapes. In the case of breast lesions, even if overall there are rounded lesions, the
lesion has a ’lobed’ trend for which the final value of the eccentricity never takes values
below 0.2–0.4. Using 0.3 as eccentricity lower limit in the post-processing phase, allow
us to eliminate those (almost perfectly) circular connected components with pixel values
similar to the lesion (and which are therefore incorrectly selected), but which are instead
part of the background. As a consequence of their tendency to be round-like shaped, breast
lesions exhibit an high solidity, which is defined as the ratio between the region area and the
(including the region) convex polygon area. Considering this morphological information,
the lesion ROI identification can be turned into an optimization problem with the ultimate
goal of maximizing ratioCentral, defined in Equation (18):

ratioCentrali =
μisi
εi

, (18)

where μi is the mean intensity, si is the solidity and εi denote the eccentricity of the i-th
connected-component, respectively.

The post-processing in the other slices differs from the central slice. In this case, the
parameter to maximize ratioOther is defined according to Equation (19):

ratioOtheri =
μisi

d2
i

, (19)

where d2
i represents the square of the distance between the centroid of the lesion region

in the central slice and the centroids of all the connected-components in the current slice.
In order to reduce false positives identification, ratioOther maximization searches for the
connected-component with the centroid that is the closest to the one of the central slice
mask. Recalling that breast lesions usually preserve a pseudo-spherical appearance, as the
slices move away from the central one, the cross section identifying the lesion is reduced.
In Equation (19) the replacement of εi with d2

i aims to avoid misclassification of spurious
regions in slices different from the central one.

Figure 6 shows the results of each post-processing step applied to a segmentation mask
obtained by means of sFCM clustering. Unfortunately, breast lesions might be characterized
by different scenario—in terms of uniformity, contrast and well-defined boundaries—which
a simple thresholding cannot properly manage. Figure 7 shows two segmentation results
that allow us to appreciate the lesion non-homogeneity that only clustering approaches can
properly manage, thus maximizing the result accuracy.
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Figure 6. Examples of post-processing steps on two breast lesions (one per row): (1st column) binary
mask obtained after sFCM clustering; (2nd column) mask after the small-area removal; (3rd column)
mask after both the small-area removal and the eccentricity-based selection; and (4th column) mask
after ratio criteria, defined in Equations (18) and (19). With respect to the position in the DCE-MRI
sequence, all images have been rotated 90° clockwise, in order to improve the graphical representation
and allow all the images, related to aspecific lesions, to be displayed in a single line.

Figure 7. Two examples of segmentation obtained by sFCM: (1st row) the original DCE-MRI images;
(2nd row) the corresponding segmentation. Compared to the images shown in Figures 4 and 6, a
2× zoom factor was used, that allows us to better appreciate the lesion non-homogeneity that only
clustering approaches can properly manage, thus maximizing the final result accuracy.
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4. Segmentation Performance Evaluation

Several evaluation measures are computed to quantify segmentation performances
by comparing masks—obtained from analyzed unsupervised methods—and the ground-
truth—provided by a radiologist, with more than 5-year experience on breast MRI, in
consensus with a consultant breast radiologist (with more than 30-year experience on
breast imaging). To obtain an accurate and detailed quantification, both area-based and
distance-based metrics were used. The reason behind this choice is that area-based metrics
strongly depend on region size and are not always able to evaluate the precision of a
segmentation approach. On the other hand, distance-based metrics take into account the
distance between the boundaries of the two segmentations to be compared, ignoring the
actual volume difference between the two masks.

4.1. Spatial Area-Based Metrics

Spatial area-based metrics compare the semi-automatic segmented regions with the
manually segmented ones (RA and RT , respectively) by calculating the overlapping per-
centage of area between the two masks obtained from the segmentation of the image I .
Recalling some basics on statistical decision theory measures, the regions containing ‘true
positives’ (TP), ‘false positive’ (FP), ‘false negatives’ (FN), and ‘true negatives’ (TN) are
defined as:

RTP = RA ∩RT

RFP = RA −RT

RFN = RT −RA

RTN = I −RT −RA

When validating the segmentation results, the two most used area-based metrics are
the Dice Index (DI) and the Jaccard Index (JI), defined in Equations (20) and (21), respectively.
DI and JI are used to describe how much similar the manual (ground-truth) and the semi-
automatic segmentations are: the greater they are, the higher is the overlapping percentage
between the two masks.

DI =
2 · RTP

RA +RT
(20)

JI =
RA ∩RT
RA ∪RT

(21)

Sensitivity and specificity—defined in Equations (22) and (23)—represent the portion
of positive pixels (foreground) and negative pixels (background) correctly detected by a
segmentation method with respect to the ground-truth, respectively.

Sensitivity =
RTP

RTP +RFN
(22)

Specificity =
RTN

RTN +RFP
(23)

False Positive Ratio (FPR) and False Negative Ratio (FNR)—defined in Equations (24)
and (25)—denote the presence of false positives and false negative compared to the reference
region, respectively.

FPR =
RFP

RFP +RTN
, (24)
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FNR =
RFN

RFN +RTP
. (25)

4.2. Spatial Distance-Based Metrics

Area-based metrics are susceptible to differences between the positions of segmented
regions and strongly dependent on their own size. To take into account the spatial po-
sition of the pixels, it is necessary to quantify the distance between the boundaries com-
puted by the semi-automatic methods and the ground-truth delineated by the expert. Let
A = {ai : i = 1, 2, . . . , K} be the set of vertices belonging to the semi-automatic mask and
T = {tj : i = 1, 2, . . . , N} the set of vertices belonging to the ground-truth, the distance
between the i-th pixel in A and the set T is defined as:

d(ai, T) = min
j∈{1,2,...,N}

||ai − tj||2, (26)

where ||ai − tj||2 denotes the Euclidean distance between two points.
Many metrics can be defined in order to quantify the similarity/dissimilarity between

two segmentations.
The Mean Absolute Distance (MAD)—defined in Equation (27)—quantifies the av-

erage error in the segmentation process. The Maximum Distance (MaxD)—defined in
Equation (28)—measures the maximum difference between the two ROI boundaries. The
Hausdorff Distance (HD) between the point sets A and T—defined in Equation (29)—
measures the maximal distance from a point in the first set to a nearest point in the
other one.

MAD =
1
K

K

∑
i=1

d(ai, T) (27)

MaxD = max
i∈1,2,...,K

{
d(ai, T)

}
(28)

HD = max
{

h(T, A), h(A, T)
}

, (29)

where h(T, A) = max
t∈T

{
min
a∈A

{
d(t, a)

}}
is the so-called ‘directed Hausdorff Distance’.

It is important to point out that all the measured distances are expressed in pixels: in
this way, they result will be independent from the spatial resolution among different MRI
datasets (i.e., pixel spacing).

5. Experimental Findings

5.1. Area-Based Metrics Segmentation Results

Area-based metrics obtained by each segmentation algorithm are shown in
Tables 3 and 4—expressed as mean ± standard deviation. As easily appreciable, the
results showed that the fuzzy framework offered by FCM and sFCM reflects the intrinsic
uncertainty that characterizes medical images, allowing us to achieve better segmentation
results compared to the hard clustering performed by k-means. Furthermore, it is worth to
note that spatial constraints taken into account by sFCM contribute to reduce the standard
deviation of the final result, thus ensuring higher reliability with respect to SMRG and
k-means. On the other hand, the large value in standard deviation indicates that SMRG has
a high variability of the results that affects its reliability. The boxplots in Figures 8 and 9
summarize the obtained results.

Regarding sensitivity, the results showed that the FCM-based approach offered better
performance in terms of both mean value and standard deviation; on the contrary, the
hard partition offered by k-means did not provide satisfying results. The specificity values
showed that the clustering-based approaches obtained better performances compared to
SMRG. In particular, sFCM and k-means achieved slightly better results than FCM.
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Altogether, the results in Tables 3 and 4 showed that segmentation approaches based
on soft-clustering techniques achieved better performance compared to SMRG and k-
means. In fact, by explicitly exploiting the fuzziness, both FCM and sFCM better handled
the intrinsic uncertainty and the natural variability of medical images. On the other hand,
the crisp k-means allowed us to reach satisfying results in specificity values, but without
granting good performance in sensitivity.

Figure 8. Boxplots of the area-based metrics achieved by the considered unsupervised segmentation
approaches. From left to right: Dice Index, Jaccard Index, Sensitivity and Specificity. The lower
and upper bounds of each box represent the first and the third quartiles of the metric distribution,
respectively. The median is represented by a red line, while outliers are displayed as red crosses.

Table 3. Area-based metrics achieved by the considered unsupervised segmentation approaches: the
results are expressed as average value ± standard deviation.

Method DI JI Sensitivity Specificity

SMRG 71.82 ± 10.83 58.98 ± 11.32 76.47 ± 12.41 73.65 ± 13.50
k-means 72.65 ± 8.26 59.87 ± 9.20 67.23 ± 10.78 86.97 ± 8.93

FCM 77.48 ± 6.77 65.22 ± 8.13 77.84 ± 8.72 81.94 ± 10.41
sFCM 78.23 ± 6.50 65.90 ± 8.14 74.69 ± 9.39 87.10 ± 8.24
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Figure 9. False Positive Ratio and False Negative Ratio boxplots. The lower and upper bounds of
each box represent the first and the third quartiles of the metric distribution, respectively. The median
is represented by a red line, while outliers are displayed as red crosses.

Table 4. False Positive and False Negative Ratios achieved by the considered unsupervised segmen-
tation approaches: the results are expressed as average value ± standard deviation.

Method False Positive Ratio False Negative Ratio

SMRG 0.55 ± 1.05 0.33 ± 0.11
k-means 0.25 ± 0.20 0.25 ± 0.09

FCM 0.16 ± 0.13 0.23 ± 0.12
sFCM 0.14 ± 0.12 0.22 ± 0.09

Figure 10 shows some segmentation examples focusing on scenarios where the results
are not particularly satisfactory in terms of FPs and FNs. In general, it is possible to
note that SMRG and k-means have a greater tendency to leave out parts of the lesion
(FN)—especially, when these are not uniform—and to include areas outside the lesion (FP),
while the techniques based on clustering, and in particular the sFCM guarantees a better
lesion detection.
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Figure 10. Examples of interesting segmentation results showing FPs and FNs. In particular, the
examples compare results yielded by the four investigated unsupervised method—namely, SMRG
(cyan), k-means (yellow), FCM (red), sFCM (blue)—against the ground-truth (green).
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5.2. Spatial Distance-Based Metrics Segmentation Results

The need for using both area- and distance-based metrics comes out in considering
that area-based metrics do not take in account pixels’ spatial distribution. This leads to the
need to quantify the distance between the boundaries computed by the semi-automatic
methods and the ground-truth. The boxplots in Figure 11 summarize the obtained results.

In terms of HD, all the presented methods share similar characteristics with a mean
value of ≈2.2 and a standard deviation of ≈0.43. This means that the boundaries of the
semi-automatic masks are quite close to the manually traced ones.

The MAD metric is quite similar across the examined techniques, except for the SMRG,
which shows the higher mean value and standard deviation. Clustering-based approaches,
on the other hand, result more stable and precise, offering a better performance on the
whole dataset.

Figure 11. Boxplots of the spatial distance-based metrics achieved by the considered unsupervised
segmentation approaches. From left to right: Mean Absolute Distance, Maximum Distance and
Hausdorff Distance. The lower and upper bounds of each box represent the first and the third
quartiles of the metric distribution, respectively. The median is represented by a red line, while
outliers are displayed as red crosses.

Table 5 shows distance-based metrics obtained using the considered unsupervised
segmentation approaches: lower distance values indicate better segmentation results.
Observing the general trend, just a small deviation between the segmentations of the pro-
posed methods and those of the experienced radiologist can be denoted. Furthermore, the
achieved spatial distance-based indices are consistent with area-based metrics, confirming
that clustering-based segmentation approaches allow us to reach better results with respect
to SMRG.
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Table 5. Spatial distance-based metrics achieved by the proposed segmentation approaches: the
results are expressed as average value ± standard deviation.

Method MAD MaxD HD

SMRG 2.00 ± 1.41 5.63 ± 3.81 2.32 ± 0.44
k-means 1.58 ± 0.99 4.22 ± 2.73 2.24 ± 0.42

FCM 1.58 ± 1.22 4.46 ± 3.12 2.21 ± 0.43
sFCM 1.37 ± 0.90 4.04 ± 2.87 2.21 ± 0.44

As shown at the top of Figure 12, FCM (with p = 6.268 × 10−6 and p = 2.670 × 10−7)
and sFCM (with p = 8.566 × 10−5 and p = 1.855 × 10−7) clustering methods achieved
significantly higher DI values compared to SMRG and k-means, respectively.

Figure 12. DI values achieved by the investigated traditional classic approaches. The bar graph and
error bars denote the average value and the standard deviation DI values, respectively. The p-values,
obtained from the statistical validation procedure, are shown at the top of the bars as brackets. The
Wilcoxon rank-sum test for pairwise result comparison was used with the alternative hypothesis
that the samples do not have equal medians of DI values. A significance level of α = 0.05 with a
correction using the Bonferroni–Holm method. Notation: **** p < 0.0001.

To statistically validate the obtained results, the two-sided Wilcoxon signed rank
test [50] on paired DI results was performed with the null hypothesis that the samples
come from continuous distributions with equal medians (considering a significance level
of 0.05). Obtained p-values are shown in Table 6. With more details, this test on paired
results was used to statistically compare the distributions of the DI values achieved by two
competing methods and identify significant differences. The p-values were corrected by
the Bonferroni–Holm method [51] for multiple comparisons.

The values reported in Tables 3–5 represent the average value ± standard deviation
over all 50 breast masses. All the values obtained on each breast mass are reported in the
Supplementary Materials.

Table 6. p-Values obtained from the statistical validation procedure. The Wilcoxon rank-sum test
for pairwise result comparison was used with the alternative hypothesis that the samples do not
have equal medians of DI. A significance level of α = 0.05 with the Bonferroni-Holm correction for
multiple comparisons was used. Boldface indicates that the null hypothesis can be rejected.

SMRG k-Means FCM

k-means 0.973
FCM 6.268 × 10−6 2.670 × 10−7

sFCM 8.566 × 10−5 1.855 × 10−7 0.423
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5.3. Processing Times

In order to evaluate the processing times, all segmentations were performed on the
entire dataset, by calculating the average elapsed time and the corresponding standard
deviation for each of the four investigated algorithms over all the analyzed images, obtain-
ing the following values: SMRG: 2.78 ± 2.79 s; k-means: 1.35 ± 0.78 s; FCM: 1.65 ± 0.88 s;
sFCM: 1.76 ± 0.83 s. These processing times were measured using the Matlab R2019b IDE
(by means of the tic and toc stopwatch timer functions) running on a Windows 10 Pro
general-purpose PC equipped with an Intel I7-3630QM@2.40 GHz CPU and 8 GB RAM.

As expected, SMRG had the longest processing time due to the two-stage approach
and also considering the iterative processes employed during the Split-and-Merge and
Region Growing executions. Interestingly, the introduction of the fuzzy logic is negligible
compared to the crisp k-means, as well as the integration of the spatial constraints into the
sFCM algorithm does not require a remarkable computational overhead in addition to the
standard FCM clustering.

Overall, these results demonstrate the clinical feasibility of the investigated classic
unsupervised methods also in terms of both computational resources and processing times,
by considering that supervised CNN-based approaches for segmentation require a training
phase and then an inference phase typically performed on Graphics Processing Units [18].

5.4. Difficult Cases

As previously highlighted, medical images are characterized by an intrinsic variability
in which boundaries or anatomical details may be not well defined. Furthermore, noise
corrupts digital images, thus affecting certain features within the original image. MRI
suffers from various kinds of noise and artefacts because of the nature of the signal detection
and spatial encoding [37,38]. For instance, hardware-induced errors are often caused by the
complicated acquisition scheme depending on radiofrequency coils, while thermal noise
can derive from transmission lines, receiver circuits and polarization magnetic field B0
drift during the scan acquisitions. In addition, natural body motion (e.g., respiratory and
cardiac motion) can degrade the image quality too. As a consequence, even after a proper
pre-processing step, it is common to deal with low-contrast, noisy images. The proper
lesion segmentation in this kind of images is not a trivial task and user interaction would
be required to produce accurate results.

5.4.1. Case with Low Contrast-Enhanced Mass

In some cases, MR images are difficult to segment because the lesion itself does not
appear brighter with respect to the muscle and adipose surrounding tissue. This kind of
images exhibit a narrow histogram located typically toward the middle of the intensity
scale, implying a washed-out grey look through the whole image. As a consequence, the
meaningful partition of the original image results in a very difficult task leading to imprecise
results. The opposite is true for the histogram of a high-contrast image, which covers a
wide range of the intensity scale and has a pixel distribution not too far from uniform. The
effect is an image that shows a great deal of gray-level detail and has a high dynamic range.
As a matter of fact, a segmentation process on this kind of images will produce satisfying
results with a high reproducibility. As easily appreciable in Figure 13, MR images offer a
very difficult scenario where the lesion boundaries are not clearly distinguishable from the
rest of the image. The manual segmentation (green contour) cannot properly segment the
whole lesion because of the strong uncertainty due to the low contrast characterizing the
whole image. On the other hand, the FCM segmentation (red contour) correctly identifies
the lesion but, because of the low percentage of overlapping area with the manual mask, it
does not ensure satisfying results.
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Figure 13. Case with a low-contrast lesion: (a) entire axial DCE-MRI slice; (b) crop of the slice shown
in (a). Comparison between manual ground-truth (green) and automatic segmentation (red).

5.4.2. Case with Blurred Boundary Mass

From Figure 14, it is possible to appreciate how blur severely compromises the contrast
of the original image, making lesion segmentation a very challenging task. As mentioned
above, because of the strong uncertainty in boundaries delineation, the manual segmen-
tation (green contour) identifies a very simple and smooth shape into which the lesion is
included. Of course, this kind of strategy allows the identification of lesion’s location, but
also includes into the ROI a lot of false positives. On the other hand, the semi-automatic
mask (red contour) identifies a more precise region avoiding the misclassification of FP
pixels. Even in this case, because of the imperfect area, overlap area-based metrics will not
yield a high score.

Figure 14. Case with a blurred boundary lesion: (a) entire axial DCE-MRI slice; (b) crop of the slice
shown in (a). Comparison between manual ground-truth (green) and automated segmentation (red).

5.4.3. Case with Irregular Mass

Opposed to what is reported in the literature [39], breast lesions may sometimes
exhibit irregular shapes and borders with internal divisions. In these cases, breast masses
could cause difficulties during the manual segmentation process: in fact, as the lesion
contour becomes more irregular, the manual tracing of the ROI becomes more challenging.
As a consequence, the manual segmentation of breast lesions with unusual shapes does not
always match the effective lesion contour. Figure 15 exhibits one of this cases with unusual
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elongated breast lesion. The manual segmentation (green contour) completely cut the left
portion in the upper part of the lesion which is, instead, properly included in the semi-
automatic boundary (red contour). As a consequence, computer-assisted segmentation
process results in a more precise mask that properly reproduces the narrowed-shape
of lesion.

Figure 15. Case with an irregular lesion: (a) entire axial DCE-MRI slice; (b) crop of the slice shown in
(a). Comparison between manual ground-truth (green) and automated segmentation (red).

6. Discussion and Conclusions

The main objective of this work was to offer a detailed analysis of well-established
classical unsupervised segmentation techniques by carefully comparing them in a real
clinical application. Breast cancer is the most common cause of cancer death in women
worldwide [52,53] and the second most common cancer overall [54]. Fortunately, science
evolution has led to the development of medical imaging techniques, which are used to
detect abnormalities in breast parenchyma. Among imaging techniques, multiparametric
MRI plays a crucial role and it is widely used in clinical applications, due to its high
resolution images and the ability to precisely differentiate soft tissues.

As matter of fact, as a case study, the contrast-enhancing mass delineation in breast
DCE-MRI was addressed by means of four popular unsupervised segmentation meth-
ods, namely: SMRG, k-means, FCM, and sFCM. Although they represent well-known
approaches in the literature, they are still widely used in clinical tools. Starting from the ba-
sic versions of these approaches, during the initial analysis, we identified the shortcomings
of each of them, developing and implementing improved versions, when possible.

Nowadays, deep learning techniques represent the state-of-the-art, allowing us to
achieve high performance and accurate lesion segmentation for datasets of thousands of
patients [14]. Deep learning approaches for image segmentation are generally supervised
techniques that require a considerable computation times and a large amount of data for
training [15]. In fact, these data must be representative of all the possible scenarios in which
the deep neural network could operate, not always available in small- or medium-sized
hospitals, and therefore not clinically feasible. Moreover, it should be noted that the authors
of [18] showed that semi-automatic approached based on classic unsupervised techniques
obtained results comparable or superior to the deep CNNs (namely, SegNet and U-Net).
Therefore, this study was focused on classic pattern recognition approaches with the goal
of providing an in-depth analysis.

It is important to point out that, even considering all the disadvantageous aspects
related to manual segmentation, the contribution of an expert radiologist still remains
essential at least to validate the results obtained by means a computer-assisted approach.
In fact, clinicians rely on computational approaches with interpretable results [41]. From
this point of view, the classical unsupervised approaches—such as those analyzed in this
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work—provide this important advantage. This aspect is even more critical in deep learning
architectures, where CNNs are generally adopted as ‘black-box’, thus making it difficult
to offer a physical interpretation to the features encoded in all the intermediate CNN
layers [46].

The obtained experimental results, in terms of area- and distance-based metrics,
encourage the use of unsupervised pattern recognition techniques in medical image seg-
mentation. In particular, consistently with [55], clustering-based segmentation approaches
achieved better performance compared to the SMRG, the only ‘thresholding-based’ ap-
proach considered. As a consequence, crisp segmentation techniques—such as k-means
and SMRG—are not well-suited for medical images that are characterized by an uncer-
tain/variability (sometimes related to the noise), yielding inaccurate boundaries and
not well-defined details. Both FCM and sFCM clustering techniques—implementing
fuzzy modeling that provides an intrinsic flexibility—significantly achieved the best per-
formance. In fact, on area-based metrics, they obtained DI = 78.23% ± 6.50 (sFCM),
JI = 65.90% ± 8.14 (sFCM), sensitivity = 77.84% ± 8.72 (FCM), and specificity = 87.10% ± 8.24
(sFCM), FPR = 0.14 ± 0.12 (sFCM), and FNR = 0.22 ± 0.09 (sFCM). On distance-based
metrics, they obtained MAD = 1.37 ± 0.90 (sFCM), MaxD = 4.04 ± 2.87 (sFCM), and
HD = 2.21 ± 0.43 (FCM).

A second segmentation of the same radiologist or the segmentation of a different
radiologist would have certainly allowed us to quantify the inter-/intra-operator variability
of the results. Nevertheless, as already observed in [56], the mean DI was 0.81 (range
0.19–0.96). The mean DI is higher for the ‘easy tumors’ compared to the ‘challenging
tumors’ (0.83 vs. 0.75, respectively, p < 0.001). The mean DI for each observer combination
separately, for all tumors, ranged between 0.78 and 0.83, where the segmentations of the
breast radiologist and the medical student showed the highest overlap. These results
confirm that the performance achieved by the best performing methods are in line with the
inter-observer agreement, also in terms of metrics variability according to the lesion types.

As further developments, we plan to investigate innovative improvements to further
improve the performance with fuzzy clustering, by using (i) more sophisticated mem-
bership functions, and (ii) more advanced pre- and post-processing steps. Moreover,
investigating and comparing the latest machine learning techniques, such as Genera-
tive Adversarial Networks (GANs), for unsupervised detection and segmentation [57,58]
would be relevant with a sufficient amount of data for training and test. Finally, the im-
plementation of multiparametric or multimodal approaches [59], by using different types
of co-registered medical images—i.e., Diffusion Weighted Imaging (DWI) and Positron
Emission Tomography (PET)/MRI—probably would allow us to improve the detection
performance [60,61].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app12010162/s1: Table S1: Dice Index (DI) values obtained by the four investigated un-
supervised methods on each of the 50 segmented breast masses on DCE-MRI. In the last row the
mean value ± the standard deviation is reported; Table S2: Jaccard Index (JI) values obtained by the
four investigated unsupervised methods on each of the 50 segmented breast masses on DCE-MRI.
In the last row the mean value ± the standard deviation is reported; Table S3: Sensitivity values
obtained by the four investigated unsupervised methods on each of the 50 segmented breast masses
on DCE-MRI. In the last row the mean value ± the standard deviation is reported; Table S4: Specificity
values obtained by the four investigated unsupervised methods on each of the 50 segmented breast
masses on DCE-MRI. In the last row the mean value ± the standard deviation is reported; Table
S5: False Positive Ratio (FPR) values obtained by the four investigated unsupervised methods on
each of the 50 segmented breast masses on DCE-MRI. In the last row the mean value ± the standard
deviation is reported; Table S6: False Negative Ratio (FNR) values obtained by the four investigated
unsupervised methods on each of the 50 segmented breast masses on DCE-MRI. In the last row the
mean value ± the standard deviation is reported; Table S7: Mean Absolute Distance (MAD) values
obtained by the four investigated unsupervised methods on each of the 50 segmented breast masses
on DCE-MRI. In the last row the mean value ± the standard deviation is reported; Table S8: Maximum
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Distance (MaxD) values obtained by the four investigated unsupervised methods on each of the 50
segmented breast masses on DCE-MRI. In the last row the mean value ± the standard deviation is
reported; Table S9: Hausdorff Distance (HD) values obtained by the four investigated unsupervised
methods on each of the 50 segmented breast masses on DCE-MRI. In the last row the mean value ±
the standard deviation is reported.
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Abstract: Purpose: A deep learning technique was used to analyze the triceps surae muscle. The
devised interpolation method was used to determine muscle’s volume and verify the usefulness of
the method. Materials and Methods: Thirty-eight T1-weighted cross-sectional magnetic resonance
images of the triceps of the lower leg were divided into three classes, i.e., gastrocnemius lateralis (GL),
gastrocnemius medialis (GM), and soleus (SOL), and the regions of interest (ROIs) were manually
defined. The supervised images were classified as per each patient. A total of 1199 images were
prepared. Six different datasets separated patient-wise were prepared for K-fold cross-validation. A
network model of the DeepLabv3+ was used for training. The images generated by the created model
were divided as per each patient and classified into each muscle types. The model performance
and the interpolation method were evaluated by calculating the Dice similarity coefficient (DSC)
and error rates of the volume of the predicted and interpolated images, respectively. Results: The
mean DSCs for the predicted images were >0.81 for GM and SOL and 0.71 for GL. The mean error
rates for volume were approximately 11% for GL, SOL, and total error and 23% for GL. DSCs in
the interpolated images were >0.8 for all muscles. The mean error rates of volume were <10% for
GL, SOL, and total error and 18% for GM. There was no significant difference between the volumes
obtained from the supervised images and interpolated images. Conclusions: Using the semantic
segmentation of the deep learning technique, the triceps were detected with high accuracy and the
interpolation method used in this study to find the volume was useful.

Keywords: deep learning; semantic segmentation; triceps surae muscle

1. Introduction

Deep learning technology has been widely used in recent years for automatic driving,
drones, weather forecasting, and games [1–4]. The deep learning techniques include classifi-
cation [5], object detection [6], and semantic segmentation. Semantic segmentation has been
used to visualize the three-dimensional (3D) anatomical structures of multiple organs in
3D computed tomography images [7], to facilitate the quantitative coronary angiography-
based diagnosis of major vessels in X-ray coronary angiography [8], and to quantitate
whole breast image analysis in diffusion-weighted images [9]. An applied method using
Conditional Generative Adversarial Networks (cGANs) has been reported [10] to be highly
accurate for in segmenting peri-knee tissue using magnetic resonance imaging (MRI).

Appl. Sci. 2021, 11, 12006. https://doi.org/10.3390/app112412006 https://www.mdpi.com/journal/applsci85
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These techniques are used in various body parts and modalities. This study focused on
semantic segmentation of the triceps surae muscle, which consists of the gastrocnemius
and soleus (SOL) muscles. The gastrocnemius is a biceps muscle that comprises the gas-
trocnemius lateralis (GL) and gastrocnemius medialis (GM). The triceps is an important
muscle because it makes activities, such as walking and standing, possible by its repeated
contraction and relaxation. Triceps muscle weakness increases the risk of falling and pre-
vents these essential activities [11]. The muscle volume is commonly used as a measure of
the muscle size, and it is frequently measured in studies because it correlates with various
functional parameters [12]. In a study by Thom et al., the volume of the triceps femoris
muscle was calculated to assess the loss of muscle mass with aging [13]. The volume
was calculated by the product of the cross-sectional area and slice thickness obtained by
manual segmentation using an imaging software; however, this procedure takes a long
time [14]. Friedberger et al. [15] showed that it is now possible to perform semi-automatic
volume calculations using the Random Forest classifier for hand muscle segmentation.
However, this method is still semi-automatic, and even though it reduces the effort of
manual segmentation, it still requires modifications and is significantly time-consuming.
In addition, since magnetic resonance imaging of the lower extremities is often performed
with thicker slices and more spacing between images, volume calculations using only the
acquired images are likely to differ significantly from the actual volume. Therefore, it was
believed that by slice interpolating the MRI images and calculating the volume using the
interpolated images, this difference from the actual image could be reduced.

Many studies have been conducted on the segmentation of quadriceps [16–21], there
have been no previous studies focusing on the segmentation of triceps with deep learning.
In a study conducted by Essafi et al. [22], the authors performed the segmentation of the
medial gastrocnemius, one of the triceps muscles, without deep learning and reported
that the average Dice similarity coefficient (DSC) in 25 subjects was 0.55. In the studies
of thigh muscle segmentation using deep learning [16–19], the higher the DSC > 0.9, the
higher the accuracy of muscle detection. Furthermore, in the studies of segmentation of
thigh muscles without deep learning [20,21], there are examples of detection with relatively
high accuracy, although not as high compared with studies that have used deep learning.
Based on these results, that the triceps could be detected with high accuracy using the deep
learning method.

In this study, deep learning was used to detect the triceps surae muscle. Then, the
devised interpolation method was used to determine the muscle volume and verify the
usefulness of the method.

The manuscript is structured as follows. Section 2 outlines the preprocessing of
the dataset and the methodology and evaluations for transfer learning and the image
interpolation method for semantic segmentation. Section 3 describes the created models
and the evaluation of the image interpolation method. In Section 4, the results obtained
in this study are compared with those of other papers, and the limitations of this study
are discussed. Finally, the conclusions and future directions of this study are presented
in Section 5.

2. Materials and Methods

2.1. Subjects

The 38 consecutive patients who underwent a noncontrast-enhanced lower leg MRI
examination were retrospectively evaluated. The Digital Imaging and Communications
in Medicine (DICOM) images were subsequently converted to anonymized DICOM files
from the image server. These images have been approved by the Ethics Committee of the
Hokkaido University Hospital. The details information of the obtained images is shown
in Table 1.
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Table 1. The details information of the obtained images (N = 38).

Mean ± SD [Min–Max]

Number of slices 17.9 ± 4.9 [3–29]
Field of view [mm] 342.1 × 295.0 [160 × 160–500 × 425]

Acquisition matrix size [pixel] 446.0 × 402.4 [320 × 224–672 × 672]
Pixel size [mm] 0.764 × 0.764 [0.559 × 0.559–0.928 × 0.928]

Slice thickness [mm] 5.8 ± 0.5 [4–6]
Slice gap [mm] 13.6 ± 4.7 [4.8–22.8]

Length of acquisition [mm] 231.0 ± 76.2 [42–342]

2.2. Preprocessing

For supervised image creation, the DICOM images were converted to 8-bit using
the MATLAB (The MathWorks, Inc., Natick, MA, USA) “mat2gray” function because the
bit depth of DICOM images is 16-bit. Those with only one leg captured were resized to
256 × 256 portable network graphics (PNG) images, whereas those with both legs captured
were trimmed to the appropriate size for each leg and resized to 256 × 256. The left leg
was reversed and oriented in the same way as the right leg (Figure 1). The coordinates of
the trimmed area were also recorded to estimate the pixel size and the number of pixels in
a trimmed image for volume calculation. Images of 67 leg muscles were obtained from 38
patients. The trimmed images were used for training and evaluation.

Figure 1. The conversion process from DICOM to PNG image.

2.3. Dataset

These images were saved as PNG images by dividing the triceps into three classes
(GM, GL, and SOL) with an in-house MATLAB software; the regions of interest (ROIs)
were also manually defined (Figure 2). The ROIs were manually defined by the author
alone and were then verified by two radiological technologists with 5 (T.Y.) and 20 years
of experience (H.S.), respectively. A total of 1199 images were prepared from 38 patients,
and the Train:Test was set to 10:2. The 38 patients were classified into six groups, and
six datasets were created so that one could be used as a test (Figure 2). Six different
datasets with 1199 images were prepared for K-fold cross-validation so that the number of
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tests would be approximately 200. Data augmentation for improving the training [6] was
performed on the training images, and they were rotated by 5◦ from −45 to 45◦, increasing
the number of images by 19 times.

Figure 2. Six divided datasets and 6-fold cross-validation.

2.4. Training for Creating Models

The software was developed with MATLAB software, and a computer with NVIDIA
GeForce GTX 1080Ti 12GB (NVIDIA Corporation, Santa Clara, CA, USA) was used.
DeepLabv3+ was used for the architecture for implementation of image segmentation
models. The model was inputted with 2D images taken by MRI. The following training
parameters were used: the batch size for the number of training samples was 32, the
number of epochs was 100, and the initial learning rate was 0.0001. Using this network
model, six different datasets were trained to create six models.

2.5. Interpolation

The supervised images and the images generated using the devised model were
divided in each patient and classified into three muscle types (GM, GL, and SOL). Only the
images with muscles present in the supervised images were extracted and interpolated
by excluding even-numbered images from the predicted images in the same position
(Figures 3 and 4). The interpolation method is described in Figure 5. Interpolation was
performed in the slice direction from two images of the muscle. The contours of the two
muscles were represented by points. The centroid of the larger muscle was calculated
and connected to the centroid by a point on the larger muscle. The distance between the
connecting line and all points on the smaller muscle was calculated, and the point with
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the smallest distance was adopted. Moreover, the midpoint was calculated by connecting
the adopted point to a point on the larger muscle. The same process was performed for all
points of the larger muscle, and by connecting all the calculated midpoints, the interpolated
image of the muscle was completed.

Figure 3. Classifying muscles into three for interpolation.

Figure 4. Creating the interpolated images from the predicted images based on the presence or absence of muscles in the
supervised images. (A) Muscles in supervised images; (B) Predictive muscles using segmentation model; (C) Interpolated
muscles using the interpolation method by thinning out the even number of predicted images; (D) Muscles with even-
numbered predicted images thinned out and slice thickness doubled without using the interpolation method; 1–9; The
number of the slice where the muscle is located.
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Figure 5. Procedure of interpolation: (1) The outline with dots and the calculated centroid of the muscle with the most dots
were expressed; (2) a line was drawn connecting the red dot and the centroid; (3) measured the distance between all the blue
points and the yellow line, found the nearest blue point from yellow line; (4) the midpoint of the red dot and the selected
blue dot was marked; (5) a different red dot was selected and steps 2 through 4 were repeated for as many red dots as there
are red dots, connecting all the yellow dots.

2.6. Indicators Used for Evaluation
2.6.1. DSC

When the supervised images were set as A and the predicted images were set as B, the
following formula was used to calculate DSC. This value is an index to check the agreement
between the images, and the closer the value is to 1, the better the agreement is.

DSC =
2 × |A ∩ B|
|A| + |B| (1)

2.6.2. Calculation of the Volume and Error Rate

The spacing between the slices and pixels were obtained from the DICOM data.
The number of pixels used in the labeled muscle was determined, and the volume was
calculated from the product of these values. The error rate was calculated to compare the
volume of the supervised images with that of the predicted images. The error rate was
calculated using the following formula.∣∣∣∣Volume o f predicted images − Volume o f supervised images

Volume o f supervised images

∣∣∣∣ × 100 (%) (2)

2.7. Evaluation of the Created Models

DSCs were calculated for each muscle using the abovementioned formula, and the
averages were calculated for each dataset to show the overall average. All images were
used for this evaluation. The volumes were calculated for each patient and muscle, and
the average error rates of the datasets were calculated using the mentioned formula. For
this evaluation, only the images with muscle present in both the supervised and predicted
images were used to calculate the error rate.
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2.8. Evaluation of the Interpolation Method

Only the interpolated images were used to obtain DSCs, and the average DSC for
each muscle was calculated. DSCs were calculated from the interpolated image and the
supervised image of the same number (Figure 4C). The volumes were calculated from the
interpolated images, and the error rates were calculated for comparison with the volumes
of the supervised images. To confirm that the interpolation method is useful in terms
of reducing volumetric errors, the error rate was calculated by comparing the volume of
the supervised image and the volume of the image with the spacing between its slices
doubled without interpolation while excluding even numbered images (Figure 4D). All
patients with all three muscles and all predicted images that could be interpolated were
used for these evaluations. Statistical tests were performed to compare the interpolated
and supervised volumes. First, the Shapiro–Wilk test was applied to evaluate normality; if
normality was accepted, the t-test was used; otherwise, the Wilcoxon signed-ranked test, a
nonparametric test, was used. The differences in the statistical analyses were considered
statistically significant when p was <0.05.

3. Results

3.1. Evaluation of the Created Models

The DSC values per dataset are shown in Table 2. The following table shows the DSC
values of all 67 leg muscles. GM and SOL were detected with relatively high accuracy.
However, the DSCs of GL were lower than those of the others. The following are some
representative examples of segmentation successes and failures (Figures 6 and 7)

Table 2. Average DSC values per dataset for the predicted images.

Position Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6 Mean ± SD

GM 0.897 0.754 0.876 0.830 0.776 0.745 0.813 ± 0.064
GL 0.804 0.591 0.765 0.773 0.639 0.704 0.713 ± 0.084

SOL 0.889 0.820 0.791 0.823 0.840 0.844 0.835 ± 0.033
GM: gastrocnemius medialis, GL: gastrocnemius lateralis, SOL: soleus, SD: standard deviation.

Figure 6. Representative examples of accurately predicted images.
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Figure 7. Representative examples of partially incorrectly predicted images.

The error rates of volume per dataset are shown in Table 3. The following table
shows the error rates of the volumes of all 67 legs that were present in the supervised and
predicted images. The total error represents the error rate of all three muscle volumes. The
error rate of MG, SOL, and sum was 10% but that of the GL volume was large.

Table 3. The error rate of volume per dataset for the predicted images.

Position Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6 Mean ± SD

GM 5.68 11.84 8.96 10.28 8.80 24.48 11.67 ± 6.60
GL 27.46 23.03 18.74 27.14 32.71 12.36 23.57 ± 7.22

SOL 11.71 17.22 14.60 6.87 5.92 9.24 10.93 ± 4.43
total error 11.07 13.38 11.87 7.27 7.84 12.43 10.64 ± 2.51

[%], GM: gastrocnemius medialis, GL: gastrocnemius lateralis, SOL: soleus, SD: standard deviation.

3.2. Evaluation of the Interpolation Method

The DSC values of the interpolated images are shown in Table 4. The following table
shows the DSC of 60 GMs, 54 GLs, and 66 SOLs in the interpolated images. All muscles
had mean DSC larger than 0.8.

Table 4. The DSC values of the interpolated images.

Position DSC

GM 0.877 ± 0.134
GL 0.809 ± 0.170

SOL 0.867 ± 0.078
GM: gastrocnemius medialis, GL: gastrocnemius lateralis, SOL: soleus, DSC: Dice similarity coefficient.

The error rates of volume for the interpolated images are shown in Table 5. The follow-
ing table shows the error rate between the volume of the supervised images (Figure 4A)
and the volume calculated from the 52 legs to which all the three muscles could be in-
terpolated (Figure 4C). For GM, SOL, and the total error, the percentage was <10%. In
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fact, the percentage of the total error was as low as 7.5%. The usefulness of this inter-
polation method in reducing volume calculation errors was evaluated by comparing the
error rate between the volume of the supervised image (Figure 4A) and the volume of
the non-interpolated image (Figure 4D). In the comparison between the supervised and
non-interpolated muscles, all muscles were >12%. Both volumes were calculated for each
leg and were then statistically tested. p value results showed that there were no significant
differences between the volumes of the supervised and interpolated muscles. the same
sequence for the supervised and non-interpolated muscle were performed, and the p value
results also showed that there were no significant differences.

Table 5. The error rate of volume for the interpolated images.

Comparison Target Position Error Rate [%] p Value

Supervised muscle and
interpolated muscle

GM 9.41 ± 7.65 0.5052
GL 17.89 ± 6.37 0.3098

SOL 9.43 ± 5.07 0.7280
total error 7.69 ± 3.49 -

Supervised muscle and
non-interpolated muscle

GM 20.28 ± 9.68 0.1499
GL 33.93 ± 7.54 0.2539

SOL 12.70 ± 5.79 0.3442
total error 14.97 ± 3.98 -

GM: gastrocnemius medialis; GL: gastrocnemius lateralis; SOL: soleus. Supervised muscle: Figure 4A; interpolated
muscle: Figure 4C; non-interpolated muscle: Figure 4D.

4. Discussion

With regards to the evaluation of the created models, DSCs were used to compare
the agreement of the images and evaluate whether the detection was correct in the two
dimensions. Based on the results of the evaluation of the created models, MG and SOL
were detected with higher accuracy than GL, with DSCs exceeding 0.8. As for MG and SOL,
the DSC of segmentation in the thigh muscle, which exceeded 0.8 in many previous studies,
were found to be lower than the respective values in DSCs, but the values themselves
cannot be compared because the target areas were different. However, this study could
detect MGs with a higher accuracy than the reported segmentation of MGs without using
deep learning [22]. For GM and SOL, there were many large muscles present, but there
were some false positives, which were detected with a DSC of >0.8 on average. As for the
DSCs of GL, GL was shorter in the craniocaudal direction than the other two muscles, and
the number of slices in which GL exists is small. The slices at the edge of the GLs were so
small that it was difficult for the human eye to recognize them, and the ratio of the number
of small GLs slices was higher than that of other muscles. In small muscles where the other
muscles and surrounding fat tissues are mistakenly detected as GL, false positives were
more common and this was believed to be the cause of the decline in DSCs. Figure 7 is a
representative example of partially incorrectly predicted images. Not only are there false
detections of the SOL as the GL and GM, but there are also examples of inaccurate location.
As per Ding’s study [17], when false positives, which were not present in the surveillance
images, appeared in the prediction images, DSC was zero and affected the average DSC. In
addition, some images used in the test were blurry, and false positives were particularly
common in these. The triceps surae is a long muscle that exists in a craniocaudal direction,
and the shape of the muscle changes, particularly at the level of the knee and calf. In
this study, the number of slices was uneven in each position; therefore, the number of
slices at the knee level was small, which affected DSCs. As there were no reports on the
segmentation of the triceps surae, the results were compared with those of the quadriceps.
In a study by Kemnitz et al. [16], using T1-weighted 250 images of thighs, including the
quadriceps, hamstrings, sutures, adductor muscles, and others, were prepared and trained
with U-Net, which reported a muscle-only DSC of >0.9. However, as this was only a result
for a specific anatomical location, it may not be suitable for the volume calculation and
interpolation that were performed in this study. In a report by Ding et al. [17], 46 thigh
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4968-slice Fat-water decomposition MRI images were trained with U-Net. The mean DSC
of the quadriceps, hamstrings, sutures, and thin muscles was 0.89, and the mean percent
difference in volume was 7.57%. A similar study was conducted to determine DSC and
error rates for different image types and regions used; the results showed a similar trend to
the present study, indicating the validity of the present results. With regards to volumetry
without interpolation, the agreement was represented in three dimensions by calculating
the error rates of the volume.

Based on the average error rates of volumes per dataset, the error rate of GM, SOL,
and sum was 10%. The error rate in the GL volume was large, probably due to the presence
of many false positives as in DSC. In addition, the predicted images were overestimated in
all muscles, which might be due to the false positives because they were surrounded by
other muscles and fat. Of the images used for training, the images with all three muscles
present were the most common; however, there were few images at the level of the knee
where only the gastrocnemius muscle was present, and the quadriceps muscles were
mistakenly detected as gastrocnemius. In addition, images with contrast and roughness
were also detected that made it difficult to see the boundaries between the muscles, and
false positives were frequent in these images.

The interpolation method was evaluated in-plane by calculating the DSC of the
supervised and interpolated images. All muscles had mean DSC larger than 0.8. The
evaluation of Table 4 was DSC evaluated only with interpolated images; hence, it can be
said that the interpolation was performed with high accuracy. In this interpolation method,
the centroid of the larger muscle contour was discovered, and the centroid was connected
to the dots that make up the contour; the dot with the shortest distance between the line
and that of the smaller muscle contour were adopted. If a dot in the false positive area was
adopted, the DSC was lowered. Even if they were not considered in this interpolation, all
of them were >0.8, so the correct dot with a higher probability among the corresponding
dots in the small contour was selected. In a study by Yap Abdullah et al. [23], the results of
an interpolation to measure the intracranial volume were comparable to those of manual
segmentation, and its use led to the development of a software for rapid measurement.
In a study by Nordez et al. [24], to calculate the volume of the quadriceps muscle in MRI
images, four different methods were used to calculate the error rate; it was reported that the
interpolation method was the best. These results using the interpolation method showed
the same trend as these studies.

The interpolation method was evaluated along the slice direction by calculating and
comparing the error rates of muscle volumes, including the supervised and interpolated
images. The volume contained interpolated images generated from the two images but
with low error rates. Therefore, the results in Table 5 demonstrate that the interpolation
method is effective in reducing the volumetric error. The percentages of GM, SOL, and total
errors were >10%; for the total error, the percentage was as low as 7.5% because if there
were no false positives in the images before and after the interpolated images, there were
no false positives in the interpolated images. This was believed to lead to a decreased error
rate because of the possibility of reduced false positives. Even if false positives existed, it
seemed that the probability of adopting dots that constitute false positives was low. There
was no significant difference between the volumes of the supervised and interpolated
images, indicating that this method can be used without any problems in calculating the
volume. From the results in Tables 4 and 5, interpolation was performed by excluding the
even numbered images from the subsequent evaluation. As these findings underline that
the interpolation was accomplished with high accuracy, while observing at the same time
the effect of volume reduction, the error with the actual volume could be further reduced
by interpolating the actual captured images that were found.

This study has some limitations. First, this study was unable to interpolate all images
used in the test. Because muscles were present in the supervised images and the even
number of those present in the predicted images were excluded, if the muscles were
small in the supervised images, they could not be detected and the images could not be
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complemented. Therefore, the solution is to improve the detection capability by training
more images or to prepare a test image where the number of interpolatable images exists.
Second, the error rate of the volume calculated in this study could not be calculated in
the legs without gastrocnemius or SOL muscles. Therefore, to get a more correct error
rate, it would be necessary to have all the three muscle types in the legs used for training
or testing. Third, most studies on quadriceps segmentation used U-Net [16–18]. In these
studies [25,26], network models were compared for segmentation, and deeplabv3puls
was shown to have the highest detection ability. Therefore, DeepLabv3+ was used for
segmentation instead of U-Net because Deeplabv3+, which has a higher detection capability,
was more likely to be able to detect muscles with higher accuracy than U-net. Using this
algorithm, the triceps could be detected immediately and determine its volume. However,
the recent advances in the channel and spatial attention mechanisms [27–29] have definitely
led to the evolution of semantic segmentation using U-Net. Therefore, a further study on
CNNs in the state of the art is needed. Fourth, the hyperparameters were not adjusted
because this study did not aim to tune the hyperparameters as in the study by Chieh
et al. [30]. Setting and training the optimal hyperparameters may lead to more accurate
detection with Bayesian Optimization. Fifth, the sample size of data is small. Not only
is it difficult to guarantee generalization performance with small sample size, but it is
also possible to improve accuracy by increasing sample size. Additionally, in this study,
training and test images were divided 10:2 for six-fold cross validation, but five- or ten-fold
is general [31,32]. This value was obtained by dividing the data by person, and it is thought
that cross-validation can be performed with general values by increasing the sample size.
Sixth, there are no studies of triceps surae muscle segmentation using Deep Learning.
Therefore, this study was compared with a study of quadriceps segmentation [15–20]
and a study of triceps surae muscle segmentation that did not use deep learning [21].
The results showed that the DSC of the quadriceps was higher than the DSC of this
study, which suggests that this study has room for DSC improvement. In addition, it
was more accurate than the reported segmentation of the triceps surae muscle. This
interpolation method can be used to calculate their volume without any problems found.
Although muscle perimeter length and cross-sectional area, which are correlated with
muscle volume [33,34], are sometimes used as indices, it is more accurate to calculate
volume from images of the entire muscle [35]. However, it is more accurate to calculate the
volume from the whole muscle image. Therefore, this study, which can calculate the actual
volume by immediately calculating the volume and interpolating between slices, suggests
the possibility of advancing research in the field of physical therapy. The technique of
detecting the triceps and calculating their volume can be used to other parts and organs,
and it was assumed that the interpolation method can be used to determine the volume
more accurately. The interpolation technique may also be useful in smoothing out the
images captured with a thicker slice for multiplanar reconstruction processing and 3D
visualization.

5. Conclusions

This deep learning segmentation technique could detect the triceps with relatively
high DSCs. This eliminates the time needed to manually identify the muscles, and thus
enables us to immediately calculate the respective volume. The ability to immediately
calculate the volume of the triceps muscle will provide a distinct contribution to research
studies in the field of physical therapy, including the ability to immediately perform the
quantitative evaluations of rehabilitation devices in leg muscles. The interpolation method
used in this study to determine the volume was useful. Using the interpolation method
allowed us to find that the difference between the volume calculated by the interpolation
method and the actual measurement could be smaller than the volume calculated solely
from the captured image. In the future, this interpolation method can be used to calculate
the volume of other muscles and organs as well, thereby making it possible to calculate the
respective volume in a more accurate manner.
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Abstract: Microwave Breast Imaging (MBI) is an emerging non-ionizing imaging modality, with
the potential to support breast diagnosis and management. Wavelia is an MBI system prototype,
of 1st generation, which has recently completed a First-In-Human (FiH) clinical investigation on a
25-symptomatic patient cohort, to explore the capacity of the technology to detect and characterize
malignant (invasive carcinoma) and benign (fibroadenoma, cyst) breast disease. Two recent publi-
cations presented promising results demonstrated by the device in this FiH study in detecting and
localizing, as well as delineating size and malignancy risk, of malignant and benign palpable breast
lesions. In this paper, the methodology that has been employed in the Wavelia semi-automated Quan-
titative Imaging Function (QIF), to support breast lesion detection and characterization in the FiH
clinical investigation of the device, is presented and the critical design parameters are highlighted.

Keywords: breast cancer detection; microwave breast imaging; computer-aided diagnosis (CAD);
first-in-human (FiH) study

1. Introduction

Microwave Breast Imaging (MBI) uses the scattering wave, or reflected wave, that
arises from the contrast in dielectric properties between the various breast tissues, in
the microwave frequency range [1]. The increased volume of water within the denser
breast tissues is responsible for the detectable electromagnetic scattering associated with
microwave imaging. The increase in sodium and water, particularly in-bound water within
the tumor cells, is expected to lead to even greater conductivity and permittivity of the
tumorous tissues [2,3]. Due to the dielectric contrast, back-scattered radar signals are
physically generated, when the breast is illuminated with low-power electromagnetic
waves in the microwave frequency range.

MBI has been investigated as a novel modality for the detection of breast disease,
offering a non-ionizing, non-compressive approach [4–6] and as a potential diagnostic
management strategy in the monitoring of neoadjuvant chemotherapy [7]. To date, a
total of at least 10 MBI system prototypes have been employed in human subject tests, to
investigate the clinical utility of MBI [8–11]. Despite encouraging clinical results being
reported, several recurrent limitations, as outlined in [12], remain unresolved across most
studies and justify further clinical research with alternative MBI systems, such as Wavelia.
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WaveliaTM is an MBI system prototype, of 1st generation, which demonstrated the
ability to detect dielectric contrast between tumor phantoms and synthetic fibroglandular
tissue in preclinical studies [13] and has recently completed a First-In-Human (FiH) clinical
investigation on a 25-symptomatic patient cohort, hosted in NUIG Clinical Research Facility
Galway, Ireland. In this study (ClinicalTrials.gov NCT03475992), the Wavelia MBI system
was evaluated in the clinical setting for the first time, using mammography as the reference
conventional imaging modality and post-surgery histology data to assess the size of the
cancers. Ultrasound, MRI and core biopsy data were also collected as a reference and were
available as part of the patient’s standard of care. In this FiH study, Wavelia demonstrated
the capacity to detect and approximate underlying breast abnormalities to the appropriate
location, in patients with palpable biopsy-confirmed invasive carcinomas and benign breast
lesions, such as cysts and fibroadenomas [12]. The device also demonstrated promising
results in delineating the size and malignancy risk of the detected breast lesions [14].

The methodology that was employed in the Wavelia semi-automated Quantitative
Imaging Function (QIF) during this FiH study, to support morphological breast lesion de-
tection based on persistence, lesion sizing and lesion characterization in a low-dimensional
feature space, spanning shape and texture-based features, is presented in this article.

2. Materials and Methods

The Wavelia MBI Quantitative Imaging Function (QIF) was initially conceived using
experimental MBI datasets from anthropomorphic breast phantoms [13,15] and was further
developed and configured following training on the available FiH patient datasets [12,16].
The MBI parametric radar image formation and clinical feature extraction are performed
offline at this stage of development of Wavelia.

2.1. Wavelia MBI: Parametric Radar Image Formation

The Wavelia MBI system operates using 18 antennae arranged in a circle in a hori-
zontal plane outside a cylinder. With the patient lying in the prone position, one breast is
submerged at a time into the cylinder, which is filled with a creamy transition liquid. The
liquid has dielectric properties similar to the ones of the human skin within the microwave
frequency spectrum, thus favoring the penetration of the electromagnetic waves in the
breast. The device illuminates the breast using low-power electromagnetic waves in the
frequency range [0.5–4] GHz. The probe array moves vertically below the examination
table and illuminates the breast at regular intervals of 5 mm. Coronal sections of the breast,
of a given thickness (10 mm) are generated using the MBI data at each vertical scan position
of the probe array. Partially overlapping consecutive coronal breast sections, formed per
azimuthal sector of illumination based on multi-static radar detection technology, are
integrated to form a 3D MBI image of the dielectrically contrasted interior breast tissues.

As specified in prior publications on Wavelia MBI [13,15], the multi-static radar
imaging algorithm, which is employed for MBI image formation, is the Time-Reversal
Multiple SIgnal Classification (TR-MUSIC) algorithm, which was originally conceived for
the detection of obscured radar targets in heavily cluttered environments [17]. The intensity
of the TR-MUSIC images gets maximized in the imaging pixels where the MBI sensor array
illumination vector is more orthogonal to the noise subspace; thus, the image intensity
is indicative of the probability for the presence of a dielectrically contrasted scatterer on
each pixel of the image. The noise subspace is estimated at each frequency, by means of
decomposition and analysis of the Multi-Static Frequency Response Matrix (MFRM) of the
imaging array. The illumination vector of the imaging array, at each pixel p of the imaging
scene and each frequency f, is defined as:

Gsec t(p, f) =
[

g0

(
pTRxsec t,1

, p, f
)

g0

(
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)

. . . g0
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the assumed underlying ElectroMagnetic (EM) wave propagation model for the antenna
element at position pTRxsec t,i

, H
(1)
0 the Hankel function of 1st kind and 0th order, c0 the

speed of light in vacuum, er,trans(f) the known permittivity of the transition liquid at the
frequency f, d̂OutOfBreast,i,p an estimate of the distance travelled by the EM wave in the
transition liquid up to reaching the imaging pixel p, d̂InBreast,i,p an estimate of the distance
travelled by the EM wave within the breast up to reaching the pixel p, and:

^
er,InBreast(f) =

(
pcfib · ^

er,fibroglandular(f) + (1 − pcfib) · ^
er,adipose(f)

)
· 10−2 (3)

the average permittivity of the background healthy tissues of the breast, defined as a
weighted average (weighting by pc_fib) of the adipose tissue and fibro-glandular tissue
“mean” dielectric properties, as derived by Sugitani et al. [18].

The breast external envelope is reconstructed at first using the Wavelia MBI scan data.
The geometry is exploited to split the imaging scene in “Out of breast” and “In breast”
segments and further estimate d̂OutOfBreast,i,p and d̂InBreast,i,p for each transceiver i and each
pixel p in the imaging scene.

The critical elements of the tailored implementation of TR-MUSIC in the Wavelia QIF
are summarized below and in the flowchart of Figure 1.

Figure 1. Wavelia MBI radar image formation: the critical parameters.

• Sectorization of the imaging scene: Considering the high level of heterogeneity of
the breast tissues, but also the potentially irregularly shaped breast tumours, MBI
image formation is performed using sectorized subsets of the circular sensor network
of the Wavelia MBI system, at each vertical scan position. Both the physical size of
the sensor sub-array (sector) and the number Ns of sensors used for the elementary
sub-image formation is critical to the achievable performance of the MBI system, in
terms of unambiguous detection and valid characterization of breast lesions. Ns = 6
was fixed in the Wavelia QIF for the FiH clinical investigation.

• Sensor fidelity zone setting: Bounding the portion of the imaging scene, being effi-
ciently illuminated by each sensor sub-array. In the current implementation of the
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Wavelia QIF, a spatial filter activates the contribution of a given antenna to a given
pixel p in the imaging scene, only if the Euclidean distance between the pixel and the
phase centre of the antenna is inferior to a pre-set value dmax.

• Automated, data-driven, frequency selection for imaging: The TR-MUSIC imaging is
performed per frequency. In the Wavelia QIF, a limited number of frequency points
is automatically selected for imaging in each azimuthal sector of illumination, based
on the information content of the MFRM at each frequency. The employed frequency
selection criterion was previously defined in [15].

• pc_fib parameter setting in multiple search ranges: A large variability exists in the
dielectric properties of each breast tissue type over the population, as demonstrated by
multiple studies involving ex-vivo dielectric measurements of a large sample of excised
breast tissues [18–21]. Considering that the full dielectric map of each breast cannot
become practically available, data-driven techniques are employed in the Wavelia
QIF to deduce the unknown dielectric properties of the healthy breast tissue in each
breast, by assessing the pc_fib parameter. The pc_fib parameter, which is involved
in the formulation of the illumination vector of the MBI sensor array, is physically
associated with the percentage of fibro-glandular tissue along the propagation path
within the breast, from a given transmitting antenna to the interrogated imaging pixel
and back to a given receiving antenna, as defined in Equations (1)–(3). The Wavelia QIF
generates a set of parametric MBI radar images under various assumptions on pc_fib.
The generated set of parametric images is further evaluated in terms of focusing,
using the image curvature [22,23] as a focusing quality measure. To better handle
the heterogeneity of the breast and potentially better reveal the non-uniform angular
response of the breast lesions to MBI, the pc_fib parameter setting is performed
independently in each azimuthal imaging sector, while employing multiple search
ranges. In the Wavelia QIF, X1 wide and X2 narrow pc_fib parameter search ranges
are systematically employed for image formation, thus a total number of X = (X1 + X2)
MBI images are formed per patient’s breast.

The wide pc_fib search ranges result in 3D MBI images including the most complete
representations of the detected breast lesion shape. The narrow pc_fib search ranges are
expected to lead to partial representations of the detectable breast lesions. The X = 5 pc_fib
search ranges, which were systematically employed during the FiH clinical investigation
of Wavelia, are listed below:

• Wide pc_fib search range #1 (W1): pc_fib ε [10 20 30 40 50 60]%
• Wide pc_fib search range #2 (W2): pc_fib ε [20 30 40 50]%
• Narrow pc_fib search range #1 (n1): pc_fib ε [10 20]%
• Narrow pc_fib search range #2 (n2): pc_fib ε [30 40]%
• Narrow pc_fib search range #3 (n3): pc_fib ε [50 60]%

As explained in the next subsection, the persistent presence of a Region-Of-Interest
(ROI) in the set of X MBI parametric radar images of a given breast is further exploited, to
support the association of automatically extracted ROIs with breast lesions and validate
their reporting for clinical analysis.

2.2. Morphological MBI Image Post-Processing: Breast Lesion Detection Based on Persistence

Automated breast lesion detection is performed in the Wavelia QIF by means of
morphological post-processing of the set of parametric radar images, which are formed with
the employment of X = 5 search ranges for the pc_fib parameter. Automated segmentation
of ROIs and association, or not, to a breast lesion is based on morphological properties
(solidity and volume) of the ROI and its persistence on the set of parametric radar images,
which is evaluated by means of spatial clustering. The persistent visibility of a ROI over
multiple pc_fib search ranges is indicative of the association of the ROI with a physical
object (breast lesion) in the MBI image. On the other hand, the presence of a ROI in the
minority of the pc_fib search ranges under test is indicative of it being associated with
an imaging artefact. This setting has been inspired by the “breast mass” definition for
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mammography, as the space-occupying a 3D lesion seen in two different projections [24]. To
the authors’ knowledge, no such breast lesion detection method, based on persistence in a
set of parametric images carrying redundant information content, has ever been integrated
into any of the state-of-the-art MBI systems before. A second novel element of the proposed
method is the coupling of morphological properties (solidity) with the notion of persistence
to validate a ROI detection.

The automated breast lesion detection method, as designed and integrated into the
Wavelia QIF for the FiH clinical investigation of device prototype #1, is outlined below and
in the block diagram in Figure 2.

Figure 2. Wavelia MBI: morphological image post-processing for breast lesion detection based on persistence.

1. Iterative Image threshold setting: The following operation is first-of-all performed to
set a threshold for the raw 3D MBI image, with no a priori available on how normal
breast tissue is represented in this type of image:

a. Progressive increase in the image threshold, starting from the null threshold,
b. At each iteration, identification of the “connected” objects in the thresholded

image,
c. Threshold setting based on the maximal accepted volumetric size of “connected”

objects, potentially defining a breast mass in the image (default value 3 cm3, in
this implementation).

2. Semi-automated ROI extraction, based on morphological properties: The connected
objects to be retained as ROIs, are defined based on a set of user-defined characteristics,
including:

a. Volumetric size: all the small objects, of volume inferior to 1 cm3, are removed
from the FiH clinical data analysis, considering the status of the Wavelia system
prototype #1 in terms of minimum size of detectable lesions.

b. Solidity: this structural feature measures the density (or convexity) of an object.
A measure of solidity can be obtained as a ratio of the volume of the object to the
volume of a convex hull of the object. A value of 100% indicates a solid object,
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and a value less than 100% indicates an object having an irregular boundary or
containing holes. All connected objects with solidity >30% have been ultimately
retained, for the data analysis of the FiH clinical investigation of Wavelia.

c. Intensity Contrast: In case of ambiguity (i.e., multiple connected objects to be
retained in a single 3D MBI image, based on the volume and solidity criteria),
each connected object is retained as ROI, only if it is associated with the maximal
intensity in the image and is minimally contrasted (by at least 5%) against the
intensity of all the “competing” connected objects in the image.

3. Refinement of the ROI segmentation: An Active Contour segmentation module
(Chan-Vese algorithm for segmentation without edges [25]) has been configured and
employed to refine the contour of the extracted ROIs, in order to enable a more
valid characterization of the lesions in terms of shape and texture, as defined in the
following sub-section. This module may have a critical impact, especially in the case
of small lesions, which are low contrasted against the background healthy breast
tissue.

4. Spatial clustering of the ROIs which have been extracted on the set of X MBI images,
formed with varying pc_fib search ranges, is performed. In the current implementa-
tion of the Wavelia QIF, the Euclidean distance between the centroids of two ROIs
is required to be shorter than dR = 1 cm for the ROIs to be associated with the same
lesion in the breast.

5. Persistence over varying pc-fib search range: Five pc-fib search ranges (2 wide and
3 narrow) are systematically used during the FiH clinical investigation of Wavelia
to generate parametric 3D MBI images of each patient’s breast, as earlier stated.
Detection of a breast lesion in a minimum number of parametric images (3 out of the
5 pc_fib search ranges) is required for a ROI to be considered persistent and validated.

2.3. Combination of 3D Shape Descriptors and Texture Features for Breast Lesion Characterization
with Microwave Breast Imaging (MBI)

Apart from using reflected microwave energy to reconstruct images of the breast,
additional information on the size, shape, and surface texture can be extracted and po-
tentially exploited for discrimination between benign and malignant breast lesions using
microwaves [1]. Malignant tumors usually present the following characteristics: irregular
and asymmetric shapes, blurred boundaries (lack of sharpness), rough and complex sur-
faces with spicules or micro-lobules, non-uniform permittivity, and irregular tissue density.
Conversely, benign tumors tend to have the following characteristics: well-circumscribed
contours, compactness, and a smooth surface. Previous research works on breast lesion
characterization/classification with MBI [26–30] considered principally the MBI received
signals as input to a classifier, with or without dimensionality reduction. These state-of-
the-art research works [26–30] have been based on simulated datasets and/or simplified
experimental setups; no evaluation of such methods on patient clinical datasets has been
published to date. Among the state-of-the-art MBI prototypes which have been tested
on clinical datasets, two of them published studies on breast lesion classification with
MBI. Early concept work on the exploitation of the pattern of the frequency-domain Radio-
Frequency (RF) responses of the ROIs representing the breast lesions in the MBI image was
published in [31] for the MARIA M5 [4] MBI system. For the MammoWave MBI system,
machine learning methods were employed with raw received signals in the frequency
domain to classify them as healthy or non-healthy responses [32].

In the Wavelia QIF a module is integrated for the characterization of the ROIs which
have been prior detected and validated based on morphological properties and their
persistence, and thus associated with breast lesions. This module includes the following
operations:

• Breast Lesion sizing: by means of fitting an ellipsoid to the ROI associated with
the persistent lesion detection, in the 3D MBI images that have been generated by
applying either of the two wide pc_fib search ranges. The greatest linear dimension
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of the lesion is defined as the length of the longest axis of the fitted ellipsoid. This
definition is compatible with the conventional method that is applied for sizing
breast abnormalities based on 2D mammography and ultrasound images [24,33].
During the FiH clinical investigation, the Wavelia MBI system showed promise for
measuring lesion size with a more favorable linear trend between MBI and post-
surgery histological lesion size, compared to the results obtained for conventional
imaging [14]. Two challenging patient cases in terms of breast lesion sizing are
indicatively discussed in Results Section 3.2, to better highlight the status of the MBI
lesion sizing method, as integrated into the current version of the Wavelia QIF.

• Malignant-to-benign Breast Lesion labelling is performed in the Wavelia QIF using
a combination of 3 features, extracted from morphologically validated ROIs in the
MBI images. The selected features include: a shape descriptor [34], a Gray-Level
Co-occurrence Matrix (GLCM) texture feature [35] and a Neighborhood Gray Tone
Difference Matrix (NGTDM) texture feature [36]. The 3 features which were selected
in the Wavelia QIF implementation for the FiH study of the investigational device are
more specifically the following:

� Shape descriptors—Solidity: This feature measures the density, or the convexity,
of an object. It is computed as the ratio of the volume of the object to the
volume of the convex hull of the object, as illustrated in Figure 3. Breast lesion
scoring, in terms of risk for malignancy, is routinely based on visual inspection
and evaluation of the shape and margins of the imaged breast lesion, as per
BIRADS [24,33]. Shape descriptors have been earlier considered for breast
lesion classification with mammography [34,37] and ultrasound [38].

� GLCM texture—Correlation: The GLCM texture features measure the spatial
relationship between pixels per specific directions, thus highlighting the prop-
erties of uniformity, homogeneity, randomness, and linear dependency of the
image [35]. More specifically, the “correlation” feature varies between 0 (uncor-
related) and 1 (perfectly correlated), showing the linear dependency of gray
level values to their respective voxels, as graphically illustrated in Figure 3.

� NGTDM texture—Busyness: The NGTDM texture features measure the spatial
relationship among three or more pixels neighborhood, closely approaching
the human perception of the image [36], as graphically illustrated in Figure 3
More specifically, for the “busyness” feature, a high value indicates a “busy”
image, with rapid changes of intensity between pixels and its neighborhood.

  
Figure 3. The 3-d feature vector employed in Wavelia for malignant-to-benign breast lesion discrimination.

Texture-based features have been earlier considered in Radiomics Research for cancer-
ous lesions identification on CT, PET and MRI images [39–41]. Breast lesion classification,
employing texture features on multi-parametric breast MRI images has also been intro-
duced in the state-of-the-art [42].
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In contrast to the Radiomics Research studies, which suggest the employment of
high-dimensional feature vectors (typical size > 30) [39–41], appropriate feature selection
has been considered in the Wavelia QIF, to achieve malignant-to-benign lesion separability
in a feature space of low dimensionality. To the authors’ knowledge, no shape-based
or texture-based feature extraction from Microwave Breast Images (MBI) has ever been
considered in the past.

The 3-dimensional (3-d) lesion feature vector data [Solidity; Correlation; Busyness] is
exploited in a malignant-to-benign breast lesion classification framework in the Wavelia
QIF. A 2-class discrimination problem is defined, with: (i) Class #1: Malignant breast
lesions, and (ii) Class #2: Benign breast lesions. Two classifiers have been trained in this
3-d feature space. The two classifiers, i.e., a Naïve Bayesian (NB) classifier and a Quadratic
Discriminant Analysis (QDA) classifier, were selected such that their decision hypersurface
partitions the 3-d feature space in two disjoint and continuous manifolds (malignant lesions
subspace vs. benign lesions subspace).

In the Wavelia FiH clinical investigation [12], female patients were recruited from
the symptomatic unit to one of three groups: Biopsy-proven breast cancers (Group-1),
unaspirated cysts (Group-2) and biopsy-proven benign breast lesions (Group-3). For the
training of the 2 classifiers:

• The Group-1 patient datasets were labelled as Class #1.
• The Group-2 and Group-3 patient datasets were labelled as Class #2.

A total of 25 patients underwent MBI in this FiH study. Of these, 24 were included in
the final data analysis (11 Group-1, 8 Group-2 and 5 Group-3 patients). The patient who
was excluded from the final analysis was a patient who presented with a palpable lump
which was determined to be normal breast tissue, and who also had small, scattered, cysts
appearing in a different breast quadrant.

Given the small total number of analyzed patients, the number of training data
samples which was extracted from each patient dataset equals the number of pc_fib search
ranges for which the detection of each breast lesion was morphologically validated based
on persistence. This implies that each detected breast lesion was represented by 3–5 points
in the 3-d feature space, as depicted in Figure 4c. The confusion matrix and classification
loss were estimated for the two trained classifiers by means of 10-fold cross-validation
(i.e., 10 partitions of the full dataset in disjoint training and test datasets) to evaluate the
potential for discrimination between malignant and benign breast lesions with Wavelia
MBI. The confusion matrices and the decision surfaces are shown for the two classifiers in
Figure 4a–c. This proof-of-concept FiH patient dataset suggested the good potential for
discrimination between malignant and benign lesions in the defined 3-d feature space. The
two classifiers demonstrated very comparable performance and associated classification
loss 11.5–12.5%, as depicted in Figure 4.
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(a) 

 
(b) 

 
(c) (d) 

Figure 4. Average confusion matrices for the 2 trained classifiers, estimated with 10-fold cross-validation, (a) NB classifier,
(b) QDA classifier, (c) the training dataset and the decision hypersurfaces of the 2 classifiers, (d) Partitioning of the 3-d
feature space illustrated with 3 cuts for the QDA classifier.

3. Results

3.1. Semi-Automated Breast Lesion Detection Based on Persistence

The Wavelia MBI algorithm for morphological breast lesion detection based on persis-
tence has been specified in the previous section. The lesion persistence is assessed over a set
of MBI images that were generated under varying assumptions on the dielectric properties
of the healthy tissue of the breast (varying pc_fib parameter search ranges). Lesions that are
morphologically detected in at least 3 out of the 5 pc_fib search ranges under evaluation are
considered persistent and validated. The principle of the breast lesion detection method is
illustrated in Figures 5–8 on two indicative patient test cases.

• Patient 032: Group-1: 54-years old patient with an Invasive Lobular Carcinoma (ILC)
of size 30 mm (MRI data) at the 12 o’clock position of the Right Breast. Breast density:
BIRADS Category c, Volumetric Breast Density (VBD) = 13.3%.

• Patient 031: Group 3: 38-years old patient with a Fibroadenoma of size 19 mm (Ultra-
sound) in the lateral Left Breast. Breast density: BIRADS Category c, VBD = 10.8%.

The achieved persistence level of each breast lesion on MBI may vary depending on
the histological type of the lesion and the density of the breast. It is interesting to note
that the 30 mm ILC of Patient 032, which was not clearly visible on both mammogram
and ultrasound, was persistent at 60% (i.e., 3 out of the 5 raw MBI images formed with
the employment of distinct pc_fib search ranges) with MBI. More than a single dominant
ROIs were visible on the raw MBI images. In Figure 6, the ROI which was extracted and
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validated in terms of morphological properties, sufficient intensity contrast against the
other competing ROIs in each image and persistence over varying pc_fib search ranges is
presented encircled in the 3 out of the 5 raw MBI images in which it was detectable. As
illustrated in Figures 7 and 8, the fibroadenoma of Patient 031 was persistent at 100% (i.e., 5
out of the 5 raw MBI images formed with the employment of distinct pc_fib search ranges)
and was predominantly visible with MBI. Both patients had comparably dense breasts
(P032: VBD = 13.3%, P031, VBD = 10.8%); however, the difference in terms of consistency
of the two lesions may have been the principal reason for the distinct level of persistence of
the response of the two lesions to MBI. The MBI scan datasets for the two patients have
been processed using the same configuration of the Wavelia QIF.

In future upgraded implementations of the Wavelia QIF, both the persistence level
over the varying assumption of the dielectric properties of the healthy tissue in the breast
(varying pc_fib search ranges), but also the presence of a single dominant ROI or various
competing ROIs in the image, may serve to define a confidence level for each MBI lesion
detection, to better support the diagnosis.

Figure 5. Patient 032, ILC in the Right Breast: (a) Bilateral mammogram Cranio-Caudal (CC) view, (b) Bilateral mammogram
Medio-Lateral Oblique (MLO) view, (c) Ultrasound scan, Right Breast, (d) MRI scan, bilateral axial image and sagittal image
of the Right breast (e) MBI test results, Right Breast.
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Figure 6. Patient 032, Right breast: ILC morphological detection based on persistence, with Wavelia #1 MBI.

Figure 7. Patient 031, Fibroadenoma in the Left Breast: (a) Bilateral mammogram Cranio-Caudal (CC) view, (b) Bilateral
mammogram Medio-Lateral Oblique (MLO) view, (c) Ultrasound scan, Left Breast, (d) MBI test results, Left Breast.
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Figure 8. Patient 031, Left Breast: Fibroadenoma morphological detection based on persistence, with Wavelia MBI.

3.2. Breast Lesion Sizing: Correlation with Conventional Imaging and Post-Surgery Histology

For two of the cancer patients, post-surgery histological analysis of the excised tumor
demonstrated total tumor sizes which were much larger than the invasive tumor size. This
was the case with Patient 002 and Patient 029, as reported in Table 1. The conventional
imaging data (Mammography, Ultrasound) and the MBI imaging test results are depicted
in Figure 9 for the case of Patient 002 and in Figure 10 for Patient 029.

It is interesting to observe in Table 1 and in Figure 9 that for the Patient 002 case
the MBI lesion size estimate varies considerably depending on the pc_fib search range.
Maximal linear dimension [34–51] mm, overestimated against the conventional imaging
but better fitting to the total tumor size as confirmed with post-surgery histological analysis
of the excised tumor, was retrieved with MBI for this lesion. For a subset of 3 out of
the five 5 pc_fib search ranges being systematically evaluated in the Wavelia QIF, the
irregularly shaped finding of the MBI system extended over a large volume (maximal
linear dimension = 51 mm), including the core of the invasive tumor, as identified at triple
assessment. By comparison with the patient’s mammograms, it was deemed reasonable
to consider that the Wavelia MBI system detected either the total tumor, or the invasive
tumor and a concentration of fibro-glandular tissue adjacent to it. For the second subset of
pc_fib search ranges, the size of the MBI detection was smaller, and its location seemed to
correlate closely with the invasive tumor site. Due to the uncertainty on the orientation
and the deformability of the patient’s breast during the MBI scan, inaccuracies in the 3D
reconstruction and localization of the tumor may arise when compared to conventional
imaging data. This difficulty is not considered to be MBI-specific though. The registration
of multi-modality imaging data of any kind, in the case of soft and deformable organs, like
the breast, is a challenging task due to variations in the natural suspended position of the
breast in the upright, supine and prone position.

Table 1. Breast lesion size: maximal linear dimension [mm].

Patient ID

Post-Surgery Histology MBI Conventional Imaging

Invasive
Tumor

Total
Tumor

W1 W2 Max. Mammography Ultrasound Max.

P002 20 40 51 34 51 25 15 25
P029 22 35 24.5 19.8 24.5 20 37 37
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Figure 9. Patient 002, Invasive Ductal Carcinoma (IDC) at the 3 o’clock position of the Right breast
(Breast density: BIRADS Category c, VBD = 8.5%): Bilateral Mammogram, Ultrasound and MBI test
results of the Right Breast.

Patient 029 was a patient with very dense breasts (VBD = 15.4%). It is clear in Figure 10
that the delineation of the margins of the tumor was not evident on the mammogram.
In the radiology report, the presence of a 20 mm spiculated mass in the lower outer
quadrant of the Left breast and calcifications extending anteriorly and medially from the
mass and measuring up to (42 mm) × (47 mm) was reported. Ultrasound scan of the
Left breast highlighted a 23 mm irregular hypoechoic mass in the lower outer quadrant
(concurring with the invasive tumor), and a smaller node of 7 mm with indeterminate
appearance, immediately superior to the mass. The total inclusive diameter of both lesions
was reported to be 37 mm in the craniocaudal direction, concurring with the total tumor
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size. MBI highlighted the presence of two persistent ROIs. The two ROIs are clearly visible
in the raw MBI image shown in Figure 10. The ROI which was morphologically validated
was located in the lower outer quadrant of the breast, had a maximal linear dimension of
24.5 mm and was associated with the invasive tumor in this analysis. The second ROI of
volumetric size > 3 cm3 and rather low solidity (≈0.4) was present in the upper breast and
could be, interestingly, associated with the extended zone of calcifications, as reported on
the patient’s mammogram. In the current version of the Wavelia QIF, the ROI definition is
based on the notion of pixel connectivity, thus “discontinuous” constellations such as the
one highlighted on ultrasound for this patient case and concurring with the total tumor
size (as confirmed with post-surgery histology) could not be revealed. This patient case
represents a limitation, which may be addressed in subsequent versions of the Wavelia
semi-automated lesion sizing method.

Figure 10. Patient 029, IDC in the Left breast (Breast density: BIRADS Category c, VBD = 15.4%): Bilateral Mammogram,
Ultrasound Scan and MBI test results of the Left Breast.

3.3. Discrimination between Malignant and Benign Breast Lesions in a 3-d Feature Space
(Shape-Based and Texture-Based Feature Employment)

While three narrow pc_fib search ranges are systematically used, together with the
two wide pc_fib search ranges, to analyze the persistence of radar echoes for lesion detec-
tion, for the characterization of the detected lesions, i.e., sizing, shape and texture analysis,
the wide pc_fib search ranges are mostly adequate to be employed, as they are expected
to be associated with the most complete representations of the lesions in the available
set of MBI images. In the course of the FiH clinical investigation of Wavelia, mapping of
the wide pc_fib search range detections in the 3-d feature space was performed and the
posterior probability for each detection to be associated to “Class #1 = Malignant lesion”
(i.e., probability of malignancy) was computed, as predicted by the trained QDA classifier.

If a breast lesion was detected and validated in both wide pc_fib search range MBI
images, two probabilities of malignancy were reported for the breast lesion, as depicted in
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Figure 11. The maximal probability of malignancy was ultimately considered to represent a
unique MBI classification score for the lesion in the data analysis. Patient 027 was the only
Group-1 patient (IDC) for whom the probability of malignancy was inferior to 50%, for both
wide pc_fib search ranges. Patient 029 (IDC) was an ambiguous case, with a probability
of malignancy 16.5% and 55.7% for the 2 wide pc_fib search ranges, correspondingly. As
depicted in Figure 10, this was a patient with very dense breasts, thus rendering the ROI
delineation sensitive to the specific parameterization of the MBI morphological detector
(Wavelia QIF), in its current version. The probability of malignancy was superior to 95%
for all the other Group-1 patients (invasive carcinomas), inferior to 38% for all the Group-3
lesion detections (biopsied benign lesions) and inferior to 14% for all the Group-2 lesion
detections (cysts).

Figure 11. Posterior probability of malignancy (classification score) per patient case in the Wavelia FiH study.

In Figure 12, four patient cases are used to illustrate the impact of the three selected
features (solidity, correlation, busyness) on the MBI lesion classification score. The MBI mor-
phological images (i.e., ROIs detected and validated based on morphological properties and
persistence) are superimposed with the outer surface of the breast, as reconstructed using
the auxiliary Wavelia Optical Breast Contour Detection (OBCD) subsystem, in Figure 12a
for the four patient test cases. The Wavelia OBCD subsystem which is employed to recon-
struct the external surface of the breast with high resolution, based on optical data, was
earlier introduced in [12,13,16]. This superposition serves to better highlight the location of
the MBI breast lesion detection with reference to the nipple of the breast, which is visible in
the OBCD reconstruction. Ultrasound images of the four patient test cases are included in
Figure 12b, for a straightforward comparison with the MBI findings, both in terms of the
morphology of each lesion and its localization in the breast. Mapping of the four breast
lesions (1 IDC, 1 ILC, 1 fibroadenoma and 1 cyst) on the 3-d feature space of Wavelia
MBI, together with the QDA decision surface, are shown in Figure 12c. The probability of
malignancy, as predicted by the trained QDA classifier, is also annotated for each of the
four lesions. The values of the three features and the associated probabilities of malignancy
are reported in Table 2. The morphological detection (W1 or W2 pc_fib search range) which
was associated with the highest probability of malignancy, has been used to represent each
patient test case in Figure 12, and in Table 2.
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(a) 

  
(b) 

 
(c) 

Figure 12. Breast Lesion Characterization in the Wavelia 3-d feature space—Four illustrative patient test cases: (a) morpho-
logically validated persistent ROI detections with Wavelia MBI, (b) Ultrasound images, (c) mapping in the Wavelia 3-d
feature space, probability of malignancy and QDA decision surface.

Table 2. Wavelia MBI lesion feature values and derived probability of malignancy.

Patient
ID

Lesion
Histological Type

Features Probability of
Malignancy [%]Solidity Correlation Busyness

P010 Invasive Ductal
Carcinoma 0.529 0.496 0.041 99.95%

P032 Invasive Lobular
Carcinoma 0.661 0.556 0.074 100%

P031 Fibroadenoma 0.643 0.403 0.018 34.03%
P040 Simple Cyst 0.816 0.422 0.02 7.55%
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It is interesting to observe the following:

• the clear differentiability of the simple cyst (Patient 040) in terms of higher solidity,
• the fibroadenoma and the two cancerous lesions had similar solidity levels, however

clear distinction was achieved between the benign and the two malignant lesions in
terms of texture features,

• both the correlation and the busyness feature values were slightly increased in the
case of the malignant lesions, with the increase being more notable on the busyness
feature,

• substantially increased busyness value was associated with more heterogeneous lesion
patterns, which may be interpretable as being indicative of distributed non-mass like
ILC’s, such as in the Patient 032 case.

This illustration highlights the physical reasoning behind the selection of the three
specific features, for benign-to-malignant MBI lesion classification, based on shape and
texture in the Wavelia QIF. It also serves to justify the achievable level of separability
with this small proof-of-concept FiH dataset, while working with continuous subspace
manifolds and very simple classifier models. The potential generalization of the above
findings is intended to be confirmed with future clinical investigations, involving larger
and more diverse patient datasets. Expansion of the feature space to include additional
dimensions (features), supporting the generalization of the above findings on larger patient
cohorts, will be also evaluated further during the development of Wavelia.

4. Discussion and Conclusions

In this article, the methodology that was employed in the Wavelia semi-automated
Quantitative Imaging Function (QIF) during the FiH clinical investigation of the device, to
support morphological breast lesion detection based on persistence, lesion sizing and lesion
characterization in a low-dimensional feature space, spanning shape and texture-based
features, has been outlined and the critical design parameters highlighted.

Semi-automated breast lesion detection using morphological post-processing of a set of
parametric radar images, which are formed with Wavelia MBI under varying assumptions
on the dielectric properties of the healthy background tissue of the breast was introduced in
the Wavelia QIF. Automated segmentation of ROIs and association, or not, to a breast lesion
is based on morphological properties (solidity, volume) of the ROI and its persistence on
the set of parametric images, as evaluated based on spatial clustering. The novelty of the
proposed method lies in the exploitation of the notion of persistence and its combination
with the solidity feature to support validation of ROI detection in MBI images.

A methodology for malignant-to-benign breast lesion discrimination, based on map-
ping in a low-dimensional feature space, which spans both shape-based features (solidity)
and texture-based features (correlation, busyness), and training of a Naïve Bayes (NB)
and Quadratic Discriminant Analysis (QDA) classifier was also introduced in the Wavelia
QIF. An interesting level of separability between malignant and benign breast lesions
was achieved, with a classification loss of 11.5% estimated with 10-fold cross-validation
for the trained QDA classifier. This is a result pending to be verified, reproduced, and
validated with larger datasets in future clinical investigations of Wavelia. While extensive
research work is already published on Radiomics applied to the well-established breast
imaging modalities, to our knowledge, it is the first time that shape descriptors and texture-
based features are computed for ROIs extracted from MBI images, to support breast lesion
characterization and malignant/benign lesion labelling.

In this FiH study, which was conducted in 25 patients, the Wavelia #1 prototype system
demonstrated the preliminary potential to detect and discriminate between malignant and
benign palpable breast lumps, the imaging procedure had no safety issues and patients
reported a favorable experience of the MBI scan. Although the number of subjects included
in the FiH study was small and was not intended to permit a clinically meaningful statistical
analysis, the promising findings from this study provided initial data to support the
valid clinical association of the technology and warranted the preparation of further
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clinical investigations, with an upgraded prototype version of the Wavelia system (Wavelia
#2) and its semi-automated QIF, to progressively address the identified technological
challenges. Larger and more diverse patient datasets are needed to validate these findings
and delineate the cases where the Wavelia MBI modality may offer a beneficial adjunct to
current diagnostic protocols.

For the first conception of the Wavelia QIF and its feasibility testing for the first time in
the clinical setting, simplifications were imposed to the FiH data processing for the analysis
to become more straightforward. The two most important limitations of this analysis,
which are intended to be loosened in future clinical investigations for the Wavelia QIF to
become sufficiently realistic and clinically meaningful, are discussed in the two following
paragraphs.

Palpable breast lesions larger than 1 cm3 were only considered in the current im-
plementation of the Wavelia QIF. All the objects with a volumetric size inferior to 1 cm3

were excluded and not morphologically validated with the Wavelia QIF. This setting was
fixed in accordance with the expected minimum size of the detectable lesion with the first
prototype of Wavelia and in order to avoid extreme degradation of the overall specificity of
the system.

Detection of a single abnormality zone, which remained persistently contrasted against
the surrounding breast tissues, was targeted with the applied MBI imaging algorithm and
morphological lesion detector, at this preliminary stage of development, and in the context
of the FiH feasibility study of Wavelia. Patients with bilateral breast disease were excluded
and the focus was on the detection of a single (the largest) cyst, in the case of patients with
multiple cysts in their breasts. This constraint is planned to be loosened in future clinical
investigations, while evolving towards more realistic and generalized subsequent phases
of the clinical evaluation of the Wavelia QIF.

The MBI scans were performed at least two weeks following the biopsy, in the case
of Group-1 (invasive carcinoma) and Group-3 (benign biopsied lesion) patients. The two-
week time lapse was considered sufficient to allow healing of the biopsy site in the breast.
It is noteworthy though that, in most of these patients, a metallic biopsy clip was placed in
their breast, as standard-of-care practice, to mark the tumor site. The size of the biopsy clip
was small (~3 mm) compared to the targeted tumor sizes in this study (all palpable lumps),
therefore its impact on the MBI images and the associated breast lesion detectability and
characterization results were not considered to be significant. However, as the impact of
the presence of a biopsy clip has not been characterized so far, future clinical investigations
enabling the MBI examination to be performed prior to biopsy will be needed to investigate
the impact of the biopsy clip. In this FiH study, there were only two Group-1 patients (P008,
P043—both ILC’s) and one Group-3 patient (P017—fibroadenoma) with no biopsy clip
placed in their breast prior to the MBI examination and positive MBI findings nevertheless.

Quantitative evaluation, by means of a computable confidence level, is also planned
to be implemented in subsequent versions of the Wavelia QIF, such that the imaging
system performance can be assessed both in terms of lesion detectability rate and detection
confidence level, in the case of various lesion types (solid/liquid, mass-like/non-mass-like,
malignant/benign) and different breast density levels. Other factors, such as the breast
size, the location of the lesion in the breast (superficial/deep, distance to the chest wall),
the size of the lesion, the patient’s age and breast deformability in the scanner, will also be
investigated in terms of achievable lesion detectability rate and detection confidence level,
as well as malignant-to-benign lesion separability. The assessment of these factors will be
only feasible at a pivotal clinical investigation stage, and after sufficient stabilization of the
Wavelia MBI scanning system and the associated QIF.

5. Patents

Two patents have been filed resulting from the work reported in this manuscript. The
first patent covers the morphological breast lesion detection method, based on persistence,
including sectorization of the imaging scene and MBI image reconstruction using multiple
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pc_fib search ranges. The second patent covers the malignant-to-benign breast lesion dis-
crimination method, based on mapping in a low-dimensional feature space employing both
the solidity feature and texture-based features, applied to ROIs extracted from MBI images.
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Featured Application: MR-derived cerebral metabolic rate of oxygen in contrast-enhancing and

peritumoral non-enhancing regions, as calculated by an artificial neural network, allows for ro-

bust differentiation of glioblastoma and brain metastasis.

Abstract: Glioblastoma may appear similar to cerebral metastasis on conventional MRI in some cases,
but their therapies differ significantly. This prospective feasibility study was aimed at differentiating
them by applying the quantitative susceptibility mapping and quantitative blood-oxygen-level-
dependent (QSM + qBOLD) model to these entities for the first time. We prospectively included
15 untreated patients with glioblastoma (n = 7, median age: 68 years, range: 54–84 years) or brain
metastasis (n = 8, median age 66 years, range: 50–78 years) who underwent preoperative MRI
including multi-gradient echo and arterial spin labeling sequences. Oxygen extraction fraction
(OEF), cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) were calculated
in the contrast-enhancing tumor (CET) and peritumoral non-enhancing T2 hyperintense region
(NET2), using an artificial neural network. We demonstrated that OEF in CET was significantly
lower (p = 0.03) for glioblastomas than metastases, all features were significantly higher (p = 0.01)
in CET than in NET2 for metastasis patients only, and the ratios of CET/NET2 for CBF (p = 0.04)
and CMRO2 (p = 0.01) were significantly higher in metastasis patients than in glioblastoma patients.
Discriminative power of a support-vector machine classifier was highest with a combination of two
features, yielding an area under the receiver operating characteristic curve of 0.94 with 93% diagnostic
accuracy. QSM + qBOLD allows for robust differentiation of glioblastoma and cerebral metastasis
while yielding insights into tumor oxygenation.

Keywords: brain metastasis; glioblastoma; machine learning; oxygenation; tumor infiltration

1. Introduction

Glioblastoma (GBM) and cerebral metastasis (cMET) are the most common brain
tumors in adult patients [1]. Reliably differentiating GBM and cMET based on their conven-
tional magnetic resonance imaging (MRI) characteristics has proven difficult [2,3], as both
tumor types can show necrotic centers, contrast-enhancing peripheral areas and peritu-
moral edema (Figure 1) [4]. However, studies employing advanced MR-imaging techniques
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focusing on the tumor microenvironment and hypoxia-induced changes in the microvascu-
lature found that an elevated cerebral blood flow (CBF) and proxies for increased metabolic
activity including a higher resulting cerebral metabolic rate of oxygen (CMRO2) were
associated with high-grade gliomas [5,6]. Therefore, we performed a prospective feasibility
study to differentiate between GBM and cMET by using an artificial neural network (ANN)
approach for non-invasive estimation of CMRO2, combining quantitative susceptibility
mapping (QSM) and the quantitative blood-oxygenation-level-dependent effect (qBOLD).
To the best of the authors’ knowledge, the concept of using the combined QSM + qBOLD
approach for estimation of CMRO2 is new for differentiating these two entities.

 

Figure 1. Axial contrast-enhanced magnetization prepared rapid gradient echo (MP-RAGE) brain
images comparing (a) a right temporal metastasis from known esophageal cancer in a 50-year-old
male patient and (b) a glioblastoma in the frontal lobe of the left hemisphere of a 71-year-old male
patient. Both tumors show cystic elements and peripheral contrast enhancement, complicating a
differentiation based on solely morphological criteria.

GBMs constitute between 60% and 70% of all malignant gliomas [7]. Median survival
for this highly malignant, infiltratively growing tumor is between 12 and 15 months with op-
timal treatment [7–9]. A higher median survival of 22 months has been reported for patients
with recurrent glioblastoma undergoing a second surgical therapy [10]. The metabolism of
GBM cells is adapted to the increased uptake of nutrients by utilizing aerobic glycolysis [11],
thereby linking glucose metabolism to oxygen metabolism [12]. Although benefiting from
a greater supply of components for cell upkeep and increased perfusion, GBMs frequently
grow too fast for their vasculature, eventually resulting in the typical central necrosis with
peripheral ring-enhancement [7,8].

Similarly, cMETs can also become ring-enhancing after developing a necrotic center
due to them outgrowing their blood and nutrient supply [13,14]. Over 20% of cancer
patients develop disseminations to the central nervous system [15]. One study identified
that 55% of cMET cases had no known primary at diagnosis [16], while between 30% to
50% of cMETs have been found to first appear as solitary lesions, further complicating
their correct identification [2,17,18]. Accurately discriminating between GBM and cMET
is of great clinical importance because therapy approach and surgical decisions are quite
different and directly affect patient outcomes [9,17,19]. The current diagnostic standard is
an invasive tissue biopsy with subsequent histopathological examination [4], a procedure
that is not without inherent risks with a complication rate of about 6% [20].
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Hence, the discrimination of GBM and cMET has been attempted many times using a
variety of different radiological approaches [4,19,21–24]. Perfusion-based studies showed
relative cerebral blood volume (rCBV) in the proximal peritumoral non-enhancing T2
FLAIR hyperintensity (NET2) to be significantly higher in GBM than in cMET [21–24].
In the distal parts of NET2, GBM and cMET showed similar rCBV values which may reflect
a lack of GBM cell infiltration and angiogenesis, supporting the notion that angiogenesis
follows a gradient around the tumor and is highest on the surface of the contrast-enhancing
tumor region (CET) [24,25]. With regards to oxygenation, tissue hypoxia is widely accepted
as a predictor of therapy resistance to radiation and chemotherapy in gliomas [5]. Hypoxia
has been found to stimulate the growth of new blood vessels via the induction and release
of vascular endothelial growth factor [10]. This neovascularization leads to a dilated
and tortuous vessel configuration, abnormal branching and arteriovenous shunts [26].
The resulting inefficiencies in the tumor vasculature were found to be correlated with
greatly increased CBF, lower oxygen extraction fraction (OEF) and, in sum, a higher
CMRO2 [6].

In this work, tissue oxygenation was estimated using a combined QSM + qBOLD
model that was introduced in 2018 and which utilizes both signal magnitude and phase of
a 3D multi-gradient echo (mGRE) sequence [27–29]. We built upon an existing artificial
neural network approach to perform the QSM + qBOLD analysis [29]. The artificial neural
network was previously used only for mapping OEF in healthy individuals, making this
study its first application in a clinical setting by employing it for the differential diagnosis
of two brain tumor entities. Perfusion was measured with pseudocontinuous arterial
spin labeling.

The purpose of this study was, therefore, to apply the QSM + qBOLD method for the
first time to a prospectively recruited collective of GBM and cMET patients and to compare
their cerebral oxygenation and perfusion. Based on the hypothesis that the infiltrative
growth of GBM and the lack thereof in cMET would create differences in CET and NET2,
a machine learning classifier was trained to differentiate the two entities.

2. Materials and Methods

2.1. Patients

Between December 2019 and October 2020, 15 patients with primary GBM (n = 7;
median age: 68 years, range: 54–84 years) or cMET (n = 8; median age: 66 years, range:
50–78 years) before resection, radiation or chemotherapy were prospectively included in
this study as a convenience sample. Ten patients were male, five were female. The cMETs,
as determined by histopathology, originated from four lung carcinomas, one esophageal
carcinoma and three cancers of unknown primary. Ethics committee approval was granted
before recruitment of patients (reference: 2017-666N-MA). Written informed consent was
obtained from every participant prior to MRI measurements and the acquired image data
was anonymized before further processing. The study was conducted in compliance with
the ethical standards of the Declaration of Helsinki of 2013.

2.2. Image Acquisition

All MRI scans were performed on a 3T MAGNETOM Trio system (Siemens Healthcare GmbH,
Erlangen, Germany) at the Department of Neuroradiology of the Medical Faculty Mannheim.
The perfusion data of the first two patients (one cMET, one GBM) were acquired with a 32-
channel head coil. Due to practical reasons in clinical day-to-day MRI scans, a 12-channel
head coil was used for all subsequent study participants. The MRI protocol included a 3D
multi-gradient echo, an unbalanced axial two-dimensional pseudocontinuous arterial spin
labeling (three-dimensional pseudocontinuous arterial spin labeling was employed for
the first two patients that were scanned with a 32-channel head coil) and a magnetization
prepared rapid gradient echo (MP-RAGE) sequence. The gadolinium-based contrast
agent Dotarem® (Guerbet, Villepinte, France) was administered as bolus injection for the
T1-weighted sequence at a dosage of 0.1 mL/kg body weight. The labeling plane for the
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arterial spin labeling sequence was placed circa 85 mm inferior to the anterior commissure-
posterior commissure line, approximately perpendicular to the feeding arteries, in line
with the consensus recommendation for arterial spin labeling imaging [30]. The sequences
and specific parameters used in this study have all been described in detail in a previously
published study [29].

2.3. Image Processing

The MRI images were registered using the statistical parametric mapping software
SPM12 (Wellcome Centre for Human Neuroimaging, UCL, London, UK) using default
values. Correct registration was verified with the open-source medical image viewer
ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php, accessed on 13 October 2021).
Post-processing was performed with MATLAB (Mathworks, Natick, MA, USA). Three
regions of interest (ROI) were outlined manually (H.B.) for calculation of oxygenation
and perfusion parameters: CET and central necrosis on all slices of the acquired images
where the respective region was present, as well as NET2 (Figure 2). The propensity
of the central necrotic region to hemorrhage and its very low to non-existent perfusion
can lead to an unphysiological spike in OEF (cf. Figure 3) [5]. Therefore, the necrotic
region was subtracted from CET to exclude non-vital parts of the tumor in metabolic
assessment. For the peritumoral edematous area, a 15–20 mm wide ROI was defined in
NET2 on three consecutive FLAIR images with the largest peritumoral hyperintensity,
leaving an approximately 3 mm wide margin to avoid partial volume effects [31]. All ROIs
were adapted to the tumor border, subtracting a cerebrospinal fluid mask of ventricles
and sulci generated automatically in SPM12. The ROIs were audited by an experienced
neuroradiologist (H.W.).

 

Figure 2. Examples of the different regions of interest (ROIs) assessed in this study. (a) Axial T1-
weighted contrast-enhanced image of a 71-year-old male patient with glioblastoma in the frontal
lobe of the left hemisphere. The outer ROI marks contrast-enhancing tumor while the ROI inside
the tumor indicates the central necrosis. (b) Axial FLAIR image of a 66-year-old male patient with a
left hemispheric metastasis in the perirolandic region from unknown primary. The ROI marks the
proximal edema bordering the solid-appearing tumor.
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Figure 3. Oxygen extraction fraction (OEF) map of a 54-year-old female patient with left occipito-
temporal glioblastoma. Axes are in mm. The scale to the right of the image indicates OEF
(e.g., 0.5 = 50%).

2.4. Calculation of Perfusion and Oxygenation Parameters

In order to estimate cerebral perfusion, a quantitative perfusion map was created
from the arterial spin labeling data using SPM12. Both the control and tag images from
the pCASL sequence were averaged and used together with the proton density weighted
image to calculate CBF in mL/100 g/min, using the consensus recommendation for im-
plementation of arterial spin labeling perfusion MRI in clinical applications from Alsop
et al. [30]. Time correction for multi-slice imaging was implemented to account for the
different transit time of the labeled bolus depending on the time of slice acquisition [30].

CMRO2 in μmol/100 g/min was calculated as follows:

CMRO2 = CBF·Ya· OEF ·[H], (1)

where Υa is the arterial oxygen saturation, assumed to be 98%, and [H] = 7.53 μmol/mL
is the heme molar concentration in tissue blood assuming a hematocrit of Hct = 0.357 in
arterioles [27,32].

An artificial neural network was employed for combined QSM + qBOLD analysis of
the mGRE data to estimate Υ and calculate OEF [33]:

OEF = 1 − Y
Ya

, (2)

where Υ and Υa are venous and arterial blood oxygenation, the latter again assumed to be
98% [27].

2.5. Artificial Neural Network

The feed-forward artificial neural network used for estimation of Υ was designed in
the Neural Network Toolbox in MATLAB (Mathworks, Natick, MA, USA), consisting of
one input layer, one hidden layer with 10 nodes and one output layer. The normalized
mGRE magnitude signal and the magnetic susceptibility from QSM were used as inputs.
The artificial neural network has been described in detail in a previous study [26], where
it was trained and used to emulate the solution of the qBOLD model for free induction
decay [27], yielding an estimate of venous oxygen saturation Υ, transverse relaxation rate
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R2, deoxygenated blood volume ν and non-blood susceptibility χnb [29]. After doing this
for every voxel, OEF maps were created with Equation (2). In order to make the qBOLD
model more robust, QSM was added by calculating magnetic susceptibility [27], using
the MEDI toolbox (Cornell MRI Research Lab, Cornell University, New York, NY, USA).
The resulting parameters were used for a last fitting step by giving starting values for a
quasi-Newton optimization that was stopped once the relative change was smaller than
0.001 or a maximum of 50 iterations was reached (this was mostly the case after approx.
10 iterations) [34].

2.6. Statistical Analysis

The statistical analyses were descriptive and performed in MATLAB R2020b (Mathworks,
Natick, MA, USA). Variables were summarized using their median, minimum–maximum
and interquartile range. Outliers were included in the statistical tests. For all patients,
means and standard deviations of OEF, CBF and CMRO2 were calculated in the ROIs set
out in Figure 2. In patients with multiple cMETs, perfusion and oxygenation parameters
were not assessed on a metastasis-by-metastasis basis but averaged across all metastases
present in the respective patient’s brain. GBM patients were not stratified according to IDH
or MGMT promoter methylation status.

Non-parametric Mann–Whitney–Wilcoxon tests for two populations were applied
to properly compare the distributions of explanatory variables between the two groups.
Two-tailed Wilcoxon signed-rank tests were used for intra-individual comparisons between
CET and NET2. p-values < 0.05 were considered significant. Due to the explorative nature
of this study, p-values were not adjusted for multiple comparisons and power analysis for
determination of required sample size was not performed [35].

The primary learning objective was the binary classification of GBM vs. cMET. For this,
a well-established maximum margin classifier, a linear kernel support-vector machine [36],
was fitted to the following features: OEF, CBF and CMRO2 in CET and NET2. Additional
secondary measures, i.e., the ratios of said features in CET divided by NET2, were also cal-
culated and used for fitting [17]. We performed five-fold cross-validation with 10 repeats to
assess the robustness of these explanatory variables [37]. Receiver operating characteristic
analysis was performed to calculate the area under the receiver operating characteristic
curve (AUC) accuracy metrics and derivatives of the confusion matrix, averaged over
the five folds [37]. In an effort to compare the classification performance of the linear
kernel support-vector machine with other common binary classifiers, ROC analysis was
performed for naïve Bayes, weighted k-nearest neighbor, decision trees and for quadratic
as well as Gaussian kernel support-vector machines.

3. Results

Analysis of oxygenation and perfusion maps in both groups revealed OEF to be
lower and CBF to be generally higher than in normal-appearing brain, leading to a net
positive effect on CMRO2, meaning a higher oxygen metabolism in tumor tissue than
in an unaffected contralateral brain, both in GBM and in cMET patients. The OEF map
of a 54-year-old female patient with left occipito-temporal GBM supplied in Figure 3
gives an illustrative example of the oxygenation values emulated by the artificial neural
network. The patient’s brain shows largely uniform OEF values across “healthy” brain
matter. The solid-appearing region of the tumor displays a strong OEF signal compared to
the surrounding tissue and the rest of the brain while OEF in the peritumoral edematous
area appears to be lower than in contralateral white matter.

When comparing oxygenation and perfusion parameters between GBM and cMET,
OEF in CET was found to be significantly (p = 0.03) lower in GBM than in cMET. No signif-
icant differences were found between CET of GBM and cMET in terms of CBF (p = 0.33)
and CMRO2 (p = 0.15). For cMET patients, all parameters, i.e., OEF, CBF and CMRO2, were
significantly (p = 0.01) higher in the CET region than in the NET2 region. Meanwhile, for
the GBM group, neither the difference between CET and NET2 in OEF (p = 0.11), nor CBF
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(p = 0.15), nor CMRO2 (p = 0.08) was significant. A visual representation of this can be
found in the boxplots supplied in Figure 4a. For an overview of oxygenation and perfusion
parameters on a patient-by-patient basis, please consult Table S1 (supplement).

The ratio of CET divided by NET2 was demonstrated to be another useful metric for
differentiation of GBM and cMET. While OEF for CET/NET2 was not significantly different
between GBM and cMET patients (p = 0.12), the ratio for CBF was significantly higher for
cMET (p = 0.04), as was the ratio for CMRO2 (p = 0.01). Boxplots depicting these quotients
are displayed in Figure 4b.

  

Figure 4. Boxplots (a) comparing OEF, CBF and CMRO2 between CET and NET2 for GBM and cMET and (b) displaying the
ratios of OEF, CBF and CMRO2 in CET divided by NET2 for GBM and cMET patients. Box: first to third quartile; whiskers:
1.5 times the interquartile distance or the maximum/minimum value, if contained therein; red line: median. Outliers are
displayed as red crosses. Significant differences (p < 0.05) are marked with an asterisk, the highly significant difference
(p = 0.01) is marked with two asterisks. OEF: oxygen extraction fraction; CBF: cerebral blood flow; CMRO2: cerebral
metabolic rate of oxygen; CET: contrast-enhancing tumor; NET2: peritumoral non-enhancing T2 FLAIR hyperintensity.

After fitting a classifier support-vector machine to the oxygenation and perfusion features,
different metrics for binary classification of GBM and cMET were assessed. The receiver
operating characteristic curves of the ratios of OEF, CBF and CMRO2 in CET divided by
NET2 as well as the best overall feature combination in terms of AUC (OEF in CET and
CMRO2 in CET/NET2) are exhibited in Figure 5.
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Figure 5. Five-fold cross-validated ROC curves for the support-vector machine classifier predict-
ing binary outcome (GBM or cMET). Curves are shown for the ratios of oxygen extraction frac-
tion (OEFCET/NET2), cerebral blood flow (CBFCET/NET2) and cerebral metabolic rate of oxygen
(CMRO2 CET/NET2) in contrast-enhancing tumor (CET) divided by peritumoral non-enhancing T2
FLAIR hyperintensity (NET2) as well as for the multivariable fit to OEFCET and CMRO2 CET/NET2.
OEFCET: OEF in contrast-enhancing tumor.

For each parameter, values for accuracy, optimal sensitivity and specificity and AUC
are listed in Table 1. CMRO2 CET/NET2 emerged as the best single feature for differentiation
of GBM from cMET. The resulting model had an AUC of 0.85 with an accuracy of 83% at
an optimal sensitivity and specificity of 85% and 82%, respectively. The next best single
classification features in terms of AUC were the ratio CBFCET/NET2 (0.80) and OEF in CET
(0.79). The highest discriminative power with the best diagnostic accuracy was achieved by
combining OEFCET and CMRO2 CET/NET2 for fitting a support-vector machine (AUC = 0.94).
This allowed for an accurate classification of the tumors in 93% of cases, with a sensitivity
of 99% and a specificity of 88%. Averaged over all iterations, out of 15 tumor patients
included in this study, 14 were correctly diagnosed and only one case was misclassified.

We also assessed other machine learning classifiers that showed a lower discrimi-
nation performance including weighted k-nearest neighbor (AUC: 0.93, accuracy: 87%),
naïve Bayes (AUC: 0.88, accuracy: 93%), and decision trees (AUC: 0.66, accuracy: 73%).
Additionally, we investigated different variants of support-vector machines with quadratic
(AUC: 0.89, accuracy: 87%) and Gaussian kernels (AUC: 0.86, accuracy: 87%). All of
these achieved a smaller AUC with k-nearest neighbor coming closest to the linear kernel
support-vector machine.
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Table 1. Receiver operating characteristic analysis results of a linear kernel support-vector machine
trained on oxygenation and perfusion parameters.

Region Feature Accuracy Sensitivity Specificity AUC (Range)

OEF 81% 87% 75% 0.79 (0.76–0.84)
CET CBF 71% 70% 71% 0.67 (0.55–0.73)

CMRO2 63% 27% 95% 0.52 (0.41–0.68)

OEF 68% 70% 66% 0.65 (0.46–0.82)
NET2 CBF 73% 54% 89% 0.69 (0.64–0.75)

CMRO2 73% 44% 99% 0.66 (0.61–0.71)

OEF 69% 60% 78% 0.66 (0.55–0.77)
CET/NET2 CBF 75% 63% 86% 0.80 (0.77–0.82)

CMRO2 83% 85% 82% 0.85 (0.73–0.93)

Best
combined

OEFCET +
CMRO2 CET/NET2

93% 99% 88% 0.94 (0.88–0.96)

Values are shown for contrast-enhancing tumor (CET), peritumoral non-enhancing T2 FLAIR hyperintensity
(NET2) and their ratio (CET/NET2). AUC range indicates the lowest and highest values over 10 iterations. OEF:
oxygen extraction fraction; CBF: cerebral blood flow; CMRO2: cerebral metabolic rate of oxygen; AUC: area under
the receiver operating characteristic curve.

4. Discussion

In this feasibility study, we applied for the first time the MRI-based QSM + qBOLD
approach for OEF and CMRO2 estimation to a prospectively recruited collective of GBM
and cMET patients in order to distinguish the two entities based on their respective cerebral
oxygenation and perfusion. Since the MRI protocol employed in this study for estimat-
ing cerebral tissue oxygenation and perfusion does not require the administration of an
intravenous contrast agent per se, it offers the potential to facilitate metabolic imaging
of cerebral tumors as well as non-invasive differential diagnosis of GBM and cMET. We
demonstrated for the two patient groups that (i) OEF in the enhancing tumor was sig-
nificantly lower in GBM than in cMET, (ii) the differences in perfusion and oxygenation
between CET and NET2 were only significant for the cMET group, and (iii) the ratios of
CBF and CMRO2 in CET divided by NET2 were significantly higher for cMET patients
than for GBM patients.

In order to differentiate the two entities, a support-vector machine classifier was
trained on oxygenation and perfusion parameters in CET and NET2. A support-vector
machine was chosen since it emerged as the best classifier with the highest accuracy, in line
with previous investigations that compared it to different approaches such as naïve Bayes,
weighted k-nearest neighbor and decision trees for binary classification of glioblastoma
and cerebral metastasis [4,23,38]. The described procedure could identify OEF in CET and
the ratio of CMRO2 in CET versus NET2 as the most promising features for distinguishing
GBM from cMET, achieving the highest discriminative power. With an accuracy of 93%
and an AUC of 0.94, the two entities could be successfully differentiated.

Our results suggest that differentiation of GBM and cMET based solely on OEF in CET
is good but not sufficient for reliably distinguishing the two groups. AUC and accuracy
were higher than for any other individual parameter in CET or NET2 but lower than
those obtained from using the ratios of CBF or CMRO2 in CET versus NET2. This may be
explained by the tumor microenvironment, in particular angiogenesis, that is similar in
the contrast-enhancing part of GBM and many hematogenous cMETs [17]. In both entities,
a disruption of the blood-brain barrier is caused by tumor growth and angiogenesis:
the hypoxic state of the tumor and its surroundings lead to hypoxia-inducible factors
being activated and their gene product VEGF being expressed [39,40]. The improved
classification performance with the ratios of CET versus NET2 is likely attributable to the
dissimilarities in NET2 tissue structure between GBM and cMET. Higher vascularization
and neoplastic cell growth are hallmarks of the region surrounding contrast-enhancing
GBM [5,6,41], while the peritumoral edema around cMET is caused purely by vasogenic
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edema and does not show extensive tumor cell infiltration [42]. This may explain why OEF,
CBF and CMRO2 were significantly higher in CET than in NET2 for cMET patients only.

We observed OEF in CET of GBM patients to be in line with the results of previous
studies [26,27,43], reproducing the findings of low OEF, which is possibly a marker of less
efficient oxygen extraction due to a physiologically inferior capillary configuration [27],
coupled with high CBF. This gives plausibility to the parameter maps calculated with the
QSM + qBOLD model that have in the past shown higher, more uniform OEF across the
whole brain and more robust CMRO2 estimates than QSM or qBOLD alone [27]. It was
surprising, however, to find discrepancies between the OEF values computed in NET2 of
GBM patients: While we found lower OEF in NET2 than in CET, reproducing the results of
a previous study [43], two other studies found higher OEF in the edema surrounding the
tumor [5,6]. This might either be a cause of incongruent definitions of the ROIs “edema”
and “NET2” or another underlying phenomenon. A PET/MR study with a sufficiently
large number of patients might be useful to shed light on true OEF in the peritumoral
region of GBM.

In addition to the good classification accuracy, the CMRO2 yielded by QSM + qBOLD
serves as an important physiological parameter that has been shown to predict tumor
response to antiangiogenic therapy as well as progression-free survival and overall survival
in GBM patients [44] through association with intratumoral angiogenesis and oxygenation
status [45]. Other possible applications of CMRO2 that warrant further investigation
consist of monitoring tumor response after initial radiation or chemotherapy and early
detection of recurrence. With regard to preoperative imaging, CMRO2 may also serve as a
parameter to improve assessment of the surgical margins necessary for a more complete
resection of glioblastomas, possibly adding complementary information to conventional
MRI sequences for a “supratotal resection” [46].

This work is subject to a number of limitations. The QSM + qBOLD model requires
a set of assumptions about physiologic parameters that were not measured for each pa-
tient individually. Among these assumptions are a constant tissue hematocrit and arterial
oxygen saturation. Furthermore, the OEF values from QSM + qBOLD are prone to suscep-
tibility artifacts from disturbances close to air-tissue bounds, e.g., the sinus frontalis, iron
accumulations in deep grey matter or from blood degradation metabolites from hemor-
rhage, a phenomenon common in the necrotic centers of GBMs and cMETs, hence their
exclusion from the assessment. Additional variance was introduced by changing the head
coil after the first two patients. However, the perfusion values of these patients remained
within a plausible range. Segmentation of ROIs was performed manually, adding a degree
of intra- and inter-observer variability. Moreover, cMETs originating from various primary
tumors may cause different oxygen metabolism characteristics. Subgroup analysis was not
performed because of the relatively small sample size due to the explorative nature of this
feasibility study. Thus, further research with larger patient populations is recommended
before implementation of QSM + qBOLD into the clinical routine.

5. Conclusions

This study demonstrated that QSM + qBOLD allows for non-invasive differential
diagnosis of GBM and cMET. In future studies, this differentiation could also be made
without the use of an intravenous contrast agent. Going forward, our MRI approach for
assessment of tissue oxygen metabolism might be helpful as a diagnostic tool that comple-
ments or replaces invasive stereotactic biopsies while yielding metabolic information about
the tumor microenvironment and its surroundings, e.g., for predicting tumor response
to therapy.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/
10.3390/app11219928/s1, Table S1: Oxygenation and perfusion parameters in CET and NET2 by
individual patient.
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Abstract: Choroidal Neovascularization (CNV) is the advanced stage of Age-related Macular Degen-
eration (AMD), which is the leading cause of irreversible visual loss for elder people in developed
countries. Optical Coherence Tomography Angiography (OCTA) is a recent non-invasive imaging
technique widely used nowadays in diagnosis and follow-up of CNV. In this study, an automatic
screening of CNV based on deep learning is performed using OCTA choriocapillaris images. CNV
eyes (advanced wet AMD) are diagnosed among healthy eyes (no AMD) and eyes with drusen
(intermediate AMD). An OCTA dataset of 1396 images is used to train and evaluate the model. A
pre-trained convolutional neural network (CNN) is fine-tuned and validated on 80% of the dataset
while the remaining 20% is used independently for predictions. The model can accurately detect
CNV on the test set with an accuracy of 89.74%, precision of 0.96 and 0.99 area under the curve of
the receiver operating characteristic. A good overall classification accuracy of 88.46% is obtained on
a balanced test set. Detailed analysis of misclassified images shows that they are also considered
ambiguous images for expert clinicians. This novel CNN-based application is truly a breakthrough
to assist clinicians in the challenging task of screening for neovascular complications.

Keywords: age-related macular degeneration; choroidal neovascularization; convolutional neural
networks; image classification; optical coherence tomography angiography

1. Introduction

Age-related Macular Degeneration (AMD) is the leading cause of irreversible blind-
ness in the elderly population of developed countries. AMD is characterized by changes
in the Retinal Pigment Epithelium (RPE), Bruch’s Membrane (BM), or Choriocapillaris
(CC) complex [1]. There are several staging systems for AMD, but the most widely used is
the AREDS (Age Related Eye Disease Study) classification, distinguishing between early,
intermediate and late AMD (see Figure 1) [2]. Early and intermediate AMD are charac-
terized by the presence of drusen and pigmentary changes. Late AMD consists of wet
AMD, characterized by choroidal neovascularization (CNV), and dry AMD, characterized
by geographic atrophy (GA) in the macular area [3,4]. While both dry and wet AMD are
visually threatening, in the particular case of wet AMD, CNV progression can result in
rapidly deteriorating visual acuity, leading to scarring and irreversible visual loss [4,5].
Moreover, as hallmarks of early and intermediate AMD, drusen precede the progression
to late AMD [6,7]. Hence, distinguishing between the early, intermediate, and late AMD
plays a key role in both follow-up and treatment decisions, in order to preserve the visual
prognosis.
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Figure 1. Classification of three types of OCTA choriocapillaris images (no AMD, advanced wet AMD, intermediate AMD).
On the top-left: the OCTA cross-sectional B-scan showing retinal layers.

Novel imaging techniques, such as optical coherence tomography angiography (OCTA),
contribute to the accurate diagnosis of early, intermediate and late AMD in a depth-resolved
and non-invasive manner [8–10]. Besides the accurate detection of CNV or GA in the CC
segmentation [11], OCTA has demonstrated CC alterations, i.e., flow deficits (FD) and
signal attenuation associated with drusen, in early and intermediate AMD [12]. Moreover,
recent literature has shown that choriocapillaris FD predict drusen enlargement, therefore
being a significant risk factor for late forms of AMD [7]. Therefore, earlier diagnosis could
ensure better follow-up of patients at high risk of conversion to advanced wet AMD. A
computer-aided diagnosis (CAD) tool in ophthalmic clinical routine could be of significant
assistance for clinicians at daily diagnosis and during follow-up.

The detection of CNV in the context of wet AMD on OCTA images is very challenging
due to OCTA various artifacts [8,9]. Many recent papers dealt with the contributions of
artificial intelligence (AI) and deep learning (DL) approaches in ophthalmology [13–15].
However, only few works have addressed CNV screening on OCTA images using DL
methods [16]. Most of the existing works focused on the diagnosis of AMD using OCT or
Color Fundus Photography. Moreover, published works on OCTA images involved other
retinal diseases such as Diabetic Retinopathy (DR) [17].

In 2017, Rasti et al. [18] proposed a CAD system based on a multi-scale convolutional
mixture of expert model to identify accurately dry AMD and diabetic macular edema using
OCT images. Two different macular OCT datasets of 4142 and 3247 B-scans were used for
the training step. A very good classification score of 99.85% was derived from the receiver
operating characteristic curve (ROC-AUC).

In 2018, Burlina et al. [19] used a set of 67,401 color fundus images of AMD patients
to estimate 5-year risk of progression to advanced stages of AMD by DL techniques. Two
AMD severity scales (4-step and 9-step) were considered, and a human versus machine
comparison was carried out. This study achieved weighted k scores of 0.77 for the 4-step
and 0.74 for the 9-step AMD severity scales. The same year, Grassmann et al. [20] exploited
a database of 120,656 color fundus images, manually graded in 13 AMD severity levels,
to train several CNN architectures (AlexNet, GoogLeNet, VGG, Inception-V3, ResNet
and I-ResNet-V2). A very good-weighted k of 92% was obtained. Govindaiah et al. [19]
have also shown that deep CNN could be efficient to grade color fundus images in four
classes: no AMD, early AMD, intermediate AMD, and advanced AMD. The study included
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a comparison between training using the transfer learning approach and training from
scratch. The obtained accuracies were 78.1% for transfer learning and 83% without transfer
learning.

More recently, Russakoff et al. [21] developed a DL architecture so called “AMDnet”
on OCT images to predict the conversion from early/intermediate AMD to advanced wet
AMD. The study included 71 patients with confirmed early/intermediate AMD that were
imaged with OCT three times over 2 years. Results showed a ROC-AUC of 0.89 at the
B-scan levels and 0.91 for volumes. Hwang et al. [22] used 35,900 labeled OCT images from
AMD patients to train three types of Convolutional Neural Networks (CNNs), VGG19,
InceptionV3 and ResNet50, to perform AMD diagnosis. The authors developed an AI
and cloud-based telemedicine interaction tool dedicated to diagnosis and therapeutic of
AMD. The image discrimination rates obtained by expert clinicians (92.73% and 91.90%)
and provided by the AI-based platform (above 90%) were almost the same.

Further works on OCT imaging, such as the recent study of Romo-Bucheli et al. [23],
proposed a treatment predictive model using a densely connected neural network (DenseNet)
and a recurrent neural network (RNN) on longitudinal OCT scans for neovascular AMD
patients (281 patients for training and 69 for tests). The CNN model achieved 0.85 AUC in
detecting patients with low treatment requirements and 0.81 AUC for patients with high
treatment requirements.

In what concerns the use of OCTA in DL, Le et al. [17] tested the feasibility of using
DL for DR detection from OCTA including 77 patients and 20 control subjects. The authors
applied transfer learning on a VGG16 network for robust OCTA classification. The obtained
results showed an accuracy of 87.27% in differentiating healthy, no DR and DR eyes. In the
same period, Wang et al. [16] developed an algorithm based on two CNNs to classify input
OCTA images (using structural volumes and enface retinal angiograms) as CNV or Non-
CNV and then segment the CNV membrane when present. The proposed neural network
included a cutoff threshold for CNV area to overcome the residual artifacts limitation that
could be confounded with CNV. CNV binary classification ROC-AUC was 0.997.

In this work, we aim to fill the gap of CNV screening on OCTA images using DL by
promoting a novel application of CNNs on OCTA images using the choriocapillaris slab.
The main contribution of this paper is the deep learning-based solution to classify AMD on
two major forms: advanced wet AMD (CNV) and intermediate AMD (drusen/pigmentary
changes) including a healthy control group (no AMD) using choriocapillaris OCTA images.
A second contribution is the adaptation of a pre-trained VGG19 model on non-medical
ImageNet dataset to medical domain using an adapted densely connected classifier on our
limited OCTA data. Additionally, class activation mapping is used to interpret the CNN
prediction on choriocapillaris OCTA images, which is a promising DL application for CAD
systems in retinal clinical routine.

2. Materials and Methods

2.1. Dataset and Study Population

Data from patients with AMD is collected from the Ophthalmology Department of
Intercommunal Hospital Center of Créteil, France, between September 2014 and July 2019.
A database of 1396 choriocapillaris OCTA images of size 304 × 304 with a pixel size of
9.87 × 9.87 μm is built from 787 eyes related to 508 patients (mean age 70.67 ± 17.74 years).
All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont,
CA, USA). The choriocapillaris slab is extracted and there are no excluded images due to
motion or projection artifacts.

A retina specialist (A.M.) classified the OCTA images into three classes (391 with no
AMD images from healthy eyes of 156 subjects, 457 images with CNV from 187 AMD
patients, and 548 images with intermediate AMD from 274 patients). Multiple images per
patient are included in this database. On one hand, follow-up images acquired at different
dates are considered in this study as they show notable and significant changes in the
CNV progression or in the number and size of drusen. On the other hand, both eyes are
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considered for some of the patients when both eyes’ examinations are available. This study
is performed in accordance with the Declaration of Helsinki and current French legislation
and with approval of our local ethics committee.

2.2. CNV Screening on OCTA Images

Our goal is to discriminate from OCTA images the three predefined classes: No
AMD (healthy CC), advanced wet AMD (CNV) and intermediate AMD (drusen or CC
impairment) (see Figure 1). OCTA imaging allows physicians to visualize blood vessels in
the individual layers of the retina and choroid without dye injection. Thus, CNV, drusen
and impairment within the CC (pigmentary changes) can be clearly identified on OCTA
images. The healthy choriocapillaris appears on OCTA images as a grainy texture with
bright and dark spots corresponding to blood flow and flow deficits, respectively [7].
Drusen and CC impairment are characterized by black nonflow areas of different sizes
related to flow deficits that can appear anywhere on the OCTA image surrounded by the
grainy texture of the choriocapillaris. Regarding CNV, neovascular membranes harbor the
aspect of a vascular branching, surrounded by the grainy texture of the choriocapillaris.

Nevertheless, these images are corrupted by speckle noise due to the physical prin-
ciples of OCT, in addition to the image acquisition process and artifacts [24]. Moreover,
included CNV lesions could have different sizes and locations with irregular shapes of
neovascular membranes, thus small ones may be confused with the grainy texture of the
choriocapillaris. This makes CNV detection on OCTA images a very challenging task.
Figure 1 illustrates the OCTA choriocapillaris images of the three classes used for the
classification in this work.

2.3. CNN Architecture and Transfer Learning

As depicted on Figure 2, our methodological approach consists of two parts: the
VGG19 deep network [25] that provides the features extraction process on the OCTA image
and a personalized densely connected network that represents the classification part.

Figure 2. Our proposed modified VGG19 architecture. OCTA images are mapped through the VGG19 feature extractor to
build discriminant 9 × 9 feature maps that are used by the densely connected classifier to generate predicted probabilities
and Grad-CAM heatmaps to visualize feature attribution for each class: No AMD (healthy choriocapillaris), advanced wet
AMD (CNV), intermediate AMD (drusen/choriocapillaris impairment).
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VGG19 is a competition-winning model of the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [26], that has a sequential pipeline architecture consisting of 16 convo-
lutional and 3 fully connected trainable layers including five max-pooling layers. In this
work, only the VGG19 convolutional part is used as a feature extractor where convolution
layers include 3 × 3 convolution filters. A rectified linear unit (ReLU) activation function
and a downsampling 2 × 2 max-pooling operation follow each convolutional stack. This
convolutional part provides vectorized feature maps used as input to the densely connected
classifier.

The densely connected classifier contains three fully connected layers, layers 1 and
2 are composed of 1024 nodes each. The last one consists of three nodes that provide
the classification result into three types of OCTA images. A regularization dropout layer
is included after the first dense layer to overcome overfitting the model by randomly
dropping out 50% of the activations at that layer. ReLU activation function is used on the
two first dense layers, whereas a softmax activation function is used on the last one.

According to the huge number of learnable VGG19 parameters (144 million) and the
limited amount of OCTA data in our training dataset, transfer learning from non-medical
data is applied in our approach [27]. Therefore, learned knowledge from the ImageNet
dataset [26,28] is transferred to the model and adapted to our application by fine-tuning
the convolutional part using OCTA images. The densely connected layers are trained
from scratch on our OCTA data to classify OCTA images. Finally, feature maps from the
last convolutional layer are mapped through the densely connected classifier to generate
Gradient-weighted Class Activation Mapping (Grad-CAM) visualization [29]. The Grad-
CAM produces a localization map that highlights the image’s important features to the
CNN for class predictions.

Additionally, to assess the impact of our approach (transfer learning on modified
VGG19 model) on CNV detection accuracy, we trained the original VGG19 model indepen-
dently from scratch with random initialization on our OCTA data.

2.4. Implementation Details

The dataset is divided into two independent subsets for training and testing. From
the whole dataset, 80% (1115 images) is dedicated to fine-tuning, training, and validation.
Subsequently, this first partition is further separated into 80% (892 images) for train and
20% (223 images) for validation. The remaining 20% (281 images) of the whole dataset is
used for the performance evaluation and tests.

The whole network is trained end-to-end on 100 epochs for transfer learning and
200 epochs for training original VGG19. Stochastic Gradient Descent (SGD) optimization
algorithm [30] and categorical cross entropy loss function are used. The learning-rate is set
to 10−5 for transfer learning and to 10−4 for training original VGG19. Data augmentation
is applied during training to reduce overfitting. Only random zoom is used in transfer
learning to generate 16 OCTA images at each batch while rotation, horizontal and vertical
flip are used in addition in training from scratch the original VGG19 model to generate 8
OCTA images at each batch.

The pipeline is implemented in Python with the Keras-TensorFlow library [31,32].
Training and testing are performed on a NVIDIA Corporation GP104GL [Quadro P4000]
Graphics Processing Unit.

2.5. Performance Evaluation

Performance is evaluated using an independent balanced test set (78 images for each
class) and there are no excluded images due to motion and projection artifacts or to image
quality. The CNN prediction output is compared to the ground truth set by the expert
reader (A.M.). Four statistical metrics are used to report classification performance [33]:
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First, the accuracy that generally describes how the model performs across all classes.
It is obtained as the ratio between the number of correct predictions to the total number of
predictions:

Accuracy =
Truepositive + Truenegative

Truepositive + Truenegative + Falsepositive + Falsenegative

Then the precision, that is calculated as the ratio between the number of positive
samples correctly classified to the total number of samples classified as positive. The
precision measures the model’s accuracy in classifying a sample as positive:

Precision =
Truepositive

Truepositive + Falsepositive

The recall is calculated as the ratio between the number of positive samples correctly
classified as Positive to the total number of positive samples. The recall measures the
model’s ability to detect positive samples. The higher the recall, the more positive samples
detected:

Recall =
Truepositive

Truepositive + Falsenegative

Finally, the F1-score is a way of combining the precision and recall:

F1-score =
2 × Precision × Recall

Precision + Recall

Confusion matrix and area under the curve (AUC) of the receiver operating charac-
teristic (ROC) and precision-recall (PRC) curves (ROC-AUC and PRC-AUC) are supplied.
Additionally, multiple class activation maps are generated to analyze the feature attribution
and understand the CNN predictions.

3. Results

CNV screening evaluation, reported in Table 1 and Figure 3, shows that CNV detection
on OCTA images achieves the best performance with a precision of 96%, recall of 90%,
F1-score of 0.93 and an accuracy of 89.74%. In addition, ROC-AUC and PRC-AUC are 0.99
each. No AMD (healthy CC) OCTA images are also well classified by the proposed VGG19
modified model with a very good accuracy of 94.87% and F1-score of 0.90 (precision 0.85,
recall 0.95). Regarding intermediate AMD (drusen/CC impairment) class, the images are,
in some cases, confused with no AMD class. Sixty-three images from the intermediate
AMD test dataset are correctly classified while 12 images are predicted as no AMD images
and 3 as CNV images. This is summarized by the confusion matrix in Table 2.

Table 1. CNV screening performance of the modified VGG19. Accuracy, precision, recall, F1-
score, area under the curve (AUC) for precision-recall (PRC) and receiver operation character-
istic (ROC) curves for the three classes of OCTA images (HCC: healthy choriocapillaris, DCCI:
drusen/choriocapillaris impairment, CNV: choroidal neovascularization).

Accuracy (%) Precision Recall F1-Score PRC-AUC ROC-AUC

HCC 94.87 0.85 0.95 0.90 0.97 0.99
DCCI 80.77 0.85 0.81 0.83 0.94 0.97
CNV 89.74 0.96 0.90 0.93 0.99 0.99
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Figure 3. Receiver operating characteristic (ROC) and precision-recall (PRC) curves for the three classes: advanced wet
AMD (CNV), intermediate AMD (drusen/CCI: choriocapillaris impairment), no AMD (healthy choriocapillaris). Area
under the curve (AUC) values for each class.

Table 2. Confusion matrix of the modified VGG19 prediction on a balanced test dataset of 234 OCTA
images (78 images for each class). CNV: choroidal neovascularization, DCCI: drusen/choriocapillaris
impairment, HCC: healthy choriocapillaris.

Ground Truth Class
Predicted Class

CNV DCCI HCC

CNV 70 7 1
DCCI 3 63 12
HCC 0 4 74

The overall classification accuracy using transfer learning on our modified VGG19
is 88.46% with a loss of 0.089, while the overall classification accuracy using original
VGG19 is 83.76% with a loss of 0.37. The proposed approach on the modified VGG19
achieved better performance than original VGG19 for CNV detection. This is reported
in classification reports (Tables 1 and 3) and confusion matrices (Tables 2 and 4) where
CNV screening accuracy is 74.36% for original VGG19 against 89.74% for our proposed
approach. In addition, PRC-AUC and ROC-AUC are 0.99 each using our modified VGG19,
while PRC-AUC is 0.95 and ROC-AUC is 0.97 using original VGG19.

Table 3. CNV screening performance of the original VGG19. Accuracy, precision, recall, F1-score, area
under the curve (AUC) for precision-recall (PRC) and receiver operation characteristic (ROC) curves
for the three classes of OCTA images (HCC: healthy choriocapillaris, DCCI: drusen/choriocapillaris
impairment, CNV: choroidal neovascularization).

Accuracy (%) Precision Recall F1-Score PRC-AUC ROC-AUC

HCC 97.44 0.84 0.97 0.90 0.96 0.99
DCCI 79.49 0.75 0.79 0.77 0.83 0.93
CNV 74.36 0.97 0.74 0.84 0.95 0.97
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Table 4. Confusion matrix of the original VGG19 prediction on a balanced test dataset of 234 OCTA
images (78 images for each class). CNV: choroidal neovascularization, DCCI: drusen/choriocapillaris
impairment, HCC: healthy choriocapillaris.

Ground Truth Class
Predicted Class

CNV DCCI HCC

CNV 58 19 1
DCCI 2 62 14
HCC 0 2 76

Figures 4 and 5 display Grad-CAM visualizations for correct predictions and incorrect
predictions of the three classes, respectively, (no AMD, intermediate AMD, and advanced
wet AMD). Grad-CAM heatmaps are superimposed on original OCTA choriocapillaris
images with warm colors (red, orange, and yellow) for discriminant features and cold
colors (blue, cyan, and green) for non-discriminant features.

In Figure 4, expected discriminant features are correctly highlighted by Grad-CAM
heatmaps for each class: grainy texture throughout the whole OCTA image for no AMD im-
ages (Figure 4A,B), flow deficits/nonflow areas for intermediate AMD images (Figure 4C,D),
and high flow vascular networks (CNV) for advanced wet AMD images (Figure 4E,F,G,H).
This is further supported by the CNN predicted probabilities for each image. Regarding
no AMD images (Figure 4A,B), the CNN predicted high probabilities were 0.94 and 0.97,
respectively, and were attributed to no AMD class. Predicted probabilities for intermediate
AMD images (Figure 4C,D) were 0.70 and 0.99, respectively, and were attributed to the
correct class. Finally, regarding advanced wet AMD images (Figure 4E,F,G,H) predicted
probabilities were 0.99 for images Figure 4E,G,H and 0.63 for image Figure 4F, correctly
attributed to CNV.

On the other hand, non-discriminant CNV features are highlighted by Grad-CAM
heatmaps in Figure 5I,J, including the flow deficits/nonflow areas or regions in Figure 5I
and grainy texture in Figure 5J.

The CNN predicted probabilities reinforce this observation where image Figure 5I
is predicted as intermediate AMD with 0.84 probability and image Figure 5J as no AMD
image with 0.90 probability. Regarding the Figure 5K, non-discriminant drusen features
are highlighted by Grad-CAM heatmap, grainy texture is highlighted as discriminant
features showing the CNN prediction as no AMD with 0.59 of probability against 0.41
for intermediate AMD. Conversely, Figure 5L represents a healthy CC (no AMD) image
predicted as intermediate AMD with 0.58 of probability against 0.42 for no AMD. The
Grad-CAM heatmap supports these probabilities by highlighting only drusen features as
discriminant rather than those from grainy texture of no AMD images.
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Figure 4. Grad-CAM visualizations for correct predictions by the proposed VGG19 modified model. Below each OCTA
image, the corresponding Grad-CAM visualization of the CNN prediction. (A,B) Healthy choriocapillaris—no AMD.
(C,D) Drusen/Choriocapillaris impairment-intermediate AMD. (E–H) Choroidal Neovascularization—advanced wet AMD.

143



Appl. Sci. 2021, 11, 9313

(I) (J)  

 

    
(K) (L) 

    
Figure 5. Grad-CAM visualizations for incorrect predictions by the proposed VGG19 modified model. To the right of each
OCTA image, the corresponding Grad-CAM visualization of the CNN prediction. (I,J) advanced wet AMD (CNV) images,
(K) intermediate AMD image and (L) No AMD (healthy CC) image.

4. Discussion and Conclusions

CNV screening on OCT-angiography choriocapillaris images is challenging due to
the high variance in neovascular membranes sizes, shapes, and locations. Additionally,
the speckle noise and the image acquisition process makes the detection task even more
difficult, particularly to differentiate CNV or early drusen from the grainy texture of the
choriocapillaris. Our proposed VGG19 modified model achieved very good CNV detection
performance with an accuracy of 89.74% and F1-score of 0.93 (as reported in Table 1 [0.96
of precision, 0.90 of recall]). The ROC-AUC and PRC-AUC were 0.99 each (Table 1 and
Figure 3). The confusion matrix in Table 2 shows that the CNN could accurately detect
the CNV lesion on 70 images out of 78 independent test images. Seven CNV images are
confused with intermediate AMD images, only one CNV image is misclassified as healthy
CC, and 3 images of intermediate AMD are misclassified as CNV.

Concerning the no AMD (healthy CC) classification performance by our model, the
statistical analysis reported in Table 1 and Figure 3 shows that it is the second-best classified
class after CNV. Precision and recall are 0.85 and 0.95, respectively, with a ROC-AUC of
0.99, a PRC-AUC of 0.97 and an accuracy of 94.87%. The confusion matrix in Table 2
indicates that 74 no AMD images are correctly classified, only 4 images are confused with
intermediate AMD images and no healthy CC image is misclassified as CNV.

Finally, for intermediate AMD detection, statistics show a F1-score of 0.83 (precision
of 0.85 and recall of 0.81), an accuracy of 80.77%, a ROC-AUC of 0.97 and a PRC-AUC of
0.94 (reported in Table 1 and Figure 3). These results are better explained by the confusion
matrix attributions in Table 2, where 63 of the 78 intermediate AMD images are correctly
classified, while 12 images are predicted as no AMD and 3 images confused with CNV.

Furthermore, the CNN predicted probabilities demonstrate, on one hand, the CNN
certainty when predicting correct classes (probability higher than 0.90 for the images in
Figure 4A,B,D,E,G,H), and on the other hand, the CNN uncertainty for more difficult cases,
such as images C and F of Figure 4. Image C illustrates a flow impairment clustered only
on one region of the image and surrounded by the grainy texture of the CC on the whole
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image. Therefore, the CNN predicted probabilities for image C are 0.70 as intermediate
AMD and 0.29 as no AMD. Regarding image F, the CNV membrane is covered by different
drusen surrounded by the grainy texture of the CC. Consequently, the CNN predicted
probabilities are 0.63 for CNV and 0.36 for intermediate AMD. This shows the CNN’s high
ability to discriminate wet AMD eyes from healthy and intermediate AMD eyes and to
show uncertainty for ambiguous and confusing cases.

The Grad-CAM visualization (see Figure 4) provides a better understanding of these
results. No matter the shape, size, and location of the CNV on images of Figure 4E–H;
the CNN’s predicted high probability is attributed to the correct region with high dis-
criminative CNV features. Conversely, the CNN’s low probability is attributed to the
non-discriminative regions. Similarly, regardless of the presence of artifacts on images of
Figure 4B,C); the CNN feature attribution is correctly highlighted by Grad-CAM heatmaps.
This proves that the CNN prediction is based on relevant regions of the OCTA choriocapil-
laris images related to the three classes: no AMD, intermediate AMD, and advanced wet
AMD, that are also considered by the expert reader to detect CNV on OCTA images.

The most difficult step of this classification problem is, on one hand, the detection of
some confusing CNV where a small, indefinite vascular shape is visible and for which very
small amount of OCTA images are available in our training dataset. On the other hand, the
discrimination of early small drusen from healthy choriocapillaris remains problematic.
These difficulties are addressed in Figure 5 that illustrates two misclassified CNV images
(Figure 5I,J), a misclassified intermediate AMD image (Figure 5K) and a misclassified no
AMD image (Figure 5L).

Image I is misclassified as intermediate AMD with 0.84 of probability and image J is
the only CNV image of our test dataset misclassified as no AMD with 0.90 of probability.
Feature attribution visualization for these two misclassified images illustrated by Grad-
CAM heatmaps in Figure 5 helps understanding the CNN prediction for these cases. The
Grad-CAM heatmap of image Figure 5I shows that discriminant features are those of
drusen by only black nonflow regions which explains the CNN predicted high probability
attributed to intermediate AMD class rather than CNV class. Only one small CNV is visible
in Figure 5I and is considered as non-discriminant feature. The CNN prediction is thus
based on the most present features on the image. Such images are also ambiguous for
clinicians and additional imaging modalities are needed to establish a clear diagnosis.

The Grad-CAM heatmap of image Figure 5J explains again the CNN misclassification.
Only grainy regions present throughout the whole image are considered as discriminant
features by the CNN. The tiny CNV membrane visible on this image is considered as
non-discriminant as it is hidden in the grainy texture. This explains the CNN’s prediction
with high probability (0.90) for image Figure 5J, attributed to no AMD class.

To overcome these classification errors, we should supply our training dataset with
more ambiguous OCTA choriocapillaris images such as images I and J of Figure 5 to train
the model to detect tiny CNV membranes when they are hidden and confused with drusen
or CC grainy texture.

Drusen or significant flow impairment on OCTA choriocapillaris images appear as
nonflow areas/flow deficits that are generally surrounded by the grainy texture of CC.
When these areas are small and less important than the CC texture, the OCTA image
is considered as ambiguous and confusing even by clinicians. This is the case of the
12 OCTA images misclassified by the CNN and predicted as no AMD images. Early small
drusen are hardly visible on OCTA images and can be considered as flow deficits related
to OCTA image acquisition process. Thus, the early small drusen manually classified as
intermediate AMD images are, in some cases, predicted as no AMD by the CNN. These
cases are illustrated by typical images in Figure 5K,L.

The above analysis is supported by the predicted probabilities for images K and L
of Figure 5. Figure 5K represents an intermediate AMD image predicted as no AMD
by the CNN with close probabilities for both classes (0.59 for no AMD against 0.41 for
intermediate AMD). Similarly, Figure 5L is a no AMD image predicted as intermediate
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AMD by the CNN with close probabilities (0.58 for intermediate AMD against 0.42 for
no AMD). This last result reveals again the CNN’s ability to show uncertainty in cases of
confusing features. To resolve this ambiguity, it would be relevant to classify these images
as uncertain images for which the clinician should use additional information from other
imaging modalities or patient history to decide and make a diagnosis.

Despite these few misclassification errors, the CNN showed a great ability to screen
and detect CNV on OCTA choriocapillaris images. This main finding is achieved through
the transfer learning approach that is used to train the proposed VGG19 modified model
to overcome the limitation of the small amount of training data. Fine-tuning the pro-
posed modified VGG19 improved the overall classification accuracy compared to that
obtained from training the original VGG19 from random initialization. The overall accu-
racy increased from 83.76% using original VGG19 to 88.46% using transfer learning on the
modified VGG19 although it was applied from non-medical data.

This study is one of the few works dealing with CNV screening on OCTA data using
only images at the choriocapillaris slab. Obtained results revealed a promising application
of CAD systems to diagnose CNV on OCTA choriocapillaris images in clinical routine
using DL-based methods. In order to produce more reliable results to clinicians and to help
them quantify the CNN uncertainty, we aim to measure the CNN prediction uncertainty in
further works to identify how much a CNN could be trusted in diagnosis [34,35] and to
avoid using images not suitable for diagnosis when high uncertainty is detected [35].

Further studies on this topic will focus on data augmentation, as well as including
more CNV images to work on larger datasets and different imaging modalities to improve
classification performance for ambiguous cases.
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Featured Application: This study implemented deep learning methods to the task of segmen-

tation of various brain lesions, facilitating the treatment planning process of neurosurgery and

radiation oncology.

Abstract: Semantic segmentation of medical images with deep learning models is rapidly being
developed. In this study, we benchmarked state-of-the-art deep learning segmentation algorithms on
our clinical stereotactic radiosurgery dataset. The dataset consists of 1688 patients with various brain
lesions (pituitary tumors, meningioma, schwannoma, brain metastases, arteriovenous malformation,
and trigeminal neuralgia), and we divided the dataset into a training set (1557 patients) and test set
(131 patients). This study demonstrates the strengths and weaknesses of deep-learning algorithms in
a fairly practical scenario. We compared the model performances concerning their sampling method,
model architecture, and the choice of loss functions, identifying suitable settings for their applications
and shedding light on the possible improvements. Evidence from this study led us to conclude that
deep learning could be promising in assisting the segmentation of brain lesions even if the training
dataset was of high heterogeneity in lesion types and sizes.

Keywords: deep learning; image segmentation; brain tumors; radiosurgery; magnetic resonance imaging

1. Introduction

Stereotactic radiosurgery (SRS) is a treatment modality using ionizing radiation, fo-
cusing on precisely selected areas of tissue. It is usually delivered in a single session, but
the radiation dose can also be fractionated. Targeting accuracy and anatomic precision are
critical to successful SRS, but are historically secondary concerns in other types of radiation
therapy [1]. Undoubtedly, as technology evolves, standards in this area will have to change.
Nevertheless, when root mean square errors can be reduced to approximately 1 mm, a
threshold of surgical possibilities is reached both in the brain and throughout the rest of

Appl. Sci. 2021, 11, 9180. https://doi.org/10.3390/app11199180 https://www.mdpi.com/journal/applsci149



Appl. Sci. 2021, 11, 9180

the body. As the ACR-ASTRO guidelines suggest, a targeting accuracy is approximately
1 mm [2–4]. Although SRS can be performed in many parts of the body, it is best known
to treat intracranial lesions. The common indications for intracranial SRS include many
different types of brain tumors, vascular malformations (including arteriovenous malfor-
mation, AVM), and functional diseases such as trigeminal neuralgia (TN). Brain metastases,
vestibular schwannomas, meningiomas, and pituitary adenomas are common tumor types
treated by SRS.

Before the delivery of SRS to the target (e.g., a brain tumor), detailed treatment
planning with precise contouring of the target is conducted by a neurosurgeon or a radiation
oncologist. The contouring is performed on computed tomography (CT) or magnetic
resonance images (MRI). Sometimes, both CT and MRI are used, depending on the devices
and diseases. Normal organs or tissues sensitive to radiation are also contoured so that
radiation dose and risk of injury can be estimated. These normal organs are called critical
organs or organs at risk (OARs). In terms of image analysis, “precise” segmentation of
targets and OARs is mandatory for SRS treatment planning. In current clinical practice,
the segmentation is performed by professional personnel. The manual contouring process
is time-consuming and prone to substantial inter-practitioner variability, even amongst
experts, and may lead to large variation in care quality. Several pieces of research suggest
computer assistance [5–10]. We expect an AI-based assistive tool could improve tumor
detection, shorten mean contouring time, and increase inter-clinician agreement [11].

As convolutional neural networks (CNNs), the dominant deep learning models, are
leading the breakthrough in computer vision recently, they also dominate MRI segmenta-
tion tasks. Havaei et al. (2017) proposed the idea of using a deep learning model to perform
brain tumor segmentation tasks on MRI images [12]. They pointed out that both local and
global representations are essential to produce better results, and this intuition was later
realized in various ways. Kamnitsas et al. (2017) later perfected this idea and achieved
state-of-the-art performance with a two-path model [13]. On the other hand, U-Net was
first proposed for the cell tracking task [14], but then became widely used in many other
segmentation tasks [15,16]. In MICCAI BraTS 2017 competition [17], most participants
used U-Net variants, as the winner [18] simply ensembled three kinds of the most common
deep learning models, namely FCN (fully convolutional network) [19], V-Net [20], and
DeepMedic [13]. Other than deep learning, some studies on brain cancer segmentation took
advantage of fuzzy c-means clustering [21–23], cellular automata [24], random walker [8],
and so on [5,7,25,26]. However, they are not deep learning by not possessing over two
hidden layers and will not be further discussed.

However, few studies apply deep learning methods to the actual SRS datasets. Unlike
the BraTS competitions, real applicable models may need to handle much more diversity
rather than a single type of disease. Liu et al. (2017) proposed a modification of DeepMedic
that outperformed its parent method in segmentation during SRS treatment planning
by adding a subpath, with a dice score reaching 0.67 in a cohort of 240 patients [27].
Lu et al. (2019) ensembled two neural networks, namely 3D U-Net and DeepMedic,
which were trained with different hyper-parameters so that one neural network focused
on small metastases with high sensitivity while the other one addressed overall tumor
segmentation with high specificity, yielding a good performance on segmentation within
305 patients, with a median dice score of 0.74 [28]. Fong et al. (2019) trained the convoluted
neural network with multiplanar slices, reducing false-positive predictions and yielding
a dice score of 0.77 on the 248-patient dataset while maintaining competent 80% isodose
coverage [29]. Lu et al. (2021) implemented deep learning in the treatment planning
process, decreasing the plethora of time consumed during the planning process as well
as enhancing the prediction overlap with ground truth significantly especially in the
subgroup of non-experts. However, the cohort size was rather small [11]. Heterogeneity
could have been considered a major problem for machine learning decades ago; however,
it should be considered a real-world situation. A heterogeneous dataset could help the
generalizability and transferability of trained models [11,23,25,30–32]. However, in the
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previously-mentioned studies, small sample sizes were important contributors to the
lack of confidence to infer the generalization of deep-learning models in clinical practices
with heterogeneous lesion types. For the technology to achieve satisfactory performance,
we explored the behavior of deep-learning models in a realistic scenario. Therefore, we
collected a relatively large dataset with 1688 patients and analyzed the performance of
models with various types of settings and architectures. More specifically, we benchmarked
the performance of different segmentation models previously proposed for other tasks
and also compared the effectiveness of various sampling methods and the choice of loss
functions. We used the BRATS dataset to evaluate whether our implementations of deep
learning models were correct and comparable to their original implementations.

2. Materials and Methods

2.1. Dataset
2.1.1. NTUH (National Taiwan University Hospital) Dataset

The data were extracted from a medical center in northern Taiwan. The SRS device
used was CyberKnife (Accuray, Sunnyvale, CA, USA) and commenced operation in January
2008. In the decade until December 2017, there were 2578 treatment courses completed in
2411 patients. Among these, 2036 treatment courses of 1921 patients were intracranial.

We only selected patients undergoing first SRS with contrast-enhanced T1-weighted
(T1+C) MRI images available. Finally, there were 1688 patients included in our dataset.
Their data were randomly divided into training and test sets (Table 1). However, because
treatment targets for patients with trigeminal neuralgia are neither tumor nor vascular
malformation, their data were all assigned to the training set.

Table 1. Clinical diagnoses of 1688 patients in the final dataset.

Types of Brain Lesions Train Test

Metastases 504 53
Meningioma 314 29
Schwannoma 305 20

Pituitary tumor 147 8
Arteriovenous malformation 80 6

Trigeminal neuralgia 38 0
Other tumors 169 15

Total 1557 131

For each patient, the target was extracted from the treatment planning system together
with axial T1+C MRI. Most of the time, the targets were contoured by a neurosurgeon
and then reviewed by a radiation oncologist. Occasionally only one radiation oncologist
contoured the targets without review by another physician. An image volume could contain
more than one target, particularly in patients with brain metastases. NTUH volumes were
registered to CT volumes before contouring, with tumor contours stored in CT coordinates.
We had to make an inverse transformation to put the tumor labels in MRI coordinates. In
other words, volumes were resampled on a common voxel grid instead of directly cropped
on grids of different voxel numbers. The images were retrieved from DICOM format and
saved in NIfTI-1 data format, where names, birth dates, and geographic data were removed.
After registration and de-identification, these image/label pairs were used for the training
and evaluation of deep neural networks. The images were presented in native axial slices,
with 1–2 mm slice thicknesses. The number of slices varied from 30 to 233 since the slices
did not necessarily cover the full cranial regions, instead, they could only include the region
of interest. The in-plane resolution was usually 512 × 512, and the smallest resolution was
197 × 197. The field of view in the x–y plane was usually 300 mm, ranging from 200 to
350 mm. The pixel size was mostly 0.5859 × 0.5859 mm2 and was 1.1719 × 1.1719 mm2 for
some images with lower resolution.
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There were a total of 2568 distinct targets in these 1688 image sets. The target volumes
ranged from 20 to 72,646 mm3, with a median of 1236 mm3 and a mean of 3696 ± 6637 mm3.
In 1013 image sets, there was only one target. The number of targets may reach up to 34 in
a single image set.

2.1.2. BraTS Dataset

The BraTS 2015 dataset is a standard benchmark dataset for MRI segmentation tasks.
It includes 220 multi-modal scans of patients with high-grade glioma (HGG) and 54 with
low-grade glioma (LGG). T1-weighted, contrast-enhanced T1+C, T2-weighted, and FLAIR
images are available. The data had a common dimension of 240 × 240 × 155 with 1 mm3

resolution. The annotation contains five classes: 0 for background, 1 for necrotic core (NC),
2 for edema (OE), 3 for non-enhancing core, and 4 for enhancing core. The evaluation
follows the rules of the competition by merging the predictions into three sets: whole
tumor (classes 1,2,3,4), core (classes 1,3,4), and enhancing core (class 4). The train to test
ratio was 10:1 in each of the experiments we conducted.

2.2. Preprocessing

The raw data of the NTUH dataset contains images of different resolutions and fields
of view (FOVs). We first used the skull stripping function of Brain-Suite [33] to locate
the brain, then utilized the information possessed by the brain masks for centration and
cropping of the MRI to make sure the images contain fewer extracranial areas. Brain-Suite
was used only to locate the brain center for better cropping. Everything from the scalp
to skull remained on the cropped images for reasons that some of our lesions may locate
extra-axially. The final input images size was 200 × 200 × 200 mm3. Finally, we normalized
them by the z-scores.

Images in the BraTS dataset were already registered, cropped, and normalized with
bias field corrections. We only normalized the data by the z-scores for every pulse sequence
(T1, T2, T1+C, FLAIR).

2.3. Data Augmentation

To perform a fair comparison of the model architectures, we established the follow-
ing standard data augmentation in the training phase. For 2D models, we performed
data augmentation with translation, rotation, shear, zoom, brightness, and elastic distor-
tion [15]. For 3D models, since data augmentation did not yield higher performances of
segmentation in the preliminary experiment we performed, we did not perform any type
of data augmentation.

2.4. Deep Learning Models

The design of the models we employed could be found online [34]. We will discuss
the rationale and the architecture below.

2.4.1. DeconvNet

DeconvNet is an architecture adopted from VGG16, a 16-layered CNN by the Visual
Geometry Group, and is rather simple to implement [35]. The objective of this design is to
overcome the limitations of FCN, which cannot detect objects that are bigger or smaller
than a specific size. In this case, the object may be fragmented or mislabeled. Furthermore,
FCN only uses one convolution transpose layer to construct its output, so the output loses
much detail. As a consequence, DeconvNet uses several layers of transpose-convolution
and up-pooling.

The model can be divided into two parts: the encoder and the decoder, which are
formed by convolution and deconvolution operations, respectively. It is worth noting that
we replaced the max-pooling and up-sampling operations by setting the stride of Conv and
Deconv to 2 in our implementation. This is inspired by the recent proposition of generative
adversarial networks.
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2.4.2. DeepMedic

DeepMedic is another kind of 3D CNN [13]. It is special for taking two inputs, high
resolution, and low resolution. This design seeks to balance fine structures and high-level
information. High-resolution inputs for DeepMedic are patches from our preprocessed
data. Low-resolution inputs are downsampled using 3D average pooling from each corre-
sponding high-resolution patch. Both inputs go through a series of convolution layers with
skip connection, and then it constructs the output by fusing the features of both pathways.
This is a state-of-the-art model, and we expect the model to perform well on segmentation
of brain lesions based on previous benchmarks [27,36–38].

2.4.3. PSPNet

Pyramid scene parsing network, or PSPNet, is a state-of-the-art model in scene pars-
ing tasks [39]. We included it because it is also suitable for our segmentation task. The
PSPNet utilizes the high-level representations extracted by a pretrained network, and a
novel design of the pyramid pooling module serves as a backend to predict the segmenta-
tions. The pyramid pooling modules pool the extracted feature maps to obtain features
of different scales. The pretrained model is typically a ResNet trained on an ImageNet
dataset [39]. However, on an MRI dataset, the features are not transferable due to the large
consistency and the absence of common pretrained models to process MRI images. In our
implementation, we randomly initialized the ResNet backend and also removed the deep
supervision loss.

2.4.4. U-Net

U-Net tries to improve the fine structure of segmentations and increase the amount
of context used [14]. Traditionally, when a certain amount of pooling is required, if one
is intending to train with large patches, it unfortunately degrades the performance such
as in FCN and DeconvNet. Hence, the U-Net model utilizes skip connections to forward
the unpooled features, thus the model can utilize the information of various scales. In our
implementation, we abandoned the max-pooling and up-sampling operations for the same
reason as in DeconvNet.

2.4.5. V-Net

V-Net is the adaption of U-Net for 3-dimensional data to capture the relationships in
consecutive slices, which were omitted in the 2D models, addressing contiguity problems
and yielding better results in the segmentation of various 3D images [20]. It replaces the
convolution and pooling operations with 3D versions.

2.5. Sampling Method

Batch samplers were defined in the source code (see Supplementary Material) [40].
We had four batch sampler designs for our models to experiment with the most efficient
and accurate settings. We tried each kind of sampling method for each model in our pre-
liminary experiment, but only those sampling methods that did not cause much overfitting,
excessive memory consumption, or lower performance than other sampling methods were
benchmarked.

2.5.1. Two Dimensional

For two-dimensional models, we split the MRI data slice by slice and performed
predictions separately. This may result in noises along the sliced axis due to the loss of
spatial contiguity information.

2.5.2. Three Dimensional

For three-dimensional models, the basic strategy is to feed the whole brain image
data directly. In the preliminary experiment, three-dimensional patch resulted in high
memory consumption when we employed the DeepMedic. Thus, we did not perform a
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three-dimensional patch for the DeepMedic. Furthermore, while we experimented with
this setting on the BraTS2015 dataset, we found it caused overfitting, and we suspect that
this is because many of the voxels are irrelevant and redundant for the prediction. Thus,
we added two more three-dimensional sampling methods described below.

2.5.3. Uniform Patch

To reduce the redundant voxels and save memory usage, we sampled small patches
within the brain regions. While inferencing, we simply reassembled the patch predictions
together. The patch size used was 152 × 128 × 128. Worth noting, for the DeepMedic,
uniform patch resulted in generally lower performance in segmentation, sensitivity, and
precision compared with the center patch. Hence this method was not employed when
training the DeepMedic.

2.5.4. Center Patch

It has been suggested that patches containing foreground regions are crucial to the
training [35]. We thus deployed this sampling strategy, which guarantees at least one
foreground voxel in the patch. The patch size was default to 64 × 64 × 64. However,
we could set the patch size to 96 × 96 × 96 or the same as the size of the uniform patch
when we applied the sampling method. When we experimented with the settings in the
preliminary test, center patch sizes lower than 190 × 190 would result in tremendously low
segmentation performance for V-Net in the NTUH dataset, so this sampling method was
not used in the formal benchmark analysis.

2.6. Hyperparameters

We used fixed optimizer settings across all experiments. The optimizer chosen was
Adam. The learning rate was initially 1 × 10−4, with step decay of factor 0.1 at 50 and
70 epochs. Patch-wise methods were inferenced with patches cropped without overlap
and excessive boundaries were filled with zero paddings. Samples were generated on the
fly in a patch-wise method.

2.7. Loss Functions

Class imbalance is a major problem in most tumor segmentation problems, and it is
even more severe in our task compared to the BraTS glioma dataset because of small target
volumes. The imbalance would most likely lead the model to a trivial solution, which
predicts all voxels as background. There are several ways to deal with this problem by
modifying the loss function.

2.7.1. Weighted Cross-Entropy

Re-weighting the sparse class is the most common solution to the class imbalance
problem. In this study, we set the class weights inversely proportional to the ratio of the
class. In particular:

C = −
M

∑
c=1

goclog(poc)

rc
(1)

where M is the number of classes and rc is the ratio of class c in the whole volume/dataset
(as an implementation choice); goc is the ground-truth label of a voxel; and poc is the
predicted label probability of a voxel of class c.

2.7.2. Soft-Dice

Milletari et al. (2016) suggest using the differentiable version of the dice score, namely
soft-dice, directly as the objective due to its resistibility to class imbalance [20]. It is fairly
natural to use this loss function because the dice score is the most common evaluation
metric in related tasks. There are two implementations of the soft-dice loss function.
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Regarding the cardinality of sets, one can perform summation directly or with squaring.
In particular:

D1 =
2 ∑N

i pigi

∑N
i p2

i + ∑N
i g2

i
or D2 =

2 ∑N
i pigi

∑N
i pi + ∑N

i gi
(2)

where pi is the predicted label probability and gi is the ground-truth label. We found the
two versions producing almost identical performances. In this study, we refer to the second
version as the soft-dice loss function.

2.8. Evaluation Metrics
2.8.1. Dice Score (Hard Dice)

Dice score is the standard metric for evaluating segmentation results. It is defined as

D =
2|X ∩ Y|
|X|+ |Y| (3)

where X and Y are the sets of predicted and labeled lesion voxels.
The previously mentioned soft-dice loss is a modified differentiable version of the

dice score. We, therefore, refer to the dice score metric as hard-dice to distinguish the two.

2.8.2. Precision and Sensitivity

Precision and sensitivity (also known as recall) are standard metrics of binary classifi-
cation, which is a more general scheme for segmentation. Precision quantifies the volume
ratio of correctly predicted lesion voxels (TP) to all predicted lesion voxels (TP + FP). It is
defined as

Precision =
TP

TP + FP
(4)

Sensitivity quantifies the volume ratio of correctly predicted lesion voxels (TP) to all
labeled lesion voxels (TP + FN). It is defined as

Sensitivity =
TP

TP + FN
(5)

2.9. Experiments

In all our experiments, the training and testing were conducted under a 10:1 train-
test ratio.

2.9.1. Performances of Models on Segmentation of Brain Lesions in NTUH Dataset

We first experimented with the performances of different models on the segmentation
of brain tumors after training with various brain lesions. Different batch samplers and
loss functions were employed based on the models used. The hard dice, precision, and
sensitivity were the outcomes we were interested in. The higher dice score, precision, and
sensitivity were deemed as better segmentation performance.

2.9.2. Performances of Models on Segmentation of Brain Tumors in BraTS Dataset

To compare the variables contributing to the performances of the models trained
with the NTUH dataset, we experimented with the segmentation of the brain tumors in
the BraTS dataset. We trained our models with either 4-channel or only T1+C inputs to
compare the performances of the models trained with the same imaging modality in the
NTUH dataset. During training, the labels encompassed either five classes or only tumor
cores. The segmentation performances were measured using the hard dice. The evaluation
was based on predictions of the tumor cores.
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3. Results

Three cases from the NTUH dataset showing representative results of different models
were shown in Tables 2–4. The overall dice scores of these networks on the NTUH dataset
ranged from 0.33 (DeepMedic) to 0.51 (V-Net). Table 5 shows the detailed performance of
each network tested with the NTUH dataset.

Table 2. Predictions with low dice scores.

Ground truth DeconvNet DeepMedic

   

PSPNet U-Net V-Net

   

Table 3. Predictions with average dice scores.

Ground truth DeconvNet DeepMedic
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Table 3. Cont.

PSPNet U-Net V-Net

   

Table 4. Predictions with high dice scores.

Ground truth DeconvNet DeepMedic

  

PSPNet U-Net V-Net

   

On the NTUH datasets, the performance was also affected by the types of lesions.
As shown in Figure 1, we obtained better results for brain metastases, meningiomas, and
schwannomas, while all models performed poorly on pituitary tumors, AVMs, and other
tumor types. Detailed tables are attached as Appendix A, Appendix B, Appendix C.
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Table 5. Performance of different models on the NTUH dataset.

Model
Numbers of
Parameters

Batch
Samplers

Loss Function Precision Sensitivity Hard Dice

DeconvNet 12,544,324 two_dim Cross-entropy minus
log(soft-dice) 0.46 0.48 0.43

U-Net 34,524,034 two_dim Cross-entropy minus
log(soft-dice) 0.48 0.48 0.43

PSPNet 28,280,773 two_dim Cross-entropy minus
log(soft-dice) 0.47 0.48 0.43

V-Net 8,232,274 uniform_patch3d Cross-entropy minus
log(soft-dice) 0.39 0.54 0.41

V-Net 8,232,274 three_dim Cross-entropy 0.2 0.56 0.25

V-Net 8,232,274 three_dim Cross-entropy minus
log(soft-dice) 0.48 0.51 0.46

V-Net dropout
0.1 8,232,274 three_dim Cross-entropy minus

log(soft-dice) 0.47 0.66 0.51

DeepMedic 1,301,478 center_patch3d Cross-entropy minus
log(soft-dice) 0.36 0.43 0.35

DeepMedic 1,301,478 center_patch3d Cross-entropy 0.37 0.43 0.33

Figure 1. Cont.
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Figure 1. Bar chart results of (A) dice score; (B) sensitivity; and (C) precision of deep learning-based
segmentation versus ground truth on different lesion types in the NTUH dataset.

As shown in Figure 2, lesions with smaller target volumes introduce lower average
dice performance for each deep-learning model. V-Net, the best-performing model in
the current study, obtained a fairly satisfactory dice score when lesion size exceeded the
median size of all targets.

Figure 2. The performance of each model on lesions within different volume ranges.

To compare the performances of different models trained with one-channel input on
the segmentation of brain lesions, we performed another experiment in which models
were trained with just T1+C input with tumor core labels of the BraTS dataset. The
evaluation was based on prediction of the tumor cores. As shown in Figure 3, V-Net had
the highest Dice score when trained with 4-channel input with 5-class labels. Interestingly,
all models performed better in this circumstance than when trained with only T1+C images.
Of note, V-Net and PSPNet could not yield comparable results when trained with only
T1+C images, implying that they are more sensitive to the change from multimodal to
single modality inputs. While the models trained with one-channel inputs yielded lower
performances in segmentation, they still performed better than their counterparts trained
with the NTUH dataset.

159



Appl. Sci. 2021, 11, 9180

Figure 3. The performance of each model trained with four-channel or one-channel inputs.

Because of the nature of PSPNet and DeepMedic, they took a significantly longer time
for inference, as shown in Table 6. V-Net had the least number of parameters and the
shortest inference time. We also found that adding dropouts in V-Net further improved its
performance, which we have noted in the table with 0.1 being the dropout rate.

Table 6. Inference time on our hardware and parameters of different networks.

V-Net
Dropout 0.1

DeconvNet U-Net PSPNet DeepMedic

Inference time
(minutes:seconds) 02:51 04:00 04:01 14:43 17:73

Number of
parameters 8.23M 12.5M 34.5M 28.3M 13M

4. Discussion

4.1. Segmentation Performance: NTUH vs. BraTS Dataset

The performance on our radiosurgery dataset was inferior to that on BraTS. Many
factors might lead to such a result. First of all, the tumor volumes in the NTUH dataset
are typically smaller than those in BraTS 2015. On average, the tumor occupied 1.23% of
the whole image volume in the BraTS dataset, but only 0.145% in ours. It should also be
noted that a significant portion of our dataset contained multiple targets, which is much
less likely for glioma patients (BraTS). The lesions in NTUH dataset are thus more difficult
to detect.

Moreover, there is significant heterogeneity in our dataset. To evaluate whether our
model could achieve similar segmentation performance under a more realistic scenario, we
used the dataset containing cranial lesions of various pathology, which is different from
the BraTS dataset with only glioma cases. In a strict sense, we also have some images of
non-neoplastic diseases such as AVM. Additionally, some of the tumors are extra-axial
(outside the brain parenchyma) and may even extend extracranially, so we cannot perform
skull stripping like BraTS. Due to the heterogeneity of tumor types and sites, we may need
a much larger dataset to reach similar performance.

Our results indicated that better performance was correlated with more training
samples (as in metastases, meningioma, and schwannoma, Figure 2) and larger lesion
dimensions (Figure 3). We also report the effect of input channels (of BraTS) in this revision.

Another reason is that we only used one image set (T1+C) to predict instead of four
sequences used in the BraTS dataset. Less information might lead to deteriorated performance.
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It is also worth mentioning that our dataset is quite imbalanced disease-wise. From
the performance of the models we trained, we could observe that this imbalance resulted in
serious bias issues for minority patients. We found it quite difficult to train a model by the
traditional soft-dice loss or cross-entropy loss. Using the weighted cross-entropy loss gave
us a 0.25 dice score, while our modification of subtracting a log-soft-dice term improved
the dice score to 0.40. Such difference may result from tumor size since tumors in our
dataset were of fewer voxels on average. In addition to the data variety, the weighted cross-
entropy function could be very unstable and thus harmful to the optimization. Empirically,
we found that the model will most likely fail in 10 epochs and predict nothing but the
background for all inputs. By adding another term with the dice score, the new loss
function provides better guidance to the model, and we could empirically observe the
significant improvements.

We added images of trigeminal neuralgia in the training set as negative samples, in
which there was no real space-occupying lesion. We did not expect the machine to learn
how to identify trigeminal neuralgia. Instead, it can be considered that images of trigeminal
neuralgia are examples of the heterogeneity of real clinical datasets. This artificial impurity
was meant to mimic the systematic bias that could occur in a larger and unpurified dataset
to infer the availability of deep learning models.

Although the targets in our dataset were defined and contoured by experienced
clinicians, it should be noted that they were the targets we wanted to treat. Therefore, in
very few cases, not every lesion detected by human experts was labeled. For example, a
patient with brain metastases may also have a small meningioma, which may be stable and
will not be labeled and treated by radiosurgery. If an algorithm detects that meningioma is
this rare, decreased precision and dice score can be expected. However, from the clinical
experience of our expert neurosurgeons and radiation oncologists, the rate of intentionally
ignored meningiomas and pituitary adenomas was estimated around 1%. This estimation
was in parallel with the reported prevalence of intracranial incidentaloma. On the other
hand, the estimated rate for ignored brain metastases was much higher (5%), because our
clinical experts might decide not to treat small lesions (less than 5–10 mm or visible only on
one axial slice) in patients with multiple brain metastases [41,42]. As a result, this should
not impede the training due to its rarity, and most meningiomas were labeled.

4.2. Performance on Different Types of Tumor

We can see that these models performed better for brain metastases, meningiomas,
and schwannomas, where there were more than 300 cases each. They performed best for
schwannomas, probably because most of these are vestibular ones, whose locations are
always around internal auditory meatus.

On the other hand, these models performed poorly for pituitary tumors, AVMs, and
other tumor types. Besides the relatively small number of cases for training, pituitary
tumors and AVMs are not always readily visible for humans using only the T1+C series.
For example, dynamic contrast-enhanced MRI may be required to visualize pituitary
tumors. AVMs are sometimes not visible even using time-of-flight (TOF) MRI, so computed
tomography angiography and/or digital subtraction angiography may be required for
target contouring.

4.3. Comparison between Deep Learning Models

With respect to the input format, there are two classes of model architectures. The 2D
model predicts tumors in just one slice and completely discards the information along the
z-axis, while the 3D model utilizes the full information on the MRI volume. This results in
a trade-off between features and overfitting. When receiving more features, it is more likely
to overfit the unrelated noise, especially with such a small dataset. Patch sizes in previous
works range from 16 × 16 × 16 to 64 × 64 × 64 mm3 [18,43–55], of which Kamnitsas et al.
outperformed the others. Thus, in the current proposed work, we restrained the receptive
field and predicted on inputs patches with the size of 64 × 64 × 64 mm3. We examined
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this trade-off in our benchmark experiment on the BraTS dataset. Surprisingly, when
experimenting with V-Net on our dataset, small patch-wise prediction became detrimental,
but receiving the full brain volume guaranteed the best performance.

Overall, the 3D models seem to be more appealing. The 3D models present the full
potential of convolution networks, reducing the number of parameters and becoming far
more efficient due to their convolution nature. Specifically, V-Net has approximately 1/30 of
the parameters compared to U-Net, shortest inference time, and the best performance on
dice metric. The only shortcoming of 3D models is the requirement of GPU RAM due to the
large input. In our experiments, we solve this by using a smaller batch-size. Furthermore,
replacing batch normalization with dropout is quite effective in preventing overfitting
because of the small batch size.

We compared the performances of the models trained with one-channel inputs of
the NTUH and BraTS datasets. When the models were trained with one-channel inputs,
the segmentation performances were slightly better than when they were trained with
four-channel inputs. It could be inferred that the models perform better on a dataset with
less heterogeneity in lesion types as well as lesion sizes.

4.4. Comparison to Previous Studies Addressing Deep Learning-Based Segmentation in SRS
Treatment Planning

Efforts to identify the targets and the OARs prior to SRS treatment are crucial for
dosimetry planning to protect the organs other than the lesions themselves. Several
studies have benefited from deep learning methods on the classification and nomencla-
ture standardization of the OARs [56,57]. The above-mentioned studies could advance
computer-assisted radiation therapy.

To evaluate the benchmark performed in this study on the segmentation of brain
lesions, previous studies addressing the segmentation of brain tumors in the treatment
planning process during SRS will be reviewed. Of all types of brain lesions, asymptomatic
or unresectable metastases warrant SRS without maximal surgical resection. As SRS serves
as the first-line treatment for oligometastatic lesions, which denotes metastases of lesser
than five lesions, contouring the lesions is of important clinical significance. The models
previously used included modified DeepMedic [11,27], an ensemble of DeepMedic and 3D
U-Net [28], and CNN [29].

Tumor volume tremendously affects the performance of segmentation; higher variety
in tumor sizes and smaller lesions usually imply adversity in segmentation. Smaller
lesions, while not affecting dice scores much, are not easily detected in methods with lower
sensitivity. Liu et al. (2017) [27] proposed a modification of DeepMedic and managed to
reach a dice score of 0.67. In their study, the number of brain metastases per case varied
from 1 to 93 (5.679 ± 8.917), and the mean tumor size was 672 ± 1994 mm3. Lu et al.
(2019) [28] ensembled two neural networks, namely 3D U-Net and DeepMedic, yielding a
good performance in segmentation with a median dice score of 0.74. The median size of
the tumors in their dataset was 980 mm3, while the smallest tumor was 3 mm3. Fong et al.
(2019) [29] trained the convoluted neural network with multiplanar slices, yielding a dice
score of 0.77. Lu et al. (2021) [11] implemented an ensemble of 3D U-Net and DeepMedic
and enhanced the prediction significantly, especially for non-experts. In their dataset, the
median volume of the lesion was 890 mm3. In our dataset, the lesions possessed a median
size of 656 mm3 and a mean of 2833 ± 6389 mm3, while the smallest lesion was 13.05 mm3.
Generally speaking, with the highest dice score of 0.51, sensitivity of 0.66, and precision
of 0.48, the lesions in our dataset had a higher size variety and smaller median size. The
inconsistency in the lesion characteristics could cause difficulties for the deep learning
models to extract features and hinder the prediction.
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Ensemble models introduced higher segmentation performance than a single model
in the previous studies [11,27–29]. Although in our study, V-Net with a dropout rate of
0.1 outperformed other methods in segmentation of brain lesions in the NTUH dataset,
we did not perform a benchmark on the ensemble methods. It remains undetermined
whether ensemble models yield better performance as well as which models ensembled
could enhance segmentation the most.

As the difference in the imaging sequences used in the training process is a determinant
of segmentation performance, the sequences used in previous works are discussed. Liu et al.
(2017) used contrast-enhanced T1-weighted images [27] while Lu et al. (2019) used CT and
T1-weighted MRI scans with contrast as the input [28]. Multiplanar slices of MPRAGE
(magnetization-prepared rapid acquisition with gradient echo) images were taken as input
in Fong et al. (2019) [29]. Lu et al. (2021) used contrast-enhanced CT and T1-weighted
MR scans [11]. Out of the three studies, methods with MPRAGE as the input sequence
yielded the highest dice score compared to the ground truth. Brain tumors on FLAIR,
which is often used to contour the clinical target volume (CTV), mostly appeared as
confluent hyperintense signals, introducing higher sensitivity and lower precision. On
the other hand, brain tumors were mostly discrete on MPRAGE, an MRI modality taking
advantage of gradient echo [58]. Despite the fact that higher precision could be achieved
with MPRAGE, it is currently of lower significance in contouring before SRS. Of note,
studies have shown that simultaneous use of different imaging modalities promised a
better performance in segmentation compared to single modality use [38]. In our study, only
contrast-enhanced T1-weighted MR images were used, and this could be a determinant of
lower segmentation performance.

The required dataset size to yield high performances could not be confirmed, as we
collected the data available to train the models and only draw conclusions from the current
dataset. It is probably true that a larger dataset may generate better or different results, but
such a dataset was not available to us.

4.5. Limitation of This Study

Compared to previous works investigating samples that underwent SRS, a relatively
large dataset was implemented in the current study. However, the results suggest that
the numbers of pituitary tumors, AVMs, and other tumors are probably insufficient for
good results. Since the numbers of above lesions in a single institute may be insufficient,
federated learning can be a potentially practical approach for better results.

Contrast-enhanced T1-weighted MR imaging was the only modality used as input in
our study. Some tumors such as low-grade glioma or pituitary tumors are non-enhancing,
introducing great difficulty in the detection and segmentation of these types of lesions.
Simultaneous use of multiple imaging modalities could be the solution to this. Reviewing
previous works, the sensitivity for detection of smaller brain lesions (<3 mm) with 3D U-
Net, whether trained with black-blood or gradient echo modalities, decreased significantly
compared to larger brain lesions (≥10 mm, 0.981, 3–10 mm 0.829, <3 mm 0.235) [59]. The
same trend could be observed in studies performed with 2-stage MetNet (≥6 mm 0.99,
3–6 mm 0.87, ≤3 mm 0.25) [60] or GoogLeNet [61]. The 2-stage MetNet [60] and BMDS
net [62] could achieve satisfactory segmentation prediction on tumors larger than 6 mm,
with dice scores of 0.87 and 0.83, respectively. In our dataset counterpart, the diameters of
10.5% lesions were smaller than 6 mm, 45% lesions smaller than 10 mm, and 95.7% smaller
than 3 cm. The small lesion sizes in our NTUH dataset contributed to the dice score lower
than 0.6 predicted with V-Net.

The way dice score is derived could mask the effect of contouring small lesions. In
our work, dice score was calculated per voxel, which favored larger lesions compared to
dice score derived per lesion. Clinically, SRS is indicated and is of significant importance
for patients with smaller brain lesions, whereas for patients who are surgical candidates
with larger lesions, standard care remains surgery with adjuvant stereotactic radiation
therapy or whole-brain radiation therapy. As for patients with diffuse lesions, whole-
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brain radiation therapy is the standard treatment due to the lack of level 1 evidence to
support the use of SRS in the patient population [63] (p. 865). Contouring deflection on the
gross tumor volume (GTV) of such small lesions could introduce a huge impact on later
target contouring, compromising organs at risk (OAR). Take brain metastases, for example,
current guidelines for contouring for SRS generally indicate a 1.5 cm expansion from GTV
to generate CTV. In our dataset, the smallest volume of brain lesion being 20 mm3 implies
a 3.4 mm diameter, and the volume difference of CTV with GTV is about 3000 mm3. This
expansion in target volume significantly differs if a small lesion was not correctly contoured.
As a consequence, a dice score per lesion provides benefit in some circumstances.

Evidence derived from trials concerning treatment response to SRS based on either
deep-learning segmentation or manual segmentation is still an unmet need. Several studies
implemented multiple modalities (PET/MRI) in order to train machine learning models
for tumor segmentation, which suggested that biological target volume (BTV) could be
promising in helping CTV definition during SRS treatment and their ability to indicate
dose escalation on biologically active targets [64,65]. Despite the effort in assisting CTV
definition by taking advantage of the training set of multi-modalities, whether the addition
in modalities to either of the learning methods improves clinical treatment response is
yet undetermined.

5. Conclusions

We benchmarked five commonly used deep learning segmentation models on our
SRS dataset. We confirmed that these approaches also work on a heterogeneous dataset,
but with decreased performance. We discovered that the V-Net architecture worked best
for this specific task. With the top dice scores, the smallest size of the model, and the
shortest inference time, V-Net may be a good choice to improve upon. We also found that
when training on the dataset with such heterogeneity and class imbalance, using weighted
cross-entropy loss with log-soft-dice term significantly improved the performance.

Supplementary Materials: GitHub repository, https://github.com/raywu0123/Brain-Tumor-Seg
mentation, (accessed on 25 September 2021).
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Appendix A

DICE v_net_dropout0.1 Deconvnet u_net Pspnet Deepmedic

Metastasis 0.69 0.55 0.45 0.52 0.5
Meningioma 0.57 0.56 0.48 0.46 0.47
Schwannoma 0.73 0.66 0.72 0.55 0.63

Pituitary 0.27 0.38 0.07 0.24 0.29
AVM 0.27 0.31 0.22 0.24 0.2

Other tumors 0.34 0.25 0.26 0.28 0.29
Total 0.59 0.52 0.44 0.46 0.46

Appendix B

SENSITIVITY v_net_dropout0.1 Deconvnet u_net Pspnet Deepmedic

Metastasis 0.82 0.55 0.37 0.56 0.5
Meningioma 0.71 0.58 0.41 0.54 0.57
Schwannoma 0.91 0.86 0.75 0.87 0.92

Pituitary 0.48 0.37 0.04 0.31 0.29
AVM 0.36 0.33 0.2 0.24 0.22

Other tumors 0.58 0.3 0.22 0.33 0.42
Total 0.74 0.56 0.39 0.55 0.54

Appendix C

PRECISION v_net_dropout0.1 Deconvnet u_net Pspnet Deepmedic

Metastasis 0.63 0.62 0.78 0.6 0.64
Meningioma 0.51 0.6 0.67 0.54 0.53
Schwannoma 0.62 0.59 0.76 0.45 0.5

Pituitary 0.21 0.5 0.46 0.27 0.42
AVM 0.34 0.49 0.57 0.51 0.34

Other tumors 0.34 0.3 0.41 0.38 0.42
Total 0.53 0.56 0.68 0.52 0.54
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Abstract: Myocardial infarction (MI) occurs due to the decrease in the blood flow into one part of the
heart, and it further causes damage to the heart muscle. The 12-channel electrocardiogram (ECG)
has been widely used to detect and localize MI pathology in clinical studies. The vectorcardiogram
(VCG) is a 3-channel recording system used to measure the heart’s electrical activity in sagittal,
transverse, and frontal planes. The VCG signals have advantages over the 12-channel ECG to localize
posterior MI pathology. Detection and localization of MI using VCG signals are vital in clinical
practice. This paper proposes a multi-channel multi-scale two-stage deep-learning-based approach
to detect and localize MI using VCG signals. In the first stage, the multivariate variational mode
decomposition (MVMD) decomposes the three-channel-based VCG signal beat into five components
along each channel. The multi-channel multi-scale VCG tensor is formulated using the modes of each
channel of VCG data, and it is used as the input to the deep convolutional neural network (CNN)
to classify MI and normal sinus rhythm (NSR) classes. In the second stage, the multi-class deep
CNN is used for the categorization of anterior MI (AMI), anterior-lateral MI (ALMI), anterior-septal
MI (ASMI), inferior MI (IMI), inferior-lateral MI (ILMI), inferior-posterior-lateral (IPLMI) classes
using MI detected multi-channel multi-scale VCG instances from the first stage. The proposed
approach is developed using the VCG data obtained from a public database. The results reveal that
the approach has obtained the accuracy, sensitivity, and specificity values of 99.58%, 99.18%, and
99.87%, respectively, for MI detection. Moreover, for MI localization, we have obtained the overall
accuracy value of 99.86% in the second stage for our proposed network. The proposed approach has
demonstrated superior classification performance compared to the existing VCG signal-based MI
detection and localization techniques.

Keywords: myocardial infarction; vectorcardiogram; multivariate VMD; deep CNN; accuracy

1. Introduction

The obstruction in one of the coronary arteries of the heart causes the myocardial
infarction (MI) disease [1,2]. Typically, the MI is progressed in three phases [3]. These three
phases are (a) ischemic phase, (b) acute phase, and (c) myocardial necrosis phase. The
12-lead ECG signal is used in the clinical study for the early detection and localization
of MI pathology [4]. The ST-segment elevations, inverted T-waves, and pathological Q-
waves are the morphological changes observed in the ECG signals of different leads in
MI pathology [5]. The morphological changes in the ECG signals of the channels or leads,
such as V1, V2, V3, and V4, are used to diagnose anterior MI (AMI) [6]. Similarly, inferior
MI is diagnosed based on the variations in the morphologies of ECG signals for II, III,
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and aVF channels. Moreover, the morphological variations in the ECG signals of I, aVL,
V5, and V6 channels are used to diagnose left lateral MI pathology [6]. In 12-lead ECG,
no ECG lead capture the information about the diagnosis of posterior MI [6,7]. However,
the reciprocal changes in the V1 and V2 channel ECG signals are used in the clinical
study to diagnose posterior MI [8]. Vectorcardiogram (VCG) is an orthogonal three lead
system which measures the heart’s electrical activity along transverse, sagittal, and frontal
planes, and it has been used for the detection of MI pathology [3,9]. The 12-lead ECG
can be derived from the VCG signal using various transformation techniques [10]. In
VCG, one of the orthogonal leads reveals the posterior view of the heart [11]. Hence, the
method based on the analysis of VCG signal information is helpful to detect and localize
MI pathology. The continuous recording and monitoring of VCG signal information for MI
disease diagnosis is cumbersome, and hence automated approaches have been used for the
accurate detection and localization of MI using VCG signals [3]. The development of novel
approaches to detect and localize MI pathology using the VCG signals is challenging in
clinical study.

In recent years, various approaches have been developed to detect MI using VCG
signals [12–15]. The methods based on the evaluation of various VCG signal morphological
features, such as difference in ST-T vector magnitude, area of ST-segment vector, and
other T-wave features, have been used to detect MI disease [14,16–18]. Similarly, in [13],
authors have applied independent component analysis (ICA) and principal component
analysis (PCA) for projecting VCG signal feature vector into a lower-dimensional space.
They have extracted various morphological features from the VCG signal to formulate
the feature vector. The neural network-based classifier has been used for the detection
of MI using reduced dimension feature vector of VCG signal [13]. In [14], authors have
computed octant and vector-based features from VCG signals and used a decision tree
model to detect MI pathology. These methods require the detection of P, Q, R, S, T-onset
points manually in the VCG signal to compute the morphological features [3]. In literature,
various wavelet-based techniques, such as multi-scale recurrent quantification analysis
(MRQA) [15], and complex wavelet sub-band features [3] have been used to detect MI
using VCG signals. In [15], each channel of the VCG signal is decomposed into sub-band
signals using discrete wavelet transform (DWT). From each sub-band signal, the recurrent
quantification analysis (RQA) based non-linear features have been extracted, and Gaussian
discriminant analysis (GDA) classifier is used for the detection of MI [15]. Moreover, in [3],
the dual-tree complex wavelet transform (DT-CWT) has been used to decompose the VCG
signal into sub-band signals along each channel. The entropy and L1-norm features have
been extracted from each sub-band signal. The relevance vector machine (RVM) classifier
has been used to detect MI from these VCG signals features [3]. Along with cardiac signal
processing, cardiac imaging today represents an important area of clinical research that has
achieved excellent results in recent years, such as deep-learning approaches [19]; especially,
this led to the development of computer-assisted tools capable of segmenting the whole
heart [20,21], as well as identifying specific regions of interest [22]. In the wavelet-based
approach, the pre-defined basis functions and the number of decomposition levels are
used to compute sub-band signals from VCG signal [23]. Additionally, the mentioned
VCG signal-based approaches have considered only for MI detection. The automated
classification of various types of MI pathologies has not been considered using VCG
signals. The existing VCG-based approaches have considered various feature extraction
and machine learning methods to detect MI. In recent years, various deep learning-based
approaches have been used to detect and localize MI using 12-lead ECG signals [2,24,25].
The deep learning-based MI detection and localization methods do not require extracting
features from 12-lead ECG signals [2]. The deep learning-based methods have not been
explored for the detection and localization of MI using VCG signals. Therefore, a deep
learning-based approach can be developed to detect and localize MI using VCG signals.

The multivariate variational mode decomposition (MVMD) is a recently proposed
signal processing technique to decompose the multi-channel signals into components or
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modes [26]. This method is fully signal-driven and does not consider any basis functions
and decomposition levels like DWT to obtain components of non-stationary signals. The
univariate version of VMD has been used for the analysis of ECG signals for the detection
of ventricular tachycardia and atrial fibrillation episodes [27,28]. The VCG is a multi-
channel signal, and, therefore, the MVMD can be used to decompose the signal into modes.
Moreover, deep learning-based methods have been used in the multi-scale or modal
domain of ECG signals to detect cardiac ailments [29]. For VCG signal, the deep learning
method has not been explored in the multi-scale domain to detect and localization of MI.
The novelty of this work is to develop a multi-channel multi-scale deep learning-based
framework to detect and localize MI using VCG signals. The important contributions of
this work are given as follows:

1. The MVMD is introduced to decompose the VCG signals into sub-band signals
or modes;

2. A multi-channel multi-scale two-stage deep convolutional neural network (CNN)
framework is proposed for the detection and localization of MI;

3. The MI types, such as AMI, IMI, ILMI, ALMI, ASMI, and IPLMI, are classified
in the second stage of the proposed multi-channel multi-scale deep CNN (MMD-
CNN) model;

4. The multi-channel multi-scale two-stage deep CNN performance is evaluated using
hold-out and 10-fold cross-validation (CV) schemes.

The remaining sections of this paper are written as follows. The explanation regarding
the VCG signal database is written in Section 2. In Section 3, the proposed approach for MI
detection and localization is described. Section 4 presents the results and discussion of the
proposed approach. In Section 5, conclusions of this paper is summarized.

2. VCG Signal Database

In this work, the VCG signals from the PTB diagnostic database (https://www.
physionet.org/content/ptbdb/1.0.0/ (accessed on 20 June 2021)). were used to develop
the proposed multi-channel multi-scale two-stage deep CNN approach [30,31]. The PTB
database from Physionet comprises both 12-lead ECG and 3-lead VCG recordings of normal
sinus rhythm (NSR) and various heart diseases, such as MI, hypertrophy, cardiomyopathy,
bundle branch block, and dysrhythmia, respectively [30]. Each VCG signal has been
sampled at 1000 samples per second in the PTB database, and the amplitude value of each
lead VCG varied between −16.384 mV to 16.384 mV. In this study, we have used 73 VCG
recordings from 52 healthy controls (HC) subjects of PTB diagnostic database. Similarly,
99 VCG recordings from 148 subjects with MI pathology are used. For MI localization,
13, 20, 11, 21, 21, and 13 VCG recordings from AMI, IMI, ALMI, ASMI, ILMI, and IPLMI
classes, respectively, are considered. In the PTB diagnostic database [30,31], the number
of VCG recordings for MI class is higher than the healthy class. A higher difference in
the number of VCG instances between MI and healthy classes may cause the over-fitting
problem during the training of the proposed MMDCNN model. Due to this reason, we have
considered only 99 VCG recordings from the MI class in this work. Each VCG recording in
the PTB diagnostic database contains three orthogonal leads (Vx, Vy, Vz), which represent
the electrical activity of heart in three different planes [28].

3. Method

The proposed MI detection and localization stages are shown in a flow-chart form in
Figure 1a,b, respectively. The MI detection stage comprises the filtering of VCG signal, seg-
mentation of VCG recordings into beats, decomposition of VCG beat into multi-scale VCG
tensors using MVMD, and deep CNN to detect MI pathology. Similarly, the localization
stage consists of the classification of AMI, IMI, ALMI, ASMI, ILMI, and IPLMI beats using
MI detected multi scale VCG tensor data. The following section briefly discuss each part of
the flow-chart, as shown in Figure 1.

171



Appl. Sci. 2021, 11, 7920

VCG recording, Vx, Vy, and Vz

Segmentation of VCG
Recording into beats

VCG beat

X ∈ R651×3

Multivariate Variational

(5 modes for each VCG channel)

Mode Decomposition (MVMD)
Multiscale VCG Tensor

Multichannel Multiscale

Deep Convolutional

Neural Network (CNN)

Healthy MI

(a)

(b)

MI Detected Multiscale VCG Tensor

Z ∈ R651×3×5

Z ∈ R651×3×5

Stage 1

Stage 2

Multichannel Multiscale Deep

Convolutional Neural Network (CNN)

Anterior MI

Antero-lateral MI

Antero-septal MI

Inferior MI

Infero-lateral MI

Infero-Posterio-lateral MI

Figure 1. (a) Stage1 1: MI detection block using VCG signals. (b) Stage 2: MI localization using MI detected multi-scale
VCG tensor.

3.1. Segmentation of VCG Data

In this work, we have performed the amplitude normalization for each lead of VCG
recording [28]. The samples of raw VCG signal corresponding to each lead is divided by
the maximum absolute value the signal to obtain the normalized VCG signal [6]. After
normalization of each lead VCG recording, we have detected the R-peak in the Vx lead of
VCG signals. The beat by beat segmentation of each VCG recording is performed using a
window of size 651 samples [2]. The 251 samples before each R-peak of the Vx lead VCG
signal and 400 samples after R-peak are considered for the beat by beat segmentation of
VCG signal [2]. The number of MI and NSR VCG beats used for the proposed MI detection
work are shown in Table 1. Similarly, the number of VCG beats evaluated for each type of
MI are also shown in Table 1.

Table 1. Number of VCG beats used for MI detection and localization.

Stage 1: MI detection

Class NSR MI

VCG beats 9874 13982

Stage 2: MI localization

Class AMI ALMI ASMI IMI ILMI IPLMI

VCG beats 1664 1778 3057 2807 3049 1981

3.2. Multivariate VMD for VCG Signal Analysis

In this study, we have used MVMD to evaluate the modes of VCG beat along each
orthogonal lead. The MVMD is the extension of VMD algorithm used to decompose multi-
channel signals into modes [26]. The VCG beat is given as vm(n), with n = 1, 2, ...N. N is
the number of samples in the VCG beat. The parameter m is denoted as the mth orthogonal
lead of VCG beat. The VCG beat synthesized from its modes is given as follows:

vm(n) =
k

∑
i=1

ui
m(n) (1)
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where, ui
m(n) is the ith mode of mth lead VCG signal ui

m(n) =
[
ui

1(n), ui
2(n), ui

3(n)
]

is also
interpreted as the multivariate modulated oscillations of VCG signal with i = 1, 2, ......k,
and k is the total number of modes [26]. The vector analytic representation of ith mode of
mth lead VCG is written as follows [26]:

ũi
m(n) = ui

m(n) + jH
(

ui
m(n)

)
(2)

where, H
(
ui

m(n)
)

is the Hilbert transform of ith mode of mth lead VCG signal [26]. In
MVMD, the objective is to evaluate the modes of VCG signal based on the criteria as (a) the
sum of bandwidth of components or modes of VCG should be minimum and (b) sum of all
modes should recover the VCG signal along each lead [26]. The optimization problem of
MVMD for the decomposition of VCG signal is formulated as follows [26]:

min
ui

m(n),wi

{
k

∑
i=1

M

∑
m=1

∥∥∥∥ ∂

∂n

[
ũi

m(n)e
−jwin

]∥∥∥∥2

F

}

s.t.
k

∑
i=1

ui
m(n) = vm(n), m = 1, 2, and 3

(3)

where, ‖•‖F is the representation of Frobenious norm [26]. The optimization problem in
Equation (3) can be reformulated using augmented Lagrangian and it is given as follows:

L
{

ui
m(n), wi, ηm(n)

}
= β

k

∑
i=1

M

∑
m=1

∥∥∥∥ ∂

∂n

[
ui

m(n)e
−jwin

]∥∥∥∥2

F
+

M

∑
m=1

∥∥∥∥∥vm(n)−
k

∑
i=1

ui
m(n)

∥∥∥∥∥
2

F

+
M

∑
m=1

〈
ηm(n), vm(n)−

k

∑
i=1

ui
m(n)

〉
(4)

where, ηm(n) is the Lagrangian multiplier for mth lead VCG beat, and β is interpreted as the penalty
factor for MVMD. The modes of VCG beat along each lead is iteratively evaluated based on the
solution of Equation (4) using alternating direction method of multipliers (ADMM) [26]. The complete
algorithm of MVMD for the extraction of modes from the non-stationary signals has been given
in [26]. In this study, we have evaluated five modes from the VCG beat along each orthogonal lead.
The multi-scale VCG tensor is formulated using the modes of VCG beat and the size of multi-scale
VCG tensor is 651 × 3 × 5.

For NSR class, the Vx, Vy, and Vz lead VCG beat are shown in Figure 2a,g,m, respectively. The
modes of Vx, Vy, and Vz lead VCG beats evaluated using MVMD are shown Figure 2b–f,h–l,n–r,
respectively. Similarly, the Vx, Vy, and Vz channel VCG beats for IPLMI class are shown in
Figure 3a,g,m, respectively. For IPLMI class, the modes of Vx, Vy, and Vz lead VCG beats are
depicted in Figure 3b–f,h–l,n–r, respectively. It can be observed from these plots that the modes of
each lead VCG beat have different shape and amplitude values for IPLMI and NSR classes. In VCG
signal, the clinical parameters, such as QRS-complex shape, special QRS-T angle, T-wave shape are
different for healthy and MI cases [32]. The study in [33] has reported the physiological parameters
of VCG signal for MI class, such as QRS-loop maximum vector magnitude, QRS-area perimeter ratio,
and ST-vector magnitude, have higher mean values than those of healthy class. Similarly, the VCG
parameters, such as QRS-loop volume, QRS-loop planar area, maximum of the distance between
QRS-centroid and QRS-loop, and QRS-perimeter have the lowest mean values for MI class as com-
pared to healthy class [33]. For the AMI case, there is abnormal posterior deviation in the QRS-vector
of VCG signal [34]. Similarly, for the posterior-lateral MI case, the pathological changes, such as
oriented T-loop and maximal leftward deviation of frontal plane QRS-vector are observed [35]. The
transverse plane QRS-vector maximum value greater than 1.5 mV is also used as the criteria for the
detection of inferior and posterior MI using VCG signals [11]. These differences in the morphological
parameters of VCG signal for NSR and various types of MI cases can be captured in the modes which
are evaluated using MVMD. Therefore, the deep CNN model designed using the modes of the VCG
beat can be used to detect and localize MI.
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Figure 2. (a) Vx lead VCG signal for NSR class. (b–f) mode 1 to 5 of Vx lead VCG signal for NSR class. (g) Vy lead VCG
signal for NSR class. (h–l) mode 1 to 5 of Vy lead VCG signal for NSR class. (m) Vz lead VCG signal for NSR class. (n–r)
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Figure 3. (a) Vx lead VCG signal for IPLMI class. (b–f) mode 1 to 5 of Vx lead VCG signal for IPLMI class. (g) Vy lead VCG
signal for IPLMI class. (h–l) mode 1 to 5 of Vy lead VCG signal for IPLMI class. (m) Vz lead VCG signal for IPLMI class.
(n–r) mode 1 to 5 of Vz lead VCG signal for IPLMI class.
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3.3. Multi-Channel Multi-Scale Deep Convolutional Neural Network
In this work, a novel MMDCNN model is proposed to detect and localize MI. The Python codes

for the MMDCNN model is available at (https://github.com/JayKarhade/MI_VCG_DL (accessed
on 20 August 2021)). The MMDCNN architecture shown in Figure 4 comprises 12 layers. The first
and last layers are interpreted as input and output layers of MMDCNN model. The input layer
contains the multi-scale VCG tensor. The output layer consists of two neurons for MI detection stage,
one for NSR class and the other for MI class. Similarly, for the MI localization stage, the output layer
contains six neurons corresponding to six types of MI classes as AMI, IMI, ALMI, ASMI, ILMI, and
IPLMI, respectively. The MMDCNN contains four convolutions, two max-pooling, and four dense
layers for both MI detection and localization stages. The mathematical expression to compute the tth
feature map for first convolution layer is given as follows [29,36]:

X
(l)
t (ñ) = h(

N

∑
n=1

M

∑
m=1

I

∑
i=1

X(n, m, i)Kt(ñ − n +
N
2

, m, i) + bt) (5)

where X(n, m, i) is the input to the MMDCNN and i = 1, 2. . . . . . .I and m = 1, 2. . . M, respectively.
The parameters I and M are total number of modes and channels, respectively. Similarly, the
mathematical expression for the evaluation of feature maps in other convolution layers are evaluated
as follows [29,36]:

X
(l)
t (ñ) = h(

N

∑
n=1

C

∑
c=1

X
(l−1)
t̃

(n, c)K̃t(ñ − n +
N
2

, c) + b̃t) (6)

X
(l−1)
t̃

(n, c) is the t̃th feature map at (l − 1)th convolution layer. Similarly, the feature maps for

second, third and fourth convolution layers are evaluated using Equation (6). The X
(l)
t is denoted as

the tth feature map for lth convolution layer. Moreover, the mathematical expression to evaluate the
pooling layer feature map is given as follows [29,36]:

X
(l)
t (ñ) = max-pooling(X(l−1)

t (ñ)) (7)

For dense layers, the feature vector is evaluated as follows [37]:

a(l) = h(a(l−1)W
(l)

+ b
(l)
) (8)

where a(l) is the feature vector for lth dense layer. W
(l) is the weight matrix between (l − 1)th dense

and lth dense layers [37]. b
(l)

is the bias for lth dense layer. The categorical cross-entropy-based cost
function is used for MMDCNN for both detection and localization stages [38]. The hyper-parameters
used for MMDCNN in detection and localization stages are shown in Table 2. In this study, for
both MI detection and localization stages, the hold-out validation and 10-fold cross-validation
(CV) methods [37] are used to select the training and test VCG beats. For hold-out validation
78.75%, 11.25%, and 10% VCG beats are used as training, validation, and testing, respectively, for
MMDCNN model during detection and localization phases. We have used the performance measures
such as accuracy, sensitivity, specificity, and Kappa scores for the MI detection using MMDCNN
classifier [37,39]. Similarly, for MI localization, the overall accuracy (OA), individual accuracy (IA),
and Kappa score are used to evaluate the performance in the second stage MMDCNN [6].

175



Appl. Sci. 2021, 11, 7920

Figure 4. Proposed MMDCNN model to detect and localize MI using VCG beats.

Table 2. Hyper-parameters used MI detection and localization using our proposed MMDCNN model.

Hold-out (MI Detection) 10-fold (MI Detection )

Parameters Optimizer Batch size Epochs Learning rate Batch size Epochs Learning rate

Values Adam 1024 15 0.0001 1024 15 0.0001

Hold-out (MI Localization) 10-fold (MI Localization )

Parameters Optimizer Batch size Epochs Learning rate Batch size Epochs Learning rate

Values Adam 1024 15 0.00004 256 15 0.0001

4. Results and Discussions

The results evaluated using the proposed MMDCNN for MI detection and localization using
VCG signals are shown in this section. In Table 3, we have shown the accuracy, sensitivity, specificity,
and kappa score values for our proposed MMDCNN model with hold-out CV. Similarly, for MI
detection, the accuracy vs. epoch plots for training and validation VCG instances obtained using
MMDCNN are illustrated in Figure 5. It is evident from this plot that both training and validation
accuracy values are 100% after 10th epoch. Similarly, we have shown the confusion matrix obtained
using the proposed MMDCNN for MI detection using VCG signals for one random hold-out trial in
Table 4. The number of false-positive and false-negative values are 1 in the confusion matrix table.
The accuracy, sensitivity, specificity, and kappa values for this random hold-out validation are 99.9%,
99.89%, 99.92%, and 0.998, respectively. The average values of accuracy, sensitivity, specificity, and
kappa scores over five trial-based random validation are more than 99% (as seen from Table 3).
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Figure 5. Graphs of accuracy vs. epochs of multi-channel multi-scale deep CNN obtained using
training and validation VCG instances for MI detection.

Table 3. Classification results of two class multi-channel multi-scale deep CNN obtained for the
detection of MI using hold-out validation.

Accuracy (%) Sensitivity (%) Specificity (%) Kappa

99.58 ± 0.38 99.18 ± 0.90 99.87 ± 0.07 0.990 ± 0.01

Table 4. Confusion matrix for one-trail of hold-out CV for MI detection.

Predicted

Healthy MI

Actual
Healthy 978 1

MI 1 1390

For MI detection, the classification results obtained for the proposed first stage MMDCNN
using 10-fold CV are shown in Table 5. It can be observed from this table that, the accuracy values are
more than 99.50% for each fold. Similar high percentages in the sensitivity and specificity are seen in
each fold using the first stage MMDCNN method for MI detection. It can also be observed that the
Cohen kappa score is more than 0.99 for each fold. From these 10-fold CV results, It can be noted that
the proposed first stage deep CNN successfully detected MI using the modes of VCG beats.

Table 5. Results obtained using multi-channel multi-scale deep CNN with 10-fold CV.

Folds 1 2 3 4 5 6 7 8 9 10 Value (μ ± σ)

Accuracy (%) 99.7 100 99.95 100 99.74 99.95 100 100 100 100 99.93 ± 0.11

Sensitivity (%) 100 100 100 100 99.38 100 100 100 100 100 99.93 ± 0.19

Specificity (%) 99.49 100 99.99 100 100 99.92 100 100 100 100 99.94 ± 0.16

Kappa 0.993 1 0.999 1 0.994 0.999 1 1 1 1 0.998 ± 0.002

177



Appl. Sci. 2021, 11, 7920

The confusion matrix obtained using one random trial-based hold-out validation for MI local-
ization with second stage MMDCNN is shown in Table 6. Similarly, we have shown the accuracy
vs. epoch plots for training and validation of multi-scale VCG tensor instances in Figure 6. It can be
observed from these plots that both training and validation accuracy values obtained are more than
99% after 10th epoch using the second stage MMDCNN model. It can be seen from Table 6 that the
number of true positives for AMI, IMI, ALMI, ASMI, ILMI, and IPLMI classes are obtained as 162,
284, 185, 287, 301, and 201, respectively. Three multi-scale VCG tensor instances, which belong to
IMI, are classified as ALMI class. Similarly, the classification results of the proposed second-stage
MMDCNN obtained for MI localization using hold-out validation are shown in Table 7. It can be
noted that the average IA values are more than 99% for AMI, IMLI, ALMI, ILMI, and IPLMI classes.
For ASMI class, the IA value is 94.38%. The OA and kappa values obtained are 98.77% and 0.982,
respectively, using the proposed second-stage MMDCNN model.

Figure 6. Plots of accuracy vs. epochs of multi-channel multi-scale deep CNN obtained using training
and validation VCG instances for MI localization.

Table 6. Confusion matrix obtained using the proposed second stage multi-channel multi-scale deep CNN classifier for MI
localization.

Predicted Classes

AMI ALMI ASMI IMI ILMI IPLMI

Actual Classes

AMI 162 0 0 0 0 0

ALMI 0 185 0 0 1 0

ASMI 0 0 287 0 0 0

IMI 0 3 0 284 0 0

ILMI 0 0 0 0 301 1

IPLMI 0 0 0 0 0 200
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Table 7. Classification results obtained for MI localization using proposed MMDCNN model with
hold-out validation.

Parameters Value (μ ± σ)

IAAMI (%) 99.79 ± 0.35

IAALMI (%) 99.64 ± 0.31

IAASMI (%) 94.38 ± 5.56

IAIMI (%) 99.53 ± 0.53

IAILMI (%) 99.66 ± 0.00

IAIPLMI (%) 99.66 ± 0.57

OA (%) 98.77 ± 0.96

Kappa 0.982 ± 0.014

Moreover, we have shown the classification results of second-stage MMDCNN for MI local-
ization using a 10-fold CV and these results are shown in Table 8. It can be observed from these
results that for ILMI class, the accuracy value of each fold is more than 99%. Similarly, for IMI class,
apart from 5th fold, more than 99% accuracy values are observed for other folds. For IPLMI and
AMI classes, more than 98% accuracy values are obtained in each fold using second stage MMDCNN
model. Similarly, more than 97% accuracy values are obtained using MMDCNN classifier for ASMI
and and ALMI classes. The overall accuracy (OA) values are obtained as more than 99% at each fold.
The kappa value of more than 0.97 is observed for each fold using MMDCNN classifier.

Table 8. Classification results obtained for MI localization using proposed MMDCNN model with 10-fold CV.

Folds 1 2 3 4 5 6 7 8 9 10 μ ± σ

IAAMI (%) 100 98.79 100 99.4 100 100 100 100 100 100 99.81 ± 0.40

IAALMI (%) 99.43 97.75 97.75 96.57 99.43 98.31 97.19 99.43 97.75 98.3 98.19 ± 0.99

IAASMI (%) 97.38 95.09 100 97.37 100 100 99.67 98.69 99.01 100 98.72 ±1.64

IAIMI (%) 100 99.64 100 99.28 98.93 99.64 98.57 100 99.64 99.28 99.49 ± 0.48

IAILMI (%) 99.67 99.66 99.34 99.67 99.01 99.67 99.01 99.67 100 100 99.57 ±0.34

IAIPLMI (%) 99.49 100 98.98 98.48 99.49 99.49 98.48 100 98.98 98.48 99.18 ± 0.59

OA(%) 99.72 99.09 99.44 99.23 99.37 99.65 98.88 99.58 99.37 99.44 99.37 ± 0.25

Kappa 0.990 0.978 0.993 0.979 0.993 0.994 0.986 0.994 0.991 0.993 0.989 ± 0.006

The classification results of MMDCNN models evaluated using the selected modes of each
lead VCG signal, and all modes of high-pass filtered VCG signals for MI detection with hold-out
validation are shown in Table 9. It is observed that the average accuracy value of MMDCNN is
99.58% using mode 1 and mode 2 of each lead VCG signal. The average accuracy value remains
the same as the accuracy of MMDCNN model using all modes of VCG signals for MI detection.
Mode 1 and mode 2 capture the significant information of the VCG signal after decomposition using
MVMD. Henceforth, the accuracy value remains the same for MI detection using selected modes
and the MMDCNN classifier. Moreover, we have also evaluated the classification performance of the
MMDCNN model using all modes of high-pass filtered VCG signal for MI detection. A high-pass
Butterworth filter with a cut-off frequency of 0.5 Hz is applied to each lead VCG signal to remove
baseline wondering artifacts [6,28]. It is observed from Table 9 that average accuracy, average kappa
score, average sensitivity, and average specificity values are improved after the filtering of baseline
wandering artifact from VCG signals. In Table 10, we have shown the individual accuracy value
for each MI class, OA, and kappa scores of MMDCNN classifier for MI localization using mode 1
and mode 2 of each lead VCG signal and all modes of high-pass filtered VCG signals, respectively.
It is observed that the OA value obtained using the MMDCNN model is less using mode 1 and
mode 2 of VCG signals as compared to all modes of VCG signals. Similarly, the OA and kappa
values are improved using the modes of high-pass filtered VCG signals with the MMDCNN classifier.
For MI localization, the IA values for ASMI, IMI, and ILMI classes are also improved using the
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modes of high-pass filtered VCG signals composed with the MMDCNN classifier. Moreover, we
have also evaluated the classification results of the MMDCNN classifier using all modes of VCG
signal with leave one out (LOO) CV strategy. The VCG beats of one recording are considered during
testing of the MMDCNN model, whereas the VCG beats of all other VCG recordings are used to
train the MMDCNN classifier. The same procedure is applied to all VCG recordings, and it can also
be interpreted as a 171-fold CV strategy. The LOO CV or pre-recording-based MI detection results
are shown in Figure 7. It is observed that out of 172 VCG recordings, 114 recordings are correctly
classified with 100% accuracy. The OA value obtained using MMDCNN classifier with LOO CV
strategy is 87.65%.
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Figure 7. Accuracy values obtained using the proposed MMDCNN classifier for MI detection with
leave one out CV strategy.

Table 9. Classification results of MMDCNN obtained using selected modes and all modes for the detection of MI.

Mode Selection Accuracy (%) Sensitivity (%) Specificity (%) Kappa

Mode 1 and mode 2 of each
lead VCG signals 99.58 ± 0.37 99.17 ± 0.89 99.86 ± 0.06 0.991 ± 0.007

All modes from high-pass
filtered VCG signals 99.92 ± 0.02 99.84 ± 0.05 100 ± 0 0.998 ± 0.0005

Table 10. Classification results obtained for MI localization using proposed MMDCNN model with
mode selection.

Parameters
Mode 1 and Mode 2 from
Each Lead VCG Signals

All Modes from High-Pass
Filtered VCG Signals

IAAMI (%) 100 ± 0 100 ± 0

IAALMI (%) 99.17 ± 0.29 98.55 ± 2.22

IAASMI (%) 93.09 ± 5.16 99.26 ± 0.27

IAIMI (%) 99.30 ± 0.28 100 ± 0

IAILMI (%) 99.50 ± 0.19 99.86 ± 0.14

IAIPLMI (%) 99.25 ± 0.50 98.45 ± 2.45

OA (%) 98.37 ± 1.43 99.44 ± 0.56

Kappa 0.976 ± 0.014 0.992 ± 0.006

We have also formulated the seven-class classification scheme as (Healthy vs. AMI vs. ALMI
vs. ASMI vs. IMI vs. ILMI vs. IPLMI) using MMDCNN classifier with all modes of VCG signals.
The seven class classification results obtained using the MMDCNN model are shown in Table 11. It
can be observed that for healthy, ALMI, IMI, and IPLMI classes, the IA values are 69.87%, 83.22%,
82.61%, and 41.03%, respectively. The OA value of MMDCNN classifier obtained is 81.48%, which is
less than the proposed two-stage MMDCNN model for MI detection and localization.
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Table 11. Classification results obtained using MMDCNN classifier for seven class classification
scheme with hold-out validation.

Parameters Value (μ ± σ)

Healthy (%) 69.87 ± 28.87

IAAMI (%) 99.46 ± 0.38

IAALMI (%) 83.22 ± 10.14

IAASMI (%) 99.63 ± 0.25

IAIMI (%) 82.61 ± 7.93

IAILMI (%) 98.44 ± 2.28

IAIPLMI (%) 41.03 ± 18.18

OA (%) 81.48 ± 0.63

Kappa 0.777 ± 0.008

The classification performance of the proposed first stage MMDCNN classifier is compared
with the existing techniques for MI detection using VCG signals with a 10-fold CV-based technique.
The comparison results are shown in Table 12. The work reported in [15] has computed features from
each lead of VCG signal using multi-scale recurrent quantification analysis (MRQA). The Gaussian
discriminant analysis (GDA) based classification model has been used to detect MI using MRQA
based VCG features. The sensitivity and specificity values of 96.50% and 75% have been obtained in
their work. Similarly, in [14], the combination of octant and vector-based features have been obtained
using VCG signal. The classification and regression tree (CART) based model has been used for
the detection of MI. The classification performance, such as the sensitivity and specificity values of
97.28% and 96%, respectively, are reported. The complex wavelet sub-band features of VCG coupled
with the RVM classifier have obtained the sensitivity and specificity values of 98.40%, and 98.66%,
respectively, for MI detection [28]. The proposed MMDCNN model has obtained better classification
performance than the existing machine learning-based methods for MI detection using VCG signals.
The advantages of our proposed MMDCNN based approach are given as follows:

• A novel two-stage based MMDCNN model is proposed to detect and localize MI using
VCG beats;

• The multi-scale analysis of VCG signal is performed using MVMD based multi-variate signal
driven approach;

• The approach has demonstrated more than 99% accuracy for MI detection;
• The extraction of raw features from VCG signals are not required using the proposed approach

for both detection and localization stages;
• The second stage MMDCNN model successfully classified six types of MI with an accuracy of

more than 99%.

Table 12. Comparison of proposed MI detection approach with existing methods obtained using VCG signals (with
10-fold CV).

Authors Features Extracted
Classifiers

Used
Sensitivity

(%)
Specificity

(%)

Yang et al., 2012 [14] Octant and vector features evaluated
from VCG signal CART 97.28 95

Yang, 2011 [15] DWT domain RQA features from VCG
Signal GDA 96.50 75

Tripathy et al., 2017 [28] Complex wavelet sub-band features
from VCG signal RVM 98.40 98.66

Proposed work Multi-channel and multi-scale domain
learnable features CNN 99.93 99.94
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In this work, the proposed approach has considered only 99 VCG recordings from different MI
classes in the second stage for MI localization. The approach can be tested using VCG recordings
from a huge database containing more subjects. The MVMD based multi-scale approach is used in
this study to decompose the VCG signal. The other multi-scale analysis methods, such as multivari-
ate empirical mode decomposition (MEMD) [40], multivariate projection based empirical wavelet
transform (MPEWT) [41], and fast and adaptive based MEMD [42] can be used for the decomposition
of VCG signals.

5. Conclusions

The multi-channel multi-scale two-stage deep CNN model is proposed to detect and localize
MI using VCG signals. The MVMD is used to decompose the VCG beat into modes along with
each orthogonal lead. The multi-channel multi-scale VCG tensor has been formulated and used as
input to the deep CNN model to detect and localize MI. For MI detection, the proposed first-stage
MMDCNN model obtained an average accuracy value of 99.93% with 10-fold CV. The second-stage
MMDCNN model produced an average overall accuracy (OA) value of 99.37% for MI localization.
The average OA values are more than 99% for AMI, IMI, ILMI, and ILMI classes. The proposed first-
stage MMDCNN classifier obtained a higher accuracy value than the existing VCG based approaches
for MI detection. The MMDCNN model can also be explored to detect other cardiac ailments, such
as atrial fibrillation, hypertrophy, cardiomyopathy, ventricular arrhythmia, and bundle branch block
using VCG signals.
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Abstract: This work proposes a novel region-estimation (RE) algorithm using the quantification of
colon-cancer (HCT-8) and fibroblasts (NIH3T3) cells to estimate the densest region of colon-cancer
cells in in vitro 3D co-cultured spheroids. Cells were labelled with different cell tracker dyes to track
the cells. The technique involves staining cells with cell trackers The quantification of HCT-8 and
NIH3T3 cells by the RE algorithm leads to distribution pattern analysis of cells from the core to the
periphery, which ultimately estimates the densest region of HCT-8 cells in an in vitro 3D cell spheroid.
Cell quantification by the RE algorithm was compared with the results of cell quantification by ImageJ
software. Results demonstrated the distribution patterns of cells from the core to the peripheral region
of the in vitro 3D cell spheroid. The overall experimentation showed that the proposed methodology
outperformed state-of-the-art approaches in terms of segmentation, quantification, and reducing
biasing error.

Keywords: distribution patterns; fibroblast cells; HCT-8 colon-cancer cells; nature-inspired tech-
niques; quantification; segmentation

1. Introduction

In mimicking the structural and natural complexity of living tissue, current technology
such as in vitro 3D spheroid cell culture models is evolving compared to the 2D cell culture
model. In vivo cell growth and cell signaling are highly dependent on the extracellular
matrix (ECM) and the interaction produced by different kinds of cells. In vitro 3D cell culture
models aid in the study of molecular level tissue function by employing co-culture models
and developing drugs for the cancer model in mitigating animal usage for drug testing. In
oxygen and nutrients, the gradient can be closely mimicked by 3D cell culture techniques
compared to 2D cell culture techniques [1]. However, 3D in vitro spheroid models seriously
suffer from image acquisition and standalone image processing algorithms. As a result,
user intervention during analysis might lead to heavier biases, thereby leading to erroneous
results.

Such issues can be overcome by different automated computer-aided design (CAD)
tasks such as segmentation, i.e., the extraction of the region of interest from the images.
In the literature, several studies showed multiple usages of automatic segmentation ap-
proaches for variable cellular types [2,3]. Al-Kofahi et al. [4] stated that the segmentation
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of cells through automation is an essential step in image cytometry and histometry. M.
Sharma et al. [5] proposed a novel non-linear segmentation model to discriminate and
quantify living or dead cells. Xing and Yang [6] focused on digital pathology and mi-
croscopy image analysis, and extensively reviewed the techniques. Considerable progress
was achieved in the past, but algorithms still suffer from biasing and need to boost their
accuracy and robustness, consume less time, and self act against the upcoming applications.
Color-based segmentation using traditional clustering algorithms, on the other hand, is
relatively easy, and complexity is lesser when compared to that of segmentation techniques
[7]. It is likewise more relevant for biomedical image segmentation, as the count of clusters
is known beforehand. However, traditional clustering techniques suffer from various issues
such as being trapped in local optima, and having sensitivity to initial cluster centers and
boundary-level constraints [8]. In recent advances, many nature-inspired algorithms arose
to solve these clustering problems. The hybridization of nature-inspired algorithms with
each other and with traditional clustering techniques was described by Krisna et al. [9],
Rana et al. [10], and Chowdhury et al. [11] to resolve clustering issues. However, all of
these clustering algorithms need much parameter initialization (Table S1), increasing their
complexity and manual intervention. Moreover, incorrect parameter initialization affects
the end outcome. To skip the overhead of parameter settings, a nature-inspired algorithm
called the teacher learning-based optimization (TLBO) algorithm [12] was proposed.

2. Material Preparations

In this study, a poly-di-methyl-siloxane (PDMS) based microwell array chip was
utilized to co-culture NIH3T3 and HCT-8 cells in in vitro. A PDMS based microwell
array chip was used to construct the tumor spheroids. The well known soft lithography
process was used to fabricate the microwells, and fabrication steps were followed as
given by Patra et al. [13]. Images were obtained by scanning a horizontal cross-sectional
view using fluorescence based confocal microscopy. To make the cells visible under
confocal microscopy, NIH3T3 cells were labeled with CellTracker™ Green CMFDA (5-
chloromethylfluorescein diacetate) dye (Thermo Fisher Scientific, China). HCT-8 cells
were labeled with CellTracker™ Blue CMHC (4-chloromethyl-7-hydroxycoumarin) dye
(Thermo Fisher Scientific, China). Dyes were functionalized as per the manufacturer’s
instructions. Briefly, both cell types were incubated with the respective cell tracker dye
(50 μL) for 30 min at 37 ◦C. Cells were further washed 3 times with PBS, mixed, and seeded
on the microwell array chip for spheroid formation.

HCT-8 and NIH3T3 cells (blue and green stained cells) were co-cultured in different
ratios of 2:0.5; 2:1; 2:2; and 2:4, as shown in Figure 1; While preparing the in vitro 3D
cell spheroid, the spheroid shaping capabilities expanded and became quicker by includ-
ing more NIH3T3 cells with the HCT-8 cells. To analyze the cellular distribution in the
spheroids, 3D images were captured by using confocal microscopy. Z-direction images
were captured (using 10x objective) from the bottom of each spheroid with 6 μm step
sizes of 50 slices, i.e., a total of 300 μm, which was equal to the spheroid size, as shown in
Figure 2.

This study compares the different intra and inter-domain clustering techniques in the
clustering of colored cells. The outcome of the best performing algorithms was used to
quantify the cells and estimate the densest region of the colon-cancer cells over an in vitro
3D cell spheroid using a novel region estimation algorithm based on a distance transform
(DT) technique.
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(a)

(b)

(c)

(d)

Figure 1. Sample images of each ratio for horizontal cross-section of 3D cell spheroid: (a) 2:0.5; (b)
2:1; (c) 2:2; (d) 2:4.

Figure 2. Partitioning of in vitro 3D cell spheroid into regions.

3. Problem Formulation

The spheroid was divided into 50 slices (z0−−49) for each ratio (Figure 2). The width
of the whole spheroid was 300 μm, which means that each slice had 6 μm thickness.
Therefore, the whole in vitro 3D cell spheroid was partitioned into two regions: (1) the core
region (from approx. slice nos. z16−−32) and (2) the peripheral region (from approx. slice
nos. z0−−15and33−−49). The densest region was where the concentrations of the HCT-8
cells in the in vitro 3D cell spheroid were the maximum between the two regions. The
estimation of the densest region of the colon-cancer cells in the in vitro 3D cell spheroid was
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required for further analysis and treatment planning. With this, the technology of ultralow
attachment surfaces of in vitro techniques is of the recent trend [14,15] recently became
popular [16,17] in reducing the burden animal model. These microwell technologies have
been used for the past few decades [18], and several cancer tumor models were constructed
in vitro, which may provide a better environment to build in vitro 3D culturing of patient
derived xenografts (PDX). Further improving image processing techniques may advance
our understanding of stromal cell distribution in real tumor tissue in vitro, which helps
in personalized medicine. Cells have different proliferation rates, but the environment
depends on initial cell seeding density in the spheroid. We are currently experimenting on
the aspect of the proliferation rate and monitoring them at different time points.

In order to understand the regional distribution of in vitro 3D cell spheroids, the total
number Nb of HCT-8 cells and Ng NIH3T3 cells present in the in vitro 3D cell spheroid was
considered. The cells were considered to be circular. The counts of HCT-8 and NIH3T3 cells
were evaluated for horizontal cross sectional images of the in vitro 3D cell spheroid for each
slice (slice nos. z0−−49). The identification of the densest region depends on the maximal
concentrations of the HCT-8 cells in two different regions i.e., core (Bc) and periphery (Bp).
Therefore, it was formulated as

Rdense =

⎧⎪⎪⎨⎪⎪⎩
CR , i f Count(Bc) > Count(Gp)
|| Count(Bc) > Count(Bp)
PR , i f Count(Bp) > Count(Gc)
|| Count(Bp) > Count(Bc))

(1)

where Gc and Gp are the count of NIH3T3 cells for the core and peripheral regions, re-
spectively; Bc and Bp are the count of HCT-8 cells for the core and peripheral regions,
respectively. The proposed region estimation algorithm finds the densest region Rdense of
the HCT-8 cells and gives the distribution patterns of the HCT-8 and NIH3T3 cells from the
core to the peripheral region over the in vitro 3D cell spheroid.

4. Proposed Methodology

The overall proposed methodology comprises two main steps: (1) foreground cell
clustering, and (2) region estimation and quantification, as shown in Figure 3. The original
images of the in vitro 3D cell spheroid were first converted from the RGB color space to the
L∗a∗b∗ color space. Unlike the RGB color model, the L∗a∗b∗ color model is approximately
close to human vision. This color model provides uniformity in the range of perception [19].
Extracted a ∗ b∗ components from the RGB images were given as input to the TLBO
clustering algorithm. The approach has two resultant phases, the teaching phase and the
learner phase, as described in [12]. Initially, a K number of clusters were taken, each cluster
datum or pixel datum was defined as a learner, and centroids that were selected randomly
for each cluster are called teachers. After that, each learner’s Euclidean distance with the
centroid for all k clusters and fitness value was evaluated. Using the learner-phase steps
given in [12], each learner was modified. Likewise, the centroids or the best learners and
the existing solution are modified. After reaching maximal iterations Imax, the foreground
cells were separately clustered. The HCT-8 and NIH3T3 cluster cell images were then
converted into a binary image using Ostu’s global thresholding technique [20].
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Figure 3. Resultant view of proposed methodology.

Binary images BbandBr were then given as input in Algorithm 1 to estimate the densest
HCT-8 cell region by finding the cell count. The nearest feature voxel NFvi of the Bb and Br
were calculated as follows:

NFvi =

{
0 vi ∈ Bvi

min
(∥∥vi, vj

∥∥) (vi, vj) ∈ Fvi
(2)

where,
∥∥vi, vj

∥∥ =
∥∥vi − vi0 , vj − vj0

∥∥, ∀(vi0 , vi0) ∈ Bvi is any distance metric.
The outcome of DT depends on the selection of distance metrics, which varies from

application to application. However, among all other metrics, the Euclidean distance metric
was the most generalized because its measurement corresponds to the way in which objects
are measured in the real world, and is rotation-invariant. The metric uses the L2 norm
and is defined as

∥∥vi, vj
∥∥

2 =
√

v2
i + v2

j . After obtaining the nearest feature voxel matrix,
maxima propagation is applied using the inverted mask matrix of NFvi and by limiting the
propagation using some fraction (c1 = 0.5) of the maximal distance of the nearest feature
voxel matrix NFvi . To control the extent of propagation of MPi, MPi is dilated with the
3 × 3 matrix of all ones. This operation transforms the finer distance image into coarser
segments. After that, the different numbers of segments or levels as Lvli are found using
the “unique” function of MATLAB. Then, background voxels were removed from the Lvli
matrix. The area threshold value was calculated to impose the minimal area constraints for
segments. After that, the 8-connected component (or blobs or cells) area and pixel indices
were found using the “region props()” inbuilt function of MATLAB, which simply sums
the pixels of a particular region (area) by using their assigned labels. Then, the area is
thresholded by using the extracted areas and finding the count of blobs or cells encountered
within that area region. This gave the count of HCT-8 and NIH3T3 cells in different regions
of the in vitro 3D cell spheroid. On the basis of these counts, i.e., Bc, Bp, GcandGp the densest
HCT-8 cell region (Rdense) using Equation (1) was estimated.
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Algorithm 1 Region-estimation algorithm.
Input: Binary images (Bb and Br) of HCT-8 cluster and NIH3T3 cluster images, respectively.
Output: Count of cells (Bc, Bp, GcandGp) and region of drug delivery (Rdense)

1: Count = 0, [m, n] = size(Bb), where m belongs to num-
ber of rows, and n belongs to number of columns of
Bb.

2: Calculate nearest feature voxel NFvi of the Bb and Br
using Equation (2).

3: Calculate mask as:
4: for i=1 to n do
5: mask = (1 − NFvi )
6: end for
7: maxd = �∑n

i=1 max(NFvi )� × c1, where c1 is the con-
stant.

8: Apply the maxima propagation on the distance-
transformed image as:

9: for r=1 to maxd do
10: MPi = MPi

⊕
[1]3×3

11: MPi = MPi × mask
12: end for
13: Extract unique values from the MPi matrix and save it

as a Lvli matrix in sorted order
14: Removes Bvi from Lvli
15: Evaluate minimal area threshold as:
16: THa = π × (maxd)

2 × c2, where c2 is the constant.
17: for k=1 to length(Lvli) do
18: Li = MPi == Lvli, ∀i = 1, 2, ..., n
19: Calculate area and pixel indices for each 8-

connected component (object) in the binary image Li as:

20: Pr = regionprops(Li,′ Area′,′ Pixel IdxList′), where
Pr is the structure containing the specified properties
values.

21: Extract areas of the objects or cells as:
22: Acellsj

= [Pr.Area]
23: Threshold area as:
24: A′

cellsj
= Acells > THa

25: Calculate count of cells that passes imposed area
A′

cells as:
26: Count = Count+∑n

j=1 A′
cellsj

, where n is the dimen-

sion of matrix A′
cells

27: Assign unique IDs to mark segments after area
thresholding to create final segmented image as:

28: for p=1 to length(A′
cells) do

29: if 1 == A′
cellsp

then

30: idx = Pr(p).Pixel IdxList
31: seg(idx) = random(m ∗ n)
32: end if
33: end for
34: end for

35: Rdense =

⎧⎪⎪⎨⎪⎪⎩
CR , i f Count(Bc) > Count(Gp)
|| Count(Bc) > Count(Bp)
PR , i f Count(Bp) > Count(Gc)
|| Count(Bp) > Count(Bc))

, where

CRandPR denote the core and peripheral region of
the in vitro 3D cell spheroid, respectively (refer to
Equation (1)).

5. Experiment Analysis

The proposed methodology was simulated using MATLAB R2017a on a system with
Intel 7th generation 4770 @3.40 GHz, and validated using the dataset as mentioned in
Section 1. The dataset was divided into 4 types of ratio images of NIH3T3 and HCT-8
cells. In the experiment analysis to evaluate the proposed methodology’s performance,
the capability of the foreground cell clustering algorithm (TLBO) was evaluated on the
basis of qualitative and quantitative results as described in Section 5.1. Likewise, the region
estimation algorithm’s ability for cell quantification and in reducing the biasing error was
evaluated by comparing it with ImageJ software as described in Section 5.2. All results are
shown for 2:0.5 ratio images for reference, and the rest of the ratio images figures, graphs,
and tables are provided as supplementary material.

5.1. Comparative Analysis: Qualitative and Quantitative

In this section, the reason is provided for selecting the TLBO nature-inspired clustering
algorithm to extract the foreground cells of the in vitro 3D cell spheroid. However, compar-
ing the ground truth images of colon-cancer cells was not possible due to the unavailability
of segmentation masks to compare them with the TLBO clustering segmentation results.
Therefore, the TLBO clustering algorithm results were compared with other nature-inspired
clustering and traditional clustering approaches: Particle Swarm Optimization (PSO), Ge-
netic Algorithm (GA), Invasive Weed Optimization (IWO), k-means (KM), k-medoids
(KMed), and Fuzzy C-means (FCM). Results were compared on the basis of qualitative and
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quantitative results. On 200 iterations, the value of the fitness metrics (clustering cost as
shown in Equation (3)) converged, as shown in Figure 4. Thus, all clustering experiments
were performed by running the algorithms on 200 iterations. The parameter values used
for each algorithm are shown in Table S1 (provided in the supplementary material).

Costj =
∑nmax

k=1 (dk)

nmax
(3)

dk =
√
(xs − yt)2 + (xs − yt)2

∀s, t ∈ 1, 2, ..., Cn, where nmax is the number of distances dk calculated within the clusters.

Figure 4. Cost of clustering graph of each algorithm to show convergence up to 200 iterations.

A qualitative comparison among clustering algorithms is shown in Tables 1–3 for
the cellular ratio of 2:0.5 using three different images. Different cellular ratios of 2:1, 2:2,
and 2:4 are shown in Tables S2–S4, respectively. The tables’ information contains labeled
images, the three clusters, and the graphical representation of clusters and their centroids.
In the clustering of HCT-8 cells, the TLBO algorithm had greater potential than that of other
algorithms. A similar phenomenon was observed for other cellular ratios, as shown in
Tables S2–S4. In the quantitative comparison, all clustering algorithms were compared on
the basis of quantization error (QE) [21] and best cost (BC) (Equation (3)). The quantization
error of 2:0.5 ratio images is shown in Figure 5a,b, and the best cost is shown in Figure 5c,d.
The different cellular ratios of quantization error and best cost are shown in Figures S5–S10.

Qualitative and quantitative analysis suggested that TLBO clustering performance
was better than that of other nature-inspired clustering approaches (PSO, GA, IWO) and tra-
ditional clustering approaches (k-means, k-medoids, FCM). Therefore, the TLBO clustering
algorithm was selected for foreground cell clustering in the proposed methodology.
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(a) (b)

(c) (d)

Figure 5. Comparative analysis between teacher learning based optimization (TLBO) and other existing nature-inspired
clustering techniques using 2:0.5 ratio slices based on (a,b) quantization error (QE) and (c,d) best cost (BC).

Table 1. Comparative Analysis of visual results of TLBO with other clustering algorithms for 2:0.5 ratio image of Figure 1a.

TLBO PSO GA IWO K-MEANS K-MED FCM
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Table 2. Comparative analysis of visual TLBO results with other clustering algorithms for 2:0.5 ratio image of Figure 1a.

TLBO PSO GA IWO K-MEANS K-MED FCM

Table 3. Comparative analysis of visual TLBO results with other clustering algorithms for 2:0.5 ratio image of Figure 1a.

TLBO PSO GA IWO K-MEANS K-MED FCM
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5.2. Quantitative Results of Region-Estimation Algorithm

In cell quantification, a thresholding process was employed. During the start of
processing or in the optimization threshold, images were inspected or visualized manually,
and the best set of images (in this case, 2:1) that were visualized were taken in optimizing the
threshold value. This might be because of variability in laser power excitation during the
acquisition of images, and intensity based image variations had minimal or no effect on the
quantification of cellular analysis. Employing one ratio threshold to other cellular ratios did
not affect the results, as cellular sizes were uniform in all cellular ratios. Fibroblast (NIH3T3)
cell-to-cell interactions are tight and they form tight junctions; therefore, cell boundaries
may not be distinguishable. NIH3T3 cells were clustered, and various thresholding values
were applied to find the optimal threshold values, as shown in Figure 6. Figure 6 indicates
the segmented NIH3T3 cells overlain with binary masks to evaluate the most relevant
threshold value. Values were obtained by multiplying a scalar quantity with maximal
intensity value in the image, and passing the binary thresholding data. It was important
to choose an optimal threshold value because, by choosing a higher threshold value,
intensities start merging into another, and for small threshold values, tiny cells seem to
appear that are oversegmented. By visual inspection, and from Figure 6 and 7, the value of
T = 0.125 corresponded to the best possible results for all image slices.

In this way, clustered NIH3T3 cells were converted into their binary masks using the
optimal threshold. The binarized mask was then fed into the RE algorithm 1 to count the
NIH3T3 cells. The results of the overlain images of HCT-8 and NIH3T3 binary masks on its
original images are shown in Figure 8.

The distribution of NIH3T3 and HCT-8 cells was as shown in Figure 9a,b for horizontal
cross-sectional views. Figure 9a shows the blue (HCT-8) cell count (BCC), and green
(NIH3T3) cell count (GCC); and Figure 9b shows the blue (HCT-8) cell area (BCA) and
green (NIH3T3) cell area (GCA) of the in vitro 3D cell spheroid for 2:0.5 ratio images. For
other cellular ratios, the distribution pattern is shown in Figures S11–S13. Cell-count
distribution gave better observation for HCT-8 cells, whereas the area plot gave better
distribution pattern analysis for NIH3T3 cells. The limitation in NIH3T3 cell count can
be attributed to the high overlap and the staining procedure of the green cell tracker.
After evaluating the count for HCT-8 and NIH3T3 cells (as shown in Figure 9a,b), further
evaluation for the region-estimation algorithm (Algorithm 1) was performed for each ratio
image. The concentration of HCT-8 cells was the maximum in the core region compared to
the whole in vitro 3D cell spheroid. The densest region of HCT-8 cells in the in vitro 3D cell
spheroid estimated by the RE algorithm 1 (Rdense) was the core region (CR), and the width
of the core region was estimated to approximately be 100 μm.
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(a)

(b)

(c)

(d)

Figure 6. Optimal threshold evaluation for NIH3T3 cells using various threshold segmentation results. (a) 2:0.5 (2_05_z12),
(b) 2:1 (2_1_z14), (c) 2:2 (2_2_z17), and (d) 2:4 (2_4_z10) ratio images.
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Figure 7. NIH3T3 cells count for 2:1 ratio of horizontal cross-sectional images for various
threshold values.

Standalone image analysis software (Image J) was used in comparing the cellular
quantification of the results. The procedure to segment and quantify HCT-8 and NIH3T3
cells for all cellular ratio images by ImageJ software was as shown in Figure 10, and the
corresponding quantification data was as shown in Figure 11. The process steps during
quantification using ImageJ introduce manual biasing: segmentation, thresholding, pixel
size, and circularity bias. Briefly, the quantification process was as follows. Slices were
input to the ImageJ software, and images were split into three channels: red, green, and
blue. After splitting the channels, thresholding was adjusted. A watershed algorithm was
then used for segmentation. After segmentation, images were analyzed by providing the
pixel size (30–infinity) and circularity (0.30–1.00). Most biases were eliminated during the
TLBO clustering and quantification approach except for thresholding bias. The ImageJ
software separately clustered the HCT-8 and NIH3T3 cells along with background noise.
Though it was required to perform the segmentation algorithm in both approaches, the
watershed algorithm was applied in the ImageJ software, whereas TLBO clustering was
applied in the proposed methodology. However, the watershed segmentation technique
had the drawback of having excessive oversegmentation [22]. In contrast, TLBO separately
clustered the HCT-8 and NIH3T3 cells without any background pixels.

Comparative analysis of GCC and BCC using the proposed methodology with the
counts of both types of cells obtained from ImageJ software [14] from the peripheral to the
core region (slice no. z0−−49) for 2:0.5 ratio images is shown in Figure 12. Other cellular
ratios are presented in Figures S14–S16. Because of circularity and pixel-size bias, there
was much observable difference between the BCC and GCC of ImageJ software, and the
BCC and GCC obtained after applying the proposed methodology. The counting of cells
by the proposed methodology showed that most HCT-8 cells were concentrated towards
the core region, whereas NIH3T3 cells were more concentrated towards the peripheral
region. The difference between manual cell counting and the proposed methodology was
approximately 35%, 40%, 60%, and 80% for 2:05, 2:01, 2:2, and 2:4, respectively. Moreover,
the proposed methodology accurately measured the physiological approximation of the
cell count for all cell-ratio processes [15]. The difference percentage of the counting results
of each ratio was variate, from 35% to 80%. This may be due to two reasons:

1. Figure 11 shows that the segmentation results of the ImageJ software for the HCT-8
and NIH3T3 cell clusters also included background pixels (noise). This happened for
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each ratio image, which were further processed and detected (or counted) as blobs
(or cells) by the software.

2. Moreover, the ImageJ software needed some parameter adjustment (threshold value,
circularity, and size) for segmenting and counting the cells. Biasing error affected the
final results.

(a)

(b)

(c)

(d)

Figure 8. Overlain cluster and original images for HCT-8 and NIH3T3 cells: (a) 2:0.5 (2_05_z12), (b) 2:1 (2_1_z14), (c) 2:2
(2_2_z17), and (d) 2:4 (2_4_z10) ratio images.
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(a) (b)

Figure 9. (a) Blue cell count (BCC) and green cell count (GCC) plots. (b) Blue cell area (BCA) and
green cell area (GCA) from periphery to core of in vitro 3D cell spheroid of 2:0.5 ratio slices.

Figure 10. Schematic diagram of procedure followed by ImageJ software for segmentation and
quantification of HCT-8 and NIH3T3 cells.

The equation used to evaluate the percentage difference between manual cell counting
and proposed-methodology counting is as follows:

Di f f (%) =
∑N

i=1 Mi − ∑N
i=1 Pi

Tc
× 100 (4)

where ∑N
i=1 Mi is the sum of the manual cell count ∀i = 1 to N, and N is the number of

slices. Similarly, ∑N
i=1 Pi is the sum of the proposed methodology cell count ∀i = 1 to N. Tc

is the total number of cells present in the in vitro 3D cell spheroid; N = 50.
Preliminary data derived from the current nature-inspired clustering algorithm (TLBO)

help to understand 3D in vitro systems by the spectrometric location of the extracellular
matrix generating protein. Thus, it aids biological scientists in further targeted molecular
studies such as polymerase chain reaction (PCR) and Western blot techniques, which are
highly selected for treatment planning and diagnostic procedures [23]. Hence, the proposed
methodology offers better distribution analysis of HCT-8 and NIH3T3 cells compared to
the ImageJ software.
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Original Image Proposed-Approach Results ImageJ Results

Figure 11. Comparison of TLBO algorithm and ImageJ software based on segmentation of HCT-8 and NIH3T3 cell results.
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Figure 12. BCC and GCC comparison between ImageJ software and proposed methodology from
periphery to core of 3D cell spheroid for 2:0.5 ratio images.

6. Conclusions

The overall proposed methodology analyzes colon-cancer cells’ distribution patterns
and fibroblast cells in in vitro 3D cell spheroids. On the basis of comparative analysis,
the TLBO clustering algorithm was best suited for the cells’ color-based segmentation.
The region estimation algorithm estimates the densest region of HCT-8 cells in in vitro 3D
cell spheroids on the basis of cell quantification. Compared to manual segmentation and
quantification by ImageJ software, the proposed methodology reduced the biasing error for
cell quantification. The current acquisition methodology was based on and majorly limited
by fluorescent trackers and confocal characterization techniques. The possibility of findings
can be improved by employing transfecting cells using fluorescent proteins rather than
mere cell trackers, and advanced microscopy techniques such as light-sheet microscopy.
So, this results in a fast acquisition process and preserves cellular 3D co-cultural spheroids’
dynamic nature. This enhances the efficient utilization of the distance transform technique
and the nature-inspired clustering algorithm. Therefore, one can extend the work by
removing the biasing problem of the proposed methodology in quantifying NIH3T3 cells
and thresholding the biasing effect.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-341
7/11/10/4636/s1.
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Abstract: Since its development, deep learning has been quickly incorporated into the field of
medicine and has had a profound impact. Since 2017, many studies applying deep learning-based
diagnostics in the field of orthopedics have demonstrated outstanding performance. However, most
published papers have focused on disease detection or classification, leaving some unsatisfactory
reports in areas such as segmentation and prediction. This review introduces research published in
the field of orthopedics classified according to disease from the perspective of orthopedic surgeons,
and areas of future research are discussed. This paper provides orthopedic surgeons with an overall
understanding of artificial intelligence-based image analysis and the information that medical data
should be treated with low prejudice, providing developers and researchers with insight into the
real-world context in which clinicians are embracing medical artificial intelligence.

Keywords: artificial intelligence; orthopedics; neural network; deep learning

1. Introduction

A convolutional neural network (CNN) is a deep learning algorithm architecture
created based on a 1962 study investigating the visual process of feline brains, and it has
been applied in a wide range of areas, from autonomous vehicles to medical diagnoses [1].

A traditional CNN consists of an input layer that transmits input information, a hidden
layer that modifies information (filtering) received from the input layer and amplifies the
features (pooling) and an output layer that finally synthesizes and outputs the information.

According to the universal approximation theorem, it has been confirmed that various
linear classifications are possible even if the neural network has a shallow hidden layer,
and some pioneering studies have shown that classification and detection are improved as
the layers constituting the neural network become deeper (deep neural network) [2]. Since
2012, the performance of deep learning has rapidly increased in medical image analysis
with the use of deep neural networks, and this has led to a decrease in the classification
error rate from approximately 25% in 2011 to 3.6% in 2015.

The CNN model was developed using a pipeline in terms of classification and detec-
tion [3], and the improved CNN shows excellent judgment, essentially giving the computer
a new visual organ. A CNN has thus been expected to be used for medical diagnoses.
However, a CNN does not provide any information on the basis of the decision. Therefore,
even if a CNN shows an excellent diagnostic ability, it can only be discussed within a
limited scope in medicine, where the basis for a judgment is important [4].

This has been pointed out as a technical limitation that reduces the effectiveness of a
CNN in various fields other than medicine [5]. Researchers have dubbed this limitation
“black box issues” and worked to develop “explainable artificial intelligence (XAI)” to look
inside the problem [6]. The term “explainable” can be expressed as “understandability”,
“comprehensibility” or “interpretability” and has the same meaning. XAI should not
degrade the classification or prediction performance of the model in any way and should
improve the explainability. Various strategies and suitable CNN architectures have been
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proposed to implement an appropriate XAI [7]. Unfortunately, the black box nature of deep
learning has not been completely resolved, but there are some notable achievements [8].
As one of these achievements, in 2016, Zhou et al. introduced a method explaining how a
CNN makes a decision through class activation mapping [9], and this method is widely
used in the field of medical artificial intelligence (Figure 1) [10].

Figure 1. Image highlighting the location and size of a rotator cuff tear through a class activation
map (CAM). Figure obtained from a study performed by Chung et al. [10].

In a similar context, there are attempts to improve the explainability by improving
the existing CNN architecture [11]. Kim et al. modified U-Net, a CNN architecture that
has strength in image segmentation, to appropriately increase the explainability. They
presented an interpretable version of U-Net (SAU-Net) using an attention module for the
decoder part [12].

Hence, studies introducing CNN models for diagnosing and classifying diseases using
deep learning have been published in various fields of medicine, including ophthalmology
and dermatology [13,14].

This trend is spreading rapidly in the field of orthopedics. Since 2017, when orthopedic
disease research using deep learning was first introduced, the number of related papers has
increased rapidly, and more than 300 papers in this area have been published. The search
was conducted using Pubmed, MEDLINE and Embase, and papers were screened from
1 January 2017 to 2 November 2021. The search query was (orthopedic OR orthopedic)
AND (deep learning). Among these studies, two orthopedic surgeons (S.W.C. and J.H.L.)
independently reviewed the full text of the retrieved papers. Among these studies, 48 stud-
ies which both authors judged to be interesting and practical within the clinical context of
orthopedic surgery are introduced and classified according to disease. This paper aims to
provide insight into how medical artificial intelligence can help orthopedic surgeons treat
patients vividly and in what context clinicians are accepting medical artificial intelligence
from developers and researchers.

The authors introduce the selected papers by classifying them into the following
sections: (1) Deep Learning for Fractures, (2) Deep Learning for Osteoarthritis and the
Prediction of Arthroplasty Implants, (3) Deep Learning for Joint-Specific Soft Tissue Disease,
(4) Miscellaneous and (5) Discussion.
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2. Deep Learning for Fractures

Fractures are the most familiar ailments to orthopedists and the medical area in which
deep learning methods were first applied. In 2018, Chung et al. published a CNN model
for diagnosing and classifying proximal humerus fractures. Three specialists labeled
1891 anteroposterior shoulder radiographs as normal shoulders (n = 515) and 4 proximal
humerus fracture types (greater tuberosity: 346; surgical neck: 514; 3-part: 269; and 4-part:
247) [15]. After labeling, a CNN model (ResNet-152) was trained with a training dataset
created through augmentation of the labeled data. The CNN model recorded 96% accuracy
for the normal shoulders and proximal humerus fractures, showing a higher accuracy than
a general orthopedist (92.8% accuracy). This model showed a top-1 accuracy of 65–86% and
an area under the curve (AUC) of 0.90–0.98 for classifying the fracture types. A recently
published paper introduced a model with improved classification accuracy. In 2020, Demir
et al. introduced a deep learning model to diagnose and classify humerus fractures using
the exemplar pyramid method, a novel, stable feature extraction approach which showed a
high classification accuracy of 99.12% [16].

Urakawa et al. trained the VGG-16 CNN model using hip plain radiographs (1773 in-
tertrochanteric hip fracture images and 1573 normal hip images) and showed an accuracy
of 95.5% [17]. Yamada et al. trained the CNN model (Xception architectural) based on
3123 hip plain and lateral radiography images, and the trained model classified fractures
with 98% accuracy, which is better than orthopedists (92.2% accuracy) [18].

For the hip, as with the shoulder, there has been an attempt to classify fractures by
training the CNN model. Lee et al. introduced a CNN model for training 786 anteroposte-
rior pelvic plan radiographs using GoogLeNet-inception v3 [19]. The model classified a
proximal femur fracture into type A (trochanteric region), type B (femur neck) and type
C (femoral head) according to AO/OTA classification with an overall accuracy of 86.8%,
showing a reasonable result. Lind et al. trained a ResNet-based CNN with anteroposterior
and lateral knee radiographs, amounting to 6768 images [20]. The trained CNN model
classified knee radiographic images according to the AO/OTA classification system and
classified proximal tibia fractures, patellar fractures and distal femur fractures with AUCs
of 0.87, 0.89 and 0.89, respectively.

The trained CNN diagnosed and classified fractures at a relatively high level in the
large appendices of the shoulder, knee and hip. By contrast, a CNN model trained to
diagnose and classify fractures in small joints or axial joints showed a relatively low
AUC and accuracy. Farda et al. trained a PCANet-based CNN model that classified
calcaneal fractures according to Sanders classification using computer tomography with
5534 datasets [21]. The trained CNN model showed 72% accuracy. In addition, Ozkaya
et al. trained a CNN model based on ResNet50 with 390 anteroposterior wrist radiographic
images [22]. The AUC of the learned CNN was 0.84, showing a relatively satisfactory result,
but it was lower than that of experienced orthopedists.

Langerhuizen et al. compared the scaphoid fracture diagnostic accuracy between a
deep learning algorithm and an orthopedist [23]. They trained the VGG16 CNN model with
150 radiographic images of scaphoid fractures and 150 images of normal wrist radiography
without a fracture. Of the 150 images with scaphoid fractures, 23 could not be judged by
the radiographic images and could only be confirmed through magnetic resonance imaging
(MRI). The accuracy of the trained CNN model was 72%, which was lower than that of an
orthopedic surgeon (84%). However, five of six occult scaphoid fractures were missed by
all human observers.

An attempt was also made to diagnose the compression fractures in the spine using a
trained CNN. The results showed a significant difference depending on the type of data
used for learning. Chen et al. trained a ResNet-based CNN model using plain spine X-rays,
and the trained CNN showed an accuracy of 73.59% [24]. By contrast, Yabu et al. presented
a CNN model using MRI images as the training data. This model showed a higher accuracy
(88%) than that of the surgeons [25].
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In summary, fracture diagnosis using artificial intelligence showed a high level of
accuracy. The trained CNN model conducted fracture diagnosis (binary classification) with
a higher accuracy than fracture classification (multiclass classification), and this gap is
expected to decrease as more advanced CNN models are developed.

In classifying fractures, small and axial joints showed a lower accuracy than large
joints (Table 1). This may be a limitation of a CNN-based approach, which makes judgments
by recognizing the contrast information (e.g., normal margin of the cortical bone and the
fracture line or normal joint line) and spatial information of the images. The authors believe
that this limitation can be overcome using more powerful CNN models.

Table 1. Summary of diagnostic performance for detecting/classifying orthopedic fracture.

Fracture Site
Image
Used

Author. Year CNN Used Work
Dataset

Size
Accuracy AUC Winner

Hip (femur
neck) X-ray Matthew et

al. 2019 GooLeNet Binary
classification 805 94% 0.98

Hip X-ray Cheng et al.
2019 DenseNet Binary

classification 3605 91% 0.98 Orthopedist
> CNN

Hip X-ray Takaaki et al.
2019 VGG-16 Binary

classification 3346 CNN >
Orthopedist

Hip X-ray Yamada et al.
2020

Xception,
ImageNet

Binary
classification 3123 98% CNN >

Orthopedist

Hip X-ray Lee et al.
2020

GoogLeNet-
inception

v3
Classification 686 86.8%

Hip X-ray Tanzi et al.
2020

InceptionV3,
VGG-16,
ResNet50

Classification 2453 86% (3 class)
81% (5 class)

Hip
(Atypical
fracture)

X-ray Zdolsek et al.
2021

VGG19,
InceptionV3,

ResNet

Binary
classification 982

91%
(ResNet50)

83% (VGG19)
89%

(InceptionV3)

Shoulder
(proximal
humerus)

X-ray Chung et al.
2018 ResNet

Binary
classification
Classification

1891 95% 0.99

Orthopedist
> CNN

(specialized
in the

shoulder)

Knee X-ray Lind et al.
2021

ResNet-
based
CNN

Classification 6768

0.87 (Proximal
tibia)

0.89 (Patella)
0.89 (Distal

femur)

Ankle X-ray Gene et al.
2019 Xception Binary

classification 596 75%

Ankle
(Malleolar) X-ray Olczak et al.

2021 ResNet Classification 5495 0.90

Ankle
(Calcaneal) CT Farda et al.

2021 PCANet
Classification,

Segmenta-
tion

5534 72%

Wrist X-ray Kim et al.
2017 Inception Binary

classification 1389 0.95

Wrist X-ray Thian et al.
2019 ResNet Binary

classification 7356 88.9% 0.90

206



Appl. Sci. 2022, 12, 681

Table 1. Cont.

Fracture Site
Image
Used

Author. Year CNN Used Work
Dataset

Size
Accuracy AUC Winner

Wrist
(Scaphoid) X-ray Langerhuizen

et al. 2020 VGG-16 Binary
classification 300 72% 0.77 Orthopedist

> CNN

Wrist
(Scaphoid) X-ray Ozkaya et al.

2020 ResNet50 Binary
classification 390 084 Orthopedist

> CNN

Vertebra X-ray Chen et al.
2021

ImageNet,
ResNeXt

Binary
classification 1306 73.6% 0.72 Orthopedist

> CNN

Vertebra MRI Yabu et al.
2021

VGG-16,19,
Inception V3,

ResNet50

Binary
classification 1624 0.95 CNN >

Orthopedist

Most of the diagnosis and classification of fractures using deep learning have focused
on osteoporotic fractures, and studies on osteoporotic fracture joints with low frequencies
are relatively poor [26]. This may be because the dataset for training the CNN model is
sufficient because osteoporotic fractures account for a high proportion of the total fracture
frequency, and the fracture pattern is relatively standardized, making it suitable for use in
fracture classification.

3. Deep Learning for Osteoarthritis and Prediction of Arthroplasty Implants

Osteoarthritis is as familiar to orthopedists as fractures. Therefore, several attempts
have been made to diagnose and classify osteoarthritis using deep learning algorithms.
Xue et al. trained a CNN model based on VGG-16 with 420 plain hip X-rays [27]. This
is one of the earliest studies to apply deep learning methods to the orthopedic field, and
the trained model diagnosed hip osteoarthritis with an accuracy of 92.8%. Ureten et al.
also presented a model for diagnosing hip osteoarthritis using a similar research design,
showing an accuracy of 90.2% [28].

Tiulpin et al. trained a CNN model to classify knee osteoarthritis according to the
Kellgren–Lawrence grading scale using a Siamese classification CNN [29]. The model
trained using plain knee X-rays showed a multiclass accuracy of 66.7%. In addition,
Swiecicki et al. trained a Faster R-CNN using plain and lateral knee X-rays from the
Multicenter Osteoarthritis Study dataset [30]. The multiclass accuracy of this model was
71.9%, which showed improved performance compared with the previous study conducted
by Tiulpin et al.

Pedoia et al. trained a DenseNet-based CNN based on MRI-T2 images rather than
X-ray data, as used in previous studies, and this model showed a high AUC of 0.83 [31].
Kim et al. trained an SE-ResNet-based CNN model using 4366 knee anteroposterior X-rays
as a dataset. Furthermore, they trained the model by adding demographic information
(age, sex and body mass index), alignment and metabolic data information that can affect
knee osteoarthritis, in addition to image information [32]. The diagnostic performance of
the image data with additional patient information showed a significantly higher AUC
(Table 2).

Advanced osteoarthritis of the hip or knee often requires arthroplasty. Several studies
have introduced a model for classifying arthroplasty implants used by patients with deep
learning algorithms. Karnuta et al. trained the InceptionV3 network-based CNN model
using anteroposterior knee X-rays with nine different implant models inserted [33]. The
trained model showed an accuracy of 99% and an AUC of 0.99, classifying the implant
models at an almost perfect level. A similar attempt was made at the hip joint. In addition,
Borjali et al. created a CNN model trained on 252 plain hip X-rays containing 3 different
implant designs, and this model classified implants with 100% accuracy (Figure 2) [34].
Kang et al. also developed a CNN model trained on 170 plain hip X-rays containing
29 different implant designs. This model also showed a high level of performance, with an
AUC of 0.99 [35].
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Table 2. Summary of diagnostic performance for classifying osteoarthritis.

Location Image Used Author. Year CNN Used Work Dataset Size Accuracy AUC

Knee X-ray Tiulpin et al. 2018 Siamese CNN Classification 5960 66.7%

Knee X-ray Pedoia et al. 2019 DenseNet Classification 5042 75% 0.83

Knee X-ray Kim et al. 2020 SE-ResNet Classification 4366

61.6%
(with

additional
information)

0.75
(with

additional
information)

Knee X-ray Swiecicki et al. 2021 Faster R-CNN Classification 2802 71.9%

Hip X-ray Xue et al. 2017 VGG-16 Binary
classification 420 92.8%

Hip X-ray Ureten et al. 2020 VGG-16 Binary
classification 434 90.2%

Figure 2. The figure shows how a trained convolutional neural network classifies total hip replace-
ment implants of different designs in A, B and C. Figure obtained from a study performed by
Borjali et al. [34].

By contrast, the model classifying shoulder arthroplasty implants showed a relatively
low AUC. Urban et al. developed a CNN model trained on 597 plain shoulder X-rays
with 16 different implant designs, showing an accuracy of 80% [36]. In addition, Sultan
et al. proposed a model for classifying the different designs of four manufacturers using
modified ResNet and DenseNet, showing an accuracy of 85.9% [37].

In summary, as in the case of using deep learning for fractures, binary classification of
osteoarthritis has a higher accuracy than multiclass classification. In particular, the CNN-
based model for specifying arthroplasty implants of the hip or knee shows a high accuracy.
This may be because, unlike human bone, the implant design is highly standardized,
demonstrating a clear margin on X-rays and providing clear contrast information to the
CNN model. However, the classification of shoulder arthroplasty implants shows a low
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level of accuracy. This may be due to the fact that a shoulder anteroposterior X-ray can
show a wider range of positions than an anteroposterior radiograph of the knee or hip.

4. Deep Learning for Joint-Specific Soft Tissue Disease

As for deep learning approaches, an algorithm specialized for detection based on
learned images and an algorithm for segmentation by analyzing features have structural
differences and have developed into different areas of application [3]. In particular, seg-
mentation has technical difficulties in that it is necessary to preserve spastic information
that is easily lost in the outer-layer process of synthesizing the results of the CNN model
being trained [38]. Recent studies have attempted to overcome these limitations through
techniques such as FCN-based semantic segmentation.

These differences in deep learning algorithms also affect the use of deep learning
in the orthopedic field. The deep learning-based studies introduced above are cases of
diagnosing and classifying diseases based on X-ray images, and a CNN model specialized
for segmentation is not always required [39]. By contrast, for diseases that are diagnosed
and classified based on images such as ultrasound or MRI, a satisfactory level of accuracy
can be obtained using only a CNN model specialized for segmentation. For example, a
CNN model for diagnosing rotator cuff tears is more appropriate for inferring such tears
based on the outline of the normal rotator cuff (segmentation) than a method of diagnosis
applied by specifying the location where the tear occurred (regional detection).

Therefore, CNN models for diagnosing soft tissue disease in the orthopedic field have
mainly been published after 2018, which was when the segmentation technology began to
mature. Kim et al. trained a CNN model using a shoulder MRI dataset of 240 patients. The
trained model identified the muscle region of the rotator cuff with an accuracy of 99.9%
and graded fatty infiltration at a high level [40]. Taghizadeh et al. also conducted a similar
study using a shoulder computed tomography of 103 patients as a dataset. The trained
CNN model measured fatty infiltration with an accuracy of 91% [41].

Medina et al. introduced a model for segmenting the rotator cuff muscle with 98%
accuracy by applying a CNN model trained using the shoulder MRIs of 258 patients [42].
Furthermore, Shim and Chung et al. introduced a model for evaluating the presence of tears
and their sizes in the rotator cuff by training a Voxception-ResNet (VRN)-based CNN with
2124 shoulder MRIs. The trained CNN model diagnosed and classified rotator cuff tears
with accuracies of 92.5% and 76.5%, respectively [10]. In addition, Lee et al. developed
a new deep learning architecture using an integrated positive loss function and a pre-
trained encoder. Using this, the location of the rotator cuff tear can be relatively accurately
determined, even when imbalanced and noisy ultrasound images are provided [43].

Recent studies suggesting a CNN model for diagnosing meniscal tears, cartilage
lesions and anterior cruciate ligament (ACL) ruptures in the knee joint have also been
published. Couteaux et al. presented a model that trains a Mask-RCNN with 1828 T2-
weighted 2D Fast Spin-Echo images to classify the torn part from the normal area of the
meniscus and do so according to the location of the tear [44]. This model diagnosed
and classified meniscal tears with an AUC of 0.91. Roblot et al. also proposed a model
for diagnosing meniscal tears in a similar way, detecting meniscal tears with an AUC of
0.94 [45].

Chang et al. presented a model for diagnosing complete ACL tears by training a
U-Net-based CNN using 320 coronal proton density-weighted 2D Fast Spin-Echo images,
demonstrating an AUC of 0.97 [46]. In addition, Flannery et al. trained a modified U-Net-
based CNN and evaluated the level of segmentation of the model. The segmentation level
suggested by the trained model did not show a statistically significant difference from the
ground truth (the value actually suggested by an expert) (Figure 3) [47].
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Figure 3. Each row is the same MR slice, and each column is an unsegmented slice (MR Image), an
expert measured value (Ground Truth), a trained CNN model predicted value (Prediction) and an
overlay of manual and predicted segmentations (Contours Overlay). Figure obtained from a study
performed by Flannery et al. [47].

5. Miscellaneous

Concerning bone age, attempts to create a model that automatically predicts a bone’s
age through the learning of plain X-rays of carpal bones have been conducted since before
the first deep learning algorithm was developed. Mahmoodi et al. presented a bone age
prediction model with an accuracy of 82% in 2000, using a regression model and a Bayesian
estimator [48]. A CNN model using a deep learning algorithm was developed, and it
is now possible to predict the bone age with improved accuracy. In addition, Han et al.
proposed a model with 97.6% accuracy by training the Inception ResNet v2 model with
5876 hand radiographs [39].

For pediatrics, developmental dysplasia of the hip is one of the most common hip
joint disorders in infants and young children, and its diagnosis is difficult owing to the
extensive variations in pediatric pelvic anatomy [49]. To create a deep learning algorithm
that can diagnose developmental dysplasia of the hip, Zhang et al. trained a CNN model
(based on ResNet-101) using 10,219 pelvic anteroposterior radiographs of children. The
trained model showed a high AUC of 0.975 [50].

An acute pediatric elbow fracture is also difficult to diagnose, owing to the existence of
multiple cartilaginous ossification centers and a highly variable appearance [51]. England
et al. trained a CNN using 901 lateral elbow radiographs, and the trained model diagnoses
elbow fractures with a high AUC of 0.985 [52].

Central dual-energy X-ray absorptiometry is the reference standard for diagnosing os-
teoporosis and osteopenia. A CNN model for diagnosing osteopenia and osteoporosis using
plain radiography without dual-energy X-ray absorptiometry was recently introduced.

Zhang et al. trained a CNN model with 2564 lumbar X-ray images, and this model
showed an AUC of 0.767 and 0.810 for osteoporosis and osteopenia, respectively [53].
Yamamoto et al. trained a CNN with 1131 hip X-rays, and this model diagnosed osteoporo-
sis with an accuracy of 0.885 [54].

For alignment, Pei et al. published an interesting study using a deep learning algorithm
to automatically measure the hip-knee-ankle angle. They trained a CNN model with
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796 unilateral lower limb X-rays, showing a difference of 0.49◦ from the ground truth
measured directly by orthopedic surgeons [55]. In addition, Rouzrokh and Pouria et al.
trained a CNN model with 600 hip anteroposterior and 600 hip lateral X-rays taken after
total hip arthroplasty and programmed this model to automatically derive the acetabular
component inclination and version. Compared with the ground truth, this model showed a
difference of 1.35◦ for the inclination and 1.39◦ for the anteversion [56].

Galbusera et al. presented a CNN model trained using biplanar radiographs of the
spine. The model automatically calculated the T4-T12 kyphosis, L1-L5 lordosis, Cobb
angle of scoliosis, pelvic incidence, sacral slope and pelvic tilt. Among them, the pelvic tilt
showed a difference of 2.7◦ compared with the ground truth, whereas the L1-L5 lordosis
showed a difference of 11.5◦ from the ground truth [56].

Concerning metastasis and infections in the spine, the spine is a joint that receives
a high blood supply and is relatively easily exposed to metastasis compared with other
joints [57]. Therefore, studies for diagnosing metastatic lesions using deep learning algo-
rithms have mainly focused on the spine. Wang et al. reported that a CNN model trained
with sagittal fat-suppressed T2 2D Fast Spin-Echo spine images localized metastatic lesions
with a sensitivity of 90% [58]. In addition, Chmelik et al. trained a CNN with sagittal
computed tomography images containing 1046 lytic lesions and 1135 sclerotic lesions,
and the trained model detected lytic and sclerotic lesions with AUCs of 0.80 and 0.78,
respectively [59].

Kim et al. published a CNN model to discriminate between tuberculous and pyogenic
spondylitis. They trained the CNN using axial T2-weighted 2D Fast Spin-Echo images,
and the trained CNN model divided the two conditions with an AUC of 0.80, with no
significant difference from a human reader [60].

As for other applications, in addition to the previously introduced papers, studies
using deep learning algorithms in the field of orthopedic surgery have been published.
Won et al. introduced a model for grading spinal stenosis by training a Faster R-CNN [61].
Rouzrokh and Pouria et al. attempted to predict postoperative hip dislocation by training a
CNN model with 92,584 hip X-rays taken after total hip arthroplasty. The trained model
showed an AUC of 76.7% and an accuracy of 49.5% [62].

6. Discussion

Orthopedics, along with dermatology, ophthalmology and cardiology, is the medical
field in which research into deep learning algorithms is most actively conducted. Related
research has been explosively increasing since 2017, and this trend is expected to continue
until the “new winter”, when the development of artificial intelligence will reach its limit.

To date, image analysis studies of orthopedic diseases using deep learning have shown
excellent results overall. Several studies have reported that in fractures and osteoarthritis, a
trained CNN model has a diagnostic accuracy comparable to that of an expert. The studies
also presented satisfactory results for the classification of fractures and osteoarthritis.
However, the accuracy of multiclass classification did not reach detection, and studies on
small joints presented relatively poor results compared with studies on large joints.

Nevertheless, it is expected that this limitation can be overcome for two reasons. First,
the CNN model for medical image analysis aims for accurate diagnosis and appropriate
classification, and the types of classes required for this purpose are relatively small. When
there are few class types, Basha et al. proved that the accuracy can be improved using a
CNN model structured as a deeper layer [63]. Therefore, it is expected that the development
of a CNN model with deep hyperparameters will increase the accuracy of multiclass clas-
sification through medical image analysis. Second, medical images are extremely refined
data compared with images used to learn road traffic conditions or climate predictions;
that is, researchers can relatively easily obtain appropriate image data without noise, such
as different heights of traffic lights or flying birds. This means that even with simple data
augmentation such as an affine transformation, an appropriate dataset for training the
CNN model can be provided.
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Therefore, the authors expect that the development of a CNN model and the accumu-
lation of additional medical images will increase the classification accuracy of fractures
and osteoarthritis, which are relatively weak compared with the accuracy of diagnosis. In
the same context, it is also expected that the diagnosis and classification of joint-specific
soft tissue will be improved, owing to the development of deep learning algorithms ad-
vantageous for segmentation. Indeed, there are several recent studies that have completed
segmentation at a high level [64,65]. In particular, Hashimoto et al. and others segmented
the psoas major muscle through a U-net-based CNN model, and the trained U-net-based
CNN model showed an average of 86.6% intersection over union (IoU). U-net is one of the
most important semantic segmentation frameworks of CNNs [66] and has the strength of
having an architecture that can recognize structural edges. Therefore, U-net is expected to
be widely used for segmentation of medical images [67]. Although not in the field of or-
thopedics, new CNN architectures based on U-Net are continuously being introduced and
reporting notable results [68]. Rundo et al. performed prostate zonal segmentation with
USE-Net, incorporating Squeeze-and-Excitation blocks (SE) into U-Net [69]. Yeung et al.
showed that the model trained with a dual attention-gated CNN (Focus U-Net), which
improved the U-Net, segmented the polyp of the colonoscopy image to a satisfactory
level [70].

Studies published in the field of orthopedic surgery have thus far been unable to
present a CNN model with a higher level of diagnosis and classification than experts.
An in-depth discussion is needed as to whether these results are a problem that can be
overcome through data accumulation or the development of a better CNN, or whether they
are a natural limitation of a CNN model learned from image data.

The authors offer two approaches. First, experts do not solve problems with image data
alone. Experts can utilize information other than images, such as the patient’s demographic
data, the degree of pain, the nature of the disease and a physical examination, which can
affect the disease diagnosis and classification. Indeed, Kim et al. reported that a CNN model
trained by adding demographic information (age, sex and body mass index), alignment
and metabolic data that could affect knee osteoarthritis showed a statistically significantly
higher AUC [32]. Therefore, even if an improved CNN model is developed and high-
quality image data are accumulated, there is a possibility that the image analysis-based
CNN model using a deep learning algorithm will not reach the level of experts.

Second, despite the opinions presented above, the possibility that CNN models will
outperform experts in certain fields cannot be excluded, because the CNN model analyzes
images from a different point of view than human beings. Among 150 images of scaphoid
fractures, Langerhuizen et al. included 23 scaphoid fracture image data that could only be
confirmed through an MRI. The trained CNN model showed a lower level of accuracy than
orthopedic surgeons, but it detected five of six occult scaphoid fractures that were missed
by all human observers [23]. It is therefore necessary to carefully discuss whether an image
analysis model using deep learning can outperform experts.

It is clear that the present CNN models have room for improvement. However,
this does not undermine the significance of the studies conducted to date. The currently
developed CNN model can reduce the task intensity of the expert reader and can be used for
the education of non-expert medical workers, such as medical students or specialists during
training [71]. In addition, through a developed CNN model, a pediatrician can roughly
estimate a patient’s bone age using only X-rays without the help of an orthopedic surgeon.

A step away from the fate of clinical doctors and CNN’s accuracy battle, there are
interesting and more practical studies that give practical help to patients and doctors. Nie
et al. converted native medical CT images to higher resolution images through generative
adversarial networks (GANs) [72], and this study has the potential to be extended to MRI
images [73]. Therefore, it can help a society that has no choice but to use low-quality MRI
due to insufficient medical infrastructure or patients who have difficulty using high-quality
MRI due to cost problems.
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The authors reviewed deep learning approaches for orthopedic diseases applied
through image analysis and found some limitations. First, there are no models approved by
the Food and Drug Administration, other than a CNN model for predicting the bone age in
children and a model for diagnosing wrist fractures [74]. In other medical departments,
several models have been approved by the Food and Drug Administration, starting with a
deep learning-based model for the automatic diagnosis of diabetic retinopathy in April 2018.

Second, no prospective studies have been conducted [75]. To improve the quality of
research and continue applicable studies, a prospective and randomized trial according to
the CONSORT-AI guidelines presented in 2020 will be necessary [76].

Third, recently described deep learning methods have mostly been designed to con-
duct a single task. To be useful in clinical practice, multiple deep learning algorithms will
need to evaluate every possible abnormality. Some efforts have been made to overcome
these limitations. For example, Grauhan et al. presented a CNN model for diagnosing
fractures, joint dislocation and osteoarthritis through plain shoulder radiographs [77].

Finally, there is a need to reduce expert bias on a given dataset. Orthopedic surgeons
have traditionally used ultrasound, computed tomography or MRIs to diagnose soft tissue
diseases. However, deep learning algorithms often make appropriate judgments beyond
human cognition. Kang et al. presented a model for diagnosing SSC tendon tears with a
CNN model trained using axillary lateral radiographs, and the learned model showed an
appropriate level of accuracy [78]. Thus, orthopedic surgeons may have the freedom to
develop CNN models based on their imagination, free from prejudice.

In conclusion, image analysis using deep learning presents a clear milestone in the
field of orthopedics and is experiencing explosive growth. The development of a CNN
architecture and the accumulation of refined image data are expected to lead to the devel-
opment of more sophisticated models. However, it is difficult to predict whether a deep
learning model that exceeds the capability of experts can be created. Orthopedic surgeons
who want to apply a deep learning algorithm to image analysis need to treat data with
low prejudice, present research that meets the newly suggested guidelines and focus on
developing models that can multitask.
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