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The Effect of Multisite Phosphorylation on the Conformational Properties of Intrinsically
Disordered Proteins
Reprinted from: Int. J. Mol. Sci. 2021, 22, 11058, doi:10.3390/ijms222011058 . . . . . . . . . . . . . 139

v



Maria Teresa Lara Ortiz, Victor Martinell Garcı́a and Gabriel Del Rio

Saturation Mutagenesis of the Transmembrane Region of HokC in Escherichia coli Reveals Its
High Tolerance to Mutations
Reprinted from: Int. J. Mol. Sci. 2021, 22, 10359, doi:10.3390/ijms221910359 . . . . . . . . . . . . . 159

Alessio Bocedi, Giada Cattani, Giorgia Gambardella, Linda Schulte, Harald Schwalbe and

Giorgio Ricci

Oxidative Folding of Proteins: The “Smoking Gun” of Glutathione
Reprinted from: Int. J. Mol. Sci. 2021, 22, 10148, doi:10.3390/ijms221810148 . . . . . . . . . . . . . 177

Thomas Nehls, Tim Heymann, Christian Meyners, Felix Hausch and Frederik Lermyte

Fenton-Chemistry-Based Oxidative Modification of Proteins Reflects Their Conformation
Reprinted from: Int. J. Mol. Sci. 2021, 22, 9927, doi:10.3390/ijms22189927 . . . . . . . . . . . . . . 183

Monika Jarosiewicz, Piotr Duchnowicz, Paweł Jarosiewicz, Bogumiła Huras and Bożena
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Recent decades have brought significant changes to the protein structure research
field. Thanks to the genome projects and advances in structure determination methods,
the number of yearly released entries in the PDB database [1] has increased significantly.
Protein structure research is experiencing a new renaissance, and in 2020 the number of
deposited structures in the PDB database reached a new record of 14,022. Even in 2021, the
number of new deposits was higher than ever before, with the exception of 2020. Most of
these structures belong to globular proteins, but there are several transmembrane and even
disordered proteins among them [2]. Moreover, there are also transmembrane proteins with
disordered regions that have led to the emergence of new transmembrane specific disorder
prediction methods [3]. Additionally, we cannot forget to mention the huge leap forward
in the field of structure prediction methods achieved by the AlphaFold2 [4] method, which
is able to predict protein structures with an error comparable with that of experimental
methods. Our Special Issue features a research article connected to this research area,
which evaluates a deep learning-based residue contact method [5]. With the development
of Alphafold-Multimer [6], the accurate prediction of protein complexes is becoming a
reality. One important application of this method would be the prediction of protein–
protein interactions. On the way to this goal, this Special Issue presents a work dealing
protein–protein docking [7]. Of course, the COVID-19 pandemic has left inevitable traces
on our lives over the last two years and also on research. Not only did the development
of vaccines arrive to the frontier, but structure research of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) proteins became an intensively researched field.
One such piece of research has made its way into this Special Issue, as well [8]. There
is an additional research article in our issue with medical relevance that is about model
development to predict the phenotypic outcome of rare germline pathogenic TP53 missense
variants [9]. An assortment of many new frontiers is presented in this collection. A single
issue cannot give a comprehensive overview of a large field such as proteins science, but
we aim to give a broad overview of current research. In this issue, there are 19 research
articles, one review, and one commentary. The manuscripts could have been categorized
according to the subject of the research into these major categories like structure and the
folding of globular proteins, membrane proteins, and disordered proteins or we could
have classified them into theoretical and experimental groups. However, since several
publications would fit into more than one category, we discarded this classification system.
As manuscripts were published within a very short time upon acceptance, we decided
to introduce the published papers is chronological order, starting with the latest one and
concluding with the very first accepted manuscript of this Special Issue. Interestingly, both
the first and last manuscripts deal with protein folding. We may conclude that protein
folding is still the alpha and the omega of protein science. It is still the ultimate question,
and even though research articles dealing with protein folding were published as long as
75 years ago this fundamental problem has yet to be solved. Several other manuscripts in
this Special Issue deal with the folding problem, for example some deal with glycoproteins
and disordered proteins. In the following paragraphs, the manuscripts published in our
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Special Issue Frontiers in Protein Structure Research are presented, which cover several fields
of proteins science.

The fundamental problem of protein folding is reconsidered in the review of
Sorokina et al. [10]. The generally accepted view of protein folding is the thermodynamic
hypothesis, under which the native folded conformation of a protein corresponds to the
global minimum of Gibbs free energy. The authors suggest that the evidence behind the
thermodynamic hypothesis is not convincing. They argue that despite the continuous
increase in computing power, only a few protein folds can be predicted by ab initio physics-
based approaches. Furthermore, recent spectacular successes in protein structure prediction
were achieved by deep learning-based evolution modeling methods. An alternative view
of protein folding is proposed, implying that the native state of proteins lies in a local mini-
mum of the fluctuating free energy surface. They also presume that the folding Gibbs free
energy for numerous proteins is positive, and they are stabilized by the translation system
and chaperones. Thus, folding should be modeled as a non-equilibrium energy-dependent
in vivo process.

The conformational properties of covalently attached and bilayer contained carbohy-
drates influencing the structure of proteins were investigated by Guvench et al. [11] on
a theoretical level. The ring puckering thermodynamics of the most common vertebrate
monosaccharides were investigated by extended system-adaptive biasing force all-atom
explicit-solvent molecular dynamics simulations. They found that the CHARMM [12] force
field with proper parametrization is able to model the ring puckering of the investigated
carbohydrates and could possibly be used widely for carbohydrate-containing vertebrate
biomolecules. The accurate simulation of carbohydrates in glycoproteins, proteoglycans,
and glycolipid-containing bilayer-embedded transmembrane proteins could help to narrow
the gap in the number of suitable systems for theoretical and experimental methods and
promote the in silico investigation of glycoproteins.

The possible structural background of the unusual behavior of mutual synergetic
folding (MSF) proteins was analyzed by Magyar et al. [2]. These oligomeric proteins
are disordered in their monomeric form but become almost completely ordered in their
oligomeric form upon interacting with another disordered MSF protein chain. Solvent
accessibility of the peptide bonds in the theoretical monomeric form seems to be a significant
factor. Next to the local shielding effect of peptide bonds exerted by the side chains of the
bond forming residues, nonlocal shielding also occurs upon oligomerization. To investigate
these local and non-local shielding effects, Shannon information entropy calculations were
performed on all available MSF and selected globular homodimeric proteins. According to
the results, differences can be found in both local and non-local shielding. These findings
open the possibility for a prediction method to distinguish MSF proteins from globular
ones. The resulting larger dataset could be used to reveal the structural background of the
MSF phenomenon.

The performance of the ProSPr distance prediction method, which is essentially an
open-source alternative of the AlphaFold-1 contact prediction method, was evaluated by
Stern et al. [5]. ProSPr is an accurate deep learning method to predict residue contacts
based on amino acid sequence input. The authors tested the method on the CASP14 [13]
test set and found that the ensemble predictions of short and mid contacts were reliable but
that long contact prediction accuracy was only around 44%. They determined the useful
multiple-sequence-alignment depth and found that amino acid sequence length did not
correlate with contact prediction accuracy with the test set. The authors present a useful
and accurate method with inference times two orders of magnitude faster than AlphaFold2.
This tool could be helpful in many situations where the partial structural information of
residue contacts is sufficient.

During the evolution of protein science, the discovery of transmembrane and later
disordered proteins widened our view of the world of proteins. Dobson and Tusnady went
one step further [3] and presented a novel method called MemDis, which is able to predict
intrinsically disordered regions within transmembrane proteins. Although there are several
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protein disorder prediction methods, their accuracy is limited for membrane proteins,
probably due to their special physicochemical properties. MemDis combines convolutional
neural network and long short-term memory networks while adding transmembrane
specific features to the prediction. The authors achieved an unprecedented level of disorder
prediction accuracy on their transmembrane-specific test set. The method is publicly
available at http://memdis.ttk.hu (accessed on 15 March 2022), providing an extremely
useful tool for researchers to identify disordered regions within transmembrane proteins.

Phosphorylation-induced conformational change is a common way to regulate a pro-
tein’s function and disordered proteins are no exception. Rieloff and Skepö [14] investigated
the impact of phosphorylation on the conformation of disordered proteins using molecular
dynamics simulations. Since this a relatively new and under-researched field, first they
validated the method by comparing the results obtained with two different force fields.
While these force fields were known to overestimate the compactness of the phospho-
rylated state of disordered proteins mainly because of overstabilized salt bridges, they
concluded that this discrepancy can be resolved with the proper incorporation of the effect
of salt into the simulations, corresponding to the ionic strength present in the experiments.
They found that the effect of salt concentration on simulation results is small enough to
be neglected; thus, simulations can be used to help understand the mechanisms behind
the phosphorylation regulation of disordered proteins. After publishing the results of
this validation, Rieloff and Skepö published a second paper in this Special Issue. In their
subsequent paper [15], they applied the previously validated Amber ff99SB-ILDN force
field with the TIP4P-D water model and performed all-atom molecular dynamics simula-
tions to analyze the effect of phosphorylation on five disordered peptides originating from
tau, statherin, and beta-casein proteins. Their results were in qualitative agreement with
the experimental data. They found that some peptides contracted upon phosphorylation
while others became more expanded and that the amount of charges does not account
for the phosphorylation-induced changes. The sequential distribution of residues with
positive charges is crucial to describe this behavior through the formation of salt bridges
with phosphorylated residues. They are conducting an ongoing systematic investigation of
several factors influencing the outcome of phosphorylation.

The transmembrane region of HokC was investigated by Ortiz et al. [16] using a
systematic saturation mutagenesis study. HokC is a toxin produced by Escherichia coli
to control its own population. They found that 92% of the single-site point mutations
were tolerated and that all the non-tolerated mutations had compensatory mutations that
reversed their effect. By utilizing the HokC family multiple sequence alignment, they found
only a single invariant cysteine residue. Every site-directed mutagenesis of this residue
performed was also tolerated. The authors concluded that maintaining function without
conserving amino acids is possible by compensatory mutations. Because of the helical
transmembrane structure, sequentially close residues are expected to be close spatially.
Thus, they may be suitable to accommodate compensatory mutations. Their findings were
in agreement with this hypothesis, and the authors found that transmembrane proteins
favor the occurrence of multiple mutations between spatially neighboring residues more
than globular proteins. A notable exception is the mutation of the only invariant cysteine
residue to serine, which causes a change in the dimerization of HokC. A complementary
mutation occurred at sequentially distant positions, suggesting a change in interactions
between different monomers.

The imaginary “smoking gun” by Bocedi et al. [17] is a provocative commentary, which
presents experimental data with an unusual interpretation of the role of the glutathione
tripeptide. They line up data on the hyper-reactivity of structural cysteines, the dependence
of the second-order kinetic constants on pKa values, and the reactivity of protein cysteines
towards natural disulfides. Their interpretation may change our assumptions regarding
the role of glutathione in the early steps of oxidative folding that occur at the ribosomal
exit tunnel at the interface of the endoplasmic reticulum.
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The problem of the structural dynamics of proteins was investigated by Nehls et al. [18]
using conformation-sensitive oxidative protein labelling, which may serve as a complemen-
tary technique to mass spectrometry for capturing conformational changes. They used a
test set of proteins between 10 and 150 kDa and showed that conformational changes in-
duced by ligand binding are reflected in the modification of the mass spectrometry pattern
obtained by site-selective Fenton chemistry labelling. For smaller proteins, the extensive
oxidation pattern correlates well with the protein structural dynamics while there are clear
differences between the oxidation patterns of the ligand-bound and free forms. Despite its
practical limitations, this method could become a valuable tool for conformational analysis
alongside mass spectrometry.

The toxicity of tetrabromobisphenol-S (TBBPS) was investigated by Jarosiewicz et al. [19],
in order to see whether it would be a proper replacement for the widely used flame retardant
tetrabromobisphenol-A (TBBPA), which is potentially toxic. They used red blood cell
membranes as a model system. They found that both TBBPA and TBBPS caused increases
in the fluidity of the membranes, decreases in the ATP level, thiol group elevation, and
conformational changes to the membrane proteins. Both substances also caused changes in
the size and shape of red blood cells and with TBBPS an increase in lipid peroxidation also
occurred. They determined that changes are observed at significantly lower concentrations
in the case of TBBPA than with TBBPS. The published data indicate lower toxicity for
TBBPS, which occurs only at very high concentrations in contrast to TBBPA.

The thermodynamical properties of the SARS-CoV-2 virus spike protein variants were
analyzed by Kumar et al. [8] using molecular mechanics and dynamics calculations in
complex with the human ACE2 receptor. They performed molecular dynamics simulations
to estimate the stability of the complex and calculated ΔGbind binding free energy values
using molecular mechanics calculations to characterize the strength of the binding. They
found that the mutations caused stronger binding in the alpha and kappa variants. In the
case of the kappa and delta variants, the mutations mainly increased the stability and intra-
chain interactions in the spike protein, possibly interfering with the neutralizing effect of
the antibodies, which might be responsible for the higher transmissibility of these variants.

Holubowicz et al. [20] identified single-nucleotide variants of the trimeric structure of
globular C1q-like otolin-1, a collagen-like scaffold protein responsible for the biomineraliza-
tion of inner ear stones in vertebrates. The globular-like gC1q-like domain binds calcium
and is responsible for trimerization. The stability of the variants was analyzed by thermal
shift assay and the positions of the mutated residues were mapped on a small angle X-ray
scattering-derived model structure of the hOtolC1q trimer. According to the experiments,
most of the mutations caused decreased stability or aggregation, but in most cases the
structure can be stabilized in the presence of Ca2+. There is a Ca2+-insensitive a mutation
that disables trimerization. The mean allele frequency of these deleterious mutations is in
the range of 10−4. According to their results, these natural variants can cause pathological
changes and affect one’s sense of balance.

The quaternary structure of the iota carbonic anhydrase (CA) from the marine diatom
Thalassiosira pseudonana was modeled by Jensen et al. [21]. The protein is built up from
domains resembling a calcium–calmodulin protein kinase II association domain. The
crystal structure of the single domain was recently uncovered, and comparing it with
available CA structures reveals novel folding element; however, the quaternary structure of
the four domain-containing homotetrameric protein is still unknown. The authors utilized
biophysical techniques and modelling to build the homotetrameric structure, which is
formed from a core structure from the first two domains of each monomer, while the arms
are formed by the other domains. The authors discussed the role of a flexible linker between
domain 3 and 4 and a possible relation of its atypical shape with its activity and metal
coordination. They also proposed a possible structure for carbonic anhydrases with fewer
domain repeats using experimental data.

Bifidobacterial α-L-Fucosidases (ALF) were investigated by Curiel et al. [22], which
are important for the bifidobacterial colonization of the gut. Several ALFs have been
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identified by bioinformatical methods, which can be classified into three major families. Bi-
fidobacterial ALFs show significant sequential differences, probably resulting from distinct
phylogenetic evolution. The authors performed phylogenetic and comparative analyses of
bifidobacterial ALFs utilizing existing physicochemical information. They revealed several
ALF paralogue groups within two major ALF families. The authors suggest that because
ALFs are phylogenetically related to other glycosyl hydrolase families they may exhibit
additional glycosidase activities that utilize transfucosylate substrates other than lactose.
This could have a substantial impact on the development of novel prebiotics.

The nuclear factor erythroid 2-related factor 2 (Nrf2) was studied by Karunatilleke
et al. [23]. Nfr2 can interact with several proteins and mediates the transcription of cy-
toprotective genes in cellular responses to oxidative stress. Nrf2 is a promising target
for anticancer drug design, but the limited information about its molecular details and
interactions hinder rational drug design. The authors applied combined bioinformatics
with experimental methods like CD and NMR spectroscopy approaches to characterize
the structure of Nrf2, and hydrogen deuterium exchange mass spectrometry was used to
analyze its interaction with the Kelch domain of an interaction partner. They found that
Nrf2 is partially disordered with transiently ordered segments. Binding with the Kelch
domain stabilizes the structure of other binding motifs while leaving other regions highly
dynamic. According to their results, the conformational dynamics of full length Nrf2 have
substantial consequences for its target recognition, enabling Nrf2 to bind to distinct targets
with high specificity and low affinity.

Wesch et al. [24] examined the UFM1-activating enzyme 5 (UBA5) within the ufmyla-
tion cascade of the ubiquitin fold modifier 1 (UFM1) protein. This cascade reaction affects
several cellular processes and plays a role in the pathogenicity of many human diseases,
but the molecular mechanisms of the ufmylation cascade are still unclear. The authors
focused on the biophysical and biochemical characterization of the interaction between
UBA5 and the UFM1-conjugating enzyme 1 (UFC1). Their working hypothesis was that
the unstructured C-terminal of UBA5 regulates the cellular localization of the elements in
the ufmylation cascade. According to their results, the C-terminal 20 residues in UBA5
are crucial for UFC1 binding. They uncovered the NMR structure of UFC1 complexed
with this C-terminal peptide and identified key residues in the UBA5–UFC1 interaction.
The structural evidence augmented with isothermal titration calorimetry results revealed
the mechanism of the interaction and confirmed the crucial role of the C-terminal unstruc-
tured region.

A novel protocol for protein–protein docking was developed by Kurcinski et al. [7],
incorporating protein–protein orientation and backbone flexibility with a single simulation
step instead of the traditional two-step procedure. Exhaustive sampling is required for
this approach, which can be achieved using the CABS coarse-grained protein model and
replica exchange Monte Carlo dynamics. In this proof of concept study, the new protocol
was tested on 62 protein–protein complexes. They found that the modeling of large con-
formational changes was possible with acceptable computational costs within the range
of 10 CPU hours. For low- and medium-flexibility cases, the acceptable accuracy can be
achieved with an iRMSD of around 4 Å, but the selection of the most accurate model needs
to be improved with a success rate of only around 50%. The current common approaches
to taking flexibility into account have serious limitations. The proposed protocol is concep-
tually different and relies heavily on the exhaustive sampling capability of the simplified
simulations, which is orders of magnitude faster than classical force field-based molecular
dynamics simulations. While these kinds of simulations also have their limitations when
reproducing the real free energy surface, the more exhaustive sampling could compensate
for their weaknesses. Although this protocol opens new perspectives in flexible protein–
protein docking applications, it also has limitations. Despite the high performance of
the replica exchange annealing enhanced Monte Carlo dynamics, this method still scales
poorly with the size of the “ligand” proteins setting a practical limit of about 150 residues.
The simplified description of atomic interaction forces results in less sensitive docking

5



Int. J. Mol. Sci. 2022, 23, 3685

energetics, which makes the above-described selection of the most accurate model difficult.
The authors suggest that parallelizing the simulation may speed up the process. In this
way, an automated public protein–protein docking server could be created, which could be
a very useful tool for studying protein–protein interactions.

A logistic regression model was developed by Liu et al. [9] in order to predict the
phenotypic outcome of rare germline pathogenic TP53 missense variants. They compiled
non-overlapping datasets for the Li-Fraumeni syndrome and hereditary breast cancer
outcomes. TP53 protein is a transcription factor that binds as a tetramer to DNA and
activates a large number of genes that promote DNA repair mechanisms or apoptosis.
Each monomer is built up from several domains, including a DNA binding domain and
an oligomerization domain, among others. About two-thirds of reported germline TP53
variants are single-site missense changes. Predominantly located in the DNA binding
domain, some of them result in the decreased thermal stability of this domain. By utilizing
an X-ray structure of TP53, the conformational characteristics of the variants were included
in the method. The models show a clear relationship between disease outcome for TP53
variants and their effects on aspects of protein conformation and function. The model
could be helpful to avoid unnecessary examinations for a large proportion of TP53 variant
carriers, which could relieve pressure on the medical system.

Pressure denaturation of the all-α GH2 domain of the GIPC1 protein adaptor was
investigated using NMR spectroscopy by Dubois et al. [25]. To date, this method has been
used mainly for small α/β and all-β single domain proteins. High-pressure perturbation
was used with NMR spectroscopy to reveal the unfolding landscape at 10, 20, and 30 ◦C,
and the results were compared with chemical denaturation experiments. While GIPC1-GH2
is most stable at 20 ◦C, it is more stable at 30 ◦C than at 10 ◦C. Their finding that the loss
of tertiary and secondary structure was quasi-simultaneous was unexpected, meaning
that helices are not stable outside the 3D scaffold. The unfolding was cooperative at high
pressures and the highest temperatures but more progressive at the lowest temperatures.
Although partial unfolding can occur at lower temperatures, at 30 ◦C the stability is
decreased and thermal denaturation probably competes with high-pressure denaturation,
sweeping away the partial unfolding that occurs at lower temperatures. The authors
demonstrated the usefulness of pressure-induced unfolding experiments in exploring the
unfolding landscape of proteins by monitoring the partial unfolding process, which could
not have been followed by chemical denaturation.

Finally, we arrive at the first published paper in our Special Issue by Liu et al. [26],
which emphasizes the importance of considering conformational entropy accurately for
the simulation of disordered proteins. There are several pairwise additive force fields that
were specifically modified to handle disordered proteins more accurately, yet they still
often fail to reproduce experimental results. The authors propose the incorporation of
configurational entropy for the development of universal force fields, which should be
able to handle globular and disordered proteins and disorder to order transitions equally
well. They compared pairwise additive force fields with the AMOEBA [27] many-body
force field using experimental data on a set of disordered and medium-sized globular
proteins. According to their results, fixed-charge force fields gave smaller yields, while
the polarizable model yielded larger RMSD for ordered proteins. Force fields with the
largest RMSD fluctuations are consistent with the results from the radius of gyration
experiments. They argued that by exhibiting larger variations, they are better suited
to describe the structural plasticity of disordered proteins. According their results, the
polarizable AMOEBA many-body force field is beneficial for the simulation of disordered
proteins and it can outperform specifically modified force fields without requiring problem-
specific parametrization. By retaining its universality, it is well suited as a general force
field for different types of disordered proteins and their complexes. They suggest, however,
that in their evaluation the precision of the examined pairwise additive force fields was
not adequate and that further efforts to reproduce the structural dynamics could be used
as guidance for the development and validation of force fields. They concluded that force
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fields with the largest variations in the radius of gyration and universal Lindeman values
for folded states describe disordered proteins and disorder to order transitions better and
that a universal force field applicable to globular and disordered proteins should be able to
describe the balance between energetics and configurational entropy.

In this Special Issue, we aim to represent the vibrant state of protein structure studies
at the end of 2021 and the flowering of this field since the middle of the nineteenth century
with this assortment of publications. The editors hope that the readers will welcome it!
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Abstract: Mutual Synergetic Folding (MSF) proteins belong to a recently discovered class of proteins.
These proteins are disordered in their monomeric but ordered in their oligomeric forms. Their amino
acid composition is more similar to globular proteins than to disordered ones. Our preceding work
shed light on important structural aspects of the structural organization of these proteins, but the
background of this behavior is still unknown. We suggest that solvent accessibility is an important
factor, especially solvent accessibility of the peptide bonds can be accounted for this phenomenon.
The side chains of the amino acids which form a peptide bond have a high local contribution to the
shielding of the peptide bond from the solvent. During the oligomerization step, other non-local
residues contribute to the shielding. We investigated these local and non-local effects of shielding
based on Shannon information entropy calculations. We found that MSF and globular homodimeric
proteins have different local contributions resulting from different amino acid pair frequencies. Their
non-local distribution is also different because of distinctive inter-subunit contacts.

Keywords: intrinsically disordered proteins; mutual synergetic folding; solvent accessibility of
peptide bonds; inter-subunit interaction; solvent-accessible surface area; Shannon information
entropy; amino acid composition

1. Introduction

The class of Mutual Synergetic Folding (MSF) proteins is a relatively newly discovered
distinct class of oligomeric proteins, where a single polypeptide chain of an MSF protein
is disordered, but all chains become ordered upon oligomerization [1,2]. In the case of
traditional disordered proteins, there is a need for an already stable template structure. MSF
proteins can fold into a stable structure without the presence of an already folded template,
folding happens simultaneously with the association of the previously disordered subunits.

At the time of the discovery of the 3D structure of transmembrane proteins [3], and the
“coupled folding and binding” mechanisms of disordered proteins [4,5], our knowledge of
determinants of proteins structure has been expanded. The discovery of these new types of
proteins was accompanied by a change of the perceivable average amino acid composition
of proteins. However, the amino acid composition of MSF proteins is similar to that of
globular proteins [6–8], which makes it difficult to identify them based on their primary
structure. The different amino acid composition of disordered proteins leads to different
energies, which causes the protein to have a disordered structure. A good example for
the estimation of this energy is the use of statistical pairwise potentials as implemented
in the IUPred prediction method, which reached recently its 3rd iteration [9]. Next to the
energy, configurational entropy can also be important in disorder-to-order transitions, as
shown by Liu et al. [10]. MSF proteins are special among disordered proteins because their
oligomeric structure can be solved by traditional structure determination methods. In a
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recent publication [11] experimentally determined long intrinsically disordered protein
regions were examined. The authors found that long disordered regions, which are present
in MSF proteins, cannot be accurately predicted.

The tertiary structures of experimentally validated MSF proteins have been collected to
the Mutual Folding Induced by Binding (MFIB) database. This database contains 205 MSF
protein structures [2]. Our recent analyses [6,7] of this database aimed to find common
properties among MSF proteins, which distinguish them from globular oligomeric proteins.
We found that the most prominent change between MSF and globular proteins can be
found in the change of solvent accessibility during the oligomerization step. The question
arose as to what determines the hydration of these peptide bonds.

Sequence and structural studies of protein interactions have revealed that sequen-
tial and spatial neighboring residues often play important roles in the environmental
hydrophobicity and long-term binding site interactions, thus determining the structural
and functional behavior of proteins [12–14]. Based on this fact, the shielding effect (reduc-
ing hydration of peptide group) can be divided into local and non-local terms. The local
contribution is provided by the side-chain atoms of the amino acid residues, which are
connected by the peptide bond [15], while the non-local contribution is provided by the
shielding effect of other sequentially distant residues [16].

In this work, we studied the solvent accessibility of peptide bonds in MSF and globular
homodimeric proteins in light of relationship between dipeptide frequencies, and the
ordered/disordered nature of the monomeric protein forms. Furthermore, we compared
Shannon information entropy calculated from frequencies of local and spatial neighboring
residues in MSF and globular proteins, which may indicate sequential differences between
the two groups of proteins.

2. Results

We calculated the relative solvent accessible surface area (SASA) values for all peptide
bonds in our MSF and globular homodimeric (MHOD and GHOD) protein datasets for
both monomeric and dimeric forms using the FreeSASA program [17]. The monomeric
form was modeled by taking only a single chain of the ordered dimeric structure into
account. The distribution of peptide bonds with different relative SASA values can be seen
in Figure 1 for the monomeric and dimeric forms. The results are presented as histograms,
where the height of a bar denotes the ratio of entries with a property in a given range. For
example, the height of the first red bars refers to the percentage of peptide bonds with a
relative SASA value in the [0, 0.1] interval among MSF proteins in monomeric form. There
is a clear tendency in homodimeric MSF proteins to have a lower percentage of highly
buried peptide bonds with lower than 10% relative SASA values in monomeric form but a
higher percentage in dimeric form, when compared to globular homodimers.

Figure 1. Occurrences of peptide bonds with different solvent accessibilities.
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A higher number of peptides bonds become buried during dimerization in the case
of MSF homodimers, than in the case of globular homodimers. Next, we calculated the
solvent accessibility of peptide bonds averaged within individual proteins. We calculated
the ratio of the SASA values summed over all peptide bonds divided with the sum of
the reference values, thus representing the average solvent accessibility of peptide bonds
within a protein. Results are presented in Figure 2 for both monomeric and dimeric
calculations. The distribution of MSF average peptide bond accessibility is shifted towards
higher values in the case of monomeric form, but towards lower values in dimeric form,
when compared to globular proteins. These results underline our hypothesis about the
importance of peptide bond solvent accessibility for MSF proteins.

Figure 2. Distribution of individual proteins with different average peptide bond solvent accessibilities.

We created a measure of the increase of peptide bond shielding upon dimerization
using the following protocol. A peptide bond was identified as accessible, that is not
properly shielded if its relative solvent accessibility was larger or equal than a threshold
value of 10%. It was identified as buried if its relative SASA value was below 10%. We
found that there are 2.6 times more not properly shielded peptide bonds in monomeric
MSF proteins, than in globular proteins, which become buried upon dimerization. The
number of buried (B) and accessible (A) residues were counted and we calculated the B/A
ratio for both monomeric and dimeric forms. Then we calculated the dimeric B/A over
the monomeric B/A quotient. This value represents the increase of peptide bond burial
upon dimerization. A value of 1 would indicate that the buried/accessible residue count
ratio is the same in both dimeric and monomeric forms, a value of 2 means that in the
dimeric form the buried/accessible ratio is twice the monomeric value. Results can be seen
in Figure 3. The distribution of the MSF protein values is shifted toward higher values,
meaning that in the case of MSF proteins the ratio of the buried/accessible residues is
higher in the dimeric form.

These results implicate, that solvent accessibility of the peptide bonds is an important
factor in the destabilization of the monomeric form of MSF proteins. We investigated
if amino acid composition plays a role in the above-presented findings. Instead of the
peptide bond relative SASA value, which involves two amino acids, the relative main-chain
SASA values were compared for the 20 residue types. The data presented in Figure 4
shows increased average SASA values for the glycine, lysine, methionine, and tryptophan
residues in MSF proteins, while slightly decreased values for proline, aspartic acid, serine
and glutamine residues. However, most values are rather similar in the MHOD and the
GHOD protein datasets.

Glycine and proline residues have the highest average main-chain accessibility in
both MSF and globular proteins, while cysteine, leucine, valine, and isoleucine residues
have the lowest average values in both datasets. Traditional disordered proteins can be
distinguished from globular ones based on their amino acid composition. Because of the
similar amino acid composition of MSF and globular proteins [6–8], statistical measures
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based on the residue composition did not help to separate the two types of proteins, thus
we decided to compare their Shannon information entropy content [18]. The probability
distribution of the individual amino acids was calculated as their observable frequency
using Equation (1).

Figure 3. Distribution of individual proteins according to the increase of the buried/accessible
peptide bond ratio.

Figure 4. Average relative main-chain SASA values according to residue types.

Equation (1): Calculation of the frequencies of the ith amino acid type

Pi =
Ni

Ntot
, (1)

where Ni is the number of the ith amino acid type and Ntot is the total number of amino
acids in the actual dataset.

For calculating entropy values of individual proteins, we decided to use a normalized
version of the relative Shannon information entropy, frequently referred to as the Kullback–
Leibler divergence [19] using Equation (2). It measures how our Pi amino acid probability
distribution differs from a reference Qi probability distribution. We are using reference
Qi values obtained from a non-redundant subset of the PDB database [20] (see PDB codes
in Table S1A), which is significantly larger than our homodimeric protein datasets. The
Pilog Pi

Qi
values obtained for the 20 amino acids are listed in Table S2A,B, calculated from the

amino acid compositions of the GHOD and MHOD protein datasets, respectively. Entropy
values for individual proteins were calculated using Equation (2), where entropy values
were normalized using a division with log N to avoid size dependence of the values.

Equation (2): Calculation of the normalized Shannon information entropy for an
individual protein based on the amino acid composition
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S(j) =
1

log Nj

Nj

∑
i=1

Pilog
Pi

Qi
, (2)

where Nj is the number of amino acids in protein j.
Entropy values were calculated for entries in our homodimeric protein datasets.

Results are presented as a histogram in Figure 5.

Figure 5. Entropy values calculated based on the amino acid composition.

There is a difference between the distributions obtained on MSF and globular homod-
imers, entropy values of the MSF proteins are shifted toward positive values. This result is
somewhat unexpected in light of our previous results. Recently [6] we compared the amino
acid composition of MSF and globular homodimers using principal component analysis
and we found no significant difference. The Shannon entropy calculation seems to be more
sensitive than our previous analysis.

As we have found a significant difference in the burial of peptide bonds between MSF
and globular homodimers, we started to look for a possible reason. Since local shielding of
the peptide bonds is mainly provided by the two amino acids creating the peptide bond,
we calculated the dipeptide frequencies in our MHOD and GHOD protein datasets by
dividing the count number of a specific dipeptide with the total number of peptide bonds
using Equation (3).

Equation (3): Calculation of the frequencies of the ij dipeptides

Pij =
Nij

Npb
, (3)

where Npb is the total number of peptide bonds.

To pinpoint the differences, we calculated relative entropy-like Pijlog
Pij

Qij
values for

all dipeptides using Pij values obtained on the MHOD protein dataset, and reference Qij

values obtained on the GHOD protein dataset. The highest and lowest 10 values are plotted
in Figure 6.

There are only a handful of dipeptides that have a strong preference for MSF or
globular proteins, but most dipeptides have rather weak preference values. Though
the amino acid composition of MSF homodimeric proteins is close to that of globular
proteins [6,8], differences can be found in their sequence already at the dipeptide level.

Based on this observation dipeptide distribution might discriminate MSF proteins
from globular ones, so we investigated the information content of the protein sequences.
We calculated Shannon information entropy values based on dipeptide frequencies, similar

to the previous case of amino acid compositions. The Pijlog
Pij

Qij
values calculated using

our non-redundant sequence dataset derived Qij and Pij values obtained on the GHOD
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and MHOD protein datasets can be found in Table S3A,B, respectively. Entropy values for
individual proteins were calculated using Equation (4).

Figure 6. Dipeptides with the highest and lowest entropy-like contributions.

Equation (4): Calculation of the Shannon information entropy for an individual protein
based on the dipeptide frequencies:

S(k) =
1

log Nk

Nk

∑
1

Pijlog
Pij

Qij
, (4)

where Nk is the number of peptide bonds in protein k.
We plotted the entropy value distribution of individual proteins as histograms (see

Figure 7). We can see a similar effect as in the case of entropy values calculated from the
amino acid compositions. There is a shift in the distribution of MSF proteins towards
positive values.

Figure 7. Entropy values calculated from the dipeptide frequencies.

To investigate the effect of the non-local long-range shielding of peptide bonds upon
dimerization we created the following protocol. We identified inter-subunit residue contacts
based on a simple distance criterion. Residues pairs were identified as important for long
range shielding, if the participating residues are part of different protein chains and they
have at least one heavy-atom pair with a distance shorter than 4 Ångströms. We identified
all these residue pairs and calculated their frequencies using Equation (5).

Equation (5): Calculation of the frequencies of the ij residue pairs
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Pij =
Nij

Ntc
, (5)

where Ntc is the total number of contacting residue pairs.
Since reference Qij values can be derived only from dimeric structures, the GHOD

protein dataset was used for this purpose. In order to produce entropy values also for
globular proteins, both MHOD and GHOD protein datasets were scored using the MHOD

derived Pij values. The Pijlog
Pij

Qij
values for all residue pairs can be found in Table S4.

Relative entropy values for individual proteins were calculated similarly to the previous
cases, but the sum was created over all contacting residue pairs using Equation (6). The
distribution of these values can be seen in Figure 8.

Figure 8. Entropy values calculated from the inter-subunit contacts.

Equation (6): Calculation of the Shannon information entropy for an individual protein
based on inter-subunit contacts:

S(k) =
1

log Nc

Nc

∑
1

Pijlog
Pij

Qij
, (6)

where Nc is the number of contacts within protein k.
Despite the same Pij matrix was used for both datasets, there is a shift in the distri-

bution of the MSF protein values towards positive values. There is an overlap of the two
distributions, but more than a quarter of the globular proteins have negative values, while
all MSF proteins have positive values. About one fifth of the globular proteins has a value
larger than 0.01, while more than half of the MSF proteins are found in this range.

3. Discussion

MSF proteins are a relatively new class of proteins with little knowledge about their
folding. Our current comparison of MSF and globular homodimeric proteins provided
the following results. MSF proteins have a higher average relative solvent accessibility of
the peptide bonds in their monomeric form. Upon dimerization, a higher proportion of
accessible peptide bonds become buried in the case of MSF homodimers, when compared
to globular ones. A significant increase in the number of both buried peptide bonds and
buried residues upon oligomerization is characteristic for MSF proteins. Zhou et al. recently
analyzed the normalized monomer surface area versus normalized interfacial surface area
in a recent publication [21]. Their findings are in agreement with ours about the relevance
of the increased inter-subunit surface area in MSF proteins.

The burial of the peptide bonds from solvent molecules is established by shield-
ing through local and non-local residues, relative to the actual peptide bond. We found
differences in both local and non-local dipeptide frequencies between MSF and globular ho-
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modimers using Shannon information entropy calculations. This behavior originates from
the different dipeptide frequencies locally and different inter-subunit contacts non-locally.

Zhou et al. also emphasized the importance of intrinsic disorder in complex formation.
Previously we found [6] that on our filtered homodimeric protein dataset, all seven tested
methods predicted less than 30% of the residues as disordered, while the average value
was around 14%. Our suggestion is that a simple physicho-chemical property may be
responsible for the destabilization of MSF monomers. Our results indicate that despite the
similar amino acid compositions [6], MSF and globular homodimeric proteins have different
amino acid pair statistics, leading to different Shannon information entropy distributions.
We suggest that this change in the dipeptide frequencies can be accounted for by the less
efficient shielding of the peptide bonds of MSF proteins in their monomeric forms. This
phenomenon can provide an important contribution to the destabilization of monomeric
MSF protein chains, by disturbing the hydrogen bond network of the protein backbone,
leading to the disruption of secondary structural elements. The different non-local entropy
values may result from the increased necessity of proper peptide bond shielding during
the dimerization step.

4. Materials and Methods

For the database analyses, we wrote our own Python programs using Biopython exten-
sions [22] and created a sequence and two structural datasets of proteins with known three-
dimensional structures. First, we created a larger sized non-redundant sequence dataset
of PDB entries with less than 40% sequence identity using the Mufold-DB database [23]
for reference purposes. PDB codes with the protein chain designation can be found in
Table S1A. This low similarity cutoff value ensures that the entries are not too similar,
which could have biased our residue pair statistics. We used a structural database as a
starting point on purpose to include sequences of globular proteins. The resulting dataset
contains around 23,000 entries, which is already large enough to provide reliable statistics.
We created the MHOD protein dataset by collecting homodimeric MSF proteins found in
the MFIB database [2]. We created as reference the GHOD protein dataset of globular ho-
modimeric proteins based on the non-redundant PDB-Filter select 2017 database [24]. Since
our aim is to understand which features differentiate MSF proteins from globular ones,
we applied a volume/surface criterion as described in our previous publication [7]. This
filtering step retains only compact globular like structures and eliminates rather one dimen-
sional, rod-like proteins (like collagen), which would have biased our solvent accessibility
calculations. Protein surfaces and volumes were calculated using the FreeSASA 2.03 [17]
and the ProteinVolume 1.3 programs [25], respectively. SASA values were calculated for
both dimeric and monomeric forms of all proteins. The monomeric form was modeled by
deleting the second protein chain from the PDB files. During SASA calculation a couple
of additional structures were excluded from the datasets because of structural problems
influencing our calculations. A typical problem was that the different protein chains were
not in contact, thus SASA values calculated from the dimeric and the monomeric forms
were almost identical. The final list of the PDB codes of the remaining 52 entries, called the
MHOD protein dataset, can be found is Table S1B. To match the size distribution of this
dataset, only proteins with less than 300 residues were kept in the GHOD protein dataset.
The list of the PDB codes of the remaining 203 GHOD proteins can be found in Table S1C.

In our previous publications, the solvent accessibility of the main chain was handled
at the residue level [6,7]. In this work we focus on the solvent accessibility of peptide bonds,
thus SASA values were calculated for atoms forming the peptide bonds. We utilized the
absolute all-atom SASA values. The absolute SASA value of a peptide bond was the sum
of the atomic absolute SASA values (N, CA, C and O) belonging to a peptide bond. To
characterize the relative accessibility of peptide bonds, we created reference SASA values
(see Table S5) for all 400 Ala-X-Y-Ala tetrapeptides, built in extended conformation using
PyMOL [26]. The relative solvent accessibility of a peptide bond was calculated by dividing
its absolute SASA value with the appropriate reference value. We calculated the relative
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SASA values of peptide bonds of all MHOD and GHOD entries in both their monomeric
and dimeric forms.

When available, modified PDB files were used from the MFIB database. In the case of
NMR structures, the representative model structure was selected based on the OLDERADO
NMR resource found in PDBe [27].
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Abstract: Transmembrane proteins (TMPs) play important roles in cells, ranging from transport
processes and cell adhesion to communication. Many of these functions are mediated by intrinsically
disordered regions (IDRs), flexible protein segments without a well-defined structure. Although a
variety of prediction methods are available for predicting IDRs, their accuracy is very limited on
TMPs due to their special physico-chemical properties. We prepared a dataset containing membrane
proteins exclusively, using X-ray crystallography data. MemDis is a novel prediction method, utiliz-
ing convolutional neural network and long short-term memory networks for predicting disordered
regions in TMPs. In addition to attributes commonly used in IDR predictors, we defined several
TMP specific features to enhance the accuracy of our method further. MemDis achieved the highest
prediction accuracy on TMP-specific dataset among other popular IDR prediction methods.

Keywords: transmembrane proteins; intrinsically disordered proteins; deep learning; convolutional
neural network; bidirectional long-short term memory

1. Introduction

Transmembrane proteins (TMPs) are located in different membranes and they provide
gates between the inner and outer side of cells or organelles. Around 25% of the coded pro-
teins in the human proteome contain one or more membrane regions [1]. These segments
embedded in the lipid bilayer are structurally well defined; however, their tail and loop re-
gions often contain unstructured segments. Such regions are aiding various functions from
providing flexible linkers to binding motifs for other molecules [2]. Although intrinsically
disordered regions (IDRs) are well studied in general, the currently available prediction
methods have limited accuracy on membrane proteins for several reasons [3]. On the one
hand, protein disorder is conditional [4] and heavily influenced by the environment; thus,
membrane proteins, exposed on both outside and inside spaces, cannot be well described
using a single function or machine learning algorithm. Moreover, lipid components of
the membrane influence the charge and acidity near the transmembrane regions, further
complicating the situation. On the other hand, these methods are generally trained on
mixed protein sets predominantly containing non-TMPs, resulting in biased information
from the perspective of TMPs. Here, we propose MemDis, a novel tool for predicting IDR
regions in TMP proteins, which achieved the highest accuracy among tested methods. We
utilized Convolutional Neural Networks (CNNs) to capture local features of the sequence
represented by Position-Specific Scoring Matrix and Long Short-Term Memory (LSTM)
Network to take advantage of the semantic properties of the protein sequence.

2. Results

To realistically capture the different flavors of disorder in membrane proteins, four
different models were created according to different topological regions. CNNs were
trained on extracellular-distant (distance from membrane > 15aa), proximal- (≤15aa) and
intracellular-distant (distance > 15aa), proximal (≤15aa) residues separately. A bidirectional
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LSTM network was also trained to “smooth” the prediction of CNNs on individual residues
and achieve better sensitivity.

Based on the training and validation set, we found that the CNNs, with a slightly
higher cutoff (0.65—notably this result is scaled so the web server will display 0.5 cut-off)
and a ±4 residue smoothing achieved the best specificity, while also keeping other metric
values considerably high. In contrast, the LSTM with a ±7 residue smoothing had the best
sensitivity. Both versions (from now on referred to as specific and sensitive, respectively)
achieved a remarkable 0.83–0.84 Area Under Curve (AUC) (Figure 1A, Supplementary
Materials). We compared the results of our method to other popular algorithms [5–8]
using metrics from the most recent CAID experiment [9] (Supplementary Table S1). We
used the complete protein sequence for testing; however, we only considered fragments
selected earlier for the evaluation. Some of the tested methods achieved slightly better
specificity, at the cost of barely predicting disordered segments. The best sensitivity was
achieved using the MemDis sensitive. Although dozens of IDR prediction methods are
available, when selecting other methods, we aimed to select ones with slightly different
methodology (machine learning, biophysical approaches) and training sets (X-ray, NMR,
etc.). Both the sensitive and specific settings of MemDis achieved the highest balanced
accuracy, Matthew’s Correlation Coefficient (MCC) and AUC (Figure 1A, Supplementary
Materials). Notably, MemDis uses different models to predict membrane-distant and
proximal regions, and their separate performance also captures disorder better compared
to other methods (Figure 1B,C; Supplementary Table S1, Supplementary Materials). When
evaluating IUPred3 locally, experimental filtering was not used.

Figure 1. (A) Receiver operating characteristic of MemDis and other disorder prediction methods. (B) Averaged performance
of membrane-distant predictors. (C) Average performance of membrane proximal predictors.

MemDis is available on GitHub at https://github.com/brgenzim/MemDis. Since the
local installation is slightly complicated as users have to set up all dependencies as well,
we also prepared a webserver (available at http://memdis.ttk.hu), where users can query
their sequence(s). The webserver displays topology predicted by CCTOP and a graph for
disordered prediction.

We also checked a handful of well-defined examples where the output of MemDis is
supported by literature evidence. Phospholemman is a member of the FXYD family that
regulates ion transport [10]. The cytosolic C-terminal tail was shown to associate with the
micelle surface [11], forming a helical structure upon binding. MemDis predicts this region
as disordered. The helical propensity prediction of FELLS [12] suggests that this region
is likely helical (Figure 2A). Thus, combining the MemDis and other secondary structure
prediction methods, lipid binding can be assumed for membrane proximal regions. Integrin
alpha-IIIb is a receptor protein with a cytosolic disordered tail according to DisProt [13],
exhibiting short linear motifs (SLiMs) proposed to play a role in SARS-CoV-2 infection [14].
Membrane proximal disordered regions are often missed by prediction methods, making it
hard to find novel linear motif candidates; however, MemDis successfully detects these
regions (Figure 2B). Mucolipin-1 is a cation channel, probably playing a role in membrane
trafficking. The C-terminal cytosolic region has five cysteines, a residue that is often
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referred to as order-promoting (as they can form disulphide bridges in an extracellular
environment), which deceives many predictors. MemDis has a built-in topology filter and
predicts this region as disordered, in agreement with the electron-microscopy structure
lacking coordinates for this region [15]. The C-terminal cytosolic tail of Mucolipin is also
stacked with SLiMs: it has two di-leucine motifs [16], and phosphoserines [17] in the
well-defined PKA phosphorylation site [18], further supporting that the C-terminal is
disordered (Figure 2C).

Figure 2. Interpretation of MemDis results. (A) Phospholemman: solution NMR structure, and
representation of C-terminal by the prediction of MemDis, CCTOP and FELLS (helical propensity:
purple, coil propensity: grey). (B) Integrin beta-3: solution NMR structure, MemDis and CCTOP
predictions. The proposed NPxY endocytosis sorting signal is marked with purple, the LIR autophagy
motif is marked with an orange box. (C) Mucopilin-1: Electron-microscopy structure, prediction
from MemDis and CCTOP. Phosphoserines are marked with green cones below the sequence. The
phosphorylation site is marked with a purple box, di-leucine motifs are marked with orange boxes.
Cysteines have blue color. Topology is represented both in the structures and topology lines and
structures are colored blue, red, yellow and orange (extracellular, cytosolic, transmembrane, and
re-entrant loop regions, respectively). Disordered regions from MemDis are marked with green
lines on the graphs. Note, only specific regions of the sequences are shown. (D) Detection rate of
lipid-binding and non-lipid-binding disordered regions from the MemMoRF database.

We also assessed how predictors work to predict lipid-binding regions. MemMoRF
is a novel database of disordered regions that undergo disorder-to-order transition upon
membrane binding [19]. We measured the accuracy of different prediction methods on
such regions. Unfortunately, all methods have poor performance (−0.19–0.03 MCC, Sup-
plementary Table S1) on this dataset when measuring residue level accuracy. To overcome
this, we counted the number of regions that have at least 60% of their residues predicted as
disordered. In this comparison, Espritz DisProt had the highest hit rate, however, on the
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price of predicting many false positive regions too, while MemDis with sensitive settings
was second, with somewhat fewer false positive regions (Figure 2D). We also evaluated
DisoLipPred [20], which was developed specifically to find lipid-binding regions; however,
it detected only 20% of lipid-binding disordered regions. In sum, none of the methods
are capable of detecting such information reliably alone; however, introducing additional
filters (topology, secondary structure) may increase their accuracy, as it was shown on
MemDis in the case of Phospholemman.

3. Materials and Methods

We downloaded the MobiDB database [21] in 1April 2021, and selected the missing
residues (th_90, used as disordered label) and observed (th_90, used as ordered label)
subsets, defining regions from X-ray structures when there is 90% agreement between the
observations. Next, we used CCTOP [22] to filter TMPs and used CD-HIT [23] to reduce
redundancy to 40% sequence identity (Supplementary Table S2). In most cases, the full
protein structure was not solved, so we used fragments of the protein sequences. First, we
selected every IDR together with flanking ordered regions up to 15aa if they were included
in the PDB. Next, we randomly selected ordered regions (Figure 3). The fragments were
randomly selected into the train, validation and independent test set (Supplementary
Table S3). We prepared Convolutional Neural Networks (CNNs) and a bidirectional Long
Short-Term Memory (LSTM) network to predict IDRs.

For the CNNs, each non-membrane residue in this dataset belonged to one of the fol-
lowing four TMP topology categories: extracellular-distant (distance from membrane > 15aa),
proximal (≤15aa) and intracellular-distant (distance > 15aa), proximal (≤15aa). Disordered
and ordered residues were selected in a way that their distributions be roughly equal in
each topological subset (max. 10% difference, Supplementary Table S4). We prepared
four convolutional neural networks (CNNs) for the four topological regions (Figure 3).
The features (Supplementary Table S5) include amino acid distribution, non-redundant
AAIndex [24] categories (i.e., different amino acid scales), ProtParam [25] features (i.e.,
molecular weight, isoelectric point and instability index), topology information based on
CCTOP and PSI-BLAST results. We also used Netsurfp [26] to predict accessibility of
residues and SEG implemented in PlatoLoco [27] to detect low complexity regions. We
used a ±5 length window around each residue and calculated 39 features for them, this
way producing a feature matrix of size 11 × 39 (Supplementary Table S5) that was fed into
the appropriate CNN (this window may contain residues not included in PDB or trans-
membrane residues, as these residues are only used as features belonging to a properly
labelled residue). The CNNs were trained until their validation loss stopped decreasing
for a constitutive 10 epochs (this occurred roughly at 1000 epochs)—the training and the
validation accuracy at this point did not show high differences (Supplementary Table S6).

The bidirectional Long Short-Term Memory (LSTM) was trained on the full length
fragments (including membrane regions) and used the output of the CNNs with topology
information to predict disordered regions. Since the CNNs can only predict residues in an
aqueous environment, for membrane residues the LSTM received “0” value as input. The
LSTM was set to consider the preceding 12 time steps (Figure 3). The parameters of the
CNNs and LSTM are available in Supplementary Table S7.

For testing, we hold back each hit from PSI-BLAST that occurred during training to
avoid data leakage. Since the redundancy filter was originally performed on full-length
proteins, we ensured again that no fragment in the independent testing set shared 40% or
higher sequence identity to any sequence in the training and validation sequence fragment
sets.

To define lipid-binding regions, we used the MemMoRF [19] database. We used
redundancy filtering to 40%, and excluded proteins from the training set of MemDis. The
negative set was generated using fragments near to the membrane (15AA), that did not
have lipid-binding annotation in MemMorRF.
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Figure 3. Data preparation for the training of MemDis. First, we selected protein fragments based on
the available PDB information. Extracellular-distant (distance from membrane > 15AA), proximal
(<15AA) and intracellular-distant, proximal residues from these fragments were fed into the appro-
priate CNN, also considering information from residues within 5AA from the residue of interest. The
LSTM was trained on the full-length protein fragments considering the preceding 10AA.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222212270/s1.
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27. Jarnot, P.; Ziemska-Legięcka, J.; Dobson, L.; Merski, M.; Mier, P.; Andrade-Navarro, M.A.; Hancock, J.M.; Dosztányi, Z.; Paladin,
L.; Necci, M.; et al. PlaToLoCo: The first web meta-server for visualization and annotation of low complexity regions in proteins.
Nucleic Acids Res. 2020, 48, W77–W84. [CrossRef] [PubMed]

25





 International Journal of 

Molecular Sciences

Article

Evaluation of Deep Neural Network ProSPr for Accurate
Protein Distance Predictions on CASP14 Targets

Jacob Stern 1,2,†, Bryce Hedelius 1,†, Olivia Fisher 1 , Wendy M. Billings 1 and Dennis Della Corte 1,*

Citation: Stern, J.; Hedelius, B.;

Fisher, O.; Billings, W.M.; Della Corte,

D. Evaluation of Deep Neural

Network ProSPr for Accurate Protein

Distance Predictions on CASP14

Targets. Int. J. Mol. Sci. 2021, 22,

12835. https://doi.org/10.3390/

ijms222312835

Academic Editors: Istvan Simon and

Csaba Magyar

Received: 18 October 2021

Accepted: 25 November 2021

Published: 27 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602, USA;
jastern33@gmail.com (J.S.); bhedelius@gmail.com (B.H.); oefish@gmail.com (O.F.);
wendybillings7@gmail.com (W.M.B.)

2 Department of Computer Science, Brigham Young University, Provo, UT 84602, USA
* Correspondence: Dennis.DellaCorte@byu.edu
† Both authors contributed equally.

Abstract: The field of protein structure prediction has recently been revolutionized through the
introduction of deep learning. The current state-of-the-art tool AlphaFold2 can predict highly
accurate structures; however, it has a prohibitively long inference time for applications that require
the folding of hundreds of sequences. The prediction of protein structure annotations, such as amino
acid distances, can be achieved at a higher speed with existing tools, such as the ProSPr network.
Here, we report on important updates to the ProSPr network, its performance in the recent Critical
Assessment of Techniques for Protein Structure Prediction (CASP14) competition, and an evaluation
of its accuracy dependency on sequence length and multiple sequence alignment depth. We also
provide a detailed description of the architecture and the training process, accompanied by reusable
code. This work is anticipated to provide a solid foundation for the further development of protein
distance prediction tools.

Keywords: protein; prediction; contact; distance; deep learning; alphafold; ProSPr; CASP;
dataset; retrainable

1. Introduction

Proteins are among nature’s smallest machines and fulfill a broad range of life-
sustaining tasks. To fully understand the function of a protein, accurate knowledge of its
folded structure is required. Protein structures can either be obtained from experiments,
homology modeling, or computational structure prediction. Accurate structures can be
used for the rational design of biosensors [1], the prediction of small-molecule docking [2],
enzyme design [3], or simulation studies to explore protein dynamics [4].

Recent progress in the field of computational structure prediction includes the end-
to-end deep learning models Alphafold2 [5] and RoseTTAfold [6] that are able to predict
highly accurate protein structures from multiple sequence alignments. Alphafold2 has
been used to predict the structures of many protein sequences found in nature, including
the human proteome [7].

Despite these advancements, it is still not fully known if models such as Alphafold2
can extract dynamics or multiple conformations of proteins [8]. Furthermore, it is also not
clear if Alphafold2 can be used effectively to support tasks in protein engineering, such
as assessing if single point mutations in the amino acid sequence of a protein will alter
stability or function.

A main bottleneck of Alphafold2 is the runtime for prediction. It can take multiple
hours on a GPU cluster to predict the structure of a single protein. If thousands of sequences
must be evaluated in a protein design study, this runtime can be prohibitive.

A valid alternative to full protein structure prediction is the prediction of structural
features that provide sufficient information about conformational changes. The previous
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state-of-the-art tools Alphafold1 [9] and trRosetta [10] predict distances and contacts
between amino acids. This task can be performed rapidly and allows for the comparison of
differences between contact patterns of multiple sequences. We have developed ProSPr as
an open-source alternative to enable the community to understand, train, and apply deep
learning for the same tasks.

After Alphafold1 was initially presented during the Critical Assessment of Techniques
for Protein Structure Prediction (CASP13) conference [11], many questions remained about
its implementation. To demystify this process, our team developed and published ProSPr—
a clone of Alphafold1 on GitHub and bioRxiv [12]. With the release of the Alphafold1 paper,
we updated the ProSPr architecture and made new models available. After CASP14, it
became apparent that ProSPr was used by multiple participating groups, as the Alphafold1
code was not easily usable by the community [13].

Deep learning methods are often complementary, and a variety of easy-to-use models
can be very valuable to form ensembles that outperform single methods. In a previous
study, we have shown that ProSPr contact predictions are of similar quality as Alphafold1
and trRosetta predictions but that an ensemble of all three methods is superior to any
individual method [14]. We further showed that ProSPr can be used to rapidly predict large
structural changes from small sequence variations, making it a useful tool for sequence
assessment in protein engineering. [14]

Although the first ProSPr model has been used by multiple groups during CASP14
and shown its usefulness in driving improved contact predictions, this is the first detailed
description of its updated architecture and the training process used. We did not use
our original version of ProSPr in CASP14, but rather a completely distinct iteration with
higher performance that drew from our growing expertise in the area. These updates were
informed by the publication of Alphafold1 and trRosetta, which were not released until
shortly before the CASP14 prediction season began, and so the models described here
were still being trained during CASP14 and are distinct from those we used during the
competition. Here, we present this improved ProSPr version and release the network code,
training scripts, and related datasets.

Additionally, for those who are currently using the ProSPr network for protein distance
prediction, it is important to know under which conditions the predictions are reliable.
Two important factors upon which protein structure prediction accuracy depends are MSA
depth and sequence length [5,15–17]. For example, AlphaFold 2 found that there was
strong reliance on MSA depth up to about 30 alignments, after which the importance of
additional aligned sequences was negligible. However, network dependence on MSA
depth and sequence length can vary across networks architectures, so we investigate the
dependence of the ProSPr network on these features.

2. Evaluation and Results

We evaluated the performance of three updated ProSPr models using the CASP14
target dataset. The CASP assessors provided access to full label information before it was
publicly available (i.e., prior to PDB release) for many of the targets which enabled us to
analyze our predictions across 61 protein targets. We evaluated these targets based on
residue-residue contacts, which are defined by CASP as having a Cβ (or Cα for glycine)
distance less than 8 Å [18]. Predicted contact probabilities were straightforward to derive
from our binned distance predictions; we summed the probabilities of the first three bins
since their distances correspond to those less than 8 Å.

Figure 1 shows results for two example targets from CASP14. For T1034, we were able
to construct an MSA with a depth greater than 10,000 and the predicted accuracies (top of
the diagonal) are in good agreement with the labels (bottom of the diagonal). The protein
structure annotations on the right compare the prediction accuracy on top with the label
on the bottom. This shows that even for an easy target, these predictions are not highly
accurate, which is likely due to the small loss contribution assigned to auxiliary predictions
(see Methods). For target T1042, no sequences could be found, and the corresponding
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predictions are without signal. The goal of training a contact prediction tool that can infer
information from sequence alone is an open problem and will need to be addressed in
future work.

Figure 1. Two example targets from the CASP14 test set. Left: experimental structures from which labels were derived.
Middle: contact maps predicted with ProSPr ensemble on top of the diagonal; label on bottom. Right: visualization of
auxiliary loss predictions on top with labels at bottom. Accessible surface area (ASA), torsion angles (PHI, PSI), secondary
structure (SS).

Table 1 shows the contact accuracies of the three ProSPr models evaluated at short,
mid, and long contact ranges. These categories relate to the sequence separation of the
two amino acids involved in each contact, where short-, mid-, and long-range pairs are
separated by 6 to 11, 12 to 23, and 24+ residues, respectively [19]. All contact predictions
in each of these ranges were ranked by probability and the top L (sequence length) pairs
in each category were considered to be in contact. We then calculated contact accuracies
using the following equation [20]:

Accuracy =
TP + TN

TP + FP + FN + TN
= Precision =

TP

TP + FP

which reduces the precision since no negative predictions are made (TN = FN = 0). Fur-
thermore, we normalized the accuracy scores for each target in each range so that the full
range of 0–100% could be achieved (i.e., in some cases there may not be L true contacts, so
the maximum score would otherwise be lower).

Table 1. CASP14 contact accuracies (see text for definition).

ProSPr Model
Contact Accuracy (%)

Short Mid Long Average

A 81.09% 69.52% 41.63% 64.08%
B 81.15% 69.29% 42.41% 64.28%
C 81.94% 69.97% 43.59% 65.17%

Ensemble 82.08% 70.55% 44.04% 65.56%
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The three ProSPr models shown in Table 1 have the same architecture and were trained
on the same data (see Methods) but perform somewhat differently. By creating an ensemble
of the three networks, the average results in all three areas are improved (for the ensemble
performance on individual targets, see Table 2) which is in accordance with our previous
work [14]. We have made all three models individually available, but in accordance with
these results, the default inference setting of the code is to automatically ensemble all of
them for the best performance.

Table 2. ProSPr ensemble contact accuracies (see text for definition).

Target
Contact Accuracy

Short Mid Long

T1045s2 0.833 0.924 0.694
T1046s1 1.000 1.000 0.536
T1046s2 0.892 0.574 0.303
T1047s1 0.907 0.985 0.639
T1047s2 1.000 0.983 0.852
T1060s2 0.857 0.575 0.282
T1060s3 0.976 0.955 0.793
T1065s1 1.000 0.973 0.518
T1065s2 1.000 1.000 0.870
T1024 1.000 1.000 0.809
T1026 0.750 0.425 0.494
T1027 0.485 0.278 0.054
T1029 0.891 0.818 0.220
T1030 0.804 0.792 0.333
T1031 0.686 0.457 0.105
T1032 0.889 0.851 0.580
T1033 0.750 0.316 0.216
T1034 0.988 0.874 0.885
T1035 0.412 0.080 0.000
T1037 0.690 0.455 0.030
T1038 0.720 0.538 0.407
T1039 0.269 0.000 0.007
T1040 0.318 0.222 0.027
T1041 0.644 0.357 0.021
T1042 0.487 0.441 0.058
T1043 0.431 0.216 0.014
T1049 1.000 0.939 0.440
T1050 0.964 0.821 0.705
T1052 0.728 0.600 0.417
T1053 0.796 0.521 0.093
T1054 1.000 1.000 0.710
T1055 0.932 0.860 0.200
T1056 0.823 0.829 0.661
T1057 1.000 0.987 0.815
T1058 0.821 0.678 0.678
T1061 0.807 0.687 0.511
T1064 0.615 0.500 0.094
T1067 0.865 0.824 0.466
T1068 0.926 0.813 0.204
T1070 0.941 0.707 0.579
T1073 1.000 1.000 1.000
T1074 0.845 0.700 0.328
T1076 0.970 0.947 0.911
T1078 0.984 0.892 0.587
T1079 0.956 0.964 0.739
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Table 2. Cont.

Target
Contact Accuracy

Short Mid Long

T1082 0.615 0.636 0.164
T1083 0.909 0.783 0.909
T1084 1.000 1.000 1.000
T1087 1.000 0.810 0.714
T1088 0.954 1.000 0.778
T1089 0.972 0.813 0.624
T1090 0.977 0.870 0.399
T1091 0.832 0.571 0.071
T1092 0.704 0.782 0.382
T1093 0.673 0.519 0.109
T1094 0.649 0.580 0.144
T1095 0.722 0.711 0.448
T1096 0.766 0.421 0.098
T1099 0.800 0.375 0.101
T1100 0.883 0.820 0.258
T1101 0.960 0.988 0.783

We also investigated the impact of alignment depth and sequence length on contact
prediction using the CASP14 dataset. For this purpose, we segmented the targets into
groups with either less than 400 sequences or between 400 and 15,000 sequences (threshold
of maximum MSA depth). Figure 2 shows that a correlation between shallow MSAs
and average prediction accuracy exists with a Pearson correlation coefficient of r > 0.7.
However, for deeper MSAs this correlation is no longer observed. Furthermore, we
compared the dependency of prediction accuracy on the sequence length of the target and
found no correlation with r = 0. Based on this, we conclude that ProSPr is sequence-length-
independent and that finding at least a few hundred sequences is helpful to increase the
predictive performance of ProSPr, but deeper alignments hold no clear benefit.

Figure 2. Left: correlation analysis of average accuracy (see text for definition) for CASP14 targets with MSA smaller than
400 sequences. Middle: correlation analysis for MSA deeper than 400 sequences. Right: correlation analysis of average
accuracy and target amino acid sequence length.

Finally, we evaluated inference times for ProSPr and found that they scale linearly
with the number of crops and quadratically with the sequence length. In comparison
with AlphaFold 2 on a Tesla V100, for a sequence of length 256, one forward pass through
our model takes 1.88 ± 0.18 s, compared to 4.8 min for an AlphaFold 2 prediction. The
high-accuracy version of our model, which uses 10 overlapping offsets, takes 4.39 ± 0.44 s.
For a sequence of length 384, one forward pass through our model takes 4.11 ± 0.35 s for
low-accuracy and 40.32 ± 3.63 s for high-accuracy, compared to 9.2 min for AlphaFold 2.
Note that these numbers are for a single model; the ensemble of three models takes three
times as long.
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3. Methods

3.1. ProSPr Overview

ProSPr predicts a series of features related to three-dimensional protein structures that
can be referred to as protein structure annotations [21] (PSAs). The primary purpose of
ProSPr is to predict the distances between pairs of residues for a given sequence. Specifically,
this is defined as the distance between the Cβ atoms of two residues i and j (Cα is used in
the case of glycine). ProSPr also predicts secondary structure (SS) classes, relative accessible
surface area (ASA), and torsion angles for each residue in a sequence. However, these
are included only as auxiliary features to improve the quality of the distance predictions
(see Methods).

All ProSPr predictions are categorical in nature, and otherwise continuous values
have been discretized into bins. For example, the inter-residue distances were divided into
10 bins: <4 Å, 4 ≤ d < 6 Å, 6 ≤ d < 8 Å, . . . , etc., up to the final bin, which included all
distances greater than or equal to 20 Å. This specific format was developed in alignment
with the distance prediction format announced for CASP14 [13].

ProSPr, as depicted in Figure 3, is a deep, two-dimensional convolutional residual
neural network [22] of which the architecture was inspired by that of the 2018 version of
AlphaFold1 [9]. After performing an initial BatchNorm [23] and 1 × 1 convolution on the
input tensor, the result is fed through the 220 dilated residual blocks that make up the bulk
of the network. Each block consists of a BatchNorm followed by an exponential linear
unit (ELU) activation [24] and a 1 × 1 convolution, then another BatchNorm and ELU, a
3 × 3 dilated convolution [25], and finally another BatchNorm, ELU, a 1 × 1 projection,
and an identity addition. The blocks cycle through 3 × 3 convolutions with dilation factors
of 1, 2, 4, and 8. The first 28 of these blocks use 256 channels, but the last 192 only use 128.
Once passed through all 220 blocks, a 1 × 1 convolution is applied to change the number
of channels down to 10 for distance predictions, whereas 64 × 1 and 1 × 64 convolutions
are applied to extract the i and j auxiliary predictions, respectively.

Figure 3. ProSPr network architecture and model architecture.

3.2. Input Features

The input tensor to ProSPr has dimensions L × L × 547 and contains both sequence-
and MSA-derived features. The sequence information is provided as 21 one-hot encoded
values; 20 for the natural amino acids; and another for unnatural residues, gaps, or padding.
The residue index information is also included as integer values relative to the start of
the sequence. A hidden Markov model is constructed from the MSA using HHBlits [26],
for which numerical values are directly encoded as layers in the input tensor. Finally,
442 layers come from a custom direct-coupling analysis [10] (DCA), computed based on
the raw MSA [27]. See Figure 4 for a detailed view of the data pipeline and find further
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details in the released code, which includes a function for constructing a full input from
the sequence and MSA.

Figure 4. Detailed view of ProSPr data pipeline. For training a protein structure in the pdb file format is used to create
inputs and labels. For inference, a multiple sequence alignment in the a3m file format is expected.

3.3. Training Data

We derived the data used to train these ProSPr models from the structures of protein
domains in the CATH s35 dataset [28]. First, the sequences were extracted from the struc-
ture files. We then constructed multiple sequence alignments (MSAs) for each sequence
using HHBlits [26] (E-value 0.001, 3 iterations, limit 15,000 sequences). Inter-residue dis-
tance labels were calculated from the CATH structure files and binned into 10 possible
values, in accordance with CASP14 formatting, as described previously. We then used the
DSSP algorithm [29] to extract labels for secondary structure (9 classes native to DSSP),
torsion angles (phi and psi, each sorted into 36 10◦ bins from −180◦ to 180◦, plus one for
error/gap) and relative accessible surface area (ASA) (divided into 10 equal bins, plus
another for N/A or a gap).

3.4. Training Strategy

After generating the input data and labels for the CATH s35 domains, we split them
into training (27,330 domains) and validation sets (2067 domains). To augment the effective
training set size, we used two strategies. First, we constructed ProSPr so that it predicted
64 × 64 residue crops of the final distance map. By doing this, we transformed ~27 k
domains into over 3.4 million training crops. In each training epoch, we randomly applied
a grid over every protein domain to divide it into a series of non-overlapping crops.
Performing this step each epoch also increased the variety of the input since the crops were
unlikely to be in the same positions each time. Second, we randomly subsampled 50% of

33



Int. J. Mol. Sci. 2021, 22, 12835

the MSA for each domain in each epoch. Using this smaller MSA, we calculated the hidden
Markov model and DCA features used in the input vector. This strategy also served to
increase the variety of the training data used by the network to prevent overfitting.

All models were trained using a multicomponent cross-entropy loss function. The
overall objective was to predict accurate inter-residue distances, the secondary structure
(SS), torsion angles (phi/psi), and accessible surface area (ASA) tasks were included as
auxiliary losses with the idea that adding components that require shared understanding
with the main task could improve performance. Each of the cross-entropy losses was
weighted by the following terms and summed to make up the overall loss: 0.5 SS, 0.25 phi,
0.25 psi, 0.5 ASA, and 15 for the distances.

All models used 15% dropout and an Adam optimizer with an initial learning rate
(LR) of 0.001. The LR of model A decayed to 0.0005 at epoch 5 and further to 0.0001 at
epoch 15. For model B the LR decreased to 0.0005 at epoch 10 and then to 0.0001 at epoch
25. Lastly, the LR of model C dropped to 0.0005 at epoch 8, and down to 0.0001 at epoch 20.

Each model trained on a single GPU (Nvidia Quadro RTX 5000 with 16 GB) with
a batch size of 8 for between 100 and 140 epochs, which took about two months. The
validation set was used as an early-stopping criterion (using static 64 × 64 crop grids to
reduce noise) and the three checkpoints of each model with the lowest validation losses
were selected for testing. The CASP13 test set was then used for final model selection, and
the CASP14 predictions were made and analyzed as described earlier.

3.5. Inference

At inference time, we take crops that guarantee coverage of the entire sequence and
take additional random crops to cover boundaries between the original crops. We then
predict all features for each crop and average the aggregated predictions. The aggregation
step consists of aggregating predictions across all crops for each pair i, j of indices (in the
case of distance predictions), and each index i (in the case of auxiliary predictions), then
taking the average prediction across all crops. Due to this cropping scheme, some crops
will aggregate more predictions than others, which is corrected for through averaging.

The ensembling method first predicts a distance probability distribution with each
of the three models. Next, the three distance probability distributions are averaged and
normalized to yield the final prediction.

4. Conclusions

We developed an updated version of the ProSPr distance prediction network and
trained three new models. We found that an ensemble of all three models yielded the best
performance on the CASP14 test set, which agrees with our previous finding that deep
learning models are frequently complimentary. We further investigated the dependency
on multiple-sequence-alignment depth and found that very shallow alignments reduce
the accuracy of the network but adding more sequences beyond a few hundred to an
alignment does not result in further performance gains. We found that contact prediction
accuracies for ProSPr on the CASP14 dataset are of high quality for short and mid contacts
but lacking for long contacts. This is likely due to the strategy we used for creating multiple
sequence alignments, which did not leverage genomic datasets and resulted frequently in
very shallow alignments. We also found that amino acid sequence length did not correlate
with contact prediction accuracy on the CASP14 test set. These findings suggest to ProSPr
users that confidence in distance predictions is less dependent on sequence length and is
maximized for MSAs with a depth of a few hundred sequences. Finally, we showed that
the inference times of ProSPr are two orders of magnitude faster than those of AlphaFold2,
allowing for feature predictions of protein libraries within a reasonable timeframe. This
enables ProSPr to be used for tasks that require fast inference, such as protein design.

This work describes the comprehensive architecture of ProSPr and a training strategy,
together with necessary scripts to enable rapid reproduction. To our knowledge, this is the
first deep learning-based method for protein structure prediction for which the authors
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have publishes not only models but reproducible training scripts. As such, it might prove
a very useful educational tool for students trying to understand the applications of deep
learning in this rapidly evolving field [30]. The full training routine and necessary datasets
are available to enable other groups to rapidly build on our networks. All necessary
tools and datasets can be found at https://github.com/dellacortelab/prospr (last accessed
24 November 2021).
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Abstract: Most of the protein–protein docking methods treat proteins as almost rigid objects. Only
the side-chains flexibility is usually taken into account. The few approaches enabling docking with a
flexible backbone typically work in two steps, in which the search for protein–protein orientations
and structure flexibility are simulated separately. In this work, we propose a new straightforward
approach for docking sampling. It consists of a single simulation step during which a protein
undergoes large-scale backbone rearrangements, rotations, and translations. Simultaneously, the
other protein exhibits small backbone fluctuations. Such extensive sampling was possible using the
CABS coarse-grained protein model and Replica Exchange Monte Carlo dynamics at a reasonable
computational cost. In our proof-of-concept simulations of 62 protein–protein complexes, we obtained
acceptable quality models for a significant number of cases.

Keywords: protein–protein interactions; protein–protein binding; protein–protein complex; coarse-
grained modeling; multiscale modeling

1. Introduction

Protein–protein interactions are fundamental in many biological processes. Their
structural characterization is one of the biggest challenges of computational biology. A
variety of docking methods are currently available for structure prediction of protein–
protein complexes [1,2]. They can be divided into free (global) and template-based docking.
Free (global) docking methods are designed to generate many distinct binding configura-
tions. Template-based methods restrict docking to a binding mode found in a structural
template. As demonstrated in the blind docking challenge, Critical Assessment of Pre-
diction of Interactions (CAPRI), template-based methods generate more accurate results
but only if a good quality template exists [1–5]. In some cases lacking useful templates,
free global docking can yield acceptable results. According to recent estimates, the best
free docking methods find adequate models among the top 10 predictions for around 40%
of the targets [1]. The CAPRI analysis also indicates that protein backbone flexibility is a
big challenge; protein complexes that undergo substantial conformational changes upon
docking get no successful predictions from any method [3–5].

Presently, most of the free docking methods treat the backbone of input protein struc-
tures as rigid. This approximation reduces the protein–protein docking problem to a 6D
(three rotational and three translational degrees of freedom) search space. Rigid-body
search for the binding site most often rely on the Fast Fourier Transform [6–8]. Other
successful approaches include 3D Zernike descriptor-based docking [9,10] or geometric
hashing [11]. These rigid-body methods are often used as a first docking step, followed
by scoring [12–16], using experimental data [17] and/or structural refinement to capture
backbone flexibility [5,18]. Molecular Dynamics is perhaps the most common refinement
strategy, either in classic or enhanced sampling versions [17,19–22]. Other tools use ro-
tamer libraries to address side-chain flexibility [23] and Elastic Network Models (ENMs)
for modeling backbone rearrangements [24–28]. Accounting for backbone flexibility in
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the search for the binding site significantly increases the docking complexity and makes it
practically intractable using conventional all-atom modeling approaches. This enormous
computational complexity of flexible docking can be reduced using coarse-grained protein
models [29–32]. The best-performing methods that can now include backbone flexibility
during the docking calculations use coarse-grained models and/or ENM-driven simu-
lations. These include RosettaDock combining coarse-grained generation of backbone
ensembles and all-atom refinement [33–35]; ATTRACT combining coarse-grained docking
with ENM and all-atom refinement [36,37]; and SwarmDock using all-atom ENM [25,38].
All these approaches show some advantages in modeling protein flexibility compared
to rigid-body docking followed by structure refinements. However, effective modeling
flexibility in protein–protein docking remains an unsolved problem, as demonstrated in
the recent CAPRI round [25,35,37,39].

In this work, we use a well-established CABS coarse-grained protein model [29] for
protein–protein docking. During the CABS docking simulation, one of the docking partners
undergoes a long random process of rotations, translations, and extensive backbone confor-
mational rearrangements that significantly modify its fold. Simultaneously, the backbone
of the second protein undergoes small fluctuations.

2. Results

The most accurate models (out of the sets of 10,000 generated models and 10 top-
scored) are characterized in Table 1. The table presents different metrics of similarity to
the experimental structures for the set of 62 protein–peptide complexes (divided into three
categories: low, medium and high flexibility cases). To assess the sampling performance,
below we will use the iRMSD values for the best models out of all models. According to
the iRMSD values the CABS-based docking algorithm produced a significant number of
near-native protein–protein arrangements of acceptable quality (iRMSD < 4 Å, according
to CAPRI criteria) for most protein–protein cases in the categories of low and medium
flexibility cases. However, in the high-flexibility category, the best iRMSD values were
noticeably higher (in the range of 4–12 Angstroms). This resulted from the adopted distance
restraint scheme (see the Methods section), which was uniform for whole proteins and
introduced a penalty for deviations of more than 1 Å from the input structures (unbound
experimental structures). This penalty was very small for the protein ligands. Thus, the
distance-restraints scheme allowed for the large-scale conformational changes, however,
they might have prevented binding-induced conformational changes in the high-flexibility
category. Therefore, there is the need to modify such a scheme for the most challenging targets.

Table 1. Summary of the docking simulations. The table characterizes X-ray data used in the docking, average ligand
flexibility, and docking results. The table reports the best accuracy models out from all (10,000) and 10 top-scored models.
The metrics definitions are provided in the Methods section. The table divides the presented cases on the three categories:
low-flexibility, medium-flexibility and highly flexible cases.

X-ray Data
(Number of Residues)

Ligand Flexibility
Results—Best

from All Models
Results—Best

from 10 Top-Scored Models

Receptor * Ligand * Complex RMSD ** Average LoRMSD iRMSD LRMSD fNAT iRMSD LRMSD fNAT

Low-flexibility cases

5CHA
(238)

2OVO
(53) 1CHO 0.62 4.84 2.65 6.95 0.48 2.96 10.93 0.18

2PKA
(232)

6PTI
(56) 2KAI 0.91 4.64 3.32 11.34 0.19 4.75 15.76 0.12

1CHG
(245)

1HPT
(56) 1CGI 1.53 5.24 2.76 4.13 0.37 6.18 14.15 0.09

2PTN
(223)

6PTI
(58) 2PTC 0.31 5.23 2.97 11.86 0.29 4.39 15.93 0.15
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Table 1. Cont.

X-ray Data
(Number of Residues)

Ligand Flexibility
Results—Best

from All Models
Results—Best

from 10 Top-Scored Models

Receptor * Ligand * Complex RMSD ** Average LoRMSD iRMSD LRMSD fNAT iRMSD LRMSD fNAT

1SUP
(275)

2CI2
(64) 2SNI 0.37 3.89 1.09 3.86 0.69 2.81 9.09 0.46

2ACE
(532)

1FSC
(61) 1FSS 0.76 4.48 3.41 7.20 0.25 15.03 32.56 0.03

1MAA
(533)

1FSC
(61) 1MAH 0.60 4.58 2.49 3.89 0.45 11.25 24.43 0.06

1A2P
(108)

1A19
(89) 1BRS 0.47 3.33 1.94 4.19 0.64 4.01 8.74 0.14

1CCP
(294)

1YCC
(103) 2PCC 0.39 4.18 3.13 10.19 0.25 11.89 26.68 0.08

1SUP
(275)

3SSI
(107) 2SIC 0.39 4.01 4.03 18.96 0.23 4.77 19.40 0.12

1VFA
(223)

1LZA
(129) 1VFB 0.59 3.72 4.61 15.07 0.11 17.45 37.15 0.00

1MLB
(432)

1LZA
(129) 1MLC 0.85 3.74 2.82 10.47 0.36 8.04 33.09 0.04

Medium-flexibility cases

1CHG
(226)

1HPT
(56) 1CGI 2.02 5.80 2.46 3.21 0.44 5.86 10.72 0.12

5C2B
(241)

4ZAI
(80) 5CBA 1.49 4.51 2.48 7.64 0.42 9.34 16.01 0.10

5P2
(166)

1LXD
(87) 1LFD 1.79 4.12 2.87 6.76 0.27 12.47 24.24 0.00

1R6C
(142)

2W9R
(97) 1R6Q 1.67 9.27 7.95 11.97 0.14 13.71 35.71 0.00

1JXQ
(242)

2OPY
(106) 1NW9 1.97 4.09 7.05 8.69 0.23 9.33 17.55 0.00

1IAS
(330)

1D6O
(107) 1B6C 1.96 4.65 4.72 10.74 0.14 12.24 23.99 0.00

5E56
(116)

5E03
(113) 5E5M 1.56 4.16 3.83 9.09 0.23 10.96 20.00 0.00

2HRA
(180)

2HQT
(115) 2HRK 2.03 7.27 3.55 10.17 0.26 10.81 32.54 0.00

4BLM
(256)

4M3J
(116) 4M3K 1.77 4.41 4.96 7.41 0.10 13.75 27.11 0.03

1E78
(578)

5VNV
(120) 5VNW 1.49 3.81 5.93 22.23 0.10 23.89 70.83 0.00

3BX8
(167)

3OSK
(121) 3BX7 1.63 4.63 4.94 17.46 0.28 6.22 20.32 0.12

6ETL
(124)

4POY
(121) 4POU 1.83 4.01 2.91 10.16 0.50 6.55 19.65 0.25

4FUD
(246)

5HDO
(126) 5HGG 0.84 4.22 3.59 12.52 0.19 13.00 29.3 0.00

3TGR
(346)

3R0M
(127) 3RJQ 0.79 4.00 5.32 16.98 0.13 12.77 33.94 0.00

6EY5
(585)

5FWO
(129) 6EY6 1.90 3.86 3.83 6.03 0.14 12.89 27.61 0.00

1SZ7
(159)

2BJN
(141) 2CFH 1.55 5.13 1.98 4.01 0.71 2.82 5.50 0.63

3V6F
(437)

3KXS
(142) 3V6Z 1.83 7.11 6.12 16.68 0.15 6.66 20.06 0.06
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Table 1. Cont.

X-ray Data
(Number of Residues)

Ligand Flexibility
Results—Best

from All Models
Results—Best

from 10 Top-Scored Models

Receptor * Ligand * Complex RMSD ** Average LoRMSD iRMSD LRMSD fNAT iRMSD LRMSD fNAT

3CPI
(437)

1G16
(156) 3CPH 2.12 4.34 4.87 15.64 0.09 15.02 27.88 0.00

1QJB
(460)

1KUY
(166) 1IB1 2.09 4.22 6.56 14.83 0.13 16.10 46.26 0.00

1IAM
(185)

1MQ9
(173) 1MQ8 1.76 4.22 4.93 14.99 0.21 26.17 70.50 0.00

3HI5
(430)

1MJN
(179) 3HI6 1.65 3.77 5.79 23.30 0.21 19.38 49.77 0.00

2G75
(429)

2GHV
(183) 2DD8 2.19 5.37 5.73 13.78 0.09 17.20 34.33 0.00

1A12
(401)

1QG4
(202) 1I2M 2.12 4.19 2.84 6.43 0.51 3.58 6.97 0.47

1N0V
(825)

1XK9
(204) 1ZM4 2.11 3.54 8.82 28.17 0.04 11.05 48.14 0.00

4EBQ
(429)

4E9O
(230) 4ETQ 0.47 3.72 7.12 14.74 0.20 8.68 19.61 0.07

1S3X
(380)

1XQR
(259) 1XQS 1.77 5.44 5.63 26.14 0.11 15.88 30.51 0.00

3HEC
(329)

3FYK
(282) 2OZA 1.89 4.29 4.35 9.32 0.33 11.24 18.8 0.03

6A0X
(437)

2FK0
(322) 6A0Z 1.28 5.75 5.75 25.59 0.16 11.43 31.39 0.00

Highly flexible cases

1CL0
(316)

2TIR
(108) 1F6M 4.9 3.83 7.02 11.34 0.10 11.92 18.06 0.00

1 × 9Y
(346)

1NYC
(110) 1PXV 2.63 4.86 5.74 14.10 0.07 7.46 16.31 0.02

1JZO
(431)

1JPE
(116) 1JZD 2.71 4.65 4.98 8.13 0.28 13.38 34.05 0.00

5D7S
(423)

2GMF
(121) 5C7X 2.26 4.17 4.12 13.61 0.34 4.69 16.74 0.20

1FCH
(302)

1C44
(123) 2C0L 2.62 5.51 5.02 5.54 0.21 10.24 24.74 0.00

1YWH
(268)

2I9A
(123) 2I9B 3.79 7.14 5.79 17.59 0.14 6.92 33.23 0.05

3L88
(550)

1CKL
(126) 3L89 2.51 9.86 4.83 10.90 0.17 17.84 31.87 0.00

1ZM8
(239)

1J57
(143) 2O3B 3.13 6.20 4.76 16.43 0.18 15.34 31.95 0.00

1G0Y
(310)

1ILR
(145) 1IRA 8.38 4.07 12.97 22.24 0.08 15.86 25.46 0.05

1QUP
(219)

2JCW
(153) 1JK9 2.51 9.40 8.07 13.85 0.10 17.41 30.74 0.00

1SYQ
(259)

3MYI
(163) 1RKE 4.25 4.15 5.26 6.43 0.38 16.11 34.67 0.00

2II0
(463)

1CTQ
(166) 1BKD 2.86 4.51 4.80 7.33 0.14 19.96 39.32 0.00

1ERN
(416)

1BUY
(166) 1EER 2.44 5.22 12.97 13.18 0.02 17.12 30.73 0.00

3AVE
(419)

1FNL
(173) 1E4K 2.60 5.32 3.44 10.07 0.43 7.59 24.33 0.13
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Table 1. Cont.

X-ray Data
(Number of Residues)

Ligand Flexibility
Results—Best

from All Models
Results—Best

from 10 Top-Scored Models

Receptor * Ligand * Complex RMSD ** Average LoRMSD iRMSD LRMSD fNAT iRMSD LRMSD fNAT

1R8M
(195)

1HUR
(180) 1R8S 3.73 5.50 6.67 13.41 0.09 15.15 25.10 0.00

1QFK
(348)

1TFH
(182) 1FAK 6.18 5.64 8.97 15.57 0.16 15.59 34.46 0.00

1F59
(440)

1QG4
(202) 1IBR 2.54 5.01 6.65 14.36 0.14 16.41 33.07 0.00

4DVB
(427)

4DVA
(246) 4DW2 2.27 3.85 6.61 21.91 0.14 9.94 29.27 0.00

1NG1
(294)

2IYL
(271) 2J7P 2.67 4.51 8.87 18.77 0.11 18.46 48.05 0.00

1UX5
(411)

2FXU
(360) 1Y64 4.69 4.15 6.42 13.50 0.27 15.50 36.42 0.00

1D0N
(729)

1IJJ
(371) 1H1V 6.62 3.44 7.92 31.14 0.36 29.12 65.07 0.03

* 4-letter PDB code for the crystal structures used in this study. ** The RMSD (in Å) of the interface Cα atoms for input receptor and ligand
after superposition onto the co-crystallized complex system.

The results analysis below focuses on the sampling performance for the selected
low-flexibility barnase/barstar case. Figure 1 characterizes iRMSD versus CABS model
energy values for the barnase/barstar (1BRS) and another low-flexibility case with clearly
the lowest iRMSD value 1.09 Angstroms (2SNI).

Figure 1. Characterization of docking results using RMSD to the X-ray structure and system energy. The left panels show
the interface-RMSD versus CABS energy values. Point color represents the temperature—from yellow (high) to pink (low).
The molecular visualizations show X-ray structures and ensembles of predicted models corresponding to selected energy
minima (numbered in the picture from 1 to 3). As presented in the picture, the minima numbered as 1st corresponds to
near-native protein–protein arrangements, others to non-native ensembles, as presented in the picture. The presented
ensembles are the sets of similar models found in the structural clustering of contact maps (see Methods). The figure shows
two modeling cases: 1BRS and 2SNI.
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Figure 2 shows example ensembles of barnase/barstar models and the most accurate
model (iRMSD 1.9 Å). A single system replica could explore an ample conformational space
that involved significantly different binding configurations and protein-ligand conforma-
tions, as demonstrated in Figure 2c and Movie S1. Figure 3a further characterizes this single
replica’s using iRMSD and LoRMSD (RMSD for ligand only) values. As presented in the
figure, the ligand structure fluctuated around 5 Å (the same fluctuations in the context of all
replicas are shown in Figure 3b). The ligand became significantly more closer to the X-ray
structure after binding to the native binding site as reflected by iRMSD values. Namely,
after correct binding, LoRMSD values got noticeably lower to around 2 Å (see Figure 3a).
In the following sections, we do not discuss this aspect of our method; however, it is worth
mentioning that the proposed method enabled a detailed analysis of plausible docking
trajectories. The described docking procedure uses REMC protocol enhanced by simulated
annealing of all 20 replicas. Figure 3c shows their evolution through different temperatures.
Figure 4 provide more detailed pictures of structural flexibility for protein “receptor” and
“ligand”. Protein–protein contacts defining the complex assembly are characterized in
Figure 5. In the presented example, the most persistent protein–protein contacts occurred
in about 15% of snapshots. Therefore, they were significantly less stable compared to
intramolecular protein contacts (Figure 4).

Figure 2. Protein–protein docking stages illustrated by barstar/barnase docking case. The figure shows the barnase receptor
in magenta and the barstar ligand in rainbow colors. The respective panels show: (a) 20 starting structures for each replica
of the system; (b) 10,000 models combined from 20 replicas (500 models per replica) in which the highly flexible ligand is
covering the entire surface of the flexible receptor; (c) 500 models from one replica only, (d) the best model obtained for
barnase/barstar system (the X-ray structure of the ligand is shown in thick ribbon, the modeled in thin ribbon).

An essential and unique feature of the presented docking simulations is the level of
backbone flexibility during docking. In the example above, the ligand backbone fluctua-
tions (LoRMSD) were in the range of 2–7 Å (Figure 3b), with the average LoRMSD value of
3.3 Å from the entire docking simulations. In other cases, the ligand fluctuations were at a
similar level or higher (see LoRMSD values in Table 1).

Finally, using structural clustering of contact maps (see Methods), we attempted to
select the set of 10 top-scored models for each case. Table 1 reports the most accurate
models out of the 10 top-scored.
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Figure 3. Docking trajectory for the selected replica of barnase/barstar system. The presented replica
reached the most accurate barnase/barstar complex structure. (a) iRMSD (interface RMSD) and
LoRMSD (ligand only RMSD) values. Example simulation snapshots illustrate the plot. The ligand is
presented in rainbow colors, the receptor in magenta. The lowest iRMSD model (1.9 A from X-ray
structure) is presented on the right lower corner superimposed on the X-ray structure (the X-ray
structure is shown in thick lines, the predicted model in thin lines). (b) Ligand only RMSD (LoRMSD)
values for all replicas. The thick red line presents selected replica. (c) Exchange of system replicas
between different temperatures driven by Replica Exchange Monte Carlo (REMC) system. The thick
red line presents selected replica. The replica trajectory is also presented in the Video S1.
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Figure 4. Characterization of barnase/barstar flexibility in the docking simulation. The figure shows
RMSF plots (upper panels) and contact maps (lower panels) for (a) the barnase receptor and (b) the
barstar ligand. The RMSF profile (see Methods) and contact maps showing the frequency of contacts
are derived from the entire simulation (derived from 10,000 models).

Figure 5. Characterization of barnase/barstar contacts. Panels show barnase/barstar models and
contact maps for entire simulation (all models, 10,000 models) and single selected replica (replica 6,
500 models) that reached a near-native arrangement. In the maps, green circles mark the native contacts.
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3. Discussion

This work demonstrates a significant improvement in the sampling of large-scale
conformational transitions during global protein–protein docking compared to other state-
of-the-art approaches. We show that modeling the large conformational changes is possible
at a relatively low computational cost. The presented simulations took between 10 and
80 h (depending on the system size) using a single standard CPU. The proposed modeling
protocol can be used as the docking engine in template-based and integrative docking
protocols using experimental structural data and additional information from various
sources [2,40]. We focused on the free docking of protein ligands with a highly flexible
backbone in the present test simulations. Using unbound structures as the input, we
produced acceptable accuracy models (iRMSD around 4 Å or lower) in low-flexibility and
medium-flexibility cases. However, the selection procedure of the most accurate models
needs further improvement. Namely, selecting the best-ranked models led to acceptable
models in about half of the tested cases.

Presently, the most common approach to account for conformational changes in pro-
tein docking is using ENM [24–28,36–38]. The applicability of ENM to modeling protein
flexibility is limited to specific systems and depends on how collective the protein mo-
tions are. Our method presents a conceptually different approach that seems to be more
realistic (see review discussing coarse-grained CABS dynamics in the context of ENM
approaches [24]). We demonstrated that it is possible to simulate effectively free dock-
ing of highly flexible protein ligands to quite elastic protein receptor structures. Such a
significant degree of flexibility was achieved using a highly efficient simulation engine
based on the coarse-grained representation of protein structures, Monte Carlo dynamics,
and knowledge-based force field. CABS coarse-graining, enhanced by the discretized
protein model and interaction patterns, significantly reduces the search space. Monte Carlo
dynamics, enhanced by Replica Exchange annealing, leads to huge speed-up of the search
procedures. Additionally, a significant (although acceptable for many problems) flattening
of energy surfaces by statistical potentials of CABS model simplifies simulations. As a
result the flexible docking using CABS-dock is orders of magnitude faster than equivalent
simulations based on classical modeling methods. Obviously, the new method also has
several limitations that have to be considered when designing new computational experi-
ments. First, since the “ligand” protein is treated as a very elastic object (what is necessary
to guarantee efficient search of the binding sites and poses) the cost of computations rapidly
grows with the protein size. Thus, completely free global docking of protein ligands larger
than 150 residues (see Table 1) may be impractical. Second, the coarse-graining of the
sampling space and simplifying interaction patterns (so important for the huge acceleration
of the simulations) makes the docking energetics less sensitive. For these reasons, the
clustering procedures, refinement of the resulting structures, and final model selection
become challenging and need further development. Additionally, speeding-up the entire
protocol can be useful. We estimate that the simulations could be easily speeded-up at least
10 times or more through algorithm parallelization. The speed-up would enable making
the protocol available as the publicly accessible and automated web service.

4. Methods

4.1. Docking Simulation Protocol

In this work, we present the protein–protein docking simulation protocol that relies
on the CABS coarse-grained model. The CABS design and applications have been recently
described in the reviews on protein coarse-grained [29] and protein flexibility [24,41]
modeling. Here we outline only its main features. The CABS model uses a coarse-grained
representation of protein chains (see Figure 6), Replica Exchange Monte Carlo (REMC)
dynamics, and knowledge-based statistical potentials. Representation of protein chains
is based on C-alpha traces, restricted to an underlying high-resolution lattice. The lattice
spacing allows slight fluctuations of the C-alpha–C-alpha distances and many pseudo-
bonds orientations. Virtual pseudo-atoms are placed in the centers of these C-alpha–C-

45



Int. J. Mol. Sci. 2021, 22, 7341

alpha bonds and are used to locate the main-chain hydrogen bonds. Additionally, the
positions of the two pseudo-atoms representing side chains are defined by the geometry of
C-alpha traces and amino-acid identities. Such fixed positions of side chains (taken from
the statistics of protein databases) reduce the model’s resolution. However, this limitation
is less serious than it may appear since even small movements of the main chain (allowed
due to the soft nature of the assumed geometrical restrictions) leads to large moves of the
side chains. This way, the packing of side chains can be quite accurate. The interaction
scheme of CABS consists of statistical potentials mimicking effects of main chain rotational
preferences, main-chain hydrogen bonds, and side-chain contacts. All statistical potentials,
derived from structural regularities observed in PDB structures, have relatively broad
minima compensating the low-resolution effects and allowing a fast search for global
energy minima. The solvent is treated implicitly, and its averaged effects are encoded
within the above-mentioned contact potentials. Energy computation for protein chain
models is very fast since many interactions could be pre-computed (and coded in large
tables) due to the discretized patterns of main chains geometry. The Monte Carlo sampling
of CABS uses a set of local movers. The resulting model dynamics is quite realistic for
large-scale distances, allowing coarse-grained modeling of protein structures, dynamics,
and protein–protein interactions.

Figure 6. Comparison of the all-atom (left) and the CABS coarse-grained model representation
(right) for an example tripeptide. In the CABS model, protein residues are represented using C-alpha,
C-beta, united side-chain atom, and the peptide bond center [29].

The modeling protocol consists of the following steps:

1. Preparing input structures of a protein-ligand and a protein-receptor. The protocol
requires the input of two protein structures (single- or multi-chain) in the PDB format.
One of them has to be indicated as a ligand and the second as a receptor. The ligand
undergoes large conformational fluctuations, translations, and rotations around the
receptor within the proposed protocol. The “ligand” should be a smaller protein
because the computational cost of searching its conformational space rapidly grows
with the chain length. That is because the motion of the entire structure (including
fold relaxation, rotation, and translation of the entire molecule) is simulated by a
random sequence of local moves. The accuracy of such sampling is acceptable for not
too-large proteins. On the other hand, treating the “ligand” as a fully flexible object
allows approximate studies of entire docking trajectories. In some cases, it would
be perhaps worth treating a larger protein (but not too large) as a flexible “ligand”,
although this was out of range of the present studies.

2. Generating starting structures. Starting conformations are built using C-alpha coor-
dinates only (in the CABS model C-alpha traces define the position of other united
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pseudo-atoms, see details [29]). The algorithm places the protein-ligand center at
20 random positions around the protein receptor at the approximate distance of 20 Å
from the protein receptor’s surface. Next, these protein-ligand systems are used as
starting conformations for the 20 replicas in the REMC CABS sampling scheme (each
replica starts from a different ligand-receptor arrangement).

3. Docking simulations using CABS coarse-grained model and REMC dynamics. Dur-
ing simulations, the protein receptor structure is kept close to the starting structure
using distance restraints. Distance restraints are generated using the input coordinates
of the C-alpha atoms. Two residues are automatically restrained if two conditions are
met. First, their separation along the sequence has to be at least five residues. Second,
the distance between their C-alpha atoms must be within the range of 5–15 Å. During
simulations, the receptor restraints imply small-scale fluctuations of the protein re-
ceptor backbone in the range of 1 Å and, accordingly, more significant fluctuations
of the side-chain atoms. A similar restraints scheme is applied to the protein-ligand
but with tenfold weaker weights. During simulations, the ligand moves freely within
the vicinity of the receptor and internal restraint allows for large-scale fluctuations of
its structure. Usually, the ligand fluctuations are within the range of 2 and 12 Å to
the input structure although folding-unfolding events are possible at highest temper-
atures. The docking simulation is conducted using CABS REMC pseudo-dynamics
with simulated annealing. In this work, 20 replicas and 20 annealing steps have
been used. All the REMC scheme parameters have been adjusted to allow for large-
scale conformational transitions, rotations, and translations of the protein-ligand in a
reasonable computational time. The modeling protocol collects trajectories from all
20 replicas. The protocol saves only a small fraction (2%) of the generated models for
further analysis i.e., 500 models from each replica, thus 10,000 models in total.

4. Reconstructing to CABS coarse-grained representation. The set of 10,000 models in
C-alpha traces are reconstructed to complete CABS model representation using CABS
algorithm [29]. In CABS, positions of C-beta and Side-Chain united atoms are defined
by the positions of the three consecutive C-alpha atoms and the amino acid identity
(the most probable positions from the PDB database are used).

5. Clustering of contact maps. First, for all of the 10,000 models the contact maps
between the receptor and the ligand proteins are calculated. Two residues are con-
sidered to form a contact if their Side Chain pseudoatoms are at most 6 Å apart (for
Alanines the C-beta atoms are considered as the Side Chain; for Glycines—it’s the
C-alpha atoms). Next, the algorithm sorts the models according to the number of the
receptor-ligand contacts, and the set of top 1000 is kept for further processing. This
way the transient and weakly bound complexes are removed from the solutions pool.
In the next step, the 1000 contact maps are clustered together to identify the most
frequently occurring contact patterns. The complete link hierarchical clustering was
used with the Jaccard index as the distance metric between contact maps. Finally, the
identified clusters are ranked according to their density, defined as the number of the
cluster members divided by the average metric between them.

6. Reconstructing to all-atom representation. Representative models from the ten most
dense clusters are reconstructed to all-atom representation using Modeller-based
rebuilding procedure [42] (or can be reconstructed using other rebuilding strategies,
see review [43]).

In recent years, the CABS model has been used for modeling the flexibility of globular
proteins [44–47] and various processes leading to large-scale conformational transitions.
These included: ab initio simulations of protein folding mechanisms [48,49], folding and
binding mechanisms [49,50], and free protein–peptide docking within the CABS-dock
tool [51–57]. The CABS-dock is a well-established peptide docking tool that has been
made available as a web server [51,52] and, most recently, as a standalone application [54].
Its distinctive feature among other tools is the possibility of fast simulation of the large
backbone rearrangements of both peptide and protein receptors during binding (see the
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review on protein–peptide docking tools [58]). In addition, the CABS-dock has been used
in multiple applications (recently reviewed [56]), including docking to receptors with
disordered fragments [41,59], GPCRs [60], and modeling proteolysis mechanisms [61].

The presented protocol for protein–protein docking utilizes the CABS-dock standalone
package [54] developed primarily for protein–peptide docking. In order to tackle the
protein–protein docking problem, key changes have been made to the docking algorithm
that aimed mainly at the improvement of the conformational sampling. First of all, the
temperature distribution between replicas in the REMC scheme was adjusted. Instead of
constant temperature increment between consecutive replicas, as in the original CABS-
dock, here we’ve implemented progressive geometric raise of the temperature increment.
Furthermore, the number of simulation replicas was increased to twenty versus ten in the
original CABS-dock. Besides the sampling improvement, a new clustering protocol was
introduced. The original CABS-dock used RMSD-based clustering, which worked well
for peptides. For the protein–protein complexes, however, purely geometrical similarity
condition such as the RMSD is too severe. Namely, for two binding poses, where the mobile
protein was docked in the exact same pocket but is slightly tilted in one of them, the RMSD
difference would be considerable. Despite representing similar binding poses, the two
structures would end up in different clusters. To overcome this, the current protocol uses
clustering based on the similarity between receptor-ligand contact maps.

4.2. Results Analysis and Quality Metrics

The docking simulation analysis was performed using Python and NumPy (Python
library). Structural differences between experimentally determined structures and gen-
erated models were evaluated using Root Mean Square Deviations (RMSDs). Interface
RMSD (iRMSD) is an RMSD calculated for interface residues of the receptor and the ligand
separated by no more than 6 Angstroms. Ligand RMSD (LRMSD) is an RMSD computed
for the ligands after the superimposition of the receptors. Ligand only RMSD (LoRMSD) is
an RMSD computed for the ligand structure only. Root Mean Square Fluctuation (RMSF)
is a measure of the amino acid’s flexibility. It is calculated for every residue as the square
root of this residue’s variance around the reference residue position. The fraction of native
contacts (fNAT) was calculated as a number of experimental structure contacts found in
the generated structure divided by the total number of contacts found in the experimental
structure. Rather restrictive contact criterion, distance up to 6 Å between side-chain centers,
was used. All figures presented in this work were generated using PyMOL, UCSF Chimera,
and Matplotlib (Python library).

4.3. Dataset

In this docking study, we used protein–protein cases from the ZDOCK benchmark
set [62] (cases in which a smaller size protein—a protein-ligand—contained more than one
protein chain, or chain gaps, were discarded from our set). The set comprises the three
flexibility-based subsets: low-flexible (almost rigid), medium-flexible, and highly flexible
with available unbound X-ray structures of both the protein-receptor and the protein-ligand.
The unbound structures were used as the docking input. As the reference for calculating
various similarity measures, we used the X-ray structures of the protein-ligand complexes.
Table 1 lists all the PDB IDs of X-ray structures used in the study.

5. Conclusions

In summary, the described docking procedure accounts for large-scale protein struc-
ture fluctuations during unrestrained protein–protein docking search for the binding site.
The exploration of such vast conformational space has not been demonstrated before to
the best of our knowledge. The approach shows unprecedented sampling possibilities;
however, the accuracy of the obtained complexes is still lower than observed for state-of-
the-art docking tools. Definitely, the balancing of the structural restraints scheme needs
further developments and tests. Therefore, this work is the first step towards a mature
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protein–protein docking tool. The next development steps would involve modifications of
the distance restraints scheme, which allow for different degrees of flexibility for appropri-
ate protein fragments (now the presented algorithm treats the entire protein-ligand as very
flexible) and force-field improvements. The proposed approach is also very promising in
the refinement applications when searching for the binding site is not needed, and only the
protein–protein interface needs to be optimized.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22147341/s1, Video S1. The trajectory of a single replica from the protein-protein
docking simulation of barnase/barstar system. The movie shows the barnase receptor in surface
representation and the barstar ligand in ribbon. The presented replica reached the model with
interface RMSD value 1.9 Angstrom from the complex X-ray structure, shown as transparent ribbon.
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Abstract: The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak in Decem-
ber 2019 has caused a global pandemic. The rapid mutation rate in the virus has created alarming
situations worldwide and is being attributed to the false negativity in RT-PCR tests. It has also
increased the chances of reinfection and immune escape. Recently various lineages namely, B.1.1.7
(Alpha), B.1.617.1 (Kappa), B.1.617.2 (Delta) and B.1.617.3 have caused rapid infection around the
globe. To understand the biophysical perspective, we have performed molecular dynamic simulations
of four different spikes (receptor binding domain)-hACE2 complexes, namely wildtype (WT), Alpha
variant (N501Y spike mutant), Kappa (L452R, E484Q) and Delta (L452R, T478K), and compared their
dynamics, binding energy and molecular interactions. Our results show that mutation has caused
significant increase in the binding energy between the spike and hACE2 in Alpha and Kappa variants.
In the case of Kappa and Delta variants, the mutations at L452R, T478K and E484Q increased the
stability and intra-chain interactions in the spike protein, which may change the interaction ability
of neutralizing antibodies to these spike variants. Further, we found that the Alpha variant had
increased hydrogen interaction with Lys353 of hACE2 and more binding affinity in comparison to
WT. The current study provides the biophysical basis for understanding the molecular mechanism
and rationale behind the increase in the transmissivity and infectivity of the mutants compared to
wild-type SARS-CoV-2.

Keywords: B.1.1.7; B.1.617.2; COVID-19; E484Q; T478K and L452R mutation; N501Y mutation;
spike protein

1. Introduction

The Severe Acute Respiratory Syndrome—Coronavirus-2 (SARS-CoV-2), first detected
in December 2019 in the Wuhan province of China, has caused the COVID-19 pandemic. As
of August 18, 2021, there are more than 208,470,375 confirmed cases, and 4,377,979 people
have lost their lives (https://covid19.who.int/) (accessed on 18 August 2021). The SARS-
CoV-2 belongs to the family of beta corona virus, the same class of viruses responsible for
previous pandemics caused by SARS-CoV and MERS [1–3]. SARS-CoV-2 possesses a large
single-stranded RNA as genetic material and has four main structural components, namely,
Envelope protein, spike protein, membrane protein and nucleocapsid [4–6]. The main struc-
tural element that enables this virus to attach to the host receptor is the spike glycoprotein,
and it also gives the crown-like appearance to the virus, hence it is named Coronavirus [7–9].
The spike glycoprotein of SARS-CoV-2 attaches to the human angiotensin converting en-
zyme (hACE2) receptor and is then activated by another human enzyme, transmembrane
protease serine (TMPRSS2), to enter the host cells [9–11]. Since spike is the primary tar-
get receptor for the entry and the main virulence factor of the virus, various therapeutic
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drugs and vaccines are being made and tested against it [11,12]. Although multiple med-
ications such as remdesivir or hydroxychloroquine, lopinavir and ritonavir have been
recommended by the World Health Organization (WHO) against COVID-19, their efficacy
is still the topic of debate [13–15]. Similarly, WHO has issued an emergency use listing for
certain vaccines such as BNT162B2 from Pfizer, AstraZeneca/Oxford COVID-19 vaccine,
manufactured by the Serum Institute of India and SKBio, and Ad26.COV2.S, developed
by Janssen (Johnson & Johnson) (https://www.who.int/covid-19/vaccines) (accessed on
20 April 2021). However, the SARS-CoV-2 cases are still increasing at an alarming rate all
over the globe, and the primary rationale behind it is the rapid accumulation of mutations
in the SARS-CoV-2.

In the past few months, multiple variants of the SARS-CoV-2 have been reported.
Some of them are the variant of concern (VOC), which have increased the infectivity or have
the potential of immune escape. Almost all the VOCs reported till now have mutations
in the spike glycoprotein of the virus, which has increased the binding affinity of the
virus to hACE2 or has conferred immune escape potential [16,17]. The Lineage B.1.1.7 or
20I/501Y.V1 (Alpha variant) was detected in the United Kingdom in September 2020. This
variant increased the transmissibility by 40–80% and has been partially correlated with
N501Y mutation in the receptor binding domain (RBD) of spike protein [18] (Figure 1A).
In October 2020, B.1.351 (Beta variant) was detected in the South African population,
which could infect more younger people and had three primary mutations in the RBD
of spike protein, namely, N501Y, K417N and E484K [19,20]. Similarly, the lineage P.1
(Gamma variant) detected in January 2021 in the Brazilian population had three mutations
of concern in spike RBD, namely, N501Y, K417T and E484K [17,21]. In our previous study,
we had reported that N501Y mutation could enhance the ACE2 affinity and possibly confer
resistance towards the antibodies [17]. Our results also indicated the reinfection potential
of P1 and N501Y.V2 variants. In another study, it has been reported that N501Y mutation
increases (dissociation constant: 22 nM to 0.44 nM) the binding affinity with hACE2 [22].
In India, lineage B.1.617 and B.1.618 have been recently reported, which had caused a rapid
increase in the COVID-19 cases in the country [23,24]. The B.1.617 lineage, has been further
divided into three sub lineages namely, B.1.617.1 (Kappa), B.1.617.2 (Delta variant) and
B.1.617.3 [25] (Figure 1B). Out of these three sub lineages of B.1.617, the Delta variant has
been identified as a variant of concern (VOC) and reported to be the main variant behind the
second wave in India by WHO (https://www.who.int/en/activities/tracking-SARS-CoV-
2-variants/) (accessed on 6 June 2021). The Kappa is characterized by E154K, L452R, E484Q,
D614G, P681R, Q1071H mutations in the spike protein and Delta by T19R, L452R, T478K,
D614G, P681R, D950N mutations while the B.1.617.3 lineage has T19R, L452R, E484Q,
D614G, P681R mutations in the spike protein. All these lineages have conserved L452R,
D614G and P681R (https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/)
(accessed on 6 June 2021). While in this study we have focused on the mutations within
the RBD of spike protein, the D614G mutation (present outside the RBD region) has
already been reported to increase the binding affinity with hACE2 and is susceptible to
neutralization by antibodies [26].

While this paper was ready for submission a new sub variant of B.1.617 was de-
tected and named as DeltaPlus. It contains same mutations as Delta variant and two other
mutations—K417N and W258L in the spike glycoprotein [27]. Further, the B.1.618 (triple
mutant), recently detected in the four Indian states (Maharashtra, Delhi, West Bengal and
Chhattisgarh), has been characterized by the deletion of Tyr145 and His146 as well as
E484K and D614G mutation in the spike protein (https://cov-lineages.org/) (accessed
on 10 July 2021) [24]. The sudden increase in COVID-19 cases in India is attributed to
the Delta variant and its higher binding affinity towards hACE2 along with its immune
escape ability [17,28]. In previous epidemiological and genomics study the sudden increase
in the incidence of B.1.617.2 during February to April 2021 in India has been shown as
the reason for the increased COVID-19 positivity rate [29]. A recent study focused on
Delhi population sera survey, has reported that prevalence of B.1.617 lineage increased
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from 5 % in February to 60 % in April 2021 [29]. The loss of E484Q mutation and gain of
T478K in the B.1.617.2 lineage directly correlated with increase in the positivity rate [29].
In another recent study, it has been reported that infection with B.1.617.2 variant could
be controlled by antibodies induced due to prior infection or BNT162b2 vaccination, but
with lower efficacy than the B.1.351 variant. This study further demonstrated that B.1.617.2
variant has greater lung cell entry and cell to cell fusion, indicating its higher lung infection
capacity [30]. Although various studies have shown the phenotypic effect of the mutations,
and increased transmissibility, limited data exist on comparative dynamics, molecular
interactions, and changes in energetics due to these crucial mutations in the RBD domain
of the spike protein of various mutants.

Figure 1. The structure of the receptor binding domain (RBD) of SARS-CoV-2 spike protein complexed with human
angiotensin converting enzyme 2 (hACE2) receptor. (A) The sphere shape residues in hot pink colour show N501Y mutation
in the spike protein of SARS-CoV-2. (B) At L452R, T478K and E484Q mutations in the spike protein (RBD) of B.1.617 lineage.

In the present study, we have aimed to investigate the thermodynamic effects of the
mutations in the RBD region of the spike glycoprotein interacting with hACE2 and compare
that with the wildtype. We accordingly studied two crucial variants Alpha, Kappa and
Delta, which caused an increase in COVID-19 cases in various countries, including India.
As in lineage B.1.617, Kappa and B.1.617.3 have same L452R and E484Q mutation in RBD
of spike, while Delta has L452R and T478K, we have only considered Kappa and Delta in
this study. These three variants (Alpha, Kappa and Delta) possess significant mutations in
the RBD domain of the spike glycoprotein and have a higher infectivity rate. Therefore, to
study and compare the dynamics, interactions and binding free energy of wildtype and
spike protein variants with hACE-2 at the molecular level, we have performed the classical
molecular dynamic (MD) simulations.

2. Results

The Mutant Spike Proteins Have a Better Binding Affinity with hACE2 in Comparison to Wildtype

The wildtype (WT) spike-hACE2 complex, along with the prepared and equilibrated
Alpha, Kappa and Delta spike variants, were simulated for 200 ns. All the four structure
complexes were first analysed for investigating the dynamics. In RMSD analysis, we found
that the three complexes had a similar deviation around 2.5 Å from the initial structure
over the 200 ns of simulations; Kappa_Spike-hACE2 (2.36 ± 0.27 Å), Alpha_Spike-hACE2
(2.62 ± 0.67 Å) and WT_Spike-ACE2 (2.82 ± 0.84 Å), while more around 3 Å deviation
was found in the Delta_ Spike-hACE2 (3.12 ± 0.69 Å), as shown in Figure 2A. When
RMSF of the simulated complexes was analysed, it was found that the residues number
Arg355 to Phe400 of the spike protein was more flexible, especially in Delta. In addition, the
fluctuation in the mutant residues was not high in the case of Kappa, although, it was found
that residue Val445 had more fluctuations than the WT and N501Y mutants (Figure 2B). The
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average RMSF for WT was 2.95 ± 0.86 Å, for B.1.617 it was 2.66 ± 0.94 Å, for Delta it was
4.44 ± 1.62 Å, and for the Alpha spike protein it was 3.02 ± 1.09 Å. Though the RMSD and
RMSF analysis suggested lesser stability of Delta in comparison to other studied complexes,
no significant higher fluctuation was seen in the mutated residues in comparison to its
overall structure. After analysing the fluctuation and deviations in the structures, the
number of hydrogen bond count was calculated between the spike protein and hACE2
for all three structures. It was found that WT (12.23 ± 2.58) and Kappa (11.81 ± 2.07) had
similar number of hydrogen bonds, followed by Delta (9.78 ± 2.40) and Alpha (9.19 ± 1.81)
(Figure 2C). We further analysed the significant residues, to find out which of them has
greater than 30% of the occupancy of hydrogen bond throughout the simulation. It was
found that Alpha and Kappa spike mutants had more residues interaction with hACE2
than WT and Delta. In the case of WT and Delta, three residues (Tyr453, Thr500 and
Gly502) and (Lys417, Gln493 and Gly502) of the spike protein were making a hydrogen
bond with hACE2 for more than 30% of the simulation time, respectively. In comparison,
in the Alpha spike mutant, five residues (Lys417, Ala475, Asn487, Thr500 and Gly502)
were involved, and in Kappa, there were six residues (Lys417, Tyr449, Asn487, Tyr489,
Tht500 and Gly502) of the spike protein that had significant hydrogen bond interactions
with hACE2 (Figure S1). When the hydrogen bond interaction of mutated residues was
checked, it was found that in Kappa, Q484 had only 0.1 fraction time interaction with E75
of hACE2 and in Delta, T478 had 1.5 fraction of time of interaction with Q353 of hACE2
throughout the simulations. Similarly, in case of Alpha, N501 had only 1.5 fraction of time
of interaction with K353 of hACE2. Hence, the hydrogen bond analysis suggested that this
mutation did not have any direct significant in terms of interaction with hACE2. It was
observed that Gly502 was the critical residue interacting significantly with hACE2 in all
four complexes. None of the mutated residues in Alpha, Kappa and Delta were found to be
making significant hydrogen bonding with hACE2. Hence, it was essential to investigate if
these mutated residues of the spike protein had interaction with any other spike residues
or other interactions with hACE2 for any fraction of time. To analyse the changes in the
interaction due to mutation, we extracted the three structures at the 50 ns interval from
all the three simulated complexes. It was found that in the case of Kappa variant, in the
50th ns frame, neither Arg452 nor Gln484 were involved in any polar contact with other
residues, while in 100th ns and 150th ns frame, it was found that Gln484 was making
hydrogen bond contact with Ser349 and Asn450 of the spike protein itself, while in WT
spike protein, Glu484 was making a hydrogen bond only with Ser349. It was observed that
there was an increase in intra-chain interaction Spike protein due to mutation of E484Q. In
Delta, no major interactions of mutated residues were found in comparison to WT spike,
however in 100th ns frame, Lys478 was making intra-chain interaction with Ser476 of spike
that was not found in case of Thr478 of WT spike. Similarly, when the Alpha variant was
compared with WT, it was found that due to Asn to Tyr mutation at 501st residue, there
was an increase in the hydrogen bonding with Lys353 of hACE2 (Figure 3).

The increase in the intra-chain interaction in case of B.1.617 indicated that it may
interfere in the human antibodies’ interaction with the spike protein. In the case of Alpha,
the increase in hydrogen bond contact with hACE2 indicated higher binding affinity of
this mutant with hACE2 in comparison to WT. The MM/GBSA binding free energy has
been earlier reported to correlate with the binding affinity between the complexes [31,32].
However, it is mainly used for comparing the binding energies of the studied complexes,
not for absolute free energy calculations. Therefore, to assess and compare the bind-
ing affinity of the spike protein towards hACE2, we calculated the MM/GBSA binding
free energy by extracting twenty structures in equal spans from 50th to 200 ns of the
simulated trajectories. It was found that Alpha (−103.35 ± 16.31 kcal/mol) and Kappa
(−101.90 ± 18.40 kcal/mol) spike proteins had a similar and higher binding affinity with
hACE2 in comparison to WT (−96.87 ± 14.57 kcal/mol) (Figure 2D). Surprisingly, the
MM/GBSA binding free energy of Delta with hACE2 was far less (−37.03 ± 22.79 kcal/mol)
in comparison to all the studied complexes. Further, to calculate the energy contribution of

56



Int. J. Mol. Sci. 2021, 22, 9131

individual mutated residues, prime energy was calculated for the twenty extracted struc-
tures, which showed that Kappa and Delta had a more stabilizing effect on the spike protein
compared to WT, a recent study also shows similar results [33]. The average energy con-
tribution of Arg (−50.90 ± 3.99 kcal/mol) in comparison to Leu (−22.15 ± 2.60 kcal/mol)
at 452nd position of the spike protein was found to be high. The energy contribution
of Gln (−56.03 ± 2.31 kcal/mol) in comparison to Glu (−47.12 ± 2.25 kcal/mol) at 484th
position of spike protein was relatively higher. Similarly, Lys (−9.40 ± 2.66 kcal/mol) was
favourable than Thr (−3.20 ± 2.93 kcal/mol) at 478th position. However, in the case of the
Alpha mutant, it was noticed that Asn (−64.31 ± 3.59 kcal/mol) at 501st position was more
energetically favourable than Tyr (−31.55 ± 3.26 kcal/mol) (Table 1).

Figure 2. MD simulation analysis of the three simulated complexes. (A) RMSD plot showing similar deviation of all the
simulated structures. (B) RMSF plot reveals that Residues 350-400 of the spike receptor binding domain (RBD) are more
flexible, while the mutated residues have lesser fluctuation and are also comparable in all three structures. (C) The number
of hydrogen bond count indicates that WT and Kappa variant have similar and higher number hydrogen bonds compared to
Delta and Alpha variants. (D) MM/GBSA binding free energy of the 20 structure complexes extracted from each trajectory
at equal span, suggesting that Kappa and Alpha spike variants have higher affinity for hACE2 in comparison to Delta
and WT.

Although these binding energy calculations are theoretical and cannot be taken as
absolute values, however, they are typically used for the comparison of binding affinity of
the complexes with respect to each other. The interactions and binding energy calculations
showed that in B.1.617 variant, there is a decrease of energy due to mutations as well as
change in intra-chain interactions, which may lead to stabilization and interference with
neutralizing antibodies interactions.

Overall, a significant increase in the binding affinity was observed in case of Kappa
and Alpha variant in comparison to WT. However, the MM/GBSA binding energy of Delta
with hACE2 was less in comparison to WT, suggesting that there must be some other ways
these spike RBD mutations of Delta variant are helping in increased transmission but not
by increasing the affinity with hACE2. While the Delta and Kappa mutations were found to
be stabilizing the spike protein, but not N501Y of Alpha, increase/change in the intrachain
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interaction in the spike protein was observed in all the studied variants. Therefore, it can be
interpreted that stabilization of the spike protein, increase of binding energy and increase
in intra-chain interactions are crucial and are somehow aiding the Kappa variant, whereas
in the Delta variant, it is the stabilizing of spike and increases in the intra-chain interactions.
In the Alpha spike mutant, increases in the hydrogen-bond interaction and binding affinity
with hACE2 could be the reason for more transmissivity of this mutant.

Figure 3. Comparing the interaction of the mutated residues and wild-type residues in the three structures extracted at
50 ns span from the simulated trajectories: spike protein (turquois color), and hACE2 (orange color). (A) Kappa spike
variant and its interactions; Gln484 of the spike protein making intra-chain hydrogen bonding with Ser349 and Asn450 in
the 100th and 150th ns frame. (B) Alpha spike variant interactions. The hydrogen bond interaction of Tyr501 of mutant
spike protein with Lys353 of hACE2 in the 100th and 150th ns frame. (C) The interaction of wild type residues at 50th, 100th
and 150th ns of the simulation shows that Glu484 of spike protein had only one hydrogen bond interaction with Ser349 or
Tyr351 of spike itself. Similarly, Asn501 of spike was making hydrogen bond interactions with its residues only. (D) In the
Delta spike variant, at 100th ns frame, an addition of a hydrogen bond of Lys478 with Ser476 was observed.
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Table 1. Residue wise energy contribution of the mutated residues compared with the wildtype for
the twenty structures extracted from 50 to 200 ns of the simulation for all the three complexes.

Kappa (kcal/mol) Delta (kcal/mol) WT (kcal/mol) Alpha (kcal/mol)

R452 Q484 R452 K478 L452 E484 N501 T478 Y501

−47.16 −51.43 −48.67 −7.51 −23.45 −47.06 3.44 3.44 −31.72

−50.69 −57.57 −49.32 −7.05 −23.04 −48.53 9.92 9.92 −27.6

−42.13 −56.15 −47.15 −10.92 −23.89 −45.52 3.81 3.81 −32.73

−52.43 −56.51 −45.49 −11.73 −20.05 −48.94 2.89 2.89 −31.96

−54.38 −58.47 −47.68 −9.31 −23.68 −50.2 2.03 2.03 −26.71

−54.05 −56.86 −46.76 −12.17 −25.88 −47.91 2.60 2.60 −29.47

−56.11 −53.98 −50.68 −7.42 −21.65 −47.86 4.45 4.45 −37.94

−47.14 −56.4 −45.18 −10.38 −22.44 −44.1 7.27 7.27 −33.03

−56.47 −57.21 −50.03 −13.46 −22.87 −43.55 −3.05 −3.05 −31.87

−54.79 −53.25 −48.51 −10.35 −22.05 −48.18 3.55 3.55 −33.2

−50.07 −51.51 −52.83 −6.85 −20.9 −46.46 7.14 7.14 −33.69

−45.38 −53.04 −55.77 −9.25 −17.67 −45.08 1.14 1.14 −25.84

−49.22 −59.17 −50.34 −11.01 −25.26 −49.82 4.00 4.00 −34.98

−51.75 −58.8 −47.65 −9.99 −16.19 −47.49 −0.80 −0.80 −29.93

−45.95 −55.64 −45.07 −14.89 −18.58 −47.46 2.51 2.51 −34.11

−48.85 −56.21 −45.52 −11.16 −20.55 −49.06 4.97 4.97 −34.51

−48.93 −56.69 −49.63 −6.93 −24.27 −46.24 5.18 5.18 −31.49

−54.01 −56.35 −48.91 −4.89 −23.78 −50.55 1.66 1.66 −32.64

−55.01 −59.25 −54.44 −7.28 −21.35 −41.95 0.17 0.17 −32.55

−53.5 −56.27 −53.66 −5.53 −25.55 −46.55 1.23 1.23 −25.06

−50.90
± 3.99

−56.03
± 2.31

−49.16
± 3.11

−9.40
± 2.66

−22.15
± 2.60

−47.12
± 2.25

−64.31
± 3.59

−3.20
± 2.93

−31.55
± 3.26

3. Discussion

The recent variants of SARS-CoV-2 are cause of the second wave of the COVID-19
around the world and setback to healthcare infrastructure specially in India [28,34]. The
transmission of the three variant of concerns (VOC), namely, Alpha, Beta and Delta identi-
fied in UK, South Africa and India, respectively were drivers of subsequent infection waves
in these nations (https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/)
(accessed on 6 June 2021). Alpha, the first VOC initially discovered in September 2020 in
the UK population has four main mutations (H69-, V70-, N501Y and D614G) in the spike
protein [35]. These mutations are reported to be the mutations of concern, in other words,
these mutations are positively selected by the virus for its higher transmission. These
mutations were found in various other SARS-CoV-2 variants as well, which emerged after
it. After Alpha, the second main VOC detected was Beta in October 2020 in the South
African population, and it had five main mutations, which were reported to be beneficial
for transmission—L18F, K417N, E484K, N501Y and D614G [35]. The N501Y and D614G
was conserved in both Alpha and Beta VOC and are believed to be crucial mutations for
their higher transmission and infectivity. In a recent study, where 12 monoclonal antibodies
were tested for their neutralizing activity against Alpha and Beta variants, it was found that
N501Y of Alpha variant modulated interaction of neutralizing antibodies only, while in
case of Beta, complete loss of activity was observed in most of the antibodies, mediated by
K417N and E484K, in comparison to wildtype [36]. The same study further reported that
when convalescent plasma from the 20 patients infected before the emergence of Alpha was
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investigated, it lost >2.5-fold neutralizing activity against Beta, while maintaining activity
against Alpha. Additionally, when the efficacy of Moderna and Pfizer vaccines were tested,
it was found that there was no loss of neutralizing activity against Alpha, whereas every
sample lost activity against Beta [36]. Another similar study, where convalescent sera from
infected people and vaccine recipients were tested against Alpha, suggested that it is not
a neutralization escape VOC in terms of vaccine efficacy. Several studies including the
current one has indicated that N501Y mutation is the main reason behind the increase of
Alpha transmission [22,37]. Overall, recent studies suggest that though the Alpha variant
has higher transmission, it is not an escape variant and could be neutralized by the vaccines
available and will be available in the near future [36]. The VOC next to Alpha, i.e., Beta has
been found to be greater concern than Alpha in terms of its neutralization by convalescent
plasma of the infected individuals and Moderna and Novavax vaccines [38].

Earlier this year, in March 2021, the B.1.617 lineage found in India transmitted rapidly
and is being investigated for its role in severity and mortality [34]. Recently, sub lineages
of the B.1.617 - Kappa, Delta and B.1.617.3 were reported and characterized. The B.1.617.1
is characterized by E154K, L452R, E484Q, D614G, P681R, Q1071H mutations in the spike
protein. In a recent study on B.1.617 lineages, it has been shown that the P681R has
highest impact in increasing the fusion activity, followed by E484K and L452R [39]. Further,
when the Kappa spike mutant was tried to be neutralized with Pfizer vaccine sera, it was
found that E484K conferred a ten-fold reduction in neutralisation, E484Q had a slightly
milder yet significant impact, however, with E484Q and L452R combined, there was a
statistically significant loss of sensitivity [39]. In another study, two-fold reduction in
the neutralization efficacy of Covaxin vaccine (BBV152) was observed against B.1.617.2
variant [40]. Combining previously published literature with our current observations, the
alpha and delta SARS-CoV-2 variants with their mutations have optimally struck balance
between higher transmission and immune evasive capabilities. Overall, the previous
studies reported against the B.1.617 variant have indicated a slight decrease of neutralizing
activity of vaccines in comparison to wildtype, however, they still provided significant
protection. Similarly, previous studies have reported that L452R, E484Q/K, P681R and
T478K might have role in the increased transmissibility, while the molecular level rationale
is not clear [39–41]. This was investigated in this study.

In the current study, we described the interactions of mutant spike RBD with hACE2
of wildtype, Alpha, Kappa and Delta variants. The binding affinity was found to be least in
case of Delta, while Kappa and Alpha spike RBD had higher binding affinity with hACE2
in comparison to wildtype. The results of binding free energy calculations suggested that
E484Q and N501Y mutations are crucial for increasing the binding affinity. The comparative
MM/GBSA binding energy calculations of N501Y reported here positively correlate with
the available experimental absolute binding free energy reported elsewhere [22]. Further, it
was found that the L45R, E484Q and T478K mutations are highly energetically favourable
for the spike protein based on the prime energy calculations of the mutated residues.
Though the mutations do not change, the molecular interactions between the hACE2 and
spike significantly, the snapshots from the MD simulations clearly indicated the change and
increase of the intra-chain interactions in the mutated spike proteins, possibly interfering
with the neutralising antibodies. Further analysis of these mutants with neutralizing
antibodies is expected to provide more mechanistic insights.

4. Materials and Methods

4.1. MD Simulations

The X-ray crystal structure of SARS-CoV-2, spike RBD bound with hACE2 was re-
trieved from Protein Data Bank (PDB) having PDB ID 6M0J. Along with wildtype, three
mutants of the spike protein were created, namely, Alpha (N501Y), Kappa (L452R and
E484Q) and Delta (L45R and T478K) using the Maestro Suite of Schrodinger software
(2020-3, NY, USA) [31]. All the four structures were then pre-processed for missing side
chains, deleting waters, the addition of hydrogens, hydrogen bond optimization and
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restrained minimization using the protein preparation wizard of Schrodinger software
(2020-3, NY, USA) [31]. The prepared mutated structures were then subjected to classical
molecular dynamics for 50 ns for the stabilization of the mutated structures and the last
frame structure was taken for further studies. The following protocol was adopted for the
MD simulations of all four prepared structures—each system was solvated with the TIP3P
water model in an orthorhombic periodic boundary box. To prevent interaction of the
protein complex with its own periodic image, the distance between the complex and the
box wall was kept at 10 Å. The system was then neutralized by the addition of appropriate
number of Na+/Cl− ions depending on the complex using OPLS3e forcefield. Then the
energy of the prepared systems was minimized by running 100 ps low-temperature (10 K)
Brownian motion MD simulation (NVT ensemble) to remove steric clashes and move the
system away from an unfavourable high-energy conformation. Further, the minimized
systems were equilibrated in NVT and NPT ensembles using the “relax model system
before simulation” option in the Desmond Schrodinger suite [31]. The equilibrated systems
were then subjected to 200 ns unrestrained MD simulations in NPT ensemble with 300 K
temperature maintained by Nose–Hoover chain thermostat constant pressure of 1 atm
maintained by Martyna–Tobias–Kelin barostatand an integration time step of 2 fs with a
recording interval of 200 ps.

4.2. Analysis of the MD Simulation

The root mean square deviation (RMSD), root mean square fluctuation (RMSF), num-
ber of hydrogen bonding was calculated using the simulation event analysis tool of the
Desmond Suite integrated into Schrodinger software. Further, the occupancy of the hydro-
gen bonding between the spike protein and hACE2 was calculated using visual molecular
dynamics (VMD) (1.9.4, UIUC, Champaign, IL, USA) [42]. The molecular mechanics gen-
eralized born surface area (MM/GBSA) free binding energy between spike proteins and
hACE2 was calculated using the prime module of Schrodinger software [31]. Twenty
structures extracted from 50 ns to 200 ns from each of the trajectories were used for this
computation using the following equation:

MM
GBSA

ΔGbind = ΔGcomplex −
(

ΔGreceptor + ΔGligand

)
ΔG = ΔEgas + ΔGsol − TΔSgas

ΔEgas = ΔEint + ΔEele + ΔEvdw

ΔGsol = ΔGgb + ΔGsurf

The binding free energy (ΔGbind) is dissociated into binding free energy of the complex,
spike and hACE2. The gas–phase interaction energy (ΔEgas) was calculated as the sum of
electrostatic (ΔEelec) and Van der Waal (ΔEvdw) interaction energies, while internal energy
was neglected. The solvation free energy (ΔGsol) contains non-polar (ΔGsurf) and polar
solvation energy (ΔGgb), which was calculated by using the VSGB solvation model and
OPL3e force field, while the entropy term was neglected by default [31,43].

The energy contribution of the mutated residues was then compared with wildtype
residues. The Prime module of Schrodinger software (2020-3, NY, USA) was used for
calculation of the energy contribution of the individual residues. The solvent model used
here was surface generalized born (SGB), with variable dielectric enabled, the internal
dielectric was 1.00 and solvent dielectric was 80.00 [31].

The following equation was used for the calculation of prime energy of
individual residues:

Total energy = covalent total + non − bonded total + other − SGB14|SGB − torsinol

Here, other energy = SGB self, nonpolar, hydrogen bond, packing, self − contact.
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5. Conclusions

In this study, MD simulations were performed to compare the binding energy, inter-
actions and change in dynamics of spike (RBD)–hACE2 complexes, namely WT, Alpha,
Kappa and Delta. It has been shown that mutants have a higher number of significant
hydrogen bond interactions with hACE2, and the binding free energy of the mutants is also
higher in comparison to WT, except in case of Delta. In the B.1.617 lineage, the mutations
were favourable in terms of making the spike energetically stable as well as in terms of
intra–chain residue interactions. In alpha spike, the mutation led to an extra interaction
and higher binding affinity with hACE2 compared to WT. The increased molecular level
interaction dynamics of spike–hACE2 and the predicted increased structural stability of
its spike protein and hACE2 affinity can be possibly linked to higher transmissibility of
B.1.617 and Alpha variants of SARS-CoV-2.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22179131/s1, Figure S1. (A) The hydrogen bond occupancy in WT spike–hACE2 complex,
(B) Alpha variant (C) Kappa and (D) Delta variants throughout the 200 ns of MD simulations.
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Abstract: Rare germline pathogenic TP53 missense variants often predispose to a wide spectrum of
tumors characterized by Li-Fraumeni syndrome (LFS) but a subset of variants is also seen in families
with exclusively hereditary breast cancer (HBC) outcomes. We have developed a logistic regression
model with the aim of predicting LFS and HBC outcomes, based on the predicted effects of individual
TP53 variants on aspects of protein conformation. A total of 48 missense variants either unique
for LFS (n = 24) or exclusively reported in HBC (n = 24) were included. LFS-variants were over-
represented in residues tending to be buried in the core of the tertiary structure of TP53 (p = 0.0014).
The favored logistic regression model describes disease outcome in terms of explanatory variables
related to the surface or buried status of residues as well as their propensity to contribute to protein
compactness or protein-protein interactions. Reduced, internally validated models discriminated
well between LFS and HBC (C-statistic = 0.78−0.84; equivalent to the area under the ROC (receiver
operating characteristic) curve), had a low risk for over-fitting and were well calibrated in relation to
the known outcome risk. In conclusion, this study presents a phenotypic prediction model of LFS
and HBC risk for germline TP53 missense variants, in an attempt to provide a complementary tool
for future decision making and clinical handling.

Keywords: Li-Fraumeni syndrome; hereditary breast cancer; germline TP53 missense variants;
quantitative prediction model; protein conformation

1. Introduction

Li-Fraumeni syndrome (LFS) is a rare heritable extreme tumor risk syndrome char-
acterized mainly by premenopausal breast cancer, soft tissue sarcoma, brain tumors, os-
teosarcoma and adrenocortical carcinoma, and was first described in 1969 [1]. LFS was
subsequently shown to be associated with a germline TP53 variant [2]. As more fami-
lies with a variety of tumors were reported, less restricted criteria became used to define
Li-Fraumeni-like (LFL) families [3] that did not meet the classical LFS criteria but were
suggestive of LFS, with a detection rate for germline TP53 alterations of 20–40% in LFL
as compared to 70% in LFS [4]. At present, the most commonly used screening criteria
are the Chompret criteria, with a detection rate of 29%, since they include a large group
of patients for screening [5]. For example, according to these criteria a patient with breast
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cancer below 31 years, should be screened irrespective of family history. With the increased
use of cancer gene panels in genetic testing, the detection of pathogenic TP53 variants has
increased, and up to 1% of families with exclusively hereditary breast cancer (HBC) have
been shown to carry a germline TP53 variant [6].

The wide range of phenotypic presentation associated with germline TP53 variants
makes tumor risk assessment difficult and genetic counseling challenging in these patients
and families. Moreover, 7–20% of constitutional TP53 alterations are de novo [7], and
thus presented in individuals without a family history of the disease. Due to the lack of
knowledge about predicting genotype-phenotype association, all germline carriers are
recommended a thorough surveillance program including yearly whole-body magnetic
resonance imaging (MRI) examinations with the result that a large proportion of TP53
variant carriers are exposed to unnecessary examinations [8,9].

The TP53 protein is a transcription factor that binds as a tetramer to DNA, and activates
a large number of genes that promote DNA repair mechanisms or apoptosis including
cell cycle regulatory proteins and members of the Bcl-2 family [10,11]. Each monomer
is divided into different structural and functional domains, including a transactivation
domain, a proline-rich region, a DNA binding domain (DBD), a oligomerization domain, a
nuclear localization signal and a C-terminal regulatory domain [12]. TP53 plays a critical
role in genomic homeostasis, and its activities are tightly regulated by a network of protein-
protein interactions, microRNAs, and a range of post-translational modifications, including
phosphorylation, acetylation, methylation and ubiquitination [13].

About two thirds of reported germline TP53 variants are single site missense changes,
predominantly located in the DBD [14]. Carriers are heterozygous for the TP53 variant thus
possessing both wild-type and variant monomers allowing formation of hetero-tetramers
that result in a dominant-negative functional effect of some variants [15]. It has been
suggested that patients with missense variants have earlier age of tumor onset (23.8 years),
compared to those with loss of function variants (28.5 years) [16]. Moreover, unequal
penetrance of missense variants is known in LFS where, for example, 58% of carriers with
R248W (amino acid change at residue 248 from arginine to tryptophan) compared to only
21% of carriers with R231Q develop tumors before 30 years of age [17].

The TP53 DBD consists of a beta-sandwich tertiary structure with two antiparallel
beta-sheets, that serve to orientate and stabilize the loop-sheet-helix DNA-binding mo-
tif [18]. Contacts with DNA are mainly to the sugar-phosphate backbone of the DNA
helix (K120, S241, R248, R273, A276, R283) as well as a smaller number of contacts to
specific bases within the consensus pentamer binding sequence (C277, R280 and K120).
Other residues that are also mutated in sporadic tumors are important for anchoring the
DNA binding motif to the beta-sandwich structure (e.g., R175, G245, R249, R282) or for
stabilizing the beta-sandwich structure (e.g., V143, V157, Y220, F270). Although the TP53
DBD folds into a compact tertiary structure at body temperature, it is thermally unsta-
ble and unfolds at only slightly higher temperatures (>40 ◦C) or in response to tumor
associated TP53 variants [19,20]. Interestingly, some novel pharmaceutical agents (e.g.,
CP-31398 and APR-246) have been shown to restore wild-type functionality to mutant
TP53 proteins by increasing their thermal stability [21]. Different missense variants of the
DBD have different effects on protein conformation and its mechanistic characteristics
and, interestingly, for some sporadic tumors a relationship between the effect of variants
on mechanistic aspects of TP53 function and the type of tumor has been observed (e.g.,
glioblastoma vs. adrenocortical carcinoma) [22]. It is therefore possible that differential
effects of germline TP53 variants on conformational aspects of TP53 and its functionality
could contribute to differences in phenotypes (e.g., LFS vs. HBC).

In this study we investigate whether the phenotypic outcome observed for different
TP53 variants can be accounted for by the differential effects of the variants on TP53 protein
conformation as well as whether variant associated protein conformation changes can be
used to predict disease outcome.
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2. Materials and Methods

2.1. Selection of TP53 Variants

Included variants and their clinical characteristics were selected from publicly avail-
able databases and publications as described below. All TP53 variants that were defined as
LFS in our cohort were identified through the IARC database, and were not found to be
reported in a HBC-family there or elsewhere. According to the IARC database the families
thus fulfilled the classic LFS criteria [23] upon screening. For the HBC cohort, 17 variants
were identified through the IARC database, 17 from the meta-analysis by Fortuno et al. [24]
and 2 from Kharaziha et al. [25]. However, 12 of the HBC variants were reported both in
the IARC database and in Fortuno et al., thus resulting in 24 unique HBC variants.

The selection process for the TP53 missense variants used in this study is summarized
in Figure S1. A total of 24 germline TP53 variants unique for LFS were selected by evalua-
tion of 408 TP53 variants in the IARC database (R20, January 2020) [26]. Out of 296 missense
variants, 62 variants were LFS-class, while 58 were LFL-class and 78 variants were TP53-
Chompret-class, according to the terminology used in the IARC database. 117 variants
were present in the FH-class (family history of cancer which does not fulfill LFS or any of
the LFL definitions), noFH-class (no family history of cancer) or the other-class (variants
that were not included in other classes). Many variants were present in more than one class.
We selected the variants uniquely classified as LFS (n = 24) to represent the LFS-variants
used in the study and the amino acids involved are referred to as LFS-residues (Table S1).

The non-redundant unified group of 24 HBC-specific germline TP53 variants was
selected from the IARC database, from the Fortuno et al. [24] meta-analysis of TP53-related
HBC without a history of LFS and from the Kharaziha et al. [25] Swedish germline TP53
cohort. Since there was no specified HBC-class in the IARC database, we selected the HBC-
variants from FH-class, noFH-class and other-class and excluded those that overlapped
with the LFS-class, LFL-class and TP53-Chompret-class. Further, the selected HBC TP53
missense variants were exclusively reported in breast cancer. Out of 73 identified germline
variants in Fortuno et al. [24], 41 were missense variants, of which 17 were also not present
in the LFS-class, LFL-class or TP53-Chompret-class in the IARC database. In the Swedish
cohort, reported by Kharaziha et al. [25], 24 germline TP53 variants were identified, of
which 6 missense variants were specifically found in HBC including two that were not
present in the LFS-class, LFL-class or TP53-Chompret-class in the IARC database. The
24 resulting TP53 variants were included in the study and the amino acids involved are
referred to as HBC-residues (Table S1).

2.2. Analysis of Protein Structure

A published X-ray crystal structure of a tetrameric TP53 derivative containing the
DBD fused to the oligomerization domain bound to the natural p21 TP53-response element
(PDB accession number 3TS8) was used [27]. Details of the p53CR2 derivative used for
crystallography have been fully described [28]. P53CR2 contains protein regions equivalent
to residues 94–292 and 324–355 of TP53 and includes some stabilizing amino acid substitu-
tions that distinguish the protein from the equivalent wild-type TP53 residues. PyMOL
software (Schrödinger, https://pymol.org, 23 April 2019) was used to display HBC- and
LFS-residues in the context of the tertiary structure of the protein and to identify different
residue classes, using customized scripts adapted from those available in the PyMOL script
library [29]. The findSurfaceResidues script [30] was adapted to allow identification of
Buried (non-Surface) residues, defined as residues with a Solvent-Accessible Surface Area
(SASA) below user-defined cutoff values. A cutoff value of 11Å2 defined approximately
30% of residues as Buried and was used to classify residues for statistical analysis. The
interfaceResidues script [31] was adapted to allow identification of residues at the interface
between TP53 monomers in the tetrameric structure or between TP53 monomers and DNA.
Interactions are defined as regions where the overlapping Surface area between atoms from
different molecules exceeds a cutoff area. The default cutoff value of 1.0Å2 was used. The
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ss script [32] was adapted to list residues in different types of secondary structure, defined
as alpha-helix, beta-sheet or loop.

2.3. Explanatory Variables

Explanatory variables were a priori restricted to variables reflecting the effects of mis-
sense variants on different aspects of TP53 protein conformation (Table 1). Bur is a categori-
cal variable defining Buried and Surface residues (as described above). A third Bur category
(unknown) describes residues that are not included in the TP53 tertiary structure used.
The remaining explanatory variables are continuous and are calculated using prediction
algorithms for different aspects of protein conformation, which generate residue-by-residue
scores for wild-type TP53 and each of the included TP53 variants. The value of these vari-
ables is defined as the difference between the variant and wild-type scores at the position
of the substituted residue (variant score minus wild-type score). The prediction algorithms
predict values that reflect propensity for intrinsic protein disorder, peptide-backbone flexi-
bility, secondary structure, protein tertiary structure/compactness and protein interaction
(Table 1). Protein interaction site prediction in the TP53 sequence was performed using
a meta-structure-based homology method [33] as already reported [34] and summarized
in the Supplementary Materials and methods. The analysis results in a residue specific
score that is proportional to the propensity of a given residue to be part of a protein
interaction site. The PPI6_dif variable used in regression models was calculated using
more sensitive settings for predicting protein-interaction regions (minimum query segment
= 6 amino acids), while less sensitive settings (minimum query segment = 10 amino acids)
were used to identify and plot the most prominent TP53 protein-interaction regions (see
Supplementary Materials and methods for details).

Table 1. Explanatory variables related to protein conformation.

Protein Characteristics Variables Predictor Algorithm [Ref]

Tertiary structure propensity
buried/surface Bur Pymol-findSurfaceResidues script [28]

Intrinsic protein disorder propensity
disorder (trained on Disprot DB) disprot_dif Espritz [35]

disorder (trained on NMR structures) nmr_dif Espritz [35]
disorder (trained on X-ray structures) xray_dif Espritz [35]

disorder (longer regions) iupl_dif IUPred2A [36]
disorder (short regions) iups_dif IUPred2A [36]

Predicted protein backbone flexibility
protein backbone dynamics dyn_dif Dynamine [37]

Secondary structure propensity
alpha-helix/beta-sheet Sec_dif Meta-structure [33,34]

Compactness propensity
protein compactness comp_dif Meta-structure [33,34]
protein globularity iupstr_dif IUPred2A [36]

Protein interaction propensity
protein protein interaction PPI6_dif Meta-structure-PPI [33,34]
protein protein interaction anc_dif IUPred2A [36]

The findSurfaceResidues script from Pymol software, version 2.3.1 [28]. was adapted
to allow identification of Buried residues (<cutoff at 11Å2). Bur is a categorical variable
including Buried, Surface (>cutoff at 11Å2) and unknown (not included in the TP53 ter-
tiary structure used). The Espritz predictor [35] was trained using proteins in the Disprot
database (disprot) as well as tertiary structures determined by nuclear magnetic resonance
(nmr) or X-ray diffraction (xray). The IUPred2A [36] algorithm was run with the long dis-
order (iupl), short disorder (iups), structured domain (iupstr) and anchor (anc) arguments.
Dynamine [37] predicts protein backbone flexibility (dyn). Meta-structure analysis [33,34]
predicts values for two parameters, compactness (comp) and secondary structure (Sec).
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PPI6 uses Meta-structure values to predict residues in regions with propensity for protein-
protein interactions.

The _dif suffix indicates that the variable is the difference between the value for variant
TP53 and wild-type TP53 at the position of the substituted residue (variant score minus
wild type score).

Abbreviations: DB, database; NMR, nuclear magnetic resonance; X-ray, Xray diffraction.

2.4. Statistical Analysis

Data were collected and processed using R software, version 3.6. Fisher’s exact test
was used to evaluate whether LFS- or HBC-residues were over- or under-represented in
residue sets reflecting different structural aspects of the TP53 protein structure. p-values
were for two-sided tests and were adjusted for multiple testing, where appropriate, using
the false discovery rate method. Associations between disease outcome (LFS or HBC) and
the explanatory variables for different TP53 variants as well as their predictive potential
were evaluated by logistic regression using internal 1000-fold bootstrapped validation
and a backwards step-down approach to variable number reduction as implemented in
the rms-package (validate function: method = “boot”, B = 1000, bw = TRUE, rule = “p”,
type = “individual”, sls = 0.13). The validate function delivers values for a number of
parameters relevant for assessing the discrimination performance of models and the risk for
overfitting, including the concordance statistic (C-statistic). Similarly, the calibrate function
(method = “boot”, B = 1000) was used to test the quality of model calibration. Further
validation was performed using leave-one-out cross validation by using the validate
function (arguments as above except sls = 0.16) to produce reduced models for each
combination of n-1 variants. Predictions were expressed as probability of LFS (predict
function, type = ”fitted”). ROC curves were produced using the ROCit package. The
favored model was described visually using a nomogram and its potential utility was
evaluated by decision curve analysis (rmda package) [38]. p < 0.05 was considered as the
threshold for statistical significance unless stated otherwise.

3. Results

3.1. Characteristics of LFS and HBC Germline TP53 Variants

A total of 48 germline TP53 missense variants were selected from the IARC database,
Fortuno et al. [24] and Kharaziha et al. [25] including 24 uniquely observed in LFS and
24 exclusively reported in HBC (Figure S1). The source, number of patients and families as
well as the type of LFS-core tumor types obsrved for each of the 48 variants are detailed in
Table S1.

The vast majority of variants were mapped to the DBD of the TP53 protein (Figure 1a).
Specifically, 23 variants in the LFS-group were located in the DBD and one in the oligomer-
ization domain. In the HBC-group 22 variants were in the DBD, and two in the C-terminal
regulatory domain. Figure 1b shows that most of the LFS- and HBC-residues are located
in regions predicted to have an ordered protein conformation, however, the prediction
values are generally close to the threshold of 0.5 for transition to predicted conformational
disorder. This is consistent with previous reports showing low conformational stability
of the DNA-binding domain tertiary structure [12,20]. Consistently, the meta-structure
prediction method [33] predicts a higher degree of compactness in the DBD (Figure 1c)
and correctly predicts a predominance of beta-sheet conformation in the DBD as well
as the alpha-helical nature of the oligomerization domain (Figure 1d). Finally, the three
most predominant predicted protein interaction domains are in the DBD and the two
most C-terminal of these coincide with regions containing clusters of variant LFS- and
HBC-residues (Figure 1e).
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Figure 1. Location of TP53 missense variants in the TP53 protein sequence and in relation to its predicted disorder. (a).
Schematic illustration of the TP53 amino acid sequence and protein domains with the location of the 24 LFS variants shown
above (cyan green-blue rhombus) and the 24 HBC-variants indicated below (magenta purple-red circles) [39]. The TP53
domains are illustrated for the transactivation domain (TAD), the proline-rich region (PRR), the DNA binding domain
(DBD), the nuclear localization signal (NLS), the oligomerization domain (OD) and the C-terminal regulatory domain
(CTD). (b) Predicted disorder profile of wild type TP53. The IUPred2A predictor was used with the “long” argument.
Scores > 0.5 (above dotted line) indicate disordered regions. The approximate location of the DBD and OD are shown (grey
shading). (c) Predicted compactness of wild type TP53. The dotted line at a value of 250 (y-axis) emphasizes the higher
compactness values predicted for the DBD. The approximate location of the DBD and OD are shown (grey shading). (d)
Predicted secondary structure of wild type TP53. Values > 0 (dotted line) are predicted to be alpha-helical and values < 0 are
predicted to have beta-strand conformation. The approximate location of the DBD and OD are shown (grey shading). (e)
Predicted regions with protein interaction propensity in wild type TP53. The dotted line shows a level equivalent to 5% of
the maximum value. Apparently artefactual values for the first 4 residues and last 3 residues of TP53 were omitted. The
approximate location of the DBD and OD are shown (grey shading).
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3.2. Location of LFS- and HBC-Residues in Relation to the TP53 Protein Structure

Variant LFS- and HBC-residues are distributed and juxtaposed throughout the DBD
located in the central part of TP53 with no apparent pattern associated with either disease
outcome. We considered whether there might be associations with secondary-structure
elements (alpha-helix, beta-sheet or disordered regions), tertiary structure aspects (such
as Surface or Buried locations) or quaternary structure aspects (DNA interacting residues
or inter-monomer protein interacting residues in the context of the TP53 tetramer). For
each of the TP53 monomers (Chain A, B, C and D), there was a significant enrichment of
variant LFS-residues in the approximately 30% of residues that are Buried (i.e., least Surface
exposed) in the crystal structure of the wild-type TP53 tetramer bound to DNA (Table S2).
A similar result was also obtained when the Buried (non-Surface) classification of residues
was combined for all four monomers (Figure 2a). No other significant associations were
found (Table S2).

Figure 2b shows the location of LFS- and HBC-residues in relation to the location of
Buried residues defined by different cutoff values used to define the threshold Surface-
exposed area per residue. As summarized in Figure 2a, there is a clear tendency for
LFS-residues to be Buried, while no such association was found for HBC-residues. The
same pattern is seen in Figure 2c, which shows LFS- and HBC-residues in the context of
the tertiary structure of the TP53 tetramer bound to DNA.

3.3. Association between TP53-Variant-Induced Changes in Protein Conformation Characteristics
and Disease Outcome

The enrichment of LFS-residues in the set of most Buried TP53 residues suggests that
the disease associated variants might tend to alter the folded conformation of TP53 in
LFS patients. The more even distribution of HBC-residues on the Surface and core of the
protein structure would give a greater possibility for disease associated variants to disrupt
or modify interactions between TP53 and its DNA or protein ligands in HBC patients. To
investigate these aspects further we made multivariate models to predict disease outcome
as a function of Buried vs. Surface status for LFS- and HBC-residues, together with a range
of variables predicting the effect of the variant residues on protein conformation aspects,
such as intrinsic disorder, protein backbone flexibility, propensity for tertiary structure
formation, propensity for secondary structure formation and protein interaction propensity
(Table 1). Several of these protein conformation aspects appear to be of potential relevance
(Figure 1b–d) and values for all variables are listed in Table S3 and Table S3 Appendix.

Since the disease outcome is defined by a binary variable (LFS or HBC) we used a
logistic regression approach. The relatively small number of variants for each outcome
(n = 24 in each group) imposed limitations on the number of explanatory variables (n = 2 to
4) that could reasonably be included in a final model. First a full model (mod_full), likely
associated with overfitting problems, was made using 12 explanatory variables describing
the effects of the LFS- and HBC-variants on different aspects of protein conformation. An
internal bootstrap cross-validation procedure was then used to produce a reduced model
by removing less useful variables in a stepwise manner. The reduced model produced
during the cross-validation procedure contained 4 variables (mod_4v). Further variable
number reduction was done manually by successively removing the variable with the least
significant beta coefficient to produce models with three and two explanatory variables,
mod_3v and mod_2v, respectively (Figure 3a, Table S4). The performance of the models, as
shown by the C-statistic, is lower in the reduced models than the full model as expected,
but they are still in the vicinity of the level required for a useful predictive model. The
corresponding ROC curves are shown in Figure S2.
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Figure 2. Comparison of surface exposure of TP53 missense variants in LFS and HBC. (a) LFS-
residues are significantly enriched in Buried residues with lower surface exposure (<cutoff at 11Å2)
than expected by chance while HBC-residues are not. Contingency tables and respective p-values are
shown (Fisher’s Exact Test, two-sided). Residues were defined as Buried if their surface area was
below the cutoff value in any of the 4 TP53 monomers in the TP53 structure (PDB name = 3TS8). The
HBC-residues R379 and E388 are not included in this TP53 structure, and the R110 was calculated
once, therefore only 21 HBC-residues were included. (b) Location of Buried residues (red shading) in
a TP53 derivative containing the DBD and OD that was used for tertiary structure determination
(3TS8). Cutoff values (Å2) to distinguish between Surface (>cutoff) and Buried residues (<cutoff)
were 11 (used in the statistical test in (a), 10, 7.5, 5 and 2.5 (see right side of panel). Results are shown
for each of the monomers (Chains A–D) within the TP53 tetramer bound to DNA. LFS-residues
and HBC-residues are indicated by cyan and magenta filled circles respectively. (c) Localization
of LFS-residues (cyan) and HBC-residues (magenta) in relation to the surface of the TP53 tetramer
bound to DNA (3TS8, transparent grey). Stronger color indicates Surface exposure while weaker
color indicates parts of residues that are below the protein surface (Buried). The 6 panels show all
views of the protein caused by stepwise 90◦ rotations of the “top” structure.
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Figure 3. Protein conformation parameters are associated with disease phenotype and may have
predictive value. (a) Multivariate logistic regression models for prediction of phenotype class (LFS
or HBC) using a range of available protein conformation related explanatory variables describing
different protein conformation aspects (full model, mod_full). A reduced model (mod_4v) was
produced by stepwise variable exclusion from the full model (rms package). Further reduction was
done by progressive manual removal of the least well performing variable to produce models with
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3 and 2 explanatory variables, respectively (mod_3v and mod_2v). Indicators of model performance
(C-statistic) are shown. (b) Bimodal probability distributions for models, showing the overall
separation of output variables (LFS and HBC). Histograms show the distribution of the predicted
probabilities of residues causing LFS, for the different models. The overall separation of variants as
LFS (cyan line) or HBC (magenta line) are shown for each model. (c) Probability values for individual
LFS (cyan) and HBC (magenta) variants produced by the full model and reduced models (columns
1–4 in each panel) as well as leave-one-out cross validation results (loo_cv) in which each respective
variant is left out from a reduced model that is then used to predict the outcome associated with the
left-out variable (column 5 in each panel). An asterisk (*) indicates that the loo_cv model contains
the same variables as the mod_4v model (model details and results for each of the loo_cv model are
tabulated in Table S5). Based on the binomial distribution minima in part b, probability values >0.5
for LFS and <0.5 for HBC are colored darker to give an indication of the relative performance (correct
predictions) of the different models as well as how performance is affected in the cross-validation
procedure in which predictions are made for each individual variant by models excluding data for
the predicted variant. Variant/model combinations with lighter color indicate incorrect predictions.

Figure 3b shows the binomial distribution of prediction probabilities for the models
with all showing a minima close to a probability of 0.5. The figure also shows the relative
distribution of the known disease outcomes in relation to the probability distributions.
Even though the full model shows a higher degree of discrimination between the LFS and
HBC outcomes than the reduced models, the full model is likely associated with overfitting
issues. The reduced models none-the-less show correct prediction of most variants with a
much lower risk of potential for overfitting (Figure S3).

Figure 3c shows correct (dark color) and incorrect (light color) predictions for the
different models if a threshold value for prediction of LFS or HBC status is arbitrarily
placed at a probability value of 0.5. Predictions from leave-one-out cross validation are also
shown, where reduced models were produced for all combinations of n-1 variants and then
used to predict the disease outcome for the left-out variant (see also Table S5). All 4 models
predicted the correct outcome for 16 HBC-variants and 14 LFS-variants. Only 4 variants
were incorrectly predicted by all four models, and for these variants the same result was
obtained by leave-one-out cross validation. Consistent with the progressive reduction in
the C-statistic (Figure 3a), the models make progressively fewer correct predictions as the
number of variables in the models was reduced (41, 36, 36 and 35 correct predictions for
mod_full, mod_4v, mod_3v and mod_2v, respectively). The reduction in correct predictions
is accompanied by a reduced risk of over-fitting (Figure S3) and therefore the reduced
models would be expected to perform better than the full model on an independent data set.

Reduced tendency for overfitting was also associated with improved calibration of
the reduced models, such that calibration of the mod_2v and mod_3v models was much
better than for mod_full and mod_4v (Figure S4). The beta coefficients, p-values and odds
rations for the reduced models are shown in Table 2. Only two variables in each of the three
reduced variable models reach statistical significance, namely the Buried status of variant
residues and the predicted difference in their compactness characteristics. In choosing
between the models, mod_2v and mod_3v show better calibration compared to mod_4v
and mod_full. Since mod_3v gave a slightly higher C-statistic (0.81) compared to mod_2v
(0.78) it was selected as the most favored model.
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Table 2. Reduced models for multivariate logistic regression analysis of disease outcome.

Intercept and Variable β OR (95% CI) p-Value

Four variables model
(mod_4v)
Intercept 1.282 0.017 *

Bur
Surface vs. Buried −2.465 0.09 (0.02–0.44) 0.003 *

unknown vs. Buried −9.897 5.03 × 10−5 (4.31 × 10−27–5.87× 1017) 0.703
comp_dif 0.023 3.88 (1.30–11.59) 0.015 *
PPI6_dif 0.001 1.29 (0.99–1.67) 0.059
nmr_dif 10.461 2.20 (0.79–6.11) 0.132

Three variables model
(mod_3v)
Intercept 1.094 0.030 *

Bur
Surface vs. Buried −2.229 0.11 (0.02–0.50) 0.005 *

unknown vs. Buried −9.03 0.00012 (1.18 × 10−26–1.22 × 1018) 0.727
comp_dif 0.015 2.40 (1.08–5.30) 0.031 *
PPI6_dif 0.0006 1.15 (0.95–1.39) 0.165

Two variables models
(mod_2v)
Intercept 0.914 0.048 *

Bur
Surface vs. Buried −1.886 0.15 (0.04–0.62) 0.009 *

unknown vs. Buried −8.804 0.0002 (1.48 × 10−26–1.53 × 1018) 0.733
comp_dif 0.014 2.30 (1.04–5.09) 0.039 *

β = beta coefficient; OR = odds ratio; CI = confidence interval; Bur = categorical variable describing whether residues are burried, surface or
of unknown location in the TP53 tertiary structure; comp_dif = a continuous variable showing the effect of each variant on the predicted
compactness of TP53 at the location of each variant residue (variant value minus wild type value); PPI6_dif and nmr_dif are continuous
variables calculated as for comp_dif but reflecting the effect of variant residues on the predicted protein interaction protensity and the
predicted intrinsic disorder of TP53, respectively; * = p < 0.05.

3.4. Potential for the Most Favored Model

To estimate the potential value of the most favored model (mod_3v) for use in devel-
oping improved tools for clinical decision making we used decision curve analysis. The
net benefit of using the mod_3v to predict LFS disease outcome at different risk thresholds
is shown in Figure 4a. The decision curve for mod_3v provides a higher net benefit than
assuming that all potential patients will develop LFS (grey line) at a risk threshold of about
0.2 and out-performs the assumption that no patients will develop LFS (black line) up to a
risk threshold of about 0.8. Thus, under conditions where relative LFS prevalence is not
extremely low or high, the model would be expected to provide a net benefit if used in the
clinical decision-making process.

Figure 4b shows the mod_3v model in the form of a nomogram that visualizes the
prediction model with the respect to the relative importance of the included explanatory
variables as well as the way they contribute to a prediction of risk for the alternative
disease outcomes. Most important is the classification of Buried or Surface status for
the variant residue in the tertiary structure of the TP53 tetramer bound to DNA but the
predicted effect of variants on the compactness of the TP53 conformation is also important,
with increased compactness of variants increasing the risk for LFS. Changed predicted
propensity for protein interaction plays a lesser role with increased interaction propensity
of variants increasing the risk for LFS. The values of the Bur variable are already known
for all residues in the tertiary TP53 structure used here and it would of course be possible
to determine compactness effects (comp_dif) and protein interaction propensity effects
(PPI6_dif) values for all possible substitutions of all TP53 residues. Thus, it would be
possible to calculate disease outcome risk probabilities for all possible substitutions of
residues in the DNA-binding and oligomerization domains if, after due external validation
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and model development, models similar to those described here were judged to be useful
in a clinical setting.

Figure 4. Potential for the most favored model. (a) Decision curve analysis of models for prediction of phenotypic outcome
(LFS or HBC). The y-axis indicates the net benefit of using mod_3v model (red line). The thin gray line (All) shows net
benefit values expected assuming all assessed variants are LFS. The darker gray line (None) shows net benefit values
expected assuming no assessed variants are LFS. The net benefit for prediction of LFS variants is regarded as positive for
probability values exceeding those for the “All” and “None” values. (b) The nomogram that facilitates manual estimation of
the risk of LFS disease outcome using the mod_3v model. For the value of each explanatory variable the equivalent value
on the “Points” scale is assessed. The sum of all Points values is then located on the “Total Points” scale (middle green row)
so that the corresponding probability value can be read from the “LFS outcome rate” scale (upper green row). The dotted
arrows show a hypothetical example for a surface residue with a comp_dif value of 50 and a PPI6_dif value of −500, for
which the equivalent “Point” values (10, 40 and 75) summate to 125 (“Total Points”), giving a LFS outcome risk of slightly
over 0.3.

4. Discussion

Pathogenic germline variants in TP53 have classically been associated with Li-Fraumeni
syndrome (LFS), a tumor predisposition syndrome with high risk of various childhood as
well as adult onset tumors. Increased genetic testing has however revealed that germline
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TP53 variants are associated with a broader range of phenotypes, from classical LFS to
hereditary breast cancer (HBC), and the outcome may be dependent on both variant charac-
teristics and modifier gene variants elsewhere in the genome [40]. Differential expression of
TP53 isoforms has also been discussed to have an impact on cancer risk profile [41,42], but
this has mainly been studied in sporadic cancers [43]. The wide variation in the phenotypic
outcome in families carrying TP53 variants creates challenges for the genetic counseling
and clinical handling of these individuals.

In an attempt to better understand the molecular basis for the differential disease
outcomes associated with different variants and to develop a prediction tool, we studied the
impact of germline TP53 missense variants on protein conformation and their association
to disease phenotype. We present a quantitative model that predicts disease outcome (LFS
or HBC) as a function of localization of variant residues in the tertiary structure of the TP53
DBD and oligomerization domain together with predicted variant-associated effects on
conformation of the full-length protein.

Our results demonstrate that LFS-variants were enriched in Buried regions (p = 0.0014)
of the tertiary structure of one or more TP53 monomers in the DNA-bound tetramer, indi-
cating that the set of variant LFS-residues may hypothetically have a larger impact on the
folding and overall conformation of the TP53 protein than the set of variant HBC-residues.
While the Buried/Surface variable relates to the predisposition of affected residues to lead
to LFS or HBC, the compactness (comp_dif) variable is related to how the substitution
of the variant residues is predicted to affect compactness, with enhanced compactness
favoring the LFS outcome. The protein interaction propensity variable (PPI6_dif) is also
positively correlated with the probability of LFS outcome suggesting the importance of
protein interactions for the LFS phenotype. These protein interactions could in principle
be interactions between monomers within the TP53 tetramer or interactions between the
TP53 tetramer and other proteins. Comparison with the positions of residues forming
intra-tetramer interactions shows that the major DBD regions predicted to have protein
interaction propensity (Figure 1d) contain interface residues between monomers within the
TP53 tetramer, suggesting that the PPI6_dif variable may be a measure of effects of variants
on the tetrameric integrity of TP53. We cannot of course exclude a role of these regions in
other protein interactions. Thus, our favored quantitative model (mod_3v) incorporated
three variables encompassing overall topological effects, protein chain related effects and
residue-level effects, and it performed acceptably well with a C-statistic of 0.81 as well
as having acceptable calibration characteristics and strongly reduced risk of overfitting
compared to more complex models.

Extrapolation of the modelling results suggests that variants that tend to strengthen
the tertiary and quaternary structure of the TP53 tetramer would tend to favor the LFS
disease outcome. This may be related to the dominant-negative phenotype associated
with TP53 variants that are particularly strongly associated with the LFS phenotype (see
Introduction). It could be speculated that a variant which stabilized structural aspects
of TP53 monomers and their propensity for tetrameric interactions in relation to wild-
type would facilitate the formation of hetero-tetrameric TP53 tetramers in heterozygous
individuals, thereby resulting in the dominant-negative phenotype that is observed for
many missense variants that are associated with LFS [15].

The HBC-residues are not significantly associated with Buried or Surface status in
the structure of wild-type TP53. For the compactness and protein interaction propensity
variables, the risk for HBC shows the opposite trend to LFS, since the HBC risk is increased
by a decrease in predicted compactness and protein interaction propensity in the mutant
proteins. A reasonable speculation would be that the TP53 proteins encoded by HBC-
variants are still functional but that the variants cause subtle qualitative or quantitative
functional changes that alter the transcriptional output in a way that predisposes carriers
to breast cancer but not to other LFS phenotypes. Other explanations are also possible.
For example, we cannot exclude that the HBC variants are linked to modifier loci that
cause the HBC phenotype and that the HBC outcome is not linked to effects of the TP53
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variants at all. Since the number of patients and families displaying some HBC variants
is limited, it is also possible that some variants may subsequently be coupled to LFS. The
V157I variant, for example, that is reported in 7 individuals in 2 families was classified
as HBC by both IARC and Fortuno et al. (Table S1) although one case with sarcoma was
reported in addition to all breast cancer cases in these families. We have not been able to
obtain more pedigree information to verify if the family fulfills the LFS-criteria and thereby
misclassified. Notably, this variant was by our prediction model predicted as 0.71 likely
hood to belong to the LFS-group. While evaluating this model one must be aware of that
there is a greater risk that variants within the HBC cohort are misclassified than within the
LFS cohort.

None of the included variants affect the main residues involved in interactions with
the DNA backbone but several coincide with base-interacting residues as well as with
residues important for stabilizing the TP53 tertiary structure. For example, the C277R
and R280T variants that are clearly HBC-associated affect residues that make specific
interactions with bases in the TP53 binding site and would be likely to affect qualitative
or quantitative aspects of DNA binding. Similarly, R249K, V143M and V157I are variants
characterized by conservative amino acid substitutions, which are also associated with HBC
and affect residues important for the stability of the TP53 tertiary structure. Conceivably,
these variants could cause qualitative or quantitative changes to the function of TP53
without having a major negative impact on function. The R282G variant is associated with
LFS and affects a residue important for stabilizing the DNA-binding surface in relation to
the rest of the TP53 tertiary structure. It could be speculated that this variant disrupts DNA
binding activity, which would be likely to cause a dominant-negative phenotype if TP53
hetero-tetramers formed in heterozygous patients.

A limitation of our prediction model is the small cohort of only 24 unique missense
variants in each group. The challenge has been to identify cohorts of families with exclu-
sively HBC, especially in the case of de novo alterations in breast cancer patients that thus
lack information of family history. However, we made an effort to select as clean groups
of LFS and HBC variants as possible by following a strict selection procedure (Figure S1)
but with the consequence of a limited cohort size. Therefore, there is a need to further
evaluate the model in an independent cohort, and if possible with more reliable pedigree
information concerning tumor panorama and age of onset, before it is used as a tool for
clinical counseling and clinical management, perhaps in combination with other modelling
approaches [44].

Amadou et al. [17] tried to stratify clinical management according to dominant nega-
tive variants and loss of function variants. As families with loss of function variants tend
to develop tumors later, they suggested it may be considered to test and screen adults
instead of children in those families for the consideration of psychological and financial
burdens. Nichols et al. [45] discussed that there were however many cases having the
same tumor onset age in families with dominant negative variants as in those with loss of
function variants. Therefore, this distinction of TP53 variants can apparently not be used
as a sole guidance for further clinical handling. Instead, we made an attempt to provide
a tool for improving genetic counselling and clinical management of these patients and
families by creating a prediction nomogram based on the protein conformational impact of
the germline missense TP53 variants. The prediction nomogram (Figure 4b) may support
psychological issues in genetic counselling especially in families were the model predicts
HBC rather than LFS. However, this model cannot yet be used to stratify for example
surveillance programs, as it requires validation in an independent cohort.

5. Conclusions

This study explored the relationship between germline TP53 missense variants and
their phenotypic impact, with regard to LFS and HBC, based on a quantitative model
combining conformational characteristics of the TP53 protein. Logistic regression models
show a clear relationship between disease outcome (LFS or HBC) for TP53 variants with
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their effects on aspects of protein conformation and function. The models also appear
to have a predictive capacity that may be of practical future use in genetic counselling
and management of missense variant carriers. However, there is a need to evaluate the
prediction model in an independent cohort prior to any implementation in clinical practice.
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Abstract: The prevailing current view of protein folding is the thermodynamic hypothesis, under
which the native folded conformation of a protein corresponds to the global minimum of Gibbs free
energy G. We question this concept and show that the empirical evidence behind the thermodynamic
hypothesis of folding is far from strong. Furthermore, physical theory-based approaches to the
prediction of protein folds and their folding pathways so far have invariably failed except for some
very small proteins, despite decades of intensive theory development and the enormous increase of
computer power. The recent spectacular successes in protein structure prediction owe to evolutionary
modeling of amino acid sequence substitutions enhanced by deep learning methods, but even
these breakthroughs provide no information on the protein folding mechanisms and pathways. We
discuss an alternative view of protein folding, under which the native state of most proteins does not
occupy the global free energy minimum, but rather, a local minimum on a fluctuating free energy
landscape. We further argue that ΔG of folding is likely to be positive for the majority of proteins,
which therefore fold into their native conformations only through interactions with the energy-
dependent molecular machinery of living cells, in particular, the translation system and chaperones.
Accordingly, protein folding should be modeled as it occurs in vivo, that is, as a non-equilibrium,
active, energy-dependent process.

Keywords: protein folding; entropy; free energy; free energy landscape; energy-dependent protein
folding; co-translational protein folding; molecular chaperones; physical model of protein folding

1. Introduction

For the last six decades, the general understanding in the protein folding field has
been that proteins fold into their native conformations driven by decrease in Gibbs free
energy (negative ΔG). This thermodynamic hypothesis of protein folding stems from the
iconic experiments of Anfinsen on in vitro folding of RNase A. Based on the successful
refolding of this enzyme into the active, native conformation, Haber and Anfinsen con-
cluded in a seminal 1962 paper that “the unique secondary and tertiary structure of RNase
is, thermodynamically, the most stable configuration” [1]. Codified in Anfinsen’s 1973 Nobel
lecture-based review [2], the thermodynamic hypothesis has become the default physical
description of protein folding.

The thermodynamic hypothesis of folding, and in particular, the idea that the native
state is the most stable one, that is, the global G minimum, is indeed highly attractive
and appears natural. Furthermore, this view drastically simplifies theory development
and modeling by effectively avoiding the need to explain how and why a protein reaches
the unique native conformation: indeed, the global minimum is unique by definition.
Assuming that the native conformation occupies a local rather than the global minimum of
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G immediately complicates the problem because this demands an explanation of how this
particular minimum is selected among the many other local minima.

In the last two decades, the protein folding problem has been addressed primarily
in terms of a free energy landscape that is usually represented as containing a funnel, the
bottom of which corresponds to the global G minimum, that is, the native conformation;
many different shapes of this hypothetical funnel have been considered [3–11].

Volcano-shaped landscapes have been also proposed, where during folding, the pro-
tein initially has to overcome a barrier of positive ΔG due to entropy decrease, but the
native structure still occupies the global G minimum [12,13] (Figure 1a). However, there
is effectively no information on the actual structure of the landscape, and the possibility
that the native conformation represents a local minimum in a rugged landscape that is
generated and continuously affected by dynamic interactions within the cell environment,
rather than the global minimum (Figure 1b), has not been systematically addressed. The
distinction between the two classes of models can be formulated, in general terms, as
thermodynamic vs. kinetic control of protein folding. Indeed, the early work of Wetlaufer
and others (reviewed in [14]) emphasized that the native conformation would be the one
with the minimum G among the kinetically accessible structures. However, this approach
to the study of protein folding has not received much attention or further development,
arguably, because it dramatically complicates modeling compared to the straightforward
thermodynamic approach.

Figure 1. Protein folding energy landscapes in vitro and in vivo. Blue areas are occupied by “perfectly
unfolded” conformations with no stable interactions between non-contiguous residues. Yellow and
purple areas are populated by more compact protein conformations. Red zones are thought to arise
mostly as the result of interactions between the protein and cellular components in a crowded envi-
ronment. Green zones correspond to proteins in native conformation. (a) Canonical funnel-shaped
energy landscape that most likely applies only to folding of small, thermodynamically stable proteins
as it occurs spontaneously, in vitro, in isolation from all cellular compounds. (b) Folding energy
landscape for a protein that folds in vivo is poorly understood, but most likely, is complex, rugged,
dynamic, and shaped by interactions of the folding polypeptide with multiple cellular components.
(c) Folding energy landscape of the same small protein as in (a) is most likely substantially different
and far more complex when folding occurs in a crowded cellular environment. (d) Native confor-
mations of most proteins are likely to occupy local thermodynamic minima with higher Gibbs free
energy than their unfolded conformations (positive ΔG of folding). Such native conformation can
only arise as a result of active, energy dependent folding process.
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Although the funnel landscape concept dominates the protein folding field, it is not
without its critics. As argued in detail by Ben-Naim, the funnel folding landscape is
effectively a metaphor that lacks substantial support [15]. Furthermore, as pointed out by
Shakhnovich [16], in simulations, the shape of the landscape in low-dimensional spaces is
sensitive to the procedure used for dimensionality reduction, and the procedures that yield
the funnel landscapes tend to be physically unrealistic.

Despite the attractive simplicity of the notion that the native conformation of a protein
occupies the global minimum of G, it remains a hypothesis. Several lines of evidence
can be and often are construed as supporting this thermodynamic hypothesis, including
direct measurements of the ΔG of folding for multiple proteins, refolding of numerous
proteins after denaturation, and spontaneous folding of proteins that were produced by
complete chemical synthesis. Crucially, however, all this data pertains to a small number of
small, highly stable proteins that have been studied in vitro, in isolation. Even apart from
problems with the quantity and quality of this data, the question remains how generalizable
these results are and how relevant are they for protein folding under native conditions, that
is, in the crowded cell environment (compare panels (a) and (c) in Figure 1).

In this article, we critically assess the empirical data behind the thermodynamic hy-
pothesis of protein folding and discuss an alternative, non-equilibrium folding hypothesis.

2. Review of Protein Folding

2.1. Experimental Data on Free Energy of Protein Folding

The ΔG of protein folding can be determined from denaturation-renaturation ex-
periments under the basic assumptions that proteins are completely denatured in the
well-controlled experimental conditions and that such denaturation is fully reversible. A
careful examination of the methodology of these experiments, however, reveals a compli-
cated picture, with each class of methods employed for assessing the degree of denaturation
rife with its own assumptions and biases (see, for example, [17] on chemical denaturation
methods assayed by spectrophotometry, [18,19] for updates on urea- and guanidinium
chloride-mediated denaturation methods, and [20,21] for thermal denaturation methods
and microscanning calorimetry assays). A recent discussion of the biases, sensitivity issues,
and other concerns in the analysis of denaturation-renaturation data can be found in [22].
All told, the results of such experiments. that have been reported for only a handful of
proteins, have led to the general consensus that ΔG of folding is a small negative value,
that is, proteins (at least, single domain ones) fold spontaneously, but are only marginally
stable reviewed in [23–25].

There are several reasons why, in our view, the experimental evidence in support of
the thermodynamic hypothesis of folding is far less compelling than it is usually perceived
to be. In particular, only in very few folding experiments, the completeness of protein
unfolding at the start of the experiment has been convincingly demonstrated. Although it is
often claimed that proteins in such experiments were completely denatured, a closer exami-
nation shows that typically this is an assumption rather than an experimentally validated
observation. In early work (1950s–1970s), the extent of denaturation was typically assessed
using indirect methods, such as circular dichroism (CD), which yields a general measure of
the proportion of secondary structure in a protein, or fluorescence, which assesses the expo-
sure of individual aromatic residues to the solute, or other, similarly indirect, approaches.
However, reanalysis of a subset of cases with more advanced, direct methods has shown
that proteins that have been initially characterized as completely denatured often turn
out to be only partially unfolded [26]. For example, an NMR analysis of staphylococcal
nuclease, the second enzyme extensively studied by Anfinsen after the seminal experiments
with RNase A, has demonstrated persistence of native-like structure in the protein that was
denatured in 8 M urea [27]. Subsequent NMR analysis of multiple, diverse proteins has
similarly revealed preservation of extensive structure in 10 M urea [28]. Strikingly, for the
paradigmatic case for the thermodynamic hypothesis, RNase A itself, advanced methods,
such as small-angle X-ray scattering (SAXS) and time-resolved fluorescence energy transfer,
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have demonstrated that compact regions survive many thermal and chemical denaturation
regimes [29]. Furthermore, it has been shown that both the degree and the character of
unfolding of the same protein can substantially differ depending on the denaturation
protocol (e.g., [30,31]). A computational study of protein conformers, in which backbone
torsion angles were randomly varied for only 8% of the residues, while the remaining
92% of the residues remained fixed in their native conformations, has shown that the vast
majority of these ensembles had end-to-end distances and mean radii of gyration that were
within the range of the random-coil expectations. Therefore, it has been concluded that
observation of random-coil statistics for denatured proteins cannot be taken as evidence of
the absence of residual structure [32].

Measurements of ΔG of folding have been collected in protein thermodynamics
databases, of which the most comprehensive one is ProTherm/ProThermDB. The lat-
est release of this database [33] contains more than 30,000 entries. It would be important
to determine how many records in the database are informative for estimating ranges of
folding ΔG. We analyzed the slightly smaller, 2017 release of ProTherm (available at [34])
that contained 26,045 records representing ~700 unique wild-type proteins, of which less
than 500 were annotated as reversibly denatured. Strikingly, only for 18 of these proteins,
denaturation was monitored using a rigorous method, such as NMR, and for three of those
the actual values of ΔG for the entire molecule were not reported (Supplementary Files S1
and S2). Thus, in actuality, the “vast body of curated literature” does not amount to much.
Nearly all experimental data that are cited in support of the hypothesis of spontaneous
refolding was obtained on a limited set of compact, stable, globular proteins. Most of these
are small, single-domain monomers that are marginally stable (ΔG of folding between
−3.5 and 7 kcal/mol) and have been shown to fold rapidly- typically, on the millisecond
time scale [35]. Furthermore, the most thoroughly studied set of spontaneous refolders
is enriched in extracellular proteins, often containing disulfide bonds, which are likely to
dominate the fold stabilization mechanisms (see more on this below where we discuss total
protein synthesis).

With all these caveats in mind, the reported ΔG values are within the range of −1
to −20 kcal/mol, with a Poisson-like distribution peaking around −5 kcal/mol [36]. The
common range that is pervasively quoted in the literature is −5–15 kcal/mol, which is
typically interpreted qualitatively as “proteins are marginally stable”, or in other words,
the folding funnel is thought to be extremely shallow (e.g., [37–40]).

New opportunities to study the thermodynamics of protein folding/unfolding could
be provided by single-molecule methods; for an overview of these methods as applied
to protein folding, see [41,42], and for ΔG measurement using these methods, see [43–45].
However, these studies face the same major problem as bulk denaturation experiments
discussed above: most proteins do not unfold completely in single-molecule manipulations,
such as atomic force microscopy or optical tweezers. Almost always, there is an uncertainty
about the amount of residual structure, as indicated by the fact that the stretched form of
a protein is often measured to be shorter, or occasionally, paradoxically longer than the
theoretically predicted length (e.g., [46–48]). There also indications that the theoretical
length of a polypeptide chain can be sequence- and structure-dependent [48]. Taken
together, these data suggest that single-molecule methods are not yet sufficiently reliable
for a confident determination of the state of protein unfolding.

Overall, the survey of the experimental study of protein folding/unfolding shows that
ΔG has been measured only for a highly biased set of a few small, compact, single domain
proteins, and even for most of these, the obtained values cannot be considered reliable due
to the lack of evidence of complete unfolding or, worse, presence of evidence of persisting,
residual secondary structure. Even for those few proteins, for which reliable experimental
data have been obtained, the negative ΔG values were low, in many cases, not far above
the level of thermal fluctuations.
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2.2. Chemically Synthesized Proteins Folding into Native Conformations

Another major argument in support of the thermodynamic hypothesis of folding is
thought to come from experiments on proteins obtained by complete chemical synthesis. By
and large, ΔG of folding for these proteins has not been measured directly, but is strongly
believed to be negative because these proteins were produced by ligation of individual
amino acids or peptides in a chemical reaction, in the complete absence of ribosomes,
chaperones or other cell components, and then folded into native conformations in solution.
Such spontaneous folding from the denatured form is commonly seen as direct, highly
convincing evidence in support of the thermodynamic hypothesis (notably, the Nobel Prize
has been awarded to Anfinsen only after the appearance of papers from Hirschmann and
Merrifield groups on the complete synthesis of RnaseA [49,50]).

To assess the evidence obtained from this type of experiments, we performed a liter-
ature search on the proteins that, in the last 50 years or so, were produced by complete
chemical synthesis and refolded to the biologically active form. In the set of about 60
unique proteins (not counting mutants and variants) studied in these experiments, only
two were longer than 200 aa; the mean protein length in this group was 94 amino acids,
which is at least 3–5-fold less than the proteome-wide mean lengths in Archaea, Bacteria,
and Eukarya (Table 1). The proportions of secreted proteins and proteins containing disul-
fide bonds (DSB) in this dataset was several-fold higher than in the complete proteomes
of various organisms (cysteine preference in these sequences is built in because modern
methods of complete chemical synthesis assemble proteins from peptides, which usually
requires internal cysteine residues for conjugation chemistry). Thus, recapitulating the
properties of spontaneously refolded proteins discussed in the preceding section, the set
of chemically synthesized proteins is heavily biased and not at all representative of real
proteomes. Furthermore, there is no reliable data on those targets that were synthesized but
could not be refolded. Even apart from these limitations, successful folding of chemically
synthesized proteins requires non-physiological renaturation times in the hours’ range.
The yields of the native conformations are often omitted from the reports, but vary widely
when reported (5–48%; Supplementary File S3); the folding protocols are complex and are
developed on a case-by-case basis. Thus, even for this collection of privileged proteins,
folding to the active forms in vitro is not straightforward and likely proceeds differently
than in vivo.

Table 1. Properties of 59 proteins produced by total chemical synthesis and refolded to their active
forms, as compared to the properties of whole proteomes.

Total
Chemical

Synthesis 1
Archaea Bacteria Eukarya

Data Sources for
Archaea, Bacteria

and Eukarya

mean protein length,
amino acids 94 283 320 472 [51]

% secreted 62 6–19 18–30 13
(humans) [52–54]

% with DSB in the
known 3-D
structures

57 15 11 30 [55]

1 For the full data compilation from the literature, see Supplementary File S3.

Then, there is an even deeper problem with the folding of chemically synthesized
proteins as the ultimate argument for the thermodynamics hypothesis. Through the course
of the chemical synthesis, these proteins remain attached to solid phase, with limited
degrees of freedom for the main chain rearrangement. The structure of the Gibbs energy
landscapes (or other landscapes) for such proteins and their precursor peptides, before
or after they are released from the solid phase into the solution, is completely unknown.
These landscapes would be important to study, not only to resolve this open question as
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such, but also because this might yield clues both to the mechanisms of protein folding
inside cells and to the folding of primordial peptides during the early evolution of life (see
discussion towards the end of this paper).

2.3. Refolding of Insoluble Overexpressed Proteins from Denatured Bacterial Inclusion Bodies into
Soluble Active Proteins in Native Conformations

A widely used approach to protein production is based on the fact that, when a recom-
binant protein is overexpressed in bacterial cells, it often forms insoluble inclusion bodies
that are easy to isolate from other cellular components. Such aggregates of overexpressed
proteins can be collected, further purified, denatured in vitro and often can be successfully
refolded into soluble, active proteins. Because of the numerous industrial applications,
protein purification and refolding from bacterial inclusion bodies have been extensively
studied (for overview, see [56–59]).

If indeed the proteins that are purified from inclusion bodies were shown to unfold
completely and then routinely refold to the native, active conformation, this would com-
prise strong evidence that spontaneous protein folding is common, in accord with the
thermodynamic hypothesis. However, experiments with overexpressed proteins that form
inclusion bodies resulted in a key observation that suggests quite different conclusions. Typ-
ically, proteins within the aggregates that form the inclusion bodies are neither disordered
nor unfolded, but have specific secondary and tertiary structures, which are substantially
ordered and are often enriched in in-register beta-sheets [60–63]. Detailed analysis of the
refolding process shows that some of the ordered structure is preserved throughout the
purification stages ([64–66], reviewed in [67]). Moreover, harsh denaturing conditions tend
to be detrimental for protein refolding to the native conformation, so that new protocols for
unfolding–refolding under mild conditions are constantly proposed in attempts to improve
the yield of functional proteins (e.g., [68–70]).

Thus, experiments on refolding of overexpressed proteins demonstrate the key role of
the residual secondary and tertiary structures, which are generated in the first place by the
cell during protein expression in vivo and apparently have to be retained by the protein
for efficient refolding. Furthermore, even when refolding occurs, it barely resembles the
folding processes that occur in living cells. Indeed, purification and refolding of nearly
every protein requires extensive protocol development, which often includes solutions and
treatments that are far from physiological conditions and refolding times that are typically
much longer than the biologically relevant time scale. All these efforts notwithstanding,
the yields of the refolded native proteins vary widely [57,59]. Therefore, in general, refold-
ing of proteins from inclusion bodies cannot be counted as a showcase for spontaneous
refolding of completely denatured proteins and hence does not provide clear support for
the thermodynamic hypothesis.

2.4. Scarcity of Data on ΔG of Protein Folding Reflects Pervasive Non-Refoldability and Instability
of Proteomes

A general conclusion from all of the above is that the evidence for the negative ΔG
of folding is quite thin, at best, and that the data on the ability of proteins to refold
from a completely denatured state is fragmentary and comes from small, heavily biased
datasets. What causes this scarcity of data, especially for larger proteins? The principal
cause appears to be quite simple: most proteins actually cannot refold once completely
unfolded, but the negative results of this type, that is, failed attempts to refold proteins,
are almost never published. To our knowledge, no representative samples of proteins
have been studied under this angle until very recently. However, in a recent proteome-
wide study, protease-resistance assay was used in combination with quantitative mass-
spectrometry to show that about 50% of the proteins in E. coli cell lysates could not refold
into their native states following chemical denaturation, even when the conditions were
optimized for refolding [71]. These findings indicate that non-refoldability in vitro is a
general characteristic of at least this bacterial proteome, especially, taking into consideration
that the completeness of unfolding was not monitored in these experiments.
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Another widely observed but often misinterpreted phenomenon is the general pro-
teome instability, that is, pervasive spontaneous loss of native structure and activity in
proteins that have been originally properly folded in the living cells. This loss of native
conformation and functional activity is commonly observed both in vitro, in preparations
of isolated proteins, and in vivo. Indeed, it is well known that all cells maintain elabo-
rate proteostasis machineries that functions to repair or destroy any proteins that have
irreversibly lost their active conformations [72,73].

Spontaneous protein unfolding (denaturation) in vitro is an extremely common ob-
servation which suggests that at equilibrium many if not most proteins are in unfolded
conformations. Unfortunately, to our knowledge, there is no published comprehensive
statistics on protein (in)stability in vitro. Studies on protein stability and approaches to
stabilization are a major expense in the pharma/biotech/industrial enzymology industry,
and apparently, much of the results comprise intellectual property of these companies. The
physical and chemical processes that are associated with instability have been thoroughly
studied for a relatively small number of proteins [74–76]. The principal take-home message
from these experiments is that even correctly folded proteins are often not intrinsically
stable, as it would have been expected if they were in a deep free energy minimum, either
global or local; instead, many lose native conformation easily.

Protein engineering experiments indicate that many proteins are easily destabilized
with small sequence changes. However, despite years of research, predicting the effect of
mutations on protein stability remains challenging. Nevertheless, the general conclusion is
that most proteins are only barely stable, such that there are many destabilizing mutations
(reviewed in [77,78]). Poorly understood tradeoffs seem to exist between protein stability
and solubility such that a mutation on the exterior of a protein that increases its solubility
is often destabilizing [79–82]. Similarly, there are tradeoffs between protein activity and
stability such that mutations that enhance enzyme activity often destabilize the protein,
and vice versa, stabilizing mutations often decrease activity [83].

Over the decades, many ad hoc explanations have been given for the spontaneous
unfolding, denaturation, and destabilization that proteins typically undergo. Mostly, some
irreversible events are postulated to occur during unfolding, such as protein oxidation,
other chemical modifications, and/or aggregation, and such secondary effects are claimed
to shift the equilibrium towards the unfolded state, preventing thermodynamically driven
folding [74,76,84,85]. However, few targeted studies of protein denaturation mechanisms
have been published. Usually, the loss of the native conformation and consequently activity
by an isolated protein is perceived as a (often major) nuisance and is rarely seen as an
opportunity to study the mechanisms of irreversible denaturation, and apparently, for this
reason, not much systematic research has been done in this field. A notable exception are
experiments of Klibanov and colleagues on the mechanisms of amylase denaturation. In
these studies, the processes involved in thermal inactivation of this enzyme were dissected,
showing that denaturation (unfolding), chemical modification, and aggregation are all
distinct processes separated in time, and irreversible denaturation of this enzyme precedes
chemical modifications and aggregation [86,87]. Several studies on other enzymes have
also demonstrated that denaturation by irreversible chain unfolding is a process distinct
from protein aggregation [88–90].

There is a call in the literature to apply modern approaches, such as new meth-
ods of spectroscopy and mass-spectrometry, for the proteome scale analysis of protein
stability [91–94], but the actual experiments of this type remain to be performed.

A rough estimate of the failure rate of attempts on isolation of proteins in the native
conformations can be extracted from large-scale structural genomics projects, which publish
some statistics of protein production and purification. For example, Page et al. [95] reported
that of more than 1800 proteins encoded in the genome of the hyperthermophilic bacterium
Thermotoga maritima and cloned into expression plasmids, only 539 (~29%) could be purified
in the form suitable for crystallization. In the Northeast Structural Genomics Consortium
project [96], 6493 proteins could be purified out of the total 16,992 expressed (34%). The
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New York Structural Genomics consortium has not reported consolidated statistics, but
~30% purified-to-expressed ratio seems to be a general trend across many participating
projects [97]. It should be noted that in all these efforts, except for the Thermotoga case, the
set of targets is strongly biased by pre-selection for predicted solubility, globularity, and
evolutionary conservation. Even in these privileged sets of proteins, two-thirds could not
be purified in the native conformation.

Generally, for the vast protein space, the thermodynamic parameters of protein folding
and unfolding remain effectively unknown. There is no strong evidence that negative ΔG
of folding is a general property of many proteins. On the contrary, a wealth of data seem to
present evidence against this possibility, showing instead that unfolding of most proteins
occurs spontaneously, whereas folding does not. Thus, protein folding appears to be a
non-equilibrium process that is accompanied by free energy increase.

2.5. Special Features of Protein Folding In Vivo

Complex proteostasis systems operate in every cell, and malfunction of these systems
leads to (often lethal) accumulation of unfolded and misfolded proteins in the cell [72,73].
Proteomics shows that more than two thirds of all proteins in yeast specifically interact
with one, or often more than one, of the proteostasis systems, and more specifically, with
molecular chaperones [98]. Hundreds of proteins in E. coli interact with the chaperone
GroEL-GroES alone [99]. The most abundant proteins in eukaryotes (actin, tubulin) do
not fold in vitro at all, and to fold in vivo, they require, in addition to general chaperone
systems, also the specialized co-chaperone prefoldin [100,101]. Apparently, proteostasis
mechanisms consume a substantial fraction of the cellular energy supply; although the
estimates do not seem to achieve high precision, the fraction of the energy budget dedicated
to these processes is thought to be greater than 10% [102].

Chaperone clients are classified based on how closely they interact with the chaperones
(for example, obligately-dependent vs. partially-dependent clients, based on the occupancy
of the client-chaperone complexes [99]) and what, specifically, do they need chaperones for
some proteins aggregate in the absence of chaperones, others stay soluble but are inactive,
yet others need chaperones only under stress [103,104].

How do chaperones facilitate protein folding? The dominant view is that they help
client proteins to quickly reach the minimum of free energy, that is, the chaperones create
conditions for the thermodynamically driven folding of a substrate protein molecule into
the native conformation. Some specific mechanisms include: (1) holding the client in
isolation so that it does not aggregate with other proteins and folds correctly by itself,
a mechanism known as “Anfinsen’s cage” in the case of GroES/GroEL [105–107], (2)
preventing client proteins from getting stuck in kinetic traps during folding, conceivably,
via partial unfolding [108–110], (3) unfolding misfolded or aggregated substrates before
proceeding with mechanisms (1) or (2) [111–114], (4) reshaping the folding landscape in
ways different from mechanism 2, known as “kinetic assistance”, but typically not specified
further [115–118].

Some chaperones, known as foldases, are ATPases, whereas others, dubbed holdases,
are not [119], but the distinction does not appear to map well onto the mechanisms listed
above. Indeed, some chaperones from each functional class seem to exercise mechanisms
1–4 (see, e.g., [120]), whereas some appear to combine properties of foldases and holdases,
as argued for the ATP-independent chaperone trigger factor [121] as well as the ATP-
dependent HSP70 [122,123].

Crucially, all proposed chaperone mechanisms are predicated on the thermodynamic hy-
pothesis, and to our knowledge, the relevance of these mechanisms has not been tested against
the alternatives. A different view of the chaperone mechanisms will be discussed below.

2.6. Is Protein Folding In Vivo an Active, Energy-Dependent Process?

In our view, the above discussion shows that there is very little experimental evidence
that ΔG of folding is negative for most proteins. Conversely, a massive amount of experi-

90



Int. J. Mol. Sci. 2022, 23, 521

mental observations indicates that native conformations of proteins are only metastable.
Taken together, these lines of evidence compel us, in the least, to seriously consider the
possibility that, for the majority of proteins, ΔG of folding is positive (Figure 1d). The key
implication of this hypothesis is that protein folding in vivo does not occur spontaneously,
but rather, is an active, energy-dependent process.

This conceptual shift in our understanding of protein folding further implies that
the ribosome itself is likely to act as a giant chaperone and the most important part of
the protein folding machinery [124–126]. Clearly, this possibility is fully compatible with
the numerous observations indicating that folding of most if not all proteins occurs co-
translationally [127–151].

The most obvious way the ribosome could cause the increase in the Gibbs free energy
that seems to accompany protein folding is by lowering the entropy of the protein by
reducing the number of possible conformations of the peptide backbone. Some strained
conformations with elevated enthalpy appear possible, too.

A common assumption in modeling of protein folding and in theoretical discussions is
that the protein backbone can be well approximated by a freely jointed chain (FJC), so that all
energy that could be applied to it would rapidly dissipate because of unrestricted rotation
around each psi and phi bond. However, theoretical argument against this assumption,
based on the available data on excluded volume effects and steric hindrances, has been
brought up (e.g., [152]). Recently, our all-atom molecular dynamics simulations have
revealed the situations when the backbone indeed is not FJC. When rotational force is
applied to the protein backbone during the simulation, diverse helical peptides, despite
their purported freedom to rotate about the psi and phi bonds, rapidly fold into the native
structure, which remains stable [153].

It is important to recall that translation is coupled to the hydrolysis of massive amounts
of GTP, but there is no clarity as to what this energy is actually expended on [154]. If ΔG of
protein folding is positive, it appears likely that at least some fraction of the energy of GTP
hydrolysis contributes to active, non-equilibrium, co-translational folding. Apart from the
ribosome, other molecular players are likely to be involved in active co-translational (and
“co-translocational”) folding as well, in particular, the signal recognition particle (SRP) that
contains two GTPases of its own, while the role of GTP hydrolysis is no better understood
than it is in the case of the ribosome [155].

The energy-coupling machine framework has been suggested also for chaperone
mechanisms as an alternative to the Anfinsen’s cage. Once again, it is unclear what the
energy of ATP hydrolysis by ATP-dependent chaperones is actually spent on. Most studies
link the ATPase activity with rearrangements of the chaperone itself [156,157]. However, the
energy balance of these reactions remains unknown, and the possibility of coupling between
ATP hydrolysis and the client protein rearrangements is typically not even considered
because folding is assumed to be spontaneous. In contrast, a series of studies pioneered
by Lorimer, De Los Rios and Goloubinoff argue that ATP-dependent chaperones, such as
HSP60, HSP70 or HSP90, might expend at least part of the energy of ATP hydrolysis to
manipulate the substrate directly (“non-equilibrium activation”) although the mechanistic
details remain unclear [158–163].

Apart from the empirical evidence and thermodynamic considerations, the notion
of active, non-equilibrium protein folding also appears to be better compatible with the
evolutionary history of the relevant cellular components than the thermodynamic hypothe-
sis of spontaneous folding. Indeed, the ribosome, translation factors with GTPase activity,
and the SRP are universal to all cellular life, and several key chaperones also are among
the most highly conserved proteins. All these molecular machines are likely to antedate
the Last Universal Cellular Ancestor [164–166]. During all the 4 billion years or so of their
existence, natural selection (including purifying selection for most of this time) would
have acted primarily on the foldability of proteins on these machines, rather than their
ability to fold/re-fold spontaneously. Perhaps, spontaneous folding could be a factor only
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occasionally, in particular, for secreted proteins that have little access to chaperones once
outside the cell.

2.7. Towards a Realistic Physical Model of Active Protein Folding

If the thermodynamic concept of protein folding generally fails, a new physical model
of protein folding as an active, energy-dependent process is needed. Where to start? To
begin with, a better definition of a “perfectly unfolded” protein conformation is essential.
In such a fully unfolded conformation, there are no stable contacts between any two
amino acids that are not adjacent in the polypeptide chain. It is currently unclear whether a
perfectly unfolded conformation actually exists in vitro or in vivo for any particular protein,
but this definition will be an appropriate starting point for building a physical model and
recreating the folding process in silico.

Depending on the length of the polypeptide chain, there are theoretically on the order
of 10100 perfectly unfolded conformations for each protein [167,168]; more recently, sug-
gestions have been made for a more conservative upper bound which, however, remains
astronomically high [169]. From this vast set of perfectly unfolded conformations, one can
build up and arrive at all kinds of structures: active intrinsically disordered (“natively un-
folded”) conformations, stable misfolded conformations, conformations that only emerge
through interaction with other proteins, classic globular native conformations with hy-
drophobic cores, and more. What do we know about “perfectly unfolded” conformations?
If we measure (calculate) Gibbs free energy for these conformations, we should observe
approximately the same value for each of them because these are random conformations
with no interactions other than with the solvent. Even a single contact that forms within the
polypeptide chain, whether it is a short or long distance one, makes the polypeptide more
compact and increases the Gibbs free energy both due to the entropy reduction resulting
from limiting the degrees of freedom and to changing enthalpy if, for example, the contact
is hydrophobic or ionic.

Considering that most of protein folding in vivo takes place co-translationally, while
the polypeptide chain is built up one amino acid at a time, simultaneously exploring the
shifting folding landscape while interacting with multiple other molecules in a crowded
environment, the task of incorporating all known cellular biochemistry and structural
biology into the physical model of non-equilibrium protein folding as it occurs in vivo
seems daunting. Nevertheless, this goal no longer appears to be out of reach. Advanced
methods for quantitative measurement of various energy inputs, molecular motions, heat
transfers and other relevant quantities should provide the values, or at least the bounds, of
many parameters that determine protein folding as in vivo. Such work has already started
although it is notable that many crucial parameters of the relevant processes, even some
basic ones, such as the translation rate, rely on estimates obtained decades ago [170,171]
and refined only very recently [172].

A complementary class of approaches involves building, both in silico and in vitro,
simplified artificial protein folding machines that apply various forces to the folding
polypeptide in an attempt to directly manipulate the peptide backbone into the desired
conformations, imposing various kinds of physical constraints on the folding process, and
thus, causing shifts and introducing kinetic barriers into the folding landscape. Work in
this direction has already started as well. In the next section, we provide a brief overview
of several advanced techniques and some recent observations, which suggest a more
sophisticated understanding of the mechanisms of protein folding than what was provided
by the canonical models of spontaneous protein folding in vitro.

2.8. Non-Equilibrium Protein Folding: New Approaches and Recent Results

In recent years, a variety of novel experimental techniques have been applied to
study co-translational and chaperone-assisted protein folding. Particularly informative
are methods that can manipulate a defined single molecule using a specific force probe,
such as atomic force microscope, optical tweezers, or magnetic tweezers; these methods are
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sometimes collectively referred to as single-molecule force spectroscopy methods (SMFS;
reviewed in [173]). The SMFS methods have been recently applied to the study of co-
translational folding of nascent protein chains, using “life-like” in vitro translation systems
(reviewed in [149]). Although SMFS approaches have not yet reached the precision required
to infer the thermodynamic parameters of protein folding (see Section 2.1 above), these
approaches are well-suited to address questions about the effects of specific treatments
and interactions on the folding process. Recent observations made using such methods
include, for example, detection of co-translational folding intermediates, suggesting a
defined folding pathway for a small domain that had been thought to fold in a two-step
fashion in vitro [174], and observation of a direct accelerating and stabilizing effect of the
ribosomal tunnel on the co-translational folding of another small domain [151]. Although
often discussed within the conventional framework of thermodynamically-driven folding,
these and similar results can be productively exploited to develop the non-equilibrium
protein folding model. Furthermore, with regard to chaperone-assisted protein refolding,
SMFS methods have revealed that the chaperones of the Hsp90 family use the energy
of ATP hydrolysis to perform mechanical work, which is applied to compact unfolded
chains against the counteracting denaturing forces [175], in an apparent contradiction to
the traditionally envisaged, Anfinsen chamber-like mechanisms of chaperone action.

Another group of powerful methods are modern structural biology approaches, in-
cluding cryo-electron microscopy, solid state nuclear magnetic resonance, SAXS and others,
which reveal the structure of nascent polypeptide chains during protein synthesis. Many
of these methods are focused on the kinetics and regulation of protein synthesis [176,177]
and on the functions of nascent chain, such as sensing the state of regulatory metabolites in
the environment and communicating the results to the peptidyltransferase center of the
translating ribosome [178,179]. These studies also highly informative for the study of co-
translational protein folding, and have already illuminated defined secondary and tertiary
structures adopted by nascent peptides in the ribosome tunnel and exit vestibule [180–182].
In the forthcoming years, we expect to see more explicit investigation of the interactions of
the nascent peptide with the peptidyl transferase center, ribosome exit tunnel, and other
components of the protein folding machinery.

Computational modeling of protein folding also is taking a new direction towards a
closer mimicking of the folding environment encountered by proteins in vivo. We recently
reported the results of all-atom molecular dynamics simulations, in which the standard
force field was augmented by the application of a mechanical force that rotated a single
N-terminal amino acid of peptides, while simultaneously restricting the movements of a
distal amino acid. Such directional rotation changed the peptide backbone behavior, facili-
tating rapid formation of native structures in several diverse alpha-helical peptides [153].
Apparently, steric clashes arising due to the forced directional rotation resulted in the
behavior of the peptide backbone that no longer resembled an FJC. Further studies are
needed to determine whether such an effect can be observed in single-molecule experiments
in vitro as well. Other attempts to build simplified folding machines to model aspects of
co-translational peptide folding in vivo include the molecular-dynamics studies of folding
in a tubular chamber representing the ribosome exit tunnel, either with uncharged elastic
walls or with charged walls [183–186]. Finally, sophisticated methods of visualization and
analysis of the massive dynamic data on protein folding, unfolding, and refolding are
also undergoing active development (see [187] for a recent review). Such methods should
greatly aid our understanding of the complex mechanisms of protein folding in vivo.

3. Conclusions

The cornerstone assumption in the field of protein folding is that proteins sponta-
neously fold into their native conformations driven by negative ΔG. Furthermore, it is
generally assumed that the native conformation of a protein is the global minimum of Gibbs
free energy. However, a survey of the available data on spontaneous protein folding and
refolding, in particular, for chemically synthesized and over-expressed proteins, presents
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little evidence in support of this thermodynamic hypothesis of folding. On the contrary,
the majority of proteins appear not to be spontaneously foldable and are only marginally
stable, at best. The totality of these observations along with thermodynamic considerations
suggest that across the protein world, there is a wide variety of rugged, dynamic landscapes
of folding free energy, resulting in a broad range of thermodynamic and kinetic stability,
and refoldability of proteins. For different proteins, ΔG of folding can be either negative or
positive, conceivably, for the majority of the proteins. Even regardless of the specific value
of ΔG, folding of most proteins is likely to be an active, non-equilibrium, energy-dependent
process. This conceptual shift in our understanding of protein folding appears to be best
compatible with the extensive molecular data on the universal translation and proteostasis
machineries that operate in all cells, and with the evolutionary history of these molecular
machines that is traced to the earliest stages of life evolution. We believe that this change in
perspective on protein folding can and should stimulate a dedicated program of theoretical,
modeling, and experimental studies.
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Abstract: The conformational properties of carbohydrates can contribute to protein structure directly
through covalent conjugation in the cases of glycoproteins and proteoglycans and indirectly in the
case of transmembrane proteins embedded in glycolipid-containing bilayers. However, there continue
to be significant challenges associated with experimental structural biology of such carbohydrate-
containing systems. All-atom explicit-solvent molecular dynamics simulations provide a direct atomic
resolution view of biomolecular dynamics and thermodynamics, but the accuracy of the results
depends on the quality of the force field parametrization used in the simulations. A key determinant
of the conformational properties of carbohydrates is ring puckering. Here, we applied extended
system adaptive biasing force (eABF) all-atom explicit-solvent molecular dynamics simulations to
characterize the ring puckering thermodynamics of the ten common pyranose monosaccharides found
in vertebrate biology (as represented by the CHARMM carbohydrate force field). The results, along
with those for idose, demonstrate that the CHARMM force field reliably models ring puckering across
this diverse set of molecules, including accurately capturing the subtle balance between 4C1 and 1C4

chair conformations in the cases of iduronate and of idose. This suggests the broad applicability of
the force field for accurate modeling of carbohydrate-containing vertebrate biomolecules such as
glycoproteins, proteoglycans, and glycolipids.

Keywords: glucose; GlcNAc; galactose; GalNAc; mannose; xylose; fucose; Neu5Ac; glucuronate;
iduronate; tetrahydropyran

1. Introduction

Glycosylation is a common and important post-translational modification to proteins
in eukaryotic biology. Additionally, carbohydrates are key components of eukaryotic
lipids that make up the bilayers in which transmembrane proteins are embedded [1].
The carbohydrate portions of glycosylated proteins and glycolipids are called glycans.
Naturally occurring glycans in vertebrates, including in humans, are composed of the
monosaccharides D-glucose (Glc), N-acetyl-D-glucosamine (GlcNAc), D-galactose (Gal),
N-acetyl-D-galactosamine (GalNAc), D-mannose (Man), D-xylose (Xyl), L-fucose (Fuc), N-
acetyl-D-neuraminic acid (Neu5Ac), D-glucuronic acid (GlcA), and L-iduronic acid (IdoA),
all in their pyranose forms [2] (Figure 1). As Neu5Ac, GlcA, and IdoA are expected to
be deprotonated under typical physiological conditions, Figure 1 shows their conjugate
base forms, N-acetyl-D-neuraminate, D-glucuronate, and L-iduronate, and it is these forms
that are exclusively considered in what follows. Examples of glycans as components of
glycosylated proteins are the N-glycans [3] and O-glycans [4] attached to glycoproteins
and the glycosaminoglycans attached to proteoglycans [5]. Experimental atomic-resolution
structural biology on glycosylated proteins is complicated by the non-template based syn-
thesis of the attached glycans [6], which precludes a convenient source of homogeneous
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sample from biological sources, the intrinsic flexibility of glycans, which hinders confor-
mational analysis by X-ray crystallography and NMR spectroscopy [7], and the covalent
linkage of proteins with glycans, which can affect the structural properties of both the
glycan and protein components [8–10]. In the context of membrane proteins, experimental
atomic-resolution structural biology using X-ray crystallography entails extracting the
membrane protein from its native lipid environment in order to create protein crystals [11],
which means the effects of natural glycolipids in the native bilayer are not included in the
structure determination. Therefore, the impact of glycans on protein structure continues to
be at the frontiers of protein structure research.

Figure 1. Compounds considered in the current study. Glc carbon atoms are numbered in blue. All
other monosaccharides follow the same numbering scheme, except for Neu5Ac, which is numbered as
pictured. All monosaccharides are drawn as the β anomer. The α anomer is created by inversion of the
configuration at carbon 2 for Neu5Ac and at carbon 1 for all other monosaccharides. Both anomers for
each monosaccharide as well as the corresponding O-methyl glycosides, formed by methylation at the
anomeric carbon hydroxyl, were studied, for a total of 45 compounds (44 monosaccharides + THP).

Computational approaches for three-dimensional modeling of the atomic-resolution
conformational properties of glycans have been developed and applied to help bridge
the gaps in experimental methods [12–26]. Widely used among these computational
approaches are explicit solvent molecular dynamics simulations employing atomistic force
fields such as GLYCAM06 [27,28], GROMOS 53A6GLYC [29,30], GROMOS 56a6CARBO/
CARBO_R [31–33], OPLS-AA [34,35], and CHARMM [36–39]. The quality of the results
from such molecular dynamics simulations depends upon the quality of the force field
parametrization. The conformational properties of glycans are determined principally by
flexibility in the rings of the constituent monosaccharides and in the glycosidic linkages
connecting them (Figure 2) [12,40], and thus it is important for force field parametrizations
to accurately capture the physics of these sources of flexibility in order to ensure reliable
modeling results.
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Figure 2. Pyranose ring puckering (red) and glycosidic bond rotation (blue) are the major sources of
polymer flexibility in vertebrate glycans.

Since pyranose ring puckering occurs at the microsecond and beyond timescale [40–42],
which is near the upper limit of typical present-day all-atom explicit-solvent molecular
dynamics simulations, limitations in force field accuracy may not be readily apparent
simply based on analysis of such simulation results. Here, we systematically determine the
ring puckering thermodynamics of all compounds in Figure 2, including both the α and the
β anomers and their corresponding O-methyl glycosides for the ten monosaccharides (i.e.,
45 systems total), with the widely-used CHARMM force field. Extended System Adaptive
Biasing Force (eABF) [43,44] is applied to achieve well-converged equilibrium statistics for
ring puckering probabilities, with error estimates from triplicate 200-ns simulations for
each system. The ring puckering thermodynamics from these simulations are in line with
expected behavior, including for the highly flexible IdoA, and imply that the CHARMM
force field can be used with confidence to correctly capture pyranose ring puckering
contributions to glycan conformational heterogeneity in the context of the vertebrate
glycans such as N-glycans, O-glycans, glycosaminoglycans, and glycolipids.

We additionally consider idose in its pyranose form, since, like IdoA, idose has a close
balance between 4C1 and 1C4 chair probabilities, which makes it a useful test of force field
accuracy. In agreement with prior computational results [45] and recent NMR data [46],
the CHARMM carbohydrate force field performs very well in capturing the close balance
for idose as well as for IdoA. Finally, for completeness, we include tetrahydropyran, which
is the basic six-membered ring scaffold common to all of the monosaccharides considered
here (Figure 2). As expected, there is an exact 50:50 balance for chair-chair interconversion
for THP.

It is possible to tune ring puckering thermodynamics by selectively refining specific
force field parameters and by using ring puckering thermodynamics as target data in the
parametrization process. In the case of the GROMOS force field, such an approach was
taken as a force field revision [31,32,47], and has yielded excellent results for ring puckering
across a wide variety of pyranoses [32,33,45,48]. In the case of CHARMM, ring puckering
thermodynamics in solution were not used as target data for CHARMM parametrization,
and both bonded and nonbonded force field parameters, which built upon quantum
mechanical gas phase puckering energetics for tetrahydropyran [36,49], are conserved
across all of the different monosaccharides considered here. This demonstrates it is possible
to correctly account for pyranose monosaccharide ring puckering thermodynamics in
solution with a general transferable bonded and nonbonded force field parameter set. In
the case of CHARMM, combining this parameter set with CHARMM force field parameters
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for proteins [50–52] can enable accurate modeling of glycoproteins and proteoglycans, and
combining these parameters set with CHARMM force field parameters for lipids can do the
same for glycolipids [53,54], which in turn can enable accurate modeling of transmembrane
proteins embedded in complex bilayers composed of natural lipids.

2. Results and Discussion

2.1. Reaction Coordinate and Sampling Approach

Ring puckering for pyranose monosaccharides is commonly described using the
Cremer-Pople (C-P) parameters (Q, θ, φ) [55], which provide a convenient quantitative
means to identify both the extent and the nature of the puckering using spherical coor-
dinates. The puckering amplitude Q describes the extent or magnitude of the puckering,
while the angular values 0◦ ≤ θ ≤ 180◦ and 0◦ ≤ φ < 360◦ describe the nature of the
puckering. “Polar” values of θ near 0◦ and 180◦ correspond to 4C1 and 1C4 chair con-
formations, respectively, while “equatorial” values of θ near 90◦ correspond to boat and
skew boat conformations, with the φ value indicating the specific boat or skew boat (e.g.,
2SO). Intermediate or “tropical” values of θ, which are between the poles and the equator,
correspond to envelope and half-envelope conformations, with the φ value indicating the
specific envelope or half envelope [56].

Due to the long timescale for interconversion between 4C1 and 1C4, it is impractical
to precisely determine the balance of probabilities and, hence, free energy difference, ΔG,
between these conformations for pyranose monosaccharides on a routine basis using stan-
dard all-atom explicit-solvent molecular dynamics simulations. This is true for pyranoses
where ΔG ≈ 0 due to the energy barrier separating the conformations [41,42], and the
situation is even more difficult in cases where ΔG is substantially different than zero due to
the difficulty in achieving equilibrium sampling of the unfavored conformation.

A logical means to address this issue is to apply a bias to θ during a simulation and
either to reweight the sampling distribution to get unbiased conformational probabilities or
to directly compute ΔG from the bias. Such an approach employing metadynamics [57,58]
has enabled a number of studies to this end [29,32,33,45,48,59]. As demonstrated in these
studies, this approach allows one to obtain a good estimate for ΔG with much less computa-
tion time than through standard (non-biased) molecular dynamics. There are two potential
downsides to using a bias on θ. The first is the need to develop specialized computer code
for the bias since the C-P θ is not a standard cartesian or internal coordinate. The second is
that, while the single parameter θ can differentiate the two chair conformations from each
other and also non-chair conformations from chair conformations, it cannot differentiate
one non-chair conformation from another non-chair conformation. This second potential
downside can be addressed by introducing a second simultaneous bias on φ but at the
expense of further complicating the first downside.

For these reasons, direct use of dihedral angles is an attractive alternative. For example,
Pickett and Strauss (P-S) defined three out-of-plane dihedrals constructed as various combi-
nations of atoms in the pyranose ring [60], and it has been shown that simultaneous biases
on all three of these angles can be effectively used to sample pyranose ring puckering [61].
In fact, the P-S and C-P approaches are mathematically equivalent [62]. However, there is
an important practical difference with regard to applying biases on C-P parameters versus
P-S out-of-plane dihedrals: only the two angular C-P parameters are required to uniquely
identify the pucker nature (as opposed to magnitude) of a particular conformation whereas
all three P-S out-of-plane dihedrals are required to do the same [59,63].

Babin and Sagui (B-S) have also proposed using dihedral angles for biased sampling
of pyranose ring pucker [64]. In contrast to the P-S approach, only two dihedral angles
are used in their scheme, α1 ≡ O5–C1–C2–C3 and α2 ≡ C3–C4–C5–O5, and the dihedral
angles are real dihedrals determined by sequentially bonded atoms. Babin and Sagui have
shown that biased sampling of (α1, α2) is an effective approach for sampling IdoA and
GlcA puckering, and Alibay and Bryce have extended on these two monosaccharides to
sulfated variants, as well as to non-sulfated and sulfated variants of GlcNAc, Gal, and
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GalNAc [65]. In what follows, we demonstrate that major minima in ΔG(α1, α2) are
populated by unique conformations. As such, it is possible to do direct integration of
regions of ΔG(α1, α2) to determine ΔG not only between the 4C1 and 1C4 chairs, but also
between specific boat/skew-boat conformations.

2.2. Extended System Adaptive Biasing Force (eABF) Sampling of the B-S (α1, α2)
Reaction Coordinate

Methyl α-L-idopyranosiduronic acid (MeαIdoA) (Figure 2 “IdoA” with a methylated
axial C1 hydroxyl) serves as a good test system to demonstrate the efficacy of eABF
sampling of (α1, α2) owing to a small (<1 kcal/mol [46]) ΔG for conversion between the
4C1 and 1C4 chair conformations and a large energy barrier (~10 kcal/mol from the present
work based on transition path saddle points in Figure 3), and therefore, slow kinetics,
for this transition. Triplicate 200-ns eABF simulations with simultaneous biases on α1
and α2 and seeded with different randomized initial velocities yield essentially identical
results across the entire ΔG(α1, α2) surface (Figure 3). Not only are the thermodynamic
minima equal in both value and location, but so are the saddle regions and even the
maxima, which demonstrates the excellent convergence properties of eABF for this system.
ΔG(α1, α2) data are similarly well-converged for all 45 systems in this study (four different
anomerization/methylation states for each of the 11 monosaccharides in Figure 2 plus
tetrahydropyran; Supplementary Material Figures S1–S12).

Figure 3. MeαIdoA ΔG(α1, α2) from eABF simulation. Each panel is from a separate 200-ns simulation
seeded with different initial random velocities. α1 and α2 are in degrees. ΔG(α1, α2) is in kcal/mol,
with contours drawn every 1 kcal/mol, colored from 0–3 kcal/mol, and labeled every 2 kcal/mol.

Additionally, each major thermodynamic minimum, that is, where ΔG(α1, α2) < 3 kcal/mol,
is populated by a single type of ring puckering conformation (Figure 4). We have chosen
3 kcal/mol as a cutoff value for the definition of major thermodynamic minimum since,
at the simulation temperature of 298 K, values greater than 3 kcal/mol correspond to
small probabilities, specifically, less than 0.64%. This association between a single ring
puckering conformation and each major thermodynamic minimum in ΔG(α1, α2) holds for
all 44 monosaccharides in this study, which illustrates the practical utility of the B-S reaction
coordinate for characterizing pyranose ring puckering not only for chair conformations but
also for specific non-chair conformations.

Kinetic data from the simulations clearly show the efficacy of eABF combined with
the B-S (α1, α2) reaction coordinate for effectively sampling pyranose ring pucker, which
is not surprising given the excellent convergence properties of ΔG(α1, α2) with eABF
as discussed previously. Serving as a negative control, standard (non-biased) triplicate
simulations of MeαIdoA starting from the 1C4 chair undergo at most one transition in
C-P θ during 200 ns (Figure 5a). Specifically, two of the simulations maintain θ ∼= 180◦,
indicating they are trapped in the initial conformation, while the third transitions at 25 ns to
θ ∼= 90◦ and remains there, indicating it is stuck in the equatorial boat/skew-boat region of
puckering space. Therefore, standard sub-microsecond explicit solvent molecular dynamics
simulation is inadequate for the task of sampling puckering conformations for pyranoses
modeled with the CHARMM force field.
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Figure 4. Sampling of specific MeαIdoA ring puckering conformations during eABF simulation
with the Babin-Sagui (α1, α2) reaction coordinate. Sampled (α1, α2) values are separated into those
for 4C1, 1C4, and 2SO (blue, red, and green dots, respectively, in panel “a”) and for all other (black
dots, panel “b”) puckering conformations. α1 and α2 are in degrees. ΔG(α1, α2) is in kcal/mol, with
contours drawn every 1 kcal/mol from 0–5 kcal/mol and colored from 0–3 kcal/mol. Puckering data
have been aggregated across the triplicate simulations, and ΔG(α1, α2) is from the first simulation in
the triplicate.

Figure 5. MeαIdoA conformational transitions in standard (non-biased) (a), eABF (b), and CMAP-
biased (c) molecular dynamics simulations. eABF and CMAP biased simulations have biasing on the
Babin-Sagui (α1, α2) reaction coordinate. Data in each panel are from triplicate simulations (blue, red,
and green) seeded with different random initial velocities.

In contrast, with eABF sampling, during the first 25 ns, as the time-dependent biasing
force becomes a progressively better estimate of the thermodynamic force along (α1, α2),
transitions in θ start to become induced (Figure 5b). Beyond t = 25 ns, there is rapid
transitioning on the nanosecond timescale from the 4C1 chair (θ ∼= 0◦), through boat/skew-
boat conformations (θ ∼= 90◦), to the 1C4 chair (θ ∼= 90◦) and back again, indicating sufficient
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sampling of (α1, α2) by eABF to provide an accurate estimate of the thermodynamic force
along (α1, α2). As a technical point, the eABF approach applies a bias not to (α1, α2)
directly but to extended degrees of freedom attached to (α1, α2), and the thermodynamic
force on (α1, α2) is recovered from the biasing force applied to these extended degrees of
freedom [43,44]. Standard ABF is not possible for sampling (α1, α2) since α1 and α2 do not
meet the required orthogonality condition for standard ABF [66–68] owing to the sharing
of atoms carbon 1 and oxygen 5 in both of the dihedral angle definitions. For additional
information on this point, we refer interested readers to the cyclohexane data in Figure 2
of reference [44] and the associated discussion therein, which vividly demonstrates errors
in estimation of cyclohexane puckering free energy with standard ABF that are corrected
with eABF.

As a positive control, and similar to the approach of Babin and Sagui [64], we ran
an additional set of simulations that employed CMAP-biased sampling [51,69]. In these
simulations, the potential energy was defined by Unon-biased + UCMAP, where Unon-biased is
the same CHARMM additive force field function used in the non-biased simulations here
and UCMAP is UCMAP(α1, α2) ∼=−0.5 × ΔG(α1, α2). Unlike in the eABF simulations, the bias,
in this case from the CMAP term, is fixed. We note that UCMAP(α1, α2) is only approximately
equal to −0.5 × ΔG(α1, α2) since, while ΔG(α1, α2) was computed on a square grid with a
grid spacing of 1◦, the grid spacing for the CMAP potential is 15◦. As expected, there is
excellent sampling of C-P θ from the very beginning of the triplicate simulations (Figure 5c).
While there is rapid barrier crossing with this approach, there is less uniform sampling
across all values of θ as compared to eABF sampling, with a strong tendency to favor
sampling of polar and equatorial values of θ as compared to tropical values (Figure 5b
vs. Figure 5c). This resulted from the factor of 0.5 used in the definition of UCMAP(α1, α2),
and was done to maximize importance sampling of thermodynamically favored regions
of (α1, α2) space while still lowering barriers sufficiently to achieve ergodic sampling of
(α1, α2) on the 200-ns time scale of the simulations. As expected, thermodynamically
unfavored regions of (α1, α2) correspond to tropical values, which in turn are envelope and
half-envelope conformations with high degrees of ring strain.

Plotting C-P (θ, φ) values sampled during the eABF and the CMAP-biased simulations
further validates the degree to which these two biasing methods applied to the (α1, α2)
reaction coordinate enable sampling of pyranose puckering space. In addition to excellent
coverage of the two chair conformations 4C1 and 1C4 located in the polar regions, there
is good coverage of the equatorial region for 75◦ < φ < 270◦, which includes 5S1, 2,5B,
2SO, B3,O, 1S3, 1,4B, and 1S5, in order of increasing φ (Figure 6). That said, there is very
limited sampling of equatorial regions outside this range of φ values, resulting from the
fact that the two-dimensional B-S (α1, α2) reaction coordinate is not a perfect replacement
for biased sampling of the two-dimensional C-P (θ, φ) reaction coordinate. Nonetheless, it
is reasonable to assume conformations not sampled are very high in free energy and that
the thermodynamically relevant conformations have all been sampled. This latter point is
emphasized by comparing these sampling data for eABF versus CMAP biasing. In the case
of eABF, as time increases, sampling approaches that for a distribution biased by −ΔG(α1,
α2), whereas for CMAP biasing, sampling is that for a distribution biased by −0.5 × ΔG(α1,
α2), as discussed above. As such, eABF provides more complete coverage of (θ, φ) space
(Figure 6a) as compared to CMAP-biased sampling (Figure 6b).
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Figure 6. MeαIdoA Cremer-Pople (θ, φ) values sampled during eABF (a) and CMAP-biased (b) molec-
ular dynamics simulations. Pyranose ring puckering regions [56] (“4C1”, “northern tropical”, “2SO”,
etc.) are labeled as defined in the Materials and Methods section. Biasing was applied to the
Babin-Sagui (α1, α2) reaction coordinate. Data in each panel are from triplicate simulations (blue,
red, and green) seeded with different random initial velocities. eABF simulations were 200 ns and
CMAP-biased simulations were 1000 ns.

2.3. Using eABF-Computed ΔG(α1, α2) to Calculate Specific Ring Puckering
Conformation Probabilities

Given that each major thermodynamic minimum for MeαIdoA is populated by a
single type of puckering conformation, as shown above, it is possible simply to integrate
the probabilities associated with each minimum to determine relative probabilities for
specific ring puckering conformations. We operationalized this by converting ΔG(α1, α2)
values from eABF simulations to probabilities p(α1, α2) using the Boltzmann relationship
p(α1, α2) = exp(ΔG(α1, α2)/−RT), where R is the universal gas constant and T is the tem-
perature. We then separated the data based on the (α1, α2) quadrant, and summed up all
values of p for each (α1, α2) bin having an associated value ΔG(α1, α2) < 3 kcal/mol within
a 20◦ degree radius of the most favorable thermodynamic minimum in that quadrant. This
yields at most one summed probability, P, per quadrant of the (α1, α2) coordinate. In
the case of MeαIdoA, there are three such values, P+,+, P-,+, and P+,-; the subscript here
indicates the quadrant, for example, the quadrant defined by (α1 < 0◦, α2 > 0◦) for “−, +”.
As discussed above, for MeαIdoA, the “+, −” minimum corresponds uniquely to the 4C1
ring pucker conformation, “−, +” to 1C4, and “+, +” to 2SO (Figure 4), which allows for
the assignment of probability values to specific ring pucker conformations based on eABF
ΔG(α1, α2) results.

2.4. Ring Puckering Probabilities: Idose and Iduronate

Among the molecules considered in this study (Figure 2), the Ido and IdoA compounds
are well known to exhibit significant conformational flexibility with regard to ring pucker.
There are recent high-quality experimental results quantifying this, but with variable
agreement with prior molecular dynamics simulation studies [46]. Comparison of 4C1:1C4
ring puckering probability ratios shows good agreement between the present simulation
results and these available experimental data (Table 1). In addition to probabilities from the
eABF ΔG(α1, α2) results, we have included probabilities computed from the CMAP-biased
simulations. These were determined by collecting all 4C1 conformations from a CMAP-
biased simulation, assigning a probability p = exp(UCMAP/−RT) to each conformation to
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account for the effect of the CMAP bias, and then summing up the p values to get the total
probability for the 4C1 pucker. This was likewise carried out for the 1C4 pucker, and the two
total probabilities were normalized to sum to 100% (Table 1, “CMAP-biased simulations”).

Table 1. 4C1:1C4 ring puckering probability ratios in idose (Ido) and iduronate (IdoA) compounds.

Compound eABF Simulations 1 CMAP-Biased
Simulations 1 Experimental [46]

αIdo 17.6:82.4 (1.8) 15.1:84.9 (1.9) 18:82

MeαIdo 16.1:83.9 (0.7) 18.1:81.9 (2.1) 42:58

βIdo 97.1:2.9 (0.7) 90.7:9.3 (1.7) 82:18

MeβIdo 82.8:17.2 (2.2) 76.6:23.4 (1.5) 74:26

MeαIdoA 82.9:17.1 (1.4) 77.2:22.8 (1.0) 61:39
1 Data are averages from triplicate simulations with standard error of the mean values in parentheses.

Converting the 4C1:1C4 ring puckering probability ratios r to free energies using the
relationship ΔG = −RTln(r) and plotting these ΔG values further illustrates how well the
force field approach treats the close balance between 4C1 and 1C4 ring conformations. These
ΔG values for the 4C1 to 1C4 equilibrium from the eABF and from the CMAP-biased simula-
tions are typically within 0.5 kcal/mol of the experimental values (Figure 7a and Figure 7b,
respectively). This very small degree of error is excellent for a force field model, and is
not much different than what is seen when comparing the results from the two different
simulation approaches using the same force field (Figure 7c).

Figure 7. Comparison of ΔG values for the 4C1 to 1C4 equilibrium in Ido and IdoA compounds from
eABF simulations, CMAP-biased simulations, and NMR experiments. Data are presented as eABF vs.
NMR (a), CMAP-biased vs. NMR (b), and eABF vs. CMAP-biased (c). The specific compounds and
the experimental data from NMR experiments are as detailed in Table 1. Simulation data points are
averages from triplicate simulations, with error bars representing 95% confidence intervals. The solid
diagonal is the line y = x, and the dotted diagonal lines are ±0.5 kcal/mol.

2.5. Ring Puckering: ΔG(α1, α2) Minima for All Compounds

Quantitative calculation of pyranose ring puckering probabilities is valuable for com-
parison to high-quality experimental data for pyranoses with multiple thermodynamically
accessible puckering conformations, as in the case of IdoA and Ido. However, such calcu-
lation by either integration around eABF ΔG(α1, α2) minima or summing of re-weighted
probabilities for individual snapshots from CMAP-biased simulations entails substantial
post-simulation effort following the initial computation of ΔG(α1, α2) with eABF. Unlike
IdoA and Ido, most of the pyranose monosaccharides considered here are expected to have
a single thermodynamically important ΔG(α1, α2) minimum that corresponds to either the
4C1 or 1C4 chair pucker conformation. As such, tabulation of ΔG minima values in the four
quadrants of (α1, α2) space provides a convenient semi-quantitative means to evaluate the
behavior of the force field model for those compounds.
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Table 2 lists the ΔG minimum value in each of the four quadrants of (α1, α2) space for
each of the 45 compounds studied. It also correlates each thermodynamically important
minimum (i.e., having a value of <3 kcal/mol) with the puckering conformation associated
with the value of (α1, α2) for that ΔG minimum. This correlation was carried out using
computed Cremer-Pople parameters (detailed in “Materials and Methods: Definition of
4C1, 1C4, 2SO, OS2, and other ring puckering conformations”) for trajectory snapshots with
(α1, α2) values within a 10◦ radius of the location of the ΔG minimum.

Table 2. Minimum ΔG(α1, α2) values in each of the four quadrants of the (α1, α2) reaction coordinate,
and the corresponding major ring puckering conformation(s).

Compound ΔG+,−
1

ΔG−,+
1

ΔG−,−
1

ΔG+,+
1 Major Pucker

Conformation(s) 2

αGlc 0 5.47 (0.04) 6.05 (0.04) 8.46 (0.05) 4C1

MeαGlc 0 6.83 (0.06) 7.06 (0.05) 9.39 (0.06) 4C1

βGlc 0 8.43 (0.19) 5.44 (0.04) 7.03 (0.01) 4C1

MeβGlc 0 8.27 (0.08) 5.38 (0.03) 6.91 (0.02) 4C1

αGlcNAc 0 5.01 (0.05) 6.11 (0.07) 7.19 (0.05) 4C1

MeαGlcNAc 0 6.19 (0.11) 7.08 (0.04) 8.20 (0.04) 4C1

βGlcNAc 0 4.95 (0.09) 4.01 (0.02) 6.60 (0.05) 4C1

MeβGlcNAc 0 4.73 (0.06) 2.83 (0.09) 6.85 (0.04) 4C1 > 1S5

αGal 0 4.25 (0.06) 6.11 (0.04) 8.73 (0.06) 4C1

MeαGal 0 5.62 (0.01) 7.35 (0.04) 8.74 (0.03) 4C1

βGal 0 6.56 (0.09) 5.80 (0.01) 8.35 (0.04) 4C1

MeβGal 0 7.10 (0.06) 6.63 (0.04) 8.29 (0.04) 4C1

αGalNAc 0 3.09 (0.09) 7.00 (0.07) 7.72 (0.09) 4C1

MeαGalNAc 0 4.33 (0.06) 8.21 (0.05) 7.77 (0.06) 4C1

βGalNAc 0 2.47 (0.05) 3.66 (0.07) 7.03 (0.04) 4C1 > 1C4

MeβGalNAc 0 2.90 (0.04) 3.58 (0.01) 6.87 (0.05) 4C1 > 1C4

αMan 0 5.26 (0.6) 6.83 (0.02) 9.99 (0.06) 4C1

MeαMan 0 5.82 (0.03) 7.54 (0.06) 10.74 (0.03) 4C1

βMan 0 6.89 (0.05) 7.27 (0.03) 8.98 (0.04) 4C1

MeβMan 0 6.20 (0.05) 6.24 (0.05) 8.14 (0.01) 4C1

αXyl 0 2.17 (0.01) 6.03 (0.02) 6.00 (0.05) 4C1 > 1C4

MeαXyl 0 3.60 (0.02) 6.95 (0.02) 6.73 (0.02) 4C1

βXyl 0 3.77 (0.05) 5.25 (0.01) 3.24 0.01) 4C1

MeβXyl 0 4.19 (0.00) 4.91 (0.02) 3.51 (0.01) 4C1

αFuc 3.87 (0.06) 0 8.11 (0.06) 5.97 (0.02) 1C4

MeαFuc 5.14 (0.03) 0 8.15 (0.01) 7.10 (0.02) 1C4

βFuc 6.48 (0.03) 0 8.10 (0.03) 5.73 (0.01) 1C4

MeβFuc 7.01 (0.04) 0 7.86 (0.02) 6.54 (0.04) 1C4
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Table 2. Cont.

Compound ΔG+,−
1

ΔG−,+
1

ΔG−,−
1

ΔG+,+
1 Major Pucker

Conformation(s) 2

αNeu5Ac 2.71 (0.09) 0 2.79 (0.02) 1.42 (0.07) 2C5 > 3SO > 5C2 ∼= 4,OB

MeαNeu5Ac 4.89 (0.29) 0 6.37 (0.10) 2.71 (0.24) 2C5 > 3SO

βNeu5Ac 6.79 (0.09) 0 7.18 (0.10) 4.01 (0.03) 1C4

MeβNeu5Ac 8.76 (0.08) 0 8.88 (0.10) 5.93 (0.11) 1C4

αGlcA 0 4.53 (0.12) 5.64 (0.04) 6.28 (0.05) 4C1

MeαGlcA 0 5.80 (0.04) 6.75 (0.03) 7.20 (0.03) 4C1

βGlcA 0 5.96 (0.11) 5.69 (0.01) 4.31 (0.06) 4C1

MeβGlcA 0 8.30 (0.09) 6.49 (0.02) 6.22 (0.04) 4C1

αIdoA 0 0.31 (0.09) 3.84 (0.04) 1.74 (0.02) 4C1 ∼= 1C4 > 2SO

MeαIdoA 0 0.77 (0.05) 3.23 (0.01) 2.04 (0.02) 4C1 > 1C4 > 2SO

βIdoA 2.29 (0.03) 0 4.47 (0.08) 3.81 (0.03) 1C4 > 4C1

MeβIdoA 3.29 (0.06) 0 4.31 (0.05) 3.53 (0.06) 1C4

αIdo 0.73 (0.08) 0 0.88 (0.08) 3.20 (0.06) 1C4 > 4C1 ∼= OS2

MeαIdo 0.82 (0.04) 0 1.00 (0.02) 2.81 (0.03) 1C4 > 4C1 ∼= OS2 > 3S1

βIdo 0 2.15 (0.10) 4.17 (0.08) 5.30 (0.09) 4C1 > 1C4

MeβIdo 0 1.12 (0.09) 3.49 (0.04) 5.00 (0.09) 4C1 > 1C4

THP 0 0.03 (0.01) 5.14 (0.01) 5.13 (0.00) 4C1 = 1C4

1 Data in kcal/mol are averages from triplicate simulations for the minimum ΔG(α1, α2) in that quadrant. For
example, “−,+” indicates the quadrant defined by (α1 < 0◦, α2 > 0◦). Standard error of the mean values are in
parentheses. 2 Conformations are listed in order of most likely to least likely. Only conformations corresponding
to ΔG+,−, ΔG−,+, ΔG+,+, and/or ΔG−,− < 3 kcal/mol are listed.

As expected, most of the pyranose monosaccharides have a single major pucker
conformation: the 4C1 or the 1C4 chair. Aside from IdoA and Ido, which were discussed
in the previous section, exceptions to this are MeβGlcNAc, βGalNAc, MeβGalNAc, αXyl,
αNeu5Ac, and MeαNeu5Ac.

MeβGlcNAc, βGalNAc, and MeβGalNAc all have their ΔG(α1, α2) global minimum
corresponding to the 4C1 chair conformation, as expected. They each also have a secondary
minimum, but in all three cases the associated ΔG(α1, α2) is no less than 2.5 kcal/mol,
which translates to a probability of no more than 1.5%. For MeβGlcNAc, the secondary
minimum arises from skew-boat puckering, whereas for βGalNAc and MeβGalNAc, the
secondary minimum is the 1C4 chair conformation.

αXyl has the 4C1 chair conformation as its global minimum and a secondary ΔG(α1, α2)
minimum corresponding to the 1C4 chair and with a value of 2.17 kcal/mol. This compares
favorably to the value of 1.65 kcal/mol computed with the GROMOS 56a6CARBO force
field (Table 1 in [48]), which is also exactly the value from Angyal’s scheme for determining
ring puckering free energies [70]. We note that data from Angyal’s scheme have been used
for quantitative comparison in other force field evaluations for a wide variety of pyranoses.
It is worth emphasizing here that the Angyal data, though based in experiment, are indirect
and were deemed by Angyal to be “calculated interaction energies”. Concerning his
“calculated interaction energies”, Angyal writes, “an approximate calculation serves as a
useful guide and can be readily carried out by adding the values of all of the non-bonded
interactions occurring in each conformer, plus the value of the anomeric effect [70]”. That
is, those Angyal data for the 4C1 to 1C4 equilibrium in D-aldopyranoses listed in Table 1
of [70] are calculated as a simple sum of experimental values from model compounds, in
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contrast to being directly measured for each monosaccharide, for example, through NMR
experiments [46].

Neu5Ac is discussed at length in Appendix A, below. Part of that discussion involves
comparison to structures from PDB crystal structures. On the one hand, all simulation data
here are for isolated Neu5Ac monosaccharides in liquid water, whereas the PDB data are
from crystal environments and typically involve Neu5Ac having non-covalent interactions
with other biomolecules and/or being covalently attached to other monosaccharides. On
the other hand, there is substantial congruence between the aqueous simulation data and
the experimental crystal data for Neu5Ac (Figure A1b,d,f,h in Appendix A). Indeed, a
computational study of Neu5Ac ring puckering in vacuum and in explicit water noted that
the structure of Neu5Ac bound in influenza neuraminidase belonged to conformations
preferentially sampled in the aqueous simulations [71]. And, an analysis of high-resolution
PDB data for MeβGlcNAc noted that while nearly 97% of structures in the data set were in
the 4C1 chair conformation, 2.6% were boats or skew boats [72], which correlates closely
with data from the present work. Therefore, in addition to NMR data from directly
analogous experimental systems of monosaccharides in liquid water, PDB data may be
useful as benchmarks for the type of force field-based simulations described here.

On a final note, control eABF simulations for THP yield a ΔG(α1, α2) plot that is
symmetric about both α1 = α2 and about α1 = −α2 (Supplementary Material Figure S12),
as expected. There are two equivalent global minima at 4C1 = 1C4, and boat/skew-boat
conformations are over 5 kcal/mol higher in free energy. Thus, the exocyclic functional
groups in the pyranose monosaccharides considered here can be thought of as introducing
two types of perturbations to the THP ΔG(α1, α2): breaking of the symmetry, and altering
the balance of chair vs. boat/skew-boat energetics.

3. Materials and Methods

3.1. Force Field

All systems were modeled using the CHARMM all-atom additive force field for carbo-
hydrates [36,38] and the CHARMM-modified TIP3P water parameters [73,74] as contained
in the “jul20” release of the CHARMM force field available as “toppar_c36_jul20.tgz” from
http://mackerell.umaryland.edu/charmm_ff.shtml (accessed on 3 March 2021). Systems
with a carboxylate functional group additionally used sodium ion parameters [75,76] in-
cluded in the same release. During the course of the present work, we discovered a set
of typos in the jul20 parameter file that affect Neu5Ac puckering energetics. Full details
are provided in Appendix A. The data presented in this manuscript and the associated
Supplementary Material reflect the correct parameters as developed in [38].

3.2. System Construction

Solvated systems were constructed for each monosaccharide in Figure 2 using either
the α or the β anomer or one of the corresponding O-methyl glycosides, resulting in four
unique systems for each monosaccharide. Monosaccharide coordinates were constructed
from default force field internal geometries. The solvent consisted of a cubic box of
water molecules at the experimental density of water and having an edge length of the
longest dimension of the monosaccharide plus 30 Å; water molecules within 3 Å of the
monosaccharide were deleted. In systems with a carboxylate group, a single sodium ion
replaced a water molecule randomly selected and at least 6 Å from the monosaccharide.
All system construction was carried out using the CHARMM program, v. c45b1 [77]. A
single system containing tetrahydropyran (THP) was similarly constructed.

3.3. Molecular Dynamics Simulations

Each system was simulated in triplicate under periodic boundary conditions. Each
replicate within the triplicate was assigned random initial velocities using a unique random
seed to generate a unique trajectory. Simulations were carried out using the NAMD soft-
ware, v. 2.13 [78]. Electrostatic and Lennard-Jones interactions employed a 10-Å spherical
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cutoff. Lennard-Jones interaction energies were smoothly switched to zero in the interval
8–10 Å [79], an isotropic correction was applied for Lennard-Jones interactions beyond the
cutoff [80], and the particle-mesh Ewald method with a 1 Å grid spacing accounted for
electrostatic interactions beyond the cutoff [81]. After 1000 steps of energy minimization,
each system was heated through re-initializing velocities to the target temperature of 298 K
every 1000 molecular dynamics steps across 20,000 total steps with an integration timestep
of 0.5 fs and positional restraints on solute non-hydrogen atoms. The SHAKE [82] and
SETTLE algorithms [83] were respectively used to constrain all bonds involving hydrogen
atoms and water geometries to their equilibrium values, and a temperature of 298 K and a
pressure of 1 atm were maintained using Langevin thermostatting [84] and Nosé-Hoover
Langevin barostatting [85,86]. Following heating, positional restraints were removed and
data were collected from 200-ns production simulations (100 × 106 timesteps with an
integration timestep of 2.0 fs).

The Extended-System Adaptive Biasing Force (eABF) methodology [43,44] was used
to determine the free energy of pyranose ring puckering, ΔG(α1, α2), using reaction coordi-
nates proposed by Babin and Sagui [64], where α1 is the dihedral angle defined by the atoms
O5-C1-C2-C3 and α2 is the dihedral defined by the atoms C3-C4-C5-O5, except in the case
of sialic acid in which these dihedrals are defined by O6-C2-C3-C4 and C4-C5-C6-O6, re-
spectively. ΔG(α1, α2) was computed from the CZAR gradient estimate [43] using a Poisson
equation formalism [87] implemented within NAMD via the Colvars software module [88].
eABF parameters included a fictitious particle spring constant of kBT/degree/degree and
sampling with a 1◦ × 1◦ bin size and restrained with half-harmonic potentials to the range
−75◦ < α1,2 < 75◦. Application of the biasing force in a given bin was scaled by 0 for the
first 100 samples and then linearly scaled from 0 to 100% between 100 and 200 samples.
Non-biased control simulations followed the same protocol but with no eABF sampling.

Additional CMAP-biased simulations were carried out for iduronate and for idose by
applying a fixed bias equal to −0.5 × ΔG(α1, α2) through the CHARMM force field CMAP
term [69]. The representation of this bias using CMAP is not exact relative to the reference
values computed by eABF simulation, as CMAP uses a square grid with 15◦ intervals
between grid points and bicubic interpolation approximate −0.5 × ΔG(α1, α2) for off-grid
values of (α1, α2). CMAP-biased simulations were run using the OpenMM software, v.
7.5.1 [89] and a molecular dynamics protocol similar to that used for non-biased control
NAMD simulations.

3.4. Molecular Dynamics Trajectory Analysis

Molecular dynamics trajectories were analyzed with the CHARMM software, includ-
ing for the computation of Cremer-Pople ring puckering parameters [55]. VMD [90] was
used for visualization and the creation of molecular graphics.

3.5. Definition of 4C1, 1C4, 2SO, OS2, and Other Ring Puckering Conformations

C-P parameters (θ, φ) were used to define ring puckering conformations as follows
(note: analogous puckers for Neu5Ac compounds have all superscripted/subscripted num-
bers in puckering conformations incremented by 1 to reflect the different atom numbering
in Neu5Ac, as shown in Figure 2):

• 4C1: 0◦ ≤ θ < 30◦, φ = any
• Southern tropical: 30◦ ≤ θ < 60◦, φ = any
• Equatorial: 60◦ ≤ θ < 120◦, with specific conformations defined by,

�
3,OB: 0◦ ≤ φ < 15◦ or 345◦ ≤ φ < 360◦

�
3S1: 15◦ ≤ φ < 45◦

� B1,4: 45◦ ≤ φ < 75◦

�
5S1: 75◦ ≤ φ < 105◦

�
2,5B: 105◦ ≤ φ < 135◦

�
2SO: 135◦ ≤ φ < 165◦
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� B3,O: 165◦ ≤ φ < 195◦

�
1S3: 195◦ ≤ φ < 225◦

�
1,4B: 225◦ ≤ φ < 255◦

�
1S5: 255◦ ≤ φ < 285◦

� B2,5: 285◦ ≤ φ < 315◦

�
OS2: 315◦ ≤ φ < 345◦

• Northern tropical: 120◦ ≤ θ < 150◦, φ = any
• 4C1: 150◦ ≤ θ ≤ 180◦, φ = any

4. Conclusions

The data presented here provide a thorough accounting of the ring puckering free
energies for the ten common vertebrate monosaccharides and idose, as represented by
the CHARMM force field. In addition to demonstrating that the CHARMM force field
reliably models ring puckering across this set diverse of molecules, the results show that
doing so is possible with a single set of self-consistent force-field parameters developed
using a standardized force field parametrization protocol [36,38]. This, in combination with
examples of CHARMM force field studies on glycosidic linkages [91–96], lends confidence
to the application of these parameters in the modeling of carbohydrate-containing protein
systems, such as glycoproteins and proteoglycans as well as transmembrane proteins
in glycolipid-containing bilayers. Accurate simulations for these types of systems can
help expand the frontiers of protein structural biology by bridging gaps in experimental
approaches for characterizing carbohydrate-containing protein systems.
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Appendix A

During the course of the present work, we discovered a set of typos in the jul20
parameter file that affect Neu5Ac puckering energetics. These typos affect only Neu5Ac
in the present work and will be corrected in a future official update to the CHARMM
force field (A. D. MacKerell, Jr., personal communication). For the time being, the jul20
“par_all36_carb.prm” CHARMM parameter file can be manually corrected by adding the
following lines to that file and deleting all other lines that refer to these same parameters:

NC2D1 CC3161 CC3161 CC3261 0.20 3 0.0
CC312 CC3163 CC3161 NC2D1 0.20 3 0.0
OC3C61 CC3163 CC3161 NC2D1 0.20 3 0.0

The typos affect two dihedrals in the Neu5Ac ring, with the first parameter affecting
rotation about the C4-C5 bond and the second two rotation about the C5-C6 bond. The
above three lines revert the parameters to the original values in the publication describing
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parametrization for Neu5Ac [38]. Figure A1 demonstrates the large qualitative difference
between the eABF ΔG(α1, α2) results using the incorrect force field dihedral parameters
resulting from the typos and the correct force field dihedral parameters that are the original
values from that publication. In Figure A1, (α1, α2) values from all instances of Neu5Ac in
the PDB are overlaid on top of the ΔG(α1, α2) contour plots, and clearly show the superiority
of the correct force field parameters as judged by the overlap of the PDB data with the global
minima in the ΔG(α1, α2) contour plots (data were extracted from the PDB on 30 July 2021
by searching with the SMILES string “CC(=O)NC1C(CC(OC1C(C(CO)O)O)(C(=O)O)O)O”
and separating hits into either α anomers or β anomers, of which there were 439 and 52,
respectively found across a total of 170 PDB entries). In the case of the incorrect parameters,
there is poor overlap, while with the correct parameters there is excellent overlap.

For αNeu5Ac and MeαNeu5Ac simulated using the incorrect parameters (Figure A1a
and Figure A1c, respectively), the global minimum is in a boat/skew-boat region of (α1,
α2) space whereas the vast majority of crystallographic structures in the α anomeric form
are in the 2C5 chair pucker conformation. However, with the correct force field parameters,
the global minimum is in the 2C5 region of (α1, α2) space for both αNeu5Ac (Figure A1b)
and MeαNeu5Ac (Figure A1d), and the small proportion of α anomeric crystallographic
structures outside of this region are located in or near a secondary minimum with favorable
free energy (i.e., < 3 kcal/mol).

Figure A1. Cont.
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Figure A1. ΔG(α1, α2) from eABF simulations using incorrect versus correct dihedral force field
parameters for Neu5Ac along with (α1, α2) data from all Neu5Ac structures in the PDB (searched 30
July 2021). ΔG(α1, α2) contour data are for αNeu5Ac with incorrect parameters (a), αNeu5Ac with
correct parameters (b), MeαNeu5Ac with incorrect parameters (c), MeαNeu5Ac with correct parame-
ters (d), βNeu5Ac with incorrect parameters (e), βNeu5Ac with correct parameters (f), MeβNeu5Ac
with incorrect parameters (g), and MeβNeu5Ac with correct parameters (h). α1 and α2 are in degrees.
ΔG(α1, α2) is from the first simulation in the triplicate and is in kcal/mol, with contours drawn every
1 kcal/mol and colored from 0–3 kcal/mol. PDB data were divided into two groups: those from α

anomers and those from β anomers. Crystallographic data from the α anomers are displayed as small
+’s in (a–d) and crystallographic data from the β anomers are displayed as small +’s in (e–h).

For the β anomers simulated using the incorrect parameters (βNeu5Ac (Figure A1e)
and MeβNeu5Ac (Figure A1g)), there are no crystallographic Neu5Ac structures in the
β anomeric form that coincide with the global minimum. In contrast, with the correct
parameters, nearly all of these crystallographic structures in the β anomeric form, which
are in the 2C5 chair pucker conformation, coincide with the global ΔG(α1, α2) minimum for
both βNeu5Ac (Figure A1f) and MeβNeu5Ac (Figure A1h).
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Abstract: Phosphorylation is a common post-translational modification among intrinsically disor-
dered proteins and regions, which helps regulate function by changing the protein conformations,
dynamics, and interactions with binding partners. To fully comprehend the effects of phospho-
rylation, computer simulations are a helpful tool, although they are dependent on the accuracy
of the force field used. Here, we compared the conformational ensembles produced by Amber
ff99SB-ILDN+TIP4P-D and CHARMM36m, for four phosphorylated disordered peptides ranging
in length from 14–43 residues. CHARMM36m consistently produced more compact conformations
with a higher content of bends, mainly due to more stable salt bridges. Based on comparisons
with experimental size estimates for the shortest and longest peptide, CHARMM36m appeared to
overestimate the compactness. The difference between the force fields was largest for the peptide
showing the greatest separation between positively charged and phosphorylated residues, in line
with the importance of charge distribution. For this peptide, the conformational ensemble did not
change significantly upon increasing the ionic strength from 0 mM to 150 mM, despite a reduction of
the salt-bridging probability in the CHARMM36m simulations, implying that salt concentration has
negligible effects in this study.

Keywords: intrinsically disordered proteins; phosphorylation; force fields

1. Introduction

Intrinsically disordered proteins (IDPs) are characterized by a lack of a tertiary struc-
ture under physiological conditions [1,2], which means that they are better described by
an ensemble of different conformations than a single structure. This is reflected in their
free energy landscapes, which normally are rather flat without a deep energy minimum
as for globular proteins [3]. The flattened energy landscape makes IDPs very sensitive to
changes in the environment and post-translational modifications (PTMs) of the sequence.
A common type of reversible PTM is phosphorylation, which introduces extra negative
charges and the possibility of forming hydrogen bonds and salt bridges [4]. Phosphory-
lation is commonly employed by cells as a regulatory mechanism, as it can change both
the conformational ensemble and the dynamics, as well as the interaction with a binding
partner, and therefore affect function. The functional implications of phosphorylation can
be drastic, such as for the disordered neuroprotein tau, for which hyperphosphorylation
has been related to amyloid fibril formation in Alzheimer’s disease [5]. In proteins such as
statherin and caseins, the phosphorylated residues are essential for their ability to bind to
the tooth surface [6,7] or sequester calcium [8].

Experimental techniques such as small-angle X-ray scattering (SAXS) and fluores-
cence resonance energy transfer (FRET) have been used to provide information on global
conformational changes upon phosphorylation of intrinsically disordered proteins or
regions, while circular dichroism spectroscopy and nuclear magnetic resonance (NMR)
have detected changes in secondary structure or other local arrangements such as salt
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bridges [9–14]. However, due to the vast conformational ensembles possessed by IDPs,
computer simulations are often a useful complement to obtain more detailed information,
though this requires accurate models and force fields. We have previously shown that a
coarse-grained “one bead per residue model” has proven to accurately predict average
radius of gyration (Rg) and scattering curves for various IDPs, including statherin, although
producing overly compact conformations of other more phosphorylated IDPs [15]. The
two-site UNRES model has recently been extended with parameters for phosphorylated
residues [16] and applied to study phosphorylation-induced folding of an IDP [17]. Al-
though coarse-grained models are more computationally efficient and generally easier to
interpret than atomistic models, they can lack in detail. In atomistic modelling, there is con-
tinuous development of force fields and water models towards more accurately describing
IDPs, and some important adjustment have been the refinement of the backbone dihedral
angles and balancing the water–protein and protein–protein interactions; see for example
the following reviews and references within [18,19]. However, we recently showed that
while the commonly used force fields CHARMM36m and Amber ff99SB-ILDN+TIP4P-D
accurately captured the global dimensions of the 15-residue-long N-terminal fragment of
Statherin in the nonphosphorylated state, it overestimated the compactness in the phospho-
rylated state [20]. More recently, overcompaction was also observed for two approximately
80-residue-long phosphorylated IDPs in several force fields, where it was suggested to
depend on an overestimation of charge–charge interactions [21], in line with an oversta-
bilization of salt bridges in standard force fields [22]. In this study, we made a further
comparison of the two aforementioned force fields, by applying them to four phospho-
rylated peptides, namely two different fragments from tau, specifically residues 173-183
(Tau1) and 225-246 (Tau2), the first 25 amino acids in the milk protein β-casein (bCPP) and
the saliva protein statherin (Stath). For all peptides, CHARMM36m was shown to sample
more compact conformations than Amber ff99SB-ILDN+TIP4P-D, associated with a much
higher probability for salt bridges. The effect was more pronounced in sequences with large
separation between phosphorylated residues and positively charged residues, showing
the importance of charge distribution. In bCPP, which showed the largest differences
between the force fields, the addition of 150 mM NaCl did not change the average size
estimates and shape significantly, despite a significant reduction of salt bridge occurrence
in CHARMM36m. This implies that salt bridges are still of importance at 150 mM salt and
that we can ignore the effects of salt concentration in this study.

2. Results and Discussion

Four phosphorylated peptides, shown in Table 1, were simulated at physiological
pH using two different force fields: Amber ff99SB-ILDN [23] with the TIP4P-D [24] water
model and parameters for the phosphorylated residues from Homeyer et al. [25] and
Steinbrecher et al. [26] (A99) and CHARMM36m [27] with the CHARMM-modified TIP3P
water model [28] (C36). The peptides were chosen based on availability of experimental
data to compare with and size considering the computational expense.

Table 1. Full name and sequence of the peptides included in this study. Positively charged residues
are marked in blue, negatively charged in red, and phosphorylated residues highlighted with yellow.
Note that Tau1 includes three additional residues in accordance with [11], to allow for experimental
comparison.

Name Protein Sequence

Tau1 Tau173-183 CAKTPPAPKTPPAW

Tau2 Tau225-246 KVAVVRTPPKSPSSAKSRLQTA

bCPP β-casein1-25 RELEELNVPGEIVESLSSSEESITR

Stath Statherin DSSEEKFLRRIGRFGYGYGPYQPVPEQPLYPQPYQPQYQQYTF
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2.1. Size and Shape

For all four peptides, the two force fields produced different conformational ensembles,
as seen by the distributions of the Rg and the end-to-end distance (Ree) in Figure 1. The C36
distributions were narrower and centered on values lower than the A99 distributions. For
Tau2 and bCPP, the Rg distribution had a sharp peak at low values. From the average Rg
and Ree presented in Table 2, it is clear that Tau1 showed the smallest differences between
the force fields, while bCPP showed the largest differences. The discrepancy was larger
for Ree than Rg. For Tau1, Chin et al. [11] determined the average Ree to be ∼3.17 nm,
based on FRET. To obtain an Ree distance distribution from the FRET data they assumed a
semi-flexible polymer model, and the resulting distribution was skewed towards longer
distances, with the peak value located at 3.64 nm (Figure 4A in ref. [11]). Comparing A99
and C36 to the experimental average, A99 overestimated it approximately as much as C36
underestimated it. However, the skewed shape and peak position at 3.64 nm produced
in A99 was in better experimental agreement than C36, since the distribution in C36 was
more symmetrical with multiple peaks and had the main peak located at 3.03 nm.
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Figure 1. Distribution of the radius of gyration (top row) and the end-to-end distance (bottom row) of Tau1, Tau2, bCPP,
and Stath simulated with Amber ff99SB-ILDN (A99) and CHARMM36m (C36). The legend applies to all panels.

Table 2. Average radius of gyration and end-to-end distance of the peptides simulated with Amber ff99-SB-ILDN (A99) and
CHARMM36m (C36). The difference between the force fields is expressed in relation to A99.

Peptide Radius of Gyration (nm) End-to-End Distance (nm)

A99 C36 Difference (%) A99 C36 Difference (%)

Tau1 1.17 ± 0.01 1.12 ± 0.01 4 3.44 ± 0.04 2.88 ± 0.07 16

Tau2 1.29 ± 0.03 1.06 ± 0.10 18 3.27 ± 0.17 2.10 ± 0.32 36

bCPP 1.43 ± 0.03 1.08 ± 0.02 24 3.09 ± 0.15 1.65 ± 0.10 47

Stath 1.73 ± 0.09 1.41 ± 0.04 18 4.05 ± 0.17 2.74 ± 0.20 32
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For Stath, earlier published SAXS data [15] provided an Rg of 1.93 ± 0.2 nm; hence, Rg
was 10% smaller in A99 and 27% smaller in C36. Since Rg determined from SAXS includes
a hydration shell, it was expected that Rg calculated from simulations would be slightly
smaller, although not to that extent. Since it is not straightforward which contrast to use for
the hydration shell in the calculations of scattering curves for IDPs [29], in Supplementary
Figure S1 and Table S2, we compared the curves calculated using different contrasts of
the hydration shell to the experimental curve for Stath. While the highest contrast used
(0.03 e/Å3) yielded the best agreement with the scattering curve, it provided the worst
agreement with the Kratky plot. Henriques et al. [29] showed that the optimal contrast for
IDPs was often between 0.01 e/Å3 and 0.02 e/Å3, although varying with both force field
and protein. The optimal values for A99 and C36 were suggested to be around 0.0075 e/Å3

and 0.02 e/Å3, respectively. While the suggested optimal value gave reasonable agreement
with the experimental form factor for A99, this was not the case for C36. For C36, all
contrasts > 0 clearly showed larger compaction than the experimental Kratky plot.

Even without experimental scattering curves to compare to, the dimensionless Kratky
plot, presented in Figure 2, is a good way of comparing the average shape of the peptides
in the two different force fields. The short peptide Tau1 exhibited a more extended shape
than the other three peptides, which in A99 were shown to have more of the typical IDP
behavior, resembling a Gaussian chain. For all four peptides, the Kratky plot produced
in C36 had a lower slope, and for the three longest peptides, the curve started to move
towards the bell-shaped curve typical of globular proteins. Hence, this implies that C36
sampled more compact or well-defined conformations than A99, in accordance with the
Rg and Ree distributions. Notice also that the Kratky plot of Stath in A99 was in excellent
agreement with the experimental data, while the curve corresponding to C36 fell below, as
shown in Figure 2d.
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Figure 2. Dimensionless Kratky plot from simulations with Amber ff99SB-ILDN and CHARMM36m for (a) Tau1, (b) Tau2,
(c) bCPP, and (d) Stath. In Panel (d), experimental data from Cragnell et al. [15] are included for comparison. The legend in
Panel (a) is applicable to all panels.

2.2. Salt Bridges and Secondary Structure

Since our previous study [20] suggested that overstabilized salt bridges are the reason
why C36 produces more compact conformations than A99, we calculated the occupancy of
the possible salt bridge interactions involving the phosphorylated residues. Figure 3 indeed
shows that salt bridges were formed much more in C36 than A99, for all the peptides.
In Tau2 and bCPP, the strong salt bridges in C36 restricted the conformational ensemble,
which explains the smaller and narrower distributions of Rg and Ree. In bCPP, the salt-
bridging residues were well separated in the sequence, therefore having a larger effect
on the Rg and Ree distributions. In Tau1, the salt bridge interactions almost exclusively
appeared between the adjacent residues and between pT175 and the N-terminal.
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Figure 3. Probability of possible salt bridge interactions for the phosphorylated residues with the N-terminus (NT) and
positively charged residues in Tau1 (first row), Tau2 (second row), bCPP (third row), and Stath (last row). For Tau2,
experimentally established salt bridges [12] are marked with a white star. Error bars correspond to errors calculated by
block averaging.

For Tau2, there is experimental evidence of the following salt bridges, detected by
NMR experiments: pT231–R230, pS237–K240, and pS238–R242 [12]. pT231–R230 and
pS238–R242 are indeed two of the most often occurring salt bridges in A99, while pS237–
R242 is more common than pS237–K240. Several other salt bridges are also as frequently
present as pS237–K240. In C36, pT231–R230 is the most occurring salt bridge, but both
pS327–R242 and pS235–K234 are more probable than pS237–K240. Hence, while both
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force fields captured the experimentally established salt bridges, they also suggested other
salt bridges to be present and some of them to be more common than the experimentally
established ones.

Advancing to the secondary structure, Figure 4 shows that the peptides were mainly
irregular, although Tau1 contained much of the polyproline type II (PPII) structure as
well. In fact, all peptides contained a significant amount of PPII, as well as a significant
content of bends. The content of the helical structure (α- and 310-helix) and β-strands was
low in all peptides. Tau1 exhibited the largest differences between the force fields, where
A99 produced 16 percentage points more of the PPII structure than C36, which instead
contained a more irregular structure. For the other peptides, the differences were smaller.
Overall, the peptides only had one significant difference in common, which was a higher
content of bends in C36 than A99. Inspecting the content along the sequence, it was evident
that it was mostly the same parts of the peptide that were enriched in a certain type of
structure in both force fields (see Supplementary Figure S3). However, in C36, the helical
content was completely missing from the first ten residues of Stath, which is concerning
since the N-terminal region has been shown to possess helical propensity in water, although
being mainly disordered [6,30]. Another striking difference between the force fields for
Stath is that some residues centered on residues Y21 and Y41 occasionally formed a β-sheet
or β-bridge in C36, but not in A99. Notice also that for Tau2, the bend propensity at residues
V228–V229 was much higher in C36 than in A99. Since these residues were located right
between K225 and pT231, which in C36 formed a stable salt bridge, this suggested that
the bend was formed as a result of the salt bridge. Furthermore, for Tau2, NMR data have
suggested approximately 40% α-helical propensity in region A15-R18 [12]. Both A99 and
C36 sampled the helical structure in this region, however, to a lower extent than what the
experimental data suggested.
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Figure 4. Average content of different types of the secondary structure in (a) Tau1, (b) Tau2, (c) bCPP, and (d) Stath simulated
with Amber ff99SB-ILDN (A99) and CHARMM36m (C36). The legend applies to all panels. The helix includes the α- 310-
and a negligible content of the π-helix, while the β-strand also includes β-bridge. Error bars correspond to errors calculated
by block averaging.

2.3. Energy Landscapes

The differences between the force fields in this study is well summarized by the
energy landscapes in Figures 5–8. Tau2, bCPP, and Stath all showed a narrower energy
landscape in C36, in line with a more restricted conformational ensemble. Tau1, which
is rather short and stiff, actually gained a larger conformational landscape in C36, due to
sampling more bent conformations in addition to being more stretched out as in A99; see
Figure 5. Notice also that in C36, the global minimum, which was the most populated,
contained conformations that were not entirely stretched out. Instead, the N-terminal end
was folded over, such that a salt bridge was formed between pT175 and the positively
charged N-terminus.
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Figure 5. Energy landscapes and conformations in selected minima of Tau1. (Left) A99; (right) C36. The energy landscapes
are constructed using the first two components from principal component analysis, using the same basis set for both force
fields, such that they are directly comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5,
and the minimum of each basin is represented by a marker: �: energy ≤ 1RT, �: ≤ 2RT. In the conformations, the
phosphorylated and positively charged residues are shown explicitly. Dashed black lines represent hydrogen bonds. The
peptide conformations are color-coded according to the secondary structure determination in VMD, where silver is irregular
(coil) and cyan is turns. The N-terminus of each conformation is the leftmost end.

Although the energy landscapes of Tau2 in A99 and C36 were located in almost the
same area, the energy levels differed; see Figure 6. The most populated basin in the C36
simulation was a deep and narrow minimum, while the A99 simulation had a larger
area of energy ≤1RT, containing several basins, more typical of IDPs. The salt bridges
creating more compact conformations were evident in the C36 conformations, while the
A99 conformations were more stretched out with fewer salt bridges. Notice that the
phosphorylated residues in C36 had a tendency to interact with several positively charged
residues simultaneously. In both force fields, a basin minimum with a helical region starting
with pS237 and pS238 was found, in line with the secondary structure analysis.

For bCPP, there was indeed many more elongated conformations in the A99 simu-
lation (see Figure 7), and it is clear that what caused the more compact conformations
in C36 was the salt bridges between the phosphorylated serines and the arginines. In
C36, all depicted conformations contained at least one salt bridge between phosphoserine
and arginine, while this was much rarer in A99, explaining why the energy landscapes
looked so different. Regarding Stath, comparing the conformations in Figure 8, there
were two striking differences. First, there was a higher presence of salt bridges between
phosphoserine and positively charged residues in C36, keeping the N-terminal end in a
more bent conformation. Secondly, in C36, the β-strand and β-bridge formation between
the middle region and C-terminal region detected in Supplementary Figure S3 contributed
to making the conformations more compact compared to A99.
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Figure 6. Energy landscapes and conformations in selected minima of Tau2. (Left) A99; (right) C36. The energy landscapes
are constructed using the first two components from principal component analysis, using the same basis set for both force
fields, such that they are directly comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5,
and the minimum of each basin is represented by a marker: �: energy ≤ 1RT, �: ≤2RT, �: ≤3RT. In the conformations,
the phosphorylated and positively charged residues are shown explicitly. Dashed black lines represent hydrogen bonds.
The peptide conformations are color-coded according to the secondary structure determination in VMD, where silver is
irregular (coil), cyan is turns, magenta is the α-helix, and blue is the 310-helix. The N-terminus of each conformation is the
leftmost end.

Figure 7. Energy landscapes and conformations in selected minima of bCPP. (Left) A99; (right) C36. The energy landscapes
are constructed using the first two components from principal component analysis, using the same basis set for both force
fields, such that they are directly comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5,
and the minimum of each basin is represented by a marker: �: energy ≤ 1RT, �: ≤2RT, �: ≤3RT. In the conformations,
the phosphorylated and positively charged residues are shown explicitly. Dashed black lines represent hydrogen bonds.
The peptide conformations are color-coded according to the secondary structure determination in VMD, where silver is
irregular (coil) and cyan is turns. The N-terminus of each conformation is the leftmost end.
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Figure 8. Energy landscapes and conformations in selected minima of Stath. (Left) A99; (right) C36. The energy landscapes
are constructed using the first two components from principal component analysis, using the same basis set for both force
fields, such that they are directly comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5,
and the minimum of each basin is represented by a marker: �: energy ≤ 1RT, �: ≤2RT, �: ≤3RT. In the conformations,
the phosphorylated and positively charged residues are shown explicitly. Dashed black lines represent hydrogen bonds.
The peptide conformations are color-coded according to the secondary structure determination in VMD, where silver is
irregular (coil), cyan is turns, blue is the 310-helix, yellow is the β-sheet, and tan is the β-bridge. The N-terminus of each
conformation is the leftmost/topmost end.

2.4. Effect of Salt Concentration

Since the salt bridges formed between phosphorylated and positively charged residues
were shown to influence the conformational ensemble, it is of importance to also consider
the effect of the screening of the electrostatic interactions. Here, we focused on bCPP, which
due to showing the largest differences between force fields and having the highest fraction
of charged residues in combination with the largest charge separation (see Supplementary
Table S1), was expected to show the largest response to ionic strength. Figure 9 shows that in
C36, four of the salt bridges were dramatically reduced upon the addition of 150 mM NaCl;
however, the probability of two other salt bridges increased, whereas in A99, only one salt
bridge was significantly reduced. At 150 mM salt, the salt-bridging probability was more
comparable between A99 and C36, although overall still higher in C36. Supplementary
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Figure S3 shows the changes in the contact map upon the addition of 150 mM NaCl for
bCPP simulated in A99 and C36. For A99, we clearly saw that the preference for the
N-terminal end to be in contact with the phosphorylated and negatively charged region
(residues 14–21) diminished. In C36, the strongly conserved R1–pS17 and R1–pS18 contacts
were greatly decreased, while the contact of R1 with surrounding residues in the negatively
charged region was increased. Hence, this suggested an increased mobility, while still
maintaining contact with the negatively charged region. In C36, the cross-diagonal lines
also signalized a decrease of the β-sheet; however, the content was relatively low from the
beginning.
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Figure 9. Probability of possible salt bridge interactions for the phosphorylated residues with the N-terminus (NT) and
positively charged residues in bCPP, simulated with the two different force fields in the presence of 0 mM or 150 mM NaCl.
Error bars corresponds to errors calculated by block averaging.

By comparing the energy landscapes in Figure 10, it is clear that screening of the
electrostatic interactions indeed broadened the conformational ensemble, but mainly in
C36, which also showed the largest change in salt bridge probability. In C36, the addition
of 150 mM NaCl led to the exploration of more stretched out conformations; however, more
compact conformations still clearly dominated. A99 also showed an increased probability
of visiting more stretched out conformations after the addition of 150 mM NaCl. This shift
in the conformational ensemble was also observed in the distributions of Rg and Ree shown
in Supplementary Figure S4. However, the changes were actually rather small, such that
the average values were indistinguishable. Upon the addition of salt, the Rg changed from
1.43 ± 0.03 nm to 1.45 ± 0.03 nm for A99 and from 1.08 ± 0.02 nm to 1.08 ± 0.03 nm for C36.
The changes in Ree were from 3.09 ± 0.15 nm to 3.37 ± 0.13 nm and from 1.65 ± 0.10 nm to
1.67 ± 0.10 nm, respectively. The effect of salt on the calculated scattering curves was also
so small that it could be deemed negligible; see Supplementary Figure S5.
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Figure 10. Energy landscapes of bCPP simulated with the two force fields Amber ff99SB-ILDN (A99)
and CHARMM36m (C36) in the presence of 0 mM or 150 mM NaCl.

3. Conclusions

C36 produced more compact conformations of all four peptides, which indeed was
expected to be caused mainly by salt bridge stability. In Tau1, the salt bridges pT175–K174
and pT181-K180 were formed without much effect on the overall conformation; however, an
additional salt bridge between the N-terminus and pT175 decreased Ree and Rg in C36. In
Stath, the salt bridges contributed to the discrepancy by restricting the conformation of the
first 15 residues, in the same way as previously shown for that fragment studied alone [20].
However, also the β-bridge and β-strand formation between the middle and C-terminal
region were shown to contribute to more compact conformations. While C36 produced
good results of nonphosphorylated short IDPs, it has been shown to underestimate the size
of larger IDPs (>60 residues) [31,32]. Since Stath was 43 residues long, and thus the longest
peptide included in this study, it is reasonable to believe that other effects also play a role.
That bCPP showed the largest difference between the force fields and Tau1 the smallest
implies that the separation between the phosphorylated and positively charged residues
controls how much the conformational ensemble is influenced by stable salt bridges. This
is in accordance with the importance of considering the level of charge separation for
predicting the conformational ensemble of IDPs with a high fraction of charges [33].

When comparing to experimental data, it is important to consider the effect of salt,
since most experiments are performed in the presence of buffer and additional salt. In
bCPP, the addition of 150 mM NaCl was shown to dramatically reduce the probability
of some of the salt bridges in C36, whereas the probability of other salt bridges actually
increased. In A99, only one salt bridge was significantly reduced, which suggests that salt
bridges still are of importance at 150 mM NaCl. Considering the changes in salt bridge
probability for bCPP with salt concentration, it is plausible that the discrepancies between
the simulations and experimental reference for Tau2 were caused by nonmatching ionic
strength, since the experiments were performed with 50 mM phosphate buffer. At the same
time, it can be hard to discern the salt bridges involving close-by residues experimentally,
such as for pS237, pS238, K240, and R242.
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Despite significant differences in the salt-bridging probability in C36, the effect of salt
concentration on the global conformational level, such as Rg and Ree, was small enough to
be negligible for both force fields. In fact, the calculated form factor was indistinguishable,
implying that comparing simulations performed without salt with experimental SAXS data
collected at 150 mM NaCl indeed can be valid. Since bCPP is the peptide for which we
expected the largest effects of salt concentration, this further strengthens the comparison
with SAXS data for Stath collected at 150 mM NaCl, which showed that A99 was in good
agreement, while C36 overestimated the level of compaction. Although the effects of ionic
strength seem negligible in this study, this is generally not the case. For example, Jin and
Gräter needed 350 mM of salt in simulations with A99 to reach experimental agreement
for IDPs that are approximately 80 residues long [21], which suggested that also A99
overestimate the strength of salt bridges. Here, both Tau1 and Stath were compared to
experimental size estimates, and only C36 was with certainty shown to underestimate
the size. Hence, a possible overestimation of salt bridge stability in A99 is not expected
to be a major issue for describing the conformational ensemble of the short IDPs studied
in this work. This emphasizes the importance of benchmarking against IDPs of different
length and sequence when developing and evaluating force fields. While a reduction of the
strength of salt bridges appears to be a crucial step in improving the performance of C36, it
appears less critical in A99. However, note that this statement is based only on the global
conformational properties and that it might be different for studies of dynamics. Based on
observations that many force fields have a tendency to overstabilize salt bridges, which
seems to be related to side-chain partial charges [22,34–36], we suggest that readjusting
the side-chains’ partial charges, especially of the phosphorylated residues, is a way of
improving the force fields.

Another area which has not been touched upon in this work is the influence of charge
regulation and pH. The simulations have been performed with fixed charges in a state
corresponding to physiological pH, where the phosphorylated residues have have a charge
of −2e. Since the pKa of the phosphorylated residues is around six [37], in reality it
can fluctuate between −1e and −2e. Recent studies have suggested the importance of
the protonation state of phosphorylated residues for molecular interactions [38], hence
influencing salt bridge formation and the conformational ensemble. Therefore, this is
suggested to be included in future investigations.

Considering the secondary structure, the only general difference between the force
fields was a higher content of bends in C36. In Tau2, it was focused on regions between
salt-bridging-forming partners, suggesting that highly stable salt bridges can enforce bends
depending on the separation between the salt-bridging residues. For Tau2, it was suggested
that both force fields underestimated the helical propensity, and in Stath, a lack of helix
propensity in the N-terminal regions was concerning for C36. However, to properly assess
the performance of force fields regarding the secondary structure, detailed experimental
references are important. Hence, we see that NMR experiments of phosphorylated IDPs
recording coupling constants, NOEs, and chemical shifts, which capture the effects of both
the secondary structure and salt bridges, are an essential part of improving force fields.
Since atomistic simulations can be used to carefully detect the secondary structure and salt
bridges and their dynamics, it is an important tool in understanding the mechanism behind
the regulation of IDP function by phosphorylation, provided that sufficient accuracy of the
force fields is achieved.

4. Materials and Methods

Fraction of charged residues and κ, a parameter describing how segregated the charged
residues are in the sequence [33] were calculated in CIDER [39], by equalizing the phos-
phorylated residues to other negatively charged residues. The value of κ is normalized
against the most segregated sequence for that sequence composition, therefore adopting a
value in the range 0–1, where 1 corresponds to the most segregated sequence possible.
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The simulations listed in Supplementary Table S3 were performed in GROMACS
2018.4 [40–44], using two different force fields: Amber ff99SB-ILDN [23] with the
TIP4P-D [24] water model and parameters for the phosphorylated residues from
Homeyer et al. [25] and Steinbrecher et al. [26], and CHARMM36m [27] with the
CHARMM-modified TIP3P water model [28]. Initial configurations of the peptides were
constructed from the sequence as linear chains using Avogadro 1.2.0 [45], optimizing
the structure with the auto-optimization tool. Each peptide was solvated in a rhombic
dodecahedron box, having a minimum distance between the peptide and the box edges
of 1 nm. Sodium ions were added to neutralize the system, and two systems were also
simulated with sodium and chloride ions in a concentration corresponding to 150 mM.
Periodic boundary conditions were employed in all directions. The equations of motion
were integrated using the Verlet leapfrog algorithm [46] with a time step of 2 fs. Nonbonded
interactions were treated with a Verlet list cutoff scheme. The short-range interactions were
calculated using neighbor lists with cutoff 1 nm or 1.2 nm, for the Amber and CHARMM
force fields, respectively. For the CHARMM force field, the Lennard–Jones interactions
were switched off smoothly (force-switch) between 1 nm and 1.2 nm. Long-range disper-
sion corrections were applied to energy and pressure in the case of the Amber force field.
Long-range electrostatic interactions were treated by particle mesh Ewald [47] with a cubic
interpolation and a 1.6 Å grid spacing. The LINCS algorithm [48] was used to constrain
all bond lengths in the case of Amber and only bonds with hydrogen atoms in the case of
CHARMM. The solute and solvent were separately coupled to temperature baths at 298 K
using the velocity rescaling thermostat [49] with a 0.1 ps relaxation time. Parrinello–Raman
pressure coupling [50] was used to keep the pressure at 1 bar, using a 2 ps relaxation time
and 4.5 × 10−5 bar−1 isothermal compressibility.

Energy minimization was performed by the steepest descent algorithm until the
system converged within the available machine precision. Initiation of five replicates per
system with different starting seeds was performed separately in two steps using position
restraints on the peptide. The first step was 500 ps of NVT simulation (constant number of
particles, volume, and temperature) performed to stabilize the temperature, followed by
the second step of 1000 ps of NPT simulation (constant number of particles, pressure, and
temperature) to stabilize the pressure. Production runs of the five replicates per system
were performed in the NPT ensemble, for at least 1 μs per replicate. The total simulation
time per system is stated in Supplementary Table S3. Energies and coordinates were saved
every 10 ps. Supplementary Tables S4 and S5 compile a few differences applied to the salt
simulations to reduce the computational time.

Analysis

The convergence and sampling quality were assessed in the following ways. The time
evolution of the Rg and the Ree in the simulations were observed for signs of equilibration
in the initial stage. Based on this, the first 30 ns were removed from each replicate of bCPP
in CHARMM36m and the first 50 ns of each replicate of Tau2 in CHARMM36m before final
analysis (see Supplementary Figures S21 and S24). In other systems the equilibration was
deemed fast enough to be negligible. The distributions of the Rg and the Ree as well as the
energy landscapes were compared between replicates, since similarity indicates sufficient
sampling. The autocorrelation function and block average error estimates of the Rg and
the Ree in the concatenated simulation were calculated and observed for an estimate of
the correlation time and convergence of the error estimates. All this data is presented in
the Supplementary Figures S6–S33. Although some systems showed greater dissimilarity
between replicates than desired, based on the assessment of the concatenated trajectory, it
was deemed sufficiently sampled to allow for a comparison between the force fields.

Rg and Ree were calculated using GROMACS 2018.4 [40–44]. Reported error estimates
were calculated using block averaging analysis as implemented in the gmx analyze routine
in GROMACS. Scattering curves were calculated using CRYSOL Version 2.8.3 [51] with the
contrast of the hydration shell being 0.0075 e/Å3 for Amber ff99SB-ILDN+TIP4P-D and
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0.02 e/Å3 for CHARMM36m, as suggested by [29]. The presented curve is the average
over 10,000 equally spaced frames. In Supplementary Figure S1 and Table S2, the effect
of different contrasts of the hydration shell is shown for Stath. The quality of fit to the
experimental curve is computed as:

χ2( f , c) = N−1
q

Nq

∑
i=1

[
Iref(qi)− ( f Iobs(qi) + c)

σref(qi)

]2

, (1)

where N−1
q is the number of points in the reference curve, Iref and Iobs are the reference and

observed intensities, respectively, and σref(qi) is the error associated with each data point of
the reference curve. The function was minimized using the Nelder–Mead method [52], as
implemented in Scipy [53], using linear interpolation to produce Iobs at the same q points
as the reference [29]. AUTORG in the ATSAS program [54] was used to determine the
Rg from Guinier analysis. The secondary structure was determined using the DSSP pro-
gram Version 2.2.1 [55] with an extension to detect the polyproline type II structure [56,57].
The MDTraj Python library Version 1.9.3 [58] was used to calculate contact probability
and analyze salt bridges. Contact between two residues was defined as when the short-
est distance between two atoms < 0.4 nm. Since salt bridges are formed as a result of
hydrogen bonding and electrostatic interactions, they were assessed by analyzing the
presence of hydrogen bonds based on the criterion in [59], as implemented in MDTraj.
Energy landscapes were calculated following the Campos and Baptista approach [60],
with the differences described by Henriques et al. [61]. In short, principal component
analysis was applied to the Cartesian coordinates of the backbone atoms of the protein,
obtained after translational and rotational least squares fitting on the central structure of
the simulation. The conditional free energy was calculated from the probability density
function in the representation space constructed by the first two principal components,
obtained by Gaussian kernel density estimation. The basins and minima were assigned as
described by Campos and Baptista [60]. It is worth noting that the first two components
were shown to account for 46–60% of the variance, hence not providing a complete picture
of the conformational classes, but at least an overview sufficient for comparison between
the force fields. Snapshots from the simulations were produced using VMD 1.9.3 [62–64].

Supplementary Materials: The following are available online at www.mdpi.com/article/10.3390/
ijms221810174/s1.
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Abbreviations

A99 Amber ff99SB-ILDN with TIP4P-D water
C36 CHARMM36m with CHARMM-modified TIP3P water
FRET Fluorescence resonance energy transfer
IDP Intrinsically disordered protein
NMR Nuclear magnetic resonance
PPII polyproline type II
Rg Radius of gyration
Ree End-to-end distance
SAXS Small-angle X-ray scattering
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Abstract: Intrinsically disordered proteins are involved in many biological processes such as signal-
ing, regulation, and recognition. A common strategy to regulate their function is through phosphory-
lation, as it can induce changes in conformation, dynamics, and interactions with binding partners.
Although phosphorylated intrinsically disordered proteins have received increased attention in
recent years, a full understanding of the conformational and structural implications of phospho-
rylation has not yet been achieved. Here, we present all-atom molecular dynamics simulations of
five disordered peptides originated from tau, statherin, and β-casein, in both phosphorylated and
non-phosphorylated state, to compare changes in global dimensions and structural elements, in an
attempt to gain more insight into the controlling factors. The changes are in qualitative agreement
with experimental data, and we observe that the net charge is not enough to predict the impact of
phosphorylation on the global dimensions. Instead, the distribution of phosphorylated and positively
charged residues throughout the sequence has great impact due to the formation of salt bridges. In
statherin, a preference for arginine–phosphoserine interaction over arginine–tyrosine accounts for a
global expansion, despite a local contraction of the phosphorylated region, which implies that also
non-charged residues can influence the effect of phosphorylation.

Keywords: intrinsically disordered proteins; phosphorylation; force fields

1. Introduction

Intrinsically disordered proteins (IDPs) lack tertiary structure under physiological
conditions [1,2], such that they adopt a range of different interchanging conformations
rather than a single structure. This is reflected in their rather flat free energy landscapes [3],
making them sensitive to environmental changes and post-translational modifications
(PTMs), which helps to regulate function. Many IDPs also demonstrate the ability to bind
to several targets, and adopt different folds depending on the target. These characteristics
of IDPs are advantageous in signaling, regulation, and recognition processes, where IDPs
are abundantly involved [4,5].

Phosphorylation is a reversible type of PTM, especially prevalent among intrinsi-
cally disordered regions and proteins [6–8]. The addition of a bulky phosphoryl group to
residues such as serine or threonine adds extra negative charge and enables formation of
hydrogen bonds and salt bridges [9], which can induce drastic changes in the conforma-
tional ensemble and the dynamics of the IDP. In a simplistic view, assuming electrostatics
to be the major determinant of IDP conformation, a net positively charged IDP is expected
to contract upon phosphorylation, while a negatively charged or neutral IDP will expand.
In a recent atomistic simulation study by Jin and Gräter, this prediction was shown to hold
true for multisite phosphorylation of the four peptides studied [10]. Generally, net charge
and hydropathy provide good indications of the level of compaction of a protein only in
some cases, while many require an additional inspection of the fraction of charged residues
and charge pattern, due to their polyampholytic nature [11,12].
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In recent years, phosphorylated IDPs have received increased attention [10,13–23].
Changes in global conformation, secondary structure, and local arrangements upon
phosphorylation of disordered proteins and regions have been studied experimentally
by techniques such as small angle X-ray scattering (SAXS), fluorescence resonance en-
ergy transfer, circular dichroism (CD) spectroscopy, and nuclear magnetic resonance
(NMR) [13–15,20,24–26]. Due to the vast conformational ensembles possessed by IDPs,
a combination of different techniques is required and often well complemented by atom-
istic simulations, which through detailed information can provide further insight. After
many years of important adjustments, such as refinement of backbone dihedral angles and
balancing the water–protein and protein–protein interactions, there are several force field
and water model combinations that can be applied to IDPs [27,28]. Less attention has been
given to charge–charge interactions, although it has been determined that many standard
force fields have a tendency to overestimate salt bridges [29,30]. More recently, it has been
shown that, for phosphorylated peptides, this can cause serious discrepancies between
simulations and experiments [10,20,31].

In our most recent work involving all-atom molecular dynamics simulations of phos-
phorylated disordered peptides, Amber ff99SB-ILDN in combination with the TIP4P-D
water model showed promising results in describing the conformational ensemble of short
disordered peptides [20,31]. Here, we have extended the work with simulations of the
non-phosphorylated variants of the four peptides in [31], using the aforementioned force
field, and additional analyses of a fifth peptide published in [20], to study the conforma-
tional and structural effects upon phosphorylation, with the aim of gaining better insight
into the controlling factors. By experimental comparison, we also detect limitations of
the force field. Two of the peptides are fragments from the neuroprotein tau, involved in
stabilizing neuronal microtubules [32]. Phosphorylation of tau regulates its function, and
hyperphosphorylation has been implicated to cause pathological effects by involvement in
amyloid fibril formation in Alzheimer’s disease [33,34]. Another two of the peptides are the
saliva protein statherin and its fifteen residue long N-terminal fragment, SN15. Statherin
maintains a supersaturated environment of calcium phosphate in the saliva, by preventing
spontaneous precipitation and crystal growth [35–37]. This functionality is closely associ-
ated with the N-terminal fragment containing the phosphorylated residues [37]. The last
peptide is the 25 residue long N-terminal fragment of β-casein, which naturally contains
four phosphorylated serines that sequester calcium and promotes the formation of calcium
phosphate nanoclusters [38–40].

We observe that, for these peptides, ranging in length from 11 to 43 residues that
net charge is not enough to predict the change in global dimensions upon phosphory-
lation at two to four sites. Instead, salt bridge formation has great impact, depending
on the distribution of phosphorylated and positively charged residues throughout the
sequence. Furthermore, in statherin, a preference for arginine–phosphoserine interactions
over arginine–tyrosine interactions explains the phosphorylation induced changes.

2. Results and Discussion

2.1. Net Charge Is Not Enough to Explain Phosphorylation Induced Changes

Atomistic simulations of five different disordered peptides in both non-phosphorylated
and phosphorylated state, shown in Table 1, have been performed at conditions corre-
sponding to physiological pH (approximately pH 7). The peptides were chosen based on
the availability of experimental data and their size, considering computational expense.
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Table 1. Full name and sequence of the peptides included in this study. Positively charged residues are marked in blue,
negatively charged in red, and phosphorylation sites are highlighted with yellow. The number of residues (Nres), net charge
of the non-phosphorylated variant (Zno-phos), and the phosphorylated variant (Zphos) are also shown.

Name Peptide Sequence Nres Zno-phos Zphos

Tau1 Tau173–183 AKTPPAPKTPP 11 +2 −2

SN15 Statherin1–15 DSSEEKFLRRIGRFG 15 +1 −3

Tau2 Tau225–246 KVAVVRTPPKSPSSAKSRLQTA 22 +5 −3

bCPP β-casein1–25 RELEELNVPGEIVESLSSSEESITR 25 −5 −13

Stath Statherin DSSEEKFLRRIGRFGYGYGPYQPVPEQPLYPQPYQPQYQQYTF 43 0 −4

SN15, Tau2, and bCPP all contract upon phosphorylation, as shown from the peak
shift towards lower values of the distributions of radius of gyration (Rg) and end-to-end
distance (Ree) in Figure 1, as well as the average values of Rg and Ree presented in Table 2.
For SN15 and Tau2, the width of the distribution also decreases, while bCPP keeps the same
range, only the shape of the distribution changes. Stath and Tau1 both expand, shown from
a peak shift towards larger values in the distributions. For Tau1, the expansion is more
clear observing the Rg distribution than the Ree distribution, which only changes shape by
the disappearance of a shoulder at lower values. This, however, causes the average Ree,
presented in Table 2, to increase. An increase of Ree upon phosphorylation of Tau1 has
been detected by fluorescence resonance energy transfer measurements, as reported by
Chin et al. [15].
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Figure 1. Radius of gyration (Rg) and end-to-end distance (Ree) density distributions of the non-phosphorylated (non-phos)
and phosphorylated (phos) variants. The SN15 data are obtained from Ref. [20] (2020 American Chemical Society), and data
for the phosphorylated variants of Tau2, bCPP, and Stath from [31].
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Table 2. Average radius of gyration (Rg) and end-to-end distance (Ree) of the non-phosphorylated
(non-phos) and phosphorylated (phos) variants. Data for SN15 are obtained from [20] and for the
phosphorylated peptides of Tau2, bCPP, and Stath from [31].

Radius of Gyration (nm) End-to-End Distance (nm)

Peptide non-phos phos non-phos phos

Tau1 0.93 ± 0.01 0.98 ± 0.01 2.74 ± 0.06 2.89 ± 0.02

SN15 1.00 ± 0.01 0.90 ± 0.01 2.54 ± 0.09 2.30 ± 0.03

Tau2 1.46 ± 0.02 1.29 ± 0.03 3.83 ± 0.09 3.27 ± 0.17

bCPP 1.53 ± 0.03 1.43 ± 0.03 3.80 ± 0.08 3.09 ± 0.15

Stath 1.56 ± 0.04 1.73 ± 0.09 3.30 ± 0.24 4.05 ± 0.17

The shape factor, presented in Figure 2, can be used as an estimate of the shape of
the peptide. If it behaves as a Gaussian coil, the shape factor is approximately 6, whereas
for a stiff rod, it is around 12. SN15, Tau2, and bCPP are shown to behave rather coil-like
in non-phosphorylated state, while Tau1 is more stiff, and Stath more contracted. Upon
phosphorylation, bCPP becomes more contracted than a Gaussian coil, while Stath expands
to become more coil-like.
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Figure 2. The shape factor of the non-phosphorylated (non-phos) and phosphorylated (phos) variants.
The dashed line corresponds to the shape factor of a Gaussian coil. The error bars are based on error
propagation of the error estimates determined for radius of gyration and end-to-end distance by
block averaging.

Comparing the induced changes of Rg and Ree with the net charge of the non-
phosphorylated peptides, it is clear that the prediction of Jin and Gräter, i.e., that net
charge controls the effect of phosphorylation [10], only holds for SN15, Tau2, and Stath.
bCPP contracts despite having a negative net charge, and Tau1 expands despite the positive
net charge. Note that the peptides in this study are distinctly shorter (11–43 residues) com-
pared to the IDPs in the study by Jin and Gräter (approximately 80 residues) [10], hence
local interactions are expected to have a more direct effect on the global dimensions. To
understand the effect of phosphorylation of these peptides, we therefore need to investigate
changes in secondary structure and specific interactions.

2.2. Phosphorylation of Tau1 Favors Expanded Conformations

Tau1 is dominated by irregular structure and polyproline type II helix (PPII), as
shown in Figure 3a–f. It possesses 46% and 51% PPII in the non-phosphorylated and
phosphorylated state, respectively. Elam et al. [41] have predicted close to 50% PPII content
in this region of Tau, and CD measurements of this segment indicate an increase of PPII
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content upon phosphorylation [15]. In Figure 3a–f, it is shown that all structural changes
upon phosphorylation at T175 and T181 take place at the C-terminal end of the peptide,
from residue 179 and forward. The propensity for bends and turns at residue 179–181
decreases, while the PPII content increases at residues 181–182. There is occasional salt
bridge formation between the phosphothreonines and their respective neighboring lysine.
Specifically, the probability of salt bridge formation is 7 ± 2% for pT175–K174 and 9 ± 2%
for pT181–K180. The most occurring salt bridge is, however, formed between pT175
and the N-terminal, with a probability of 49 ± 9%. However, due to the close proximity
between the salt bridging residues, the effect on the overall dimensions of the peptide
is small. Since Tau1 is a short and rather stiff peptide, as shown by the shape factor in
Figure 2, there is limited contact between residues. The change in contact probability
upon phosphorylation is also small, according to Figure 3g, which reveals that the main
change is a decrease of contact between T181 and the preceding residues A177 and P178,
in agreement with the decreased probability of a bend or turn in that region, as shown by
Figure 3b,c. The conformational effects of phosphorylation of Tau are well summarized by
Figure 3h,i, showing the energy landscape and conformations of non-phosphorylated and
phosphorylated Tau1. The energy landscape of non-phosphorylated Tau1 contains several
minima, of which the minimum containing expanded conformations dominate, in line with
the relatively high shape factor. Other less populated minima contain conformations with
a kink in the C-terminal end, originating from a bend or turn. Upon phosphorylation, the
minima with kinked conformations disappears, leaving only the minima with expanded
conformations. This is in line with decreased contact probability and explains the change
in shape of the Rg and Ree distributions, from a peak with a preceding shoulder to a
single peak.

2.3. Phosphorylation Increases the Helix Propensity and Induces Salt Bridge Formation in Tau2
and SN15

Tau2 and SN15 are both mainly irregular and report an increase of helicity upon
phosphorylation, see Figures 4a–f and 5a–f, respectively. The helical region is identified
as “pSpSAKSR” in Tau2 and “pSpSEEKFLR” in SN15, according to Figures 4e and 5e.
The sequences, hence, share two characteristics: (1) the helical region starts with two
phoshorylation sites, and (2) three or four steps away from the phosphorylation site, a
positively charged residue is positioned. Phosphorylation has been shown to stabilize
α-helices if the phosphorylation site is located in the N-terminal end of the helix, by
electrostatic interaction between phosphorylated serines and the macrodipole of the helix,
and by hydrogen bonding with the amide backbone [42]. With a i, i + 4 spacing between a
phosphorylated serine and a lysine, phosphorylation also stabilizes α-helices through salt
bridge formation between the side groups [43].

For Tau2, a phosphorylation-induced increase of α-helical structure from 5 to 40% in
region A239–R242 has been reported [13]. In these simulations, the main helical increase
upon phosphorylation is associated with region S237–K240, where the increase is from
4 to 26%. However, the helical increase is mainly due to 310-helix, since the increase of
α-helix is only from 1 to 5%. Hence, the simulations are in qualitative agreement with the
experiments, but the quantitative results should be treated with caution. In addition, in
SN15, the larger part of the helical increase is due to 310-helix, and an increase of α-helix is
supported by CD spectroscopy [20], once again giving qualitative support to the findings
in this study. Notice also that, while it is hard to make quantitative comparisons with
CD data, our study on SN15 suggested that the simulations underestimate the structural
content [20], which is the same as observed for Tau2.
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Figure 3. (a–f) Secondary structure content along the non-phosphorylated and phosphorylated sequence of Tau1. The
helix includes α-helix and 310-helix. β-strand also includes β-bridge. The positions of phosphorylated and positively
charged residues are highlighted in yellow and blue, respectively; (g) change in contact probability upon phosphorylation of
Tau1; (h,i) energy landscapes and conformations in minima of non-phosphorylated and phosphorylated Tau1. The energy
landscapes are constructed using the first two components from principal component analysis, applying the same basis set
for both variants. Hence, they are directly comparable. Contour lines are drawn for integer energy levels in the interval
1 ≤ RT ≤ 5 and the minimum of each basin is represented by a marker depending on the energy: �: ≤1RT, �: ≤2RT. A
thick line corresponds to the most populated basin, while dashed lines to the least populated basins. In the conformations,
positively charged residues are shown in blue, and phosphorylated residues in yellow.
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Figure 4. (a–f) Secondary structure content along the non-phosphorylated and phosphorylated sequence of Tau2. Helix
includes α-helix and 310-helix. β-strand also includes β-bridge. The data for the phosphorylated peptide are previously
published in [31]. The positions of phosphorylated and positively charged residues are highlighted in yellow and blue,
respectively; (g) change in contact probability upon phosphorylation of Tau2; (h,i) energy landscapes and conformations
in minima of non-phosphorylated and phosphorylated Tau2. The energy landscapes are constructed using the first two
components from principal component analysis, using the same basis set for both variants, hence making them directly
comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5 and the minimum of each basin
is represented by a marker depending on the energy: �: ≤1RT, �: ≤2RT, �: ≤3RT. Thick lines correspond to the most
populated basins, while dashed lines to the least populated basins. In the conformations, positively charged residues are
shown in blue and phosphorylated residues in yellow.
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While helix formation decreases the Rg and Ree, salt bridge formation can also con-
tribute to the compaction observed upon phosphorylation. In Tau2, several salt bridges
have been established from NMR measurements, specifically pT231–R230, pS237–K240,
and pS238–R242 [13]. pT231–R230 and pS238–R242 are indeed the two most occurring salt
bridges according to Table 3, while pS237–R242 is the third most common. Apart from
the increase of helical content related to phosphorylation, Figure 4b reveals an interesting
pattern of bends after phosphorylation, where the charged residues R, K, pT, and pS are
enriched in bends. The conformations in Figure 4 illustrate how the salt bridges contribute
to the formation of bends. Since the probability of a turn at A227–V229 is roughly the
same as the probability of the pT231–K225 salt bridge (see Figures 3 and 4c), and V228 is
located right between K225 and pT231, we conclude that this turn is also a result of a salt
bridge interaction. Hence, this peptide shows that salt bridge formation can induce bends
and turns.

Table 3. Probability of salt bridge formation (%) between phosphorylated residues and positively
charged residues in Tau2, where NT is the N-terminus. The data are obtained from Ref. [31]. The
values printed in bold correspond to the experimentally established salt bridges [13].

Residue NT K225 R230 K234 K240 R242

pT231 1 ± 1 10 ± 3 37 ± 10 3 ± 2 ∼0 ∼0

pS235 <1 2 ± 1 <1 15 ± 4 17 ± 2 6 ± 3

pS237 2 ± 1 4 ± 3 3 ± 10 17 ± 2 19 ± 2 29 ± 2

pS238 4 ± 1 5 ± 2 3 < 1 ∼ 0 5 ± 4 35 ± 6

Comparing the energy landscapes of non-phosphorylated and phosphorylated Tau2
in Figure 4h,i, it is shown that, for both peptides, more extended conformations, such
as in the minima furthest to the right, are sampled, but to a different extent. These type
of conformations are more common in the non-phosphorylated variant, while the most
populated basin contains conformations with the N-terminal end folded over, to come
closer to the phosphorylated residues. While K225 rarely involves in a proper salt bridge
with other residues than pT231, it is still energetically favorable to be in rather close
vicinity of the phosphorylated region, considering both the charged side chain and the
N-terminus. These types of conformations give rise to an increased contact probability
within the N-terminal part of the chain, see Figure 4g. The increased contact probability
close to the diagonal in the middle to C-terminal end corresponds to the increase of helical
structure and certain salt bridges. Apart from those, there is a decrease of the probability
of contacts within the C-terminal end upon phosphorylation. The two minima in the left
part of the energy landscape of non-phosphorylated Tau2 in Figure 4h are examples of
conformations with a higher level of contact within the C-terminal end. They originate from
the electrostatic attraction between the C-terminus and the positively charged residues. In
phosphorylated Tau2, that region of the energy landscape is visited much less (see Figure 4i),
in agreement with the changes in contact probability. Notice, however, that the probability
of conformations with one end folded over is much higher after phosphorylation, which
explains the decrease in Rg and Ree. The conformation corresponding to the minimum in
the most populated basin for the phosphorylated peptide additionally shows a helix in the
C-terminal end, which also contributes to a decreased Rg and Ree.
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Figure 5. (a–f) Secondary structure content along the non-phosphorylated and phosphorylated sequence of SN15. Helix
includes α-helix and 310-helix. β-strand includes also β-bridge. These data are obtained from Ref. [20] (2020 American
Chemical Society). The positions of phosphorylated and positively charged residues are highlighted in yellow and blue,
respectively; (g) change in contact probability upon phosphorylation of SN15, based on data from Ref. [20]. (h,i) Energy
landscapes and conformations in minima of non-phosphorylated and phosphorylated SN15. The energy landscapes are
constructed using the first two components from principal component analysis, using the same basis set for both variants.
Hence, they are directly comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5 and the
minimum of each basin is represented by a marker depending on the energy: �: ≤1RT, �: ≤2RT. A thick line corresponds
to the most populated basin, while dashed lines to the least populated basins. In the conformations, positively charged
residues are shown in blue, negatively charged residues in red, and phosphorylated residues in yellow. Phosphorylated and
positively charged residues that are close are shown explicitly.

In SN15, the salt bridges pS2–K6, pS3–K6, pS3–R9, and pS3–R10 are the most probable
and all form with an approximately 25% occurrence. From the change in contact probability
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displayed in Figure 5g, it appears that the pS2–K6 and pS3–K6 salt bridges contribute to
stabilize the formed helix. The pS3–R9 and pS3–R10 salt bridges are also visible in the
contact map and contribute to an increase in the amount of more compact conformations
after phosphorylation. In the energy landscape in Figure 5, it is shown that phosphorylation
shifts the position of the main minima in the energy landscape, from an area of more coil-
like structures to a more compact state. The non-phosphorylated peptide also samples
conformations that are more compact with a higher content of secondary structure, but
more rarely than the phosphorylated peptide. The conformation corresponding to the
minimum in the most populated basin in the phosphorylated peptide has residue pS2 and
K6 close enough to be in contact; however, there is no helix, but instead a turn at residues
E4–E5. This shows that it is favorable to have pS2 and K6 in contact, but that the interaction
does not necessarily imply helix formation. In Figure 5c, it was shown that the turn content
in region S3–E5 also increases upon phosphorylation, not only the helix content. There
is also an increase of turn content in region F7–R11, which is partly caused by occasional
β-strand formation, as shown in the other conformation in Figure 5, and partly by residues
pS3 and R9 coming close to form a salt bridge, in line with the turn induced in Tau2. Both
of these changes give rise to more compact conformations. We must, however, note that
SAXS measurements have indicated that a compaction upon phosphorylation is plausible,
but probably smaller than shown in the simulations [20]. While Jin and Gräter found
that changes in the hydration shell upon phosphorylation can hide global conformational
changes in SAXS measurements, they also concluded that the force field used in this
study overestimates the charge effect, thus providing two different explanations of the
deviations between the simulations and experiments [10]. Note also that the contact map
reports a decrease of contact between R10 and F14, a contact probably formed due to
cation–π interaction, which will be discussed further in the section regarding Stath.

2.4. Salt Bridge Formation Shifts the Conformational Ensemble of bCPP

For bCPP, the secondary structure content is dominated by an irregular structure
and is highly similar in phosphorylated and non-phosphorylated states, as shown by
Figure 6a–f, in agreement with CD spectroscopy results by Farrell et al. [25]. The small
difference that occurs upon phosphorylation at S14, S17, S18, and S19 is a change from
helix and turn to irregular structure in region E14–S17. The vanishing of helical content
is in agreement with the conclusion of Andrew et al. that phosphorylation of a residue
in the interior of a helix, without a positively charged residue within suitable distance,
destabilizes the helix [42]. Since disruption of a short helix would not cause a contraction of
the peptide, the conformational changes in bCPP upon phosphorylation are not explained
by secondary structure. Instead, the contraction is due to electrostatic attraction including
salt bridge formation between the positively charged end residues and the phosphorylated
residues, as seen in Table 4. Although both end residues are arginines, there is a preference
of R1 to interact with the phosphorylated region over R25, due to the respective charges
of the termini. This is evident from the fact that the N-terminus is also involved in salt
bridges with the phosphorylated residues, and further shown by the difference in contact
probability in Figure 6g. When R1 interacts with the phosphorylated residues, it causes
the peptide to fold over, reducing Rg and Ree substantially. From the energy landscapes in
Figure 6h,i, it is shown that before phosphorylation the minima with lowest energy contain
more extended conformations, while after phosphorylation the minima with lowest energy
instead showcase the N-terminal part being folded over.
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Figure 6. (a–f) Secondary structure content along the non-phosphorylated and phosphorylated sequence of bCPP. Helix
includes α-helix and 310-helix. β-strand includes also β-bridge. The data for the phosphorylated peptide are previously
published in [31]. The positions of phosphorylated and positively charged residues are highlighted in yellow and blue,
respectively; (g) change in contact probability upon phosphorylation of bCPP; (h,i) energy landscapes and conformations
in minima of non-phosphorylated and phosphorylated bCPP. The energy landscapes are constructed using the first two
components from principal component analysis, using the same basis set for both variants. Hence, they are directly
comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5 and the minimum of each basin is
represented by a marker depending on the energy: �: ≤1RT, �: ≤2RT, �: ≤3RT. A thick line corresponds to the most
populated basin, while dashed lines to the least populated basins. In the conformations, positively charged residues are
shown in blue, negatively charged residues in red and phosphorylated residues in yellow.

149



Int. J. Mol. Sci. 2021, 22, 11058

Table 4. Probability of salt bridge formation (%) between phosphorylated residues and positively
charged residues in bCPP, where NT is the N-terminus. The data are obtained from Ref. [31].

Residue NT R1 R25

pS15 2 ± 1 6 ± 1 2 ± 1

pS17 3 ± 1 7 ± 1 7 ± 2

pS18 4 ± 1 13 ± 4 12 ± 4

pS19 1 ± 1 10 ± 4 15 ± 4

Based only on the net charge of non-phosphorylated bCPP, it was expected that it
would expand upon phosphorylation. Considering only region E13–E21, which contains
the four phosphorylation sites, this effect was noticed. The average distance between
the Cα atoms of residue 13 and 21 increases from 1.91 ± 0.03 nm to 2.12 ± 0.03 nm upon
phosphorylation. However, due to the strong electrostatic interaction between the arginines
and the phosphorylated region that are far apart in the sequence, the global result is
compaction. Hence, the relative position of charged residues is very important to consider
for the effects of phosphorylation on the overall dimensions of the peptide.

We previously showed that the addition of 150 mM NaCl had negligible effects
on the salt bridges and global conformational properties of phosphorylated bCPP [31].
The same applies to non-phosphorylated bCPP, as presented in Supplementary File S1,
Figures S1 and S2. However, although the average values of Rg at 0 and 150 mM are within
error, there is a slight increase in the phosphorylated variant and decrease in the non-
phosphorylated variant, see Table 5. Hence, at 150 mM NaCl, the difference observed in Rg
between the two variants vanishes, considering the associated error. Note, however, that the
distributions still have distinctly different shapes, hence we argue that the conformational
ensembles are still different. The same trend is observed in the average Ree values, although
a difference with respect to phosphorylation state still remains at 150 mM NaCl, see Table 5.
In addition, in the calculated scattering curve (Supplementary File S1, Figure S2), the effect
of salt is smaller than the effect of phosphorylation. The difference between the form factor
of non-phosphorylated and phosphorylated bCPP is, however, still rather small, so we
suspect that it can be hard to detect experimentally with SAXS. Based on the fraction of
charged residues and level of charge separation, we expect the other peptides in this study
to show smaller effects in regard to salt concentration than bCPP. Hence, we expect the
results observed here to be also valid at 150 mM NaCl.

Table 5. Average radius of gyration and end-to-end distance of the non-phosphorylated (non-
phos) and phosphorylated (phos) bCPP in the presence of 0 and 150 mM NaCl. The data for the
phosphorylated peptide are previously published in [31].

Radius of Gyration (nm) End-to-End Distance (nm)

0 mM 150 mM 0 mM 150 mM

non-phos 1.53 ± 0.03 1.48 ± 0.02 3.80 ± 0.08 3.64 ± 0.09

phos 1.43 ± 0.03 1.45 ± 0.03 3.09 ± 0.15 3.37 ± 0.13

2.5. Arginine—Phosphoserine Interactions Outshines Arginine—Tyrosine Interactions in Stath

Upon phosphorylation of Stath, the three largest changes in secondary structure are
a decrease of β-strand structure, an increase of helical structure, and an increase of turns,
according to Figure 7a–f. The increase of helical structure is in the same region as observed
for the N-terminal fragment SN15. Figure 7f implies that residues R10, Y18, Y21, and Y41
are of extra importance for the formation of β-sheet. The cation–π interaction that can occur
between aromatic residues, such as tyrosine, and cationic residues, such as arginine, have
been shown to be common in proteins [44]. A correlation between β-strands and cation–
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π interactions have also been established [45]. Table 6 show that the cation–π interaction
indeed is more occurring in non-phosphorylated Stath than in phosphorylated Stath,
suggesting that it drives the formation of β-strands. The conformations in Figure 7I–III show
examples of the cation–π interaction in non-phosphorylated Stath. Although the aromatic–
cation interactions are more common in non-phosphorylated Stath, they still occur in
phosphorylated Stath, as exemplified by Figure 7. Upon phosphorylation, the occurrence of
cation–π interaction decreases substantially, while salt bridge formation appears according
to Table 7. Notice that R10, which was shown to interact with tyrosines, is involved in one
of the most probable salt bridges, pS3–R10. Hence, the arginine–phosphoserine interaction
is deemed stronger than the arginine–tyrosine interaction. The replacement of arginine–
tyrosine interaction with arginine–phosphoserine causes the β-strands to vanish, which
explains the observed expansion.

Table 6. Probability of cation–π interaction (%) for certain pairs of residues in non-phosphorylated
(non-phos) and phosphorylated (phos) Stath.

Residues non-phos phos

R10–Y18 13.8 ± 6.3 1.6 ± 0.9

R10–Y21 32.0 ± 8.6 3.9 ± 0.7

R10–Y41 9.2 ± 4.3 0.4 ± 0.2

Table 7. Probability of salt bridge formation (%) between phosphorylated residues and positively
charged residues in Stath, where NT is the N-terminus. The data are obtained from Ref. [31].

Residue NT K6 R9 R10 R13

pS2 <1 23 ± 7 23 ± 8 12 ± 1 8 ± 1

pS3 12 ± 3 9 ± 1 30 ± 8 32 ± 7 6 ± 3

As presented above, SN15, which is the first fifteen residues of Stath, contracts upon
phosphorylation, which was explained by the increased helicity and formation of salt
bridges. Supplementary File S1, Figure S3 shows that, in phosphorylated Stath, the global
dimensions of the first fifteen residues, Stath1–15 agree with those of the fragment (SN15).
In the non-phosphorylated variant, the distributions are also rather similar, except for
a sharp peak in both the Rg and Ree distributions, which corresponds to a basin in the
energy landscape with the conformation shown in Supplementary File S1, Figure S3c.
Regarding the secondary structure, according to Supplementary File S1, Figure S4, the
largest difference between SN15 and Stath1–15 is caused by β-strand not forming in SN15,
due to lacking its partner further on in the sequence. There are also some differences in
bends and turns, but the increase of helical propensity is similar. Hence, overall, the first
fifteen residues of Stath behave rather similarly in the full peptide and as a standalone
fragment, although especially the presence of the rest of the sequence induces β-strand
formation. Despite this discrepancy, we can conclude that phosphorylation of Stath causes
a contraction of the first fifteen residues, but an expansion of the full peptide, due to
disruption of β-sheets.
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Figure 7. (a–f) Secondary structure content along the non-phosphorylated and phosphorylated sequence of Stath. Helix
includes α-helix and 310-helix. β-strand includes also β-bridge. The data for the phosphorylated peptide are previously
published in [31]. The positions of phosphorylated and positively charged residues are highlighted in yellow and blue,
respectively; (g) change in contact probability upon phosphorylation of Stath; (h,i) energy landscapes and conformations
in minima of non-phosphorylated and phosphorylated Stath. The energy landscapes are constructed using the first two
components from principal component analysis, using the same basis set for both variants, hence making them directly
comparable. Contour lines are drawn for integer energy levels in the interval 1 ≤ RT ≤ 5 and the minimum of each
basin is represented by a marker depending on the energy: �: ≤1RT, �: ≤2RT, �: ≤3RT. A thick line corresponds to the
most populated basin, while a dashed line to the least populated basin. In the conformations, positively charged residues
are shown in blue, negatively charged residues in red, and phosphorylated residues in yellow. The circles show specific
interactions within the peptide in the conformations corresponding to the Roman numerals.
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3. Conclusions

Some of the peptides in this study contracted upon phosphorylation, while others
became more expanded. However, the net charge was not enough to predict the effect
in these short peptides. Instead, we have identified factors that appeared to be of greater
importance, of which the first is the distribution of charged residues, in line with the
influence of linear charge distribution on the conformational ensemble of IDPs [46]. Espe-
cially the relative position of phosphorylated and positively charged residues mattered,
considering that salt bridges formed between residues far from each other in the sequence
had the largest effect on the overall dimensions of the peptide. Regarding salt bridges,
Kumar et al. have shown that phosphorylation can re-wire salt bridges by competing
with already present E–R salt bridges [47], but no such tendencies were observed for these
peptides. Here, the possible salt bridges in the non-phosphorylated peptides were either
low in probability or did not change much upon phosphorylation. In Stath, competitive
interactions between positively charged residues, aromatic residues, and phosphorylated
residues accounted for the changes upon phosphorylation. This shows that, for peptides
which include arginine, it can be of importance to also consider aromatic residues. In both
bCPP and Stath, phosphorylation induced the opposite effect on the local and global di-
mensions, hence, to understand the purpose/implications of the phosphorylated residues,
both length-scales should be studied. This is especially important dealing with longer IDPs
where local/non-local effects can have larger compensatory effect than observed for short
peptides [14].

Regarding secondary structure, the separation between phosphorylated and positively
charged residues was shown to control the helix propensity, and salt bridges additionally
induced changes in the amount of bends and turns. Comparison with experimental data
on secondary structure for SN15 and Tau2 indicates that the simulations underestimate the
structural content. For these peptides, a preference of 310- over α-helix was also observed,
while the experimental data only considered α-helix. Hence, the simulations were better at
indicating trends than producing exact measurements of secondary structure. Overall, the
simulation results were often in qualitative agreement with available experimental data,
suggesting that, despite the deficiency related to secondary structure and the reported
tendency of the force field to overestimate charge–charge interactions, simulations with
this force field can still contribute to an increased understanding of the implications of
phosphorylation.

As a final note, this study shows that there are several factors contributing to the
outcome of phosphorylation, and that they are of varying importance in different peptides.
This shows that phosphorylation indeed is complex; however, it is still possible to obtain a
better understanding of these factors individually. Therefore, we have an ongoing project in
which the number of phosphorylated residues and their positions are varied in a controlled
manner, to investigate the effects of those factors systematically.

4. Materials and Methods

All-atom molecular dynamics simulations of the systems shown in Table 8 were per-
formed using GROMACS version 2018.4 (version 4.6.7 for simulation of Stathn) [48–52]
with the AMBER ff99SB-ILDN [53] force field and the TIP4P-D [54] water model. Parame-
ters for phosphorylated residues were derived from Homeyer et al. [55] and Steinbrecher
et al. [56]. Please note that some of the data sets are previously published and only re-
analyzed for this study.
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Table 8. Details of the simulations included in this work. The suffix n stands for non-phosphorylated peptide, while the
suffix p stands for phosphorylated.

Peptide Box Volume (nm3)
Number of Number of Number of Total Simulation

Solvent Molecules Sodium Ions Chloride Ions Length (μs)

Tau1n 157.63 5130 0 2 10.0
Tau1p 140.55 4594 2 0 5.0
Tau2n 724.974 23862 0 5 6.0

SN15n a 272.13 8839 0 1 14.4
SN15p a 294.52 9703 3 0 22.0
Tau2p b 722.941 23816 3 0 11.0
bCPPn 1009.24 32975 5 0 5.0

bCPPn, 150 mM 1009.24 32793 96 91 5.0
bCPPp b 1002.41 32815 13 0 6.0

bCPPp, 150 mM b 1002.41 32633 104 91 7.0
Stathn c 930.47 30651 0 0 17.0
Stathp b 942.11 30942 4 0 12.0

a Previously published [20]. b Previously published [31]. c Using GROMACS version 4.6.7.

Initial configurations of the peptides were constructed from the sequence as linear
chains using Avogadro 1.2.0 [57], optimizing the structure with the auto-optimization tool.
SN15n and Stathn were constructed as linear chains in PyMOL [58]. Each peptide was
placed in a rhombic dodecahedron box with a minimum distance between the peptide
and the box edges of 1 nm, and solvated. The number of water molecules is specified in
Table 8, alongside the number of chloride and sodium ions that were added to neutralize
the system and in two cases obtain a salt concentration of 150 mM. Periodic boundary
conditions were employed in all directions. The equations of motion were integrated using
the Verlet leapfrog algorithm [59] with a time step of 2 fs. Non-bonded interactions were
treated with a Verlet list cutoff scheme. The short-ranged interactions were calculated using
neighbor lists with a cutoff of 1 nm. Long-ranged dispersion corrections were applied to
energy and pressure and long-ranged electrostatic interactions were treated by Particle
Mesh Ewald [60] with a cubic interpolation and 0.16 nm grid spacing. All bond lengths
were constrained using the LINCS algorithm [61]. Solute and solvent were separately
coupled to temperature baths at 298 K using the velocity rescaling thermostat [62] with
a 0.1 ps relaxation time. Parrinello–Raman pressure coupling [63] was used to keep the
pressure at 1 bar, using a 2 ps relaxation time and 4.5 · 10−5 bar-1 isothermal compressibility.

Energy minimization was performed by the steepest descent algorithm until the
system was converged within the available machine precision. Initiation of five replicates
per system with different starting seeds were performed separately in two steps using
position restraints on the peptide. The first step was 500 ps of NVT simulation (constant
number of particles, volume, and temperature) performed to stabilize the temperature,
followed by the second step of 1000 ps of NPT simulation (constant number of particles,
pressure, and temperature) to stabilize the pressure. Production runs of the five replicates
per system were performed in the NPT ensemble, for at least 1 μs per replicate. bCPPp
with 150 mM salt was simulated in 10 replicates for 0.7 μs each. The total simulation time
per system is stated in Table 8. Energies and coordinates were saved every 10 ps, except for
in the simulations with 150 mM NaCl. The saving frequency there was every 50 or 40 ps,
for bCPPn and bCPPp, respectively.

Analysis

Rg and Ree were calculated using GROMACS 2018.4 and the gmx analyze routine was
used to obtain averages and error estimates from block averaging analysis. Distributions
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were obtained by Gaussian kernel estimation using the SciPy package version 1.5.4 [64].
The shape factor, rs, was calculated from the average values of Rg and Ree according to:

rs =
R2

ee
R2

g
. (1)

Secondary structure was determined using the DSSP program version 2.2.1 [65] with
an extension to detect polyproline type II structure [66,67], on 10,000 equally spaced frames
from the combined trajectory. The MDTraj Python library version 1.9.3 [68] was used to
obtain contact maps, analyze salt bridges, and cation–π interactions. For the contact maps,
contact was defined as when two atoms of different residues were within 0.4 nm of each
other. Since salt bridges are formed as a result of hydrogen bonding and electrostatic
interactions, they have been assessed by analyzing the presence of hydrogen bonds based
on the criterion in reference [69], as implemented in MDTraj. Cation–π interactions were
analyzed based on the position of the NZ atom in arginine and CG and CZ in tyrosine.
Interaction was defined to occur when both the distances R:NZ–Y:CG and R:NZ–Y:CZ were
≤0.6 nm [44]. The energy landscapes were calculated using principal component analysis
following the approach described by Campos and Baptista [70], with the differences
described by Henriques et al. [71]. In short, principal component analysis was applied to
the Cartesian coordinates of the backbone atoms of the protein, obtained after translational
and rotational least square fitting on the central structure of the simulation. The conditional
free energy was calculated from the probability density function in the representation space
constructed by the first two principal components, obtained by Gaussian kernel density
estimation. Snapshots from the simulations were produced using VMD 1.9.3 [72–74]. Data
were plotted using a Jupyter Notebook [75] with Python version 3.6.4 and packages NumPy
version 1.19.5 [76] and Matplotlib version 2.1.2 [77].

Convergence and sampling quality were assessed by comparing the Rg and Ree
distributions, and energy landscapes, between the replicates, as well as by observing the
auto-correlation function and convergence of the block average error estimate of Rg and
Ree in the concatenated simulation. These data are available in Supplementary File S2.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222011058/s1.
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Abbreviations

The following abbreviations are used in this manuscript:

IDP Intrinsically disordered protein
CD Circular dichroism
NMR Nuclear magnetic resonance
Rg Radius of gyration
Ree End-to-end distance
SAXS Small-angle X-ray scattering
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Abstract: Cells adapt to different stress conditions, such as the antibiotics presence. This adaptation
sometimes is achieved by changing relevant protein positions, of which the mutability is limited by
structural constrains. Understanding the basis of these constrains represent an important challenge
for both basic science and potential biotechnological applications. To study these constraints, we
performed a systematic saturation mutagenesis of the transmembrane region of HokC, a toxin used
by Escherichia coli to control its own population, and observed that 92% of single-point mutations
are tolerated and that all the non-tolerated mutations have compensatory mutations that reverse their
effect. We provide experimental evidence that HokC accumulates multiple compensatory mutations
that are found as correlated mutations in the HokC family multiple sequence alignment. In agreement
with these observations, transmembrane proteins show higher probability to present correlated
mutations and are less densely packed locally than globular proteins; previous mutagenesis results
on transmembrane proteins further support our observations on the high tolerability to mutations of
transmembrane regions of proteins. Thus, our experimental results reveal the HokC transmembrane
region high tolerance to loss-of-function mutations that is associated with low sequence conservation
and high rate of correlated mutations in the HokC family sequences alignment, which are features
shared with other transmembrane proteins.

Keywords: transmembrane proteins; saturation mutagenesis; deep sequencing; residue packing

1. Introduction

Understanding the structure–function relationship of proteins represents a challenge
to design effective pharmacological compounds [1,2]. Transmembrane (TM) proteins repre-
sent 30% of all proteins and less than 3% of these proteins have their three-dimensional
atomic (3D) structures solved [3]. Most TM proteins are targets for pharmacologic inter-
vention given their role in transport and signaling [4], thus anticipating the ability of TM
proteins to adapt their sequence without affecting their activity has both basic and applied
motivations. A common way to study the structure–function relationship of proteins in-
volves the prediction of residues important for protein function based on the 3D structure of
TM proteins, which are seldom available. In the absence of a 3D structure, critical residues
for protein function may be predicted based on multiple sequence alignments (MSA) of
similar proteins; MSA are built based on substitution matrices that, until recently, have
been developed specific for TM proteins [5,6]. In either case, the precise identification of
critical residues for protein function is accomplished by saturation mutagenesis of proteins,
which up to date have been performed mostly on globular proteins [7–24]; a recent report
on the rat neurotensin 1 D03 receptor showed that TM regions allowed for more diverse
mutations than the globular regions [25].

Critical residues for protein function are commonly considered positions in a protein
that upon mutation affect the folding, stability, binding, and/or catalytic activity of pro-
teins; note that performing single-point mutations may identify loss-of-function mutations,
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which are mutations that eliminate protein function. We have previously reviewed the
different experimental criteria used to define what a critical residue is and proposed a
quantitative measurement, Criticality Index (CI), that efficiently relates protein mutations
with their functional effect [26]. Several approaches have been described to predict these
critical residues [27–34] and all failed to identify several known critical residues [35]. These
non-predicted critical residues may be either false-positives or truly hard to predict critical
residues. To filter out false-positives, especially on large-scale mutagenesis experiments
of proteins, we have reported a combined experimental and computational method that
CHecks for Incorrect Sequence-Phenotype Assignments, or CHISPAs [36]. ISPAs (i.e., false
positives) are those protein mutants observed with both wild type and mutant pheno-
types at a frequency equal or smaller than the expected experimental error introduced to
generate/discover mutations. In the present study, we will use this method to study the
structure–function relationship of a bitopic protein.

Bitopic proteins (i.e., having a single helical TM region) constitute a convenient model
to study the structure–function relationship of TM proteins; besides having a single helical
TM region, the activity of these proteins usually is associated to their lateral dimerization
in cell membranes [37]; thus, bitopic proteins represent the minimum protein unit that
crosses biological membranes. In the present study, we performed both experimental and
computational analyses of a bitopic TM helical polypeptide, HokC. This peptide is a toxin
that kills Escherichia coli cells that express it [38], constituting a convenient system to identify
critical residues for its toxic function (e.g., loss-of-function mutations will allow cells to
growth). The size of this toxin is also convenient to identify single and multiple mutations,
since the sequence of the whole gene may be obtained in a single read by any DNA deep
sequencing technology available. We provide experimental evidence that HokC accumulates
multiple compensatory mutations that are found as correlated mutations in the HokC family
multiple sequences alignment. These correlated mutations are twice as much frequently
found in transmembrane proteins than in the globular ones, which is accompanied by a
lower local density of residue packing in transmembrane proteins compared with globular
proteins. Our results together with previous experimental results support the idea that
transmembrane proteins are more tolerant to loss-of-function mutations.

2. Results

2.1. Sensitivity of Experimental Screening

Under growing conditions, E. coli cells repress HokC expression to prevent cell death.
To disrupt this cellular control, the HokC gene was cloned in the pEXT22 plasmid under the
tac promoter; the plasmid also harbors the lacIQ repressor, to ensure maximal repression of
the tac promoter. Hence, this expression system guarantees no transcription leakiness of the
gene under the tac promoter, which is important to study the effect of this gene expression
on cell survival. To derepress the tac promoter from the lacIQ repressor, isopropyl-beta-D-
thiogalactoside (IPTG) is commonly used. The chromosomal copy of hokC has 3 ATG codons;
we noticed that over-expression of the ORF including the 3 ATG codons did not kill all cells;
on the contrary, the hokC gene expressed from the second ATG had more toxic effect on E. coli
cells (data not shown); hence, we used that short version of hokC in our experiments. To
determine how much IPTG is required to activate the expression of HokC, we used a range of
IPTG concentrations (see Methods) and a dilution factor of 0.25 × 10−2; hence, if no colonies
were detected it meant that the IPTG was preventing the growth of at least 25 times the initial
cells exposed to IPTG. We observed than in all, but one, tested IPTG concentrations, E. coli
cells did not grow (see Supplementary Materials Table S1). Since we did not observe any
difference in cell viability at different levels of IPTG induction, we assumed that for a mutant
to be detected in our system, this has to reproduce the effect of having HokC expression
repressed, i.e., we would mainly detect loss-of-function mutations. The mutants that reduced
up to 25 times the toxicity of HokC would be detected as wild type.
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2.2. Mutagenesis of HokC

To reduce the size of the screening, the 23 amino acid residues of the TM region of
HokC was mutagenized in regions. For instance, a 3-residue region will generate 30 single
point mutations to 1000 multiple mutations (we mutated each position for 10 other residues,
see Methods) that will likely be identified by screening 1000 clones or more. Therefore,
we selected an average of 1000 isolated colonies for each of the seven mutated regions
of the TM region of HokC and classify their phenotypes (see Figure 1). We defined as a
wild-type phenotype those cells that upon expression of a HokC mutation no cell colony
was observed and, a mutant phenotype corresponds with cells expressing a HokC mutant
that upon expression allow the growth of cell colonies (see Methods). The number of
colonies analyzed for each of the seven mutated regions and the observed phenotypes are
presented in Supplementary Materials Table S2. Note that from this first line of results,
we may anticipate that regions II (residues 7–9) and VI (residues 19–21) are less likely to
contain loss-of-function mutations than the other regions.

Figure 1. Mutagenesis strategy. (A) Seven regions were selected to mutate the ORF coding for
HokC; the full sequence of HokC is shown and the regions are marked. (B) Oligonucleotides (blue
bars) were designed to introduce mutants (red bars) using a QuickChange strategy; the plasmid
harboring the wild-type sequence for HokC was amplified (indicated by a punctuated line) and the
original plasmid was eliminated by digestion with Dpn I (see Methods for details). (C) The plasmids
harboring the desired mutations were transferred to competent E. coli cells and each colony obtained
was replicated into two plates, one with (+IPTG) and another without IPTG (−IPTG), the inducer of
HokC expression; cells growing in IPTG harbor a mutation that inactivated the HokC activity and
those not growing harbored a mutation that did not affect HokC activity.

After isolating and pooling the DNA from these colonies, we obtained 2,266,368
DNA reads with mutant phenotype and 1,881,708 DNA reads with wild-type phenotype.
The sequencing procedure identified mutations beyond the targeted TM region of the
protein (all single-residue mutations found in this study are presented in Supplementary
Materials Table S3A,B). Yet, the occurrences of mutations beyond position 24 (105,301
sequences contained mutations above this position), where the TM region ends, are rare and,
consequently, were not taken into account in our analysis (see Supplementary Materials
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Figure S1). The incorrect sequence-phenotype assignments were identified following the
CHISPAs procedure using a rate of experimental error of 4% (see Methods). Supplementary
Materials Table S4 summarizes all significant single mutants for HokC that rendered a
mutant and wild-type phenotype. Two quantitative traits are expected for every position:
the number of mutations that rendered a wild-type phenotype (tolerance) and the number
of mutations rendering a mutant phenotype (intolerance). We defined as a critical residue
any position in the protein sequence for which the ratio of intolerant over tolerant mutations
was larger than 1. Our results indicate that none of the residues in the TM region of HokC
are critical for its function, yet 19 single-point mutations at 13 different residues eliminate
its function (see Supplementary Materials Table S4); these are referred to as deleterious or
loss-of-function mutations.

We observed that any amino acid substitution (e.g., Ala for Val or Ile for Trp or any
other substitution at any given position) in the HokC rendering a mutant phenotype was
also found to render a wild type phenotype (see Supplementary Materials Figure S2). These
observations indicate that the position where the substitution takes place is relevant (an Ala
for Ile mutation at i-position in the transmembrane region of HokC will not have the same
effect if it occurs at j-position) and/or that HokC is able to tolerate many of these mutations.
In fact, 4 out of the 13 single-residue substitutions identified to render loss-of-function
mutations were found as substitutions in the multiple sequence alignment in the HokC
family, suggesting that such natural variants included in the HokC family should have
tolerated the mutation if the toxic activity was conserved. We will next explore this idea.

Our experimental design allowed us to identify multiple mutations: HokC variants
that include more than one point mutation (see Methods). Among these multiple mutations,
we detected compensatory mutations, indicating any combination (double, triple, and
so on) of single loss-of-function mutations that showed a wild-type phenotype. Table 1
shows the most frequently observed compensatory mutations in our study; for a full list
of these compensatory mutations, see Supplementary Materials Table S5. It is noticeable
that residue 7 is the only residue in region II that presented deleterious mutations and
was the position most frequently observed among compensatory mutations (see Table 1);
this result explains the observation about region II (residues 7–9) presenting most of the
wild type phenotypes (see Supplementary Materials Table S2). All 19 mutations rendering
a mutant phenotype (see Table 1) may be compensated (see Supplementary Materials
Table S5), providing an explanation for the high tolerance of the TM region of HokC to
maintain the toxic function of this peptide.

Table 1. Compensatory mutations in the TM region of HokC.

Combined Mutations
(Experimental)

Counts
Combined Mutations

(MSA)
Counts

M7W, I12S 613 V13I, A6T 3
I12S, I14S 317 V19L, A6T 8
L11P, I12S 276 A22T, V19L 81
M7W, I12C 221 A6T, K2M 1
M7W, I14S 220 A22S, V19L 2
M7W, L11P 184 A22T, V13I 1
I12S, V19G 145 V19L, V13I 11
I12S, A22T 136 A21T, V19L 5

The observed combinations of deleterious single mutations (see Supplementary Mate-
rials Table S4) that occurred in our experimental set up rendering a wild-type phenotype
that were considered compensatory mutations. The table only shows compensatory muta-
tions that are present more than 100 times in our experimental setup. Please note that these
compensatory mutations may be present in combination with other tolerated mutations
(see Methods); for the list of all compensatory mutations see Supplementary Materials
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Table S5. For a full list of single-point mutations observed in compensatory mutations, see
Supplementary Materials Table S6.

Interestingly, residue Cys15 tolerated every mutation. Since the previously reported
Cysteine to Serine tolerated mutation at that position is conservative and several of the
mutations identified at this position were not conservative, we performed a site-directed
mutagenesis of this Cys15 residue by three different residues (Cys15Ser, Cys15Glu and
Cys15Ala) to validate the tolerance for HokC toxic function of these mutations; our site-
directed mutagenesis validated the saturation mutagenesis observations at this position
(data not shown).

The orientation of HokC in the TM region is important for its activity. To test for
the orientation of the TM region of single (Met7Trp or Ile12Ser) and multiple (Met7Trp-
Ile12Ser) mutations of HokC that rendered mutant and wild-type phenotypes, respectively,
we fused GFP or phoA to the C-terminus of these mutants. Such constructs have been
previously reported to assess the orientation of both N- and C-terminus of TM regions of
E. coli proteins [39]. As control, we fused GFP or phoA to the wild-type sequence of HokC.
Our results showed that the GFP fusions (to wild type or any of the mutants) eliminated
the toxic activity of HokC upon induction (see Supplementary Materials Figure S3A).
Alternatively, phoA fusions kept the activity of wild type and every mutant tested (see
Supplementary Materials Figure S3B). Accordingly, phoA and not GFP fusions, displayed
enzymatic activity (see Supplementary Materials Figure S4). These results indicated that
HokC has its C-terminus oriented towards the periplasmic space and that the mutants kept
this orientation and the level of expression of the wild type sequence.

In summary, our experimental results revealed that HokC tolerates all single point
mutations by accumulating multiple compensatory mutations. This result suggested that:
(i) sequence conservation analysis may show low correlation with deleterious mutations,
and (ii) TM regions have structural features that allow for accommodating multiple com-
pensatory mutations. To test these hypotheses, we next performed a computational analysis
of the HokC protein family and on TM proteins in general.

2.3. Are Critical Residues in the TM Region of HokC Conserved?

Using a sequence alignment reported for the HokC family derived from PFAM (see
Methods), only one residue (Cys15) identified in the TM region of HokC was invariant
(data not shown). To test if this lack of relationship between critical residues and invariant
character of residues is the consequence of using an alignment not optimized for TM pro-
teins, we generated a multiple sequence alignment (MSA) with the 148 protein sequences of
the PFAM family PF01848 using TM-COFFEE (see Supplementary Materials Table S7). Our
results indicate that only residue Thr17 was invariant and Val24 presented some degree
of conservation, yet none of these positions are critical for protein function. This MSA
was also analyzed to compute conservation scores based on the rate4site algorithm (see
Methods). According to this analysis (see Supplementary Materials Table S8), residues 1,
15, and 17 show the lowest mutability (conservation score ≥8) in the TM region of HokC;
furthermore, modifying the parameters of rate4site, it was noted that some correlation
between experiments and conservation could be found (data not shown). We explored a
third method, PROVEAN (see Methods), which predicted positions 1, 12, and 13 to include
deleterious mutations (see Supplementary Materials Table S9). Interestingly, position 13
presented substitutions in the MSA that rendered a deleterious effect in our experimental
screening (see Table 1). These results confirmed the expected poor correlation between
sequence conservation and the loss-of-function mutations in HokC.

One possible mechanism to maintain function without conserving amino acids is by
compensatory mutations, i.e., multiple mutations that compensate the deleterious effect
of individual mutations. Hence, it is expected that natural variants of HokC may have
accumulated compensatory mutations if they were to keep the biological function of HokC.
To test this idea, we compared the mutability of each position in the HokC family alignment
with that observed in our mutagenesis experiment. As shown in Supplementary Materials
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Table S4, the MSA included residue substitutions at positions K2, V6, A13, I14, V19,
A21, and A22 that, in our experimental, data rendered a mutant phenotype (deleterious
mutations in Supplementary Materials Table S4). This result supports the notion that these
loss-of-function mutations must have been compensated if the homologous proteins of
HokC should keep their toxic function. To test this idea, we identified all the multiple
mutations in the MSA for the HokC family that harbored deleterious mutations for HokC
and observed that 91 out of 148 protein sequences included this class of multiple mutations
(see Supplementary Materials Table S10). Thus, correlated mutations in the HokC family
correspond with compensatory mutations identified in our screening. To study whether
this is a particular property of HokC or a general trend of TM proteins, we decided to
extend our analysis to other TM proteins.

2.4. Compensatory Mutations Correlate to High Order Residue Contacts in HokC

According to the expected helical structure of the TM region of HokC, residues that
are closer than four residues apart in the sequence may be close in the three-dimensional
structure; hence these may be suitable to accommodate compensatory mutations. In
agreement with this idea, we observed compensatory mutations in residues that are close at
the sequence level (see Table 1). Furthermore, it has been shown that the TM region of HokC
may be engaged in the formation of a homodimer as inferred from the mutagenesis of Cys15
for Serine [40]. Our results revealed compensatory mutations between residues far away in
the TM region (e.g., positions 6 and 7 with positions 13 and 12, respectively), suggesting
that these residues may interact when these are at different monomers; otherwise, an
unusual bend on the helix has to be assumed for these residues to interact within the
same monomer, which may prevent this region to fully traverse the membrane. The recent
prediction reported for the HokC monomer by AlphaFold software version 2, indicates
that this TM region does not present an unusual bend in the helix [41], in agreement with
the idea that positions 6 and 7 with positions 13 and 12 in HokC monomers participate in
the dimerization.

Thus, compensatory mutations in HokC are in agreement with the helical structure of
this TM peptide and revealed some other residues that may participate in the dimerization
of HokC.

2.5. Implications for TM Proteins

Our results indicate that compensatory mutations accumulate among the HokC family
of toxins. It has been shown that the loss-of-function single-point mutations may be
reverted by combining these with other deleterious mutations [42]. Such mutations are
referred to as compensatory mutations that usually correspond with residues close in the
3D structure of proteins [43]. Based on these observations, we wondered whether these
mutations accumulated among residues close in the 3D structure of TM proteins (these
proteins are structurally classified as mainly alpha or mainly beta) and compared these
with globular proteins that presented these same structural classes (see Methods). Our
results indicate that TM proteins tend to favor, at least twice as much, the presence of
multiple mutations between nearby residues in the 3D structure of proteins (see Figure 2).

To evaluate if the observed increased rate of compensatory mutations is associated
with the difference in compactness of TM versus globular proteins, we carried out an
analysis of the residue contacts in these two groups of proteins. We observed that as
proteins (both globular and TM proteins) change in size, the number of three-dimensional
contacts among residues increases proportionally (see Figure 3). This indicates that both
globular and TM proteins present a constant packing density, with similar average number
of contacts per residue for globular (5.4) and TM proteins (5.4).
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Figure 2. Correlated mutation index of globular and transmembrane proteins. The normalized frequency for all 400
residue pairs at distance of 5 Å in the three-dimensional protein structure (represented in x-axis) that were simultaneously
mutated as observed in multiple sequence alignments for their corresponding protein families (correlated mutation index)
is presented for both, globular (black circles) and transmembrane (white squares) proteins.

Figure 3. Density of residue contacts for globular and transmembrane proteins. Protein structures were transformed into
contact maps at 5 Å to obtain the number of residues (Size) and the total number of reside contacts (Order) for each protein
analyzed (see Methods). Size and Order are plotted for both globular (+) and transmembrane (+) proteins. The green line
represents the best linear adjustment to both data sets and has a slope of 5.4. The plot was generated using gnuplot.
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In an attempt to identify local differences in packing between these classes of proteins,
we looked for maximal cliques in their residue contact maps. Maximal cliques are those
cliques (group of residues that are all in contact in the 3D space) that are not part of any
larger clique, hence correspond with the densest regions within proteins. We observed that
TM proteins accumulated small maximal cliques (size 3) more than globular proteins (see
Figure 4). Thus, the set of TM proteins analyzed are less densely packed than the globular
proteins as a consequence of reducing the number of large maximal cliques.

Figure 4. Maximal cliques observed in globular and transmembrane proteins. Protein structures
were transformed into contact maps at 5 Å to identify the maximal cliques including 3, 4, or 5
residues using Tomita algorithm (see Methods); maximal cliques correspond with the protein regions
where residues are highly packed. Maximal cliques occurrences of size 3, 4, and 5 (axis labeled
MC(3), MC(4), and MC(5), respectively), are presented for both globular (�) and transmembrane (�)
proteins. Please note the cumulus of blue squares on the right side of the image, which include the
maximal cliques of size 3 that are accumulated in transmembrane proteins.

Finally, we analyzed the spherical angles between contacting hydrophobic residues
(see Methods) to test if this difference in packing may be associated with differences in the
arrangement of contacting hydrophobic residues, i.e., we aimed to compare the core of TM
proteins with those of globular proteins that belong to the same structural class. To quantify
this, we used the Haussdorff distance that estimates the overall difference of two sets
of vectors; in this case, hydrophobic residues that are close in distance were represented
in vectors, each element in the vector include the angle between the hydrophobic pair
of residues. We observed that the orientation of contacting hydrophobic residues of TM
proteins and globular proteins differs; particularly, globular proteins (see Figure 5A) tend
to have on average smaller Haussdorff distances among their hydrophobic contacting
residues compared with TM proteins (see Figure 5B), yet with larger dispersion. Besides
the trend presented in Figure 5A,B, we also noticed that 57% of every pair of globular
protein analyzed had identical orientation between contacting hydrophobic residues while
this occurred in only 18% of the TM proteins. Despite these differences, we observed a
group of globular and TM proteins with mainly alpha helical compositions (with the same
CATH classification) that showed a very similar contacting geometry (see Figure 5C; for
instance structural class 1.10.405.10 or 1.20.5.110). These results indicate that while there
is a trend to maintain the geometrical arrangement of hydrophobic residues in globular
proteins more than in TM proteins, there are some exceptions to this trend.
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Figure 5. Geometrical differences between globular and transmembrane proteins. The Haussdorff distance (see Methods)
was calculated for each protein structure present in the indicated CATH classes on the x-axis for globular (A) and transmem-
brane (B). This comparison was conducted also for pairs of globular and transmembrane proteins with the same CATH class
with alpha helical structure (C). The differences are plotted as boxes, where the median is presented as a horizontal line
within the box and the horizontal lines away from the box denote the minimum and maximum values of these distances per
CATH class. To facilitate the visualization of these trends, the y-axis value range was ≤700.

3. Discussion

Experimental data derived from saturation mutagenesis of proteins indicates that both
TM and globular proteins are more tolerant to mutations than expected from phylogenies;
however, these previous studies have not addressed the difference in the tolerance to
mutations between these two classes of proteins, if any. The relevance of this comparison is
that it may help anticipate which of these proteins may adapt more easily to drugs used to
control cell fate or to reveal possible reservoirs for new protein sequences and functions,
among others. From sequence analysis, it has been observed that TM proteins tend to
present a lower degree of sequence conservation than globular proteins [44,45], yet this
observation may be the consequence of the method used to align these sequences rather
than a property of these proteins. The pioneer work by Bowie’s group showed that the
TM regions were as tolerant to mutations as the globular parts of the diacylglycerol kinase
from Escherichia coli, despite the fact that most critical active-site residues reside in the
cytoplasmic domain [46]; yet the coverage of mutations in this experiment was reduced,
preventing to fully identify critical residues or compensatory mutations. More recently, it
has been shown for the rat neurotensin 1 D03 GPCR that TM regions accepted more diverse
mutations than its globular regions [25]; hence, the authors suggested that TM regions are
more tolerant to mutations than globular regions. Whether this applies to all TM proteins
requires further investigation. To contribute to address this idea, in the present work, we
explored the sequence–phenotype space of a TM protein, HokC from E. coli. It is relevant to
note that the toxic function of HokC depends on its homodimerization and that while we
could infer some aspects of this dimerization, our experimental assay cannot discriminate
functional defects as a consequence of the monomer or dimer inactivation.
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Our experimental results show that 97% (233 out of 240) of all single mutations
expected were detected in our screening and only 19 mutations (8%) of these rendered
an inactive (non-toxic) HokC peptide (see Supplementary Materials Table S4). Hence, the
TM region of HokC tolerates most (92%) single-point mutations. For comparison, the
C-terminal domain that lays at the periplasmic space of E. coli has been proposed to encode
for the toxic domain based on two results: (i) the absence of mutations that alter protein
function at the N-terminus and (ii) the substitution of the C-terminal region by the phoA
resulted in a non-toxic protein [40]. Here, we show that the TM region actually encodes
for positions that, upon mutation, alter protein function and that fusing HokC variants
to GFP renders an inactive protein. Hence, our results show that HokC toxicity depends
on the N-terminal domain and that such domain is more tolerant to mutations than those
previously reported for the C-terminus domain. Furthermore, this rate of tolerance for the
TM region of HokC is larger than in previous experimental reports showing that globular
proteins only tolerate 30–40% of all possible single point mutations [47]. To evaluate
whether this is a property of HokC or if this is a general property of TM regions, we
performed complementary computational analysis.

In this regard, it has been noted that the core of globular proteins and that of the
TM regions are mainly composed of hydrophobic residues, yet different forces drive this
similarity in composition. Particularly, globular proteins are subjected to the hydrophobic
collapse [48] while the folding of TM regions is commonly assisted laying the hydrophobic
residues inside the lipid membrane [49]. This difference suggests that TM regions may
tolerate any hydrophobic mutations, yet our results indicate that not every hydrophobic
residue is tolerated in the TM region (see Supplementary Materials Table S4). This indicates
that more complex rules for protein folding take place at the TM region.

This high tolerance to mutations is accompanied with a low degree of sequence con-
servation observed in the TM region the of HokC family (see Supplementary Materials
Table S7). Our results indicate that in the case of the HokC family, this sequence diver-
sity is the consequence of combining multiple mutations that harbor deleterious single
amino acid mutations (see Table 1, Supplementary Materials Tables S3 and S10). Such
multiple mutations may reduce the conservation of many positions in the HokC family
and consequently, methods based on sequence-conservation scores fail to properly identify
deleterious mutations in this family of toxins. To study the nature of this capacity of TM
proteins to accumulate compensatory mutations, we compared the correlated mutations
observed between globular and TM proteins and observed that TM proteins tend to ac-
commodate twice as much correlated mutations as globular proteins (see Figure 2). This
observation was then compared with the protein packing properties of TM and globular
proteins. It has been shown that globular proteins have a constant atomic density [50], i.e.,
globular proteins with different folds and different sizes all have a similar average number
of atoms per volume within a crystal. We have previously reported that the number of
contacting residues in the 3D structure of proteins reproduces this phenomenon [51]. Here,
we extend these observations to TM proteins and observed that TM proteins have a similar
linear trend in the number of contacting residues than globular proteins (see Figure 3). Yet,
we observed local differences in the packing of TM and globular proteins, where globular
proteins tend to accommodate more residues per unit volume (see Figure 4). This trend is
consistent with the observation that TM proteins tend to incorporate voids within their core
to fulfill their biological function (e.g., channels [52]) while voids in globular proteins are
destabilizing [53] and, consequently, tend to be avoided. Alternatively, voids in any protein
have been proposed to locate where proteins are more flexible [54]. From that perspective,
our results may be interpreted as TM proteins being more flexible. Thus, our computational
analysis shows that TM proteins are locally less densely packed than globular proteins.

In agreement with this concept, we observed that the more dense packing in globular
proteins is related to their regular orientation of contacting residues (see Figure 5A,B). In
contrast with these observations, geometrical similarities of contacting helix–helix pairs
in globular and TM proteins have been reported [55]; here, we show that the density
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of contacting residues among proteins in the mainly alpha-helical family of proteins are
consistent with these previous observations (see Figure 5C). These results indicate that
while there are similarities between alpha-helical TM and globular proteins, overall globular
proteins tend to vary less the packing in their core than TM proteins. Relevant to these
observations is the idea that proteins fold to a minimum energy accessible by densely
packing their residues [56]. A solution to this packing problem may be the regular packing
proposed by Kepler in the XVII century [57]. Our results provide evidence that globular
proteins packed their residues in a more regular way than TM proteins, suggesting that
these may approach Kepler’s conjecture. In agreement with these observations, a recent
study observed that globular proteins seem to follow Kepler’s arrangement [58]. Thus,
these observations indicate that globular proteins tend to maintain a regular packing
to comply with the hydrophobic collapse during protein folding. On the contrary, TM
proteins allow for more compensatory mutations and have less regular packing than
globular proteins; whether this packing affects the mutability of TM proteins deserves
further investigation.

Finally, our results complement previous observations about the prevalence of com-
pensatory mutations at sectors in protein structures [59]. Sectors are the regions where
compensatory mutations lay in the protein structure that are linked to protein function, with
different sectors controlling different biochemical properties of proteins. More recently, it
has been noted that in many cases, proteins tend to have a single sector that is dominated by
sequence conservation; thus, the relevance of correlated mutations is diminished in those
protein regions [60]. Here, we found that the TM region of a toxin that binds to another TM
region (homodimerizes) has one sector (TM region accumulates large number of compen-
satory mutations) with low sequence conservation (see Table 1 and Supplementary Materials
Tables S4–S7). These results suggest that sectors in TM proteins may have different properties
than those in globular proteins; this deserves to be further explored.

In summary, we presented a systematic mutagenesis and deep sequencing of the
TM region of a bitopic protein, the toxin HokC, to explore its structure–function relation-
ship. We observed that most mutations are tolerated, in agreement with the low degree
of sequence conservation of this family of toxins. This poor sequence conservation has
an impact on the reliability of prediction methods aimed to identify critical residues. We
observed that this family of toxins, and TM proteins in general, tend to accumulate muta-
tions among contacting residues more than globular proteins do. The density of packing
between globular and TM proteins may be associated with this trend, by revealing that
contacts between residues within membranes follow rules different from those observed in
globular proteins. Future mutagenesis of TM proteins may help reveal such rules.

4. Materials and Methods

4.1. Strains and Reagents

The bacterial strains used in our studies were Escherichia coli MC4100 Δ(argF-lac)U169
araD139 rpsL150 relA1 flbB5301 deoC1 ptsF25 rbsR; E. coli XL1-Blue supE44 hsdR17 recA1
endA1 gyrA96 thi-1 relA1 lac-; E. coli DH5α supE44 ΔlacU169 (ϕ80 lacZ DM15) hsdR17
recA1 endA1 gyrA96 thi-1 relA1. The alkaline phosphatase activity assay was performed
in the CC118 strain and the GFP activity on the BL21(DE3)pLysS strain.

The plasmid pEXT22/frg-hokC containing the gene hokC starting at the second
ATG was used as template for both PCR random mutagenesis and for the site-directed
mutagenesis. The plasmids for the expression of HokC fused to GFP or phoA were pGFPe
and pHA1-yedZ, respectively.

4.2. Mutagenesis

Site-directed mutagenesis on the coding region of HokC trans-membrane region was
performed using the QuikChange Site-Directed Mutagenesis Kit (Agilent Stratagene, Santa
Clara, CA, USA). To that end, we designed a strategy to mutate the TM region of HokC at 7
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different groups of neighbor residues as summarized in Supplementary Materials Table S2.
The following libraries of oligonucleotides were used for this goal:

• Region 1

R1 Forward 5′ GGA GAA GAG AGC AAT G NNS NNS NNS NNS NNS ATG ATT GTC GCC C 3′

R1 Reverse 5′ GGG CGA CAA TCA T NNS NNS NNS NNS NNS CAT TGC TCT CTT CTC C 3′

• Region 2

R2 Forward 5′ GCA GCA TAA GGC G NNS NNS NNS GC CCT GAT CGT CAT C 3′

R2 Reverse 5′ GAT GAC GAT CAG GGC SNN SNN SNN CGC CTT ATG CTG C 3′

• Region 3

R3 Forward 5′ GGC GAT GAT TGT C NNS NNS NNS GTC ATC TGT ATC ACC G 3′

R3 Reverse 5′ CGG TGA TAC AGA TGA C SNN SNN SNN GAC AAT CAT CGC C 3′

• Region 4

R4 Forward 5′ GTC GCC CTG ATC NNS NNS NNS ATC ACC GCC GTA GTG 3′

R4 Reverse 5′ CAC TAC GGC GGT GAT SNN SNN SNN GAT CAG GGC GAC 3′

• Region 6

R6 Forward 5′ CTG TAT CAC CGC C NNS NNS NNS GCG CTG GTA ACG 3′

R6 Reverse 5′ CGT TAC CAG CGC SNN SNN SNN GGC GGT GAT ACA G 3′

• Region 7

R7 Forward 5′ CGC CGT AGT GGC G NNS NNS NNS ACG AGA AAA GAC CTC TG 3′

R7 Reverse 5′ CAG AGG TCT TTT CTC GT SNN SNN SNN CGC CAC TAC GGC G 3′

where S stand for G or C nucleotides and N for any of the four nucleotides. Note that
these oligonucleotides will generate mutant codons with SNS composition coding for
10 (L, P, H, Q, R, V, A, D, E, G) out of the 20 conventional amino acid residues. In this
way, the number of variants to be screened is reduced and at the same time keeping the
diversity of physicochemical properties of the amino acid residues. Please note that each
pair of oligonucleotides will hybridize at the corresponding regions that are targeted in the
mutagenesis experiment. For instance, the oligonucleotides for region 1 include a 5′ tail
(GGA GAA GAG AGC AAT G) required for hybridization that includes the first coding
codon (ATG) of the gene followed by 5 codons that are mutated by SNS and followed by a
tail in the 3′ end (ATG ATT GTC GCC C) for hybridization purposes. For the site-directed
mutagenesis reactions we followed the instructions of the manufacturer: 50 ng of plasmid
(pEXT22/frg-hokC), a pair of mutagenic oligonucleotides (125 ng), 1 μL dNTP mix, 5 μL of
10× reaction buffer and 2.5 U of Pfu Turbo DNA Polymerase (Agilent Technologies, Santa
Clara, CA, USA) in a 50 μL total volume.

To obtain the HokC mutants Met7Trp, Ile12Ser, and double mutants Met7Trp and
Ile12Ser, the QuikChange Lightning site-directed mutagenesis Kit (Agilent Technologies,
Santa Clara, CA, USA) was used. The following oligonucleotides were used for this goal:

7MxWForw:5′GCAGCATAAGGCGTGGATTGTCGCCCTGATCG 3′

7MxWRev:5′CGATCAGGGCGACAATCCACGCCTTATGCTGC3′

12IxSForw:5′CGATGATTGTCGCCCTGAGCGTCATCTGTATCACC3′

12IxSRev:5′GGTGATACAGATGACGCTCAGGGCGACAATCATCG3′
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For GFP fusions, both plasmid pGFPe and PCR products were digested and ligated
using XhoI and BamHI restriction enzyme sites. For phoA fusions, the PCR product and
plasmid pHA1-yedZ were digested ligated with XhoI and KpnI.

4.3. Selection of Clones

To select the hokC variants with wild-type and mutant phenotypes, we performed the
following procedure. E. coli cells were grown in Luria broth with kanamycin to select for those
carrying the plasmid expressing hokC mutations. The plasmid, pEXT22, includes a non-leaky
promoter induced by IPTG. The over-expression of hokC was achieved by adding IPTG to
the media; this would kill cells expressing a wild-type-like HokC activity. However, cells
expressing a mutation critical for HokC activity will grow. All our mutagenesis experiments
were performed on a short version of hokC starting from the second ATG codon. To select
colonies for sequencing, we looked for isolated colonies; for that end, we used Corning
square BioAssay dishes (245 mm × 245 mm of area) (Merck, Kenilworth, NJ, USA).

4.4. Sensitivity of Screening

The expression system is reported not to leak transcripts of the genes cloned into the
system. To test this and to evaluate how much transcription of the hokc gene was required
to kill cells, we conducted a dose–response experiment, where IPTG was added to the
media in different concentrations: 0.01, 0.05, 0.1, 0.2, 0.4, and 0.8 mM. E. coli DH5a cells
were grown overnight to reach a cell density measured at 600 nm of 0.65 measured with
a spectrophotomer Genesys 10S UV-Vis (Thermo Scientific, Waltham, MA, USA). These
cells were diluted by a factor of 0.25 × 10−4 and 100 mL of this dilution were plated on
Petri dishes with LB + Kan 10 mg/mL with or without IPTG at different concentrations:
0.01 mM, 0.05 mM, 0.1 mM, 0.2 mM, 0.4 mM, 0.6 mM, and 0.8 mM. These cells were grown
for 19 h at 37 ◦C and the number of colonies that grew in these conditions were counted
on a Freedom EVO 150 robotic station using the Pickolo software version 3.5 (SciRobotics,
Kfar Saba, Israel.

4.5. Sequencing

To sequence mutants in the trans-membrane coding region of hokC, we implemented
the following procedure. Colonies with wild-type or mutant phenotypes were picked and
grown overnight in 3 mL of LB media with kanamycin 10 mg/mL (Sigma-Aldrich, Estado
de Mexico, Mexico). These colonies were pooled in 2 groups according to their origin: cells
with a wild-type and mutant phenotypes. From these pools, DNA was extracted. Thus,
two pools of plasmids were obtained: from wild-type and mutant phenotype colonies.
From these DNA molecules, the mutated hokC region was amplified by PCR to generate
the amplicons used for sequencing; the final size of the PCR products was 450 bp. This
sample was mixed at equimolar ratios and sequenced at the “Unidad Universitaria de
Secuenciación Masiva de DNA-UNAM” using MySeq from Illumina company, with the
MySeq reagent kit (Illumina, San Diego, CA, USA) version 2 for 500 cycles, 250 nt each
read. Note that the hokC gene is smaller than the reads, thus we will be able to identify the
full-length gene sequence of every mutant. TrueSeq DNA PCR-free sample preparation Kit
(Illumina, San Diego, CA, USA) was used to add the adapters to our amplicons, without
fragmenting the amplicons. Since this sequencer has the capacity to generate 107 DNA
reads and the number of bacterial colonies to be sequenced is substantially smaller than
this number (103), the experiment could generate thousands of clusters with exactly the
same sequence. However, only 80% of the amplicons may have the same sequence and
thus, we mixed our amplicons with sequences provided by the “Unidad Universitaria de
Secuenciación Masiva de DNA-UNAM”.

4.6. Activity of PhoA Fusion Proteins

Strains expressing phoA fusions were grown overnight and inoculated into 50-mL
cultures of Luria broth with antibiotic (50 μg/mL ampicillin) at 37 ◦C to reach an OD at
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600 nm of 0.4; then, cells were induced with arabinose (final concentration of 0.2%) and
grown for 1 h. The activity assay was carried out as described before [39]. Briefly:

1. Centrifuge 1.2 mL of the bacterial culture in Eppendorf tube.
2. Wash cells in cold WB and resuspend pellet in 1.2 mL cold PM1 buffer.
3. To permeabilize the cells, add 100 μL chloroform and 100 μL 0.05% SDS to 1 mL of

the washed cells, vortex for 10 s, and incubate for 5 min at 37 ◦C. Then place tubes on
ice for 5 min. After the chloroform has settled, transfer 100 μL of the upper phase of
the bacterial suspension to a 96 plate well.

4. To start the reaction, add 50 μL of the pNPP solution (0.15% in 1 M Tris–HCl, pH 8.0) to
the bacterial suspension and incubate at RT until yellow color develops. Add 50 μL 2N
NaOH to stop the reaction. Record incubation time and OD at 405 nm for each sample.

5. Calculate enzymatic activity in relative units (A) according to the following formula:
A = 1000 × (OD405sample − OD405control well)/(OD595 sample − OD595control well)/t (min) of incubation

4.7. Sequence Data Analysis

DNA reads were trimmed using the Phred algorithm implemented in seqtk (seqtk
trimfq option); this process eliminated low quality bases from both ends of the DNA
sequences. Then, these fastq files were transformed to fasta files using seqtk (seqtk seq –a
option).

The relative frequency of each mutation (F(muti)) was quantified by the following
formula:

F(muti) = 100 × (WTi − MUTi)/(WTi + MUTi) (1)

where WTi corresponds to the number of times the i-mutation (muti) was found with a
wild-type phenotype and MUTi is the number of times the i-mutation (muti) was found
with a mutant phenotype. Then, an ISPA was identified if |F(muti)| ≤ Experimental
errors. Note that F(muti) may be positive or negative, indicating whether the mutant is
over-represented in mutant phenotypes or wild-type phenotypes, respectively.

4.8. Sequence Alignment

PFAM alignments were obtained from the PFAM web site. By counting the number of
sequences that maintain the same residue than the reference sequence (HOKC_ECOLI) the
residue conservation score was derived. The same set of sequences was used to align them
using TM-COFFEE, an optimized algorithm and substitution matrix for TM proteins [61].

The identification of conserved and critical residues was performed using the Multiple
Sequence Alignment generated for the HokC family and the conservation scores were
computed based on the rate4site algorithm as implemented in the ConSurf server [62].
Alternatively, PROVEAN was used as an alternative method to identify functionally
relevant substitutions [63].

4.9. Correlated Mutations Index

Two data sets were used for this analysis: (i) Globular set: 150 globular proteins
including different folds and PFAM domain families [64] (see Supplementary Materials
Table S11A) and (ii) TM set: 593 TM proteins from TOPDB [65] (see Supplementary
Materials Table S11B). For each entry in each data set, a multiple sequence alignment
(MSA) was obtained from the HSSP database [66]. Additionally, every contacting residue
was identified using a 5Å distance criterion as we have previously described elsewhere [67].
Finally, every combined mutation for every contacting residue was identified from the
MSA. In this case, each of the 400 possible amino acid pairs were identified and normalized
according to number of residue pairs of each kind observed for each protein. For instance,
if protein P presented 30 times the pair Ala–Ala and this Ala–Ala pair was mutated 15 imes
in the MSA, the normalized frequency of correlated mutations for the Ala–Ala pair in
protein P is 50% or 0.5. This is the value reported as the correlated mutation index of a
protein. The codes to compute this mutation index and datasets are available at [68].
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4.10. Analysis of Contacts in Proteins

To compare the degree of compactness between globular and TM proteins, we used
two larger sets for globular and TM proteins, LG (see Supplementary Materials Table S12A)
and LTM (see Supplementary Materials Table S12B) sets, respectively. For each set, we
computed the size and order of the contact map derived by identifying as contacting
residues those closer than 5 Å in at least one pair of atoms as described above. Then, we
adjusted the size (number of residues in a given protein) versus the order (number of
contacts between residues in a given three-dimensional structure of a protein) to a linear
equation using the gnuplot function fit [69]. The difference on the slopes of these two data
sets represents the level of difference in packing between these classes of proteins. The size
and order for each chain of PDB entries in each dataset and codes are available at [68].

To determine the type of arrangement these proteins adopt upon folded, we compared
the spherical angles of clusters of residues. Briefly, every amino acid in a protein and their
contacting residues were identified; then, the angles between the central residue and its
neighbors were calculated. The angle values obtained for each set were compared using the
Haussdorff distance as implemented by Java Topology Suite [70]; to compute the minimum
Haussdorff distance for every pair of proteins, we used a simulated annealing algorithm.
The codes to compute the spherical coordinates and the minimum Haussdorff distances
and associated datasets are available at [68]. Only proteins from the same CATH class with
a difference in length no bigger than 20 residues were used for our analysis.

Finally, the number of residue cluster classes (RCCs) of size 3, 4, and 5 were computed
as previously described by our group (software version 1 to generate RCCs is available
at [71]) and accumulated. Briefly, residue-contacts at 5Å apart were identified and the
maximal cliques of size 3, 4, and 5 were quantified.

Supplementary Materials: Supplementary Materials can be found at https://www.mdpi.com/
article/10.3390/ijms221910359/s1. Table S1: Colonies counted under different IPTG concentrations;
Table S2: Observed phenotypes per mutated region of HokC; Table S3: Single-residue mutations
found in every mutant of HokC with wild-type (A) and mutant (B) phenotypes; Table S4: Single-
residue mutations on the TM region of HokC; Table S5: Multiple mutations in HokC with wild type
phenotype; Table S6: Occurrence of deleterious single-point mutations in compensatory mutations;
Table S7: Multiple sequence alignment of 148 protein sequences from PF01848 family obtained
with TM-COFFEE; Table S8: HokC ConSurf Results; Table S9: Predictions of deleterious mutations
in HokC family by PROVEAN; Table S10: Multiple deleterious mutations found in sequences of
the HokC family; Table S11A: Globular proteins used to compute the correlated mutation index;
Table S11B: Transmembrane proteins used to compute the correlated mutation index; Table S12A:
Globular proteins used to compute maximal cliques, size–order, and spherical coordinates; Table S12B:
Transmembrane proteins used to compute maximal cliques, size-order and spherical coordinates;
Figure S1: Distribution of identified mutants over HokC sequence; Figure S2: Heat map for HokC
substitutions; Figure S3: Cell growth of HokC fusions; Figure S4: Phosphatase activity measured on
cells expressing HokC or variants.
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Abstract: Glutathione has long been suspected to be the primary low molecular weight compound
present in all cells promoting the oxidative protein folding, but twenty years ago it was found “not
guilty”. Now, new surprising evidence repeats its request to be the “smoking gun” which reopens
the criminal trial revealing the crucial involvement of this tripeptide.

Keywords: oxidative folding; glutathionylation; nitrosylation; cysteine reactivity; ribosomal exit
tunnel; transient complex; glutathione

1. Introduction

For many years the oxidized form of glutathione (GSSG) was considered the main
culprit for the oxidative folding of many proteins. Indeed, GSSG displays an unusually
high concentration in the endoplasmic reticulum. Further, its role in establishing the
cellular redox potential is undisputed. In addition, a few disulfide containing proteins,
when reduced and incubated with a GSH/GSSG mixture in a ratio similar to the one found
in this cell compartment, refolded, correctly forming native disulfides. However, twenty
years ago Cuozzo and Kaiser [1] claimed that GSSG cannot be considered the culprit
because, when the cell is deprived of this compound, oxidative folding still occurs. At this
stage, ER oxidoreductin 1 (Ero1) and the protein disulfide isomerase (PDI) were indicated
as the main responsible for protein folding [1]. This hypothesis was rapidly accepted by
the scientific community although conflicting evidence emerged from Kaiser’s own study.
In fact, why does the disulfide bond formation still occur in cells that are simultaneously
defective in both glutathione biosynthesis and Ero1 function? Bardwell and co-workers,
in an interesting comment on these results, postulated the existence of a second, yet-to-be
discovered oxidizing pathway [2]. They concluded that the ultimate source of oxidizing
equivalents for the protein disulfide formation still has to be identified and that it remains
“a complete mystery” [2].

In this context, other comments were also instructive. By considering that the rate-
limiting steps for native disulfide bond formation in vivo are the late, complex, isomeriza-
tion steps, whereas oxidation is much more rapid [3], Freedman and co-workers concluded
that “there is no reason to exclude the possibility that GSSG is on the normal oxidative pathway for
secretory proteins, since in the absence of GSSG a normally minor direct oxidative pathway may
become the major pathway. In such a case, the overall rate of production of native proteins would
not be compromised by the change in oxidation pathway as the oxidative steps are not themselves
rate-limiting” [4]. Despite these counterarguments, no striking evidence was able to reverse
the Cuozzo and Kaiser dogma. As a consequence, in almost all recent reviews about
oxidative folding, glutathione was only related as a redox regulating agent for PDI and no
direct interaction of this compound with the nascent reduced protein was considered [5–7].
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Now we can show surprising findings that could light up the crime scene, at least in its
early phase, and that can reverse the previous sentence.

Recently, we found that a few cysteines in the fully reduced albumin, adopting a
molten globule-like conformation, showed unusual hyper-reactivity toward GSSG and
various thiol reagents [8]. In particular, a single cysteine, identified as Cys75, displayed
a second-order kinetic constant > 250 M−1 s−1 which corresponds to more than one
thousand times higher reactivity toward GSSG than the one of an unperturbed protein
cysteine (k = 0.2 M−1 s−1) (Figure 1) [9]. At first, we considered this surprising reactivity
as a specific feature of a single protein. However, soon after this first observation, we
discovered a similar, but even more striking hyper-reactivity in a cysteine (Cys94) of the
reduced lysozyme in its unfolded state [10]. In this case, the reactivity toward GSSG was
found to be more than 3000 times higher than that of a normal amino acid cysteine. We
then hypothesized a possible function of this hyper-reactivity: when lysozyme lacks its
four disulfides it rapidly collapses into irreversible and insoluble aggregates. The very fast
reaction of Cys94 with GSSG inhibits instantaneously the aggregation [10]. This evidence
gathered for a second protein represented a strong indication that this phenomenon was
not a specific feature of albumin, as we initially thought, but could be a more general
mechanism linked to protein folding.

Figure 1. Hyper-reactivity of structural cysteines in five different proteins. Hyper-reactivity of Cys75,
Cys94, Cys95, Cys1, Cys148 and Cys197 toward GSSG found in albumin, lysozyme, ribonuclease
A, chymotrypsinogen, and trypsinogen, respectively. Pseudo first-order kinetic constants were
normalized to that of an unperturbed protein cysteine.

Motivated by this observation, we searched for other hyper-reactive cysteines. We
found a thousand times increased reactivity toward GSSG for Cys95, Cys1 and for both
Cys148 and Cys197 in the reduced molten globule conformations of ribonuclease [11], chy-
motrypsinogen [12] and trypsinogen [13], respectively. In all these proteins the occurrence
of a transient protein-GSSG complex was demonstrated on the basis of the quenching of
intrinsic fluorescence occurring before the glutathionylation event in ribonuclease [11],
lysozyme [10], chymotrypsinogen [12], and trypsinogen [13] (Table 1). The transient
complex represents the origin of this unknown kinetic property.

Table 1. Values of KD for Protein-GSSG complex.

Proteins KD (mM)

Lysozyme a 0.3 ± 0.1
Ribonuclease a 0.12 ± 0.05

Chymotrypsinogen b 1.5 ± 0.1
Trypsinogen b 0.4 ± 0.1

a Values obtained at pH 7.4 from Refs. [10,11]; b values obtained at pH 5.0 from Refs. [12,13].
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A possible role in this phenomenon of a lowered pKa of the sulfhydryl group was
also considered but a recent investigation [9] likely demonstrated that a low pKa cannot
produce more than three times increased reactivity toward GSSG (Figure 2).

Figure 2. Dependence of the second-order kinetic constants (αkRS-) on pKa for the reaction of several
thiols with different pKa with different disulfides at pH 7.4 (modified from Ref. [9]). The red arrow
marks the maximum value of the bell-shaped graph. The pKa of the unperturbed protein cysteine is
labelled with the green arrow. The maximum implement of reaction rate due to a lowered pKa was
found to be 3 times.

As a further important discovery is that scarce or no hyper-reactivity was observed
toward other natural disulfides such as cystine, homocystine, and cystamine, confirming
an almost exclusive specificity of interaction toward GSSG (Figure 3) [10–13].

Figure 3. Reactivity of protein cysteines toward natural disulfides. The enhanced reactivity represents
the second-order kinetic constants normalized to that of GSH. All proteins did not show any evident
hyper-reactivity except the small enhanced reactivity found in Lysozyme toward cystine (65 times)
which is small compared to the one of Cys94 toward GSSG (about 3000 times).

Of particular interest is also the observation that similar hyper-reactivity is saved
during a divergent evolution, as observed for chymotrypsinogen and trypsinogen, both
coming from a common ancestral peptidase. This preservation during evolution was again
a relevant clue for the implication of glutathione in the folding process.

These results demonstrate that the reduced molten globule conformations of all these
proteins display a sophisticated propensity to interact with GSSG, a property typically
unknown to the biochemist community. While this supports an early participation of
glutathione in the folding pathway, it cannot be considered as final proof of it. A recent
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study, based on earlier studies [14] could, however, represent a decisive turn of this
investigation [15]. It was in fact demonstrated that a nascent protein, the bovine γB-
crystallin, could interact with glutathione in the ribosomal exit tunnel. Such protein, in
fact, displays one of its seven cysteines (Cys18) either as a mixed disulfide with GSH or
nitrosylated (Figure 4).

Figure 4. Visualization of ribosomal 50S subunit at the interface of endoplasmic reticulum with a
nascent polypeptide chain. Modified cysteines of the bovine γB-crystallin found in the ribosomal
exit tunnel during its nascent phase, as demonstrated in Ref. [15]. On the right, an “imaginary joke

structure” of the glutathionylated protein, which represents the “smoking gun” for glutathione in the
early scenario of the oxidative folding (the β-barrel structure represents the revolver grip, while the
coiled coil is the revolver barrel).

More surprisingly, detectable amounts of other cysteines have already been found in
the form of disulfides (Cys15-Cys32; Cys22-Cys32; Cys32-Cys41; Cys15-Cys32) [15]. This
finding provides strong evidence for the involvement of glutathione in the oxidative folding
scenario. Apart from its presence as a mixed disulfide with Cys18, all the early protein
disulfides found in this compartment are reasonably formed after a first glutathionylation
or nitrosylation step caused by GSSG or S-nitrosoglutathione (GSNO) as represented in
Figure 5.

Figure 5. Schematization of modified cysteines on a polypeptide. The upper side represents the
nitrosylation due to GSNO. The lower side represents the glutathionylation due to GSSG.
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In all these oxidative events no involvement can be evoked for PDI or Ero1: both these
enzymes have not been found inside the tunnel and, more importantly, they cannot enter in
this narrow ribosomal compartment having much more steric hindrance (diameter 50–60 Å
for PDI and 40–60 Å for Ero1 as calculated from crystal structures) [16,17] compared to
the one of the exit tunnel (diameter 10–20 Å) [15]. There is no reasonable objection that a
similar phenomenon may occur in the nascent phase for many other disulfide containing
proteins and this will be verified in the future.

A further interesting observation: the ribosomal synthesis of all proteins proceeds
at about 20 amino acids/s and the synthesis of full-length γB-crystallin, made up of
174 amino acids, requires around 9 s. However, the tunnel contains only 34 residues [15]
so the permanence of Cys18 as well as of the other cysteines in this compartment cannot
exceed 1.5–2 s. Assuming that the Cys18 modification occurs only during its path through
the ribosomal exit tunnel, we can consider 20 s to be a reasonable t1/2 for the nitrosylation
and glutathionylation events. This value is easily estimated taking into account that 20% of
Cys18 is found as a modified residue by NMR spectroscopy [15]. This putative t1/2 can be
compared to the one resulting from the known kinetic constants for the reaction of GSSG
and GSNO with a free cysteine (i.e., 0.7 M−1 s−1 [10] and 60 M−1 s−1 [18], respectively) and
from the intracellular levels of these two compounds (0.4 mM for GSSG in the endoplasmic
reticulum [5] and micromolar level for GSNO [19]). From these values, we can estimate
much slower kinetics for both reactions (t1/2 ≈ 1–2 h). These data suggest a strong hyper-
reactivity of Cys18 and other cysteines whose cause remains a fascinating enigma to be
solved in the future. This property resembles the recently discovered hyper-reactivity
toward GSSG of specific cysteines in the molten globular structures of albumin, lysozyme,
ribonuclease trypsinogen, and chymotrypsinogen [8–12] but its origin is likely different. In
fact, in the exit tunnel no globular structure of the protein can exist, thus no active-site-like
cavity may be able to bind GSSG as it occurs in the molten globules of the above cited
proteins. We can speculate that the internal membrane of the tunnel behaves like a proper
surface able to catalyze the interaction of a few cysteines with GSSG and GSNO.

2. Conclusions

In conclusion, after twenty years from the first judgment, the criminal trial can be
reopened to assess possible responsibility of glutathione at least in the early phase of the
oxidative folding of several proteins. This does not exonerate PDI and Ero1 from any
complicity in this scenario, but their involvement could be confined in a second phase
after an initial very fast glutathionylation or nitrosylation step of a single or a few hyper-
reactive cysteines triggered by GSSG or GSNO inside the ribosomal exit tunnel or in the
endoplasmic reticulum as soon as the molten globule is formed.

Author Contributions: Conceptualization, G.R.; writing—original draft and preparation, A.B., H.S.,
L.S. and G.R.; writing—review and editing, G.C. and G.G.; supervision, G.R. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank L. Stella for helpful discussion and Sara Notari
for editorial assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cuozzo, J.W.; Kaiser, C.A. Competition between glutathione and protein thiols for disulphide-bond formation. Nat. Cell Biol.

1999, 1, 130–135. [CrossRef] [PubMed]
2. Bader, M.; Winther, J.R.; Bardwell, J.C.A. Protein oxidation: Prime suspect found “not guilty”. Nat. Cell Biol. 1999, 1, E57–E58.

[CrossRef] [PubMed]
3. Molinari, M.; Helenius, A. Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells. Nature

1999, 402, 90–93. [CrossRef] [PubMed]

181



Int. J. Mol. Sci. 2021, 22, 10148

4. Bass, R.; Ruddock, L.W.; Klappa, P.; Freedman, R.B. A major fraction of endoplasmic reticulum-located glutathione is present as
mixed disulfides with protein. J. Biol. Chem. 2004, 279, 5257–5262. [CrossRef] [PubMed]

5. Chakravarthi, S.; Jessop, C.E.; Bulleid, N.J. The role of glutathione in disulphide bond formation and endoplasmic-reticulum-
generated oxidative stress. EMBO Rep. 2006, 7, 271–275. [CrossRef] [PubMed]

6. Delaunay-Moisan, A.; Ponsero, A.; Toledano, M.B. Reexamining the function of glutathione in oxidative protein folding and
secretion. Antioxd. Redox Signal. 2017, 27, 1178–1199. [CrossRef] [PubMed]

7. Wang, L.; Yu, J.; Wang, C.-C. Protein disulfide isomerase is regulated in multiple ways: Consequences for conformation, activities,
and pathophysiological functions. BioEssay 2020, 43, e2000147. [CrossRef] [PubMed]

8. Bocedi, A.; Fabrini, R.; Pedersen, J.Z.; Federici, G.; Iavarone, F.; Martelli, C.; Castagnola, M.; Ricci, G. The extreme hyper-reactivity
of selected cysteines drives hierarchical disulfide bond formation in serum albumin. FEBS J. 2016, 283, 4113–4127. [CrossRef]
[PubMed]

9. Gambardella, G.; Cattani, G.; Bocedi, A.; Ricci, G. New Factors Enhancing the Reactivity of Cysteines in Molten Globule Like
Structures. Int. J. Mol. Sci. 2020, 21, 6949. [CrossRef] [PubMed]

10. Bocedi, A.; Cattani, G.; Martelli, C.; Cozzolino, F.; Castagnola, M.; Pucci, P.; Ricci, G. The extreme hyper-reactivity of Cys94 in
lysozyme avoids its amorphous aggregation. Sci. Rep. 2018, 8, 16050. [CrossRef] [PubMed]

11. Bocedi, A.; Cattani, G.; Gambardella, G.; Ticconi, S.; Cozzolino, F.; Di Fusco, O.; Pucci, P.; Ricci, G. Ultra-Rapid Glutathionylation
of Ribonuclease: Is this the Real Incipit of its Oxidative Folding? Int. J. Mol. Sci. 2019, 20, 5440. [CrossRef] [PubMed]

12. Bocedi, A.; Gambardella, G.; Cattani, G.; Bartolucci, S.; Limauro, D.; Pedone, E.; Iavarone, F.; Castagnola, M.; Ricci, G. Ultra-rapid
glutathionylation of chymotrypsinogen in its molten globule-like conformation: A comparison to archaeal proteins. Sci. Rep.

2020, 10, 8943. [CrossRef] [PubMed]
13. Cattani, G.; Bocedi, A.; Gambardella, G.; Iavarone, F.; Boroumand, M.; Castagnola, M.; Ricci, G. Trypsinogen and chymotrypsino-

gen: The mysterious hyper-reactivity of selected cysteines is still present after their divergent evolution. FEBS J. 2021. [CrossRef]
[PubMed]

14. Buhr, F.; Jha, S.; Thommen, M.; Mittelstaet, J.; Kutz, F.; Schwalbe, H.; Rodnina, M.; Komar, A. Synonymous codons direct
co-translational folding towards different protein conformations. Mol. Cell 2016, 61, 341–351. [CrossRef] [PubMed]

15. Schulte, L.; Mao, J.; Reitz, J.; Sreeramulu, S.; Kudlinzki, D.; Hodirnau, V.V.; Meier-Credo, J.; Saxena, K.; Buhr, F.; Langer, J.D.; et al.
Cysteine oxidation and disulfide formation in the ribosomal exit tunnel. Nat. Commun. 2020, 11, 5569. [CrossRef] [PubMed]

16. Wang, C.; Li, W.; Ren, J.; Fang, J.; Ke, H.; Gong, W.; Feng, W.; Wang, C.C. Structural insights into the redox-regulated dynamic
conformations of human protein disulfide isomerase. Antioxid. Redox Signal. 2013, 19, 36–45. [CrossRef] [PubMed]

17. Inaba, K.; Masui, S.; Iida, H.; Vavassori, S.; Sitia, R.; Suzuki, M. Crystal structures of human Ero1α reveal the mechanisms of
regulated and targeted oxidation of PDI. EMBO J. 2010, 29, 3330–3343. [CrossRef] [PubMed]

18. Meyer, D.J.; Kramer, H.; Ozer, N.; Coles, B.; Ketterer, B. Kinetics and equilibria of S-nitrosothiol-thiol exchange between
glutathione, cysteine, penicillamines and serum albumin. FEBS Lett. 1994, 345, 177–180. [CrossRef]

19. Gaston, B. Nitric oxide and thiol groups. Biochim. Biophys. Acta 1999, 1411, 323–333. [CrossRef]

182



 International Journal of 

Molecular Sciences

Article

Fenton-Chemistry-Based Oxidative Modification of Proteins
Reflects Their Conformation

Thomas Nehls †, Tim Heymann †, Christian Meyners , Felix Hausch and Frederik Lermyte *

Citation: Nehls, T.; Heymann, T.;

Meyners, C.; Hausch, F.; Lermyte, F.

Fenton-Chemistry-Based Oxidative

Modification of Proteins Reflects

Their Conformation. Int. J. Mol. Sci.

2021, 22, 9927. https://doi.org/

10.3390/ijms22189927

Academic Editors: Istvan Simon and

Csaba Magyar

Received: 8 August 2021

Accepted: 11 September 2021

Published: 14 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Clemens-Schöpf-Institute, Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4,
64287 Darmstadt, Germany; thomas.nehls@tu-darmstadt.de (T.N.); tim.heymann@tu-darmstadt.de (T.H.);
christian_stephan.meyners@tu-darmstadt.de (C.M.); felix.hausch@tu-darmstadt.de (F.H.)
* Correspondence: frederik.lermyte@tu-darmstadt.de
† These authors contributed equally to this work.

Abstract: In order to understand protein structure to a sufficient extent for, e.g., drug discovery,
no single technique can provide satisfactory information on both the lowest-energy conformation
and on dynamic changes over time (the ‘four-dimensional’ protein structure). Instead, a combination
of complementary techniques is required. Mass spectrometry methods have shown promise in
addressing protein dynamics, but often rely on the use of high-end commercial or custom instruments.
Here, we apply well-established chemistry to conformation-sensitive oxidative protein labelling on a
timescale of a few seconds, followed by analysis through a routine protein analysis workflow. For a
set of model proteins, we show that site selectivity of labelling can indeed be rationalised in terms
of known structural information, and that conformational changes induced by ligand binding are
reflected in the modification pattern. In addition to conventional bottom-up analysis, further insights
are obtained from intact mass measurement and native mass spectrometry. We believe that this
method will provide a valuable and robust addition to the ‘toolbox’ of mass spectrometry researchers
studying higher-order protein structure.

Keywords: mass spectrometry; protein folding; protein–ligand interactions; protein dynamics;
FK506-binding protein; FKBP12; FKBP51

1. Introduction

Protein structure is inherently a four-dimensional phenomenon, and the dynamic as-
pects of a protein can be just as important as the mostly static structures typically associated
with conventional high-resolution structural biology methods, such as X-ray crystallogra-
phy. In recent years, gas-phase methods, such as native mass spectrometry and ion mobility
spectrometry, have been developed that lack the high resolution of crystallography, nuclear
magnetic resonance, or cryo-electron microscopy, but can complement these methods such
that the combination of different techniques yields a better understanding of the structural
ensemble [1–7]. A benefit of MS-based methods is their near-universal applicability and
relatively high throughput. While it is now generally accepted that the gas-phase structure
of proteins in native MS reflects important aspects of the solution structure, the question
remains to what extent subtle interactions are preserved [3].

One way to combine the analytical benefits of mass spectrometry with the ability
to confidently probe protein structure as it appears in solution is to use chemical la-
belling [8–10]. This can be performed in a way that is sensitive to protein conformation in
solution, and subsequent MS analysis allows identification of the modification sites, which
facilitates correlation of primary and higher-order structure. Such methods provide valu-
able complementary information to conventional structural biology, for example, allowing
the convenient probing of membrane proteins, or monitoring the response to a thermal
or chemical perturbation of the structure on a (sub)millisecond timescale [11–15]. These
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methods also have the benefit that their experimental feasibility typically only has a limited
dependence on protein mass [16].

Arguably, the most common labelling method in use today is hydrogen–deuterium
exchange (HDX), which allows modification of backbone amide groups in a way that is sen-
sitive to both solvent accessibility and hydrogen bonding, i.e., secondary structure [17–20].
While this is a powerful method, the kinetics of the exchange reaction are highly sensitive
to experimental factors, such as temperature and pH, and, therefore, considerable expertise
is required for a successful HDX experiment, which, as a result, is still hardly a routine
approach. Furthermore, analysis is typically performed with enzymatic digestion at low
pH and temperature, followed by chromatographic separation and MS analysis of pep-
tides. Due to the reversible nature of the labelling reaction, there is always a degree of
back-exchange during this step of the experiment, and this has to be carefully controlled.
For this reason, the best results are often obtained using automated sample preparation
and handling, which allows better precision and accuracy than human-level control over
the experiment. Finally, due to the mobilisation of protons (or deuterons) in gas-phase
peptides under high-energy conditions, the most common fragmentation technique in
mass spectrometry—collision-induced dissociation—causes randomisation (‘scrambling’)
of labelling sites, which limits the resolution of the method to the peptide level [21,22].

For these reasons, irreversible covalent labelling in MS-based structural biology can
offer valuable additional information. Different chemistries have been used for this over
the years, ranging from conventional substitutions to radical chemistry, for example, with
carbenes [10,23–25]. Great strides have been made in the use of hydroxyl radicals for
footprinting after homolytic dissociation of hydrogen peroxide upon ultraviolet irradiation,
typically employing an excimer laser. This method is known as fast photochemical oxida-
tion of proteins (FPOP) [26–28]. Due to the very short lifetime of the radicals (particularly
as a scavenger is typically added to the solution) it is possible to probe the evolution of
protein structure on a microsecond timescale, although it should be noted that Vahidi and
Konermann have shown evidence that it can take up to milliseconds for all metastable
secondary radicals to be destroyed [29]. The use of hydroxyl radicals is particularly at-
tractive, as they are essentially the same size as water molecules and labelling, therefore,
captures the biologically relevant solvent-accessible surface. Before the development of
FPOP, Chance and colleagues demonstrated the use of synchrotron radiation to form
hydroxyl radicals from water, also leading to selective labelling of the exposed surface
of a protein [30,31]. While powerful, these methods rely on access to very specialised
equipment and, as such, are out of reach for most researchers. Therefore, there is a need
for robust conformation-sensitive labelling approaches that can be easily implemented in
more routine settings.

Hydroxyl radicals can of course be conveniently produced in solution in a number
of ways, most famously by Fenton chemistry. In this case, hydroxyl radicals are pro-
duced by reaction of hydrogen peroxide with Fe(II), yielding Fe(III), OH-, and OH•, the
latter of which can react with amino acid side chains. For a residue-specific overview of
possible modifications, we refer the reader to the excellent recent review by Gross and
colleagues [10]. Pioneering work by Tullius and Dombrowski demonstrated the use of an
elegant Fenton system for probing protein–DNA interactions [32]. In this work, radical
production was achieved by a redox cycle involving Fe(II)–EDTA, hydrogen peroxide, and
ascorbate to regenerate the Fe(II). Attack by the hydroxyl radical then led to cleavage of
exposed parts of the DNA backbone. Subsequent analysis of DNA fragments was per-
formed by gel electrophoresis; however, possible modifications to the protein interaction
partner were largely ignored. Interestingly, despite continued use of Fenton chemistry
for characterising the structure of nucleic acids bound to protein, there has been limited
interest in its use for oxidative footprinting of proteins compared to radiolysis [10,33–36].
Several reasons have been reported for this; for example, (i) the Fenton reaction cannot be
initiated and quenched on the same timescale as FPOP; (ii) there is the risk that iron, EDTA,
or other components in solution might interact with the protein of interest and induce a
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conformational change; and (iii) letting the process continue for too long could permit
undesired secondary reactions [37].

Despite these concerns, here we explored whether Fenton chemistry can be combined
with routine proteomics sample preparation and LC-MS to reveal insight into protein
structure and dynamics. The overall workflow is represented schematically in Figure 1.
Using a set of model proteins with masses between 10 and 150 kDa, we found that we
were indeed able to selectively label the exposed protein surface. For the FK1 domain of
the immunophilin FKBP51—currently an important drug target due to its relevance in
mood disorders [38,39]—differences in the modification pattern between the ligand-free
and -bound form were consistent with the known binding site of two different ligands,
based on crystallography [40,41]. We were able to apply the same method to complexes of
the homologue FKBP12 without any particular difficulty. Finally, in the case of myoglobin,
we unexpectedly found that the iron centre in the noncovalently bound haem group was
also able to participate in the Fenton reaction. As a result, oxidative footprinting for this
protein reflected not only surface exposure in a way consistent with the known structure
and labelling experiments from the FPOP literature, but also reflected the binding mode of
oxygen to this prosthetic group.

Figure 1. Schematic representation of the oxidative footprinting workflow.

2. Results

We used four model proteins to benchmark our method in this study: one large,
noncovalent complex in which sequence regions involved in protein–protein binding
interfaces constitute a clearly defined protected ‘core’, a smaller protein with a noncovalent
haem group, and two small drug targets. Interestingly, each of these model systems
highlighted a different aspect of the use of Fenton chemistry for oxidative footprinting,
and the presentation of the results is, therefore, organised by protein substrate.

2.1. Myoglobin: Intrinsic Fenton Reactivity Reflects Co-Ordination Mode of the Haem Group

As a first model system, we decided to use myoglobin, as this 17.6 kDa protein (includ-
ing a haem group with a mass of 616 Da) has been well characterised by various techniques,
including several reports in the early FPOP literature [26,27]. As such, we were eager
to determine how the oxidation pattern in Fenton-chemistry-based footprinting would
compare to those published results. Furthermore, it is well known that loss of the prosthetic
haem group causes significant structural destabilisation in this protein, especially in the
C-terminal half of the sequence (helices F, G, and H) [26,27,42]. Therefore, we anticipated
that comparing results for holo- and apo-myoglobin would provide a clue about the ability
of our method to distinguish between different conformational states. After quenching
the footprinting reaction, an aliquot was taken for intact mass measurement, which was
performed under denaturing conditions. Results are shown in Figure 2. In agreement with
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the FPOP literature, a fairly similar overall level of oxidation was observed for apo- and
holo-myoglobin, with the latter appearing slightly more oxidation-sensitive [26,27].

Figure 2. Deconvoluted mass spectra of apo-myoglobin and holo-myoglobin before (‘control’ experi-
ment in the top panel) or after oxidative footprinting. Oxidative footprinting was carried out under
native-like conditions, but samples were chemically denatured prior to MS measurement, which is
why the haem group is not retained in holo-myoglobin. Only one spectrum is shown in the top panel
as apo- and holo-myoglobin are identical after chemical denaturation.

Subsequently, oxidation site determination was performed through bottom-up anal-
ysis, where differences between both states of the protein were observed. Overall, our
data were consistent with those in the early FPOP work, where a good agreement with
the exposed surface was already established based on the known crystal structure (see
Figure 3) [26,27]. Importantly, as described by Gross and colleagues, His93, which directly
co-ordinates the iron centre in the haem group, was efficiently oxidised in apo-myoglobin,
but was protected from oxidation in holo-myoglobin [27]. The main discrepancy between
our results and those in previous reports was significant oxidation in holo-myoglobin of
residues Leu32, Lys42, Phe43, Val68, Leu72, Ile99, Tyr103, and Phe138 in the binding pocket
of the haem group (coloured orange in Figure 3). Note that, as described in Materials and
Methods, oxidised residues were identified using tandem MS—for example, fragments b10,
b11, y4, and y6 from the oxidised peptide L(32)FTGHPETLEKFDK(45) bracketed the Lys42
and Phe43 residues, allowing us to say that these were both oxidised, rather than the mass
shift being a result of, for example, double oxidation of phenylalanine.
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Figure 3. Crystal structure of holo-myoglobin (Protein Data Bank accession code 1YMB), with
important residues for oxidative footprinting highlighted. Residues that were oxidised in our work
that were previously identified as oxidation-sensitive in the FPOP literature are coloured blue. New
modifications identified in our work (mostly near the haem group) are coloured orange. Modification
sites that were identified in the FPOP literature but not in our experiments are coloured cyan.

As we used the same commercial supplier as Gross and colleagues, and the control
experiment shown in Figure 2 confirmed the molecular mass and lack of modifications,
we assumed the aforementioned discrepancy was due to a difference in reaction conditions
rather than a difference in protein structure. Given the different method for generating
hydroxyl radicals (flash photolysis vs. Fe/ascorbate-driven redox chemistry), we hypothe-
sised that the iron centre within the haem group was involved in Fenton-like redox cycling
in the presence of ascorbate, and that radicals were generated in close proximity to the
haem group in this process. To test this, we repeated the experiment, but did not add any
extrinsic iron in the form of Fe(II)–EDTA to the reaction mixture (i.e., only ascorbate and
hydrogen peroxide). As before, the reaction was quenched after 15 s.

Under these conditions, we observed very little oxidation at surface regions remote
from the haem group, while residues near this group were, again, oxidised extensively,
in good agreement with our hypothesis. Interestingly, His93 and other residues on its
side of the plane of the haem group were largely protected, and oxidation was mainly
observed in residues located on the opposite side in the native structure, including His64,
which also co-ordinates the iron centre. This opposite side is where oxygen binds to iron,
displacing His64 in the process (see Figure 4); hence, this oxidation pattern seems to reflect
the increased local conformational flexibility and space required to allow the protein to
perform its oxygen transport function in vivo. Metal-catalysed oxidation of amino acid
residues in the vicinity of biologically relevant metal ions has been observed before [43];
however, here, the oxidation pattern not only provided information about the binding
region, but also reflected the solution-phase dynamics of ligand binding to and release
from the metal.

187



Int. J. Mol. Sci. 2021, 22, 9927

Figure 4. Crystal structure of holo-myoglobin, focussed on the binding pocket of the haem group.
Highlighted residues were oxidised in the presence of ascorbic acid and hydrogen peroxide, without
addition of Fe(II–EDTA. Residues in blue were identified in two independent ways with MaxQuant
(either through fragmentation of two overlapping peptides, or from two different oxidative chem-
ical modifications in the same peptide) [44,45]; those in orange were detected once (see Section 4
for details).

2.2. ADH: Highly Reactive Sulphur-Containing Side Chains and Surface-Selective Labelling

While our results for myoglobin—including the redox activity of the haem group—
were intriguing, we wanted to further investigate the ability of our Fenton-chemistry-based
method to selectively modify the solvent-exposed surface of a protein. For this reason,
we wanted to use a model system without any redox-active metals. We selected alcohol
dehydrogenase (ADH), which forms a 148 kDa tetramer in solution. Bottom-up analysis is
not particularly limited by protein mass, and due to the large size of ADH, there is a clear
‘core’ region which is effectively shielded from the solvent. ADH contains two Zn2+ ions
per monomer (so eight in total for the tetramer); however, this does not interfere with the
labelling reaction, as Zn is redox-inactive under these conditions.

Overall, less extensive modification was observed in ADH compared to myoglobin,
possibly reflecting the larger size of the tetramer (see Figure 5). In total, eleven modifica-
tion sites were identified (note that each chain comprises 347 residues). Comparing the
identified modification sites to the accessible surface based on the crystal structure [46],
most of the oxidation sites were indeed solvent-exposed, which supports our hypothesis
of selective labelling without major structure disruption on the timescale we used. Two
exceptions, for which oxidation was observed despite the residues not being classified
as accessible, were Met270 and Cys277. For Met270, we found that significant oxidation
occurred even during the analysis of a sample where no oxidative footprinting was per-
formed, indicating that this was likely an artefact that occurred on the peptide level during
sample preparation or the electrospray process.
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Figure 5. Labelling sites in ADH, indicated in the crystal structure (PDB accession code: 4W6Z) with
the same colour code as in Figure 4.

In contrast, Cys277 was not oxidised in a control sample that was not exposed to
hydroxyl radicals, indicating that this was indeed a result of the footprinting reaction.
This was surprising, as our calculations based on the crystal structure indicated that this
residue was not solvent-accessible; however, it should be noted that this residue is located
in a cleft facing the solvent, rather than being involved in the protein–protein interface.
The nearby residues Ala272 and Gly273 are classified as solvent-accessible in the crystal
structure, and the residues in this region have relatively high crystallographic B-factors
in the 38–46 Å2 range, indicating significant local conformational flexibility. As such, it is
plausible that Cys277 occasionally comes into contact with the solvent during the normal
‘breathing’ of the protein structure and, given the high intrinsic reactivity of cysteine
toward hydroxyl radicals, this could account for the oxidation of this residue that we
observed. In this way, it is plausible that our method indirectly provides insights into
transient states that are normally ‘invisible’. Overall, our results for ADH support the
notion that oxidative labelling under the conditions used by us, indeed, selectively modifies
the solvent-accessible surface.

2.3. FKBP51 and FKBP12: Key Interactions Drive Remarkable Structural Stabilisation

The immunophilin FKBP51 (see Figure 6A) belongs to the class of FK506-binding
proteins and is a potentially important drug target in the context of depression, obesity-
related diabetes, and chronic pain [38,39]. Drug development is hindered by the presence
of homologues in the human body, including FKBP52 and FKBP12, which poses a challenge
for designing selective ligands that avoid off-target effects [40]. One of the most promising
ways for selective inhibition of FKBP51 is the targeting of minor conformational states,
which exhibit a greater structural difference between homologues than the most abundant
conformation [47]. Understanding such differences in the dynamics of protein structure
and identifying possible transient binding sites is a major challenge for structural biology
and difficult to achieve with conventional methods [48]. Given the importance of this
protein family for human health, we decided to investigate two homologues with our
footprinting method—FKBP12 (11.8 kDa, Figure 6B) and FKBP51. For the latter, rather
than the full-length protein, a 14.0 kDa construct was used consisting of the FKBP-type
peptidyl-prolyl cis-trans isomerase (PPIase) domain (called the FK1 domain), and this
construct will be referred to as FKBP51FK1 in the rest of this work. Both proteins were
analysed in their free state, as well as bound to two different ligands: SAFit1 and FK[4.3.1]-
16h [40,41]. Binding affinity (Ki) to FKBP12 is approximately 163 nM for SAFit1 and 1.8 nM
for FK[4.3.1]-16h. Binding affinity to FKBP51 is approximately 4 nM for SAFit1 and 57 nM
for FK[4.3.1]-16h [41,49].
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Figure 6. (A) Crystal structure of FKBP51FK1 in complex with the SAFit analogue iFit4 (Protein Data Bank accession code
4TW7), with key interacting amino acid residues labelled with a dashed line. (B) Crystal structure of FKBP12 in complex
with FK506 (accession code 1FKJ), with key interacting amino acid residues labelled with a dashed line. (C) Sequence
overview for FKBP51FK1 and FKBP12, where homologous sequence regions are aligned. Secondary structure elements are
colour-coded and correspond to the same colour in the crystal structures.

In our initial experiments with the FK506-binding proteins, we found that repro-
ducibility between replicate experiments was somewhat poor, leading to wide confidence
intervals on the degree of oxidation, particularly for the complex with FK[4.3.1]-16h (data
not shown). Manual inspection of the spectra revealed elution of a significant amount
of intact protein near the end of the LC gradient in samples where ligand was present,
indicating incomplete digestion. We hypothesised that this was due to the protein structure
being sufficiently stabilised by interactions with the ligand to resist unfolding under our
standard denaturing conditions (incubation with 6 M urea at 28 ◦C for one hour). This
apparently led to inefficient digestion of largely folded protein by trypsin, somewhat
similar to a limited proteolysis experiment [50,51].

Given the suboptimal reproducibility in these initial experiments, we discarded the
results from bottom-up analysis and repeated the experiments with more aggressive
denaturation conditions (vide infra); however, we did wish to further test the hypothesis
of ligand-induced stabilisation toward chemical denaturation. For this, we performed
MS of intact FKBP12 in the presence of FK[4.3.1]-16h (the sample that showed the highest
abundance of remaining intact protein after digestion) with different concentrations of
acetonitrile (data not shown). Under native-like conditions with no organic solvent, the
protein was mostly in its ligand-bound form and was observed at low charge states,
as commonly observed in native MS. Intriguingly, we found that a significant amount of
low-charge-state (likely compact) protein was observed until 45% acetonitrile was added,
and even a non-negligible amount of protein–ligand complex was still present under these
conditions. In contrast, for the ligand-free FKBP12, a ‘steady-state’ of mostly high-charge-
state (likely unfolded) protein was observed at 35% organic solvent, and this did not change
until >50%, at which point precipitation of the protein occurred. This observation supports
the notion that ligand binding stabilised the protein toward denaturation and subsequent
enzymatic digestion. For comparison, the presence of 30% acetonitrile was sufficient to
cause myoglobin to mostly lose its haem group. To avoid incomplete protein digestion and
ensure reproducibility, the experiments were repeated, with the denaturation step being
extended to six hours. Three independent samples were prepared for each condition (two
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proteins, each in their free state and bound to both ligands), and each sample was injected
onto the column twice (i.e., a total of 36 injections were performed).

As before, aliquots were taken and intact mass measurements performed immediately
after the oxidative footprinting reaction (Figure 7). This revealed strongly reduced reactivity
toward oxidation upon ligand binding, consistent with ligand-induced protection. In
addition to the insight into the global labelling extent, a further benefit of this intact
mass measurement was that it demonstrated that reaction between FKBP12 and hydroxyl
radicals mostly occurred through ‘simple’ oxidation rather than side reactions that have
been reported in the literature [10]. This was revealed through the observation of a pattern
of mass increases in steps of 16 Da, up to an addition of 48 Da (more extensively oxidised
protein was visible in the spectrum, but at lower abundance). With this knowledge, we were
able to significantly speed up our data analysis (a necessity, given the sizeable data set) by
focussing on peptides with these modifications. In practice, addition of a single oxygen
atom was by far the most common modification at the peptide level, which is consistent
with global addition of only a few oxygen atoms to the entire protein.

Figure 7. Intact mass measurement of FKBP51FK1 and FKBP12 (deconvoluted spectra shown) under
denaturing conditions before (control; top panel) and after oxidative footprinting, either in the
absence (second row; ‘free’ protein) or presence of ligands SAFit1 and FK[4.3.1]-16h. Peaks labelled
with an asterisk carry an additional modification of 27.01 Da.

Peptides that were detected with sufficient signal-to-noise for quantification covered
92% of the sequence of FKBP12 and 88% of the sequence of FKBP51FK1. Oxidation sites
were identified qualitatively with single-residue specificity through tandem MS; however,
signal-to-noise in fragment spectra was insufficient to determine site-specific changes in
oxidation level with statistical significance; therefore, quantitative analysis was limited
to the peptide level. Results of this analysis are summarised in Figure 8. The fact that
three samples were prepared for each condition allowed us to evaluate the reproducibility
of our method in this case. Visually, it is apparent that most error bars are small; more
quantitatively, the median coefficient of variation for the fraction of oxidised peptides for
FKBP51FK1 was 10.2%. A similar value (10.5%) was observed for FKBP12 peptides.
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Figure 8. Results of the peptide-level analysis of the FK506-binding proteins: (A) fractional oxidative modification of
the peptides of FKBP51FK1 for the apo protein as well as SAFit1- and FK[4.3.1]-16h-bound protein, in which statistically
significant (p < 0.05) differences between ligand-bound and -free states are indicated with an asterisk (*). Insets show crystal
structures with regions that show reduced oxidation after binding of either ligand in green. (B) Fractional modification
of the peptides of FKBP12 for the apo protein, as well as ligand-bound states. (C) Sequence overview for FKBP51FK1 and
FKBP12, with sequence regions covered by the observed peptides underlined. Secondary structure elements are labelled as
in Figure 6. Elements that show reduced oxidation after ligand binding are coloured green in Panel (C), and unaffected
elements are in grey (same colour code as the insets in Panel (A); no regions were observed where ligand binding led to
increased oxidative labelling). Detected oxidative labelling sites are coloured red in the sequence.

The first thing that stands out from these results is the overall reduction in degree
of oxidation upon ligand binding for both proteins. This is consistent with the intact
mass measurements and could be partly due to direct shielding of reactive residues by
the ligands, but also supports the hypothesis that overall structural compaction led to the
incomplete digestion of ligand-bound protein that we observed in our initial attempts.
Analysing the results in more detail, some interesting differences between both ligands,
and between both proteins become apparent. In this discussion, the homology between
both proteins is important; specifically, it should be noted that residues 1–106 of FKBP12
show a striking similarity to residues 32–137 of FKBP51FK1. Despite this, even in the
ligand-free form, some differences are apparent. Most striking is the very limited degree
of oxidation in peptides spanning residues 53–83 in FKBP51FK1, corresponding to the
region 22–52 in FKBP12, where significant oxidation was observed. We attribute this to
the presence of the N-terminal extension of 31 residues in FKBP51FK1, which appears to
shield part of the main β-sheet region of the protein from the solvent in the crystal structure
(see Figure 6A). Perhaps due to this limited initial degree of oxidation in FKBP51FK1,
no statistically significant reduction was observed in this region after ligand binding, while
binding of SAFit1, but not FK[4.3.1]-16h, did lead to a significant protective effect in the
18–34 region of FKBP12, possibly reflecting a greater degree of direct shielding by the
bulkier SAFit1.

An alternative, more intriguing explanation for this behaviour than a simple steric
effect involves the fact that binding of SAFit1 to FKBP51FK1 requires the side chain of
residue Phe67 to be displaced, and this alternative conformation is at the core of the ability
of this type of ligand to distinguish between homologues [40]. The binding affinity of
SAFit1 to FKBP12, where Phe36 is the counterpart to Phe67 in FKBP51FK1 (see Figure 6),
is an order of magnitude lower than to FKBP51FK1 [41,49]. Interestingly, in both cases the
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key phenylalanine residue is part of a β-sheet, with the adjacent strand (labelled as ‘βB’ in
Figures 6 and 8) composed of residues 21–30 in FKBP12 and residues 52–61 in FKBP51FK1.
In this context, the increased protection observed in the βB region of FKBP12 after binding
of SAFit1 compared to FK[4.3.1]-16h (which binds to an apo-like conformation), and the
lack of such protection in the corresponding region of FKBP51FK1 upon binding of either
ligand, could indicate that a more significant structural rearrangement is required for
FKBP12 than for FKBP51 to adopt the conformation that can efficiently bind SAFit1. It is
plausible that this need to undergo a more significant rearrangement makes the SAFit1-
binding conformation less favourable for FKBP12, which might contribute to the previously
established lower binding affinity.

The N-terminal extension itself also exhibits significant protection upon ligand binding
to FKBP51FK1, as reflected by the decrease in oxidation in the peptide spanning residues
13–33. This was surprising as, in the crystal structure, this region is fairly distant from
the ligand binding site. This effect may be a result of an indirect stabilization caused by
the adjacent beta strands that are protected upon ligand binding. In both FKBP12 and
FKBP51FK1, the C-terminal portion of the protein showed significant protection after
ligand binding. This is unsurprising and can largely be attributed to steric effects, as this
region contains many residues that are either part of, or close to, the binding site. Of note
is the protection of the peptide with residues 89–98 in FKBP51FK1 and, similarly, that
with residues 53–71 in FKBP12. These span an α-helix (αB) containing, or being close to,
a key interacting amino acid residue (Ile56 in FKBP12 and Ile87 in FKBP51FK1) that forms
a strong hydrogen bond with both ligands through its amide nitrogen atom [49,52–54].
Furthermore, a very reactive tryptophan (based on both the inherent reactivity of the side
chain toward oxidative labelling, and the direct observation, as shown in Figure 8C) that is
located within the binding pocket and directly exposed to solvent in the absence of a ligand
is located in this region. The shielding of this reactive tryptophan (Trp59 in FKBP12; Trp90
in FKBP51FK1), combined with the strong interaction of the isoleucine with the ligand,
causes one of the most significant protections of the protein.

3. Discussion

We have shown that oxidative labelling through Fenton chemistry can be employed
for structural characterisation of a set of model proteins, with a reaction time of only a
few seconds, and that conformational changes are reflected in the modification pattern.
For the smaller (11–18 kDa) proteins we studied, extensive oxidation was observed, and
it was demonstrated how the oxidation pattern correlated to protein structure, including
dynamic aspects. Information was sparser on the 148 kDa ADH tetramer, where fewer
oxidation sites were identified. A plausible explanation for this is that the reaction rate
was limited by the concentration of Fenton reagents (specifically Fe(II)–EDTA at 94 μM)
under these conditions, leading to approximately the same number of oxidation events
being distributed over a much larger number of reactive residues, resulting in the observed
greater selectivity for highly reactive sites. A possible way to address this in the future and
obtain a consistent degree of oxidation across a range of protein masses would be to use
a consistent mass-based concentration for proteins in the labelling solution, rather than
consistent molarity.

For the ADH tetramer, we showed that oxidation occurs primarily at the exposed
protein surface, in agreement with other hydroxyl radical footprinting techniques. In
the cases of myoglobin and the two FK506-binding proteins we tested, there were clear
differences in the oxidation pattern between the ligand-bound and ligand-free state of the
protein. For myoglobin specifically, a key histidine residue that binds to the native iron
centre was highly reactive in the apo state, and protected in the holo state. Furthermore,
oxidation was observed of residues within the binding pocket of the haem group, but
exclusively on the side of the plane of this prosthetic group at which biologically relevant
ligands, such as oxygen, bind. It is reasonable to assume that this reflects increased confor-
mational flexibility on this side of the haem group, which is necessary to accommodate the
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exchange and transport of gas molecules by myoglobin. This supports the hypothesis that
our method is able to inform on dynamic aspects of protein conformation, rather than just
a static lowest-energy structure.

In addition to these strengths, we also identified several practical limitations to the
method presented in this work. The reaction time for our oxidative footprinting method
is limited in practice to several seconds, which leads to a degree of ensemble averaging
and precludes the probing of protein structure on a microsecond timescale, as is possible in
labelling methods based on photolysis. The use of microfluidics in future studies could
significantly reduce the reaction time [55,56], but—even assuming the extent of the labelling
reaction on such a short timescale would be sufficient to obtain structural information—this
approach would still be orders of magnitude slower than FPOP.

Another potential concern is the effect of sulphur-containing residues. While this did
not pose an issue for most methionine- or cysteine-containing peptides in our hands, we did
find that, in the case of ADH, the residue Met270 was consistently and spontaneously
oxidised—possibly during sample handling or the electrospray process—even in control
samples. This needs to be carefully controlled and could pose a challenge for the analysis
of methionine- or cysteine-rich proteins by oxidative footprinting, regardless of the exact
chemistry used to generate hydroxyl radicals. The main bottleneck we identified in imple-
menting this type of experiment was data analysis. Given that most amino acid residues are
at least somewhat reactive toward hydroxyl radicals, and that many residue types are able
to undergo several competing reactions under these conditions, the number of (modified)
peptides that need to be matched to an experimental data set, even for a known protein
sequence, quickly becomes very large. Even using a high-end desktop PC, searching for
all possible reaction products is not feasible, or is at least sufficiently time-consuming to
be impractical, and an optimal trade-off between ‘complete’ data analysis and processing
time needs to be determined empirically in the absence of access to high-performance
computing. For quantitative analysis of oxidised peptides from FK506-binding proteins,
we found that a targeted software package (pepFoot) provided good performance while
requiring far less computational power than MaxQuant [44,45,57]. In future work, we will
further optimise the data processing workflow, as well as extend the method to a greater set
of protein–ligand systems, and compare it to other, more conventional labelling techniques.

Combining bottom-up proteomics analysis with intact mass measurement and/or top-
down fragmentation can be helpful for optimising the analytical workflow, as it provides
a clue regarding the overall extent of modification and possibly some of the labelling
sites, which can inform the subsequent more in-depth bottom-up data analysis. Similarly,
especially when studying ligand binding, native mass spectrometry can provide important
complementary insight to oxidative footprinting. Finally, incomplete protein digestion
complicates the data analysis and potentially leads to poor reproducibility, but, at the
same time, can be indicative of high structural stability, similar to limited proteolysis
approaches developed in recent years. Combining the insights from all the aforementioned
data points—and with insights from conventional structural biology methods—leads to an
improved understanding of the ‘four-dimensional’ structure of a protein in solution. We
believe that the underexplored labelling method used in this work shows sufficient promise
to be further developed in the future as a technique for hydroxyl radical footprinting with
low barriers to entry compared to radiolysis. As such, this will potentially provide a
valuable addition to the toolset of researchers interested in MS-based conformational
protein analysis.

4. Materials and Methods

4.1. Proteins, Reagents and Solvents

Most materials were acquired from commercial suppliers: HPLC-grade acetonitrile
(Roth, Karlsruhe, Germany, HN44.2); LC-MS grade acetonitrile (Supelco LiChrosolv, Darm-
stadt, Germany, 1.00029.2500); alcohol dehydrogenase (Sigma-Aldrich, St. Louis, MI,
USA, A3263); ammonia, 30% w/w (Sigma-Aldrich, St. Louis, MI, USA, 221228); ammo-
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nium acetate, 7.5 M (Sigma-Aldrich, St. Louis, MI, USA, A2706); apo-myoglobin (Sigma-
Aldrich, St. Louis, MI, USA, A8673); L-ascorbic acid (Sigma-Aldrich, St. Louis, MI, USA,
255564); Discovery® DSC-18 SPE Tubes (Sigma-Aldrich, St. Louis, MI, USA, 62602-U); 1,4-
dithiothreitol (Roth, Karlsruhe, Germany, 6909.1); H4EDTA (Sigma-Aldrich, St. Louis, MI,
USA, 431788); formic acid (Fisher Chemical, Waltham, MA, USA, A117-50); holo-myoglobin
(Sigma-Aldrich, St. Louis, MI, USA, M0630); hydrogen peroxide, 30% w/w (Sigma-Aldrich,
St. Louis, MI, USA, 95321); iodoacetamide (Sigma-Aldrich, St. Louis, MI, USA, I6125);
iron(II)-chloride tetrahydrate (Sigma-Aldrich, St. Louis, MI, USA, 44939); PierceTM Trypsin
Protease (Thermo Fisher, Waltham, MA, USA, 90058); triethylammonium bicarbonate
buffer (Fluka, St. Louis, MI, USA, 17902); trifluoroacetic acid (Roth, Karlsruhe, Germany,
P088.3); urea (Roth, Karlsruhe, Germany, 2317.1). FK506-binding proteins were expressed
based on previously described methods [58,59].

4.2. Oxidative Footprinting

Protein stock solutions of FKBP12 and FKBP51FK1 in 20 mM HEPES, pH 8.5, and
150 mM NaCl were diluted in 200 mM ammonium acetate to 40.7 μM. Ligand stock
solutions were prepared in DMSO at 250 times the final concentration and prediluted to
50 times the final concentration in acetonitrile. A total of 49.2 μL of the protein solution
and 0.8 μL of the ligand solution or 200 mM ammonium acetate were mixed to achieve a
final protein concentration of 40 μM and ligand concentration of 80 μM, and incubated for
15 min at room temperature, after which the oxidative footprinting reaction was initiated.

For each reaction, fresh solutions were prepared of 0.3 M hydrogen peroxide, 37.5 mM
L-ascorbic acid, 187.5 mM thiourea, and iron(II)–EDTA solution. The 0.3 M hydrogen
peroxide solution was prepared by diluting a 30% w/w stock solution with milliQ water.
The ascorbic acid solution was prepared by dissolving 6.6 mg of ascorbic acid in 1 mL of
milliQ water and neutralising with 2.3 μL of 30% w/w ammonia. Note that ascorbic acid is
oxidation-sensitive in air and that this solution was stable for approximately one hour at
room temperature. For a 187.5 mM thiourea solution, we dissolved 14.27 mg of thiourea in
1 mL of 200 mM ammonium acetate solution. The iron(II)–EDTA solution was prepared
using a stock solution of 3 mM H4EDTA with 12 mM ammonia. A 1.5 mM iron(II)-chloride
solution in milliQ water was made fresh for the reaction. Equal volumes of the EDTA
stock solution and the iron(II)-chloride solution were mixed in a reaction tube to obtain the
iron(II)–EDTA solution.

For the oxidative footprinting reaction, 50 μL of a 40 μM protein solution (in 200 mM
ammonium acetate) was pipetted into a 500 μL reaction tube. Next, 10 μL of the iron(II)–
EDTA solution was added, followed by 10 μL of the L-ascorbic acid solution. Immediately
after subsequently adding 10 μL of the 0.3 M hydrogen peroxide solution, the reaction tube
was vortexed and the reaction was allowed to proceed for 15 s. After 15 s, the reaction was
quenched by adding 20 μL of the thiourea solution into the reaction tube and vortexing.
The final concentration of the protein after the reaction was 5 to 20 μM with 140 mM
ammonium acetate.

4.3. Tryptic Digest

For digestion, 300 μL of an 8 M urea solution in 50 mM TEAB, pH 8.5, with 100 mM
NaCl, as well as 8 μL of a 0.5 M solution of DTT were added to the oxidative footprinting
reaction mixture. After incubating the mixture for one hour at 28 ◦C, 1 mL of 50 mM TEAB,
pH 8.5, and 1.2 μL of 1 mg/mL trypsin in 50 mM acetic acid were added in succession.
The digest was incubated overnight at 37 ◦C. After the samples cooled down to room
temperature, trifluoroacetic acid was added until the solution was at a pH value of 2. A
100 mg C18-SPE cartridge was conditioned with 1 mL HPLC-grade acetonitrile and 1 mL
0.6% v/v TFA solution with milliQ water. Next, the sample was loaded on the cartridge
and washed with 1 mL 0.6% v/v TFA solution in milliQ water. Elution was performed
with 1 mL of an 80% v/v acetonitrile solution. The eluate was dried in a vacuum centrifuge

195



Int. J. Mol. Sci. 2021, 22, 9927

(UniVapo 150H; UniEquip, Planegg, Germany) and redissolved in 100 μL of a 5% v/v
acetonitrile solution containing 0.1% v/v formic acid.

4.4. LC-MS/MS Analysis

LC-MS/MS analysis was performed with an LTQ Orbitrap XL (Thermo Fisher Sci-
entific, Waltham, MA, USA) controlled by Xcalibur 2.1 and a micro-LC system consisting
of a Micro Pro syringe pump (Eldex Laboratories, Napa, CA, USA), and an Endurance
autosampler (Spark Holland, Emmen, The Netherlands) controlled by the Endurance
software. Acquisitions were started upon injection by contact closure.

Samples (5 μL) were injected with a flushed loop injection and peptides were separated
on a ZORBAX StableBond C18, 0.3 × 150 mm, 3.5 μm column (Agilent, Santa Clara, CA,
USA) at a flow rate of 5 μL/min using the following gradient: linear gradient from 5% B to
60% B in 60 min, 10 min linear gradient to 100% B, 10 min at 100% B isocratic, followed by
re-equilibration at 5% B for 15 min, with solvent A being water with 0.1% formic acid and
solvent B being acetonitrile with 0.1% formic acid.

The mass spectrometer was operated in a data-dependent mode with a precursor
scan in the Orbitrap with a resolution of 60,000 at m/z 400, followed by fragmentation of
peptide ions with a charge state of 2 or higher, giving rise to the four most intense signals
in the ion trap using CID with a normalized collision energy of 25. Dynamic exclusion was
enabled and set to a repeat count of 2 with a repeat duration of 30 s, the exclusion list size
was 200, and the exclusion duration was 50 s. The ESI source was operated with 10 units of
sheath gas flow rate, a spray voltage of 4 kV, a capillary temperature of 300 ◦C, a capillary
voltage of 3 V, and tube lens set to 30.

For intact mass measurements and for native MS, including the experiments with
different concentrations of acetonitrile, 10 μL of sample was loaded into a glass needle
that was pulled to a tip of ca. 1-μm orifice diameter with a P97 Flaming/Brown type
micropipette puller (Sutter Instrument Co., Novato, CA, USA), starting from 1.2-mm thin-
walled glass capillaries (World Precision Instruments, Friedberg, Germany). Ionisation was
then performed using a home-built nano-electrospray source that was coupled to the LTQ
Orbitrap XL instrument. Intact protein spectra were deconvoluted with UniDec [60].

4.5. Data Analysis Using MaxQuant

The MaxQuant calculations were separated into two parts and, in all cases, a pre-
cursor mass accuracy of 4.5 ppm was used. In the first part with one calculation run,
the unmodified peptides were identified. Only the fasta file of the target protein was
used to search against. The default settings were used, with the following exceptions: no
fractions—yes; min. peptide length—5; max. peptide mass (Da)—4800; min. score for
modified peptides—0; second peptides—off; unknown MS/MS match tolerance and unit—
0.5 Da; unknown MS/MS de novo tolerance and unit—0.25 Da; unknown deisotoping—off.
For every identified peptide, a separate fasta file was then created for use in the second
step. This step comprised three calculation runs to determine the modifications. The first
calculation run included +15.995 Da (+O) for M, C, W, Y, F, K, R, Q, D, T, S, A, E, L, I, K, H,
N, V and +31.990 Da (+2xO) for M, C, W, Y, F, both as variable modifications additional to
carbamidomethyl- and acetyl-(N-term) modifications. The second calculation run included
+15.995 Da (+O) for W, C, M, Y, F, H; +47.985 Da (+3xO) for C, W, Y, F; −43.053 Da (+O
-5xH -3xN -C) for R; −32.008 Da (+O -S -4xH -C) for M; −30.011 Da (-2xH -C -O) for E,
D; +13,9792645 (+O -2H) for L, I, V, P, R, K, E, Q; and −2.016 Da (-2xH) for T, S, all as
variable modifications additional to carbamidomethyl- and acetyl-(N-term) modifications.
The last calculation run included +15.995 Da (+O) for W, C, M, Y, F, H; −10.032 Da (+2xO
-2xH -2xN -C) for H; −4.979 Da (+2xO -H -C -N) for H; −22.032 Da (+2xO -2xH -2xC -2xN)
for H; and −23.016 Da (+O -H -N -2xC) for H, all as variable modifications additional
to carbamidomethyl- and acetyl-(N-term) modifications. The default settings were used,
with the following exceptions: no fractions—yes; digestion mode—no digestion; include
contaminates—off; min. peptide length—5; max. peptide mass (Da)—4800; min. score for
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modified peptides—0; second peptides—off; unknown MS/MS match tolerance and unit—
0.5 Da; unknown MS/MS de novo tolerance and unit—0.25 Da; unknown deisotoping—off.
For positive identification of an oxidatively modified residue, while avoiding false positive
results, we typically required that a +15.995 Da (+O) modification was detected two times
in different modified peptides, or, alternatively, that a product from a side reaction of
oxidative footprinting was found in addition to a +15.995 Da (+O) modification. Finally,
an additional search was run against the entire UniProt database to ensure that peptides
identified as oxidised were genuine and not false positives due to overlap with peptides
from protein contaminants (note that such overlap would need to occur at both the MS and
MS/MS level and is, therefore, very unlikely). Other than the trypsin used for proteolysis
and a low-level contamination of keratin in a handful of samples, no other contaminants
were found, which confirms sample purity and rules out false positives.

4.6. Quantifying Peptides Using pepFoot

Raw files were converted to the mz5 format using MSConvert and then processed in the
pepFoot software [23,24,57] using the following parameters: modifications—carbamidomethyl,
variable modifications—oxidation (+ oxygen), digestion—trypsin, peptide length—5–40,
peptide charge—1–6, # missed cleavages—2, MS tolerance—20 ppm. Extracted ion chro-
matograms of identified peptides by MaxQuant in acceptable abundance (S/N > 9:1) were
then integrated for the modified and unmodified peptide, and the degree of modification
was calculated by the software for apo and holo proteins.
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Abstract: Brominated flame retardants (BFRs) are substances used to reduce the flammability of
plastics. Among this group, tetrabormobisphenol A (TBBPA) is currently produced and used on
the greatest scale, but due to the emerging reports on its potential toxicity, tetrabromobisphenol
S (TBBPS)—a compound with a very similar structure—is used as an alternative. Due to the fact
that the compounds in question are found in the environment and in biological samples from living
organisms, including humans, and due to the insufficient toxicological knowledge about them, it is
necessary to assess their impacts on living organisms and verify the validity of TBBPA replacement
by TBBPS. The RBC membrane was chosen as the research model. This is a widely accepted research
model for assessing the toxicity of xenobiotics, and it is the first barrier to compounds entering
circulation. It was found that TBBPA and TBBPS caused increases in the fluidity of the erythrocyte
membrane in their hydrophilic layer, and conformational changes to membrane proteins. They
also caused thiol group elevation, an increase in lipid peroxidation (TBBPS only) and decreases in
the level of ATP in cells. They also caused changes in the size and shape of RBCs. TBBPA caused
changes in the erythrocyte membrane at lower concentrations compared to TBBPS at an occupational
exposure level.

Keywords: tetrabromobisphenol A; tetrabromobisphenol S; erythrocyte membrane; retardants;
erythrocytes

1. Introduction

Tetrabromobisphenol A (TBBPA) is a compound belonging to the group of brominated
flame retardants (BFRs). These compounds have been used since the 1970s to reduce the
flammability of plastics in many consumer products, such as household articles, furniture,
mattresses (including products for babies), textiles, insulation and electronic equipment
housings [1]. Currently, TBBPA, produced in the amount of over 200 thousand tons per
year, is the most important among that group of compounds [2]. It is worth noting that the
production of TBBPA accounts for approximately 60% of all BFRs used, and it is not subject
to monitoring or restrictions. This is largely due to the fact that most TBBPA (approximately
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90%) is used as a reactive compound, i.e., covalently bonded to a polymer matrix, which
limits the possibility of its migration to the environment, but the rest is used in an additive
form, which can be released from the product much more easily [3].

TBBPA’s widespread use has contributed to the contamination of the environment.
TBBPA was found in environmental samples such as soil, water and air [4–7]. It was also
found in the air and dust of residential interiors and offices, which significantly contributes
to human exposure [8,9]. TBBPA, due to its wide presence in the natural environment
and direct human environment, may pose a significant risk to health. Due to the high
hydrophobicity of the compound, it can bioaccumulate in living organisms, including
humans [10]. Numerous studies document the presence of TBBPA in adipose tissue, milk
and serum of mothers, and also in neonatal serum, which is particularly disturbing [10,11].
Currently, more and more publications are appearing indicating the potential toxicity of
high doses of TBBPA for mammals. It was found that this compound may be involved
in the development of many diseases, such as diabetes, or participate in the neoplastic
process [12–14].

Tetrabromobisphenol S (TBBPS) is increasingly being used as an alternative to TBBPA.
These compounds have very similar molecular structures, with one difference: in TBBPS,
sulfone groups are present instead of the methyl groups of TBBPA. The use of this com-
pound is supported by the presence of a sulfone group in the molecule, which may limit its
toxicity, and the fact that this compound is characterized by better flame retardancy [15].
Additionally, apart from the fact that TBBPS is used as a flame retardant additive, it is also
used as a herbicide, to control selected weeds in the cultivation of cucumbers, tomatoes
and white radish [16]. The increasing use of this compound and its derivatives is result-
ing in greater presence in the ecosystem and the exposure of living organisms to it. The
compound was found, among others, in aquatic organisms and blood serum samples from
pregnant women in China [17,18]. So far, there are few toxicological studies that could
answer the question of the safety of TBBPS as an alternative. However, due to the structural
similarity of the two compounds discussed, it seems reasonable to assume that they may
have similar potentially adverse effects on living organisms. Therefore, it is necessary to
determine and compare the toxicities of TBBPA and TBBPS.

The erythrocyte membrane is a widely accepted research model in the assessment
of xenobiotic toxicity. The changes within it correlate with changes in the membranes of
other cell types. Damage to the cell membrane may affect its function and contribute to
cell death [19]. Changes in the properties of cell membrane may also be involved in the
development of many diseases, including anemia, diabetes, heart diseases and cancer. It
has been found that TBBPA may contribute to the induction of cancer and may be involved
in the development of type II diabetes and obesity [12–14], therefore, the mechanisms of
action of TBBPA and TBBPS in the model cell membrane should be investigated. Therefore,
the aim of the study was to evaluate the influences of common BFRs, i.e., TBBPA and
TBBPS, on the properties of the erythrocyte membrane.

2. Results

2.1. Membrane Fluidity

In RBCs, an increase in fluidity of the hydrophilic layer of the membrane was observed
(an increase in the order parameter S). No statistically significant changes were observed in
fluidity of deeper regions of the lipid bilayer.

Both compounds caused an increase in the value of the S parameter proportional to
the concentration (5-DSA labeling). There were slight statistically significant differences
with the lowest tested concentration of TBBPA (1 μg/mL) and with 10 μg/mL of TBBPS.
Changes in relation to the control, both of approximately 105%, were recorded for TBBPA at
the concentration of 25 μg/mL, and for TBBPS at twice that high concentration. However,
no significant changes were observed in the correlation time coefficients τB and τC (16-DSA
labeling) (Table 1).
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Table 1. Changes in parameter S and correlation times of τB and τC in human control erythrocytes
and the erythrocytes incubated with TBBPA at 1 to 25 μg/mL and TBBPS at 1 to 100 μg/mL for 48 h.
(*) Significantly different from control (p < 0.05).

Compound
Concentration

[μg/mL]
Order

Parameter S [%]
Correlation
Time τB [%]

Correlation
Time τC [%]

TBBPA

0 100.00 ± 0.009 100.00 ± 0.444 100.00 ± 0.476
1 101.86 ± 0.003 * 103.75 ± 0.691 104.92 ± 0.925

10 103.01 ± 0.002 * 104.79 ± 0.823 103.95 ± 1.021
15 103.95 ± 0.001 * 105.24 ± 0.727 103.70 ± 1.387
25 105.45 ± 0.009 * 105.05 ± 0.740 104.32 ± 0.887

TBBPS

0 100.00 ± 0.009 100.00 ± 1.080 100.00 ± 1.305
1 102.57 ± 0.010 100.47 ± 0.231 102.37 ± 0.925
10 104.45 ± 0.009 * 100.27 ± 0.433 101.32 ± 0.774
50 105.99 ± 0.008 * 104.18 ± 0.735 104.40 ± 0.455
100 108.33 ± 0.021 * 106.93 ± 0.903 108.38 ± 1.330

2.2. W/S Ratio

It was found that TBBPA caused a statistically significant decrease in mobility of
the attached marker at the lowest concentration; changes ranged from 92.7 to 84.1% (for
1 μg/mL and 25 μg/mL, respectively) compared to the control (100%) (Figure 1). On the
other hand, TBBPS caused statistically significant increases in the mobility of the attached
marker at the concentrations of 50 and 100 μg/mL (112.52 and 116.53%, respectively)
(Figure 2).

Figure 1. Changes in W/S in human control erythrocytes and the erythrocytes incubated with TBBPA
at 1 to 25 μg/mL for 48 h. (*) Significantly different from control (p < 0.05).
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Figure 2. Changes in W/S in human control erythrocytes and the erythrocytes incubated with TBBPS
at 1 to 100 μg/mL for 48 h. (*) Significantly different from control (p < 0.05).

2.3. Internal Viscosity of Erythrocytes

It was observed that the compounds slightly increased the intrinsic viscosity of RBCs,
but these changes were statistically insignificant (Table 2).

Table 2. Internal viscosity of human control erythrocytes and the erythrocytes incubated with TBBPA
at 1 to 25 μg/mL incubated and TBBPS at 1 to 100 μg/mL for 48 h. (*) Significantly different from
control (p < 0.05).

Compound Concentration [μg/mL] Internal Viscosity [%]

TBBPA

0 100.00 ± 0.004
1 103.32 ± 0.004
10 104.22 ± 0.005
15 105.19 ± 0.004
25 106.40 ± 0.004

TBBPS

0 100.00 ± 0.003
1 99.42 ± 0.004

10 99.53 ± 0.007
50 103.37 ± 0.006
100 107.50 ± 0.007

2.4. Thiol Groups

The level of thiol groups in erythrocyte membrane was assessed after 12 h of incubation
with the analyzed compounds. It was found that both TBBPA and TBBPS caused statistically
significant increases in that parameter. TBBPA at the concentration of 25 μg/mL increased
the level of thiol groups by 8% compared to the control (Figure 3). Statistically significant
changes for TBBPS were observed at concentrations of 50 and 100 μg/mL (by 5 and 12%
compared to the control, respectively) (Figure 4).
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Figure 3. Changes in the thiol groups level in human control erythrocytes and the erythrocytes
incubated with TBBPA at 1 to 25 μg/mL for 12 h. (*) Significantly different from control (p < 0.05).

Figure 4. Changes in the thiol groups level in human control erythrocytes and the erythrocytes
incubated with TBBPS at 1 to 100 μg/mL for 12 h. (*) Significantly different from control (p < 0.05).

2.5. ATP Level

It was found that the tested bromobisphenols reduced the level of intracellular ATP.
TBBPA caused statistically significant decreases in ATP level compared to the control at
concentrations of 15 and 25 μg/mL—78 and 42%, respectively (Figure 5). In the case
of TBBPS, statistically significant decreases in the discussed parameter in relation to the
control were observed at the concentrations of 50 and 100 μg/mL—60 and 58%, respectively
(Figure 6).
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Figure 5. Changes in ATP level in human control erythrocytes and the erythrocytes incubated with
TBBPA at 1 to 25 μg/mL for 12 h. (*) Significantly different from control (p < 0.05).

Figure 6. Changes in ATP level in human control erythrocytes and the erythrocytes incubated with
TBBPS at 1 to 100 μg/mL for 12 h. (*) Significantly different from control (p < 0.05).

2.6. Lipid Peroxidation

After 48 h of incubation of RBCs with the analyzed compoundsin the case of TBBPA,
no statistically significant changes were found (Figure 7) within the range of pre-hemolytic
concentrations. Statistically significant increases in lipid peroxidation under the influence
of TBBPS were observed for concentrations of 50, 100 and 250 μg/mL (up to 120, 135, 145%,
respectively) (Figure 8).
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Figure 7. Lipid peroxidation in human control erythrocytes and the erythrocytes incubated with
TBBPA at 1 to 25 μg/mL for 48 h.

Figure 8. Lipid peroxidation in human control erythrocytes and the erythrocytes incubated with
TBBPS at 1 to 250 μg/mL for 48 h. (*) Significantly different from control (p < 0.05).

2.7. Osmotic Fragility

It was observed that TBBPA at the lowest concentration (1 μg/mL) caused a slight
increase in osmotic resistance, and the highest increases of this parameter were found
for the concentration of 15 and 25 μg/mL. At the concentration of NaCl equal to 0.52%,
decreases in RBC hemolysis were found to be 6.09 and 5.57%, with the control value of
18.18% (Figure 9). It was shown that in the presence of TBBPA there was a statistically
significant decrease in the IC50 value for NaCl (Figure 10). On the other hand, there was no
effect of TBBPS on the RBC osmotic resistance under the influence of various concentrations
of NaCl, nor were there changes in the IC50 value (Figures 11 and 12).
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Figure 9. Changes in osmotic resistance of human erythrocytes incubated with TBBPA at 1 to
25 μg/mL for 3 h.

Figure 10. IC50 parameter for control erythrocytes and erythroctes incubated with TBBPA at
1–25 μg/mL for 3 h. (*) Significantly different from control (p < 0.05).
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Figure 11. Changes in osmotic resistance of human erythrocytes incubated with TBBPS at 1 to
250 μg/mL for 3 h.

Figure 12. IC50 parameter for control erythrocytes and erythroctes incubated with TBBPS at
10–250 μg/mL for 3 h.

2.8. Morphological Changes of Erythrocytes, FSC and SSC Parameter

The analyzed compounds after 48 h of incubation with RBCs caused changes in the
FSC and SSC parameters that can be used to assess the size and shape of the cell. After 48
h of RBC incubation with bromobisphenols both compounds increased the FSC parameter,
compared to control erythrocytes. There was a statistically significant increase in FSC
caused by TBBPA at 25 μg/mL (122%) (Figure 13) and TBBPS at 50 and 100 μg/mL (106,
108%) (Figure 14).
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Figure 13. Changes in the FSC parameter in human control erythrocytes and the erythrocytes
incubated with TBBPA at 1 to 25 μg/mL for 48 h. (*) Significantly different from control (p < 0.05).

Figure 14. Changes in the FSC parameter in human control erythrocytes and the erythrocytes
incubated with TBBPS at 1 to 100 μg/mL for 48 h. (*) Significantly different from control (p < 0.05).

In the case of SSC, it was found that TBBPA caused a slight statistically significant
increase of the parameter at concentrations of 10 and 15 μg/mL (103, 104%, respectively),
while at the concentration of 25 μg/mL the compound caused a significant decrease in
relation to the control (71%) (Figure 15). In the case of TBBPS, no statistically significant
changes were found (Figure 16) within the range of presented concentrations. The his-
tograms and SSC/FSC dot plots of control and TBBPA and TBBPS in the final concentration
were found in Figure 17.

2.9. Microscopic Analysis

Microscopic analysis confirmed that 48 h incubation of TBBPA and TBBPS induced
morphological changes within cells. Pictures were taken for TBBPA at concentrations of
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25 μg/mL, and for TBBPS at concentrations of 100 μg/mL. The discussed compounds
induced the formation of echinocytes (Figure 18).

Figure 15. Changes in the SSC parameter in human control erythrocytes and the erythrocytes
incubated with TBBPA at 1 to 25 μg/mL for 48 h. (*) Significantly different from control (p < 0.05).

Figure 16. Changes in the SSC parameter in human control erythrocytes and the erythrocytes
incubated with TBBPS at 1 to 100 μg/mL for 48 h.
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Figure 17. Scattering diagrams of human control erythrocytes (A), erythrocytes incubated with TBBPS at 100 μg/mL (B)
and erythrocytes incubated with TBBPA at 25 μg/mL (C) for 48 h. The FSC-A diagrams represent the light scattered near
the forward direction (proportional to the value of the particles). The SSC-A diagrams represent scattering at a right angle
(depended on cell shape and internal properties). The FSC-A/SSC-A diagram is a dual parameter contour plot proportional
to the total cell diversity.

Figure 18. Micrographs of human control erythrocytes (A) and the erythrocytes incubated with TBBPA at 25 μg/mL (B)
and TBBPS at 100 μg/mL (C) for 48 h.
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3. Discussion

The protein and lipid components of the RBC membrane create a complex struc-
ture of interrelationships enabling the maintenance of the proper shape and physiology.
Disturbances in these membrane components may cause changes in the shape and defor-
mation capacity of erythrocytes, which may contribute to disturbances in their function
and shorten their lifespan [19]. In this study, we assessed the effects of TBBPA and TBBPS
on the erythrocyte membrane, which is the first barrier to xenobiotics entering circulation.

One of the properties of a biological membrane, resulting from its structure and
interactions between its components, is fluidity [20]. Using the electron paramagnetic
resonance (EPR) method, the placement of 5-DSA and 16-DSA probes in the erythrocyte
membrane exposed to TBBPA and TBBPS was assessed. These probes diffuse into the
environment of the lipid bilayer of biological membranes: 5-DSA is located with the
hydrocarbon chains, and 16-DSA is located deeper, in the middle of the lipid bilayer.
Under the influence of TBBPA or TBBPS, a statistically significant increase in fluidity of
the hydrophilic layer of the RBC membrane was observed (as evidenced by an increased
order parameter S). An upward trend was also observed in the deeper regions of the
lipid bilayer, but it was statistically insignificant (Table 1). It can be assumed that the
analyzed compounds, due to the presence of bromine atoms in them (large in size), initially
localized in the shallower regions of the lipid bilayer. The inverse ability to locate in the
membrane was demonstrated by Maćczak et al. (2017) in their studies on the effects of
bisphenol A and its analogues on RBCs [21]. These authors found that bisphenols did
not affect the S parameter, and therefore, did not localize in the hydrophilic layer, but
changed the relaxation times τB and τC, which indicates penetration of compounds into
the hydrophobic layer, which is explained by the high hydrophobicity of the analyzed
compounds [21]. Perhaps the additional presence of bromine atoms in these compounds
makes it difficult for them to penetrate deeper regions to the level of carbon 16, where
bisphenols devoid of bromine atoms were located.

The W/S parameter determines the state of the internal conformation of membrane
proteins, so it is a very sensitive parameter determining changes in their properties. This
parameter was also tested with the use of the EPR method by using the MSL spin marker
covalently binding to the sulfhydryl groups (-SH) of cytoskeleton proteins, mainly spectrin
and actin. It was found that TBBPA, starting from the concentration of 1 μg/mL, caused
a decrease in the mobility of the attached marker, and TBBPS caused an increase starting
from the concentration of 50 μg/mL (Figures 1 and 2). An increase in the W/S ratio
may indicate conformational changes in the structures of membrane proteins that lead to
higher exposure of thiol groups to chemical reactions, and/or may contribute to disulfide
bond breakage. On the other hand, a decreased W/S ratio may indicate oxidation of thiol
groups by reactive oxygen species (ROS), which reduces their availability for the marker.
The increase in ROS level under the influence of TBBPA, even at very low concentrations
(0.001 μg/mL), was confirmed in another paper [22]. A decrease in W/S may also indicate
formation of protein aggregates, which may also be caused by ROS [23,24]. Moreover, we
found that the analyzed compounds contributed to increases in the level of thiol groups
(TBBPA from 25 μg/mL, and TBBPS from 50 μg/mL) (Figures 3 and 4), which may partially
confirm the influences of TBBPA and TBBPS on the conformation of membrane proteins
caused by interactions with thiol groups. Pocernich et al. (2001) also found that lipid
peroxidation products could covalently bind to cysteine, lysine or histidine, which may
also result in conformational changes of membrane proteins [25]. In the case of our research,
a statistically significant increase in lipid peroxidation was found only after incubation
of RBCs with TBBPS at the highest concentration (Figure 8). Moreover, in the previous
paper [26] we found that TBBPA (at the concentration of 25 μg/mL) and TBBPS (at the
concentration of 250 μg/mL) caused decreases in tryptophan fluorescence in erythrocyte
membranes, which also confirms that these compounds may damage membrane proteins
via ROS.
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Changes in the viscosity of the interior of RBCs may be associated with changes in
their shape. Although we observed upward trends in the assessment of intrinsic viscosity
of erythrocytes, these changes were not statistically significant (Table 2). On the other hand,
it was found that the analyzed compounds induced changes in the forward scatter channel
(FSC) and side scatter channel (SSC) parameters obtained from flow cytometric analysis
(Figures 13–17), which may reflect changes in the size, shape and external structure of
the membranes of the investigated cells. These changes are also visible in the pictures
achieved from a phase-contrast microscopic examination (Figure 18). An increase in the
size of erythrocytes and changes in their shape are usually associated with damage done to
the cell membrane, and may result from influx of water into the cell and/or incorporation
of compounds into the structure of the membrane. It is also known that cytoskeleton
proteins and integral membrane proteins are responsible for maintaining the shape of
RBCs. Various xenobiotics, including phenols, can damage erythrocyte proteins [27,28],
resulting in conversion of a normal discocyte into an echinocyte or a stomatocyte [29].
In the case of compounds analyzed by us, formation of echinocytes may be conditioned
by incorporation of TBBPA or TBBPS into the hydrophilic region of the membrane, as
indicated by changes in the S parameter. A decrease in the ATP level in the cell may also
contribute to changes in the shape of the cell, and thus to a decrease in its survival [30].
We observed that both TBBPA and TBBPS significantly decreased cellular ATP levels—the
highest concentrations by nearly 60% with TBBPA (25 μg/mL), and more than 40% when
incubated with TBBPS at 100 μg/mL.

Shape changes can also be associated with water loss, increased intracellular viscosity
and decreased osmotic resistance in RBCs. In the case of our research, slight increases in
osmotic resistance were observed when RBCs were incubated with TBBPA at concentrations
of 15 and 25 μg/mL (Figure 9), which could also have been related to incorporation of the
compound into the membrane and its partial stiffening, which would result in reduced
susceptibility to hemolysis [29,31]. Moreover, in the case of this compound, the IC50 value
decreased as the concentration increased, which may confirm the above observations.

4. Materials and Methods

4.1. Chemicals

TBBPA (purity 99%, 2,6-dibromo-4-[2-(3,5-dibromo-4-hydroxyphenyl)propan-2-
yl]phenol)) was purchased from LGC Standards (Wesel, Germany). Tetrabromobisphenol
S (purity 98.8%, 2,6-dibromo-4-(3,5-dibromo-4-hydroxyphenyl)sulfonylphenol) was syn-
thetized in the Institute of Industrial Organic Chemistry in Warsaw, Poland. DMSO (99.5%),
16-doxylstearic acid (16-DSA), 4-N-maleimide-2,2,6,6-tetramethylopiperidine-1-oxyl (MSL),
2,2,6,6-tetramethyl piperidine-Noxyl-4-amine (TEMPAMINE) and ouabain were bought
from Sigma-Aldrich (Merck, Kenilworth, NJ, USA). 5-Doxylstearic acid (5-DSA) was bought
from Santa Cruz Biotechnology (Dallas, TX, USA). ATP Determination Kit was purchased
from Thermo Fisher Scientific (Waltham, MA, USA). Ethylenediaminetetraacetic acid tetra-
sodium salt (EDTA), tris (hydroxymethyl)aminomethane (Tris), 5,5-dithiobis-2-nitrobenzoic
acid (DTNB), sodium dodecyl sulfate (SDS), phenylmethylsulfonyl fluoride (PMSF) and
other chemicals were obtained from Carl Roth (Roth, Germany), POCh, (Gliwice, Poland)
or Alfachem (Lublin, Poland).

4.2. Erythrocyte and Erythrocyte’s Membranes Isolation

RBCs were isolated from leukocyte-buffy coat separated from blood from healthy
donors from the Regional Centre of Blood Donation and Blood Treatment (Lodz, Poland).

The RBCs’ isolation and treatment procedure was previously described by Jarosiewicz
et al. (2017) [32]. RBCs with a hematocrit of 5% (about 630 mln cells x mL−1) were incubated
with the analyzed compounds at concentrations ranging from 1 to 25 μg/mL for TBBPA
and 1–250 μg/mL for TBBPS, at 37 ◦C for 48, 12 or 3 h, depending on the experiment.
Differences in the concentrations of the compounds studied were dictated by hemolytic
properties of BFRs tested. Compounds were dissolved in DMSO (to final concentration
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of 0.4%). Concentrations of the compounds were selected on the basis of their hemolytic
abilities described in the previous paper [32]. Moreover, in the case of the 48 h incubation
period, an additional antibiotic was used (0.2% streptomycin and penicillin). Appropriate
controls were performed to exclude the effect of antibiotic and DMSO on RBCs. The exact
conditions of incubation are described in the article by Jarosiewicz et al., 2020 [26].

Isolation of RBCs membranes followed the incubation of the RBCs with the analyzed
compounds. Isolation of RBC membranes was carried out using the Dodge et al. (1963)
method with some modifications [33]. The exact isolation procedure was described in the
previous paper by Jarosiewicz et al., 2020 [26].

The research was approved by the Bioethics Committee of the University of Lodz No.
7/KBBN-UŁ/II/2015.

4.3. Membrane Fluidity

The RBC’s membrane fluidity was analyzed by electron paramagnetic resonance
(EPR) spectroscopy (Brucker 300 Spectrometer, Ettlingen, Germany) using spin labeled
fatty acids: 5-doxylstearic acid (5-DSA) and 16-doxylstearic acid (16-DSA). From the EPR
spectra obtained for the 5-DSA spin label, the ordering parameter S was calculated, and the
correlation times τB and τC were calculated for the 16-DSA spin label. Order parameter S
and the correlation times τB and τC were calculated as described in the study of Koter et al.
(2004) [34].

4.4. W/S Ratio

Parameter W/S was determined using a spin label MSL, which covalently binds
proteins and analyzed by EPR spectroscopy (Brucker 300 Spectrometer, Ettlingen, Ger-
many). The exact procedure for performing the experiment is described in the article by
Maćczak et al. (2017) [21].

4.5. Internal Viscosity

The TEMPAMINE spin label was used to determine the intracellular environment of
RBCs [35]. The analysis was conducted using Brucker 300 Spectrometer (Ettlingen, Ger-
many). The changes in the parameter studied were calculated and expressed as percentages
of control. The exact procedure for performing the experiment is described in the article by
Maćczak et al. (2017) [21].

4.6. Thiol Groups Level

The number of thiol groups in the erythrocyte membranes was determined using
the method of Ellman et al. (1959) [36]. 5.5′-Dithiobis (2-nitrobenzoic) acid reacts with
protein thiol groups. This reaction releases the 5-thio-2-nitrobenzoic anion having an
intense yellow color, which is determined spectrophotometrically at 412 nm wavelength.
The procedure of determination of the thiol group level was previously described by
Maćczak et al. (2017) [21]. Results are expressed as -SH nmol/mg proteins and presented
as percentages of control.

4.7. ATP Level

Intracellular ATP level in RBCs is determined by oxidative decarboxylation of luciferin
by firefly luciferase in the presence of ATP and magnesium ions with bioluminescence
emission. The emission is linearly related to the intracellular ATP concentration [37]. The
measurements were made at the wavelength of 590 nm using fluorimeter (Fluoroskan
Ascent FL, Thermo Fisher Scientific, Vantaa, Finland). The exact procedure for performing
the experiment is described in an article by Maćczak et al. (2017) [21].

4.8. Lipid Peroxidation

Lipid peroxidation in erythrocyte membranes is determined according to the method
of Stocks and Dormandy (1971) [38]. Lipid peroxidation is analyzed by measuring of
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formation of thiobarbituric acid reactive substances (TBARS). The absorbance is determined
colorimetrically using BioTek ELx808 reader (Winooski VT, USA) at the wavelength of
532 nm. Lipid peroxidation is expressed in absorbance units of TBARS products and is
shown as a percentage of control.

4.9. Osmotic Fragility

The osmotic resistance (fragility) was determined by the method of Dacia and Lewis
(1975) [39]. A small number of erythrocytes are placed in a NaCl solution at a concentration
of 0.2 to 0.9%. Osmotic resistance is determined by measuring the hemoglobin released
from erythrocytes by the colorimetric method using the BioTek ELx808 reader (Winooski
VT, USA) at λ = 540 nm. Osmotic resistance is assessed on the basis of the hemolysis curve
shift, in the graph of percentage of hemolysis vs. NaCl concentration. Before performing
the assay, RBCs were incubated with test compounds for 3 h. The exact procedure for
performing the experiment is described in the publication by Maćczak et al. (2017) [21].

4.10. Morphological Changes of Erythrocytes (FSC and SSC Parameter)

The flow cytometry technique was used to assess the size and shape of the erythro-
cytes (LSR II Becton Dickinson). Data were recorded for a total of 10,000 events per
sample. Results are presented as percentages of control. This method was described by
Bukowska et al. (2011) [28].

4.11. Microscopic Analysis

Microscopic analysis was completed using the phase contrast microscope (Olympus,
Japan) at the magnification of 600×. Images were taken following a 48 h incubation of
RBCs with analyzed compounds. After incubation, RBCs were suspended in Ringer’s
buffer at the final concentration of 0.02%, placed on a Petri dish and pictures were taken.

4.12. Statistical Analysis

Results are presented as means ± standard deviations of 4–6 experiments (blood
donors); each experiment performed was the mean of 2–3 replicates. The statistical analysis
was described in the previous article by Jarosiewicz et al. (2020) [26].

5. Conclusions

Both TBBPA and TBBPS were found to cause changes in the erythrocyte cell membrane.
Both compounds increase the fluidity of the hydrophilic region of the RBC membrane.
TBBPA strongly damages proteins (changes in the S, W/S ratio, level of thiol groups,
and levels of tryptophan oxidation in membranes and in human albumin, as shown in
previous studies) [26]. In our opinion it is the main target of this retardant. It was also
shown that TBBPS contributed to lipid peroxidation only at its highest concentration of
250 μg/mL, which may indicate that the peroxidation process will be a secondary process
to the induction of ROS and protein oxidation by these compounds [22]. Both compounds
also caused changes in the shape and size of erythrocytes, which are associated with
damage to the cell membrane, hemolysis and incorporation of these compounds into the
structure of the membrane. In addition, the induced decrease in the level of ATP would
contribute to a decrease in cell survival. It is worth noting that changes in the structure
and function of the cell membrane were observed for significantly lower concentrations in
the case of RBC incubation with TBBPA than with TBBPS, occurring only at occupational
and not epidemiological exposure. The obtained data indicate a low toxicity of TBBPS only
at very high concentrations (in contrast to TBBPA), and therefore, a low toxicological risk
posed by this retardant to human erythrocytes.
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ATP adenosine triphosphate
RBCs erythrocytes
FSC forward scatter channel
SSC side scatter channel
EPR electron paramagnetic resonance
ROS reactive oxygen species

References

1. Zhou, X.; Guo, J.; Zhang, W.; Zhou, P.; Deng, J.; Lin, K. Tetrabromobisphenol A contamination and emission in printed circuit
board production and implications for human exposure. J. Hazard. Mater. 2014, 273, 27–35. [CrossRef] [PubMed]

2. Covaci, A.; Voorspoels, S.; Abdallah, M.A.E.; Geens, T.; Harrad, S.; Law, R.J. Analytical and environmental aspects of the flame
retardant tetrabromobisphenol-A and its derivatives. J. Chromatogr. A. 2009, 1216, 346–363. [CrossRef]

3. Lai, D.Y.; Kacew, S.; Dekant, W. Tetrabromobisphenol A (TBBPA): Possible modes of action of toxicity and carcinogenicity in
rodents. Food Chem. Toxicol. 2015, 80, 206–214. [CrossRef] [PubMed]

4. Tang, J.; Feng, J.; Li, X.; Li, G. Levels of flame retardants HBCD, TBBPA and TBC in surface soils from an industrialized region of
East China. Environ. Sci. Proc. Impacts 2014, 16, 1015–1021. [CrossRef]

5. Gorga, M.; Martínez, E.; Ginebreda, A.; Eljarrat, E.; Barceló, D. Determination of PBDEs, HBB, PBEB, DBDPE, HBCD, TBBPA and
related compounds in sewage sludge from Catalonia (Spain). Sci. Total Environ. 2013, 444, 51–59. [CrossRef]

6. Kowalski, B.; Mazur, M. The simultaneous determination of six flame retardants in water samples using SPE pre-concentration
and UHPLC-UV method. Water Air Soil Pollut. 2014, 225, 1–9. [CrossRef] [PubMed]

7. Xie, Z.; Ebinghaus, R.; Lohmann, R.; Heemken, O.; Caba, A.; Püttmann, W. Trace determination of the flame retardant tetrabromo-
bisphenol A in the atmosphere by gas chromatography–mass spectrometry. Anal. Chim. Acta 2007, 584, 333–342. [CrossRef]

8. Abdallah, M.A.E.; Harrad, S.; Covaci, A. Hexabromocyclododecanes and tetrabromobisphenol—A in indoor air and dust in
Birmingham, UK: Implications for human exposure. Environ. Sci. Technol. 2008, 42, 6855–6861. [CrossRef]

9. Wang, W.; Abualnaja, K.O.; Asimakopoulos, A.G.; Covaci, A.; Gevao, B.; Johnson-Restrepo, B.; Kumosani, T.A.; Malarvannan, G.;
Minh, T.B.; Moon, H.-B.; et al. A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols
including bisphenol A via indoor dust ingestion in twelve countries. Environ. Int. 2015, 83, 183–191. [CrossRef] [PubMed]

10. Nakao, T.; Akiyama, E.; Kakutani, H.; Mizuno, A.; Aozasa, O.; Akai, Y.; Ohta, S. Levels of tetrabromobisphenol A, tribromo-
bisphenol A, dibromobisphenol A, monobromobisphenol A, and bisphenol A in Japanese breast milk. Chem. Res. Toxicol. 2015,
28, 722–728. [CrossRef]

217



Int. J. Mol. Sci. 2021, 22, 9443

11. Kim, U.J.; Oh, J.E. Tetrabromobisphenol A and hexabromocyclododecane flame retardants in infant–mother paired serum
samples, and their relationships with thyroid hormones and environmental factors. Environ. Pollut. 2014, 184, 193–200. [CrossRef]

12. Dunnick, J.K.; Sanders, J.M.; Kissling, G.E.; Johnson, C.L.; Boyle, M.H.; Elmore, S.A. Environmental chemical exposure may
contribute to uterine cancer development: Studies with tetrabromobisphenol A. Toxicol. Pathol. 2015, 43, 464–473. [CrossRef]

13. McCollum, C.W.; Riu, A. Obesity: An Effect of Environmental Pollutants? In Proceedings of the Endocrine Society’s 94th Annual
Meeting and Expo, Houston, TX, USA, 23–26 June 2012.

14. Barret, J. Warm Reception? Halogenated BPA Flame Retardants and PPARγ Activation. Environ. Health Perspect. 2011, 119, 398.
15. Qu, G.; Liu, A.; Hu, L.; Liu, S.; Shi, J.; Jiang, G. Recent advances in the analysis of TBBPA/TBBPS, TBBPA/TBBPS derivatives and

their transformation products. Trends Anal. Chem. 2016, 83, 14–24. [CrossRef]
16. Xu, H.; Li, Y.; Lu, J.; Lu, J.; Zhou, L.; Chovelon, J.M.; Ji, Y. Aqueous photodecomposition of the emerging brominated flame

retardant tetrabromobisphenol S (TBBPS). Environ. Pollut. 2021, 271, 116406. [CrossRef] [PubMed]
17. Liu, A.; Shi, J.; Shen, Z.; Lin, Y.; Qu, G.; Zhao, Z.; Jiang, G. Identification of unknown brominated bisphenol s congeners

in contaminated soils as the transformation products of tetrabromobisphenol S derivatives. Environ. Sci. Technol. 2018,
52, 10480–10489. [CrossRef] [PubMed]

18. Li, A.; Zhuang, T.; Shi, W.; Liang, Y.; Liao, C.; Song, M.; Jiang, G. Serum concentration of bisphenol analogues in pregnant women
in China. Sci. Total Environ. 2020, 707, 136100. [CrossRef]

19. Farag, M.R.; Alagawany, M. Erythrocytes as a biological model for screening of xenobiotics toxicity. Chem.-Biol. Interact. 2018,
279, 73–83. [CrossRef] [PubMed]

20. Duchnowicz, P.; Pilarski, R.; Michałowicz, J.; Bukowska, B. Changes in Human Erythrocyte Membrane Exposed to Aqueous and
Ethanolic Extracts from Uncaria tomentosa. Molecules 2021, 26, 3189. [CrossRef]
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Abstract: Otolin-1 is a scaffold protein of otoliths and otoconia, calcium carbonate biominerals from
the inner ear. It contains a gC1q domain responsible for trimerization and binding of Ca2+. Knowl-
edge of a structure–function relationship of gC1q domain of otolin-1 is crucial for understanding
the biology of balance sensing. Here, we show how natural variants alter the structure of gC1q
otolin-1 and how Ca2+ are able to revert some effects of the mutations. We discovered that natural
substitutions: R339S, R342W and R402P negatively affect the stability of apo-gC1q otolin-1, and that
Q426R has a stabilizing effect. In the presence of Ca2+, R342W and Q426R were stabilized at higher
Ca2+ concentrations than the wild-type form, and R402P was completely insensitive to Ca2+. The
mutations affected the self-association of gC1q otolin-1 by inducing detrimental aggregation (R342W)
or disabling the trimerization (R402P) of the protein. Our results indicate that the natural variants
of gC1q otolin-1 may have a potential to cause pathological changes in otoconia and otoconial
membrane, which could affect sensing of balance and increase the probability of occurrence of benign
paroxysmal positional vertigo (BPPV).

Keywords: analytical ultracentrifugation; C1q; calcium binding proteins; circular dichroism; genetic
variation; otoconia; otolin-1; OTOL1; site-directed mutagenesis; thermal shift assay

1. Introduction

C1q superfamily encompasses short chain collagen-like proteins engaged in a wide vari-
ety of biological processes: immune recognition (C1q) [1], metabolic control (adiponectin) [2],
endochondral ossification (collagen X) [3], formation of subendothelial and subcorneal
matrices (collagen VIII) [4], cell adhesion in the retinal pigment epithelium (RPE) (Comple-
ment C1q tumor necrosis factor-related protein 5—C1QTNF5) [5] and more. Over the years,
many disease causing mutations of the proteins from the C1q superfamily were detected.
Many of them involve the globular C-terminal domain (gC1q), which is responsible for
trimerization, which is usually Ca2+-dependent, and for interactions with the macromolec-
ular ligands. Here, we focus on the missense mutations, which result in a substitution
of a single amino acid. Clinically important mutations also involve frameshifts, which
have more pronounced effects, insertion–deletion polymorphisms (indels), which result in
excision or insertion of a DNA fragment, and mutations involving non-coding sequences,
for example introns [6,7]. Typically, the pathogenic missense mutations of the gC1q domain
interrupt trimerization, which results in the inability to form biologically active multimers
and results in the lack of protein secretion or, in milder cases, secretion of defective, in-
correctly folded protein. C1q protein, which initiates a classical complement pathway
upon recognition of immune ligands, is a hexameric assembly of heterotrimers composed
of chains A, B and C. G244R variant of chain B is associated with C1q deficiency, a rare
genetic disease associated with systemic lupus erythematosus and increased susceptibility
to bacterial infections [8]. In the case of adiponectin, R112C and I164T are examples of
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variants, which impair trimerization of adiponectin and secretion of the protein into circula-
tion, which leads to reduced adiponectin levels and ultimately to a diabetic phenotype [9].
In the case of collagen X, various mutations in the gC1q domain (conventionally called
NC1 for collagens) are associated with Schmid metaphyseal chondrodysplasia (spondy-
lometaphyseal dysplasia), a rare genetic disease characterized by short stature, long bone
growth abnormalities and waddling gait [10–13]. S163R variant of C1QTNF5 is involved
in pathogenesis of late-onset retinal macular degeneration due to the weakening of the
intracellular connections in RPE mediated by C1QTNF5. Moreover, mutated C1QTNF5 has
decreased stability leading to its aggregation, which contributes to local tissue damage [5].

Otolin-1 is a protein from the C1q superfamily, which is a crucial component of
the otoconial membrane and organic matrix of otoconia. Otoconia are small, numerous
calcium carbonate biominerals, which appear as “ear dust” embedded in a gelatinous
membrane. They are formed before birth. The otoconial membranes are connected to the
hair cells of the sensory epithelia in the utricle and saccule, which are part of the vestibule
in the inner ear. Aggregated otoconia move in response to the movements of the body,
contributing together with semicircular canals to the sense of balance [14]. Interestingly,
fish have analogous biominerals, otoliths, which in contrast are large, grow continuously
during life and are involved in hearing [15,16]. Otolin-1 was first indirectly found through
comparative analysis of amino acid content of organic matrices of otoliths from many
species of fish, which showed exceptional conservation of amino acid composition and
high content of hydroxyproline [17]. The OTOL1 gene was cloned in 2002 for chum salmon
Oncorhynchus keta [18] and in 2010 for mouse [19] and since then, sequences of otolin-1
from other organisms were inferred from homology.

Although the protein was cloned nearly 20 years ago, still only limited information
is known regarding its structure and function in the inner ear. Ablation of otolin-1 in
zebrafish resulted in formation of detached, often fused otoliths [20]. There are no reports
showing the effects of knockdown of otolin-1 in mammals such as mice. Otolin-1 interacts
with otoconin-90 (Oc90), another abundant otoconial matrix protein, through the globular
gC1q domain and collagen-like domain [19,21]. Together with Oc90, it influenced the
formation of calcite in vitro, which led to formation of barrel-like shape crystals resembling
natural otoconia instead of rhombohedral, which appear in the absence of proteins with
biomineralization activity. Otolin-1 and Oc90 had distinct effects on formation of calcite.
Oc90 seems to increase the nucleation rate of calcium carbonate and inhibit growth of the
crystals, whereas otolin-1 increased the rate of growth of the crystals. Nevertheless, such
artificial otoconia were much larger than the natural biominerals, therefore the mechanisms
of their synthesis in vivo depend on additional factors. In the same study, it was also
shown that otolin-1 can form a hexagonal, fibrillary matrix, which predisposes it to form
an organic scaffold of otoliths and otoconia [22]. It is important to note that in nature, not
only calcite, the most stable polymorph of calcium carbonate, is produced, but aragonite,
vaterite and amorphous calcium carbonate are found in the biominerals [23]. Otoliths of
teleost fish are a good example, as they may contain aragonite or vaterite, depending on the
species and growth conditions of the fish [16,24]. For rainbow trout (Oncorhynchus mykiss),
it was shown that the high molecular weight aggregate extracted from the otolith matrix,
which contained otolin-1, is necessary for formation of aragonite—a native polymorph
of calcium carbonate. However, otolin-1 alone was not enough to drive the formation of
aragonite [25]. Biomineralization of otoconia and otoliths is therefore a complex process,
which depends on otolin-1, other proteins such as Oc90, and multiple other factors.

In our previous studies on the gC1q domain of otolin-1, we showed that it can form
trimers; however, Ca2+ are required to form stable oligomers. We discovered that gC1q
domain of human otolin-1 (hOtolC1q) forms stable oligomers at lower Ca2+ concentrations
than the zebrafish analog, dOtolC1q, which relates to the differences in composition of
endolymph in mammals and fish [26]. The mechanism of trimerization of hOtolC1q in-
volves neutralization of repulsive charge at the axis of a trimer, which normally occurs
due to binding of Ca2+ [27]. In this work, we analyzed the influence of identified natural
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variants of hOtolC1q on ability to form stable trimers and respond to increasing concentra-
tion of Ca2+, which is crucial for function of otolin-1 as an otoconial matrix protein and a
constituent of the otoconial membrane. We were able to classify the variants according to
the extent of their influence on the structure of hOtolC1q, and our results will enable to
interpret clinical symptoms, which could be associated with the occurrence of mutations in
OTOL1 gene. We hypothesize that the mutations can disrupt the delicate homeostasis of
otoconia and contribute to earlier occurrence of pathologies such as benign paroxysmal
positional vertigo (BPPV).

2. Results and Discussion

During the database search, we found many single nucleotide variants (SNVs), includ-
ing two single nucleotide polymorphisms (SNPs—SNVs with prevalence in the population
of 1% or more [7]) in human OTOL1 gene fragment encoding gC1q domain of otolin-1
(hOtolC1q). Then, we checked the position of affected residues in the small angle X-ray
scattering (SAXS)-derived model of hOtolC1q trimer [26] and drew suppositions, how
the mutations could affect structure and function of hOtolC1q. E470A (rs3921595) SNP
was present in nearly 50% of sequencing reads. Since we suspected that due to its acidic
properties E470 could contribute to a Ca2+ binding site, it was a subject of our previous
analysis [27]. R339S (rs540167726) is a rarer SNP with maximal frequency of 2.5%. In
the primary sequence, R339 is near the beginning of the gC1q domain and is placed at
the base of a trimer (Figure 1a). It is modeled adjacent to E471 (Figure 1c), therefore it
can form stabilizing ionic and hydrogen interactions; however, the importance of these
interactions may be minor, as R339 is often replaced by other residues even in mammals
(mouse as an example in Figure 1g, more examples in the Supplementary File S1). Although
R339 is poorly conserved between the classes, we were interested how the substitution
would affect hOtolC1q. Overall, this SNP was predicted to be neutral (Table 1). Out of the
rarer variants of hOtolC1q, which were identified in multiple sequencing reads, R342W
(rs200878802), R402P (rs760999493) and Q426R (rs1243409251) seemed to have a poten-
tially significant impact. Side chain of R342 is exposed to the solvent near the boundary
between the gC1q protomers (Figure 1d). Wider comparison of the mammalian sequences
of otolin-1 showed that this residue is often substituted with glutamine (murine example in
Figure 1g), even in apes (Supplementary File S1). However, substitution with tryptophan
would have much more pronounced effect compared to glutamine, as it would introduce
a hydrophobic aromatic moiety in place of a hydrogen bond donor/acceptor. This could
affect the formation of trimers and modify the surface properties of the protein. R402 is
located in the middle of a β-strand adjacent to a strand containing E417, which together
with D425 forms a known Ca2+ binding site (Figure 1e). The side chain of R402 is predicted
to be at the trimerization surface. Thus, substitution of this residue with proline could
have a very strong detrimental effect on folding of the gC1q domain and binding of Ca2+.
The malformation of the β-strand could propagate further, affecting the whole 10 β-barrel
assembly typical for the C1q superfamily of proteins, especially near the Ca2+ binding
site. Moreover, the substitution could affect the interactions between the protomers. Q426
follows D425 in the sequence, and its side chain is predicted to be at the trimerization
interface (Figure 1f). Thus, substitution to arginine could affect the binding of Ca2+ and
trimerization of the gC1q domain, although the effect should be weaker than for R402P.
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Figure 1. Structural and evolutionary context of the analyzed variants of hOtolC1q. (a–f) SAXS model of trimeric hOtolC1q
with residues shown as sticks: R339S in light blue, R342 in deep blue, R402P in magenta and Q426R in orange. The
E417 and D425 residues forming a Ca2+ binding site are shown in yellow. In a, all protomers are shown in a “cartoon”
representation, in (b–f), one protomer is shown as translucent protein backbone, two others as light and dark gray protein
surface projections. (a)—overall view of the gC1q trimer, (b)—Ca2+ binding site at the top of the trimer, (c)—R339, near
the base of the trimer, with adjacent E471, (d)—R342 near the contact surface of the protomers, (e)—R402, and (f)—Q426,
both near the Ca2+ binding site and the contact surface of the protomers. The visualizations were made using VMD [28].
(g)—Multiple sequence alignment showing the conservation of the gC1q domain of otolin-1 among the classes of the
vertebrates. Investigated residues are highlighted above the alignment. The alignment was done using ClustalX [29] and
visualized using Jalview [30].
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Table 1. Selected known single nucleotide variants of hOtolC1q, their prevalence and predictions of deleteriousness. The
data were retrieved from the Ensembl database, and for SNPMuSiC independently calculated based on the SAXS-derived
model of hOtolC1q trimer (https://soft.dezyme.com/, accessed 16 August 2021) [31].

Variant
dbSNP ID

Highest
Population

MAF
SIFT PolyPhen CADD REVEL MetaLR

Mutation
Assessor

SNP MuSiC

R339S 0.025 0.5
(Tolerated) 0.097(Benign) 3 (Likely

Benign)
0.129 (Likely

Benign)
0.532

(Damaging)
0.268 (Low

Impact)
−0.53

(Neutral)

R342W 1.159 × 10−4 0
(Deleterious)

0.880
(Possibly

Damaging)

22 (Likely
Benign)

0.326 (Likely
Benign)

0.762
(Damaging)

0.904
(Medium
Impact)

0.17
(Deleterious)

R402P 1.394 × 10−4 0
(Deleterious)

0.797
(Possibly

Damaging)

22 (Likely
Benign)

0.518 (Likely
Disease

Causing)

0.674
(Damaging)

0.792
(Medium
Impact)

0.42
(Deleterious)

Q426R 4.643 × 10−4 0.02
(Deleterious)

0.969
(Probably

Damaging)

23 (Likely
Benign)

0.587 (Likely
Disease

Causing)

0.777
(Damaging)

0.758
(Medium
Impact)

0.16
(Deleterious)

MAF—mean allele frequency, prevalence of the variant in the population. SIFT score has a scale from 0 to 1. Variants with scores below 0.05
are predicted to be deleterious. PolyPhen score has a scale from 0 to 1. Variants with scores up to 0.446 are predicted to be benign, from
0.447 to 0.908 to be possibly damaging, and with scores higher than 0.908 to be probably damaging. CADD provides a ranking with higher
scores more likely to be deleterious, the customary boundary is set at 30. REVEL score ranges from 0 to 1 and variants with higher scores
are predicted to be more likely to be pathogenic. MetaLR classifies the variants as ‘tolerated’ or ‘damaging’; a score between 0 and 1 is also
provided and variants with higher scores are more likely to be deleterious. Mutation assessor gives a prediction, which is one of ‘neutral’,
‘low’, ‘medium’ and ‘high’, and the rank score, which is between 0 and 1 where variants with higher scores are more likely to be deleterious.
For SNP MuSiC, positive score predicts the variant to be deleterious, negative to be neutral. SNP MuSiC also predicts solvent accessibility
and effect on thermodynamic and thermal stabilities (results not shown).

The computational predictions accompanying the entries in the Ensembl database
and independently conducted by us using SNPMuSiC suite (Table 1) suggested that all the
rarer variants could be deleterious. The differences between the predictions obtained using
different algorithms are too large to propose a relative degree of severity of the variants.
CADD and MetaLR predictors gave results inconsistent with the other algorithms, as they
did not differentiate the variants to benign or deleterious. However, as for REVEL and
Mutation Assessor, CADD and MetaLR scores for R339S were lower than for the other
variants, therefore it provides a rationale to differentiate this mutation as milder than the
others. Predictions of varying severity of the mutations provided a motivation to produce
the mutated hOtolC1q variants and subject them to analyses, which would reveal how the
mutations affect the solution structure and Ca2+-dependent trimerization of hOtolC1q.

The typical feature of the proteins from the C1q superfamily is trimerization, usually
Ca2+-dependent [1,3,32–34]. We used sedimentation velocity analytical ultracentrifugation
(SV AUC) to see how the mutations could affect the assembly of gC1q trimers of hOtolC1q.
We conducted the experiment for protein concentrations in the range of 0.1 to 0.5 mg/mL to
properly characterize weak self-interactions already observed for wild type hOtolC1q [26].
There, sedimentation coefficient distributions (c(s)) calculated for varying concentrations of
hOtolC1q centrifuged in the absence of Ca2+ were wide, with peaks between 2.0 and 2.5 S,
and shifted continuously with increasing concentration from lower to higher sedimentation
coefficients. The effect was even more pronounced for the zebrafish analogue, dOtolC1q.
This phenomenon is characteristic for loosely bound complexes, which associate and
dissociate rapidly during the SV AUC experiment [35]. The oligomerization of hOtolC1q
seems to occur sequentially and follow a formula:

An + A � An+1 (1)

where A is a protein monomer and the superscript indicates the stoichiometry of the
oligomer. Fast kinetics of association and dissociation result in observation of intermediate
species with sedimentation coefficients and apparent molecular weights of hOtolC1q
between dimer and trimer, and even between monomer and dimer for dOtolC1q. A
tendency of Ca2+-free hOtolC1q to form heavy aggregates was also noted. When 10 mM
Ca2+ were added, a conformational change occurred which led to stabilization of the
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trimers at all tested protein concentrations. The trimers appeared in the c(s) distributions as
a sharp peak at 2.55 S. Ca2+ ions also diminished the tendency of hOtolC1q to form heavy
aggregates. Here, the experiment for hOtolC1q was replicated to serve as a control and the
c(s) distributions are shown in the background of plots in Figure 2. In the case of R339S,
the equilibrium of oligomerization in the absence of Ca2+ was slightly shifted to lighter
forms compared to hOtolC1q (Figure 2a, Table S1), which we interpret as destabilization of
the gC1q trimer. Conversely, Q426R variant apparently stabilized the gC1q trimer in the
absence of Ca2+, as the equilibrium was shifted towards heavier forms (Figure 2d, Table S1).
Moreover, hOtolC1q Q426R did not form heavy aggregates in the absence of Ca2+. The
apparent beneficial effect of this variant is especially interesting if we consider that the
most algorithms predicted it to be the most damaging (Table 1). Additionally, 10 mM
CaCl2 diminished the effects of R339S and Q426R variants, as the c(s) distributions were
identical as for hOtolC1q, showing the presence of homogenous trimers with no heavier
aggregates (Figure 2e,h). R342W mutation was in contrast damaging, as it predisposed
hOtolC1q to form heavy aggregates both in the absence and in the presence of Ca2+

(Figure 2b,f) in a proportion higher than for wild type hOtolC1q. In the absence of Ca2+,
we observed discrete populations of dimers and tetramers, with increased proportion of
tetramers at higher protein concentrations. Apparently, for this mutant, when Ca2+ is
absent, the oligomerization mechanism switches from sequential association of monomers
to association of dimers:

2 A � A2 � A4 . . . An (2)

Figure 2. Influence of the mutations on oligomerization of hOtolC1q. Variants of hOtolC1q: (a,e) R339S, (b,f) R342W,
(c,g) R402P, (d,h) Q426R were subjected to sedimentation velocity analytical ultracentrifugation at concentrations of
0.1–0.5 mg/mL in the presence of (a–d) 1 mM EDTA or (e–h) 10 mM Ca2+. The c(s) distributions are shown as solid lines.
The dashed lines in the background show the c(s) distributions calculated for wild type hOtolC1q.

Interestingly, the Ca2+ apparently rescued the correct oligomerization mechanism,
as described by the Equation (1), because trimers were found for hOtolC1q R342W with
10 mM Ca2+. However, Ca2+ did not completely protect hOtolC1q R342W from aggregation,
as the aggregate trace was still detected. R402P mutation had the most striking effect on
the oligomerization of hOtolC1q—this variant was dimeric both in the absence and in
the presence of Ca2+ (Figure 2c,g). Dimerization of hOtolC1q R342W and R402P did not
involve the unique cysteine residue present in hOtolC1q (Figure 1g), as c(s) distributions
calculated for samples centrifuged with 1 mM DTT were identical to those obtained in the
absence of the reducing agent (Figure S1).

SV AUC showed that the natural variants, especially R402P, had a major influence
on the assembly of gC1q trimers of hOtolC1q. To gain more detailed insight into the

224



Int. J. Mol. Sci. 2021, 22, 9085

structural change induced by the mutations, we applied circular dichroism spectroscopy
(CD) (Figure 3) with the secondary structure estimation using CDPro (Figure S2). As for
SV AUC, the experiment for hOtolC1q was replicated as a control (Figure 3a). The CD
spectrum of hOtolC1q in the absence of Ca2+ indicates that the polypeptide chain is folded
into β-sheets, as a negative band is present near 215 nm. The protein also contains a
substantial amount of disordered regions, because the ellipticity decreases below 210 nm.
There is also a notable signal attributed to aromatic side chains with a positive ellipticity
maximum at 233 nm. In the presence of at least 1 mM Ca2+, structural change attributed to
increase in β-strand content caused by binding of Ca2+ can be observed: position of the
minimum shifts from 215 to 218 nm, and ellipticity is sharply increasing below 215 nm.
Ellipticity near 233 nm also increased in response to added Ca2+ possibly due to structural
rearrangements around the indole moieties of tryptophan side chains [26]. Similar features
can be observed in the spectra of R339S mutant (Figure 3b). The band at 215 nm present
in the absence of Ca2+ is slightly deeper than for the wild type hOtolC1q, but in the
presence of 10 mM Ca2+, the spectra of R339S and the native form are identical (Figure 3b).
This result is consistent with SV AUC, where small differences were also observed in the
absence of Ca2+ and none in the presence of Ca2+. Similar changes appeared for the Q426R
mutant (Figure 3e); however, the Ca2+-induced conformational change became apparent at
10 mM Ca2+ instead of 1 mM. This indicates that the substitution near the Ca2+-binding
site weakened the affinity of hOtolC1q towards Ca2+. The spectra of hOtolC1q R342W
do not have the positive band at 233 nm and have a deeper negative band at 215–218 nm
(Figure 3c). Interestingly, 10 mM Ca2+ instead of 1 mM was required to induce the structural
change here as well. This shows that the mutation at the base of a trimer, at the opposite
side from the Ca2+ binding site, can have a pronounced effect on binding of Ca2+. As in
the case of SV AUC, the most striking effect was noted for the R402P mutant, which was
completely insensitive to the presence of Ca2+ (Figure 3d). The spectrum also shows no
signal around 233 nm and a sharp decrease in ellipticity below 210 nm, which suggests that
the degree of disorder compared to the wild type hOtolC1q was increased, probably due
to the disruption of the β-strand containing R402, and possibly due to further alterations.
Taken together, the CD spectra for hOtolC1q saturated with 10 mM Ca2+ (Figure 3f), which
is biologically relevant since otolin-1 is present in the matrix of calcium carbonate otoconia,
show that considering the secondary structure, R339S and Q426R mutations are benign,
R342W is deleterious, and R402P may severely disrupt the function of hOtolC1q.

An even more detailed view of the changes caused by the natural variants can be
obtained using thermal shift assay (TSA). We previously used this technique to discover
the striking stabilization of hOtolC1q with Ca2+, evidenced by transition temperature (Tm)
change from 40 to over 95 ◦C. The results were consistent with temperature-dependent
changes in the CD spectra [26]. Using TSA, we also found striking effects of alanine muta-
tions in the Ca2+ binding site of otolin-1, which did not always lead to the destabilization
of the protein [27]. The experiment replicated here confirmed that native hOtolC1q was
slightly stabilized with 0.1 mM Ca2+ and strongly stabilized at higher concentrations—the
Tm increased to 66 ◦C in 0.1 mM Ca2+ and to more than 95 ◦C in 100 mM Ca2+ (Figure 4a).
R339S was slightly, but consistently less stable than hOtolC1q—the Tm difference was near
2 ◦C under all tested conditions (Figure 4b). The slight decrease of Tm can be associated with
ablation of interactions between R339 and E471 (Figure 1c). hOtolC1q was substantially
destabilized by the R342W substitution, as the Tm was decreased to 37 ◦C in the absence of
Ca2+ (Figure 4c). Moreover, this mutant was stabilized at 10 mM Ca2+, compared to 1 mM
Ca2+ for wild-type hOtolC1q, which is consistent with the occurrence of the secondary
structure change at 10 mM Ca2+. Ultimately, R342W had a stability similar to hOtolC1q at
10–100 mM concentrations of Ca2+, showing that Ca2+ mitigated the detrimental effect of
the mutation. It was also noticeable that the fluorescent signal of SYPRO Orange bound
to R342W was much weaker than for other variants, and the transitions were not clear.
Modification of the surface properties of hOtolC1q by the mutation apparently interfered
with binding of the SYPRO Orange probe. Q426R and, to a lower extent, R402P, were
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more stable than hOtolC1q in the absence of Ca2+ (Tm of 57.2 ◦C and 46.8 ◦C, respectively,
Figure 4d,e). However, the Ca2+ stabilized Q426R more weakly than hOtolC1q (Tm 72.2 ◦C
compared to 86.9 ◦C at 10 mM Ca2+), and did not stabilize R402P at all. Together with the
results of SV AUC, this shows that Q426R mutation is stabilizing at low concentrations
of Ca2+, but detrimental at higher concentrations, albeit not damaging enough to prevent
trimerization of hOtolC1q. The results of TSA are also fully compatible with the results
of CD, which showed that R342W and Q426R mutants are less sensitive to Ca2+ than the
native hOtolC1q. The summary of the Tm for all the tested variants is provided in Figure 4f
and Table S2.

Figure 3. Changes in the secondary structure of (a) hOtolC1q introduced by the mutations: (b) R339S, (c) R342W, (d) R402P
and (e) Q426R. Circular dichroism spectra were collected for 0.20 mg/mL proteins in the absence and in the presence of
0.1–100 mM Ca2+. The panel (f) contains a comparison of the spectra for all tested variants at 10 mM Ca2+.

TSA also provides interesting insight into the extent of exposition of hydrophobic
regions on the surface of a protein, which was exhibited for gC1q domains of C1q and
collagen X [1,3]. Affinity of hOtolC1q to hydrophobic compounds in the native state is
evident as SYPRO Orange emits a strong fluorescence before the protein becomes unfolded.
The further increase of fluorescence attributed to denaturation appears upon heating, when
hydrophobic regions from the core of the protein become exposed and accessible for SYPRO
Orange (Figure 4a). This is equivalent to binding of 8-anilino-1-naphthalenesulfonic acid
(ANS), a fluorescent probe used specifically to probe the affinity of proteins to hydrophobic
compounds [36,37]. ANS was in fact used in a prototypical TSA experiment [38] before
SYPRO Orange was adopted due to its superior compatibility with existing qPCR de-
vices [39]. In the case of hOtolC1q, the exposition of hydrophobic side chains decreases
upon binding of Ca2+, as 10–100 mM Ca2+ decrease the baseline fluorescence at 20 ◦C
(Figure 4a). While R339S mutant shows similar behavior to hOtolC1q, the increase of
fluorescence of SYPRO Orange during denaturation of the R342W is poor, decreasing the
robustness of the analysis for R342W mutant (Figure 4c). Interestingly, R402P and Q426R
mutations decreased the baseline fluorescence (in the case of R402P—to a background
level), which shows that structural alterations caused by these mutations resulted in inac-
cessibility of the hydrophobic surface groups of hOtolC1q in the native state (Figure 4d,e).
This could hamper the interactions with other macromolecules in the otoconial matrix or
otoconial membrane and impair proper formation and anchoring of otoconia during the
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embryonic development [40]. Overall, beside the primary evidence of change of thermal
stability, TSA contributes to the observations that mutations and binding of Ca2+ cause
pronounced structural changes in hOtolC1q affecting the whole globular trimer.

Figure 4. Changes in the thermal stability of hOtolC1q introduced by the mutations, analyzed by thermal shift assay (TSA).
(a) Native hOtolC1q (control), (b) R339S, (c) R342W, (d) R402P and (e) Q426R. The Tm values are aggregated in the bar
graph (f) and in Table S2.

The SV AUC, CD and TSA analyses showed that the mutations affected not only the
solution structure of hOtolC1q, but also decreased (R342W, Q426R) or diminished (R402P)
the ability of hOtolC1q to bind Ca2+. We sought to gain a more detailed insight into these
effects by conducting a Tb3+ binding assay, which allows to estimate the relative affinity of
the protein to Ca2+ [27]. In the case of hOtolC1q, the direct measurement of binding of Ca2+

was not possible due to the irreversible precipitation of the protein during decalcification
procedure involving either incubation with EDTA/EGTA and exhaustive dialysis against
a decalcified solution, or direct incubation with buffered metal-binding Chelex resin. As
Tb3+ tend to strongly bind to the Ca2+-binding proteins [41,42], these ions could displace
the trace Ca2+ from buffers and host cells and allow to conduct a comparative analysis of
affinity of the proteins to Ca2+. We observed that all the mutations decreased the affinity of
hOtolC1q to Ca2+: the dissociation constant (Kd) was increasing in the order of hOtolC1q
< R339S < R342W < Q426R < R402P (Figure 5a). The binding of Tb3+ was equivalent to
Ca2+. hOtolC1q, R339S and Q426R responded to Tb3+ similarly as to Ca2+ by forming
homogenous trimers (Figure 5b). Their CD spectra in the presence of Tb3+ were also
identical as in the presence of Ca2+ (compare Figures 5c and 3f). As expected, the structural
changes occurred at low concentration of Tb3+, 35–82 μM, depending on the experiment.
Interestingly, Q426R seemed to bind Tb3+ more preferentially than the other variants, as
35 μM Tb3+ stabilized it more strongly than 10 mM Ca2+. In the case of R342W, Tb3+ had
an additional effect of intensifying the aggregation (compare Figure 5b with Figure 2f).
Interestingly, despite the lack of responsiveness to Ca2+, R402P mutant seemed do bind
Tb3+. Apparent affinity to Tb3+ was actually greater than for dOtolC1q, which responded
to Ca2+ at higher concentrations than hOtolC1q [26,27]. Apparently, despite losing the
ability to bind Ca2+, the R402P mutant retained some affinity to Tb3+. The binding seems to
be non-specific though, as Tb3+ did not alter the secondary structure, induce trimerization
or increase the thermal stability of the R402P mutant (Figures 4d and 5b,c). Non-specific
binding of lanthanide ions, including Tb3+, was identified for many proteins by X-ray
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crystallography [43]. Although the Tb3+ binding assay alone is not sufficient to determine
the absolute affinity of a protein to Ca2+, it is useful for comparative analyses of the variants
of the same protein from the same organism, when direct measurement of affinity to Ca2+

is not available. Here, CD and TSA were useful supplementary techniques. Moreover, SV
AUC provided a mechanistic insight into the effects of mutations on the Ca2+-dependent
assembly of hOtolC1q, and supported the observation that R402P mutant is effectively
unable to bind Ca2+.

Figure 5. Binding of Tb3+ by hOtolC1q and its variants, analyzed by fluorometric titration, sedimentation velocity analytical
ultracentrifugation and circular dichroism. (a) The results of a titration experiment, in which 3.7 μM proteins were treated
with appropriate excess of TbCl3. The fluorescence intensity data were measured 15 min after addition of each portion of
Tb3+, corrected for background fluorescence and fitted to a single binding site per monomer model. Apparent Kd values are
given in the parentheses in the legend. (b) The c(s) distributions calculated from sedimentation velocity data obtained for
0.25 mg/mL (14.7 μM) hOtolC1q variants in the presence of 7-fold molar excess of TbCl3. The distributions for R339S and
Q426R variants overlap with that calculated for hOtolC1q. Distribution of hOtolC1q with 10 mM Ca2+ is shown as a dashed
line in the background for comparison. (c) The circular dichroism spectra recorded for 0.2 mg/mL (11.8 μM) hOtolC1q
variants in the presence of 7-fold molar excess of TbCl3. Spectrum obtained for hOtolC1q with 10 mM Ca2+ is shown in the
background as a dashed line.

Although the availability of the phenotype data, which can be associated with specific
genetic variants, is continuously increasing, the algorithms which depend solely on the
protein sequences do not allow to reliably predict the effects of the mutations. From the
variants of hOtolC1q clearly predicted to be deleterious: R342W, R402P and Q426R, Q426R
seemed like a candidate for the most detrimental of the three. However, the R402P variant
was clearly the most damaging for the protein. It is worth noting that this variant was
correctly predicted as the most damaging by a model-dependent algorithm SNP MuSiC.
This highlights the importance of structural studies of proteins involving not only atomic-
level structure determination with nuclear magnetic resonance, X-ray crystallography
or cryoelectron microscopy, but also molecular shape determination with less precise
techniques such as SAXS or its sister method, small angle neutron scattering (SANS).
Together with advanced computational 3D structure prediction methods, SAXS and SANS
can give enough structural information to correctly predict the effects of the mutations on
the structure and function of the proteins. This is especially important in the analysis of
intrinsically disordered proteins, which lack a defined structure to a varying extent, and
thus determination of their 3D structure at atomic resolution may be impossible [44]. In
our case, CD and TSA gave detailed information regarding the effects of the mutations
of the gC1q domain of otolin-1. SV AUC gave more general, but very important insight
on a larger scale, as it showed how the trimer assembly and aggregation propensity of
hOtolC1q were affected. This is an example of the advantage of SV AUC as a preferred
method for analysis of mutated oligomeric proteins. Overall, the molecular arrangement of
gC1q trimer seems to be resilient against relatively benign mutations, but severely affected
by the extensive disruption of the secondary structure within the protomer (R402P) or by
major modifications of solvent-exposed moieties (R342W).
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R339S polymorphism of hOtolC1q is potentially benign, as it may affect structure and
function of otolin-1 to a small extent and only at low concentrations of Ca2+. We noted
similar effect for a prevalent polymorphism of otolin-1, E470A, which similarly to R339S
slightly decreased the stability of hOtolC1q trimer in the absence of Ca2+ and slightly
increased its tendency to form heavy aggregates [27]. Although these changes do not seem
to be significant, they may negatively affect a decades long function of otolin-1 in the inner
ear. According to the accumulated knowledge, otoconia and otoconial membrane do not
regenerate, and the susceptibility of the otoconia to detach and incidentally accumulate in
the semicircular canals leading to BPPV steadily increases during life [45–47]. Although it
is normal that small amounts of otolin-1 leak from the labyrinth, patients suffering from
BPPV have increased levels of otolin-1 in the serum [48,49]. It is important to note that
beside the otoconial matrix, which is embedded in the solid calcium carbonate otoconium,
otolin-1 is found in a fibrillary network interconnecting the otoconia [19,21,50], which
makes it exposed to eventual pathological decreased level of Ca2+ in the endolymph.
Destabilization of the otoconia and otoconial membrane, and resulting increased rate
of release of otolin-1, may thus be a driving force of BPPV. Even the minor additional
weakening of otolin-1 network caused by R339S and E470A mutations could accelerate the
degradation of otolith organ enough to be a contributing factor to the earlier onset of BPPV,
because they would make otolin-1 more sensitive to transient decreases in concentration of
Ca2+ in the endolymph.

The rarer R342W and Q426R variants have strongly decreased the responsiveness
of hOtolC1q to Ca2+ as they seemed to stabilize at approximately 10 mM of Ca2+ instead
of 0.1–1 mM. Therefore, even in the healthy state with normal Ca2+ concentration in the
endolymph (92–133 μM in guinea pig endolymph, possibly similar in humans) [51] these
variants could weaken the network formed by otolin-1, induce early degradation of otolith
organ and cause frequent BPPV at younger age. To remain stable, R342W and Q426R
would require at least 1 mM Ca2+ in the endolymph, a concentration that is observed
in hydropic ears serving as models for Ménière’s disease, which is characterized by the
endolymphatic hydrops, attacks of vertigo and progressive hearing loss [51,52]. R342W and
Q426R also modify surface properties of hOtolC1q, possibly interrupting protein–protein
interactions in the otoconial matrix and otoconial membrane. R402P variant has a severe
destabilizing effect on hOtolC1q, even preventing hOtolC1q from forming the trimers.
As the network formed by otolin-1 seems to be interconnected by the globular heads of
otolin-1 [22], such disruption would distort the protein matrix and cause a dysfunction of
the otolith organ. However, lack of the clinical data related to the investigated variants of
otolin-1 rule out the formulation of definitive conclusions. The results of our experiments
should, therefore, bring attention to genetic variation of otolin-1 in patients with inner
ear disorders, especially suffering from BPPV and other manifestations of imbalance in
younger age. Protein–protein interactions in the otoconial membrane and in the otoconial
matrix are another challenging area of research, which remains to be studied. Definite
identification of the proteins involved, characterization of these interactions and effects
of mutations would improve our understanding of the biomineralization mechanisms of
otoconia and otoliths.

3. Materials and Methods

3.1. Accession Numbers

Human OTOL1 gene Ensembl accession ID: ENSG00000182447
Human otolin-1 Uniprot accession ID: A6NHN0
Human otolin-1 R339S SNP variant ID: rs540167726 (A > C)
Human otolin-1 R342W SNP variant ID: rs200878802 (C > T)
Human otolin-1 R402P SNP variant ID: rs760999493 (G > C)
Human otolin-1 Q426R SNP variant ID: rs1243409251 (A > G)
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3.2. Key Resources

Synthetic cDNA encoding full-length human otolin-1 was codon optimized for Es-
cherichia coli and provided by GeneArt (currently Thermo Fisher Scientific, Warsaw, Poland).
Nucleotide primers were provided by Genomed (Warsaw, Poland). pQE-80L plasmid ex-
pression vector was from Qiagen (Hilden, Germany). Escherichia coli Top10 cells, DpnI
enzyme, DNA ladders, protein markers, and LB broth were from Thermo Fisher Scientific.
One-fusion DNA Polymerase was from GeneOn (Ludwigshafen am Rhein, Germany; dis-
tributed by ABO, Gdańsk, Poland). BlueStain sensitive and SimplySafe stains were from
EurX (Gdańsk, Poland). Agar, agarose, tris(hydroxymethyl)aminomethane (Tris), ethylene-
diaminetetraacetic acid (EDTA), carbenicillin, isopropyl β-D-1-thiogalactopyranoside (IPTG),
NaCl, glycerol, 2-mercaptoethanol, imidazole, glycine, sodium dodecyl sulfate (SDS) and
CaCl2 were from Carl Roth (Karlsruhe, Germany). Escherichia coli BL21(DE3) cells, TB
broth, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), phenylmethylsulfonyl
fluoride (PMSF), DNase I, RNase A, terbium(III) chloride hexahydrate, xylenol orange
disodium salt, dithiothreitol (DTT) and SYPRO Orange were from Sigma (currently Merck,
Warsaw, Poland). Empty Tricorn and Superdex 200 Increase 10/300 GL columns were
from (GE Healthcare Life Sciences, currently Cytiva, Warsaw, Poland). TALON® Metal
Affinity resin was from Takara Bio (Mountain View, CA, USA; distributed by Biokom,
Janki, Poland).

3.3. Single Nucleotide Polymorphisms and Variants

Ensembl genome browser (https://www.ensembl.org/index.html, accessed 16 August
2021) was queried for known SNPs in human otolin-1 gene (OTOL1, ENSG00000182447).
Boundaries of the gC1q domain were retrieved from Uniprot database (A6NHN0) as 338–
477. The entries were accompanied by mutation severity predictions made using SIFT
(https://sift.bii.a-star.edu.sg/, accessed 16 August 2021) [53], PolyPhen2 (http://genetics.
bwh.harvard.edu/pph2/, accessed 16 August 2021) [54], CADD (https://cadd.gs.washington.
edu/, accessed 16 August 2021) [55], REVEL (https://sites.google.com/site/revelgenomics/,
accessed 16 August 2021) [56], MetaLR (https://sites.google.com/site/jpopgen/dbNSFP,
accessed 16 August 2021) [57] and Mutation assessor (http://mutationassessor.org/r3/,
accessed 16 August 2021) [58] tools. Additionally, for all investigated mutations, SNP MuSiC
(https://soft.dezyme.com/, accessed 16 August 2021) tool was used to predict effects on
protein stability [31]. Model of gC1q trimer, which was used as a template, was based on
already published ensemble optimization method (EOM) analysis conducted on the basis of
SAXS data [26]. Default parameters were used in all predictions. The structure model was
visualized using VMD software (University of Illinois, https://www.ks.uiuc.edu/Research/
vmd/, version 1.9.3, accessed 20 August 2021) [28].

3.4. Preparation of Mutated gC1q Genes

Synthetic cDNA of hOtolC1q, which was previously subcloned into pQE-80L plasmid
expression vector [26], was used as a template in modified QuickChange®, which was
conducted as described [59]. One-fusion DNA polymerase was used in the mutagenic
polymerase chain reaction (PCR). For the calculation of the annealing temperatures of the
primers, the concentration of KCl in the reaction mixture was assumed to be 0.1 M, as in
the assay buffer of the polymerase. Plasmids were propagated in Escherichia coli TOP10
cells. Progress of the cloning was followed by agarose electrophoresis with SimplySafe
stain. All mutated genes were analyzed by DNA sequencing (Genomed).

3.5. Protein Expression and Purification

Escherichia coli BL21(DE3) cells were chemically transformed by heat shock and grown
on plates containing LB broth with 1.5% agar and 100 μg/mL carbenicillin at 37 ◦C
overnight. Single colonies were picked and used to inoculate starter cultures contain-
ing 100 mL of TB broth with carbenicillin, which were incubated overnight at 37 ◦C,
200 rpm. Portions of 500 mL TB with carbenicillin were inoculated with 2% volume of

230



Int. J. Mol. Sci. 2021, 22, 9085

starter culture and incubated at 29 ◦C, 200 rpm. After reaching the optical density at 600 nm
of at least 0.5, cultures were cooled to 15 ◦C and the expression of the protein of interest was
induced by 0.5 mM IPTG. The culture was continued overnight (16–18 h) at 15 ◦C, 200 rpm.
Cells were collected by centrifugation at 5000× g at 4 ◦C for 15 min and resuspended in
H10Na500G5 buffer (HEPES 10 mM, pH 7.0 (20 ◦C), NaCl 500 mM, glycerol 5% (v/v)) with
freshly added 1 mM 2-mercaptoethanol. The cells were kept frozen at −80 ◦C.

Cell lysis was initiated by thawing in a room temperature water bath. After thawing,
0.2 mg/mL PMSF, 20 μg/mL DNase I and 20 μg/mL RNase A were added. The lysis was
achieved by applying 10 sonication cycles for 30 s with 1 min breaks in a Cole-Parmer
CPX 500 ultrasonic processor with a microtip and amplitude set at 35% (Cole-Parmer,
Vernon Hills, IL, USA). The cell suspension was cooled in ice to maintain the temperature
below 10 ◦C. Lysates were clarified by centrifugation at 18,500× g for 30 min at 4 ◦C and
incubated with 1 mL TALON® Metal Affinity resin for 1 h in a cold room (4–6 ◦C) in an
orbital mixer set at 5 rpm. The resin was separated by centrifugation at 700× g for 5 min
at 4 ◦C, washed with 20 bed volumes of H10Na500G5 (without the 2-mercaptoethanol),
centrifuged again and packed in a glass Tricorn column. The column was connected
to ÄKTA Avant chromatography system (GE Healthcare Life Sciences) with flow set at
1 mL/min. Contaminants were washed away with 20 bed volumes of H10Na500G5
and subsequently with 20 bed volumes of the buffer with 30 mM imidazole. Mutated
hOtolC1q was eluted with the buffer containing 200 mM imidazole. The eluate was
concentrated in Amicon Ultra centrifuge filters with 10 kDa cutoff (Merck) and subjected
to gel filtration using Superdex 200 Increase 10/300 GL column operated at 0.75 mL/min
with H10Na500G5 as a mobile phase. Pure fractions were identified by SDS-PAGE with
acrylamide percentage of 4% in a stacking gel and 12% in a resolving gel in a Laemmli
buffer system (Tris-glycine-SDS) (Figure S3) [60]. Pure protein samples were stored at
–80 ◦C. For subsequent experiments, protein concentration was determined by measuring
absorbance at 280 nm with elution buffer as a reference. The protein extinction coefficients
and molecular weights were estimated using ProtParam tool (https://web.expasy.org/
protparam/, accessed 16 August 2021) [61].

3.6. Tb3+ Binding Fluorescence

Binding of Tb3+ ions to hOtolC1q and its mutants was assessed using steady-state
fluorescence. Terbium (III) chloride was dissolved in MilliQ water to a final concentration
of approximately 0.5 M. Exact concentration of TbCl3 was determined by titration of diluted
stock solution with EDTA in the presence of xylenol orange. Aliquots of diluted TbCl3
were added to 2 mL 3.7 μM protein solution in a 10 × 10 mm quartz SUPRASIL® cuvette
(Hellma Analytics, Müllheim, Germany) and incubated for 15 min at room temperature.
Subsequently, fluorescence emission at 520-580 nm was recorded using an excitation
wavelength of 280 nm using a Fluorolog-SPEX fluorimeter (HORIBA Scientific, Jobin-Yvon,
Kyoto, Japan) equipped with a Peltier heating accessory set at 20 ◦C. The bandwidth was
set at 5 nm for both excitation and emission monochromators. A cut-off filter absorbing
below 350 nm was installed in the emission path. Obtained fluorescence intensities were
processed and fitted to a model based on work by Gonzalez et al. [62,63]. Data analysis
was conducted as described [27].

3.7. Circular Dichroism

Circular dichroism of 0.2 mg/mL proteins in H10Na500G5 with 1 mM EDTA, 0.1 mM
CaCl2, 1 mM CaCl2, 10 mM CaCl2, 100 mM CaCl2 or 7-fold excess of TbCl3 was measured
in 1 mm quartz SUPRASIL® cuvettes (Hellma Analytics, Müllheim, Germany) using Jasco
J-815 spectropolarimeter (Jasco, Easton, MD, USA) with a Peltier temperature control
accessory set at 20 ◦C. The proteins were incubated with the additives at room temperature
for at least 1 h before the measurements. The spectra were collected between 200 and
260 nm every 1 nm at scanning speed of 50 nm/min with five accumulations. Data, for
which photomultiplier voltage was below 600 V, were analyzed. CD spectra of the proteins
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were corrected for buffer background signal and normalized for protein composition and
concentration using an equation [64]:

θmrw =
θ·MRW

10·c·l

[
deg·cm2

dmol

]
(3)

where θmrw is a mean residue ellipticity, θ—ellipticity [degrees], MRW—mean residual
weight of a protein [g/mol], c—protein concentration [g/L] and l—optical pathlength of a
cuvette [cm]. The secondary structure content was estimated using CDPro [65].

3.8. Analytical Ultracentrifugtion

Sedimentation velocity analytical ultracentrifugation (SV AUC) was conducted in
a Beckman Coulter ProteomeLab XLI analytical ultracentrifuge (Beckman Coulter, Brea,
CA, USA) with an An60Ti rotor and assembled cells with two-channel 12 mm charcoal
filled Epon® centerpieces and quartz windows, or sapphire windows for samples con-
taining DTT. The proteins were analyzed at concentrations of 0.1, 0.25 and 0.5 mg/mL in
H10Na500G5 with 1 mM EDTA or 10 mM CaCl2. Additional measurements were made
for 0.25 mg/mL protein with EDTA and CaCl2 supplemented with 1 mM DTT. Effect
of Tb3+ was analyzed by centrifuging 0.25 mg/mL protein with 7-fold molar excess of
TbCl3. Assembled cells with the samples were preincubated in the ultracentrifuge for
3 h at 20 ◦C and then centrifuged at 50,000 rpm (approximately 200,000× g at the bot-
tom of the cell) overnight. The absorbance scans at 280 nm were collected continuously
with 0.003 cm resolution. The scans were time-corrected [66] and analyzed in SEDFIT
(version, 16.1c, October 2018, available at https://sedfitsedphat.nibib.nih.gov/, accessed
16 August 2021) using a continuous c(s) distribution model [67] with at least 20 points
per 1 S. Partial specific volumes of the proteins, densities and dynamic viscosities of the
solvents were calculated using SEDNTERP (version 3.0.3, 14 March 2021, available at
http://www.jphilo.mailway.com/download.htm, accessed 16 August 2021). Maximum en-
tropy regularization with p = 0.95 was used. Simplex and Marquardt–Levenberg algorithms
were alternately used until the RMSD converged. Among the results of the calculations
were sedimentation coefficients (s), sedimentation coefficients corrected for water at 20 ◦C
(s20,w), weight-averaged sedimentation coefficients (s20,w), apparent molecular weights
(MWapp) and frictional ratios (f /f 0). c(s) distributions were visualized using GUSSI (version
1.4.2, 24 July 2018, available at https://www.utsouthwestern.edu/labs/mbr/software/,
accessed 16 August 2021) [68] and Origin Pro 9.0 software.

3.9. Thermal Shift Assay

Thermal shift assay (TSA) was conducted as described [27]. Five μM solutions of
the proteins in H10Na500G5 were supplemented with SYPRO Orange at concentration
of 5× (hOtolC1q, R339S, R402P, Q426R) or 10× (R342W). The measurements were done
in the presence of 1 mM EDTA, 0.1 mM CaCl2, 1 mM CaCl2, 10 mM CaCl2, 100 mM
CaCl2, and 7-fold molar excess of TbCl3. Final sample volume was 20 μL. The samples
and the non-protein controls (Figure S4) were aliquoted into a 96-well plate in triplicate,
covered with optically clear foil and incubated at room temperature for at least 1 h be-
fore the measurements. Fluorescence of SYPRO Orange was measured using Applied
Biosystems ImageQuant5 qPCR thermal cycler (Thermo Fisher Scientific) with optical
filters set as x1-m3 (excitation at 470 ± 15 nm, emission at 587 ± 10 nm) between 20 and
99 ◦C during heating at 0.033 ◦C/s. The data were analyzed using Protein Thermal Shift
software (Thermo Fisher Scientific). Transition temperatures (Tm) were determined from
the derivative of fluorescence with increasing temperature (dF/dT).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22169085/s1, Supplementary File S1.pdf—multiple sequence alignment of mammalian
sequences of gC1q domain of otolin-1 found during NCBI BLAST search. Supplementary File S2.pdf
contains Figures S1–S4, Tables S1 and S2. Figure S1. Dithiothreitol (DTT) does not affect the oligomer-
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ization of hOtolC1q R342W and R402P. Figure S2. Estimation of the secondary structure content
of hOtolC1q and its mutants. Figure S3. Purification of hOtolC1q and its mutants. Figure S4.
Background fluorescence in the thermal shift assay. Table S1. Parameters derived from the sedimen-
tation velocity analytical ultracentrifugation. Table S2. Transition temperature (Tm) values (in ◦C)
determined using the thermal shift assay.
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Abbreviations

ANS 8-anilino-1-naphthalenesulfonic acid
BPPV benign paroxysmal positional vertigo
C1QTNF5 complement C1q tumor necrosis factor-related protein 5
CD circular dichroism spectroscopy
f /f 0 frictional ratio
dOtolC1q gC1q domain of zebrafish otolin-1
DTT dithiothreitol
EDTA ethylenediaminetetraacetic acid
EOM ensemble optimization method
gC1q globular C-terminal domain
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
hOtolC1q gC1q domain of human otolin-1
IPTG isopropyl β-D-1-thiogalactopyranoside
Kd dissociation constant
MWapp apparent molecular weight
Oc90 otoconin-90
PCR polymerase chain reaction
PMSF phenylmethylsulfonyl fluoride
RPE retinal pigment epithelium
s20,w sedimentation coefficient corrected for water at 20◦C
SANS small angle neutron scattering
SAXS small angle X-ray scattering
SDS sodium dodecyl sulfate
SNP single nucleotide polymorphism
SV AUC sedimentation velocity analytical ultracentrifugation
Tm transition temperature
Tris tris(hydroxymethyl)aminomethane
TSA thermal shift assay
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Abstract: Carbonic anhydrases (CAs) are a family of ubiquitous enzymes that catalyze the intercon-
version of CO2 and HCO3

−. The “iota” class (ι-CA) was first found in the marine diatom Thalassiosira

pseudonana (tpι-CA) and is widespread among photosynthetic microalgae and prokaryotes. The ι-CA
has a domain COG4875 (or COG4337) that can be repeated from one to several times and resembles a
calcium–calmodulin protein kinase II association domain (CaMKII-AD). The crystal structure of this
domain in the ι-CA from a cyanobacterium and a chlorarachniophyte has been recently determined.
However, the three-dimensional organization of the four domain-containing tpι-CA is unknown.
Using biophysical techniques and 3-D modeling, we show that the homotetrameric tpι-CA in solution
has a flat “drone-like” shape with a core formed by the association of the first two domains of each
monomer, and four protruding arms formed by domains 3 and 4. We also observe that the short
linker between domains 3 and 4 in each monomer confers high flexibility, allowing for different
conformations to be adopted. We propose the possible 3-D structure of a truncated tpι-CA containing
fewer domain repeats using experimental data and discuss the implications of this atypical shape on
the activity and metal coordination of the ι-CA.

Keywords: analytical ultracentrifugation; CO2 concentrating mechanism; diffusion-ordered NMR
spectroscopy; electrospray ionization mass spectrometry; homotetramer; manganese; metalloprotein;
photosynthesis; small-angle X-ray scattering

1. Introduction

Carbonic anhydrases (CAs; EC 4.2.1.1) are widespread enzymes found in all domains
of life [1,2]. They all catalyze the same reversible reaction of CO2 hydration to form HCO3

−.
Several classes of CAs have been described so far, named using the Greek letters α-, β-,
γ-, δ-, ζ-, η-, θ- and ι- [1,3–6]. CAs participate in numerous cellular processes, such as pH
regulation, ion transport and cell metabolism [7], and in CO2 concentrating mechanisms in
photosynthetic organisms [2,8]. Living organisms may possess one to several different CA
classes encoded in their genomes, reflecting the diversity of CAs [2,8,9].

Until recently, nearly all CAs have been described as metalloenzymes, which com-
monly use Zn2+ as a metal cofactor; however, some CAs from the γ-, δ- and ζ- classes are
cambialistic and are able to replace Zn2+ by Fe2+, Co2+ and Cd2+, respectively [4,10]. Al-
though the different CA classes catalyze the same reaction, they share little or no apparent
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evolutionary relationship in terms of amino acid sequence or structure [1], including the
amino acids involved in the coordination of their metal ion cofactor and catalytic site as
well as their oligomeric state [7,11].

The most recently described CAs from the new ι- class was first found in the ma-
rine diatom Thalassiosira pseudonana [6,12]. This ι-CA is an important component of the
diatom CO2-concentrating mechanisms (CCMs) that are essential for carbon fixation in
many photosynthetic organisms [13]. In addition, ι-CAs are widespread among marine
photosynthetic microalgae and non-photosynthetic prokaryotes, which suggest an impor-
tant role of this CA in global carbon biogeochemical cycling [6]. The ι-CAs have metal
cofactors that differ from one organism to the other. While ι-CA from T. pseudonana was
shown to use Mn2+ instead of Zn2+, a recently reported ι-CA homolog from the bacterium
Burkholderia territorii is highly specific for Zn+2 [14]. Moreover, a novel type of ι-CA from a
cyanobacterium (Anabaena sp. PCC7120) and a chlorarachniophyte alga (Bigelowiella natans)
that is able to act without any metal cofactor was recently described [15]. These differences
in metal cofactor preference of ι-CA homologs might be related to specific features of their
structure. The amino acid sequence of the ι-CA from diatoms is characterized by a domain
(COG4875) from the nuclear transport factor 2 (NTF2) family, which is found in proteins
with a broad range of biological functions [16]. This domain is also highly similar to the
calcium-calmodulin protein kinase II association domain (CaMKII-AD) and can be repeated
one to several times along the protein sequence. The amino acid sequence of the ι-CA
from T. pseudonana has four domain repetitions, but in other algal species, it can contain
two or three (or more) repetitions [6,15]. Interestingly, most sequences from prokaryotes
contain only one domain—in contrast to sequences from eukaryotes—which may reflect
an evolutionary trait in species from different domains in the Tree of Life. The CaMKII-AD
has a known role in protein oligomerization [17] as well as in NTF2 proteins, which are
known to form dimers [18], and in both cases, the domain structure is characterized by a
cone-shaped cavity formed by an angled arrangement of a β-sheet and α-helices [16,19].
A similar structure has been predicted from the dimeric ι-CA from B. territorii, which
contains one domain [14]. Similarly, the X-ray crystal structure of the COG4337 domains
that compose the ι-CA from Anabaena and B. natans confirmed a high structural homology
with the CaMKII-AD from Xanthomonas campestris (PDB: 3H51) [15]. However, there is still
not a resolved structure from a full-length multi-domain-containing ι-CA from diatoms
based on experimental data. This information could help to determine the 3D arrangement
of multiple CaMKII-AD-containing proteins as well as their multimeric organization.

In this work, we describe some structural features of the four-domain-repeats con-
taining ι-CA from T. pseudonana (tpι-CA) using different biophysical techniques. We
constructed a model of the homotetrameric form of tpι-CA using predicted 3D models
integrating small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR)
approaches. In addition, based on these data, we also proposed a model for other ι-CAs
that contain three or fewer domain repetitions.

2. Results

2.1. Oligomerization State of the tpι-CA

Two oligomeric forms of the recombinant tpι-CA in solution have previously been
observed [6] (Figure 1b), which were named the “high molecular mass” (HMM) and “low
molecular mass” (LMM) forms as their real molecular masses were not determined. The
elution volumes of both forms on size exclusion chromatography (SEC) were much smaller
than expected for tpι-CA monomers, indicating a higher oligomerization state for both
forms. Congo red spectral shift assay experiments were used to exclude the possibility that
the HMM form resulted from a denatured and amyloid-like aggregated form of tpι-CA.
Our results showed that Congo red does not bind to tpι-CA and, thus, suggest that the
protein does not form fibrils in solution in our conditions (Figure 1a). Besides an absorption
at 280 nm, the HMM form unexpectedly also showed an absorption at 260 nm, indicating
the presence of nucleic acid in this sample. Agarose gel electrophoresis and ethidium
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bromide staining confirmed the presence of DNA or RNA in this form (not shown). Using
SEC, we showed that, when the protein sample was treated with Benzonase, a nuclease that
attacks and degrades all forms of nucleic acids, the amount of HMM form decreased while
the amount of LMM increased (Figure 1b). We speculate that this DNA/RNA binding is
very likely to be unspecific and not physiological relevant because tpι-CA is located in the
vicinity of chloroplast membranes [6]. Consequently, further structural characterization was
performed instead on the LMM form using dynamic light scattering (DLS) and analytical
ultracentrifugation (AUC). We observed that this LMM form was principally monodisperse.
The LMM form has an hydrodynamic radius of 8.81 ± 0.4 nm, determined by DLS, and
a sedimentation coefficient standard S0

20,W (20 ◦C in water and extrapolated to protein
concentration equal to zero) of 8.5 S, determined by AUC (Figure 1c,d).

Figure 1. Oligomerization state of the tpι-CA. (a) Congo red (CR) spectral shift assay from purified tpι-CA. The spectrum
of CR alone and mixed with a tpι-CA sample is shown. The presence of fibrils is shown by a shift in the spectrum of a
CR-lysozyme control previously heated at 55 ◦C for 5 min prior to assay. (b) Size exclusion chromatography of recombinant
tpι-CA. The HMW form (dotted line) produces the LMM form (plain line) upon treatment with Benzonase. The elution
volume of the LMM form is 10.71 mL which corresponds to an apparent MW of 280 kDa. The elution volumes of standard
proteins are indicated above the profile: 1—blue dextran, 2—ferritin (440 kDa), 3—catalase (240 kDa), 4—aldolase (158 kDa),
5—Bovine Serum Albumin (BSA) dimer (136 kDa), 6—BSA monomer (68 kDa), 7—ovalbumin (43 kDa) and 8—Cytochrome
C (12.5 kDa). Blue and red arrows show peaks corresponding to the HMM and LMM, respectively. (c) Sedimentation velocity
experiment in an analytical ultracentrifugation (AUC) performed on the purified LMM form at different concentrations:
2.0 (black), 1.5 (green dashed) and 0.7 (red dashed) mg mL−1. Standard sedimentation coefficient S0

20,W determination is
obtained by extrapolating the S20,W value at protein concentration equal to zero, as shown in the inset. (d) Dynamic light
scattering (DLS) curve of the LMM form.

Electrospray ionization mass spectrometry (ESI-MS) was used under non-denaturing
conditions to probe the oligomerization state of the tpι-CA in solution. We observed a
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distribution of multiple charged ions of tpι-CA from 28 to 32 that corresponded to a cal-
culated averaged neutral molecular mass of 260 kDa, indicating that the oligomerization
state of tpι-CA is a homotetramer (Table 1). In addition, after glutaraldehyde-induced
protein cross-linking, SDS-PAGE and Western blot analysis also showed the presence of a
homotetrameric form of ~240 kDa, together with possible trimeric and dimeric interme-
diates (~120 and ~180 kDa, respectively; Figure 2). The homotetrameric state of tpι-CA
is also in agreement with the observed apparent molecular mass of 280 kDa (Figure 1b)
observed by SEC.

Table 1. Molecular mass and oligomeric state of the full-length tpι-CA determined by ESI-MS.

Charge State m/z Delta m/z

Theoretical Experimental *

28 9285.00 9288.00 3.00
29 8964.86 8970.22 5.36
30 8666.07 8670.32 4.25
31 8386.55 8390.12 3.57
32 8124.50 8127.45 2.95

Deduced multimeric
mass (Da)

Oligomer state
Deduced monomer mass

(theoretical) (Da)
Error (ppm)

260,066.20 4 65,016.55 (64,988) 439
* As an example, an m/z of 9288 with a charge state of 28 gives a ((9288 × 28) − 28) or 260,036 Da molecular mass.

Figure 2. Glutaraldehyde-induced protein cross-linking. (a) SDS-PAGE and (b) Western blot of the
following samples: (1) untreated purified tpι-CA, 5 μg; (2–4) cross-linked purified tpι-CA, 2, 5 and
10 μg, respectively. MW: molecular weight markers.

2.2. Characterization of the Secondary Structure of tpι-CA and Its Domain Variants

As previously described, the ι-CA is widely distributed among living organisms,
and the number of COG4875 domain repetitions contained within its sequence may vary
among different species [6]. The ι-CA protein from T. pseudonana contains four repetitions
of the COG4875 domain along its full amino acid sequence, excluding a chloroplast-
targeting signal peptide on its N-terminus. These four COG4875 domains shared more
than 60% of amino acid identity (Figure 3a) and more than 40% identity with the putative
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calcium/calmodulin protein kinase II association domain from X. campestris (CaMKII-
AD: PDB 3H51). In contrast, alignment with a NTF2 protein family domain (from Rattus
norvegicus: PDB 1OUN), to which the COG4875 is also predicted as a family member,
showed less than 20% identity (Figure 3a). These results indicate that the amino acid
sequences of the four domains are highly similar.

Figure 3. Analysis of the secondary structure. (a) Alignment of the amino acid sequence of each domain contained in the
full-length tpι-CA; 3H51 and 1OUN correspond to the PDB sequences of the CaMKII-AD from Xanthomonas campestris and
the NTF2 from Rattus norvegicus, respectively. Alignments were performed using MEGA4 software and analyzed using
GeneDoc (University of Pittsburg. Available online: http://www.psc.edu/biomed/genedoc (accessed on 15th June 2021)).
Shading levels correspond to the conservation of amino acids: Red, above 80% of identity; blue, 70% identity; and light
grey, 60% identity. The yellow and green lines above each sequence represent the presences of α-helices and β-strands,
respectively. The secondary structures of the four tpι-CA domains were predicted using PSIPred software; for 3H51 and
1OUN, the secondary structures were obtained from their crystal structures. (b) Circular dichroism spectra of full-length
tpι-CA and of the variants containing one, two or three domain repetitions.

The secondary structure of each domain contained in the tpι-CA was predicted using
PSIPred webserver [20]. These predictions showed a similar proportion of α-helices (19%),
β-strands (32%) and coils (49%) to that from experimentally determined crystal structures
from the CaMKII-AD (3H51) and NTF2 (1OUN) protein domains (Table 2). We experimen-
tally confirmed the secondary structural content of tpι-CA using circular dichroism (CD;
Figure 3b) and showed that the protein in solution contains 39% of β-strands; 54% coils,
which are highly similar to the predicted secondary structure population; and a slightly
lower content of α-helices (7%) compared with the predictions.
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Table 2. Proportion of secondary structural elements in tpι-CA, derived either from the experimental
CD data or from prediction.

Tp-ιCA
Domain-Repeat

Variant

Experimental CD
(DichroWeb

Analysis)

Predicted Secondary Structure
(PSIPred)

β-Strand α-Helix Coil β-Strand α-Helix Coil

FL 0.39 0.07 0.54 0.32 0.19 0.49
Δ1-2-3 0.35 0.18 0.48 0.33 0.17 0.50
Δ1-2 0.37 0.08 0.55 0.34 0.17 0.49
Δ1 0.31 0.19 0.50 0.32 0.16 0.52

In order to determine whether the secondary structure of independent COG4875
domains varies within the full-length tpι-CA, we analyzed the secondary structure of
several truncated forms of the tpι-CA containing different numbers of domain repetitions
by deleting the increasing number of domains from the C-terminus, hereafter referred to
as the Δ1-2-3 (composed of domains 1, 2 and 3), Δ1-2 (composed of domains 1 and 2) and
Δ1 (composed of domain 1 only) variants. The CD spectrum of each variant (Figure 3b)
was analyzed using Dichroweb server [21,22]. The analyses showed that all variants have
similar contents of β-strands (31–39%) and unstructured coils (48–55%) in agreement to
predictions from PSIPred (Table 2) and that they possess a variable and low content of
α-helices (8–19%). This result suggests that the overall secondary structure of the tpι-CA
might remain invariable regardless of the number of individual COG4875 domains.

2.3. Domain Organization in Tetrameric tpι-CA

The domain repetition in tpι-CA raises the question of their respective organization.
We used small-angle X-ray scattering (SAXS) to determine the global structure of the tpι-CA
in solution. Size-exclusion chromatography coupled with SAXS on tpι-CA gave rise to a
single elution peak, as expected from the abovementioned SEC data (Figure 1b). A Guinier
analysis of the X-ray scattering data indicated a radius of gyration of this LMM form of
66.5 ± 0.6 Å and the distance distribution computed from the scattering curve indicated a
maximum dimension (Dmax) of 250 Å, suggesting that the protein has a very anisotropic
shape. The molecular mass inferred from the data was 292 ± 30 kDa, corresponding to a
tetrameric tpι-CA, as observed using MS-ESI (Table 1), cross-linking and SEC (Figures 1b
and 2). The global envelope computed from the scattering data is an atypical flat shape
with four protruding arms and a ring-like structure in the center. Sixteen copies of the
homology models of the COG4875 domains can be accommodated in this global envelope,
with eight domains in the doughnut-shaped center of the SAXS envelope and two domains
per arm (Figure 4). This global envelope indicates that the four domains are not equivalent
and that one moiety constitutes the oligomer interface while the other is exposed to the
solvent.
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Figure 4. Three-dimensional modeling of the tetrameric full-length tpι-CA. (a) Ab initio SAXS-based model envelope
inferred from the experimental data. Top: front view; bottom: lateral view. (b) Proposed model of the tetramer based on a
SAXS envelope. Colored letters are used to designate each monomer. The box on the right shows the orientation of each
domain within one monomer. (c) Top: The experimental scattering curve (black circles) is compared with the calculated
scattering curves of the shape determined by DAMMIF (green curve, χ2 of 2.1), of the initial atomic model (blue curve, χ2 of
6.2) and of a model generated by CORAL (red curve, χ2 of 2.1); bottom: A zoom on the data at low q (dashed box) is shown.
(d) The CORAL model is represented in ribbons, with one color per monomeric chain, as in (b). The interface of each of the
domain pairs contained in the central core (circled) is shown.
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In order to ascertain which moiety was involved in the oligomerization, we mea-
sured the hydrodynamic properties of the truncated domain variants presented above.
The size exclusion profiles and hydrodynamic radii determined from Diffusion Ordered
Spectroscopy-NMR (DOSY-NMR) indicated that these truncated forms remained oligomeric
(Figure 5). We thus placed N-terminal domain 1 at the oligomeric interface at the center of
the SAXS global envelope and the C-terminal domain 4 in the protruding arms. We then
built an atomic model by sequence-based homology modeling using the crystal structure
of the X. campestris CaMKII-AD (3H51).

Figure 5. Domain organization of tpι-CA. (a) Translational diffusion coefficient (Dt) of the different domain variants
produced from the full-length (four domain-containing) tpι-CA obtained from DOSY-NMR. Top: Logarithm of the NMR
signal intensity as a function of the square of the gradient strength. Bottom: Table showing experimental Dt for the inferred
Rh using the Stokes–Einstein relation as well as the computed Dt and Rh from the homology model using HYDROPRO
software. The calculation for the full-length construct and the domain variant constructs Δ1-2-3 and Δ1-2 are performed on
the tetrameric forms. The calculation of the domain variant Δ1 is performed on the dimeric form. (b) Schematic models of
the different tpι-CA domain variants from which the HYDROPRO calculation was performed. Only one monomer was
colored in each model.

The doughnut-shaped center accommodates four copies of the domains 1 and 2. In
the X-ray structures of ι-CA domains from Anabaena (7C5W and 7C5V) and from B. natans
(7C5Y and 7C5X), and of the X. campestris CaMKII-AD (3H51), the domain-domain interface
is composed of two antiparallel β-sheets, and this interface was conserved in our homology
model of tpι-CA. This β-sandwich domain-domain interface was observed twice between
two domain 1s and twice between two domain 2s. This interface between two domain 1s
associates the monomers A and D, and the monomers B and C of the tetrameric tpι-CA
(Figure 4). Conversely, the domain 2 pairs do not connect the same monomers: the domain
2 interfaces are between monomers A and B, and monomers C and D. This means that each
monomer faces two different chains in its domains 1 and 2. This “turning” or entangled
scaffold allows for the tetramerization of tpι-CA (Figure 4b). The short linker between
domains 1 and 2 is embedded in the doughnut-shaped center. The SAXS envelope of the
arm accommodates domains 3 and 4, together with the linkers between domains 2 and 3
and between domains 3 and 4.
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2.4. Flexibility in the Protruding Arms Brought by the Linkers

This “drone-like” homology model is coherent with all of the biophysical data and
indicates that, despite their high homology in an amino-acid and secondary structure
composition, the four domains are not equivalent within the tpι-CA structure. Domains
1 and 2 are involved in dimeric interfaces, while domains 3 and 4 are more exposed to
the solvent. The linkers between the domains might be the determining factor controlling
this peculiar domain organization. Indeed, the homology between the three linkers (i.e.,
between domains 1 and 2, domains 2 and 3, and domains 3 and 4) is lower than the
homology between domains (Figure 6a), as expected for disordered regions. These linkers
are predicted to be flexible linkers using the disorder predictor IU-pred2A [23] and other
predictors (Figure 6b) and are expected to bring a high level of flexibility in the tpι-CA
arms. The predicted flexibility of the linker 3–4 is higher than that of the other two linkers,
as expected from the presence of two proline and three charged residues (Figure 6a). We
also calculated the theoretical scattering curve of our atomic model and compared it with
the experimental scattering curve using CRYSOL. The fit to the data was fair, with a χ2 of
6.2, revealing that the model is good but that there may be some flexibility in the overall
architecture of the tetramer, accounting for the slight discrepancies between the two curves
in the low-q-region (Figure 4c).

Figure 6. Flexibility of the interdomain linkers. (a) Clustalω alignments of the linkers between domains 1 and 2, domains
2 and 3, and domains 3 and 4. The linker residues are shaded in grey. (b) IUPred2A disorder prediction for short
disordered regions (top) or long disordered regions (bottom). Only the linker between domains 3 and 4 is predicted to be a
long-disordered region.

Since the global (and average) SAXS envelope did not account for this putative
flexibility, we introduced a flexibility between domains 3 and 4 in our atomic homology
model using the program COmplexes with RAndom Loops (CORAL) and compared the
back-calculated theoretical scattering curves with the experimental SAXS data [24]. Better
fits to the data were obtained when flexibility was allowed for this linker compared with
rigid models (χ2 of 2.1 vs. 6.2, respectively; Figure 4c,d). In the generated structures,
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the domains 4 were localized in a range of positions that confirm the flexibility of the
linkers between domains 3 and 4 (Figure 4b,d). The experimental SAXS data arise from
the ensemble of possible conformers, and these average data were best reproduced when
the localization of domain 4 was not constrained. This confirms the dynamic nature of
the protruding arms of the “drone-like” structure. The presence of a highly flexible linker
between domains 3 and 4 might act as a string that competes with a possible domain
4–omain 4 dimerization.

2.5. Experimental Validation of the “Drone-Like” Structural Model

In order to validate this domain organization and the atypical “drone-like” shape,
we first computed the hydrodynamic radius of the model using HYDROPRO [25], and
compared the calculated hydrodynamic properties with the experimentally measured
translational diffusion coefficient obtained from DOSY-NMR; they were identical within
uncertainty (Figure 5). We further confirmed the position of the domains by analyzing the
truncated domain variants mentioned above (Section 2.2). The experimental hydrodynamic
properties of the domain-4-deleted construct (Δ1-2-3) were identical to that computed from
the model in which the domain 4 was deleted from the full-length sequence. The experi-
mental hydrodynamic radius of the two-domain construct (Δ1-2) is typical of a spherical
tetramer, as expected from the central doughnut shape. The experimental hydrodynamic
radius of the domain 1 (Δ1) alone is close to that computed from a dimer, as expected from
the dimer interface in our model and in other ι-CA domains.

3. Discussion

CAs are often cited as a good example of convergent evolution, in which unrelated
enzymes evolve to catalyze the same ubiquitous reaction. The different classes forming
the CA family are surprisingly diverse in primary, secondary, tertiary and even quaternary
structures [11,26]. Here, we studied the features of the overall three-dimensional shape
of the recently discovered ι-CA, based on the amino acid sequence of the four repeated
domain-containing proteins from T. pseudonana. Using a battery of biophysical approaches,
we proposed a model of the folding of a homotetrameric tpι-CA in solution, which was
also used to infer the structure of the same protein containing fewer domain repetitions
(three, two and one).

Based on our results, we confirmed that the previously described LMM form [6]
corresponds to a stable tetrameric form in solution. Due to the characteristic subcellular
localization of the ι-CA towards the periphery of the plastid of photosynthetic eukary-
otes [6,15], it is unlikely that the HMM-nucleic acid form occurs in vivo and, thus, could
be an unspecific artefactual association of multiple ι-CA monomers together with nucleic
acids. However, the possibility that the ι-CA could interact with other cellular components
(e.g., other proteins and lipids) cannot be discarded, in particular because both LMM and
HMM are active and catalyze CO2 protonation [6]. The nucleic acid-bound HMM might
mimic other forms induced by interaction with other negatively charged surfaces, such as
galactolipids [27] that are abundant in plastid membranes. Such high molecular weight
forms of CA with undetermined mass were also observed for other CAs such as a stromal
β-CA, PtCA1, from the diatom Phaeodactylum tricornutum, which can form aggregated
structures when purified [28]. Its association within large clumped macromolecular com-
plexes was confirmed in vivo, as was also shown for the homologous PtCA2 [29]. This
complex formation was possible through a C-terminal amphipathic α-helix exposed to the
solvent that does not participate in the dimerization of the PtCA [29] and is also present in
other β-CAs from other diatom species [30]. Interactants of the PtCA1 and PtCA2 have
not yet been found, but an interaction with lipids (e.g., galactolipids) or carbohydrates
has been hypothesized [29]. In this same context, further studies are necessary to show
whether the tpι-CA is also able to form a complex with other cell components and which
structural feature would allow this.
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The ESI-MS, SEC and SAXS data indicated that the LMM form of tpι-CA is a tetramer.
This is in contrast with the multi-domain ι-CA from the chlorarachniophyte alga B. natans
that forms a homodimer [15]. The SAXS and DOSY-NMR data indicated that the global
envelope has an atypical “drone-like” shape with a central core (domains 1 and 2) and four
protruding arms (domains 3 and 4), and this also differs from the X-ray proposed structure
of B natans ι-CA, which is an elongated dimer [15] (Figure 7).

Figure 7. Structure of the ι-CA active site in domain 1 of B. natans ι-CA (pdb 7C5X and of each of the four domains of
tpι-CA (homology model).

The CD data indicated that the secondary structure composition of each of the four
tpι-CA domains is similar to other COG4875 domains, as expected from the high sequence
conservation within this class. The secondary structure composition is also very close to
the COG4337 domains, which are constituents of a metal-free ι-CA from B. natans and the
cyanobacterium Anabaena sp. PCC7120. The high sequence identity with COG4875 domains
for which X-ray structures are available enabled us to build a homology atomic model
that we constrained within the SAXS average envelope. In the three COG4337 domains of
ι-CA from B. natans, the active site for the CO2 protonation was composed of the residues
Thr159/322/486, Tyr176/339/503, His256/420/584 and Ser258/422/586, with the last two
being part of the specific HHHSS sequence and which are all oriented to the core of the
domains [15]. In all tpι-CA domains, all these residues are present (Thr62/191/320/448,
Tyr77/206/335/463, His139/268/397/525 and Ser141/270/399/527, Figure 7) and oriented
towards the core of the domain. Notably, both B. natans ι-CA and tpι-CA are inhibited by
Zn2+, and this peculiar property might be specific to these catalytic residues. Moreover, as in
the ι-CA from B. natans, in tpι-CA, CO2 can be protonated even in the absence of metal ion.
In CAs, CO2 is proposed to be positioned near phenylalanine residues. Phe177/340/504
and Phe193/357/521 in B. natans ι-CA are proximal to the active site and are conserved in
all four tpι-CA domains (Phe78/207/336/464 and Phe81/210/339/467, Figure 7). The CA
activity of the four-domain tpι-CA as well as the variant constructs Δ1-2-3 and Δ1-2, has
been previously confirmed [6]; however, whether all domains contribute to the overall CA
activity or to metal binding in a particular tetrameric conformation is still unknown and
must be further investigated.
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We validated the localization of the domains in our model by comparing the predicted
hydrodynamic properties of the FL and domain truncated variants with experimentally
measured diffusion coefficients by DOSY-NMR. Back calculation of the SAXS curve from
the model fitted the experimental data better when the C-terminal domain 4 localization
was unconstrained, indicating that the protruding arms are flexible, and this flexibility
might be conferred by the linker between domains 3 and 4 that was predicted to be a long-
disordered linker by IUPred2A. This particular linker is also predicted to be disordered
in the ι-CA sequences from other diatom species with four-domains, including Cyclotella
cryptica, Fistulifera solaris and Thalassiosira oceanica. However, it is absent in the C-terminal
linkers from homologous sequences having less domain repeats (data not shown). This
suggests that the protruding and flexible arms observed in the SAXS envelope from the
tetrameric tpι-CA is a particular feature of the four-domain ι-CA and, in agreement with
our proposed models (Figure 5b), does not exist in other homologous sequences with fewer
domains.

Tpι-CA domains 1 and 2 are associated in a dimer with their β-sheet surface, which
includes the specific HHHSS sequence [14], embedded in a β-sandwich interface. This inter-
face also contains conserved Arg and Cys residues (Arg122/251/380/508 and Cys105/231).
Interestingly, only domains 1 and 2 possess the cysteine residues that might stabilize the
dimer interface. The distance between the His269 residues in the domain 2–domain 2
β-sandwich is less than 4.5 Å and similar to what was found between the His257 residues
in B. natans ι-CA (Figure 8). On the contrary, in the domain 1–domain 1 β-sandwich, the
distance between the His140 residues is more than 7 Å (Figure 8). This larger interface
also includes highly conserved Asp and Glu residues from the neighboring domains 2
(Asp259 and Glu260, Figure 8) and the His139 and His140 residues that are the homologues
of the residues that were predicted to coordinate metal [6,14]. In the present dataset of
Mn-bound proteins, metal coordination involved mainly His, Glu and Asp residues [31,32].
We hypothesize that the pair of His140 (domain 1), pair of Asp259 and pair of Glu260
(domain 2) residues that are all localized within 10 Å in our homology model might be
involved in Mn2+ coordination, and this can be further tested by site-directed mutagenesis.

Figure 8. Structure of the ι-CA β-sandwich interface between the domain 1s of B. natans ι-CA (pdb 7C5X), between domains
2 and 1 of tpι-CA. The monomer A is colored blue, and the residues within 5 Å of the monomer A are colored magenta
for those of monomer B, green for those of monomer C and yellow for those of monomer D. The distance between His257
residues in B. natans ι-CA is 4.5 Å, between His269 residues in the domains 2 of tpι-CA is 3.5 Å and between His 140 in the
domains 1 of tpι-CA is 7.1 Å.

In our model, the domain 4s do not interact and the β-sheet surface that composes the
β-sandwich domain-dimerization interface in the other COG4875 domains is protected by
the C-terminal extension (Figure 9). This C-terminal extension has a peculiar amino-acid
composition with a high number of hydrophobic residues (oriented toward the β-sheet
surface) surrounded by glutamic acid residues exposed to the solvent. The C-terminal
extension might act as a “gate” that prevents domain 4-domain 4 dimerization.
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Figure 9. Electrostatic surface of the tpι-CA domain 4 with the C-terminal extension (left) or without (right). The C-terminal
extension is represented in cartoon with the Glu residues in stick. The color of the surface corresponds to the electrostatic
charge, which ranges from −5 (red) to +5 (blue).

4. Conclusion

A comparison of the tpι-CA structure with other existing CA structures revealed
that, while there are elements of the fold that resemble previously known structures, the
overall fold is novel as was anticipated from the absence of sequence conservation. The
tpι-CA monomer has an unusual four domain repeat with a non-compact appearance.
The tetramer has a drone-shape, comprising a doughnut core flanked by four protruding
extensions mediated by the flexibility of the last linker. Its atypical shape might be linked
to its localization in the appressed intermembrane space of the chloroplast endoplasmic
reticulum (CER) [2]. It is intriguing to speculate that the drone structure of tpι-CA may
be linked to its CO2/HCO3

− delivery function as is the case for delivery by human-made
drones.

5. Materials and Methods

5.1. Protein Expression and Purification

The DNA sequence of the four-domain-containing ι-CA from T. pseudonana was
produced synthetically (GeneCust, Ellange, Luxembourg) based on the cDNA sequence
without the nucleotides coding for the signal peptide and inserted between the NdeI and
XhoI restriction sites of a pET-28a+vector so that the protein was fused to a His-tag on its
N-terminus. The same procedure was performed for the ι-CA variants containing three,
two and one domains, always removing domains from the C-terminal extremity. The
resulting vectors containing either the ι-CA gene or its domain variants were cloned in
the Escherichia coli strain BL21-C41(DE3). The expression of recombinant proteins in E.
coli was induced by 1 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) at 37 ◦C for 5 h.
Cell pellets were resuspended in a buffer containing 50 mM sodium phosphate, 10 mM
imidazole and 50 mM NaCl buffer (pH 8), plus lysozyme and protease inhibitor cocktail.
Cells were broken by sonication. Lysates were centrifuged for 30 min at 16,000 g and 4 ◦C,
and the supernatant was loaded onto a Ni-NTA column (height 6 cm and diameter 1.5 cm).
The column was washed with a buffer containing 0.15 M imidazole. Elution of the ι-CA
was performed with a buffer containing 0.35 M imidazole.

5.2. Size Exclusion Chromatography (SEC)

SEC chromatography was performed on a Superdex Increase S200 10 × 300 (mm ×
mm) at 4 ◦C. Five hundred microliters of the sample were loaded at varying concentrations
ranging from 50 μM to 200 μM. The elution volumes were monitored by absorbance at 215
nm and 280 nm. When mentioned, 25 U mL−1 of benzonase (Sigma) with 1 mM MgCl2 was
added to the sample, and nucleic acid digestion was performed for 1 h at 37 ◦C followed
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by an overnight incubation at 4 ◦C. When mentioned, 3 U μL−1 of thrombin was added to
the sample, and proteolysis of the His-tag was performed by incubation overnight at 4 ◦C.

5.3. Congo Red Assay

A solution of 1 mM Congo red (CR) was prepared in a buffer of 20 mM Tris and 50 mM
NaCl (pH 8). A mix of 70 μM of Congo red and 10 μM of the protein sample was prepared,
and the absorption spectrum between 300 and 700 nm wavelengths was recorded using a
Perkin Elmer Lambda 25 UV/Vis spectrophotometer. The spectrum of the protein solution
without CR was subtracted to the spectrum of the protein–CR mix. The spectrum of the
CR solution alone was also recorded for comparison. A control of fibril formation was
performed using lysozymes heated at 55 ◦C for 5 min, as described previously [33].

5.4. Protein Cross-Linking

One hundred micrograms (100 μg) of purified protein extract in 20 mM Na2HPO4
buffer (pH 8.0) was mixed with 0.01% glutaraldehyde. The mixture was then incubated for
10 to 15 min at room temperature, and then, the reaction was stopped by the addition of
80 mM Tris-HCl (pH 8.0). The reaction was immediately mixed with a Laemmli buffer for
further SDS-PAGE and Western blot analysis.

5.5. Protein Analysis

Protein samples from the purified protein were mixed with the sample buffer (62.5 mM
Tris, 2.5% SDS, 0.002% bromophenol blue, 10% glycerol, 20 mM DTT and pH 6.8) and
denatured by heating at 85 ◦C for 5–10 min. Samples of 20 to 30 μg protein extracts or 2
to 5 μg of purified proteins were loaded onto 12% acrylamide/bis-acrylamide gels and
run at 120 volts until the migration front reached the bottom of the gel. Electrophoresis
was performed in a Bio-Rad Mini Protean III system (Bio-Rad, Hercules, California, United
States) using a buffer of 50 mM Tris, 380 mM glycine and 10% SDS.

After electrophoresis, the gel was either stained with Coomassie blue or used for
Western blot analysis. For Western blot, the proteins were transferred to a nitrocellulose
membrane (0.2 μm; Carl Roth Gmbh, Karlsruhe, Germany) with active transfer at 80 volts
for 1 h. The transfer buffer contained 25 mM Tris, 121 mM glycine and 20% ethanol.
After transfer, the membrane was blocked with a solution of 5% low fat milk in TBS-
T (50 mM Tris, 150 mM NaCl, 0.05% Tween-20 and pH 7.6). The membrane was then
incubated for 1 h at room temperature or overnight at 7 ◦C with the primary antibody
(1:1000 dilution). The secondary antibody (anti-rabbit IgG horseradish peroxidase, 1:10,000
dilution) was incubated for 1 h at room temperature. The membrane was revealed with
the Enhanced Chemiluminescence technique and then visualized with a digital imaging
system (ImageQuant LAS 4000 mini, GE, Chicago, Illinois, United States).

5.6. Analytical Ultracentrifugation (AUC)

Sedimentation velocity experiments were carried out at 40,000 rpm and 20 ◦C in a
Beckman Optima-XL-A analytical ultracentrifuge using 1.2 cm or 0.3 cm double sector
centerpieces in an AN50Ti rotor. Scans were acquired in the continuous mode at 280 nm in
the range of 0.1 to 1 absorption. All ι-CA samples were in a 20 mM Tris and 50 mM NaCl
(pH 8) buffer. At 20 ◦C, the partial specific volume of ι-CA, the solvent density and the
viscosity calculated with SEDNTERP (jphilo. Available online: http://www.jphilo.mailway.
com/index.htm (accessed on 10th December 2018)) [34] were 0.734501 mL g−1, 1.0009 g
cm−3 and 0.01002 poise, respectively. The data recorded from moving boundaries were
analyzed in terms of continuous size distribution functions of sedimentation coefficient,
C(S), using the program SEDFIT [35]. The sedimentation coefficient was measured at
different protein concentrations, and the standard sedimentation coefficient was obtained
by extrapolation to a concentration of the protein equal to zero. All S values of ι-CA were
corrected to standard conditions—i.e., 20 ◦C in water—by SEDFIT.
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5.7. Electrospray Mass Spectrometry (ESI-MS)

Purified recombinant tpι-CA in 20 mM Tris-HCl, 50 mM NaCl, and pH 8 was buffer-
exchanged using a micro Bio-Spin column Bio-Gel P6 (Bio-Rad) against a 500 mM aqueous
ammonium acetate pH 8 solution for native mass spectrometry (MS) at a final protein
concentration of 8 μM measured by a Thermo Scientific nanodrop 2000 C (at lambda
280 nm, epsilon 110.356 μM−1 cm−1). The MS parameters used in the electrospray Q-ToF
mass spectrometer (Synapt G1, Waters) were set as source temperature 20 ◦C, capillary
voltage 1.5 kV, sampling cone 140, extraction cone 4, trap collision energy 40, transfer
collision energy 30 and m/z window 6,000 to 10,000 to detect the oligomers of tpι-CA.
The neutral molecular mass was manually calculated from spectra by averaging adjacent
m/z from five consecutive charge-state assigned peaks. The deduced molecular mass was
compared with the theoretical mass of ι-CA, which has been deduced from the sequence
including the His-tag (GSSHHHHHHSSGLV . . . : MW = 64,988 Da), as confirmed by N-ter
sequencing (data not shown).

5.8. Circular Dichroism (CD)

The purified recombinant protein was prepared at 2 μM in filtered 20 mM Na2HPO4
buffer (pH 8). The circular dichroism (CD) spectra were recorded from 260 to 180 nm in a
Jasco J-815 CD Spectrometer (JASCO. Easton, Maryland, United States) at 25 ◦C in a 2 mm
path quartz cuvette. The raw values of ellipticity (mdeg) were converted into mean residue
molar ellipticity (θ) using the following formula:

θ
(

degcm2dmol−1res−1
)
=

MRW × E(deg)
d × c × 10

where “MRW” corresponds to the mean residue weight, “E” is the raw ellipticity, “d” is the
path length of the cuvette (cm) and “c” is the sample concentration (g cm−3). The contents
of α-sheets and β-helices were estimated using DichroWeb software [22].

5.9. Dynamic Light Scattering (DLS)

Purified ι-CA was analyzed by DLS using a Zetasizer Nano ZS (Malvern Instruments,
Malvern, United Kingdom). The proteins samples prepared at 3 to 5 mg mL−1 in a buffer
of 20 mM Tris and 50 mM NaCl (pH 8) were centrifuged for 15 min at 14,000 rpm at 4 ◦C
prior to DLS measurement. Three measurements consisting of 10 runs, each 10 s, were
performed on ι-CA sample with a scatter angle of 173 degrees.

5.10. Size Exclusion Chromatography Coupled to Small-Angle X-Ray Scattering (SEC-SAXS)

The SEC-SAXS experiments were performed at the SWING beamline of SOLEIL
Synchrotron (Gif-Sur-Yvette, France). A HPLC column Agilent Bio SEC-5, 500 Å (length:
300 mm, particle size: 5 μm) was used prior to SAXS measurements. All experiments
were performed at 15 ◦C. The sample-to-detector (Eiger 4M) distance was adjusted to 2 m,
giving access to scattering vector q = 4π/λ·sinθ (where 2θ is the scattering angle and λ is
the wavelength, equal to 1.033 Å) ranging from 0.011 to 0.50 Å−1. Two-hundred frames of
990 ms with 10 ms dead-time were recorded during the first minutes of the elution for the
background signal. The signal of the protein was recorded during all protein elutions.

The raw data were processed using the dedicated in-house software Foxtrot. The
buffer signal was subtracted, and careful inspection of the protein scattering data allowed
us to average the identical scattering curves recorded during protein elution. Data analysis
was performed using the ATSAS suite of [36]. The Rg was obtained via PRIMUS using
the Guinier approximation, and the distance distribution function P(r) was obtained via
GNOM. The molecular mass was assessed using SAXS-MoW [37]. Ab initio 3D models
corresponding to the scattering envelopes were calculated using DAMMIF [24] with P4
symmetry, and using GASBOR with the number of amino acids of the protein monomer
as input and with P4 symmetry [24]. The atomic models were assessed and refined using
CRYSOL [36] and CORAL [24]. CORAL started with the atomic model as input and was
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allowed to move the domains 4 independently and to build new CA traces between the
domains 3 and 4. The SAXS data have been deposited at SAS BDB (draft ID 3391).

5.11. Diffusion-Ordered Spectroscopy Nuclear Magnetic Resonance (DOSY-NMR)

DOSY-NMR was performed on the purified ι-CA and its domain variants. A 500 μL
sample was prepared at 30 to 80 μM in a buffer with 27 mM Tris, 45 mM NaCl, 10% D2O
and 1 μL DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) at pH 8. The measurements
were repeated with 10 increasing strengths for a duration of 2.8 ms. A time delay of
200 ms was used to allow the molecules to diffuse before gradient decoding and diffusion.
The experiments were performed at 298 K on a 600 MHz Bruker advance II spectrometer
equipped with a cryo-probe. The spectra were transformed by NMRPipe [38], and the
diffusion coefficients were calculated using Octave (GNU Octave. Available online:
https://www.gnu.org/software/octave/ (accessed on 18th December 2018)). The diffusion
coefficient (Dt) obtained was used to calculate the hydrodynamic radius (Rh) of each sample
using the Einstein–Stokes equation:

Dt =
kBT

6πηRh

where kB is the Boltzmann constant (1.380 × 10−23 kg m2 s−2 K−1), T is the temperature (in
Kelvin) and η is the viscosity of the medium.

The translational diffusion coefficient of the structural models was computed using
HYDROPRO version 10 [25]. Standard parameters were used for the HYDROPRO calcu-
lation; the radius of primary elements was set to 2.9 Å, six beads sizes were used, which
ranged from 10 to 20 Å for the full-length construct, from 7 to 14 Å for the Δ123 construct,
from 5 to 10 Å for the Δ12 construct and from 2 to 4 Å for the Δ1 construct; the temperature
was set to 293 K to match the experimental diffusion measurements; and the viscosity of
the solvent was set to 0.01 poises.

5.12. D-Modeling

Homodimer models of domains 1, 2 and 3 were built using the homology modelling
server SWISS-MODEL with the homodimer structure of the putative Calcium/Calmoduline-
dependent kinase II association domain from Xanthomonas campestri (3H51.pdb) as a tem-
plate [39]. The non-dimeric C-terminal domain 4, where a mostly hydrophobic C-terminal
extension covers the monomer interface, which is responsible for the dimerization of the
other domains, was built using the I-Tasser server [40]. The homodimer domains 1, 2 and 3
and the monomeric C-terminal domain were assembled manually in the SAXS envelope
using the PyMol program. In this step, individual N- and C-terminals of each domain were
carefully oriented to allow for their connection to the full-length monomer, constraining
their position in the overall structure. Linker regions between domains were added and
minimized, and some colliding loops were moved using the Wincoot structural modeling
program [41]. The overall geometry of a connected 4 domain monomer was refined using
the ModRefiner program [42] and the tetrameric assembly reconstructed with this refined
model. Finally, the whole tetrameric assembly was refined using the SWISS-MODEL server
with the tetrameric model from the previous step as the starting template.
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Abstract: Fucosylated carbohydrates and glycoproteins from human breast milk are essential for the
development of the gut microbiota in early life because they are selectively metabolized by bifidobac-
teria. In this regard, α-L-fucosidases play a key role in this successful bifidobacterial colonization
allowing the utilization of these substrates. Although a considerable number of α-L-fucosidases
from bifidobacteria have been identified by computational analysis, only a few of them have been
characterized. Hitherto, α-L-fucosidases are classified into three families: GH29, GH95, and GH151,
based on their catalytic structure. However, bifidobacterial α-L-fucosidases belonging to a particular
family show significant differences in their sequence. Because this fact could underlie distinct phylo-
genetic evolution, here extensive similarity searches and comparative analyses of the bifidobacterial
α-L-fucosidases identified were carried out with the assistance of previous physicochemical studies
available. This work reveals four and two paralogue bifidobacterial fucosidase groups within GH29
and GH95 families, respectively. Moreover, Bifidobacterium longum subsp. infantis species exhibited
the greatest number of phylogenetic lineages in their fucosidases clustered in every family: GH29,
GH95, and GH151. Since α-L-fucosidases phylogenetically descended from other glycosyl hydrolase
families, we hypothesized that they could exhibit additional glycosidase activities other than fucosi-
dase, raising the possibility of their application to transfucosylate substrates other than lactose in
order to synthesis novel prebiotics.

Keywords: bifidobacteria; fucosidases; glycosyl hydrolases; conserved domains; human milk

1. Introduction

The impact of human milk glycobiome on the gut microbiota of infants is well es-
tablished [1]. While a great part of the components of breast milk provide nutrients to
the infant, human milk oligosaccharides (HMOs) and human milk glycoproteins (HMGs)
selectively favor the colonization and growth of bifidobacteria in the infant intestine,
contributing to the development of the gut microbiota [1,2]. In this regard, Bifidobacterium
species are considered key actors in the multifaceted process of gut development and
maturation of the immune system [3]. In fact, during the first months of birth, the loss
of bifidobacteria or the gain of other bacteria can significantly alter the progression of
the healthy microbial community with negative consequences for the infant, including a
predisposition to autoimmune and/or metabolic diseases such as allergies and childhood
obesity [4,5]. Concerning to that, fucosylated HMOs (FHMOs) and fucosylated HMGs
(FHMGs) constitute a great part of the glycobiome of the breast milk [6] (Figure 1) and
have been proposed to be essential in the development of the microbiota [7].
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Figure 1. List of main fucosylated human milk oligosaccharides (FHMOs) and fucosylated human milk glycoproteins
(FHMG) reported [1,6,7].

FHMOs constitute the largest fraction of human milk oligosaccharides, and although
they show a small number of different conformations, they can make up to 70% of the total
in an individual mother’s milk [6]. The fucosylated trisaccharide 2′-fucosyllactose is the
most abundant FHMO, representing from 12 to 45% of the total HMO content in breastmilk,
while 3-fucosyllactose is less abundant, from 0.5% to 3% [8]. On the other hand, there are
several FMHGs investigated, and contrary to FHMOs, they appear at lower concentration
but show a higher number of different forms, including lactoferrin (17%), immunoglobulins
IgG (<1%), IgM (<1%), and secretory IgA (11%) [9–11]. Both FHMOs and FHMGs stand
out for their ability to stimulate the growth of bifidobacteria [7,12], whose metabolism
transforms fucosylated oligosaccharides into short-chain fatty acids (SCFAs) such as acetate,
formate, lactate, and pyruvate [13], which in turn stimulate the immune system by inducing
the differentiation of T-regulatory cells via inhibition of histone deacetylase [14].
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The great influence of fucosylated compounds present in breast milk on bifidobacteria
is due to their ability to metabolize them, being α-L-fucosidases (henceforth, fucosidases)
indispensable tools that allow shaping the gut microbiome in the first months of life.

According to CAZy database, hitherto, more than 10,000 sequences have been identi-
fied in silico as α-L-fucosidases, belonging to a wide variety of organisms from archaea to
fungi and plants. However, the vast majority of fucosidase sequences have been described
in bacteria and belong to more than 2000 bacteria species (www.cazy.org). This database
classifies fucosidases into three families (GH29, GH95, and GH151) according to their
catalytic structures. GH29 fucosidases act through a retaining mechanism and have a
broader substrate specificity, including hydrolysis of Fuc-α1,3/4/6 linkages [15]. Moreover,
family GH29 fucosidases have been subclassified into two subfamilies. The subfamily A
contains α-fucosidases with relatively relaxed substrate specificities, able to hydrolyze
p-nitrophenyl-α-L-fucopyranoside (pNP-fucose), while the members of subfamily B are spe-
cific to α1,3/4-glycosidic linkages and are practically unable to hydrolyze pNP-fucose [16].
Although GH29 fucosidases also could exhibit hydrolysis of Fuc-α1,2 linkages, that activity
is mainly attributed to GH95 family, which catalyzes the hydrolysis of fucose linkages
through an inverting mechanism, resulting in the inversion of the anomeric configura-
tion [17,18]. Finally, GH151 family has poor activity on fucosylated substrates; this is the
reason why it is currently questioned as to whether they are genuine fucosidases [19–21].

Even though species of the Bifidobacterium genus dominate the infant gut microbiota
in early life, and given the importance of their metabolism of fucosylated conjugates,
there are only a few bifidobacterial species studied extensively at both cellular and ge-
nomics level for their ability to utilize fucosylated carbohydrates, including B. bifidum
and Bifidobacterium longum subsp. infantis [22,23]. However, different strain-dependent
metabolic abilities have been unraveled for the use of fucosylated conjugates and are likely
determined by their fucosidases’ diversity [24]. Indeed, agreeing with the evolution and
phylogenetics of fucosidases previously studied in metazoan fucosidases [25], bifidobacte-
rial fucosidase sequences listed in CAZy reveal substantial in silico differences regarding
to their conserved domains, even those ones clustered in the same GH, revealing different
adaptation/specialization ranges as well as their origin. Therefore, this work addresses the
diverse conserved architectures of bifidobacterial fucosidases and cluster them by activity
and phylogenetic evolution in order to propose a novel classification within the GH groups
already listed in CAZy.

2. Results

2.1. Bifidobacterial GH29 Fucosidases

GH29 fucosidases from bifidobacteria listed in CAZy are shown in Table S1. Based on
in silico studies concerning conserved domains released by NCBI Conserved Domains
Database (CDD), bifidobacterial GH29 fucosidases could be classified into four different
phylogenetic groups (Table S1). That differentiation was also confirmed through sequence
homology PCA and cluster analyses (Figure 2).
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The enzymes included in the proposed GH29-BifA, only found in B. bifidum strains,
are characterized as large membrane-bound fucosidases (AfuC super family domain;
NCBI CDD accession number cl34656) and exhibit an accessory F5/F8 type C domain
family (NCBI CDD accession number cl23730), probably involved in recognizing galactose
or N-acetyllactosamine [26]. Interestingly, while InterPro database (EMBL-EBI) recognized
the F5/F8 type C domain (IPR000421), it interpreted the AfuC domain as Glyco_Hydro_29
domain (IPR000933), probably due to the degree of updating of both databases (Table S1).
In addition, Ashida et al., 2009 identified a second putative sugar-binding domain in GH29
fucosidase AfcB from B. bifidum JCM1254, domain that is frequently found in membrane-
bound or cell-wall-associated proteins and denominated FIVAR [27]. Those results were
here confirmed by SOSUI and HMMTOP databases, which allowed the identification
of two putative transmembrane helices in GH29-BifA fucosidases (Table S1). Therefore,
it has been suggested that both accessory F5/F8 type C and FIVAR domains allow the
extracellular character of GH29 fucosidases in B. bifidum and could enhance affinity toward
fucosyl conjugates [27]. Moreover, in all the N-terminal regions of GH29-BifA fucosidases,
hydrophobic sequences predicted by SignalP-5.0 to be putative signal peptide with poten-
tial cleavage sites were observed (Table S1).

Concerning the AfuC/Glyco_hydro_29 domain, the only representative GH29 fucosi-
dase of GH29-BifA purified and characterized, which is AfcB from B. bifidum ATCC 1254,
is able to hydrolyze 3-fucosyllactose, Lewis blood group substances (a, b, x, and y types),
and lacto-N-fucopentaose II and III. However, the enzyme did not act on glycoconjugates
containing α1,2-fucosyl residue or on synthetic pNP-fucose [27].

Supporting the in silico characterization of GH29-BifA fucosidases, several studies con-
firm the ability of B. bifidum to extracellularly hydrolyze FHMOs [28]. However, B. bifidum
appears to prefer the utilization of lactose when growing on FHMO, probably releasing
fucose to the environment [28]. This incapacity to consume fucose may be due to the lack of
specific transporters. Nevertheless, the extracellular fucosidase activity of B. bifidum could
facilitate the establishment of the bifidobacteria community, allowing them to consume the
released fucose residues [29].

In contrast to GH29-BifA, the rest of the GH29 fucosidases from bifidobacteria do
not have either putative signal peptides or transmembrane helices and consequently
their mode of action can be considered intracellular. Indeed, GH29-BifB fucosidases are
characterized by exhibiting an AfuC super family/Glyco_Hydro_29 domain (NCBI CDD
accession number cl34656/IPR000933) such as GH29-BifA fucosidases but lacking F5/8
type C and FIVAR domains. Due to the presence of the same fucosidase domain in both
groups of fucosidases (GH29-BifA and GH29-BifB), similar metabolic capacities could be
affirmed. In fact, the only characterized bifidobacterial GH29-BifB fucosidase (Blon_2336
from Bifidobacterium longum subsp. infantis ATCC 15697) revealed similar activity to AfcB
from B. bifidum ATCC 1254 (GH29-BifA) against Fuc-α1,3 glucosidic, Fuc-α1,3GlcNAc,
and Fuc-α1,4GlcNAc linkages [21]. These GH29-BifB fucosidases appear to be distributed
along strains of different species, contrary to GH29-BifA fucosidases, and frequently, strains
that exhibit GH29-BifB fucosidases also show GH29-BifC fucosidases, which are duplicated
in some of the sequenced strains (Table S1). Actually, the duplication of GH29 fucosidases
has been reported previously and plays an important role in fucosidases evolution [30].
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GH29-BifC fucosidases are characterized by showing conserved α-Amylase catalytic
domain family (NCBI CDD accession number cl38930). It must be taken into account that
this superfamily is present in a large number of GHs able to hydrolyze α1,4/6 glycosidic
bonds, although in turn they have specific domains unlike the GH29-BifC fucosidases of
bifidobacteria [31]. However, since GH29-BifC fucosidases can catalyze the transformation
of fucosidic α1-2Gal/3GlcNAc linkages in LNFP I and III, respectively, and mainly Fuc-
α1,6 GlcNAc linkages [32], activity non described in the above fucosidase groups, it is
difficult to ensure that its catalytic family proposed is α-Amylase catalytic (NCBI CDD)
or Glyco_Hydro_29 (InterPro) (Table S1). In this sense, InterPro database (EMBL-EBI)
indicated the presence in GH29-BifC fucosidases of a second catalytic family denominated
FUC_metazoa_typ (IPR016286) that is close to eukaryotic fucosidases (Table S1). Probably
the presence of this domain is key for these fucosidases to be considered as the most
unspecific and versatile fucosidases of bifidobacteria since a wide range of substrates has
been reported for two different GH29-BifC fucosidases from B. longum subsp. infantis
ATCC 15697 [21,27].

Both GH29-BifB/C fucosidases described in B. longum subsp. infantis strains are
likely found in the cytosol. Therefore, efficient transport of oligosaccharides is needed,
unlike B. bifidum [13,21]. In this context, genomic studies carried out on B. longum subsp.
infantis ATCC 15697 have unraveled several putative fucose permeases that may facilitate
environmental scavenging when soluble fucose is encountered.

In order to elucidate the roles and fitness of the bifidobacterial community to shape
the gut microbiome and taking into account the relevance of fucosidases in this regard,
their features mentioned above should be updated and expanded to avoid ambiguities in
the catalytic domains and relate them to their metabolic properties. Certainly, the rest of the
enzymes from different bifidobacterial species need to be characterized in order to reliably
distinguish the properties of each group of fucosidases for determining the interaction
and mode of actions of bifidobacteria during gut colonization. In this sense, the role of
GH29-BifD of fucosidases remains unknown despite having been sequenced and identified
in certain Bifidobacterium species (Table S1). Unlike to GH29-BifC, GH29-BifD fucosi-
dases exhibit specific α-L-fucosidase main domain (NCBI CDD accession number cl38930).
Surprisingly, their accession number is matching with superfamily AmyAc family of group
II, suggesting a better accurate and updated in silico annotation. However, InterPro database
(EMBL_EBI) indicates both catalytic domain Glyco_Hydro_29 and FUC_metazoa_typ
(InterPro IPR000933 and IPR016286, respectively). Nevertheless, physicochemical proper-
ties, substrate specificity confirmation, and their correlation with catalytic domains are still
pending to be characterized.

2.2. Bifidobacterial GH95 Fucosidases

Similar to GH29 bifidobacterial fucosidases and according to architecture domains,
bifidobacterial GH95 fucosidases collected on CAZy could also be subclassified into two
main groups (Table S2; Figure 3).
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The extracellular character observed in GH29-BifA fucosidases from B. bifidum strains
is also reflected in their GH95 fucosidases, which are characterized by a putative signal pep-
tide and two predicted transmembrane helices. Among GH95 fucosidases, those features
are only found in the proposed GH95-BifA fucosidases from B. bifidum with the exception
of Bifidobacterium saguini DSMZ 23967 fucosidase (Genbank QTB91571.1), which exhibited
two putative transmembrane helices (Table S2).

The proposed GH95-BifA was characterized according to the NCBI CDD database by
exhibiting Glycosyl hydrolase 65 N-terminal (accession number cl22392) as main catalytic
domain, while InterPro database analysis (EMBL-EBI) revealed a Glycosyl hydrolase 95
N-terminal (IPR027414) (Table S2). The observed ambiguous prediction on the catalytic
architecture could be due to the lack of updating and mismatch annotations. Nevertheless,
a common evolutionary origin for GH65 and GH95 families, among others, with conserva-
tion of their putative catalytic amino acid residues, was noticed and likely influenced the in
silico results [18]. Nevertheless, and contrary to GH65 family, the only GH95-BifA represen-
tative fucosidase recombinantly produced and characterized (AfcA from B. bifidum JCM1254)
showed great activity against Fuc-α1,2 Gal linkages, mainly hydrolyzing 2′-Fucosyllactose
and lacto-N-fucopentaose I [17,33].

On the other hand, while NCBI CDD database detected two YjdB overlapping domains
(accession number cl35007), whose functions are still uncharacterized but in turn contain
Ig-like domain, InterPro database noticed Ig-like_Bact and Bacterial Ig-like group 2 (BIG2)
domains instead (accession number IPR022038 and IPR003343, respectively) (Table S2).
Despite this coincidence, only the position of one domain practically matches in both
databases (YjdB and BIG2) (Table S2). In addition, InterPro identifies Ig-like_Bact near to
N-terminal unlike NCBI CDD, and probably GH95-BifA sequences could exhibit up to
three accessory domains.

It should be noted that, although the function of BIG2 domain has not been unraveled,
it has been hypothesized to participate in facilitating the protrusion of the AfcA catalytic
GH95 domain from the cell surface to allow its extracellular activity and degrade the
fucosyl residues present on glycoconjugates of enterocytes [17]. This fact could lead one to
define AfcA as a bifidobacterial tool for protecting the host’s health through modifying
α1,2 fucosylated Lewis antigen receptors b and y, recognized by gut pathogens such as
Helicobacter pylori [34], and norovirus [35]. Taking into account the conserved domains,
GH95 fucosidases from B. imperatoris and B. saguini could be close to being clustered
within the GH95-BifA (Table S2). The extracellular character of B. imperatoris and B. saguini
fucosidases could even be affirmed since signal peptides and transmembrane helices are
found, although they have not yet been characterized. Indeed, cladogram phylogenetic
analysis revealed that both fucosidases actually exhibit more similarities with GH95-BifA
(Figure 3).

Beyond GH95-BifA, there are a large number of intracellular GH95 fucosidases from
Bifidobacterium breve and B. longum subsp. infantis strains in silico categorized by showing a
glycosyl hydrolase 65 N-terminal domain (cl22392; NCBI CDD). They share the catalytic
domain with GH95-BifA without exhibiting accessory BIG2 (Table S2). Nevertheless,
InterPro database managed to identify a catalytic domain of greater length than in the
GH95-BifA sequences, denominated Alpha_L_Fuco family (IPR016518). The presence of
this domain could be the key for B. breve and B. longum subsp. infantis GH95 fucosidases
to show phylogenetic differences with GH95-BifA as shown by the PCA and cladogram
analyses (Figure 3), and therefore are clustered in GH95-BifB.
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Unfortunately, no B. breve GH95-BifB fucosidases have yet been characterized,
although the described hydrolytic activity of B. breve on Fuc-α1,2 Gal linkages supports the
presence of a functional GH95 fucosidase [36]. Blon_2335 from B. longum subsp. infantis
is the only representative of GH95-BifB that has been characterized [21]. In that study,
Blon_2335 showed a strong preference for Fuc-α1,2 linkages (2′-FL, LNFP-I), although it
partially cleaved Fuc-α1,3 linkages (3-FL), unlike AfcA from B. bifidum [21]. Because AfcA
structural exploration revealed its catalytic reaction as a α1,2 fucosidase [18], and since both
AfcA and Blon_2335 fucosidases show catalytic architecture differences, further studies
concerning crystallization of Blon_2335 are needed in order to elucidate its ability for
hydrolyzing both Fuc-α1,2 and Fuc-α1,3 linkages. Structure elucidation could also explain
the substantial differences between the GH95-BifB fucosidases from B. breve and B. longum
subsp. infantis, also observed in PCA and cladogram (Figure 3), despite presenting the
same conserved architecture (Table S2).

2.3. Bifidobacterial GH151 Fucosidases

GH151 enzymes form the smallest group of fucosidases (Table S3) and although
there are still doubts about their fucosidase activity, B. longum subsp. infantis ATCC
15697 counts, with a GH151 enzyme (Blon_0346) that exhibits probed Fuc-α1,2 Gal
activity [21]. Interestingly, bifidobacterial GH151 fucosidases are quite divergent from
the fucosidases classified in other GH families [21] and all of them belong to B. longum
subsp. infantis species although they show little differences in their sequences (Figure 4).
While no signal peptide or transmembrane helices were observed, CDD architecture anal-
yses revealed AmyAc_family superfamily and A4_beta-galactosidase_middle_domain,
although some sequences are also identified as containing GanA superfamily domain as
well (Table S3).

GH151 enzymes probably have domains closest to GH29-BifC fucosidases, identified
by containing conserved AmyAc superfamily domain and likely the ability to hydrolyze α

glycosidic linkages [31]. However, because GH151 accessory domains shown (Table S3),
they could be considered as potential non-specific beta galactosidase enzymes with the
capacity to hydrolyze Fuc-α1,2 Gal linkages as occurs with Blon_0346. Nevertheless,
further studies in order to elucidate their subjacent activity, substrate specificity, and con-
formational structure are needed to understand their role in the hydrolysis of fucosylated
carbohydrates.
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3. Discussion

Breast milk, beyond its nutritional function, provides the necessary pillars for the
initial establishment of the gut microbiota in newborns. In this regard, FHMOs and FHMGs
stand out for their ability to stimulate the growth of bifidobacteria [8,12], which in turn
produce SCFAs such as acetate, formate, lactate, and pyruvate [13], stimulating the immune
system [14], and serving as an energy source for colonocytes [37].

Although only a few bifidobacterial species have been studied extensively at both
cellular and genomics level for their ability to utilize fucosylated carbohydrates such
as B. bifidum and B. longum subsp. infantis [22,23], their success in colonizing the gut is
due to the different strain-dependent metabolic abilities developed for the use of both
FHMOs and FHMGs [24]. Therefore, fucosidases play a key role in the bifidobacterial gut
establishment. Concerning to that, B. bifidum strains show two extracellular fucosidases
belonging to GH29 and GH95 families. Both fucosidases cover the hydrolysis of Fuc-
α1,3Glu; Fuc-α1,3/4GlcNAc; and Fuc-α1,2 Gal linkages [17,18,27,33]. Since B. bifidum
prefers the utilization of lactose [28], 2′-fucosyllactose could be its target substrate for its
extracellular fucosidases, releasing to the environment lactose and fucose, the last could be
also liberated from blood Lewis a, b, x, and y antigens [27]. For all the above, B. bifidum
fucosidases could be considered altruistic and essential for microbial gut establishment
through promoting bifidobacterial mutualism and carbohydrate syntrophy in the infant
gut [38]. Given that bifidobacteria are able to metabolize lactose, and species such as
B. longum subsp. infantis or B. breve can metabolize fucose, their growth is improved
under the presence of fucosidases from B. bifidum. Thus, Gotoh et al. (2018) suggested
that extracellular fucosidases from B. bifidum could be crucial during the development
of a bifidobacteria-rich microbiota in the breastfed infant gut, by providing fucosylated
conjugate degradants [33]. On the other hand, B. bifidum fucosidases contribute to the
protection of the host through the modification of Lewis antigens [27].

Regarding the catalytic domains of the B. bifidum fucosidases, it should be noted that
GH29-BifA present orthologous fucosidases in other bifidobacterial species clustered in GH29-
BifB/D, and they probably all have a common phylogenetic lineage (Figure 2). However,
this statement has only been functionally corroborated through the characterization of the
enzymes AfcB (GH29-BifA) and Blon_2336 (GH29-BifB), due to lack of results of GH29-BifD
fucosidases.

Conversely, GH95-BifA fucosidases as well as those grouped in GH95-BifB, and ac-
cording to CDD database observations (Table S2), could phylogenetically descend from
either an evolutionary specialization or non-specification of glycosidases clustered in GH65.
Indeed, this in silico observation agrees with the crystallization results obtained for the
structure AfcA from B. bifidum [18]. According to that, both GH65 and GH95 enzymes
share an α/α 6 barrel fold with inverting mechanism and glutamate566 as catalytic proton
donor. Moreover, Nagae et al. (2007) compared the structures between families GH65 and
GH95, revealing conservation of the general acid residues, except for catalytic acid/base
aspartate766, which is shifted in AfcA [18]. That shifting was also found in the rest of the
bifidobacterial GH95 fucosidases (data not shown), and agreeing with the above mentioned
authors, the reaction mechanisms of bifidobacterial GH95 fucosidases differ from those of
the GH65 family [18].

The other species widely studied for its fucosidase activity is B. longum subsp. infantis.
Actually, it is the only species of bifidobacteria that exhibits GH29, GH95, and GH151 fu-
cosidases that have been recombinantly purified and characterized [21]. Those fucosidases
allow B. longum subsp. infantis to use a wide range of substrates, hydrolyzing Fuc-α1,3Glu;
Fu-cα1,2/3Gal; and Fuc-α1,3/4/6GlcNAc linkages [21,32]. As previously commented,
B. longum subsp. infantis GH29-BifB fucosidases are orthologous with those classified in
GH29-BifA. However, this species also shows GH29-duplicated fucosidases, clustered in
the GH29-BifC, with different architecture and paralogs from those of GH29-BifB (Figure 3).
Taking into account the fucosidase duplication and in agreement with You et al. (2019),
B. longum subsp. infantis GH29-BifC fucosidases could have evolved from a different
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glycosyl hydrolase [30]. According to CDD database observations (Table S1) and because
their predicted structure is composed by a β/α 6 barrel fold with retaining mechanism and
glutamate as catalytic proton donor, GH29-BifC fucosidases from B. longum subsp. infantis
could descend from GH13 glycosidases (α-amylases).

GH29-BifC fucosidases, similar to GH95-BifB, which is probably phylogenetically orig-
inated from GH65 family as described above, need to have their structural crystallization
further explored in order to elucidate their origins and evolution pathway. In addition,
GH29-BifC fucosidases show similarities with metazoan fucosidases according to the In-
terPro database (Table S1), including aspartate224 and glutamate270 residues (data not
shown), which play the role of the catalytic nucleophile and catalytic acid/base, respec-
tively, in metazoan fucosidases [25].

Finally, GH151 fucosidases are exclusively present in B. longum subsp. infantis.
This fact could suggest a fourth pathway of fucosidases phylogenetic evolution in that
species closely related to GH29-BifC fucosidases, since they present a N-terminal α amylase
catalytic domain. In addition, Blon_0346 was originally classified as a member of GH29
family due to their fucosidase activity despite low similarity [21]. However, GH151 en-
zymes may be the result of a branch in the evolution of GH29-BifC fucosidases, since they
show a GH42 beta galactosidase trimerization architecture instead of conserved features of
metazoan fucosidases.

4. Materials and Methods

4.1. Identification and Selection of Fucosidase Sequences

Complete bifidobacterial fucosidase protein sequences belonging to GH29, GH95,
and GH151 families were retrieved from CAZy database [19]. Fucosidase sequences
were used as probes in PSI-BLAST searches [39] against the NCBI [40], Swiss-Prot [41],
and Ensembl [42] protein databases.

4.2. Protein Sequence, Alignment, and Phylogenetic Analysis of α-L-Fucosidases

Fucosidase sequences were analyzed using SignalP-5.0 [43], with default options to
predict signal peptide sequences: SOSUI [44] and HMMTOP [45] with default parame-
ters for the prediction of transmembrane helices. NCBI Conserved Domains Database
(CDD) [46] and InterPro databases (EMBL_EBI) [47] were used to predict the domain archi-
tecture. Inferred fucosidase amino acid sequences were aligned using Clustal Omega web
version [48]. All sequences belonging to the same GH families were considered in phyloge-
netic analyses. Neighbor-joining method cladogram and PCA analyses were performed
using the program Jalview 2.11.1.4 [49].

5. Conclusions

This is the first study that explores phylogenetically the three families of the bifi-
dobacterial fucosidases: GH29, GH95, and GH151, through their conserved architecture,
showing that B. bifidum and B. longum subsp. infantis reveal two and four different phyloge-
netic lineages, respectively, belonging to different fucosidase families. On the other hand,
given the differences in the catalytic architecture observed in this work, the bifidobacterial
fucosidases belonging to the GH29 and GH95 families could be subclassified into four and
two groups, respectively.

Taking into account that the observations described in this work were obtained in
silico and supported by current characterization results from some B. bifidum and B. longum
subsp. infantis fucosidases, further studies regarding structural characterization and physic-
ochemical properties of more fucosidases identified by computational analysis are needed
in order to validate the novel classification of bifidobacterial fucosidases here proposed.

Concerning to B. longum subsp. infantis fucosidases, which evolved from different
GH families such as GH29-BifC, GH95-BifB, and GH151, and given that their conserved
architecture presents vestiges of ancestral glycosidases GH13, GH65, and GH42, respec-
tively, as well as B. Bifidum GH95-BifA fucosidases phylogenetically descended from GH65,
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deepening substrate spectrum analyses could determine their underlying roles in those
species. In this context, and since some fucosidases have been used to transfucosylate
carbohydrates or glycoconjugates, the application of these evolved and hypothetically non-
specific B. longum subsp. infantis fucosidases mentioned above can open a new perspective
towards the synthesis of novel fucosylated conjugates by using different substrates be-
yond lactose for synthetizing 2′-fucosyllactose. This vision is oriented towards the supply
those novel fucosylated conjugates to adults in combination with fucosidase producer
bifidobacteria in order to maintain a healthy microbiota or to reestablish it from dysbiosis
states as described previously [50,51]. In this regard, it would be important to elucidate
phylogenetically, as well as structurally and physicochemically, the fucosidases of many
other gut microorganism genera, as for instance Lactobacillus, Bacteroides, and Akkermansia,
with the aim to reveal the whole gut fucosidase interaction.
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Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription regulator that plays
a pivotal role in coordinating the cellular response to oxidative stress. Through interactions with
other proteins, such as Kelch-like ECH-associated protein 1 (Keap1), CREB-binding protein (CBP),
and retinoid X receptor alpha (RXRα), Nrf2 mediates the transcription of cytoprotective genes
critical for removing toxicants and preventing DNA damage, thereby playing a significant role in
chemoprevention. Dysregulation of Nrf2 is linked to tumorigenesis and chemoresistance, making
Nrf2 a promising target for anticancer therapeutics. However, despite the physiological importance
of Nrf2, the molecular details of this protein and its interactions with most of its targets remain
unknown, hindering the rational design of Nrf2-targeted therapeutics. With this in mind, we used a
combined bioinformatics and experimental approach to characterize the structure of full-length Nrf2
and its interaction with Keap1. Our results show that Nrf2 is partially disordered, with transiently
structured elements in its Neh2, Neh7, and Neh1 domains. Moreover, interaction with the Kelch
domain of Keap1 leads to protection of the binding motifs in the Neh2 domain of Nrf2, while
the rest of the protein remains highly dynamic. This work represents the first detailed structural
characterization of full-length Nrf2 and provides valuable insights into the molecular basis of Nrf2
activity modulation in oxidative stress response.

Keywords: oxidative stress; Nrf2; Keap1; nuclear magnetic resonance spectroscopy; hydrogen/deuterium ex-
change; mass spectrometry; circular dichroism; intrinsically disordered

1. Introduction

Reactive oxygen species (ROS) from the environment or generated by the cellular
metabolism can cause oxidative damage to proteins, DNA, and lipids, leading to diseases
such as cancer, dementia, and cardiovascular disease, to name a few [1,2]. Nuclear factor
erythroid 2-related factor 2 (Nrf2) is an essential transcription factor for protecting cells
from these harmful effects [3–6]. Through binding to the antioxidant-responsive element
(ARE) in their promoter regions, Nrf2 induces the expression of numerous cytoprotective
genes and safeguards cells from tumorigenesis [4,7]. On the other hand, aberrant activation
of Nrf2 is associated with poor prognosis and chemoresistance of many cancer types [8–14].
Genomic characterization of squamous cell lung cancers revealed that the Nrf2 antioxidant
pathway is one of the most severely altered pathways [15]. Many mutations of Nrf2 are
expected to affect its target recognition [16,17], resulting in its dysregulation [18,19]. Thus,
pharmacological modulation of Nrf2 activity represents an attractive strategy for cancer
treatment [20].
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Nrf2 activity is regulated through the interactions with a suite of different pro-
teins [4,21–27], including Kelch-like ECH-associated protein 1 (Keap1) [22,28]. The 70 kDa
Keap1, which acts as the primary negative regulator of Nrf2, consists of three major func-
tional domains: the N-terminal BTB domain, the IVR region, and the C-terminal Kelch
domain. Under homeostatic conditions, dimeric Keap1 binds Nrf2 via the Kelch domains
and recruits it to the Cullin-3 based E3 ligase complex for ubiquitination, leading to the
proteasomal degradation of Nrf2 [22,29,30]. In the presence of oxidative stress, several
redox-sensitive cysteines in Keap1 (e.g., C151, C273, and C288) are modified by ROS, result-
ing in protein conformational changes and disruption of Nrf2 binding [31,32]. This leads
to the accumulation of Nrf2 in the nucleus and subsequent activation of ARE-dependent
gene transcription.

Nrf2 is a member of the Cap ‘n’ Collar (CNC) family of basic leucine-zipper tran-
scription factors. The 68 kDa human Nrf2 comprises seven Nrf2-ECH homology (Neh)
functional domains, known as Neh1–7 [25,33]. Note that for historical reasons, the domain
numbers are not ordered according to the sequence [34] (Figure S2A). The N-terminal Neh2
domain binds the Kelch domains of dimeric Keap1 via a high-affinity ETGE motif and a
low-affinity DLG motif [22,35]. Following the Neh2 domain in the protein sequence, Neh4
and Neh5 are the transactivation domains that recognize the transcription co-activator
CBP [23,36], whereas the Neh7 domain binds to the negative regulator RXRα [25,37]. The
Neh6 domain interacts with the β-transducin repeat-containing protein 1, which leads
to Keap1-independent ubiquitination and degradation of Nrf2 [38,39]. The Neh1 do-
main mediates heterodimerization with sMaf proteins for DNA-binding [4,40], whereas
the C-terminal Neh3 region is another transactivation domain associated with chromo
ATPase/helicase DNA-binding protein 6 [41].

Despite its critical role in the antioxidant response, little is known about the molecular
structure of Nrf2. To date, only the structures of the isolated N-terminal Neh2 domain
(residues 1–98) and part of the Neh1 DNA-binding domain (residues 445–523; PDB: 2LZ1)
have been experimentally characterized [22,28,42,43]. Nuclear magnetic resonance (NMR)
studies revealed that the Neh2 domain is intrinsically disordered (i.e., it does not adopt a
stable folded conformation) yet possesses transient local structural elements. In particular,
the region of residues 39–71 that links the two Keap1-binding motifs (i.e., the DLG and
ETGE elements) displays significant helical propensity [22].

The Neh1 DNA-binding domain comprises three regions: the CNC homology region,
the basic DNA recognition motif, and the leucine-zipper region [33]. The solution structure
of a 79-residue fragment (PDB: 2LZ1; residues 445–523 of human Nrf2) representing only
part of the Neh1 domain (lacking the C-terminal leucine-zipper dimerization region) was
solved using NMR spectroscopy [43]. The structure contains 4 α-helices (H1–H4; residues
455–465, 469–475, 478–489, and 491–505), whereas the remaining 34 residues (~43% of the
structure) are disordered.

Gaining a mechanistic understanding of how Nrf2 is regulated through interactions
with different binding partners requires a multi-pronged approach. In this work, we
combined bioinformatics tools with various biophysical techniques, including hydro-
gen/deuterium exchange mass spectrometry (HDX-MS), circular dichroism (CD) spec-
tropolarimetry, and NMR spectroscopy to investigate the structural properties of full-length
Nrf2 (from now on referred to as FL-Nrf2). This is in contrast to earlier studies that were
limited to truncated constructs [22,42,43]. Further, HDX-MS was used to characterize the
interactions of Nrf2 with the Kelch domain of Keap1 (from now on referred to as “Kelch”).
Intriguingly, our results reveal that FL-Nrf2 is partially disordered yet possesses several
transiently structured elements. Upon binding with Kelch, the DLG and ETGE binding
motifs in the Neh2 domain of Nrf2 became protected, yet the rest of the protein remained
highly dynamic. These unique structural properties may be involved in regulating the
interactions of Nrf2 with other proteins and thus determine its function in response to
oxidative stress.
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2. Results

2.1. Full-Length Nrf2 (FL-Nrf2) is Predicted to Be Partially Disordered

FL-Nrf2 is an acidic protein with pI ~4.8. At physiological pH, it is highly charged
(~–40 at pH 7). Using the optimized expression and purification protocols outlined under
Materials and Methods, we were able to produce ~0.3 mg of recombinant full-length
protein with high purity from 1 L of M9 culture. Intriguingly, although the molecular
weight of FL-Nrf2 is only 70.4 kDa (including the His-tag), it runs with an apparent MW of
~110 kDa on SDS-PAGE gels as already reported previously [44] (Figure S1). The high net
charge and aberrant SDS-PAGE migration behavior suggest that FL-Nrf2 may be partially
disordered [45,46].

We used bioinformatics tools to further investigate the potential disorder of FL-Nrf2
(Figure S2). PONDR-FIT [47], a meta-protein disorder predictor that combines the results of
six different methods, indicates that many regions of FL-Nrf2 are disordered (i.e., disorder
disposition > 0.5, Figure S2A). In particular, the N-terminal Neh2 domain is predicted to be
largely unstructured, in agreement with published data [22]. Meanwhile, local structured
elements are expected to be present in the Neh4 (112–134) and Neh5 domains (183–201), the
two transactivation domains that bind CBP [23,36]. Neh6 (338–388) and Neh3 (562–605) are
predicted to be mainly unstructured, whereas Neh7 (209–316) and Neh1 (435–562) appear
to be partially disordered.

We also applied s2D, another sequence-based disorder predictor, to further examine
the conformational propensities of FL-Nrf2. s2D predicts not only disordered regions but
also estimates the secondary structure at the residue level [48]. The method predicted
that ~90% of the residues in FL-Nrf2 predominantly adopt a random coil conformation
(Figure S2B). While no residues were identified to sample the β-strand conformations,
57 residues (20–23, 479–486, 492–502, and 533–566) were predicted to have a helical propen-
sity of >46%. Notably, the longest stretch (residues 533–566) that showed a preferentially
helical conformation is in the Neh1 domain. DisEMBL [49] and IUPread2A [50], two other
sequence-based structural predictors, were also used to characterize FL-Nrf2, all of which
agree with the PONDR-FIT and s2D data (Figure S2C).

2.2. CD and NMR Experiments Confirm that FL-Nrf2 is Intrinsically Disordered

We next used CD and NMR techniques to validate our bioinformatics findings. CD
spectropolarimetry was applied for assessing the secondary structure of FL-Nrf2 at 5, 10,
25, and 35 ◦C. The negative bands at 208 and 222 nm indicate the presence of α-helical
structural elements (Figure 1A). Spectral deconvolution indicates that at 25 ◦C, there are
around 27% α-helical, 21% β-strand and 52% disordered/turn structures, implying that
Nrf2 is indeed partially disordered (Figure 1B; Table S1). While lowering the temperature
to 5 or 10 ◦C did not considerably alter the secondary structure content, the percentage of
α-helical structure dropped to ~18% when the temperature was increased to 35 ◦C.
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Figure 1. (A) CD spectra of FL-Nrf2 recorded at 5, 10, 25, and 35 ◦C. (B) Deconvolution of FL-Nrf2 CD spectrum at 25 ◦C
using the CONTINLL program in DichroWeb, with protein reference data set 4 (optimized for 190–240 nm). The NRMSD
between the experimental and reconstructed CD data is 0.13.

We used NMR spectroscopy to further verify the disordered nature of FL-Nrf2.
Figure 2 shows the 1H-15N HSQC spectra of FL-Nrf2 acquired at 5, 10, 25, and 35 ◦C.
At all four temperatures, despite the presence of some well-dispersed peaks with relatively
weak intensities, most of the observed backbone amide signals are crowded in a narrow
region between 7.8 and 8.7 ppm in the 1H dimension. This lack of 1H resonance dispersion
indicates that many parts of FL-Nrf2 do not adopt stable structures and undergo rapid
conformational interconversion [51–54]. In addition, the disordered nature of FL-Nrf2
does not change significantly at lower temperatures. For comparison, we also acquired the
HSQC spectrum of FL-Nrf2 at 35 ◦C in the presence of 6 M urea, under which conditions
the protein was expected to be largely unfolded (Figure S3). The similarity of all these
spectra therefore suggest that FL-Nrf2 is already extensively unfolded even in the absence
of urea. Although the signal overlap hampers further site-specific structural analyses of
FL-Nrf2 by NMR spectroscopy, our CD and NMR results nevertheless demonstrate that
FL-Nrf2 is significantly disordered.

Figure 2. 1H-15N HSQC spectra of FL-Nrf2 (20 μM) in 50 mM ammonium acetate buffer, 0.5 mM
TCEP (pH 6.5) recorded at (A) 5 ◦C, (B) 10 ◦C, (C) 25 ◦C, and (D) 35 ◦C. Most of the observed backbone
amide signals are crowded in a narrow region between 7.8 and 8.7 ppm in the 1H dimension at all
four temperatures.
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The solution NMR structure of a 79-residue fragment (residues 445–523 of human Nrf2;
denoted as Neh1–2LZ1; PDB accession: 2LZ1) representing part of the Neh1 domain shows
that this segment is partially folded in isolation. Therefore, some well-dispersed peaks
in the 1H-15N HSQC spectrum of FL-Nrf2 could originate from the Neh1–2LZ1 region.
To test this possibility, we performed NMR and CD analyses on isolated Neh1–2LZ1.
Figure 3 shows the 1H-15N HSQC NMR spectrum of Neh1–2LZ1 in 50 mM ammonium
acetate (pH 6.5) with 50 mM arginine, the same condition used for solving the Neh1–2LZ1
structure. It has been shown that arginine can increase the stability and solubility of some
proteins [55,56]. For completeness, we also acquired HSQC data of Neh1–2LZ1 in the
absence of arginine (Figure 3). Both spectra contain well-dispersed peaks and are very
similar, suggesting that isolated Neh1–2LZ1 is, to some extent, structured both in the
presence and absence of arginine.

Figure 3. 1H-15N HSQC NMR spectra of Neh1–2LZ1 (100 μM) in the presence (red) and absence
(blue) of 50 mM arginine in 50 mM ammonium acetate buffer, 1 mM DTT, pH 6.5. The spectra were
recorded at 25 ◦C.

The CD spectrum of Neh1–2LZ1 depicts two negative minima at 208 and 222 nm, as
well as a positive band at 195 nm (Figure S4), illustrating the existence of helical content. De-
convolution analysis estimated the population of α-helical, β-strand, and disordered/turn
structures to be 39%, 14%, and 47%, respectively, consistent with the partially disordered
nature of Neh1–2LZ1.

2.3. HDX-MS Reveals that Many Regions of FL-Nrf2 are Highly Dynamic

HDX-MS experiments were performed to further probe the conformational dynamics
of FL-Nrf2 in a spatially resolved manner. Backbone amide hydrogen/deuterium exchange
(HDX) coupled with ESI-MS is a powerful method for studying protein behavior in solu-
tion [57,58]. Regions that are involved in hydrogen-bonding networks or occluded from
the solvent will undergo slow exchange. In contrast, regions that are disordered and
solvent-accessible will undergo fast exchange upon protein exposure to D2O. The exchange
process is due to dynamic fluctuations that disrupt backbone amide hydrogen bonds. By
measuring deuterium incorporation, it is possible to determine the relative flexibility of
backbone segments of a protein [59].

Pepsin digestion of FL-Nrf2 yielded 101 peptides resulting in 86.3% sequence coverage
(Figure S5B). Fast HDX kinetics were observed throughout the entire protein, where the
majority of the peptides exhibit ~100% deuteration after 12 s. This lack of protection
indicates that FL-Nrf2 is significantly disordered (Figure S6). Notably, several peptides
in distinct parts of the protein showed somewhat slower deuteration. For instance, the
peptide covering residues 54–74 in the Neh2 domain only displayed complete deuteration
after >24 s. This observation is consistent with earlier findings that even though the Neh2
domain is disordered, helical propensity exists between residues 39 and 71 [22]. Other
regions that showed somewhat slower exchange are 235–249, 417–434, and 512–537. They
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are located in the Neh7 domain, the linker between the Neh6 and Neh1 domains, and the
Neh1 domain, respectively.

Interestingly, the regions corresponding to three of the four helices (H1-H3; residues
455–465, 469–475, and 478–489) in the Neh1–2LZ1 structure did not show higher protection,
suggesting that these helical regions undergo extensive conformational fluctuations, which
would facilitate deuterium uptake. Another possible explanation is that the Neh1–2LZ1
region is less stable in FL-Nrf2.

2.4. Binding of the Kelch Domain of Keap1 (“Kelch”) Triggers Conformational Changes Localized
in the Neh2 Domain of Nrf2

We also investigated how FL-Nrf2 interacts with Kelch, which is part of the negative
regulator Keap1. Previous studies showed that the isolated Neh2 domain of FL-Nrf2 binds
Kelch at two sites: the high- affinity ETGE motif (around residues 76–84; Kd ~5 nM) and the
low-affinity DLG motif (around residues 17–46; Kd ~1 μM) [22]. Here we used HDX-MS to
further dissect the effects of Kelch-binding on the conformational dynamics of FL-Nrf2. In
these experiments, the FL-Nrf2 concentration was held constant at 2 μM, while the Kelch
concentration varied from 2 to 4 and 6 μM, which corresponded to FL-Nrf2:Kelch ratios of
1:1, 1:2, and 1:3, respectively (Figure 4). By testing these different concentration ratios, it
should be possible to selectively saturate either only the high-affinity motif or both binding
sites due to their distinct Kd values. Significant changes in deuterium uptake were observed
in the Neh2 domain upon the addition of Kelch. In the presence of 1:1 Kelch, a considerable
reduction in FL-Nrf2 deuterium uptake was displayed around the ETGE binding motif
and a small reduction in deuterium uptake around the DLG motif, consistent with the
binding affinities of the two sites. For a 1:2 ratio, a substantial reduction in deuterium
uptake was observed around the DLG binding site and an even more significant reduction
in HDX close to the ETGE motif. Further reduction in deuterium uptake around both sites
was noted at a 1:3 ratio. Notably, the addition of Kelch did not slow down the deuterium
uptake in any other domains of FL-Nrf2.

Figure 4. HDX-MS kinetic plots of free FL-Nrf2 (black) and in the presence of 1:1 (red). 1:2 (blue),
and 1:3 (gray) molar ratios of Kelch.

276



Int. J. Mol. Sci. 2021, 22, 7434

Figure 5 shows % HDX differences at t = 6 s of FL-Nrf2 after addition of Kelch in 1:1,
1:2, and 1:3 ratios. In these maps, blue regions indicate less HDX than for free FL-Nrf2,
whereas red regions indicate more HDX (more dynamic) than for free FL-Nrf2. These plots
clearly display the enhanced protection of the Neh2 domain that was caused by increasing
the Kelch concentration. Surprisingly, all the other Nrf2 domains experience slightly higher
flexibility at the earliest time point upon binding the Kelch domain (red hues). These data
suggest that when FL-Nrf2 binds to the Kelch domain, the rest of the protein becomes
somewhat more dynamic. Our results, therefore, reveal that Kelch binds the Neh2 domain
of FL-Nrf2 in a highly selective manner without triggering folding transitions in the rest of
the protein.

Figure 5. HDX-MS% difference plots of FL-Nrf2 upon addition of Kelch in 1:1, 1:2, and 1:3 ratios
relative to free FL-Nrf2 at t = 6 s. Blue represents reduced deuteration, and red represents enhanced
deuteration after the addition of Kelch. The side panel indicates the domain organization of FL-Nrf2.
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2.5. Effects of Nrf2-Binding on the Deuterium Uptake of the Kelch Domain

The deuteration kinetics of free Kelch (Figure 6; black) display slow uptake throughout
its entire sequence, consistent with its folded β-propeller structure [28,60]. For 1:1 and 2:1
(Kelch: FL-Nrf2) conditions, the overall HDX kinetics remained the same throughout the
entire Kelch sequence. Peptides 335–341, 375–393, and 571–581 are the only three regions
that showed a slight reduction in deuterium uptake when FL-Nrf2 was added. Peptide
375–393 contains residue N382 that is known to form a hydrogen bond with the ETGE
motif of the Neh2 domain of Nrf2 [28,60]. Our HDX data are consistent with this behavior,
as peptide 375–393 displayed a reduction in deuterium uptake indicative of protection of
this site.

Figure 6. HDX-MS kinetic plots for free Kelch (black), 1:1 (red), and 2:1 (blue) Kelch:FL-Nrf2.

To understand the effect of Nrf2-binding on the global dynamics of Kelch, the HDX
difference of the 1:1 state was plotted at time points 0.1, 0.4, and 30 min compared to free
Kelch (Figure 7). At 0.1 and 0.4 min, a large reduction in deuterium uptake was observed
in peptides 375–393, consistent with hydrogen bond formation of this site when the Kelch
domain interacts with FL-Nrf2. Overall, the data show that there is a general stabilization
of the entire Kelch domain upon binding to FL-Nrf2.
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Figure 7. HDX % difference plots for Kelch upon addition of FL-Nrf2 at 0.1, 0.4, and 30 min compared
to free Kelch. Blue represents reduced deuteration after the addition of FL-Nrf2.

3. Discussion

Nrf2 is a key transcription factor that orchestrates cellular responses to oxidative
stress [3,6,61]. Aberrant activation of Nrf2 has been shown to play a pivotal role in patho-
genesis and chemoresistance for many types of cancer [18,62]. Recent studies revealed
that dysregulation of Nrf2 is also associated with neurodegenerative disorders and car-
diovascular disease [63–66]. The involvement of Nrf2 in these human diseases makes the
pharmacological modulation of Nrf2 activity a promising therapeutic strategy. Indeed,
since the structures of Kelch in complex with the ETGE and DLG peptides derived from
Nrf2 became available [28,42,60], tremendous efforts have been devoted to the design
of small molecules and peptides that can inhibit the Nrf2-Kelch interaction with high
specificity [26,67]. Unraveling the mechanism of Nrf2 binding to other regulators, such as
CBP and RXRα, will no doubt open up additional opportunities for developing effective
therapeutic strategies. Our work represents the first structural characterization of Nrf2 in
the full-length context, which is a critical step toward this goal.

We have used various bioinformatics tools to predict the structural characteristics
of FL-Nrf2. The results suggest that FL-Nrf2 is significantly disordered, although local
structural elements exist in specific regions of the protein. Our bioinformatics findings
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are supported by extensive biophysical characterization using CD, NMR, and HDX-MS
techniques. The CD results confirm that FL-Nrf2 is partially disordered but displays a
significant helical propensity. The results are consistent with the lack of peak dispersion
observed in the 1H-15N HSQC NMR spectrum of FL-Nrf2.

Our HDX-MS results provide a clearer picture of the FL-Nrf2 dynamics. With an ~86%
overall sequence coverage, we were able to probe the conformational dynamics of different
FL-Nrf2 domains. Even though the majority of the peptides produced by pepsin digestion
showed fast deuterium uptake, a few regions were found to be moderately protected.
Unexpectedly, peptides in the Neh1–2LZ1 region did not display high protection. It is
possible that even though isolated Neh1–2LZ1 is partially structured, conformational
fluctuations still allow for relatively fast deuterium uptake.

The data presented in this work highlight the importance of using full-length Nrf2 to
uncover the structural and dynamic characteristics of this protein, as opposed to earlier
studies that used fragments or protein truncations. By using the FL-Nrf2 construct, we
uncovered important conformational properties that provide insights into the biological
role of Nrf2. Our results show that free FL-Nrf2 is highly dynamic throughout its entire
sequence. When FL-Nrf2 interacts with Kelch, a large reduction in deuterium uptake
is observed in the DLG and ETGE binding motifs of FL-Nrf2. Other parts of FL-Nrf2
became slightly more dynamic, as indicated by an increase in HDX. We also found that the
interaction of FL-Nrf2 with Kelch resulted in a stabilization of the entire Kelch domain.

The disordered nature of FL-Nrf2 has substantial implications for its biological func-
tion. Intrinsically disordered proteins are highly abundant in all organisms [68]. Like
FL-Nrf2, many of these proteins are involved in gene transcription and signal transduc-
tion [69,70]. Distinct from globular proteins, disordered proteins do not adopt a well-
defined structure under physiological conditions. Instead, they exist as a large population of
conformations in dynamic equilibria that can shift upon changes in the environment [51,71].
The structural plasticity of FL-Nrf2 can confer functional advantages. For instance, the lack
of a stable tertiary fold allows FL-Nrf2 to bind multiple targets using a number of linear
motifs located in different protein regions, either simultaneously or sequentially, without
steric restrictions [72,73]. This aligns with our HDX-MS results showing that the effects of
Kelch-binding on the structure of FL-Nrf2 are localized to the Neh2 domain in a highly
specific manner. Further, the conformational dynamics of FL-Nrf2 can also have substantial
consequences for its target recognition. Upon complex formation, the unfavorable entropy
loss due to the folding into more stable bound-state conformations of FL-Nrf2 must be offset
by strong enthalpic interactions with the binding partner. This enthalpy-entropy compen-
sation confers Nrf2 the ability to bind distinct targets with high specificity and low affinity,
which is essential for its regulation through various protein-protein interactions [74–76].

4. Materials and Methods

4.1. Protein Expression and Purification of Full-Length Human Nrf2

The construct of full-length human Nrf2 (FL-Nrf2; purchased from Invitrogen®) cloned
into the Gateway Destination Vector pDEST17 was transformed into E. coli (Rosetta 2(DE3)
pLysS) cells for protein expression. The cell culture was incubated in M9 minimal media
(47.8 mM of Na2HPO4, 22.0 mM of KH2PO4, 8.6 mM of NaCl, 0.1 mM of CaCl2, 2.0 mM
of MgSO4, 10 mg of biotin, 10 mg of thiamin, 4.0 g of glucose, and 1.0 g of NH4Cl; pH
7.4) at 37 ◦C until the OD600 reached ~0.8. Protein over-expression was induced with
1 mM isopropyl-β-D-thiogalactopyranoside (IPTG). To avoid purifying Nrf2 from inclusion
bodies through refolding procedures, we have tested four different expression temperatures
(15, 22, 30, and 37 ◦C) and two induction times (5 and 18 h) to identify conditions that
maximize the amount of FL-Nrf2 in the soluble fraction. Our data showed that induction
at higher temperatures (i.e., 30 and 37 ◦C) for 5 or 18 h resulted in the majority of FL-Nrf2
in the insoluble fraction. In contrast, most of the protein was found in the soluble fraction
when cells were induced at 15 ◦C for 18 h.
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The cell pellets were resuspended using solubilization buffer (20 mM Tris-HCl, 150 mM
NaCl, 1 mM EDTA, 5 mM 2-mercaptoethanol, pH 8.1). Lysozyme was added to the
solubilized cell suspension, and the mixture was incubated for 30 min at 37 ◦C. The
incubated sample was homogenized using an Avestin EmulsiFlex-C5 homogenizer. A
SigmaFast Protease Inhibitor Cocktail tablet (EDTA-free) and 1 mM PMSF (100 μL per
10 mL of the lysed sample) were added to the sample. Final concentrations of imidazole
(10 mM) and NaCl (500 mM) were adjusted, and the sample was centrifuged at 40,000× g
for 30 min at 4 ◦C. The supernatant was collected, and the pH was adjusted to 7.4–7.8.
The sample was loaded onto equilibrated Ni-Sepharose 6 fast flow beads (GE Healthcare)
and incubated for 2 h at room temperature. The sample was then washed with 400 mL
of primary wash buffer (20 mM Tris-HCl, 500 mM NaCl, 80 mM imidazole, 5 mM 2-
mercaptoethanol, pH 7.8), followed by 10 mL (5 mL × 2) of secondary wash buffer (20 mM
Tris-HCl, 500 mM NaCl, 150 mM imidazole, 5 mM 2-mercaptoethanol, pH 7.8). The protein
was then eluted using 5-mL fractions of elution buffer (20 mM Tris-HCl, 500 mM NaCl,
1.5 M imidazole, 5 mM 2-mercaptoethanol, pH 7.8), and the eluate was monitored using
Bradford assay (Bio-Rad, Hercules, CA, USA). Fractions containing FL-Nrf2 were pooled
and dialyzed overnight into the dialysis buffer (50 mM ammonium acetate, 500 μM TCEP,
pH 6.5). The final protein concentration was determined by the Lowry assay. By using
this new protocol, we were able to obtain about 0.3 mg of purified FL-Nrf2 from a 1 L M9
minimal media culture. Notably, purified FL-Nrf2 does not have very high solubility. The
solubility of FL-Nrf2 was analyzed by the sedimentation assay (the procedure of the assay
is outlined in Supplemental Materials) to partition the soluble and aggregated protein
molecules into supernatant and pellet for analysis. The results show that FL-Nrf2 in 50 mM
ammonium acetate and 0.5 mM TCEP (pH 6.5) was only present in the supernatant but not
in the pellet (Figure S7), confirming that the protein does not aggregate at concentrations
<20 μM. Therefore, samples with a concentration of <20 μM were used in our studies.

4.2. Expression and Purification DNA-Binding Neh1 Domain of Nrf2 (Neh1–2LZ1,
Residues 445–523)

The Neh1–2LZ1 construct was purchased from the Northeast Structural Genomics
Consortium. It was cloned into the Gateway Destination Vector pDEST17 with a tobacco
etch virus (TEV) protease cleaving site and transformed into BL21(DE3) for expression.
The cell culture was incubated in M9 minimal media at 37 ◦C until the OD600 reached ~0.8.
Protein over-expression was induced with 1 mM IPTG. Cells were then grown overnight at
17 ◦C before harvest by centrifugation.

The cell pellets were resuspended in denaturing Ni2+ binding buffer (25 mM Tris-
HCl, 250 mM NaCl, 8 M urea, 5 mM 2-mercaptoethanol, pH 8.0). The cell suspension
was homogenized by Dounce homogenization and sonication. The mixture was then
centrifuged at 50,000× g at room temperature for 40 min. Ni-Sepharose 6 fast flow beads
(GE Healthcare) pre-equilibrated with binding buffer were added to the supernatant, and
the mixture was incubated for 2 h at room temperature. The mixture was loaded onto
a column and washed with 200 mL of primary wash buffer (25 mM Tris-HCl, 250 mM
NaCl, 10 mM imidazole, 8 M urea, 5 mM 2-mercaptoethanol, pH 8.0), followed by a wash
with 200 mL of secondary wash buffer (25 mM Tris-HCl, 250 mM NaCl, 10 mM imidazole,
5 mM 2-mercaptoethanol, pH 8.0). The protein was eluted using 5 mL fractions of elution
buffer (25 mM Tris-HCl, 500 mM NaCl, 750 mM imidazole, 5 mM 2-mercaptoethanol,
pH 7.8), and eluted fractions were monitored using Bradford assay. Fractions containing
Neh1–2LZ1 were pooled and dialyzed overnight into the HEPES buffer (20 mM HEPES,
5 mM 2-mercaptoethanol, pH 8.0) at 4 ◦C. The next day, the buffer was refreshed, and
the sample was dialyzed for another 4 h before the protein concentration was determined
using Bradford assay. TEV protease was then added accordingly (1 mg of TEV protease/25
mg of protein). Following overnight incubation at room temperature, the sample was
diluted into the HEPES buffer and was loaded onto a pre-equilibrated SP-Sepharose (GE
Healthcare) column and incubated at room temperature for one hour. After incubation, the
sample was washed with 200 mL of the third wash buffer (20 mM HEPES, 50 mM NaCl,
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5 mM 2-mercaptoethanol, pH 8.0). Finally, protein was eluted using the elution buffer
(20 mM HEPES, 500 mM NaCl, 5 mM 2-mercaptoethanol, pH 8.0) in 5 mL fractions. Eluted
fractions were pooled and dialyzed into the NMR buffer (50 mM ammonium acetate, 1 mM
DTT, pH 6.5) in the presence or absence of 50 mM of arginine.

4.3. Expression and Purification Kelch Domain of Human Keap1

The pET15b plasmid of human Keap1-Kelch cDNA, a kind gift from Dr. Mark Han-
nink at the University of Missouri-Columbia, was transformed into E. coli BL21 (DE3)
cells. The expression and purification were carried out using the procedure described in
Khan et al. [77].

4.4. CD Spectropolarimetry

CD experiments were performed using a Jasco J-810 spectropolarimeter. Spectra of
FL-Nrf2 (~0.3 mg/mL) and Neh1–2LZ1 construct (~0.1 mg/mL) were recorded in 50 mM
ammonium acetate buffer, pH 6.5. FL-Nrf2 spectra were recorded at 5, 10, 25, and 35 ◦C. For
each spectrum, 20 accumulated scans were obtained at 20 nm/min rate. For Neh1–2LZ1,
the data were recorded at 20 ◦C with 20 accumulated scans (20 nm/min). The CD data
were deconvoluted using the CONTINLL program in DichroWeb, with protein reference
data set 4 (optimized for 190–240 nm) [78].

4.5. NMR Spectroscopy
1H-15N HSQC NMR spectra of FL-Nrf2 were acquired on Varian Inova 600-MHz spec-

trometers (UWO Biomolecular NMR Facility) at 5, 10, 25, and 35 ◦C in 50 mM ammonium
acetate buffer (pH 6.5) using BioPack. Each data set was recorded with 160 scans and a
relaxation delay of 1.0 s. For Neh1–2LZ1 (in ammonium acetate buffer, pH 6.5), spectra
were recorded in the presence and absence of 50 mM arginine. Each spectrum was recorded
with 32 scans, and a relaxation delay of 1.0 s. A total of 1 mM 4,4-dimethyl-4-silapentane-
1-sulfonic acid (DSS) was added to the samples for chemical shift referencing. Data were
processed and analyzed using NMRPipe and NMRViewJ, respectively [79,80].

4.6. HDX-MS

HDX-MS experiments were performed in 50 mM sodium phosphate buffer (90% D2O,
pH 7.0) with 100 mM NaCl and at a final protein concentration of 2 μM for experiments on
isolated FL-Nrf2 and Kelch. In Nrf2-Kelch-binding experiments, the FL-Nrf2 concentration
was kept at 2 μM, and the Kelch concentration was varied from 2, 4, and 6 μM for 1:1,
1:2, and 1:3 (FL-Nrf2:Kelch) binding experiments. Aliquots were removed after 0.1, 0.2,
0.4, 5, 30, and 60 min and were quenched by lowering the pH to 2.5 using 20% (v/v)
formic acid, followed by flash freezing in liquid nitrogen. The samples were thawed and
injected into a nanoACQUITY UPLC equipped with HDX technology (Waters, Milford,
MA, USA). Online digestion was carried out using a POROS pepsin column (2.1 × 30 mm,
Life Technologies/Applied Biosystems) held at 15 ◦C. Peptic peptides were trapped on a
C18 BEH130 VanGuard column (5 × 1 mm, 1.7 μm) for three minutes at 80 μL/min and
separated on a C8 column (50 × 2.1 mm, 1.7 μm) at 100 μL/min using a water/acetonitrile
gradient with 0.1% formic acid. The LC outflow was directed to a Waters Synapt Q-TOF G2
mass spectrometer. The ion source was operated at+2.8 kV and a cone voltage of 20 V. The
desolvation and source temperatures were 250 and 80 ◦C, respectively. Mass spectra were
acquired in resolution mode. Ion mobility was employed to aid in separating overlapping
isobaric peaks.

Peptide identification was performed using three separate label-free MSE acquisitions
with analysis using Protein Lynx Global Server 2.5.3. DynamX 3.0 was used for HDX
data analysis. Deuterium uptake levels were corrected for artificial in-exchange and back-
exchange using controls that represent minimum exchange under quench conditions (m0)
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and fully deuterated samples (m100), respectively. Percentage deuteration values for each
peptide at time t was calculated according to

%D(t) =
mt − m0

m100 − m0
× 100% (1)

Pepsin digestion yielded 101 peptides for Nrf2, corresponding to 86.3% coverage.
Digestion of Kelch yielded 109 peptides (99.7% coverage, see Figure S5B,D).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22147434/s1, Figure S1: SDS-PAGE analysis of the FL-Nrf2 at different purification steps,
Figure S2: Bioinformatics predictions of the structural properties of FL-Nrf2, Figure S3: 1H-15N HSQC
spectrum of FL-Nrf2 recorded at 35 ◦C in the presence of 6 M urea, Figure S4: The CD spectrum of
Neh1–2LZ1 recorded at 20 ◦C, Figure S5: Peptide coverage of FL-Nrf2 and Kelch domain of Keap1,
Figure S6: HDX data suggest the majority of FL-Nrf2 is not protected, Figure S7: The (A) SSD-AGE
and (B) SDS-PAGE results of the sedimentation assay show that the FL-Nrf2 does not form aggregates
at low concentrations, Table S1: Estimated secondary structural contents presence in FL-Nrf2 at
different temperatures, The procedure of the sedimentation assay.
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Abstract: Ubiquitin fold modifier 1 (UFM1) is a member of the ubiquitin-like protein family. UFM1
undergoes a cascade of enzymatic reactions including activation by UBA5 (E1), transfer to UFC1
(E2) and selective conjugation to a number of target proteins via UFL1 (E3) enzymes. Despite the
importance of ufmylation in a variety of cellular processes and its role in the pathogenicity of many
human diseases, the molecular mechanisms of the ufmylation cascade remains unclear. In this study
we focused on the biophysical and biochemical characterization of the interaction between UBA5
and UFC1. We explored the hypothesis that the unstructured C-terminal region of UBA5 serves
as a regulatory region, controlling cellular localization of the elements of the ufmylation cascade
and effective interaction between them. We found that the last 20 residues in UBA5 are pivotal
for binding to UFC1 and can accelerate the transfer of UFM1 to UFC1. We solved the structure of
a complex of UFC1 and a peptide spanning the last 20 residues of UBA5 by NMR spectroscopy.
This structure in combination with additional NMR titration and isothermal titration calorimetry
experiments revealed the mechanism of interaction and confirmed the importance of the C-terminal
unstructured region in UBA5 for the ufmylation cascade.

Keywords: UFM1; UBA5; UFC1; protein-protein interactions; NMR; complex structure

1. Introduction

UFM1 is a small ubiquitin-like (UBL) protein spanning 85 residues. Like other UBLs,
it has a low sequence identity to ubiquitin, but shares its specific (β-grasp) fold [1,2].
Unlike other UBLs (except for SUMO), UFM1 has a single C-terminal glycine residue, by
which UFM1 gets attached to target proteins using an E1-E2-E3 enzymatic cascade [1,3,4].
Initially, the UFM1 precursor protein gets processed by the two specific proteases UfSP1
and UfSP2 to expose the C-terminal glycine residue [5–7]. Processed UFM1 gets activated
by UBA5 (E1), a member of the ubiquitin-activating protein family [8–10], from which
activated UFM1 is transferred to the catalytic cysteine 116 of UFC1 (E2) [1,8,11]. The last
step is the transfer of UFM1 to the target proteins mediated by the specific UFM1 ligase 1
(UFL1), showing no typical E3 ligases domain organization [1,12]. The mechanism of this
step is largely unknown and other proteins could be required for UFL1 ligase activity as
well [13–16].

The first identified target of UFM1 was Ufm1-binding protein 1 (UFBP1, also known
as DDRGK1 or C20orf116) [12]. Since then, discovery of new targets for UFM1 and the
characterization of functional consequences of their ufmylation has constantly increased.
Recently, new ufmylation targets involved in cancer progression [16,17], DNA damage
response [18,19], translation machinery [20] and ribosome functioning [13,14] have been
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identified. Taking in account the broad range of biological pathways affected by ufmy-
lation, it is not surprising that impaired ufmylation can be connected to many human
diseases [16,21–24] and seems to be essential for embryonic development [25–27].

The exact mechanism of ufmylation and the full range of physiological consequences
are not well investigated yet. The key elements of the ufmylation cascade (UBA5, UFC1,
UFL1) show significant evolutionary differences to the well characterized enzymatic UBL
cascades (e.g., ubiquitin or NEDD8) resulting in a number of structural and functional
deviations from the canonical E1-E2-E3 pathways [3,4,28]. In contrast to other E1 family
members, UBA5 does not display the characteristic domain architecture [28]. This 404-
residue protein possesses a single well-folded adenylation domain (residues 57–329),
comprising the active site Cys250 and provides a platform for ATP binding and UFM1
activation [8,29]. Two UBA5 regions—the N-terminal (1–56) and the C-terminal (334–404)
segments—appear to be important regulatory elements for the function of UBA5 and in the
ufmylation cascade. The N-terminal segment 1–56 (absent in one of the two existing UBA5
splice isoforms) significantly enhances ATP binding and therefore increases efficiency and
velocity of UFM1 activation. Additionally, the N-terminal extension accelerates UFM1
transfer to UFC1 from the UBA5~UFM1 conjugate in presence of ATP [30].

The UBA5 C-terminal part (Figure 1A) plays a complex regulatory role, consisting
of a few conserved regions that mediate interaction of UBA5 with other key players
in the ufmylation cascade [31]. The first sequence is a conserved region (R1, residues
334–348), interacting with UFM1 [10,29–32] and also with LC3/GABARAP proteins [31,33].
This region (called LIR/UFIM by its dual nature) is important for the initial binding of
UFM1 to UBA5 [10,29,31,32] and for the following UFM1 activation in a trans-fashion [29].
Trans-activation means that UBA5 forms an active homodimer, like other non-canonical
E1 enzymes, and UFM1 bound to the LIR/UFIM segment of one monomer exposes its
C-terminal Gly83 residue to the catalytic Cys250 of the other monomer [29]. GABARAP
(and to a lesser extend LC3) proteins interact with the same UBA5 region and inhibit
UFM1 binding to UBA5, thus modulating the conjugation of UFM1 to UBA5 and to UFC1
in vitro [31]. No evidence for the activation of LC3/GABARAP proteins by UBA5 was
found so far. However, we showed previously that interaction between GABARAP proteins
and UBA5 facilitates membrane localization of the latter [33].

The second region (R2, residues 364–372) is significantly less conserved among dif-
ferent species than the first region, with only Gly367 being evolutionary invariant. The
role of this region is not understood, and no interacting proteins could be identified so
far. However, a A371T mutation in the human protein located in this region decreases the
ability of UBA5 to activate UFM1, to transfer the activated UFM1 to UFC1 and to mediate
UFBP1~UFM1 formation [25,34].

Another conserved region in UBA5 is located at it very C-terminus (R3, residues
393–404) and is predicted to have a helical conformation. Initially, it was postulated by
analogy with canonical E1 enzymes that the UBA5 C-terminal part possesses an ubiquitin-
fold domain, mediating UBA5 interaction with UFC1 [8,11]. Later it was shown that a
short UBA5 peptide (residues 381–404) is solely responsible for this interaction [32]. UFC1,
the only known E2 enzyme for UFM1, was characterized structurally [11,35] a few years
after discovery of the UFM1 cascade [1]. The common architecture of E2 enzymes—four α-
helices, four β-strands and one 310-helix (reviewed in [28])—is conserved for the UFC1 core
(25–157). Lack of C-terminal α-helices and conserved motifs as well as the presence of an
N-terminal α-helix, which stabilizes the UFC1 structure [11] result in structural differences,
which classify UFC1 as a non-canonical E2 enzyme. Computational modeling (based on
the existing crystal structure of the E1:E2 complex for the NEDD8 cascade) revealed that
the second α-helix in UFC1 is the most probable site for interaction with UBA5. Indeed, the
UFC1 K33A mutation significantly reduces both UBA5 binding and UFM1 transfer from
UBA5 to UFC1 [11].
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Figure 1. Role of C-terminal UBA5 regions on UFC1~UFM1 conjugation. (A) Overview of UBA5 conserved regions.
Structure prediction (JPRED) and residue conservation are indicated below the C-terminal sequence (* indicates fully
conserved residues; : indicates residues of high similarity; . indicates residues of low similarity). The different UBA5
C-terminal conserved regions are highlighted. (B–D) Gel electrophoresis of ufmylation assays including UBA5 FL1–404

(B), AD1–330 (C) and a mixture of UBA5 AD1–330 and R1-R2-R3325–404 (D) as E1 enzymes. Ufmylation was tracked over
30 min. Corresponding protein bands are labeled on the right side. (E) Ufmylation assays tracked over time with different
UBA5 constructs indicated on the right side. The time points of 0–30 min are magnified. All assays were done as triplicates.
Evaluation of UFC1~UFM1 conjugate was done via Western blotting. (F) Ufmylation assays quantified after 30 min reaction
time. The fractions of the UFC1~UFM1 species are presented as bar diagram for each reaction mixture. For quantification of
conjugated and unconjugated UFC1 coloc2 software implemented in ImageJ was used.

Despite these previous investigations, structural aspects and molecular mechanisms
of the interaction between UBA5 and UFC1 are still largely unknown. Additionally, it is
not clear, if other factors (e.g., UFM1 conjugated or bound to UBA5, or UFC1) could affect
this interaction. In order to fill this gap, we systematically analyzed by isothermal titration
calorimetry and NMR spectroscopy the interactions between different UBA5 fragments
and UFC1, UFM1 and LC3/GABARAP proteins. Using this knowledge, we solved the
solution structure of UFC1 in complex with an optimized C-terminal fragment of UBA5.
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Finally, our biochemical experiments showed the importance of the UBA5:UFC1 interaction
for effective ufmylation.

2. Results

2.1. The UBA5 C-Terminal Part Is a Regulatory Platform for the Ufmylation Cascade

In order to understand the importance of the whole UBA5 C-terminal part and the
roles of its individual conserved regions, we cloned and expressed a set of constructs
containing the whole C-terminus, individual conserved regions and their combinations
(Table 1) and investigated their interaction with the key elements of the ufmylation cascade.

Table 1. A list of DNA constructs used in this study.

DNA Construct Expressed Protein/Peptide Short Description References

pET39_Ub19_UBA51–404 FL1–404 Full length UBA5, residues 1–404 [31]
pET39_Ub19_UBA5325–404 R1-R2-R3325–404 UBA5 C-terminal part, residues 325–404 [31]

pET39_Ub19_UFM1 UFM1 Full length UFM1, residues 2–83 [31]
pETm60_Ub3_LC3A LC3A LC3A, residues 4–120 [36]
pETm60_Ub3_LC3B LC3B LC3B, residues 5–120 [36]
pET39_Ub19_LC3C LC3C LC3C, residues 5–126 [36]

pET39_Ub19_GABARAP GABARAP GABARAP, residues 3–116 [36]
pETm60_Ub3_GABARAPL1 GABARAPL1 GABARAPL1, residues 2–116 [36]
pET39_Ub19_GABARAPL2 GABARAPL2 GABARAPL2, residues 3–116 [36]

pETm60_Ub Ubiquitin Ubiquitin, residues 1–76 [37]
pET39_Ub19_UFC1 UFC1 Full length UFC1, residues 1–167 This work

pET39_Ub19_UBA51–330 AD1–330 UBA5 adenylation domain, residues 1–330 This work

pET39_Ub19_UBA5325–376 R1-R2325–376 UBA5 C-terminal regions R1 and R2,
residues 325–376 This work

pET39_Ub19_UBA5359–404 R2-R3359–404 UBA5 C-terminal regions R2 and R3,
residues 359–404 This work

pET39_Ub19_UBA5325–357 R1325–357 UBA5 C-terminal region R1, residues 325–357 This work
pET39_Ub19_UBA5359–376 R2359–376 UBA5 C-terminal region R2, residues 359–376 This work
pET39_Ub19_UBA5388–404 R3388–404 UBA5 C-terminal region R3, residues 388–404 This work

pET39_Ub19_UBA5381–404W R3381–404W Optimized R3, residues 381–404 with
C-terminal W This work

pET39_Ub19_UBA5325–404 A371T R1-R2-R3325–404 A371T
UBA5 C-terminal part with A371T mutant

(res. 325–404) This work

pET39_Ub19_UBA5325–404 A371E R1-R2-R3325–404 A371E
UBA5 C-terminal part with A371E mutant

(res. 325–404) This work

pET39_Ub19_UBA51–380 ΔR31–380 UBA5 with deleted R3 region, residues 1–380 This work

pNiC-CTH0_UBA51–404 C250K FL1–404 C250K
Full length UBA5 (res. 1–404) with

C250K mutant This work

pET39_Ub19_UBA51–330 C250K 0 AD1–330 C250K UBA5 adenylation domain with C250K mutant This work

pNiC-CTH0_UFC1 UFC1_His6 Full length UFC1 with C-terminal
hexahistidine-tag This work

First, we analyzed the effect of the UBA5 C-terminus on UFM1 transfer to UFC1 with
an in vitro thioester formation assay (Figure 1B–E). Using UBA5 full length protein as E1 en-
zyme, we observed fast formation of a UFC1~UFM1 conjugate (~90% UFC1 was conjugated
to UFM1 within 30 min, Figure 1B). When we used C-terminally truncated UBA5 (only
the adenylation domain—AD, residues 1–330) as E1 enzyme, formation of a UFC1~UFM1
conjugate was significantly reduced (less than 5% UFC1~UFM1 conjugation was reached
within 30 min; 7 h were needed to reach 80% UFC1~UFM1 conjugation, Figure 1C). How-
ever, transfer of UFM1 to UFC1 was rescued when we used an equimolar mixture of the
UBA5 AD and the UBA5 C-terminal part as E1 enzyme. In this case, the ure 1D). These
results indicate a crucial role of the UBA5 C-terminal part in the ufmylation cascade.

The most important regions in the UBA5 C-terminal parts—R1 (containing the LIR/UFIM
sequence) and R3 (containing the UFC1 binding sequence)—seem to have a cumulative
effect on the ability of UBA5 to transfer activated UFM1 on UFC1. Addition to the reaction
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mixture (UBA5 AD1–330, UFC1, UFM1, ATP/Mg2+) of UBA5 peptides lacking either the R1
or R3 sequences led to a reduced conjugation rate (Figure 1E and Supplementary Figure
S1A). The results also indicate that the LIR/UFIM sequence is more important for the
ufmylation cascade than the R3 site and that the conserved region R2 could also play an
additive role in this process: the level of UFC1~UFM1 conjugates reached in reactions
with AD1–330/R1-R2325–376 a higher level than when the R1325–357 peptide was added alone.
Similarly, the addition of the isolated R2359–376 and R3381–404W peptides had virtually no
effect on the ufmylation reaction (Figure 1E and Supplementary Figure S1B).

UBA5 mutations within the R2 sequence (A371T and it phosphomimicking variant
A371E) did not affect significantly the formation of the UFC1~UFM1 conjugate (Supplemen-
tary Figure S1C), indicating that the mutation becomes important for downstream events in
the ufmylation cascade—potentially during binding of UBA5 to the membrane-associated
E3 ligase (UFL1), to targets (UFBP1 [12], ASC1 [16], p53 [17], etc.) or important for other
regulatory events. However, in another assay, using a mixture of wild type and mutated
full length UBA5 proteins, we observed a small but reproducible reduction of UFC1~UFM1
conjugation (Supplementary Figure S1D).

Taken together we were able to restore the UFM1 transfer to UFC1 with separated AD
and C-terminal peptides. With the single AD and only one of the regions the reaction took
7 h. The reaction rate increased by addition of peptides containing two regions and was
similar to the full length UBA5 containing the complete C-terminal part.

2.2. Interactions between Different UBA5 C-Terminal Regions and UFC1, UFM1 and
LC3/GABRAP Proteins

To understand how the UBA5 C-terminus participates in the ufmylation cascade,
we performed isothermal titration calorimetry (ITC) experiments, in which we titrated
UBA5 C-terminal peptides (see Table 1) to the UBA5 AD, UFC1, UFM1 and representative
LC3/GABARAP proteins (Figure 2A, Supplementary Figure S2A–D and Table 2). The ITC
experiments revealed that the entire UBA5 C-terminus (R1-R2-R3325–404) does not interact
with the UBA5 AD, forming an independent UBA5 domain (Supplementary Figure S2A).
The affinity of UFM1 to the R1-containing peptides (R1-R2-R3325–404 and R1-R2325–376,
Supplementary Figure S2B and Table 2) does not change significantly compared to the
affinity of the isolated R1325−357 peptide [31], indicating that this interaction is completely
located within the LIR/UFIM containing region.

In contrast, LC3/GABARAP proteins showed a 10-fold higher affinity to the R1-R2-
R3325–404 and R1-R2325–376 peptides compared to the isolated LIR/UFIM motif (R1337−348)
characterized in [31,33]. The KD values for interactions between R1-R2-R3325–404 and
GABARAPL2 (0.17 μM) or LC3B (3.7 μM) indicate the same subfamily-specific preferences
that were reported previously (Supplementary Figure S2C,D).

The affinity of the interaction between UBA5 and UFC1 has not been characterized
previously. In ITC experiments, the shortest UBA5 peptide spanning the R3 sequence
(R3388–404) bound to UFC1 with a KD of >11 μM. The affinity increased 3-fold for R2-
R3359–404 and R1-R2-R3325–404 peptides (KD of 2.7 and 2.4 μM, respectively; Figure 2A and
Table 2).

UFM1 and LC3/GABARAP proteins did not show interaction with the R2 region.
However, R1-R2-R3325–404 peptides containing A371T and A371E mutations showed some
increase in affinity to LC3B and GABARAPL2 proteins but not to UFM1 and UFC1 (Sup-
plementary Figure S2E,F, Table 2).

To understand the role of the UBA5 C-terminal region in coordination of the binding
events reported above on the molecular level, we performed NMR titration experiments.
In those experiments, we titrated non-labeled UFC1 and GABARAPL2 proteins to a 15N-
labeled R1-R2-R3325–404 peptide. The NMR experiments revealed that the interaction
between UFC1 and UBA5 is mediated mostly by the UBA5 residues 386–404. These
residues (in contrast to the vast majority of the R1-R2-R3325–404 resonances, which are not
affected by addition of UFC1) showed a slow-to-intermediate exchange mode. The amide
backbone resonances of these residues disappeared with small chemical shift perturbation
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(CSP) at the earlier stages of titrations and did not appear again up to an 8-fold molar excess
of UFC1 (Figure 2B, the full size spectra are presented in Supplementary Figure S3D). UBA5
residues 383–386, 400 and 403 appeared to be in intermediate exchange mode (their amide
backbone resonances displayed CSP with intensity change, however, they became visible
at the latest titration steps). It seems, that these UBA5 residues form additional interactions
with UFC1. Interestingly, a subset of the residues within the R2 region (V370, A371, Y372
and T373) displayed moderate CSPs, however, below standard deviation level (Figure 2C),
possibly indicating an influence of the UBA5 A371T mutation on the recognition of UFC1.

The GABARAPL2 titration to the R1-R2-R3325–404 peptide revealed a complex behav-
ior of interactions between these two polypeptides (Supplementary Figure S3A,B). At the
earlier stages of titrations (until a molar ratio of 1:1) the R1-R2-R3325–404 resonances showed
significant CSPs (in slow-to-intermediate exchange mode), mostly within the LIR/UFIM
region (residues D338-V349). Moderate CSPs (with magnitudes above one standard devia-
tion level) can also be observed in sequences adjacent to the R1 peptide: I335 N-terminally,
and E352-S358 C-terminally. However, increased concentrations of GABARAPL2 induce
further CSPs over the entire R1-R2-R3325–404 peptide sequence, including residues in R2
(A371-I374) and R3 (V382-G391, L394, D396, M398) regions. For the resonances within the
R1 and adjacent sequences, the direction of the CSPs changed (Supplementary Figure S3A),
while residues in R2/R3 regions approach the slow-exchange regime with increased CSP
values. These observations indicate, that GABARAPL2 binds first to the LIR/UFIM region,
and after saturation of this binding site, GABARAPL2 interacts with additional sites within
the UBA5 C-terminus. According to this model, high concentration of GABARAPL2 could
efficiently prohibit the UFC1~UFM1 conjugation, which was observed in ufmylation assays
(Supplementary Figure S3C).

Table 2. Thermodynamic parameters of the interactions between UBA5 C-terminal regions and UBA5-interacting proteins.

Proteins UBA5 Regions
ΔH

(kcal mol−1)
ΔS

(cal mol−1 K−1)
−T*ΔS

(kcal mol−1)
ΔG

(kcal mol−1)
KA*10−6

(M−1)
KD

(μM)
N

UFM1 R1-R2-R3325–404 −5.83 ± 0.20 * 4.41 −1.31 −7.15 0.17 ± 0.02 5.8 1.04 ± 0.03
R1-R2325–376 −5.61 ± 0.21 4.99 −1.49 −7.10 0.16 ± 0.01 6.2 0.96 ± 0.03

R2359–376 ND ND >100 ** ND
R1-R2-R3325–404 A371T −10.99 ± 0.25 −13.3 3.96 −7.02 0.14 ± 0.01 7.1 1.12 ± 0.02
R1-R2-R3325–404 A371E −11.42 ± 0.42 −15.3 4.56 −6.86 0.11 ± 0.01 9.2 1.01 ± 0.01

UFC1 R1-R2-R3325–404 −7.04 ± 0.07 2.09 −0.62 −7.66 0.41 ± 0.02 2.4 1.03 ± 0.01
R2-R3359–404 −8.08 ± 0.10 1.59 −0.47 −7.60 0.37 ± 0.01 2.7 0.97 ± 0.01

R3388–404 −4.99 ± 0.22 6.91 −2.06 −7.05 0.03 ± 0.003 10 0.95 ± 0.03
R2359–376 ND ND >50 ** ND

R1-R2-R3325–404 A371T −7.88 ± 0.08 −0.19 0.06 −7.82 0.54 ± 0.03 1.8 1.03 ± 0.008
R1-R2-R3325–404 A371E −7.78 ± 0.05 0.36 −0.11 −7.88 0.60 ± 0.02 1.6 1.03 ± 0.005

FL1–404 −7.62 ± 0.01 1.26 −0.38 −8.00 0.72 ± 0.04 1.4 0.97 ± 0.009
FL1–404 C250K~Ufm1 −8.21 ± 0.01 −0.34 0.10 −8.10 0.87 ± 0.05 1.2 1.03 ± 0.009

GABARAPL2 R1-R2-R3325–404 −8.64 ± 0.06 2.04 −0.61 −9.25 5.99 ± 0.49 0.17 0.97 ± 0.004
R1-R2325–376 −8.08 ± 0.05 4.44 −1.32 −9.41 7.87 ± 0.74 0.13 0.91 ± 0.003

R2359–376 ND ND >100 ** ND
R1-R2-R3325–404 A371T −7.58 ± 0.07 7.76 −2.31 −9.89 17.90 ± 3.75 0.06 0.937 ± 0.005
R1-R2-R3325–404 A371E −7.79 ± 0.05 7.23 −2.16 −9.95 19.60 ± 2.57 0.06 1.01 ± 0.003

GABARAP R1-R2-R3325–404 −0.93 ± 0.04 24.2 −7.22 −8.15 0.96 ± 0.16 1.1 0.99 ± 0.03
R1-R2325–376 −1.1 ± 0.02 23.1 −6.89 −7.99 0.72 ± 0.05 1.4 0.94 ± 0.01

LC3B R1-R2-R3325–404 −4.47 ± 0.10 8.86 −2.64 −7.33 0.24 ± 0.09 4.2 0.92 ± 0.02
R1-R2325–376 −4.23 ± 0.09 10.7 −3.19 −7.42 0.27 ± 0.14 3.7 0.98 ± 0.02

R2359–376 ND ND >100 * ND
R1-R2-R3325–404 A371T −3.76 ± 0.05 14.3 −4.26 −8.02 0.76 ± 0.04 1.3 0.937 ± 0.009
R1-R2-R3325–404 A371E −3.93 ± 0.05 15.3 −4.56 −8.49 1.66 ± 0.12 0.6 0.944 ± 0.009

LC3A R1-R2-R3325–404 4.25 ± 10.5 10.5 −3.13 −7.38 0.26 ± 0.03 3.8 0.91 ± 0.04
R1-R2325–376 −3.81 ± 0.18 11.6 −3.46 −7.26 0.21 ± 0.02 4.7 0.94 ± 0.03

UBA5 AD1–330 R1-R2-R3325–404 ND ND - ND

Ub R1-R2-R3325–404 ND ND - ND

* Here and further the ± sign corresponds to a fitting error of the individual experiment. ** Estimated value.
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Figure 2. Interaction between UBA5 C-terminal fragments and UFC1 protein. (A) UFC1 binding to different UBA5 C-
terminal peptides observed by ITC experiments. The upper graphs display the raw heat data; the lower graphs show the
integrated heat per titration steps (black squares) with best-fit curve (line). The used peptides are graphically visualized
above the corresponding titration profiles. KD values are indicated. (B) NMR titration of 15N-labeled R1-R2-R3325–404

peptide with non-labeled UFC1. An overlay of representative areas of the [15N,1H] TROSY-HSQC spectra recorded at 500 MHz
are presented. The increasing protein molar ratios are indicated with a rainbow color code from free R1-R2-R3325–404 (red) to
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8 molar excess of UFC1 (purple). (C) Mapping of CSPs induced by UFC1 on the R1-R2-R3325–404 sequence. The CSP values
(shown as bars) below standard deviation (SD), between 1xSD and 2xSD, and above 2xSD are labeled grey, yellow and red,
respectively. The small box shows magnification of CSP diagram for UBA5 residues 325–382. The disappearing resonances
within the core R3 sequence are also shown as purple bars; the CSP for the R2 residues around A371 are marked blue.
(D) NMR titration of the 13C,15N-labeled R3381–404W peptide with non-labeled UFC1 protein performed at 800 MHz. The
same spectral areas as in (B) are shown and the same color code is used. (E) NMR titration of 15N,13C-labeled UFC1 with
non-labeled R3381–404W peptide recorded at 950 MHz. An overlay of representative areas of the [15N,1H] TROSY-HSQC
spectra is presented. Titration steps are visualized in a rainbow color code. Most significant CSP are highlighted by arrows.
Dashed arrows indicate that the initial or final peak position is outside of the presented area.

We could not observe any interactions between UFM1 and UFC1 proteins (using
NMR titration of 15N-labeled UFC1 with non-labeled UFM1 up to 1:2 molar ratio). Ad-
ditionally, binding of UFC1 to the R3 region within the UBA5 C-terminus325–404 did not
initiate UFC1:UFM1 interactions as displayed by NMR experiments of 15N-labeled UFC1
in complex with the R1-R2-R3325–404 peptide titrated with non-labeled UFM1 until a 1:4
molar ratio. Furthermore, no interaction of ubiquitin to the UBA5 C-terminal region was
observed, suggesting that the UBA5 C-terminus is specific for UFM1.

Taken together, we identified a UFC1-interacting region within the UBA5 C-terminus
using ITC and NMR experiments. The region is slightly longer than the conserved R3
sequence which was detected previously and shows a micromolar affinity to UFC1. While
UFM1 seems to bind only to the LIR/UFIM region of UBA5, LC3/GABARAP proteins
interact with additional residues outside of the of the R1 sequence. LC3 and GABARAP
subfamily proteins showed a 10-fold higher affinity to the complete UBA5 C-terminus
compared to the isolated R1 peptide. Additionally, UFC1 showed interaction outside of
the R3 region, binding residues within the R2 region. NMR titrations revealed that UFC1
and GABARAPL2 have a more complex binding mechanism to the UBA5 C-terminus,
involving some residues in the R2 region. However, no direct interactions of all tested
proteins to the isolated R2 peptide were observed.

2.3. Structure of UFC1 in Complex with the UBA5 R3 Peptide

To understand the interaction between UFC1 and UBA5 on a molecular level, we
solved the NMR solution structure of UFC1 in complex with the UBA5 R3381–404W peptide.
Based on the results of our ITC and NMR experiments, we optimized the R3 peptide
sequence including residues 381–404 of UBA5 and an additional C-terminal tryptophan
residue (at position 405), providing a possibility to calculate the peptide concentration
by UV spectroscopy. The R3381–404W peptide displayed the expected ability to form a
stable complex with UFC1. In contrast to the shorter R3388–404 peptide or to the R1-R2-
R3325–404 peptide, the R3381–404W peptide showed re-appearance of all resonances at the
latest titration steps with UFC1 (Figure 2D and Supplementary Figure S3E). Correspond-
ingly, almost all backbone amide resonances of UFC1 became visible at the latest stages
of titration with R3381–404W (Figure 2E and Supplementary Figure S3F), enabling us to
solve the UFC1:R3381–404W complex structure. The structure is presented in Figure 3 and
Supplementary Figure S4, structural statistics are given in Supplementary Table S1. The
UFC1 structure in complex with the R3381–404W peptide is close to the previously published
X-ray and NMR structures of free UFC1 (Supplementary Figure S4A, [11,35]). The most sig-
nificant differences were observed in the orientation of the N-terminal α-helix α1 (residues
1–11), the conformation of the C-terminal UFC1 part (residues 156–167) and the flexible
loop near the active-cite cysteine 116 (residues 91–124, Supplementary Figure S4B).
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Figure 3. NMR structure of the complex between UFC1 and the UBA5 R3381–404W peptide. (A) NMR solution structure
of the complex between UFC1 and R3381–404W peptide in two different orientations. All 20 conformers are superimposed
over the structured UFC1 core (residues 3–162). All UFC1 secondary structure elements are marked by the following colors:
α1—red; α2—orange; 310 helix 3—green; α4—cyan, α5—blue; 310 helix 6—magenta; all β-strands (β1, β2, β3) are yellow.
R3381–404W chains are shown in purple. (B) Mapping of UFC1 CSPs upon titration with R3381–404W on a representative
complex structure (conformer 6, the same orientation as in the A, right plot). The CSP values below standard deviation (SD),
between 1xSD and 2xSD, and above 2xSD are labeled grey, yellow and red, respectively. Residues which were not assigned
are presented in grey as well. (C) UFC1 molecule (conformer 6, the same orientation as in the A, right plot) is shown as a
surface with calculated potentials, whereas the R3381–404W molecule is presented by ribbon diagram (purple). The large
hydrophobic groove between UFC1 α-helix α2 and β-strand β1 is highlighted with a dashed yellow line. UFC1 residues
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contributing to the groove formation are listed. (D) Hydrophobic patches on UFC1 surface mediating interactions with the
UBA5 R3381–404W L385 and V387 side chains are shown as grey sticks. The UFC1 hydrophobic patches I and II are marked
with dashed lines (green and magenta, respectively). UFC1 residues forming these patches are listed. (E) Polar interactions
within the UFC1:R3381–404W complex. Intermolecular hydrogen bonds are shown as dashed lines. (F) Detailed view on the
intermolecular hydrogen bond between UBA5 D389 and UFC1 K33. The UBA5 Q31 sidechain is also presented as sticks.

Residues 394–404 of the R3 region form the predicted [32] α-helix, residues 384–392
are in an extended conformation, well-defined and occupy a specific area on the UFC1
surface. Residues 381–383 seem disordered and do not interact specifically with any UFC1
residues. The amphiphilic R3 α-helix is aligned to the α2 α-helix of UFC1 (Figure 3A) on
the side opposite to the catalytic cysteine (C116). The UFC1 resonances on the C116 side
were not affected upon NMR titration experiments, leading to the suggestion that this
side could interact with the adenylation domain during UFM1 transfer. Sidechains of the
R3381–404W hydrophobic residues (L394, L397, M401 and M404) are placed into the large
hydrophobic cleft formed by α-helix α2 and β-strand β1 of UFC1 (residues W28, V29, L32,
Y36, L39, I40, V43, L56 and aliphatic moieties of K33 and Q37; Figure 3C). Two additional
hydrophobic patches I and II (formed by residues within α-helices α1, α2 and the loop
between them) accommodate UBA5 residues L385 and V386 (Figure 3D).

In addition to intermolecular hydrophobic interactions, the complex between UFC1 and
the R3381–404W peptide is stabilized by a network of intermolecular hydrogen bonds and
polar contacts (Figure 3E, all intermolecular contacts detected by the LigPlot software for
the UFC1:R3381–404W complex are shown in Supplementary Figure S4C). The network covers
almost all residues within the R3 region, which interact with the polar residues of UFC1 in the
same area—α1, α2, loop between them and β-strand β1 (detailed information on the polar
contacts is given in the Supplementary Figure S4C). The only additional UFC1 residue that
forms intermolecular hydrogen bonds to the R3381–404W peptide outside of this UFC1 region,
is K131, whose sidechain is in close proximity to the carboxyl group of UBA5 E384.

Previously, it was predicted that the UFC1:UBA5 interaction is mediated by the UFC1
α-helix α2 [11] and the point mutation K33A within this helix impaired UBA5 binding
and UFM1 transfer to UFC1, whereas Q31A had no effect. In our structure we observed
that the UFC1 K33 sidechain forms an intermolecular hydrogen bond with the UBA5 D389
sidechain (Figure 3F). In contrast, UFC1 Q31 is not in contact with any of the UBA5 R3
residue and could not affect the UBA5:UFC1 interaction.

In summary, the structure of UFC1 in complex with the R3381–404W peptide revealed
that the C-terminal α-helical part of UBA5 is pivotal for the attraction of UFC1 to UBA5. In
addition to the α-helical part, UBA5 residues L385 and V387 also play a role in the UBA5
interaction with UFC1. The UFC1 hydrophobic groove and hydrophobic patches I and II
are the most important areas mediating the interaction. Intermolecular polar contacts and
hydrogen bonds stabilize the observed complex. The sidechain of UFC1 K33 is involved in
an intermolecular hydrogen bond formation (to UBA5 D389 as a counterpart), therefore, its
substitution to alanine interferes with the UFC1 interaction to UBA5 [11].

2.4. Interactions within the Ufmylation Cascade

Our results so far describe the interaction of UFC1 with the UBA5 C-terminal region.
However, the interaction between full length UBA5 and UFC1 could be more complex and
could depend on UFM1 conjugation to UBA5 or UFC1. To answer the question if UBA5
can bind UFC1 via additional sites, we analyzed NMR spectra of UFC1 with a 2-fold excess
of unlabeled UBA5 FL1–404. We did not observe significant CSPs (shift or disappearance
of the UFC1 resonances) in comparison to the spectra of the UFC1:R3381–404W complex
(Supplementary Figure S5A).

Additionally, UBA5 lacking the R3 region (ΔR31–380) did not interact with UFC1 (as
observed by NMR titration experiment, Supplementary Figure S5B) and significantly
slowed down UFM1 transfer to UFC1 (Figure 4A, Supplementary Figure S5D). All these
observations indicate that besides R3, UFC1 does not bind to any UBA5 regions efficiently.
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However, even weak additional interactions could facilitate the UFC1~UFM1 conjuga-
tion as observed in this work for the UBA5 constructs lacking R3 (Figures 1C and 4A,
Supplementary Figure S1).

Figure 4. Interaction studies between full length UBA5 and UFC1 proteins. (A) Gel electrophoresis of ufmylation assays
including UBA5 FL1–404 (left plot) and UBA5 ΔR31–380. (B) UFC1 binding to full length UBA5 (left plot) and full length
stable UBA5~UFM1 conjugate (right plot) observed by ITC experiments. The upper graph displays the raw heat data;
the lower graph shows the integrated heat per titration steps (black squares) with best-fit curve (line). KD values are
indicated. (C) Gel-filtration profiles of the FL1–404 C250K~UFM1 conjugates in presence of 4 times molar excess of UFM1
(red lines) and UFC1 (black lines). The peak subjected to electrophoretic analysis is indicated by an asterisk. (D) Scheme of
reactions involving UBA5 in the ufmylation cascade. The structures of UBA5 AD (brown), UFM1 (cyan) and UFC1 (grey)
are represented as ribbon diagrams; the UBA5 unstructured C-terminus containing regions R1 (orange), R2 (green) and R3
(violet) is shown as dashed lines. The structures were generated from PDB entry 5IAA [29]. * indicates regions of another
UBA5 molecule involved in the in trans transfer of UFM1.
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To investigate if conjugation of UFM1 to the UBA5 catalytic cysteine (C250) affects the
UFC1:UBA5 interactions, we prepared full length UBA5 C250K mutant and stably conju-
gated UFM1 to it as reported before for a number of ubiquitin-specific E2 enzymes [38–40].
We compared the UFC1 spectra after addition of a twofold molar excess of FL1–404 and
FL1–404 C250K~UFM1 constructs (Supplementary Figure S5C). Again, no significant en-
hancement of the UBA5:UFC1 interaction induced by the UBA5~UFM1 conjugation was ob-
served. ITC experiments, in which we titrated UFC1 to FL1–404 and to FL1–404 C250K~UFM1
samples (Figure 4B, Table 2), showed small increases in their affinity to UFC1 in com-
parison to the R1-R2-R3325–404 peptide (KD values for R1-R2-R3325–404, FL1–404, FL1–404

C250K~UFM1 are 2.4, 1.4 and 1.2 μM, respectively).
UFM1 conjugation to UBA5 C250 did not prohibit UFM1 binding to the R1 region.

The gel-filtration profile and following electrophoretic analysis of the fractions showed that
the FL1–404C250K~UFM1 but not the AD1–330 C250K~UFM1 peak contains non-conjugated
UFM1 (Figure 4C and Supplementary Figure S5E).

3. Discussion

In this paper we analyzed the interactions between UBA5 and UFC1 enzymes within
the ufmylation cascade and found that the unstructured UBA5 C-terminal part provides a
platform for multiple protein–protein interactions affecting the efficiency of the activated
UFM1 transfer from UBA5 to UFC1.

3.1. The UFC1:UBA5 Interaction

Our ITC and NMR titration experiments revealed that the interaction between UFC1
and UBA5 is mediated mostly by the relatively short and evolutionary conserved stretch of
UBA5 residues (383–404). Using the optimized UBA5 construct (R3381–404W peptide), we
solved the NMR structure of the UFC1:R3 complex. The complex structure in combination
with the NMR and ITC titration experiments revealed that in addition to the core R3 region,
residues in the region R2 contribute to the interaction. While the isolated R2 peptide does
not interact with UFC1, the combination of R2 and R3 binds three times tighter than the R3
alone. This weak additional interaction also explains the results of the UFC1 ufmylation
assay (Figure 1). Ability of the isolated UBA5 AD to transfer activated UFM1 on UFC1
gets rescued by addition of the R1-R2-R3 peptide. In this peptide the R1 sequence can
bind to UFM1 conjugated to UBA5 and recruit via its exposed R3 peptide UFC1 to the
complex (Figure 4D). In full length UBA5 this recruitment occurs similarly, resulting in
very similar UFC1 ufmylation rates. Adding only the R2-R3 peptide to the UBA5 AD
increases the reaction rate only slightly above the isolated individual R1, R2 or R3 peptides,
because deletion of the R1 sequence prevents effective recruitment of UBA5 C-terminus in
complex with UFC1 to the UFM1-charged AD. A stronger rescue effect is seen for the R1-R2
peptide, because the R2 peptide probably still can interact with UFC1 (Figure 2C) and thus
increase the local concentration of UFC1 around the AD. In the full length UBA5 protein,
this recruiting effect most likely occurs in-trans [29]. A dimer was found in the crystal
structure of UBA5 in complex with UFM1 bound to the R1 region. The linker between the
AD and the R1 sequence is too short for an in-cis transfer to the active site cysteine, but
within the dimer UFM1 bound to R1 of one monomer can be adenylated by the other UBA5
molecule of the dimer. This mechanism was confirmed by clever mutational engineering
showing that a forced monomer cannot activate UFM1. Similarly, a trans mechanism was
proposed for the transfer to UFC1 as well (Figure 4D). In our NMR titration experiments
the UFC1 catalytic cysteine C116 and neighboring residues were not affected upon titration
with the R3 peptide and our complex structure revealed that the R3 peptide occupies the
side of the UFC1 molecule opposite to C116, indicating that the UFC1 surface around C116
could be used by the UBA5 AD during UFM1 transfer. Note that our data alone did not
exclude in-cis UFM1 transfer mode.

In general, we were able to observe relatively stable interactions between members
of the ufmylation cascade only for the R1:UFM1 and R3:UFC1 interactions. All other
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interactions are so weak that they are hard to detect by NMR (additional R2 residues with
UFC1) or cannot be characterized at all. This includes interaction of UFC1 with the UBA5
AD alone or charged with UFM1 as well as with isolated UFM1. These results suggest
that transfer of UFM1 from the adenylation domain of UBA5 to UFC1 uses in addition
to relatively strong interactions for recruitment of the necessary components very weak
interactions for the transfer (hit-and-run model).

3.2. Interaction between GABARAPL2 and UBA5 C-Terminal Part

The GABARAP and LC3 subfamilies members were found to bind UBA5 via an atyp-
ical LIR (LIR/UFIM), an evolutionary conserved sequence within the UBA5 C-terminal
part [31,33]. The ITC and NMR experiments revealed additional interactions next to the
known binding site within the R1. UBA5 constructs including both R1 and R2 regions
showed a 10fold higher binding affinity to all GABARAP and LC3 protein subfamily
members. Binding preference towards the GABARAP subfamily proteins remains pre-
served [31,33]. NMR titration experiments disclosed a more complex binding mechanism
of GABARAPL2 to the complete C-terminal UBA5 peptide. At earlier titration steps, UBA5
residues within R1 were strongly affected by GABARAPL2 binding. However, with in-
creasing concentrations of GABARAPL2 conserved residues located mostly in R2 started to
display significant CSPs as well. These additional interactions might become relevant when
UBA5 gets recruited to a membrane and GABARAP proteins cluster in micro-domains. A
high concentration of GABARAP proteins in combination with a reduction of the search
space for interactions from three to two dimensions could allow simultaneous binding
of several GABARAP proteins to the UBA5 C-terminus. Recruitment of UBA5 to the
membrane of the endoplasmic reticulum (ER) has been observed [33], the exact role of this
recruitment is subject for further investigations.

3.3. The Role of the A371T Mutation in the Ufmylation Cascade

Many diseases are associated with impaired ufmylation [16,21–24]. Ufmylation is
essential for embryonic development [25–27]. The A371T mutation was described previ-
ously to be present in patients suffering from severe infantile-onset encephalopathy [25,34].
Further investigations showed slightly reduced UBA5 thioester conjugation with UFM1
and reduced enzymatic activity in trans-thioesterification of UFC1 in vivo for the UBA5
A371T mutant [25,34]. Our ITC experiments with C-terminal UBA5 peptides containing
the A371T or its phosphomimicking A371E mutations (located in the R2 region) showed
almost no influence on UFM1:UFC1 binding affinity. NMR titration of the wild type
15N-labeled R1-R2-R3325–404 peptide with UFC1 displayed some moderate CSPs for the
A371 and residues around, indicating a minor role of the R2 sequence in UFC1 binding.
In vitro ufmylation assays showed that R1-R2-R3325–404 A371T and R1-R2-R3325–404 A371E
peptides have nearly the same trans-thioesterification efficiency compared to wild type
R1-R2-R3325–404 peptide in standard ufmylation assay conditions. However, reduction of
ATP (to 25 μM) led to a reduction of the UFC1~UFM1 conjugate fraction for both mutated
UBA5 peptides in comparison to wild type peptide, as reported previously [25,34].

Interestingly, we detected an increased affinity of R1-R2-R3325–404 A371T and R1-R2-
R3325–404 A371E peptides to GABARAPL2 and LC3B proteins in ITC experiments. While
GABARAPL2 showed a ~3-fold increased affinity to both mutated peptides in comparison
to the wild type peptide, we detected a ~7-fold increased affinity for LC3B to the A371E
mutant and a ~3-fold increased affinity to the A371T mutant. NMR titration experiments
with wild type R1-R2-R3325–404 peptide revealed that A371 and adjacent residues are
involved in GABARAPL2 binding at high GABARAPL2 concentrations. Again, taking
into account that GABARAP and LC3 protein family members are proposed to recruit
UBA5 to the ER membrane and play a critical role in the regulation of the ufmylation
pathway [33,41], these results lead to the assumption that the A371T mutation plays a
minor role in the ufmylation reaction itself, but might affect UBA5 localization and thus
influences target ufmylation.
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4. Materials and Methods

4.1. DNA Constructs Used in This Study

Genes of proteins and UBA5 peptides were cloned into a pET39_Ub19 vector contain-
ing a modified ubiquitin tag [33] and a TEV cleavage site resulting in a N-terminal cloning
artefact of the first three residues (GAM). UBA5 C250K and UFC1_His6 were cloned into
pNiC-CTH0 vector with a C-terminal hexahistidine-tag cleavable by an introduced TEV
cleavage site. For site-directed mutagenesis PfuUltra II fusion HS DNA polymerase (Agi-
lent Technologies Germany, Frankfurt, Germany) was used according to the manufacturer’s
instructions. A comprehensive list of DNA constructs used in this study is given in Table 1.

4.2. Expression, Isolation and Purification of the Peptides and Proteins

All proteins and peptides were expressed in E.Coli T7 Express (New England Bio-
labs GmbH, Frankfurt, Germany) cells in LB or M9 (to obtain 15N- and 13C,15N-labeled
polypeptides) media according to the protocol described in [33,36]. For protein purifi-
cation, bacterial cell pellets were resuspended in lysis buffer (50 mM Tris-HCl pH = 7.5,
100 mM NaCl, 5% glycerol, 5 mM PIC (protease inhibitor cocktail)) and lysed via sonication
(TT13 Sonotrode, 40% amplitude, for 6 × 1 min with a 0.5/0.5-s pulse). Lysates were
centrifuged for 45 min at 17,000× g at 4 ◦C. Supernatants were loaded onto a His Trap Fast
Flow 5 mL column (GE Healthcare, München, Germany) equilibrated in loading buffer
(50 mM Tris-HCl pH = 8.0, 250 mM NaCl, 1% glycerol, 20 mM imidazole). The column
was washed with loading buffer for 5–10 CV and protein was eluted with elution buffer
(50 mM Tris-HCl pH = 8, 250 mM NaCl, 1% glycerol, 400 mM imidazole). Simultaneous
TEV cleavage (1 mg TEV protease was added to 100 mg peptides/proteins) and buffer
exchange to loading buffer via dialysis was performed over night at 4 ◦C. After reverse
IMAC, proteins were concentrated with conical concentrators (Millipore Merck, Darmstadt,
Germany) and loaded on a Superdex 10/60 75 or 200 column (GE Healthcare, München,
Germany) for further purification and equilibration with ITC/NMR buffer (25 mM HEPES
pH = 7.5, 100 mM NaCl). For structural NMR spectroscopy, buffer containing 50 mM
Tris-HCl pH = 7.5, 100 mM NaCl was used. Prior to NMR experiments, TCEP and pro-
tease inhibitors cocktail were added to the samples to final concentrations 1 and 5 mM,
respectively. Purified peptides and protein were concentrated and stored at −80 ◦C. The
protein and peptide concentrations were calculated from the UV absorption at 280 nm by
Nanodrop spectrophotometer (Thermo Scientific, Langenselbold, Germany).

4.3. In Vitro Thioester Formation Assay

Ufmylation reaction assays were adopted from work of Xie [32]. Briefly, 70 μM UFM1,
20 μM UFC1 and 20 μM of different UBA5 constructs were mixed in reaction buffer (50 mM
HEPES pH = 7.5, 100 mM NaCl, 5 mM MgCl2). After starting the reaction with addition of
1 mM ATP, the reaction mix was incubated at 22 ◦C for the desired time. To quench the
reaction and prepare electrophoretic samples, 1 μL of the reaction mix was added to 99 μL
1x non-reducing SDS loading buffer and frozen in liquid nitrogen. Sample content was
visualized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The
transfer to polyvinylidene difluoride (PVDF) membrane was performed via a Trans-Blot®

Turbo™ Transfer System (Bio-Rad, München, Germany). After transfer the membrane was
blocked with TBST (Tris-buffered saline with Tween20 buffer, 20 mM Tris, 150 mM NaCl
and 0.1% TWEEN 20) containing 5% w/v nonfat dry milk for 1 h, followed by α-UFC1
antibody incubation over night at 4 ◦C (ab189251 abcam, 1:10,000 in TBST containing
5% w/v nonfat dry milk). After washing with TBST the membrane was incubated with
secondary antibody (anti-rabbit-HRP) for 1 h at RT and again washed with TBST. Detection
was performed by addition of ECL solution. For quantification of UFC1 ufmylation coloc2
software implemented in ImageJ was used. To show the kinetic differences between FL1–404

and ΔR31–380 on UFC1 ufmylation, the reactions were started with 25 μM ATP.
For stable UBA5~UFM1 conjugation, 70 μM UFM1, 20 μM FL1–404 C250K and 1 mM

ATP were added to ufmylation reaction buffer (50 mM HEPES pH = 10.0, 100 mM NaCl,
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5 mM MgCl2). For NMR analysis, resulting complexes were concentrated and equilibrated
with ITC/NMR buffer. To analyze complex formation by ufmylation assay 300 μL of sample
were loaded onto a Superdex 200 10/300 column (GE Healthcare, München, Germany).

4.4. Isothermal Titration Calorimetry

All ITC experiments were performed at 25 ◦C using a VP-ITC microcalorimeter
(Malvern Panalytical Ltd., Malvern, UK). Peptides in concentration of ~400 μM were
titrated into 20–25 μM solutions of corresponding binding partner at a stirring speed
of 307 rpm. The raw data were corrected on the dilution heat of peptides obtained in
independent experiment (titration of the peptide in syringe into the ITC/NMR buffer in
the measuring cell). Pre-titration delay was set to 180 s, interval between titration steps was
experimentally adjusted to avoid kinetic contribution to the observed heat effects and set
to 200 s. A single ITC profile was collected for each type of interaction. The ITC data were
analyzed based on a “one-site” binding model with MicroCal ITC software implemented
in Origin 7.0.

4.5. NMR Spectroscopy

All NMR experiments were performed at a sample temperature of 25 ◦C on Bruker
600, 700, 800, 900, and 950 MHz spectrometers equipped with cryogenic probes, and a
500 MHz spectrometer equipped with a room-temperature triple-resonance probe. All
NMR spectra were analyzed with the Sparky 3.114 software (University of California, San
Francisco, USA). For NMR titration experiments, the non-labeled UBA5 peptides were
titrated to 100 μM 13C,15N-labeled UFC1 to a final molar ratio of 1:8 (UFC1:UBA5 peptide).
Conversely, 100 μM 13C,15N-labeled UBA5 peptides were titrated with non-labeled UFC1
to a final molar ratio 1:4 (UBA5 peptide:UFC1). 2D 1H-15N correlation spectra ([15N,1H]
TROSY-HSQC) were recorded at each titration point. The same types of spectra were
recorded to estimate binding of 13C,15N-labeled UFC1 (75 μM) to non-labeled UBA5,
UBA5~UFM1 and UFM1 at 1:2 molar ratios. CSP values, Δδ, were calculated for each
individual amide group using the formula Δδ = [(ΔδN/5)2 + Δδ2

HN)]1/2.
For structural NMR spectroscopy, samples containing 1 mM 13C,15N-labeled UFC1

in the presence of 1 mM non-labeled R3381–404W and 0.3 mM 13C,15N-labeled R3381–404W

in presence of 1.2 mM non-labeled UFC1 were used. As buffer condition 50 mM Tris
pH = 7.5, 100 mM NaCl, 2 mM TCEP, 5 mM PIC, 5% D2O, 0.15 mM DSS was chosen.
Backbone resonance assignment was performed using 3D BEST-TROSY versions [42,43] of
HNCACB, HNCO, HN(CO)CACB and HN(CA)CO pulse sequences. Aliphatic 1H and 13C
side-chain assignments resulted from (H)CC(CO)NH-TOCSY, and H(CCCO)NH-TOCSY
experiments [44,45]. The assignment of aromatic side chain resonances was accomplished
with amino-acid type specific versions of the (H)CB(CGCC-TOCSY)Har experiment [46] in
conjunction with a [13C,1H]-ct-TROSY experiment [47,48] and an aromatic 13C-resolved 3D
NOESY-SOFAST-HMQC experiment was used for verification. To obtain distance restrains
for structure calculations 3D 15N- and 13C- separated NOESY-HSQC spectra, recorded with
a mixing time of 60 ms, were analyzed. To obtain intermolecular distance restrains, 3D
F1-13C/15N-filtered NOESY-[13Cali,1H]-HSQC, NOESY-[13Caro,1H]-SOFAST-HMQC and
NOESY-[15N,1H]-SOFAST-HMQC experiments (mixing time 150 ms) were performed [49].
The structure was calculated via CYANA [50] version 3.98 with automated peak assignment.
Torsion angles were predicted based on chemical shift values by PREDITOR program [51].
Restrained energy refinement using OPALp [52] was performed for the 20 conformers with
the lowest final CYANA target function.

The 20 energy-refined conformers were deposited in the Protein Data Bank with acces-
sion code 7OVC. The chemical shift assignments were deposited in the BioMagResBank
(BMRB) database with accession code 34638.
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AD UBA5 adenylation domain
ASC1 activating signal co-integrator 1
ATP adenosine triphosphate
BEST band-selective excitation short-transient
CSP chemical shift perturbation
FL full length
GABARAP GABAA-receptor-associated protein
HMQC heteronuclear multiple quantum coherence
HSQC heteronuclear single quantum coherence
ITC isothermal titration calorimetry
LC3 microtubule-associated protein 1 light chain 3
LIR LC3-interacting region
NEDD8 neural precursor cell expressed developmentally downregulated protein 8
NMR nuclear magnetic resonance
NOESY nuclear Overhauser and exchange spectroscopy
R1, R2, R3 UBA5 C-terminal regions R1, R2 and R3
SD standard deviation
SOFAST band-selective optimized-flip-angle short-transient
SUMO small ubiquitin related modifier
TOCSY total correlation spectroscopy
TROSY transverse relaxation optimized spectroscopy
UBA5 UFM1-activating enzyme 5
UBL ubiquitin-like
UFBP1 UFM1-binding protein 1
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UFC1 UFM1-conjugating enzyme 1
UFIM UFM1-interacting motive
UFL1 UFM1 ligase 1
UFM1 Ubiquitin fold modifier 1
UfSP1/2 UFM1-specific proteases 1 and 2
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Abstract: When combined with NMR spectroscopy, high hydrostatic pressure is an alternative per-
turbation method used to destabilize globular proteins that has proven to be particularly well suited
for exploring the unfolding energy landscape of small single-domain proteins. To date, investigations
of the unfolding landscape of all-β or mixed-α/β protein scaffolds are well documented, whereas
such data are lacking for all-α protein domains. Here we report the NMR study of the unfolding
pathways of GIPC1-GH2, a small α-helical bundle domain made of four antiparallel α-helices. High-
pressure perturbation was combined with NMR spectroscopy to unravel the unfolding landscape at
three different temperatures. The results were compared to those obtained from classical chemical
denaturation. Whatever the perturbation used, the loss of secondary and tertiary contacts within the
protein scaffold is almost simultaneous. The unfolding transition appeared very cooperative when
using high pressure at high temperature, as was the case for chemical denaturation, whereas it was
found more progressive at low temperature, suggesting the existence of a complex folding pathway.

Keywords: protein folding; NMR; high hydrostatic pressure; thermodynamic stability; α-helical bundle

1. Introduction

Although small single-domain proteins are generally found to exhibit highly coop-
erative two-state unfolding transitions [1,2], the thousands of interactions that stabilize
their 3D structure are unlikely to form simultaneously and folding intermediates should
exist along their folding pathway. Nevertheless, especially in the case of small, fast-folding
single-domain proteins, folding intermediates are generally low populated at equilibrium,
and cannot be easily identified when using classical thermal or chemical perturbation in
association with methods applied to a single probe in the 3D structure of the protein (for
instance, intrinsic fluorescence of a tryptophan residue) or with methods giving global
structural information (for instance, molar ellipticity in the case of circular dichroism
(CD) study).

Multidimensional NMR spectroscopy is a particularly powerful tool to obtain high-
resolution structural information about protein folding events because an abundance of
site-specific probes can be studied simultaneously in a single spectrum. In the recent past,
NMR combined with high-pressure perturbation has emerged as a powerful tool to explore
in detail the folding landscape of small proteins, at a quasi-atomic resolution [3–6]. Indeed,
contrary to chemical or thermal denaturation, which acts globally and depends on exposed
surface area in the unfolded state, pressure denaturation depends on the elimination of the
solvent-excluded internal voids, due to imperfect protein packing, by water penetration
inside the core of the protein [7–9]. Thus, because the distribution of solvent-excluded
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voids depends on the protein structure, the pressure-induced unfolding originates from
unique properties of the folded state.

High-pressure NMR unfolding studies have been applied to several single-domain
proteins in order to characterize their folding landscape. Until now, these studies have
concerned essentially all-β [10,11] or mixed-α/β [9,12,13] protein scaffolds, and similar
studies are lacking for all-α structures although they represent a widespread assembly
motif [14]. In the present manuscript, we report the NMR study of the folding of an
α-helical bundle, the GH2 domain of the protein adaptor GIPC1 [15]. GIPC is an adaptor
protein that binds and regulates vesicular trafficking of many transmembrane proteins [15].
The X-ray structure of GIPC1 has been solved [16] and shows that the full-length protein
exists as a dimer in the crystal (Supplementary Materials, Figure S1). Each monomer
contains three well-identified domains: a central PDZ domain flanked by an N-terminal
GIPC-homology 1 (GH1) domain and a C-terminal GH2 domain [16]. The structure of the
PDZ domain displays a typical PDZ fold with five β-strands and two α-helices. The GH1
domain adopts a ubiquitin-like fold composed of four β-strands and one α-helix, and the
GH2 domain forms a four-helix globular fold. After solving the solution structure of the
GIPC1-GH2 domain, we studied its folding/unfolding pathway at a residue-specific level
using 2D NMR spectroscopy combined with high-pressure perturbation at three different
temperatures, and with chemical perturbation. As a result, we found that whereas high-
pressure NMR reveals the existence of a partial unfolding at low temperature, unfolding
becomes highly cooperative at higher temperature or when using chemical perturbation.

2. Results

2.1. NMR Resonance Assignments and Solution Structure of GIPC1-GH2

Proton, nitrogen, and carbon NMR resonances of GIPC1-GH2, renumbered 1–79
for simplicity, have been assigned and its solution structure solved using essentially
[1H,15N,13C] triple-resonance and [1H,15N] double-resonance 3D NMR spectroscopy (see
Section 4) with the classical sequential assignment strategy. 1H and 15N resonances have
been assigned for all amide groups of nonproline (76) residues (Figure 1), and Cα, Cβ, C’
resonances for 96.2% residues. Resonance assignments have been deposited at the BMRB
data bank (BMRB code 34609).

NOEs were measured on a 3D [1H,15N] NOESY-HSQC experiment and on a 2D
[1H,1H] NOESY spectrum recorded in a deuterated buffer. Dihedral restraints (ϕ, φ, and
χ1) were obtained from TALOS-N [17] analysis of backbone atom chemical shifts. After
conversion into distance restraints, these data sets were used with CYANA [18] to build the
3D structure of GIPC1-GH2. H-bond restraints were also used for the structure modeling.
Usually, these restraints are deduced from hydrogen/deuteron (H/D) exchange experi-
ments, yielding amide protons potentially involved in H-bonds as donor atoms. In the case
of GIPC1-GH2, H/D exchange rates were unusually fast, even at low temperature (5 ◦C): all
amide proton resonances disappeared during the few minutes needed for the setting of the
experiments, preventing the use of this approach. Instead, we used CLEANEX-PM [19,20]
experiments to determine which amide protons are solvent-exposed in the 3D structure.
In these experiments, the water resonance was selectively excited, and water magneti-
zation transferred to solvent-exposed amide protons with an appropriate spin-locking
module. This sequence was incorporated in a conventional HSQC scheme to resolve amide
peaks along the 15N indirect dimension. Thus, amide corresponding cross-peaks which
were not present in this experiment (Supplementary Materials, Figure S2) and which be-
longed to residues exhibiting ϕ, ψ values characteristic of secondary structure elements
(α-helices, in the present case), as determined from TALOS analysis, were considered as
involved in a regular H-bond, and the corresponding distance restraints were used for
structure modeling.
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Figure 1. GIPC1-GH2 NMR fingerprint. [1H-15N] HSQC spectrum of GIPC1-GH2 at 800 MHz, 20 ◦C
on a 0.5 mM, 15N uniformly labeled sample dissolved in a 20 mM Tris-HCl pH 7.2, 150 mM NaCl
buffer. Cross-peak assignments are indicated using the one-letter amino acid and number code.

A final set of 1219 restraints was used, and the pairwise rmsd calculated for backbone
heavy atoms between the 20 best refined structures was 0.47 Å (residues 5–76) (Figure 2).
Most of the residues (95.6%) fall in the most favored region of the Ramachandran plot,
with no residue in the generously allowed or disallowed regions, highlighting the high
quality of our model (see structural statistics, Supplementary Materials, Table S1). The
solution structure of GIPC1-GH2 consists of four antiparallel amphipathic helices arranged
in an α-helical bundle. It is virtually identical to the X-ray structure adopted by this
domain in the full-length protein, as shown by their superimposition displayed in Figure 2.
An rmsd value of 0.85 Å was measured between them for all backbone heavy atoms
(residues 5–73). This value drops to 0.68 Å when considering only backbone heavy atoms
involved in helices. The bundle can be divided in two subdomains, each one consisting of
two antiparallel helices stapled against each other: the N- (helix I) and C-terminal (helix
IV) helices form the first subdomain, while the α-hairpin made by helix II and III forms the
second subdomain. These two subdomains make an angle of approximately 50◦ in the 3D
structure of GIPC1-GH2. The structure coordinates of the NMR structure of GIPC1-GH2
have been deposited at the Protein Data Bank (PDB code 7NRN).

The intrinsic dynamics of GIPC1-GH2 were also investigated by measuring heteronu-
clear 15N T1, T2 relaxation times and [1H,15N] heteronuclear nOes, and converting these
parameters into J(0), J(ωN), and <J((ωH)> spectral densities through Solomon equations [21]
(see Section 4 and Supplementary Materials, Figure S3). Spectral densities were then fitted
with model-free Lipari–Szabo equations [22] to extract the global (τc) and internal (τe)
correlation times of the molecule, and generalized order parameters S2 for each residue
(Figure 3). A τc value of 6.09 ns was obtained from the fit of the relaxation parameters, in
good agreement with the expected correlation time of this small protein at 20 ◦C.
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Figure 2. Solution structure of GIPC1-GH2. (Left) Overlay of the 20 best NMR structures (backbone atoms only) with
lowest energy. The regular α-helices are colored in green. (Right) Superimposition of ribbon representations of the solution
structure (with α-helices in green and the X-ray structure with α-helices in red) of the GH2 domain extracted from the
structure of the full-length protein (PDB code: 5V6b).

Figure 3. Intrinsic dynamics of GIPC1-GH2. (Top) Generalized order parameters S2 obtained from
Lipari–Szabo analysis plotted versus the protein sequence. The regular two-parameter spectral
density function (Section 4, Equation (1)) has been used for residues plotted as filled circles, whereas
the extended Lipari–Szabo formalism (Section 4, Equation (3)) has been used for residues plotted as
open circles. Open squares correspond to residues for which J(0) values have been corrected from
exchange contributions (Section 4, Equation (2)). (Bottom) Rex contributions obtained from this last
equation are reported versus the sequence for residues exhibiting conformational exchange. The
location of the four helices in the protein sequence is schematized with cylinders on top of the figure.

The regular Lipari–Szabo model was used for most of the residues involved in α-
helices, yielding S2 values close to 0.85, confirming that these secondary structure elements
are well defined. The extended Lipari–Szabo model [23] was needed to fit the N- and
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C-terminal residues, suggesting the existence of more complex motions in these flexible
regions, as usually observed. Interestingly, adding exchange contribution (Rex) to J(0) was
mandatory to fit some residues located in the loops connecting the four helices, but also
in helix IV and, to a lesser extent, helix II, suggesting that these two helices are prone to
conformational exchange.

2.2. GIPC1-GH2 Denaturation Studies

2.2.1. Pressure Denaturation

2D [1H,15N] HSQC spectra of 15N uniformly labeled GIPC1-GH2 were recorded at
variable pressures (1 to 2500 bar) and at 10, 20, and 30 ◦C (Figure 4). As usually found,
the intensity of each native state peak decreases as a function of pressure, while the
intensity of peaks corresponding to the unfolded state, centered around 8.5 ppm in the
proton dimension, increases concomitantly. This supports a slow equilibrium on the NMR
timescale for each residue between the native and unfolded state, and a two-state transition
for each residue between their native/unfolded states during the unfolding process. Thus,
even though the global protein unfolding does not likely conform to a two-state transition,
locally this simple model can be used to interpret the loss of intensity for each native state
cross-peak [6].

Figure 4. NMR detected high-pressure unfolding of GIPC1-GH2 at 30 ◦C, 20 ◦C, and 10 ◦C (from top to bottom). At each
temperature, examples of [1H,15N] HSQC at 1, 1000, and 2500 bar are displayed from left to right. The rightmost panels
report overlays of four (residues K9, T32, L50, and V67) residue-specific experimental denaturation curves obtained from
the fits of the pressure-dependent sigmoidal decrease of the corresponding residue cross-peak intensities in the HSQC
spectra with Equation (4).

A total of 44 residues (58% of the nonproline residues) gave overlapping cross-peaks
neither in the folded state nor in between the folded and unfolded states at any of the

311



Int. J. Mol. Sci. 2021, 22, 3597

temperatures used for the study. These residues displayed cross-peaks of sufficient intensity
at atmospheric pressure to be accurately fitted to the two-state pressure-induced unfolding
model described in the Section 4 (Equation (4)), Figure 4, giving a substantial number
of local probes for the description of the GIPC1-GH2 folding pathway. At the residue
level, the two-state model was adequate to fit all individual unfolding curves, but yielded
significantly different values for apparent free energy ΔG0

u and apparent volume change
ΔV0

u (Figure 5) of unfolding, suggesting a substantial deviation from a two-state behavior
for the global unfolding of the protein, whatever the temperature of the study. The
asymmetric distributions observed for apparent ΔG0

u and apparent ΔV0
u strongly support

this assumption and suggest that partial unfolding of the molecule should appear when
increasing the pressure (Supplementary Materials, Figure S4).

GIPC1-GH2 displayed a weak stability that appeared to be maximum at 20 ◦C, with an
average value for the apparent free energy of unfolding <ΔG0

u> of 1293 ± 62 cal/mol, and
significantly decreased at higher (<ΔG0

u> = 925 ± 57 cal/mol at 30 ◦C) or lower ((<ΔG0
u> =

903 ± 49 cal/mol at 10 ◦C) temperatures. Also, a linear decrease with temperature was
observed for the average values (in magnitude mode) of apparent ΔV0

u (<ΔV0
u > = −61 ± 4

mL/mol, −49 ± 7 mL/mol, and −38 ± 8 mL/mol at 10, 20, and 30 ◦C, respectively). The
temperature-dependent decrease in ΔV0

u is a well-known effect due to the difference in
thermal expansion between the folded and unfolded states [24].

Figure 5. Steady-state thermodynamic parameters measured for GIPC1-GH2 at 10 ◦C, 20 ◦C, and 30 ◦C (from left to
right) from residue-specific pressure denaturation curves. From top to bottom: overlay of the normalized residue-specific
denaturation curves as obtained from the fit of the pressure-dependent sigmoidal decrease of the residue cross-peak
intensities in the HSQC spectra with Equation (4); residue-specific values (absolute values) of the apparent volume change
of unfolding ΔV0

u plotted versus the protein sequence; residue-specific values of the apparent free energy of unfolding
ΔG0

u plotted versus the protein sequence. The dashed lines represent the mean values of the measured thermodynamic
parameters. The location of the four helices in the protein sequence is schematized with cylinders on top of the graphics.

312



Int. J. Mol. Sci. 2021, 22, 3597

Average values of ΔG0
u calculated for each helix indicate differences in local stability

(Supplementary Materials, Figure S5). Interestingly, this local stability depends on the
temperature. At 10 ◦C and 20 ◦C, helix I and II appear slightly more stable than helix III
and IV, helix II being the most stable at 20 ◦C whereas it has a similar stability as helix I
at 10 ◦C. At 30 ◦C, the highest values of ΔG0

u are found in helix I and III. Importantly, the
local thermal stability measured for each helix follows the thermal stability of the whole
domain, with a maximum observed at 20 ◦C. Likewise, a similar decrease with temperature
is observed for average ΔV0

u values calculated for each helix and for the average value
calculated over the whole structure, but without any significant variations between the
four helices.

Information brought by normalized residue-specific denaturation curves has been
used to track and to characterize possible intermediates in the folding pathway of GIPC1-
GH2 [6,8]. Thus, at a given pressure, the value of 1 measured for a given cross-peak
(I = If = 1; Equation (4)) is associated with a probability Pi of 1 (100%) to find the corre-
sponding residue “i” in the native state, while a residue “j” for which the corresponding
cross-peak has disappeared (I = IU = 0; Equation (4)) from the HSQC spectrum has a
probability Pj equal to zero to be in a native state. Since these probabilities are related to
the “native fraction” for a given residue, they are called fractional probabilities.

Given a pressure where these two residues i and j are in an intermediate situation
(0 < Pi and Pj < 1), and if these two residues are in contact in the native state (at atmospheric
pressure), their fractional probability Pij to be in contact at this pressure is given by the
geometric mean of the two individual probabilities: Pij =

√
Pi × Pj [12] (Figure 6).

At 20 ◦C, the temperature where GIPC1-GH2 exhibits the highest stability, the pressure
dependence of the contact maps shows that helix III and IV are the first regions affected by
an increase of pressure: tertiary contacts between these two helices are already significantly
weakened at 500 bar (Pij ≤ 50%), as well as secondary contacts characteristic of the helical
structure (Figure 6). This partial unfolding concerns mainly these two helices up to 900 bar.
Above this pressure, we observed a loss of contacts between helix IV and helix I, while
helix I and II remain unaffected until 1100 bar. The unfolding of these two helices, as well
as the loss of tertiary contacts between them, is observed at higher pressure (1300 bar, not
shown). An identical scenario is observed at 10 ◦C, but with a shift to lower pressures,
consistent with the lower stability of the protein at this temperature. At 700 bar, helix III
and IV are unfolded (Pij ≤ 50%), and local unfolding already concerns helix I and II, while
all the contacts are lost at 900 bar. While a similar stability of the protein is observed at
30 ◦C, a rather different scenario is observed for unfolding. The structure remains stable
until 900 bar, with little loss of tertiary contacts observed. At 1100 bar, a sharp unfolding
transition is observed, that concerns both the tertiary contacts between the four helices
and the secondary contacts in all the helices, simultaneously. Finally, we observed a global
unfolding of the molecule at 1300 bar.
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Figure 6. Pressure denaturation of GIPC1-GH2. (A) Contact maps built from the best solution
structure obtained for GIPC1-GH2 at 500, 700, 900, and 1100 bar, and at 283, 293, and 303 K, as
indicated. Contacts below the diagonal have been calculated with CMview (http://www.bioinforma
tics.org/cmview/; accessed on 25 March 2020): they correspond to residue where the distance to
the corresponding Cα is lower than 9 Å. Above the diagonal, only the contacts for which fractional
probability can be obtained have been reported. In addition, contacts have been colored in red when
contact probabilities Pij lower than 0.5 are observed. (B) Visualization of the probabilities of contact
on ribbon representations of GIPC1-GH2 at 20 ◦C and at 500, 700, 900, and 1100 bar, as indicated.
The red lines represent contacts that are significantly weakened (Pij ≤ 0.5) at the indicated pressure.
Residues involved in these contacts are also colored in red. The arrows in the middle of the panel
indicate the rotation between the different views.
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2.2.2. Chemical Denaturation

2D [1H,15N] HSQC spectra of 15N uniformly labeled GIPC1-GH2 were recorded at
20 ◦C, the temperature where the protein exhibits the highest stability, and at increasing
urea concentrations.

A total of 49 residues (64% of the nonproline residues) gave overlapping cross-peaks
neither in the folded state nor in between the folded and unfolded states, and these residues
can be accurately fitted to the two-state pressure-induced unfolding model described
in the Section 4 (Equation (5), Figure 7). As observed for pressure denaturation, the
intensity of each native state peak decreases as a function of urea concentration in the
NMR sample, while the intensity of peaks corresponding to the unfolded state increases
concomitantly, supporting a slow equilibrium on the NMR timescale for each residue
between the native and unfolded state during the unfolding process. As reported above
for pressure denaturation, a two-state transition model has been used to interpret the loss
of intensity for each native state cross-peak (see Section 4). The residue-specific values
obtained for the apparent free energy ΔG0

u of unfolding and for the apparent m-values are
displayed in Figure 8.

Figure 7. NMR detected chemical unfolding of GIPC1-GH2 at 20 ◦C. Examples of [1H,15N] HSQC at
0, 3, and 6 M urea are displayed. The last panel shows an overlay of four (residues K9, T32, L50, and
V67) residue-specific denaturation curves obtained from the fits of the urea concentration-dependent
sigmoidal decrease of the corresponding residue cross-peak intensities in the HSQC spectra with
Equation (5).
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Figure 8. Steady-state thermodynamic parameters measured for GIPC1-GH2 at 20 ◦C from residue-
specific urea denaturation curves. From top to bottom: overlay of the normalized residue-specific
denaturation curves as obtained from the fit of the urea concentration-dependent sigmoidal decrease
of the residue cross-peak intensities in the HSQC spectra with Equation (5); residue-specific values of
the apparent m-values plotted versus the protein sequence; residue-specific values of the apparent
free energy of unfolding ΔG0

u plotted versus the protein sequence. The dashed lines represent the
mean values of the measured thermodynamic parameters. The location of the four helices in the
protein sequence is schematized with cylinders on top of the graphics.

As previously observed, GIPC1-GH2 displays a weak stability at 20 ◦C, with an
average free energy value for unfolding <ΔG0

u> of 1484 ± 45 cal/mol, a value close to that
measured from pressure denaturation curves at the same temperature. But contrary to
what we observed with pressure denaturation, we did not observe significant variations
in between the different helices when looking at the average values of ΔG0

u calculated for
each helix (Supplementary Materials, Figure S6).

As in the case of pressure denaturation, we built fractional contact maps from probabil-
ities of contact calculated from fractional probabilities of individual residues extracted from
the normalized residue-specific chemical denaturation curves obtained at 20 ◦C (Figure 9).
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Figure 9. Chemical denaturation of GIPC1-GH2. (A) Contact maps built from the best solution
structure obtained for GIPC1-GH2 at 20 ◦C, and at 2, 2.2, 2.4, 2.6, 2.8, and 3 M urea, as indicated.
Contacts below and above the diagonal are displayed following the same rules as in Figure 6. (B)
Visualization of the probabilities of contact on ribbon representations of GIPC1-GH2 at 20 ◦C and
at 2.4, 2.6, 2.8, and 3 M urea, as indicated. The red lines represent contacts that are significantly
weakened (Pij ≤ 0.5) at the indicated pressure. Residues involved in these contacts are also colored
in red. The arrows in the middle of the panel indicate the rotation between the different views.
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Interestingly, if some contacts are lost between the C-terminal end of helix IV and
the N-terminal end of helix III at low urea concentrations ([urea] ≤ 2.4–2.6 M), a sharp
unfolding transition takes place between 2.6 and 2.8 M urea that concerns both secondary
and tertiary contacts in the four helices. In this view, the folding scenario looks like
what was observed for pressure denaturation at 30 ◦C, where an increased unfolding
cooperativity was observed when compared to 10 ◦C or 20 ◦C.

3. Discussion

The structure in solution of the GH2 domain of GIPC1 shows that this domain keeps its
α-helical bundle fold outside the full-length protein context, even though it exhibits a rather
low stability, probably due to the loss of intra- and intermolecular interactions that occur
within the dimeric structure of the full-length protein. Indeed, this low stability is supported
by the fast exchange rates exhibited by the amide protons that cannot be measured by
regular H/D exchange NMR experiments. Nevertheless, CLEANEX-PM experiments
showed that the amides involved in the H-bonds stabilizing the helical structures are
not solvent-exposed, contrary to those located in the loops linking the different helices
and in the flexible N- and C-terminal ends of the domain, supporting the idea that they
are involved in the regular H-bonds expected in those regular elements of secondary
structure. In addition, S2 values close to 1, as obtained from the 15N relaxation study,
indicate that the helices are well structured, even though significant exchange contributions
(Rex

2 ) can be observed, especially in helix IV. This suggests that this helix is prone to
conformational exchange. Notably, GIPC1-GH2 was found to be stable only in a limited
range of temperature. The stability was found to be maximum at 20 ◦C, whereas it
decreases significantly when increasing or decreasing the temperature. As evaluated
from the ratio of the intensity of native/unfolded amide cross-peaks of representative
residues measured on HSQC spectra, the fraction of native protein is about 70% at 40 ◦C
and 60% at 0 ◦C (Supplementary Materials, Figure S7), indicating that the protein is
sensitive both to thermal and to cold denaturation. GIPC1-GH2 is also very sensitive
to high hydrostatic pressure, since it unfolds at 20 ◦C in the 1–2500 bar range without
adding any sub-denaturant concentration of chaotropic reagents, as was usually observed
for high-pressure denaturation of all-β or mixed-α/β structures in our previous study:
sub-denaturant concentration ranging from 0.5 M [25] to about 2 M [8,10] of guanidinium
chloride was used to tune the stability of these proteins into the pressure range allowed by
the experimental set-up.

Looking closely to the unfolding pathways of GIPC1-GH2 under high hydrostatic
pressure, we observed unexpected results. Indeed, since high-pressure denaturation
is closely related to the presence of dehydrated internal solvent-excluded voids in the
structure, we expected a two-step process starting with the loss of tertiary contacts within
the 3D structure, followed by the loss of the secondary contacts yielding helices unfolding.
This is because helices are well-packed secondary structure elements, without significant
voids inside, while packing defaults are expected within the tertiary structure of the α-
helical bundle. In fact, whatever the temperature of the study, local or global unfolding
entails the quasi-simultaneous loss of the tertiary and secondary contacts in the concerned
areas, meaning that helices are not stable outside the 3D scaffold context. Depending on
the temperature used for the high-pressure denaturation study, we observed significant
differences in the unfolding process. At 20 ◦C, the temperature where GIPC1-GH2 exhibits
the highest stability, a partial unfolding of the molecule occurs first at helix III and helix IV,
while helix I and helix II remain intact until approximately 1300 bar (note that for clarity
of the discussion, we consider that a contact between two residues i and j is lost when
Pij ≤ 50%). The same scenario is observed at 10 ◦C, shifted at lower pressure: unfolding
of helix III and IV starts below 500 bar instead of 900 bar at 20 ◦C, while helix I and II
start to unfold at 700 bar. A different scenario is observed at 30 ◦C, where the four helices
unfold almost simultaneously, with the onset of unfolding around 1000 bar. Interestingly,
globally the protein appears to be more stable at high temperature (30 ◦C) than at low
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temperature: at 10 ◦C, the protein appears completely unfolded (Pij ≤ 50%) at 900 bar while
some residual structures are still present at 1100 bar and 30 ◦C.

This scenario described for high pressure denaturation at high temperature is very
similar to what is observed for chemical denaturation of GIPC1-GH2 at 20 ◦C. We did not
observe significant partial unfolding of any helix upon increase in urea concentration but
rather a global unfolding of the molecule between 2.6 and 2.8 M urea. This is probably
due to the different rules underlying high-pressure and chemical unfolding. As reported
above, pressure unfolding is linked to the presence of solvent-excluded voids inside the
3D structure of the protein, and hence depends on the structure of the native state of the
protein. On the contrary, the chemical denaturation process is driven by the increase of
solvent-accessible area of the unfolded state with respect to the folded state, and is more
dependent on the size of the protein [26–28]. This probably explains the difference that
we observed in the folding pathway between high-pressure denaturation of GIPC1-GH2
at 20 ◦C or 10 ◦C, and its chemical denaturation at 20 ◦C. Note that thermal denaturation
is also related to the solvent-accessible area of the unfolded state: this could explain the
similar scenario observed for high-pressure denaturation at high temperature (30 ◦C) and
for chemical denaturation. Indeed, at 30 ◦C, the stability of GIPC1-GH2 is decreased, and
thermal denaturation probably competes with high-pressure denaturation, sweeping away
the partial unfolding occurring at lower temperature.

4. Materials and Methods

4.1. Protein Expression and Purification

The construct GIPC1-GH2 domain (residues 255–333) was subcloned in pProEXHTB,
allowing the expression of a 6xHis-TEV fusion protein, and was transformed into E. coli
BL21-Gold (DE3) (Stratagene, Amsterdam, The Netherlands). Uniform 15N or 15N/13C
labeling was obtained by growing cells in minimal M9 medium containing 15NH4Cl
and/or 15NH4Cl/13C-u-labeled glucose as the sole nitrogen or carbon sources (Cortecnet).
Protein was expressed overnight at 20 ◦C after induction with 0.2 mM IPTG. Cells were
collected by centrifugation and suspended in lysis buffer comprising 20 mM Tris-HCl
buffered at pH 7.5 and containing 150 mM NaCl, 2 mM imidazole, and a cOmplete™
EDTA-free tablet (Roche). Cells were lysed by sonication (1 s bursts for 4 min, at 30%
amplitude with a large probe, Branson). Cell debris and insoluble materials were removed
by centrifugation (Beckman Coulter Avanti J-20 XP centrifuge equipped with a 25.50 rotor,
set at 20,000 rpm, at 6 ◦C). The supernatant was loaded through a benchtop peristaltic
pump (Cytiva) onto a cOmplete™ His-Tag Purification Column (Roche, Basel, Switzerland)
equilibrated with lysis buffer. After elution with lysis buffer supplemented with 200 mM
imidazole, fractions containing the protein were dialyzed with homemade recombinant His
tagged rTEV protease (mixed at 100:1 ratio) overnight at 4 ◦C in 20 mM Tris-HCl buffered
at pH 7.5, 150 mM NaCl, and 1 mM imidazole. Cleavage was checked with SDS-PAGE
and loaded again into a cOmplete™ His-Tag Purification Column equilibrated with the
same buffer used for dialysis in order to remove the protease and the cleaved 6xHis tag.
The GipC1-GH2 domain was finally injected through an AKTA system into a Superdex
S75 16/60 (GE Healthcare) column, equilibrated with 20 mM Tris-HCl buffered at pH 7.2,
150 mM NaCl. The fractions containing the pure protein were pooled, concentrated to
about 1 mM (protein concentration) (Vivaspin 15R, Sartorius). PMSF and EDTA were
added (0.1 mM) to the samples that were then flash-frozen in liquid N2 and stored at
−80 ◦C until NMR analysis.

4.2. NMR Assignments and Solution Structure

Protein samples were dissolved in 200 μL of aqueous buffer containing 20 mM Tris-
HCl pH 7.2, 150 mM NaCl, and 0.1 mM PMSF and EDTA (5% D2O for the lock) at a
concentration of about 1 mM. Experiments were recorded at 20 ◦C on a Bruker AVANCE
III 800 MHz (Bruker Biospin, Wissenbourg, France) equipped with a 5 mm Z-gradient TCI
cryogenic probe head. 1H chemical shifts were directly referenced to the methyl resonance
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of DSS, while 13C and 15N chemical shifts were referenced indirectly to the 13C/1H and
15N/1H absolute frequency ratios. All NMR experiments were processed with Gifa [29].

Backbone and Cβ resonance assignments were made using standard 3D triple-resonance
HNCA, HNCACB, CBCA(CO)NH, HNCO, and HN(CA)CO experiments [30] and 3D
[1H,15N] NOESY-HSQC (mixing time 150 ms) and TOCSY-HSQC (isotropic mixing: 60 ms)
experiments performed on the 15N,13C-labeled GIPC1-GH2 sample. [1H,15N] NOESY-HSQC
was used to extract the set of nOe’s restraints used for structure modeling, completed by
restraints obtained from a 2D homonuclear NOESY (mixing time 200 ms) recorded on a
deuterated buffer. NOE cross-peaks were assigned through automated NMR structure calcu-
lations with CYANA 3 [18]. Backbone ϕ, ψ, and side-chain χ1 torsion angle constraints were
obtained from a database search procedure on the basis of backbone (15N, HN, 13C’, 13Cα,
Hα, 13Cβ) chemical shifts using TALOS-N [17]. Hydrogen bond restraints were derived
from the analysis of residue (ϕ,ψ) values and CLEANEX-PM experiments [19,20]. When
identified, the hydrogen bond was enforced using the following restraints: ranges of 1.8–2.0 Å
for d(N-H,O), and 2.7–3.0 Å for d(N,O).

The final list of restraints, from which values that were redundant with the covalent ge-
ometry were eliminated, was used for structure modeling. A total of 200 three-dimensional
structures were generated using the torsion angle dynamics protocol of CYANA 3 from
1219 NOEs, 88 hydrogen bonds, and 164 angular restraints. The 20 best structures (based
on the final target penalty function values) were minimized with CNS 1.2 according to the
RECOORD procedure [31] and analyzed with PROCHECK [32]. The rmsds were calculated
with MOLMOL [33]. Models are displayed with PyMOL [34]. All statistics are given in
Supplementary Materials, Table S1.

4.3. Relaxation Studies

Relaxation rate constant measurements were performed on a 1 mM 15N-labeled pro-
tein sample, at 14.1 T (600 MHz), using a Bruker AVANCE III spectrometer equipped with
a 5 mm Z-gradient TXI probe head. The pulse sequences used to determine heteronuclear
15N R1, R2 relaxation rates, and 15N{1H}NOE values were similar to those described [35–37],
and experimental parameters and processing were previously reported in detail for other
proteins studied in the laboratory [38–40]. The 15N longitudinal relaxation rates R1 were
obtained from nine standard inversion-recovery experiments, with relaxation delays rang-
ing from 18 ms to 1206 ms. The 15N transverse relaxation rates R2 were obtained from
eight standard CPMG experiments, with relaxation delays ranging from 16 ms to 128 ms.
Heteronuclear 15N{1H} NOE were determined from the ratio of two experiments, with and
without saturation.

Relaxation data analysis: J(0), J(ωN), and <J((ωH)> spectral densities were calculated
from 15N heteronuclear R2, R1, and 15N{1H} NOE using the so-called reduced spectral
density mapping [35,36,41–44].

The model-free approach of Lipari and Szabo [22] was then used to further describe
the mobility in terms of specific types of motion. This formalism makes the assumption that
overall and internal motions contribute independently to the reorientation time correlation
function of 15N-1H vectors and that internal motions occur on a much faster time scale
than the global rotation of the molecule. For a protein with isotropic tumbling protein,
one obtains:

J(ω) =
2
5

{
S2 τc

1 + (ωτc)
2 +

(
1 − S2

) τ

1 + (ωτ)2

}
(1)

where τ is the harmonics of the overall and the internal (fast) correlation time which
pertains to each residue: τ−1 = τ−1

c + τ−1
f . Fast internal motions are characterized by

the square of a generalized order parameter S2, which describes the relative amplitude
of internal motions and ranges from 0 to 1, and an internal correlation time τf for the
internal motions.
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For some of the residues, the simple form of equation (1) turns out to be insufficient to
fit the whole set of experimental data. This occurs for residues where observed J(0) values
are higher than expected, due to exchange contributions Rex

2 . In this case, the expression
for the observed spectral density at 0 frequency is:

J(0) =
2
5

{
S2τc +

(
1 − S2

)
τ
}
+ λRex

2

]
(2)

where λ is a scale factor. This occurs also when residues exhibit internal motions in a
time window close to 1 ns. In this case, the expression for the spectral density function is
extended to [23]:

J(ω) =
2
5

{
S2

f S2
s

τc

1 + (ωτc)
2 + S2

f

(
1 − S2

s

) τ

1 + (ωτ)2

}
(3)

with τ−1 = τ−1
c + τ−1

s , where S2
f and S2

s are the square of the partial order parameters for
fast (picosecond time scale) and slow (τs, nanosecond time scale) internal motions, respec-
tively. The square of the generalized order parameter S2, defined as S2

f S2
s , is a measure of

the total amplitude of the internal motions. Note that S2 equals S2
f in Equations (1) and (2).

Equation (3) assumes that the contribution of the fastest motion to the spectral density
function is negligible.

The values of the motional parameters of the individual residues can be derived
from the fit of experimental J(0), J(60 MHz), and <J(600 MHz)> using Equations (1)–(3)
implemented in the software DYNAMOF [45]. An iterative nonlinear least-squares algo-
rithm [46] was employed to further minimize the error function. The “right” model was
selected from χ2 analysis.

4.4. Protein Unfolding

2D [1H,15N] HSQC were recorded on a Bruker AVANCE III 600 MHz spectrometer,
at 3 temperatures (10, 20, and 30 ◦C) and 15 different hydrostatic pressures (1,50, 100,
300, 500, 700, 900, 1100, 1300, 1500, 1700, 1900, 2100, 2300, and 2500 bar) for pressure
denaturation, and at 20 ◦C and 13 different urea concentrations (0, 0.1, 0.2, 0.375, 0.75,
1.125, 1.5, 1.875, 2.25, 3, 3.75, 5, and 6 M) for chemical denaturation. Samples with about
1 mM concentration of 15N-labeled proteins were used on conventional 3 mm NMR tubes
(200 μL of sample volume) for chemical denaturation, or in 5 mm o.d. ceramic tubes
(330 μL of sample volume) from Daedelus Innovations (Aston, PA, USA) for pressure
denaturation. Hydrostatic pressure was applied to the sample directly within the magnet
using the Xtreme Syringe Pump also from Daedelus Innovations. Samples with different
urea concentrations were prepared about 10 h before recording the NMR experiments
used for chemical denaturation studies, although each pressure jump was separated by a
2-h relaxation time, to allow the protein to reach full equilibrium. In the case of pressure
denaturation, relaxation times for the folding/unfolding reactions were estimated from a
series of 1D NMR experiments recorded after 200 bar P-Jump, following the increase of the
resonance band corresponding to the methyl groups in the unfolded state of the protein.

The cross-peak intensities for the folded species were measured at each pressure or
each urea concentration, then fitted with a two-state model:

I =
Iu + I f e

−(ΔG0
f +pΔV0

f )/RT

1 + e
−(ΔG0

f +pΔV0
f )/RT

(4)

in the case of pressure denaturation, or:

I =
Iu + I f e

−(ΔG0
f + m[Urea])/RT

1 + e
−(ΔG0

f + m[Urea])/RT
(5)
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in the case of chemical denaturation. In these equations, I is the cross-peak intensity
measured at a given pressure or at a given urea concentration, and If and Iu correspond
to the cross-peak intensities in the folded state (1 bar or 0 M urea) and in the unfolded
state (2500 bar or 6 M urea), respectively. ΔG0

f stands for the residue-specific apparent free

energy at atmospheric pressure or at 0 M urea. ΔV0
f corresponds to the residue-specific

apparent volume of folding for pressure denaturation, while m is related to the steepness
of the unfolding transition for chemical denaturation.

Native contact maps were obtained by using software CMView (http://www.bioinfor
matics.org/cmview/; accessed on 25 March 2020) with a threshold of 9 Å around the Cα of
each residue, using the best structure obtained for GIPC1-GH2 among the 20 refined ones.

5. Conclusions

We demonstrate that combining NMR spectroscopy, which can bring information at
an atomic resolution, with a mild and reversible method, such as high hydrostatic pressure,
for protein unfolding can bring unprecedented details on the folding landscape of a protein.
Here, we applied high-pressure NMR spectroscopy to the study of the folding/unfolding
pathways of an α-helical bundle. Indeed, whereas similar studies have been widely
applied to all-β or mixed-α/β 3D scaffolds, they are lacking for all-α helical structures.
Unexpectedly, we found that the secondary and tertiary structures unfold simultaneously,
although partial unfolding can occur. Importantly, this partial unfolding cannot be revealed
with chemical denaturation, confirming the superiority of high pressure for exploring the
folding landscape of a protein. Of course, whether these results obtained for GIPC1-GH2
can be generalized to other comparable α-helical bundles or whether more will have to be
done remains an open question.

Supplementary Materials: The following are available online at https://www.mdpi.com/artic
le/10.3390/ijms22073597/s1: Table S1: NMR restraints and refinement statistics for GIPC1-GH2
solution structures, Figure S1: Crystal structure of the full-length GIPC1 protein, Figure S2: Phase
modulated CLEANEX-PM experiment recorded on 15N-labeled GIPC1-GH2, Figure S3: Relaxation
measurements performed on 15N-labeled GIPC1-GH2., Figure S4: Distribution of the values of
the thermodynamic parameters ΔG0 and ΔV0, Figure S5: Local pressure stability of GIPC1-GH2,
Figure S6: Local chemical stability of GIPC1-GH2. Figure S7: Estimation of the folded/unfolded
fraction of GIPC1-GH2.
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H(H)P-NMR High (Hydrostatic) Pressure Nuclear Magnetic Resonance
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Abstract: Many pairwise additive force fields are in active use for intrinsically disordered proteins
(IDPs) and regions (IDRs), some of which modify energetic terms to improve the description of
IDPs/IDRs but are largely in disagreement with solution experiments for the disordered states.
This work considers a new direction—the connection to configurational entropy—and how it might
change the nature of our understanding of protein force field development to equally well encompass
globular proteins, IDRs/IDPs, and disorder-to-order transitions. We have evaluated representative
pairwise and many-body protein and water force fields against experimental data on representative
IDPs and IDRs, a peptide that undergoes a disorder-to-order transition, for seven globular proteins
ranging in size from 130 to 266 amino acids. We find that force fields with the largest statistical
fluctuations consistent with the radius of gyration and universal Lindemann values for folded states
simultaneously better describe IDPs and IDRs and disorder-to-order transitions. Hence, the crux of
what a force field should exhibit to well describe IDRs/IDPs is not just the balance between protein
and water energetics but the balance between energetic effects and configurational entropy of folded
states of globular proteins.

Keywords: configurational entropy; force fields; intrinsically disordered proteins

1. Introduction

Intrinsically disordered peptides (IDPs) are a class of proteins that are defined as
dynamic structural ensembles rather than a dominant equilibrium structure in solution [1].
Experimental methods such as nuclear magnetic resonance (NMR) spectroscopy [2], single-
molecule fluorescence Förster resonance energy transfer (smFRET) [3], and small-angle
X-ray scattering (SAXS) [4] can provide restraints on the structural ensemble of IDP sys-
tems but are unable to fully resolve important subpopulations of structure relevant for
function [5]. Therefore, computational methods play a critical role by first generating
putative structural ensembles [6] and secondly reconciling them with the highly averaged
experimental information using Monte Carlo optimization [7,8] or, more recently, Bayesian
formalisms [9–11]. In this work, we are concerned with the generation of IDP ensembles
using physically motivated force fields and molecular dynamics simulations (MD) that
model protein–protein, protein–water, and water–water interactions at the atomic level.

Nearly all MD simulations of IDP structural ensembles have been generated with
pairwise additive force fields that have traditionally been parameterized to reproduce the
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folded states of proteins [12]. Nonetheless, atomistic force fields have struggled with issues
ranging from biases in secondary structure conformations [13,14] or overly structured and
collapsed ensembles that do not agree with experimental data on many IDP systems [15,16].
Additionally, IDPs are more solvent-exposed than folded globular proteins, thus the corre-
sponding choice of water model used to simulate IDPs is critical for capturing the correct
balance between protein–water and water–water interactions for folded and unfolded
states and for disordered proteins [2,17,18]. The D.E. Shaw group was also the first to
show that long standard MD simulations—on the order of hundreds of microseconds—are
required to ascertain the ability of a force field to maintain the structural integrity of a
globular protein [19,20]. We found that similar issues arise for IDPs that also require
long simulations and/or accelerated sampling methods to better represent their structural
properties [21].

To improve upon MD simulated predictions for IDPs, a few research groups have
proposed energy parameter changes to standard force fields to bring them better in line
with solution experiments. For the TIP4P-D water model [22], Piana et al. increased the C6
dispersion coefficient of the Lennard–Jones parameter by ~50% to make London dispersion
interactions more favorable, which, when combined with the Amberff99sb-ildn model [19]
for the protein, resulted in more expanded IDPs with an improved agreement with experi-
mental NMR and small-angle X-ray scattering (SAXS) data. Best and Mittal [23] introduced
backbone parameter modifications of one of the Amber force fields combined with the
TIP4P/2005 water model [24] to reproduce, for example, the temperature dependence
of the helix–coil transition for the 15-residue peptide Ac-(AAQAA)3-NH2. The resulting
A03WS/TIP4P/2005 is intended for use for IDPs but, when applied to poly-glutamine IDP
in solution, was found to generate mostly featureless and highly extended conformations
that do not correctly describe solution experiments [25]. Independently, Henriques et al.
have shown that both Amberff99sb-ildn/TIP4P-D and A03WS/TIP4P/2005 reproduce
better radius of gyration values for the disordered Histatin 5 (Hst 5) peptide, although
both force fields exhibit more turn content for Hst 5 that creates more collapsed states [15].
Robustelli et al. performed extensive millisecond MD simulations on six different pairwise
additive protein force fields on a range of fully disordered to folded globular protein
systems [20]. These simulations revealed that none of these standard force fields agreed
with experimental data for a number of IDP systems while also maintaining the ability to
accurately model folded proteins [20].

Therefore, newer protein force fields and water model combinations have been pro-
posed to capture the behavior of IDPs and folded proteins [12]. This is important for
at least two reasons. First, they can be used when simulating interactions of IDPs with
folded proteins [26], disorder-to-order transitions [27], and folded proteins with intrinsi-
cally disordered regions (IDRs) [28]; second, they satisfy the goal of any force field, which
is transferability to new protein systems and other emerging problems such as liquid phase
separation [29]. An example is the CHARMM36m protein model of Huang et al. that
purports to better describe both IDPs and folded proteins using the same set of refined
peptide backbone parameters and salt–bridge interactions and an increased Lennard–Jones
(LJ) well depth to strengthen protein–water dispersion interactions [30]. These modifi-
cations led to a reduction in the percentage of predicted left-handed a-helices, as well
as a better agreement with NMR scalar couplings and SAXS curves for folded proteins,
although Huang et al. observed that no universal interaction strength parameter in the
Lennard–Jones function could generate structural ensembles with good agreement with
the experimental radius of gyration measurements for all IDP systems [30].

Hence, the logical next step is to consider more advanced potentials, albeit with a
greater computational expense that can be made more accurate by including multipo-
lar electrostatic interactions with many-body polarization that can respond to changes
in the solvent conditions around biomolecules [31,32]. One purpose of this study is
to ascertain how well the advanced many-body polarizable AMOEBA protein (Am-
Pro13) [33] and water (AmW03) [34] force field performs against experiments across of
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range of folded proteins, IDRs and IDPs, when compared to a representative standard force
field, AMBERff99sb/TIP3P(TIP4p-Ew), and recently modified fixed-charge force fields,
CHARMM36(m)/TIP3P(m), where the parentheses refer to alternate protein and/or water
model combinations.

The second important purpose of this work is to provide some easily ascertained
measures of what constitutes a successful force field that can simultaneously describe both
folded proteins and proteins with disorder. We hypothesized that a force field that provides
the largest structural deviations and statistical fluctuations, which remains consistent with
the experimental Rg of a folded globular protein, will better be able to capture the greater
plasticity and match solution experiments for IDPs and IDRs. In fact, we consistently find
that the polarizable model better reproduces the experimental Rg [35] for the disordered Hst
5 peptide exhibits a stronger temperature dependence in the disorder-to-order transition
for the (AAQAA)3 system due to an unusual α−helical structure and maintains a folded
core for the TSR4 domain while simultaneously exhibiting regions of disorder. By contrast,
the fixed-charge force fields have Rg distributions that are in disagreement with SAXS
intensity profiles and contain higher populations of turns for Hst 5 that contribute to a
more collapsed state and show little change with temperature for (AAQAA)3.

We emphasize that this work is not a quantitative benchmarking paper but to empha-
size the qualitative importance of configurational entropy for folded states. By determining
a range of metrics for its evaluation such as similarity/dissimilarity and Lindeman criteria,
we note that better evidence of fluidity in the folded state will be predictive as to whether a
force field will exhibit a better predictive capacity for IDPs/IDRs. This work better places
theory as an equal partner to experiment in new areas of IDP studies such as liquid–liquid
phase separation that are current and active areas of theory/experimental collaboration.

2. Results

The field of biomolecular modeling has historically relied on a simple representation
of the potential energy surface of proteins and water based on the pairwise additive
approximation of the nonbonded interactions [36].

Unonbond = UPauli + UDisp + UElec + UPol (1)

The UPauli and UDisp terms are combined within different force fields to formulate a
Lennard–Jones 12-6 potential (as is done for Amber and Charmm force fields), whereas
the AMOEBA model uses a buffered 14-7 functional form. The UElec interactions capture
classical electrostatics in which Amber and Charmm use partial charges (monopoles),
whereas AMOEBA uses a permanent multipole up through quadrupoles. Finally, only
AMOEBA contains UPol for many-body polarization.

To compare these force fields for describing the behavior of both folded proteins
and IDRs/IDPs, we first consider 7 globular proteins ranging in size from 130 to 266
residues, as shown in Figure 1. These proteins include: a serine protease (1arb), an n-
acetyltransferase (1b6b), two hydrolases (beta-lactamase, 1bsg and xylanase, 4xq4), two
isomerases (phosphoglycerate mutase, 1rii and cis-trans isomerase Cwc27, 4r3f), the sugar-
binding protein DC-SIGN (2xr6), and finally the TSR4 domain (1VEX) as an intermediate
class of protein with a small folded core dominated by IDRs.
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Figure 1. Seven folded proteins (PDB IDs: 1b6b [37], 1arb [38] 1bsg [39], 1rii [40], 2xr6 [41], 4r3f [42], and 4xq4 [43]) and one
protein with intrinsically disordered regions (1vex [44]) simulated with polarizable and nonpolarizable force fields.

For any biomolecular force field comparison, it is typical to run molecular dynamics
simulations of at least ~1 μs to measure protein stability by calculating global metrics such
as the root mean square deviation (RMSD) and radius of gyration <Rg> [30]. Figure 2
and Supplementary Figure S1 report on the coordinate RMSD and <Rg> of the seven
folded proteins over the 1 μs of MD simulation for each of the force field combinations. All
seven folded globular proteins show no evidence of early unfolding events or significant
degradation in a secondary structure with any force field, as shown in Supplementary
Figure S2 for 1bsg and 1b6b. However, an important distinction is that the polarizable force
field exhibits substantially larger root mean square deviations (RMSDs) than those of the
nonpolarizable models, although all force fields maintain an average radius of gyration
<Rg> in agreement with the experiment.

Although our 1 μs simulation timescales are typical of previous work on measuring
protein stability [30], we consider additional metrics for acceptable deviations from the
starting structures derived from the PDBs. Figure 2 reports a metric developed by Maiorov
and Crippen that provides an empirical relationship to estimate structural similarity D0, sim

and dissimilarity D0, dis for globular proteins (see Supplementary Tables S1 and S2) [45].
Values below or at the similarity measure defines a valid ensemble of structures for which
loop regions may reconfigure while not significantly shifting the <Rg> and core fold,
while values at or above the D0, dis metric distinguish the dissimilarity between a reference
structure and its mirror image and thus any large shifts in <Rg> and conformation. In
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this work, we measure Rg from both the PDB structure for each protein and from polymer
scaling law estimates parameterized by PDB structures (see Supplementary Table S2)
under poor solvent conditions and structural variations of globular proteins of the same
size [46,47]. The larger Rg values from the polymer scaling laws relative to the PDB
structure are well within the expectations from solution experiments [48], and consistent
with crystal structures differing somewhat from NMR [49] and SAXS [50] ensembles for
folded states (Supplementary Tables S1 and S2).

Figure 2. Measures of protein stability when simulated with polarizable and nonpolarizable force fields. (a) Root mean
square deviation (RMSD) for 1 μs MD simulations for AmPro13/AmW03, C36m/TIP3P, C36m/TIP3Pm, ff99SB/TIP3P,
and ff99SB/TIP4P-Ew. The black line is the value of the D0, sim metric and the red line the metric and the red line the
D0, dis metric. (b) <Rg> for all force fields and comparison to the Rg of the PDB structure (black) or polymer scaling laws
(Supplementary Table S2) as a measure of solution (red). Proteins characterized are 1arb [38] 1b6b [37], 1bsg [39], 1rii [40]
4xq4 [43], 4r3f [42] and 2xr6 [41]

As seen in Figure 2, all force fields yield RMSDs within the range of the D0, sim metric
for the seven folded proteins. With the exception of 1b6b, for which the <RMSD> using
AmPro13/AmW03 is within the D0, sim by ~0.5 Å, all models have not fully reached
allowed values of the D0, sim metric, and no force field exhibits unfolding or instability as
measured by D0, dis (see Supplementary Figure S2). However, just as importantly, it is also
evident that the fixed-charge force fields generally yield folded states with much smaller
<RMSD> values, whereas the polarizable force field model is closest to the upper bound
of the similarity metric for the globular proteins. In addition, the <Rg> for the pairwise
additive models are more often closer to the PDB structure, while the <Rg> values for the
polarizable model are more in line with biopolymer scaling law estimates (Supplementary
Table S1).

Because values of RMSD correlate directly with root mean square fluctuations (RMSF) [51],
Figure 3 shows that the <RMSF> by residue for the seven folded proteins is largest on average
for the polarizable model relative to the fixed-charge force fields, although large regions
of structural stability are evident throughout the structure. The question one might ask is
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whether the larger <RMSF> by residues of the polarizable model is physically sound and
correct, and are the fixed-charge models thus overly rigid?

Figure 3. Average root mean square fluctuation for each residue in the simulated trajectories averaged over the last 100 ns.
For 1arb [38] 1b6b [37], 1bsg [39], 1rii [40] 4xq4 [43], 4r3f [42] and 2xr6 [41].
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In order to answer that question, we consider using the Lindemann criterion devel-
oped originally for the melting of a solid crystal [52]. The Lindemann value ΔL = RMSF/a
has been adapted to the case of proteins by replacing the crystal lattice constant, a, with
an average nonbonded distance [53,54]. Katava et al. provided experimental estimates
of the ΔL from inelastic neutron scattering for hen egg white lysozyme (HEWL) and, as-
suming a = 4.75 Å, found a Lindemann value at the protein melting temperature (Tm) of
Δ

exp
L (Tm)~0.17–0.18, driven by the mixing in of a greater proportion of unfolded state

fluctuations [54]. Below (Tm), the contributions from unfolded state fluctuations diminish
as temperature, of course, decreases, but Zhou et al. showed that the folded-state fluctua-
tions comprise an interior protein core that is suppressed and solid-like (Δcore

L ~0.05–0.1)
whereas the protein surface is quite fluid (Δcore

L ~0.15–0.2) [53,55], which, in part, explains
the overall experimental value for the HEWL protein near 300 K of Δ

exp
L (300 K)~0.15–16

in water solvent [54]. Because Katava and coworkers found similar results for myoglobin,
crambin, hemoglobin, and BSA, they expect these results to be universal values for any
folded state of a globular protein of average size, and hence we rely on comparisons to
Δ

exp
L (300 K) in our simulations of the seven folded proteins analyzed here.

By contrast, the polarizable Table 1 reports the corresponding Δsim
L (300 K) values for

each protein, assuming a value a = 4.375 Å, which is an average taken among all previous
work [53–55], but with the RMSF calculated from the fixed-charge and many-body force
field simulations (Figure 3 and Supplementary Table S3). Averaged over all of the folded
proteins, the nonpolarizable force fields yield Lindemann values Δsim

L (300 K) of ~0.12; to
put this value into perspective for the fixed-charge force fields, this value is close to ∼
Δ

exp
L (230 K) for HEWL. By contrast, the polarizable force field predicts <RMSF> values that

are ~30% larger than those of the fixed charge models, with values of Δsim
L (300 K)~0.16 that

are in good agreement with the experimental value at room temperature. Supplementary
Table S4 shows that all force fields have a very solid structural core, Δcore

L (300 K) ∼ 0.09
for the fixed charge force fields and ~0.12 for the polarizable model and that their total
simulated averages are thus dominated by their surface fluctuations, Δ

sur f
L (300 K), which

are largest for the many-body potential (0.155 vs. 0.21). The lower Δsim
L (300 K) values

from the fixed-charge force fields are thus indicators that they will generally overestimate
the melting temperature and/or the amount of native structure in the unfolded state,
an undesirable feature of standard force fields noted previously [54,56–58]. From the
perspective of the Lindemann criteria, this is because they do not fully activate their allowed
thermal vibrations permitted by D0, sim in the fully populated folded state, requiring much
higher temperatures to exceed the RMSF threshold to realize the larger collective modes
for unfolding.

Table 1. Lindemann values for 7 folded proteins at 300 K. A value of α = 4.375Å and <RMSF>
averaged over all residues (Figure 3, Supplementary Table S2) were used to calculate Δsim

L (300 K).

Force Field/Proteine
Δ

sim
L (300 K)

Ave.
1arb 1b6b 1bsg 1rii 2xr6 4r3f 4xq4

ff99sb/TIP3P 0.10 0.14 0.14 0.13 0.11 0.11 0.12 0.12
ff99sb/TIP4P-Ew 0.10 0.13 0.12 0.12 0.11 0.12 0.10 0.11

C36m/TIP3P 0.11 0.14 0.11 0.12 0.11 0.12 0.14 0.12
C36m/TIP3Pm 0.12 0.18 0.11 0.13 0.14 0.12 0.12 0.13

AmPro13/AmW03 0.13 0.16 0.18 0.22 0.13 0.16 0.17 0.16

We therefore anticipate that Tm values using the polarizable force field will be in better
agreement with the experiment because large surface fluctuations are evident by their
D0, sim values that approach the estimated upper bound [45] while remaining consistent
with the folded Rg. We thus conclude from the folded protein class that force fields should
exhibit, in addition to a balance between protein–protein and protein–water energetics, a
good balance between energy and configurational entropy in order to realize Δsim

L ~ Δ
exp
L .
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We carry this idea further to predict that the force fields with Δsim
L ~ Δ

exp
L for folded

proteins will be better suited to representing the structural ensembles of IDRs and IDPs as
well; by corollary, force fields with Δsim

L < Δ
exp
L for folded states will not be able to describe

the greater plasticity of intrinsically disordered states. To test the extrapolation from folded
proteins, we now consider the TSR4 domain (1vex), which comprises a small β-sheet
core stabilized by a network of pi-contacts, with large loops that have been classified as
intrinsically disordered regions [59]. For TSR4 (1vex), the <RMSD> values for all force
fields (Table 2) are well outside the D0, sim metric (1.34 Å) and in better agreement with
the D0, dis value (4.49 Å) given the presence of significant segments of disorder. Figure 3
shows that <RMSF> per residue for TSR4 (1vex) is larger on average relative to the folded
protein case for all force fields. For the TSR4 domain, all force fields have a less solid
structural core than for the folded proteins, Δcore

L ~0.16–0.18, and are dominated by large
surface fluctuations, Δ

sur f
L ~0.18–0.29, that exceed those of the folded proteins. There are

no direct-solution experimental data to validate against, but these results support the
expectation that the Lindemann criteria value for globular proteins is not universal and
cannot be extended to IDRs and IDPs. Even so, we find that the Amber force fields yield
the most suppressed Δsim

L (300 K) values, while the C36 and C36m force fields fluctuate
more, and the polarizable model yields the largest Δsim

L (300 K) value for the TSR4 domain.

Table 2. Fluctuation properties of the TSR4 domain at 300 K. <RMSD> is the average root mean
square distance to the starting structure of TSR4. A value of a = 4.375Å and <RMSF> averaged over
all residues of TSR4 were used to calculate the total Lindemann value, Δsim

L . Δcore
L was evaluated

from the β-sheet core residues; Δ
sur f
L was calculated from all protein residues not characterized as

core residues.

Force Field 〈RMSD〉 Δ
core
L Δ

surf
L

Δ
sim
L

ff99sb/TIP3P 3.8 0.16 0.18 0.17
ff99sb/TIP4P-Ew 3.5 0.16 0.20 0.18

C36m/TIP3P 3.1 0.17 0.23 0.20
C36m/TIP3Pm 3.0 0.18 0.24 0.21

AmPro13/AmW03 5.5 0.20 0.29 0.25

These significant Δsim
L (300 K) differences for the TSR4 domain would lead to substan-

tial differences among the force fields with complete disorder. We therefore next consider
Histatin 5, a cationic IDP, for which it has been challenging using fixed-charge force fields to
achieve agreement with the reported experimental data. These include SAXS form factors
that measure a <Rg> = 13.8 ± 2.2 Å [35] and solution CD and NMR [60,61] measurements,
showing that Hst 5 lacks significant secondary structure in aqueous solution, although
Hst 5 prefers α-helical conformations in nonaqueous solvents. From Figure 4, we see
that the pairwise additive force fields ff99SB/TIP3P, C36m/TIP3Pm, and C36m/TIP3P
predict a more narrow Rg distribution around compact structures with <Rg>~10.0–11.0 Å,
with higher populations of turns that likely account in part for these collapsed states. The
ff99SB/TIP4P-Ew model predicts a bimodal distribution of collapsed and expanded states,
but this is in disagreement with the SAXS form factor. The AmPro13/AmW03 potential,
with no force field modifications, predicts a more expanded <Rg>~14.0–14.5 Å in good
agreement with the SAXS observable and NMR and CD experiments.

Finally, we consider the very challenging temperature dependence of the (AAQAA)3
peptide, in which NMR experiments have previously ascertained a (partial) disorder-
to-order transition as the temperature is lowered. There are several issues that are not
sufficiently discussed in the literature regarding this peptide and previous simulation
attempts to reproduce its behavior. The first is that the NMR experiment was designed to
determine the 13C-carbonyl shift at each residue, providing an experimental measure of
the helicity at each residue for comparison to a helix–coil model that predicts the helicity
at each residue [62]. Hence, an overall percentage averaged across all 15 residues is not
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the correct measure as the NMR shifts are residue-specific values, yielding estimates of
0% to 25%, depending on position, with the N-terminus being more helical. This is in
contrast to the highly symmetric prediction of the helix–coil model [62]. Previous studies
found that alanine peptides are unusually enriched [63,64] with the π-helix in particular,
while the 13C-carbonyl chemical shifts are not generally able to differentiate among all
three helix categories, especially for fluctuating states. Note that there are statistically
different shifts for the stable α−helix and 310 helix [65], suggesting that comparison of
structural ensembles to the standard NMR experiment should combine the propensities of
the different helix types.

Figure 4. Structural properties for Hst 5 using polarizable and nonpolarizable force fields. (a) Probability density estimates
of the radius of gyration and (b) average percentages of different secondary structures features for the disordered Hst 5
peptide.

We first investigate the definition of an α−helix percentage used by previous research
groups, defined as three consecutive residues residing in a broad α−helix basin of the
Ramachandran plot (labeled sequential in Figure 5). Unlike most recent studies, we provide
individual residue percentages for the (AAQAA)3 peptide (Figure 5a,b and Supplementary
Figure S3) [66]. As determined by Boostra and coworkers [67], the C36m results depend
critically on the “right” water model, i.e., the standard TIP3P water model must be used, to
predict the higher helical content at low temperatures, with little helical content observed
using TIP3Pm at any temperature. We support that result using TCW sampling in which
C36m/TIP3Pm yields ~5% α−helix at 300 K (Figure 5a), as do the other fixed-charge
force fields (Supplementary Figure S3), and they all exhibit a flat temperature dependence
(Supplementary Table S5) in very good agreement with Robustelli et al. using 20 μs MD
simulations [20]. The AmPro13/AmW03 polarizable model gives α−helical percentages
that are similar to the Amber and CHARMM force fields for (AAQAA)3 peptide, i.e., <~5%
with no disorder-to-order transition (Figure 5b and Supplementary Table S5).

Instead, we consider an alternative definition of helical percentages in which the
(AAQAA)3 peptide might adopt not only α−helix, but π−helix and 310 helix configura-
tions [63] as well based on values of ψ(i) and ϕ(i+1) values (which we label pairwise in
Figure 5). Figure 5a,b and Supplementary Figure S3 show that, when using this definition,
the fraction of helical percentages for each residue increases for all force fields and tempera-
tures, ~15–20%, but with important differences between the polarizable and nonpolarizable
models. It is seen that the fixed-charge models (Figure 5c and Supplementary Figure S3)
have no temperature dependence, with nearly the same helical percentages at 300 and 360
K. By contrast, the AmPro13/AmW03 model shows some temperature dependence, with
a loss of helical structure at 360 K relative to 300 K as seen in Figure 5d. This supports
our hypothesis that fixed-charge force fields that are overly stabilized for folded proteins
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will manifest as too inflexible for disordered states, in this case due to the inability to melt
the N-terminal helix of (AAQAA)3 at high temperatures, unlike the polarizable model,
which exhibits a better temperature dependence for the configurational entropy. This result
has also addressed a long-standing problem with the characterization of the (AAQAA)3
peptide with temperature using simulation that must emphasize not only standard the
α−helix the but π−helix and 310 helix categories as well and characterize not average helix
percentages over the whole peptide but the residue-by-residue average helical percentage
values instead.

Figure 5. Structural properties for (AAQAA)3 using polarizable and nonpolarizable force fields. Comparison of estimated
helical propensities from NMR (pink), average α−helix from the simulation assuming 3 sequential residues (black), and pair-
wise average over any presence of α−helix, π−helix, and 310 helix for (a) C36m/TIP3Pm (blue) and (b) AmPro13/AmW03
(gray) at 300 K. Comparison of changes in helix propensity with temperature at 300 and 360 K for (c) C36m/TIP3Pm and
(d) AmPro13/AmW03.

3. Discussion

We have presented a comparison of a range of pairwise additive force fields and
the many-body force field AMOEBA to test their ability to simultaneously describe the
stable folded states of seven globular proteins, proteins with regions of disorder illustrated
with the TSR4 domain, the Hst 5 IDP, and the partial disorder-to-order transition as the
temperature is lowered for the (AAQAA)3 peptide. We find that the fixed-charge force
fields yield small RMSD differences from the PDB structures of the folded globular proteins,
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whereas the polarizable model has larger RMSD values that are within the expectations
from solution experiments [48–50] on folded states. However, we have also shown that
force fields that generate the largest RMSDs that are still consistent with the experimental Rg,
thus exhibiting larger statistical fluctuations on average, are better able to simultaneously
describe the plasticity of proteins with regions of complete structural disorder, as shown
for the TSR4 domain, Hst 5, and the (AAQAA)3 peptide.

In particular, the polarizable AMOEBA force field presents a significant advantage
over a fixed-charge force field for IDP simulations, even those that have been specifically
modified to better reproduce IDP behavior, as it does not require any problem-specific
parameterization for IDPs and can be used as a general force field for different types of
IDPs and their complexes. Our analysis indicates that fixed-charge force fields uniformly
describe overly collapsed and rigid structural ensembles of the folded proteins, whereas
the polarizable model is inherently more fluid with greater configurational entropy that
captures both the folded structure and structural ensembles of IDPs. Finally, we note
that other force fields tested previously on (AAQAA)3 should be reevaluated to consider
both π-helices and 310 helices in addition to the α-helix, with a metric that evaluates the
helical content on a residue-by-residue basis as the C-terminal end remains unstructured at
any temperature [62] We also note that more current state-of-the-art estimates of helical
structure based on NMR shifts could be used to obtain a better experimental reference for
this peptide [68,69].

We believe that the analysis we have presented here offers several new ideas on
force field validation criteria. The first is to measure the ability of a force field to more
systematically approach the full value permitted by the structural similarity D0, dis metric
for globular proteins [45] , as well as a Lindemann criteria values Δsim

L that are close to
that determined from inelastic neutron scattering experiments and that are touted to be
universal criteria for any folded protein in water [54]; a related metric is the ability to
reproduce the melting temperature of folded proteins. These measures are best at assessing
the balance between energetic effects and configurational entropy and what a force field
should exhibit to equally well describe IDRs/IDPs and folded states of globular proteins.
While this study has concluded that the polarizable AMOEBA force field is better by these
structural and dynamical metrics, it is still an open question as to whether some fixed-
charge force fields are capable to the same extent or can be made more capable in this
regard. While we found that the pairwise additive force field combinations examined here
are not fully sufficient, further evaluation and fitting to reproduce the dynamical criteria
introduced can provide good guidance to improving force fields in general.

4. Materials and Methods

The Hst 5, TSR4 domain, and the 7 folded protein systems were modeled with
the following force field combinations: Amberff99sb (ff99SB) [70] with TIP3P [71] and
TIP4P-Ew [72], CHARMM36m (C36m) [30] with TIP3P [71] and Charmm-modified TIP3P
(TIP3Pm), and AmPro13 [33] with Amoeba Water03 (AmW03) [34]. We used 1 μs stan-
dard MD simulations for the folded proteins, the TSR4 domain, and the Hst 5 system
with the OpenMM [73] package for the fixed-charge force fields and the Tinker-OpenMM
platform [74] for AMOEBA. We also developed a modified version of the OpenMM [73]
and Tinker-OpenMM platforms [74] to perform calculations on graphics processing units
(GPUs) with Temperature Cool Walking (TCW) [21,75,76] to further improve the sam-
pling of the (AAQAA)3 systems. For (AAQAA)3, we considered the force field com-
binations of ff99sb/TIP4P-Ew, ff99sb-ildn/TIP4P-D, C36m/TIP3Pm, C36/TIP3Pm, and
AmPro13/AmW03 models.

4.1. System and Simulation Preparation

Initial disordered-state structures for Hst 5 and Ace-(AAQAA)3-Nme were generated
using the tleap function in the AMBER MD engine [77]. The initial coordinates of the
TSR4 and seven folded proteins were taken from their PDB structures. Solvation of these
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systems were performed using tleap for simulations using the ff99sb force fields, VMD or
the online CHARMM-GUI for simulations using the C36m force field [78], and TINKER
8 for simulations using the AmPro13 force field [79]. All simulations were performed on
systems with the addition of Na+ or Cl− counter-ions to maintain net zero charge.

The Hst 5 system was equilibrated according to the following procedure. First, the
fully extended peptide was solvated using a 10 Å buffer, and the system was simulated
at 500 K for 1 nanosecond (ns) in the NVT ensemble to collapse the peptide. Second, the
peptide was resolvated using a smaller cubic box with side lengths of 59.1 Å, with a total
of 6166 water molecules. The resolvated peptide was equilibrated with NVT conditions at
500 K for 1 ns, followed by 1 ns of NVT at 300 K. Finally, the peptide was run in the NPT
ensemble at 300 K to equilibrate the size of the simulation box. The initial structure for
production NVT MD simulations was chosen based on the maximum probable density.

For the (AAQAA)3 system, the peptide we also started from an α-helix and solvated
using a 10 Å buffer for the fixed-charge force fields, and the heavy atoms of the protein
backbones were harmonically restrained with a spring constant of 10 kcal/mol/Å2 during
a 1 ns simulation in the NPT ensemble over a temperature range that captures the transition
(300, 320, 340, 360, or 380 K). Second, 100 ps of NPT simulations were run where the position
restraints of the protein backbone were relaxed from 10.0 to 0.0 kcal/mol/Å2, reducing the
spring constant by 1.0 kcal/mol/Å2 every 10 ps. Finally, 20 ps of NPT simulations were
run with no restraints on the protein backbone.

Finally, the larger protein systems were energy minimized to a potential energy
tolerance of 0.5 kJ/mol with a nonbonded cutoff of 9.4 Å. The heavy atoms in the protein
backbones were harmonically restrained with a spring constant of 10 kcal/mol/Å2, and
the system was heated in the NVT ensemble from 10 to 300 K at a rate of 1 K/ps using a
Langevin integrator with a 1 fs timestep. Once the systems reached 300 K, a 1 ns simulation
was run in the NPT ensemble with an rRESPA multi-timestep integrator with a 4 fs timestep
for fixed-charge force fields and 2 fs timestep for polarizable force fields, using an Andersen
Thermostat at 300 K with a collision frequency of 50 ps−1. A Monte Carlo Barostat was
used with a target pressure of 1.01325 bar and an exchange attempt frequency made every
50 fs.

4.2. Production Simulation Details and Analysis

For the solvated TSR4 and folded proteins, we performed 1 μs molecular dynamics
simulations in the NVT ensemble at 300 K with the Bussi thermostat using the RESPA
integrator and heavy-hydrogen mass repartitioning with a 3 fs time step. Ewald cutoffs of
7 Å and van der Waals cutoff of 12 Å were used. A pairwise neighbor list for partial-charge
and polarizable multipole electrostatics and for van der Waals interactions was used. A
grid size of 64 × 64 × 64 Å was used for PME summation and a 10−4 Debye convergence
criterion for self-consistent induced dipoles. Frames were saved every 10 ps and used to
perform further analysis. For (AAQAA)3, the TCW simulations were performed in the NVT
ensemble with the Andersen Thermostat and velocity verlet integrator with a 2 fs timestep
to propagate the target temperature (300, 320, 340, 360, or 380 K) and high-temperature
(456 K) walkers. Frames from the low-temperature replica were saved every 1 ps and used
to perform further analysis.

Supplementary Figure S1 shows the raw RMSD and RMSF over the 1 μs trajectory for
the folded proteins. Analyses of the trajectories were performed using Amber Tools and
in-house analysis scripts to analyze the secondary-structure propensity for Hst 5, radius of
gyration for Hst 5 and the folded proteins, and/or RMSDs and RMSFs of the protein–water
systems using block averaging over ~50 ns blocks over the last 800 ns of the trajectory. For
the (AAQAA)3 system, a residue was classified as being in a helical conformation using two
different definitions when compared with NMR chemical shift data from experiments [62].
The first definition is defined as a series of three consecutive residues where the ϕ dihedral
angle was between −160◦ and −30◦ and the ψ angle was between −67◦ to −7◦ [64]. The
second definition more directly targeted different types of helices; when the first and last
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residue pairs are excluded, the ψ dihedral angle of one residue and the ϕ dihedral angle of
the next residue sum to −125◦ ± 10◦ for the π-helix, −75◦ ± 10◦ for the 310 helix, whereas
that for the α-helix is −105◦ ± 10◦.
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