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Using multispectral remote sensing data in cooperation with big data processing and
deep fusion learning techniques provides a new approach for mineral and hydrocarbon
exploration. Regional-scale mineral exploration in metallogenic provinces and hydrocarbon
exploration in inaccessible and harsh areas are challenging due to the difficultly of process-
ing remote sensing big data and the variety of remote sensing datasets needed for different
applications [1–5]. Nowadays, spaceborne remote sensing big data sources are available,
appropriate and range from free to low-cost for mineral and hydrocarbon exploration
projects. Landsat data series, Satellite Pour l‘Observation de la Terre (SPOT) data series,
Worldview-3 data series, Advanced Land Imager (ALI) data, Phased Array type L-band
Synthetic Aperture Radar (PALSAR) data and Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) data have been successfully and continuously used for
regional-scale mineralogical-lithological-structural mapping in metallogenic provinces and
hydrocarbon exploration [6–8].

Numerous image processing algorithms and Geographic Information System (GIS)
modeling can be used for extracting spectral information related to alteration minerals,
ore-related lithological units and microseepage-related geochemical alterations. The fu-
sion of extracted information using deep fusion learning techniques has been developing
progressively and is crucial for unraveling several image processing challenges [9–11].
Although the techniques are specific to scientific interest in remote sensing in the mineral
and hydrocarbon exploration community, a generic implementation is in the initial stages.
This Special Issue focused on the recent developments in the applications of multispectral
remote sensing satellite data for mineral exploration in metallogenic provinces, onshore
oil slick detection, offshore oil spill monitoring and hydrocarbon exploration. We were
interested in innovative solutions for deep fusion learning techniques for remote sensing
data processing and difficulties. The submission of manuscripts was encouraged for a
broad range of related mineral and hydrocarbon exploration themes. Researchers were
encouraged to submit novel research or case studies, including: (i) innovative methods for
fusing multispectral remote sensing satellite data for prospectivity mapping in vast metal-
logenic provinces; (ii) multispectral remote sensing satellite data for both macroseepage
direct detection and microseepage indirect detection; (iii) mapping ophiolite complexes
to understand mineral carbonation and CO2 sequestration using novel remote sensing
approaches and modeling; and (iv) Geographic Information System (GIS) modeling for
integrating different remote sensing datasets and geophysical and geochemical techniques
for mineral exploration.
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A total of 19 manuscripts were submitted to this Special Issue, which were evaluated
by professional Guest Editors and reviewers. Subsequently, 12 papers attained the level of
quality and novelty expected by Minerals, and consequently, were revised, accepted and
published. The accomplishments of the articles in this Special Issue are summarized in the
following paragraphs.

Abd El-Wahed et al. [12] used Landsat-8, ASTER and PALSAR satellite remote sensing
datasets to map geological contacts, lithologies and structural elements controlling gold-
bearing quartz veins in the Wadi Hodein Shear Belt, South Eastern Desert of Egypt. Several
image processing techniques such as band combinations, band math, Principal Component
Analysis (PCA), decorrelation stretch and mineralogical indices were executed and integrated
with fieldwork data. The data layers were exported to the GIS environment and, subsequently,
fused to produce a potentiality map for shear-related gold mineralization in the study area.
The results demonstrated that the gold mineralization was typically restrained to steeply
dipping strike-slip shear zones in the marginal parts of the shear belt. Gold-mineralized
zones cut heterogeneously deformed ophiolites and metavolcaniclastic rocks and attenuate
inside and around granodioritic intrusions. The gold mineralization event was evidently
epigenetic in the metamorphic rocks and was likely attributed to rejuvenated tectonism
and the circulation of hot fluids during transpressional deformation. Accordingly, it was
recommended that the concurrence of shear zones, hydrothermal alteration and crosscutting
dikes creates high potential zones for new gold targets in the study area.

Bruno et al. [13] utilized a spatial component analysis to improve mineral estimation
using the ferrous iron oxide (4/11) band ratio of Sentinel-2 in a Greek bauxite residue.
This study proposed a model to map the iron concentration as the strategic metal within
a bauxite residue in Greece. Due to the probability of substituting in a co-kriging system,
the whole band ratio information with only the correlated components was analyzed.
The approach represented three estimation alternatives: ordinary kriging, co-kriging and
component co-kriging. Firstly, only direct samples from the site were used (ordinary
kriging—OK estimation). Then, the band ratio (4/11) known for iron detection was used
as additional information to map the iron variability within the bauxite residues (co-
kriging—CK estimation). For map accuracies, a new method (component co-kriging—CCK
estimation) was described to reconstruct the coregionalization model between the sample
data and the band ratio information by exploiting the possibility of extracting a specific
component from the Sentinel-2 data and using it in the coregionalization models. Lastly,
all three models and their products were compared to check the enhancement given by
the proposed model for iron estimation maps. Results indicated how utilizing the most
correlated component reduces the estimation variance and improves the estimation results.
Generally, when a good correlation with ground samples exists, co-kriging of the Sentinel-2
(4/11) band ratio component improves the reconstruction of the mineral-grade distribution,
and consequently, affects the selectivity.

Mehdikhani and Imamalipour [14] evaluated mapping chromite-bearing mineral-
ized zones within the Khoy ophiolite complex in NW Iran by analyzing spectral bands
(VNIR+SWIR) of the ASTER satellite sensor. The optimum index factor (OIF), band ratio
(BR), spectral angle mapper (SAM) and PCA analysis were used for lithological mapping.
A specialized OIF, the RGB (8, 6, 3) color composite, was generated for discriminating
lithological units in the study area. The RGB color composition of (4 + 2)/3, (7 + 5)/6 and
(7 + 9)/8 band ratios showed good performance for identifying ophiolite complex lithology
units. The SAM and PCA analysis were able to map harzburgite and dunite as the host
units of the chromite lens. The results showed that the integration of information extracted
from ASTER data is very useful for chromite prospecting and lithological mapping in
ophiolitic zones located in mountainous and remote regions around the world. Yousefi
et al. [15] applied Dirichlet Process (DP) and Support Vector Machine (SVM) techniques
for mapping alteration zones associated with the Zefreh porphyry copper deposit in the
Urumieh-Dokhtar Magmatic Arc (UDMA) of central Iran using ASTER remote data. The
DP process was utilized to specify the training data, where alteration zones were detected
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by using spectral mapping methods such as Relative Band Depth (RBD), Linear Spectral
Unmixing (LSU), Spectral Feature Fitting (SFF) and Orthogonal Subspace Projection (OSP).
Executing the SVM and SAM methods on the ASTER data helped with identifying phyllic,
argillic, propylitic and iron oxide alterations at a regional scale. This study demonstrated
the use of the SVM algorithm for mapping hydrothermal alteration zones associated with
porphyry copper deposits in metallogenic provinces worldwide.

Timkin et al. [16] used geochemical and remote sensing techniques to identify blind min-
eralization (BM) and zone-dispersed mineralization (ZDM) in the Abrisham-Rud porphyry
copper deposit, Semnan province, Iran. Sentinel-2 and ASTER data were utilized for mapping
lineaments and alteration zones in the study area using Automatic Line Extraction, Logical
Operator and PCA algorithms. The zonality method was applied to separate geochemical
anomalies and to calculate erosion levels. Using the zonality method, the geochemical maps
of multiplicative haloes were produced. The K-nearest neighbor (KNN) algorithm was im-
plemented to fuse rock units, faults and alterations as a geological layer. The results of both
methods correspond to each other in the southern part of the study area, indicating a high
potential zone. Ekwok et al. [17] used high-resolution airborne magnetic (HRAM) and gravity
data to understand the genesis of brines in southeast Nigeria. The result of the analytic signal
exposed the locations and spatial distribution of short- and long-wavelength geologic struc-
tures associated with igneous intrusions. Low-pass filtering, upward continuation and 2D
modeling procedures indicated critical synclinal structures, which corresponded with the loca-
tion of brine fields. The study discloses that igneous intrusions and associated hydrothermal
fluids are responsible for brine generation. Ekwok et al. [18] used HRAM data to evaluate the
thicknesses of sedimentary series in the Bornu Basin, northeast Nigeria, utilizing three depth
approximation techniques including source parameter imaging, standard Euler deconvolution
and 2D GM-SYS forward modeling methods. The maximum sediment thickness values from
the various depth estimation methods used in this study correlate relatively well. Additionally,
the anomalous depth zone exposed using the 2D forward model overlaps with the locality
of the thick sedimentation revealed via the source parameter imaging and standard Euler
deconvolution (St-ED) methods.

Shirazi et al. [19] fused a lineament factor (LF) map analysis and multifractal technique
for massive sulfide copper exploration in the Sahlabad Area, Eastern Iran. The rose diagram
analysis, Fry analysis, LF map analysis and multifractal technique were implemented using
geological and geophysical data. Aeromagnetometric data were analyzed to determine
the presence of intrusive and extrusive masses associated with structural systems. The
results showed that the NW–SE fault systems control the host rock’s lithology for copper
mineralization. Therefore, the NW–SE fault systems are consistent with the main trend of
lithological units related to massive sulfide copper mineralization in the area. He et al. [20]
identified radioactive mineralized lithology and mineral prospectivity mapping techniques
using Worldview-2 and Landsat-8 TIRS thermal infrared data in the Narsaq Region of
Greenland. Employing a weight-of-evidence analysis technique that combines machine-
learned lithological classification information with information on surface temperature
thermal anomalies, the prediction of radioactive element-bearing deposits in the study
area was performed. Shoieb et al. [21] evaluated the hydrocarbon functional groups,
aromaticity degree, and depositional environment in the Silurian–Devonian Kroh black
shales of western peninsular Malaysia using Fourier transform infrared spectroscopy
(FTIR). The existence of humic acid and the enrichment of aromatic hydrocarbons in
the Kroh shales confirmed that the organic matter in these shales contains plant-derived
hydrophilic minerals with terrestrial origin. These discoveries may offer evidence on the
depositional and thermal maturation of organic matter for the exploration efforts into
the pre-Tertiary sedimentary successions of peninsular Malaysia. Alarifi et al. [22] used
multiple criteria inferred from Landsat-8, Sentinel-2 and ASTER data using a GIS-based
weighted overlay multicriteria decision analysis approach to construct a model for the
delimiting of hydrothermal mineral deposits in the Khnaiguiyah district, Saudi Arabia.
Mohamed Taha et al. [23] investigated the proficiencies of several multispectral remote
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sensing data to map mineral prospectivity using the random forest predictive model for
gold deposits in the Hamissana area, NE Sudan.

The comments provided by the reviewers helped improve each of the papers published
in this Special Issue, which was possible only because they were willing to volunteer their
time and attention. We hope that the investigations published in this Special Issue will assist
the mineral exploration communities and mining and hydrocarbon exploration companies
to apply and integrate multispectral remote sensing satellite data and big data processing
and deep fusion learning techniques for mineral and hydrocarbon exploration.
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Sensors Data to Map Mineral Prospectivity Based on Random
Forest Predictive Model: A Case Study for Gold Deposits in
Hamissana Area, NE Sudan

Abdallah M. Mohamed Taha, Yantao Xi *, Qingping He, Anqi Hu, Shuangqiao Wang and Xianbin Liu

School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
* Correspondence: xyt556@cumt.edu.cn; Tel.: +86-516-8359-0106

Abstract: Remote sensing data provide significant information about surface geological features, but
they have not been fully investigated as a tool for delineating mineral prospective targets using the
latest advancements in machine learning predictive modeling. In this study, besides available geolog-
ical data (lithology, structure, lineaments), Landsat-8, Sentinel-2, and ASTER multispectral remote
sensing data were processed to produce various predictor maps, which then formed four distinct
datasets (namely Landsat-8, Sentinel-2, ASTER, and Data-integration). Remote sensing enhancement
techniques, including band ratio (BR), principal component analysis (PCA), and minimum noise
fraction (MNF), were applied to produce predictor maps related to hydrothermal alteration zones in
Hamissana area, while geological-based predictor maps were derived from applying spatial analysis
methods. These four datasets were used independently to train a random forest algorithm (RF),
which was then employed to conduct data-driven gold mineral prospectivity modeling (MPM) of
the study area and compare the capability of different datasets. The modeling results revealed that
ASTER and Sentinel-2 datasets achieved very similar accuracy and outperformed Landsat-8 dataset.
Based on the area under the ROC curve (AUC), both datasets had the same prediction accuracy of
0.875. However, ASTER dataset yielded the highest overall classification accuracy of 73%, which is
6% higher than Sentinel-2 and 13% higher than Landsat-8. By using the data-integration concept, the
prediction accuracy increased by about 6% (AUC: 0.938) compared with the ASTER dataset. Hence,
these results suggest that the framework of exploiting remote sensing data is promising and should
be used as an alternative technique for MPM in case of data availability issues.

Keywords: remote sensing; mineral prospectivity mapping; machine learning; random forest; gold
mineralization; Sudan

1. Introduction

The prediction of mineral prospectivity is one of the substantial practices in mineral
exploration, which is used to fulfill the growing demand for mineral resources in industrial
development countries [1,2]. Mineral prospectivity mapping (MPM), also known as mineral
prospectivity modeling, is a multivariable decision-making tool that aims to delimit and
prioritize high-potential zones for exploring a particular type of mineral in unexplored
regions [2–4]. Model-based MPM is a vital but challenging process that essentially attempts
to establish a function for integrating a collection of geological features (input variables)
with the presence of the targeted mineral (output variables) [5]. Establishing this integration
function is carried out by analyzing the spatial relationships between input variable features
and known mineral occurrences through different numerical algorithms [6]. Hence, it is
essential to select a convenient algorithm that is capable to learn the complex relationships
between variables (input/output) to obtain an accurate prediction [7]. In practice, the
most critical procedure in prospectivity modeling is the selection of evidential features
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that represent the spatial representatives of ore-controlling factors, which can be extended
to combine available multi-source exploration datasets such as geological, geophysical,
geochemical, and remote sensing data [8,9]. Based on the ease of implementation and the
availability of data and software tools, prospectivity modeling can be categorized into
two types: (i) knowledge-driven models that depend on expert knowledge to heuristically
estimate the parameters of the models using the given information of mineral deposits in
the given geological setting [10,11]; (ii) data-driven models that depend on the quantitative
measures of the spatial associations between evidential features and targeted deposit
locations to empirically estimate the parameters [6,12–14].

Remote sensing data have been successfully and extensively employed in mineral
exploration since they can detect and delineate geological and structural features that
aid in identifying new areas of mineralization [15–18]. Remotely-sensed images with the
proper spatial and spectral resolution, including multispectral and hyperspectral satellite
imagery allow to identify rocks and minerals based on their spectral signatures in the
visible-near-infrared (VNIR) and the shortwave infrared (SWIR) regions [19–22]. In specific,
multispectral satellite imagery with a high spatial resolution (10–30 m) and coarse spectral
resolution such as Landsat-8, Sentinel-2, and ASTER, have been widely utilized to map and
remotely sense fault/fracture zones and/or hydrothermal alteration zones associated with
ore mineralization [23–28]. Nevertheless, the remote-sensing approach in mineral explo-
ration applications has often been exclusive to classification models and knowledge-driven
regression models. Whereas classification models aim to classify different hydrothermal
alteration zones (argillic, phyllic, and propylitic) or minerals associated with alteration
(e.g., iron-bearing and hydroxyl-bearing minerals) [29–31]. On the other hand, in the GIS-
based knowledge-driven method, each remote sensing predictor layer is assigned a weight
reflecting its importance in the modeling process. Subsequently, producing a map with a
continuous prospectivity score indicates the likelihood of the targeted mineral [15,32].

In recent years, the development of machine learning (ML) and deep learning (DL)
methods have boosted the regression models of mineral prospectivivty, which achieve better
predictive performance than traditional statistical techniques and empirical explorative
models [2,3,33]. Some of the most commonly used supervised learning models include
Random Forest (RF) [4,34], Support Vector Machine (SVM) [35], and Artificial Neural
Network (ANN) [36], which have been efficiently applied for MPM. RF is well known to be
the first choice for data-driven predictive modeling of MPM, considering its accuracy in the
delineation of prospective areas and sensitivity of parameter configuration [7]. Furthermore,
RF performance is very stable in the case of: (i) the sufficiency of the number of known
locations of mineral occurrences [34]; (ii) and the sensitivity of using different training sets
of non-occurrence locations [4]. Another advantage that makes RF a great objective tool for
data assessment is its capability to measure and rank the importance of evidential features
to the training process [37].

Although remote sensing data were utilized in several studies for mapping mineral
potential using supervised learning models, they have not been used as the main core
for the derivation of the evidential features to train ML data-driven predictive models
(e.g., RF, SVM, and ANN). For instance, Mansouri et al. [38] processed ASTER data with
a multivariate regression analysis method to map iron mineral resources in the Sarvian
area, Iran. Moreover, three multispectral data, namely Landsat-7 ETM+, Landsat-8, and
ASTER were utilized by Bolouki et al., [39], to produce several predictor maps (evidential
features), then were fused together to train Naïve Bayes (NB) classifier for producing a map
showing the probability of gold occurrence in Ahar-Arasbaran area, NW Iran. On the other
hand, remote sensing imagery was integrated with other sources of data to train various
ML predictive models. As an example of that, two band ratios (BR) images of Landsat TM
(5/7 and 3/1) were integrated with other predictor variables such as three geochemical
survey maps and a couple of geophysical maps. Rodriguez-Galiano et al., used these two
BRs as an indication for ore-related hydroxyl and iron oxide alteration to train RF model
for gold MPM in Rodalquilar area, Southern Spain [40].
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Considering the global development in GIS and ML fields, data availability is still an
issue for conducting a comprehensive MPM study in third-world countries. Carranza [33]
reported that from 2006 to 2016 about 116 MPM studies were exclusive only to 25 countries
such as Iran, Australia, China, Canada, etc. Whereas countries such as Sudan have almost
no research about ML applications in the mineral exploration field, even though Sudan
is the third largest gold-producing country in Africa and among the 20 countries in the
world gold mine production in 2019 [41]. Therefore, it is worth noting that since the data of
several multispectral satellite sensors are free, a comprehensive study of the capability of
various remote sensing data for training multiple predictive models is needed.

In this study, mineral prospectivity modeling was performed for delineating gold
prospective regions in west Hamissana, northeast Sudan. The present research aims at
investigating the potential of Landsat-8, Sentinel-2, and ASTER for mapping mineral
potential. Specifically, (i) remote sensing datasets were utilized to identify geological
features and hydrothermal alteration zones associated with gold mineralization in the
study area; (ii) spatial analysis methods and remote sensing enhancement techniques
were applied to produce different thematic layers, which were afterward assessed based
on their contribution to the prediction process; (iii) all datasets were also combined into
another dataset to investigate the synergy of various data for developing a comprehensive
scheme of MPM in the study area; and (iv) random forest algorithm was used as a tool of
comprehensive comparison to obtaining the optimal dataset for accurate prediction.

2. Study Area

The study area comprises approximately 1379 km2, which is situated between latitudes
(20◦22′ N and 20◦50′ N) and longitudes (34◦00′ E and 34◦45′ E). It is located in Wadi Edom
to the west of Hamissana, Red Sea State, Sudan (Figure 1). Topographically, the area studied
is in the northern part of the Red Sea hills, which rises almost 2000 m (≈6561 ft) above
sea level. The area is characterized by a dry climate, with very poor vegetation cover. The
highest temperature reaches 46 ◦C in the summer (October–march). The Winter season is
relatively short, from November to February, with an average temperature of around 25 ◦C
in the daytime [42].

Figure 1. Location of the study area. (a) Sketch map of the main terranes, major suture, and
shear zones of the Arabian-Nubian shield in the Red Sea Hills Region of Sudan (modified after
Bierlein et al. [43]); (b) geological map of the study area (modified after Mohamed et al. [42]).

The geological setting of the Hamissana area forms a part of the Arabian Nubian Shield
(ANS) (Figure 1a). ANS covers the eastern part of Sudan and broad areas of other countries
such as Saudi Arabia, Ethiopia, Eritrea, Yemen, and Egypt [15]. During the Pan-African
tectonic event, the collision and the accretion of Neoproterozoic island arcs to the Nile
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craton formed ANS [44]. The evolution of the shield including the complete orogenic cycle
between 900 and 550 Ma is documented, where the island arcs characterized by basic to acid
metavolcanics, and metasediments of the Proterozoic age are exposed [44,45]. Different
arc assemblages are separated by ophiolitic-decorated suture zone forming five terranes in
Sudan, while subduction-related calc-alkaline I-type granodiorites (older granites) intruded
these assemblages [45,46]. The entire sequence is intruded by post-orogenic alkali A-
type granitoid (younger granites) [44,47]. A NE-SW suture zone named after the study
area forms a transition terrane between Bayuda craton terrane and Gebiet island arc
terrane, called Gabgaba terrane. The main exposed lithological units in the study area
are predominant with metavolcanic, syn-orogenic (older intrusion), and post-orogenic
(younger intrusion) rocks [42]. The metasediments represent the oldest rock unit in the
study area, which has E-W linear trending and is composed of quartzite and marble.
Metavolcanics are generally composed of gray meta-acid volcanic and dark metatrachyte.
Granite and coarse to medium-grained granodiorite, form the older intrusions. Younger
intrusions are non-foliated and consist of porphyritic microgranite, highly sheared and
dark granodiorite, and quartz feldspar porphyry. Several low outcrops of sediments and
superficial deposits are scattered in the region. Structural trends of faults and dykes are
NW-SE, NE-SW, and E-W, while most faults are in the form of strike-slip faults [42].

3. Materials and Methods

3.1. Data and Data-Preprocessing

Mohamed et al. [42] integrated important geological information about the study
area. They established a comprehensive geodatabase containing the updated geological
map, primary faults/fractures map, and locations of gold occurrences. All these geological
datasets were digitized from paper maps of the published study [42]. Intrusion rock units
were extracted separately as shapefile of polygons, while faults with different azimuth
directions were saved as line shapefiles. 25 locations of gold occurrence were carefully
selected from the overall 34 locations that constituted the database, where the minimum
distance between each location corresponds to the grid size of 30m. The preparation of
these geological datasets was carried out using ArcGIS 10.6.1 software.

The satellite remote sensing data employed in this study are Landsat-8, Sentinel-2A,
and ASTER. All three types of multispectral imagery were freely downloaded from the
U.S. Geological Survey’s Earth Resources Observation and Science (EROS) Centre, using
the USGS earth explorer website (https://earthexploere.usgs.gov). In addition, the user
must also register on the National Aeronautics and Space Administration website (NASA)
to obtain ASTER data (https://earthdata.nasa.gov). In this study, one scene of Landsat-8,
two scenes of Sentinel-2, and four scenes of ASTER were obtained on different dates to
cover the study area. All scenes have (0%–2%) cloud coverage and (>0.05) maximum
Normalized Different Vegetation Index (NDVI), which suit the basic requirements for
geological investigation. Table 1 shows the technical properties of different sensors and the
characteristics of various scenes used in this investigation.

Table 1. Technical characteristics and dataset attributes of different remote sensing data.

Satellite Bands Wavelength (μm)
Spatial

Resolution (m)
Scene ID

Date and Time
of Acquisition

Other Info

Landsat-8

Band 1-(coastal/aerosol) 0.435–0.451 30

LC817304620
21360LGN00

26 December 2021
08:08:23

Path = 173
Row = 46

Band 2-Blue 0.452–0.512 30
Band 3-Green 0.533–0.590 30
Band 4-Red 0.636–0.673 30

Band 5-(NIR) 0.851–0.879 30
Band 6-(SWIR) 1 1.566–1.651 30
Band 7-(SWIR) 2 2.107–2.294 30

Band 8-Panchromatic 0.503–0.676 15
Band 9-Cirrus 1.363–1.384 30

Band 10-(TIRS) 1 10.60–11.19 100 * (30)
Band 11-(TIRS) 2 11.50–12.51 100 * (30)
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Table 1. Cont.

Satellite Bands Wavelength (μm)
Spatial

Resolution (m)
Scene ID

Date and Time
of Acquisition

Other Info

Sentinel-2

Band 1-(coastal/aerosol) 0.421–0.457 60

S2A_MSIL1C
_20211203T08
1321_N0301

3 December 2021
09:28:49

Orbit No.: 78
Tile No.: T36QXJ

Band 2-Blue 0.439–0.535 10
Band 3-Green 0.537–0.582 10
Band 4-Red 0.646–0.685 10

Band 5-Red edge 0.694–0.714 20
Band 6-Red edge 0.731–0.749 20
Band 7-Red edge 0.768–0.796 20

S2A_MSIL1C
_20211203T08
1321_N0301

3 December 2021
09:28:49

Orbit No.:78
Tile No.:
T36QXH

Band 8-NIR 0.767–0.908 10
Band 8A-Narrow NIR 0.848–0.881 20
Band 9-Water vapour 0.931–0.958 60

Band 10-Cirrus 1.338–1.414 60
Band 11-SWIR 1.539–1.681 20
Band 12-SWIR 2.072–2.312 20

ASTER

Band 1-VNIR
(green/yellow) 0.520–0.60 15

ASTL1A
070331082541
0010269001

31 March 2007
08:22:08

ASTER Scene ID:
(173, 129, 4)Band 2-VNIR (red) 0.630–0.690 15

Band 3N-VNIR 0.760–0.860 15
Band 3B-VNIR 0.760–0.860 15
Band 4-SWIR1 1.600–1.700 30

ASTL1A
070331082550

0010269001

31 March 2007
08:22:07

ASTER Scene ID:
(173, 130, 4)

Band 5-SWIR2 2.145–2.185 30
Band 6-SWIR3 2.185–2.225 30
Band 7-SWIR4 2.235–2.285 30
Band 8-SWIR5 2.295–2.365 30

ASTL1A
06122508250
0010269001

25 December 2006
08:24:03

ASTER Scene ID:
(173, 129, 5)

Band 9-SWIR6 2.360–2.430 30
Band 10-TIR1 8.125–8.475 90
Band 11-TIR2 8.475–8.825 90
Band 12-TIR3 8.925–9.275 90 ASTL1A

061225082515
0010269001

25 December 2006
08:24:03

ASTER Scene ID:
(173, 130, 5)Band 13-TIR4 10.250–10.950 90

Band 14-TIR5 10.950–11.650 90

In this study, the spatial resolution of various multispectral data was resampled to 30m
using nearest neighbor technique. Since ASTER scenes were obtained on different dates, the
Thermal Infrared (TIR) bands of ASTER and Landsat-8 were excluded to avoid unfavorable
changes in surface thermal emission. Moreover, the coastal and cirrus bands of Landsat-8
and Sentinel-2 were designed for atmospheric correction. Therefore, they were not used
in the analysis, as well as the panchromatic band (band 8) of Landsat-8 and water-vapor
band (band 9) of Sentinel-2. Landsat-8 level 1 terrain corrected (L1T) data and ASTER
level 1 Precision Terrain Corrected Registered At-Sensor Radiance (AST_L1A) data are
radiometrically calibrated and geometrically corrected [27]. Both datasets were atmospheri-
cally corrected using the FLASH (Fast Line of Sight Atmospherics Analysis of Hypercubes)
algorithm provided by ENVI 5.2 software. The FLASH algorithm was applied to ASTER
data after implementing a cross-track illumination correction to the short waves infrared
(SWIR) bands. Dark Object Subtraction (DOS) method in the semi-automatic classification
plugin provided by QGIS 3.16.7 software, was employed to automatically atmospherically
correct Sentinel-2 data. All atmospherically corrected datasets were georeferenced to the
Universal Transverse Mercator (UTM) coordinate system in zone 36 N.

3.2. Random Forest (RF)

RF is an ensemble learning algorithm that is developed based on the concept of
Decision Trees (DTs) [48]. The accumulation of multiple classification or regression DTs
is employed to obtain repeated predictions of the target phenomenon represented by
the training dataset [40]. These trees are grown based on random selection from the
original training datasets using a procedure known as “bootstrap bagging” [49]. This
sampling method increases the diversity of the trees by generating training subsets (bag
samples) using about two-thirds of the training features for prediction, whereby the left
out of the training samples (out-of-bag (OOB) samples) are used to validate the prediction
accuracy [34].
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To overcome the overfitting issue of the DT, RF attempts to grow trees in a way that
maximizes the reduction in purity by searching through the optimal feature/split node,
which varies from pruning trees according to discriminative conditions in the standard
DT [50]. In other words, RF generates a tree using the best variable within bag samples,
which reduces the correlation between the trees and minimizes the generalization error [48].
RF uses the Gini index to ensure the best split selection based on the comparison of the
information purity of the leaf nodes with that of their root nodes. The Gini index used in
this study is shown in the following equation [50]:

IG( f ) =
n

∑
i=1

fi(1 − fi) (1)

where fi is the probability of class n, which can be calculated by dividing
(
mj

)
the number

of samples belonging to class j, by (m) the total number of samples in a specific node. The
ultimate decision of RF is made by combining the votes of every DT, then averaging the
results as shown in Equation (2) [7]:

f K
r f (x) =

1
K

K

∑
K=1

T(x) (2)

where T(x) represents the result of DTs using x input vector, while K denotes the number of
DTs that are grown to obtain RF results ( f K

r f ) [2].
It is important to mention that RF has another essential advantage besides the unbi-

ased estimation of the generalization error, which is the ability to measure and sort the
importance of different predictor variables [51,52]. This is achieved internally by using
the OOB samples, which originally are used to calculate the number of classified trees.
Variables’ importance is measured by randomly permutating each variable including OOB
samples and then sending down these permuted OOB cases to the trees again. Calculating
the correctly classified cases and subtracting them from the original correctly classified
cases derived from non-permuted data, allows measuring the importance of that vari-
able [53]. In other words, RF measures the marginal effect of a specific variable by holding
all other predictor variables constant [4]. This asset is vital for multi-source data that are
characterized by high dimensionality, where it is significant to grasp the influence of each
predictor on the prediction performance [7,37,54].

3.3. Induction of RF Predictive Model

The process of inducting data-driven predictive machine learning modeling consists
of three main steps, which directly affect the model’s outcome. These three steps are:
(i) the preparation of the input training dataset, which is considered the most important
and critical step in the MPM field; (ii) specifying the suitable configuration of parame-
ters in each model, also known as “hyperparameters tuning”; (iii) assessing predictive
model performance [7,37]. Figure 2 shows the technical flowchart of this study’s overall
methodology and different stages to completely train RF predictive model. As shown in
the figure, the preparation of input data includes generating predictor variables (also called
feature predictors) and target variables. Predictor variables are thematic maps derived
from integrating muti-source data and guided by a deep understanding of the gold mineral
system. These predictor maps represent the critical stipulations for generating a desirable
prediction of mineral potential [3]. On the other hand, target variables are the ground truth
data of the studied phenomena. Unlike classification tasks where the target is defined by
categorical data that are presented as labeled classes, predictive models (regression tasks)
use continuous data as target variables to predict a continuous quantity of specific phe-
nomena. In the case of MPM, mineral occurrence and non-occurrence are given as binary
values (1 and 0, respectively) to predict continuous output representing the likelihood of
gold value. In this study, the generation of different input datasets was accomplished by
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using ENVI and ArcGIS software. Meanwhile, Python 3 was implemented to train different
RF by using “Scikit-Learn” library.

 

Figure 2. A technical flowchart shows the study’s overall methodology to delineate MPM.

In common practice, leave-out and cross-validation methods are utilized to assess
model performance [55]. The leave-out approach is achieved by randomly splitting the
target variables into training and testing subsets. Data split usually takes different portions
according to the user’s definition when it typically is carried out at 75:25 or 80:20. On
the other hand, the cross-validation approach, namely K-Fold cross-validation method,
employs all the target data in the training and testing process simultaneously. This is
achieved by splitting the data into k subsets, where each subset serves once as a testing
set while the remaining sets are used to train the model. This process is repeated k times
until all of the target data appear in the training and testing set. This method, thereafter,
averages the scores of the prespecified accuracy metric from each k fold performance. Since
the study focuses on regression task, the mean square error (MSE) was utilized to measure
the average squared difference between the trained model predicted result (ŷi) and the true
value of each sample (yi). This can be formalized as follow:

MSE =
1
N

N

∑
i=1

(ŷi − yi)
2 (3)

where N is the number of samples in the test dataset.
This study uses both approaches for assessing performance and reducing overfitting.

The train-test split method was utilized to introduce possible bias since there is limited
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target data. Moreover, this method aids in comparing the performance of various outputs of
RF by measuring accuracy metrics from the testing dataset. On the other hand, the purpose
of employing five K-Fold cross-validations is to reduce overfitting and obtain optimal
parameters for training each dataset. The possibility to find an optimal combination
of parameters varies with different input datasets. Therefore, an objective grid search
method known as “GridSearchCV” was used for hyperparameter tuning. This method is
provided by the Scikit-Learn library (https://scikit-learn.org). As shown in Figure 3, this
method searches through all possible combinations of parameters using k iteration for each
combination. The user defines a dictionary of the possible set of values for each parameter
whether they are categorical or numerical (e.g., number of trees). Although this process
has a high computational cost, it is vital to measure the influence of model configuration
on prediction performance. In the present study the range of the number of trees was set
between 50 and 500 at intervals of 50, and the number of features between 2 and 12 at
2 intervals [3,7,8,40].

 
Figure 3. A plot demonstrates the GridSearchCV method: in this case using two parameters (numeri-
cal/categorical) and 5-folds cross-validation.

3.4. Predictor Variables

As mentioned before, the input datasets (input-feature vectors) of MLA are the set
of information derived from combining different thematic layers at each grid location. In
this regard, different layers combination represents a unique input dataset. Four different
datasets are employed in this study from integrating geological data with various multi-
spectral remote sensing data. In addition to the geological predictor maps in each dataset,
predictor maps processed from data of a specific sensor are appended. Therefore, dataset-1,
dataset-2, and dataset-3 are formed by Landsat-8, Sentinel-2, and ASTER data, respectively,
while the fourth dataset is composed of synergy from the three datasets.

3.4.1. Geological-Based Predictor Maps

According to the primer understanding of gold mineralization controlling factors, and
geological data availability as well, we produced four geological-based predictor maps
by using GIS spatial analysis methods. Identifying permissive lithologies, structures, and
hydrothermal alteration zones is the main criterion of exploration. From prior literature
about the Red Sea Hills, it is well known that mineralization zones have the same linear
structures and exist in the acid meta-volcanic rocks [42,44,56]. Faults/fractures are favored
channels for fluid migration, which represent the main ore-controlling factor in shear
zone-related gold deposits. Therefore, two maps of distance to NE- and NW- faults were
generated by using the Euclidean distance method (Figure 4a,b). The contact zone of the
intrusive rocks (older and younger) lies in meta-sediments and metavolcanics, which may
indicate the spatial agreement with gold mineralization in Hamissana area. Moreover,
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younger intrusions in the study area are highly sheared and contain several dykes. Hence,
the proximity to outcropped intrusions was employed as a predictor map (Figure 4c).

Figure 4. Geological evidential features of the study area used as predictor variables: (a) Proximity to
NE-SW faults; (b) proximity to NW-SE faults; (c) proximity to intrusions; (d) density of lineaments.

Since the valleys and drainage in the study area are structurally controlled by the
shear zone, we automatically extracted lineaments as an indication of structural weakness,
faults, fractures, or lines that separate different formations [57,58]. In mineral exploration,
excessive lineaments are often localized close to mineralogical deposits, which may corre-
spond to the main conduits for carrying hydrothermal solutions [15,25,58,59]. Therefore,
these lineaments are adequate to be an indirect indicator of mining potential. Sentinel-2 has
a higher spatial resolution than Landsat-8 and ASTER, which makes it more suitable for
lineament extraction. Prior literature reported that Principal Component Analysis (PCA)
has a better capability for automated lineament extraction compared with the original
remote sensing data and other enhancement techniques [58,60]. Using PCI Geomatica
software, lineaments were automatically extracted from PC5 of Sentinel-2. (Figure 4d)
shows the concentration of lineaments distribution as a density map, which was employed
as the fourth geological-based predictor map.

3.4.2. Remote Sensing-Based Predictor Maps

Remote sensing data provides significant information about different geological ob-
jects, such as mineral assemblages, lithological units, and hydrothermal alteration zones.
Studying the existence of different alteration zones was another exploration key criterion
since economic mineralization is often associated with these alteration zones. Multispectral
data such as Landsat-8, Sentinel-2, and ASTER can be utilized to detect surface alteration
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zones using various remote sensing enhancement techniques. The main objective of these
processing techniques is to interpret the remote sensing spectral signature of different alter-
ation zones (Argillic, Phyllic, Propylitic) or minerals that are associated with hydrothermal
alteration (iron oxides, clay, and hydroxyl bearing minerals). To generate different thematic
layers of different alteration zones, this study employs different enhancement technique
methods, such as Band Ratio (BR), PCA, and Minimum Noise Fraction (MNF).

BR is one of the most applicable techniques which aims to reduce the shadow effects
of topography [15,61,62]. This method improves the spectral characteristic of specific
alteration minerals (e.g., iron oxide, alunite, kaolinite, or chlorite) or alteration zones by
dividing the digital number (DN) value of one band by the DN of another band [27,39,63].
On the other hand, Relative Absorption Band Depth (RBD) is another method that attempts
to detect the typical absorption of targeted minerals, but it uses three bands to formalize the
ratio (the sum of two bands is divided by the absorption band) instead of two bands [39].
Since ASTER sensor was developed particularly for geological investigations, several
mineralogical indices were developed using bands in SWIR and TIR regions [64–66]. Table 2
lists all selected BR, RBD, and mineralogical indices, which were suggested by previous
studies [15,39,61,66–70] to map targeted alteration minerals and zones. It is important to
point out that the BR image for mapping ferric oxide was excluded in the case of Landsat-8
and ASTER datasets because the range of the data values (histogram width) of the generated
imagery is very low, which may affect the output of the MLA models.

Table 2. Selected BR, RBD, and mineralogical indices of each sensor to map targeted minerals.

Method Target Landsat-8 Sentinel-2 ASTER

BR

Hydroxyl-
bearing 6/7 11/12 4/6

Ferric iron 4/2 4/3 2/1
Ferrous iron (7/5) + (3/4) (12/8a) + (3/4) (5/3) + (1/2)
Ferric oxide 6/5 (Excluded) 11/8a 4/3 (Excluded)

Alunite - - 4/5
Calcite - - 4/7

RBD
Argillic (RBD1) - - (4 + 6)/5
Phyllic (RBD2) - - (5 + 7)/6

Propylitic
(RBD3) - - (6 + 9)/(7 + 8)

Mineralogical
Indices

Hydroxyl-
bearing
(OHI)

- - (7/6) * (4/6)

Kaolinite (KLI) - - (4/5) * (8/6)
Alunite (ALI) - - (7/5) * (7/8)
Calcite (CLI) - - (6/8) * (9/8)

“-“ represents that there is no mathematical formula for the specific satellite data to map targeted mineral.

PCA and MNF are transformation methods, which have been successfully utilized
to enhance remote sensing imagery. Both statistical methods are employed for spectral
data reduction by transforming the information in the original remote sensing data into a
new set of data. In the PCA procedure, the new dataset (PC components) has less variance,
since each component is extracted based on uncorrelated linear combinations of values
(also called eigenvector loadings). These eigenvectors are calculated in a matrix called
covariance matrix (Eigen matrix), which comes across the statistical relation between all
the PCs. On the other hand, MNF method also uses the covariance matrix to rescale and
segregate noise in the data. In the new dataset, the noise is reduced and whitened in a
descending way based on the eigenvalue of each MNF component.

Since the eigenvector loadings (sign and magnitude) are linked to the spectral feature
(absorption and reflectance) of objects, they can be utilized to detect the existence of a
specific alteration mineral. For this purpose, the selective PCA technique (also known as
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Crosta technique) was developed to extract features of the specific object as bright or dark
pixels in the PCs. This method is applied to VNIR+SWIR bands, where bands are selected
(mostly 3 or 4 bands) based on the prior knowledge of the spectral behavior of an alteration
mineral. One of the PCs will have two strong loadings with opposite signs that indicate
the reflection and absorption bands of that alteration mineral. If the loading has a positive
sign in the reflection band, the PC enhances the targeted mineral in bright pixels. In the
meantime, this PC could also enhance that mineral in dark pixels, if the sign is negative
in the reflectance band [29,39,46,71]. In this study, all selected bands from different sensor
data to map different hydrothermal alteration zones and minerals, are illustrated in Table 3.

Table 3. Selected bands of each sensor’s data to perform PCA transformation for mapping defined targets.

Dataset Target Selected Bands

Landsat-8
Hydroxyl-bearing 2, 5, 6 and 7

Iron oxides 2, 4, 5 and 6

Sentinel2
Hydroxyl-bearing 2, 8a, 11, and 12

Iron oxides 2, 4, 8a, and 11

ASTER

Hydroxyl-bearing 1, 3, 4 and 6
Iron oxides 1, 2, 3 and 4

Argillic 1, 4, 6 and 7
Phyllic 1, 3, 5 and 6

Propylitic 1, 3, 5 and 8

Unlike PCA method, MNF technique is less interpretable and very subjective. MNF
results are only statistics and do not indicate specific mineral occurrences. However, separat-
ing and rescaling the noise process helps MNF to identify differences inside the image in the
first few bands, while the latest few bands subsequently convey more noise [24,72]. There-
fore, we visually assessed all MNF bands in each dataset, then for each dataset (Landsat-8,
Sentinel-2, ASTER), we carefully selected three MNF that have a spatial agreement with
different hydrothermal alteration minerals.

3.4.3. Data Preparation

At this stage, different predictor maps are generated from multisource data, so the
numeric range of each input data is different. This variance in the range gives a chance for
more domination to those inputs with a greater range than those with a smaller one. This
issue directly affects the outputs of RF and brings numerical obstacles during the models’
execution [73]. In this regard, each input was normalized in the range of [0, 1] using the
following equation:

xnorm =
x − xmin

xmax − xmin
(4)

where x is the input data, xmax and xmin donate to the maximum and minimum values of
the original data respectively. After normalizing each predictor map, they were stacked to
form four distinct datasets as shown in Table 4.

Table 4. Input layers of each dataset to conduct data-driven MPM.

Dataset
Remote Sensing-Based

Geological-Based
No. of All

Input Layers
BR PCA MNF

Landsat-8 (Dataset-1) 3 2 3 4 12
Sentinel-2 (Dataset-2) 4 2 3 4 13

ASTER (Dataset-3) 12 5 3 4 24
Data integration

(Dataset-4) 19 9 9 4 41
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3.5. Target Variable

The target binary variables, corresponding to the gold occurrence and non-occurrence
location, are used to train and validate the performance of supervised predictive models. A
set of 25 occurrence locations are given a score of 1. In the meantime, the non-occurrence
locations corresponding to the score of 0, were selected based on prespecified criteria. The
selection of non-occurrence samples was achieved according to (i) a clustering procedure
similar to the one proposed by Torppa [74]; (ii) several other criteria that were defined in
previous literature [2,3,6,35]. Unsupervised classification (clustering) is utilized to describe
the spatial distribution of gold occurrence using several clusters. By classifying these
clusters using known occurrences, we can delineate geologically similar areas of occurrence
and non-occurrence. In this study, we employed k-means as a clustering method to generate
some clusters that do not exceed the number of known occurrences. Hence, 20 clusters
were produced by applying this method to ASTER dataset, since ASTER dataset has more
input layers than those in Landsat-8 and Sentinel-2. Thereafter, we divided those clusters
into six prsopectivity classes (very high, high, moderate, low, very low, non-occurrence),
by visually counting the frequency of known occurrence in each cluster. Non-occurrence
samples were then selected from low, very low, or non-occurrence classes according to the
following criteria:

1. The number of non-occurrence samples must be equal to the number of mineral occurrences.
2. Non-occurrence samples should be spatially distributed randomly.
3. The selection of non-occurrence locations should be distal from any known gold

occurrences. Here, we applied a 10 km buffer zone around known occurrences.

By following these requirements, we generated a full set of target variables, which
contains 50 points of samples. Furthermore, we randomly split these variables into train-
ing and testing datasets. 70% of target variables were assigned to the training dataset
(35 points), and the remaining 30% were employed as the testing dataset.

3.6. Model Assessment

The performance of the trained RF predictive model was comprehensively assessed by
various statistical measurements, including the prediction and classification performance.
Classification, here, means labeling the floating value (0, 1) at each cell as prospective
or non-prospective (barren region) by using a 0.5 threshold value. A confusion matrix
can be successfully utilized to evaluate and explain the classification performance of
predictive models using the following categories: (i) true-positive “TP”, when there is an
agreement between the model and the reality about mineral occurrence; (ii) true-negative
“TN”, when there is an agreement between the model and reality about mineral non-
occurrence; (iii) false-positive “FP” when the model incorrectly classified a non-occurrence
sample into mineral occurrence; and (iv) false-negative “FN”, when the model mistakenly
classified a mineral occurrence as non-occurrence [2,37,75]. These four situations are used
to calculate six statistical metrics, namely overall accuracy (OA), sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV), and Kappa [76,77]. These
statistical matrics can be formalized as follow [3,78]:

Sensitivity =
TP

TP + FN
(5)

Specificity =
TN

TN + FP
(6)

PPV =
TP

TP + FP
(7)

NPV =
TN

TN + FN
(8)

OA =
TP + TN

TP + TN + FP + FN
(9)
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K =

TP + TN − [(TP + FN)(TP + FP)
+(FP + TN)(FN + TN)]/(TP + FP + TN + FN)

(TP + FP + TN + FN)− [(TP + FN)(TP + FP)
+(FP + TN)(FN + TN)]/(TP + FP + TN + FN)

(10)

Furthermore, the overall predictive performances of different datasets were compared
using the success-rate curve and receiver operating characteristic (ROC) curve [4,7]. The
success-rate curve was created by plotting the percentage of correctly classified gold (true
positive rate “TPR”) against the area percentage of prospective regions that are generated
by reclassifying MPM using moving threshold values [79]. Subsequently, the optimal
goal of the model is to capture as many mineral occurrences as possible in the smallest
possible prospective area. This method is very useful in delineating or classifying different
prospective regions (high, moderate, low), by identifying the change in curve slope. Since
the success-rate curve only depends on the TPR, the ROC curve was created to also
consider the false positive rate (FPR). In the ROC curve, TPR and FPR are plotted against
each other on the y-axis and x-axis, respectively. In addition, the predictive performance
can be measured by calculating the area under ROC curve (AUC), where the better model
performance is indicated by how closer the curve can be to the upper left corner [7,80,81].

4. Results

4.1. Generating Remote Sensing-Based Predictor Maps

Figure 5a–c illustrate hydroxyl-bearing minerals derived from BR 6/7 of Landsat-8,
BR 11/12 of Sentinel-2, and BR 4/6 of ASTER, respectively. The distribution of these
minerals (Al-OH and Fe, Mg-OH) is shown as cyan pixels. As seen in the figure, the spatial
distribution of hydroxyl-bearing minerals is similar in all three images. However, Landsat-8
and Sentinel-2 ratio images show these minerals in association with drainage channels. On
the other hand, ASTER BR image extensively mapped these minerals in the southeastern
part. Another method employed to map hydroxyl-bearing minerals is OH bearing altered
minerals index (OHI = 6/7 * 4/6). As displayed in Figure 6a, the spatial distribution of
these minerals is relatively similar to ASTER BR image. OH-bearing altered minerals
are concentrated in the metavolcanic rocks and have a spatial agreement with known
gold occurrence.

Iron minerals, including ferrous iron Fe+2 and ferric iron Fe+3, are shown in Figure 5d-
i. The light orange color in Figure 5d–f depicts ferrous iron minerals, which were produced
by using BRs (7/5) + (3/4) of Landsat-8, BRs (12/8a) + (3/4) of Sentinel-2, and BRs (5/3) +
(1/2) of ASTER. The distribution of ferrous iron minerals in the three images is concentrated
in the northeastern part. However, it can be seen in other parts of ASTER image, while it
almost disappeared in the western part of Landsat-8 image. On the other hand, Figure 5g–i
show ferric iron minerals as dark orange pixels, derived from BR 4/2 of Landsat-8, BR
4/3 of Sentinel-2, and BR 2/1 of ASTER, respectively. Unlike the spatial distribution of
ferrous minerals, ferric iron minerals are significantly detected in the drainage areas around
younger intrusion in the northeast and the lower middle parts of the three BR images.
This distribution of these minerals has less association with documented gold occurrences
compared with ferrous iron minerals. Moreover, another BR using Sentinel-2 data was
used to map ferric oxide minerals, which is 11/8a. In this imagery, iron oxide minerals are
illustrated by red pixels in Figure 5j. By using this ratio image, ferric oxide minerals were
mapped in a very extensive way that cover most of the outcrops, including younger and
older intrusions, metasediments, and metavolcanics rock units. This distribution relatively
matches the density of lineaments features.

19



Minerals 2023, 13, 49

 

Figure 5. BR images derived from different sensors showing various targeted minerals in colored
pixels (a–c) Hydroxyl-bearing minerals derived from Landsat-8 (6/7), Sentinel-2 (11/12), and ASTER
(4/6), respectively; (d–f) Ferrous iron minerals derived from Landsat-8 (7/5 + 3/4), Sentinel-2 (12/8a
+ 3/4), and ASTER (5/3 + 1/2), respectively; (g–i) Ferric iron minerals derived from Landsat-8 (4/2),
Sentinel-2 (4/3), and ASTER (2/1), respectively; (j) Ferric oxide minerals derived from Sentinel-2
(11/8a); (k,l) Calcite and Alunite minerals derived from ASTER BR 4/7 and 4/5, respectively.
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Figure 6. The mineralogical indices images derived from ASTER SWIR bands show the spatial
distribution of targeted minerals in colored pixels: (a) OHI; (b) CLI; (c) ALI; (d) KLI.

In order to delineate minerals that indicate the existence of specific alteration zone,
further BR and mineralogical indices were employed in the present study using ASTER
data. Calcite, indicating propylitic alteration, was derived from BR 4/7 (Figure 5k) and
cal-cite mineral index (CLI = 6/8 * 9/8) (Figure 6b). The prominent areas of calcite were
marked as purple color in both images. The distribution of calcite is almost similar in
both produced images, but it is more outspread in the northeastern part of the CLI im-
age than the BR image. Argillic or advanced argillic alteration zone is characterized
by the existence of kaolinite and alunite minerals. BR 4/5 and alunite mineral index
(ALI = 7/5 * 7/8) were utilized to detect alunite altered mineral, while kaolinite mineral
index (KLI = 4/5 * 8/6) was utilized to detect kaolinite. The identification of the alunite
mineral in the BR image (Figure 5l) exhibits mineral distribution pattern different from the
ALI image (Figure 6c). As shown in the images, the BR image mapped alunite similarly
to the 4/6 ratio image (OH-bearing minerals), but it has a lower surface abundance. On
the other hand, areas of alunite in the ALI image are highlighted in sky-blue tone in the
drainage area and superficial deposits. Kaolinite mineral also coincides with drainage
areas, but it is more concentrated in the northern part.

Three ASTER RBD images were specifically used for the detailed mapping of alteration
zones (Figure 7). RBD1 (4+6/5), RBD2 (5+7/6), and RBD3 (6+9/7 + 8) were used to obtain
argillic, phyllic, and propylitic alteration zone, respectively. The argillic alteration zone is
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illustrated by red pixels, which is more concentrated in the northern part around younger
and older intrusions, meanwhile, it can also be seen in the southwestern part between
younger intrusions and metavolcanics. The phyllic alteration zone is typically concentrated
in the metavolcanic rock unit and partially scattered in the younger intrusion unit. The
output of the third RBD, indicating the propylitic alteration zone, is similar to the image
derived from CLI index (see Figure 6b).

 

Figure 7. The RBD images derived from ASTER SWIR bands show the spatial distribution of different
alteration zones in colored pixels: (a) RBD1; (b) RBD2; (c) RBD3.

Figure 8a–c show hydroxyl-bearing minerals derived from PCA using selective bands
of Landsat-8, Sentinel-2, and ASTER, respectively. The eigenvector loadings corresponding
to bands 2,5,6 and 7 of Landsat-8, bands 2,8a,11, and 12 of Sentinel-2, and bands 1,3,4,
and 6 of ASTER, are listed in Table 5. After careful scanning of the eigenvectors, PCA
derived from the selected bands of Landsat-8 shows a unique contribution of OH-bearing
minerals, which corresponds to reflection in band 6 and absorption in band 7. This PCA
has strong negative loading in the reflectance band (−0.7) followed by a strong positive
loading in the absorption band (0.633). Hence, PCA 4 mapped OH-bearing minerals as
dark pixels, due to the negative loading in the reflectance band. Thereafter, we inverted the
dark pixels to bright ones by multiplying the image by −1. Similarly, PCA results using
Sentinel-2 and ASTER data exhibit similar patterns for mapping OH-bearing minerals, since
PCA4 in both datasets contains unique eigenvectors that correspond to the spectral feature.
PCA4 of Sentinel-2 has strong loading in band 11 (−0.675) and band 12 (0.609), while the
strong loadings in ASTER data correspond to band 4 (−0.595) and band 6 (0.692). both
PCA 4 images of Sentinel-2 and ASTER were negated to display hydroxyl-bearing in
bright pixels.

Moreover, PCA was applied on Landsat-8 bands 2,4,5, and 6, Sentinel-2 bands 2,4,8a,
and 11, and ASTER bands 1,2,3, and 4, for mapping iron oxide minerals. Exploring
eigenvector loadings displayed in Table 6 reveals that PCA2 in all three datasets has unique
loadings corresponding to the spectral feature of iron oxide minerals. these PCAs showed
moderate loadings with a positive sign in absorption bands (Landsat-8 B2 and B5, Sentinel-
2 B2 and B8a, and ASTER B1 and B3), and strong loadings with a negative sign in the
reflectance band (Landsat-8 B6, Sentinel-2 B11, and ASTER B4). The three PCA2 images
were transferred to ArcGIS software and negated. Then, the pixels representing the iron
oxide minerals were changed to orange color (Figure 8d–f). It is quite noticeable that
the surface abundance of these minerals is lower compared to images derived from BR.
Nevertheless, these minerals in PCA images are more distributed in northeast parts and
have spatial agreement with hydroxyl-bearing minerals (see Figure 8a–f).
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Figure 8. The PCA images derived from different sensors based on band selection in (Table 2).
(a–c) PCA4 of Landsat-8, Sentinel-2, and ASTER, respectively, for mapping hydroxyl-bearing miner-
als. (d–f) PCA of Landsat-8, Sentinel-2 and ASTER, respectively, for mapping iron oxide minerals.
(g–i) ASTER PCA for mapping argillic (PCA4), phyllic (PCA4), and propylitic (PCA3), respectively.

For more details about argillic, phyllic, and propylitic alteration zones, PCA method
was also applied specifically to ASTER data. Table 7 shows the eigenvector loadings for
argillic using bands 1, 4, 6, and 7, phyllic using bands 1, 3, 5, and 6, and propylitic using
bands 1, 3, 5, and 8. The argillic zone has reflectance spectral features in bands 1 and 6,
and absorption ones in bands 4 and 7 [29]. Subsequently, most loadings that correspond to
this typical spectral feature are found in PCA 4, although the loadings are weaker in band
1 (−0.025) and band 4 (0.133) compared with band 6 (−0.767) and band 7 (0.631). PCA4 is
selected to map phyllic alteration zone since it shows loadings with opposite signs in band
5 (−0.694) and band 6 (0.707). Thus, this loadings pattern corresponds to the assumption
that band 5 could be considered as a reflection band since the absorption of muscovite
mineral (typical mineral reveals phyllic alteration) is lower in band 5 than in band 6 [39].
Then PCA4 image of phyllic alteration was negated because band 5 has negative loading.
PCA3 loadings in the eigenvector matrix of propylitic alteration, correspond to the calcite
spectral properties. This PCA shows strong negative loading in band 5 (−0.722) and strong
positive loading in band 8 (0.563). In this case band 5 was treated as a reflectance band
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because Fe, Mg-oh group has a lower absorption feature in band 5 compared with the
strong absorption in band 8. Therefore, this PCA imagery was also negated. As seen in
Figure 8g–i, PCA images are significantly different from those derived by RBD method.
The surface abundance of the PCA images is much lower and the spatial distribution is
almost different than RBD images.

Table 5. The eigenvector matrixes of PCA results for mapping hydroxyl-bearing minerals using
different remote sensing data; Bold text represents the selected PCA and the unique eigenvalues.

Landsat-8 Eigenvector Band 2 Band 5 Band 6 Band 7
PCA1 0.248 0.552 0.591 0.534
PCA2 0.468 0.646 −0.367 −0.479
PCA3 0.816 −0.470 −0.166 0.291
PCA4 −0.230 0.239 −0.700 0.633

Sentinel-2 Eigenvector Band 2 Band 8a Band 11 Band 12
PCA1 0.215 0.557 0.606 0.526
PCA2 0.402 0.688 −0.346 −0.495
PCA3 0.834 −0.372 −0.240 0.329
PCA4 −0.310 0.280 −0.675 0.609

ASTER Eigenvector Band 1 Band 3 Band 4 Band 6
PCA1 0.399 0.576 0.536 0.470
PCA2 0.497 0.517 −0.498 −0.488
PCA3 0.695 −0.586 0.332 −0.251
PCA4 0.332 −0.240 −0.595 0.692

Table 6. The eigenvector matrixes of PCA results for mapping iron oxide minerals using different
remote sensing data; Bold text represents the selected PCA and the unique eigenvalues.

Landsat-8 Eigenvector Band 2 Band 4 Band 5 Band 6
PCA1 0.251 0.533 0.556 0.587
PCA2 0.328 0.460 0.243 −0.789
PCA3 0.829 −0.020 −0.532 0.169
PCA4 −0.377 0.710 −0.590 0.075

Sentinel-2 Eigenvector Band 2 Band 4 Band 8a Band 11
PCA1 0.221 0.512 0.566 0.607
PCA2 0.306 0.513 0.239 −0.766
PCA3 0.633 0.257 −0.700 0.206
PCA4 0.676 −0.640 0.363 −0.045

ASTER Eigenvector Band 1 Band 2 Band 3 Band 4
PCA1 0.388 0.530 0.557 0.508
PCA2 0.309 0.349 0.232 −0.854
PCA3 −0.778 0.020 0.618 −0.106
PCA4 0.385 −0.773 0.503 −0.040

MNF method was employed to extract further information about alteration minerals
and zones in the study area. After careful screening of the features presented in dark and
bright colors in each MNF band. Three bands were selected and displayed in RGB colors.
MNF 3, 4, and 5 of Landsat-8, and MNF 2, 3, and 4 of Sentinel-2 were selected. It can be
seen in Figure 9a,b that altered rocks are presented as white to sky-blue tones. The white
color demonstrates that there is important information in all three bands that were assigned
to RGB colors. Combining negated MNF2, MNF3, and MNF4 clearly displays areas of
alteration in white to yellow color (Figure 9).
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Table 7. The eigenvector matrixes of applying PCA to ASTER selected bands for detailed mapping
of argillic, phyllic, and propylitic alteration zones; Bold text represents the selected PCA and the
unique eigenvalues.

Argillic Eigenvector Band 1 Band 4 Band 6 Band 7
PCA1 0.409 0.565 0.496 0.518
PCA2 0.910 −0.202 −0.263 −0.247
PCA3 0.056 −0.792 0.311 0.522
PCA4 −0.025 0.113 −0.767 0.631

Phyllic Eigenvector Band 1 Band 3 Band 5 Band 6
PCA1 0.414 0.597 0.486 0.487
PCA2 0.474 0.503 −0.510 −0.512
PCA3 0.770 −0.619 0.148 −0.043
PCA4 0.106 −0.084 −0.694 0.707

Propylitic Eigenvector Band 1 Band 3 Band 5 Band 8
PCA1 0.403 0.584 0.474 0.522
PCA2 0.525 0.483 −0.444 −0.542
PCA3 −0.287 0.281 −0.722 0.563
PCA4 0.693 −0.589 −0.239 0.340

 

Figure 9. MNF results: (a) Landsat-8 MNF3, MNF4, and MNF5 in RGB.; (b) Sentinel-2 MNF2, MNF3,
and MNF4 in RGB.; (c) ASTER MNF2 (negated), MNF3, and MNF 4 in RGB.

4.2. Generating Target Variable Using K-Means Clustering

All evidence layers of ASTER dataset that were mentioned earlier, including geological
predictor maps, were utilized to classify the study area using k-means clustering. The
purpose of this unsupervised method is to delineate non-prospective tracts, which then aids
the process of selecting non-occurrence samples. Defining the proper number of clusters
is the most critical step because these clusters will be assigned to different classes based
on their spatial agreement with known gold occurrences. Each class prospectivity score is
defined according to the percentage of captured deposits in the clusters. For instance, if
each of the n clusters captured x deposits, then these n clusters will be classified as one class
and the class prospectivity score is determined by the percentage of x deposits from the total
known deposits. Therefore, increasing cluster numbers increases the number of clusters
with no occurrence’s association, which subsequently increases the area of non-prospective.
Herein, we proposed that the number of clusters must be equal to or less than the number
of known occurrences (k ≤ Au samples). In this case, the worst scenario will be if the
frequency of occurrence in each cluster is one, which indicates that the k-means calculation
process failed to find a connection between occurrences distribution and evidential layers.

Figure 10a shows the twenty clusters derived from applying k-means on ASTER
dataset. As displayed in Figure 10b, the highest frequency is found to be 5 samples per
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cluster, which takes place in clusters 11 and 12. These two clusters were then classified as
the very high prospective class. Clusters 14 and 8 captured four and three Au occurrence
samples, respectively, so they were labeled as high and moderate classes. Each one of
clusters 7,13, and 15 captured 2 occurrences, which were afterward combined to form
the low prospective class. In the meantime, the pattern of one occurrence per cluster is
found in clusters 16 and 20, which were defined as the very low prospective class. Finally,
the rest of the clusters were classified as the non-prospective class, since none of the Au
occurrences is spatially associated with these clusters. Figure 10c illustrates the selection of
25 non-occurrence points following the results of classifying k-means outputs, as well as
the criteria described earlier in the methodology section.

 

Figure 10. (a) K-means 20 clusters derived from ASTER and geological evidential layers.; (b) the
number of Au occurrences spatially associated with different clusters.; (c) classified prospectivity
clusters based on the frequency of the occurrences in each cluster obtained from (b).

4.3. Sensitivity of RF Predictive Model to Parameter Tuning

The success key for training data-driven models with higher accuracy prediction is the
configuration of parameters (also called parametrization). Thus, due to its great impact on
the robustness and generalization capacity of ML predictive models. The parameterization
process was achieved using the GridSearchCV method based on 5-fold cross-validation.
Figure 11 shows significant variations in MSE values of four RF models obtained from
different parameter combinations and different datasets. Generally, RF is a very stable
model since the higher MSE values are lower than 0.138 in all four datasets. Although
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there are complex variations of parameter selection using different datasets, the minimum
score of MSE is very promising in the case of ASTER and data-integration datasets. The
minimum score of MSE obtained by training ASTER and data-integration datasets were
0.096 and 0.093, respectively. Meanwhile, RF model had less accuracy in the case of using
Sentinel-2 and Landsat-8, reaching minimum MSE values of 0.102 and 0.12, respectively.
The results of MSE indicate that the complex architecture of RF does not lead to an accurate
performance in different cases. For instance, the grid searching method selected only two
features to be used in individual trees in both Landsat-8 and Sentinel-2 datasets. It is
also suggested that the number of trees in the forest was set to 50 in training Sentinel-2
and data-integration datasets. The highest number of trees grown in the forest was 300
trees in the case of Landsat-8, while the highest number of features was 8 in the case of
data-integration dataset.

 

Figure 11. Contour maps showing the sensitivity of RF model based on MSE results obtained by
training different datasets; the number of trees and number of features employed for training RF
models based on: (a) Landsat-8; (b) Sentinel-2; (c) ASTER; (d) data integration.

4.4. Comparison of Various Datasets Performance

Different RF regression models were trained by the optimal parameter configurations
to produce gold potential maps, where the prediction at each cell denotes the likelihood of
gold occurrence by floating probability value (0–1) (Figure 12). The accuracy report of the
classification performance is produced by labeling each cell into binary classes (prospective
areas and barren areas), and thus by using a threshold value of 0.5 to define those areas.
Table 8 lists all statistical metrics for measuring the classification performance of RF using
four various datasets. In general, both ASTER and Data-integration datasets achieved an
overall classification accuracy of 73.3%, which outperformed the classification of Sentinel-2
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and Landsat-8 datasets. OA of Landsat-8 and Sentinel-2 were 60% and 66.7%, respectively.
Although the OA of ASTER and data-integration datasets are the same, ASTER is more
sensitive to correctly identifying 73.2 of the occurrence locations, while data-integration
dataset has higher predictive values whether it is PPV or NPV. However, the highest
predictive values (PPV and NPV) are found in Sentinel-2 dataset. RF models trained by
Landsat-8 and Sentinel-2 have the worst specificity scores (28.6).

 

Figure 12. Predictive maps of likelihood score of gold propsectivity obtained from RF predictive
modeling using: (a) Landsat-8; (b) Sentinel-2; (c) ASTER; and (d) Data-integration.

Table 8. Classification report of RF performance using different datasets.

Dataset Sensitivity (%) Specificity (%)
Positive Predictive

Value (%)
Negative Predictive

Value (%)
Accuracy (%) Kappa

Landsat-8 58 28.6 62.5 66.6 60 0.167
Sentinel-2 64.3 28.6 80.8 100 66.7 0.299

ASTER 73.2 71.4 73.2 71.4 73.3 0.464
Data-Integration 72.3 57.1 75 80 73.3 0.454

Taking the cost of mineral exploration in the real world into counts, it is impractical
to make a decision based on prospective tract delineation from the classification scenario
(i.e., probability > 0.5) [3]. Therefore, it is essential to assess the predictive performance of
high-probability zones using ROC curve. Figure 13 shows ROC curves and AUC values of
various MLAs trained by four different input datasets. The closest ROC curve to the top
left corner belongs to the data-integration dataset, whereby the AUC value is 0.938. Both
ASTER and Sentinel-2 have AUC values of 0.875, which clarifies that both datasets have
comparable prediction performance. Landsat-8 performs the weakest predictive capability
with AUC value of 0.625.
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Figure 13. ROC curves showing AUC value of each RF model trained by Landsat-8, Sentinel-2,
ASTER, and data integration datasets.

For a better understanding of the spatial distribution of Au deposits, and delineating
exploration target areas, it is important to reclassify the MPM probability score into different
levels (very high, high, moderate, and low). This can be achieved by classifying the success-
rate curve based on the variations in the curve slope using four regression lines. The higher
predictive region is defined by the steeper slope. Figure 14 shows the success-rate curves
of four RF MPMs derived from different datasets, while the classified maps are displayed
in Figure 15. The steepest curve is achieved by data-integration dataset, which indicates
that this data predictive performance has the ability to define a smaller prospective area
compared with datasets. The very high potential class of the data-integration identifies
about 70.6% of the deposits in 11.5% of the total area. However, ASTER dataset was able to
identify all of the occurrence locations in 33.3% of the total area, which is 4.5% lower than
the total area that captured all occurrences in the MPM of data-integration. The total area of
capturing all deposits is larger in the case of Landsat-8 and Sentinel-2, which are 47.2 and
42.1, respectively. As it is displayed in Figure 14a, the curves of ASTER and Landsat started
similarly with a high angle, but they quickly become less steep by increasing the percentage
of cumulative area. Hence, about 35% of the occurrence are captured in approximately
3.5% of the study area.
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Figure 14. Success-rate curves of RF predictive maps trained using various datasets: (a) all success-
rate curves; (b–e) curve of Landsat-8, Sentinel-2, ASTER, and data integration, respectively.
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Figure 15. Reclassified gold prospectivity maps based on threshold values derived from success-rate
curves: (a) Landsat-8; (b) Sentinel-2; (c) ASTER; (d) data-integration.

5. Discussion

The discovery of new prospective areas is deliberated as the most significant issue
in mineral exploration. MPM has been successfully used to integrate geological features
derived from multisource data to outline new undiscovered mineral deposits. Although
remote sensing data represent a great source for recognizing surface alteration and other
geological features (e.g., lineament and lithology), they have not yet been fully investigated
as the main core of the input data for training mineral prospectivity predictive modeling.
The comparison of Landsat-8, Sentinel-2, ASTER, as well as data fusion, for training
714 RF data-driven predictive model is successfully illustrated in the present study. The
main findings are discussed below.

Several remote sensing enhancement techniques including BR, MNF, and PCA, have
been employed in this study for generating predictor maps. MNF imagery is the only data
used to produce color composite images, where the detection of altered rocks is specified
by color tones. The selection of three MNF bands to composite images in RGB is the
only subjective procedure in the study, which mainly depends on visual judgment and
prior knowledge of hydrothermal alteration. Other methods are employed to produce
grey-scale predictor maps, where the alteration zones or minerals are presented by the
bright regions (higher value) of that image. These methods were extensively and suc-
cessfully used in prior literature for mapping alteration zones associated with mineral
deposits, which mainly depend on the spectral signatures of hydrothermal alteration
minerals [29,31,39,68–70,82]. In this regard, all three multispectral sensors data have the ca-
pability to detect hydroxyl-bearing and iron-oxide minerals in general. Clay and carbonate
minerals including kaolinite, alunite, muscovite, calcite, and dolomite, have high reflectance
near 1.6 μm and absorption near 2.2 μm [15,61]. This reflectance signature relatively coin-
cides with band 6 of Landsat-8, band 11 of Sentinel-2, and band 4 of ASTER, meanwhile, the
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absorption signature coincides with band 7 of Landsat-8, band 12 of Sentinel-2 and band 6
of ASTER. Therefore, these were employed to map OH-bearing minerals using BR method
(Landsat-8: 6/7; Sentinel-2: 11/12; and ASTER: 4/6) and selective PCA method as well
(Landsat-8: 2,5,6,7; Sentinel-2: 2,8a,11,12; and ASTER: 1,3,4,6). Likewise, iron (ferric and
ferrous)/iron-oxide minerals, such as hematite, jarosite, and goethite, display significant
absorption features in the VNIR region (from 0.4 μm to 1.3 μm) [61,83]. Specifically, iron-
bearing minerals have two absorption features near 0.5 μm and 0.87 μm, which perfectly
corresponds to bands 2 and 5 of Landsat-8, and bands 2 and 8a of Sentinel-2 [69,84]. Unfor-
tunately, ASTER can only detect one diagnostic absorption feature near to 0.5 μm (band 2),
due to its course spectral resolution in the VNIR region. Due to its higher spectral resolution
in the VNIR than ASTER data, and its higher bandpass than Landsat-8, Sentinel-2 data
have potential for MPM similar to ASTER data and greater than Landsat-8 data.

Unlike the limited capability of Landsat-8 and Sentinel-2 to map alteration minerals
(mapping OH-bearing minerals in general), the higher resolution of ASTER data in the
SWIR region allows it for detailed mapping of the hydrothermal alteration zones. Di-
agnosing Al-OH and Mg-OH groups of minerals helps define different alteration zones.
The argillic alteration zone which is characterized by kaolinite and alunite minerals has a
double absorption signature at 2.16 μm and 2.2 μm, which coincide with bands 5 and 6,
respectively [15]. These bands, therefore, are used to enhance argillic to advance-argillic
zone using 4/5 BR, (4 + 6)/5 RBD, and PCA (using bands 1, 4, 6, and 7). Identifying kaolin-
ite and alunite minerals can be achieved using KLI and ALI mineral indices, respectively.
The phyllic alteration can be recognized by the muscovite mineral, which shows double
absorption features at 2.17 μm and 2.2 μm. The absorption at 2.2 μm (coinciding band 6) is
stronger than that at 2.17 μm (coinciding band 5) [39]. This spectral feature is employed to
map phyllic alteration using only two methods, which are (5 + 7)/6 RBD, and PCA using
bands 1,3,5, and 6. For the optimum discovery of Mg-OH group minerals (e.g., chlorite,
epidote, and calcite), band 8 is employed to detect such minerals. These minerals repre-
sent the propylitic alteration zone, which has a spectral absorption feature near 2.33 μm
(coinciding with band 8). This high absorption property is used to detect propylitic zone
using different methods, including propylitic RBD (6 + 9/7 + 8), calcite mineral index (CLI
= (6/8) * (9/8)), and PCA (using bands 1,3,5, and 8). Although thermal bands of ASTER
are not used in this study, they can be utilized to extend the number of predictor maps.
TIR region helps identify minerals at the surface with specific emissivity and absorption
features [37,65]. For example, silicate and carbonate can be mapped using BRs 13/12 and
13/14, respectively [24,66]. Moreover, Quartz Index (QI = 11 * 11/10 * 12) can be used as a
predictor in the case of gold associated with Quartz dykes/veins [66]. It can be concluded
that the possible number of predictor maps that are produced using ASTER data, is about
11 higher than those derived from other remote sensing data. Subsequently, this could be
the main reason why ASTER dataset outperforms Landsat-8 and Sentinel-2 datasets in the
classification performance of the MPM in the study area.

Since RF is trained using different input variable data, it is essential to assess the spatial
association between these predictor variables and the gold occurrence (target variables).
In the present study, predictor variables are produced from (i) different sources including
geological and remote sensing data; (ii) different multispectral sensors including Landsat-
8, Sentinel-, and ASTER; (iii) different processing methods including spatial analysis
methods and remote sensing enhancement techniques. Hence, it is critical to measure the
influence of each predictor variable on the prediction performance. As mentioned earlier,
RF algorithm ranks the importance of the feature variables according to their marginal
effect on the target variables [34]. Graphs in Figure 16 illustrate the importance of input
feature variables in each dataset. Through all datasets, the most important geological-based
predictor variable turns out to be lineaments. In both Landsat-8 and Sentinel-2 datasets,
the lineaments density map yields the first rank of importance, while it comes second after
propylitic RBD in ASTER and data-integration datasets. The second prominent pattern
of the geological predictors through all datasets is that the distance from NW- faults is
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more important than the NE- faults, which indicates that the spatial association of known
gold occurrences is much closer to NW-SE trending faults. RF did not vote for a specific
enhancement technique method to be highly distinct from other methods. However,
it can be noticed from data-integration dataset that four out of the first five important
predictors are produced by the rationing technique. Predictor maps indicating iron-bearing
minerals are much more important than those corresponding to hydroxyl-bearing minerals
in Landsat-8 and Sentinel-2 datasets. In ASTER dataset, predictors of propylitic alteration
zone are significantly more important than other alteration zones, since the propylitic RBD
and calcite BR (4/7) are ranked as the first and the fourth important features. It can be
noticed that mineralogical indices are relatively less important than other enhancement
techniques. It is important to mention that predictors from different remote sensing sensors
are highly representative in data-integration dataset. In other words, the rating of features’
importance is roughly distributed between different remote sensing data.

 

Figure 16. RF model important feature analysis results: (a) Landsat-8; (b) Sentinel-2; (c) ASTER;
(d) data integration (Symbol ‘L’ represents Landsat-8; ‘S’ represents Sentinel-2; ‘A’ represents ASTER).
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6. Conclusions

The investigation of various multispectral remote sensing data capabilities was carried
out to produce mineral prospectivity map for gold mineralization in the Hamissana area,
NE Sudan. Based on the combination of geological-based predictor maps (proximity to
intrusion and faults, and density of lineaments) with remote sensing-based predictor maps
(BR, PCA, and MNF), four input datasets including Landsat-8, Sentinel-2, ASTER, and
data-integration datasets were prepared. The random forest algorithm was used as an
objective tool for comparing the capabilities of various datasets.

As it is demonstrated by the comparison results and discussion, we conclude that
Sentinel-2 and ASTER multispectral data have greater potential for mineral prospectivity
modeling than Landsat-8. Both datasets achieved 0.875 AUC, while the overall classification
accuracy of ASTER dataset (73.3%) is higher than Sentinel-2 (66.7%). Data-integration
dataset boosts the prediction performance of RF up to (AUC: 0.938). The density of the
lineaments plays a significant role in the prediction performance in all datasets.

Modeling results using different datasets suggest several prospecting regions. Nev-
ertheless, considering the uncertainty of remote sensing data and MPM results, further
geological investigation and exploration should be taken into account. Specifically, drilling,
geophysical and geochemical surveys, and 3D modeling techniques are essential for future
work and further accurate targeting.

In our future research, we plan to compare current multispectral remote sensing data
with other data from multiple sources (e.g., comprehensive geochemical survey, gravity,
and magnetic geophysical survey), which are not available at present. Moreover, we would
like to conduct a comprehensive comparison using other machine learning algorithms
such as a support vector machine and an artificial neural network. Finally, other deep
learning techniques are preferable to be applied also in MPM, since deep learning is still a
hot research topic in several geoscience fields.
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Abstract: Revealing prospective locations of hydrothermal alteration zones (HAZs) is an important
technique for mineral prospecting. In this study, we used multiple criteria inferred from Landsat-8
OLI, Sentinel-2, and ASTER data using a GIS-based weighted overlay multi-criteria decision analysis
approach to build a model for the delineating of hydrothermal mineral deposits in the Khnaiguiyah
district, Saudi Arabia. The utilized algorithms revealed argillic, phyllic, and propylitic alteration
characteristics. The HAZs map resulted in the identification of six zones based on their mineralization
potential, providing a basis for potential hydrothermal mineral deposit assessment exploration, which
was created by the fusion of mineral bands indicators designated very low, low, moderate, good, very
good, and excellent and covers 31.36, 28.22, 20.49, 10.99, 6.35, and 2.59%. Based on their potential for
hydrothermal mineral potentiality, the discovered zones match gossans related to sulfide mineral
alteration zones, as demonstrated by previous studies.

Keywords: mineral exploration; ASTER; OLI; Sentinel-2; GIS; Khnaiguiyah; Saudi Arabia

1. Introduction

Remote sensing techniques have provided valuable tools for characterizing and delin-
eating geological, structural, and lithological features that have aided in the identification
of mineralization regions [1,2]. Because of its fine geospatial, radiometric, and spectral
resolution, remotely sensed data provides significant information for mineral exploration.
One of the main aims of remote sensing investigations is the delineation of hydrothermal
alteration zones and the identification of the mineralogical signature [1,3,4]. Hydrothermal
alteration zones (HAZs) and their grade must be characterized in order to identify possible
mineral resource locations [1,2,5,6]. This is due to the fact that such a process is frequently
linked to the economic concentration of base metals like Au, Cu, and Ag. Several studies
were conducted using multispectral remotely sensed data to characterize the extent of the
hydrothermally altered areas and to identify the minerals forming zones [3,7–15].

Data from satellites can be used to detect new prospects prior to detailed and ex-
pensive ground research [4,15]. Landsat Operational Land Imager (OLI) and Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images were used to
process and analyze remote sensing multispectral datasets. Electromagnetic (EM) radiation
reflected, transmitted, or backscattered from the Earth’s surface is sensitive to remote
sensing devices such as OLI and ASTER. With passive or active systems, remote sensing
sensors can monitor wavelengths of EM radiation in the visible near-infrared and short-
wave infrared (VIS/NIR/SWIR) to microwave. Landsat satellite image data have been
utilized for lithologic mapping using image transformation techniques [7,8,16–18].
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Although Landsat data had been widely used in characterizing hydrothermal alter-
ation zones for decades [8,9,19,20], the introduction of the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) data in 1999 added meaningful data to the
research area of mineral deposits [5,11,12,15,21]. This is due to the fact that, as compared to
Landsat data, such data have better spectral, spatial, and radiometric resolutions, allowing
for greater information regarding mineral properties.

The capacity of ASTER (e.g., SWIR) spectral bands to distinguish the alteration zones
was tested using a variety of methodologies, including band ratios, principal component
analysis (PCA), and spectral analysis [5,13,14,21,22]. To improve the spectral disparities
across bands and eliminate topographic effects, band ratios were adopted [7,8,13,23]. Min-
eral indices [11,12,22] and relative absorption band depth (RBD; [24]) were also used.
Despite the fact that band ratios, PCA, and RBD have been successful in delineating
hydrothermal alteration zones. Many studies have used the band ratios technique to
distinguish between different rock units or minerals [4,6].

Because earlier studies did not have such data to use, little emphasis was made on
delineating alteration zones and extracting certain important hydrothermal minerals linked
with the above-mentioned deposits utilizing remote sensing data in the study area. ASTER
spectral bands are thus used in this study to identify the alteration zones associated with
Zn-Cu deposits and extract the major hydrothermal alteration zones. This is performed in
order to identify prospective mineralization sites in the study area.

Using a GIS-based process to develop mineral development capabilities based on
remote data has thus become a rapid and accurate tool for identifying target areas for
mineral exploration [4,25], particularly during the reconnaissance stage. Developments
in revealing promising areas of hydrothermal mineral resources have been made with
the emergence of GIS-based spatial analytic tools [26–29]. This is because employing a
GIS method to integrate spatially distributed remote-sensing data is a key approach to
mineral exploration since it allows for the combination of different data utilizing digital
overlay methods to optimize mineral prospection maps [30]. The GIS-based knowledge-
driven technique, for example, is effective in producing predicted maps based on expert
opinion [25] since each GIS predictive layer is given a weight that reflects its value in
the process.

Prior to the advent of high spectral resolution, multi-spectral sensors, it was challeng-
ing to detect alteration zones linked with hydrothermal deposits like those associated with
the Khnaiguiyah Zn mineralization. Three sensors’ data, e.g., ASTER, Sentinel-2, and OLI
spectral bands, are thus used in this study to identify the alteration zones associated with
sulfide deposits and extract the major hydrothermal alteration zones. This is performed in
order to identify prospective mineralization regions in the Khunayqiyah region.

2. Study Area

The present study is a part of Arabian Shield, Khnaiguiyah, Saudi Arabia. It ex-
tends between latitudes 24◦13′25.48′′ and 24◦17′43.72′′ and longitudes 45◦2′47.90′′ and
45◦6′58.37′′, covering an area of about 57 sq km.

The district of Khnaiguiyah is located at the eastern periphery of the Arabian Shield
(Figure 1), which is the exposed Precambrian basement of the Arabian Plate. The Arabian
Shield (ANS) is the northernmost extension of the East African Orogen [31,32] and consists
of a collage of tectonostratigraphic terranes with ensialic and ensimatic arc affinities [33,34].
The convergence of East and West Gondwana caused the terrane amalgamation/accretion
during the Pan-African event (780–600 Ma) [34]. The final suturing (680–610 Ma) of
the ANS coincided with the development of the Nabitah fault zone, gneiss domes, and
massive Molasse basins [35,36]. The NW–SE trending Najd fault system/Najd Orogeny
(620–540 Ma) subsequently formed due to escape tectonics concomitant with the assem-
bly of the Gondwana supercontinent [37,38]. By the Cambrian (541 Ma), the ANS was
established as a stable juvenile continental block forming the northeastern margin of Gond-
wana [39].
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Figure 1. (a) General geologic map of the Arabian Peninsula showing the location of the Khnaigu-
iyah mineralized district; (b) simplified geologic map of the Khnaiguiyah area denoting the main
mineral occurrences.

Khnaiguiyah Zn–Cu deposits represent a substantial zinc resource and attracted
considerable exploration efforts in the last three decades [40]. The four ore bodies of the
Khnaiguiyah district comprise mineable reserves of up to 11 Mt averaging 7.41% Zn and
0.82% Cu [41]. Khnaiguiyah-type deposit features are consistent with metamorphism and
deformation of volcanogenic massive sulfide (VMS) mineralization; the related stratiform
Mn-rich units are mainly suggestive of a seafloor hydrothermal setting.

The Khnaiguiyah ores are hosted by the Shalahib Formation (1500 m thick), which
is made up of felsic volcano-sedimentary rocks interlayered with carbonates [42]. The
Shalahib formation predominantly comprises andesite and rhyolite volcanic rocks and asso-
ciated pyroclastics and ignimbrites, and the whole sequence is affected by low-temperature
greenschist-facies regional metamorphism. The Khnaiguiyah deposit lies within an area
of 3 × 3 km. Four mineralized orebodies are interpreted hydrothermal mineral deposits
containing Zinc and Copper that are hosted by strongly sheared and folded late Proterozoic
medium to felsic volcanics/volcaniclastics. The shear zones, which are tens of meters
thick, are oriented NS and dip 10 to 70 to the west. The hydrothermally altered rocks
occur within discontinuous anastomosed bands 50 to 100 m wide and several Kilometers
long and are regionally oriented along with the north–south regional foliation. Detailed
analysis of surface and drill-core samples shows that the hydrothermal alteration zones
and associated Zn-Cu-Fe-Mn mineralization are controlled by a shearing deformation
phase that post-dated the first phase of regional folding. The hydrothermal alteration zone
contains illite, kaolinite, quartz, albite, hematite, and calcite.

At this locality, the Precambrian basement is overlain by the basal conglomerates
and cross-bedded red sandstone of the middle Cambrian Saq formation, which is in turn
overlain by the Permo-Triassic shallow marine carbonates of the Khuff formation.

3. Data Used and Methods

This study used visible/infrared satellite-derived imagery to characterize mineraliza-
tion associated with hydrothermal alteration zones. Landsat 8-OLI, Sentinel-2, and ASTER
data (Figure 2) were all employed to detect altered features and structural patterns. A
comparison of these sensors is shown in Figure 2 [19].
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Figure 2. Comparison between ASTER, Landsat 8, and Sentinel-2.

On 11 February 2013, the Landsat-8 (OLI) satellite was launched. Landsat-8 scene
dimension is 85-km-cross-track-by-180-km-along-track. There are nine VIS/NIR and SWIR
ranges reported, as well as two longwave thermal ranges. The pixel size of OLI channels
was stated to be 30 m; however, TIRS has a spatial resolution of 100 m. The quantization
level is 12-bit data that permits additional bits to be used to acquire optimal data, enabling
the assessment of minor surface disturbances. Landsat-OLI scene (path/row 166/43; ID:
LC08_L1TP_166043_20211209_20211215_01_T1) that was acquired on 9 December 2021.

NASA and METI (Japan’s Ministry of Economic Trade and Industry) deployed ASTER,
an advanced multispectral satellite imaging system, onboard the TERRA spacecraft in
December 1999. NASA’s Land Processes Distributed Active Archive Centre provided
the ASTER data (LP DAAC). ASTER data includes spectral ranges in the visible and
near-infrared (VNIR), shortwave infrared (SWIR), and thermal infrared (TIR): three bands
(with 15 m spatial resolution) in the VNIR, six bands (with 30 m spatial resolution) in the
SWIR, and five bands (with 90 m spatial resolution) in the TIR (TIR). In this investigation,
the ASTER SWIR spectral bands (30 m spatial resolution) are used to measure between
~1.60 and 2.45 μm to allow discriminating between Al-OH, Fe, Mg-OH, H-O-H, and CO3
absorption features [43].

Preprocessing of the obtained ASTER scene (ASTER data ID: ASTB061106074035)
included cross-talk correction and data orthorectification using the ENVI software appli-
cation. Using ENVI v.5 software, the Log-residual (LR) technique was used to calibrate,
normalize, and decrease noise from sensors and solar illumination in SWIR bands [2,14].
On ASTER data, this approach was used to remove atmospheric and topography impacts.
As a result, the data became more reflective of the target area’s composition and lithology. It
was also possible to compare the retrieved endmembers of SWIR bands to reference spectra
from the spectral library of the United States Geological Survey (USGS). This approach was
used to reveal minerals using SWIR data [14,44].

On 23 June 2015, the Sentinel-2A satellite was launched, and the first data was
taken a few days later. Sentinel-2 sensors gather data in the VIS/NIR, and SWIR, TIR
wavelength ranges. These bands have a spatial resolution of 10–60 m. Sentinel-2 cap-
tures 13 bands in the VIS/NIR and SWIR spectrum. The VIS/NIR bands: blue B2
(490 nm), green B3 (560 nm), red B4 (665 nm), and infrared B8 (842 nm) have a 10 m
pixel size, whilst the coastal band B1 (443 nm) has a 60 m pixel geometry. The pixel
sizes of the SWIR bands (B11: 1610 nm, B12: 2190 nm) are both 20 m. Sentinel-2 scene
(S2A_MSIL1C_20211221T073331_N0301_R049_T38QNM_20211221T084355) is delivered as
zip-compressed files in Sentinel’s own SAFE format. The spectral bands are stored as jpg
files in this SAFE file in three different geometric resolutions (10 m, 20 m, and 60 m. The
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jpg files of bands B2, B3, B4, and B8 with a spatial resolution of 10 m, and B11 and B12 with
20 m are stacked into a single GeoTIFF file of a uniform pixel size of 10 m. A subset of these
data was conducted during preprocessing using SNAP software in order to minimize the
computational time and the data.

To analyze multispectral data, several methods have been used, including PCA,
the utilization of band ratios, relative absorption band depth (RBD; 24), and mineral
indices [11,12,22], as well as spectral analysis. Band ratios have been employed to investi-
gate spectral differences between bands and to reduce topographic impacts [7,8,23,45]. The
intensity of the hydrothermal activity can be used to reveal hydrothermal mineral assem-
blages [13,28]. Sub-pixel spectral classifications can thus be attributed to specific important
hydrothermal minerals associated with propylitic (epidote, chlorite, calcite), phyllic (mus-
covite, sericite, illite), argillic (montmorillonite, kaolinite, dickite), and advanced argillic
(alunite–pyrophyllite) alteration zones.

The band ratio is a transformation procedure for enhancing spectral differences in
remote sensing data. It works by dividing pixels from one band by pixels from another
band [46] and sometimes dividing bands of the numerator or/and denominator after
mathematical calculation. The goal of this technique is to reveal the spectral characteristics
of material so that variables on Earth’s surface can be distinguished better [47]. Band ratios
can be used to distinguish between soils, rock types, and land use effects [48–51]. The
ENVI software and ArcGIS software packages v. 10.8 are utilized in the present study. The
PCA process has been used to transform a large number of correlated spectral bands into
a smaller number of uncorrelated spectral bands, which is a statistical approach used in
image transformation. In the mapping of hydrothermal potential alteration zones, the
selective “principal components” (PCs) technique has been frequently used [5,15]. Based on
the eigenvectors of the selected bands, statistical parameters were examined to determine
which PC image could be utilized to emphasize the particular minerals.

Spectral mapping was used to differentiate mixed pixels from unwanted pixels during
the mineral extraction process. This enabled the mapping and identification of possible
minerals based on the end member’s spectral signature in comparison to those in the spec-
tral library [5,14]. The MNF transformation [52] was used to derive a PPI that represented
the input image’s most spectrally pure pixels. This was utilized to detect endmembers
using n-D visualization for mineral identifications based on spectral classifications. Using
MNF and PPI, the n-D visualize viewer can locate, characterize, cluster (group), and pick
the purest pixels (endmembers) in n-spaces. Each class indicated a mineral with a high
absorption capacity.

Digital overlay approaches have been utilized to create integrative maps using Geo-
graphic Information System (GIS) technologies [28,29,53]. Predictive maps have also been
created using knowledge-driven systems using weighted overlay analysis of ArcGIS that
integrate multi-criteria decision-making based on expert judgment [30,54]. Each evidential
image was reclassified into five classes using the Natural Breaks method; the class of high
intensity of hydrothermal alteration is given “5” and the opposite given “1. As a result, the
final prospective map can be created by combining several evidential maps [54].

4. Results

4.1. Lithologic and Structural Characteristics

Goethite, hematite, and jarosite are examples of iron minerals that have diagnostic
spectral characteristics near 0.43 m, 0.65 m, 0.85 m, and 0.93 m, which are close to Sentinel-
2 band 1, band 4, band 8/8A, and band 9 [55]. Moreover, both hematite and jarosite
exhibit reflectance characteristics near 0.72 m and 0.74 m, which are both close to Sentinel-2
band 6. Hematite also displays a distinguishing absorbance pattern at a wavelength of
0.88 m, which corresponds to Sentinel-2A band 8A. Thus, Sentinel-2 band ratios of 6/1,
6/8A, and (6 + 7)/8A were utilized to distinguish hematite + goethite, hematite + jarosite,
and a mixture of iron-bearing minerals (see more information on iron mineral spectra in
Ge et al. [55]) from felsic or sedimentary deposits in red from basement mafic to intermediate
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variations in cyan (See Figure 3a) as they contain ferromagnesian minerals [2]. Sentinel-
2 (Figure 3b) uses 11/8A, 3/4, and (6 + 7)/8A of ferric, ferrous, and a combination of
iron-containing minerals to indicate likely areas rich in hydrothermal alteration in purple,
mafic varieties in yellow, and sedimentary deposits in the northeast in red-orange, but
vegetation in green. Images from the Sentinel-2 satellite (Figure 3c) 11/12, 11/8A, and
(6 + 7)/8A displayed white-toned patches in HAZs [2]. The study’s heights (Figure 3d) vary
from 789 to 933 m above sea level, and the majority of the structural patterns are visible at
these elevations.

Figure 3. (a) band ratio 6/1, 6/8A, and (6 + 7)/8A; (b) 11/8A, 3/4, and (6 + 7)/8A; (c) 11/12, 11/8A,
and (6 + 7)/8A; (d) DEM derived from Geo-Eye data.

4.2. Hydrothermal Alteration Zones
4.2.1. Landsat-8

Band ratios are used to enhance hydrothermally altered zones and the oxidation zone
that reflects the abundance of certain minerals. Band ratios 6/7, 6/2, and 6/5 * 4/5 [16]
were employed to improve the identification of rocks and minerals based on content
mineralogy (Figure 4a,b). Band ratio 6/7 is susceptible to OH-bearing minerals, and band
ratio 6/2 highlights rocks rich in FeO composition, so mafic igneous rocks have lower
reflectance than other igneous rocks; and band 6/5 * 4/5 is useful to distinguish between
mafic and non-mafic rocks based on their sensitivity to high Fe-bearing aluminosilicate
concentration. Iron-bearing minerals and OH-bearing minerals are abundant in these areas.
Sultan et al. [16] demonstrated that rationing in the 6/5 * 4/5 band is possible. Sultan
et al. [16] use the sensitivity of the ratio to Fe-bearing aluminosilicates to distinguish mafic
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rocks (bluish color) from other rocks. Ramadan et al. [56] revealed the potential locations of
hydrothermal mineral deposits in 6/7, 6/5, and 5 (Figure 4c,d). Using the band ratios 6/7,
4/2, and 5/6 in R, G, and B [7], felsic rocks are colored green, mafic rocks are colored blue,
and areas of extensive hydrothermal alteration are colored light pink, yellow, and light red
(Figure 4a,c,e, respectively). The 6/7 ratio emphasizes hydrothermal alteration and surface
weathering oxides and hydroxides [23,57,58]. Clay minerals have a high Band 6 reflectance
and a strong Band 7 absorption [10,58]. The 4/2 ratio is important for detecting iron
oxide-bearing rocks (Figure 4e) due to considerable absorption in Band 2 and reflectance
characteristics in Band 4 for iron oxides [7]. The felsic rocks in 4/2 appear in green color.

1 
 

 

Figure 4. (a) Band ratios 6/7, 6/2, and 6/5 * 4/5, (b) reclassify of 6/7, 6/2, and 6/5 * 4/5, (c) 6/7,
6/5, 5 of Ramadan; (d) reclassify of 6/7, 6/5, 5; (e) Band ratios composite (6/7, 4/2, 5/6) Abrams;
(f) reclassify of (6/7, 4/2, 5/6).
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4.2.2. Sentinel-2

As shown in (Figure 5a), [59] offered three band ratios in R, G, and B: 11/12, 11/8, and
4/2. These band ratios were utilized in this research to distinguish the alteration zones.
These ratios are proportional to the occurrence of OH-bearing minerals (11/12), iron oxides
(4/2), and the band ratio 6/5, which is utilized to enhance the presence of ferrous oxides.
Metavolcanics are colored green in this ratio, indicating high ferrous oxide content. Some
wadi deposits have a purple tint due to the occurrence of clay minerals and iron-bearing
minerals in high concentrations. The locations of probable HAZs are revealed in a yellow
color due to their high presence of clay and ferrous oxides.

Figure 5. Sentinel-2 (a) Band ratios 11/12, 11/8, and 4/2; (b) reclassify of 11/12, 11/8, and 4/2;
(c) 11/12, 11/2, and 11/8 * 4/8; (d) reclassify of 11/12, 11/2, and 11/8 * 4/8.

To improve the identification of rock units based on mineral content, ratio bands of
11/12, 11/2, and 11/8 * 4/8 [16] were used (Figure 5b,c). Band ratio 11/12 is amenable to
OH-bearing minerals; band ratio 11/2 is associated with the content of opaque minerals
(e.g., FeO) in rocks, so mafic rock types have lesser reflectance than some other igneous
rocks; and band 11/8 * 4/8 can be used to distinguish between mafic and non-mafic rocks
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based on their sensitivity to high Fe-bearing aluminosilicate concentration. Iron-bearing
minerals and OH-bearing minerals are widespread in such regions.

4.2.3. ASTER

The OH-bearing minerals have reflectance at 1.656 μm (band 4). The argillic minerals
(montmorillonite and kaolinite) contain absorption features at 2.205 (band 6), and kaolinite
display double-shaped absorption features around 2.165 (band 5) and 2.205 (band 6), in
contrast to phyllic minerals (muscovite and illite), which have a single deep absorption
feature at 2.205 (band 6) (Figure 6; from Mars and Rowan [3]). Propylitic minerals with a
2.335 m absorption characteristic. This most likely matches minerals like calcite and chlorite
that contain CaCO3 or Mg-OH [3].

Figure 6. Mineral spectra of minerals and ASTER bands.

The ASTER band ratios 4/6, 4/5, and 4/7 boost argillic and sericitic alteration zones,
respectively [6]. Furthermore, in these images, the ASTER– 4/5 band ratio defines the
advanced argillic alteration (e.g., alunite and dickite). As a result, the combination of band
ratios 4/6, 4/5, and 4/7 in R, G, and B of ASTER is utilized to depict HAZs. Figure 7
depicts the classification of these combined ratios into five ranks of hydrothermal alteration,
with the highest rank (0.60–0.64) in red, denoting locations with both argillic and sericitic
regions of alteration.

Figure 7c,d shows the results of merging band ratio images 4/6, 7/6, and (5 + 7)/6.
Regions richer in white mica were identified using the band ratio of 7/6. Using such ratios,
locations rich in Al-OH minerals are depicted in a white tone. The largest band ratios of
4/6 and 7/6 refer to the phyllic zone [60], and the values of (5 + 7)/6 are also true. The
green-colored area has less hydrothermal alteration than the first, but pink-colored portions
have the least amount of HAZs. Band ratios 4/6 in this composite highlight the white tone’s
alteration zones (Figure 7). Furthermore, band ratios of 7/6 were applied to determine the
areas of an abundance of Al-OH minerals as white mica (muscovite) as revealed in white
tone, which occupies the middle part of the present study area (Figure 7).
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Figure 7. ASTER (a) band ratios 4/6, 4/5, and 4/7; (b) reclassify band ratios 4/6, 4/5, and 4/7;
(c) 4/6, 7/6, and (5 + 7)/6; (d) reclassify 4/6, 7/6, and (5 + 7)/6.

The contrast between hydrothermally altered zones was emphasized by the combina-
tion of band ratios (5 + 7)/6, (4 + 6)/5, and (7 + 9)/8 in R, G, and B, respectively (Figure 8a).
This allowed areas richer in phyllic, argillic [6,61], and propylitic minerals to be detected,
respectively. In this combination, yellow areas revealed argillic and phyllic hydrothermal
alterations. PCA was used to map areas of argillic hydrothermal alteration using ASTER
bands 4, 5, and 6b. Table 1 shows the eigenvector values obtained using the specific bands
(B4, B5, and B6) for the PCA method (Table 1). PC2 indicates a negative loading of band 4
(−0.780) and a positive loading of bands 5 (0.605) and 6 (= 0.157) according to eigenvector
loadings. The locations of hydrothermal alteration are revealed in a white tone when
negated (multiplied by −1) PC2 is displayed in greyscale (Figure 8b).
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Figure 8. ASTER (a) band ratios composite (5 + 7)/6, (4 + 6)/5, and (7 + 9)/8 in R, G, and B;
(b) OHI, KAI, and ALI in R, G, and B; (c) Negated PC2 of selected bands 4, 5, and 6; (d) subset
of “c” image overlain by extracted interest pixels of Scattergram of the ASTER derived bands
5 + 7/6 ‘Al-OH content’ vs. bands 5/7 (outside absorption) ‘Al-OH composition’ (Cudahy et al.
2008) in “(e)”. The AL-OH area rich in minerals marked in red are consistent with the areas of high
hydrothermal alteration.
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Table 1. PCA of selected bands 4, 5, and 6.

Eigenvector Band 4 Band 5 Band 6 Eigenvalue

PC1 −0.5646 −0.57235 −0.59468 99.923

PC2 −0.7798 0.605985 0.157136 0.057

PC3 −0.27043 −0.55245 0.788457 0.021

The band ratios OHI, KAI, and ALI were integrated into R, G, and B to distinguish be-
tween potential sites of argillic and phyllic alteration. The areas of increased hydrothermal
alteration are congruent with structural features associated with granitic rocks, according
to the classifications of these combined values. Each fraction’s greatest value is denoted
by a white tone. The minerals indices OHI, KLI, and ALI were displayed in R, G, and B,
respectively (Figure 8c), and locations with abundances of the three indices of OHI, KAI,
and ALI are emphasized in white tone.

OHI bearing altered minerals Index (OHI) = [band 7/band 6] × [band 4/band 6]
Kaolinite Index (KLI) = [band 4/band 5] × [band 8/band 6],
Alunite Index (ALI) = [band 7/band 5] × [band 7/band 8]
A subset image of PC2 (Figure 6d) is overlain by extracted interest pixels derived

from the scattergram (Figure 6e). A two-dimensional (2D) scatter plot of band ratios
(5 + 7)/6 (Al-OH content) vs. 5/7 (Al-OH composition) was used to explore ASTER Al-OH
composition [62]. The diagram’s extreme far bottom right side indicated regions with no
Al-OH minerals, whereas the extreme top left side of the diagram revealed places with no
Al-OH minerals. Cudahy et al. [62] found that plotting band ratios (5 + 7)/6 (Al-OH content)
vs. 5/7 (Al-OH composition) clearly separated areas rich in Al-OH from those with no
Al-OH, confirming prior findings. Higher values, indicating higher Al-OH concentrations,
are highlighted in red and correspond to locations of significant hydrothermal alteration.
As illustrated by the green in Figure 8e, this area was clearly delimited by lower Al-OH
concentration and higher Mg-OH content.

5. XRD Analysis of Hydrothermal Alteration Zones

Samples were taken from the two main alteration zones (Figure 9), and 21 represen-
tative specimens were selected for XRD analysis at the National Research Center (Egypt).
The results of the analyses revealed the presence of silica minerals (mostly quartz), gypsum,
anhydrite, kaolinite, illite, clinochlore, and hematite, with a small percentage of microcline,
calcite, and halite (Tables 2 and 3). Clay minerals (kaolinite, illite, sericite) in these zones
are mainly the products of the decomposition of plagioclase feldspar, and the presence
of ferric iron oxides and hydroxides (hematite, goethite) is related to the weathering of
ferromagnesian minerals (mostly hornblende and clinopyroxene). The abundance of sul-
fates in the form of gypsum and anhydrite is highly indicative of the former presence of
disseminated sulfide phases, which is compatible with these zones being either mature
gossans or conduits within the feeder zones beneath massive sulfide mounds.
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Figure 9. (a) Mineral perspective map of the study area; (b,c) Maps show sample locations that were
selected for XRD analysis. A shows sample location for Table 2. B shows the samples location for
Table 3.

Table 2. The results of XRD analysis; see Figure 9b for the location map.

Sample Name Compound Name Chemical Formula Vol %

A1

Quartz SiO2 25.8
Gypsum CaSO4·2H2O 61.9

Illite K0.5(Al,Fe,Mg)3Si,Al)4O10(OH)2 9.7
Anhydrite CaSO4 2.6

A2

Quartz SiO2 5.7
Gypsum CaSO4·2H2O 90.2
Kaolinite Al2Si2O5(OH)4/Al2O3·2SiO2·2H2O 3.0

Anhydrite CaSO4 7.1

A3

Quartz SiO2 43.1
Kaolinite Al2Si2O5(OH)4/Al2O3·2SiO2·2H2O 18.9

Illite KAl2Si3AlO10(OH)2 31.5
Anhydrite CaSO4 6.6

A4

Quartz SiO2 62.50
Gypsum CaSO4·2H2O 12.30

Illite KAl2Si3AlO10(OH)2 18.8
Hematite Fe2O3 6.4
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Table 2. Cont.

Sample Name Compound Name Chemical Formula Vol %

A5

Quartz SiO2 41.5
Gypsum CaSO4·2H2O 24.9

Illite KAl2Si3AlO10(OH)2 3.1
Kaolinite Al2Si2O5(OH)4/Al2O3·2SiO2·2H2O 17.1
Hematite Fe2O3 2.0

Clinochlore Mg5Fe0·2Al2Si3O10(OH)8 11.3

A6

Quartz SiO2 62.8
Hematite Fe2O3 3.1

Illite KAl2Si3AlO10(OH)2 24.5
Anhydrite CaSO4 9.6

A7

Quartz SiO2 47.2
Gypsum CaSO4·2H2O 21.2

Illite KAl2Si3AlO10(OH)2 10.6
Halite NaCl 3.2

Bassanite CaSO4·0.5H2O 17.7

A8
Quartz SiO2 20.0

Gypsum CaSO4·2H2O 72.5
Illite KAl2Si3AlO10(OH)2 7.6

A9
Quartz SiO2 70.8

Gypsum CaSO4·2H2O 21.2
Calcite CaCO3 8.0

A10

Quartz SiO2 38.3
Gypsum CaSO4·2H2O 35.8

Illite KAl2Si3AlO10(OH)2 20.1
Anhydrite CaSO4 5.9

A11

Quartz SiO2 48.4
Gypsum CaSO4·2H2O 18.1

Illite KAl2Si3AlO10(OH)2 15.9
Anhydrite CaSO4 4.9
Hematite Fe2O3 4.1
Kaolinite Al2Si2O5(OH)4/Al2O3·2SiO2·2H2O 8.6

A12

Quartz SiO2 57.3
Albite NaAlSi3O8 10.2
Illite KAl2Si3AlO10(OH)2 6.4

Microcline KAlSi3O8 13.6
Calcite CaCO3 12.4

Table 3. The results of XRD analysis; see Figure 8b for the location map.

Sample Name Compound Name Chemical Formula vol %

B1

Quartz SiO2 37.5
Gypsum CaSO4·2H2O 28.1
Kaolinite Al2Si2O5(OH)4/Al2O3.2SiO2·2H2O 28.1

Illite KAl2Si3AlO10(OH)2 3.4
Bassanite CaSO4.0.5H2O 2.8

B2

Quartz SiO2 11.4
Gypsum CaSO4·2H2O 73.0

Albite NaAlSi3O8 8.7
Calcite CaCO3 7.0
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Table 3. Cont.

Sample Name Compound Name Chemical Formula vol %

B3

Quartz SiO2 65.3
Kaolinite Al2Si2O5(OH)4/Al2O3·2SiO2·2H2O 9.8
Calcite CaCO3 8.2

Hematite Fe2O3 0.8
Microcline KAlSi3O8 15.9

B4
Quartz SiO2 4.3

Gypsum CaSO4·2H2O 91.8
Kaolinite Al2Si2O5(OH)4/Al2O3·2SiO2·2H2O 3.8

B5
Quartz SiO2 29.9
Albite NaAlSi3O8 70.1

B6

Quartz SiO2 3.1
Gypsum CaSO4·2H2O 77.0
Kaolinite Al2Si2O5(OH)4/Al2O3·2SiO2·2H2O 19.2
Anatase TiO2 0.6

B7

Quartz SiO2 75.3
Gypsum CaSO4·2H2O 4.5

Illite KAl2Si3AlO10(OH)2 12.8
Kaolinite Al2Si2O5(OH)4/Al2O3.2SiO2·2H2O 5.9

Anhydrite CaSO4 1.5

B8

Quartz SiO2 47.3
Gypsum CaSO4·2H2O 21.3
Kaolinite Al2Si2O5(OH)4/Al2O3.2SiO2·2H2O 2
Calcite CaCO3 3.2
Albite NaAlSi3O8 4.6

Minamite (Na,Ca)1-xAl3(SO4)2(OH)6 2.4
Halite NaCl 0.8

B9

Quartz SiO2 31.3
Gypsum CaSO4·2H2O 49.2
Kaolinite Al2Si2O5(OH)4/Al2O3·2SiO2·2H2O 6.4

Illite KAl2Si3AlO10(OH)2 4.1
Albite NaAlSi3O8 8.9

6. Mineral Potential Map

The final potential location of mineralization was created by combining multi-criteria
data. This allows for revealing the prospective areas of hydrothermal mineralization
associated with hydrothermal alteration zones; thus, we use a variety of ways to emphasize
alteration zones. The results of remote sensing analysis data were integrated using GIS
approaches (band ratio, PC, mineral indices). These images were quantified and divided
into various zones (different probability values). To obtain the prospective or promising
map of mineral exploration, a succession of evidential maps is used. The approach of
merging data in a GIS enabled the promotion and identification of the best exploration
and mining locations. This aided exploration and the prediction of new mineralized zones.
The recent innovative procedures that use recent digital technologies and creative geo-
information approaches have allowed for the detection of the optimal mineral resource
area. Multiple datasets have been aggregated and integrated since the birth of the GIS to
locate new mineralized zones [63] reliably.

Using a GIS-based overlay method, the likely locations of hydrothermal mineral
deposits were revealed by combining several evidence hydrothermal alteration maps
(Figure 9). The mineral prospective map is divided into six groups (Figure 9a) based on
their prospective for hydrothermal alteration amplitude: very low, low, moderate, good,
very good, and excellent, and covers 31.36, 28.22, 20.49, 10.99, 6.35, and 2.59 % percent
of the research region, respectively. The red color indicates the most promising mineral
deposit zone. The resulting map (Figure 9) demonstrates a pattern of coherence in the
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hydrothermal-ore deposits found in the area’s mines. Many sections of the potentially high
zone, meanwhile, were restricted to wadi deposits and areas of sedimentary cover in the
northeast of the research area.

7. Discussion

The use of various methodologies for three different sensors, including OLI, Sentinel-
2, and ASTER data, clearly shows that hydrothermal alteration processes dominate the
examined area. This is because identifying HAZs through fracture/fault zones is required
when exploring mineral deposits that originated from hydrothermal processes [2,5,8]. As a
result, the severity of the alteration can help determine where the ore body is located.

The areas of HAZs (Figure 4) were identified using band ratios generated from OLI
sensors such as 6/7, 6/2, and 6/5 * 4/5 [16], 6/7, 6/5, 5 [56], and 6/7, 4/2, 5/6 [7]. Because
hydrothermal activities alter the physical and chemical characteristics of country rocks, they
change. Band ratio 6/7 emphasized OH-bearing minerals such as kaolinite–smectite, micas,
and amphiboles [23]. Iron-bearing minerals, on the other hand, are delineated utilizing
band ratios such as 4/2, 6/5, and 6/5 * 4/5 [16,17]. Furthermore, applying Sentinel-2 band
ratio 3/4 characterizes the ferrous iron, the ferric oxides (Fe3+) represented by 11/8A, and
ferrous iron (Fe2+) represented by (3/4) [55]. In addition to Sentinel-2 band ratios, 11/12
marks the OH-bearing minerals [2]. This is because the integration of iron-bearing minerals
mixed with OH-bearing minerals from different sensors (OLI and Sentinel-2) characterized
the gossans and iron-rich zones [28,64], as displayed in Figures 3 and 4.

Following that, the SWIR ASTER data was analyzed using various band ratios to look
for areas of hydrothermal alteration, comprising 4/6, 4/5, and 4/7; 4/6, 7/6, and (5 + 7)/6;
(5 + 7)/6, PC2, MNF3; OHI, KAI, and ALI, and PC2 of PCA OHI, KAI, and ALI and Calcite.
Delineation of OH–bearing minerals was possible because of the use of a band ratio of 4/6
(λ = 1.656/2.209 m) (Figure 7). The 4/6 ratio is excellent for accentuating hydrous minerals
like kaolinite, illite, and montmorillonite because they have a high absorption signature
in band 6 and a high reflectance in band 4. Furthermore, ASTER band ratios 4/5 and 4/7
boost argillic and sericitic alteration zones, respectively [2,6]. The white tone in Figures 7
and 8 highlights areas of hydrothermal alteration, which for the most part, aligns with
structural connections.

The relative band depth (5 + 7)/6 was efficiently adopted (Figures 7c and 8a) for
excellent detection of Al–smectite, muscovite, sericite, and illite [2,62,65], and Al/Fe-OH
minerals, such as muscovite, kaolinite, and jarosite [66]. Moreover, ASTER bands 5 + 7/6
‘Al-OH content’ vs. bands 5/7 (outside absorption) ‘Al-OH composition’ [62]. This diagram
(Figure 8c) shows that the selected red pixels are rich in AL-OH, but the lowest ones are in
green. The AL-OH area rich in minerals that are marked in red is consistent with the areas
of high hydrothermal alteration.

Using GIS-based weighted overlay analysis to confirm the findings of band ratios and
mineral indices acquired from Landsat-OLI, Sentinel-2, and ASTER data that revealed iron-
containing and Al-OH-carrying minerals revealed useful information regarding places rich
in gossans. Such gossans that consist of limonite, goethite, hematite, malachite, and azurite
reveal the existence of massive sulfide; porphyry and skarn deposits [64] are consistent
with areas of high hydrothermal alteration intensity.

8. Conclusions

The Khnaiguiyah area, Saudi Arabia, is tested to delineate the area of probable mineral
resources. The ability of multispectral remote sensing data to detect and characterize
the hydrothermal alteration minerals is significant for mineral exploration. The present
study used ASTER, Sentinel-2, and Landsat-OLI to identify potential areas of HAZs. The
HAZs generated from these various multispectral sensors were combined through GIS to
highlight the potential areas of HAZs. The highest grade of HAZs, which covers about
2.59 %, is compatible with areas of significant hydrothermal changes and has been verified
with areas of gossans that revealed the presence of sulfide minerals.
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Abstract: The present study aimed to evaluate the hydrocarbon functional groups, aromaticity degree,
and depositional environment in the Silurian–Devonian Kroh black shales of western peninsular
Malaysia. Fourier transform infrared spectroscopy (FTIR) was applied to measure the hydrocarbon
functional groups in the sedimentary succession and associated organic matter of the black shale
samples. The results showed that aromatic C=C stretching, aromatic C-H out-of-plane, aromatic
C-H in-plane, and aliphatic =C–H bending are the major hydrocarbon functional groups in the
Kroh shales. Also, ultraviolet-visible spectroscopy (UV-Vis) was used to evaluate the type of humic
substance and analyze the sample extract ratios of E4/E6. It was revealed that the methanol-treated
Kroh shale samples ranged from 0.00048 to 0.12 for E4 and 0.0040 to 0.99 for E6. The lower E4/E6
ratio (>5) indicates the dominance of humic acid over fulvic acid in the Kroh shales. The Kroh shale
samples’ total organic carbon content (TOC) ranges from 0.33 to 8.5 wt.%, analyzed by a multi-N/C
3100 TOC/TNb analyzer. The comparison study revealed that the TOC content of the Kroh shale has
close obtainable values for the Montney shales of Canada. Furthermore, both hydrocarbon functional
groups from FTIR, and the E4/E6 ratio from UV-Vis show no correlation with TOC content. It is
revealed that humic acid, aromatic, and aliphatic hydrocarbons are not the controlling factors of
the enrichment of organic matter in the Kroh shales. Conversely, a positive correlation between
aliphatic and aromatic hydrocarbons in the Kroh shales indicated that organic matter is thermally
overmatured. The presence of humic acid and enrichment of aromatic hydrocarbons in the Kroh
shales demonstrated that the organic matter in these shales contains plant-derived hydrophilic
minerals, i.e., terrestrial in origin. These findings may provide clues on the depositional and thermal
maturation of organic matter for the exploration efforts into the pre-Tertiary sedimentary successions
of the peninsular.

Keywords: Kroh shale; aromatic hydrocarbons; spectroscopy; humic acid; organic carbon

1. Introduction

Many studies have shown that the characterization of organic-rich sedimentary suc-
cessions is a must-have step in looking into the fundamental properties affecting the
concentration of aromatic hydrocarbons and their correlation with the total organic carbon
(TOC) content of the sediments [1–3]. Fourier transform infrared spectroscopy (FTIR) is
a frequently used technique to differentiate the hydrocarbon functional groups in shale
and coal [4]. The functional groups of aromatic and aliphatic hydrocarbons are potent
tools for evaluating the origin, richness, and for interpretation of depositional environ-
ments. The aromatic and aliphatic hydrocarbons are determined through the vibrational
characteristics of their structural and chemical bonds. The use of Attenuated Total Reflec-
tion (ATR) accessories to enhance the surface sensitivity by using tough crystals (such as
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germanium, silica, zinc selenide, and diamond) characterized by their range of hardness
values and optical properties has further advanced the use of FTIR in soils, shale, and coal
materials [5]. Dilution with KBr is no longer necessary, reproducibility is increased, and the
non-destructive nature of this analysis allows the sample to be re-used for other analyses.
Like FTIR, UV-Vis is increasingly employed for in-field applications [6], for laboratory
studies of crude oils, and in determining the type of humic substance [7]. For the organic
chemist, UV-Vis is mainly concerned with conjugated systems with electronic transitions;
the intensities and positions of the absorption band largely depend on the specific system
under consideration [8].

Alkyl naphthalenes are widespread and constitute geological and geochemical mate-
rials. They are commonly found in oil and several types of sedimentary rocks, including
shales and coals [9]. It has been suggested that alkyl naphthalenes are derived mainly
from the de-functionalization of terpenoids; hence, they have the potential to provide
information about their precursor, as well as the depositional environment [10].

Spectroscopic methods such as ATR-FTIR and UV-Vis have been used to evaluate the
liquid petroleum yield of hydrocarbon source rocks for correlation of source and tracing
migration paths [11,12]. Therefore, in this study, FTIR and UV-Vis are used to identify
aromatic hydrocarbons such as alkyl naphthalenes, aliphatic hydrocarbons, and humic
substances of Silurian–Devonian Kroh shales from peninsular Malaysia. The spectroscopic
analysis is used to evaluate the origin of organic matter in the source or reservoir rocks,
which have received little attention to date. Therefore, the objective of the present study is
to use spectroscopic analysis to obtain the hydrocarbon distribution and humic substance
type, which will determine the shale’s source and depositional environment of organic
matter. Furthermore, the effect of TOC on hydrocarbon functional groups and humic acid is
also being investigated to determine the controlling factor for the enrichment of the organic
matter in the Kroh shales from western peninsular Malaysia.

2. Study Area

Peninsular Malaysia is situated at the southernmost tip of the Asian mainland, and
it shares borders with Thailand in the north, Singapore in the south, the South China Sea
in the east, and the Straits of Malacca in the west (Figure 2). The peninsula covers a total
area of 130, 268 km2, and forms part of Sundaland and the shallow seas from which several
smaller islands emerge. It is elongated in an NNW-SSE direction and characterized by a
dense network of streams and rivers that expose Paleozoic rocks [13,14].

Most of Malaysia’s Paleozoic rocks are in peninsular Malaysia and account for about
25% of the land-based portion [15]. The Kroh Formation is situated in the Western Belt
of peninsular Malaysia, about 34 kilometers north of Gerik along the Malaysia-Thailand
frontier (Figure 1). The locality has three main formations: the Kroh, the Kati, and the
Nenering Tertiary. The Kroh Formation is widespread in north Perak and extensively
accessible in Pengkalan Hulu, Kelian Intan, and Kerunai. It is comprised of black shale,
sub-mature arenite, chert, limestone, and calcareous shale (Figure 2). This study is mainly
focused on shale samples of the Kroh Formation. They date to the upper Silurian lower
Devonian period. The samples were obtained from seven outcrops in the Gerik area
(Figure 1).
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Figure 1. A locational map of the study area, changed from [17], with the prominent outcrops (in
purple circles) where the samples were taken from.
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Figure 2. Simplified geological map of peninsular Malaysia; adopted from [16] with Elsevier’s License
Number 5397511182486.

3. Materials and Methods

3.1. Sampling

Seventy-three representative samples were taken from the Gerik area, upper Perak
(Figure 1). The outcrop samples were obtained using a channel-profile sampling strategy,
and freshly exposed faces were chosen to prevent inclusion of weathered and oxidized
materials. All shale samples were analyzed for TOC, while fifty-six were studied for
hydrocarbon functional groups. Thirty-three samples were analyzed for humic and fulvic
acid content.

3.2. Fourier-Transform Infrared Spectroscopy (FTIR)

Infrared (IR) is part of the electromagnetic radiation between the visible region’s
high-frequency end and the microwave region’s low-frequency end. FTIR is based on
the principle that covalent bonds have resonating frequencies in the mid-infrared region
(4000 cm−1 to 400 cm−1) at which they vibrate, and these frequencies depend on the bond
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type and the bonded atoms [18]. For the past few decades, FTIR has been extensively
used to assess hydrocarbon bonds in geological samples such as shale, coal, silicate glass,
and microfossils to identify and characterize clays and other minerals [19,20]. The spectra
generated from the FTIR analysis in this study were interpreted based on studies by
Coates [21] and Stuart [22].

FTIR was used to determine the distribution of hydrocarbon functional groups and the
differences in the composition of the studied shale samples. The Kroh shale samples were
analyzed using Shimadzu 8400S Fourier-transform infrared (FTIR) spectroscopy (Shimadzu,
Kyoto, Japan). An Attenuated Total Reflection (ATR) was attached to the machine, allowing
the sample to be analyzed quickly and directly. About 2 mg of the samples were scanned
over a wavelength of 400–4000 cm−1, collecting 32 scans at a resolution of 8 cm−1. The
limit of detection of the instrument was 0.08%. Background scans were collected using
the same settings as the sample analyses. Replicate spectra collected on selected samples
showed consistent peak positions and absorbance intensities. The data collected was
further analyzed using Essential FTIR software (Monona, WI, USA). The area percentage
of hydrocarbon functional groups was calculated by summing the absorbance intensities
between the respective wavelengths [23]. The absorbance of hydrocarbon functional groups
in all Kroh shale samples has been calculated by using Essential FTIR software.

3.3. Ultraviolet-Visible Spectroscopy (UV-Vis)

The Ultraviolet-Visible Spectrum (UV-Vis) is obtained using a diluted sample solution
in a glass tube (cuvette). The sides of the cuvette are 1 cm, and the overall volume is 2–3 cm3.
UV or visible light should pass through the sample, and the transmitted light intensity is
recorded across the wavelength spectrum of the instrument. The UV-Vis analysis for this
study focused primarily on the E4/E6 ratio. The ratio of optical densities or absorbance
of dilute aqueous humic acid and fulvic acid solutions using the UV-Vis techniques at
465 nm and 665 nm is commonly used in the characterization of organic matter in soil
science [24]. UV-Vis spectroscopy (Chongqing Gold Mechanical & Electrical Equipment
Co. Ltd., Chongqing, China) was used to analyze the sample extracts to identify their
E4/E6 ratios. Two fundamental wavelengths widely used to describe the humic matter for
one-dimensional UV-Vis are 465 nm and 665 nm [7,24,25].

Each black shale sample weighed two grams and was put into a glass flask with a cap.
The samples were then subjected to three consecutive extractions using 8 mL of methanol,
3 min of ultrasonic stirring by Thornton Unique 1450USC ultrasonic cleaner (Santa Cruz
County, CA, USA), and 5 min of centrifugation at 2500 rpm by Janetzk T23 centrifuge
(Hein Janetzk KG, Engelsdorf Leipzig, Germany). The methanol extract solution was
analyzed using a Lambda 750 UV Vis Spectrophotometer (Perkin Elmer, NJ, USA) with
liquid samples placed in quartz cells. This spectrophotometer is equipped with a tungsten
lamp and a D2 lamp to provide the radiation source. The scanning wavelength ranged
from 200–800 nm.

3.4. Total Organic Carbon (TOC)

Total organic carbon (TOC in wt. %) content is a significant parameter that has been
used to assess the amount of organic matter and hydrocarbon generation potential of the
source rock [26]. Representative black shale samples were analyzed using a Multi N/C 3100
TOC/TNb analyzer (Analytik Jena GmbH, Jena, Germany) at Core Laboratories Malaysia
Sdn Bhd (Perak, Malaysia), using the direct approach suggested by Dow and Pearson [27].
The TOC measurement was performed on fresh near-surface samples, implying a loss of
organic content due to thermal degradation; weathering; and biodegradation. The samples
have been pulverized using an automated grinding machine. About 3 g of each pulverized
sample was pre-treated with a concentration of 37% hydrochloric acid by 10% to remove
the inorganic carbon fraction from the samples, which might have come from carbonate
minerals. It was then left for 12 h in the fume chamber before being rinsed three times
with reverse osmosis water and then dried for 24 h in the oven at 60 ◦C. 60 mg of the
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sample was weighed after drying and placed on a ceramic boat. Measurements were run in
duplicate, and the results were averaged. The residual material was heated to temperatures
exceeding 850 ◦C to determine the TOC by combustion analysis. Analysis of the organic
matter content in this study has been used as an implication for petroleum exploration.

4. Results

4.1. Hydrocarbon Functional Groups

The infrared spectral analysis of the samples was obtained using the method described
in Section 3.1. Figure 3 shows the absorption spectra from the representative shale samples,
and each absorption band represents the presence of a functional group. As shown in
Figure 3, six aromatic hydrocarbon peaks are observed in the 500–2000 cm−1 absorption
band. There are four additional peaks in the range of 670–900 cm−1, which are repre-
sentative of aromatic C-H out-of-plane bend, and the other two peaks in the absorption
band of 950–1225 cm−1 are assigned as aromatic C-H in-plane bend. Alkyl naphthalenes
(pentylnaphthalenes) are also confirmed by the presence of two strong and two weak bands
in the C-H out-of-plane bend (700–900 cm−1) vibration region [28]. These are 694 cm−1 (w),
779 cm−1 (s), 797 cm−1 (s), and 827 cm−1 (w). One aliphatic hydrocarbon peak is detected
in the 600–700 cm−1, region, which is representative of alkyne =C–H bending. Two ATR
diamond peaks are observed at 2300–2400 cm−1, while two peaks of OH compounds are
found at 3600–3800 cm−1.

Figure 3. FTIR spectra of the represented shale sample showing hydrocarbon functional groups in
the wavenumber range from 500 to 4000 cm−1. ATR: attenuated total reflectance.

Table 1 and Figure 4 represent hydrocarbon functional groups (avg.) from an FTIR
analysis for each shale sample.
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Table 1. Hydrocarbon functional groups in the Kroh shale samples.

Samples

Aromatic Hydrocarbon Aliphatic
Hydrocarbon

700–600
C–H Bending
Absorbance

1600–1430
C=C Stretching

Absorbance

900–690
Out of Plane C-H

Bending
Absorbance

1275–1000
In-Plane C–H

Bending
Absorbance

KR1-2 0.903 1.761 2.18 1.2

KR1-3 N.A 1.105 1.361 0.72

KR1-4 0.806 1.57 2.602 1.064

KR1-5 0.708 1.416 2.443 0.943

KR1-6 0.734 1.408 1.804 0.932

KR1-7 0.745 1.279 1.838 0.929

KR1-8 0.712 1.167 1.494 0.89

KR1-9 0.531 0.749 1.224 0.627

KR1-10 0.97 1.503 2.267 1.14

KR1-11 0.845 1.381 2.04 1.342

KR1-12 0.63 1.173 1.928 0.815

KR2-2 0.534 0.73 0.887 0.604

KR2-3 1.019 1.505 2.148 1.224

KR2-4 0.737 1.038 1.518 0.846

KR2-6 0.981 1.344 2.113 1.151

KR2-8 0.599 0.809 0.974 0.685

KR2-9 0.823 1.077 1.602 0.92

KR2-12 0.63 0.868 1.257 0.698

KR2-14 0.615 0.724 1.049 0.648

KR3-1 N.A 0.436 0.529 0.44

KR3-3 0.453 0.617 0.793 0.485

KR3-4 0.619 0.927 1.129 0.661

KR3-5 N.A 0.413 0.573 0.381

KR3-6 0.757 1.163 1.284 0.827

KR3-7 0.613 0.849 1.086 0.668

KR3-8 N.A 0.895 1.03 0.767

KR3-10 N.A 0.646 0.806 0.535

KR3-13 N.A 1.328 1.328 0.94

KR4-1 0.834 1.661 3 1.008

KR4-2 0.63 1.244 1.552 0.748

KR4-3 N.A 0.591 0.967 0.44

KR4-4 1.023 1.974 2.698 1.27

KR4-5 0.633 1.036 1.636 0.72

KR4-6 0.689 1.29 1.578 0.816

KR4-7 0.61 0.98 1.651 0.689

KR4-8 0.707 1.346 1.673 0.84

KR5-1 N.A 0.395 0.643 0.318

KR5-2 0.676 1.29 1.829 0.877
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Table 1. Cont.

Samples

Aromatic Hydrocarbon Aliphatic
Hydrocarbon

700–600
C–H Bending
Absorbance

1600–1430
C=C Stretching

Absorbance

900–690
Out of Plane C-H

Bending
Absorbance

1275–1000
In-Plane C–H

Bending
Absorbance

KR6-1 0.927 1.251 2.92 1.232

KR6-2 N.A 1.021 2.031 1.086

KR6-3 0.602 1.014 1.74 0.784

KR6-4 0.579 1.019 1.744 0.745

KR6-5 0.667 1.211 2.113 0.831

KR6-6 0.431 0.703 2.055 0.568

KR6-8 0.488 0.769 1.524 0.611

KR6-9 0.683 1.181 1.982 0.925

KR6-10 0.97 1.503 2.267 1.14

KR6-11 1.059 1.521 2.585 1.317

KR6-12 0.732 1.175 2.455 1.395

KR6-13 N.A 0.341 1.511 0.617

KR6-14 0.591 0.698 1.61 0.856

KR6-15 0.556 0.665 1.69 0.801

KR6-18 1.094 1.709 2.148 1.384

KR6-19 N.A 1.267 2.187 1.385

KR6-20 N.A 1.038 1.928 1.174

KR7-1 1.098 1.95 2.455 1.395
N.A: not applicable.

Figure 4. Hydrocarbon functional groups in the Kroh shales.
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4.2. Distribution of E4 and E6

The ratio of aliphatic to aromatic compounds in the rocks has been determined by cal-
culating the E4/E6 ratio of extracts from the samples. E4 was determined at an absorption
frequency of 465 nm and E6 at 665 nm. Figure 5 represents the spectroscopic UV-visible
ratio (E4/E6) results of Kroh black shale samples. The E4 treated with methanol ranges
from 0.00048 to 0.12, while the value of E6 ranges from 0.0040 to 0.99 in the Kroh black
shale samples. The E4/E6 values range from 0.008 to 8.1, while 3.4 is the average for the
studied samples.

Figure 5. Distribution of E4 and E6 in the Kroh shales.

4.3. Total Organic Carbon (TOC)

Representative samples from the seven different outcrops in the Kroh Formation were
analyzed using a total organic carbon analyzer. Figure 6 presents the measured total organic
carbon (TOC) values of the analyzed samples of black shale. The TOC present in black
shale samples is high, ranging from 0.33 wt.% to 8.58 wt.%, with an average of 1.71 wt.%.
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Figure 6. TOC (wt.%) of shale samples from the Kroh Formation.

5. Discussion

5.1. Hydrocarbon Functional Groups Distribution

The FTIR analysis was conducted to determine the compositional variations in hy-
drocarbon functional groups in the black shale. Under IR radiation, the absorbency of
molecular vibrations was proportional to the abundance of the functional groups. The
maximum height frequently determines the integrated area between the baseline and a
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peak or the absorbance for each band of molecular vibration. In geology, FTIR deals with
the MIR (mid-infrared region) of light between 4000 cm−1 to 500 cm−1. Under the radiation
of IR, the molecular vibration absorbances were proportional to the functional group’s
abundance. The maximum height is determined by the integrated area between the baseline
and a peak or the absorbance for each band of molecular vibration.

The FTIR spectra of different shale exhibited similar absorption bands and character-
istic absorption peaks based on the vibration of the atoms in a molecule. The spectrum
obtained depends on the fraction of the incident radiation absorbed in particular energy.
The C-H functional group for aromatic compounds appears to be different in its absorption,
with different members suggesting the different concentrations of these compounds in
the samples. According to Stuart [22], the differences in peak absorbance were a sign of
the variation in the available group quantity, and higher peak intensities display a higher
amount in the samples. There was no dominant peak in the 2800–3200 cm−1 range in
the Kroh shale FTIR spectra (Figure 3), which is associated with an aliphatic hydrocarbon
functional group [21]. It was observed that all Kroh shale samples had a high concentration
of aromatic C-H out-of-plane and C-H in-plane compared to aromatic C=C stretching and
aliphatic =C–H bending (see Table 1 and Figure 4).

The processes controlling the level of aromatic and aliphatic hydrocarbons in shales
are complex. Key factors that may influence it are: (1) the sediment’s composition, i.e., clay
and TOC content; (2) patterns of the sedimentary depositional environment; and (3) the
chemical properties of the compounds, particularly their water solubility [29,30].

We have investigated the effect of the aliphatic hydrocarbon functional group on
aromatic hydrocarbon functional groups. As shown in Figure 7, the aliphatic hydrocarbons
of shale samples from the Kroh Formation display a strong positive relationship (i.e.,
R2 = 0.82) with all three aromatic hydrocarbon functional groups. The relative increase in
the proportion of naphthenic and aliphatic hydrocarbons to aromatic hydrocarbons might
have happened because of organic matter thermal maturity. Similar findings were reported
by [31,32]. Our recent study also supports this interpretation of thermal over-maturity by
employing Rock-Eval pyrolysis and vitrinite reflectance of the Kroh shale samples [15].

Figure 7. Relationship of aliphatic and aromatic (=C–H bending) hydrocarbon functional groups in
the Kroh shales.
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5.2. Relationship of TOC with Functional Groups

Total organic carbon (wt.%) content is a significant parameter used to assess the
amount of organic matter and hydrocarbon generation potential of source rocks [26]. Anal-
ysis of the organic matter content in this study has been used as an implication for petroleum
exploration. The TOC values of Silurian–Devonian Kroh shales (TOC = 1.71 wt.%) are re-
markable and similar to hot shales from China (Longmaxi shale, TOC = 2.32 wt.%) and
Canada (Montney shales, TOC = 2.64 wt.%), and close to Muskwa, Besa and Fort Simpson
Canada (Devonian–Mississippian shales, TOC = 1.39 wt.%) and El Sebaiya Egypt (Duwi
Formation, TOC = 1.4 wt.%) (Table 2).

Table 2. Comparing the TOC content of Paleozoic Kroh black shales with other worldwide shale gas rocks.

Formation Age TOC (wt.%)
Average TOC

(wt.%)
Reference

Longmaxi, China Lower Silurian 0.44–4 2.32 [33]

Niutitang, China Lower Cambrian 0.39–10.2 5.26 [33]

Muskwa, Besa & Fort Simpson, Canada Devonian–
Mississippian 0.18–4.72 1.39 [34]

Barnett shale, USA Mississippian 2.62–11.47 4.66 [35]

Gufeng, China Lower Permian 0.04–22.1 3.4 [36]

Montney, Canada Lower Triassic 0.03–8.2 2.64 [37]

Baling and Bendang Riang, Malaysia Silurian–Devonian 0.73–24.6 6.71 [38]

Kubang Pasu, Malaysia Lower Permian 1.01–19.65 5.74 [38]

Duwi Formation, El Sebaiya, Egypt Late Campanian–early
Maastrichtian 0.21–2.77 1.4 [39]

Kroh shale, Malaysia Silurian–Devonian 0.13–8.56 1.71 Current study

Many studies have shown that TOC is one of the critical properties affecting the
concentration of aromatic hydrocarbons in sediments [40]. They have shown a positive
correlation between aromatic hydrocarbons and total organic carbon (TOC) content in
sediments [41]. Therefore, the effect of TOC on aromatic and aliphatic hydrocarbons was
investigated in this study. The absorbance of aromatic C=C stretching, aromatic C-H
out-of-plane, aromatic C-H in-plane, and aliphatic =C–H bending was plotted vs. TOC
to find any existing relationship (Figure 8). There was no correlation found between
TOC and hydrocarbon functional groups, as the Kroh shale is overmature and its organic
matter content has been exhausted due to the thermal maturity and the generation of
hydrocarbons [42]. This might suggest that black shale, which is enriched in organic matter
and mature enough to produce conventional oil and gas, has a more powerful absorption
of aromatic hydrocarbon functional groups. Further investigation could be initiated with
high TOC shale samples to understand this relationship better.

5.3. Hydrocarbon Compound Characterization Using E4/E6

The E4/E6 ratio is inversely related to the degree of condensation and the aromaticity
of the humic substances and their degree of humification [43]. It is suggested that the
values of the relationship E4/E6 for humic acid are smaller than 5.0 and between 6.0 and
8.0 for fulvic acids [43]. Most of the Kroh shale samples show an E4/E6 ratio lower than 5,
indicating that the presence of humic acid dominates organic matter in the Kroh shale.

The E4 versus E6 plot for samples from the Kroh Formation black shales shows a
weak relationship between the two parameters (Figure 9A). This correlation between E4
and E6 indicates that the supply of organic matter is not consistent in the environment
throughout the deposition phase. A lower E4/E6 ratio evidenced a higher degree of
aromaticity of humic acid in shale averaging 3.4 in the Kroh Formation. The E4/E6 ratio

70



Minerals 2022, 12, 1501

indicates the type and quality of humic matter [24]. The effect of TOC on the E4/E6 ratio
was also investigated (Figure 9B). As humic acid is one of the components of organic matter,
there might be a possibility that the abundance of humic acid could control the organic
matter present in the Kroh shale. However, no correlation existed between the TOC and
E4/E6 ratio (Figure 9B), indicating that humic acid alone is not the controlling factor of
organic matter in the Kroh shale. Some other organic matter constituents also control the
organic matter richness.

Figure 8. Relationship of TOC with hydrocarbon functional groups in the Kroh shales.

5.4. Depositional Environment of Organic Matter

Humic acid is one of the organic constituents of oil shale. It has been a major kerogen
precursor, which can be a significant petroleum precursor. A large amount of humic acid
was deposited in shale by the death of thick growth of vegetation; it then accumulated in
large piles, which were then buried by rock and mudflows, as well as deposits of sand
and silt. The weight of the overflow compacted or compressed out all of the moisture,
and what remains today is a deposit of dried, prehistoric plant derivatives. As discussed
in Section 4.2, only seven samples (21%) showed an E4/E6 ratio greater than 5 out of
33 studied samples, which showed the abundance of humic acid. Therefore, the presence of
humic acid in the Kroh shale indicates that these shales contain plant-derived hydrophilic
minerals which are exceedingly small compared to metallic minerals from the ground-up
rocks and soil.

Some of the aromatic compounds found in crude oil and sediments are believed to have
been derived from a modification of biologically produced compounds such as steroids and
terpenoids. Steroids give rise to substituted phenanthrenes, and terpenoids produce alkyl
naphthalenes. The processes by which higher plant triterpenoids in sediments are converted
into aromatic hydrocarbons have been proposed to commence with the loss of the C-3 oxygen
functionality, followed by sequential aromatization from the A ring through to the E ring.
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Therefore, this process’s ultimate products would be tetracyclic and pentacyclic aromatic
hydrocarbons [44]. Alkyl naphthalenes are derived from various precursor compounds, and
their composition changes with increasing thermal maturity [45–47]. However, alkyl naph-
thalenes are often abundant in oils and sedimentary organic matter that have undergone
biodegradation or thermal cracking. Alkyl naphthalenes occur in terrestrial oils and rocks
in higher concentrations than in marine oils and rocks, suggesting that their sourcing is
mainly from terrestrial organic matter [48]. As discussed in Section 4.1, the Kroh shale
samples comprise alkyl naphthalenes, which shows that the organic matter in these samples
belongs to the terrestrial source. This interpretation is also supported by the presence of
humic acid in the Kroh shales, as discussed above.

Figure 9. Relationship between (A) E4 and E6, (B) TOC and E4/E6.

6. Conclusions

The FTIR spectra results of the Kroh shale samples exhibited aromatic C=C stretching,
aromatic C-H out-of-plane, aromatic C-H in-plane, and aliphatic =C–H bending hydrocar-
bon functional groups. The increment of the aliphatic hydrocarbon functional group with
the aromatic hydrocarbon functional group indicates that the shale samples are thermally
overmature. The absence of a correlation between TOC, aromatic, and aliphatic hydrocar-
bon functional groups indicates that the organic matter content of the Kroh shale has been
exhausted due to thermal maturity and the generation of hydrocarbons in the past. The E4,
E6, and E4/E6 ratios indicate that organic matter in the Kroh shale is rich in humic acid as
compared to fulvic acid. The relationship of TOC with the E4/E6 ratio indicates that the
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enrichment of organic matter in the Kroh shale was not controlled by humic acid alone;
however, it might be influenced by other constituents of organic matter for the organic
matter richness. The depositional environment of organic matter in the Kroh shale was
also investigated by hydrocarbon functional groups and the E4/E6 ratio. The abundance
of aromatic hydrocarbon functional groups such as alkyl naphthalenes and humic acid
indicates that the organic matter in these shales is terrestrial and contains plant-derived
hydrophilic minerals.
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Abstract: The harsh environment of high-latitude areas with large amounts of snow and ice cover
makes it difficult to carry out full geological field surveys. Uranium resources are abundant within
the Ilimaussaq Complex in the Narsaq region of Greenland, where the uranium ore body is strictly
controlled by the Lujavrite formation, which is the main ore-bearing rock in the complex rock
mass. Further, large aggregations of radioactive minerals appear as thermal anomalies on remote
sensing thermal infrared imagery, which is indicative of deposits of highly radioactive elements.
Using a weight-of-evidence analysis method that combines machine-learned lithological classification
information with information on surface temperature thermal anomalies, the prediction of radioactive
element-bearing deposits at high latitudes was carried out. Through the use of Worldview-2 (WV-2)
remote sensing images, support vector machine algorithms based on texture features and topographic
features were used to identify Lujavrite. In addition, the distribution of thermal anomalies associated
with radioactive elements was inverted using Landsat 8 TIRS thermal infrared data. From the
results, it was found that the overall accuracy of the SVM algorithm-based lithology mapping was
89.57%. The surface temperature thermal anomaly had a Spearman correlation coefficient of 0.63 with
the total airborne measured uranium gamma radiation. The lithological classification information
was integrated with surface temperature thermal anomalies and other multi-source remote sensing
mineralization elements to calculate mineralization-favorable areas through a weight-of-evidence
model, with high-value mineralization probability areas being spatially consistent with known
mineralization areas. In conclusion, a multifaceted remote sensing information finding method,
focusing on surface temperature thermal anomalies in high-latitude areas, provides guidance and
has reference value for the exploration of potential mineralization areas for deposits containing
radioactive elements.

Keywords: high latitudes; weak information; thermal anomalies; radioactive element deposits

1. Introduction

High-latitude regions lie between the 60◦ north and 60◦ south latitudes to the north
and south poles of the Earth’s surface, respectively, and receive the least solar radiation.
Therefore, the climate is cold, and most areas are covered in snow and ice for long periods,
which makes it difficult to carry out comprehensive geological field surveys. With remote
sensing technology, it is possible to overcome the time constraints of field investigations and
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select multiple sources of remote sensing data for long time series analysis. Spectroscopic
information from remote sensing can screen the diversity of the mineral spectrum, which
depends on the physical interactions of electrons and molecular structures within the
material [1–3]. Multispectral data and wave spectrum identification algorithms have made
it possible for remote sensing technology to predict mineralized target areas [4–12]. The
identification of the lithology based on remote sensing data automatically classified by
computers can help quickly obtain geological background information of the target area in
comparison to the long cycle time of a geological field survey. Lithological classification
via machine learning not only fully utilizes the spectral and rock texture features among
different rocks but also improves the lithological classification accuracy [13–20].

The Gardar igneous intrusions in southern Greenland are typically high in alkali elements,
such as sodium, whereas the Ilimaussaq Complex, which was formed later in the magmatic
intrusion system, has a high concentration of rare and radioactive elements [21,22]. Owing
to the enrichment of radioactive elements, such as uranium and thorium, the earth heat
flow generated will inevitably cause the enriched areas to exhibit extreme radioactivity;
this radioactive heat can be detected by surface thermal anomalies [23–26]. Information
on surface thermal anomalies can be obtained in various ways, and thermal infrared re-
mote sensing technology is a widely used technique. Based on the information obtained
from thermal anomalies, it is possible to interpret certain topographic changes (basement
uplift and depression), volcanoes, hot springs, faults, etc. [27]. The use of thermal in-
frared remote sensing technology for geothermal resources has made it easier to develop
resource-prospecting techniques. In the field of geology, this technology has been applied
for decades, and it is widely used in large-scale geothermal resource surveys, mountain
surveys, volcano early-warning systems, and earthquake prediction [28–32]. The introduc-
tion of remote sensing data, such as ASTER and Landsat TIRS, effectively increases the
diversity of surface temperature inversion and more effectively traces radioactive minerals
and geothermal resources, playing an important role in the field of geological and mineral
exploration [33–37].

This paper aims to identify radioactive element enrichment areas and ore-bearing
lithologies by remote sensing techniques and to study a method for predicting the favora-
bility of mineralization of radioactive deposits at high latitudes using a weight-of-evidence
model. The inversion of surface thermal anomalies from thermal infrared remote sens-
ing data is conducted in the harsh Greenland Narsaq region, where areas of radioactive
mineral enrichment are extracted. Machine learning techniques are also used to identify
and classify regional lithologies enriched in radioactive elements. The integration of multi-
source remote sensing information using the Weight of Evidence model can be effective in
conducting mineral resource surveys in high latitude regions.

2. Study Area

2.1. Physical Geography

The study area is in the Narsaq region of Gardar Province in southern Greenland,
ranging from 44◦30′ to 46◦30′ W in longitude and 60◦45′ to 61◦20′ N in latitude. The region
has very few land-based road systems due to the extremely large number of bays (Figure 1).
The region experiences a polar climate, with the average temperature in winter (January)
being −6 ◦C, while the average temperature during the coastal summer (July) is 7 ◦C, with
July and August having the highest temperatures of the year.
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Figure 1. (A) Location map based on Sentinel-2′s true color 432 band combinations; (B,C) A realistic
view of the study area environment.

2.2. Geological Background

The geological setting of the study area is dominated by the southern parts of the
Palaeo-Craton and the Palaeoproterozoic Ketilidian orogenic belts. The Mesoproterozoic
Gardar igneous province crosses the Ketilidian orogenic belt. The province of Gardar is
marked by the development of deposits of faulted, clastic, and volcanic rocks with high
alkaline magmatic activity. The Gardar intrusive complex is dominated by differentiated
silica-alumina rocks, including syenite, nepheline syenite, quartz syenite, and granite. Giant
vein rocks are dominated by weakly alkaline gabbro and syenite gabbro, with faults devel-
oping parallel to rift valleys in formations affected by lithosphere stretching [38]. Within
the Julianehab Granite, there are several east–northeast (NEE) oriented fault planes, where
the lateral displacement along the fault planes is uncertain, but the vertical displacement
is evident. The displacement faults incorporate NEE to north–east (NE) trending sinistral
faults, as well as north–north-west (NNW) to north–north-east(NNE) trending r-dextral
faults, forming conjugate faults (Figure 2) [22,39,40].

Figure 2. Geological map of the study area.

3. Material and Methods

3.1. Data and Pre-Processing

Several data sources were applied to meet the needs of the study (Table 1), including
the following:

1. Visible light near the infrared (NIR) data of the Sentinel-2AB (S2AB) satellite;
2. Thermal infrared data of LANDSAT-8TIRS (LTRS) satellite;
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3. Visible light near the infrared data of the Worldview-2 (WV-2) satellite;
4. ASTER GDEM 30 m spatial resolution ground elevation model data;
5. Measured data of the SVC HR-1024i full-spectrum ground object spectrometer.

Table 1. List of data used.

Data Type
Maximum Spatial

Resolution (m)
Acquisition Time

Worldview-2 0.5 29 August 2017

Landsat 8 TIRS 15 29 July 2018, 7 August 2018,
26 August 2019

Sentinel-2 10 10 August 2019, 6 April 2020

ASTER GDEM V3 30 August 2019

SVC HR-1024i - July 2019

3.1.1. Visible NIR Remote Sensing Data

The visible NIR satellite remote sensing data were selected from S2AB and WV-2
satellite data. Among these, the main payload of the Sentinel satellite is the Multi-Spectral
Imager (MSI), operating in the visible, near-infrared, and short-wave infrared spectral
bands, with ground resolutions of 10 m, 20 m, and 60 m, respectively [41,42]. The WV-2
satellite is a high spatial resolution satellite data, capable of providing panchromatic images
at 0.46 m and multispectral images at 1.8 m resolutions [43].

3.1.2. Thermal Infrared Remote Sensing Data

The LTRS data were chosen as a source of thermal infrared radiation information,
whose thermal infrared sensor covers two thermal infrared bands, both of which have a
resolution of 100 m in the wavelength range of 10.60–12.51 μm [44,45].

3.1.3. Topographic Surface Elevation Data

Topographic data were extracted using ASTER GDEM V3, a digital elevation model
acquired and released by NASA’s Earth observation satellite, named Terra, with a resolution
of one arc-second (30 m), covering 99% of the global land surface from 83◦ N to 83◦ S [46].

3.1.4. Field Measurements of Feature Spectral Data

Field spectra were collected using the SVC HR-1024i (SVC, Poughkeepsie, NY USA)
full spectrum spectroradiometer, which has a spectral measurement range of 350–2500 nm
and a total of 1024 channels. The spectral resolution is 2.8 nm in the 350–1000 nm
range, 3.6 nm in the 1000–1900 nm range, and 2.5 nm in the 1900–2500 nm range.

Remote sensing data pre-processing was carried out using the ENVI software (Version 5.6,
ESRI, Redlands, CA, USA) [47], which provides multi-source remote sensing data with
radiometric calibration, FLAASH atmospheric correction, geometric correction, and im-
age enhancement as remote sensing image pre-processing steps. The measured spectral
information was obtained from 50 rock samples collected at the mine site, and the rock
spectra were collected in a dark room environment. As the spectral features of the rocks
acquired from remote sensing images come from exposed rock surfaces, which are affected
by weathering and other environmental factors, the rock samples were not ground to
simulate the real conditions in the field, and a total of 128 valid spectra were collected
(Figure 3).
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Figure 3. Distribution map of field spectral samples (the base image is a combination of the 432 bands
of Sentinel-2).

3.2. Remote Sensing for Geological Background Information Extraction

The interpretation and investigation of geological background information are fun-
damental for the prediction of regional mineralization; during geological action, areas
spatially located in geological-variation regions and marginal areas are often the sites of
endogenous deposits. Significant deposits are often found at the junction of tectonic plates
and are temporally associated with tectonic events, with the distribution of mineralization
information roughly corresponding to the occurrence of tectonic anomalies. Furthermore,
tectonics provides a good environment for the formation, storage, and transportation of
deposits; the mapping of the geological base information will facilitate the understanding of
the regional framework and the rapid tracing of mineralization prediction areas. Extraction
was carried out from three perspectives: lithological, tectonic, and alteration information.

The interpretation of lithologies and formations in the study area was based on
visual interpretation. Firstly, the ArcGIS and ENVI software were used to enhance the
remote sensing image information, and the interpretability of the interpreted lithologies
and structures was enhanced through optimal waveband analysis and image filtering.
Directional features, which are important properties of linear constructions, were enhanced
by directional filtering in the study area to identify linear constructions more intuitively.
The image was enhanced using a 5 by 5 directional convolutional filtering method, and
the image—after enhancement—exhibited extremely distinct linear features from north–
north-east to north-east–east (45◦ range). Lithologies and formations smaller than the
spatial resolution per image element are difficult to distinguish accurately and are often
interpreted indirectly utilizing the topography, vegetation, water systems, etc.

For the extraction of alteration information, the study area used principal component
analysis (PCA) based on the method proposed by Crosta scholars for the extraction of
hydroxyl and iron-stained alterations. The PCA uses the multidimensional orthogonal
linear variation of the interrelationships between variables, and the entire method is based
on mathematical and statistical analyses. The method can reduce the dimensionality of
remote sensing information, capture the spectral differences of features, and serve to
enhance and compress the data while also removing correlations between information
in the same region or the same remote sensing data band [48]. Secondary oxides are the
most represented group of iron-stained alteration minerals, while only a small proportion
of the other alteration minerals are primary. In the 2, 4, and 11 bands of Sentinel-2, the
divalent and trivalent ions of iron have characteristic absorption valleys; therefore, these
three bands were chosen as the main bands for iron-stained alteration extraction. Alteration
minerals that contain hydroxyl or carbonate ions include chlorite and kaolinite. The spectra
of the mineralized rocks have two unique features compared to the spectra of other rocks,
where a slowly rising plateau forms at wavelengths of 1.0–1.4 μm, while the spectrum at
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1.9–2.0 μm forms an extremely strong absorption valley, indicating absorption properties
in the near-infrared band; therefore, bands 2, 8, and 12 of Sentinel-2 were chosen to extract
the hydroxyl alteration.

3.3. The Support Vector Machines(SVM) Lithology Extraction Technique

SVMs are widely used in the field of geological rock identification and classification.
As a method of machine learning, their core concept involves projecting data into a high-
dimensional space, constructing an optimal hyperplane in the high-dimensional space, and
using this optimal plane to classify different data. The object-oriented SVM classification
method, which uses the object as the basic unit, is a classification method that combines
multiple types of feature information, including spectrum, texture, shape, and topology
information [49–52]. The method of classifying image units using SVMs (Figure 4) differs
from those of other algorithms in that it minimizes a priori intervention and, therefore,
presents the classification results objectively; in addition, it is efficient and stable [53,54].

Figure 4. Support vector machine classification recognition process.

The SVM approach is considered to be a good method for classification extraction
because it has high generalization performance and does not require prior knowledge, even
if the dimensionality of the input space is high [55]. Intuitively, SVM algorithm extraction is
based on finding a hyperplane, provided a set of points belong to either of the two classes,
such that the proportion of points in the same class on the same side is maximized while
also maximizing the distance between either class and the hyperplane [56] (Figure 5).

 

Figure 5. Support vector machine schematic.
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A critical step in using non-linear SVMs is the selection of the kernel function, which
performs a special spatial non-linear transformation, resulting in the projection of the
training data into a high-dimensional feature space, which directly determines the dimen-
sionality of the classification function. Ultimately, the optimal classification surface is found
in the high-dimensional space, facilitating the classification calculations. SVM classification
was carried out using ENVI 5.6; the radial basis kernel function (Gaussian radial function),
which has high accuracy for classifying data, was chosen as the kernel function in this
study, with the penalty parameter set to 100.

Owing to the narrowband and full spectral coverage of the SVC spectroradiometer, it
is possible to effectively characterize the subtle spectral differences of rocks collected in the
field. The measured feature spectral information is compared with the spectral information
of remote sensing image elements to improve the accuracy and efficiency of training sample
selection in remote sensing images. The measured spectra need to be resampled to the
corresponding spectral resolution conditions of the remote sensing image when performing
the comparison verification. The multivariate training element features are extracted using
texture features, spectral index features, vegetation index features, and terrain features
for different regions and levels of data limitation. The training samples obtained by the
SVM method were all located within the field sampling work area and were analyzed
by mineral rock identification. The rock samples collected covered four types of rocks:
gabbro, Lujavrite, basalt, and Naujaite; Lujavrite, which is associated with the radioactive
uranium ore, was analyzed by petrographic identification microscopy, and the collected
samples all contained high mineral contents of eudialyte (Figure 6). Consequently, the SVM
training samples were selected to create samples from these four lithologies, with a total of
653 samples (including 155 gabbro, 203 lujavrite, 105 basalt, and 190 naujaite).

  
(A) (B) 

Figure 6. (A) Lujavrite hand specimen; (B) microscopic photograph of Lujavrite.

3.4. Thermal Anomaly Information Extraction

Hydrothermal-type uranium deposits lead to surface thermal anomalies when they
are formed and also have some influence on the geothermal flow in their vicinity after
formation. Therefore, points with a high distribution of surface thermal anomaly values
tend to be spatially coherent with uranium ores. Geothermal signatures are also used by
some researchers as an indicator of hydrothermal uranium deposits, which are often closely
related to their distribution in deep uranium exploration [25,57]. Surface temperature
inversion is closely related to various resource and environmental processes on the Earth’s
surface. As an important physical parameter of the energy balance and circulation inter-
change processes between the Earth and the air, understanding the surface temperature
has become an important facet of the field of quantitative remote sensing. In this study, the
radiative transfer equation (RTE) method, which is well established and widely applicable,
is used to invert the surface temperature in the study area, which has a solid physical
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basis due to its early development and high accuracy [58]. The RTE method is based on
real-time atmospheric profile data, including humidity, temperature, and pressure, and
uses radiant energy values obtained from individual thermal infrared bands observed by
satellites—while removing atmosphere-related effects—to invert the surface temperature.
RTE converts the thermal radiation values to surface temperatures after subtracting the
influence of the atmospheric extinction coefficient as a parameter factor, whereby the at-
mospheric thermal radiation influence values can be obtained on the basis of atmospheric
data (Table 2) [45,59]. The calculation is shown in Equation.

Lsensor =
[
εB(Ts) + (1−ε)L↓

]
τ+L↑ (1)

B(Ts) =
[
Lsensor − L↑ − τ(1−ε)L↓

]
/τε (2)

Table 2. Atmospheric profile parameters.

Data Type Imaging Time
Atmospheric

Transmissivity τ

Atmospheric Upward
Radiation

L↑(w/m2/sr/μm)

Atmospheric
Downward Radiance

L↓(w/m2/sr/μm)

Landsat TIRS10
7 August 2018 0.95 0.30 0.53

29 July 2018 0.92 0.51 0.87
26 August 2019 0.96 0.24 0.42

Ts is the surface temperature, in Kelvin; the blackbody radiance is denoted by B; L
denotes the radiance, where the arrows pointing up and down represent the upward and
downward radiance of the atmosphere; and the surface-specific radiance and the atmo-
spheric transmittance in the thermal infrared band are denoted by ε and τ, respectively.
Due to the continuous atmospheric profile, the atmospheric parameters vary at different
altitudes, which also results in differences in atmospheric radiance. The two core parame-
ters in the RTE algorithm are the atmospheric upward and downward radiation and the
atmospheric transmittance parameters, for which the surface temperature is calculated
using the following formula:

Ts= K2/ ln(1 + K1/B(Ts)) (3)

where K2 and K1 are constants that depend on the selected satellite metadata.

3.5. Remote Sensing Mineralization Prediction Based on the Weight of Evidence Methods

Agterberg proposed the Weight of Evidence Method (WofE), a geostatistical-based
approach to mineralization prediction, using a Bayesian statistical analysis model [60].
The method aims to extract favorable areas (prospective areas) for mineralization, using
geological information related to the formation of mineralization, overlaying and fusing
such information, and analyzing it, which fully integrates AI technology, image analysis
technology, and mathematical statistics technology. This approach is achieved by splitting
all evidence layers into binary variables; in other words, evidence layers containing only ‘0′
and ‘1′ attributes, where ‘0′ means that a single unit of evidence in the element layer does
not exist (no ore), and ‘1′ means that it does (contains ore). Assuming the number of units
in the study area is expressed as S, the event element A is expressed as an element layer
(hydrothermal alteration anomaly, mineral control structure, SVM classified lithology, ra-
diothermal anomaly, etc.), and B is expressed as an ore-bearing unit. P(B) = Area(B)/Area(S)
denotes the prior probability of event B, where Area() denotes the area. Bayesian statistical
relations were introduced in the study area as the basis for the criterion, with Ai

+, Ai
−

denoting the presence and absence of Ai favorable conditions, respectively, which divided
the study area into four pooled parts, expressed as B+∩Ai

+, B+∩Ai
−, B−∩Ai

+, B-∩Ai
−. The

posterior probability is calculated using the following formula:

(B | A1 A2 · · · An) = e∑n
i=0 Wj /1 + e∑n

i=0 Wj (4)
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For each evidence layer, it is necessary to introduce a contrast value C, C = W+ − W−,
in order to express its correlation with the deposit or occurrence. The strength of the corre-
lation is indicated by a significant C value, with a positive or negative C value representing
a positive or negative relationship between the layer and the indicative mineralization.
Studentized Index (SI) defined as:

SI = C/
√

δ2(W+) + δ2(W−) (5)

The evidence elements in the layers were verified against each other in groups of
two, the weights of the evidence elements were calculated, and the layers were combined
statistically using superposition analysis to obtain the final posterior probability distribution
of mineralization.

4. Results and Analysis

4.1. Remote Sensing for Geological Background Information Extraction

A total of 13 lithologies have been interpreted, including gabbro, syenite, ditroite, and
Lujavrite; Lujavrite—containing steenstrupine and eudialyte—is the main ore mineral in
the study area (Figure 7). Based on the tectonic features of the Narsaq area, interpretation
markers were established to obtain the distribution pattern of lineaments and rings in the
area. Four faults, nine rings, and 157 tectonic joints were interpreted (Figure 7). The mean
linear orientation of the interpreted linear structures was analyzed using ArcGIS linear
analysis, which calculated that the mean linear orientation of the linear structures across
the study area is 62◦ (azimuthal), i.e., the tectonics in the study area—as a whole—are
predominantly NEE oriented (Figure 8A). The strike rose diagram shows that the highest
frequency of tectonics is between the north–north-east and north-east–east orientations
(Figure 8B), which is spatially consistent with the distribution of the Southern Rift Zone.

Figure 7. Interpreted map of remote sensing geological background information map (the base image
is a combination of the 432 Sentinel-2 bands).
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(A) (B) 

Figure 8. (A) Linear tectonic strike statistical histogram; (B) Linear tectonic strike rose diagram.

The hydroxy and iron-stained alteration is distributed in the center and lower parts
of the study area, with the iron-stained alteration exhibiting a mass-like character and
the hydroxy alteration showing a striped northeast spreading character. The two types
of alteration information are mainly consistent with the location of surface outcrops of
Naujaite and Lujavrite, which is indicative of the lithology.

4.2. Lithology Extraction Based on SVM
4.2.1. Lithological Information Enhancement and Analysis

Spectral absorption features were calculated using the IDL DISPEC software [1]. These
features describe the shape of the spectrum, as reflected by the depth, width, area, and
asymmetry (Table 3). The Lujavrite associated with the mineralization has the following
characteristics (Figure 9): (i) a slowly rising plateau in the wavelength range of 1.0–1.3 μm;
(ii) an extremely strong absorption valley in the spectrum of 1.9–2.0 μm, which indicates that
the Lujavrite exhibits absorption properties in the near-infrared band. (iii) The absorption
spectrum after continuum removal has a maximum absorption valley depth of 47.87 at
0.4 μm—the area enclosed by the envelope and the spectral curve is the largest here, and
the diagnostic spectrum is located at 0.4 μm. It also shows strong absorption characteristics
at 1.92 μm and 1.42 μm, as reflected in Table 3, which proves that it is influenced by the
vibration of water molecules and the leap of hydroxyl ions.

4.2.2. Feature Information Extraction

In SVM lithology extraction, two major dimensions—texture information and topo-
graphic information—were used. The texture information was calculated using PCA and
the greyscale formula matrix. WV-2 image data were used, whose spectrum covers the
range of 0.4–1.04 μm; in this range, it is clear from the characteristic absorption in Table 3
that the Lujavrite has strong absorption properties in the coastal band and strong reflection
properties in the near-infrared band. Further, the most informative bands of the image
are concentrated in the true color band; therefore, bands one, two, five, and eight were
selected for image enhancement using PCA (Figure 10B), and this image was used in
the extraction of lithological PCA texture information. The texture information of WV-2
was also extracted using the greyscale formula matrix, and contrast (Figure 10C), angular-
second-order moments (Figure 10D), homogeneity (Figure 10E), and phase dissimilarity
(Figure 10F) were selected as feature statistics. The topographic relief was calculated using
the slope information extracted from the DEM (Figure 10A). Before classification, the terrain
and texture rasters were spatially resampled to ensure that the information had the same
image size.
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Table 3. Spectral absorption characteristics of lujavrite.

Wavelength (μ) Depth Wide Area Asymmetry

0.40 47.87 0.37 18.02 0.78
1.92 30.84 0.20 6.41 0.84
1.42 10.72 0.12 1.31 0.61
1.66 4.80 0.07 0.37 0.81
1.28 0.20 0.02 0.004 1

  
(A) (B) 

Figure 9. (A) Absorption characteristics of the continuum removal spectra of Lujavrite; (B) Character-
ization of the in situ spectra of Lujavrite.

  
(A) (B) 

  
(C) (D) 

  
(E) (F) 

Figure 10. (A) Relief feature; (B) PCA feature; (C) Contrast feature; (D) Angular second-order
moment feature; (E) Homogeneity feature; (F) Phase dissimilarity feature.
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4.2.3. Results of SVM Lithology Classification

The classification images obtained by the SVM algorithm would show missing data
in the classification patches, which were processed using majority/minority analysis to
categorize the missing data into a category with a large percentage of surroundings; this
helped eliminate the missing classification data. The geological map of the field survey
and the remotely interpreted geological map of the area were used to compare and verify
the classification results of the Lujavrite (Figure 7). From the classification results, patches
with single texture and terrain information were significantly better classified than patches
with complex information. In patches with complex feature classes and redundant terrain
information, terrain features and texture features could not be accurately distinguished
by the SVM algorithm. This is because high spatial resolution satellite data have a limited
wavelength and low spectral resolution, making it difficult to distinguish between small
diagnostic spectral information in the mixed image elements and reducing the accuracy
of the algorithm’s recognition. Lujavrite orthoclase is mainly clustered in the central and
northern part of the study area and is distributed in bands (Figure 11).

 
Figure 11. SVM Lithology classification map (the base image is a combination of Worldview-2′s
321 bands).

The accuracy of the SVM lithology classification results was evaluated, as shown in
Table 4. It is clear from the table that the classification user accuracy of the main mineralized
lithology, namely the Lujavrite, is 89.57%; the overall accuracy of SVM classification is
87.75%, with a kappa coefficient of 0.84. After field route verification, dense grey Lujavrite
was seen in the target route (Figure 12C), and the rocks were lined with oriented sodium–
iron amphibole with a banded structure (Figure 12B), which is consistent with the region
shown in the circle.

Table 4. Result accuracy evaluation table for classification using SVM.

Lithological
Category

Lithological Category (Ground Truth Data)

Gabbro Lujavrite Basalt Naujaite Total User Accuracy

Gabbro 134 4 9 8 155 86.45%
Lujavrite 4 189 1 17 211 89.57%

Basalt 13 0 94 9 116 81.03%
Naujaite 4 10 1 156 171 91.23%

Total 155 203 105 190 653

Producer accuracy 86.45% 93.10% 89.52% 82.11%

Overall Accuracy = 87.75%; Kappa coefficient = 0.84.
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Figure 12. (A) Field validation route map (the base image is a combination of Sentinel-2′s 432 bands);
(B,C) Greyish-black dense Lujavrite.

4.3. Thermal Anomalies Extraction of Radioactive Minerals

Most of the uranium equivalents in the study area are greater than 4.3 × 10−6, while
the distribution pattern of greater than 5.2 × 10−6 is more consistent with the distribution
pattern of nepheline syenite, proving that nepheline syenite is highly radioactive [61]. The
arfvedsonite Lujavrite associated with rare earth-uranium mineralization is rich in elements
such as U and Th, which are highly radioactive. The regional sandstone zone is composed
mainly of feldspathic quartzite and contains radioactive minerals that have been subjected
to low-pressure–high-temperature metamorphism and, thus, exhibit thermal anomalies in
surface temperature. Over a given year, the average temperature in the study area is below
0 ◦C; the surface temperature is extremely low in winter due to the snow and ice cover,
whereas water bodies are somewhat insulated, which leads to a lower surface temperature
than the water body temperature. This masks the trace thermal anomalies of radioactive
elements. The summer images were selected for use because there is less snow and ice
cover during this season; further, the difference between the surface temperature of water
bodies and land is significant, and the land surface temperature is greater than 0 ◦C. With
Landsat’s thermal infrared band, it is possible to effectively distinguish surface temperature
differences and, thus, determine areas with radiothermal anomalies.

The Landsat TIRS 10 band was utilized for the surface temperature inversion using
the RTE method. Thermal anomalies in the study area were mainly concentrated in the
south-central part of the study area, where the overall surface temperature was low, and
the average surface temperature in summer ranged from 5◦ to 16◦, with the highest surface
temperature values reaching 28◦ in some areas. Among them, there are three typical high-
temperature areas (Figure 13): L1, L2, and L3 (Table 5). All three thermal anomalies are
located in the vicinity of the southern rift zone, and the lithology of the high-temperature
area is mainly alkaline rock body Naujaite and arfvedsonite Lujavrite; the arfvedsonite type
ore is accompanied by uranium, thorium, and other elements, with obvious radioactive
anomalies. The thermal anomalies exhibited a strong correlation with both faults and lithol-
ogy in the area, which further suggests that surface temperature anomalies are indicative
of mineralization. In conclusion, the thermal anomalies in the study area could mainly be
found along the upper part of the Ilimaussaq Complex on the land margin, and the exposed
lithology was arfvedsonite Lujavrite, exhibiting a blocky distribution of NE spreading. In
some linear tectonically dense areas, the surface temperature values were significantly
higher than those in the surrounding area, indicating that the surface temperature has
some correlation with the tectonics. The distribution of thermal anomalies is somewhat
indicative of the lithology, linear tectonics, and mineral distribution.
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Figure 13. Surface temperature inversion map.

Table 5. Surface temperatures in areas of thermal anomalies.

Abnormal Area Maximum Surface Temperature Minimum Surface Temperature Average Surface Temperature

L1 28.51 15.70 23.85
L2 27.08 14.59 22.76
L3 26.32 16.64 23.24

Study area 28.51 1.07 16.85

Through the official websites of the Geological Survey of Denmark and Greenland
(De Nationale Geologiske Undersøgelser for Danmark og Grønland, GEUS), certain air-
borne radiometric data were selected for the Narsaq area: total uranium gamma radiation,
uranium concentration (ppm), and thorium concentration (ppm) (Figure 14). These data
were obtained from the GEUS South Greenland Regional Uranium Exploration Project
(SYDURAN) [62], which used a helicopter-borne Scintrex GAD-6 for radiometric mea-
surements. The correlation between this airborne radiation data and surface temperature
inversion data was analyzed using the Spearman’s correlation coefficient, and the thermal
anomalies were found (Table 6) to be positively correlated with the total uranium gamma
radiation, uranium, and thorium elements, with correlation coefficients of 0.63, 0.60, and
0.65, respectively. This further indicates that the surface temperature thermal anomalies are
indicative of the presence of radioactive elements.

Figure 14. Map of sampling points for airborne radiation data.

88



Minerals 2022, 12, 692

Table 6. Correlations between thermal anomalies and radioactive elements.

Types Spearman’s Correlation Coefficient

Total uranium gamma radiation 0.63
U ppm 0.60
Th ppm 0.65

4.4. Mineral Prospectivity Mapping Based on Remote Sensing and Weight-of-Evidence Model

Mineralization is controlled by the formation lithology of a certain era, either directly
or indirectly. Ore-bearing rock masses usually are more easily outcropped than the ore
body, making the outcropping area larger. Ore-bearing rock masses closely related to the
ore body are the marker bed for prospecting. The ore body can be delineated by tracking
the ore-bearing rock masses [63]. Mineralization in the study area is mainly associated
with Lujavrite, where black, dense, fine-grained arfvedsonite Lujavrite forms arfvedsonite
ores, and mineralization elements such as rare earth elements and uranium are hosted in
paragenetic minerals formed by the cooling and crystallization of magma. Research has
shown that the mineralized minerals include steenstrupine, selenopatite, cerium phosphate
sodalite, monazite, zirconium silicate minerals, etc. There are 13 types of mineralized
minerals, among which the most important rare earth minerals are steenstrupine (5.58%),
followed by monazite (0.09%), and sodium phosphorite, which are often found in agglom-
erates and contain associated uranium, thorium, and other elements; in regions where
these are found, radioactive anomalies are very obvious [40,64–67]. By identifying such
radioactive Lujavrite via remote sensing, the mineralization target area can be effectively
traced. The main ore finding signatures in the study area are as follows: (1) Lithological and
tectonic signatures—uranium-bearing minerals are concentrated in Lujavrite, among which
the arfvedsonite type is the most important. The mineralization process is easily controlled
by regional north-east tectonics, and tectonic activity often leads to strong deformations in
the mineralized area, with the tectonic and hydrothermal alteration information output lo-
cations spreading north-eastwards, in parallel. (2) Thermal anomaly signatures—uranium
ore is a radioactive mineral, and areas of radioactive thermal anomalies can be extracted in
low-temperature areas using surface temperature thermal anomalies.

The study area was decomposed into 67,243 analysis units according to 10 m pixel units.
The multi-layer raster data were imported for calculation using the ArcGIS geographic
information analysis software developed by Esri.on. Through a comprehensive analysis
of the aforementioned signatures, the four main elements of the weight of evidence were
selected to include SVM machine learning lithological classification information, tectonic
information, PCA hydrothermal alteration information, and surface thermal anomaly
information. The comprehensive evaluation values corresponding to the four evidence
elements were calculated through a priori probability analysis brought into the weight-of-
evidence method (Table 7). A final probability map of favorable areas of mineralization
in the study area was generated, with areas of high favorability values being spatially
consistent with known mineralization in the study area (Figure 15).

Table 7. Statistical parameters for the binarization of evidence layers.

Evaluation Index Layer W+ σ(W+) W− σ(W−) C SI W

Thermal anomalies 4.44 1.05 −0.82 0.38 5.26 4.69 4.44
SVM 4.33 1.06 −0.68 0.36 5.01 4.47 4.33

Hydrothermal alteration 3.35 1.15 −0.20 0.28 3.55 2.98 3.35
Structural density 0.59 0.30 −1.07 0.58 1.67 2.52 0.59
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Figure 15. Map of projected potential mineralization areas (the base image was made using the
Sentinel-2 panchromatic band).

The high probability area in the mineralization prediction map mainly covers the
lithologies of Lujavrite and Naujaite. Combined with geological materials and field in-
vestigations, the uranium-bearing minerals are concentrated in the Lujavrite, with the
arfvedsonite type being the most abundant. The mineralization is susceptible to regional
north-east tectonic control, and tectonic activity often leads to the strong deformation of
the mineralized area, with a parallel north-east spreading of tectonic and hydrothermal
alteration information output locations. The alteration is dominated by alkaline alteration,
enriching radioactive minerals in low-temperature areas; using surface temperature ther-
mal anomalies can extract areas of radioactive thermal anomalies, and the average value of
temperature anomalies in the predicted area is 23.24 ◦C (Figure 16).

  
(A) (B) 

Figure 16. (A,B) Mineral prospecting target area analysis map.

5. Discussions

High latitudes are heavily ice-covered, making it difficult for remote sensing to detect
surface anomalies, with snow up to tens of meters thick completely covering any remote
sensing information. However, in some areas, the snow and ice cover varies seasonally, as
is the case in the southern Greenland region. The most significant advantage of remote
sensing imagery is the multiplicity of data and the long time-series features, which facili-
tates the detection of geological phenomena irrespective of season or temperature. The use
of remote sensing to detect geothermal heat is relatively diverse but is mainly carried out
by detecting surface heat sources, such as volcanoes and hot springs [29,31,68,69]. The use
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of surface temperature inversion results to identify areas of high-temperature anomalies for
the purpose of mapping the distribution of radioactive element enrichment zones is a novel
method for undertaking geological mineralization surveys. In the harsh temperatures of
the Narsaq region of Greenland, even small thermal anomalies can be captured by the
thermal infrared sensor, which can be useful for identifying radioactive element enrichment
zones in high latitudes. All types of data, including ASTER data, Sentinel Data-3, and
Landsat TIRS data, there are limitations in terms of the resolution of the extracted surface
temperature products, and there is a bias in the identification of specific geographical
features [58,59,70,71]. With the SVM extraction method that used the in situ spectrum as a
reference, the variation in the shape of the spectrum curve of the image elements within a
rock unit, the variation in the position of the absorption valley, and the reflection peak (spec-
tral difference), and the sample separability between the rock units affect the accuracy of the
SVM classification. However, the SVM method was combined with the thermal anomaly
inversion method to extract arfvedsonite Lujavrite-containing radioactive minerals in the
region, and the two methods were used to corroborate the accuracy of the results. Further,
Crosta’s hydrothermal alteration information extraction technique [36,72,73] was utilized
to extract relevant alteration information in the alkaline rock area, and the interpreted
mineral control tectonic spreading characteristics were applied to the Lujavrite outcrop
such that the mineralization characteristics could be optimized. This overlay analysis
of multiple remote sensing data can increase the prediction accuracy while also solving
the issue of predicting mineralization in areas of weak information. The geophysical and
geochemical data in most areas of mineralization prediction are small-scale and do not
have raster digitization. For small-range or large-scale mineralization studies, the accuracy
of such data is severely lacking and, therefore, does not accurately reflect the geological
and geochemical information of the area. The importance of such elements could not be
measured while using this mineralization methodology. Such elements need to be refined
in future studies by complementing them with large-scale studies. As the types of mineral-
ization are not abundant in this article, it is not possible to build a sound statistical model,
and more areas need to be studied. Although the use of remote sensing alone to support
mineralization prediction is efficient and comprehensive, quantitative mathematical meth-
ods with multiple types of parameters should be used, and there is a need to add more
geological anomaly information evaluation indicators to the research method to develop a
more comprehensive method for mineralization prediction at larger scales.

6. Conclusions

A highly efficient and novel technical tool for regional mineralization investigations
is proposed, which uses the remote sensing inversion of radiothermal anomalies in high-
latitude areas. The study area is rich in radioactive minerals, and the average year-round
temperature is below 0 ◦C, allowing weak thermal radiation to manifest through surface
temperature anomalies. Landsat 8 thermal infrared data were used to invert the surface
temperature using the RTE model to circle the high thermal anomaly area. The average
surface temperature of the high thermal area was 23.28 ◦C, which was higher than the
average temperature of the entire area, of 16.85 ◦C. By conducting Spearman correlation
analyses with the airborne radiation data, a positive correlation with the uranium and
thorium concentration and the correlation coefficients all exceeded 0.6, indicating that the
thermal anomaly remote sensing inversion technique is a good indicator of low-temperature
radioactive mineral enrichment areas. By establishing texture and topographic features,
the SVM algorithm was used to identify the mineralized lithology of Lujavrite, with
a classification accuracy of 89.57%; the classification results revealed that the Lujavrite
was characterized by banded outcrops. Through the comprehensive analysis of remote
sensing information, combined with metallogenic background information, the study area
was deemed to be a favorable area for mineralization through the weight-of-evidence
model, with high-value areas of mineralization potential overlapping well with known
mineralization areas. The combination of remote sensing thermal anomaly information
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and rock interpretation methods in the Narsaq region of Greenland has, therefore, been
validated for the analysis of mineralization in the region, and this integrated approach
to remote sensing information can be extended to the prediction of mineralization in
radiogenic high-altitude areas.
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Abstract: Fault systems are characteristically one of the main factors controlling massive sulfide
mineralization. The main objective of this study was to investigate the relationship between fault
systems and host lithology with massive sulfide copper mineralization in the Sahlabad area, South
Khorasan province, east of Iran. Subsequently, the rose diagram analysis, Fry analysis, lineament
factor (LF) map analysis and multifractal technique were implemented for geological and geophysical
data. Airborne geophysical analysis (aeromagnetometric data) was executed to determine the
presence of intrusive and extrusive masses associated with structural systems. Accordingly, the
relationship between the formation boundaries and the fault system was understood. Results indicate
that the NW-SE fault systems are controlling the lithology of the host rock for copper mineralization in
the Sahlabad area. Hence, the NW-SE fault systems are consistent with the main trend of lithological
units related to massive sulfide copper mineralization in the area. Additionally, the distance of copper
deposits, mines and indices in the Sahlabad area with fault systems was calculated and interpreted.
Fieldwork results confirm that the NW-SE fault systems are entirely matched with several massive
sulfide copper mineralizations in the area. This study demonstrates that the fusion of lineament factor
(LF) map analysis and multifractal technique is a valuable and inexpensive approach for exploring
massive sulfide mineralization in metallogenic provinces.

Keywords: fault system analysis; massive sulfide copper exploration; airborne geophysical analysis;
Fry analysis; multifractal technique

1. Introduction

The spatial distribution of mineral reserves is controlled by various parameters [1,2].
The most important controllers of ore mineralization distribution at regional scale are
host-rock lithology, intrusive or extrusive masses and structural systems [3,4]. Therefore, to
identify areas of mineral potential, determining the relationship between mineralization
and structural features is of great importance [5–7]. Numerous studies analyzed the rela-
tionship between structural features controlling mineralization and the spatial distribution
of mineral resources [7–11]. The purpose of these studies was to extract exploratory keys to
identify new high-potential areas [8]. The relationship between structural features such as
the fault system and ore mineralization has been identified through various methods such
as fractal analysis, fault density mapping and combining this information with geochemical
layers and remote sensing data [9–13]. In the regions where field information has not
been collected, remote sensing surveys are used to identify lineaments such as faults and
fractures [13–15]. Simultaneous use of aeromagnetic data analysis with remote sensing data
helps to generate an accurate structural map [16–20]. In the case of structural field data col-
lected and mapped by geologists, the analysis of behavior and impact of structural systems,
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especially major faults in the spatial distribution of mineralization, could be performed
using analytical methods such as fault density mapping and the analytic hierarchy process
(AHP) decision method in combination with other information layers [21]. Multifractal
analysis, rose diagram analysis and Fry analysis were used in fault interpretation and
determining the relationship between mineralization and the fault system [22–26].

Massive sulfide mineralization is typically associated with regional fault systems,
which are documented in many regions such as the Main Urals Fault (MUF), South Urals,
the Selwyn Basin, Canada and the North Australian Craton [27–29]. The Sahlabad area
located in South Khorasan province, east of Iran, has a large number of copper mines,
deposits and indices (Figure 1A). Mesgaran ore deposit is one of the biggest copper mineral-
izations (Cyprus-type massive sulfide) in the study area, in which the regional fault system
acts as a controlling structural factor for copper mineralization [30–32]. According to the
volume, extent and trend of their distribution in the region, to identify the mineralization
potentials of copper in this area, structural controlling factors and their relationship with
mineralization zones need to be determined.

In the present study, in order to analyze the relationship between the fault system
and massive sulfide copper mineralization in the Sahlabad area, rose diagram analysis,
Fry analysis, multifractal technique and lineament factor (LF) map were implemented. To
investigate the host-rock lithological trend, aeromagnetic data analysis was also used. Thus,
the main faults controlling the host lithology trend and playing a key role to determine the
spatial distribution of mineralization were identified. Finally, fractal analysis was used to
extract more detailed characteristics of the relationship between the fault system and the
mineralization distribution in the area. Consequently, high-potential areas were categorized
in terms of control by the fault system and the relationship of each mineralization point
with the map of the nearest community of high-intensity LFs. This approach provides
innovative and valuable information about the fault systems controlling massive sulfide
copper mineralization in the study area. The main objectives of this investigation were:
(1) to provide a rose diagram analysis for fault systems in the region including major
faults, minor faults, inferred faults, thrust faults; (2) to apply Fry analysis to the spatial
distribution of mineralization points in the region; (3) to perform airborne magnetometric
analysis to identify deep faults controlling the host lithology trend; and (4) to generate a
lineament factor (LF) map and concentration–area (C-A) fractal analysis to classify different
LF communities.

2. Geology of the Study Area

The Sahlabad area is located in the east of Iran and South Khorasan province. It is
positioned between longitudes 59◦30′ E to 60◦ E and latitudes 32◦ to 32◦30′ N (Figure 1A,B).
The study area is completely located in the flysch belt and ophiolite melange in the Sistan
structural zone of eastern Iran [33]. This structural zone is situated between the Nehbandan
fault (in the west) and Harirod fault (in the east) and is 800 km long and 200 km wide [34,35].
Based on the geological map of Sahlabad, the regional faults of the area are divided into
four categories: major faults, minor faults, inferred faults and thrust faults. This zone
has undergone evolutionary stages from oceanic to continental crust and is one of the
derivations of the “young Tethys” type [35–37]. In this area, igneous, metamorphic and
sedimentary lithological units related to the Late Cretaceous to Neogene are exposed [38].
The Sahlabad area is entirely located in the flysch and colored melange belt of eastern Iran.
The geological formations observed in the area include rocks with the characteristics of this
belt, which are attributed to the Upper Cretaceous and Lower Tertiary, and the volcanic
cover and younger Tertiary sediments [36].
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Figure 1. (A) Geological map of Sahlabad area (scale of 1:100,000) (modified [39]). Abbreviations:
An = Andesite, Ba = Basalt, Co = Conglomerate, Dd = Dacitic dyke, Lm = Limestone, Lv = Listwanite,
Ml = Ophiolite melange, Mt = Metadiabase, Qt = Quaternary sediments, Tu = Tuff, Ub = Ultrabasic
rocks, Sch = Schist, Sh = Shale and sandstone. (B) Geographical location of Sistan structural zone
in Iran.

2.1. Regional Tectonics

The Sahlabad area belongs to the ophiolitic melanges and flysch belts of eastern Iran
and is located in the Lut structural block. The main trend of the belt is north-south, which
gradually changes to the southeast-northwest. The intense folding of the flysch deposits
and the irregular structure of the melange complexes indicate high compaction in the
area [40]. The most severe crustal deformation has occurred at the southwestern tip of
the region, where a narrow zone of thrust and metamorphosis (metamorphic ophiolitic
melanges) indicates the close connection of the flysch and ophiolitic melanges belt to the
Lut structural block. Folding and crushing, along with tilting, which results in a random
mixing of different types of rock, characterize the ophiolitic melange complexes of the
region [41]. Narrow and intense folding and longitudinal faulting with post-Middle Eocene
(Oligocene) age have affected the volcanic and sedimentary formations of the Paleogene.
The Cretaceous-era Zar-Kooh mountain flysches are trusted on the Eocene sediments of
Bezo Mountain in a southwesterly direction [37,38]. The uniform tectonical motions create
a system of parallel mountain ranges and the depressions between them that characterize
the current topography. Neogene deposition in the depressions has led to moderate folding
and minor faults [33,36]. Andesites and basalts, as representative of the youngest volcanic
rocks (Neogene, probably Early Quaternary), show soft tilt (with a slope of about 20◦) in
the lower units and with a semi-real position in the higher units [34,35].
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2.2. Copper Mineralization in the Study Area

Due to the diversity of lithology consisting of ultrabasic, alkaline-based volcanic,
intermediate and acidic rock units, metamorphic rocks, listwanites and other rock units in
the Sahlabad area, there are mineralization potentials for copper, gold, nickel, chromium
and magnesite. Old mining activity and excavations have been reported in the study area.
Copper mineralization in the study region (mines, deposits and indices) was investigated
and classified from various reports obtained from exploratory studies in the Sahlabad
area, such as geological map reports, economic geology reports, preliminary and detailed
exploration reports of mineral areas, etc., [39,42–46]. The location of copper mines, deposits
and indices in the Sahlabad area are marked on the geology map (Figure 1A). Copper min-
eralizations such as malachite, chalcopyrite and chalcocite were observed and documented
in the study area. Figure 2A–F show polished sections of copper mineralizations selected
from the Mesgaran deposit, Chah-Rasteh deposit and Zahri deposit. Classified information
about 14 copper mineralization zones in the Sahlabad area is presented in Table 1.

Table 1. Classified information of 14 copper mineralization points in Sahlabad area.

Row
Copper

Mineralization
Name

Anomaly Center
Coordinates Anomaly

Area
(Km2)

Alteration
Lithology

(Host Rock)
Cu Dominant

MineralLongitude
(E)

Latitude
(N)

1
Mesgaran
Deposit 59◦52′49′′ 32◦18′58′ ′ 8 Phy + Arg + Pp + Chl +

Qtz Ba + Anb Cpy + Mch

2 Chah-Rasteh
Deposit 59◦46′15” 32◦

21′19′′ 4 Phy + Arg + Pp + Chl +
Cab An + Anb Ch + Mch

3 Zahri Deposit 59◦32′52′′ 32◦00′50′′ 2 Phy + Arg + Pp + Hem Ub + Sch Cpy + Ch + Mch

4 Kasrab
Abandoned Mine 59◦ 59′45′′ 32◦21′05′′ 3.8 Phy + Arg + Pp + Sep Ub Mch

5
Cheshme-Zangi

Abandoned Mine 59◦59′08′′ 32◦25′02′′ 2.5 Phy + Arg + Pp +
Silicification

Limestone shale
+ Listwanite Cpy + Mch

6 Shir-Shotor
Indice 59◦53′50′′ 32◦14′28′′ 1 Arg + Pp + Sep An +

Serpentinite (Ub) Mch + Az

7 Dastgerd Indice 59◦43′39′′ 32◦21′03′′ 2 Arg + Pp + Sep + Hem Harzburgite Mch

8 Torshaab Indice 59◦59′56′′ 32◦28′48′′ 5 Phy + Arg + Pp + Hem
+ Lm Sch Mch + Az

9
Chah-Anjir

Indice 59◦53′37′′ 32◦15′44′′ 2 Pp + Sep Serpentinite (Ub) Mch + Az

10 Zargaran Indice 59◦47′09′′ 32◦21′14′′ 1 Phy + Arg + Pp + Lm +
Goe + Hem An + Db Mch + Az

11
West Mesgaran

Indice 59◦52′26′′ 32◦19′36′′ 1.5 Arg + Pp + Hem + Lm Mtd Cpy + Mch + Az

12 Mirsimin Indice 59◦ 54′58′′ 32◦17′53′′ 9 Arg + Pp + Hem Db Cpy + Mch + Az

Table 1. Cont.

Row
Copper

Mineralization
Name

Anomaly Center
Coordinates Anomaly

Area
(Km2)

Alteration
Lithology

(Host Rock)
Cu Dominant

MineralLongitude
(E)

Latitude
(N)

13 Kuharod Indice 59◦50′31′′ 32◦18′01′′ 1 Phy + Arg + Pp + Hem Db Mch

14 Barghan Indice 59◦ 39′38′′ 32◦09′05′′ 2 Arg + Pp + Lm + Geo +
Hem Db + Limestone Mch

Abbreviations: Cpy = Chalcopyrite, Py = Pyrite, Mch = Malachite, Ch = Chalcocite, Az = Azorite, Ba = Basalt,
An = Andesite, Anb = Andesite-Basalt, Ub = Ultrabasic, Sch = Schist, Db = Diabase, Mtd = Metadiabase,
Chl = Chlorite Alteration, Qtz = Quartz Alteration, Cab = Carbonate Alteration, Pp = Propylitic Alteration,
Arg = Argillic Alteration, Phy = Phyllic Alteration, Sep = Serpentine Alteration, Hem = Hematite Alteration,
Lm = Limonite Alteration, Goe = Goethite Alteration.
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Figure 2. Selected polished sections prepared from collected samples of copper mineralizations in
the Sahlabad area. (A) Mesgaran Deposit: Chalcopyrite and Fe-hydroxide; (B) Mesgaran Deposit:

Malachite and Fe-hydroxide; (C) Chah-Rasteh Deposit: Fracture Filling Malachite; (D) Chah-Rasteh
Deposit: Chalcocite, Fe-hydroxide and Chalcopyrite; (E) Zahri Deposit: Fracture Filling Malachite
and Fe-hydroxide; (F) Zahri Deposit: Chalcopyrite, Malachite and Chalcocite.

3. Materials and Methods

3.1. Geology and Geophysical Data

Geological data, including lithological map of area, structural features (fault system
and lineaments) and location of copper ore deposits, old mines and indices were collected
from the reports of the Geological Survey of Iran (GSI) as well as the Ministry of Industry,
Mines and Trade of Iran [39,42,47]. Network data of 7.5 km of Iranian airborne magnetom-
etry between 1974 and 1976 were commissioned by the Geological Survey of Iran (GSI)
by the American company Aero Service, one of the largest companies active in the field
of airborne geophysics at that time. The distance between the flight lines was 7.5 km, the
fixed flight altitude was 300 m above the ground, and the distance between the vertical flight
control lines was 40 km. The aircraft used to record this data was a twin-engine aircraft with a
cesium vapor magnetometer mounted on it (with sensitivity of 0.002 nT). This data collection
was performed in 62 separate flight blocks and was presented at an acceptable level in terms
of quality [48]. An overview of methodological flowchart is presented in Figure 3.
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Figure 3. An overview of methodological flowchart used in this study.

3.2. Rose Diagram Analysis

Rose diagram is a type of circular histogram used to display directional data and the
repetition rate of each category. This diagram is used in structural geology to show the
trend of faults, fractures, lineaments and dykes [49,50]. In this study, rose diagram analysis
was used to investigate the trend of faults in the Sahlabad region, which was subsequently
compared to copper mineralization information as well as the host lithology trend. By
analyzing the trend of faults and lithology, as well as the trend of copper mineralization in
the area, it is possible to find out the effect of controlling faults [51,52].

3.3. Fry Analysis

Fry analysis is a complementary method in structural geological studies, which can
be used to study the distribution of mineralization in a region and its relationship with
linear structures. In other words, the application of Fry analysis method is useful in linear
and directional analysis. This analysis is used to investigate the patterns of mineralization
dispersion at the regional scale and also to describe mineralization zones, such as the
direction of mineralization, for high-grade zones and the distribution of grade at a deposit
scale [53–55]. Spatial distribution of mines, deposits and mineral indices is affected by
factors such as formation environment, host rocks and other mineralization factors as well
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as structural controllers such as faults. Considering the importance of information about the
spatial distribution of mineralizations, which is an important factor in regional exploration
and mineral potential detection, in this study, the role of structural controllers in the spatial
distribution of copper mineralization in Sahlabad area was investigated [56–58].

3.4. Airborne Magnetometry Analysis

Airborne magnetic data of Sahlabad region were isolated from these data and were
used after corrections. In this study, gradient tensor method was used to analyze airborne
magnetic data. The purpose of analyzing airborne magnetic data is to identify the po-
sition and trend of intrusive masses and to investigate their relationship with regional
faults. There are various methods for analyzing magnetometric geophysical data, which
use gradient analysis to detect geological lineaments. Some methods use only dx and
dy horizontal gradients or only dz vertical gradients. However, in the gradient tensor
method, horizontal gradients and vertical gradients are used simultaneously (dx, dy and
dz). It provides more accurate and acceptable results in detecting lines on the border of
magnetic anomalies [6,16]. For this purpose, using the gradient tensor method, a map of
the residual magnetic intensity was prepared, and the faults associated with these masses
were investigated.

3.5. Concentration–Area (C-A) Fractal Analysis

Fractal is a geometric structure that is obtained by enlarging each part of this structure
in a certain proportion to the original structure. In other words, a fractal is a structure whose
every part is the same as its whole. Fractals are seen from the same distance and closeness.
This feature is called self-similarity [59,60]. Fractals are one of the most important tools in
computer graphics and can be used in many ways [61,62]. The purpose of concentration–
area fractal analysis is to examine the parameters related to the concentration and the area
occupied by it. An exponential equation is given below for the aggregation of materials or
fractal properties.

A(≥ν) ∝ ν−α (1)

A(≥ν) is the cumulative area enclosed by contours whose corresponding degree is
greater than or equal to ν. The value of α represents dimension of fractal corresponding to
different amplitudes [63,64]. In this study, in order to classify the results of the lineament
factor (LF) map, concentration–area (C–A) fractal analysis was used. The result of this
analysis is the presentation of different groups that have different degrees of importance in
the control of mineralization by faults.

4. Analysis and Results

4.1. Rose Diagram Analysis

In this study, in order to study the trend of faults in the area, rose diagrams of faults
were generated. Rose diagrams for each type of fault are shown in Figure 4. A rose
diagram of all the faults in the area is shown in Figure 5. The distance between the classes
is 5 degrees; the average direction angle of faults is 129.8◦ (230.2◦) with a confidence
interval of 2.9◦ (95%). Figure 5 shows the frequency percentage of faults in the extended
intervals. Faults are divided into three categories based on frequency percentage: low
frequency, medium and frequent, which are distinguished by blue, yellow and red colors,
respectively. As shown in the diagram, the main direction of the faults in the area is in the
range of 115 to 135 degrees, which can be understood that the main extension of the faults
is northwest-southeast.
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Figure 4. Rose diagram of faults by each of the types in the study area. The exact locations of the
faults according to the colors assigned in the rose diagrams are shown in Figure 8 as a map.
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Figure 5. Rose diagram of all faults in the study area. Faults are divided into three categories based
on frequency percentage: low frequency, medium and frequent, which are distinguished by blue,
yellow and red colors, respectively.

4.2. Fry Analysis

After analyzing the rose diagram of regional faults and detecting the trend of the
fault system in the region, which was identified as northwest-southeast. Fry analysis was
performed to determine the mineralization trend of copper in the Sahlabad region. One
of the main purposes of this study was to compare the trend of the fault system and the
mineralization trend in the area. The locations of 14 mines, ores and mineral indices of
copper in the Sahlabad area were drawn as dots on a separate layer, and then Fry analysis
was performed on it. The result of this analysis is presented in Figure 6.

Figure 6. Fry analysis related to copper mineralization dispersion in the study area.
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Based on Figure 6 as the result of Fry analysis, the mineralization trend of copper in the
Sahlabad area is mostly northwest-southeast. By comparing the result of Fry analysis and
Rose diagram analysis of faults in the Sahlabad area, it is evident that the mineralization
trend in the area conforms to the dominant trend of faults. Therefore, in order to identify
areas with high potential for copper mineralization, the study of faults is of great importance
and is considered as a valuable exploratory key. Considering that the trend of copper
mineralization is coincident with the trend of the Sahlabad fault system, in order to confirm
the control of mineralization by faults, other trends such as host mineralization lithology
and hydrothermal alterations should be examined.

4.3. Lithology Trend Analysis

Using airborne magnetic data of the Sahlabad area, a residual map of the magnetic
intensity was produced. Figure 7 shows the residual magnetic map of the Sahlabad area.
Results show that there is a magnetic dipole with a northwest-southeast trend, which
according to the geological map of the area, is related to basaltic, andesitic, granite and
ophiolite melange units in the area. In this regard, there are effects of serpentinization and
a high probability of alteration effects due to the proximity of carbonate masses with basic
and ultrabasic masses. According to airborne geophysical evidence and the geological map,
there is a possibility of copper mineralization in this area, especially in the central parts of
the area.

In this analysis, the purpose of analyzing airborne magnetic data was to identify
faults that are associated with intrusive masses in the area. In other words, these faults,
in addition to having an older formation time than other faults, also play a major role
in controlling the lithological trend in the area. Using the gradient tensor method and
intensity magnetic field map of the area, geological lineaments related to intrusive masses
were identified. Figure 7 shows the geological lineament obtained from the magnetic
field intensity map of the Sahlabad area. The lineaments identified by this method are in
accordance with the faults in the geological map (see Figure 1). Since the main purpose of
the magnetometric study was to study intrusive masses, the faults shown in Figure 7 are
considered deep faults that have defined the boundary and trend of igneous masses.

The main fault trend, which extends from the northwest to the east of the map,
generally defines the boundary of the ophiolitic melange unit with basaltic, ultrabasic
and andesitic massifs. Expansion and formation of ophiolitic melanges in the Sahlabad
region (northwest-southeast) have occurred in the direction of this fault. Therefore, it can
be considered as the main fault that controls the lithology trend in the area. The faults north
of the map are also located at the boundary of basaltic and andesitic units, and thus the
elongation of these massifs is evident along the faults. Other faults that are shorter than the
others also show control over the extension of intrusive masses in the area. It is noteworthy
that because the faults were identified based on airborne magnetic analysis, the boundary
of the intrusive masses in the area plays an essential role in the final result. Therefore, they
are clearly shown linearly and based on the boundaries of geological units.
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Figure 7. Map of changes in residual magnetic field intensity and faults identified by airborne
magnetometry in the Sahlabad area.

4.4. Lineament Factor (LF) Map Analysis

The lineament factor (LF) map scores various parameters related to faults based on
their degree of importance and finally shows the areas that are important in terms of fault
activity. The parameters used in this study were: (i) frequency of faults, (ii) length of the
faults and (iii) number of fault intersections. Initially, the network of the Sahlabad area
was divided into 100-square-meter cells in order to study the faults and draw an LF map
using the RockWorks software package. The scores of these factors were considered from
top to bottom 1, 2 and 3, respectively [51,65]. The frequency of fault intersections plays
an important role in the formation of magmatic and hydrothermal deposits because these
intersections create a suitable space for mineralization in the bedrock [66]. However, the
length of faults is also an important factor in the formation of hydrothermal deposits and
leads to fluid conduction. The frequency of faults including structures before and after
mineralization is the least important among the mentioned factors [67,68]. The lineament
factor map is presented in Figure 8. According to the lineament factor map, based on the
above-mentioned scores, the effect of fault control on copper mineralization in the Sahlabad
area is shown. The importance of fault control in copper mineralization, from gray (lowest)
to red (highest), is shown in the LF map. In order to determine the threshold of the impact
of faults on copper mineralization, grouping was performed using fractal methods.
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Figure 8. Lineament factor (LF) map of Sahlabad area. The faults in the map are divided into four
categories, inferred, minor, thrust and major, which are marked with red, cream, yellow and black
colors, respectively. Faults were identified using information extracted from the geological map
(Geological Survey of Iran (GSI)).

LF Map Classification by Fractal Modeling

Based on the map presented in Figure 8, the fractal diagram of the concentration–area
(C–A) of the faults was produced. According to the LF values shown in Figure 8, the area
associated with lower LF values to higher LF values was calculated using Surfer software.
Then, based on the concentration–area (C–A) fractal methodology, logarithmic values were
examined and are shown in Figure 9. The C–A fractal diagram is shown in Figure 9. The
diagram shows the multifractal nature of faults in the Sahlabad area. The results of the
fractal classification of faults are presented in Table 2.
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Figure 9. Concentration–area (C–A) fractal diagram of faults in the Sahlabad area. The trend change
is indicated by colored lines, and each sub-community is marked with the letters A to G, respectively.

Table 2. Range of lineament factor values obtained from the concentration–area (C–A) fractal model
of faults in the Sahlabad area.

Communities Background Medium Intensity High Intensity

Sub-Communities A B G D E F G

LF Threshold Less than 12 12–15 15–22 22–26 26–30 30–41 More than 41

According to Table 2, three communities and seven sub-communities were identified
in terms of the LF concentration of faults in the area. The first community is the background
in which the cell counts in this class are calculated from 12 to 25. The second community
shows the average intensity of the LF concentration of faults in which the range of cell
values is 15 to 30. The third community, which is introduced as the community of a high-
intensity concentration of LFs, includes values above 30. Now, based on the map presented
in Figure 8, the important areas in terms of fault activity can be easily distinguished and
studied. The distance of each of the existing copper mineralizations (mines, ores and
indices) from the regional faults and the LF high-intensity community of the faults is
presented in Table 3.
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Table 3. Copper mineralization distance from regional faults and LF high-intensity community.

Distance from LF High-Intensity
Community (Km)

Distance from Regional Faults
(Km)

Copper Mineralization Row

1.9 1.1 Mesgaran Deposit 1
4.1 0.95 Chah-Rasteh Deposit 2
0.45 Coincident Zahri Deposit 3
4.3 Coincident Kasrab Abandoned Mine 4

Coincident Coincident Cheshme-Zangi Abandoned Mine 5
2.79 Coincident Shir-Shotor Indice 6
3.67 1.64 Dastgerd Indice 7
1.8 Coincident Torshaab Indice 8
1.52 0.8 Chah-Anjir Indice 9
3.5 1.49 Zargaran Indice 10
1.34 1.25 West Mesgaran Indice 11

Coincident Coincident Mirsimin Indice 12
1 Coincident Kuharod Indice 13

1.59 Coincident Barghan Indice 14
1.99 0.51 Average Distance (Km)

4.5. Field Evidence

In order to conduct a field check, some points were selected as the target. These
points are typically andesite-basalt and ultrabasic rocks, which are the host rocks of copper
mineralization in the Sahlabad area. Generally, surface exposures of copper mineralization
in the form of malachite and azurite were observed in the faults and fractures associated
with andesitic-basaltic outcrops. An overview of copper mineralization in the faults and
fracture zone is shown in Figure 10A–D. The reason for choosing these points as control
points was the presence of andesite-basalt and ultrabasic rock units and the conformity
of this lithology on one of the parts of the community in the high-intensity LF map (see
Figure 8). Moreover, these zones are in line with the copper mineralization trend (analyzed
by Fry analysis) on a regional scale. As shown in Figure 10, copper oxide mineralization is
widespread in the outcrops of these areas.

Figure 10. Cont.
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Figure 10. View of copper mineralization (malachite-azurite) points in fracture zone and andesitic-
basaltic bedrock. (A–C) Malachite-azurite mineralization in field survey (high-intensity LF); (D) an
overview of fracture zone in field check points.

5. Discussion

The exploration of massive sulfide mineralization involves specific, robust and tailored
exploration techniques, which can be further developed using geology and geophysical
data. Massive sulfide deposits are diligently related to low-angle detachment faults [27,29].
They are typically hosted in various altered ultramafic rocks (tectonic melange) and are
enriched in Au, Ag, Co, Cu, Zn, Ni [28]. Because of their complex tectonic settings,
these deposits are difficult to explore. In this study, using analytical methods such as
the rose diagram, Fry analysis, lineament factor (LF) map, multifractal technique and
aeromagnetic data analysis, the regional trend of faults systems and the trend of massive
sulfide copper mineralization in host rock were investigated in the Sahlabad area, South
Khorasan province, east of Iran. Due to the boundary of lithologies of mineralization
host rock in the Sahlabad area, which can be seen from the residual magnetic field map
and geological map, the fault system has played an important role in orienting the host
lithology.

The concentration–area (C-A) multifractal technique, which was applied on the lin-
eament factor (LF) map, divided the fault lineament factor community into seven sub-
communities. In order to simplify the results, these sub-communities were divided into
three general communities, which are background, medium intensity and high intensity.
Then, in order to investigate the relationship between copper occurrences (deposits, mines
and indices) with the fault system, the distances of these anomalies to the LF high-intensity
community of faults were measured. According to Table 3, about 60% of these anomalies
are coincident with the fault system, and on average, all copper occurrences in the Sahlabad
area are within 500 m of regional faults and 2 km from the LF high-intensity community.
The main development of the present study, compared to previous studies, is the fusion
of airborne (aeromagnetic) geophysical data with the regional fault system information
derived from geological data. It is worth mentioning that before this research, no study had
been conducted on the relationship between the fault system and copper mineralization in
the Sahlabad area. The NW-SE fault systems are, along with the main trend of lithological
units, related to massive sulfide copper mineralization in the area. Field evidence estab-
lished that the NW-SE fault systems are matched with a number of massive sulfide copper
mineralizations.

6. Conclusions

In this study, the relationship between the fault system and copper mineralization in
the Sahlabad area, South Khorasan province, east of Iran, was identified. The lineament
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factor (LF) map was generated, and multifractal analysis was implemented. The main
achievements of this research are:

• In general, the trend of faults at the regional scale is northwest-southeast, which is
consistent with the trend of lithology units related to mineralization.

• Based on the classified information related to faults in mines, deposits and copper
indices of the Sahlabad area, it is observed that in most cases, mineralization has taken
place at the fault systems that have a trend perpendicular to the faults in the area.

• Studies on airborne magnetometric data indicate that the faults identified by this
method are faults associated with intrusive masses, and thus the faults control the
lithology trend in the area.

• Overall, it can be said that the faults in the area control the bedrock lithology and the
source of massive sulfide copper mineralization in the region, while the regional faults
(on a mining scale) in mines, deposits and indices control the mineralization in the
region.

The distance of copper mineralization in the Sahlabad area from regional faults and
also from the community of high-intensity lineament factors (LFs) is on average 500 m and
2 km, respectively. It is noteworthy that a number of mineralizations correspond exactly to
the regional faults as well as the high-intensity linear factor community.

In conclusion, the approach developed in this study is a valuable and inexpensive tool
for exploring massive sulfide mineralization in metallogenic provinces.
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Abstract: This study involves the use of high-resolution airborne magnetic data to evaluate the thick-
nesses of sedimentary series in the Bornu Basin, Northeast Nigeria, using three depth approximation
techniques (source parameter imaging, standard Euler deconvolution, and 2D GM-SYS forward
modelling methods). Three evenly spaced profiles were drawn in the N-S direction on the total
magnetic intensity map perpendicular to the regional magnetic structures. These profiles were used
to generate three 2-D models. The magnetic signatures were visually assessed to determine the
thickness of depo-centres and the position of intrusions. The thicknesses of sedimentary series based
on source parameter imaging results are approximately ranged 286 to 615 m, 695 to 1038 m, and
1145 to 5885 m for thin, intermediate, and thick sedimentation, respectively. Similarly, the standard
Euler deconvolution result shows thin (130 to 917 m), intermediate (1044 to 1572 m), and thick (1725 to
5974 m) sedimentation. The magnetic model of Profile 1, characterized by two major breaks, shows
that the igneous intrusions and basement rocks are covered by sediments with thickness varying
from 300 to <3500 m, while Profile 2 has a maximum estimated depth value of about 5000 m at the
southern part. Furthermore, the Profile 3 model shows sediment thicknesses of 2500 and 4500 m
in the northern and southern flanks of the profile, respectively. The maximum sediment thickness
value from the various depth estimation methods used in this study correlate relatively well with
each other. Furthermore, the anomalous depth zone revealed by the 2D forward models coincides
with the locality of the thick sedimentation revealed by the source parameter imaging and standard
Euler-deconvolution (St-ED) methods. The maximum depth values obtained from the various depth
estimation methods used in this study correlated strongly with each other. The widespread occur-
rence of short-wavelength anomalies in the southern part of the study area as indicated by the jagged
nature of the magnetic signature was validated by the analytic signal and upward-continuation
results. Generally, it was observed that the southern part of the research area is characterized by thick
sedimentation and igneous intrusions.

Keywords: aeromagnetic; Bornu Basin; Precambrian; basement depth

1. Introduction

Potential field techniques have various successful applications in exploration geo-
physics [1–10]. One of the most essential applications of the magnetic dataset is to define
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the location and depth of magnetic bodies. Conventionally, it is often used to determine
sedimentary thicknesses for oil and gas exploration purposes. The false solution problems
associated with different depth approximation techniques can be controlled by combining
two or more depth determination procedures [11,12], or enhancing the signal/noise ratio
through proper evaluation of the derivatives of the field [13].

In this research, vital depth estimation methods like source-parameter imaging (SPI) [14,15],
standard-Euler deconvolution (St-ED) [16], and 2D-GM-SYS modelling code [17] in the
Oasis–Montaj software (Geosoft Inc., Toronto, ON, Canada) are used for the interpretation
of airborne magnetic data collected in the Bornu Basin, Northeast Nigeria. The SPI and
St-ED techniques are non-dependent on assumptions about the geologic model [18,19].
Hence, the applications of these techniques have made the procedure of magnetic data
interpretation significantly simpler [20]. The use of these depth estimation methods in
this study to the same magnetic sources will considerably enhance the reliability of depth
solutions. Furthermore, analytic signal [20] and upward-continuation (UP-C) [21–23] filters
will be applied to image the location and source of the main tectonics that caused the buried
deformations and geologic structures [24,25] within the study area.

Modern geoscience investigations in the Nigerian inland basins are centred on gravity,
seismic, magnetic, paleoclimatography, geochemistry, aerial photography, source rocks
and rock facies evaluations that have been studied by several researchers [11,26]. At the
reconnaissance stage, the basement framework, depositional centres [27], and depth so-
lutions [11,28] can be discerned from high resolution airborne magnetic data. Several
researchers [11,23–27,29–33] have investigated the thickness of sediments in the Cretaceous
inland basins of Nigeria. In their separate studies, several depth solutions (1.5–12 km) were
estimated involving different depth to basement procedures [11]. Remarkably, these inves-
tigations have led to the detection of commercial hydrocarbon in the Cretaceous inland
Anambra basin. This discovery has further triggered geoscientists’ interest to properly
evaluate the hydrocarbon prospects of the Nigerian Benue Trough.

Modern airborne (magnetic) data were collected (between 2005 and 2010) by Fugro
Airborne-Services, Canada was used in this research. The object of this study which
involves the assessment of sediment thicknesses, mapping of basin topography, and de-
lineation of the spatial spread of magnetic sources were resolved using these magnetic
datasets. These data can further be employed in the demarcation of regional surficial
geologic boundaries [26], mineral assessment programs [11], mapping of hydrothermally
modified rocks [27,34–37], edges of sources [38], geothermal potentiality [39], and geologic
structures such as faults, fractures, dykes, sills, etc. [27,40]. Furthermore, it can be applied
in hydrocarbon exploration [27], archaeological investigations, and unexploded ordnance
(UXO) detection [41]. Recently, the readily available high-speed and robust computer
programs have made the processes of magnetic data correction, enhancement, modelling,
and interpretation easier. Furthermore, the advancements in technology have made it
increasingly possible to produce more details, and delineate elusive magnetic anomalies.
However, the associated inverse problem of magnetic data is often ill-posed, therefore
making the solution unstable and uncertain [42–44]. Nonetheless, a reliable solution to an
ill-posed problem can be obtained by combining accurate geologic information with recent
innovative magnetic data enhancement and modelling procedures [11].

The Bornu Basin, often described as part of the Upper Benue Trough, is a fraction of
the Chad Basin [45]. The basin has witnessed extensive geological and geophysical studies
for hydrocarbon, coal and minerals, and groundwater resources [11]. The detection of
commercial hydrocarbon in the neighboring Republics of Niger and Chad in the 1970s
has further oil and gas exploration activities in the Bornu Basin [46] and other Nigerian
inland basins in the last forty years. The geology [45,47,48], stratigraphy [49,50], tectonics
and tectono-sedimentary framework of the Nigerian sector of the Chad Basin [24,25,28,51]
have been extensively investigated and properly documented. These investigations have
indicated a relatively thick succession of sedimentary series overlying coexistent igneous
intrusions within the horst/graben structures of the Bornu Basin [23]. The preliminary
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results triggered the drilling of twenty-three exploratory wells by the Nigerian National
Petroleum Cooperation (NNPC) that revealed evidence of gas accumulation [52].

2. Geologic Setting of the Study Area

The investigated region is located at the Northeast Nigeria frontiers with the Republics
of Chad, Niger, and Cameroon. It is situated between longitude 11◦30′ E and 14◦00′ E and
latitude 12◦00′ N and 14◦00′ N.

The Bornu Basin (Figure 1) is characterized by an elevation ranging from 200–500 m
above sea level [15]. It is often described as an interior sag basin [53] and is a portion of the
Chad basin [25]. The Chad basin is composed of two coeval rift systems Central African Rift
System (CARS) and West African Rift System (WARS) [54] that are physically disconnected
but genetically related. The origin of the Central and West African Rift Systems is essentially
attributed to the breakup of Gondwana and the opening of the South-Atlantic Ocean and
the Indian Ocean at about 120–130 Ma [55].

 

Figure 1. Geologic map of the study area.

The origin and tectonic structure of the Bornu Basin occurred in the evolution period
of the WARS [25]. The regional structure and tectonic evolution of the Cretaceous to Recent
rift basins of Niger, Chad, and the Central African Republic have been properly studied and
well documented [25,55]. Geophysical and geological analyses of data indicate a complex
sequence of Cretaceous grabens spanning from the Benue Trough to the southwest [23].
These datasets reveal near-surface intrusive bodies in the horst/graben structures as well
as a relatively thick sedimentary section [25].

Refs. [50,56], and others reported the stratigraphic settings of the Southern part of
the Chad basin (Figure 2). The Precambrian basement of the basin is directly overlain by
continental, sparsely fossiliferous, poorly sorted, and medium to coarse-grained, feldspathic
sandstones described as the Bima Formation (Sandstone). Overlying the Bima Formation is
the transitional calcareous deposit called Gongila Formation [47,57]. It is composed mainly
of sandstone and calcareous shale deposits [23]. This formation shows the beginning of
marine incursion into the Chad Basin [58]. Marine transgression in the Albian got to its
peak in the Turonian resulting in the deposition of ammonite-rich, bluish-black, open-
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marine Fika Shale Formation [58] which continued into Senonian. In the Maastrichtian,
the regressive depositional Gombe Sandstone comprised of intercalations of siltstones,
ironstones, and shales was deposited in a deltaic/estuarine environment.

Figure 2. The stratigraphic succession, average thicknesses of formations and thicknesses recorded in
the studied wells in the Nigerian sector of the Chad Basin [47,57].

A phase of extensional deformation in the Chad basin occurred between the Late
Maastrichtian to the end of the Cretaceous period. This extension deformation created
an elongated graben system that trends in the Northeast-Southwest direction. The asso-
ciated remnant basin that followed this tectonic deformation created a depositional site
for the Tertiary Kerri-Kerri Formation that overlies the Cretaceous sedimentary series
unconformably [57]. The continental (lacustrine) deposits of the Chad Formation were
deposited unconformably over the Kerri-Keri Formation in the Pleistocene and perhaps,
in the Pliocene period. The central and southern parts of the Bornu Basin have witnessed
extensive volcanic activity towards the end of the Tertiary, and even recently [59]. Cur-
rently, dunes heap up in the Chad basin. The youngest deposits that blanket some parts of
the south and southwestern flanks of Lake Chad are the river alluvium and deltaic and
lagoonal clay flats [59].

3. Materials and Methods

3.1. Data Acquisition

In the middle of 2005 and 2010, Fugro-Airborne Surveys (FAS), Canada, under con-
tract to the Central of Nigeria and supervised by the Nigerian-Geological-Survey Agency
(NGSA) collected airborne magnetic data in Nigeria. The data were acquired with Flux-
Adjusting Surface Data Assimilation System (FASDAS) with a terrain clearance of between
0.08–0.1 km, tie line spacing of 0.5 km, and flight-line spacing of 0.1 km along 826,000 lines.
The flight lines and tie-lines were oriented in the northwest-southeast and northeast-
southwest directions, respectively. The tie-lines orientation was carefully and deliberately
designed to run across the major geological strike. The 10th generation International Geo-
magnetic Reference Field (IGRF) version 4.0 was applied by FAS on the compiled dataset
to remove IGRF. In magnetic data reduction practice, IGRF, which is easily available and
universally accepted, provides consistency in data reduction procedure [60]. Processed
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and corrected high-resolution aero-magnetic data are very appropriate for mineral evalu-
ation programs, basin framework, hydrocarbon, and hydrogeological explorations, and
delineation of the regional geologic boundary [26,61–67]. The airborne magnetic data
employed in this investigation were corrected and processed to a total magnetic intensity
map (Figure 3) which were gridded, saved, and displayed in Oasis Montaj Geosoft in colour
raster format.

Figure 3. Total magnetic intensity map with the profile lines used for modelling.

3.2. Data Processing and Modelling

FAS, Canada carried out all the required airborne magnetic data filtering and correction
processes. The local datum-transformation and projection method were applied to input
magnetic data into World Geodetic System 84 (WGS 84) and Universal Transverse Mercator
coordinate system at zone 32 of Northern hemisphere (UTM-32N), respectively. The data
file was loaded into source parameter imaging, Euler deconvolution, MAGMAP, and
2-D GM-SYS extensions which generated control files for the various procedures. These
processes were comprehensively applied to determine sedimentary thicknesses, define
the basement framework, and map the location and the spatial distributions of the main
intrusions in the investigated area. The source parameter imaging (SPI) technique [15]
output is typically a map from which sediment thicknesses can be estimated [19]. This
method evaluates the properties of the second vertical derivative and analytic signal
responses [14,19,68]. Just like Euler deconvolution, depth approximation does not depend
on any assumptions about the geologic model [19]. Furthermore, the geologic model can
be determined correctly from the analysis, and the depth solutions are independent of
the magnetic inclination and declination. Consequently, it is not necessary to apply a
reduction-to-pole input grid [15]. The magnetic data interpretation procedure is made
considerably easier with the availability of correct information on the local geology [15].

The approximations of depth using the SPI method are ordinarily from the wavelength
of the analytic signal. Refs. [14,21,69] defined the analytic signal A1(x, z) as

A1(x, z) =
∂M(x, z)

∂x
− j

∂M
∂z

(1)

where, i =
√−1, M(x, z) is the magnitude of the anomalous total magnetic field, z and x

are the Cartesian coordinates for the vertical and the horizontal directions perpendicular to
the strike, respectively.
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The standard-Euler deconvolution (St-ED) method relies on Euler’s homogeneity equation:

(x − x0)
∂T
∂x

+ (y − y0)
∂T
∂y

+ (z − z0)
∂T
∂Z

= N(B − T) (2)

where (x0,y0,z0) is the position of the magnetic field of which total field is observed at (x,y,z),
while B is the value of the regional value of the total field. The degree of homogeneity N
is interpreted as a structural index [16]. Unlike several other computer-aided procedures
before it, St-ED does not adopt any particular geologic model. In addition, the method
which can be applied directly to gridded data is interpreted even when the geology cannot
be suitably described by dikes or prisms [69].

Two-dimensional forward modelling [70] involving the GM-SYS tool of Oasis Montaj [42]
was used to evaluate depth to the basement and basin framework of the area. The GM-SYS
profile is a program for computing magnetic and gravity responses from a cross-section
of geologic models [71]. The application of algorithms described by [72] enabled the
forward modeling procedure to create a hypothetical geologic model and compute the
magnetic/gravity responses based on [73,74]. Generally, the subsurface is partitioned into
two layers that are, top sedimentary series and basal basement rock. All points on the profile
used for modelling in the GM-SYS platform have values obtained from total magnetic
intensity, magnetic susceptibility, geographic coordinates, elevation, inclination, declination,
and depth to the basement (generated from source parameter imaging database). The
gridded data used for modelling were obtained along with three profiles, drawn mainly
in the N-S direction on the total magnetic intensity gridded data (Figure 3). The profile
placements were determined after carrying outsource parameter imaging and standard
Euler operations. These processes were intended to make sure the profile lines were drawn
across the depositional centers within the study area. All operations in this investigation
were carried out applying codes obtainable in Oasis-Montaj version 7.0.1 (OL) (2008).

The analytic signal (AS) filter ([14,73,74] generates peak responses over magnetic
anomalies. This technique is usually applied at low magnetic latitude because of the in-
built problem associated with the reduction-to-pole filter. References [14,20,68] indicated
that the amplitude of the AS can be obtained from the three orthogonal derivatives of the
magnetic field as:

∣∣∣ASIG(X,Y)

∣∣∣ =
√(

∂A
∂x

)2
+

(
∂A
∂y

)2
+

(
∂A
∂z

)2
(3)

where, A is the observed magnetic field.
Upward-continuation (UP-C) filter is used in evaluating the regional magnetic struc-

tures emanating from deeply buried magnetic field sources. The equation of the wavenum-
ber domain filter to generate upward continuation [67] is essential:

F(ω) = e−hw (4)

where, h is the continuation height. This function drops progressively with increasing
wave-number, decreasing the higher wavenumbers more severely, and so creating a map in
which more regional anomalies dominate [60].

4. Results

The SPI and St-ED methods are data enhancement processes for evaluating the posi-
tions and depth of magnetic bodies [11]. These methods are suitable for delineating isolated
and multiple magnetic source geometries [67], and susceptibility disparity [26]. Wide-
ranging colours (pink-blue) showing various depths and locations of different magnetic
bodies within the subsurface are displayed by the SPI and St-ED gridded maps (Figure 4).
The colour legend bar is described by a negative sign indicating depth measurement from
the Earth’s surface downward [15]. The SPI (Figure 4a) indicates shallow (red-pink), in-
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termediate (yellow-red) and deep (lemon green-blue) depth ranges of 286 to 615 m, 695 to
1038 m, and 1145 to 5885 m, respectively. Similarly, the standard Euler deconvolution
(Figure 4a) reveals the depth to shallow (130 to 917 m), intermediate (1044 to 1572 m), and
deep (1725 to 5974 m) magnetic sources characterized by red-pink, yellow-red and lemon
green-blue, respectively. The wide range of depth to deep magnetic sources obtained from
Figure 4 explains the undulant nature of the underlying basement surface. From the results
(Figure 4), zones described by yellow-pink colour (intermediate-high magnetization) are
recognized to be localized residual magnetizations associated with ferruginous sediments,
horst/graben structures, near-surface igneous intrusions, and related baked sediments of
the area [23]. In the late Tertiary, and even in recent times [59], reported extensive volcanic
activities in the southern and central parts of the basin. Reference [58] described the area to
be blanketed by sand dunes, river alluvium, and deltaic and clay sediments.

Figure 4. (a) Standard Euler deconvolution (structural index = 1.0; max. % depth tolerance = 15.0,
window size = 10) and (b) source parameter imaging maps.
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The magnetic signature of Profile 1 (Figure 5), which runs across part of the western
flank of the study area in the N-S direction (Figure 3), is characterized by two major
breaks around the middle and southern parts of the model. These breaks signify weak
zones within the Precambrian basement that created openings for igneous intrusions.
These zones of magnetic signature disorders show the occurrence of magnetic anomalies
previously revealed by the depth determination techniques (Figure 4). The prevalence
of magnetic structures observed along profile 1 indicate the widespread invasion of the
Cretaceous-Recent sediments and underlying basement rocks by basaltic lavas, mafic
and felsic intrusives [23,25,55,59], whose sizes range from dyke-like structures to massive
granitic structures that may perhaps link to generate massive structures [11,28]. In general,
Profile 1 model shows that the igneous intrusions and basement rocks are blanketed by
sedimentary series with thickness varying from ~300 to <3500 m.

Figure 5. 2-D total magnetic intensity model obtained at Profile 1 showing thickness of sediments,
basement and igneous rocks, and their respective susceptibility values.

Furthermore, the model obtained at the centre that runs in the N-S direction (Profile 2,
Figure 6) is defined by having one serration towards the northern part of the magnetic
signature. This is an indication of magnetic intrusion that penetrated the weak zone within
the basement and overlying sediments. The southern end of the model is characterized
by an anomalous depth [25] value of about 5000 m. This region coincides with the thick
sediments zone previously circumscribed by a black polygon in Figure 4.

Profile 3 is situated at the eastern flank runs in the N-S direction (Figure 3). It is
characterized by jagged and smooth magnetic signature at the southern and northern
ends, respectively (Figure 7). The serrated pattern of the curve at the southern part shows
multiple block faults within the basement and overlying sediments caused by tectonic
events [25,49,55]. In general, the model shows sediments cover of about 2500 and 4500 m
in the northern and southern flanks of the profile, respectively. The region with thick sedi-
ments falls under the southern flank of the model. This anomalous depth region that runs
east-west coincides with the locality of the thick sedimentation revealed by Figures 4 and 6.

124



Minerals 2022, 12, 285

Figure 6. 2-D total magnetic intensity model obtained at Profile 2 showing thickness of sediments,
basement and igneous rocks, and their respective susceptibility values.

Figure 7. 2-D total magnetic intensity model obtained at Profile 3 showing thickness of sediments,
basement and igneous rocks, and their respective susceptibility values.

Analytic signal (AS) filter [21] creates peak responses over distinctive magnetic bodies.
The amplitude of magnetization mostly generated by the AS is independent of the direction
of the magnetic body [21]. Figure 8a outlined low (0.003421–0.008461 nT/m), intermediate
(0.009898–0.017579 nT/m) and high (0.019647–0.093958 nT/m) magnetizations described
by blue, lemon green-yellow and red-pink colours correspondingly. The delineated regions
of high magnetizations (red-pink colours) labeled A, B and C correlate with the sites of
near-surface igneous intrusions (Figure 8a) occurring alongside the horst/graben structures
in the Bornu Basin described by [23,25]. Similarly, Figure 8a delineated the U-like structure
dominated by low-intermediate magnetizations (blue-yellow colours).
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Figure 8. (a) Analytic signal and (b) total magnetic intensity data upward continued 5000 m maps.

To reveal the main igneous intrusions that caused near-surface magnetizations, ge-
ologic structures, baking of basement and overlying sedimentary materials, the upward
continuation filter [20,75] was applied to the magnetic data. The data were upward contin-
ued to 5000 m (Figure 8b) to eliminate magnetic effects emanating from high-frequency
magnetic bodies. Figure 8b displays a deeply seated ridge-like intrusive structure (labeled
as A-B dominated by red-pink colours) that straddles the southern part of the study area in
the E-W direction. Furthermore, Figure 8b showed igneous intrusions in the central and
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the northern parts of the investigated area labeled as C and D, respectively. The location of
these igneous validates the findings of [59]. Furthermore, A, B, C, and D igneous intrusions
match with the anticlinal structures of the study area that are sandwiched by synclines
(well-defined by lemon green-blue colours). Additionally, Figure 8b showed a distinct
deeply buried E-W weak zone well defined by blue colour at the eastern flank of the area.
Similar features observed at the northwestern flank correlate with the location of N’Dgel
Edgi graben that extends into Nigeria from the Niger Republic [24]. These regions charac-
terized by intermediate magnetizations (Figure 8a) are dominated by intermediate-thick
sedimentations (Figure 4).

5. Discussion

The Bornu Basin, which is part of the Upper Benue Trough [45], is described by [53]
as an interior sag basin that is genetically interrelated to the Central African Rift System
and West African Rift System [54]. The area is characterized by sedimentary thicknesses in
the range of about 130 to 5974 m from SPI, St-ED, and 2-D modeling results (Figures 4–7).
The respective peak depth values of 5885 m, 5974 m, and 5500 m revealed from the various
depth determination methods used, strongly agree with each other. The depth results match
relatively well with the depth estimation results obtained by previous researchers in the
Bornu Basin [25,30,32,33,49]. Similarly, studies carried out in the genetically and structurally
connected Lower Benue Trough, involving potential field data and various depth estimation
methods [11,26,27,31,34,59,76] show strong correlation with depth solutions of the Bornu
Basin. However, [29,47] reported contrary sedimentary thicknesses of about 10,000 m and
9000 m, in the Bornu Basin and Lower Benue Trough, respectively.

Additionally, an anomalous sedimentary thickness (Figure 4) represented by a poly-
gon sits on igneous intrusions revealed by the UP-C magnetic map (Figure 8b). Docu-
mented geophysical and geological works revealed that the investigated area is dominated
by horst/graben structures, block faults, and associated igneous intrusions [24,25,55].
However, the findings of [23] and others indicated that these structures are blanketed
by somewhat thick sediments. Their reports motivated the Nigerian National Petroleum
Corporation (NNPC) to drill some exploratory wells within the area characterized by thick
sedimentation. The exploration exercise revealed evidence of gas accumulation [52] which
may perhaps be caused by igneous intrusions [56,58] and related enhanced geothermal
gradient. The 2-D models with sediment thicknesses in the range of ~300 to ~5500 m
(Figures 5–7) obtained from the three profiles (Figure 3) are characterized by jagged mag-
netic signatures. The serrated pattern of the curves indicates multiple block faults within
the basement, and widespread invasion of igneous intrusions into overlying Cretaceous
sediments [23,25,55,59]. These igneous invasions were detected by SPI and St-ED (Figure 4),
as well as analytic signal and upward continuation enhancements (Figure 8). Geologic
structures caused by intrusions in such regions are the potential pathway for hydrothermal
fluid migration and mineralization in rift environments [18,34,64,77–79] like the Bornu
Basin. However, Figure 8b revealed E-W anticlinal structures (red-pink colour) adjoined
by a trough-like structure (lemon green-blue colour) located at the southern and northern
parts of the study area, respectively. The northern part is characterized by two isolated
domal high magnetization structures and E-W weak zone (blue colour) separating them.
The western end of this weak zone runs into N’Dgel Edgi graben, Niger Republic [25],
where commercial hydrocarbon is exploited. Generally, the northern flank of the study area
is characterized by intermediate depths (Figure 5) and magnetizations (Figure 8). Hence,
further oil and gas surveys involving drilling of exploratory wells and seismic reflection
techniques should be shifted to this area defined by insignificant relics of post-Cretaceous
tectonic events [26].

6. Conclusions

Modern high-resolution aero-magnetic data measured between 2005 and 2010 were
used to infer thicknesses of the sedimentary sections of Northeastern Nigeria. Various
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depth estimation methods like source parameter imaging (SPI), Standard-Euler deconvolu-
tion (St-ED), and 2D GM-SYS forward modelling were used in this investigation. It was
generally observed from the various results obtained that the southern part of the study
area is dominated by thick sedimentary series coexistent with igneous intrusions. The SPI
result revealed 286 to 615 m, 695 to 1038 m, and 1145 to 5885 m for thin, intermediate, and
thick sedimentation, respectively. Likewise, the St-ED result indicated values of 130 to
917 m, 1044 to 1572 m, and 1725 to 5974 m for thin, intermediate, and thick sedimentation
correspondingly. A 2D forward model of Profile 1 is described by two major breaks, indi-
cating that the igneous intrusions and basement rocks are blanketed by sediments with
thicknesses ranging from about 300 to <3500 m while the 2D model of Profile 2 has an
approximated maximum depth value of about 5000 m at the southern flank. Furthermore,
the Profile 3 model shows sedimentary thickness in the range of 2500 and 4500 m in the
northern and southern ends of the profile, respectively. The anomalous depth region
detected by the 2D forward models matches with the location of the thick sedimentary
cover identified by the SPI and St-ED techniques. The maximum depth values obtained
from the different depth approximation procedures employed in this investigation matched
closely with each other. In addition, the forward models revealed that the underlying
basement framework is undulant, and the weak zones intruded by igneous rocks. Fur-
ther hydrocarbon investigations involving the seismic reflection method and exploratory
wells should be shifted to the northern flank characerized by shallow-intermediate depths
and magnetizations. On the whole, the extensive occurrence of igneous intrusions in the
southern part of the study area have caused severe fracturing and faulting of the basement,
and overlying sediments. Related geologic structures caused by tectonic events serve as
a potential pathway for hydrothermal fluid migration and mineralization accumulation.
High resolution ground gravity and electromagnetic studies should be employed in the
exploration of igneous rock related minerals.
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Abstract: Investigation into understanding the genesis of brines in southeast Nigeria was carried
out utilizing high-resolution potential field (HRPF) data. This study reveals that igneous intrusions
and associated hydrothermal fluids are responsible for brine generation. The obtained result of the
analytic signal revealed the locations and spatial distribution of short- and long-wavelength geologic
structures associated with igneous intrusions. The low pass filtering, upward continuation, and
2D modelling procedures showed key synclinal structures which coincided well with the location
of brine fields. The results showed that salt ponds are common in the neighborhood of igneous
intrusions. To validate this finding, a conceptual model describing igneous-related hydrothermal
circulation systems that are driven by convective cells of the hydrothermal fluid and overburden
loads was generated. This model fits reasonably well into the overall stratigraphic and geologic
framework of the study area.

Keywords: magnetic method; gravity method; magmatic intrusion; hydrothermal fluid; Lower Benue
Trough; southeast Nigeria

1. Introduction

Since the early twentieth century, the origin of brine fields in the Benue Trough and
adjacent sub-basins has been a point of contention [1,2]. Brines can be found in ponds,
springs, drilled water boreholes, and hand-dug wells [3]. In terms of their genesis in the
Benue Trough (BT), [3,4] summarized three possibilities proposed by previous studies.
They include formation or a connate water source [5–7], evaporite or a solid source [8–10],
and a hydrothermal source [8–14]. Most of the prior studies have been focused on a single
occurrence or projections, and some lack relevant hydro-chemical data [3]. In general,
these studies determined that the brines in the Trough came from either connate water
or evaporite.

Hydro-geochemical investigation of the Middle and Lower Benue Trough reveals that
brines are the result of halite dissolution and fossil seawater sources [4]. In [15,16], the
authors conducted similar research that linked brines to a marine source. In [17], on the
other hand, the authors suggested that connate water was the primary source of brines
in the BT. Although [1] suggested an evaporite source, [4] stated that ‘’there was no proof
of evaporites in the BT”. In the western Qaidam basin, meteoric water was identified as
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the main source of saltwater [18], while [19] identified meteoric, carbonate, and magmatic
waters as the different sources of brines in the Sichuan basin.

Recent studies by [20–25] show that hydrothermal processes play a powerful role in
the generation of brines within and beyond rift environments dominated by intrusive and
extrusive rocks. Hydrothermal fluid igneous-related hydrothermal circulation systems
with high salinity are highly mineralized, containing dissolved minerals such as zinc, lead,
gold, and copper [20,22,25] The BT is the main target of geoscience research due to its
mineralization, complicated tectonics, and associated geologic features [4,26,27]. Field
observations, hydro-geochemical, isotopic, and geomorphic features, as well as tectonic
and stratigraphic investigations, revealed the presence of brine fields, barite–lead–zinc
veins, and fracture systems in the vicinity of magmatic intrusions in the BT [3,4,28–30].

Magnetic and gravity data can be used to investigate magmatism and its associated
structures. Potential field datasets can be applied to delineate deep-seated faults [31–34],
basement relief [35,36], intrusive granitoids [37,38] and geological structures [39]. Intru-
sions and geologic features are defined as the driving mechanisms for mineralization [20].
For instance, numerous geophysical techniques allow for a quick exploration of near-
surface volcanics and intrusive rock adjacent to salt ponds in the BT [3]. Mineralization is
frequently linked to hydrothermal alterations and structural control produced by magmatic
intrusions [25,40]. High-resolution airborne magnetic and gravity measurements are now
considered essential components of mineral exploration [40,41]. Magnetization and density
discrepancies induced by igneous-related hydrothermal occurrences can be mapped using
this information.

The aeromagnetic method is an appropriate and effective mineral assessment tool
wherever there are magnetization variations between rock types [42–46]. Enhanced mag-
netic data can delineate fractures, faults, dykes, rock boundaries, and even regional surficial
geologic contacts [47–53]. A pseudo-geological map can be built using magnetic data from
which prospective mineralization zones can be inferred [54,55]. Similarly, gravity data
can reveal the shape of magmatic intrusions and related geologic structures beneath the
surface, map sedimentary basins, and provide vital information on basin formation mecha-
nisms [56]. The gravity method is commonly operated as a control in seismic studies and
as a tool in petroleum development [41]. It can also be used in hydrogeological, archaeolog-
ical, and engineering studies [57,58]. Furthermore, in joint base metal investigations, the
technique is often applied to specified targets delineated by magnetic and electromagnetic
investigations [41,59,60].

This study uses gravity and magnetic data to look for anomalies connected to igneous-
related hydrothermal circulation systems, brine field locations, and structures within
the Ikom-Mamfe-Rift and Abakaliki Anticlinorium in the Lower Benue Trough (LBT).
Researchers have discovered that areas with tectonothermal activity and hydrothermal
changes frequently have different magnetic and density properties compared with nearby
areas of comparatively free igneous intrusions [61–63]. Some geophysical investigations
of brines and associated lead–zinc–barite (Pb–Zn–Ba) mineralization in the BT used elec-
tromagnetic, electrical resistivity, and ground gravity methods [17,53,64–67] The genesis
of brine fields in southeast Nigeria is investigated using high-resolution potential field
(HRPF) data. In addition, the genetic environment of these brines is explored with regard
to the research area’s geo-tectonic setting. Image analysis, enhancement procedures, and
2D modeling involving HRPF data are applied to delineate the hydrothermally altered
zones and locate some geologic structures, possible locations of intrusions, and brines.

2. Geologic Setting of the Study Area

2.1. Location

The area of investigation is situated in southeast Nigeria (Long. 7◦30′ E to 9◦00′ E and
Lat. 6◦00′ N to 6◦30′ N). The elevation above sea level map (Figure 1) of the studied region
shows that the altitudes varied, starting approximately 29.4–186.5 m above sea level, with
the eastern and northwestern parts having maximum heights.
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Figure 1. Elevation (above sea level) map of the study location.

2.2. Geology

The study area covers some geologic regions of the Abakaliki Anticlinorium (AA),
Ikom-Mamfe Rift (IMR), and Obudu Plateau (OP) (Figure 2). The OP occupies the northeast-
ern flank. It is edged in the west by AA and southeast by IMR. The IMR which intruded the
study territory at the southeastern flank is bounded by the AA in the west, northwest, and
north, and the OP in the northeast. The AA occupies southwestern, western, northwestern,
and northern domains.

The Bamenda Massif is an extension of the OP, which is one of the Nigerian basement
outcrops in southeast Nigeria [68,69]. The region’s lithological differences include high-
grade metamorphic rocks, primarily gneisses, and schists, intruded by un-metamorphosed
dolerites, granites, aplites, and quartzo-feldspathic veins, and they are heavily migma-
tized [68]. Rocks from this area have been dated to be Eburnean, Archaean, and Pan-African
in age [70]. Workers concluded that the evolutionary history of the southeast basement
in Nigeria is related to the mobile Pan-African belt in central Africa, after comparing
the lithologies and ages of rocks from the central African Fold Belt, northern Cameroon,
and southeast Nigeria basement complexes [68,70]. The Pan-Central-African belt is the
result of a continent–continent collision, with the Congo craton’s northern edge acting
as a passive margin, while the western Cameroon domains and Adamawa-Yade acted as
active margins [2,68]. The OP is associated with migmatitic gneisses, which are classified
as garnet–hornblende gneiss, garnet–sillimanite gneiss, or simply migmatite gneiss [68,71].

The IMR is an eastern extension of the Lower Benue Trough that runs into Cameroon,
and terminates below the Tertiary–Recent cover of the Cameroon Volcanic Line (CVL) [72].
Igneous intrusions in the IMR, which were caused by Tertiary–Recent tectonic processes
related to the CVL, resulted in extensive deformations and metamorphisms of the geologic
materials in the region. As a result, the covering sedimentary sequences became severely
fractured, baked, deformed, and domed [63].

The Asu River Group (ARG), which includes conglomeratic sandstones, conglomer-
ates, mudstones, shales, calcareous, and carbonaceous rocks, is the first sedimentary group
in the IMR [73]. The ARG sits on highly fractured Precambrian basement rocks [73]. The
Eze-Aku Formation (EAF) was deposited during the Turonian regression period. The post-
Santonian Nkporo-Afikpo Shale Formation overlies the EAF. The sandstone, mudstone,
and shale strata are the foremost rock components of this formation [29].
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Figure 2. Geologic map of the study location.

The Campanian Nkporo Shale, Coniacian Awgu Shale, Turonian Eze-Aku Shale, and
Albian Asu River Group are among the strata found in the AA [74]. The Albian ARG is
made up of fissile, heavily fractured, bluish-black shales with very few sandstone strata [74].
The EAF is made up of calcareous sandstones, calcareous siltstones and shales, and thin
sandy and shelly limestones [75]. Grey bluish shales, marine fossiliferous limestones, and
calcareous sandstones from the Coniacian period make up the Awgu Shales [74]. The Awgu
Shales are overlain by the Campanian Nkporo Shales, which are predominantly marine
with some arenaceous sandstone units (Figure 3).

The folding of the overlying layers was caused by massive Santonian tectonic pro-
cesses that occurred in two periods [29,74]. The Abakaliki Anticlinorium arose from the
dominantly compressional nature of the forces. In [76], the authors compared the geological
development of the Abakaliki province to that of a complete orogenic cycle encompass-
ing sedimentation, magmatism, metamorphism, and compressive tectonics in thorough
research on the geology of the province. According to [76], the compression that caused the
large-scale folding and cleavage was directed at N 155◦ E. As a result of the magmatism,
multiple intrusive masses were injected into the Eze-Aku and Asu River Group shales [74].
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Figure 3. Lithostratigraphic sequence of the Lower Benue Trough.

3. Materials and Method

3.1. Data Acquisition

The Nigerian Geological Survey Agency (NGSA) provided the airborne gravity and
magnetic data used in this investigation. Between 2005 and 2010, Fugro Airborne Surveys,
Canada, measured, reduced, and compiled the high-resolution geophysical datasets, which
were then submitted to the NGSA in digitized and gridded forms. The data were collected
along 826,000 lines using the Flux-Adjusting Surface Data Assimilation System (FASDAS)
with tie-line spacing, flight-line spacing, and terrain clearance of 0.5 km, 0.1 km, and
0.08–0.1 km, respectively.

The tenth (10th) generation of the International Geomagnetic Reference Field (IGRF-
version 4.0) and International Gravity Standardization Net 1971 (IGSN71) algorithms were
used to subtract regional fields from observed HRPF data. The IGSN71 and IGRF, both of
which are widely used and approved, provide consistency in potential field exploration
techniques [69]. The employed HRPF data in this study were reduced and processed to
total magnetic intensity (TMI) and Bouguer gravity gridded (BG) maps (Figure 4).
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Figure 4. (a) Total magnetic intensity and (b) Bouguer gravity maps (with profiles 1 and 2 used
for modelling).

3.2. Methodology

Local datum transformation and projection technique were used to record the potential
field data in the World Geodetic System 84 (WGS-84) and Universal Transverse Mercator
coordinate system at zone 32 of the northern hemisphere (UTM-32N). Using the Oasis
montaj “add grid” menu, the gridded data were loaded into the toggle project explorer
platform. The data were loaded into the MAG-MAP, source parameter imaging (SPI),
Euler deconvolution, and GM-SYS tools, which generated control files for the various
enhancement and modelling methods.

Filtering algorithms deliberately enhance anomalies from a certain set of geologic
sources relative to anomalies due to other geologic sources and they are used in potential
field data enhancements [77]. The main igneous intrusions in the research area were
delineated using typical potential field (PF) data enhancement methods such as the analytic
signal (ASig) [78–81], low pass filter [82], and upward continuation (UPWC) method [53,54].
In addition, 2D forward modelling was operated to map igneous intrusions, estimate
sediment thicknesses, and define basement topography.

The ASig filter [83,84] generates maximum responses over magnetic/gravity anomalies
and detects the edges of magnetic/gravity source bodies. This filter is commonly applied at
low-magnetic latitudes due to the in-built complication associated with the RTP technique.
The most important advantage of the analytical signal is that, in 2D cases, it does not
depend on the direction of magnetization, but this is incorrect in 3D case [78]. In [78], the
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authors demonstrated that the ASig amplitude can be obtained from the three orthogonal
derivatives of the potential field as:

∣∣∣ASig(x,y)

∣∣∣ =

√(
∂A
∂x

)2
+

(
∂A
∂y

)2
+

(
∂A
∂z

)2
(1)

where, A is the measured PF.
The low pass filter is based on the method proposed by [82], and the filter cut-off

wavelength is the only variable parameter [85]. Although it passes low-frequency signals,
and weakens signals with frequencies above the cut-off frequency, low-pass filtering is
used to eliminate unwanted short-wavelength anomalies [86]. The rectangular low-pass
filter in a 1D Fourier transform is provided by:

L(k) =
{

1, k ≤ kc
0, k > kc

(2)

where L(k) is the amplitude spectrum of the transfer function of the rectangular filter and kc
is the cut-off frequency.

In analyzing regional magnetic/gravity structures originating from deep-seated PF
sources, UPWC is used. The upward continuation filter transforms the observed mag-
netic/gravity field on a surface to a higher level. In comparison to deep causative sources,
this enhancement reduces the effect of near-surface bodies [53]. The wavenumber domain
approach for UPWC [41] is expressed as follows:

F(ω) = e−hω (3)

where, h is the height of continuation. This procedure decreases progressively with increas-
ing wavenumber, reducing the higher wavenumbers more severely, thus generating a map
in which more regional anomalies predominate [87]. The 2D modelling method involves
developing a geologic hypothetical model and computing magnetic/gravity responses,
applying [88–90]. Every crustal block has a certain susceptibility and/or density value.
The anomaly across the entire profile is the sum of all the crustal block contributions. The
interpretation of PF anomalies is based on identifying the probable structures, locations,
and physical properties of the geologic features that created the anomaly. Two profiles
in the east–west direction were obtained from the TMI and BG data. The PFs for the
sedimentary top and basal basement structural cross-section were estimated iteratively
until acceptable matches between the observed and synthetic curves were achieved. Using
programs found in Oasis montaj version 7.0.1 (OL), potential field data enhancement,
automatic depth estimation, and 2D forward modelling operations were carried out (2008).
The inverse problem normally associated with potential field data is ill-posed thus making
the solution unstable and non-unique [27,91]. A consistent solution for such a problem can
be acquired by having sufficient geologic knowledge and the use of improved techniques
in data corrections, enhancements and interpretations [92].

Tight folds, cleaves, and igneous intrusions such as basic sills and sub-volcanic intru-
sions characterize the Cretaceous depositions in the study area [93]. In the Middle and
Lower Benue Trough, [3] documented shallow volcanics and intrusions in the vicinity
of salt ponds. PF methods can be operated to investigate magmatic intrusions, miner-
alization, and related geologic structures [8,20,43]. Enhanced PF data showed variable
gravity and magnetic disparities from numerous causative sources caused by short- and
long-wavelength anomalies [31]. According to [27], mineralization is typically associated
with locations characterized by complex geologic formations, created by tectonic processes.
Low-frequency structures on the improved maps were greatly highlighted to demarcate
areas marked by long-wavelength anomalies. To map the main tectonics and depocenters
in the research area, these anomalies were mapped using ASig, low pass, and UPWC filters.
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4. Results

The highest and lowest magnetic (pink = 0.0891 nT/m and blue = 0.0026 nT/m) and
gravity (pink = 0.00215 mGal/m and blue = 0.00040 mGal/m) intensities can be easily
identified (Figure 5). The eastern section of the investigated area (Figure 5) is dominated
by basement biotite–gneiss and granite rocks of OP, where Kakube, Iso-Bendegheg, and
Odumekpang fall. This region is characterized by basement rocks. They are believed to be
the principal origin of high magnetization and density observed in the OP. Edor, Obubra,
and Agbaragba regions that correspond with IMR have high magnetization and density
believed to be caused by the Tertiary–Recent igneous intrusions related to the CVL [63].
Sparsely distributed high, moderate, and low potential field signatures occupy the remain-
ing parts of the investigated area. This region is part of the AA, which is characterized by a
post-depositional tectonic event [27]. Low gravity and magnetic strengths are also present
in isolated locations denoted by various blue colors (indicating depocenters).

Figure 5. Analytic signal maps of (a) total magnetic intensity and (b) Bouguer gravity data.
AA: Abakaliki Anticlinorium, OP: Obudu Plateau, IMR: Ikom-Mamfe Rift.

The main synclinal structures (defined by a blue color) were delineated using the low
pass [82] (Figure 6) and UPWC (Figure 7) [78] filters, which roughly overlap with the zones
of Obubra (southern), Uburu (southwest) and Okpoma (northeast) areas that fall under
the Ikom-Mamfe Rift, Afikpo and Ogoja Synclines, respectively [58,94]. These structures
sandwiched the main Santonian [93] and Tertiary–Recent [63] tectonic intrusions (red-pink
color) of the AA and IMR, respectively. Some geophysical studies have reported the coexis-
tence of intrusions and troughs in the BT [74,95]. The OP eastern part, which is dominated
by magnetite, is characterized by intrusions and outcrops of igneous basements [9].
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Figure 6. Low pass maps of (a) total magnetic intensity and (b) Bouguer gravity data. AA: Abakaliki
Anticlinorium, OP: Obudu Plateau, IMR: Ikom-Mamfe Rift.

To view the lithologic units of the underlying basement based on their susceptibilities
and densities, the high susceptibility (0.00057 in cgs units) and density (2.91 g/cc) values are
due to basic rocks, whereas lower susceptibility (0.0003 in cgs units) and density (2.81 g/cc)
values are due to acidic rocks. The models (Figures 8 and 9) reveal that the Cretaceous
deposits are severely fractured, folded, and baked [26,57]. Again, normal fault blocks
associated with the intrusions were delineated by the models. Profile 1 (Figure 8) that cuts
across part of AA and ends at OP (Figure 4) is characterized by two prominent igneous
intrusions related to the Santonian AA [58,93]. The location of the igneous intrusion at
the western end of profile 2 (Figure 9) seems to match closely with the position of the
intrusion in Figure 8. This indicates the elongated nature of the anticlinal structure of the
AA that trends in the N–S direction (Figures 6 and 7). Towards the eastern part of profile 2
(Figure 9), the intrusion is outcropped in Agbaragba. Within this area and neighborhood,
there are several reported extrusive rocks such as syenites, basalts, and trachytes [96,97]
related to the CVL [63]. Because of the proliferation of intrusions [93] and basement rocks
in outcrop sections in the OP [68,98], the investigated area is characterized by depths
generally <3000 m. This depth estimate coincides relatively well with previous findings in
the area [27,31,32,35,37].
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Figure 7. Upward, continued to 3000 m, maps of (a) total magnetic intensity and (b) Bouguer gravity
data. AA: Abakaliki Anticlinorium, OP: Obudu Plateau, IMR: Ikom-Mamfe Rift.

Figure 8. 2D joint magnetic and gravity model obtained from profile 1.
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Figure 9. 2D joint magnetic and gravity model obtained from profile 2.

5. Discussion of Results

The LBT is relatively well known because of geoscience investigations for natural
resources. Hydrocarbon, lead, zinc, barite, and brine are commonly explored in southeast
Nigeria [3,63,93]. The occurrence of brines and genesis in the LBT have been investigated
by several geoscientists [1,3,4,15–17,65,66,99] with contrasting reports. In [17,65,66], the
authors stated from their various geophysical studies that brine fields are characterized
by multi-layered saline zones in the subsurface. In [4,15], the authors suggested that these
brines are products of the dissolution of halite and palaeo/fossil seawater. In [16], the
authors also opined marine rather than a continental source for these brines. While [1]
suggested evaporite minerals and chalcophile element sources, Ref. [3] suggested that
brines originated from connate water.

Modern investigations by [10,20–25,100–103] connected the origin of brines in a rift en-
vironment, such as LBT, to igneous intrusions. Previously, sodium chloride and hydrochlo-
ride acid were detected by [104] in the emanations of volcanoes. In addition, Refs. [105,106]
discussed the volcanic origin of salt. In [3,26,100], the authors reported the occurrence
of brine in the neighborhood of igneous intrusions in the BT. Figures 6 and 7 indicated
the locations of the Afikpo syncline (Uburu and the surrounding area), Obubra (in the c),
and the Ogoja syncline (Okpoma and the adjoining region), represented by a blue color.
These areas are depocenters bordering intrusions (represented by red-pink color) associated
with the Santonian AA [74] and Tertiary–Recent intrusions of the IMR [7]. These synclinal
structures, that are dominated by argillite, coincide with the sites of the major brine fields
in the investigation area [1,4,16,17,66,99]. Intrusions delineated by Figures 8 and 9 occur in
the neighborhood of the brine fields. This finding validates the results of Figures 7 and 8.
Igneous intrusion systems in rifted basins are usually distinguished by networks of interre-
lated, laterally, and vertically wide-ranging complexes of dykes and sills that transgress
basin stratigraphy [42]. These intrusions are associated with normal fault blocks, faults,
uplifts, and folds. The faults and other openings serve as a pathway for the hydrother-
mal fluid’s migration upward. The widespread occurrence of igneous intrusions in the
investigated area signifies a critical geological risk in hydrocarbon surveys [101].

Furthermore, intrusions are commonly connected to hydrothermal fluid [21,40,100]
that is as salty or even saltier than seawater, and may have some traces of dissolved
minerals such as lead, zinc, copper, and gold. In the LBT, there are massive occurrences
of lead–zinc–barite coexistence with salt ponds [3,28,31]. The presence of salt in the water
halts the metallic minerals from precipitating out of the brine, as the chlorides in the
salt preferentially bond with the metals [22,100]. Nevertheless, since the brine is hot, the
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minerals dissolve more easily [40]. As magma cools, it frees its super-heated, mineral-
enriched water (metalliferous brines) into adjoining rock [21,40]. As they travel long
distances laterally, they experience modifications in pressure and/or composition [100].
The hydrothermal fluid becomes diluted once they come into contact with meteoric water
(groundwater). Fluid flow in the fractured upper crust is usually driven by hydraulic
gradients, which may perhaps result from a number of different possible causes and
imbalances, including thermal and chemical disequilibrium, topography, overburden
loads [100], and attendant convective cells in the hydrothermal system. They drive the
brines up through hydraulic boundary faults/fractures via porous and permeable strata
until oozing takes place at the surface (Figure 10). This conceptual model was created based
on the geologic, stratigraphic (Figure 3) and tectonic history of the study area. Additionally,
geodynamic information on the robust thermally driven convection process [105], related
heat, and movement of hydrothermal fluid [22], served as a control in the design of the
model. The metals are precipitated out when the brines rise and cool [22]. The cool brines
are then trapped by argillite close to the Earth’s surface and occur as salt ponds such as
those present at Uburu, Okposi, Okpoma, etc. in the studied area. The absence of hot
springs in the studied area may be due to a lack of deep-reaching vertical circulation
systems [107,108].

Figure 10. Conceptual model of brine source in the Lower Benue Trough.

Moreover, ascent channels for hydrothermal fluids are very conducting structures
allowing high flow rates so that hot brines can reach the surface environment at high
temperatures [108]. The conceptual model (Figure 10) of the hydrothermal system of the
LBT agrees with the Darcy flow law [109], describing fluid flow through porous media.
This defines the ability of a fluid to flow through a porous media such as rock. It relies on
the fact that the amount of flow between two points is directly related to the difference in
pressure between the points, the distance between the points, and the interconnectivity of
flow pathways in the rock between the points. The measurement of interconnectivity is
called permeability.

The Darcy law is expressed as:

→
q = −[K]

1
g
∇P (4)
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where,
→
q is the specific discharge vector per cross sectional area (m3 s−1 m−2) with the

components qx, qz, qz, (K) (m s−1) the tensor of hydraulic conductivity, K (kg m−3) the
density of the fluid, g (m s−2) the acceleration due to gravity, and ∇P (kg m−2 s−2 or
Pa m−1) the vector of the pressure gradient.

6. Conclusions

Investigation connecting igneous intrusions and associated hydrothermal fluids as a
brine source in a rifted environment such as BT was carried out in southeastern Nigeria.
To map these intrusions and determine their spatial distributions within the study area,
HRPF data were used. The ASig results showed the spatial distribution of the short- and
long-wavelength geologic structures. The main igneous bodies and bordering synclines,
which coincide with the sites of Uburu, Obubra, and Okpoma salt ponds, were delineated
by the low pass, UPWC, and 2D GM-SYS results. In general, the low-frequency maps and
2D models showed brine field sites in the neighborhood of magnetic intrusions, which are
commonly associated with metalliferous brines. To fit these interpretations into the overall
stratigraphic and geologic settings of the area, a conceptual model of the brine source was
generated. This model is more akin to a hydrothermal system that is driven by associated
convective cells of the hydrothermal fluid and overburden loads. Furthermore, studies
involving geochemical analyses of the brines and adjoining igneous rocks should be carried
out to compare their elemental composition, which will be the subject of future research.
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Abstract: In this study, the zonality method has been used to separate geochemical anomalies and
to calculate erosional levels in the regional scale for porphyry-Cu deposit, Abrisham-Rud (Semnan
province, East of Iran). In geochemical maps of multiplicative haloes, the co-existence of both the
supra-ore elements and sub-ore elements local maxima implied blind mineralization in the northwest
of the study area. Moreover, considering the calculated zonality indices and two previously presented
geochemical models, E and NW of the study have been introduced as ZDM and BM, respectively. For
comparison, the geological layer has been created by combining rock units, faults, and alterations
utilizing the K-nearest neighbor (KNN) algorithm. The rock units and faults have been identified from
the geological map; moreover, alterations have been detected by using remote sensing and ASTER
images. In the geological layer map related to E of the study area, many parts have been detected as
high potential areas; in addition, both geochemical and geological layer maps only confirmed each
other at the south of this area and suggested this part as high potential mineralization. Therefore,
high potential areas in the geological layer map could be related to the mineralization or not. Due to
the incapability of the geological layer in identifying erosional levels, mineralogy investigation could
be used to recognize this level; however, because of the high cost, mineralogy is not recommended for
application on a regional scale. The findings demonstrated that the zonality method has successfully
distinguished geochemical anomalies including BM and ZDM without dependent on alteration and
was able to predict erosional levels. Therefore, this method is more powerful than the geological layer.

Keywords: zonality method; remote sensing; vertical zonality index; geological layer; alteration;
K-nearest neighbor; porphyry-Cu deposit

1. Introduction

The utilization of geochemical methods for ore deposit exploration dates back to
1930. Fersman (1939) carried out the first survey of such an exploration [1]. Since then,
further studies on the theory and application of geochemical exploration methods have
been carried out, and these techniques have been increasingly modified and improved.
Mining geochemistry is a branch of applied geochemistry, which is based on the utilization
of geochemical methods that helps increase the ore reserves of known mines by assessing
the ore potential of deep horizons. In other words, local and mine scale exploration
models for anomaly recognition are created and developed by using mining geochemistry.
Recent experiences in the application of mining geochemistry illustrate its efficiency in
the discovery of blind and zone-dispersed mineralization (BM and ZDM) within areas of
active and abandoned mines. Due to increasing ore reserves and mining income, this trend
in geochemical exploration is very important [2]. The recognition of various alteration
zones is a qualitative method that cannot help geochemists in separating BM from ZDM
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at a local scale. In mining geochemistry, the alteration has no basic role in separating
anomalies at a local scale [3,4]. Optimal drilling points were determined by using mining
geochemistry as a quantitative method without being time consuming and inducing high
costs. In the past decades, several models and methods based on geochemistry have
been developed for predicting geochemical anomalies as well as the locations of hidden
orebodies [2,5–7]. Most of these models and methods are focused on the identification
of geochemical anomalies reflecting the presence of hidden orebodies and the prediction
of horizons of erosional surfaces [8]. In active mines, vertical geochemical zonality is the
most important feature of primary halos because of the relation to the direction of the
ore-bearing fluid [9–11]. Beus and Grigorian (1977) used vertical geochemical zonality
to predict hidden mineralization at the mine scale [12]. Grigorian (1985, 1992) presented
a zonality model to identify BM from ZDM [5,6]. Since then, the zonality method has
been used in many studies [2–4,13–21]. Solovov (1987) used metallometric methods for
the identification of geochemical anomaly (IGA) and the quantitative evaluation of ore
reserves [22]. Baranov (1987) introduced a model in which horizons of the erosional surface
were computed for geochemical associations [23]. Solovov (1990) introduced different
relations to predict hidden orebodies by using metallometric exploration [24]. Liu and
Peng (2004) presented a model to predict hidden orebodies by the synthesis of geological,
geophysical, and geochemical information based on a dynamic approach [25].

In most mineral exploration methods (e.g., porphyry-Cu), a mineral potential map is
obtained by using one layer or a combination of different layers [26–31], which includes
field geological surveys, geochemical surveys, field geophysical surveys, and remote sens-
ing [32–34]. This map consists of shallow to the deep layers, which poses a problem when
these layers are not associated with mineralization. Each of these layers has a value for
mapping the areas with the potential of mineralization, and a number of these layers are
generally surficial and cannot be useful for identifying BM. Hydrothermally altered rocks
result from chemical attacks of pre-existing rocks by hydrothermal fluids. The spatial
distribution of hydrothermally altered rocks is a key to locating the main outflow zones of
hydrothermal systems, which may result in the recognition of mineral deposits [35]. Miner-
als associated with alteration can be detected by remote sensing. These tasks are achieved
by using the analysis of the spectral signatures recorded in the visible-near infrared (VNIR),
short wave infrared (SWIR), and thermal infrared (TIR) regions of the electromagnetic
spectrum with this spectral signature constituting the key mineral identification crite-
rion [36]. Furthermore, the mineral deposits are spatially and genetically associated with
the various types of geological structures including faults or fractures [37]. Faults and
fractures, which transport magmatic, meteoric, and metal carrying hydrothermal fluids,
subsequently deposit metals [38]. Zarasvandi et al. (2005); Sillitoe (2010); Mirzaie et al.
(2015); Habibkhah et al. (2020); and Yumul Jr. et al. (2020) have investigated the im-
portance of the role of faults/fractures in porphyry-Cu [38–42]. The strong advance in
remote sensing allows exploiting a variety of sources and methods in the characterization
of lineaments [43]. Remote sensing is a valuable technical resource for mineral exploration
when it is properly employed [44–53].

In this study, the results of the zonality method were compared with the geological
layer including rock units, faults, and alterations. For this goal, a part of the 1:100,000 scale
map of Abrisham-Rud (Semnan province, East of Iran) was examined. This area is a part of
the Troud Range in the Khorasan porphyry tract, which few studies on porphyry mineral-
ization have been conducted [54]. Orojnia (2003) studied the lithology and provenance of
Eocene volcanic rocks in this area, which suggested identifying the economic potential of
Cu [55]. Mars (2014) suggested the potential of hydrothermal alteration in the Torud Range
that could be associated with an unidentified porphyry system [56]. Thus, study data are
concentrated in the province of Abrisham-Rud, where it has high propects for porphyry
copper mineralization.
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2. Geological Setting of the Study Area

The study area is a part of the 1:100,000 scale map of Abrisham-Rud (Semnan province,
East of Iran), which is located in the north of the Central Iran zone [57], and it is a part
of Troud Range in Khorasan porphyry tract (Figure 1a). Khorasan porphyry tracts are
delimited by permissive units of island arc setting of Late Cretaceous to Early Miocene
age [58]. This tract includes four main ranges: Taknar-Kashmar, Kuh Mish, Sabzevar, and
Torud [54]. Igneous units of this tract are shown in Figure 1a, along with the location of
known porphyry-related mineral occurrences and other geologic features mentioned in
this section. In the Torud Range (west of Khorasan porphyry tract), middle Eocene volcano-
sedimentary rocks are overlain by Eocene–Oligocene calc-alkaline and alkaline volcanic
rocks, which are interlayered with shallow marine, lacustrine, and subaerial sedimentary
successions. These successions are intruded by basic tholeiitic dikes and calc-alkaline
quartz monzodioritic to granodioritic stocks [59,60]. The aluminum content of hornblendes
indicates shallow emplacement depths [61]. In this range, Chah Shirin and Chah Mussa
have been introduced as porphyry/porphyry-related deposits [58].

Figure 1. (a) Location of the study area in Troud Range (modified after Reference [54]); (b) lithological
map of the study area (modified after Reference [62]).
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The study area has a dry climate, mountainous topography, and poor vegetation
cover. The oldest geological units are metamorphic rocks for which its bedrock was
metamorphosed in the Late Triassic. The latest units are associated with a quaternary that
consists of gravel fan, terrace, clay and salt deposits, and channel deposits (Figure 1b).
Most volcanic activity occurred in semi-arid settings in the form of lava. The middle-
upper Eocene rock units are the most extended in the study area and mostly include
volcanic breccia-agglomerates and tuffs, intermediate lavas, basic and acidic rocks, and
pyroclastic-sedimentary rocks. These units have outcrops and are sometimes dispersed or
indistinguishable, and there are many faults in them. The volcanic breccia–agglomerate
units that sometimes had intermediate lavas observed in red-brown and sometimes had
dusty colors (argillic alteration), as well as the presence of green minerals (chlorite, epidote)
in the volcanic fragments of this breccia, indicate lava explosive eruption in a semi-arid
and shallow setting with the effect of water on alterations [55].

3. Material

3.1. Geological Data

The 1:100,000 scale map of Abrisham-Rud was purchased from the Geological Survey
of Iran (GSI). As shown in Figure 1b, a part of this geological map was selected.

3.2. Geochemical Data

The geochemical database of the 1:100,000 scale map of Abrisham-Rud was also
purchased from GSI. The 364 samples have been surveyed in a systematic network with
intervals of 1400 × 1400 m2 (Figure 2), and these soil samples have been analyzed using the
ICP-MS method. The concentrations of Cu, Mo, Pb, and Zn were considered for this study.

Figure 2. Geochemical sampling network in the study area (the false-color composites of Sentinel-2
MSI; band 12 in red, band 8 in green, and band 2 in blue).
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3.3. Remote Sensing Data

In this study, Sentinel-2 MSI-Level 1C and ASTER-Level 1T images were downloaded
from the USGS Earth Explorer website (earthexplorer.usgs.gov, accessed on 22 December 2021;
Sentinel 2 File: T40SDE_20181118T07015, 20181118-Date of Acquisition (YYYYMMDD);
Aster File: AST_L1T_00303282005071248_20150508204820_5306, 03282005-Date of Ac-
quisition (MMDDYYYY), 20150508-Date of Processing (YYYYMMDD)).

3.3.1. Sentinel-2 MSI Data

The Sentinel-2 multi-spectral instrument (MSI) satellite carried a high-resolution
multispectral imager with 13 bands spanning VNIR through SWIR regions. Sentinel-2 MSI
includes 4 spectral bands (bands 2, 3, 4 and 8) at 10 m, 6 bands (bands 5, 6, 7, 8a, 11 and 12) at
20 m, and 3 bands (bands 1, 9, and 10) at 60 m. Sentinel-2 MSI measures reflected radiation
in ten bands between 0.433 and 0.955 μm (VNIR) and three bands between 1.36 and 2.28 μm
(SWIR) [63–65]. In this study, a Sentinel-2 MSI-Level 1C image was used, which is produced
from the Sentinel-2 MSI-Level 1B product by radiometric and geometric corrections.

3.3.2. ASTER Data

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors
are one of the multi-spectral sensors that have been installed on the Terra satellite. ASTER
measures reflected radiation in three bands between 0.52 and 0.86 μm (VNIR) and in six
bands between 1.60 and 2.43 μm (SWIR) and five bands of emitted radiation in the 8.125 μm
to 11.65 μm (TIR) region with 15 m, 30 m, and 90 m resolution, respectively [66–68]. In this
study, an ASTER-Level 1T image was utilized. ASTER-Level 1T data contain calibrated
at-sensor radiance, which corresponds with ASTER-Level 1B that has been geometrically
corrected and rotated to the north up UTM projection.

3.3.3. Data Preparation

Atmospheric correction was used to minimize influences of atmospheric factors in
multispectral data. The Internal Average Relative Reflection (IARR) method was applied to
Sentinel-2 and ASTER data. The IARR technique for mineral mapping requires no prior
knowledge of geological features [69]. The average radiance for each band of the image
was calculated; therefore, an average spectrum was created, and this average spectrum
was divided into actual radiance for each band of each pixel to create an image of apparent
reflectance. It has been suggested as the best method for arid areas with no vegetation
cover [70].

4. Methodology

4.1. Zonality Method

A zonation of a geochemical halo has a spatial nature and vectorial context that can
be defined by the three parameters of dimension (space), direction, and element con-
centration [4]. Recognition of zonality of geochemical halos associated with BM can be
achieved using four cases of complementary analyses [2]: (1) analysis of element associa-
tions representing supra-ore and sub-ore halos of mineral deposits; (2) analysis of a single
component, implying false anomaly; (3) analysis of mean values of indicator elements
outside significant geochemical anomalies to eliminate background noise in data analysis;
and (4) mapping of multiplicative geochemical anomalies.

One of the most important indices in porphyry-Cu deposits is the ratio of Pb and Zn
to Cu and Mo, which is often defined as a zonality index [2,12,71]. This index represents
different exhumation levels of mineral deposits [6]. Input variables can be subdivided into
the following: supra-ore, upper-ore, ore, lower-ore, and sub-ore [24]. Ziaii et al. (2012) and
Ziaii et al. (2009) showed that these groups provide the necessary information to separate
BM from ZDM in porphyry-Cu mineralization [2,3].

155



Minerals 2022, 12, 103

4.1.1. Anomaly Separation

For mapping the multiplicative index of supra-ore (Pb × Zn) and sub-ore (Cu × Mo)
elements and calculating the zonality index, the threshold value is calculated by using
Equation (1) for each element:

CA = Cx εt, (1)

where CA is the anomaly value, and Cx = Co is the geometric mean of the elements contained
within the background area, which is calculated by using Equation (2):

C̃x = ant log(
1
N∑N

i=1 log Ci), (2)

ε = ant log(

√
∑N

i=1 (log Ci − log C̃x)
2

N − 1
), (3)

where Ci is the element concentration of samples, N is the number of samples, and ε is
generally called a standard factor, which is calculated from Equation (3). Due to the above
consideration as to the selection of the value of t, the lowest anomalous content, when
trying to detect weak anomalies determined from one sampling point, in geochemical
prospecting it is taken equal to CAl ≥ Coε

3. This relationship corresponds to a “three
standard deviations” criterion extensively used in many engineering disciplines to de-
termine quantities falling outside the probable values of a random anomaly distributed
quantity. Thus, weak anomalies formed by a sequence of adjacent sampling points with
increased pathfinder elements below CAl can be detected, and it is conventional to lower
the threshold value according to the criterion CAm≥ Coε

3/
√

m, where m = 2, 3, 4 . . . 9 is the
number points that may be joined, which can show a common anomaly in the geochemical
map [22].

4.1.2. Erosional Surface

In order to predict the erosional level, Solovov (1987) suggested using areal produc-
tivity, and Beus and Grigorian (1977) suggested using the coefficient of mineralization to
eliminate the syngenetic parameters of the halos, which increase anomaly detection [12,22].
It should be noted that both the areal productivity and mineralization coefficients are used
to calculate the vertical geochemical zonality index.

In the systematic sampling network, linear productivity is calculated according to
Equation (4):

M = Δx(∑n
x=1 Cx − nC◦), (4)

where M is the linear productivity, Δx is the distance between the samples in each profile,
Cx is the values greater than the anomaly concentration, and n is the number of anomal
samples. If the values of Mi are preliminarily estimated in each of m profiles across the
anomaly, P is determined according to Equation (5) [22]:

P = 2l(∑m
i=1 Mi), (5)

where 2l is the distance between profiles. Therefore, the zonality index introduced by
Solovov (1987) is calculated for zones I and II by using Equation (6) [22].

KS =
P(Pb)× P(Zn)
P(Cu)× P(Mo)

, (6)

The zonality index introduced by Beus and Grigorian (1977) is calculated for each
zone by using Equation (7) [12]:

KG =
η(α)Pb × CAPb × η(α)Zn × CAZn

η(α)Cu × CACu × η(α)Mo × CAMo
, (7)

156



Minerals 2022, 12, 103

where CA is the arithmetic mean of element contents, and η(α) is the coefficient of mineral-
ization calculated for each element by using Equation (8):

η(α) =
ηA(α)ore
ηA(α)

, (8)

where η(α)ore is the number of anomalous samples, and ηA(α) is the total number of
samples in each zone [12].

4.2. Remote Sensing
4.2.1. Lineaments Extraction

O’Leary et al. (1976) defined the term “lineaments” as a simple or composite linear
feature of a surface for which its parts are aligned in a rectilinear or slightly curvilinear
relationship and differs from the pattern of adjacent features and probably reflects some sub-
surface phenomena [72]. Faults, fractures, and large crush zones are formed by extension or
compression processes and are considerable and fundamental factors on ore mineral deposi-
tion. Areas with concentrations or intersections of these structures could be suitable for the
penetration of magma, ore-forming solutions, and, afterward, mineralization [73]. In other
words, a detailed geological study imperatively means acquiring knowledge of present
structural information, principally the lineaments [74]. The significance of lineaments is
also manifested by their localization often close to several mineralogical deposits [75].

Several studies have been based on Sentinel-2 MSI for the detection of lineaments [76–79].
According to Bentahar et al. (2020), Sentinel-2 MSI allows extracting more lineaments and
extraction of the smallest structural lineaments [79].

Lineament extraction methods can be conducted by using manual photointerpretation
by an expert, semi-automatic detection using computer vision techniques, and automatic
methods. Automatic methods have resulted in a more efficient lineament extraction pro-
cess [43,80–83]. The main steps of lineaments extraction are mentioned below:

• Applying principal component analysis (PCA) and choosing PC1 to recognize lines;
• Filter operations using Directional filter with azimuths of 0◦, 45◦, 90◦, and 135◦;
• Automatic lineaments extraction using LINE module in the PCI Geomatica software;
• Merging lineaments obtained from azimuths of 0◦, 45◦, 90◦, and 135◦;
• Lineament mapping.

Principal Component Analysis

PCA (Pearson, 1901) is a statistical method that has the advantage of compressing infor-
mation contained in initial bands into new bands called principal components (PCs) [84–86].
This method has been commonly used in lithological mapping and lineament extraction [79].
The PCA method can reduce redundancy in different bands, which can obtain aimed di-
mension reduction [87], isolation of noise, and enhancement of the targeted information in
the image [88]. Each PC can reflect the maximum information of the original variable, and
the information contained therein is not repeated.

Filter Operations

Filter operations were used to emphasize or de-emphasize spatial frequency in the
image. This frequency can be attributed to the presence of the lineaments in the area. In
other words, the filtering operator can sharpen the boundary that exists between adjacent
units. A directional filter is a first-order derivative edge enhancement filter that selectively
enhances image features possessing specific direction components (gradients) [89]. Direc-
tional filters are used strictly for the structural analysis. These filters improve the perception
of lineaments, causing an optical effect of shade worn on the image as if it was illuminated
by light grazing [78].
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PCI Geomatica Software

The automatic extraction of the lineaments was carried out by algorithm LINE EX-
TRACTION of the PCI Geomatica software [80], which is a widely used module for auto-
matic lineament extraction. The LINE module of PCI Geomatica software extracts linear
features from an image and records polylines in vector segments by two main steps, namely
edge detection and line detection, and using six parameters [43]:

Edge detection

• RADI (filter radius) (in pixels): The radius of the filter that is used in contours detection.
Values between 3 and 8 are recommended in order to avoid introducing noise;

• GTHR (Edge Gradient Threshold): The value of the gradient to be taken as the thresh-
old in contour detection (between 0 and 255). Values between 10 and 70 are acceptable;

• Line detection;
• LTHR (Curve Length Threshold) (in pixels): The minimum length of a curve to be

taken as the lineament (a value of 10 is suitable);
• FTHR (Line Fitting Threshold) (In pixels): The tolerance allowed in the curve fitting

(results of the previous parameter) to form a polyline. Values between 2 and 5 are
recommended;

• ATHR (Angular Difference Threshold) (In degree): Defines the angle not to be exceeded
between two polylines to be linked. Values between 3 and 20 are suitable;

• DTHR (Linking Distance Threshold) (In pixels): The maximum distance between
two polylines to be linked. Values between 10 and 45 are acceptable.

4.2.2. Iron Mineralization and Alteration Detection

Lowell and Guilbert (1970) described the San Manuel-Kalamazoo deposit and com-
pared the results with 27 other porphyry-Cu deposits. According to this model, four
alteration zones were introduced, which are often used for porphyry-Cu exploration. As
shown in Figure 3, the zones in this model from the center to the outside are potassic,
phyllic, argillic, and propylitic zones [90,91].

Figure 3. Alteration zones associated with porphyry-Cu deposit (modified after Reference [90]):
(a) schematic cross section of alteration zones; (b) schematic cross section of ores associated with each
alteration zone.
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After presenting the Lowell–Guilbert model, some porphyry-Cu deposits were recog-
nized to be associated with intrusive rocks posessing low silica. Hollister (1975) introduced
this model and called it the diorite model, although the host pluton may be syenite, mon-
zonite, and diorite [92].

Diorite’s model differs from the Lowell–Guilbert model. In the Diorite model, sulfur
concentrations were relatively low in mineralizing fluids. As a result, not all the iron oxides
in the host rocks were converted to pyrite, and there are many iron remains in chlorites
and biotites. Excess iron tends to occur as magnetite, which may be present in all alteration
zones. Therefore, phyllic and argillic alteration zones are usually absent so that the potassic
zone is surrounded by the propylitic zone [93,94].

Band Ratio

Band ratios are a very useful method for highlighting certain features or materials that
cannot be seen in raw bands [95]. This method was applied to the Sentinel-2 MSI image to
detect iron mineralization.

Color Composite

Colors provide more visual and conceptual information of the image. The combination
of three black and white images creates a new image that can provide a better interpretation
of surface features [96]. This method was used in the ASTER image for better visual
interpretation of the alteration areas.

Logical Operator Algorithm

Mars and Rowan (2006) developed two logical operator algorithms based on ASTER-
defined band ratios for regional mappings of argillic and phyllic-altered rocks in the
Zagros magmatic arc, Iran [97]. Mars (2013) used thermal images in-band ratios to map
hydrothermal alterations [98]. The logical operator algorithm presented by Mars (2013) can
be the best suited for hydrothermal alteration associated with porphyry-Cu mineralization
on a regional scale. The logical operator algorithm performs a series of band ratios for each
pixel. Each logical operator determines a true (one) or false (zero) value for each ratio by
comparing the band ratio to a predetermined range of threshold values. All of the ratios in
the algorithm have to be true for a value of one to be assigned to the byte image; otherwise,
a zero value is produced. Thus, a byte image consisting of zeros and ones is produced with
each algorithm [97]. Due to the geological settings in the study area, the logical operator
algorithm was applied to the Aster image to map alterations.

4.2.3. Generation of The Geological Layer

The geological layer is created by combining rock units, faults, and alterations using
the K-nearest neighbor (KNN) algorithm. The 1:100,000 scale map of Abrisham-Rud has
complex and multistage geological settings, and some units may not have outcrop, whereas
this scale does not pose a problem for this study. The layer of rock units was created by
using the high value for intrusive rock and intermediate to base units, as well as the low
value for other units. In the study area, faults are dense and intersect in different directions.
Fault layers were created by buffers at 100 to 500 at 100 m intervals. The alteration layers
for each argillic, phyllic, and propylitic (epidote-chlorite) alteration were created by buffers
at 100 to 300 at 100 m intervals around the alteration.

K-Nearest Neighbor Algorithm

KNN is a non-parametrically supervised algorithm designed to solve regression
and classification problems [99]. KNN is the fundamental and the simplest classification
technique when there is little or no prior knowledge about the distribution of data [100].
This algorithm is quite successful when a large training data set [101] and many geological
studies are provided [102–106].
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KNN classifies objects based on the closest training examples in the feature space [107,108].
In order to classify or predict a new case, KNN relies on finding similar cases in training
data. These cases are classified by voting for neighbor classes [109]. The optimal choice of
the number of neighbors “K” depends on the metrics used for classification and regression
purposes [109]. Thus, KNN algorithm predicts the target class through three steps [101,110]:
(1) preparing the dataset consists of training, test, and feature; (2) measuring the distances
between each test data and all training data depending on the weight values of each indi-
vidual; and (3) finding “K” the neighbors nearest to the test data from training data based
on distance and weight measurements.

The most common and simple distance metrics are Euclidean, Manhattan, and Minkowski.
The Minkowski distance is generally a more complete form of distance metrics and is calcu-
lated based on Equation (9):

Minkowski Distance =
λ

√
∑k

i=1|xi − yi|λ, (9)

where x and y are points to calculate the distance, k is the number of neighbors, and λ is
the order of the Minkowski distance, which contains values greater than zero. Thus, where
λ = 2, the Minkowski distance is equivalent to the Manhattan distance, and where λ = 1,
it is equivalent to the Euclidean distance. The Manhattan distance is usually preferred
over the more common Euclidean distance when there is high dimensionality in the data
set [111].

In this study, the Manhattan distance was used as the nearest neighbor classifier, and
weights were calculated on Equation (10) based on the distance from the target to predict
in a neighborhood:

weighted Manhattan Distance = ∑k
i=1 Wi|xi − yi|, (10)

where W is the weights for each nearest neighbor, 0 < Wi < 1 and ∑k
i=1 Wwi = 1.

5. Result and Discussion

5.1. Zonality Method

Table 1 shows the calculation of background and threshold values, as well as the Clark
values for supra-ore (Pb and Zn) and sub-ore (Cu and Mo) elements in the study area.

Table 1. Background, threshold, and Clarke values for supra-ore (Pb and Zn) and sub-ore (Cu and
Mo) elements in the study area.

Values Pb (ppm) Zn (ppm) Cu (ppm) Mo (ppm)

Background 13.5 62 43.3 0.58
Threshold 19.6 90.6 78.1 0.88

Clarke (Beus and Grigorian, 1977) [12] 12 75 40 1.1

Figure 4 shows the anomaly map of multiplicative geochemical halos of the supra-ore
and sub-ore (Cu × Mo) elements. As shown in Figure 4, zones I and II have been considered
to predict erosional levels, and they create the geological layer. As shown in Figure 4, zone I
mostly implied sub-ore (Cu and Mo) elements, and zone II included both supra-ore (Pb
and Zn) and sub-ore (Cu and Mo) elements. The co-existence of both supra-ore and sub-ore
elements’ local maxima implies blind mineralization [20].

The geochemical and geometrical similarity of genetically similar orebodies, the unifor-
mity of ore and halo, and the tentative nature of geological and economic boundaries are all
crucial for considering mining geochemical models. In addition, the vertical geochemical
zonality index and their spatial associations with particular geological and geochemical
factors are important aspects of mineral distributions for exploration and insight into ore
geometry. The vertical geochemical zonality index could be used to estimate the erosional

160



Minerals 2022, 12, 103

level of porphyry-Cu deposits [2,3]. In order to identify the erosional level in zones I and II,
the presented models by Ziaii (1996) and Ziaii et al. (2009) were used [2,67].

Ziaii (1996) introduced the vertical zonality model for porphyry-Cu deposits using
areal productivity and the zonality index (Equation (6)) based on porphyry-Cu deposits
in Kazakhstan, Bulgaria, Armenia, and Iran (Figure 5a). The vertical variations in three
zonality indices associated with porphyry-Cu deposits in areas of the same landscape-
geochemical conditions in different countries are shown in Figure 5a. Values of each
zonality index decrease downward uniformly despite considerable differences in local
geological settings of individual porphyry-Cu deposits, suggesting the existence of uniform
vertical zonality in primary halos of porphyry-Cu deposits [2,6,71]. Therefore, vertical
variations in the indices allow the distinction of mineralization levels and their primary
halos (supra ore, upper-ore, ore, lower-ore, and sub-ore) [6,22,24].

Figure 4. Geochemical maps of (a) supra-ore and (b) sub-ore elements, zones I and II, in the study area.

Figure 5. (a) Vertical geochemical zonality models for porphyry-Cu deposits based on typical
standard porphyry-Cu deposits in Kazakhstan, Bulgaria, Armenia, and Iran (modified after Ref-
erence [71]); (b) geochemical model for porphyry-Cu deposit based on the porphyry Cu deposits
database comprising Aktogy (Kazakhstan), Asarel (Bulgaria), Tekhut (Armenia), and Sungun (Iran)
(modified after Reference [2]).

Moreover, it can be deduced from Figure 5a that similar values of the zonality index
imply similar depths of mineralization and primary halos within an ore field. Thus,
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primary halos of mineral deposits at different depths are characterized by specific values
of the zonality index. The practical exploration significance of the zonality index is for
the recognition of erosional surfaces representing vertical levels of geochemical anomalies.
Concerning the present erosional level, high values of the zonality index imply the presence
of sub-cropping to BM, whereas low values of the index imply outcropping or already
eroded deposits [14].

The values of areal productivity, mineralization coefficient, and zonality indices were
introduced by Solovov (KS) and Grigorian (KG) in two zones (Table 2). The values of (Ks)
in zones I and II are equal to 0.18 and 26.57, respectively. Considering the presented model
by Ziaii (1996) [71], zones I and II are ZDM and BM, respectively (Figure 5a).

Table 2. Areal productivity, mineralization coefficient, and zonality index introduced by Solovov and
zonality index introduced by Grigorian for Cu, Mo, Pb, and Zn elements in zones I and II.

Zone Elements P, m2% η(α) KS KG

Zone I

Cu 1,430,818,851 19.62

0.18 0.71
Mo 6,626,021 0.0735
Pb 12,649,676 0.3564
Zn 133,323,564 2.856

Zone II

Cu 1,094,297,325 8.6

26.57 28.23
Mo 32,266,712 0.275
Pb 552,971,529 4.2
Zn 1,696,662,825 16

Ziaii et al. (2009) introduced the geochemical model for porphyry-Cu deposits in
Aktogy (Kazakhstan), Asarel (Bulgaria), Tekhut (Armenia), and Sungun (Iran) using min-
eralization coefficient and zonality index (Figure 5b) [2]. This plot shows the depth of
mineralization versus the zonality index (KG). Despite considerable differences in geo-
logical settings, the linear relationship suggests the existence of a quantitatively uniform
vertical geochemical zonality in the structure of primary halos of the deposits.

In this study, the values of (KG) in zones I and II are equal to 0.71 and 28.23, respectively
(Table 2). According to the presented model by Ziaii et al. (2009), erosional levels in zone I
and II are nearly similar to Astamal and Songun 2 areas, respectively (Figure 5b). Based on
the previous studies, Sungun 2 and Astamal areas have been recognized as BM and ZDM,
respectively [2].

Therefore, the results of the introduced models by Ziaii (1996) and Ziaii et al. (2009)
confirm each other in identifying the erosional level in each zone [2,71].

5.2. Remote Sensing
Lineaments Extraction

The procedure of lineament extraction was accomplished in this manner: the PCA
image of six Sentinel-2 MSI bands (bands 2, 3, 4, 8, 11, and 12), as shown in Figure 6a. PC1
explains the largest amount of eigenvalue among six bands. PC1 with the loading of the
same signs represents overall brightness in all bands [14], and it shows that the albedo is
related largely to the topographic features [76] (Figure 6b). Then, a directional filter was
applied using 3 × 3 kernels in four directions with azimuths of 0◦, 45◦, 90◦, and 135◦. By
using these azimuths, this filter visually enhances edges striking N-S, NE-SW, E-W, and
NW-SE, respectively.

The sum of the directional filter kernel arrays is zero. The result is that areas with
uniform pixel values are zeroed in the output image, while those with variable pixel
values are presented as bright edges. In PCI Geomatica software, differences in the values
of six parameters of edge and line detection indicate the differences of opinion among
researchers. The values proposed by Adiri et al. (2017) were used [43]. Finally, the
lineaments obtained from azimuths of 0◦, 45◦, 90◦, and 135◦ were merged, and the repetitive
segments and non-geological lineaments (river, road, etc.) were deleted.
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Lineaments and lineaments density maps in two zones were demonstrated in Figure 7.
Lineament density was used to find the correlation between the concentration of lineaments
and the distribution of existing faults in the study area (Figure 7). In two zones, this
comparison proved that the fault is well related to lineament density in most areas. These
areas were generally recognized in the middle-upper Eocene units and intrusive rocks.

Figure 6. (a) PC1 image in the study area; (b) eigenvector obtained from PCA of six Sentinel-2 MSI
bands (bands 2, 3, 4, 8, 11 and 12).

Lineament orientation allows identifying the most frequent directions of lineaments,
and they can be compared with directions related to the existing faults [43]. As shown in
Figure 8, in zones I and II, the directions of the lineaments correspond to existing faults.

Lineaments may be formed, for example, by structural alignment, geomorphologic
consequences, structural weaknesses, faults, valleys, rivers, the boundaries between the
different lithological units, vegetation cover, and artificial objects (road, bridge, etc.) [43].
In this study, due to the importance of faults in porphyry-Cu mineralization [6], the faults
obtained from the geological map were used to create a geological layer.

5.3. Iron Mineralization and Alteration Detection

The results of the band ratio applied to Sentinel-2 MSI were shown in Figure 9. Ac-
cording to the rock units in the studied zones and Porphyry-Cu alterations zones, iron
mineralization is dispersed and dense in two zones (Figure 9), which is well identified in ar-
eas containing volcanic and intrusive rocks. In the south of zone I, which includes intrusive
rock consisting of monzodiorite and monzogabbro, iron mineralization is well recognized.

In ASTER, false-color composites of SWIR bands were used for better visual inter-
pretation of the alteration areas. Empirical combinations have shown that an image with
a false-color composite (band 4 in red, band 6 in green, and band 8 in blue) is the most
suitable color composite for identifying alteration areas in porphyry-Cu deposits. As shown
in Figure 10, areas with the propylitic alteration are shown in green to dark green based on
the alteration intensity, and areas with the argillic and phyllic alteration are shown in white
and pink to red. This is due to the high reflectivity of alunite, kaolinite, and muscovite
minerals in band 4 compared to bands 6 and 8.

Geological settings in the study area have made it difficult to identify some alterations,
especially in zone II. Rocks containing hydrous quartz, chalcedony, opal, and amorphous
silica (hydrothermal silica-rich rocks); calcite-dolomite and epidote-chlorite (propylitic);
alunite-pyrophyllite-kaolinite (argillic); and sericite-muscovite (phyllic) were mapped using
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ASTER and logical operator algorithms (Figure 11). It is observed that Mars (2013) used
images that have to differ in correction levels from the images used in this paper. Mars
(2013) used “and (b4 gt 260)” to remove the black pixel [94], but in the images that have
been used in this paper, the pixel has no value higher than 260. Thus, “and” in the algorithm
causes the result to be zero (Table 3).

Figure 7. Maps of lineaments: (a) zone I and (d) zone II; lineaments density for (b) zone I and
(e) zone II; existing faults for (c) zone I and (f) zone II.

Although not all alterations are associated with ore bodies and not all ore bodies are
accompanied by alteration, the presence of altered rocks is a valuable indicator of possible
deposits [112]. Kaolinite is mostly related to weathering feldspars, and epidote can be
related to regional metamorphism. Kaolinite and epidote anomalies can have genesis
related to deposit when they have a close relationship with muscovite anomalies [65].

Due to intrusive rocks, there is a possibility of the diorite model in the south of zone I.
In this area, propylitic alteration (epidote–chlorite) was identified less than other parts of
zone I, and argillic and phyllic alterations are well-identified around these intrusive rocks.
It should be noted that all intrusive rocks have not shown alterations, which could be due
to erosion or geological settings. Furthermore, alterations have been identified in other
areas of zone I, which could imply mineralization areas or presence of minerals associated
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with alterations. In zone II, propylitic alteration (epidote–chlorite) was not identified, but
argillic and phyllic alterations were detected in part of the studied area. Therefore, because
of the absence of the alterations, it is not reasonable to create a geological layer in this zone.

5.4. Geological Layer

Rock units, faults, and alterations layers were combined by using the KNN algorithm
and the geological layer, as shown in Figure 12. In this procedure, faults and alterations
have an important role in mapping high potential areas. The density and intersection of
faults and the extent of alterations represent these areas. Considering the geological layer,
the detected areas as high potential could be related to mineralization or not. These areas
can be compared to anomalous areas obtained by using the zonality method. As a result,
more parts of the geological layer map were detected as high potential in comparison to
the zonality method. However, the results of both methods confirm each other in the south
of zone I. The geological layer and mineralogical investigation cannot identify erosional
levels. In addition, mineralogy is not economical for application on a regional scale. In the
study area, it is not recommended.

Figure 8. Orientations of lineaments of (a) zone I and (c) zone II compared to the faults of (b) zone I
and (d) zone II.
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Figure 9. Band ratios of Sentinel-2 MSI image for identifying ferric iron (band 4/band 3): (a) zone I
and (c) zone II; ferrous iron (band 12/band 8) + (band 3/band 4) in (b) zone I and (d) zone II on
band 8.
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Figure 10. False-color composites of ASTER (band 4 in red, band 6 in green, and band 8 in blue) in
(a) zone II and (b) zone I.

Table 3. The logical operator algorithms used with ASTER to map hydrothermally altered rocks in
zones I and II (modified after Reference [98]). (b: band; float: floating point; le: less than or equal to;
lt: less than; ge: greater than or equal to; gt: greater than.)

Zone Hydrothermal Alteration Algorithm

Zone I

Hydrothermal silica-rich (hydrous silica,
chalcedony, opal)

Propylitic (carbonate)
Propylitic (epidote–chlorite)
Argillic (alunite, kaolinite)

Phyllic (sericite–muscovite)

((float(b3)/b2) le 1.06) and ((float(b4)/b7) ge 1.06) and ((float(b13)/b12)
ge 1.016) and ((float(b12)/b11) lt 1.08)

((float(b3)/b2) le 1.06) and ((float(b6)/b8) gt 1.04) and (b5 gt b6) and (b7
gt b8) and (b9 gt b8) and ((float(b13)/b14) gt 1.005)

((float(b3)/b2) le 1.06) and ((float(b6)/b8) gt 1.04) and
((float(b5)/(float(b4)/b6)) gt 0.513) and (b5 gt b6) and (b6 gt b7) and (b7

gt b8) and (b9 gt b8) and ((float(b13)/b14) le 1.005)
((float(b3)/b2) le 1.06) and ((float(b4)/b6) gt 1.06) and ((float(b5)/b6)

le 1.04) and ((float(b7)/b6) ge 1.04)
((float(b3)/b2) le 1.06) and ((float(b4)/b6) gt 1.06) and ((float(b5)/b6)

gt 1.04) and ((float(b7)/b6) ge 1.04)

Zone II

Hydrothermal silica-rich (hydrous silica,
chalcedony, opal)

Propylitic (carbonate)
Propylitic (epidote–chlorite)
Argillic (alunite, kaolinite)

Phyllic (sericite–muscovite)

((float(b3)/b2) le 0.66) and ((float(b4)/b7) ge 1.03) and ((float(b13)/b12)
ge 1.156) and ((float(b12)/b11) lt 1.065)

((float(b3)/b2) le 0.66) and ((float(b6)/b8) gt 1.066) and (b5 gt b6) and (b7
gt b8) and (b9 gt b8) and ((float(b13)/b14) gt 0.91)

((float(b3)/b2) le 0.66) and ((float(b6)/b8) gt 1.066) and
((float(b5)/(float(b4)/b6)) gt 0.5) and (b5 gt b6) and (b6 gt b7) and (b7

gt b8) and (b9 gt b8) and ((float(b13)/b14) le 0.91)
((float(b3)/b2) le 0.66) and ((float(b4)/b6) gt 0.97) and ((float(b5)/b6)

le 1.04) and ((float(b7)/b6) ge 1.04)
((float(b3)/b2) le 0.66) and ((float(b4)/b6) gt 0.97) and ((float(b5)/b6)

gt 1.04) and ((float(b7)/b6) ge 1.04)
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Figure 11. Hydrothermal alteration obtained from ASTER using logical operator algorithms.
(a) Argillic and phyllic alteration in zone I; (b) hydrothermal silica-rich, propylitic alteration (car-
bonate), and propylitic alteration (epidote-chlorite) in zone I; (c) argillic, phyllic, and propylitic
(carbonate) alteration and hydrothermal silica-rich in zone II.

Unlike the geological layer, the application of the zonality method in mineral prospect-
ing allows further interpretation about whether delineated desirable areas are attractive for
the exploration of ZDM or BM deposits.
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This comparison demonstrates that the zonality method for detecting anomalous areas
is more powerful than the geological layer.

Figure 12. Geological layer map obtained by combining rock units, faults, and alterations layers by
using the KNN algorithm in zone I.

6. Conclusions

The traditional zonality method has been used in the exploration of porphyry-Cu
deposits for many years and is an effective method for the distinction between sub-ore and
supra-ore halos, prediction of the erosional level of mineralization, and exploration of blind
mineral deposits.

Utilizing the zonality method, the geochemical maps of multiplicative haloes were
mapped. In the east of the study area, multiplicative haloes of sub-ore elements (Cu and
Mo) were observed, and these represent zone dispersed mineralization. In the northwest,
both multiplicative supra-ore (Pb and Zn) and sub-ore (Cu and Mo) element haloes existed,
and these imply blind mineralization. Thus, zones I and II, which are located in the east
and northwest of the study area, were selected for calculating erosional levels and for
creating the geological map. Zonality indices introduced by Solovov (1987) (Ks) and Beus
and Grigorian (1977) (KG) were calculated in zones I and II [12,22]. The (Ks) values were
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equal to 0.18 and 26.57 in zones I and II, respectively; moreover, (KG) values in zones I and
II were equal to 0.71 and 28.23, respectively. Then, the presented models by Ziaii (1996) and
Ziaii et al. (2009) were considered for identifying erosional levels in these zones [2,67]. Due
to these models, zones I and II were recognized as ZDM and BM, respectively. Therefore,
the zonality method was successfully applied in the identification of anomalous areas,
separate BM from ZDM, and predicted erosional levels.

The results of the zonality method were compared to the geological layer, which was
created by rock units, faults, and alterations by using the KNN algorithm. Each of these
layers plays an important role in prospecting and exploring mineral deposits. Thus, high
potential areas can be identified by combining these layers. For zones I and II, rock units
and faults were identified from the geological map, and the alterations were detected using
ASTER images and logical operator algorithms. It was observed that the alterations layers
had a significant contribution in constructing the geological layer. The alteration zones
of porphyry-Cu deposits include propylitic (chlorite and epidote), argillic (alunite and
kaolinite), and phyllic (sericite and muscovite), and they are important for identifying
possible areas associated with porphyry-Cu systems. These alterations were detected in
zone I, especially around the intrusive rocks in the S of this zone. In zone II, only argillic and
phyllic alterations were identified in part of the studied area. Due to the lack of alteration
in zone II, the geological layer was created only in zone I. Comparing the results of the
two methods showed that more parts of the geological layer map were highlighted as
having high potential. These high potential areas could be related to mineralization or not;
in other words, the geological layer cannot separate BM from ZDM. However, the results of
both methods correspond to each other in the south of zone I. In other, the geological layer
is unable to recognize erosional levels. Therefore, mineralogy investigation is required,
which is not recommended to apply on a regional scale because of its high cost. It could be
concluded that the geological layer, which is based on alteration, cannot help geochemists
in separating BM from ZDM and in predicting erosional levels.
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Abstract: The application of machine learning (ML) algorithms for processing remote sensing data
is momentous, particularly for mapping hydrothermal alteration zones associated with porphyry
copper deposits. The unsupervised Dirichlet Process (DP) and the supervised Support Vector
Machine (SVM) techniques can be executed for mapping hydrothermal alteration zones associated
with porphyry copper deposits. The main objective of this investigation is to practice an algorithm
that can accurately model the best training data as input for supervised methods such as SVM.
For this purpose, the Zefreh porphyry copper deposit located in the Urumieh-Dokhtar Magmatic
Arc (UDMA) of central Iran was selected and used as training data. Initially, using ASTER data,
different alteration zones of the Zefreh porphyry copper deposit were detected by Band Ratio,
Relative Band Depth (RBD), Linear Spectral Unmixing (LSU), Spectral Feature Fitting (SFF), and
Orthogonal Subspace Projection (OSP) techniques. Then, using the DP method, the exact extent
of each alteration was determined. Finally, the detected alterations were used as training data to
identify similar alteration zones in full scene of ASTER using SVM and Spectral Angle Mapper (SAM)
methods. Several high potential zones were identified in the study area. Field surveys and laboratory
analysis were used to validate the image processing results. This investigation demonstrates that
the application of the SVM algorithm for mapping hydrothermal alteration zones associated with
porphyry copper deposits is broadly applicable to ASTER data and can be used for prospectivity
mapping in many metallogenic provinces around the world.

Keywords: porphyry copper deposits; ASTER; machine learning; DP; SVM; SAM

1. Introduction

Because of the importance of minerals in industry and other aspects of human life,
appropriate methods to explore minerals are essential. The use of remote sensing data
to obtain information from far objects is one of the most significant technologies in this
century. Remote sensing satellite imagery is extensively used in different sectors of Earth
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science such as mineral mapping [1–4]. The results of remote sensing studies, by means
of saving time and cost in identifying alteration zones, have greatly contributed to the
exploration of minerals, especially in the reconnaissance stages [5–8].

In recent decades, remote sensing has been used successfully in the identification
of lithological units, structure features, and alterations zones with the development of
new algorithms and ML techniques [9–11]. Owing to the high volume of remote sensing
satellite data, data mining methods to extract the desired information are necessary [12,13].
Classification algorithms undoubtedly play an essential role in analyzing multidimensional
data such as multispectral and hyperspectral images. Depending on need, different clas-
sification methods have been used for mineral mapping. These methods are generally
divided into three categories: supervised, unsupervised, and semi-supervised. Supervised
methods such as spectral angle mapping (SAM), support vector machines (SVM), and
maximum likelihood (ML) have been widely used for remote sensing data processing with
the aim of geological mapping [14,15]. The SVM method in the field of mineral mapping
has been considered over the past two decades [16,17]. Clustering or unsupervised meth-
ods divide the data into groups to have the most similarity in each group and the least
similarity between the groups [18]. Unlike supervised methods, these methods are less
commonly used for remote sensing data processing in mineral exploration. For mineral
exploration, clustering methods are usually used in conjunction with supervised methods
to obtain better results. Semi-supervised methods aim to improve the results by combining
these two methods [19]. Different clustering methods are used in various sciences, such
as data mining, pattern recognition, image clustering, etc. [20]. These methods do not
require training data. These methods are divided into two main categories: model-based
and non-model-based. In non-model-based methods, the only parameter that needs to
be known initially is the number of clusters [21]. Determining the number of clusters is
a significant challenge that can be problematic in clustering big data [22]. Model-based
methods do not even need to determine the number of clusters and can cluster the data
without any information.

Despite proper performance in identifying minerals and alterations using supervised
methods, preparing and selecting appropriate training data from them is costly and time-
consuming. In this research, an attempt has been made to determine appropriate training
data based on the nature of the data, using an approach consisting of clustering and
classification methods. Then, using this training data for the supervised methods, identical
areas in terms of alteration were identified. In this study, the basic model of the DP
method was used to cluster the alteration zones of the Zefreh porphyry copper deposit,
the UDMA, central Iran, using ASTER data. Then the results of this clustering were used
as training data to identify corresponding alteration zones using the SVM method. The
specific objectives of this research are: (i) to detect alteration zones in the Zefreh porphyry
copper deposit using RBD, LSU, OSP, SFF algorithms; (ii) to determine the exact expansion
of alteration zones in the Zefreh porphyry copper deposit using the DP method and use its
results as training data for supervised methods; (iii) to perform SVM and SAM methods
using training data obtained from the DP method and specify analogous alteration areas
in the ASTER scene; and (iv) to verify the classification results using field checking of
alteration zones.

2. Geology of the Study Area

The Zefreh porphyry copper deposit is located in the UDMA belt of central Iran,
northeast (65 km) of Isfahan province. The location is bounded by latitudes 33◦03′9.35′′ N
and 33◦03′54.5′′ N and longitudes 52◦13′38.48′′ and 52◦14′25.88′′ E (Figure 1a,b). The copper
deposit is related to the Qom-Zefreh fault and its placement in the UDMA belt. Mechanism
of movement of Qom-Zefreh and Naein-Baft and tensile performance between these two
tectonic lineaments has led to the creation of longitudinal sliding tensile basins in the
Zefreh region [23]. Crustal stretching along these strike–slip faults has facilitated the ascent
and replacement of intrusive masses and the formation of dikes and the concentration of
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several mineralogical hydrothermal systems such as the Zefreh porphyry copper deposits,
Kahang, Zafarqand, and the Kalchoye epithermal deposits, which are related to these two
tectonic lineaments [23]. Volcanic activity in the Zefreh region occurred from the Eocene to
the Miocene. Pyroclastic and andesitic lavas in the eastern, southeastern, and southwestern
parts of the area are the oldest rock units in the region. These units have been altered to
propylitic as a result of magmatic activity. In the central part, in the Late Eocene dacites,
phyllic and argillic alterations zones are observed. Granodiorite subvolcanics are presented
in the northeastern, penetrating dacite, pyroclastic, and andesitic lavas. In these stocks,
weak potassium alteration and abundant quartz-magnetite veins are observed [24,25].

Figure 1. (a) The geographical location of the Zefreh area in the UDMA belt of central Iran; (b) geological map of the Zefreh
area (scale 1:5000).

3. Materials and Methods

3.1. Data Characteristics

In this study, ASTER Level 1 T (Precision Terrain Corrected Registered At-Sensor
Radiance) data were used. The ASTER sensor is a multispectral imager on NASA’s Terra
platform. ASTER has 14 bands in three subsystems, the visible and near infrared (VNIR)
(3 bands), the shortwave infrared (SWIR) (6 bands), and the thermal infrared (TIR) (5 bands),
in the range of 0.52–11.65 μm. The ASTER image has a spatial resolution of 15 m in the
VNIR bands, 30 m in the SWIR bands, and 90 m in the TIR bands [26]. ASTER satellite
imagery was designed based on geological needs, and it has been very efficient in this
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field over the last two decades [27]. ASTER data have an appropriate spectral and spatial
resolution in the SWIR range, where many alteration minerals can be distinguished [8,9].
ASTER SWIR detectors are no longer functioning due to anomalously high SWIR detector
temperatures. ASTER SWIR data acquired since April 2008 are not usable and show saturation
of values and severe striping. However, VNIR and TIR data continue to show excellent quality,
meeting all mission requirements and specifications. ASTER images can be downloaded from
the “https://search.earthdata.nasa.gov/” site. To download the ASTER data, the ASTER
granule ID can be found in the “https://earthexplorer.usgs.gov/” site.

The ASTER image used in this study was acquired on 11 March 2008. This ASTER
scene covers the Zefreh porphyry copper deposit in the UDMA of central Iran. The image
has 1% cloud coverage and is suitable for a remote sensing study. In this study, the nine
bands of the VNIR and SWIR subsystems were stacked and used. The 30 m resolution SWIR
of the ASTER data was re-sampled to correspond to the VNIR 15-m spatial dimensions.
Nearest neighbor re-sampling method was applied to preserve the original pixel values in
the re-sampled image. Radiometric and geometric corrections had been already applied
on the ASTER L1T level data used in this study. ASTER data were also georeferenced
and orthorectified [28]. The necessary preprocessing of this data included atmospheric
correction and vegetation removal, which were subsequently done. Internal Average
Relative Reflectance (IARR) correction was used to eliminate atmospheric effects. The
IARR technique is recommended for mineralogical mapping as a preferred calibration
technique in arid and semi-arid regions, because it does not require the prior knowledge of
samples collected from the field [29]. Parts of the image that contained vegetation were
identified with the NDVI index [30], and values greater than 0.3 were masked so that the
results were not affected by vegetation reflectance. Figure 2 show the flowchart of the
methodology used in this study.

3.2. Methods
3.2.1. Dirichlet Process (DP)

Owing to the nature of alterations, which are composed of different minerals with dif-
ferent values, their values can be modeled as distributions and can be separated from each
other through the distribution of their compounds. In other words, different alterations
can be separated into separate clusters. In this research, the DP method, which is based on
the distribution over the dispersal of parameters, was used to model different alterations.
In addition to the expected results, the advantage of using this method is that there was no
need to determine the number of clusters.

In this study, considering that the DP clustering algorithm was implemented on the
image in the Zefreh area with different lithologies, we assumed that each type of lithology
was a multivariate normal distribution. Because each lithology was composed of a number
of minerals with different compositions that have different spectral characteristics, we also
considered their distribution to be normal. Because of the complexity of the composition of
lithologies and their constituent minerals, we considered a hierarchical structure for the
model parameters to fit well with the data structure.

The DP method is a non-parametric Bayesian method. DP was first introduced in 1973 by
Ferguson [31]. This method was then developed and used in various sciences [32–34]. Mixed
model DP uses a database distribution to model data that are mixed from several clusters.
DP is generally formulated using Equation (1), but the number of model parameters is not
fixed and can be changed as needed.

G ∼ DP(α.G0)
θzi ∼ G

P(zi = k) = πk
zi ∼ cat(πk)

xi|zi.θzi ∼ F(θzi) i = 1 : n

(1)
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where, G and G0 are the distributions on the θ parameter. G0 is the base distribution,
and α is the concentration parameter of the Dirichlet distribution (Equation (1)). This
parameter controls the degree of similarity of the G distribution to the base distribution.
It is also effective in assigning a new sample to the previous cluster or being in a new
cluster [35,36]. Equation (1) has a hierarchical structure so that each parameter is obtained
from the posterior distribution of another parameter. θ is the parameter of data distribution.
This study assumed that the values of each pixel xi are a mixture of several clusters, and
πk is the mixing proportion of each cluster (k). The value of zi was obtained from the
categorical distribution on πk.

 

Figure 2. An overview of methodological flowchart used in this study.
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Then Equation (2) was used to classify each data point (in this study, each pixel) in an
existing cluster or a new cluster.

P(zi = z|z−i, x−i, θ) ∝

{
N−i,z

N−1+αF(xi, θc) if c exist
α

N−1+α

∫
F(xi, θ)dG0(θ) new c

. (2)

Several methods have been proposed in the literature to represent DP, including the
Stick-Breaking (SB), Chinese restaurant, and, the Polya urn [35,37]. Here, the SB process
was used for the probability of each cluster (Equation (3)). Each part of the SB models the
probability of mixing proportions. In Equation (3), β is the beta distribution.

π1 = β1

πk ∼ βk
k−1
∏
j=1

(
1 − βj

)
∑k

j=1 πj = 1

βk ∼ Beta(1.α) k = 2, 3, . . .

(3)

As mentioned before, this method is non-parametric, and after constructing the model
that fit the data, we were faced with several unknown parameters where the Markov chain
Monte Carlo (MCMC) simulation was used to find their values. Using MCMC methods, the
number of unknown quantities based on posterior probability is simulated in an acceptable
way [38] (Equation (4)).

p(θ, π|x 1, . . . , xn) ∝
n

∏
i=1

{
k

∑
j=1

πjf
(

xi |θ j

)}
p(θ)p(π) (4)

3.2.2. Support Vector Machine (SVM)

Geo-computational methods for mapping minerals in satellite images, analysis of
geochemical, geophysical data, etc., are kinds of classification because each method aims to
find a prospect or non-prospect area [39]. SVM is one of the classification methods used to
classify high-dimensional data and is suitable for cases where a limited number of training
data are available [40].

The SVM algorithm was first used by [41] as a supervised method. Other studies have
used this method as an unsupervised method [42], and a semi-supervised method [43]
for clustering and classification. This method uses a hyperplane to separate the data
(background value from an anomaly or desired from undesirable), which maximizes
the margin between classes. SVM uses the pairwise classification strategy for multiclass
classification. Suppose we have xi ∈ Rn i = 1, . . . , n educational data vectors (in this study,
we had n as the number of pixels with dimension P) so that each pixel belongs to the class
yi ∈ {−1, 1}. Multiple hyperplanes can be used to separate data; a hyperplane with the
maximal margin from the most external data of each class (Support vectors) is desirable.

This hyperplane can be formulated as follows [39]:

f(X) = sgn
(

WTX + b
)

, (5)

sgn(X) =

⎧⎪⎨⎪⎩
1 if x > 0
0 if x = 0
−1 if x < 0

(6)
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The soft margin is used to obtain the parameters w and b by considering the vari-
able ξi and the penalty function C (Equations (7) and (8)). This hyperplane permits the
misclassification of some data in a controlled condition [44]:

Minimize 1
2

∣∣∣|w|
∣∣∣2 + C ∑n

i=1 ξi

Subject to

{
yi

(
WTXi + b

)
≥ 1 − ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n

(7)

Minimize L(W, b,α) =
1
2

∣∣∣∣∣|W|
∣∣∣∣∣2 − n

∑
i = 1

αiyi(W.Xi + b) +
n

∑
i=1

αi (8)

To minimize Equation (8) concerning W and b, we obtained the derivative of the above
equation with respect to these variables (Equation (9)). Finally, we arrived at the following
equations by placing the results (Equation (10)). By converting the problem to a quadratic
programming problem and calculating the Lagrangian multipliers (Equation (11)), the
problem is solved by finding the saddle point [39,44]:

∂L
∂W

= 0,
∂L
∂b

= 0 (9)

W =
n

∑
i=1

αiyiXi

n

∑
i=1

αiyi=0 (10)

Maximize L(α) =
n

∑
i=1

αi − 1
2

n

∑
i,j=0

αiαjyiyjXi.Xj = 0 (11)

Subject to αi ≥ 0, i = 1, . . . , n,
n

∑
i=1

αiyi = 0 (12)

f(x) = sgn

(
n

∑
i,j=1

αiyi
(
XiXj

)
+ b

)
(13)

In high-dimensional data, classification will be difficult. One way to overcome this
problem is to use a kernel to transfer data to another feature space to make class sepa-
rations easier and better. In this study, the Radial Basis Function (RBF) kernel was used
(Equation (14)), which studies show has a better performance in this field. This kernel
is like the K-nearest neighbor. It has all the advantages of a K-nearest neighbor. In ad-
dition, because it only needs to save support vectors instead of entire data it reduces
space and complexity [45,46]. Finally, the decision function is changed as follows [44,47]
(Equation (15)).

K
(
Xi, Xj

)
= e−γ(Xi−Xj)

2
(14)

f(x) = sgn

(
n

∑
i,j=1

αiyiK
(
Xi, Xj

)
+ b

)
(15)

3.2.3. Spectral Angle Mapper (SAM)

The SAM classification method is one of the most widely used methods in mineral
mapping. The library spectrum, field spectrum, and image spectrum can be used for
training or reference data in this method. Each pixel is considered a multidimensional
vector with dimensions equal to the number of bands [48]. In the SAM method, the
similarities between training or known data and test data in n-dimensional space are
calculated with the angle between their spectra [48,49]. In this method, the direction of
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the spectra vectors is substantial, not their length, so the difference of light intensity in
different parts of the image does not affect processing.

SAM = arccos

⎛⎝
〈

I{k}.J{k}
〉

‖I{k}‖ ‖J{k}‖

⎞⎠. (16)

In Equation (16), I{k} is the spectrum vector of the known data (in this study, Zefreh
training data), and J{k} is the spectrum vector of the ASTER scene case study. 〈·.·〉 indicates
the scalar multiplication. ‖ · ‖ is the vector’s norm [50,51].

3.2.4. Laboratory Analysis

Inductively coupled plasma–mass spectrometry (ICP-MS) analysis is one of the most
accurate methods for measuring the value of elements in the selected samples. This analysis
can detect and measure values less than one per billion (ppb). The input of the ICP-MS
device must be a solution without suspended particles. The sample solution is sprayed
into a plasma torch. The argon gas plasma ionizes the solution’s molecules in the ICP. An
electric field then accelerates these ions. Accelerated ions enter a magnetic field in the ICP
device. The ions in the magnetic field are separated based on the charge-to-mass ratio, and
the device can measure the value of each ion [52]. In this study, the collected rock samples
were analyzed using a Perkin Elmer Sciex ELAN 9000 ICP-MS for some trace elements.
The X-ray fluorescence (XRF) measured the value of sample compounds by bombarding
the sample with X-rays or gamma rays and measuring the emission characteristic [53]. A
Philips PW1480 XRF spectrometer was used in this study for measuring the percentage
of major oxides in the selected rock samples. The samples were analyzed in the Zarazma
Laboratory, Tehran, Iran. The results of these analysis are presented in Appendix A,
Tables A1 and A2.

The thin section was a microscopic cut of rock, thickness between 25–30 μm, both
sides were covered with glass slides. Thin sections were used for petrographic studies by
optical microscopy. Quartz and feldspars should be gray to white in cross-polarized light in
standard thin sections [54,55]. In this study, thin sections of alteration zones and lithological
units were prepared. Thin sections were studied using the Kyowa ME-POL2 microscope
(made in Japan) at magnification 20 in the Isfahan University of Technology, Iran. X-ray
diffraction (XRD) was used to identify the crystal structure and major and minor minerals
in a sample. In this method, the X-ray beam was irradiated to the sample, and the output
diffraction pattern determined the type of mineral [56]. An ASENWARE/AW-XDM300
XRD diffractometer was used for measuring the important minerals in the sample collected
in this study (Appendix A, Table A3). The XRD analysis was also performed in the Zarazma
Laboratory, Tehran, Iran.

4. Results and Analysis

4.1. Determining the Training Data

In order to accurately determine the training data to use in the SVM and SAM algo-
rithms, firstly, the alteration zones were identified by several mapping methods such as
RBD, LSU, OSP, and SFF [57–60]. Then the exact extent of each alteration zone in the Zefreh
porphyry copper deposit was determined using the DP algorithm.

4.2. Detection of the Alteration Zones

In each alteration, several indicator minerals had a specific spectral signature that
made it possible to identify them in remote sensing images and determine the type of
alteration. According to the kind of alteration, the location of enrichment elements and
mineralization was identified. In this study, we used RBD, LSU, OSP, and SFF mapping
methods to reveal phyllic, argillic, and propylitic alterations in the Zefreh porphyry copper
deposit. Figure 3a shows an RGB color composite (R:3, G:2, B:1) of the ASTER full scene
covering the study area.
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Figure 3. (a) Color composite of ASTER (R:3, G:2, B:1); (b–d) Phyllic, argillic and propylitic alteration results of the RBD
method; (e–g) alteration results of the LSU method; (h–j) show mapping of phyllic, argillic and propylitic alterations using
the OSP; (k,l) are the results of the SFF method; (m) shows the Fe-oxide alteration.

In the RBD method, considering the points of absorption and reflectance of mineral
spectra, to determine the alterations, the band ratios (B7 + B5)/B6 for phyllic, the ratio
(B7 + B4) / B5 for the argillic, and the ratio (B7 + B9)/B8 for propylitic alterations were
used [61,62] (Figure 3b–d). To identify the alterations using LSU or SFF methods, the
reference spectra related to the indicator minerals of each alteration zones were extracted
from the USGS spectral library [63]. Figure 4 shows the USGS spectral of the indicator
minerals after re-sampling to the ASTER band-passes. The phyllic alteration zone included
sericite, illite, pyrite, and quartz [64]. The sericite mineral spectral signature was considered
for mapping the phyllic zone. The argillic zone accumulated clay minerals, including illite,
kaolinite, montmorillonite, alunite, halloysite, and quartz [64]. Argillic was identified by
representative spectra of kaolinite and montmorillonite. The propylitic alteration zone
consisted of epidote, calcite, and chlorite minerals, and was characterized mainly by the
spectral signature of chlorite and epidote minerals [65]. Implementing the LSU method
on the ASTER subset of the Zefreh porphyry copper deposit, the regions containing the
indicator minerals manifested as bright pixels (Figure 3e–g). These images showed the
mapping of phyllic, argillic, and propylitic alteration zones, respectively. LSU assumed
that the value of each pixel was a linear combination of its endmembers in the fraction of
endmembers with noise [57]. By projecting the pixel vector of the image in the subspaces,
the OSP method eliminated the undesirable effects by increasing the signal-to-noise ratio,
determining the spectral signature of the desired indicator mineral [66]. The results of the
OSP method are shown in Figure 3h–j. The SFF method identified the desired areas by
comparing the image spectrum with the spectral library spectrum, performing the least
squares fitting, and selecting the best fit [48]. The SFF method showed acceptable results
only for the phyllic and propylitic alteration (Figure 3k,l). The B2/B1 band ratio was used
for mapping iron oxides (Figure 3m).
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Figure 4. The spectral signatures (reflectance spectra) of indicator alteration minerals selected from
the USGS spectral library that was re-sampled to the ASTER band-passes.

4.3. Implementation of the DP Method on the Zeftreh Area

The results obtained from different alteration mapping methods (Figure 3) were used
as input to the implementation of the DB method. Using the DP method, the digital number
(DN) value of the distribution of the pixels was assumed to be Gaussian. Considering the
fact that rocks are composed of minerals and minerals are composed of elements, the DN
values of each pixel were modeled as distributions over dispersals. This means that the
value of each pixel (Xi) was considered a normal distribution with a distinct mean and
variance. The number of different distributions was equal to the number of clusters. It
was assumed that the mean value of these distributions had a normal distribution (base
distribution) (Equations (17) and (18)). Gaussianness of data distribution is not required,
and if the data distribution is not normal, the results will not be much different. As
mentioned in Section 3.2.1, this method is a non-parametric method where, after defining
the model and implementing it in the Bayesian inference Using Gibbs Sampling (BUGS)
software, unknown parameters including the mean and variance of data distribution,
probability of each cluster, and the number of clusters were identified by the MCMC
simulation method. The BUGS was first released by Smith and Gelfand [67].
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The parameter values were obtained after 3000 times MCMC simulation and removing
the first 1000 unstable values (Figure 5a,b). The number of simulations varies and should
continue until the value of the parameters converges.

Xi ∼ Normal(μ1(Ci),σ1(Ci)), (17)

μ1(Ci) ∼ Normal(μ2,σ2), (18)

Ci ∼ Categorical(P(1 : C)), (19)

σ1(Ci) ∼ Wishart(R). (20)

Figure 5. (a) MCMC simulation history of the C parameter to achieve convergence. (b) The posterior
distribution of the parameter.

In the above equations, Xi specifies the DN value of each pixel, Ci is the categorical
distribution of the probability occurrence of each cluster. μ and σ show the mean and
variance of the normal distribution, respectively (in BUGS software, precision is used
instead of variance). The precision value is calculated from the Wishart distribution [68,69].

The result of the implementation of the DP algorithm was the clustering of the ASTER
image in Figure 6. The alteration zones in this image were more accurate than the geological
map because the alteration zones were detected by the approach applied in this analysis.
Therefore, the results of this clustering as training data provided more significant results
compared to the existing geological map (Figure 1). Hence, the result of DP was used as
the training data in the SVM and SAM supervised methods. The result of this clustering
was five distinct clusters, and by adapting them to the geological map, we determined
which kind of alterations defined each cluster. Figure 6 indicates that the areas showing
the potassic zone were also mapped. This zone was not used as training data because the
potassic spectra were not easily detectable in the SWIR and VNIR bands of ASTER. Map-
ping the potassic zone can be performed using the TIR bands, which was not considered in
this analysis.
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Figure 6. (a) The Zefreh ASTER image, (b) the DP clustering method results showing the spatial distribution of alteration
zones in the study area.

4.4. Implementation of the SVM on ASTER Data

The alteration zones derived from the DP were used as training data to find similar
alteration zones in the ASTER scene. We used the RBF kernel to transfer data to other spaces
and classify the data. In the SVM method, the γ parameter and the penalty parameter
must be defined. These parameters were optimized on the training data using the genetic
algorithm in MATLAB software. The optimal values of the penalty and γ, 0.211 and 2,
respectively, were obtained. Finally, the SVM algorithm was implemented on the ASTER
image using the specified parameters and the training data using ENVI (Environment for
Visualizing Images, http://www.exelisvis.com) version 5.3 software package (L3Harris
Technologies, Melbourne, FL, USA). The results of this classification for phyllic, argillic and
propylitic alterations are shown in Figure 7a–d.

Figure 7. Cont.
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Figure 7. The results of SVM on the ASTER data. (a) Argillic alteration, (b) phyllic alteration, (c) propylitic alteration, and
(d) Fe-oxide alteration.

4.5. Implementation of the SAM on ASTER Data

The SAM classification was used to compare the efficiency of the SVM results. DP clus-
tering data was used as the training data for this algorithm. Phyllic, argillic, and propylitic
alteration zones were mapped using the SAM algorithm on the ASTER image. The selected
SAM spectral angles (in radians) used in this study were: α = 0.4 for phyllic alteration,
α = 0.25 for argillic, and α = 0.3 for propylitic. The results of the SAM classification are
shown in Figure 8a–d.

Figure 8. Cont.
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Figure 8. The results of SAM spectral mapping on the ASTER data. (a) Argillic alteration, (b) phyllic alteration, (c) propylitic
alteration, and (d) Fe-oxide alteration.

5. Fieldworks

To validate the classification results, the field survey was performed by considering
the following records: (i) the areas where the results of SVM showed the distribution of
several alteration zones, especially phyllic and argillic; (ii) rock units of the mineralization
zone; and (iii) areas where faults and ring structures were identified. In the field survey,
21 rock samples were collected by bulk sampling method for ICP-MS analysis, thin section,
XRD and XRF. The location of sampling points was recorded with a handheld GPS (Garmin
eTrex 30x; average accuracy of 3 m; made in Taiwan). The results of ICP-MS, XRF, and
XRD are presented in Appendix A, Tables A1–A3. Figures 9 and 10 show the location of
the sampling points on the SVM and SAM alteration maps, respectively.

Figure 9. The results of SVM spectral mapping on the ASTER data. (a) ASTER full scene of the study
area. (b–f) Selected subsets for sampling and field survey.
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Figure 10. (a) The results of SAM spectral mapping on the ASTER data. (a) ASTER full scene of the study area. (b–f)
Selected subsets for sampling and field survey.

The S01 and S02 samples were taken from the northwestern part of the study area.
The rock of this area is diorite, which had been altered to argillic, phyllic, and iron oxides.
The SVM results showed phyllic and argillic alteration, and the SAM method performed
better in determining iron oxides in this area. The S03 was sampled from rhyodacite rocks.
In this area, the rocks had been altered to sericite and silica. The zone of S04 and S05
sampling (Figure 11a) consisted of rhyolite and dacite rocks with calcareous interlayers
altered to argillic and phyllic caused by intrusive masses. The S06 and S07 samples that
were collected from marl and limestone tuffs had been severely altered by the intrusion of
diorite and rhyodacite rocks. In this area, the thickness of the adjacent metamorphic zone,
which consisted mainly of garnet and epidote, reached about 100 m. There were lenses
made of silica and iron oxide with a thickness of 2 m among these skarns. The S08 sample
was composed of rhyodacite and breccias tuff. This area incurred argillic alteration and
is strongly siliceous along northwest-southeast faults. Sampling was performed from the
S09 point owing to the presence of multiple faults and the detection of argillic alteration
in the SVM results. During the field survey, a skarn mass was observed, and silicification
and epidotization were identified in some parts of this zone. The S10 and S11 samples
were taken from granodiorite and diorite, where argillic, advanced argillic, and propylitic
alteration occurred. Mn dendrites were observed in this part. The S12, S13 and S14
samples were taken from the zones of argillic, propylitic, phyllic alterations and iron oxides
(Figure 11b), which were identified in the SVM and SAM maps. At the field surveys, the
argillic alteration was observed in a pyroclastic tuff unit, and in some parts the partial
silicification alteration was recorded. The S15, S16, S17, S18 and S19 samples were taken
from the southern part of the study area (Figure 11c). The field survey of these points
showed that the porphyry dacites had been altered to argillic, phyllic, iron oxides, and
silica. The S20 and S21 samples were collected from the southeastern part of the study
area. This area is a pyroclastic complex that was influenced by dacite to diorite masses.
Argillitization (Figure 11d), silicification, turmalinization, and iron oxides were seen in
this zone.
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Figure 11. (a) Argillic and phyllic alterations in the area of the S04 and S05 sampling points; (b) argillic alteration in the area
where the S12, S13 and S14 samples were taken; (c) propylitic, argillic and phyllic alteration in the S15, S16, S17, S18 and
S19 sampling zones; (d) argillic alteration; (e) malachite mineralization observed in the southeastern part of the study area.

5.1. Petrography Study

The thin section in Figure 12a was prepared from the S04 sample. This thin section had
a porphyry texture with a microgranular matrix. This sample had undergone pervasive
alteration, and the rock had been entirely replaced by secondary minerals such as sericite,
quartz, clay minerals, and iron oxides. Quartz veins were also observable. The thin section
of the sample S07 (Figure 12b) was a porphyry rhyodacite with a hyalomicrogranular
matrix. Rock feldspar minerals were selectively altered to sericite, illite, and muscovite.
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Alteration to clay minerals, especially kaolinite, was observed throughout the thin section.
Iron oxides were observed on the opaque minerals. In the thin section of the sample S13
rhyodacite porphyry with hyalomicrogranular matrix was detected (Figure 12c). Euhedral
and subhedral plagioclase, alkaline feldspar, and quartz with corrosion gulf were the rock’s
main minerals. Tourmaline was also found among feldspar crystals. The main alterations
observed in this section were argillic, sericite and phyllic. The thin section in Figure 12d
was prepared from sample S19 corresponding to a lithic tuff with a volcanoclastic texture.
Subhedral to amorphous plagioclase–alkali crystals, feldspar, and quartz were the main
minerals, which had been altered to sericite, muscovite, iron oxides, and clay minerals.

 
Figure 12. Thin sections of (a) the S04, (b) S07, (c) S13, and (d) S19 rock samples. The dusty surface
of the images is due to the alteration and formation of clay and sericite minerals. Abbreviations:
Ser = Serecite, and Qt = quartz, Afs = Alkali-feldspar, Pl = plagioclase, Tour = Tourmaline.

In the XRD results, indicator minerals for phyllic, argillic, and propylitic alteration
zones such as hematite, muscovite, illite, kaolinite, montmorillonite, chlorite, epidote, and
goethite were detected (Figure 13a–g and Appendix A, Table A3), which confirmed the
results of the remote sensing analysis.

5.2. Geochemical Analysis

ICP-MS and XRF analyses were performed on all 21 samples taken from the study
areas. The ICP-MS analysis of the S04 sample showed enrichment of Au (104 ppb), As
(289 ppm), Cu (467 ppm), and Mo (21 ppm) elements (Appendix A, Table A1). In the
ICP-MS results of S06 and S07 samples, the Zn enrichment (1195 and 3014 ppm) was
observable (Appendix A, Table A1). In the S09 sample, Mn (3464 ppm), Cu (198 ppm) and
Au (60 ppb) showed enrichment (Appendix A, Table A1). The ICP-MS results of the S11
sample analysis showed Mn (1664 ppm) enrichment (Appendix A, Table A1). Pb (280 ppm)
and Cu (509 ppm) enrichment in the form of malachite were observed at the location of
Figure 11e, from which the S21 sample was collected (Appendix A, Table A1). The XRF
analysis was performed for all samples; the results are shown in Appendix A, Table A2.
Altered samples showed high amounts of Al2O3 (17.00% up to 24.20%), SiO2 (41.42% up to
56.24%), and Fe2O3 (2.44 % up to 9.43%) and low amounts of Na2O (<0.1% up to 3.68%)
and K2O (1.85% up to 3.70%) owing to alteration processes (Appendix A, Table A2).
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Figure 13. Cont.
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Figure 13. The XRD analysis of (a) the S04, (b) S07, (c) S13, (d) S19, (e) S21, (f) S14, and (g) S16 samples. The XRD results of
(a,b) show peaks of phyllic alteration. (c,d) show peaks of phyllic–argillic alteration minerals. The XRD in (e) shows argillic
alteration. The peaks in (f,g) indicate that samples S14 and S16 were collected from propylitic alteration. The C/S means
Count per second is y title and 2  is the x title.

6. Accuracy Assessment

To evaluate the performances of the SVM and SAM methods, classification results
were compared with the DP results. In this comparison, the DP results that included the
alteration of phyllite, argillic, propylitic, and iron oxides were used as ground truth. User
accuracy, producer accuracy, overall accuracy, and kappa coefficient [70,71] were calculated
to evaluate the accuracy of the results. The results showed a total accuracy of 84.4 and 67.2%
for SVM and SAM, respectively. The value of the kappa coefficient for SVM was 0.74 and
for SAM it was 0.52. As can be seen from Tables 1 and 2, the classification of the phyllic,
argillic, and propylitic alteration results of the SVM method were more accurate, but the
Fe-oxides alteration result of the SAM classification was more consistent with ground truth.
The best result was in the classification of propylitic alteration in the SVM method.
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Table 1. Confusion matrix for the SVM classification.

Classes Phyllic Argillic Propylitic Fe-Oxides Total User’s Accuracy

Unclassified 20 46 9 30 105
Phyllic 172 23 0 0 195 88.21
Argillic 33 795 6 47 881 90.24

Propylitic 0 3 201 1 205 98.05
Fe-Oxides 0 17 0 104 121 85.95

Total 225 884 216 182 1507

Producer’s accuracy 76.44 89.93 93.06 57.14
Overall accuracy 84.4
Kappa coefficient 0.744

Table 2. Confusion matrix for the SAM classification.

Classes Phyllic Argillic Propylitic Fe-Oxides Total User’s Accuracy

Unclassified 8 102 47 23 180
Phyllic 146 107 0 7 260 56.15
Argillic 43 586 0 15 644 90.99

Propylitic 0 1 128 0 129 99.22
Fe-Oxides 24 108 9 153 294 52.04

Total 221 904 184 198 1507

Producer’s accuracy 66.06 64.82 69.57 77.27
Overall accuracy 67.2
Kappa coefficient 0.52

7. Discussion

Distinguishing hydrothermal alteration zones resulting from hydrothermal processes
in the porphyry systems is a significant stage of mineral exploration [58]. Remote sensing
data have a great capability for mapping hydrothermal alteration zones and are exten-
sively and successfully used for distinguishing hydrothermal alteration minerals and
zones in metallogenic provinces around the world [8,9,72–74]. Several image processing
techniques are broadly applied to remote sensing imagery for classifying, identifying,
and distinguishing spatial distribution of alteration minerals and zones [61,62]. Band
ratios, Principal Component Analysis (PCA), Independent Component Analysis (ICA),
Matched-Filtering (MF), Mixture-Tuned Matched-Filtering (MTMF), Linear Spectral Mixing
(LUS), and Constrained Energy Minimization (CEM) methods have been extensively im-
plemented on ASTER data for mapping alteration zones associated with porphyry copper
deposits [75–77]. However, these techniques are conceptual (i.e., knowledge-driven) algo-
rithms and the reconfiguration formula is used to map the desired criteria. Consequently,
the zones that encounter most of the desired criteria are highlighted as prospective zones.
These algorithms are provisional regarding the type of input remote sensing data and thus
can be biased. By applying these algorithms, expert knowledge is used more than the
proficiency of the statistical methods [78]. The application of ML algorithms to remote
sensing data has high potential to produce accurate maps, especially for mapping argillic,
phyllic, and propylitic zones associated with porphyry copper deposits [78–80].

In hydrothermal alteration mapping, the placement of each pixel in a cluster is essen-
tial. Hence, the image processing methods categorizing only a fraction of the pixels into a
particular class are not very effective and accurate. In view of that, the use of clustering
methods is highly useful in determining the ML of a pixel belonging to a cluster. This study
showed that the fusion of unsupervised and supervised methods in mineral mapping
leads to more accurate results. The methods and algorithms used for mineral mapping
are in line with the reality of the data and provide better results. The DP method used in
this study models alteration zones well because its performance is based on distribution.
Consequently, in specifying training data, it is more consistent with reality than using

194



Minerals 2021, 11, 1235

endmembers or pure training data. More reliable results can be obtained especially when
the detection methods are used to determine the extent of each alteration zone. The train-
ing data achieved from the DP method are suitable input for use in the SVM and SAM
methods. The SVM method with RBF kernel and training data generated from the DP
showed better results than SAM. Furthermore, the DP method can also be used to cluster
all other types of data, including the results of geochemical analysis of stream sediments,
lithogeochemical and geophysical data, etc., which can be applied in the future mineral
exploration in metallogenic provinces.

Geological surveys were performed based on the results obtained from remote sensing
imagery. The results of the fieldwork and laboratory analysis showed good accordance
with the obtained remote sensing results. The presence of illite and muscovite minerals
in the XRD results indicated a phyllic alteration zone in the study area. The occurrence
of kaolinite and montmorionite minerals in the XRD results confirmed the occurrence of
an argillic alteration zone in the study areas. The manifestation of epidote and chlorite
minerals in the XRD results indicated a propylitic alteration. In the XRF results, owing to
the degradation of feldspars in the alteration process, the amounts of K2O, CaO, and Na2O
decreased and the Al2O3, Fe2O3, and SiO2 increased. Increasing the amount of Cu, Au,
Zn, and Mn obtained in the ICP-MS results was related to copper mineralization in some
samples collected from different zones in the study area. Consequently, the remote sensing
approach applied in this study was a valuable tool for porphyry copper exploration in the
metallogenic provinces.

8. Conclusions

Mineral mapping using supervised methods requires appropriate training data to
classify the data accurately and comprehensively. Considering that minerals and rocks
have various compositions, the DP method was used to model phyllic, argillic, propylitic,
and Fe-oxides alteration zones in the Zefreh porphyry copper deposits. The classification
maps with the DP results training data were more accurate. The DP process was used
to specify the training data on ASTER images of the Zefreh porphyry copper deposits,
where alteration zones were detected by spectral mapping methods such as BDR, LSU,
OSP, and SFF. The DP clustering results were realistic, considering the field survey and
laboratory analysis. By performing the SVM and SAM methods on the ASTER data, areas
including phyllic, argillic, propylitic, and iron oxide alterations in the full ASTER scene
were identified. By field survey of these zones, a good coincidence was perceived between
the results obtained from the SVM method and field observations. Alternation zones
similar to those obtained from the SVM results were observed in the field at most of the
surveyed points. With the SAM method, most of the iron oxides and propylitic alterations
were identified, and in some areas, it was less compatible with the alterations observed in
the field than the SVM method. This study reinforced the application of the SVM algorithm
for mapping hydrothermal alteration zones associated with porphyry copper deposits,
which is applicable to ASTER data for potential mapping in various metallogenic provinces
around the world.
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Appendix A

Table A1. ICP-MS analysis results of some significant elements (Au unit: part per billion, other element unit: part per million).

Row Sample_NO X (m) Y (m) Au (ppb) Fe Ag As Cu Mn Mo Pb Sb Zn

1 S01 585,770 3,701,063 <5 5855 0 8.3 18 178 2.1 5 1.08 20
2 S02 586,064 3,700,766 <5 17,302 0 8.9 5 29 5.3 5 1.24 53
3 S03 589,488 3,690,065 70 13,866 0 150.7 15 219 6.8 63 201 39
4 S04 591,489 3,685,219 104 185,397 0 289.2 467 161 20.9 86 1.1 138
5 S05 591,544 3,685,158 <5 21,278 0 9.1 6 67 2.18 6 1.29 16
6 S06 592,703 3,683,705 7 123,344 0 8.9 112 564 4.8 32 1.09 1195
7 S07 592,237 3,683,423 <5 14,281 0 909.2 346 10,111 7.4 124 1.26 3014
8 S08 599,089 3,684,040 <5 8571 0.27 16.2 6 59 4 7 1.02 9
9 S09 605,129 3,675,998 60 81,444 0.35 28.1 198 3464 2.27 32 1.17 60
10 S10 621,599 3,670,515 <5 35,705 0.27 8.8 16 110 3.4 7 1.13 78
11 S11 623,023 3,670,502 <5 47,093 0.22 8.9 63 1664 2.31 37 1.09 234
12 S12 631,737 3,673,323 <5 15,726 0.24 11.2 28 65 2.43 7 1.12 18
13 S13 632,235 3,672,977 <5 27,364 0.28 8.4 40 49 3.2 197 1.02 119
14 S14 632,566 3,672,641 8 77,478 0.36 36.4 12 80 26.9 25 1.06 23
15 S15 615,304 3,656,553 12 37,739 0.22 8.6 8 29 2.16 5 1.01 22
16 S16 615,253 3,656,502 23 20,271 0.25 8.3 40 48 6.6 5 0.97 19
17 S17 615,249 3,656,248 25 42,181 0.27 120.8 10 39 2.27 13 1.09 22
18 S18 616,106 3,656,542 6 17,893 0.28 8.4 24 52 3.8 6 1.02 17
19 S19 616,073 3,656,271 <5 43,412 0.22 8.8 56 115 2.1 7 1.1 37
20 S20 626,512 3,639,545 <5 18,158 0 13 29 36 8.1 9 1.05 6
21 S21 626,422 3,639,297 55 39,771 0 61.7 509 63 9.6 280 1.04 16

Table A2. XRF analysis results of some main oxides (Oxides unit: percent). L.O.I: Loss Of Ignition.

Row Sample_NO SiO2 Al2O3 CaO MgO TiO2 Fe2O3 MnO P2O5 Na2O K2O SrO L.O.I Total

1 S01 56.24 24.19 0.71 0.66 0.75 3.14 <0.1 0.48 <0.1 2.24 <0.1 10.70 99.11
2 S02 49.23 22.81 2.70 1.55 0.85 6.08 0.14 0.46 1.54 3.23 <0.1 10.00 98.60
3 S03 41.85 20.15 8.97 2.94 0.61 6.81 0.28 0.38 0.32 2.23 <0.1 13.50 98.04
4 S04 50.16 23.24 5.66 1.58 0.43 3.43 <0.1 0.32 <0.1 1.94 <0.1 11.30 98.06
5 S05 47.91 23.51 6.90 1.64 0.43 4.01 <0.1 0.34 <0.1 2.81 <0.1 11.49 99.03
6 S06 43.86 22.51 6.31 1.39 0.65 7.35 0.17 0.31 0.62 2.91 <0.1 12.62 98.70
7 S07 53.06 18.94 4.31 3.26 0.71 6.49 0.26 0.42 3.68 3.58 <0.1 4.14 98.85
8 S08 43.38 18.91 8.87 2.86 0.66 6.80 0.16 0.43 1.99 2.22 0.12 12.70 99.08
9 S09 52.32 22.22 5.02 2.14 0.50 2.44 <0.1 0.34 <0.1 3.85 <0.1 9.50 98.33
10 S10 41.42 17.01 8.66 3.44 0.77 9.28 0.33 0.57 2.56 1.85 0.10 12.98 98.98
11 S11 44.85 21.87 4.79 2.21 0.62 7.67 0.15 0.36 0.65 3.27 <0.1 12.34 98.77
12 S12 49.31 19.29 5.46 2.63 0.55 6.14 0.15 0.38 2.33 2.46 <0.1 9.39 98.09
13 S13 48.28 17.41 8.81 3.28 0.69 8.44 0.18 0.52 2.97 3.62 0.19 5.15 99.56
14 S14 44.26 17.00 6.57 3.07 0.75 8.95 0.17 0.37 2.91 3.70 0.10 9.84 97.69
15 S15 56.24 24.19 0.71 0.66 0.75 3.14 <0.1 0.48 <0.1 2.24 <0.1 6.70 95.11
16 S16 49.23 22.81 2.70 1.55 0.85 6.08 0.14 0.46 1.54 3.23 <0.1 10.00 98.60
17 S17 41.85 20.15 8.97 2.94 0.61 6.81 0.28 0.38 0.32 2.23 <0.1 13.50 98.04
18 S18 50.16 23.24 5.66 1.58 0.43 3.43 <0.1 0.32 <0.1 1.94 <0.1 11.30 98.06
19 S19 47.91 23.51 6.90 1.64 0.43 4.01 <0.1 0.34 <0.1 2.81 <0.1 11.49 99.03
20 S20 43.86 22.51 6.31 1.39 0.65 7.35 0.17 0.31 0.62 2.91 <0.1 12.62 98.70
21 S21 53.06 18.94 4.31 3.26 0.71 6.49 0.26 0.42 3.68 3.58 <0.1 4.14 98.85

Table A3. The results of the XRD analysis.

Samples Major Phase Minor Phase Alteration

S04 Quartz, Calcite, Albite Hematite, Muscovite, Illite, Orthoclase Phyllic
S07 Albite, Quartz, Calcite, Orthoclase Hematite, Muscovite, Chlorite Phyllic

S13 Quartz, Calcite, Albite, Orthoclase Hematite, Muscovite, Illite, Kaolinite Phyllic–Argillic

S19 Quartz, Calcite, Albite Hematite, Muscovite, Kaolinite,
Orthoclase Phyllic–Argillic

S21 Quartz, Calcite, Orthoclase, Albite Montmorillonite, Hematite Argillic

S14 Quartz, Calcite, Albite, Orthoclase Chlorite, Hornblende, Hematite Propylitic
S16 Quartz, Albite, Calcite Chlorite, Epidote, Goethite, Hematite Propylitic
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Abstract: A single chromite deposit occurrence is found in the serpentinized harzburgite unit of
the Khoy ophiolite complex in northwest Iran, which is surrounded by dunite envelopes. This area
has mountainous features and extremely rugged topography with difficult access, so prospecting
for chromite deposits by conventional geological mapping is challenging. Therefore, using remote
sensing techniques is very useful and effective, in terms of saving costs and time, to determine the
chromite-bearing zones. This study evaluated the discrimination of chromite-bearing mineralized
zones within the Khoy ophiolite complex by analyzing the capabilities of ASTER satellite data.
Spectral transformation methods such as optimum index factor (OIF), band ratio (BR), spectral angle
mapper (SAM), and principal component analysis (PCA) were applied on the ASTER bands for
lithological mapping. Many chromitite lenses are scattered in this ophiolite, but only a few have been
explored. ASTER bands contain improved spectral characteristics and higher spatial resolution for
detecting serpentinized dunite in ophiolitic complexes. In this study, after the correction of ASTER
data, many conventional techniques were used. A specialized optimum index factor RGB (8, 6, 3)
was developed using ASTER bands to differentiate lithological units. The color composition of band
ratios such as RGB ((4 + 2)/3, (7 + 5)/6, (9 + 7)/8), (4/1, 4/7, 4/5), and (4/3 × 2/3, 3/4, 4/7) produced
the best results. The integration of information extracted from the image processing algorithms
used in this study mapped most of the lithological units of the Khoy ophiolitic complex and new
prospecting targets for chromite exploration were determined. Furthermore, the results were verified
by comprehensive fieldwork and previous studies in the study area. The results of this study indicate
that the integration of information extracted from the image processing algorithms could be a broadly
applicable tool for chromite prospecting and lithological mapping in mountainous and inaccessible
regions such as Iranian ophiolitic zones.

Keywords: ASTER; chromite; Khoy ophiolite; spectral angle mapper (SAM); band ratio; principal
component analysis (PCA)

1. Introduction

The mapping of ophiolite sequences has become a research interest of scientists and
exploration geologists in the world because they host economic minerals such as chromium,
copper, manganese, gold, nickel, barium, lead, and zinc [1–3]. Ophiolitic ultramafic
rocks are the hosts of podiform chromite deposits. Podiform chromite deposits are small
magmatic chromite bodies formed in the lower level of an ophiolite complex. Podiform
chromite mines have produced 57.4% of the world’s total chromite production [4]. Ophiolite
zones in Iran are widespread and are often found in different locations with varying
geologic and tectonic settings. The Khoy ophiolite complex is a part of the Tethyan ophiolite
belt, and it is one of the largest Iranian ophiolite complexes, covering a widespread area in
northwest Iran along the Iran–Turkey border and continuing toward western Turkey [5,6].
Ultramafic rocks, which are often serpentinized, are widespread in 250 km2 of the Khoy
ophiolite [5,6]. The Khoy ophiolite is one of the most promising areas for prospecting
chromite deposits because of extensive outcrops of ultramafic rocks. So far, more than
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20 chromite deposits have been identified in this area. These chromite occurrences have
lenticular, tubular, and vein-like shapes hosted by serpentinized harzburgite. The chromite
deposits in the Khoy ophiolite can be clearly classified into two groups: high-Al chromites
(Cr# = 0.38–0.44) from the eastern ophiolite, and high-Cr chromites (#Cr = 0.54–0.72) from
the western ophiolite [5,6]. Most Iranian ophiolitic zones are located in mountainous and
inaccessible regions. Thus, prospecting for chromite deposits with geological mapping is
challenging and time-consuming.

Remote sensing analysis plays an important role in the exploration of mineral deposits,
as well as in lithological mapping and detection of associated hydrothermal mineraliza-
tion, in Iran. The Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) is an advanced multispectral satellite imaging system that has created new tools
for the mapping of geological structures and detecting certain alteration minerals or assem-
blages [2,3,7].

The ASTER sensor launched the TERRA platform in December 1999. The ASTER plat-
form travels in a near-circular, sun-synchronous orbit with an inclination of approximately
98.2◦, an altitude of 705 km, and a repeat cycle of 16 days, offering relatively improved
spatial, spectral, and temporal resolutions. It is made from three visible and near-infrared
spectral bands (VNIR, between 0.52 and 0.86 μm, with 15-m spatial resolution) and infrared,
reflecting radiation in six short-wavelength infrared spectral bands (SWIR, between 1.6 and
2.43 μm, with 30 m spatial resolution). Sensor characteristics of the ASTER instruments are
shown in Table 1 [8,9].

Table 1. Sensor characteristics of ASTER instruments [8].

Sensor Characteristics
ASTER

VNIR SWIR TIR

Spectral bandswith range
(μm)

Band01 0.52–0.60 Band04 1.6–1.7 Band10 8.125–8.475
Band02 0.63–0.69 Band05 2.45–2.185 Band11 8.475–8.825

Band03N 0.76–0.86 Band06 2.185–2.225 Band12 8.925–9.275
Band03B 0.76–0.86 Band07 2.235–2.285 Band13 10.95–10.95

Backward-looking Band08 2.2295–2.365
Band14 10.95–11.65Band09 2.36–2.43

Spatial resolution (m) 15 30 90
Swathwidth (km) 60 60 60

Due to the great extent of ultramafic rocks, which are the host of chromite deposits
in the Khoy ophiolite, the possibility of discovering new chromite deposits is high and
more exploration and investigation is needed. Given the extremely rugged topography
with difficult access, new exploration methods such as the remote sensing method can be
useful for this purpose. The present study evaluates the discrimination of chromite-bearing
mineralized zones within the Khoy ophiolite complex by analyzing the capabilities of
ASTER satellite data. Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) data can easily separate various rock units, the extent of the ultramafic rocks,
and it can provide detailed geological maps of the area [8,9].

The extraction of spectral information related to ophiolite mapping can be achieved
through image processing techniques such as band ratio (BR) and principal component
analysis (PCA) on ASTER bands [8,10]. The color composition of the band ratio (4/1, 4/5,
4/7) is an effective means of determining the lithological ophiolite complexes [11].

Principle component analysis and band ratio methods are very useful for determining
the serpentinized dunite that is the host of the chromite veins [7,11–14]. Abdeen used
ASTER spectral band ratios RGB color composite of 4/7, 4/1, 2/3, 4/3, and RGB (4/7,
3/4, 2/1) for mapping ophiolitic units, metasediments, volcanoclastic, and granitoids
in the southeastern desert of Egypt [15]. Amer used principal component analysis of
ASTER data to determine the lithologic units of the ophiolite complexes in Pakistan. In the
eastern ophiolites of Egypt, Amer used band ratios of (7 + 9)/8, (5 + 7)/6, (2 + 4)/3,
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and PCA (4,5,2) for the lithological mapping of several units [7]. Hashem and Pournamdari
conducted research using ASTER data on the Abdasht ophiolites in northeastern Iran [12].
Thermal infrared (TIR) bands in the thermal range of spectral absorption can be used for
the detection of silicate formations [16].

2. Description of the Study Area

The Khoy ophiolite covers an area of about 3900 km2 in northwest Iran along the
Iran–Turkey boundary. This ophiolitic complex is limited on the west and north by the Iran–
Turkey border and on the east and south by a southeastern-northeastern fault (Figure 1).
This zone reaches the Urmia Lake platform on the south. Precambrian metamorphic rocks
including meta-volcanic, amphibolite, gneiss, and the Precambrian Kahar formation with
the Rb-Sr age of 663 Ma [17] are the oldest rocks in this area and are located in the eastern
portion of the ophiolite zone. It seems that this ophiolite is the remnant of a branch of the
Neotethyan oceanic basin. It is joined to the northeast ophiolite of Turkey in the Western
Pontides. The only reported age for this ophiolite is 81.2 ± 2.1 to 69.4 ± 1.6 Ma [18].

Figure 1. Geological map of the study area (modified after Khoy 1:250,000 geological map) and
sample locations associated with a sketched map of Iran showing locations of some of the most
important ophiolites in Iran [6,19]. KH, Khoy; MS, Mashhad; RS, Rasht; SB, Sabzevar.

New geochemical and field studies on the ophiolite of Khoy indicate that there are
two ophiolite complexes in this area with different geological ages: (i) the early Jurassic
to early Cretaceous eastern Khoy ophiolite and (ii) the late Cretaceous western Khoy
ophiolite. The second one is a remnant of the Neotethyan oceanic crust [18,19]. The Khoy
ophiolite has all the parts of an ophiolite sequence. It is composed of serpentinized
peridotite, layered and isotropic gabbro, isolated diabasic dike, pillow basalt, massive
sheet flow, and interbedded hyaloclastic breccia and tuffs. Ultramafic rocks have been
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cut by rodengitic dikes. The Khoy ophiolite was unconformably covered by Eocene
rocks, including limestone, marl, and conglomerate. Associated with ophiolitic rocks are
found flysch-type sediments with Paleocene-lower Eocene age that have syn-orogenic
characteristics. After emplacement of the ophiolitic complex at the end of post-lower
Eocene age, acidic to intermediate magmatic activity, as small granitoid intrusive rocks and
andesitic-dacitic volcanic and their sub-volcanic equivalents, occurred [5,6].

The serpentinized harzburgites and related rocks in the western Khoy ophiolite are
intruded on by gabbro–diorite intrusions, which appear as a spot inside and/or around ser-
pentinized harzburgites and cannot be a member of the ophiolite sequence [6]. Ultramafic
rocks of the western Khoy ophiolite host several podiform chromitite bodies. The chromite
deposits have lenticular, tabular, and irregular vein shapes and are emplaced in depleted
mantle harzburgite [5,6]. The recognized outcrops altogether are discordant with their
harzburgite host rocks. Chromite bodies are surrounded by dunitic envelopes with variable
thicknesses. The existence of a dunitic envelope with various thicknesses is a common
characteristic of all chromite ore bodies in this area. Most of them are small and contain
little reserves, and only the Aland, Qeshlag, and Kochek deposits, with several tens of
thousands of reserves, are minable [5,6].

3. ASTER Satellite Data

This paper aims to evaluate the accuracy of ASTER images for targeting the discrimi-
nation of chromite-bearing mineralized zones within the serpentinized harzburgite rocks
in an extensive area of the Khoy ophiolite complex.

The ASTER data in this study were obtained from the Earth and Remote Sensing
Data Analysis Center (ERSDAC) in Japan and consist of a level 1B scene acquired in
2002. The images have been georeferenced to UTM zone 38 North projections with the
WGS-84 datum. Atmospheric correction on the VNIR and SWIR bands was applied by
the log residual method. Finally, correlation coefficient, optimum index factor, principal
component analysis, and band ratio were evaluated for lithological mapping in this study.
Figure 2 shows the serpentinite, chromite, and pillow lava in the study area.

Figure 2. Field photographs show: (A) serpentinized harzburgite; (B) lens-shaped chromite within
serpentinized harzburgite; (C) gabbroic intrusion within the ultramafic rocks; (D) chromite ore body;
(E) chromite ore body within serpentinized harzburgite covered by overburden; (F) basaltic pillow lava.

4. Ophiolite Spectral Properties

The spectral reflectance of a rock depends on the type of mineralogical composition
of the whole rock. The absorption of minerals also depends on the number of electronic
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processes occurring in these rocks [20]. Recent studies on the number of reflections from the
surface of rocks have provided very important aspects of the study of remote sensing data.
Many researchers utilized remote sensing and GIS techniques for lithological mapping as
well as identifying mineral deposits [9,10,21–24].

Sabins concluded that remote sensing techniques can be used for mineral explorations
in four ways: (1) Mapping of faults and structures that deposits can form in that trend;
(2) mapping local fractures that may control ore deposits individually; (3) alteration of
mapping in altered rocks associated with mineralization; and (4) providing geological base
maps to start explorations [10]. In laboratory studies, the reflection spectrum of some of the
rocks of various ophiolite units was studied by Abrams [21]. Figure 3 shows the spectral
measurements of minerals found in harzburgites and gabbros [25].

Figure 3. Spectral plots of (A) the harzburgites; (B) the harzburgites with carbonates; (C) the gabbros [25].

5. Methodology

To delineate the area of chromite mineralized zones within the serpentinized harzbur-
gite, a host of chromitite in the Khoy ophiolite area, the ASTER satellite’s images were
processed. The first stage in the exploration program was finding the harzburgite and
dunite lithologies. Methods such as the different band rationing method and principal com-
ponent analysis techniques, which were tested in scientific publications on the mapping of
ophiolites, were used. In this study, a regional geology map was used to support the remote
sensing studies. Before any processing on ASTER data, some preprocessing—including
topography, atmospheric, radiometric, and geometric corrections—had to be carried out
on their bands.
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The ASTER, with two data series of VNIR and SWIR for the separation of the lithology
units, yielded very good results [15,24]. The selection of different band ratios was based on
the spectral reflectance of rocks and their minerals, and such band ratio images, designed
to display the spectral contrast of specific absorption features, can be used extensively
in geological remote sensing. The band ratio method is frequently used in lithological
mapping and mineral exploration using remote sensing data [7,23,26–31]. Additionally,
the ASTER band ratio is suitable for the exploration and detection of serpentinite dunite and
harzburgite of ophiolite [9,12,13,15]. Iron oxides, clay minerals, sulfates, and carbonates are
some rocks and minerals that can be identified and separated by ASTER data [13]. Abdeen
used ASTER band ratios of 4/7, 4/1, 2/3 × 4/3 and 4/7, 3/4, 2/1 in RGB for mapping
ophiolites, metasediments, volcanoclastic, and granitoids, which are lithologic units of the
Neoproterozoic-Allaqi suture in the southeastern desert of Egypt [15].

Amer used band ratios of (2 + 4)/3, (5 + 7)/6, and (7 + 9)/8 to distinguish between
ophiolite and granite rocks, and was able to map ophiolite rocks, metabasalt, and metagab-
bro units [7]. They concluded that these new ratios are much better to separate the
lithological units of the ophiolites, so in the present study, these new band ratios were
used. PCA is a well-known method for lithological and alteration mapping in metallo-
genic provinces [7,12–14,24,31]. In this technique, the relationship between the spectral
responses of target minerals or rocks and numeric values extracted from the eigenvector
matrix was used to calculate the principal component images. Using this relationship,
one can determine which PCs contain spectral information due to minerals and whether
the digital numbers (DNs) of the pixels containing the target minerals had high (bright)
or low (dark) values. Crosta and Amer noted that combining the analysis of the principal
components that contain the most information and the principal components that contain
the least information can provide much more useful data on the separation of lithology
and mineralized zones [7,13].

5.1. Optimum Index Factor (OIF)

The total VNIR and SWIR bands of the ASTER data included 63 different band
combinations, with bands 3, 6, and 8 having the highest OIF. Using the combination of
different bands caused an increase in the spectral accuracy of the low-correlation bands,
especially the thermal bands. Calculations of OIF are required to obtain the best false-color
composites (higher OIF color combinations contain more information):

OIF =

(
3

∑
i=1

Si

)
/

(
3

∑
i=1

ri

)
(1)

where Si is the standard deviation in each band, and ri is a correlation of bands of two to
two. Often, the false-color combinations containing the most important information are
determined from the variety of colors.

5.2. Spectral Angular Mapper Algorithm

The spectral angle mapping algorithm assumes that a pixel of remote sensing images
represents certain ground cover material, which can be uniquely assigned to only one
ground cover class. The SAM algorithm is measured based on the degree of similarity
between the two spectra. A spectral similarity can include any number of measured spectra
(Figure 4). The spectral similarity between two spectra is measured by calculating the angle
between the two spectra, treating them as vectors in a space with dimensionality equal to
the number of bands [32].
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Figure 4. Representation of reference angle [33].

6. Remote Sensing in the Study Area

Optimum index factor (OIF), principal component analysis (PCA), and band ratio (BR)
techniques are the spectral angle mapper techniques that were evaluated for lithological
mapping in this study [34,35]. The color composition of RGB (8, 6, 3) showed that the
spectral accuracy of all bands increased due to the 15 m spectral accuracy of the VNIR band.
Figure 5 shows the color composite that distinguishes the serpentine dunites (light green),
colored mélange (pink), vegetation (red), and carbonate rocks (yellow).

Figure 5. The color composition of RGB (8, 6, 3) from ASTER data after necessary corrections.

The satellite images were projected in the UTM Zone N38 and WGS 1984 ellipsoid
(oblate spheroid) datum. For mapping the geology units, we can classify similar pixels
using the optimum index factor (OIF), band ratio (BR), etc., and obtain the initial map of
the lithology units. By using all available data in the study area, a map of lithological units
was obtained (Figure 6).

207



Minerals 2021, 11, 960

Figure 6. Classified map by using unsupervised classification method from pure pixels.

6.1. Band Ratio

The band ratio method is a suitable technique for lithological mapping, especially
to discriminate rock units in ophiolite complexes [7,12,28,30]. For the discrimination of
harzburgite rocks (contains more serpentine) and chromite bearing mineralized zones in
the study area, all band ratios and their color composites were used, as in Sultan et al.
(1986) (5/7, 5/1, 5/4 × 4/3), Sabins (1999) (3/5, 3/1, 5/7), and Gad and Kusky (2007) ((5/3,
5/1, 7/5) and (7/5, 5/4, 3/1)) [10,22,27]. This technique has been used successfully in
lithological mappings for other ophiolite areas [7,9,23,26,27,29,30,36]. In the study area,
based on the spectral information obtained from the ASTER bands, the color composition
of the band ratios (4 + 2)/3, (7 + 5)/6, (7 + 9)/8) in Figure 7 provides the best results in
the separation of ophiolite complex lithology units. In this color combination, ultrabasic
rocks are pink, and the more serpentinized rocks are reddish. In Khoy ophiolites, there is
no specific band ratio for the separation of all units, and several band ratios should be used
to distinguish between different lithological units.

An interesting point shown in this figure is the separation of ultrabasic rocks based
on the severity of serpentinization. Near the serpentine sections, the serpentinization
rate increased sharply and is more reddish. The blue sections are ultrabasic with low
serpentinization that is seen far from chromite lenses. The difference between the two
types of serpentine spectra is shown in Figure 8. Thus, the severity of serpentinization of
ultrabasic rocks can also be considered for the exploration of chromite lenses.
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Figure 7. Harzburgite (with slight serpentinization) and highly serpentinized harzburgites (serpenti-
nite) separation.

Figure 8. Spectral plots of two types of serpentinization intensity: (A) high serpentinization; (B) low
serpentinization.

Therefore, the spectral reflectance in bands two and one is different. As a result,
a band ratio of 2/1 can be used to differentiate ultrabasics with different serpentinization
intensities. The other band ratio that was considered in this study and can be used to
distinguish potential chromite areas is RGB (4/5, 4/7, 4/1), an ultrabasic area characterized
by an olive color. Dioritic gabbro is mostly indigo blue, which in the vicinity of ultrabasics
is yellowish. Pixels seen at the intersection of these two colors are the best place for points
of chromite lenses. All the chromite outcrops in the study area comply with this rule and
can be optimized by creating information layers in the GIS software and prioritizing these
areas. In this ratio, the conglomerate is mainly purple and is exposed in the southwestern
part of the region. In the northwest part of the study area, a gabbro unit is yellow, which is
distinguished according to the spectrum obtained from micro gabbro diorite and gabbro-
diorite units (Figure 9).
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Figure 9. ASTER RGB images of band ratios (4/5, 4/7/4/1) show gabbro-diorite in yellow, serpen-
tinized ultrabasic in purple.

6.2. PCA Analysis

Principal component analysis (PCA) was used to summarize the information in a data
set described by multiple variables. Using this technique makes it possible to separate
pixels that have good spectral information [13]. In this method, components that have
less than 1% of information are deleted due to the high noise in the data. In this study,
PCA analysis was applied to all nine bands, and the PCs (1, 2, 3) which included the
most information were selected for separation. After PCA calculation, it was found that
PC1, PC2, and PC3 had the greatest variances in the data. The eigenvalues for the main
components of all ASTER bands are provided in Figure 10.

Figure 10. The PCA eigenvalue plot for the VNIR+ SWIR bands of ASTER data.

As a result, the PCA analysis of the VNIR and SWIR bands was used to determine
the lithology units of the Khoy ophiolite complexes due to more spectral information.
The results showed that PC1 had the highest positive variance. Thus, the PC1 component
can provide more information about the lithology and mineralogy of rock units. The PC2
component had the most information from bands three and one, and its bright pixels
indicated quartzites. Principal component analysis was also performed on SWIR bands that
had information that was not VNIR + SWIR. In the PC4 component, iron and magnesium
silicates were distinguished as light pixels. Iron and magnesium silicates such as olivine,
iron, and magnesium hydrated phyllosilicates, such as serpentine, have low reflectivity in
the visible region and high reflectivity in the NIR [30]. The electron processes cause high
absorption in the VNIR, since cations such as Fe2+ and Fe3+, which are often replaced by
Mn, Cr, and Ni, are more frequent in the crystalline structure of minerals [20]. PC5 is also
very suitable for vegetation mapping because vegetation has a low reflection in band two
and a high reflection in band three. In addition, the results showed that PC6 to PC9 was
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very noisy and lacked proper information. Finally, the color composites of the analysis of
PC1, PC2, and PC3 yielded excellent results for the separation of rock units (Figures 11–15).

Figure 11. The RGB image of PC7, PC5, and PC4 of PCA bands in the study area.

Figure 12. The RGB image of PC1, PC2, and PC3 of PCA bands in the study area: Ub-sr—
serpentinized ultrabasic; mdg—microdiorite gabbro; dg—diorite gabbro; Cm—conglomerate; Kvb—
basalt pillow lava; csl—shale and conglomerate.
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Figure 13. The RGB image of band ratios (4/7), (3/4), (2/3× 4/3) in the study area. Chromite
outcrops and veins are shown on the map.

Figure 14. The RGB image of band ratios (2 + 4)/3, (5 + 7)/6, (7 + 9)/8 in the study area. Chromite
outcrops and veins are shown on the map.
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Figure 15. SATER RGB image of band ratios (4/1), (4/5), (4/7) in the study area: Ub-sr—serpentinized
ultrabasic; mdg—microdiorite gabbro; dg—diorite gabbro; Cm—conglomerate; Kvb—basalt pillow
lava; csl—shale and conglomerate.

6.3. Spectral Angle Mapper

The spectral angle mapper was one of the most useful tools used in this research study.
The spectral library, or the spectrum of one of the sufficiently widespread outcrops in the
region, was used for prospecting similar spectral pixels. In this method, all pixels were
processed and the spectrum of pixels similar to chromite spectra or any other mineral in
the region was considered as the objective function.

In the remote sensing studies of Khoy ophiolites there are two major problems that
may affect the conclusions of these studies. All the outcrops in this region are very limited,
and the chromite masses are in the halo of the dunite, which themselves are enclosed within
the harzburgite. Due to the tectonic conditions of this region and the great fractures within
it, the dunites and harzburgite are both serpentinized and their separation is practically
impossible. In further remote sensing studies, pure spectral pixels were obtained first,
and then from five existing anomalies, which were already being mined, the chromite
spectra was selected. The result of these procedures is presented in Figures 16–19.

Figure 16. Reflectance spectra of harzburgite exposed at the Khoy ophiolite zone: spectra resampled
to ASTER VNIR–SWIR band passes.
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Figure 17. Chromitite-bearing pixels obtained from Anomaly B spectra and SAM in ASTER data.

Figure 18. Chromitite-bearing pixels obtained from Anomaly D spectra and SAM in ASTER data.
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Figure 19. Chromitite-bearing pixels obtained from Anomaly C spectra and SAM in ASTER data.

Finally, with the integration of the obtained data such as the fault map, the separated
lithologies, and suitable points from the remote sensing studies and chromite outcrop maps,
the most suitable geological traverse lines to continue prospecting in the Khoy ophiolite
complex were obtained (Figure 20).

Figure 20. The most suitable geological traverse lines to continue prospecting in the Khoy ophiolite
complex.
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This leads to the suggestion that geophysical and geochemical studies be conducted
in these paths, which pass through some outcrops, for exploration of the greatest number
of chromite bodies. As a result, by using remote sensing studies, chromite exploration in
ophiolites can be done economically. The prospecting paths, due to the topography of the
Khoy ophiolite, are also designed to explore the greatest possible number of chromite lenses.
In this way, with the integration of geophysical methods such as gravity and magnetic
measurements in the designed paths, desired results can be economically achieved.

7. Conclusions

In this research, VNIR and SWIR bands of ASTER data were used to distinguish
lithological units and delineate high-potential chromite mineralized zones in the Khoy
ophiolites complex. Harzburgite and dunite are the main units of chromite lens hosts.
During this study, using image processing techniques such as the band ratio method,
principal component analysis, and the spectral angle mapper algorithm, a large area of
these ophiolites was investigated. Consequently, integration of the results derived from
the image processing algorithms and other data sets, such as geological maps, can produce
accurate information for the reconnaissance stages of chromite exploration at both regional
and district scales. This research demonstrates the remote sensing capabilities for the
identification of dunite/serpentine or peridotite as host rocks for chromite mineralization in
the transition zone of Iranian ophiolitic sequences and lithological mapping in mountainous
and inaccessible regions.
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Abstract: Remote sensing can be fruitfully used in the characterization of metals within stockpiles
and tailings, produced from mining activities. Satellite information, in the form of band ratio, can act
as an auxiliary variable, with a certain correlation with the ground primary data. In the presence of
this auxiliary variable, modeled with nested structures, the spatial components without correlation
can be filtered out, so that the useful correlation with ground data grows. This paper investigates
the possibility to substitute in a co-kriging system, the whole band ratio information, with only the
correlated components. The method has been applied over a bauxite residues case study and presents
three estimation alternatives: ordinary kriging, co-kriging, component co-kriging. Results have
shown how using the most correlated component reduces the estimation variance and improves the
estimation results. In general terms, when a good correlation with ground samples exists, co-kriging
of the satellite band-ratio Component improves the reconstruction of mineral grade distribution,
thus affecting the selectivity. On the other hand, the use of the components approach exalts the
distance variability.

Keywords: resources characterization; bauxite residues; band ratio; kriging of component; min-
eral grade

1. Introduction

1.1. Recovery of Minerals from Stockpiles and Tailings

Raw material and metal extractions have been conducted since pre-historic times.
Mining has been present everywhere in Europe, although nowadays the majority of sites
are closed. This does not mean that resources have been completely depleted. Ancient
mining could not benefit from the most modern extraction and processing techniques and
has left significant amounts of mining residue (including tailings and stockpiles) currently
present in the territory, in the forms of semi-artificial hills, lakes, and ponds. Some of them
were completely stable and never reacted with the environment, while others (especially
those coming from metal mining) significantly modified the environment where they were
stocked. According to “Mining and Metal in a Sustainable World 2050” [1], a major gap
exists in effective retreatment technology (reuse, resize, or remove) of mining residues
to meet the sustainability objectives of United Nations Development Program (UNDP)
in 2030 [2].

Moreover, the depletion of the in-situ reserves, the increasing need of using lower
grade materials, and advances in recovery and processing technologies are the main reasons
why mining wastes are considered as recoverable resources. Moreover, the environmental
aspects have caused a strong push for more effective management of mining residuals in
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many mining sites [3,4]. As a first step, the raw material concentrations in tailings must be
quantified and classified and a reliable expected revenue model should be developed to
assess the feasibility of production, by giving particular attention to the presence of critical
raw materials (CRMs) for the European Union (EU), with high impact on the economy and,
at the same time, high risk of supply shortage [5,6].

A quantitative evaluation of the available resources in mining residues requires an
exhaustive sampling that must be justified, so that a preliminary characterization phase is
necessary for deciding if it is justified, proceeding with a full resource evaluation. Earth
observation (EO) data can be useful for the abovementioned preliminary mapping and
quantification of these mining residues, usually abandoned, in harsh environment, and
with limited possibilities for full and fast sampling campaigns [7]. The main potentials of
EO include the large number of easy to access data over large areas and their continuous
acquisition over time, which may allow continuous land monitoring.

1.2. Exploitation of Remote Sensing Information

The most popular applications of satellite imagery refer to mapping problems, where
the spectral content of images is used to recognize and characterize the observed surface,
for instance, in terms of land cover or physical and chemical properties, among others.
For these purposes, satellite images often require some kinds of geometrical and spectral
calibration [8]. Before calibration, indeed, images are affected by artefacts, which depend
on the sensor characteristics and the conditions at the time of acquisition, and that is to be
removed to enhance the information considered useful. The general problem for mineral
exploration and reserve characterization is the spatial distribution of the target variable,
because, in most practical cases, in situ information is limited and sparse. Satellite images,
instead, can provide dense additional information over the full area of interest, which can
be used, especially when correlation is found with the in situ data.

Because of the fast and accessible information, many EO analyses have been used in
mining areas and abandoned tailings, mainly for mapping pollution and environmental
variables, beginning many years ago [9–13]. In the presented case studies, authors used
remote sensing data and tools (such as imaging spectrometer data, and/or hyperspectral
imagery combined with in situ data) to improve map accuracy of environmental pollutants
affected by mining activities and their abandoned residue. In many applications, to improve
map accuracy and to validate results, geostatistical approaches were used with integration
of remote sensing [14–16]. The base of the geostatistical theory is the spatial correlation
among georeferenced data, correlations exploitable for a correct and optimal numerical
modeling of the regionalized variable (RV). Besides mapping the RV with high accuracy, as
an important advantage, using geostatistical approaches provides an extra tool to improve
the quality of the estimation, measured by the estimation variance maps [17]. In addition,
multivariate geostatistical approaches provide an extra possibility to use more than one RV
and model the correlations between RVs within so called co-regionalization modeling [18].
This analysis is able to not only verify some global results as the statistical correlations,
but also to identify possible correlations between spatial components of the main variable
with extra variables (the so-called secondary or auxiliary variables), including spatial
anisotropies. Therefore, independent of the variables at hand (temperature, concentration,
discovery probability, etc.) and of the spatial distribution model (estimation, simulation),
geostatistics allow tackling the central problem: finding meaningful correlations and spatial
modeling the unknown surface distribution of the interest variable, by extra information
(which can be satellite data for example) [19,20].

As mentioned above, in the mining sector, while direct information is expensive, a
good opportunity can be to exploit indirect information, much denser, but with good
correlation with the direct variable. This is the case of the low-cost data provided by
satellite images. There are many examples of mineral characterizations, where, by knowing
the spectral properties of a surface feature, simple mathematical operations among spectral
bands (called band ratio) have contributed to localize outcrops and surface deposits [21–26].
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To detect a specific feature or mineral, usually at least two spectral bands are necessary, one
band with higher reflectance features of the given material and another one with strong
absorption features for the same material [23]. There are many studies on spectral analysis
of minerals based on different satellite images and specific band ratios for different minerals
in a target area mainly in geological mapping [27,28]. Iron oxides are among the most
studied materials using band ratio techniques [25], because of their selective absorption of
light in the visible and near-infrared range caused by transitions in the electron shell [29].
For example, for detection and mapping of an iron ore formation, ferric (Fe3+) and ferrous
(Fe2+) iron oxide specific band ratios are suggested, and thanks to their correlation with
iron samples, some iron ore grades maps can be obtained [26]. Hence, the band ratio, as an
appropriate index, can be considered as additional information while mapping a specific
mineral of a geological feature on the surface.

This paper proposes to map the iron concentration as the strategic metal within
a bauxite residue in Greece. In the first step, only direct samples from the site were
used (performing ordinary kriging—OK estimation). Then, the band ratio identified for
iron detection was used as additional information to map the iron variability within the
bauxite residues (performing co-kriging—CK estimation). To improve the map accuracies,
a new method (component co-kriging—CCK estimation) was proposed to re-construct
the co-regionalization model between the sample data and the band ratio information, by
exploiting the possibility of extracting a specific component from the satellite data and
using it in the co-regionalization models. Finally, all three models and their results were
compared to check the improvement given by the proposed model in iron estimation maps.

2. Materials and Methods

2.1. Co-Regionalization Model and Application: Current Practice

The most classical estimation method to map the spatial variability of a RV variable
is OK, which uses available samples to predict in “not-available” points [17]. To add
an additional variable in the kriging system, and moving into multivariate geostatistics,
which in many cases improves the target variable prediction, there is a need of, at least,
a second variable, with the spatial correlation among them [18]. This property can be
calculated within the cross-covariance. Given two stationary random functions, Z1(x),
Z2(x), with the means of m1 and m2, the spatial cross-covariance C12(h) �= C21(h), are
defined in Equation (1):{

C12(h) = E[Z1(x)× Z2(x + h)]− m1 × m2
C21(h) = E[Z2(x)× Z1(x + h)]− m1 × m2

(1)

The secondary variable can be known in all points of the domain and displaced in a
regular grid. If remote sensing data are used as a secondary variable, the space-time concept
should be considered because ground samples are taken in a certain time, while satellite
information is repeated over time; this produces photographs of “different” stockpiles.

In this study, an iso-time framework was adopted. An image of the stockpile at the
time zero (t0) was considered, as well as all the ground samples referred to the same surface
remote-sensed. Therefore, the 3D reconstruction of the distribution of concentrations is
relevant to a constant time.

The objective was to map the distribution of the target variable (iron concentration as
the strategic metal), using Sentinel-2 satellite data as the secondary variable. Sentinel-2 is a
European satellite mission for Earth observation, which is part of the Copernicus program.
It provides global coverage of multispectral imagery, composed by 13 bands in the spectral
range between the visible and the short-wave infrared, with a revisiting time of five days
at the equator [30]. It was selected for the present study because of the availability of the
images at the date of sampling, and the good spatial resolution (pixel size from 10 to 60 m,
depending on the band). Moreover, the spectral bands available in Sentinel-2 data allow
the computation of different band ratios useful for mineral exploration. For iron deposits,
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in particular, different band ratios were proposed in the literature for other multispectral
sensors [21–26], which can also apply to Sentinel-2 images [31].

To map the iron variability, the classical steps are:

• Using one variable: iron samples, spatial variability analysis of target variable (sample
variogram and its model), and finally using the OK estimation method;

• Adding extra information (as an example band ratio of iron as the secondary variable):
spatial variability analysis of target variable (sample variogram and its model) and
the secondary variable, the cross-correlation analysis between the target variable and
the secondary variable, and finally using the CK estimation method.

• At the end, to compare the map accuracies results, cross-validation should be per-
formed to check if adding information can improve the results.

The first approach for mapping the mineral concentration is using just the in situ
samples, which in this case are represented by the mineral concentrations from the mining
residues sampling. The ordinary kriging (OK) method can be used and the estimated
values in all nodes of the grid can be found by using Equation (2):

AOK(xi) = ∑
α

λOK
α × A(xα) (2)

where: A(xα) is the variable known in the points xa (mineral grade from samples); λα
OK are

the weights calculated with ordinary kriging method; AOK(xi) is the estimate of the main
variable in the points xi (grid nodes).

Regarding the OK model definition, its spatial variability is object of the variogram
analysis. The standard model of a stationary random function with nested structures is
presented in Equation (3):

γA(h) = anug + ∑
u

au × γu(h) (3)

where: γA(h) is the variogram model of the main variable (mineral concentration from
sampling); anug is the nugget effect; γu(h) are the models of different nested structures
(spatial components); au are the sills of each model component.

The second approach attempts to improve the estimation of the main variable, using
the secondary (auxiliary) variable. The prerequisite is to verify if a correlation exists
between two variables. The value of the correlation coefficient is defined by Equation (4):

ρAB =
σAB√

σ2
A × σ2

B

(4)

where: ρAB is the correlation coefficient between the primary (mineral’s grade from
sampling) and secondary variable; σAB is the covariance between the primary and sec-
ondary variable; σ2

A is the variance of the primary variable; σ2
B is the variance of the

secondary variable.
The CK variance allows theoretically verifying the effect of the secondary variable

on reducing the estimation smoothing. The estimates by CK can be found by applying
Equation (5):

ACK(xi0) = ∑
α

λCK
α × A(xα) + ∑

i
νCK

i × B(xi) (5)

where: B(xi) is the auxiliary variable known in the points xi (satellite grid nodes); λα
CK and

νCK
i are the weights for the primary and secondary variables calculated by CK; ACK(xi0) is

the estimate of the main (primary) variable in the points xio one of the grid nodes.
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Moreover, in the case of CK, often a linear co-regionalization model is expected
(Equation (6)): ⎧⎪⎪⎪⎨⎪⎪⎪⎩

γA(h) = anug + ∑
u

au × γu(h)

γB(h) = bnug + ∑
u

bu × γu(h)

γAB(h) = cnug + ∑
u

cu × γu(h)
(6)

where: γA(h), γB(h) are the variogram models of the first and secondary variables; γAB(h)
is cross-variogram model between the primary and the secondary variable; γu (h) is the
structural components of variogram models; bnug is the nugget effect for the secondary
variable; bu are the sills of each component of the variogram model for the secondary
variable; cnug, cu are the sills of each component for the cross-variogram model.

The comparison of estimations obtained by the OK and CK methods is performed by
the following analyses [19]:

• The cross-validation;
• The estimation maps of minerals;
• The maps of estimation variance.

Usually, when the secondary variables are dense, namely available at more points
than the main variable, and sufficiently correlated with the main variable, CK is typically
of advantage [18].

2.2. New Perspective: Use of Spatial Components

In the case of multivariate geostatistics and in presence of a linear co-regionalization
model, the selected variables (A as the target variable and B as the secondary variable) can
be considered as a linear combination of independent random variables (factors) Ynug, Yi
monostructure, called scale components, in addition to the mean (Equation (7)):

A = mA +
√anugYA

nug + ∑
u

√
au × YA

u

B = mB +
√

bnugYB
nug + ∑

u

√
bu × YB

u
(7)

where mA, mB are the means of the variables A and B; YA
nug, YA

u , YB
nug, YB

u are the structural
components of the main and auxiliary variables, each of them being a {0,1} standard
variable with a specific variogram structure.

The correlation coefficient between the iso-structure components of the main and
auxiliary variable are presented in Equation (8):

ρAB
nug = E

[
YA

nugYB
nug

]
ρAB

u = E
[
YA

u YB
u
] (8)

Given the independence of factors, the total variance of the variables is just the sum of
the sills of each component. Variances and covariances are presented in Equation (9):⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ2
A = anug + ∑

u
au

σ2
B = bnug + ∑

u
bu

σAB =
√

anug × bnugρAB
nug + ∑

u

√
au · buρAB

u = cnug + ∑
u

cu

(9)

The correlation coefficient between the main (primary) and the secondary variable is
presented in Equation (10):

ρAB =
σAB√

σ2
A × σ2

B

=
cnug + ∑

u
cu√(

anug + ∑
u

au

)
×

(
bnug + ∑

u
bu

) (10)
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In the case of having several scale components, there could be an advantage of using as
auxiliary variable just one component instead of the whole initial variable. The justification
for that derives by the observation that the correlation between the main and the auxiliary
variables exists only at one scale (Equation (11)):

ρAB
uc =

cuc√
auc × buc

ρAB
u,u′ �=u = 0 (11)

Such observation derives by the co-regionalization model, showing only one structure
in the cross variogram, or the independence of any other structure common to the main
and auxiliary variables (more generally, this approach allows also the filtering the effect of
a noise [18]).

In this paper, the methodology is performed to check the improvements of the iron
concentration maps, due to the increase of correlation when the auxiliary variable is just
the correlated component, as shown in the following relationships (Equation (12)):

σAYuc
= E[AYuc ] = cov{AB} = σAB

buc < bnug + ∑
u

bu → σ2
Yuc

< σ2
B

ρAYuc
=

σAYuc√
σ2

A×σ2
Yuc

> σAB√
σ2

A×σ2
B

= ρAB

(12)

In terms of variograms (Equation (13)):{
γB > γYuc

γAB = γAYuc

(13)

In terms of CK, using one of the components, Yuc , the estimation results are different
with respect to using the original auxiliary variable B, since the new secondary variable
and the weights differ from the original one. In fact, the component co-kriging system
(CCK) is similar to the original CK, but with different coefficient matrix, since the submatrix
of variogram of secondary variable changes (Equation (14)):⎡⎢⎢⎣

γAA γAB 1 0
γAB γBB 0 1

1 0 0 0
0 1 0 0

⎤⎥⎥⎦ �=

⎡⎢⎢⎣
γAA γAYuc

1 0
γAYuc

γYuc Yuc
0 1

1 0 0 0
0 1 0 0

⎤⎥⎥⎦
ACCK(xi) = ∑

a
λCCK

a × A(xa) + ∑
i

νCCK
i × Yuc(xi)

(14)

where: Yuc(xi) is the structural component of the auxiliary variable known in the points
xi (satellite grid nodes); λα

CKY and νi
CCK are the weights for the primary and auxiliary

variables calculated by CCK; ACCK(xi) is the estimation of the main (primary) variable in
the points xi (grid nodes).

Note that YB(xi) is the true component that we do not know, so that we can implement
the CCK if we estimate it by factorial kriging (FK) which respects the actual data [18] in
Equation (15):

YFK
u (xi) = ∑

j
λFK

j B(xj)

B = mFK
B +

√
bnugYFK

nug(xi) + ∑
u

√
buYFK

u (xj)
(15)

The second part of Equation (15) can be checked to control the estimated value of
components YFK(xi). We can consider that, in case of an image band, the information is
dense and the estimation quality is satisfying, so that it looks justified to use the estimated
value of components in Equation (15).

The estimation variances σ2CK and σ2CCK allow comparing the precision of the estima-
tions. The two estimation variances are presented in Equation (16):
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⎧⎨⎩
σe

2(ACK(xi0) → A(xi0)) = ∑
α

λCK
α × γA

(
hα i0

)
+ μCK

A + ∑
i

νCK
i × γAY

(
hij0

)
+ μCK

B

σe
2(ACCK(xi0) → A(xi0)) = ∑

α
λCCK

α × γA
(
hα i0

)
+ μCCK

A + ∑
i

νCCK
i × γAY

(
hij0

)
+ μCCK

B
(16)

Moreover, to check the adopted variogram models and to check if CCK could improve
the estimation results, cross-validation can be performed on data. The principle of cross-
validation is to remove the target variable at each sample point xα and then predict by
kriging with the proposed model. Therefore, since the true values are available, it is
possible to compute the kriging error [19].

2.3. Case Study: The Bauxite Residuals of Greece

Bauxite residues (BR) remained from Bayer processing of bauxite (also commonly
known as “red mud”) represents important strategic wastes from mining and processing
activities and they were inserted in 2020 in the list of critical raw materials for the European
Union [5]. The significant amount of raw materials within these types of residues can be
used as a new source of materials, specifically critical metals and rare earth elements [32].
Due to the analysis done on the BR, it has potential as a secondary resource for REE
extraction [33] and TiO2, V2O5, Al2O3, Fe2O3, CaO, Na2O, SiO2 resources.

The case study used in this research is the bauxite residue from the alumina refinery
of Mytilineos S.A. in Greece, located on the Gulf of Corinth, 136 km from Athens (Figure 1).
The exact location is at latitude 38.354177◦ and longitude 22.704671◦, CRS WGS84, and
its dimension is around 700 m × 600 m. Since 2006, four filter presses have been used
to dewater the BR, and since 2012, all BR produced has been filter-pressed and stored
as a “dry” (water content < 26%) by-product in an appropriate industrial landfill [31].
Producing the dry BR is currently known as the best technique for BR materials piling,
because a lower volume of deposits is stocked, with a subsequent decrease of the risk of
dam failures.

Figure 1. Location of bauxite residuals (left) and a high-resolution image of daily piling materi-
als (right).

The samples used were collected from daily accumulated materials (daily data) in-
cluding the tonnage of materials with their mean concentration value, and the area in
which they were piled within the BR areas from June to the end of July. The samples
exact locations (coordinates) were assigned where trucks discharged their daily load of
materials. Figure 2 shows the daily data during two months (June and July 2019). Therefore,
since, during the two months, materials were not over-accumulating, the Sentinel 2 image
selected at the end of July (date: 30 July 2019) is representative of materials during June
and July (accumulated in the area from the first of June until the end of July).
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Figure 2. Samples location at the end of July 2019 (a) and Sentinel-2 true color composite image
(RGB = 4,3,2); date: 30 July, 2019; the red line indicates the BR area (b).

The target RV selected is iron concentration Fe2O3 (%) as a strategic metal from samples
obtained from BR of Greece. The daily samples were analyzed through X-ray fluorescence
analysis-XRF, to obtain the iron concentration (Fe2O3%) information at alumina refinery
of Mytilineos S.A. To select the secondary variable, a preliminary test has been done to
choose the most relevant band ratio (with highest correlation coefficient) for iron mapping
(Table 1). Since the Sentinel-2 data are used in this study, the most common iron band
ratios for identifying iron [30] have been applied. It is worthwhile to note that these ratios
involve only bands at the highest spatial resolution (pixel size 10 m).

Table 1. Correlation coefficients between iron grades and band ratios of Sentinel-2 [30] at the sampling
points. The highest correlation is in bold.

Band Ratios
Sentinel-2A Bands with

Their Central Wavelength
Correlation Coefficient with Iron

Concentration (ρ)

All iron oxides 4 (664.9 nm)
2 (492.1 nm)

−0.130

Ferrous iron oxides 4 (664.9 nm)
11 (1613.7 nm)

−0.349

Ferric Iron, Fe3+ 4 (664.9 nm)
3 (559.0 nm)

−0.150

Ferrous Iron, Fe2+ 12 (2202.4 nm)
8 (832.8 nm)

+ 3 (559.0 nm)
4 (664.9 nm)

0.194

Ferrous silicates 12 (2202.4 nm)
11 (1613.7 nm)

−0.125

Ferric oxides 11 (1613.7 nm)
8 (832.8 nm)

0.223

From the presented correlation coefficients between iron concentration and band-
ratios (Table 1), the one with the highest correlation (ferrous iron oxides: 4/11) is chosen as
the secondary variable to map the iron concentration variability within the BR.

The histogram of iron concentration samples and the correlation between the selected
band ratios (ferrous iron oxides (4/11) band ratio) is exposed in Figure 3.

Band data are extracted from the Sentinel-2 image (see Figure 2) only inside the
boundaries of the BR area. The base map of the extracted band ratio values and the
histogram of data are shown in Figure 4.

Considering the iron concentration as the target variable and the ferrous iron oxides
band ratio as the secondary variable, it is possible, first, to map the iron variability in BR
using only iron samples. Secondly, it is possible to check if map accuracies can be improved
by adding the band ratio variable. Finally, by decomposition of the band ratio variable, in
the case of higher correlation, using one component can improve the iron estimation maps.
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Figure 3. Histogram of Fe2O3 (%) of samples (left) and correlation with band ratio ferrous iron oxides: Band4/
Band11 (right).

Figure 4. Histogram of ferrous iron oxides band ratio (left) and its base map (right).

3. Results

In the first step, using only iron samples, to perform OK, the sample variogram and
variogram model is shown in Figure 5, including two spherical structures. The red bars
below the variogram show the frequency of sample pairs used in variogram calculations.
The variogram model parameters are presented in Table 2.

Table 2. Structures and parameters of variogram models fitted on Fe2O3 (%) samples variogram.

Fe2O3 (%) Variogram Models

Nugget Effect
Spherical 1 Spherical 2

Range (m) Sill Range (m) Sill

2.3 70 2.9 180 3.4

Using the variogram model of Figure 5, it is possible to perform OK. Maps of Fe2O3
(%) concentration variability and estimation standard deviation are presented in Figure 6.

To improve the iron estimation results, in the second step, the presented secondary
variable (the ferrous iron oxides (4/11) band ratio) can be added to map the iron concentra-
tion variability.
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Figure 5. Sample variogram and variogram model for iron concentration obtained by samples Fe2O3

(%). h(m) is the distance and γ(h) is the sample variogram.

Figure 6. Fe2O3 (%) estimated map (OK) (left) and the estimation variance map (right) by performing OK.

To perform co-kriging, the sample variograms and variogram models considering
both variables (iron as main variable and ferrous iron oxides band ratio as the secondary
variable) and cross variogram are calculated and shown in Figure 7. The fitted model for
iron concentration is equal to the model used in OK. Using the same model makes the
comparisons more logical between the OK and CK. The structure and model details are
presented in Table 3.

Figure 7. Sample variograms and variogram models for iron concentration obtained by samples Fe2O3 (%) (a), ferrous iron
oxides band ratio (b) and cross-variogram (c). h(m) is the distance and γ(h) is the sample variogram.
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Table 3. Structures and parameters of variogram models fitted on Fe2O3 (%) samples, ferrous iron
oxides band ratio, and cross-variogram.

Direct variable—Fe2O3 (%)—Variogram Models

Nugget Effect
Spherical 1 Spherical 2

Range (m) Sill Range (m) Sill

2.3 70 2.9 180 3.4

Auxiliary Variable—Band Ratio—Variogram Models

Nugget Effect
Spherical 1 Spherical 2

Range (m) Sill Range (m) Sill

0.0027 70 0.0063 180 0.011

Cross-Variogram Models

Nugget Effect
Spherical 1 Spherical 2

Range (m) Sill Range (m) Sill

0 70 −0.116 180 0.0001

Using the presented variogram models of Figure 7, it is possible to perform CK. Maps
of Fe2O3 (%) concentration variability and estimation variance are presented in Figure 8.

Figure 8. Fe2O3 (%) estimated map (CK) (left) and the estimation variance map (right) by performing co-kriging between
samples and ferrous iron oxide band ratio.

Finally, the new approach was performed by decomposition of the secondary variable
(the ferrous iron oxide band ratio).

In the first step, to choose the appropriate component, the correlation coefficients are
calculated, using the variogram models’ structures, and due to Equation (9):

γiron = 2.3 + 2.9 × γ(R = 70) + 3.4 × γ(R = 180)
γ f errous.iron.band.ratio = 0.0027 + 0.0063 × γ(R = 70) + 0.011 × γ(R = 180)
γcross.variogram = −0.116 × γ(R = 70) + 0.0001 × γ(R = 180)

(17)
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Hence, the correlation coefficient between components of ferrous iron oxides band
ratio and iron concentration can be calculated as bellow:

σA = 2.3 + 2.9 + 3.4 = 8.6
σB = 0.0027 + 0.0063 + 0.011 = 0.02
σAB = 0 − 0.116 + 0.0001 = −0.1159
σcomponent1 = σY1 = 0.0063
σcomponent2 = σY2 = 0.011

(18)

Two components are related to the small range (R = 70 m) and the large range (R = 180).
Therefore, it is possible to calculate the correlation coefficients:

ρA/B = σAB√
σ2

A×σ2
B

= −0.1159√
8.6×0.02

= −0.279

ρA/Y1 = σAY√
σ2

A×σ2
Y

= −0.116√
8.6×0.0063

= −0.498

ρA/Y2 = σAY2√
σ2

A×σ2
Y2

= 0.0001√
8.6×0.011

= 0.0003

ρA/Y1 = −0.498 > 0.279 = ρA/B

(19)

Since the first component has the highest correlation coefficient (negative correlation)
with iron concentration, it is selected as the appropriate component to test the CCK.

In this step, to use the selected component in Equation (13), there is a need of estimat-
ing the component in all points of the grid. To do it, the CK is performed on band-ratio
data, using only the first structure of the variogram model. To check the coherency of
results from Equation (15), the estimated maps of both components (small range, R = 70 m,
and large range, R = 180 m), plus the estimated mean are shown in Figure 9.

The sum of three maps (estimated components and mean estimated) is equal to the
original values of ferrous iron oxides band ratio as Equation (15).

The small range component (R = 70 m) as having the higher coefficient correlation can
be used as the secondary variable to perform CCK.

The parameters of variogram models are shown in Table 4. The same as CK, the fitted
model on target variable (iron concentration) is equal to the previous models.

Table 4. Main parameters of the variogram model from Fe2O3 (%) of samples, first component of
ferrous iron oxides band ratio and cross-variogram.

Fe2O3 (%) Variogram Models

Nugget Effect Spherical 1 Spherical 2

Range (m) Sill Range (m) Sill

2.3 70 2.9 180 3.4
Band Ratio-Component 1 Variogram Models

Spherical 1
Range (m) Sill

70 0.0063
Cross-Variogram Models

Spherical 1
Range (m) Sill

70 −0.116

Maps of Fe2O3 (%) concentration using CCK method and its estimation variances are
presented in Figure 10.
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Figure 9. Base maps of real data values of ferrous iron oxides band ratios (upper left) and estimated components: small
range component (lower left) and large range component (lower right), and the mean estimation map (upper right), all
deposited from ferrous iron oxides band ratios.

Figure 10. Fe2O3 (%) estimated map (CCK) (left) and the estimation variance map (right), by performing CCK between iron
samples and the first component of ferrous iron oxide band ratio (Range = 70 m).
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Finally, Figure 11 shows the main statistics of the cross-validation for three solutions,
OK, CK, and CCK. Cross-validation performed by removing sample values (one-by-one)
and estimating them using the selected model and neighborhood for three methods (OK,
CK, and CCK). The scatter plots between estimated and true values of Fe2O3 (%) at 60 sample
points, standardized estimation error, and scatter plot between error and estimated values
are compared for all three solutions.

Figure 11. Statistics of cross-validation for OK, CK, and CCK results: scatter plot between true values of Fe2O3 (%) at
60 sample points and estimated values (left), standardized estimation error (central), and scatter plot between error and
estimated values (right).

4. Discussion

Mapping a metal distribution within an artificial resource, such as a mining waste
area is quite challenging and complex. Therefore, there are not many examples of using
geostatistical methods for tailings characterization. Some researchers tried to map metal
variability within mine tailings using in field samples and performed ordinary kriging.
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However, they faced with the challenge of a small number of samples while performing
geostatistical modeling [34]. Another example is characterizing the mining residues using
geostatistical co-kriging estimation [35,36]. In both examples, the traditional co-kriging
method is used. However, an efficient estimation of metal variability is essential, since
all economic evaluations are based on metals variability maps and estimation. Therefore,
the higher accuracy of the map can make the difference, when deciding whether the
exploitation of a strategical resource is economically feasible and sustainable. Iron maps
variability as the main target in this work is focused within a bauxite residue in Greece.
Most classical estimation method of OK is performed and estimation map has shown
mainly three high grade parts (more than 50% of Fe2O3) in north east and south east of
BR. The estimation standard deviation map identified the lowest estimation variance at
the samples points and a high variation where the number of samples are low (east and
middle part of the BR).

By adding EO data and specifically Sentinel-2 image (a free and easily accessible image)
at the date of sampling, the improvement of iron mapping was tested. The ferrous iron
oxides band ratio was selected as the secondary variable to see if additional information
(in a regular grid at all estimation points) can help the iron estimation mapping. Results of
CK has shown a higher variability with more anomaly points (with Fe2O3 concentration of
more than 50%) in the estimation map. Moreover, adding the band ratio data could decrease
the variability and the values of the estimation variance map. Finally, the new hypothesis of
using the most correlated component was tested. Due to the co-regionalization structures,
it was possible to decompose the band ratio values into mean, nugget effect, and two
different range components: a small range component (70 m) and a large range component
(180 m).

The correlation coefficient between each component and iron was calculated and the
first component with the small range (70 m) was selected due to its higher correlation with
iron. To use this component in the CK system, there was a need to estimate it for all grid
points, and then the estimated component was used to perform CCK. The appropriate
check was done to control the equality of Equation (13). In Figure 9, by mathematically
summing at each grid node, the values of all three maps (estimated component 1 and 2
and the estimated mean), the original map of the ferrous iron oxides band ratio is obtained.
This mathematical check confirms that the estimated component 1 can be used in the CCK
estimation based on Equation (15).

To do the comparisons among the three utilized methods (OK, CK, and CCK), in all
three estimations, the iron variogram model is the same. Moreover, the neighborhoods used
for estimations were equal, to have the same condition, while mapping the iron variability.

At the end, the cross-validation was performed to check the efficiency of three methods.
For the scatter plots between the true and estimated values of iron (Fe2O3) at sample points,
the higher correlation between the estimated values and true values is related to the CCK,
with ρ = 0.68. The histogram of the standardized estimation errors provides an idea about
the unbiasedness and also the quality of the estimate. It also helps locate the outliers, which
are outside the two vertical lines corresponding to the threshold value. In all three methods,
the mean of the histogram is close to zero and shows the acceptable estimation results.
Then the scatter plot of the standardized estimation errors versus the estimated values is
calculated, which should be with no preferential shape. The reason is the independency of
the standardized error with the estimated values. Since the two variables are theoretically
independent, this cloud should have no preferential shape, and this was confirmed by the
low correlation coefficients calculated.

5. Conclusions

Mapping the strategic metals is one of the most delicate phases, and by using satellite
images, an important improvement in the model quality of surface distribution can be
performed. Geostatistical models offer a wide variety of powerful tools for a deep study
of metals mapping and estimations. A strategic case study (a bauxite mining residue)
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is reported as an example to check the best method for mapping the iron concentration
(Fe2O3%). The proposed method of component co-kriging highlights not only the best sec-
ondary variable for iron estimation (with higher correlation coefficient), but also improves
the classical ordinary-kriging and co-kriging estimation maps. The cross-validation results
confirm the improvements of the results. Hence, to sum up:

• Remote sensing data are essential when mapping a surface feature, such as mapping
the iron concentration variability;

• Band ratio can be considered an important auxiliary variable in geostatistical modeling,
when there is correlation between in field samples and band ratios;

• Component co-kriging is an efficient method and, in case of high correlation coefficient
between one component of the auxiliary variable and the main variable (in this work,
the iron concentration), it can substantially improve the mapping results.
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Abstract: Space-borne multispectral and radar data were used to comprehensively map geologi-
cal contacts, lithologies and structural elements controlling gold-bearing quartz veins in the Wadi
Hodein area in Egypt. In this study, enhancement algorithms, band combinations, band math (BM),
Principal Component Analysis (PCA), decorrelation stretch and mineralogical indices were applied
to Landsat-8 OLI, ASTER and ALOS PALSAR following a pre-designed flow chart. Together with
the field observations, the results of the image processing techniques were exported to the GIS
environment and subsequently fused to generate a potentiality map. The Wadi Hodein shear belt is
a ductile shear corridor developed in response to non-coaxial convergence and northward escape
tectonics that accompanied the final stages of terrane accretion and cratonization (~680–600 Ma)
in the northern part of the Arabian–Nubian Shield. The evolution of this shear belt encompassed
a protracted ~E–W shortening and recurrent sinistral transpression as manifested by east-dipping
thrusts and high-angle reverse shear zones. Gold-mineralized shear zones cut heterogeneously de-
formed ophiolites and metavolcaniclastic rocks and attenuate in and around granodioritic intrusions.
The gold mineralization event was evidently epigenetic in the metamorphic rocks and was likely
attributed to rejuvenated tectonism and circulation of hot fluids during transpressional deformation.
The superposition of the NW–SE folds by NNW-trending, kilometer scale tight and reclined folds
shaped the overall framework of the Wadi Hodein belt. Shallow NNW- or SSE-plunging mineral and
stretching lineations on steeply dipping shear planes depict a considerable simple shear component.
The results of image processing complying with field observations and structural analysis suggest
that the coincidence of shear zones, hydrothermal alteration and crosscutting dikes in the study area
could be considered as a model criterion in exploration for new gold targets.

Keywords: multispectral satellite data; PALSAR; gold exploration; Wadi Hodein shear belt;
transpressional deformation; gold-bearing quartz veins

1. Introduction

Remote sensing data are commonly used to identify geological structures associated
with extensive shear belts, particularly in vast and rugged terrains. The innovative tech-
nologies in the remote sensing promoted the application of space-borne imagery data for
detailed structural geology mapping [1–6]. The application of multisensor satellite imagery
can be considered as a cost-efficient exploration strategy for prospecting orogenic gold
mineralization in transpression and transtension zones, which are located in harsh regions
around the world [7,8]. In Egypt, structural analysis aided by the interpretations of space-
borne data has been efficiently employed to constrain the major structures in the South
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Eastern Desert [9–12]. Zoheir and Emam [7], Zoheir et al. [11,12] tested the effectiveness of
processing space-borne multispectral and radar imagery data for the geological mapping,
particularly to highlight elements controlling the distribution of gold occurrences in the
south Eastern Desert of Egypt. Iron oxides, clay and carbonate ± sulfate mineral phases
in the hydrothermal alteration zones have specific spectral signatures in the visible, near
infrared, and shortwave infrared radiation regions [13]. The hydrous mineral phases with
the OH groups (Mg-O-H, Al-O-H, Si-O-H) and CO3 acid group have diagnostic absorption
features in the shortwave infrared region (SWIR) (2.0–2.50 μm) [14].

Landsat-8 OLI with high radiometric resolution (16 bits) is an effective remote sensing
sensor for detailed lithological mapping [15]. Landsat-8 OLI imagery consists of nine
spectral bands, from which seven bands measure the reflected VNIR and SWIR radiation
with 30-m spatial resolution for bands 1–7 and 9, while the panchromatic band 8 has 15-m
resolution. The ultra-blue band 1 is operative in coastal and aerosol targets, whereas band
9 is valued for cloud detection. The TIR bands collects two thermal bands (10 and 11)
that measure the emitted radiation through the 10.6–12.5 μm wavelength region (TIR)
with 100-m spatial resolution [16,17]. The Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) data showed high capabilities in discriminating lithological
units and alteration zones associated with hydrothermal ore deposits [18–22]. The ASTER
data cover a wide spectral range of 14 bands, measuring reflected radiation in three bands
between 0.52 and 0.86 μm (visible-near infrared, VNIR) with 15-m resolution, and six
bands from 1.6 to 2.43 μm (shortwave Infrared, SWIR) with 30-m resolution. The emitted
radiation is measured at 90-m resolution in five bands through the 8.125-μm–11.65-μm
wavelength region (thermal infrared; TIR) [23,24]. Synthetic Aperture Radar (SAR) remote
sensing technology allows the application of space-borne imagery data for detailed struc-
tural geology mapping [1–6,11,12]. Phased Array type L-band Synthetic Aperture Radar
(PALSAR) is a L-band synthetic aperture radar, which can penetrate sand and vegetation
because of the radar’s longer wavelengths (15.0–30.0 cm) [5]. L-band SAR data can provide
detailed geological structure information for desert and tropical environments [25]. PAL-
SAR has multimode observation functions such as Fine mode, Direct downlink, ScanSar
mode, and Polarimetric mode. Multipolarization configuration (HH, HV, VH, and VV),
variable off-nadir angle (9.9–50.8◦), and spatial resolution of 10 m for Fine mode, 30 m for
Polarimetric mode, 100 m for ScanSar mode are designed. The swath width observation is
30 km for Polarimetric mode, 70 km for Fine mode, and 250–350 km for ScanSar modes [26].
The fusion of these multisensor imagery data can offer a wide-ranging means for tracing
along the strike of structural elements and to investigate controls of the orogenic gold
occurrences in well exposed and arid regions such as the Wadi Hodein shear belt, South
Eastern Desert of Egypt.

The Eastern Desert of Egypt is part of the Arabian–Nubian Shield (ANS) [27]. The latter
is made up mainly of three distinctive tectonostratigraphic units: (1) infracrustal gneisses,
locally exposed as discrete core complexes [28–31]; (2) supracrustal dismembered ophiolites
and island arc volcanic/ volcanosedimentary assemblages; and (3) intramountainous
molasse sediments (Hammamat Group) and Cordilleran calc-alkaline volcanics (Dokhan
Volcanics) [32]. Widespread granitoid intrusions of different ages cut both the infracrustal
and supracrustal rocks. The South Eastern Desert experienced a history of superimposing
compressional and transpressional deformation, manifested by extensive NW–SE trending
high-angle thrusts, folds and transcurrent faults [12,28,30,31]. The Wadi Hodein shear belt
is a major NW-oriented transcurrent shear zone in the southern Eastern Desert (Figure 1).
It is suspected to have accommodated up to 300 km of sinistral displacement during the
late stages of transpression [29–34]. Opinions differ about the tectonic character of this
shear zone, where some authors consider it as the youngest major Najd-related shear in
the Egyptian Eastern Desert [29–31,33] or even a transpressional corridor [34,35].
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Figure 1. Distribution of the known gold mining sites and gold quartz vein occurrences relative to the major fault/shear
structures and ophiolitic masses in the South Eastern Desert terrane (modified after [11]). Inset shows a location map of the
study area.

Gold bearing quartz veins and their alteration zones occur in different geologic and
structural settings in the southern Eastern Desert [10] (Figure 1). These different settings
include: (1) Au–quartz veins hosted by ductile shear zones at contacts between ophiolitic
and island arc terranes (e.g., Um El-Tuyor El-Foqani, Betam, Seiga, Shashoba, Um Garayat,
and Haimur deposits); (2) Au–quartz veins occurring along steeply dipping anastomosing
shear zones wrapped around or cutting syn- or late-orogenic granitoid intrusions (e.g.,
Korbiai, Madari, Romite, Egat deposits); (3) Au–quartz-carbonate veins in association
with brittle–ductile shear zones separating listvenized serpentinite from the underlying
successions of intercalated metavolcanic and volcaniclastic metasediments (e.g., Hutit, El-
Beida, and El-Anbat deposits). In the present study, structural analysis supported by remote
sensing studies was aimed at revealing what controls the distribution of the scattered gold–
quartz vein occurrences in the Wadi Hodein area. Multisensor satellite data were used to
resolve the spatial relationship between gold mineralization and district-scale structures.
The relative timing of the successive structural events was also envisaged to place the gold
mineralization in the broader evolutionary framework of the South Eastern Desert.

2. Geological Setting

The Neoproterozoic rocks exposed in Hodein shear belt comprises variably deformed
ophiolitic mélange rocks, island-arc metavolcanic and metavolcaniclastic successions
(Figure 2). These rocks are unconformably overlain by Cretaceous sandstone formations
(Nubian Sandstone) and locally by Miocene marine turbidites and carbonate. Dioritic and
granitic gneisses and migmatites are exposed around Wadi Beitan and Wadi Khuda, in the
western part of the study area. Wadi Khuda gneisses occur as an ENE–WSW trending belt
forming a major doubly plunging anticline (Figure S1a,b), amphibolite and migmatites [35].
It is intruded by syn-tectonic tonalite and diorite as well as late-to post-tectonic syenogran-
ites and leucogranites. The gneissic rocks of Wadi Beitan form a major NW-trending belt
in the northwestern part of the Wadi Hodein shear system [27] (Figure 2). This belt com-
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prises fine-to coarse-grained biotite gneisses, biotite-hornblende gneisses and hornblende
gneisses together with subordinate varieties of garnet–biotite–hornblende gneisses, augen
gneiss, amphibolites (Figure S1c,d), migmatites and mylonites [11,27]. The contact between
the Wadi Beitan gneisses belt and the volcaniclastic rocks is defined by a SW-verging thrust
fault associated with discrete zones of mylonitized granites (Figure S1d).

Figure 2. Geological map of Wadi Hodein–Beitan shear belt (complied and modified from [36–39]).

The Wadi Khashab–Gabal Sirsir ophiolites form two discontinuous NNW–SSE ori-
ented belts of mainly serpentinite, metabasalt, ophiolitic and metagabbro rocks [12,36,38,39].
Serpentinite and associated talc carbonate occur as masses elongated in a NW–SE direc-
tion (e.g., Gabal Sirsir and Wadi El-Beida) and tectonically emplaced within the foliated
metavolcanics and volcaniclastic metasediments. Serpentinites and foliated metabasalts
in the Gabal Sirsir–El-Anbat belt occur as elongate lenses along NW to NNW–SSE shear
zones [37–40]. The mafic metavolcanics form NW-elongated belts bound by highly sheared
rocks and mylonites. The metavolcanics rocks are intruded by metagabbro–diorite, gran-
odiorite and granitoid intrusions. They are strongly foliated and exhibit well developed
pencil cleavage and boudinage patterns. They comprise metaandesite/basaltic andesite
and tuffaceous intercalations. The metasedimentary rocks include metagreywacke, bedded
metamudstone, metaconglomerate and schists with minor calcareous beds. The Gabal Abu
Dahr ophiolitic mélange in the central and eastern parts of the study area occur as elongate,
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fault-bounded blocks, tectonically admixtured with island arc metavolcanic and metavol-
caniclastic rocks along Wadi Rahaba and around Gabal Abu Dahr. The ophiolitic and island
arc rocks are cut by a metagabbro/diorite complex and granitic intrusions [41–43]. The
Wadi Rahaba serpentinite occurs as NW-elongate masses and small isolated irregular lenses
in the volcaniclastic metasediments (Figure S1e). The metagabbro–diorite intrusions of
the Wadi Rahaba occur as isolated, irregular masses, cutting ophiolites, metavolcanic and
metavolcaniclastic rocks. Contacts of the serpentinized ultramafic rocks with metagabbro–
diorite complex are sharp and irregular. The serpentinized ultramafic rocks are dominated
by a harzburgite, dunite veins, chromitite pods and talc-carbonate rocks [42]. The serpen-
tinized ultramafic rocks contain large masses of dunite and concordant sills of wehrlite,
pyroxenite and gabbro [43]. Ophiolitic metagabbro occurs as moderate relief masses of
pyroxene metagabbro, hornblende metagabbro, and meta-anorthosite (Figure S1f).

The ophiolitic mafic metavolcanics to northeast of Gabal Abu Dahr are massive or
pillowed (Figure S2a) metabasalt and metabasaltic andesite. Pillowed metabasalt bodies are
exposed as ellipsoidal, globular and tabular shaped bodies, ranging between 10 cm and 1 m
in diameter (Figure S2a,b). The mafic metavolcanics along Wadi Hutib and Wadi Urga El
Rayan form a NNW-elongated belt and show variable degrees of shearing. The Wadi Arais
ophiolites include masses of serpentinite, serpentinized peridotites (Figure S2c), metagab-
bro, dunite, pyroxenite, chlorite schist, metavolcanics rocks and listwaenite along the thrust
and shear zones [43,44]. The serpentinized peridotite occurs as steep mountains along
NW–SE striking thrust faults (Figure S2c). Irregular serpentinite masses are incorporated in
the volcaniclastic metasediments. The ophiolitic metagabbro rocks form hills of moderate
relief, which have tectonic contacts against the serpentinite and metavolcanic blocks. The
Gabal Arais mass is composed chiefly of actinolite hornblende metagabbro and horn-
blende metagabbro and less commonly of appinitic metagabbro [45]. The arc metavolcanic
rocks along Wadi Um Araka form an E–W elongate belt comprised mainly meta-andesite,
metadacite, dacitic tuff and andesitic tuff with minor amounts of metabasalt [45]. The
foliated varieties of the Um Araka metavolcanics are mainly schistose metatuffs. The
ophiolitic mélange of Wadi Arais comprises volcaniclastic metasediments and exotic clasts
of metagabbro and amphibolite.

The metagabbro–diorite–tonalite–granodiorite complex forms a large elongated belt
in the Wadi Khuda area. These rocks intrude Wadi Khuda gneisses (Figure S2d) and the
eastern parts of Wadi Rahaba–Gabal Abu Dahr ophiolitic mélange and intruded by late to
post-tectonic biotite and muscovite granites (Figure S2e). Their contacts with Wadi Khuda
gneisses are characterized by the strongly foliated diorite and amphibolite [46,47]. The
gabbro–diorite complex forms variable degrees of deformation, from massive to strongly
sheared or foliated. The metagabbro–diorite rocks of the Um Eleiga exhibit circular zonation
where gabbro forms the core and the granodiorite occupies the margin [41].

The tonalite of Wadi Urga El Rayan form N–S trending, strongly weathered and
weakly foliated plutons in the central part of the study area. Granodiorite forms a N–
S trending pluton along the Wadi Hutib and E–W oriented small intrusions along the
Wadi Beitan (Figure S2f). The granitoid intrusions that cut the ophiolitic mélange of
the Wadi Khashab–Wadi Um Karaba range in composition from tonalite to granodiorite.
The granitic rocks of Gabal El Maarafay and Gabal Al Farayid include monzogranite,
granodiorite, and tonalite and are locally foliated [48]. At Wadi Khuda, leucogranite
forms small stocklike and dikelike bodies intruding on the core of the Khuda gneisses and
the granite pluton [46]. The ophiolitic rocks of Wadi Arais are cut by monzogranite and
syenogranite of the Gabal El-Nukeiba and Gabal Handusa. A small circular intrusion of
younger gabbro in the southwestern part of the study area (G. Homraii) cuts metavolcanic
rocks and the older granitoid terranes. The gold-bearing quartz veins in the study area
cut sheared metavolcanics, volcaniclastic metasediments and gabbro–diorite complex.
The mineralized quartz veins are controlled consistently by NW- and NNW-trending
shear zones, and are associated with extensive pervasive hydrothermal alteration. Gold
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occurrences in the study area include El-Beida, Khashab, El-Anbat, Um Teneidab, Urga
Ryan, Hutit and Um Eleiga.

3. Remote Sensing Data Characteristics and Analysis

Iron oxides, clay and carbonate ± sulfate in the hydrothermal alteration zones have
specific spectral signatures in the visible near infrared (VNIR), and shortwave infrared
(SWIR) spectral regions, respectively [13,14]. False color composite (FCC) and band combi-
nation images are used in geological applications based on known spectral signatures of
mineral phases in specific wavelength regions. Mapping the hydrothermal alteration zones
is a prime focus of mineral exploration programs using the remote-sensing data [1–8,11,12].
Most of the hydrothermal alteration mineral species have distinctive features in the short-
wave infrared (SWIR) region, making the Landsat-8 OLI and ASTER sensors suitable data
sources for mineral mapping, particularly in arid regions. Moreover, considerable numbers
of image processing techniques, such as band-rationing (BR), principal component analysis
(PCA), and the spectral mineralogical indices, have been proven effective in lithological
and hydrothermal alteration mapping if verified by the fieldwork [1,7,8,11,12]. The present
study integrates Landsat-8 OLI/TIRS, ASTER and ALOS PALSAR data for comprehensive
mapping of the lithological units and geological structures. Additionally, we aimed to
detect the mineralized zones in the Wadi Hodein area. The characteristics of the used
remote sensing data are presented in Tables 1 and 2.

Table 1. Characteristics of the Landsat-8 OLI/TIRS and ASTER data [16,17].

Landsat-8 (OLI/TIRS)
Wavelength (μm)

ASTER
Wavelength (μm) Band

Band Resolution (m) Resolution (m)

Band 1 30 Costal/Aerosol 0.435–0.451 15 0.52–0.6 Band1
Band 2 30 Blue 0.452–0.512 15 0.63–0.69 Band 2
Band 3 30 Green 0.533–0.590 15 0.76–0.86 Band 3
Band 4 30 Red 0.636–0.673 30 1.60–1.70 Band 4
Band 5 30 NIR 0.851–0.879 30 2.145–2.185 Band 5
Band 6 30 SWIR-1 1.566–1.651 30 2.185–2.225 Band 6
Band 7 30 SWIR-2 2.107–2.294 30 2.235–2.285 Band 7
Band 8 15 Pan 0.503–0.676 30 2.295–2.365 Band 8
Band 9 30 Circus 1.363–1.384 30 2.360–2.430 Band 9
band10 100 TIR-1 10.60–11.19 90 8.125–8.475 Band 10
band11 100 TIR-2 11.50–12.51 90 8.475–8.825 Band 11

- - - 90 8.925–8.275 Band 12
- - - 90 10.25–10.95 Band 13
- - - 90 10.95–11.65 Band 14

Table 2. Characteristics of the ALOS PALSAR data [26].

Fine Resolution ScanSAR Polarimetric

Beam Mode FBS, DSN FBD WB1, WB2 PLR
Center Frequency L-Band (1.27 GHz)

Polarization HH or VV HH + HV or VV + VH HH or VV HH + HV + VV + VH
Spatial Resolution 10 m 20 m 100 m 30 m

Swath Width 70 km 70 km 250–350 km 30 km
Off-Nadir Angle 34.3◦ (default) 27.1◦ (default) 21.5◦ (default)

Abbreviation: DSN = Direct Downlink, FBD = Fine Resolution Mode, Dual polarization, PLR = Polarimetry, HH, VV, HV,
VH = Polarization types.

3.1. Data and Processing Techniques

Two cloud-free ASTER scenes′ AST_L1T00312252006082430 and 00312252006082422′ were
acquired on 24 August 2006. The Landsat-8 OLIL/TIRS scene ‘LC08_L1TP1730442019073001_T1′
was acquired on 30 July 2019 with path/raw 173/44. Four ALOS PALSAR scenes, ALP-
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SRP075090450, ALPSRP075090460, ALPSRP077570450 and ALPSRP077570460, of L-Band
level 1.5 images. For detailed information on the preprocessing techniques of the re-
mote sensing data, adopted software and methodology see the supplementary data file
(Section S1 in supplementary material). The remote sensing data have been processed for
lithological mapping, highlighting structural elements and delineating the alteration zones.
Image processing techniques, i.e., enhancement algorithms, band combinations (FCC),
band math (BM), Principal Component Analysis (PCA), decorrelation stretch and min-
eralogical indices were applied for outlining geological mapping and the hydrothermal
alteration zones in the study area. Finally, multicriteria approach was applied to produce
the potentiality gold mineralization map of the study area. Figure S3 shows the flow chart
of the methodology adopted for the present study.

3.2. Landsat-8 OLI and ASTER-Based Lithological Mapping

The Landsat-8 OLI data have higher radiometric resolutions (16 bits) and lower
spectral resolution compared with ASTER data. Several Landsat-8 OLI and ASTER band
combinations images are employed for mapping lithological units and structural elements
in the study area. The Landsat-8 band combination images (RGB-753; Figure 3a) and ASTER
(RGB-431; Figure S4a) discriminate well between different lithologic units and highlight
the structural elements. The ophiolitic rocks appear as dark green pixels, metavolcanics
and metasediments are represented by dark to medium brown pixels while the highly
weathered granitoids and gneisses exhibit light brown signature. The E–W, NW-, NE-
trending faults/fractures that cut these rock outcrops are conspicuous. The band math
technique, which is used for reducing the effects of topography and enhancing the spectral
differences between bands, divides the digital number value of one band by the digital
number value of another band [49]. Band math is a useful for highlighting hydrothermal
alteration minerals, as it minimizes the illumination differences caused by the topographic
features. Landsat-8 band math image (6/7) was generated to map CO3 and OH-bearing
minerals. This image ratio highlights clay minerals, serpentine, and many alteration zones
as bright pixels, where the metavolcanic–metasedimentary rocks are manifested by gray
pixels (Figure 3b). On the other hand, the grey-scale image of ASTER band math (7 + 9/8)
presented as carbonate/chlorite index. It highlights the highly sheared and carbonatized
rocks (serpentinite and talc-carbonate) and metavolcanics with bright image signature
(Figure S4b). Ophiolitic gabbros and metasedimentary rocks appear as medium grey
pixels, while the gneisses and granitoid rocks have black spectral signatures. Hassan
and Sadek [15] used this ratio to differentiate between talc-carbonate and ophiolitic basic
metavolcanic rocks in the Gerf area south of the present study area.

Segal [50] used band ratio images for the enhancement of spectral contrasts among
the bands considered in the ratio operation, and they have successfully been used in the
mapping of alteration zones. Therefore, Landsat-8 FCC of the Abrams ratio (RGB-6/7,
4/3, 5/4), Chica-Olma ratio (RGB-6/7, 6/5, 4/2) and Kaufmann ratio (RGB-7/5, 5/4,
6/7) (Figure 4a–c, respectively) were generated to characterize iron-oxide, hydroxyl min-
erals, clay minerals and containing rocks. The Abrams ratio (RGB-6/7, 4/3, 5/4) image
successfully delineated mafic mineral-rich rocks, including the ophiolitic serpentinite,
and highly tectonized ophiolites, which are clearly demarcated as bright red color, and
the highly tectonized mafic metavolcanic rocks appear as purple and dark blue pixels
(Figure 4a). The Chica-Olma ratio (RGB-6/7, 6/5, 4/2; Figure 4b) image clearly delineates
the serpentinite rocks and their sharp contacts with the surrounding rocks of metavolcanic–
metasedimentary association and granitoids, where theses contacts are considered the
favorable sites for gold mineralization. Serpentinite appear as bloody red pixels, metasedi-
mentary rocks as dark green, whereas the metavolcanics and quartz–carbonate (listvenite)
have a bright green signature. The altered materials and clay minerals appeared as olive
green pixels. The ophiolite assemblage is highlighted successfully as bright blue and
quartz-carbonate (listvenite) as violet pixels in the Kaufmann ratio (RGB-7/5, 5/4, 6/7;
Figure 4c) image. The metasedimentary rocks are characterized by dark cyan color, whereas
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the metavolcanics appeared by reddish brown pixels. These distinctive spectral signatures
helped in heightening the foliation trajectories of the highly deformed and tectonized rocks.

 

Figure 3. Lithological discrimination using (a) Landsat-8 (RGB-753) and (b) grey scale Landsat-8 band ratio (6/7). Abbrevia-
tion: Gn = Gneisses and migmatites, S = Serpentinites, Omg = Ophiolitic metagabbros, Ms = Metasedimentary ophiolitic
mélange matrix, Mv = Island arc association, Gt = gabbro-tonalite-granodiorite complex, Sg = Syn-tectonic granitoids,
Pg = Post-tectonic granitoids.

The NW-thrusted contacts and E–W strike slip faults can be detected from the three
image ratios (Figure 4a–c). Moreover, decorrelation stretching is an important image
enhancement method that is used to improve visual interpretation of satellite images [51].
For bands having the maximum variance, decorrelation stretching was applied to 7-6-5
of Landsat-8 bands (Figure 4d). The dark blue pixels of serpentinite can be differentiated
from the greenish brown pixels of ophiolitc metagabbros. The metasedimentary rocks and
metavolcanics attained greenish red and bright green colors, respectively. Kaolinite- and
illite-bearing rocks show bright red signature, whereas the gneissic and granitoid rocks
appear as light violet pixels (Figure 4d).

Principal Component Analysis (PCA), as one of the spectral enhancement techniques,
has been used for lithological discrimination [15]. Principal component analysis (PCA) is a
multivariate statistical technique that selects uncorrelated linear combinations (eigenvector
loadings) of variables in such a way that each successively tracted linear combination,
or principal component (PC), has a smaller variance [52]. The PCA transformation was
carried out for the VNIR and SWIR bands of Landsat-8 and ASTER to extract lithological
and alteration zones information, which related to gold mineralization. The eigenvector
matrices of the Landsat-8 and ASTER data derived from the PCA are given in Tables S1 and
S2, respectively). The three first PCA images (PC1, PC2 and PC3), containing the highest
topographical and spectral information, are found suitable for lithological discrimination.
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The PCA images can bear crucial information related to the alteration minerals, which
could be reflected in the eigenvector loading of the absorption and reflection bands [12].
Gupta et al. [53] suggested that when the eigenvector loading is strong (as positive or
negative sign) in the reflection and absorption bands of the target mineral or mineral group,
the enhanced pixels related to the mineral or mineral group will manifest as bright pixels
when this loading is positive in the reflection band; conversely, the pixels will manifest as
dark when the loading is negative in the reflection band.

 

Figure 4. Spectral discrimination of ophiolites and related rocks using processed Landsat-8
(a) Abrams ratio (RGB-6/7, 4/3, 5/4), (b) Chica-Olma ratio (RGB-6/7, 6/5, 4/2) and (c) Kaufmann
ratio (RGB-7/5, 5/4, 6/7). (d) Decorrelation stretching to (7-6-5).
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According to the analysis of the eigenvector loadings of the seven bands of Landsat-
8 PCA (Table S1), we produced the color composite images (RGB-PC2, PC1, PC4 and
RGB-PC2, PC4, PC5; Figure S5a,b, respectively). Bands 2, 4, 5, 6, 7 of Landsat-8 contain
valuable information for iron oxides and hydroxyl-bearing minerals’ mapping [54]. The
rocks consisting of high contents of Al and/or Mg-OH-bearing minerals (ophiolites) were
best delineated by bright lemon-yellow pixel signatures in Figure S5a and yellowish orange
pixels in Figure 5a. The two images emphasize the contact between felsic and basic metavol-
canics and volcaniclastic metasediments and gneisses along Wadi Hodein and Wadi Beitan.
The areas with rich altered materials show cyan color tones. Based on the eigenvector
loadings of the nine bands of ASTER PCA (Table S2), the color composite images (RGB-
PC1, PC2, PC3 and RGB-PC6, PC3, PC1; Figure S5a,b, respectively) were prepared. Figure
S5b shows bright magenta pixels for iron oxide/hydroxide minerals, which are mostly
associated with ophiolitic serpentinite and metagabbros. The metasedimentary rocks are
manifested by light magenta pixels, metavolcanics as bright green, and gneisses and grani-
toids as cyan pixels. Figure 5b shows the metavolcanic/metavolcaniclastic rocks appearing
as reddish color pixels. The light cyan color domains within the ophiolitic mélange terranes
whilst metasediments represent grass green and gneisses and granitoids are presented by
yellow green pixels. The four images enhance the visualization of the E–W strike slip faults
and foliation trajectories.

 
Figure 5. False-color composite of principal component analysis (PCA) of (a) Landsat-8 RGB-PC2,
PC4, PC5 and (b) ASTER RGB-PC6, PC3, PC1.

3.3. Hydrothermal Alteration Zones Detection

Shortwave infrared (SWIR) channels of ASTER can increase the accuracy of the spectral
identification of minerals and rock units [55–61]. ASTER indices including kaolinite, clay
and muscovite and carbonate alteration zones [12]. The mineralogical indices are reflectance
combinations of two or more spectral bands signifying the relative abundance of the target
objects. The application of mineralogical indices for the ASTER bands is efficient for litho-
logical and hydrothermal alteration discrimination [62]. The six ASTER–SWIR bands were
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used to map the hydrothermal alteration minerals. Therefore, four spectral mineralogical
indices (OH-bearing mineral index, OHI; kaolinite index, KLI; calcite index, CLI and alunite
index, ALI) were used to characterize the alteration zone in the study area. The OHI is
calculated as (band 7/band 6) × (band 4/band 6), the KLI is developed by way of (band
4/band 5) × (band 8/band 6), CLI is calculated as (band 6/band 8) × (band 9/band 8),
while ALI is expressed as (band 7/band 5) × (band 7/band 8) [62]. The hydrothermal
alteration zones are traced as bright pixels in the highly tectonized ophiolites, metased-
imentary and island arc metavolcanic and metavolcaniclastic rocks (Figure 6a–d). The
island arc rocks appear as bright pixels likely due to the abundant OH-minerals such as
mica, amphiboles, chlorite and epidote (Figure 6a). It is noticed that the Urga, Um Teneidab,
Khashab-1, Khashab-2 and El-Anbat gold mines overlap these alteration zones. Kaolinitic
and clay minerals rich rocks such as granitoids, wadi deposits and altered ophiolitic rocks
show bright pixels in Figure 6b, where Um Eleiga, Um Karaba and Hutit gold mines are
seen. The calcite index grey image discriminates perfectly the calcite rich rocks zone of ser-
pentinite, talc carbonate rocks, island arc metavolcanics and highly sheared metasediments
as bright and gray image pixels.

The false-color composite (FCC) ratio image (OHI, KLI, CLI) was elaborated by combi-
nation of the three gray scale mineralogical indices images in the RGB channels (Figure 6d).
This image characterizes the OH-bearing rocks (meta-ultramafic) as light blue pixels,
metavolcanics and metasediments as dark blue and reddish blue pixels, respectively. The
quartz-rich rocks have a reddish yellow image signature, whereas the clay minerals bearing
rocks and stream sediments have lemon and bright green image signatures. The hydrother-
mal alteration zones in the study area are associated with the highly deformed ophiolitic
and the ductile deformation zone. The results of alteration mapping derived from ASTER
datasets reveal the spatial association of highly sheared rocks with gold occurrences.

3.4. PALSAR-Based Lineaments Extraction

Lineaments’ extraction and analysis is considered a fast tool in geologic mapping
and mineral exploration [63]. Hydrothermal ore deposits occur within or nearby fracture
zones. Thus, lineament mapping is useful to infer locations of unexposed mineralization or
dilatation sites [64]. High-resolution PALSAR data with full polarization and variable off-
nadir angle have significantly enhanced the structural mapping and lineaments extraction.
The adaptive Lee and Local Sigma filters can be applied to PALSAR to eliminate speckles
and to enhance structural lineaments [6,65]. In the present study, four PALSAR scenes
were orthorectified, mosaicked and enhanced by Lee filter to trace the linear features and
major structures. The HH, HV, HH + HV bands were transformed by PCA method to
PCA RGB images (PC1, PC2, PC3; Figure 7a). The automated lineament extraction was
carried out using PC1 image (Figure 7b) by using LINE algorithm PCI Geomatica software.
This algorithm is adopted with parameters, including radius of filter in pixels (RADI),
threshold for edge gradient (GTHR), threshold for curve length (LTHR), threshold for line
fitting error (FTHR), threshold for angular difference (ATHR), and threshold for linking
distance (DTHR).
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Figure 6. Grey scale ASTER band ratio images representing different mineral indices (a) OHI, (b) KLI (c) CLI and (d) Fused
FCC RGB-OHI, KLI, CLI highlights the alteration zones.
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Figure 7. Lineaments extraction using processed PALSAR data (a) PCA of enhanced Lee filter of HH, HV, HH + HV in
RGB-PC1, PC2, PC3, (b) PC1 highlights lineaments features, (c) the extracted lineaments dropped over PC1 with inset
azimuth-frequency diagram and (d) lineament density map.
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The extracted lineaments were overlaid on the PC1 image (Figure 7c) and exported to
Rockworks software to generate the azimuth-frequency diagram (inset, Figure 7c). The
lineaments layer was imported in the ArcMap (version 10.5, ESRI (Environmental Systems
Research Institute, Redlands, CA, USA) environment to generate the lineament density
map using the line density module in the spatial analyst toolbox (Figure 7d). The resultant
lineaments layer shows predominantly NW–SE, N–S and E–W trending structural grain,
which agrees mostly with the major thrusts and faults in Figure 2. Well-developed foliations,
shear cleavages and strike slip faults offsets are also recognized (Figure 7a,b). The gold
mining sites occur close to the high-density zones of the lineaments (Figure 7d), similar to
conclusions reached by Zoheir and Emam [7], and Zoheir et al. [11,12] in the south Eastern
Desert of Egypt.

3.5. Geospatial Modelling for Gold Mineralization Zones

Geographic Information System (GIS) is capable of manipulating, overlaying, integrat-
ing, and storing digital data in the geo-database as thematic layers. This approach plays an
essential role in creating and integrating numerous geo-datasets from different geospatial
data such as geology, structural density, etc. [66]. Remote sensing and (GIS) were integrated
to identify new gold mineralization sites. For geospatial modelling of these mineralization
zones, the evidence layers were integrated according to their relative contribution to the
gold mineralization [67]. Where three main processes are recommended, including ranking
processes for the evidence layers, weighting process are used for the classes of each layer,
and data integration is used to assess gold mineralization potential zones [67,68]. Multi-
source datasets were obtained, analyzed and integrated to develop a geospatial model.
Seven thematic maps for the study area were prepared and then converted into raster or
vector form to be easily integrated with the GIS tools. A weight was assigned to each factor
layer according to the different ranking methods [69–73] (Table 3). The weighted sum of all
the factor layers was calculated (Figure S6). The layers were then processed using ArcGIS
analysis tools to place the assigned gold occurrences on a knowledge-based hierarchy,
utilizing the Spatial Analyst tool of ArcGIS (Figure S6). To perform this process three basic
steps were followed: spatial database building, data analysis, and data integration. The
created layers for the geospatial model were subjected to reclassification and assigned
suitable weights (Figure S6 and Table 3). Moreover, the geospatial thematic maps of the
gold mineralization model were ranked from 1 to 5 (where 5 is the most favorable and 1 is
the least) based on their suitability to host gold mineralization.

Gold mineralization is associated with the ophiolitic rocks and their contacts, close to
contacts, and mostly along shear zones. A mineralization potential map was created and
classified the study area into five relatively zones, varying from very low to very high po-
tential zones (Figure 8). The high potential zones are distributed mainly around ophiolitic
rocks contacts (serpentinite, talc carbonate and ophiolitic metagabbros) and metavolcanic
and metasediments association rocks, respectively. The new promising sites occur close
to the already known gold mining sites (Figure 8). The integrated approach demarcates
several potential zones along the NW-Hodein shear zone. Validation of this model was
accomplished by testing ancient mining localities in the study area. Figure 8 shows that Um
Eleiga, Um Karaba, Hutit and Urga occur in the very high potential zone, while Um Tenei-
dab, Khashab 1, 2 and El-Anbat match the high potential zone. Additionally, as constrained
by new fieldwork and the available literature [11,12], occurrences of gold-bearing quartz
veins are mostly confined to thrust ophiolite/metavolcanic-metasediments contacts.
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Table 3. Weights assigned for different gold mineralization parameters in the study area.

Thematic Layer Class Ranges Layer Weight Influence (%) Class Rank

Lithology map

Gn/Pgb/NSS/WD

0.38 38

1
Sg/Pg 2

Gt 3
Ms/Mv 4
S/Omg 5

Alteration Zone image (threshold)

Clay minerals

0.19 19

5
OH-bearing rocks 4

Calcite-bearing rocks 3
Quartz-bearings rocks 2

Sedimentary rocks 1

Proximity to gold mines (km)
<10

0.12 12
3

10–20 2
>20 1

Proximity to favorable contacts (km)
<2

0.10 10
3

2–10 2
>10 1

Proximity to major faults (km)
<1

0.08 8
3

1–3 2
>3 1

Major faults density (km/km2)

0–0.28

0.07 7

1
0.29–0.56 2
0.57–0.84 3
0.85–1.12 4
1.13–1.4 5

Lineaments density (km/km2)

0–0.55

0.06 6

1
0.56–1.11 2
1.12–1.66 3
1.67–2.21 4
2.22–2.76 5

Abbreviation: Gn = Gneisses and migmatites, S = Serpentinites, Omg = Ophiolitic metagabbros, Ms = Metasedimentary ophiolitic mélange
matrix, Mv = Island arc association, Gt = gabbro-tonalite-granodiorite complex, Sg = Syn-tectonic granitoids, Pg = Post-tectonic granitoids,
Pgb = Post-tectonic gabbros, NSS = Nubian Sandstone, WD = Wadi deposits.

 

Figure 8. Gold mineralization potential zones (G.M.P.Z) map of the study area.
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4. Structural Setting and Analysis

The Wadi Hodein shear belt (Figure 9) is a high angle NW-oriented transcurrent shear
zone in the South Eastern Desert. It exhibits a sinistral sense of shear manifested by various
kinematic indicators such as biotite fishes, asymmetric porphyroclasts, S-C structures
and deflected markers [34,40,74]. Evidence for a dextral sense of shear superimposed
on the main sinistral sense of shear was also reported within the W. Kharit–W. Hodein
shear zone [74]. Abdel-Karim et al. [75] described high-grade regional metamorphism
contemporaneous with the regional foliation and intrafolial folds. A later phase was
mainly a dynamic metamorphism associated with the emplacement of ophiolites onto the
gneissic rocks. The Wadi Rahaba–Gabal Abu Dahr and Gabal Arais ophiolites include
imbricate thrust-bounded sheets and slices of serpentinized ultramafic rocks, amphibolite
and metabasalt, embedded in a highly tectonized matrix of talc carbonate, schists and
metasiltstones. According to several authors, the Wadi Hodein area has evolved throughout
four phases of deformation, D1–D4 [11,37–40,61,76]. The D1 deformation phase was an
early NNE–SSW crustal shortening related to arc–arc collision and is manifested by S1
axial planar foliations, WNW-trending tight intrafolial and overturned folds (F1) and SSE-
verging thrusts [37,61]. D2 is expressed in NNW–SSE folds and NNW–SSE crenulation
cleavage (S2). F2 folds have en-echelon geometry and verge towards the WSW [37–39,61].
The NNW–SSE crenulations and kink folds (F2) might have been developed through
oblique non-coaxial deformation of cleaved rocks. D3 was a sinistral transpression along
the NNW–SSE ductile shear zones due to NW-ward nappe stacking and thrusting [37]. D4
was a brittle deformation event that led to formation of the ENE–WSW dextral strike–slip
faults that deformed the preexisting rocks and dislocated the earlier structures [37,61].

4.1. The Gold-Mineralized Shear Zones
4.1.1. Wadi Khashab Shear Zone

The NNW-trending Wadi Khashab shear zone (Figure 9) and related splays cut across
the southwest part of the area, and it dips moderately or steeply to the east. This shear
zone is cut by WNW–ESE and ENE–WSW strike–slip faults. The Wadi Khashab shear zone
hosts several occurrences of gold-bearing quartz veins that are commonly associated with
sericitized and silicified rocks. Of these occurrences, the El-Beida and Wadi Khashab occur-
rences are heavily worked out by artisanal miners at present. The Wadi Urga occurrence
is confined to highly sheared metavolcanic rocks with signs of hydrothermal alteration
along their contacts with a large granodiorite–tonalite intrusion. The ~E–W Urga fault is a
major, fault that dissects the Wadi Khashab shear zone and apparently displaces its trace
~1–2 km right-laterally. Similar parallel structures are abundant north and south of this
major fault. A number of prospective targets, including Wadi Beitan, Wadi Urga Rayan,
Um Teneidab and north Wadi Hutib, have been identified along similar, ~E–W trending
faults, or where the main NNW structural trend is cut by WNW–ESE strike slip faults. To
the north, it seems that this structure may host other unexplored occurrences, based on the
widespread carbonate alteration in the footwalls of the ophiolitic blocks.

4.1.2. Wadi Rahaba Shear Zone

The Wadi Rahaba shear zone (Figure 9) represents an intense NNW-trending, steeply
dipping, brittle-ductile shear zone cutting a generally carbonated mafic–ultramafic rocks
and volcaniclastic successions in the central and northern parts of the study area. The
shear zone also extends to the south, where it hosts the Anbat mine and other scattered
surface mining sites. Towards the east of the Wadi Rahaba shear zone, a major thrust fault
boundary marks the base of a hanging wall block of metagabbro and meta-granodiorite;
and varies significantly from NW-trending and moderately steeply east-dipping in the
central-east to shallow south-dipping and easterly trending in its northeastern part. A
number of parallel, NW-trending, shallow to moderately easterly dipping thrust faults (or
splays) occur immediately west of the Wadi Rahaba shear zone. These thrust faults mark
the western boundary of the gneissic domains and are spatially associated with a number
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of prospective targets. Numerous significant, E–W to ENE trending late cross-faults appear
to offset the major thrust-faults within this area.

Figure 9. Structural map of the Wadi Hodein shear belt.

4.1.3. Wadi Beitan Fault Zone

The Wadi Beitan fault zone (Figure 9) is a major, steeply dipping, WNW-trending
silicified breccia zone with a strike length of some +25 km and is traced across the Um
Eleiga mine area and eastwards. This structure cuts rocks of variable types in the area,
including the Um Eleiga gabbro, Abu Dahr ophiolites and Rahaba gabbro–diorite complex.
This zone converges with a NNW-SSE shear zone to the east and delineates the eastern
structure contact of the island arc and ophiolitic rocks. Hydrothermal breccia and silica
alteration of the host rocks are common along this structure, and abundant zones of
sulfide mineralization with local malachite occurrences are observed. In the vicinity of the
Um Eleiga gold mine, albitization of the gabbroic host rocks are pervasive. Iron oxides
and copper hydro-carbonate are observed in some localities within the Um Eleiga mine
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area. Noteworthy, the Wadi Beitan fault zone could have been genetically linked with the
extensive dike swarms spread over the large are between G. Handusa and G. Nukeiba
northwest of the Abu Dahr ophiolitic massif. These dike swarms overprint the earlier
NNW-SSE structural trend. Numerous basic dikes along the WNW–ESE direction cut the
Um Eleiga gabbro–diorite intrusion and extend eastward to the Abu Dahr ophiolites.

4.2. Deformation Events

The Wadi Hodein shear belt (Figure 9) is a NNW-striking belt (~105 km-long), de-
formed greenschist metamorphosed ophiolites and island arc rocks. It was developed via
four phases of deformation; (i) D1, NNE–SSW crustal shortening, (ii) D2: NE-SW oblique
convergence and transpression, (iii) D3, E–W compressional regime and (iv) D4: extension
tectonics. Lithological layering represents the primary bedding surface (S0) which is still
locally recognizable in the ophiolitic metagabbros and bedded metamudstone as cm-scale
alternating lighter and darker layers.

4.2.1. D1: NNE–SSW Crustal Shortening

N–S shortening and terrane accretion occurred as a result of a collision between the
Gabgaba and Gerf terranes over a ~N-dipping subduction zone [77]. D1 structures are
mainly preserved in the Wadi Khuda gneisses and in the Wadi Khashab–Gabal Sirsir
ophiolitic mélange. Wadi Khuda gneisses represent a small structural window later cut by
tonalite-granodiorite and biotite granite intrusions. In the Wadi Khuda gneisses, quartz–
feldspar-micas gneissosity (S1) strikes ENE–WSW, and dips toward the NNW and SSE
(Figure 10a). The axial plane gneissosity is only evident in the hinges of F1 folds which
represented by metrewide, high-amplitude isoclinal, near recumbent to shallowly dipping
folds. Boudins (B1) are developed on the quartzo-feldspathic layers in banded amphibolites.
They have a symmetric shape and their long axes are parallel to the gneissosity (S1),
suggesting a coaxial strain. The largest F1 fold is an asymmetric, doubly plunging anticline
extending for up to 8 km in the Wadi Khuda gneisses (Figure 9). The axis of F1 major
anticline is displaced by a NNW-striking sinistral strike–slip fault and the southern limb is
superimposed by a NNW-tending anticline (F2). The early thrusts are SSE verging and are
folded during the D2 event. These thrusts are preserved in the Arais ophiolitic mélange,
marking the contacts between Beitan gneisses belt and the ophiolite blocks, as well as the
contact between serpentinites and volcaniclastic metasediments (Figure 9). These thrusts
converge downwards onto a basal S-dipping decollement.

4.2.2. D2: NE–SW Oblique Convergence and Transpression

The D2 deformation phase is manifested by regional foliation (S2), mylonitic foliation
(S2m), major and minor folds (F2), stretching and intersection lineations (L2) and major
thrusts (T2). The structures include small-scale, rootless intrafolial folds (Figure 10b),
shearband boudins (Figure 10b), recumbent (Figure 10c,d), tight isoclinal and sheath folds
along the first-generation ductile shear zone. These structures are largely preserved as
decimetre-scale folds in a transposing and intrafolial foliation (S2) in the Beitan gneisses belt,
schistose metavolcanics and volcaniclastic metasediments. The S2 in foliated metavolcanics
and volcaniclastic metasediments is axial plane schistosity for the F2 folds and is defined
by a strong preferred alignment of actinolite, chlorite and biotite. In the bedding-parallel
quartz veins, asymmetrical “shearband-type” boudins (B2; Figure 10e) and asymmetrical
“domino-boudinaged” quartz veins are common. The shearband boudins (B2) were only
observed in shear zone close to the gold occurrences. Ptygmatic folding is widespread
in the Beitan gneisses (Figure 10f). S2 planes have moderate to high dips predominantly
toward the SW and NE. Around the synorogenic gneissose granites, ophioltic metagabbros
and serpentinite mountainous blocks, the S2 foliations show important changes along
strike or define different geometric patterns. In the central segment of Hodein shear belt, S1
traces strike NW–SE to NNW–SSE to NNE–SSW, whereas they curve back into a NW–SE
orientation to the southwest of Gabal Dahr serpentinite’s peridotites.

254



Minerals 2021, 11, 474

 
Figure 10. Field photographs of structural elements in the study area: (a) gneissosity (S1) in Khuda gneisses defined
by the graiN–Shape preferred orientation of quartz–feldspar aggregates, hornblende and biotite; (b–d) NNW-plunging,
reclined and overturned and recumbent F2 folds and refolded quartz vein in volcaniclastic metasediments of Wadi
Rahaba; (e) asymmetrical “shearband-type” boudinaged quartz veins in volcaniclastic metasediments around Urga gold
occurrence; (f) Ptygmatic folds in Beitan gneisses; (g) Major F2 asymmteric anticline in volcaniclastic metasediments, Wadi
Rahaba; (h) SW-verging volcaniclastic metasediments thrust over Beitan gneisses belt, south of Gabal Arais; (i) NE-verging
serpentinite thrust over volcaniclastic metasediments, Wadi Rahaba.

The L2 lineation plunges have a N25–35◦ W or N40◦ E within the S2 gneissosity and
schistosity and show all the characters of a mineral and stretching lineation. The hinge lines
of microfolds in gneisses, schistose metavolcanics and volcaniclastic metasediments define a
vertical crenulation lineation trending mainly NNW–SSW. A number of large-scale F2 folds
have been mapped, and most of their axes are NNW- or NW-oriented (Figures 10g–i,11a–i).
Other F2 axes may have resulted from later reworking by F3. Axial planar to these folds is a
spaced crenulation cleavage (S2), which is commonly well developed. F2 folds range from
centimeter- to kilometer-scale and are common in Beitan gneisses belt and the ophiloitic
mélanges (Figure 11a–i). These folds are open, asymmetrical to isoclinal and their axes
are nearly upright or plunge NNW or SSW. Some of the F2 fold axes plunge NNE or SSW,
which may have resulted from later slight reorientation by the D3 open folding and/or
the second-generation low-angle ductile shear zone. The axial traces of F2 folds strike
mainly NW–SE or NNW–SSE. A doubly plunging asymmetric F2 anticline in the Wadi
Khuda gneisses dips moderately to NW or SE. A series of WSW-verging thrust faults (T2)
(Figure 9), parallel to the hinges of the largest F2 folds could have formed by progressive
F2 folding in a compressional setting.

255



Minerals 2021, 11, 474

Figure 11. (a,d,g) Landsat-8 OLI band composites RGB-753, (b,e,h) Landsat-8 OLI band ratio RGB-7/6, 6/5, 4/2 highlighted
the different folding types and trends, and (c,f,i) the resultant interpretation maps of the different fold generations (thin lines
for foliation trajectories and red arrows lines are interpreted fold axial traces and major faults (black lines). Gn; gneisses, S;
serpentinites, VCM; volcaniclastic metasediments, MV; metavolcanics, SG; syn-orogenic granites, GD; metagabbro–diorite
complex, PG, post-tectonic granite.

The ophiolitic mélanges in the Wadi Hodein–Wadi Beitan shear belt are thrusted over
each other and over the Beitan gneisses belt (infracrustal rocks) along three major imbricate
thrusts (T2). Three imbricate thrusts are named in this study: the Sirsir–Rahaba thrust, the
Arais imbricate thrust and the Hodein–Beitan imbricate thrusts (Figure 9). The geometry
of Wadi Khashab–Gabal Sirsir ophiolitic mélange is controlled by the oppositely dipping
Sirsir–Rahaba and the southern extension of Wadi Hodein–Wadi Beitan sinistral reverse
shear zone, respectively (Figure 12a–c). Gently to moderately ENE- and WSW-dipping
foliation (S2) forms the dominant fabric that intensifies into belts of mylonites associated
with D2 ductile thrusts. The Sirsir–Rahaba thrust dips ENE and separates ophiolitic blocks
of Gabal Sirsir and the volcaniclastic metasediments of Gabal Anbat (Figures 9 and 12a–c).
The Wadi Hodein–Wadi Beitan imbricate thrust forms an imbricated fan (Figure 12a–c).
Axial planar to tight-to-isoclinal, reclined F2 sheath folds have axes concentrated around
the L2 mineral lineation. To the north of Gebel of Abu Dahr the thrusts mark the tectonic
contacts between the ophiolitic slabs (serpentinites and talc carbonates) and the overlying
metavolcanics and volcaniclastic metasediments. Additionally, Arais imbricate thrusts
control the contact between Arais opoilitic mélange and the Beitan gneisses belt (Figure 9)
and also mark the tectonic contacts between the ophiolitic slices. These NE-dipping thrusts
constitute a backthrust to the WSW-dipping Hodein–Beitan imbricate thrusts.
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Figure 12. (a,d) Landsat-8 OLI band composites RGB-753, (b,e) Landsat-8 OLI band ratio RGB-7/6, 6/5, 4/2 highlighted
ENE–WSW strike slip faults dissected the island arc metavolcanics, (c) the resultant interpretation maps of the different
fold generations (thin lines for foliation trajectories and red arrows lines are interpreted fold axial traces and major faults
(black lines) and (f) Landsat-8 PC3 shows the ENE–WSW dextral strike–slip faults cutting across pre-existing structures and
controlling the drainage system. S; serpentinites, VCM; volcaniclastic metasediments, MV; metavolcanics, SG; syn-orogenic
granites, GD; metagabbro–diorite complex, PG, post-tectonic granite.

Most of the small-scale, tight to isoclinal, asymmetric F2 folds in the Wadi Hodein-
Wadi Beitan imbricate thrusts show top-to-the-ENE thrusting. Many shear sense indica-
tors, including mineral lineations, asymmetric shear folds, asymmetric porphyroblasts,
shearband boudins, S-C fabrics and shear bands indicate that the ophiolite blocks along
Sirsir–Rahaba thrust and Arais thrusts are moved top to WSW and those along Hodein–
Beitan thrusts are moved up to ENE (Figure 13a–c). Each thrust zone comprises several
thrust segments showing anastomosing morphologies and form WSW-dipping tectonic
duplexes. S2 gneissosity in the Wadi Beitan gneisses occur as asymmetrical folds around
these boudins. Migmatitization is common in the shadows of the rotated boudins. The
boudins do not display any foliations but are surrounded by the S2 gneissosity, sug-
gesting that they formed during the D2 deformation. Shearband boudins show a top-to
the-WSW movement.
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Figure 13. Field photographs of structural elements in the study area: (a) Foliation-parallel shearband boudins of quartz
along S2 foliation in volcaniclastic metasediments,Wadi Rahaba, indicating sinistral transpressive shearing along thrust
planes, (b) Metagabbro prophyroclast in volcaniclastic metasediments indicating top-to NE sense of movement along thrust
planes, Wadi Beitan, (c) Asymmetrical folds and shearband boudins of quartz veins along S2 foliation in volcaniclastic
metasediments, Wadi Rahaba, indicating top-to NE sense of movement along thrust planes, (d) Strike–slip shear zones
appear as steep ductile zones in sheared metavolcanics which sheared the S2 foliation. S3 foliation strike N20–30◦ W with
steep dip toward the SW, Wadi Beitan, (e) Crenulation lineation in metasedisment with a subhorizontal plunge to the NNW,
(f) Asymmetric tight and reclined folds in volcaniclastic metasediments, south of Gabal Abu Darh, indicating sinistral sense
of shearing, (g,h) Quartz and metagabbro asymmetric prophyroclast in volcaniclastic metasediments, Wadi Um Teneidab
and Wadi Rahaba, (i) en-echelon folded quartz veins in schistose metavolcanics, Wadi Hutib, indicating sinistral sense
of shearing.

4.2.3. D3: E–W Shortening and Sinistral Shearing

D3 structures are related to transposition and reorientation of the D2 structures. S3
schistosity overprinted the pre-existing S2 schistosity. S3 foliation strikes N20–30◦ W
and dips 60–70◦ to the NE or SW (Figure 12d). Mylonitic foliation in C3 shear zones is
superimposed on the S2 foliation (Figure 13d). The spacing of the strike slip shear zones
varies from a few centimeters to some meters. Kilometer scale NNW-oriented strike–slip
shear zones are commonly developed in the Wadi Khashab–Gabal Sirsir ophiolitic mélange,
especially along Wadi Khashab, along the main planes of Hodein–Beitan shear zone and
Sirsir–Rahaba shear zone (Figure 9). The ophiolitic and metavolcanic rocks on both sides of
the shear zone show S-shaped fault–drag folds (F3), consistent with the sinistral movement.
Quartz veins showing signs of ductile shearing are sulfide-bearing and are associated with
green malachite alteration in places.

The strike–slip shear zones in Hodein shear belt separate the Wadi Beitan gneisses
from the overlying ophiolitic mélange (Figure 9). The mylonitized rocks are characterized
by stretched quartz ribbons with an anastomosing pattern of intervening variably deformed
lenses. The angle between S3 and C3 is often clearly visible and can reach 5◦, indicating
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strong shear values. Asymmetric boudins are developed in the Wadi Beitan banded
gneisses and amphibolite. Mylonitic rocks exhibit subvertical to steeply dipping foliations
(N20◦ W and N40◦ W) and dip steeply to the SW-dipping high-angle S3 foliations in the
high strain zones along the main planes of the Beitan imbricate thrusts and Sirsir–Rahaba
thrust. The S3 foliation is defined by kink bands or spaced cleavage that are parallel to
the F3 axial planes. S3 kink bands are sharp deflections of S2. The high-strain zones
with subvertical foliation planes are subparallel and are oriented NNW–SSW except in
the central part of the Wadi Hodein–Wadi Beitan shear belt where they are deflected into
NNE-SSW. In these high-strain zones, isoclinal and intrafolial folds with shallow plunging
fold hinges and a subvertical axial planar foliation are abundant. Shallow NNW- or SSE-
plunging mineral and stretching lineations are present on the steep foliation planes in the
NNW–SSE striking high-strain zones.

Two distinct types of mineral lineations L3 on the S3 foliations have been recognized
by the measurement of the minerals that grew during D3. The first type, here defined as
L3a, is a SW and SE-plunging mineral stretching lineation along the ENE-verging thrust
(T3). L3a is marked by platy quartz, amphibole fish and feldspar rods. The second type,
here referred to as L3b, is a b-type lineation orientated subparallel to the F3 fold axes. The
L3b is a crenulation lineation with a subhorizontal plunge to the NNW or SSE (Figure 13e).
The D3 deformation produced regional-scale NNW-trending folds (F3) defined by open
folds with nearly vertical axial planes. Superposition of F3 on F2 folds resulted in extensive
NNW-trending tight and reclined folds and NE-trending open folds. The most common
macroscopic shear sense indicators include asymmetric tight and reclined folds (Figure 13f),
sigmoidal porphyroclasts (Figure 13g,h), S-C fabrics, folded and en-echelon quartz lenses
(Figure 13i), shearband quartz boduins and pop up structures. The lineation indicates that
the tectonic transport took place while far-field compression progressed and switched to
oblique thrusting.

4.2.4. D4: Extension and Terrane Exhumation

D4 was a prolonged phase of brittle deformation associated with intrusion and em-
placement of late-orogenic granitoid intrusions and terrane exhumation. During D4, the
Wadi Hodein–Wadi Beitan shear belt was dissected by a number of dextral strike–slip
faults, deformed the post-orogenic granites and the D1–D3 structures. These ENE–WSW
right-lateral strike–slip faults occur in the central part of the Wadi Hodein–Wadi Beitan
shear belt and along Wadi Khuda (Figures 9 and 12d–f). Another major sinistral strike–slip
fault striking NNE-SSW controls the course of Wadi Urga El-Rayan. NW–SE oriented
gold-bearing quartz veins were originated during D2 and were subsequently deformed by
D3–D4 events.

5. Gold Occurrences in the Wadi Hodein Shear Belt

A number of gold occurrences in the Wadi Hodein shear belt are mainly associated
with the high strain zones. The latter are confined to fault-bounded imbricated thrust
sheets of allochthonous ophiolitic blocks. The Roman and Ptolemaic gold occurrences are
confined to deformed granitoid and metagabbro–diorite complexes in the northern and
central parts of the Hodein shear belt. In the following sections, we describe the internal
structures of the mineralized quartz veins and the structural controls of several occurrences,
namely: Wadi Khashab, the El-Anbat mine, the Um Teneidab mine, the Urga El–Ryan
occurrence, the Hutit mine and the Um Eleiga deposit.

5.1. The Wadi Khashab Occurrence

In the Wadi Khashab area (Figure 14a), the ophiolite slices are overthrust on the arc’s
metavolcanic rocks and volcaniclastic metasediments. The serpentinites of Gabal El Beida
form a NW-elongated large belt and slices of different sizes tectonically incorporated in
the volcaniclastic metasediments. The serpentinites form dissected elongated massive
masses with sheared and foliated peripheries. These serpentinite bodies are altered to talc–
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carbonate rocks along the shear zones. Blocks and masses of ophiolitic metagabbros usually
occur within the volcaniclastic metasediments. They locally exhibit weakly developed
foliation and compositional layering. Ultramafic rocks are commonly associated with
pillow and amygdaloid metabasalts. The metavolcanic rocks are represented by strongly
foliated metaandesite, metabasaltic andesite and intermediate to acidic metatuffs [39].

Gold-sulfide mineralization is confined to discrete shear zones of highly silicified,
ferruginated metavolcanics and volcaniclastic metasediments commonly associated with
sulfide-bearing granophyric dikes and quartz± carbonate veins [39]. The Wadi Khashab
zone is a major sinistral strike–slip shear zone, striking NNW–SSE and dipping steeply
(65–75◦) towards the ENE. Rocks along this shear zone are carbonatized and consist
mainly of highly sheared metavolcanics, serpentinites and volcaniclastic metasedimentary
rocks. The wall rock alteration is present as strongly foliated flakes in quartz veins and is
dominated by the silicification and chloritization associated with carbonate [39,78]. The
silicified shear zone (SiO2 > 80%) of the pillow metabasalts is relatively enriched in Au
(25–45 ppm) whereas the carbonatized shear zone (SiO2 < 50%) within the obducted area
of the serpentinite rocks has a very low Au content (0.24–0.45 ppm) [78]. The samples
analyzed by Zoheir [39] yielded 2.1–6.6 ppm Au, and the sulfidized granophyric dikes are
also gold-bearing (0.2–2.1 ppm Au).

5.2. The El-Anbat Deposit

The Gabal El-Anbat–Gabal Sirsir belt consists mainly of heterogeneously sheared
talc carbonate, carbonatized, serpentinite, ophiolitic metagabbro, pillow metabasalts, and
arc metavolcanic and volcaniclastic rocks (Figure 14b). Syn-orogenic metagabbro–diorite,
granodiorite and post-orogenic granitoid intrusions are widespread in the study area.
The serpentinite occurs as large masses, forming the main body of Gabal Sirsir and small
slices incorporated in the volcaniclastic metasedimentary rocks. The serpentinite is variably
altered to talc-carbonate and its contacts with the neighboring volcaniclastic metasediments
and ophiolitic metagabbro are highly sheared. The gold grade in the quartz-carbonate veins
and hydrothermal alteration zones is ~0.3–46 g/t Au [79]. The metavolocanic succession of
the Gabal El-Anbat–Gabal Sirsir area comprises variably sheared metabasalt, metabasaltic
andesite, meta-andesite, metadacite, and metapyroclastic rocks [80].

In the El-Anbat mine area (23◦17′01′′ N, 35◦09′21′′ E), the alteration zones occur as
sheets or lenses along the NW- and NNW-striking thrusts, between the carbonatized
serpentinite and foliated intermediate metavolcanics (Figure 14b). S2 is a regional foliation
in El-Anbat area striking NNW–SSW and dipping moderately or steeply to the ENE and
less commonly to the WSW. The F1 folds are still preserved in ophiolitic metagabbros and
mafic metavolocanics. The F2 folds are major NNW-trending asymmetric left-stepping
folds in the volcaniclastic metasediments. Different styles of minor folds are recognized—
open concentric folds, closed tight folds, symmetric and asymmetric folds, isoclinal folds
and chevron folds. During D3, Conjugate sinistral and dextral strike–slip faults and shear
zones are apparently developed as a component of a major transpression system.

The mineralized shear zones and the bleached sheared host rocks are confined to the
steeply dipping thrusts between carbonatized serpentinites and the underlying volcaniclas-
tic metasediments. These zones are characterized by arrays of recrystallized quartz pods,
fracture-filling ankerite, sulfidized granitic offshoots, boudinage of the granitic bodies,
silicified listvenite masses and intermingling carbonate sericite and malachite veinlets [38],
suggesting significant gold grades in the hydrothermally altered, sheared host rocks. The
analyses indicate that gold is related to mineralized quartz veins (with up to 7.5 g/t Au)
and to pervasively altered wall rocks (with up to 5 g/t Au) [38].
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Figure 14. (a) Geological map of the Wadi El Beida–Wadi Khashab area (modified from Zoheir [39]);
(b) geological map of Gabal El-Anbat–Wadi Hodein area (modified from [38]); (c) geological map of
Um Teneidab area (modified from Hamimi and Sakran, [81]); and (d) geological map of Wadi Urga
El Rayan area (modified from El Baraga, [48]).

5.3. The Um Teneidab Deposit

The Um Teneidab mine (23◦17′01′′ N, 35◦09′21′′ E) is located ~13 km to the southwest
of the Hutit mine and to the west of Gabal Um Teneidab peak. The Um Teneidab area
is underlain by gneisses and migmatites, serpentinite, volcaniclastic metasediments, and
deformed mafic metavolcanic rocks. These rocks are cut by metagabbro–diorite complex
(Figure 14c), as well as unmappable masses and offshoots of post-orogenic leucogran-
ites [12,81]. Serpentinite constitutes the main mass of Gabal Um Teneidab and forms blocks
and slices of variable sizes incorporated in the volcaniclastic metasediments. The mélange
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blocks are randomly distributed, varying from cobbles to mountain size and usually ori-
ented in the NWSE or NNW–SSE directions. The gabbroic rocks in the Um Teneidab mine
area were mapped as island arc, synorogenic metagabbro–diorite complex [12,82] and
as post-orogenic younger gabbros [81]. In the present work, we agree with Hassan and
El-Manakhly [82] and Zoheir et al. [12] and consider the gabbroic rocks in the Um Teneidab
mine area as a variably foliated, metagabbro–diorite complex.

The Um Teneidab metagabbro–diorite complex is dissected by a number of ENE–WSW
and N–S dextral strike–slip faults and WNW–ESE major fractures with no obvious lateral
displacement. The zones in which the leucogranites send offshoots into the gabbroic rocks
(Figure 14c) are characterized by intense shearing and alteration as well as the presence
of abundant quartz veins and felsic dikes. Shearing in the area is predominantly brittle,
with little ductile deformation being experienced, with alteration zones and quartz veins
that are generally controlled by NW–SE shear/fault sets. The subvertical NW- and NNW-
striking milky quartz veins extend up to 250 m with 8 cm to 45 cm thickness and lensoid
morphology. These veins are in part or completely recrystallized. The main lode is a
zone of stockwork of veinlets (70 cm wide) bordered by hydrothermally altered wall rocks
forming together a ~2-m-wide mineralization zone [12]. The gold in these veinlets and the
hydrothermally altered wall rocks occurs as fillings in the microfractures and is scattered
as sliver in altered pyrite and galena. The gold content ranges from 1 to 30 g/t in quartz
veins, whereas the altered wall rocks locally contain ~8 g/t Au [12].

5.4. The Urga El-Ryan Occurrence

The Urga Ryan gold deposit (35◦5′0′′ E and 23◦21′23′′ N) is located at ~3 km to the
south of the intersection between Wadi Urga Ryan and Wadi Hutib. The area around Wadi
Urga El-Ryan (Figure 14d) is underlain by gneisses, volcaniclastic metasediments and
mafic to intermediate metavolcanic rocks. The volcaniclastic metasediments include wide
varieties of metagreywacke, metamudstone, slate, pelitic schists and metaconglomerate
in decreasing order of abundance. They are strongly NW–SE foliated and less commonly
NNE–SSW cleaved [48].

The metavolcanics are composed of repeatedly alternating and interfingered succes-
sions of basaltic flows together with layered andesite and subordinate dacitic flows and
their corresponding metatuffs [48] as well as chlorite schists. The metavolcanic rocks are
variably deformed by km-scale shear zones that led to intense shearing in the NNW–SSE
direction (S2 and S3), overprinting the WNW–ESE schistosity (S1). The metagabbro is
emplaced into both metavolcanics from the northern and western parts and volcaniclas-
tic metasediments from the southern part [48]. The metagabbroic rocks are foliated and
sheared, particularly along the shear zones. The syn-orogenic granites are slightly foliated
and form an elongated intrusion (10 m × 2.5 m width) trending roughly N–S, which forms
discontinuous hills. It is mainly tonalite in composition and is bounded from the west by
the Wadi Beitan gneisses, and by metagabbro from the north. Volcaniclastic metasediments
and metavolcanics border these rocks from the southeastern side. Xenoliths and roof
pendants from metagabbro are enclosed within the syn-orogenic tonalite.

In the Urga El-Ryan occurrence (Figure 14d), the old mining houses spread along the
main Wadi Urga Ryan and their tributaries, possibly reflecting significant mine activities.
The mineralized regions are limited only to NNW–SSE striking and westward dipping
zones of intense shearing in metavolcanic rocks. The quartz vein strikes N–S (355◦) concor-
dantly with the shear zone system and dips at 80◦ E [83]. It was exploited in a deep mine
down to a level of 15 m below the surface. These shear zones (up to 40 m in length and
5–30 cm in thickness) are strongly mylonitized and marked by recrystallized quartz lenses
and asymmetric boudinaged quartz veins [12]. The narrow zones of sheared wall rocks are
characterized variable degrees of hydrothermal alteration. The gold grade is 1 to 7g/t Au
in the quartz veins from the Urga El-Ryan occurrence [84].
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5.5. Hutit Deposit

The Hutit gold deposit occurs in the Wadi Huzama, which is a small tributary of
the larger Wadi Rahaba (Figure 15a). The Hutit mine area is underlain by serpentinite,
mafic metavolcanics, volcaniclastic metasediments, ophiolitic metagabbros, syn-orogenic
metagabbros and post-orogenic granites (Figure 15a,b) [12,48,82,84,85]. Structurally, the
Hutit deposit is controlled by the Rahaba–Sirsir sinistral shear zone and their kilometer-
scale imbricate thrust system (Figure 15b). The SW-directed thrusts bound the ophioltic
blocks and dip moderately or steeply to the NE. Imbricate slices and sheets of serpentinite
are tectonically overlying metavolcanics and volcaniclastic metasediments. The oblique
thrust planes accommodate sinistral displacement and asymmetrical anastomosing and
kinked fabrics. Asymmetric quartz lenses and drag folds indicate a sinistral sense of shear,
whereas subvertical slickensides along the quartz vein walls document the reverse slip of
the hanging wall block. Joints and fractures are abundant in the rock units mainly with
NE–SW and NW–SE directions. Mafic to felsic dikes (basalt, basaltic andesite, andesite,
rhyodacite and dacite) as well as granodiorite dikelike bodies strike NW–SE and less
commonly NE–SW.

Figure 15. (a) Geological map of the Hutit gold mine and surroundings, (modified after from Hassan
and El-Manakhly [82]; Zoheir et al. [12]), (b) Detailed geological map of the main lode in the northern
mine and southern mine (modified after Zoheir et al. [12]). (c) Geological map of Abu Dahr ophiolite
(modified from Ashmawy, [86]), and (d) Geological map of the Um Eleiga gold mine (modified from
Zoheir et al. [41]).
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Two main old mine workings (northern; 23◦27′26′′ N, 35◦11′34′′ E and southern;
23◦27′16′′ N, 35◦11′41′′ E) (Figure 15b) were mapped at the 1:1000 scale by Hassan and
El-Manakhly [82]. The ruins of the separation and grinding plants are still observed in the
northern old mine, whereas the loading station, leaching basins and crusher stages were
observed in the southern mine. In both mines, a main entrance through a horizontal ~E–W
adit leads to the veins at a distance of 20 m or 35 m [12]. The mineralized quartz veins occur
along the thrust contact between the serpentinite masses and the mafic metavolcanics and
volcaniclastic metasediments. Two types of anastomosing and undulating gold-bearing
quartz veins were reported in the mine area, including bluish-gray (common in the northern
mine) and milky quartz veins (dominant in the southern mine). Concerning the ore grade,
Gabra [84] reported 1–36 g/t in samples from quartz veins the southern mine and 1–40 g/t
in quartz veins from the northern mine. Takla et al. [85] reported an average of 20 g/t in
samples from the two different types of quartz veins and 8 g/t Au on average in altered
wall rocks.

5.6. The Um Eleiga Deposit

The Um Eleiga mine (24◦36′44” N, 35◦03′19” E) occurs ~50 km west of the Red Sea
coast. Traces of placer gold workings during Roman–Byzantine and early Islamic times
include hundreds of shallow pits, dumps, ancient mining camps, stone anvils, hammers,
and grinding mills [12,41,83]. The geology of Um Eleiga area is dominated by a 7 km wide
intrusive complex with a gabbroid core cutting the serpentinite-chromitite of Gabal Abu
Dahr and the northern part of Wadi Rahaba–Gabal Abu Dahr ophiolitc mélange. The latter
composed masses and blocks of serpentinized ultramafics, pillow metabasalts and mafic
metavolcanics incorporated within highly tectonised matrix of pelitic and carbonaceous
metasediments. The ophiolite fragments occur as NE-dipping slabs and sheets thrusted
southwestward forming imbricate thrust system. Contacts of the serpentinized ultamfics
with Um Eleiga metagabbros-diorite complex are sharp and irregular. In the upper part of
the Abu Dahr massif, serpentinite contains large masses of serpentinized dunite, sills or
layers of wehrlite, pyroxenite and gabbro [42,86].

The mafic metavolcanic rocks comprise blocks and thrusted slices of metabasalt
and basaltic andesite [42,86]. These rocks structurally overlay the Um Eleiga intrusive
metagabbros-diorite complex and Abu Dahr serpentinized ultramafics (Figure 15c). Pillow
metabasalt occurs in the core of a major fault-propagation fold (Figure 15c) within the
highly tectonized matrix with schists and sheared serpentinite. Pillow metabasalt forms
ellipsoidal, globular and tabular shaped bodies, ranging between 10 cm to 1 m in diameter.
The Um Eleiga intrusive metagabbro–diorite complex is approximately 7 km long and 4 km
across, and encompasses a compositional continuum from gabbro to granodiorite through
diorite and subordinate tonalite (Figure 15d). This complex exhibits a circular zonation, in
which gabbro occupies the core and subordinate granodiorite forms the margin [41]. The
Um Eleiga metagabbro and metabasalt have a tholeiitic to calc-alkaline affinity and are
interpreted to have been formed in a forearc setting [42].

In the Um Eleiga mine, the mineralized quartz veins trend mainly NE–SW or ENE–
WSW and cut the gabbroic rocks in the central part of the complex and extend beyond
the gabbro–diorite boundary [12]. The fault/joint intersections are the main structural
control of intensely hydrothermal alteration zones and high gold contents in the central
part of the Um Eleiga complex [41]. Late barren quartz veins are confined to intersections of
fault and tension gashes in the brecciated gabbro core and trend mainly N–S, NW–SE and
E–W (Figure 15d). Sulfide-bearing quartz veins (5–40 cm thick) cut the metagabbro–diorite
complex and are partially stopped out [12]. Analyses of quartz dumps in several pits
gave gold values up to 28 g/t [82]. According to Takla et al. [85], most of the ancient
workings in the mine area were confined to the old terraces (lithified wadi alluvium) within
and adjacent to the intensely kaolinitised gabbro. Atomic absorption analyses of heavy
concentrates of these old terraces indicated that gold contents were variable from barren to
10 g/t [85].
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6. Discussion

6.1. Remote Sensing Targeting of New Gold Occurrences

The Nubian Shield is a typical example of well-exposed crystalline basement rocks,
and mafic–carbonate–hydrous mineralogical indices were used to extract the representative
pixels in the satellite images. Zoheir et al. [12] used Landsat-8 OLI and ASTER band ratio
images and successfully benefited from the effective absorption features of the mafic
rock-forming minerals and their metasomatic products. Therefore, Landsat-8 OLI and
ASTER data with comprehensive fieldwork were used for mapping geological structures,
lithological units and alteration zones associated with orogenic gold mineralization in the
study area. The image processing techniques of these remotely sensed data maximize the
relatively small differences in the spectral responses of rock forming minerals within a
specific wavelength range [87]. The applied approach includes false band combination
(FCC), band rationing, principal component and mineralogical indices to the Landsat-8
OLI and ASTER data. It is evident that the band math of Landsat-8 (6/7) distinguished clay
minerals, serpentine, and many alteration zones, whereas ASTER (7 + 9/8) demarcated
carbonatized rocks, metavolcanics and metasedimentary rocks.

Landsat-8 FCC of Abrams ratio (RGB-6/7, 4/3, 5/4), Kaufmann ratio (RGB-7/5, 5/4,
6/7) and Chica-Olma ratio (RGB-6/7, 6/5, 4/2) characterized the contacts between the
different rock units in the study area and upgraded the exciting geologic maps (see Figure 4).
Moreover, they deciphered the structural elements especially folding and thrusting in the
Wadi Hodein–Beitan shear belt as well as the ENE-dextral strike slip faulting. The RGB
of the principal component analysis of Landsat-8 (PC2, PC1, PC4 and PC2, PC4, PC5)
and ASTER (PC1, PC2, PC3 and PC6, PC3, PC1) discriminated the rocks consisting of
high contents of Al and/or Mg-OH-bearing minerals and emphasized the contact between
felsic and basic metavolcanics and volcaniclastic metasediments and gneisses along Wadis
Hodein and Beitan (see Figure 5).

The mineralogical indices of Ninomiya [62] (OHI, KLI, CLI and ALI) were used
to characterize the alteration zone in the study area using ASTER data. The resultant
images highlighted effectively the zone of the hydrothermal alterations. In addition, they
stressed the fact that the alteration minerals zones are found in both ductile and brittle
deformation zones where the integration between the structural segments (density and
direction) associated with the presence of the altered minerals may help to localize and
predict new occurrences of gold mineralization. A false-color composite (FCC) ratio image
(OHI, KLI, CLI) was generated. This RGB FCC image shows the OH-bearing rocks (meta-
ultramafic–mafic ophiolites and island arc meta-basic rocks) and the clay-minerals (see
Figure 6). The evaluation of the remote sensing alteration mapping results with field data
using an error matrix approach and Kappa Coefficient shows a very good match, which
indicates the overall accuracy of 88.33% and the Kappa Coefficient of 0.77 for Landsat-8
data and the overall accuracy of 74.10% and the Kappa Coefficient of 0.65 for ASTER data,
respectively (Table 4A,B). It is noticed that the old working gold occurrences are associated
with the high deformation and fracturing zones bounding the sheared ophiolitic belt and
faulted contacts such as El-Beida, Urga Ryan, Hutit and Um Eleiga gold mines. Multi-
source datasets were selected to control factor layers indicating the distribution of gold
mineralization potentiality zones such lithology, alteration zones, proximity to existing
gold mines, proximity to favorable contacts, proximity to major structures (especially
thrusts), faults density maps and lineaments density maps. The seven evidence layers were
derived, analyzed, and integrated in a GIS platform to develop the gold mineralization
model (see Figure 8).
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Table 4. Error matrix for alteration mapping derived from remote sensing data versus field data. (A) Landsat-8 data; (B)
ASTER data.

(A) Landsat-8 Alteration Map Field Data

Classes
Iron

Oxide/Hydroxides OH-Bearing and Carbonate Minerals Totals User’s Accuracy

Iron oxide/hydroxides 52 8 60–87%
OH-bearing and carbonate minerals 6 54 60–90%

Totals 58 62 120

Producer’s accuracy 89.65% 87.10% -

Overall accuracy = 88.33% Kappa Coefficient = 0.77

(B)ASTER Alteration Map

Field Data

Iron
Oxide/Hydroxides

OHI KLI CLI Totals User’s Accuracy

Iron oxide/hydroxides 22 6 1 1 30 73%
OHI 3 20 6 1 30 67%
KLI 1 4 24 1 30 80%
CLI 1 4 2 23 30 77%

Totals 27 34 33 26 120 -

Producer’s accuracy 81% 59% 73% 88% - -

Overall accuracy = 74.10% Kappa Coefficient = 0.65

6.2. Transpressional Tectonics in the Evolution of the Wadi Hodein Shear Belt

The Wadi Hodein shear belt has evolved throughout a multistage deformation history
(D1–D4), in which D2 and D3 were the most dominant. NNE–SSW crustal shortening (D1)
led to development of early ENE–WSW striking S1 gneissosity and F1 doubly plunging
anticline in the Wadi Khuda gneisses. D1 structures in the Wadi Khashab, Wadi El Beida
and Gabal Anbat and Gabal Arais areas exhibit WNW-striking S1 schistosity, F1 minor
tight, recumbent and overturned folds and T1 thrusts. NE–SW oblique convergence and
transpression (D2) led to the development of NW–SE striking S2 regional foliation, S2m my-
lonitic foliation, F2 major kilometer scale anticlines and synclines (see Figures 10–13,16a–d)
and minor open, asymmetrical to isoclinal folds, NW-plunging stretching and mineral lin-
eations (L2) and WSW-verging major thrusts (T2). The major D2 fabrics are represented by
a series of large-scale folds (F2) associated with northwest-vergent foliation (S2), indicating
that the F2 folds formed in response to a NW–SE-oriented stress field.

Figure 16. (a–c) F2 folds superimposed by the upright open F3 folds in the Wadi Hodein shear belt (Wadi Hodein, Wadi
El Beida and Wadi Khashab areas). (d) Sketch block diagram illustrating the structural evolution of the Wadi Hodein
shear belt.
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The Wadi Hodein–Beitan shear belt is cut by a suite of variably deformed granitic
intrusions. Many of these intrusions occur in the vicinity of the major thrusts and are
considered to have emplaced during the regional D2 deformation event. E–W shortening
(D3) produced subvertical NNW-Striking foliation (S3), NNW–SSE thrust dominated strike
slip shear zones (C3), NNW- and ENE-trending folds (F3). L3a is a SW and SE-plunging
stretching lineation along the NNE–SSW T3 minor thrusts. L3b lineation is a crenulation
lineation with a subhorizontal plunge. During D3, the major NNW-oriented shear zones
rooted into a low-angle, deep crustal detachment, delineating the point at which oblique
thrusting is partitioned into separate transpressional strike–slip and reverse-sense shear
zones, i.e., Sirsir–Rahaba, Hodien–Beitan and Um Teneidab–Hutit shear zones. The sinistral
porphyroclasts and NNW-plunging reclined and vertical folds as well as NE-trending open
folds in sheared metavolcanics and volcaniclastic metasediments indicate a transpressive
stress regime including both pure and simple compressional components. The latest
extensional structures (D4) in Hodein shear belt include major brittle strike slip faults
and microfaults and dikes associated with the intrusion of late to post-tectonic granites.
Structures assigned to this deformation phase include ENE–WSW dextral and NNE–SSW
sinistral strike–slip faults.

The newly produced structures map (see Figure 9) shows that the overall structural
setting of the Wadi Hodein shear belt bears a resemblance to an asymmetric flower struc-
tures in which the ophiolitic mélange and the ophiolitie blocks are cut and bounded on
both sides by reverse-slip faults, and strike–slip shear zones. The eastern (Sirsir–Rahaba
and Um Teneidab–Hutit shear zones) and western boundary faults (Hodein–Beitan and
Arais shear zones) correspond to a reverse-sinistral thrusts. The transpressional imbri-
cate thrusts forming the Sirsir–Rahaba, Hodein–Beitan and Arais shear zones dip toward
ENE, whereas those pertaining to the Um Teneidab-Hutit shear zones dip to WSW (see
Figures 9 and 16d). All the shear zones show a moderately sinuous trace in map-view, up
to 2 km-thick band of fine-laminated mylonites, developed in the footwall gneisses and
volcaniclastic metasediments. The high-angle, NNW-oriented thrust-dominated, strike
slip shear zones marked a near-vertical ductile deformation zone rather than an imbricate
structure [88–90]. The thrusts show a typical sequence of propagation in the footwall of the
previous thrust in a piggy-back model. Many kinematic indicators, including asymmetric
porphyroblasts such as “σ-type” augens, and pressure shadows, indicate a sinistral sense
of shearing. The predominance of reverse slip movement over the along strike shearing
suggests a thrust-dominated transpression along the Wadi Hodein shear zone. The NW–SE
to NNW–SSE subparallel Sirsir–Rahaba, Hodein–Beitan, Um Teneidab-Hutit and Arais
strike–slip shear zones exhibit a consistently sinistral sense of shear.

6.3. Structures Controlling Gold Occurrences

The distribution of the gold occurrences is confined to the margins of the Wadi Hodein
shear belt (see Figure 9) especially along the thrust-dominated transpressional major zones
and their splays formed during D3. Conjugate sinistral (N) NW–(S) SE and dextral (E)NE–
(W)SW strike–slip faults and shear zones apparently developed During D3 as a component
of a major transpression system. These conjugate shear zones control the occurrence of
gold in Hodein shear belt. Twisting and anastomosing S2 and T2 thrusts led to NE-trending
F3 open folds and oblique sinistral shear zones on the pre-existing NW-striking thrusts.
The S-C fabrics and asymmetric quartz lenses replicate left-lateral shearing, which resulted
in widespread NE–SW-striking dilation bents within and around the shear zones. At the
Hutit and El-Anbat mine areas, the mineralized quartz veins and the alteration zones
occur along the NW- and NNW-striking thrusts between the carbonatized serpentinite and
foliated metavolcanics and the metavolcanics and volcaniclastic metasediments. In the
Um Eleiga mine, the mineralized quartz veins trend mainly NE–SW or ENE–WSW mainly
along the fault/joint intersections. In the Urga El-Ryan occurrence, the mineralized regions
are limited only to NNW–SSE striking and westward dipping zones of intense shearing
in metavolcanic rocks. In the Um Teneidab deposit alteration zones and quartz veins are
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generally controlled by NW–SE shear/fault sets. In the Wadi Khashab occurrence, the
quartz veins occur as closely spaced swarms running parallel and subparallel to NNW-
trending sinistral strike–slip shear zone of Wadi Khashab.

7. Conclusions

Detailed geological mapping of the Wadi Hodein area was successfully accomplished
by employing different processing techniques, i.e., band combinations, band math (BM),
Principal Component Analysis (PCA), decorrelation stretch and mineralogical indices, to
Landsat-8 OLI, ASTER and ALOS PALSAR data. Field data were integrated with results
of the remote sensing studies, which enabled an updated understanding of the structural
evolution of the Wadi Hodein–Wadi Beitan shear belt. The structural framework of the
Wadi Hodein–Wadi Beitan shear belt was shaped by the superposition of the NW–SE folds
(F2) by the NNW-trending, km-scale tight and reclined folds (F3). The overall configuration
of the investigated shear belt is identical to that of an asymmetrical flower structure in
which the ophiolitic mélange and the ophiolitic blocks are cut and bounded on both
sides by reverse slip and strike–slip shear zones. The field studies showed that most of
the gold mineralization is mainly associated with quartz veins within extensive sinistral
transpressional shear zones assigned to the last ductile deformation event (D3) in the
evolution of the entire shear belt. This event was characterized by strong stretching and
mylonitic lineation, abundant undulatory shear zones and shear foliation disturbance. The
gold-bearing quartz veins are hosted by narrow, steeply SW- and NE-dipping NNW- and
NW-trending mylonitic zones that are characterized by a steeply NNW-plunging mineral
lineation. This may imply the important role of oblique convergence in the formation of
the auriferous quartz veins.

The processing flow chart introduced in this study has identified areas with the
potential for unexplored gold occurrences and helped to illustrate the controls of the
distribution of gold mineralization sites. The processing results were classified into five
categories, from very high to very low potentiality zones. Gold mineralization is here
interpreted to show preferential distribution along the Wadi Hodein–Wadi Beitan shear
belt. The most important conclusion of this study is that gold mineralization in the Wadi
Hodein–Wadi Beitan shear belt was mostly confined to steeply dipping strike–slip shear
zones in the marginal parts of the shear belt. The occurrence of gold-bearing quartz
veins in central shear zone is not evident so far. A conceptual model for testing new and
unexplored targets of gold–quartz veins in the region translates the coincidence of shear
zones, alteration and acid dikes to highly potential zones for new and possibly important
gold occurrences in the study area.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/min11050474/s1: Figure S1: Field photographs showing the different rock units in the study
area; (a) and (b) hornblende gneiss alter-nating with bands of biotite gneiss forming ENE-trending
ridges along Wadi Khuda, (c) banded amphibolite from Beitan gneisses belt, (d) contact between
hornblende gneisses and gneissose granite from Beitan gneisses belt (e) car-bonated ophiolitic
serpentinite enclosing small bodies of listivenitized ultramafites (dark ridges) from Wadi Rahaba,
(f) small prophyroclast of ophiolitic metagabbro between volcaniclastic metasediment (lower) and
serpentinite (up-per) from Wadi Rahaba; Figure S2: Field photographs showing the different rock
units in the study area: (a) pillowed metabasalts from Wadi Khuda, northeast of Gabal Abu Dahr;
(b) ellipsoidal Pillowed metabasalt from Wadi Hutib; (c) serpentinized peridotites of Gabal Arais
thrusted over the Beitan gneisses belt and are intruded by a small mass of alkali feldspar granite;
(d) syn-orogneic gabbro-diorite intruded the gneisses of Wadi Khuda; (e) post-orogenic biotite granite
intrudes volcaniclastic metasediments along Wadi Rahaba; (f) syn-orogonic granodiorite intrudes
volcaniclastic metasediments along Wadi Beitan, 3.1. Data and Processing Techniques; Figure S3:
Flowchart of the remote sensing and GIS methodologies adopted in the present study; Figure S4:
Lithological discrimination using (a) ASTER (RGB-431) and (b) grey scale ASTER band ratio (7 + 9/8);
Figure S5: False-color composite of principal component analysis (PCA) of (a) Landsat-8 RGB-PC2,
PC1, PC4 and (b) ASTER RGB-PC1, PC2, PC3; Figure S6: Model Builder of the geospatial thematic
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maps used to locate the high potential zones for gold mineralization in the study area; Table S1:
Eigenvector loadings of principal component analysis for Landsat-8 OLI data; Table S2: Eigenvector
loadings of principal component analysis for ASTER data; Section S1: Data and Processing Techniques
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