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Tiago Araújo, Paulo Chagas and João Alves, Carlos Santos, Beatriz Sousa Santos and Bianchi

Serique Meiguins

A Real-World Approach on the Problem of Chart Recognition Using Classification, Detection
and Perspective Correction
Reprinted from: Sensors 2020, 20, 4370, doi:10.3390/s20164370 . . . . . . . . . . . . . . . . . . . . 135

v





About the Editors

Kyandoghere Kyamakya

Kyandoghere Kyamakya is currently a full professor of transportation informatics and deputy

director of the Institute for Smart Systems Technologies at Universitaet Klagenfurt in Austria. He is

actively conducting research involving modeling, simulation, and test-bed evaluations for a series

of concepts applied amongst others, but not exclusively, in the context of Intelligent Transportation

Systems. In his research does involve a series of fields such as nonlinear dynamics, systems

science, machine learning / deep learning, nonlinear image processing, neurocomputing and partly

telecommunications systems. He has co-edited more than 8 books and has so far published more

than 100 journal papers and some hundreds conference papers.

Fadi Al-Machot

Fadi Al-Machot finished his PhD in computer science at Alpen-Adria University Klagenfurt in

November 2013 and his habilitation in applied computer science at the University of Lübeck in 2020.
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Document imaging/scanning approaches are essential techniques for digitalizing doc-
uments in various real-world contexts, e.g., libraries, office communication, management
of workflows, and electronic archiving. Such a digitalization step plays an important role
in decreasing costs and increasing the efficiency of document management systems.

Document management systems require document imaging/scanning approaches to
convert hard-copy documents/images into digital files. However, document management
systems are complex systems consisting of database servers and any document analysis
related processes. The term document management refers to the database-supported
management of electronic documents. A basic application of document management in
the narrower sense is the digital files, in which information from various sources is either
extracted or fused and refers to multiple system categories and their interaction in the
broader sense.

Furthermore, the added value of such systems arises when documents have to be
retrieved and/or analysed after some time due to legal requirements, and such a re-
trieval/analysis can be avoided or be related to financial penalties that can be significant
for the industry. Moreover, costs and efforts can be reduced by retrieving documents.
Increasingly, document imaging systems are being used as the base for organizational
programs. The completion of tasks, orders, etc., is thus supported in logical and temporal
sequences as workflows.

Since the conversion is not merely an image, Optical Character Recognition (OCR)
is consecutively involved in recognizing and extracting the information contained in the
document images. The documents can then be indexed and the extracted information can be
transferred to a document management system for further processing. However, the OCR
system does not show promising performance whenever images might be curved, distorted
(e.g., by noise, blur, low contrast, and shadow), skewed, or have insufficient resolution,
resulting in the loss of valuable image assets for character identification. Particularly
hard distortion conditions occur nowadays when document images are acquired by using
smart phone cameras. This means that while the image is accessible, the document might,
however, not always be clearly readable.

In the state-of-the-art, there are many approaches to overcome the challenges of
digital imaging/scanning systems: for example, utilizing self-learning systems with simi-
larity/embedding vectors, neural models, and deep learning. Furthermore, pattern recog-
nition can be used in two ways: (a) to determine the location of a predefined pattern in
a larger image area, e.g., in a pick-and-place application where a vision system finds the
object or the bar code and transmits the position to a robot; and (b) to focus classification
on the nature of the visible object at a given location, e.g., in the case of text recognition
where the position of each character is known but where it is necessary to determine which
letter or digit is present.

Generally, high quality captured document images are required due to a series of
challenges related to the performance of the visual sensors and, for camera-based captures,

Sensors 2021, 21, 5849. https://doi.org/10.3390/s21175849 https://www.mdpi.com/journal/sensors1
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difficult external environmental conditions encountered during the sensing (image captur-
ing) process. Such document images are mostly hard to read, have low contrast, and are
corrupted by various artifacts such as noise, blur, shadows, spot lights, etc., just to name a
few. To ensure an acceptable quality of the final document-images that can be perfectly
digitalized and involved in various high-level applications based on digital documents,
the sensing process must be made much more robust than the raw capture result generated
by a purely physical visual sensor. Thus, the physical sensors must be virtually augmented
by a series of additional pre-processing and/or post-processing functional blocks, which
mostly involve, amongst others, advanced machine learning techniques.

This book emerging from the Special Issue "Document-Image Related Visual Sensors
and Machine Learning Techniques” can be viewed as a result of the crucial need for
document management systems. Such technologies are being applied in various fields or
different domains and parts of the world to address challenges that could not be addressed
without the advances made in these technologies. The Special Issue includes nine papers
submitted in response to the call for papers. The Special Issue includes impactful papers
that present scientific concepts, frameworks, architectures and innovative ideas on sensing
technologies and machine-learning techniques to overcome the challenges of document
imaging/scanning, test detection, text recognition and documents clustering.

Overall, these papers can be grouped into the following three categories/groups:

• Visual Sensing;
• Document scanning and imaging;
• Document clustering and classification.

1. Visual Sensing

In [1], the authors propose a sensing concept for reliably classifying different types
of houses. For this challenging endeavour, they propose/introduce a novel convolutional
neural network architecture involving multi-channel features extraction. The developed
deep-learning model was trained with 600 images, verified with 200 images, and tested
with 400 other images. The performance (accuracy, precision, and so on) reached by the
proposed CNN model is at least 8% higher than that of the related models from the previous
state-of-the-art, which have been involved in the rigorous benchmarking.

The authors of [2] suggest a composite filtering system for using consumer depth
cameras at close range. The proposed method comprises three key components which
work together to remove various forms of noise. The system is GPU-accelerated and does
not use window smoothing. The proposed approach has been tested by using both Kinect
v2 and SR300. The results demonstrate promising results and have exceptionally high
real-time accuracy, allowing it to be used as a pre-processor for real-time human-computer
interaction and real-time 3D reconstruction.

2. Document Scanning and Imaging

Given the wide range of image binarization methods available and their various
implementations and image types, it is not easy to consider a single standardized threshold
approach to be the right option for all images. There is still a lack w.r.t. deciding which
binarization methods are prone to increase OCR accuracy. As a result, the concept of
using robust combined steps is discussed in the work presented in [3] , whereby the
benefits of different techniques are integrated/merged though including some recently
suggested approaches focusing on entropy filtering and a multi-layered stack of regions.
The experimental results obtained for the WEZUT OCR Dataset, a dataset of 176 non-
uniformly illuminated text images, clearly confirm both the feasibility and utility of the
proposed solution, resulting in substantial improvement in recognition accuracy.

The work in [4] proposes a low-cost scanner for capturing multispectral paper images.
Here, the authors modify a sheet-feed scanner by adding an external multispectral light
source made up of narrow-band light-emitting diodes to its internal light source (LED).
The modification does show promising results, coupled with compactness and low cost.
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The prototype design can be transformed into a fully functional portable product that can
be used for multipurpose document analysis.

3. Document Clustering and Classification

In [5], the authors propose a scene text recognition algorithm using a text location
correction (TPC) module and an encoder-decoder network (EDN) module. The TPC module
converts the slanted text unto a horizontal text, and the EDN module then identifies the
content of the flat text. For evaluation, the authors used both the ICDAR2013 and IIIT5K
datasets. The experiments and the related evaluation results show promising results, and
they additionally show that the proposed approach is capable of recognizing a wide range
of odd text. The proposed two network modules improve the precision of abnormal scene
text detection according to ablation studies.

The paper [6] introduces a Deep Convolutional Neural Network (DCNN)-based real-
time supervised learning strategy for document classification that aims to reduce the
influence of negative document image issues such as signatures, labels, logos, and hand-
written notices. The authors propose a data augmentation strategy that uses the secondary
dataset RVL-CDIP to normalize the imbalanced dataset. DCNN features are extracted
using the VGG19 and AlexNet networks that are then fused, optimized, and modified by
removing the redundant features using the Pearson correlation coefficient-based technique.
The proposed approach is evaluated on the Tobacco dataset, whereby it shows promising
classification results using a cubic support vector machine classifier.

In [7], the authors propose a text recognition Convolutional Neural Network (CNN)
architecture that is adaptive to text scale to solve this problem. They use multi-stage
convolution layers to extract multi-resolution feature maps in order to avoid missing details
and to keep the feature size constant. The evaluation of the proposed model is performed
using 7152 natural scene images containing texts. The main improvement is to introduce a
multiple Region Proposal Network (RPN) to detect texts from different resolution feature
maps. The suggested system outperforms the faster R-CNN by more than seven points on
the F-score in the conducted experiments. Furthermore, the proposed approach produces
findings that are similar to those of other methods. As a result, they have comprehensively
tested the efficacy of the proposed approach, especially for text scales.

In [8], the work proposes a clustering approach in Wireless Multimedia Sensor Net-
works (WMSN). The aim is to overcome the problem of feature extraction from incomplete
data. Therefore, the researchers of this work suggest (a) the use of the optimally constructed
variational autoencoder networks for feature extraction from incomplete data, (b) improv-
ing the clustering output by using the High-Order Fuzzy C-Means algorithm (HOFCM),
and (c) recovering the missing data by using low-dimensional latent space of the variational
autoencoder. The experiments on different datasets show that the proposed algorithm
improves the clustering accuracy for incomplete data and fills in missing features properly.

The research in [9] contributes in detecting and recognizing charts. The proposed
system automates the process by using perspective detection and correction. These methods
transform a blurred and noisy input into a simple chart that is ready for data extraction.
Different models have been tested for classification and detection, e.g., Xception, ResNet152,
VGG19, MobileNet, RetinaNet, and Faster Region-Based Convolutional Neural Network
(R-CNN). The authors collected 21,099 chart images from Google, Baidu, Yahoo, Bing, AOL,
and Sogou for evaluation. The total number of charts’ classes is 13. The obtained results
and the evaluation metrics in this work show that chart recognition methods can be applied
for real-world applications.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The core objective of this paper is to develop and validate a comprehensive visual sensing
concept for robustly classifying house types. Previous studies regarding this type of classification show
that this type of classification is not simple (i.e., tough) and most classifier models from the related
literature have shown a relatively low performance. For finding a suitable model, several similar
classification models based on convolutional neural network have been explored. We have found out
that adding/involving/extracting better and more complex features result in a significant accuracy
related performance improvement. Therefore, a new model taking this finding into consideration has
been developed, tested and validated. The model developed is benchmarked with selected state-of-art
classification models of relevance for the “house classification” endeavor. The test results obtained
in this comprehensive benchmarking clearly demonstrate and validate the effectiveness and the
superiority of our here developed deep-learning model. Overall, one notices that our model reaches
classification performance figures (accuracy, precision, etc.) which are at least 8% higher (which is
extremely significant in the ranges above 90%) than those reached by the previous state-of-the-art
methods involved in the conducted comprehensive benchmarking.

Keywords: classification; house architecture type classification; house type classification;
convolutional neural networks

1. Introduction

Most visual sensors integrate an image classification related functional bricks. Indeed, image
classification is one of the branches of computer vision. Images are classified based on the information
abstracted from a series of sequential functional processes, which are preprocessing, segmentation,
feature extraction, and finding best matches [1]. Figure 1 roughly illustrates both the input (s) (i.e., an
image or some images) and the output of the classifier module. It gets a color image as input and it
returns the house-type label, which may be, for example, a bungalow, a villa, a one-family house, etc.
Various factors or artefacts in the input images may result in a significant reduction of the classification
confidence. Some examples: artifact in image like garden, poor view of image or their neighbor’s houses.
Worth mentioning is that object classification from visual sensors generated images is a functional
brick of high significance in a series of very practical and useful use cases. Some examples of use-cases,
just to name a few, are found in real-world robotic applications, such as image/object recognition [2],
emotion sensing [3], search and rescue missions, surveillance, remote sensing, and traffic control [4].

Automatically recognizing the architectural type of a building/house from a photo/image of
that building has many applications such as an understanding of the historic period, the cultural

Sensors 2020, 20, 5672; doi:10.3390/s20195672 www.mdpi.com/journal/sensors
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influence, a market analysis, city planning, and even a support of the price/value estimation of a given
building [5–7].

Various candidate known image classification concepts/models can be used for performing this
house classification endeavor.

Classifier

Figure 1. The “House type” classification’s overall process pipe (Source: own images).

Thus, as we have a classifier model, the model should be optimized w.r.t. to a related
loss function. In this case, we use one of the most famous loss functions, which has been often
used for classifications tasks, the so-called categorial cross entropy [8,9]. Equation (1) presents this
chosen loss function:

L(y, ŷ) = − 1
N

M∑
j=1

N∑
i=1

[
yi,j log

(
ŷi,j

)]
(1)

where L is the chosen loss function; N is the number of class categories; M is the number of samples;
yi, j relates to the different true labels; and ŷi, j relates to the different predicted labels. During the
training process, the model will be optimized in a way such that the minimum value of the objective
function L in Equation (1) is reached. Subsequently, the model shall be tested and verified.

There are several traditional image classification schemes such as SVM (support vectors machine),
just to name one, which can theoretically/potentially be used [10]. However, most of them are
not robust enough to capture and learn the relatively very complex patterns involved here in the
house classification task although some of them (e.g., SVM) have been proven to be universal
approximators. Therefore, one should use/involve truly much high-performing concepts to solve
this very difficult/challenging classification task at hand [10]. It is also shown that combining those
traditional methods with dynamical neural networks like cellular neural networks can result in a
significant performance improvement. For example, Al Machot et al. [11] showed that combining
SVM with cellular neural networks considerably improves the SVM performance; this new resulting
hybrid model can thus be used as a very fast and robust detector/classifier instead of using the sole
SVM model.

In the recent years, the use of convolutional neural networks (CNN) has been increasing at a fast
rate for classification and various data processing/mining tasks [12–19]. The input/output data can
be represented as arrays or as multi-dimensional data like images. At the heart of a CNN network,
we have convolution operators by which the input values in each layer are convoluted with weights
matrices [20]. After/before these operations, other operations like sub-sampling (e.g., Max-pooling) or
“batch normalization” can be used [17,21]. This process can be repeated and thereby creates several
layers of a deep neural network architecture. The last layer is finally connected to a so-called “fully
connected” layer. In addition, the network can have some additional channels for different features
like putting RGB channels or an edge or blurred image as additional channels [22–26]. The main idea
behind this complex structure is based on filtering non-appropriate data. Each filter which is applied

6
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will remove some uninteresting/non-appropriate data. Therefore, it results into a smaller network
structure and thus the training requires less time as this technique will shrink the searching area.

The Convolutional Neural Network concept was first introduced by Yann LeCun et al. [17] in
the 1980s. This model has been created based on both convolutional and sub-sampling layers.
Although this model was introduced in the 1980s, it was not yet used popularly in the first
years, as computing’ processing power and other resources were still very restricted and limited.
But nowadays, those restrictions have been removed due to the recent “computing”-related
technological advances/progress and one has seen various usages/applications of such neural networks
for significantly large problems.

The model developed and used in this paper is based on a CNN architecture, whereby, however,
features are extracted through different input channels. In Section 2, we briefly discuss some related
works of relevance for house classification. Our novel model is then comprehensively explained in
Section 3. Thus, in Section 4, our model is tested and compared with another relevant models while
using/involving the very same test data and the results obtained are comprehensively analyzed and
discussed. To finish, in Section 5 concluding remarks are summarized.

2. Related Works

Numerous approaches for image classification have been presented over the years. In 1998,
LeCun et al. [27] presented a convolutional neural network model to classify handwritten digits.
This model (called LeNet-5) comprises three convolutional layers (C1, C3, C5), two average pooling
layers (S2, S4), one fully connected layer, and one output layer (see Figure 2). This model involves
sigmoid functions to include/consider nonlinearity before a pooling operation. The last layer
(see output layers) is using a series of Euclidian Radial Basis Function units (RBF) [28] to classify
10 digits amongst 10 possible classes.

LeNet-5 and LeNet-5-(with distortion) reached after extensive experiments an accuracy of 0.95%
and 0.8%, respectively, on the MNIST data set. However, by increasing both the resolution of an image
and the number of classes of a classification endeavor, the machine needed for computing consequently
requires more powerful processor systems (e.g., GPU units) and a much deeper convolutional neural
network model.

A

Input

32x32

Convolution

C1:Feature maps

6@ 28x28

Subsampling

S2:Fmaps

6@14x14

C3:Fmaps

16@14x14 S4:Fmaps

16@5x5 C5:layer

120

F6:

Layer84

Output

10

Convolution Subsampling
Full connection

Full Connection Gaussian connections

Figure 2. Architecture (our own redrawing) of the LeNet-5 model [27].

In 2006, Geoffery Hinton and Salakhutdinov showed that the neural network with multiple
hidden layers can improve the accuracy of classification and prediction by improving different degrees
of abstract representation of the original data [29].

In 2012, Krizhevky et al. [30] introduced a large deep CNN (AlexNet). The AlexNet model is
much bigger than LeNet-5 with the same acritude (see Figure 3). This model has 5 convolutional layers
and 3 fully connected (FC) layers. The rectified linear unit (ReLU) and the FC layers enables the model
to be trained faster than similar networks with tanh activation function units. They also added a local
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response normalization (LRN) after the first and the second convolutional layer; that enables the model
to normalize information. They further added a max-pooling layer after the fifth convolutional layer
and after each LRN layer. The stochastic gradient descent (SGD) method has been used for training the
AlexNet with a batch size of 128, a weight decay of 0.0005 and a momentum of 0.9. The weight decay
works as a regulator to reduce the training error.

Figure 3. Architecture (our own redrawing) of AlexNet [30].

Also, Jayant et al. [31] presented a model to capture the structural relationships based on statistics
of raw-image-patches in different partitions of a document-image. They compared the Relevance
Feedback (RF) model to the Support Vector machine (SVM) model and reported that whenever the
number of features is large, a combination of SVM and RF is more suitable.

In 2016, He et al. [32] proved that increasing the depth of a CNN processor with more layers
increases model complexity on one hand and decrease convergence rate on the other hand. The main
problem happens due to introducing new intermediate weights and a consecutive training need to
optimize them. For solving this problem, they suggested creating a shallower model with additional
layers to perform an identity mapping. Figure 4 shows their core approach.

Conv

Conv Conv

Conv

X

relu

H(x)

X

(a) (b)

+
relu

F(x)+ x

X
Identity

F(x)

Figure 4. The ResNet model (our own redrawing)—(a) Plain layer; (b) Residual block [32].

The H(x) block is defined as H(x) = F(x) + x. Therefore, F(x) + x will be encapsulated as one
block H(x) and the internal complexity of this block shall be hidden. This model is called ResNet and
it did show 6% to 9% of accuracy error in classification against the CIFAR-10 test set.
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Later, the encapsulation layers concept was extended [33] by introducing a so-called
Squeeze-and-Excitation network (SENet). This model reduces the top-5 classification error to 2.25%.
The main architecture of this model is shown in Figure 5. Each block is composed of four functions.
The first function is a convolution (Ftr). The second function is a squeeze function (Fsq) which
performs an average pooling on each of the channels. The third function is an excitation function (Fex)
which is created based on two fully connected neural networks and one activation function (ReLu).
The last function is a scale function to generate the final output (Fscale). It is known that SENet
has shown/demonstrated very good performance results compared to previous models in terms
training/testing time and accuracy.

Figure 5. SENet (our own redrawing)—A Squeeze and excitation block [33].

Regarding house classification, a careful study of previous works shows that an automatic
detection of architectural styles, and furthers, much harder, even of house types/classes is not yet
very well developed/researched [34]. Only few studies on the matter have been published so far.
Mathias et al. [35] published a work using SVM to distinguish 4 classes of architectural style, with
a specific focus on “inverse procedural modeling”—thereby using imagery to create a generative
procedural model for 3D graphics.

Shalunts et al. [36] published a further work to classify the architectural styles of facade windows
(see Figure 6). They did thereby use a relatively small dataset (i.e., 400 images) for classifying
the architectural styles of buildings through related typical windows in three classes which are:
Romanesque, Gothics, and Baroque. Ninety images of the dataset were used for training (i.e., 1/3 of the
data of each class).

Le
ar

ni
ng

Figure 6. Learning visual words and classification (our own redrawing) scheme [36].
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Xu et al. [37] developed a 25-class dataset from Wikimedia and used a model involving HOG that
classified through the Multinomial Latent Logistic Regression (see Figure 7). Their model was able to
find the presence of multiple styles in the same building through a single image. Notably, they included
the “American Craftsman” (one of the house styles used in this work) as a class. Both groups (of
authors) lastly mentioned noted the acute absence of a publicly available dataset for architectural
style recognition.

Figure 7. Schematic illustration (our own redrawing) of an architectural style classification using the
Multinomial Latent Logistic Regression (MLLR) [37].

In 2015, Lee et al. [38] published a work in which they have used a large dataset of nearly 150 k
Google Street View images of Paris, combined with a real estate cadaster map to date building façades
and discover the evolution of architectural elements over time (see Figure 8). Their approach used HOG
descriptors of image patches to find features correlated with a building’s construction time period.

 

Figure 8. Sample chain graph (our own redrawing). Elements in adjacent periods are fully connected
with weights depending on their co-occurrence, while the source and sink connect to every node with
weights that penalize the number of skipped periods. Here, the shortest path (in red) skips pre-1800
and 1915–1939 because they lack the long balconies of the other periods. (For clarity, this visualization
shows only four periods (instead of ten), and only some source and sink edges [38]).
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In 2016, Obeso et al. [39] presented a work based on convolutional neural network (CNN) using
sparse features (SF) to classify images of buildings in conjunction with primary color pixel values
(see Figure 9). As a result, their mode achieved of 88.01% accuracy.

Figure 9. CNN’s architecture (our own redrawing), conformed by four convolutional layers,
three pooling layers, two normalization layers and two fully-connected layers at the end [39].

We conclude from previous studies that house classification requires very sophisticated
classifier models, which shall cover all aspects of the related problem/task and it further becomes
evident that CNN is very good candidate for filling this gap (i.e., solving this tough classification task).

3. Our Novel Method/Model

The basic problem formulation has been graphically presented in Figure 10 which essentially
underscores the goal of the CNN deep neural model to be developed. However, for reaching the goal
with a sufficient accuracy, a series of problems related to the quality of the input “house images” must
be solved.

 

 

 

 

 

 

House
Classifier

House 
Detection

(a) (b)

Figure 10. The novel global model is composed of (a) house detection and (b) classification modules.
(Source: our own images).

These problems/issues can be grouped into three different categories (see Figure 11):

• Images, which do not contain a house but only some additional information like garden or trees,
make the house classification difficult. Such images are not appropriate for use for a house
classification endeavor.

• Some images are (maybe) captured from a very poor angle of the house and thus the house is not
well recognizable on them.

• Some house classes have strong similarities with other classes; this is a potential source of
misclassification amongst them.

11



Sensors 2020, 20, 5672

 

Figure 11. Image problems’ illustration: poor view/perspective, more pool garden and/or pool instead
of a view of the house, etc. (Source: our own pictures).

For solving the mentioned problems, our overall model (see Figure 11) is designed with two
modules: (a) a house detection module, and (b) a house classifier module.

The house detection module is responsible for finding/detecting/localizing a house and its
bounding box within the input image. Thus, the result of this module is a bounding box in the
input image. It shall also inform us on how much the image has a similarity to a house if at all.
This module/layer helps the classifier to perform much better. The second module/layer is for house
classification. It may consider all the image or, depending on the outcome of the first module,
consider only an image portion within the bounding box identified by the first module/layer. In the
lastly mentioned case, the image portion is cropped from the original input image and it becomes the
input to be given to the second module for classification.

3.1. House Detection

As explained previously, some images contain either very poor views of the house or/and some
additional, for the classifier non-relevant information. Those issues result in decreasing both precision
and accuracy of our classifier module. Therefore, this module is responsible for finding the image
portion(s) which is/are house views and crop it/them. Figure 11 shows the overall house detection model.
The input image is of size 200 × 200 with three channels. As input images may have different sizes,
each original input image must therefore first be rescaled such as to fit either the width or the heights of
200 pixel; the rest of the image may have no values if the image is not a square ( i.e., or rectangular form).
Therefore, the other parts (with no values) will be black in that case (rectangular form of an original
input image). The output of this model (see Figure 12) is one boundary or bounding box. The image
portion surrounded by the detected “boundary box” will be cropped out and it will the “input image”
for the different classifier models described in Figures 13–15 and the other models involved in the
benchmarking process shown in Section 4.

The house detection model contains three main parts: neural layers, feature extraction layers,
and a Non-Maximum suppression layer. The feature extraction layers/channels (pre-processors)
contain different well-known filters, such as the following ones: Blur filter, Sobel filter, and Gabor filter.
These pre-processing filters help/support the model in taking more attention to aspects of the input
image which are more important and much relevant. It is the convolutional neural network which is
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finding the house boundaries. The last part of the CNN architecture is responsible for creating the final
boundary boxes by selecting a bounding box with 95% or a higher similarly factor and create the final
boundary box based on the Non-Maximum Suppression Algorithm with 0.65 overlap threshold.

 

Figure 12. House detection model based on a convolutional neural network. The output of the
convolutional neural network will be 4 boundary boxes with four house similarity factors. The boundary
boxes with house similarity of 95% will be selected for Non-Maximum suppression with 0.65 overlapping
threshold. The house boundary box will be the output of the Non-Maximum suppression module.
(source of input image: our own image).

3.2. House Classification

The house classification module is designed to classify the input house images into eight
different types. Figure 13 shows the overall house classification model. The input image is 200 × 200
with three channels. Cropped images from the previous module are first rescaled to fit either its
width or its heights in 200-pixel square, and the rest of the model’s input square (of 200 × 200) has
no values. Therefore, those rest parts of the input square are black. The output of this model is a class
number/label.

On the way to developing the very best model for house classification, we created several models
from which to then select the best suitable one for the task at table. These different models are explained
in this section.

3.2.1. Model I

Our first classification model is composed of five convolutional layers. The outputs of those
convolutional layers go into different max-pool layers. Finally, the output of the last max-pool layer
goes into a dense layer, whereby the latest dense layer has eight output neurons, which are representing
the eight house classes (see Figure 13).
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Figure 13. House classification Model I (Source of input image: our own image).
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3.2.2. Model II

The second model, like the previous model, has five convolutional layers. The result/output
of those convolutional layers will go respectively into max pool layers. Finally, the output of the
latest max pool layer will go into the dense layers. The final dense layer has eight output neurons,
which represent our eight house classes. The main difference between these two classifier models are
the preparation/pre-processing layers of this second model.

These pre-processing layers of this second model provide/generate more details and they are
indeed new channels besides the basic the color channels of the input image. These new additional
channels are respectively: Blur 3 × 3, Blur 5 × 5, Blur 9 × 9, Sobel Filter X, Sobel Filter Y, and Intensity
(see Figure 14).

 
Figure 14. The house classification Model II (Source of input image: our own image).

3.2.3. Model III

This model has also two main parts: a) neural layers, and b) features extraction layers. The features
extraction pre-processing layers/channels contain different well-known filters such as the following
ones: Blur, Sobel, and Gabor filters (see Figure 15). Here too, these pre-processing filters help/support
the model in placing more attention on aspects of the input image, which are more important and
relevant for the classification task.

 

Figure 15. Modell III—Convolutional neural network for house classification. The output of the model
consists of 8 house classes (Source of input image: our own image).

Indeed, the pre-processing filters provide more relevant features to the model, and this significantly
supports the training process to search and find those features, which are pointing directly to those
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parts of the input image, which are most relevant. Figure 16 shows, for illustration, the results of the
image filtering through one of the pre-processing modules, here the Gabor filters. Each Gabor filtered
image is highlighting some interesting features of the image which may help the classifier to better
perform the classification task.

 

 

 

 

 

 

Figure 16. Effect of the Gabor filters on an input house image: The top row images are produced by
Gabor filters with a kernel size 5, sigma 2, and theta having the following respective values: 0, 45, 90
and 135 degrees (from left to right). The bottom row images are produced by Gabor filters with kernel
size 5, sigma 5, and theta having the following respective values: 0, 45, 90 and 135 degrees (from left to
right). (Source of input image: own image).

4. Results Obtained and Discussion

As previously explained, several images were gathered from the Internet and used for both
training and testing after an appropriate labelling: a total of 1200 images; the number of classes was 8
(see Figure 17 for illustration).

 

Figure 17. House types which are considered in this work—here some illustrative examples: (a) is
Farmer house; (b) is bungalow; (c) is a duplex house; (d) is a detached house; (e) is an apartment house;
(f) is a row house; (g) is a villa; (h) is a country house. (Source of input image: our own images).

The developed deep-learning model (made of two modules: see Figures 12 and 15) was trained
with 600 images and verified with 200 images and tested with 400 other images. Figure 14 shows
the classification confusion matrix with 200 test images obtained by the best classification model
(Figures 12 and 15).

All classifier models have been implemented on a PC with Windows 10 Pro, Intel Core i7 9700K
as CPU, double Nvidia GeForce GTX 1080 TI with 8GB RAM as GPU and 64GB RAM. Here, the
training takes approximately 8 h.

In order to understand and find an objective justification of why the best model is outperforming
the other ones, we conduct a simple feature significance analysis. Hereby, we use the so-called

15



Sensors 2020, 20, 5672

NMI (normalized mutual information) for the input features. Table 1 shows the Normalized Mutual
Information (NMI) scores obtained for the input features. It is clearly shown that by adding more specific
features through the multi-channel pre-processing units/modules, the NMI is thereby respectively
significantly increased.

Table 1. Normalized Mutual Information (NMI) Scores obtained for the input features for the various
deep-learning models used (for the test data sets used in this work).

Model
CNN Model without

Multi-Layer Channels
(Figure 13)

CNN Model with
Multi-Channel Features

(Figure 14)

CNN Model with
Multi-Channel Features

(Figure 15)

NMI 79.5% 84.59% 88.19%

Furthers, Table 2 presents the classification performance scores reached for the three models
referred to in Table 1. Here we use the usual multi-dimensional classification performance metrics,
namely accuracy, precision, F1-Score, and recall). Most of the classes have an interference/similarity
problem with the class “country house”; and it is for this reason often mistaken with other house classes.
Therefore, by changing our target function from “Top-1” to “Top-2”, our confusion matrix is
changed/improved and most of the “similarity” problem is significantly solved/reduced (Figures 18
and 19). Indeed, for practical use cases for which this classification may be relevant (e.g.: assessing
the value of a given house for sales or for other purposes), using a “Top-2” classification may be
fully sufficient.

Table 2. Comparison of our novel model’s classification performance through different traditional metrics.

Model
CNN without

Multi-Layer Channels
(Figure 13)

CNN with
Multi-Channel Features

(Figure 15, Top-1)

CNN with
Multi-Channel Features

(Figure 15, Top-2)

Accuracy 86.5% 94.5% 96.4%
Precision 86.6% 94.2% 96.9%
F1 Score 86.7% 94.0% 96.1%

Recall 87.7% 93.9% 95.9%

Figure 18. Confusion matrix of the results obtained from Model III while using 200 test images.List
of classes: FH is farmer house; B is bungalow house; DH is duplex house; OFH is one family house;
MFH is more family house; RH is raw house; V is villa; and CH is country house.
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Figure 19. Top-2 Confusion matrix of the results obtained by Model III while using 200 test images.
List of classes: FH is farmer house; B is bungalow house; DH is duplex house; OFH is one family house;
MFH is more family house; RH is raw house; V is villa; and CH is country house.

In Table 3, the performance of our novel classifier model is compared to that of some very relevant
previous/related works. These results clearly show/demonstrate that our novel method (which involves
the above discussed multi-channel pre-processing features extraction) has the clearly best performance
when compared to the various other models from the relevant recent literature.

Table 3. Comparison of our novel model’s performance with that of several other state-of-the-art
classifier models published in previous/recent works from the relevant literature.

Model
Mathias

(Involving
SVM) [35]

Montoya
Obesso

(Involving
CNN) [39]

ResNet-18
[40]

ResNet-34
[40]

CNN without
Multi-Layer

Channels
(Figure 13)

CNN with
Multi-Channel

Features
(Figure 15, Top-1)

CNN with
Multi-Channel

Features
(Figure 15, Top-2)

Accuracy 77.1% 88.1% 78.1% 79.8% 86.5% 94.5% 96.4%
Precision 76.9% 87.7% 78.0% 80.1% 86.6% 94.2% 96.9%
F1-Score 76.5% 87.9% 77.8% 77.8% 86.7% 94.0% 96.1%

Recall 75.3% 88.2% 77.9% 75.8% 87.7% 93.9% 95.9%
Memory

Usage 200 MB 100 MB 24 MB 34 MB 20 MB 67 MB 67 MB

Processing
Time 100 ms 12 ms 11 ms 12 ms 9 ms 10 ms 10 ms

One can see in Table 3 that our first CNN model without any additional preprocessing is much
faster than all other models. However, after adding the pre-processing modules (for additional features)
to our first model, the classification performance increases. This can also be seen in Table 1. In addition,
both memory and processing time increase after adding the pre-processing layers.

In order to improve the overall classification performance of the housing prediction, the developed
model has been divided into two modules: the pre-processors module, and the deep-learning module.
The experimental results obtained show that this novel model significantly improves the classification
performance. The price is, however, that more memory is consumed (although not very excessive) and
the processing time slightly increases.

17



Sensors 2020, 20, 5672

5. Conclusions

In this paper, a new CNN model for house types classification has been comprehensively developed
and successfully validated. Its performance has also been compared to that of some recent very relevant
previous works from literature. We can say clearly state that our novel classification model has a

much better performance w.r.t. classification performance (i.e., accuracy, precision, recall, F1 score),
memory usage, and even, to a large extent, also w.r.t. processing time.

An objective justification/explanation of the superiority of our novel model presented in Figure 15
is also shown through the fact that adding more features through the different pre-processing units
significantly increases the resulting related “NMI scores” metric. Indeed, we thus understand why
adding additional features (through Sobel and Gabor filters) has resulted in significantly increasing the
model’s classification performance (i.e., accuracy, precision, etc.)

Nevertheless, one could observe some misclassifications: a close analysis of the causes of them
may inspire future works to reach a much better classification performance. Indeed, the fact of adding
several pre-processing features extracting channels in the best-performing version of our novel model
has some drawbacks: (a) it uses more memory compared to the (our first) model without those
additional pre-processing channels; and (b) the training time is much longer, comparatively.

In addition, a few classification errors have been observed. These misclassifications appear to
be caused by the fact that certain house classes/types have a very strong similarity to one another.
Examples: class “Villa” and class “Detached house”. This requires and inspires some future/further
deep investigations and a subsequent better definition of house classes or, as a further option, a merging
of some classes, which are visibly too similar to each other. All this does and shall have (in future
works) the potential to make the overall resulting classification performance much more accurate and
more robust against a series of imperfections of the input house images/photos.

Also, the accuracy of the developed model can be further improved by extending by involving
appropriately adapted inspirations involving, amongst others, a series of technical concepts and
or paradigms such as the so-called “Adaptive Recognition” [41], “Dynamic Identification” [42],
and “Manipulator controls” [43].
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Abstract: Using consumer depth cameras at close range yields a higher surface resolution of the
object, but this makes more serious noises. This form of noise tends to be located at or on the edge
of the realistic surface over a large area, which is an obstacle for real-time applications that do not
rely on point cloud post-processing. In order to fill this gap, by analyzing the noise region based on
position and shape, we proposed a composite filtering system for using consumer depth cameras at
close range. The system consists of three main modules that are used to eliminate different types of
noise areas. Taking the human hand depth image as an example, the proposed filtering system can
eliminate most of the noise areas. All algorithms in the system are not based on window smoothing
and are accelerated by the GPU. By using Kinect v2 and SR300, a large number of contrast experiments
show that the system can get good results and has extremely high real-time performance, which can
be used as a pre-step for real-time human-computer interaction, real-time 3D reconstruction, and
further filtering.

Keywords: depth image filtering; point clouds filtering; Kinect v2; depth resolution; close range;
hand pose

1. Introduction

The reasons for the success of consumer depth cameras are low price, acceptable accuracy, lower
learning costs, extensive applicability, and excellent portability. It has been applied in the fields such as
body and facial recognition, 3D motion capture, and has been developing very rapidly.

Most of the depth cameras are based on time-of-flight principle, such as Kinect v2 and SR300.
It can collect the laser spots array reflected by surfaces, and works out the time difference between
emission and reflection to get the distance array of the scene [1,2]. Generally, the array is expressed as
a gray image, and the gray value of the pixel is generated by the depth value of the position according
to certain rules.

According to the principle of perspective, within the unit area, the closer the surface is to the
camera, the more laser points will be reflected, which means that higher measurement point density
will result in higher surface resolution. Although the range could be changed by using Draelos’s
method [3], according to our observation, when a target surface gets close to the nearest limit, for
example, 3D reconstruction of small objects [1], in the point cloud acquired by consumer depth cameras,
there will be some irregular shape of noise areas surrounding or on the edge of the realistic surface (a
surface consisting of laser points reflected by a real object, it is used to distinguish unrealistic surfaces
formed by noise points that should not exist).

In the process of generating point clouds with depth cameras, we found that the closer the distance
is, the more significant the phenomenon is. Figure 1 shows this phenomenon by using the depth
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images of a human hand at different distances. In static applications, these low confidence noise
areas could be filtered effectively in a post-processing stage [4]. However, any time consumption is
undesirable for real-time interactive applications [5–7].

Using a consumer depth camera at close range is a double-edged sword. Developers often aim to
use depth images or video stream for further development, such as reverse engineering [8], human
pose recognition [9–12], and 3D scene reconstruction [13]. In order to obtain a pure depth image with
high accuracy and low noise, one option is to select expensive, high learning cost, and precise optical
equipment (3D time-of-flight (ToF) camera or LIDAR). However, for time and money savings, an easier
way is to place the object closer to get a higher resolution on the surface of the object. In this case,
how to eliminate the noise deterioration caused by close-range use has become a problem that must
be solved.

Traditional methods for reducing or eliminating color image noise are usually based on window
smoothing or sharpening, such as median filtering [14], non-local means filter [15], bilateral filtering [14,
16], joint bilateral filtering [17], etc. The principle is to make a window for each pixel in the image, and
update the center pixel according to the value of other pixels in the window.

Different filters use different window selection methods and updated strategies [18]. However,
the unmodified algorithm transplantation is not very suitable for depth image filtering. For edge noise
of a depth image, joint bilateral filtering with reliable sources (usually from color images) can perform
very well. It can better preserve the edge details of an object [19], but for human hand depth image
filtering it also involves the lighting conditions [20–22] and the color difference of the foreground and
background [23,24].

To fill this gap, in this article we proposed a composite filtering system for eliminating low
confidence noise areas around or on the realistic surface and obtaining relatively pure point clouds
of a human hand within close distance. In order to maximize the retention of raw data for further
use, the system does not use a smoothing filtering algorithm. All the algorithms in the system are
implemented by GPU-assisted parallel computing, thus making the system achieve very high real-time
performance. Finally, the experiment results show that the proposed filtering system could eliminate
the vast majority of noise areas.

Figure 1. Point clouds of the human hand at different distances. The distance values are obtained by
calculating the average of 25 × 25 pixels depth at the center of the hand.

2. Noise Characterization

Severely distorted noise of a close-range collected depth image tends to concentrate on the area of
the image where the depth gradient is large. For a highly integrated device, the calibration method
for laser scanner cannot be used [25], and as a result, the user cannot adjust the data generation
process in most cases (it depends on the camera, SR300 could be allowed to adjust laser intensity and
type of built-in filters), but only using the deep data acquired from the device. Hence an in-depth
understanding of the noise characteristics within the depth images is the first task to build an effective
filtering system.
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The noise in the depth image is actually the sum of spatial noise and temporal noise. The former
can be construed as an inaccurate depth measurement, which mainly includes the zero depth (ZD) that
cannot be measured (like NaN [26]), and the wrong depth (WD) that is far from the actual depth value.
The latter refers to the phenomenon that the measured value fluctuates with time when the depth of
this point does not change, thus, multi-frames are needed to eliminate the temporal noise [27] that may
cause input delay to the interface system. More detailed elaborations are made in [26–29].

For real-time interactive applications, any delay should be avoided, then the best way is to start
with spatial noise and eliminate the low confidence WD areas. Therefore, in this section, according
to shape and location, the noise areas that seriously affect the correctness of point cloud generation
are of the hand surface classified into three types. Two of them are original noise which are shown in
Figure 2, and another one is residual noise which will be described in Section 3.3.

• Outlier noise. This is the point with WD that exists away from the realistic surface, and is usually
randomly distributed in the depth image spatially and temporally, which usually has impacts on
the pass-through filtering [30].

• Edge noise. This kind of noise exists regionally. It can be an unrealistic surface composed of noise
points surrounds the realistic surface, or it can be part of the edge of a realistic surface with WD.
The closer to the blank area, the greater the depth gradient. It would eventually point to the z+ or
z− (the positive or negative direction of the depth value).

• Plaque noise. This is a kind of residual noise. The filtering system may miss some plaque areas
after filtering the first two kinds of noise. Most of the residual plaque areas are isolated and a few
are connected to realistic surfaces.

(a) (b) (c) 

Figure 2. Noise classification. (a) A noisy point cloud image of the human hand at a distance of 800–900
mm. In order to show the details of the noise area, position A in (b) is cut and the section view is
displayed in (c).

Together, these three types of noise constitute a low confidence noise area in depth images. It is
worth noting that the characteristics of the first two noises are not independent of each other, if the
gradient in the window is too large, the extreme points in the same window could be regarded as
outliers. Therefore, in the next section, a composite filtering system will be proposed for these types
of noise.

3. Proposed Filtering System

Based on the analysis of the noise types in the depth image acquired in close range, different
noise characteristics make it difficult for a single filter to perform well. Therefore, a filtering system
consisting of multiple detection modules is proposed in Figure 3. The CPU only needs to obtain the
depth image from the device, and obtain the filtered point cloud data from the GPU and display
them. All filtering algorithms are running in GPU, the calculation part such as standard deviation
(SD) calculation, depth to 3D coordinate conversion follows the calculate-when-using principle to
reduce the read and write frequency of the graphics card memory. By setting a reasonable number of
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loops nloop, it could eliminate most of the low confidence areas, and preserve realistic surfaces. Highly
parallelized algorithms in the filtering system could save the computing resources of CPU and make
the system run in real time.

3.1. Improved Dixon Test

The outliers seriously interfere with the depth value-based hand region truncation, often causing
truncation failure. As for the adjacent points belonging to a same realistic surface, their depth values
are usually very close. For any non-zero point (NZP) p ∈ ID, both value range and the SD of δ(p) could
not be too large, where δ(p) ⊂ ID is the neighbor set of p.

 

Figure 3. Proposed filtering system for hand depth image. The part with GPU algorithms of the system
can be divided into three sub-parts. (1) Data preparation: extract the depth data of all points in the
window corresponding to each thread, and work out their 3D coordinates. (2) Filtering loop body: as
the core part of the filtering system, its main function is to identify the noise points and filter them out.
(3) Data truncation: preserving the foreground and eliminating the depth image of the background.
In addition, the three filtering algorithms proposed for different types of noise areas are marked in
red boxes.

The central idea of the Dixon test is to determine whether extreme points are outliers by calculating
the ratio between extreme point deviation and sample range. Equation (1) shows the Dixon outlier
test method for up to 10 samples [31], where the Qu and Ql are used to identify the maximum and
minimum sample respectively. x1 and xn are the extremes of the arranged samples, and the values of
Qu and Ql could reflect how large the gap is. Different confidence levels (α) correspond to different
limits of Qu and Ql, it can be obtained by looking up the table [31].

⎧⎪⎪⎨⎪⎪⎩
3 < n < 7 : Qu = xn−xn−1

xn−x1
, Ql =

x2−x1
xn−x1

8 ≤ n ≤ 10 : Qu = xn−xn−2
xn−x2

, Ql =
x2−x1

xn−1−x1

, x1, . . . , xn ∈ δ(p) (1)
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However, to some extent, the ratio only reflects the deviation between the extreme point and
cluster of other points spatially. Therefore, there are natural defects in applying it directly to outlier
detection in depth images. The reason is that it cannot reflect the discreteness of depth values of all
points in the window macroscopically. However, the SD, which can reflect the dispersion on the value
of the samples, cannot microscopically reflect the positional relationship between each point and the
cluster. Figure 4 and Algorithm 1 show the improvements of the Dixon test. There are three ways to
determine whether p is an outlier.

 

Figure 4. Improved Dixon test for depth image outlier detection. This algorithm combines the
continuously draining outliers Dixon test and standard deviation (SD) calculation to perform
macroscopic and microscopic identification of the center point.

Algorithm 1 Outliers Detection

Input: δ(p) Output: Stat(tid), true for noise point
1: count NZPs: nNZP ← counter(δ(p)) 10: if p ∈ H then
2: if nNZP < k then 11: return: Stat (tid)← true
3: return: Stat (tid)← true 12: endif

4: endif 13: calculate SD: SD← deviation(H)
5: ascending ordering: H← sorter(δ(p)) 14: if SD > SDmax then

6: nremain← nNZP 15: return: Stat (tid)← true
7: do 16: else

8: remove outliers: DixonTest(H, nremain) 17: return: Stat (tid)← false
9: while k < nremain < n 18: endif

• 1�→ 4�, for any p-centred k × k size window, when the number of NZP nNZP(δ(p)) < k, that is,
there are only at most k− 2 NZPs except p. As is shown in Figure 5, as an outlier, p locates on the
jagged edges or in the blank area, and it can be directly identified as a noise point.

• 1� → 2�→ 4�, the loop body in 2� eliminates the outliers in the sample repeatedly until there are
no more points that can be identified as an outlier. If p is eliminated, then it could be defined as
an outlier.

• 1�→ 2�→ 3�→ 4�, the remaining NZPs in 2� will be sent to an SD calculator to make a macro
evaluation of dispersion. p will be marked as an outlier if the SD is too large.

The improved algorithm not only checks whether the extreme point is an outlier, but the SD test is
also carried out on the set after eliminating all outliers at the same time, which limits the dispersion
of the cluster formed by remaining points. Thus, the macroscopic dispersion and the microscopic
position distribution in the window could be simultaneously detected.

25



Sensors 2019, 19, 3460

Figure 5. The locations of the points determined to be eliminated. For window areas with a small
number of non-zero points, most of them are outliers or located on the jagged edge. This figure shows
this case with k = 5. Other sizes of windows are similar.

3.2. Edge Noise Filtering Approach

For depth images, the maximum depth gradient within a window should be limited by the line of
sight. Thus, if any p is determined as an edge noise point, the maximum gradient in any p-centered
window should be larger than a specific value.

In addition, this type of noise area can be eliminated by the approach which is shown in Figure 6.
According to nNZP(δ(p)), the determination of edge noise point will be based on the following
three cases.

• nNZP(δ(p)) < k, when p locates at the jagged edges, p is defined as a noise point.
• 1.nNZP(δ(p)) = k, if NZPs is arranged as a straight-line, p is defined as a noise point.
• nNZP(δ(p)) > k, in this case, fitting a plane π to G(δ(p)) by using the least-square method,

where G(∗) is the converted 3D global coordinates of δ(p). Let S(G(δ(p)),π) be the SD of the
vertical distances from G(δ(p)) to π, and α(π,λ) be the angle between π and sight plane λ. If
S(G(δ(p)),π) > Sπ or α(π,λ) > αp, define p as a noise point.

Figure 6. Edge noise filtering. Identification of this kind of noise points is mainly based on the relative
position between non-zero points (NZPs).

When nNZP(δ(p)) ≤ k, the algorithm makes noise point judgments for the number and distribution of
NZPs. In another case, the algorithm fits NZPs into a three-dimensional plane, and the decision is
made by the angle of the plane and the dispersion of the distance between the plane and NZPs. sp and
αp are the given threshold values for judging p’s state. Selecting the appropriate threshold will help
the system to separate the realistic area from the noise area.

3.3. Plaque Noise Filtering Approach

Part of the plaque noise areas is a kind of residual noise, and they come from the residual part
filtered by the above steps. Most of them are isolated and located in the areas that are supposed
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to be blank as an unrealistic surface. There are also some plaques connected to the realistic surface,
which means that the serial algorithm for keeping the hand area by comparing the length of the chain
code [32,33] will not always be effective. However, the use of a larger window is likely to cause
excessive elimination of the hand area. Therefore, a method for orthogonally detecting the number of
consecutive non-zero points is presented in Figure 7 to eliminate the plaque area.

As shown in Figure 7, threads are opened for each p ∈ ID to search the adjoining continuous NZPs
along rows and columns respectively, and obtain the numbers npx and npy which stand for how many
NZPs are connected to p in the direction of rows and columns (including itself). By putting limits on
npx , npy , and their product mp, respectively, all plaque areas could be marked. The pseudo-code for one
thread is shown in Algorithm 2.

Figure 7. Orthogonally detecting the number of consecutive non-zero points of p.

Algorithm 2 Plaque Noise Area Detection

Input: ID, npymin, npymin, mpmin
Output: Stat(tid), true for noise point

1: row search: Xsearcher (npx, ID)
2: col search: Xsearcher (npy, ID)
3: mp = npx × npy

4: if npx < npxmin||npy < npymin||mp < mpmin then

5: return: Stat (tid)← true
6: else

7: return: Stat (tid)← false
8: endif

4. Experiments

To the best our knowledge, studies based on a non-smooth filter specially used for filtering the
high noise point clouds generated by consuming depth cameras when used at close range have not
been reported. Therefore, for comparison, we employed the standard median filter (SMF) and skin
color based depth image classification (SCBDIC) (a fused method presented in [34,35]). Its principle
is to register the depth and color image, and then remove the unrealistic surface from the point
cloud by recognizing the skin color region. However, to obtain universal experimental results, all the
experiments were carried out in an indoor fluorescent light environment, and the lighting conditions
were not deliberately improved.
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All experiments were conducted on a computer with an Intel Core i7 4770 @ 3.6 Ghz CPU and
a Nvidia GTX 1060-6 GB graphics card. The depth sequence was captured using a Kinect v2.0 with
resolution 512 × 424 at 30 fps and a SR300 with resolution 640 × 480 at 30 fps. The programming
environment was Visual Studio 2017 with CUDA 9.2 version.

To prove the validity of our filtering system, we experimented with Kinect v2 and SR300 on hand
depth images at different distances. Figure 8 shows the comparison of the proposed filtering system
with the other two filters when using Kinect v2. A large amount of edge noise (marked by the blue
circle) exists in the original depth image, which constitutes the unrealistic surfaces in the point cloud.
However, the part of the color image corresponding to these unrealistic surfaces was not the skin color
area, so they could be well removed by SCBDIC. However, the outliers and edge noise located inside
the realistic surface (marked by the gray and black circle) could not be filtered out. More seriously,
under different light and different angles, the colors had different changes, which can cause many
hand areas (marked by the red circle) to be incorrectly recognized, resulting in over-filtering. On the
contrary, SMF seems to be ineffective for such large noise areas, and can only filter out some outliers.
The change in window size could not provide a better filtering effect, so we present the filtering effect
of SMF when k = 3 in Figure 8.

Figure 8. Comparisons at different distances by using Kinect v2.

The proposed filter does not depend on other input sources. As long as the parameters are set
reasonably, it can recognize almost all the noise areas and outliers then eliminate them. Even at a
close distance of 500 mm, it still produces good results. By querying the judgment status of each
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sub-filtering algorithm, one type of noise area is not only recognized by its corresponding filtering
algorithm, more often, it is recognized by both outlier filtering and edge noise filtering algorithms at
the same time. This is because the region recognized as edge noise usually has high SD, which is also
one of the characteristics of outlier noise. The reason why p is only recognized as edge noise is that the
area where it is located is relatively smooth, but the angle between the fitted plane and the plane of
view is too large. In addition, the reason why p is only recognized as an outlier is that in its window,
the depth value of p is significantly different from other NZPs, and the values of other NZPs are not
much different.

Since point clouds from SR300 hardly produce the realistic surfaces, the SMF that can filter out
part of the outliers. Visually, this effect gets better as the filter window increases. As is shown in
Figure 9, the edge noise area in orange circle and the outlier in gray circle are smoothed by SMF, and
other noise areas in blue circles were also improved to some extent. However, at the same time, the
gap between the two fingers (marked in red circle) was filled. At the same time, the depth values of
almost all points were changed. This is equivalent to introducing a new error source. The proposed
filtering system eliminated almost all edge noise regions without changing the depth value any point
and preserved the raw depth data.

 
Figure 9. Comparisons at different distances by using SR300.
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Figures 10 and 11 show three views of the filtering effect of point clouds by using Kinect v2
and SR300 respectively. For two kinds of equipment with totally different noise characteristics, the
proposed system can maintain a good filtering effect. It means that the proposed filtering system has
certain universality by setting appropriate parameters. To get better results globally, the determination
of the parameters of the filtering system requires a lot of experiments. We present the parameters used
in the experiments in this paper which are listed in Table 1.

Figure 10. Three views of the filter result (Kinect v2).

Figure 11. Three views of the filter result (SR300).

To evaluate the stability and real-time performance of the system, 1000 frames of continuous images
were recorded as experimental material, and the run time for each frame was stable at 5 milliseconds,
and the filtering effect video is updated as the supplementary material. Since all algorithms in this
proposed filtering system adopt the parallel structure, the running speed of the system is not very
sensitive to the resolution of depth image and more determined by GPU performance.
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At the same time, it also has excellent performance in stability. In Figure 12, 18 frames of different
hand postures are shown, and most of them have very good filtering effects. However, it is noteworthy
that, when a gradient of a part of the realistic surface gets too large, the system may determine it as an
edge noise area and eliminate it. The frame in a red box indicates this situation.

 

Figure 12. Comparisons of different hand gestures.

5. Conclusions

When collecting depth images with a consumer depth camera, the noise interference becomes
more serious as the object approaches. In order to eliminate these noise areas and obtain a correct
pure raw point cloud with high resolution of the object, we proposed a new filtering system for using
consumer depth cameras at close range in this paper.
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We classified the noise areas into three types, outlier noise, edge noise, and plaque noise. By
analyzing the characteristics of these three noise types, we specially designed a filtering algorithm for
each noise type: (1) an improved Dixon test algorithm for filtering outlier noise, (2) a three-dimensional
plane fitting method to eliminate edge noise, and (3) an algorithm based on searching for the number
of adjacent joints for the plaque noise. All algorithms adopted the parallel structure, which greatly
improved the efficiency of the filtering system. The running speed of nearly 200 frames per second can
meet the application of most real-time interactive systems. We tested the filtering system using two
different depth cameras, and the filtering effects were much better than the other two filters involved
in the comparison. This shows that the proposed filtering system has certain universality. At the same
time, we also presented the system parameters that can achieve a better global filtering effect with the
two cameras. Finally, in order to test the stability of the filtering effect, we used 1000 frame continuous
hand depth images as experimental materials. The filtering effects show that the system can effectively
eliminate most of the noise areas, and 18 of them were selected to present the filtering effect.

Excellent real-time, good filtering effect, and a certain degree of universality enables the proposed
filtering system to be used as a pre-step for real-time human-computer interaction, real-time 3D
reconstruction, and further filtering.

Table 1. Experimental parameters.

Dis.\Para. k nloop α Sp npx
npy

mp Sπ αp

Kinect v2

500 mm 3 20 0.1000 4.3 7 7 25 3 75
600 mm 3 20 0.1000 4.55 5 5 25 3 75
700 mm 3 15 0.1000 4.8 5 5 25 3 75
800 mm 3 15 0.1000 5.05 4 4 16 3 75
900 mm 3 10 0.1000 5.3 4 4 16 3 75

1000 mm 3 10 0.1000 5.55 4 4 16 3 75

SR300

400 mm 3 10 0.1000 2.5 5 5 25 1.5 70
500 mm 3 10 0.1000 2.5 5 5 25 1.5 70
600 mm 3 10 0.1000 2.3 5 5 25 1.2 70
700 mm 3 10 0.1000 2.2 4 4 16 1 70
800 mm 3 10 0.1000 2.2 4 4 16 1 70

Future Works

In the future, on the one hand, we will try to develop a method to evaluate the filtering effect,
which can be used to realize the automatic optimization of system parameters, and increase or modify
some sub-algorithms by using other kinds of cameras to improve the universality of the filtering system.
On the other hand, we will try to develop a new algorithm that replaces the points that are marked as
noise instead of simply removing them, making the filtered point cloud image edges smoother.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/16/3460/s1,
Video S1: filtering effect at close range by using kinect v2.
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Abstract: Image binarization is one of the key operations decreasing the amount of information
used in further analysis of image data, significantly influencing the final results. Although in some
applications, where well illuminated images may be easily captured, ensuring a high contrast,
even a simple global thresholding may be sufficient, there are some more challenging solutions,
e.g., based on the analysis of natural images or assuming the presence of some quality degradations,
such as in historical document images. Considering the variety of image binarization methods,
as well as their different applications and types of images, one cannot expect a single universal
thresholding method that would be the best solution for all images. Nevertheless, since one of the
most common operations preceded by the binarization is the Optical Character Recognition (OCR),
which may also be applied for non-uniformly illuminated images captured by camera sensors
mounted in mobile phones, the development of even better binarization methods in view of the
maximization of the OCR accuracy is still expected. Therefore, in this paper, the idea of the use
of robust combined measures is presented, making it possible to bring together the advantages of
various methods, including some recently proposed approaches based on entropy filtering and a
multi-layered stack of regions. The experimental results, obtained for a dataset of 176 non-uniformly
illuminated document images, referred to as the WEZUT OCR Dataset, confirm the validity and
usefulness of the proposed approach, leading to a significant increase of the recognition accuracy.

Keywords: image binarization; optical character recognition; document images; local thresholding;
image pre-processing; natural images

1. Introduction

The increasing interest in machine and computer vision methods, recently observed in many
areas of industry, is partially caused by the growing availability of relatively inexpensive high
quality cameras and the rapid growth of the computational power of affordable devices for
everyday use, such as mobile phones, tablets, or notebooks. Their popularity makes it possible to
apply some image processing algorithms in many new areas related to automation, robotics, intelligent
transportation systems, non-destructive testing and diagnostics, biomedical image analysis, and even
agriculture. Some methods, previously applied, e.g., for visual navigation in mobile robotics, may be
successfully adopted for new areas, such as automotive solutions, e.g., Advanced Driver-Assistance
Systems (ADAS). Nevertheless, such extensions of previously developed methods are not always
straightforward, since the analysis of natural images may be much more challenging in comparison to
those acquired in fully controlled lighting conditions.

One of the dynamically growing areas of the applications of video technologies based on the use
of camera sensors is related to the utilization of Optical Character Recognition (OCR) systems. Some of
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them include: document image analysis, recognition of the QR codes from natural images [1,2], as well
as automatic scanning and digitization of books [3], where additional infrared cameras may also
be applied, e.g., supporting the straightening process for the scanned pages. Considering the wide
application possibilities of binary image analysis for shape recognition, also in embedded systems with
limited computational power and a relatively small amount of memory, a natural direction seems to be
their utilization in mobile devices. Since modern smartphones are usually equipped with multi-core
processors, some parallel image processing methods may be of great interest as well.

As images acquired by vision sensors in cameras are usually full color photographs, which may
be easily converted into grayscale images (if they are not acquired by monochrome sensors directly),
the next relevant pre-processing step is their conversion into binary images, significantly decreasing
the amount of data used in further shape analysis and character recognition. Nevertheless, for the
images captured in uncontrolled lighting conditions, the presence of shadows, local light reflections,
illumination gradients, and other background distortions may lead to an irreversible loss of information
during the image thresholding, causing many errors in character recognition. Hence, an appropriate
binarization of such non-uniformly illuminated images is still a challenging task, similar to degraded
historical document images containing many specific distortions.

To face this challenge, many various algorithms have been proposed during recent years,
i.e., presented at the Document Image Binarization Competitions (DIBCO) organized during the
two most relevant conferences in this field: the International Conference on Document Analysis and
Recognition (ICDAR) [4] and the International Conference on Frontiers in Handwriting Recognition
(ICFHR) [5]. All competitions have been held with the use of dedicated DIBCO datasets (available at:
https://vc.ee.duth.gr/dibco2019/) containing degraded handwritten and machine-printed historical
document images together with their binary ”ground-truth” (GT) equivalents used for verification of
the obtained binarization results.

Since there is no single binarization method that would be perfect for all applications for
document images, some initial attempts at the combination of widely known approaches have been
made [6], although verified for a relatively small number of test images from earlier DIBCO datasets.
Another interesting recent idea is the development of some methods, which should be balanced
between the processing time and obtained accuracy, presented during the ICDAR 2019 Time-Quality
Document Binarization Competition [7]. Some approaches presented during this competition were also
based on the combination of multiple methods, e.g., based on supervised machine learning, including
texture features, with the use of the XGBoost classifier and additional morphological post-processing,
as well as, e.g., a combination of the Niblack [8] and Wolf [9] methods. Nonetheless, such approaches
typically do not focus on document images and OCR applications, considering image binarization as
a more general task.

Some attempts at the combination of various methods, also using quite sophisticated approaches,
have also been made for the images captured by portable cameras [10–12]. Some of the algorithms have
been implemented in PhotoDoc [13], a software toolbox designed to process document images acquired
with portable digital cameras integrated with the Tesseract OCR engine. A more comprehensive
overview of the analysis methods of text documents acquired by cameras may be found in the survey
paper [14].

Nevertheless, in view of potential parallelization of processing, an appropriate combination of
some recently proposed binarization methods, also with some previously known algorithms, may lead
to relatively fast and accurate results in terms of the OCR accuracy.

Although the most common approaches to the assessment of image binarization are based on
the comparison of individual pixels [15,16], it should be noted that not all improperly classified
pixels have the same influence on the final recognition results. Obviously, incorrectly classified
background pixels located in the neighborhood of characters may be more troublesome than single
isolated points in the background. Regardless of the presence of some pixel-based measures, such as,
e.g., the pseudo-F-measure or Distance Reciprocal Distortion (DRD) [17], considering the distance of
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individual pixels from character strokes, their direct application would require not only the presence
of the GT images, but also their precise matching with acquired photos. Hence, considering the final
results of the character recognition, the assessment of thresholding methods considered in the paper is
conducted by the calculation of the number of correctly and incorrectly recognized alphanumerical
characters instead of single pixels.

One of the main goals of the conducted experiments is the verification of possible combinations of
the recently proposed methods [18–20] with some other algorithms, without a priori training, therefore
excluding some recently proposed deep learning approaches due to their memory and hardware
requirements. To minimize the direct impact of camera parameters and properties on the characteristics
of the obtained image and further processing steps, a Digital Single Lens Reflex (DSLR) camera Nikon
N70 is used to acquire the images. The main contributions of the paper are the proposed idea of
the combination of some recently proposed image binarization methods, particularly utilizing image
entropy filtering and multi-layered stack of regions, based on pixel voting, with additional tuning of
some parameters of the selected algorithms, as well as verification for the developed image dataset,
containing 176 non-uniformly illuminated document images.

The rest of the paper contains an overview of the most popular image thresholding algorithms,
including recently proposed ideas of image pre-processing with entropy filtering [18], background
modeling with image resampling [19], and the use of a multi-layered stack of image regions [20],
as well as the discussion of the proposed approach, followed by the presentation and analysis of the
experimental results and final conclusions.

2. Overview of Image Binarization Algorithms

Image binarization has a relatively long history due to a constant need to decrease the amount
of image data, caused earlier by the limitations of displays, the availability of memory, as well as
processing speed. The simplest methods of global binarization of grayscale images are based on
the choice of a single threshold for all pixels of the image. Instead of the simplest choice of 50%
of the dynamic range, the Balanced Histogram Thresholding (BHT) method may be applied [21],
where the threshold should be chosen in the lowest part of the histogram’s valley. However, this fast
and simple method, initially developed for biomedical images, should be applied only for images with
bi-modal histograms due to some problems with big tails in the histogram, being useless for unevenly
illuminated document images. Kittler and Illingworth proposed an algorithm [22] minimizing the
Bayes misclassification error expressed as the solution of the quadratic equation, assuming the normal
distribution of the brightness levels for objects and background, further improved by Cho et al. [23]
using the model distributions with corrected variance values.

Another global method, regarded as the most popular one for images with bi-model histograms,
was proposed by Nobuyuki Otsu [24]. Its idea utilizes the maximization of inter-class variance
equivalent to the minimization of the sum of two intra-class variances calculated for two groups
of pixels, representing the foreground and background, respectively. A similar approach, although
replacing the variance with the histogram’s entropy, was proposed by Kapur et al. [25]. Since both
methods work properly only for uniformly illuminated images, their modifications utilizing the
division of images into regions and combining the obtained local and global thresholds were also
considered a few years ago [26].

A more formal analysis of the similarities and differences between some global thresholding
methods for bi-modal histogram images, including the iterative selection method proposed by Ridler
and Calvard [27], may be found in the paper [28]. Nevertheless, these methods do not perform well
for natural images, where the bi-modality of the histogram cannot be ensured. A similar problem
may be found applying some other methods developed for binarization of images with unimodal
histograms [29,30], which are not typical for document images as well.

An obvious solution of these problems is the use of adaptive binarization methods, where the
threshold values are determined locally for each pixel, depending on the local parameters, such as
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average brightness or local variance. In some cases, semi-adaptive versions of global thresholding
may be applied as the region based approaches, where different thresholds may be set for various
image fragments. One of exemplary extensions of the classical Otsu’s method, referred to as AdOtsu,
was proposed by Moghaddam and Cheriet [31], who postulated the use of the additional detection of
line heights and stroke widths, as well as the multi-scale background estimation and removal.

The region based thresholding using Otsu’s method with Support Vector Machines (SVM) was
proposed by Chou et al. [32], whereas another application of SVMs with local features was recently
analyzed by Xiong et al. [33]. Some relatively fast region based approaches were proposed recently as
well [34,35], leading finally to the idea of the multi-layered stack of regions [20].

Apart from the above-mentioned method proposed by Kapur et al. [25], some entropy based
binarization methods may be distinguished as well. Some of them, although less popular than
histogram based algorithms, utilize the histogram’s entropy [36,37], whereas some other approaches
are based on the Tsallis entropy [38] or Shannon entropy with the classification of pixels into text,
near-text, and non-text regions [39]. Some earlier algorithms, e.g., developed by Fan et al. [40],
were based on the maximization of the 2D temporal entropy or minimization of the two-dimensional
entropy [41]. Some more sophisticated ideas employ genetic methods [42] and cross-entropy for color
image thresholding, as presented in a recent paper [43]. Another recent idea is the application of image
entropy filtering for pre-processing of unevenly illuminated document images [18], which may be
applied in conjunction with some other thresholding methods, leading to significant improvement,
particularly for some simple methods, such as, e.g., Meanthresh, which is based just on the calculation
of the mean intensity of the local neighborhood and setting it as the local threshold value.

Another simple local thresholding method using the midgray value, defined as the average of
the minimum and the maximum intensity within the local window, was proposed by Bernsen [44].
Although this method may be considered as relatively old, its modification for blurred and unevenly
lit QR codes has been proposed recently [45], based on its combination with the global Otsu’s method.
A popular adaptive binarization method, available in the MATLAB environment as the adaptthresh
function, was proposed by Bradley and Roth [46], who applied the integral image for the calculation
of the local mean intensity of the neighborhood, as well as the local median and Gaussian weighted
mean in its modified versions. A description of some other applications of integral images for adaptive
thresholding may be found in the paper [47].

One of the most widely known extensions of the above simple methods, such as Meanthresh or
Bernsen’s thresholding, was proposed by Niblack [8], who used the mean local intensity lowered by
the local standard deviation multiplied by the constant parameter k = −0.2 as the local threshold.
The default size of the local sliding window was 3 × 3 pixels, and therefore, the method was very
sensitive to local distortions. A simple, but efficient modification of this algorithm, known as the NICK
method, was proposed by Khurshid et al. [48] for brighter images with the additional correction by the
average local intensity and the changed parameter k = −0.1. One of the most popular extensions of
this approach was proposed by Sauvola and Pietikäinen [49], where the additional use of the dynamic
range of the standard deviation was applied. The additional modifications of this approach were
proposed by Wolf and Jolion [9], who used the normalization of contrast and average intensity, as well
as by Feng and Tan [50], using the second larger local window for the computation of the local dynamic
range of the standard deviation. The latter approach was relatively slow because of the application of
additional median filtration with bilinear interpolation. A multi-scale extension of Sauvola’s method
was proposed by Lazzara and Géraud [51], whereas the additional pre-processing with the use of the
Wiener filter and background estimation was used by Gatos et al. [52], together with noise removal
and additional post-processing operations.

Another algorithm, known as the Singh method [53], utilizes integral images for local mean
and local mean deviation calculations to increase the speed of computations. One of the most recent
methods based on Sauvola’s algorithm, referred to as ISauvola, was proposed in the paper [54],
where the local image contrast was applied to adjust the method’s parameters automatically.
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Another modification of Sauvola’s method applied to QR codes with an adaptive window size based
on lighting conditions was recently presented by He et al. [55], who used an adaptive window size
partially inspired by Bernsen’s approach. Another recently proposed algorithm, inspired by Sauvola’s
method, named WANafter the first name of one of its authors [56], focuses on low contrast document
images, where the local mean values are replaced by so-called “maximum mean”, being in fact the
average of the mean and maximum intensity values. Nevertheless, this approach was verified only
for the H-DIBCO 2016 dataset, containing 14 handwritten images; hence, it might be less suitable for
machine-printed document images and OCR applications.

Some other methods inspired by Niblack’s algorithm were also proposed by Kulyukin et al. [57]
and by Samorodova and Samorodov [58]. The application of dynamic windows for Niblack’s and
Sauvola’s methods was presented by Bataineh et al. [59], whereas Mysore et al. [60] developed
a method useful for binarization of color document images based on the multi-scale mean-shift
algorithm. A more detailed overview of adaptive binarization methods based on Niblack’s approach,
as well as some others, may be found in some recent survey papers [61–66].

Some researchers developed many less popular binarization methods, which were usually
relatively slow, and their universality was limited due to some assumptions related to necessary
additional operations. For example, an algorithm described by Su et al. [67] utilized a combination
of Canny edge filtering and an adaptive image contrast map, whereas Bag and Bhowmick [68]
presented a multi-scale adaptive–interpolative method, dedicated for documents with faint characters.
Another method based on Canny edge detection was presented by Howe [69], who combined it
with the Laplacian operator and graph cut method, leading to an energy minimization approach.
An interesting method based on background suppression, although appropriate mainly for uniformly
lit document images, was developed by Lu et al. [70], whereas Erol et al. [71] used a generalized
approach to background estimation and text localization based on morphological operations for
documents acquired by camera sensors from mobile phones. The mathematical morphology was also
used in the method presented by Okamoto et al. [72].

An algorithm utilizing median filtering for background estimation was recently proposed by
Khitas et al. [73], whereas Otsu’s thresholding preceded by the use of curvelet transform was described
by Wen et al. [74]. Alternatively, Mitianoudis and Papamarkos [75] presented the idea of using
local features with Gaussian mixtures. The use of the non-local means method before the adaptive
thresholding was examined by Chen and Wang [76], and the method known as Fast Algorithm for
document Image Restoration (FAIR) utilizing rough text localization and likelihood estimation was
presented by Lelore and Bouchara [77], who used the obtained super-resolution likelihood image
as the input for a simple thresholding. The gradient based method for binarization of medical and
document images proposed by Yazid and Arof [78] utilized edge detection with the Prewitt filter for
the separation of weak and strong boundary points. However, the presented results were obtained
using only the document images from the H-DIBCO 2012 dataset.

Some other recent ideas are the use of variational models [79], fast background estimation based
on image resampling [19], as well as the application of independent thresholding of the RGB channels
of historical document images [80] with the use of Otsu’s method. Nevertheless, the latter method
requires the additional training of the decision making block with the use of synthetic images. Due to
recent advances of deep learning, some attempts were also made [81,82]; although, such approaches
needed relatively large training image datasets, and therefore, their application may be troublesome,
especially for mobile devices working in uncontrolled lighting conditions. Another issue is related to
their high memory requirements, as well as the necessity of using some modern GPUs, which may be
troublesome, e.g., in embedded systems, as well as in some industrial applications.

Recently, some applications of the fuzzy approach to image thresholding were also investigated by
Bogatzis and Papadopoulos [83,84], as well as the use of Structural Symmetric Pixels (SSP) proposed
by Jia et al. [85,86] (the original implementation of the method available at: https://github.com/
FuxiJia/DocumentBinarizationSSP). The idea of this method is based on the assumption that the local
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threshold should be estimated using only the pixels around strokes whose gradient magnitudes are
relatively big and directions are opposite, instead of the whole region.

3. Proposed Method

Apart from the approaches presented during the recent ICDAR [87], some initial attempts at
the use of multiple binarization methods were made by Chaki et al. [6], as well as Yoon et al. [88],
although the presented results were obtained for a limited number of test images taken from earlier
DIBCO datasets or captured images of vehicles’ license plates. The idea of the combination of
various image binarization based on pixel voting presented in this paper was verified using the
176 non-uniformly illuminated document images containing various kinds of illumination gradients,
as well as five common font families, also with additional style modifications (bold, italics, and both of
them) and utilized the combination of recently proposed methods with some adaptive binarization
algorithms proposed earlier, based on different assumptions. The verification of the obtained results
was done with the use of three various OCR engines, calculating the F-measure and OCR accuracy
for characters, as well as the Levenshtein distance between two strings, which was defined as the
number of character operations needed to convert one string into another. All the images were the
photographs of the printed documents containing the well-known Lorem ipsum text acquired in
various lighting conditions.

Assuming the parallel execution of three, five, or seven various image binarization algorithms,
some differences in the resulting images may be observed, particularly in background areas.
Nevertheless, the most significant fragments of document images were located near the characters
subjected to further text recognition. The main idea of the proposed method of the voting of pixels
being the result of the applications of individual algorithms for the same image was in fact equivalent to
the choice of the median value of the obtained binary results (ones and zeros) for the same pixel using
three, five, or seven applied methods. Obviously, one might not expect satisfactory results for the use of
three similar methods, such as, e.g., Niblack’s, Sauvola’s, and Wolf’s algorithms, but for the approaches
based on various assumptions, some of the results may differ significantly, being complementary to
each other.

The preliminary choice of binarization methods for combination was made analyzing the
performance of individual measures for Bickley Diary, Nabuco (dataset available at: https://dib.cin.
ufpe.br/), and individual DIBCO datasets, using the typically used measures based on the comparison
of pixels (accuracy, F-measure, DRD, MPM, etc.) reported in some earlier papers. Since these
datasets, typically used for general-purpose document image binarization evaluation, do not contain
ground-truth text data, the OCR accuracy results calculated for our dataset were additionally used for
this purpose. Having found the most appropriate combination of three methods, the two additional
methods were added in the second stage only to the best combinations of three methods, and finally,
the next two methods were added only to the best such obtained combinations of five methods.
The choice of the most appropriate candidate algorithms for the combination was made essentially
among the algorithms, which individually led to relatively high OCR accuracy.

Considering this, as well as the complexity of many candidate methods, the combination of two
recently proposed algorithms, namely image entropy filtering followed by Otsu’s global thresholding
described in the paper [18] and the multi-layered stack of regions using 16 layers [20], with NICK
adaptive thresholding [48], was proposed. Each of these methods may be considered as relatively fast,
in particular assuming potential parallel processing, and based on different operations, as shown in
earlier papers.

The application of the stack of regions [20] was based on the calculation of the thresholds for
image fragments, where the image was divided into blocks partially overlapping each other; hence,
each pixel belonged to different regions shifted from each other according to the specified layer, and the
final threshold was selected as the average of the threshold values obtained for all regions to which the
pixel belonged for different layers. The local thresholds for each region were calculated in a simplified
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form as T = a · mean(X)− b, where mean(X) is the local average, and the values of the optimized
parameters were a = 0.95 and b = −7, as presented in the paper [20].

The application of the image entropy filtering based method [18] was conducted in a few
main steps. The initial operation was the calculation of the local entropy, which could be made
using MATLAB’s entropyfilt function, assuming a 17 × 17 pixel neighborhood (obtained after the
optimization experiments), followed by its negation for better readability. The obtained entropy map
was normalized and initially thresholded using Otsu’s method to remove the background information
partially. Such an obtained image with segmented text regions was considered as the mask for
the background subjected to morphological dilation used to fill the gaps containing the individual
characters. The minimum appropriate size of the structuring element was dependent on the font size,
and for the images in the test dataset, a 20 × 20 pixel size was sufficient. Such achieved background
estimation was subtracted from the original image, and the negative of the result was subjected
to contrast increase and final binarization. Since the above steps caused the equalization of image
illumination and the increase of its contrast, various thresholding algorithms may be applied in the
last step. Nevertheless, the best results of the further OCR in combination with the other methods
were obtained for Otsu’s global thresholding applied as the last step of this algorithm.

The algorithm described in the paper [19], used in some of the tested variants, was based on
the assumption that a significant decrease of the image size, e.g., using MATLAB’s imresize function,
caused the loss of text information, preventing mainly the background information, similar to (usually
much slower) low-pass filtering. Hence, the combination of downsampling and upsampling using
the same kernel may be applied for a fast background estimation. In this paper, the best results were
obtained using the scale factor equal to 8 and bilinear interpolation. Such an obtained image was
subtracted from the original, and further steps were similar to those used in the previous method:
increase of contrast (using the coefficient 0.4), negation, and the final global thresholding using
Otsu’s method as well. Although both methods were based on similar fundamentals, the results of
background estimation using the entropy filtering and image resampling differed significantly; hence,
both methods could be considered as complementary to each other.

The last of the methods applied in the proposed approach, known as NICK [48], named after the
first letter of its authors’ names, was one of the modifications of Niblack’s thresholding, where the
local threshold is determined as:

T = m + k · s = m + k ·
√

B , (1)

where m is the local average value, k = −0.2 is a fixed parameter, s stands for the local standard
deviation, and hence, B is the local variance.

The modifications behind the NICK method lead to the formula:

T = m + k ·
√

B + m2 , (2)

with the postulated values of the parameter k = −0.1 for the OCR applications. As stated in the
paper [48], the application of this value of k left the characters “crispy and unbroken” for the price
of the presence of some noisy pixels. The window size originally proposed in the paper [48] was
19 × 19 pixels; however, the suitable parameters depended on the image size, as well as the font size
and may be adjusted for specific documents. Nevertheless, after experimental verification, the optimal
choice for the testing dataset used in this paper was a 15 × 15 pixel window with the “original”
Niblack’s parameter k = 0.2.

Since most of the OCR engines utilized their predefined thresholding methods, which were
integrated into the pre-processing procedures, the input images should be binarized prior the use of
the OCR software to prevent the impact of their “built-in” thresholding. The well-known commercial
ABBYY FineReader uses the adaptive Bradley’s method, whereas the freeware Tesseract engine
developed by Google after releasing its source code by HP company [89] employs the global Otsu
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binarization. In this case, forced prior thresholding replaces the internal default methods of the
OCR software.

4. Discussion of the Results

The experimental verification of the proposed combined image binarization method for the OCR
purposes should be conducted using a database of unevenly illuminated document images, for which
the ground truth text data are known. Unfortunately, currently available image databases, such as
the DIBCO [4], Bickley Diary [90], or Nabuco datasets [87], used for the performance analysis of
image binarization methods contain usually a handwritten text (in some cases, also machine-printed)
subjected to some distortions such as ink fading, the presence of some stains, or some other
local distortions.

Hence, a dedicated dataset containing 176 document images photographed by a Nikon N70 DSLR
camera with a 70 mm focal length with the well-known Lorem ipsum text consisting of 563 words
was developed with five font shapes, also with style modifications, and various types of non-uniform
illuminations. Since the most popular font shapes were used, namely Arial, Times New Roman, Calibri,
Verdana, and Courier, the obtained document images may be considered as representative for typical
OCR applications. Three sample images from the dataset are shown in Figure 1. The whole dataset,
referred to as the WEZUT OCR Dataset, has been made publicly available and may be accessed free
of charge at http://okarma.zut.edu.pl/index.php?id=dataset&L=1.

(a) (b) (c)
Figure 1. Three sample unevenly illuminated images from the dataset used in experiments. (a) with
strongly illuminated bottom part; (b) with regular shadows; (c) with strongly illuminated right side.

For all images, several image binarization methods were applied, as well as their combinations
based on the proposed pixel voting for 3, 5, and 7 methods. Such obtained images were treated as input
data for three OCR engines: Tesseract (Version 4 with leptonica-1.76.0), MATLAB’s R2018a built-in
OCR procedure (also originating from Tesseract), and GNU Ocrad (Version 0.27) based on a feature
extraction method (software release available at: https://www.gnu.org/software/ocrad/). Since the
availability of some other cloud solutions, usually paid, e.g., provided by Google or Amazon, may
be limited in practical applications, we focused on two representative freeware OCR engines and
MATLAB’s ocr function, which do not utilize any additional text operations related, e.g., to dictionary
or semantic analysis.

Each result of the final text recognition was compared with ground truth data (the original Lorem
ipsum text) using three measures: Levenshtein distance, interpreted as the minimum number of text
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changes (insertions, deletions, or substitutions of individual characters) needed to change a text string
into another, as well as the F-measure and accuracy, typically used in classification tasks. The F-measure
is defined as the harmonic mean of precision (true positives to all/true and false/positives ratio) and
recall (ratio of true positives to the sum of true positives and false negatives), whereas accuracy may
be calculated as the ratio of the sum of true positives and true negatives to all samples.

To verify the possibilities of the application of various combinations of different methods,
the results of the proposed pixel voting approach were obtained using various methods. Nevertheless,
only the best results are presented in the paper and compared with the use of individual thresholding
methods. Most of the individual methods were implemented in MATLAB, although some of them
partially utilized available codes provided in MATLAB Central File Exchange (Jan Motl) and GitHub
(Doxa project by Brandon M. Petty). It is worth noting that the initial idea was the combination of
three recently proposed approaches described in the papers [18–20]; hence, the first voting (Method
No. #37 in Table 1 was used for these three algorithms (similar to the OR and AND operations shown
as Methods #35 and #36 in Table 1). Nevertheless, during further experiments, better results were
obtained replacing the resampling based method [19] with the NICK algorithm [48]. To illustrate
the importance of an appropriate choice of individual methods for the voting procedure, some of
the worse results (Methods #39–#41) are presented in Tables 1–3 as well. Further experiments with
additional application of some other recent methods led to even better results.

A comparison of the results obtained for the whole dataset using Tesseract OCR is presented in
Table 1, together with the rank positions for each of the methods. The overall rank was calculated
using the rank positions achieved by each method according to three measures. Method #21 was the
modification of Method #20 [18] with the use of the Monte Carlo method to speed up the calculations
due to the decrease in the number of analyzed pixels. Nevertheless, applying the integral images in
the methods referred to as #14–#20, it was possible to achieve even faster calculations. The results
obtained for MATLAB’s built-in OCR and GNU Ocrad are presented in Tables 2 and 3, respectively.
A comparison of the processing time, relative to Otsu’s method, is shown in Table 4. The reference
time obtained for Otsu’s method using a computer with Core i7-4810MQ processor (four cores/eight
threads), 16GB of RAM, and an SSD disk was 1.77 ms.

Analyzing the results provided in Tables 1–3, it may be clearly observed that the best results were
achieved using the Tesseract OCR, and the results obtained for the two remaining OCR programs
should be considered as supplementary. Particularly poor results could be observed for the GNU
Ocrad software. Among the various combinations based on voting, most of them achieved much
better results than individual binarization methods regardless of the applied OCR engine, proving the
advantages of the proposed approach. Nevertheless, considering the best results, it is worth noting
that the use of only three methods (referred to as #58 in Table 1) provided the best F-measure and
accuracy and the second results in terms of Levenshtein distance being better even in comparison with
the voting approach with the use of five or seven individual algorithms. The Levenshtein distance
achieved by this proposed method was only slightly worse than the result of pixel voting using seven
algorithms (referred to as #61). Considering the worse OCR engines, some other combinations led to
better results, especially for GNU Ocrad, where the application of seven methods referred to as #61 was
not listed even in the top 10 methods. Therefore, the final aggregated rank positions for all three OCR
engines, together with the relative computation time normalized according to Otsu’s thresholding,
are presented in Table 4.
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Table 1. Comparison of the average F-measure, Levenshtein distance, and Optical Character
Recognition (OCR) accuracy values obtained for various binarization methods using the Tesseract OCR
engine for 176 document images (three best results shown in bold format).

# Binarization Method
OCR Measure

Overall Rank
F-Measure Rank

Levenshtein
Rank Accuracy Rank

Distance

1 Otsu [24] 0.6808 60 1469.88 60 0.5179 60 60
2 Chou [32] 0.8032 57 944.68 58 0.6575 57 57
3 Kittler [22] 0.6173 61 1889.86 61 0.3911 61 61
4 Niblack [8] 0.8838 48 243.39 47 0.7906 48 48
5 Sauvola [49] 0.9428 27 96.79 35 0.8955 27 28
6 Wolf [9] 0.9342 33 142.43 41 0.8800 30 36
7 Bradley (mean) [46] 0.9019 43 245.98 48 0.8217 43 45
8 Bradley (Gaussian) [46] 0.8490 51 557.98 54 0.7319 52 51
9 Feng [50] 0.7438 59 950.16 59 0.5908 59 59
10 Bernsen [44] 0.7673 58 724.68 57 0.6104 58 58
11 Meanthresh 0.8203 55 464.19 52 0.6885 55 54
12 NICK [48] 0.9551 24 43.20 25 0.9144 25 25
13 Wellner [91] 0.9134 40 275.10 50 0.8450 40 42

14 Region (1 layer) [20] 0.8858 46 174.98 42 0.7956 45 44
15 Region (2 layers) [20] 0.9236 38 105.19 36 0.8588 38 38
16 Region (4 layers) [20] 0.9344 31 92.14 31 0.8774 32 30
17 Region (6 layers) [20] 0.9359 30 93.24 32 0.8798 31 29
18 Region (8 layers) [20] 0.9341 34 88.88 29 0.8769 35 33
19 Region (12 layers) [20] 0.9343 32 93.33 33 0.8771 34 34
20 Region (16 layers) [20] 0.9339 35 90.65 30 0.8767 36 35
21 Region (16 layers + MC) [20] 0.9079 42 117.16 39 0.8315 42 41
22 Resampling [19] 0.9557 22 37.13 24 0.9156 23 23
23 Entropy + Otsu [18] 0.8418 53 618.51 56 0.7291 55 54
24 Entropy + Niblack [18] 0.8086 56 491.88 53 0.6758 56 56
25 Entropy + Bradley(Mean) [18] 0.9115 41 94.08 34 0.8405 41 39
26 Entropy + Bradley(Gauss) [18] 0.8908 44 188.71 43 0.8057 44 43
27 Entropy + Meanthresh [18] 0.9404 16 46.93 14 0.8899 17 15

28 SSP [85,86] 0.9402 28 111.99 27 0.8915 29 27
29 Gatos [52] 0.6808 49 1469.88 49 0.5179 49 50
30 Su [67] 0.9332 36 62.21 28 0.9772 33 32
31 Singh [53] 0.8945 25 245.57 23 0.8046 24 24
32 Bataineh [59] 0.3905 52 2578.68 51 0.1860 54 51
33 WAN [56] 0.9504 50 45.39 44 0.9080 50 49
34 ISauvola [54] 0.9459 26 80.53 26 0.8955 26 26

35 OR (#20,#22,#23) 0.9294 37 110.91 37 0.8698 37 37
36 AND (#20,#22,#23) 0.8408 54 615.75 55 0.7337 51 53

37 Voting (#20,#22,#23) 0.9576 18 30.44 17 0.9192 18 19
38 Voting (#5,#12,#22) 0.9585 16 31.35 22 0.9207 16 20
39 Voting (#4,#7,#11) 0.8863 45 236.19 45 0.7950 46 46
40 Voting (#4,#11,#22) 0.8844 47 238.95 46 0.7915 47 47
41 Voting (#7,#20,#23) 0.9206 39 141.19 40 0.8544 39 40
42 Voting (#7,#12,#20,#22,#23) 0.9568 20 29.05 12 0.9177 20 18
43 Voting (#12,#20,#23) 0.9617 8 26.82 8 0.9263 8 7
44 Voting (#12,#22,#27) 0.9586 15 30.88 19 0.9208 15 17
45 Voting (#12,#18,#20,#22,#27) 0.9576 19 31.04 21 0.9188 19 21
46 Voting (#5,#6,#12,#18,#20,#22,#27) 0.9617 7 27.11 9 0.9264 7 6
47 Voting (#16,#22,#23) 0.9556 23 30.93 20 0.9156 22 22
48 Voting (#12,#16,#23) 0.9605 10 27.95 10 0.9243 10 11
49 Voting (#7,#12,#16,#22,#23) 0.9580 17 29.52 13 0.9200 17 16
50 Voting (#20, #23, #34) 0.9630 3 26.39 7 0.9289 3 3
51 Voting (#20, #27, #31) 0.9602 12 23.31 5 0.9289 3 4
52 Voting (#20, #23, #28) 0.9623 6 25.52 6 0.9238 12 7
53 Voting (#22, #27, #34) 0.9597 13 22.43 3 0.9277 6 5
54 Voting (#22, #23, #31) 0.9560 21 28.60 11 0.9229 14 15
55 Voting (#22, #27, #28) 0.9630 4 23.11 4 0.9168 21 10
56 Voting (#28, #31, #34) 0.9597 14 30.82 18 0.9232 13 14
57 Voting (#20, #31, #34) 0.9603 11 30.44 16 0.9243 11 13
58 Voting (#12, #28, #34) 0.9660 1 20.44 2 0.9346 1 1
59 Voting (#22, #31, #34) 0.9611 9 30.02 15 0.9258 9 12
60 Voting (#4, #7, #28, #31, #34) 0.9626 5 29.88 14 0.9285 5 7
61 Voting (#12, #20, #22, #23, #28, #31, #34) 0.9653 2 18.51 1 0.9333 2 2
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Table 2. Comparison of the average F-measure, Levenshtein distance, and OCR accuracy values obtained
for various binarization methods using MATLAB’s built-in OCR engine for 176 document images (three
best results shown in bold format).

# Binarization Method
OCR Measure

Overall Rank
F-Measure Rank

Levenshtein
Rank Accuracy Rank

Distance

1 Otsu [24] 0.6306 60 1618.53 60 0.4368 60 60
2 Chou [32] 0.7351 54 1097.47 57 0.5495 55 56
3 Kittler [22] 0.5799 61 2027.23 61 0.3234 61 61
4 Niblack [8] 0.7395 52 455.53 45 0.5787 51 50
5 Sauvola [49] 0.8672 27 267.34 34 0.7655 28 29
6 Wolf [9] 0.8512 30 312.68 39 0.7433 30 31
7 Bradley (mean) [46] 0.8008 41 549.89 49 0.6554 41 43
8 Bradley (Gaussian) [46] 0.7554 47 856.21 55 0.5819 50 51
9 Feng [50] 0.6607 58 1041.55 56 0.4683 57 57
10 Bernsen [44] 0.6640 57 1194.11 58 0.4533 59 58
11 Meanthresh 0.7039 56 663.48 51 0.5212 56 55
12 NICK [48] 0.8589 29 208.87 26 0.7593 29 28
13 Wellner [91] 0.8268 32 470.24 46 0.6985 32 38

14 Region (1 layer) [20] 0.7136 55 455.26 44 0.5515 54 52
15 Region (2 layers) [20] 0.7852 43 286.34 37 0.6499 42 41
16 Region (4 layers) [20] 0.8059 38 249.19 33 0.6790 38 37
17 Region (6 layers) [20] 0.8095 37 249.01 32 0.6841 37 35
18 Region (8 layers) [20] 0.8151 35 239.34 29 0.6919 35 31
19 Region (12 layers) [20] 0.8141 36 241.31 30 0.6908 36 33
20 Region (16 layers) [20] 0.8160 34 242.50 31 0.6932 33 30
21 Region (16 layers + MC) [20] 0.7819 44 305.28 38 0.6429 43 42
22 Resampling [19] 0.8655 28 159.55 18 0.7677 27 26
23 Entropy + Otsu [18] 0.7734 46 786.19 54 0.6161 46 49
24 Entropy + Niblack [18] 0.6372 59 1211.35 59 0.4600 58 59
25 Entropy + Bradley(Mean) [18] 0.8212 33 363.03 41 0.6929 34 36
26 Entropy + Bradley(Gauss) [18] 0.7869 42 525.62 48 0.6398 44 44
27 Entropy + Meanthresh [18] 0.8790 21 149.66 15 0.7879 22 21

28 SSP [85,86] 0.8766 26 235.88 28 0.7802 26 27
29 Gatos [52] 0.7544 48 477.35 47 0.5936 47 46
30 Su [67] 0.8053 39 283.09 35 0.6763 39 39
31 Singh [53] 0.8779 23 185.99 24 0.7822 25 25
32 Bataineh [59] 0.8779 53 185.99 50 0.7822 53 54
33 WAN [56] 0.7461 50 742.53 52 0.5757 52 53
34 ISauvola [54] 0.8835 14 216.48 27 0.7890 20 23

35 OR (#20,#22,#23) 0.8049 40 285.87 36 0.6759 40 40
36 AND (#20,#22,#23) 0.7787 45 765.26 53 0.6269 45 47

37 Voting (#20,#22,#23) 0.8799 18 136.13 9 0.7899 18 14
38 Voting (#5,#12,#22) 0.8767 25 150.70 16 0.7854 24 24
39 Voting (#4,#7,#11) 0.7467 49 437.98 42 0.5887 48 45
40 Voting (#4,#11,#22) 0.7442 51 442.27 43 0.5840 49 47
41 Voting (#7,#20,#23) 0.8310 31 359.44 40 0.7067 31 33
42 Voting (#7,#12,#20,#22,#23) 0.8847 13 134.78 8 0.7977 11 8
43 Voting (#12,#20,#23) 0.8810 17 138.27 11 0.7924 15 12
44 Voting (#12,#22,#27) 0.8792 20 145.94 13 0.7888 21 20
45 Voting (#12,#18,#20,#22,#27) 0.8788 22 130.88 7 0.7892 19 18
46 Voting (#5,#6,#12,#18,#20,#22,#27) 0.8900 8 124.80 4 0.8064 7 5
47 Voting (#16,#22,#23) 0.8798 19 138.04 10 0.7902 17 16
48 Voting (#12,#16,#23) 0.8778 24 139.63 12 0.7868 23 22
49 Voting (#7,#12,#16,#22,#23) 0.8835 15 129.94 6 0.7953 13 10
50 Voting (#20, #23, #34) 0.8966 6 164.73 19 0.8112 6 7
51 Voting (#20, #27, #31) 0.8993 2 118.30 3 0.8185 2 1
52 Voting (#20, #23, #28) 0.8882 10 148.10 14 0.8002 9 9
53 Voting (#22, #27, #34) 0.8966 5 116.29 2 0.8141 5 4
54 Voting (#22, #23, #31) 0.8825 16 173.11 20 0.7905 16 19
55 Voting (#22, #27, #28) 0.8983 3 114.48 1 0.8178 3 1
56 Voting (#28, #31, #34) 0.8894 9 189.82 25 0.7991 10 13
57 Voting (#20, #31, #34) 0.8877 11 182.86 22 0.7971 12 14
58 Voting (#12, #28, #34) 0.8982 4 153.56 17 0.8163 4 6
59 Voting (#22, #31, #34) 0.8852 12 181.83 21 0.7932 14 17
60 Voting (#4, #7, #28, #31, #34) 0.8916 7 185.45 23 0.8025 8 11
61 Voting (#12, #20, #22, #23, #28, #31, #34) 0.9014 1 129.62 5 0.8209 1 1
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Table 3. Comparison of the average F-measure, Levenshtein distance, and OCR accuracy values
obtained for various binarization methods using GNU Ocrad for 176 document images (three best
results shown in bold format).

# Binarization Method
OCR Measure

Overall Rank
F-Measure Rank

Levenshtein
Rank Accuracy Rank

Distance

1 Otsu [24] 0.5622 60 2414.45 59 0.2231 60 59
2 Chou [32] 0.6013 56 1884.73 54 0.3316 56 56
3 Kittler [22] 0.5641 59 2487.22 60 0.2019 61 60
4 Niblack [8] 0.6639 43 953.84 36 0.4531 44 42
5 Sauvola [49] 0.7001 35 1136.26 44 0.4938 36 39
6 Wolf [9] 0.7068 32 1009.59 40 0.5083 34 36
7 Bradley (mean) [46] 0.6074 53 1786.23 52 0.3633 54 53
8 Bradley (Gaussian) [46] 0.5745 57 2151.78 58 0.2909 58 58
9 Feng [50] 0.6050 54 1943.19 55 0.3894 52 54
10 Bernsen [44] 0.5020 61 2969.76 61 0.2263 59 61
11 Meanthresh 0.6576 46 1075.15 42 0.4366 47 44
12 NICK [48] 0.7226 22 872.76 28 0.5362 21 21
13 Wellner [91] 0.6796 38 1214.53 46 0.4638 40 43

14 Region (1 layer) [20] 0.6183 51 1057.44 41 0.4038 50 47
15 Region (2 layers) [20] 0.6749 39 800.10 24 0.4780 38 34
16 Region (4 layers) [20] 0.6995 36 735.78 22 0.5098 33 30
17 Region (6 layers) [20] 0.7069 31 727.24 21 0.5198 28 25
18 Region (8 layers) [20] 0.7079 30 721.76 19 0.5210 27 24
19 Region (12 layers) [20] 0.7065 33 724.13 20 0.5195 29 28
20 Region (16 layers) [20] 0.7094 29 720.84 18 0.5237 24 21
21 Region (16 layers + MC) [20] 0.6661 41 824.98 26 0.4641 39 36
22 Resampling [19] 0.7331 18 690.13 16 0.5556 17 17
23 Entropy + Otsu [18] 0.6422 49 1420.09 49 0.4247 49 50
24 Entropy + Niblack [18] 0.6615 45 1962.02 56 0.4586 41 47
25 Entropy + Bradley(Mean) [18] 0.6247 50 1608.03 50 0.3917 51 51
26 Entropy + Bradley(Gauss) [18] 0.6142 52 1699.44 51 0.3740 53 52
27 Entropy + Meanthresh [18] 0.7558 8 573.63 9 0.5889 8 8

28 SSP [85,86] 0.7171 25 884.47 31 0.5225 25 27
29 Gatos [52] 0.6559 47 1178.52 45 0.4373 46 46
30 Su [67] 0.7020 34 814.40 25 0.5122 32 30
31 Singh [53] 0.7180 24 644.81 35 0.5219 26 29
32 Bataineh [59] 0.6041 55 1869.63 53 0.3609 55 55
33 WAN [56] 0.5695 58 2103.19 57 0.3109 57 57
34 ISauvola [54] 0.7109 28 1089.10 43 0.5068 35 36

35 OR (#20,#22,#23) 0.6879 37 883.67 30 0.4897 37 35
36 AND (#20,#22,#23) 0.6493 48 1390.91 48 0.4342 48 49

37 Voting (#20,#22,#23) 0.7565 7 558.05 6 0.5910 6 6
38 Voting (#5,#12,#22) 0.7422 14 675.09 14 0.5683 14 14
39 Voting (#4,#7,#11) 0.6665 40 937.72 33 0.4577 42 39
40 Voting (#4,#11,#22) 0.6648 42 965.40 37 0.4540 43 41
41 Voting (#7,#20,#23) 0.6636 44 1262.76 47 0.4492 45 45
42 Voting (#7,#12,#20,#22,#23) 0.7615 4 552.84 5 0.5980 4 4
43 Voting (#12,#20,#23) 0.7551 9 588.52 11 0.5883 9 10
44 Voting (#12,#22,#27) 0.7419 15 673.88 13 0.5679 15 15
45 Voting (#12,#18,#20,#22,#27) 0.7520 11 584.39 10 0.5846 11 11
46 Voting (#5,#6,#12,#18,#20,#22,#27) 0.7608 5 552.19 4 0.5968 5 5
47 Voting (#16,#22,#23) 0.7529 10 564.89 8 0.5853 10 9
48 Voting (#12,#16,#23) 0.7494 13 595.03 12 0.5799 12 12
49 Voting (#7,#12,#16,#22,#23) 0.7567 6 559.50 7 0.5906 7 7
50 Voting (#20, #23, #34) 0.7316 19 875.44 29 0.5412 19 19
51 Voting (#20, #27, #31) 0.7673 2 530.68 1 0.6050 2 2
52 Voting (#20, #23, #28) 0.7394 16 715.07 17 0.5587 16 16
53 Voting (#22, #27, #34) 0.7679 1 531.49 2 0.6061 1 1
54 Voting (#22, #23, #31) 0.7273 20 841.39 27 0.5386 20 19
55 Voting (#22, #27, #28) 0.7661 3 537.62 3 0.6037 3 3
56 Voting (#28, #31, #34) 0.7159 27 978.32 39 0.5174 31 33
57 Voting (#20, #31, #34) 0.7235 21 935.28 32 0.5287 22 23
58 Voting (#12, #28, #34) 0.7351 17 784.12 23 0.5504 18 18
59 Voting (#22, #31, #34) 0.7218 23 937.92 34 0.5268 23 25
60 Voting (#4, #7, #28, #31, #34) 0.7170 26 973.15 38 0.5189 30 32
61 Voting (#12, #20, #22, #23, #28, #31, #34) 0.7512 12 676.03 15 0.5761 13 13
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Table 4. Comparison of the overall rank scores for 3 OCR engines and average computational time
relative to Otsu’s method obtained for 176 document images.

# Binarization Method Final Aggregated Rank Computation Time (Relative)

1 Otsu [24] 60 1.00
2 Chou [32] 57 5.74
3 Kittler [22] 61 23.30
4 Niblack [8] 46 75.11
5 Sauvola [49] 33 73.73
6 Wolf [9] 36 76.36
7 Bradley (mean) [46] 47 19.62
8 Bradley (Gaussian) [46] 54 241.61
9 Feng [50] 58 215.20

10 Bernsen [44] 59 197.14
11 Meanthresh 51 39.93
12 NICK [48] 25 70.81
13 Wellner [91] 41 187.90

14 Region (1 layer) [20] 49 29.84
15 Region (2 layers) [20] 38 50.23
16 Region (4 layers) [20] 34 92.39
17 Region (6 layers) [20] 31 145.49
18 Region (8 layers) [20] 30 211.87
19 Region (12 layers) [20] 32 325.05
20 Region (16 layers) [20] 29 441.84
21 Region (16 layers + MC) [20] 40 1232.01
22 Resampling [19] 24 12.48
23 Entropy + Otsu [18] 51 664.87
24 Entropy + Niblack [18] 56 755.11
25 Entropy + Bradley(Mean) [18] 42 706.57
26 Entropy + Bradley(Gauss) [18] 45 932.92
27 Entropy + Meanthresh [18] 21 736.67

28 SSP [85,86] 27 4542.24
29 Gatos [52] 48 2413.68
30 Su [67] 35 6016.56
31 Singh [53] 26 59.78
32 Bataineh [59] 54 44.58
33 WAN [56] 53 400.98
34 ISauvola [54] 27 113.69

35 OR (#20,#22,#23) 37 1138.64
36 AND (#20,#22,#23) 50 1134.25

37 Voting (#20,#22,#23) 12 1136.87
38 Voting (#5,#12,#22) 22 159.17
39 Voting (#4,#7,#11) 43 137.30
40 Voting (#4,#11,#22) 44 130.64
41 Voting (#7,#20,#23) 39 1143.63
42 Voting (#7,#12,#20,#22,#23) 9 1224.28
43 Voting (#12,#20,#23) 7 1191.77
44 Voting (#12,#22,#27) 18 817.40
45 Voting (#12,#18,#20,#22,#27) 15 1455.67
46 Voting (#5,#6,#12,#18,#20,#22,#27) 4 1600.90
47 Voting (#16,#22,#23) 14 793.58
48 Voting (#12,#16,#23) 13 858.17
49 Voting (#7,#12,#16,#22,#23) 11 892.77
50 Voting (#20, #23, #34) 7 1249.60
51 Voting (#20, #27, #31) 1 1247.58
52 Voting (#20, #23, #28) 10 5662.15
53 Voting (#22, #27, #34) 2 887.61
54 Voting (#22, #23, #31) 19 801.04
55 Voting (#22, #27, #28) 3 5286.12
56 Voting (#28, #31, #34) 23 4584.69
57 Voting (#20, #31, #34) 15 745.37
58 Voting (#12, #28, #34) 6 4572.60
59 Voting (#22, #31, #34) 20 190.31
60 Voting (#4, #7, #28, #31, #34) 15 4656.10
61 Voting (#12, #20, #22, #23, #28, #31, #34) 4 5880.53
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Although not all the results of the tested combinations of various methods are reported in
Tables 1–4, it is worth noting that the most successful combinations, leading to the best aggregated rank
positions presented in Table 4, contained one of the variants of the multi-layered stack of regions (#20)
or the resampling method (#19), as well as an entropy based method (#27). Therefore, the possibilities of
the application of these recent approaches in combination with some other algorithms were confirmed.
Considering additionally the processing time, a reasonable choice might also be the combination of
Methods #22 and #27 with the recent ISauvola algorithm (#34), listed as #53, providing very good
results for each of the tested OCR engines in view of Levenshtein distance.

Exemplary results of the binarization of sample documents from the dataset used in experiments
are presented in Figures 2–4, where significant differences between some methods may be easily
noticed, as well as the relatively high quality of binary images obtained using the proposed approach.

(a) (b) (c)

(d) (e) (f)

Figure 2. Cont.
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(g) (h) (i)

Figure 2. Binarization results obtained for a sample unevenly illuminated image from the dataset
used in the experiments shown in Figure 1a for various methods: (a) Otsu, (b) Niblack, (c) Sauvola,
(d) Bradley (mean), (e) Bernsen, (f) Meanthresh, (g) NICK , (h) stack of regions (16 layers), and (i)
proposed (#51).

(a) (b) (c)
Figure 3. Cont.
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(d) (e) (f)

(g) (h) (i)

Figure 3. Binarization results obtained for a sample unevenly illuminated image from the dataset
used in the experiments shown in Figure 1b for various methods: (a) Otsu, (b) Niblack, (c) Sauvola,
(d) Bradley (mean), (e) Bernsen, (f) Meanthresh, (g) NICK, (h) stack of regions (16 layers), and (i)
proposed (#51).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Binarization results obtained for a sample unevenly illuminated image from the dataset used
in experiments shown in Figure 1c for various methods: (a) Otsu, (b) Niblack, (c) Sauvola, (d) Bradley
(mean), (e) Bernsen, (f) Meanthresh, (g) NICK, (h) stack of regions (16 layers), and (i) proposed (#51).
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5. Concluding Remarks

Binarization of non-uniformly illuminated images acquired by camera sensors, especially mounted
in mobile devices, in unknown lighting conditions is still a challenging task. Considering the potential
applications of the real-time analysis of binary images captured by vision sensors, not only directly
related to OCR applications, but also, e.g., to mobile robotics or recognition of the QR codes from
natural images, the proposed approach may be an interesting idea providing a reasonable accuracy for
various types of illuminations.

The presented experimental results may be extended during future research also by the analysis
of the potential applicability of the proposed methods and their combinations for automatic text
recognition systems for even more challenging images, e.g., with metallic plates with embossed serial
numbers. Another direction for further research may be the investigation of the potential applications
of some fuzzy methods [83,84], which may be useful, e.g., for a combination of an even number of
algorithms, as well as the use of different weights for each combined method.
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Abstract: Forged documents and counterfeit currency can be better detected with multispectral
imaging in multiple color channels instead of the usual red, green and blue. However, multispectral
cameras/scanners are expensive. We propose the construction of a low cost scanner designed
to capture multispectral images of documents. A standard sheet-feed scanner was modified
by disconnecting its internal light source and connecting an external multispectral light source
comprising of narrow band light emitting diodes (LED). A document was scanned by illuminating
the scanner light guide successively with different LEDs and capturing a scan of the document.
The system costs less than a hundred dollars and is portable. It can potentially be used for applications
in verification of questioned documents, checks, receipts and bank notes.

Keywords: multispectral imaging; document scanning; portable sensor

1. Introduction

Forensic analysis of questioned documents involves a broad range of activities [1]. This includes
establishing whether a document originated from a particular source, is backdated, forged or
willfully manipulated. Disputes resolution over the authenticity of bank checks [2], purchase receipts,
currency notes [3] or seals in agreements [4] can involve overwhelmingly complex legal procedures.
In other cases, verification of the genuineness of the document source (written or printed) is also of
significant importance to fraud detection [5]. The estimated age of a testament (will) can sometimes
play a crucial role in the resolution of inheritance claims [6].

Traditionally, forensic scientists make empirical or experimental observations about a suspicious
portion of the document in a forensic laboratory. The observations are then coupled with expert
opinions to be presentable in a court-of-law. As this process largely relies on individual expertise and
analysis, its consequences may be critical to the rights of a person, business or an organization. There is
an interest in mechanisms for pre-examination of questioned documents before legally pursuing
and bearing substantial costs in a court-of-law. Computerized forensic analysis has recently paved
the way for automatic document forgery detection using multispectral imaging [7,8]. Multispectral or
hyperspectral document scanners are generally comprised of bulky apparatus and require specialized
laboratory environment for operation. This opens the need for the development of a portable
multispectral document scanning system.

Sensors 2019, 19, 3199; doi:10.3390/s19143199 www.mdpi.com/journal/sensors
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There are different ways of capturing multispectral images of a scene [9]. The most suitable
method can depend on the target application. A spatial scanner simultaneously captures (x, λ)

dimensions of a scene, whereas the y dimension is captured by the movement of the sensor or
the scene. It is suitable for scenarios where either the scene or the sensing platform is moving such as in
remote sensing. A flatbed multispectral document scanner can be regarded as a kind of spatial scanner,
an example of which exists as a commercial device [10]. Flatbed scanners have a compact construction,
however their scanning area is generally limited to an A4 size paper. Benchtop hyperspectral scanners
have a similar operational procedure, and capture a relatively larger number of channels. The flexibility
of a bench-top construction allows documents as well as other non-planar objects of interest to be
scanned by the same device, at the expense of longer times per scan. Benchtop hyperspectral scanners
have been shown to be useful for visual enhancement of old documents where a non-contact scanning
mechanism may be preferred [11].

A spectral scanner simultaneously captures (x, y) dimensions of a scene, whereas the λ dimension
is captured by spectral tuning [12]. It is specifically useful in a setup where both the scene and the
sensing platform are stationary. The most common construction of a spectral scanner comprises a
monochrome camera with a chromatic filter. A filter may be mechanically interchangeable using
a wheel, which can be slow and require manual intervention. Such a device has been used for
historical document image restoration [13]. A filter can also be tunable, thereby providing faster
image scanning. The use of an accousto-optic tunable filter has been demonstrated for the purpose of
document authentication [14] and liquid crystal tunable filter has shown to be effective in analysis of
inks in documents [15]. However, camera captured documents suffer from image distortion due to
perspective view, as well as non-uniformity of illumination. Moreover, the effective spatial resolution
of a camera based multispectral document capture system may be much lower than a conventional
document scanner.

In contrast, a snapshot spatio-spectral sensor simultaneously captures both spatial and spectral
(x, y, λ) dimensions of a scene eliminating the need for scanning [16]. This method can effectively be
used in conditions where the scene and the sensing platform are simultaneously moving. However,
its complex sensor design incurs heavy costs limiting its use in applications such as in-vivo imaging of
organisms [17].

Previously, we proposed a spectral scanning system for capturing multispectral images of a
document [18]. Despite the simplicity of a static scene and the sensor, the system was prone to
artifacts of camera captured imaging (illumination, perspective etc.) [19]. In this work, we propose a
spatio-spectral scanner for capturing multispectral image of a document using a sheet-feed scanner, thus
avoiding the problems associated with cameras. It captures one spatial dimension x, whereas the (y, λ)
dimensions are sequentially acquired by feeding the document and tuning illumination spectrum,
respectively. In the following section, we describe the proposed multispectral document scanning
system, in terms of its electrical, spectral and optical design.

2. Materials and Methods

The main components of the proposed multispectral document scanner are an external
multispectral light source and a standard document scanner.

2.1. Multispectral Light Source

A broadband source of light (e.g., incandescent or fluorescent) reflects the average response of a
scene over a wide spectral range, and therefore achieves a low spectral fidelity. A multispectral source
produces light in narrow spectral bands, attaining a high spectral fidelity. Light Emitting Diodes
(LEDs) can provide such selectivity required in the spectral profile of a multispectral light source.
Another favorable characteristic of LEDs is that they are highly energy-efficient compared to other
sources of light.
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2.1.1. Electrical Design

The electrical schematic of the multispectral light source is given in Figure 1. It consists of a
constant current source (i1) connected to narrow-band LEDs (d1–d7) via switches (s1–s7). The constant
current source limits the current from surpassing the absolute maximum current rating of the LED.
It also makes an LED glow with the same luminous power and spectral profile, making the system
reliable. However, an inadvertent connection of multiple switches simultaneously can result in the
current being divided into several LEDs.

Figure 1. A schematic diagram of the multispectral light source showing the connection layout of the
LEDs (d1–d7) and the constant current source (i1) via switches (s1–s7).

To ensure only one LED is powered at a time, a unipolar multi-way rotary switch is included in
the design. It provides non-shorting, break-before-make contacts, to avoid overloading of the source
with multiple LEDs during switching. It can handle high currents of up to 500 mA @ 250 V ac/dc.
The switch and its terminal positions as viewed from the knob end of the spindle are shown in Figure 2.
Terminal A (middle) is connected to the positive end of the constant current source. Terminals 1–7
are connected to the positive terminals of d1–d7, respectively. If more spectral bands are desired to
be captured, the corresponding LEDs can be conveniently connected to Terminals 8–12, which are
currently not utilized.

(a) (b)

Figure 2. Schematic and assembled unit of a 30 degree indexing, 12 way unipolar switch: (a) PT-6015 rotary
switch from Lorlin Electronics Ltd.; Sussex, England and (b) schematic diagram of connection terminals.

Two constant current sources were designed depending on availability of a low or high input
voltage source. The electrical schematic of the sources and their assembled form are shown in Figure 3.

(a) (b)

Figure 3. Cont.
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(c) (d)

Figure 3. Schematic and assembly of constant current sources: (a) input terminals (Vin+, Vin−) of the
MicroPuck driver (ic1) are connected to a low voltage source (v1 = 0.8–3 Vdc); (b) assembled low
input voltage–constant current source; (c) input terminals (Vin+, Vin−) of the BuckPuck driver (ic2) are
connected to a high voltage source (v1 = 7–32 Vdc) and the potentiometer (r1) allows dimming control
(Ctrl) via internal reference (Ref); and (d) assembled high input voltage–constant current source.

The low input voltage–constant current source uses a MicroPuck LED Power Module which can
provide a constant (350 mA) current to a single LED. The driver has two input pins (Vin+, Vin−) and
two output pins (Vout+, Vout−). The miniature design allows use of one or two AA sized batteries to
power the module. It provides the maximum current to the LEDs while mimicking the light drop-off
of an incandescent bulb, which dims as the batteries drain. However, the current drops only at very
low voltages, allowing maximum operational time.

The high input voltage–constant current source uses a BuckPuck LED Power Module which can
provide a constant (350 mA) current to multiple LEDs. The module has four input pins (Vin+, Vin−,
Ref, Ctrl) and two output pins (Vout+, Vout−). The module provides manual dimming control through
a potentiometer which uses internal reference from the BuckPuck driver. It also has built-in protection
for open-circuit and short-circuit.

2.1.2. Spectral Profile

The choice of colored LEDs is important for description of the spectral profile of the multispectral
light source. The spectral characteristics are characterized by two main parameters, i.e., the center
wavelength and the spectral bandwidth. The relative spectral power distribution of the LEDs is
given in Figure 4. These LEDs cover the majority of the range of visible electromagnetic spectrum
(400–700 nm) at approximately regular intervals. The spectral parameters of the LEDs are provided in
Table 1. Note that the LEDs are spread across the spectrum with sufficiently narrow-bands and high
luminous power, which makes an effective multispectral light source.

Figure 4. The relative spectral power distribution of the Philips Luxeon Rebel LEDs used in this study.
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Table 1. Specifications of Luxeon Rebel series LEDs at 350 mA.

Color
Center Wavelength Bandwidth Flux or Power Part Number

(nm) (nm) (lm,mW) Model

Deep Red 655 20 360 LXM3-PD01
Red 627 20 48 LXM2-PD01-0040
Red-Orange 617 20 56 LXML-PH01-0050
Amber 590 20 48 LXML-PL01-0040
Green 530 30 95 LXML-PM01-0090
Cyan 505 30 76 LXML-PE01-0070
Blue 470 20 41 LXML-PB01-0040
Royal Blue 447.5 20 1030 ‡ LXML-PR02-A900
Neutral White - - 180 LXML-PWN1-0100

‡ tested at 700 mA.

Although the range of selected LEDs is in the visible spectrum, the proposed scanner design is
generic and not restricted to the visible spectral range. Extension of the spectral range is a matter of
adding LEDs (e.g., UV or infrared) in the proposed multispectral light source.

2.1.3. Optical Configuration

The purpose of optical assembly is to transmit multispectral light into a flexible light guide,
connected to the scanner light guide. Concentration optics are suitable for beam insertion into fiber
optic bundles or light guides. Two different optical arrangements were proposed for multispectral
light source, as shown in Figure 5. The two optical configurations after the assembly are shown in
Figure 6.

In the linear arrangement, an LED is pre-soldered to a base with anode(+) and cathode(−)
connections at the locations shown in Figure 5a. A fiber beam lens (Carclo Optics, Aylesbury, England),
shown in Figure 5b, focuses light from LED into an eight-degree narrow beam at a focal distance of
11 mm. The diameter of the lens is 20 mm and conforms to the LED base. It requires a circular lens
holder, as shown in Figure 5c, which is affixed to the base using a double-sided tape. The holder
positions the lens at an appropriate distance from the LED to obtain the maximum luminous
transmission. Multiple such units, each with a different colored LED, together make a multispectral
light source.

In the array arrangement, multiple LEDs are pre-soldered to a single base with separate anode(+)
and cathode(−) connections for each unit at the locations shown in Figure 5d. A cluster concentrator
optic (Polymer Optics Ltd.), Berkshire, England shown in Figure 5e, focuses light from seven LEDs into
a 12-mm narrow beam at a focal distance of 25 mm. It is made of an optical grade poly-carbonate
material for thermal stability and system durability, which results in a high light collection efficiency
(85%). The use of the array LEDs and the cluster optic makes the light source compact and rigid.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Components of the two optical configurations of multispectral light source: (a) single LED
assembly; (b) fiber coupler concentrator lens; (c) circular lens holder; (d) seven-LED array assembly;
(e) multi-cell cluster concentrator optic; and (f) natural convection heat sink.

The use of high-power LED array can introduce significant overheating if it is not correctly catered
for. A heat sink is an affordable device for maintaining near constant temperature of LEDs for long
periods of operation. The CN40-15B heat sink from ALPHA Co. Ltd., Shizuoka, Japan has a 40-mm
round base with 15-mm legs, as shown in Figure 5f. It has the highest thermal efficiency in the CN40
series of heat sinks.

(a) (b)

(c) (d)

Figure 6. The assembly of linear and array optical configurations: (a) single LED base with connections
to switch; (b) patched assemblies with fiber beam lens in linear configuration; (c) array LED base with
connections to switch; and (d) patched assembly with cluster concentrator lens in array configuration.

2.2. Document Scanner

Connection of an external source of light can be intrusive to the movement of the scanner carriage
unit in a flatbed scanner, which may cause discrepancies in the scanned image. In contrast, a sheet-feed
scanner allows integration with an external source of light without being intrusive to the scanner
operation. Since the scanning unit of a sheet-feed scanner is stationary, its operation is not affected
by connection to an external source of light. Moreover, the size of a sheet-feed scanner is mainly
determined by the shorter edge of the supported page size, which makes it compact and portable,
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as shown in Figure 7a. A sheet-feed mechanism is therefore preferred over a flatbed construction to
form the basis of a multispectral document scanner.

(a) (b)

Figure 7. An automatic feed portable document scanner can be converted into a multi-spectral
document scanner: (a) the DSmobile600 sheet-feed portable document scanner from Brother Mobile
Solutions Inc., Westminister, CO, USA used in this work; and (b) a standard black and white reference
sheet for calibration. Arrows indicate the direction of feeding into the scanner.

2.2.1. Scanner Modification

Modification of the sheet-feed scanner consists of the following steps (the procedure is illustrated
in detail in Figure 8):

1. Gain access to the internal micro illumination source (RGB LED) of the scanner.
2. Remove/Disable the internal RGB LED.
3. Structurally modify the scanner housing for placement of a flexible light guide.
4. Connect the external light source to the internal light guide via the flexible light guide.

(a) (b) (c) (d)

(e) (f) (g)

Figure 8. The steps of the scanner modification and its connection to the multispectral light source:
(a) remove the top cover to gain access; (b) release the components from the hinge support; (c) disengage
RGB LED from the scanner sensor; (d) make provision for a flexible light guide; (e) re-install the
components; (f) replace the top cover; and (g) connect to the multispectral light source.
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2.2.2. Scanner Calibration

The multispectral scanner can be calibrated using a special black and white glossy sheet that came
with the scanner, a sample of which is shown in Figure 7b. The bright and dark values of each spectral
band can be computed using the scanned reference sheet and applying a formula for normalization:

C(x, λ) =
I(x, λ)− D(λ)

B(x, λ)− D(x, λ)
(1)

where I is the original image, C is the calibrated image, and B and D are the average bright and dark
points at each wavelength, respectively.

2.3. Multispectral Document Scanning

To test the multispectral document scanner, a test page printed from an HP Laserjet Color printer
was scanned. The RGB true color image and various bands of a logo in the test page captured
by the multispectral scanner are shown in Figure 9. A relative variation in the brightness can be
observed between the bands due to the differences in spectral power and bandwidth of the LEDs.
The explanation for a relatively darker scanned image using the Amber LED is its low spectral power
coupled with a narrow bandwidth, which together cause a weaker response at the detector.

   

 
 

 
 

(a) (b) (c) (d) (e) (f) (g)

Figure 9. The printed test document (top) and a magnified view of the logo contained within (bottom)
in: (a) true RGB; (b) royal blue; (c) cyan; (d) green; (e) amber; (f) red orange; and (g) deep red bands.

Observe that the logo has red, orange, green and blue elements and black text at the bottom.
The normalized spectral response computed by averaging an 11× 11 patch at the center of each colored
element is shown in Figure 10. Notice that the different components of the logo have characteristic
intensity response to multispectral light according to the spectral band. This demonstrates the ability
of the scanner to capture fine details in the spectrum.
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Figure 10. Normalized spectral response of the four colored elements in the Windows logo plotted
against the center wavelengths of LEDs in the multispectral light source.

We further tested the developed prototype to identify counterfeit protection system (CPS) codes
inserted in color print-outs by all consumer printers [20]. The recent availability of high-resolution
printers has not only supported useful purposes, but also paved the way for illegal manipulation of
documents. This has consequently persuaded color printer manufacturers to hide an invisible CPS
code, which holds information for printer identification. This unique code is printed in every document,
in the form of a repeated pattern of yellow dots that is not visible to the naked eye. The unique pattern
can be used to identify the source of a document. The multispectral document scanner successfully
captures this unique dot-pattern, which can be extracted by binarization of the raw image using image
thresholding operation.

The unique patterns of different printers can be identified in terms of their geometrical structures.
The two important parameters that form these relationships are the Horizontal Pattern Separation
(HPS) distance and the Vertical Pattern Separation (VPS) distance. A raw image of the Royal Blue band
of the scanned test page and its patterns enhanced by image processing, which comprised thresholding
and image binarization, are shown in Figure 11. The processed image is magnified to visually identify
the recurring CPS code. The HPS and VPS measurements were then annotated in the processed image.
The CPS code can now be extracted and analyzed using HPS and VPS measurements.

(a) (b)

Figure 11. Extraction of counterfeit protection pattern by image processing: (a) Royal Blue band of a test
printed document (zoom to 6400% to clearly view the pattern); and (b) processed image of enhanced
codes separated by horizontal pattern separation (HPS) and vertical pattern separation (VPS).
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3. Conclusions

We present the design of a prototype multispectral document scanner, which is demonstrated
to capture subtle features in a document using a multispectral light source. The multispectral light
source was designed to cover the full range of visible electromagnetic spectrum and connected to a
portable sheet-feed document scanner. This light source is comprised of commercial off-the-shelf LEDs
of various wavelength, bandwidth and radiant power.

An optimal design may comprise a selection of custom-built LEDs for precise selectivity across the
spectrum. These LEDs may also be designed to emit a fixed luminous flux and bring homogeneity in
the brightness of bands. The addition of more LEDs will further enhance the capabilities of the device.
For instance, the addition of an ultraviolet LED can enable the device to capture invisible security
features hidden in some banknotes for verification. Similarly, the addition of an infrared LED can allow
the device to capture forgeries in handwritten or printed text for question document examination.

The scanner was calibrated using a white–black reference sheet, which achieved normalization of
spectral responses, albeit relative to each band. In circumstances where an absolute spectral response
is necessary, the scanner would require calibration with the output of a spectrometer and validated on
the same calibration reference. While it is sometimes important to measure absolute spectral response,
many applications can simply benefit from a relative (normalized) spectral response measurement to
achieve the intended results, as presented in the current system.

In regards to the scanner operation, currently the light source is switched to the desired color by
means of a rotary switch, and one band of the document is captured in each pass. A more efficient
operation can be built upon electronic switching of the multispectral light source in a time-multiplexed
manner to capture all bands in a single feed. However, this modification would require changes to the
scanner software to synchronize switching of the external multispectral light-source with the scanning
of detector.

Given the presented system and proposed directions of improvement, the prototype design
has the potential to be transformed into a fully functional portable device suitable for multipurpose
document analysis.
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Abstract: Text recognition in natural scene images has always been a hot topic in the field of
document-image related visual sensors. The previous literature mostly solved the problem of
horizontal text recognition, but the text in the natural scene is usually inclined and irregular, and there
are many unsolved problems. For this reason, we propose a scene text recognition algorithm based
on a text position correction (TPC) module and an encoder-decoder network (EDN) module. Firstly,
the slanted text is modified into horizontal text through the TPC module, and then the content of
horizontal text is accurately identified through the EDN module. Experiments on the standard data
set show that the algorithm can recognize many kinds of irregular text and get better results. Ablation
studies show that the proposed two network modules can enhance the accuracy of irregular scene
text recognition.

Keywords: scene text recognition; visual sensor; text position correction; encoder-decoder network

1. Introduction

The object of natural scene text recognition is to identify the text in the image of natural scene.
Natural scene text recognition has important applications in intelligent image retrieval [1,2], license
plate recognition [3], automatic driving [4], scene image translation [5] and many other fields.

In recent years, although many effective text recognition methods [6–12] have been proposed
and the performance of text recognition has been greatly improved, the text recognition technology
of natural scene still has some shortcomings. For the text of natural scene, there is a variety of
permutation directions between adjacent texts. In addition to the linear permutation, they may also
be arranged in irregular directions such as arcs [13]. For natural scene text arranged in multiple
directions, the bounding box may be a rotating rectangle or quadrilateral, so it is difficult to design an
effective method to calculate the regularity of the direction of arrangement between adjacent texts [14].
In addition, the irregularity of the visual features of the deformed scene text also hinders the further
development of the text recognition technology [15].

The wide variety of text and the diversity of the spatial structure of different types make the visual
characteristics of text area have great differences [16], so it is difficult to find a good description feature to
classify text area and background area. Therefore, it is also a difficult work to build a multi-classification
text recognition framework. Further research is still needed to reach the practical level.

Sensors 2020, 20, 2942; doi:10.3390/s20102942 www.mdpi.com/journal/sensors
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For this reason, we propose a text recognition algorithm based on TPC-EDN to realize a better
recognition of various types of irregular text in natural scenes. The algorithm uses TPC module to
modify the slanted text into horizontal text for easy recognition, and then accurately identifies the
text content through EDN model. The encoder network (EN) module uses dense connection network
and BLSTM to effectively extract the spatial and sequence characteristics of text and generate coding
vectors. The decoder network (DN) module converts the encoding vector into the output sequence
through the attention mechanism and LSTM.

Our contributions in this paper are as follows: First, we propose a TPC approach which is a
coordinate offset and regression method based on CNN to realize the end-to-end training. Second,
we introduce EN module to extract text features based on dense connection network and BLSTM.
Third, the training process of our proposed algorithm is simple and fast, and it is robust to irregular
text recognition.

2. Overall Network Structure

The text recognition algorithm designed in this paper mainly includes two modules: the text
position correction module and the encoder-decoder network module. The TPC module corrects the
detected oblique text into horizontal text, then the EDN module recognizes horizontal text. EDN module
includes the encoder network (EN) and the decoder network (DN). The EN uses the dense block and
two-layer BLSTM [17] methods to extract text features, and can generate feature vector sequences with
character context feature relations. The DN uses the attention mechanism [18] to weight the encoded
feature vectors, which can make more accurate use of character-related information. Then, through a
layer of LSTM [19], DN adopts the output of the previous moment and the input of the current moment
to jointly determine the recognition result of the current moment. The overall structure is shown in
Figure 1.

 

Figure 1. Overall structure of our text recognition algorithm.

2.1. Text Position Correction Module

TPC is the main research method for the oblique text recognition, which corrects the oblique
text into the horizontal text, and then carries on the recognition to the horizontal text. Most of the
traditional text position correction methods are based on affine transformation [20], which has good
effects on text with small tilt angle, but bad effects on text with large tilt angle and are difficult to train.
In the study of text recognition algorithm, this paper proposes an improved TPC method based on the
idea of variable convolution two-dimensional offset [21] and offset sampling [22], which is a coordinate
offset regression method based on CNN. It can be combined with other neural networks to complete
end-to-end training, and the training process is simple and fast. The detailed structure is shown in
Figure 2.
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⊕

Figure 2. TPC structure diagram.

As can be seen from Figure 2, the TPC process of this paper is as follows: Firstly, a pre-processing
step is carried out to process the input text into the same size, which can speed up the training process
of the algorithm. Secondly, the spatial features of pixels [23] are extracted by CNN to obtain a fixed
size feature map, in which each pixel corresponds to a part of the original image. This is equivalent to
splitting the original image into several small pieces, and the prediction of coordinate offset for each
piece is the same as the two-dimensional offset prediction of the deformable convolution. Thirdly,
the offset is then superimposed on the normalized coordinates of the original image. Finally, the Resize
module uses a bilinear interpolation method to sample the text feature map to the original size as the
revised text.

The input of the whole text recognition algorithm is the text bounding box detected by the text
detection algorithm. Due to the irregular shape of the text, the size of the detected text bounding
box is different. If the text is directly input into the text recognition algorithm, the training speed of
the text recognition algorithm will be reduced. Therefore, after the preprocessing module, the text
bounding box is fixed to a uniform size, namely 64 pixels in height and 200 pixels in width, and then
the feature map is obtained by extracting features continuously through CNN, and the coordinate
offset is returned. The detailed structure and parameter configuration of TPC are shown in Table 1.

Table 1. Detailed structure of TPC module.

Type Configuration Size

The Input - 1 × 64 ×200
Conv k3, num64, s1, p1 64 × 64 × 200

AVGPool k2, s2 64 × 32 × 100
Conv k3, num128, s1, p1 128 × 32 × 100

AVGPool k2, s2 128 × 16 × 50
Conv k3, num256, s1, p1 256 × 16 × 50

AVGPool k2, s2 256 × 8 × 25
Conv k3, num128, s1, p1 128 × 8 × 25

AVGPool k2, s1 128 × 7 × 24
Conv k3, num64, s1, p1 64 × 3 × 12
Conv k3, num32, s1, p1 32 × 3 × 12
Conv k3, num8, s1, p1 8 × 3 × 12
Conv k3, num2, s1, p1 2 × 3 × 12

AVGPool k2, s1 2 × 2 × 11
Tanh - 2 ×2 × 11

The Resize - 2 × 64 × 200

In Table 1, k3 means the size of convolution kernel is 3× 3, num64 means the number of convolution
kernel is 64, s1 means the stride is 1, p1 means the padding is 1, Conv means convolution, and AVGPool
means average pooling. The number of convolution kernels gradually increases from the first layer,
and then decreases. Finally, the number is set as 2 in order to generate a two-dimensional offset feature
map, whose size is 2 × 11. This is equivalent to dividing the entire input image into 22 blocks, each
corresponding to the corresponding coordinate offset value. The activation function Tanh is used to
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adjust the predicted value of the migration to between [−1, 1], and return the offset of the X-axis and
the offset of the Y-axis through two channels respectively. Then, the Resize module is used to sample
the offset feature map of the two channels to the size of the original figure 2 × 64 × 200. Sample is a
bilinear interpolation up-sampling module to obtain the revised text.

Each value in the offset feature map represents its corresponding coordinate offset of the point in
the original image. In order to correspond to the dimension of the feature map, the coordinates of
each pixel in the original image need to be normalized. The normalized coordinate interval is between
[−1, 1], and it also contains two channels, namely the X-axis channel and Y-axis channel. Figure 3 is
the comparison of the original image before and after the normalization of coordinates.

Figure 3. Schematic diagram of coordinate normalization.

The image is stored in the form of matrix in the computer, so the upper left corner of the image
in Figure 3 is the origin of the coordinate axis (0,0), the horizontal axis represents the width of the
image, and the vertical axis represents the height of the image. After normalization, the center of the
image is the origin of the coordinate, the upper left corner in Figure 3 is the coordinate (−1,−1), and the
lower right corner is the coordinate (1,1). The generated normalized image is double-channel, and the
coordinates of pixels in the same position on different channels are the same. After that, the offset
feature image is superimposed with the corresponding area of the normalized image to complete the
correction of the corresponding position of each pixel. The formula is expressed as:

T(channel,i, j) = o f f set(channel,i, j) + G(channel,i, j), channel = 1, 2 (1)

F′
(ii′ , j j′) = F(i′, j′) (2)

where, channel refers to the number of channels, T represents the feature map after position correction,
offset represents the offset feature map, G represents the normalized image, (i, j) represents the
coordinates of the normalized image, (i′, j′) represents the coordinates of the original image,
(ii′, j j′) represents the revised offset coordinates, F′ represents the corrected image, F represents
the original image.

Adding the corresponding offset to the normalized image, the offset of each point coordinate
on the normalized image occurs in both horizontal and vertical directions. The offset is (Δx, Δy), the
revised offset coordinate is (ii, j j), and then the size is up-sampled to the original size by bilinear
interpolation method. The revised image F′ is obtained, whose corresponding coordinate is (ii′, j j′),
The relation between the original image and the normalized image is shown in Formula (2). The pixels
of the two points remain the same size, just the position coordinates are changed.

2.2. Encoder Network

The EN module encodes the spatial and sequential features of extracted text images into fixed
feature vectors [24]. Feature extraction network [25] plays a key role in the EN module. A good feature
extraction network can determine the quality of encoding and has a great impact on the recognition
effect of the whole text recognition algorithm. In this paper, the EN module adopts the methods of
dense connection network and BLSTM to extract text features, in which dense connection network can
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extract rich spatial features of text images. Considering the context sequence feature of text, the feature
relation between different characters can be learned by BLSTM. The EN module designed in this paper
is easy to train and has a good effect. A brief introduction about it is as follows:

(1) Dense connection network is stacked by several dense blocks. Taking the advantages of
DenseNet [26] in feature extraction, dense connection network is used to improve the direction of
information flow during feature extraction, and all layers in a dense block can be connected by jumping.
Each convolution layer can obtain feature information from all previous layers, enhance the reuse
of multi-layer features, and transmit feature information to all subsequent layers. At the same time,
the method of jumping direct connection makes it easier to obtain the gradient in the process of back
propagation, simplifies the feature learning process, and alleviates the gradient dispersion problem.

(2) The detailed structure of the two BLSTMs is shown in Figure 4. Each BLSTM has two hidden
layers, recording two states of the current time t: one is the forward state from front to back, the other
is the reverse state from back to front. The input of the first layer is the sequence of feature vectors
extracted by CNN {x0, x1, . . . , xi}, the output after a layer of BLSTM is {y1

0, y1
1, . . . , y1

i }. And then it is
taken as the input of the second layer, finally the output sequence {y2

0, y2
1, . . . , y2

i } can be got. As can be
seen from Figure 4, the output of each time t is determined by the hidden layer state in both directions.
In this paper, two BLSTMs are stacked to learn the feature states of the four hidden layers, which can
not only store more memory information, but also better learn the relationship between feature vectors.

A′iS ′ A′ iA′ S ′

A′ A′ iA′ S ′iS ′

S iS

iSS

y y iy

x x ix  

Figure 4. BLSTM structure diagram of two floors.

The dense block generates a two-dimensional feature map, while the input of BLSTM is in the
serialized form. Therefore, it is necessary to convert the feature map into the sequence form of feature
vectors, and then learn the context feature relationship between sequences through BLSTM. Figure 5
shows the process of transforming the feature map into the feature vector sequence. The feature map is
evaluated according to the column of a certain width, the vertical direction is taken as a feature vector.

 

Figure 5. Feature map is transformed into feature vector sequence.

As can be seen from Figure 5, the character “O” requires multiple feature vectors to determine the
output value, and it is impossible to accurately predict the character by relying on only one feature
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vector. Therefore, learning the correlation between feature vectors through BLSTM plays an important
role in character recognition.

The EN module adopts four dense blocks, followed by two convolution layers, between which
there is one Max Pooling and activation function layer, and then two BLSTM layers. The detailed
parameters of the EN module are shown in Table 2.

Table 2. Detailed parameters of EN module.

Type Configuration

Convolution [k3, num32, s1, p1]
Max Pooling [k2, s1]

The Activation Function Swish
Dense Block [k3, num32, s1, p1] x 4
Dense Block [k3, num64, s1, p1] x 4
Dense Block [k3, num128, s1, p1] x 4
Dense Block [k3, num256, s1, p1] x 4
Convolution [k3, num128, s1, p1]
Max Pooling [k2, s1]

The Activation Function Swish
Convolution [k3, num128, s1, p1]

BLSTM Hidden unit: 256
BLSTM Hidden unit: 256

As can be seen from Table 2, EN module adopts several convolution layers, pooling layers
and activation function layers. The detailed parameters of the convolution layer include the size of
convolution kernel, the number of convolution nuclei, stride and padding, which are respectively
represented by k, num, s and p. The Max Pooling method is adopted in the all pooling layers, and the
parameters are convolution kernel size k and stride s. The activation function takes the Swish function.
The number of convolution nuclei in the four dense blocks gradually increases. In each Dense Block,
“×4” represents four consecutive convolution layers, followed by two convolution operations. Finally,
two BLSTMs are adopted, in which the number of hidden layer units of BLSTM in each layer is 256.

2.3. Decoder Network

The DN module is the reverse process of the EN module, which decodes the encoded feature
vectors into output sequences and makes the decoding state as close as possible to the original input
state. The text area of a text image usually exists in the form of a sequence, with variable length, and its
feature vector is serialized. Therefore, this paper adopts soft attention mechanism [27] to focus the
serialized feature vectors according to the weight distribution, which can effectively use the character
features at different moments to predict the output value, and finally connects a layer of LSTM, which
can store the past state and determine the output of the current moment through the output of the
previous moment. The detail structure on DN is shown in Figure 6.

Figure 6 shows that the feature vector sequence generated by the EN is directly used as the input
of the DN, the hidden layer of BLSTM in the process of the EN contains context feature of text feature
vector sequence, the feature vector set can be set as [h1, h2, . . . , hi, . . . , hT], in which the feature Hi
generated at each moment i consists of two directions of feature combination, hi = [hi, h∗i ]. Ct is the
semantic encoding vector of the attention model, represents the weighted value of hidden layer feature
hi at time t in LSTM network, is expressed as Equation (3).
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Figure 6. Detail structure on Decoder Network.

In Figure 6, T represents the attention range of the attention mechanism, and its length is 30. If T
is too large, the hidden layer needs to remember too much information, the calculation of the model
increases rapidly, and the general text statement rarely exceeds 30 words. And too large T value will
also make the model’s attention be distracted, so that the DN module cannot focus on the key feature
vectors, and the decoding effect is not good. In this paper, the designed DN module takes the predicted
output of the previous moment as the input of the current moment through LSTM, which can serve as
a reference for the prediction of the current moment. In Figure 6, the output at the current moment can
be accurately determined to be “P” based on the past output state. The detailed Formula (3)–(7) of the
whole decoding process is as follows:

Ct =
T∑

i=1

At,ihi (3)

At,i =
exp(et,i)

T∑
k=1

exp(et,k)

(4)

et,i = fatt(st−1, hi) (5)

st = f (st−1, yt−1, Ct) (6)

yt = g(yt−1, st, Ct) (7)

In the above Equations (3)–(7), At,i represents the attention weight after normalization, et,i
represents the weight of attention, st−1 represents the hidden layer state of the DN module at time
t− 1, st represents the hidden layer state of the DN module at time t, f and g represent the nonlinear
activation function, and yt represents the predicted output of the DN module at time t. yt is determined
by the predicted output yt−1 of the previous moment, the hidden layer state st of the DN module and
the attention semantic coding Ct.

3. Implementation Details

All experiments with the text recognition algorithm in this paper are completed in the PyTorch
framework. The experimental workstation is equipped with a 3.6 GHz Intel i7-6800k CPU, 64G RAM,
eight GTX 2080Ti GPUs, and the operating system is Ubuntu 16.04. In the training process, CUDA
9.0 and Cudnn 7.1 are adopted for GPU acceleration, which can significantly improve the training
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speed. OpenCV 3.2 with Python 3.6 is used to visualize the results. The parameter settings used in the
training process are shown in Table 3.

Table 3. Parameter settings

Type Configuration

The input size 64 × 200
The iterations 100,000

Batch size 16
Learning rate 10−3

Learning rate attenuation 0.9/10,000 of the iterations

4. Experiments

4.1. Experimental Data Set

The data set used in the text recognition algorithm is different from the text detection, which
is usually more standard, multilingual and simple. In order to verify the advantages of the text
recognition algorithm in this paper, we conducted experimental comparison on a variety of data sets,
using the data sets such as SVT, ICDAR 2013, IIIT5K-Words and CUTE80. The following is a detailed
introduction. The sample of the scene texts in the data sets in this paper is seen in Figure 7.

Figure 7. Sample of the scene texts in the data sets in this paper.

SVT [28]: this data set comes from Google Street View. The text size is diverse, the text direction is
not fixed, many pictures are polluted by noise and mixed background, and the image resolution is low.
This data set can effectively test the text recognition ability of the text recognition algorithm. It contains
647 cropped images and used the two common data formats: SVT-50, SVT-None. “50” means that the
annotated dictionary library contains 50 words, and “None” means that there is no dictionary library.
The same is true for the following data set.

ICDAR 2013 [29]: this data set is a commonly used data set for text recognition. The text in the
image is usually horizontal and the text background is simple. The image format of this data set is the
same as that of ICDAR 2003 [30], including 1015 cropped images. The following three data formats are
commonly used: ICDAR 2013-50, ICDAR 2013-FULL and ICDAR 2013-None. Each image in this data
set has a complete ground truth.

IIIT5K [31]: this data set is collected on the Internet and contains 3000 cropped images. It is a
commonly used horizontal text data set. There are three commonly used data formats: III5K-50 with
50 annotated words, III5K-1k with 1000 annotated words, and III5K-None with no annotated words.
Each image in this data set has a complete ground truth.

CUTE80 [32]: this data set is a commonly used slanted text or curved text data set, mainly used to
evaluate the recognition effect of the algorithm model on multi-direction slanted text and curved text.
It contains 288 clipped images and is a data set without dictionary annotation.
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4.2. Experimental Results and Analysis

In order to verify the effect of the text recognition algorithm and the influence of each sub-module
on the text recognition results, the experimental analysis was carried out on each sub-module, and the
experimental verification was carried out on the whole text recognition scheme. And in order to
validate the importance of each sub-module, we carried on the ablation study [33] in this article.
Firstly, we removed the sub-module and test the whole text recognition algorithm, and then added the
module and conducted comparison experiment on the whole text recognition algorithm. If there is no
significant improvement in the accuracy of text recognition after adding the module, the module will
be removed to simplify the algorithm architecture.

As many references use recognition accuracy to evaluate the text recognition algorithm, in order
to compare with other text recognition algorithms, this paper adopts recognition accuracy and training
time as the evaluation criteria. The following is the detailed experimental results and analysis of the
text recognition algorithm.

4.2.1. TPC and its Influence on Text Recognition Results

The TPC module corrects the tilted text into horizontal text through coordinate offset, and uses
the EDN module to recognize the horizontal text. In this paper, the importance of the TPC module can
be verified by ablation study. The experimental data sets are SVT and IIIT5K, the setting of training
parameters is shown in Table 3, the comparison of experimental results is shown in Table 4. In order to
demonstrate the effect of TPC module, this experiment selects three images to test the text recognition
algorithm. These images all have the characteristics of blur, tilt and bending so as to verify the effect of
the text recognition algorithm modified by TPC module.

Table 4. TPC’s recognition accuracies (%) and its ablation study.

Model
SVT IIIT5K

50 None Time 50 1 k None Time

Without TPC 89.6 76.5 3.2 h. 93.2 92.5 81.6 6.1 h.
With TPC 96.5 83.7 3.6 h. 99.4 98.1 88.3 6.7 h.

From the experimental result in Table 4, it can be seen that in the data set SVT the recognition
accuracy is significantly improved by more than 6%, which indicates that the text recognition algorithm
can more accurately identify the slanted text content after using TPC module to correct the text position.
The recognition accuracy in data set IIIT5K is also greatly improved, which indicates that it is also
suitable for normal horizontal text. TPC module will increase the training time of the whole model
during the training process, but the increase is relatively small and has little impact on the performance.

4.2.2. Dense Connection Network and Its Impact on Text Recognition Results

Dense connection network is an important part of EN module. In order to verify the influence
of the network on the whole text recognition algorithm, ablation experiments were carried out.
The experimental data sets were ICDAR2013 and IIIT5K. Experimental results are shown in Table 5.

Table 5. Recognition accuracies (%) of dense connection network and its ablation study.

Model
ICDAR 2013 IIIT5K

50 FULL None Time 50 1 k None Time

Without DCN 89.6 86.5 79.5 5.4 h. 91.2 89.5 80.5 6.5 h.
With DCN 98.6 97.5 92.3 5.5 h. 99.4 98.1 88.3 6.7 h.
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It can be seen from Table 5 that the dense connection network has a great impact on the whole
text recognition algorithm and can significantly improve the accuracy of text recognition. In the data
sets ICDAR2013 and IIIT5K, with or without dictionary annotation, the accuracy of text recognition is
improved by more than 7%, and even reaches 99.4% in IIIT5K-50, which indicates that dense connection
network can effectively improve the recognition effect of the text recognition algorithm. After adding
the dense connection network, the training time of the model increases little, only about 0.2 h, the
result indicates that the dense connection network can improve the back propagation process of the
neural network and has a certain optimization effect on the training process of the whole model.

4.2.3. Depth of BLSTM in EN and Its Influence on the Text Recognition Results

This experiment verifies the influence of different depth of BLSTM on the text recognition results.
The depth of BLSTM may affect the feature learning ability of the text recognition algorithm. A certain
depth can be used to learn more sequence features, but the continuous increase of depth will increase the
amount of parameter calculation, result in a longer training time. Therefore, through the experimental
comparison of BLSTM with different depth, it is necessary to select the appropriate depth from the
accuracy and training time. The experimental data sets are ICDAR2013 and IIIT5K. For the convenience
of comparison, the training time is the average time of the text recognition algorithm in three different
structures of each data set, and the unit is hour. The setting of training parameters is shown in Table 3,
the experimental results are shown in Table 6.

Table 6. Depth of BLSTM in EN and its recognition accuracies (%).

Depth
ICDAR 2013 IIIT5K

50 FULL None Time 50 1 k None Time

0 89.6 89.5 83.5 3.4 h. 91.2 90.5 82.6 4.5 h.
1 layer 97.2 94.6 89.9 4.7 h. 93.6 93.3 85.1 5.6 h.
2 layers 98.6 97.5 92.3 5.5 h. 99.4 98.1 88.3 6.7 h.
3 layers 98.3 97.1 92.2 6.8 h. 99.3 97.8 88.1 7.9 h.

It can be seen from Table 6 that in ICDAR2013-50 the recognition accuracy of BLSTM in the first
layer was improved by 7.6% when compared with BLSTM with without BLSTM, which indicates that
BLSTM can improve the recognition accuracy of the text recognition algorithm. In addition, as the
number of BLSTM layers increases, the recognition accuracy of the algorithm gradually increases and
the training time also increases. When the number of BLSTM layers is 2, the recognition accuracy of
the text recognition algorithm reaches the highest, which reaches 98.6%, 97.5% and 92.3% in three
data formats of ICDAR2013, and reaches 99.4%, 98.1% and 88.3% in three data formats of IIIT5K,
respectively. When the number of layers of BLSTM is increased, the recognition accuracy does not
increase, but decreases. It is analyzed that the algorithm is too complex, which leads to the over-fitting
phenomenon in the nonlinear learning process. At the same time, the number of parameters of the
algorithm increases and the training time becomes longer, which is a great challenge to the hardware
equipment. Therefore, the two-layer BLSTM is the most reasonable choice in this paper.

4.2.4. Attention Mechanism in DN and Its Influence on Text Recognition Results

Adding attention mechanism to DN can make use of feature information reasonably and improve
the decoding efficiency of feature effectively. The effect of attention mechanism on text recognition
algorithm was verified by ablation study. The experimental data sets are SVT and IIIT5K, and the
setting of training parameters is shown in Table 3, the experimental results are shown in Table 7.
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Table 7. Attention mechanism and its recognition accuracies (%).

Model
SVT IIIT5K

50 None Time 50 1 k None Time

Without Attention 92.7 80.5 3.4 h. 95.5 93.5 84.6 6.5 h.
With Attention 96.5 83.7 3.6 h. 99.4 98.1 88.3 6.7 h.

It can be seen from Table 7 that the recognition accuracy with attention mechanism in SVT and
IIIT5K can both improved by more than 3%. It shows that the attention mechanism can extract the
character effectively in the text recognition algorithm, which is very important to improve the effect of
text recognition. At the same time, the training time of the whole model increases by only 0.2 h after the
attention mechanism is added, which indicates that the model complexity of the attention mechanism
is low and the parameter calculation amount of the whole model does not increase significantly.

4.3. Results Compared with Other Text Recognition Algorithms

The above experiments are conducted on the current algorithms for text recognition, and prove
the validity of our algorithm in this paper. To validate the effect on tilted text recognition of our
text recognition algorithm, we select SVT and CUTE80 as the experimental data sets. The training
parameters are shown in Table 3, the experimental results are shown in Table 8.

Table 8. Recognition accuracies (%) compared with other text recognition algorithms.

Model SVT-50 SVT-None CUTE80

Bissacco et al. [34] 90.4 78.0 -
He et al. [35] 95.4 80.7 -

Jaderberg et al. [36] 93.2 71.7 42.7
Lee et al. [37] 96.3 80.7 -
Shi et al. [38] 96.4 80.8 54.9
Shi et al. [39] 95.5 81.9 59.2

Yang et al. [40] 95.2 - 69.3
Ours 96.5 83.7 71.3

From the experimental data in Table 8, it can be seen that the text recognition algorithm in this
paper can achieve a good recognition accuracy even in the data sets annotated by different dictionaries,
no matter the text is tilted or curved. In the two data formats SVT-50 and SVT-None, the text recognition
accuracy reached 96.5% and 83.7% respectively. In the curved text data set CUTE80, the recognition
accuracy reached 71.3%, indicating that the text recognition algorithm designed in this paper has good
robustness for the recognition of slanted and curved text. Because some algorithms do not carry out
text recognition experiments in the specified data set, there is represented by “-” in Table 8.

4.4. Experimental Results of Text Recognition in the Scene Image of Visual Sensors

For the overall scheme of text recognition in natural scenes captured by visual sensors,
the text recognition algorithm is combined with the text detection algorithm for experiments, and
a demonstration is designed to directly identify the text images in natural scenes. Figure 8 shows
the results.

The test images in Figure 8 were all randomly collected in the natural scene by visual sensors.
The image background is complex, the text size is variable, and the text direction is skewed. The red
box in the left column is the detection result of the text detection algorithm, while the right column is
the recognition result of the text recognition algorithm. According to the recognition results in the right
column of Figure 8, the natural scene text recognition algorithm designed in this paper can accurately
identify the text in the figure, and has a good recognition effect for both multi-scale text and inclined
text, indicating that the algorithm is feasible.
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Figure 8. Experimental results of text recognition in a visual sensor scene image.

5. Conclusions

In this paper, a text recognition algorithm based on TPC-EDN is proposed to solve the problem
that text recognition algorithm only with encoding and decoding network is not good for oblique text
recognition. Firstly, we analyze the problems existing in the current text position correction method,
put forward the TPC method in this paper. Secondly, we consider the text sequence feature, design a
text recognition algorithm based on EDN, and adopt the attention mechanism to effectively improve
decoding accuracy. Finally, we test the text recognition algorithm and conduct ablation study, compare
some experimental data and verify the advantage of our algorithm.
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Abstract: Documents are stored in a digital form across several organizations. Printing this amount
of data and placing it into folders instead of storing digitally is against the practical, economical,
and ecological perspective. An efficient way of retrieving data from digitally stored documents is also
required. This article presents a real-time supervised learning technique for document classification
based on deep convolutional neural network (DCNN), which aims to reduce the impact of adverse
document image issues such as signatures, marks, logo, and handwritten notes. The proposed
technique’s major steps include data augmentation, feature extraction using pre-trained neural network
models, feature fusion, and feature selection. We propose a novel data augmentation technique,
which normalizes the imbalanced dataset using the secondary dataset RVL-CDIP. The DCNN features
are extracted using the VGG19 and AlexNet networks. The extracted features are fused, and the fused
feature vector is optimized by applying a Pearson correlation coefficient-based technique to select
the optimized features while removing the redundant features. The proposed technique is tested on
the Tobacco3482 dataset, which gives a classification accuracy of 93.1% using a cubic support vector
machine classifier, proving the validity of the proposed technique.

Keywords: document classification; deep learning; feature selection; data augmentation; imbalanced
dataset

1. Introduction

Document analysis and classification refer to automatically extracting the information and
classifying it into a suitable category. Documents are often referred to as 2D material that can contain
text or graphical items and can be used in optical character recognition (OCR) [1], word spotting [2],
page segmentation [3], and cursive handwriting recognition [4] tasks. Document classification is
considered as an essential step in classifying and analyzing the image documents. For several
applications, classifying documents into their respective classes is a prerequisite step. If documents are
well-sorted, it can be dispatched to the relative department for processing [5]. The indexing efficiency
of a digital library can be improved with document classification [6]. Classifying the documents into
content categories such as a table of content or a title page can suggest how pages extracting the
metadata can be useful [7]. The retrieval efficiency and accuracy can be improved by classification
on visual similarities, which can help users extract an article from any specific document or journal,
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containing a specific keyword, image, or table [8]. As the document classification is considered a
higher-level analysis task, it is important to select the suitable document classes and types to get high
accuracy and high performance in terms of effectiveness and efficiency [8].

Existing techniques either utilized the simple feedforward neural networks, standalone deep
convolutional neural networks (DCNNs) models, or performed better on datasets, where a dataset
contains a limited number of classes of documents. However, real-world cases have many issues in
document classification, including structural similarities, low-quality images, and informational layers
like signatures, marks, logo, and handwritten notes, which degrade the overall efficiency of many
previously proposed methods. Data imbalance is also an essential problem in the deep learning (DL)
domain, as overfitted and under fitted data can easily affect the overall performance of the proposed
model. To resolve the problem of overfitting, the max-pooling layers have been added to the deep
neural network models.

In this article, an automated system is proposed to classify the document images efficiently in
accuracy and prediction time. We analyze and reduce the impact of adverse document image issues by
employing multiple CNNs and combining each model’s training and properties. The selected primary
dataset Tobacco3482 is hugely imbalanced, which is tackled by proposing a novel data augmentation
technique. The secondary dataset RVL-CDIP is used to populate the minority classes. The fusion of
multiple networks produces redundant features, which are tuned by employing the Pearson correlation
coefficient (PCC)-based optimization technique.

The structure of this article is as follows. Details of the proposed technique are described
in Section 3. Experimental results to validate the proposed technique are presented in Section 4,
and Section 5 concludes this article with a conclusion and future directions in this research field.

2. Literature Review

Classification based on the content of document images has been broadly contemplated. Document
classification can be performed using the visual-based local document image [9]. Structure models
like letters and forms gave interesting results, when classified using region-based algorithms [10].
Morphological features such as text skew and handwriting skew have been addressed using entropy
algorithm [11] and projection profiling [12]. The study of documents is commonly dependent on
text removed using OCR techniques [13]. In another case, OCR is inclined to errors and is not
generally pertain to every type of documents, e.g., the handwritten content is yet hard to peruse.
A 4-layer Convolutional Neural Network (CNN) model was utilized for document classification using
a small tobacco dataset for classifying tax forms [14]. This experiment outperformed the previous
Horizontal-Vertical Partitioning and Random Forest (HVP-RF) and Speeded Up Robust Features
(SURF) descriptor-based classification technique achieving an accuracy of 65%. Another technique
for document classification utilizes principal component analysis (PCA) along with one-class support
vector machine (OCSVM) in which PCA reduced the dimensionality and OCSVM performed the
classification [15]. The PCA initially chose the top features for the document images from four different
datasets. Then OCSVM was trained on selected features to classify the images into the most relevant
classes with a precision rate of 99.62%. A semi-supervised learning approach utilizing CNNs based
on graph-structured data was presented in [16]. The main idea is to localize the convolutions in an
approximation of first-order spectral graphs. The model initially scaled according to the number of
graph edges. It started learning the representations of hidden layers that encoded the features on the
nodes and structure of local graphs. The approach was demonstrated on three datasets having 6, 7,
and 3 classes, respectively.

In another work, multi-label document classification is applied to Czech newspaper documents,
where features are extracted using a simple multi-layer perceptron and convolutional networks [17].
The achieved F1 score for this method was 84.0% while using a multi-layer perceptron with sigmoid
functions. A biomedical document classification was carried out in [18], where an imbalanced
bio-dataset was used for a cluster-based classification on the under-sampled dataset GXD. Overall
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precision of 0.72 was achieved. Another method involving a region-based training for document
classification was proposed, which utilized the properties of the VGG16 model via transfer learning and
achieved an accuracy of 92.2% on the Ryerson Vision Lab Complex Document Information Processing
(RVL-CDIP) dataset [19].

The recent success of CNN [20] is inspired by novel deep learning applications such as breast
cancer classification [21], fashion product classification [22], text sentiment analysis [23], computer
network security [24], medical image analysis for disease diagnostics [25], speech recognition [26],
semantic segmentation [27], malware classification [28], remote sensing [29], and document image
analysis [30]. The CNN process is known as a supervised learning method, in which features are
extracted and classified by a learning algorithm. Compositions are performed on the learned vectors
for classification using deep learning methods. The performance of these networks is improved
by collecting larger datasets, learning more powerful models, and avoiding overfitting using better
techniques. These larger datasets include ImageNet [31], consisting of more than 15 million labeled
images in 22,000 different categories, and LabelMe [32], consisting of millions of fully segmented
images. The CNNs can learn from the larger datasets using different models [33]. These models’
capacity can be controlled by changing the order of layers to classify the input images correctly.
As compared to the feedforward neural network with the same number of layers, CNNs contain fewer
parameters and connections, making it easier and more convenient to test and train. As the use of
graphical processing units (GPUs) has increased recently, many techniques have proposed effective
and efficient ways to train CNNs using single and multiple GPUs [34]. After the success of a deep
CNN model AlexNet [35], many more CNN models like GoogleNet [36], ZFNET [37], VGGNet [38],
and ResNet [39] have also shown improved performance and results.

3. Proposed Method

For several applications, classifying documents into their respective classes is a prerequisite step.
The indexing efficiency of a digital library can be enhanced with the help of document classification.
There are numerous publicly accessible datasets for document classification, yet two acclaimed datasets,
Tobacco3482 [40] and RVL-CDIP [41], are used, containing thousands of document images divided
into 10 and 16 classes, respectively. These datasets have their challenges, and to get improved
performance, a new technique utilizing the DCNN features is proposed having five significant steps,
including (1) data balancing; (2) pre-processing; (3) feature extraction; (4) feature fusion, and (5) feature
selection. In the first step, the imbalanced Tobacco3482 dataset is balanced using data augmentation
technique. The dataset is then scaled down to the input sizes of both DCNN models and forwarded to
pre-trained models, i.e., AlexNet and VGG19 to extract the DCNN features. Serial feature fusion is then
applied on the DCNN features to fuse both models, which was finally optimized using the PCC-based
technique [42]. These optimized features are forwarded to classifiers to obtain the classification
accuracy. Additionally, a detailed model of the proposed technique is shown in Figure 1.

3.1. Data Augmentation

Imbalance of a dataset is a significant problem in any field as this can cause problems by ignoring
the document images containing relevant information. Data imbalance occurs when one or more
classes have a lower number of samples than the rest of the classes. Because of this problem, many
well-modeled neural network architectures have failed to perform well. Imbalanced datasets in the
domain of machine learning tend to produce unsatisfactory results. For any imbalanced dataset,
if an event from minority class is predicted with an event rate of less than 5%, that is considered a
rare event. The Logistic Regression and Decision Tree-based classification techniques tend to have a
biased behavior toward rare events. These methods accurately predict the majority class, ignoring the
minority class as noise. This eventually leaves a strong possibility of misclassifying the minority class
when compared with the majority class.
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This paper proposes a data augmentation-based approach to solve the data imbalance issue in an
appropriate way. The following equations explain the process of solving this issue using the variables
defined in Table 1.

 

Figure 1. Detailed model of the proposed method.

Table 1. Nomenclature of variables used in the definitions and equations.

Variable Description Variable Description

T Threshold Value Ci Sum of images in the ith class

D Difference between the threshold
and the sum of a single class

D1 Tobacco3482 dataset D2 RVL-CDIP dataset

D3 Balanced Dataset Inb Input from the previous neuron

Outa Output of the current neuron ωa,b
Weight of the connection between
ath and bth neuron

ξ Activation function V1 DCNN features of AlexNet

V2 DCNN features of VGG19 MFVi

The merit M of feature subset FV
having i features

avgc f Feature-classification correlations avg f f Feature-feature correlations

Fi ith feature Wi ith weight

The threshold T is defined as following, which represents the highest class of the dataset:

T = max(Ci), (1)

where Ci represents the sum of images in the ith class and i = 1, . . . , n.

D =

{
T −Ci, i f Ci < T
0, i f Ci ≥ T

, (2)
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where D is the difference between the threshold and the sum of a single class, which is computed by
comparing Ci with a threshold value. If D gives a non-zero value, it is forwarded to a function and the
class label to fetch images from the secondary dataset to balance the primary dataset.

The flow diagram of the data augmenter is shown in Figure 2.

 

Figure 2. Flow diagram of data augmenter.

The algorithm for data balancing is mentioned below (see Algorithm 1). Here, the input is D1

which denotes the Tobacco3482 dataset, while the output is D3, which is an augmented, balanced
dataset. Initially, all the labels are extracted from a dataset, which denotes all the classes. These labels
are used to count images within each class, and a threshold value T is assigned with the highest-class
count. The samples in all other classes are compared with T to calculate the difference. This difference,
along with the class label and the secondary dataset D2 is used to fetch the required number of images
and populate the D1 to form a new augmented dataset D3.

Algorithm 1. Dataset balancing using a secondary dataset

Input: D1
Output: D3

Step 1: Xi ← D1
Step 2: Ci ← Count(Xi), where i = 1, . . . , n
Step 3: T ← max(Ci)

Step 4: Di f fi ←
{

T −Ci, i f Ci < T
0 , i f Ci ≥ T

Step 5: Xj ← Fetch(Di f fi, Ci, D2)

Step 6: D3 = Populate
(
D1, Xj

)
return D3

The comparison of the primary dataset before and after augmentation is shown in Table 2.
The classes in the primary and secondary datasets are also inserted in the table to make the comparison
understandable. RVL-CDIP is a secondary dataset to balance the primary dataset (Tobacco3482).
Table 2 shows the classes of both datasets. Left-most column present class names in a primary dataset,
while the right-most column presents the corresponding classes from the RVL-CDIP dataset. The central
columns present the number of images before and after data augmentation.
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Table 2. Dataset before and after applying the data augmentation algorithm.

Classes in
Tobacco3482

# of Images before
Augmentation

# of Images after
Augmentation

Classes in RVL-CDIP

Advertisement 230 620 Advertisement
Email 599 620 Email
Form 431 620 Form
Letter 567 620 Letter
Memo 620 620 Memo
News 188 620 News Article
Note 201 620 Handwritten

Report 265 620 Scientific Report
Resume 180 620 Resume
Scientific 261 620 Scientific Publication

3.2. Network Architectures

Transfer of information between neurons is the primary motivation of CNNs. The CNNs have
the same basic structure as classical artificial networks. The CNNs are composed of multiple layers
which continuously fire neurons among connecting layers. The previous layer fires neurons onto the
next layer as input, and each of these connections of successive layers is burdened with values called
weights. The major difference between CNNs and classical networks is that classical networks accept
the inputs in the form of vectors, while CNNs accept images as input data. The convolutional layer is
the first layer of CNN, which receives an image from the input layer, and it uses an operation called
image convolution to extract the features. To understand the functionality, a filter fm,n of size 3× 3 is
defined with a central position at m, n.

Many CNN models have pooling layers with each convolutional layer, which reduces the
input image by selecting fewer pixels based on three major operations known as “max-pooling”
“min-pooling”, and “average-pooling”. A pooling filter of size 3 × 3 will select only one value,
which replaces all the nine values in the new vector representing the input image. The last layers of
CNN models are always fully connected layers and separated into output layers or hidden layers.
A tiny image described by numerical values is the input to these layers, which is already rectified by
the previous combinations of convolutional and pooling layers. This layer uses an activation function
to extract features from the rectified input image by creating multiple neurons and identifying the total
units with each pixel value. The working of neurons can be described as:

Outa = ξ(
∑n

b
ωa,bInb), (3)

where Outa is an output of the current neuron, Inb is input from the previous neuron, ωa,b is the
weight of the connection between ath and bth neuron and ξ is the activation function which is used
to normalize the input values received from previous neurons to the range of (−1, 1) can be further
described as:

ξ(In) = tanh(In), (4)

3.2.1. AlexNet

The AlexNet has eight (8) distinguished layers, out of which five connected convolutional layers
are at the beginning with pooling layers, followed by three (3) fully-connected layers. The output
layer of this model is the softmax layer, which is directly connected with the last fully connected layer.
The last layer is labeled as the FC8 layer, which fed the softmax layer with a feature vector of 1000 size,
and softmax produces 1000 channels. Neurons of fully connected layers are directly attached to
neurons of previous layers. Normalization layers relate to first and second layers. Fifth convolutional
layer and response normalization layers have max-pooling layers. The output of every fully connected
and convolutional layer has a ReLU layer. Input size for this network is 227× 227× 3. The AlexNet
model structure used in this technique is shown in Figure 3 where FC7 is selected as an output layer.
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Figure 3. Structure of AlexNet Model.

3.2.2. VGG19

Depth is an essential aspect of the CNN architecture. Increasing the layers of the network by
adding more layers, a more significant CNN architecture was developed, which was more accurate on
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) classification and localization tasks.
The input to the VGG19 architecture is a fixed size RBG image of 224× 224× 3. Multiple convolutional
layers accept the input image, which has the smallest sized 3× 3 filters. The 1× 1 convolutional filter
was also used to transform the input channel from non-linearity to linear. One-pixel convolution
stride is fixed, and the spatial resolution is fixed by the spatial padding for the convolutional layer.
Five max-pooling layers carry the spatial pooling, out of which convolutional layers follow few. Having
stride of 2, over a 2 × 2 pixel window, maximum pooling is applied. VGG19 also has three fully
connected layers followed by a softmax layer at the end. The structure of the VGG19 model is explained
in the following Figure 4, where FC7 is an output layer.

 

Figure 4. Structure of VGG19 Model.

3.3. Feature Fusion and Selection

After extracting the deep features using two DCNN networks, AlexNet and VGG19, both features
are serially fused to form a higher dimensional feature vector, which is explained as follows.

Suppose a1, a2, a3, . . . , an belongs to a feature space V1 and b1, b2, b3, . . . , bn belongs to the feature
space V2, and feature spaces V1 and V2 denote the DCNN features of AlexNet and VGG19, respectively.
Feature spaces V1 and V2 are defined as:
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V1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 · · · a1,4096

a2,1 a2,2 · · · a2,4094
...

...
...

...
an,1 an,2 · · · an,4096

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5)

V2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,1 b1,2 · · · b1,4096

b2,1 b2,2 · · · b2,4094
...

...
...

...
bn,1 bn,2 · · · bn,4096

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

FV = V1 ⊕V2, (7)

FV =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 · · · a1,4096 b1,4097 b1,4098 · · · b1,8192

a2,1 a2,2 · · · a2,4096 b2,4097 b2,4098 · · · b2,8192
...

...
...

...
...

...
...

...
an,1 an,2 · · · an,4096 bn,4097 bn,4098 · · · bn,8192

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

where FV is a fused feature vector.
As both networks were trained to extract the features from fully connected layer FC7, a total of

4096 features were extracted and fused to form a new feature vector of size 8192 features. This fusion
process compensates the inadequacy of a single network for document classification but increases the
feature vector’s dimensions. Moreover, both networks use a basic CNN architecture with different
approaches; there are chances of many correlations and redundant features among fused features.

Therefore, in this work, a PCC-based technique is implemented for selecting the optimized features
by removing the redundant ones. The PCC-based feature selection technique evaluates different
subsets of features based on highly correlated features [43].

The following equation explains the merit M of feature subset FV having i features:

MFVi =
i× avgc f√

i + i(i− 1)avg f f

, (9)

where avgc f corresponds to the feature-classification correlations while avg f f corresponds to
feature-feature correlations.

The criterion for the correlation coefficient-based feature selection CCFS can be defined as:

CCFS = max
FVi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
avgc f1 + avgc f2 + . . .+ avgc fi√

i + 2(avg f1 fk + . . .+ avg fm fn + . . .+ avg fi f1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (10)

where avgc fi and avg fm fn are referred to as correlations between continuous features.
Suppose Wi denotes the whole feature vector having Fi features, then the equation mentioned

above for CCFS can be rewritten as an optimized feature vector as:

CCFS = max
w∈{0,1}i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎝ i∑
j=1,k=1

fiwi

⎞⎟⎟⎟⎟⎠
2

i∑
j=1

wi +
∑
j�k

2× f jwjwij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (11)

Features having a high correlation value are considered as redundant features, so only those
features are selected, which have the minimum redundancy between consecutive features. The smallest
Pearson’s correlation values concerning neighboring features are appended to the selected feature
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set. The feature vector’s final size becomes 3000 after selecting the best features and disregarding
the redundant features. These best features are forwarded to the Cubic SVM (C-SVM) classifier to
obtain the classification accuracy. The proposed technique is tested on the publicly available dataset
Tobacco3482. The labeled outputs of the proposed technique are shown in Figure 5.

 

Figure 5. Labeled outputs of the proposed technique.
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4. Experimental Results

4.1. Datasets

The publicly available Tobacco3482 dataset is presented by a tobacco company including a
different number of pictures per class, having 3482 pictures of high resolution from ten different classes.
These images have a remarkable difference in structural and visual views, making this dataset more
complex and challenging. The RVL-CDIP dataset is also a complicated, huge dataset that includes
400,000 labeled images in 16 different categories. In this article, RVL-CDIP was used as a secondary
dataset for the augmentation purpose. The proposed technique is validated on the original Tobacco3482
dataset and an augmented dataset prepared during the data augmentation process. Few sample images
from the Tobacco3482 dataset are shown in Figure 6.

 

Figure 6. Sample images from Tobacco3482 dataset (one image per class). Left to right: (Advertisement,
Email, From, Memo, News, Letter, Note, Report, Resume and Scientific).

4.2. Evaluation

The pre-trained DCNN models, i.e., AlexNet and VGG19, are used to extract the DCNN features
by performing activations on the fully connected layer FC7. An approach of 50:50 split is adopted for
training and testing to validate the proposed technique using ten-fold cross-validation. Ten machine
learning methods (C-SVM, Linear Discriminant (LD), linear SVM (L-SVM), quadratic SVM (Q-SVM),
fuzzy KNN (F-KNN), modified KNN (M-KNN), continuous KNN (C-KNN), weighted KNN (W-KNN),
Subspace Discriminant, and Subspace KNN) were used as classifiers. All experiments are performed
on Corei7, 7th generation with a 3.4 GHz processor, 16 GB RAM, 256 GB SSD having MATLAB 2018a
(MathWorks Inc., Natick, MA, USA).

4.3. Classification Results

Three experiments are performed to obtain classification results such as (a) classification using
the AlexNet features with PCC-based optimization; (b) classification using VGG19 features with the
PCC-based optimization; (c) classification using a fusion of AlexNet and VGG19 features with the
PCC-based optimization. Classification accuracy and execution time are validated by comparing it
with the state-of-the-art techniques applied to the same dataset and sub-dataset.
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AlexNet DCNN with PCC-based Optimization: In the first experiment, the AlexNet model is used
to extract DCNN features that are reduced using the PCC-based optimization to select the best features.
Selected 3000 features were then forwarded to ten (10) different classifiers. The best classification
accuracy of 90.1% and false-negative rate (FNR) of 9.9% is achieved using C-SVM with a training time
of 670.8 s. The confusion matrix, shown in Figure 7a, confirms the accuracy of C-SVM. Q-SVM achieves
the second-best accuracy with 89.6% and FNR of 10.4% in execution time of 742.2 s. Overall results of
this experiment on different classifiers is displayed in Table 3.

Figure 7. Confusion matrices for the Tobacco3482 dataset: (a) AlexNet, (b) VGG19, (c) proposed
method on the original dataset, and (d) proposed method on the augmented dataset.
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Table 3. Comparison of classification accuracy, false-negative rate (FNR), and Training Time on
Tobacco3482 Dataset. Best values are shown in bold.

Method

Experiments Performance Measures

AlexNet VGG-19
Proposed
(Original
Dataset)

Proposed
(Augmented

Dataset)

Accuracy
(%)

FNR
(%)

Training
Time (s)

C-SVM

√
90.1 9.0 670.8√
89.6 10.4 947.3√
92.2 7.8 329.5√
93.1 6.9 364.1

Linear
Discriminant

√
79.7 20.3 772.5√

- - -√
82.4 17.6 593.2√
84.0 16.0 659.9

L-SVM

√
81.6 18.4 1731.7√
79.0 21.0 2198.9√
81.8 18.2 971.3√
84.3 15.7 1170.2

Q-SVM

√
89.6 10.4 742.2√
87.1 12.9 1996.0√
87.4 12.6 582.6√
91.8 8.2 625.2

F-KNN

√
87.1 12.9 846.8√
83.7 16.3 1720.9√
85.0 15.0 742.6√
89.5 10.5 872.9

M-KNN

√
73.8 26.2 744.9√
65.5 34.5 1920.3√
73.9 26.1 621.1√
76.5 23.5 767.4

C-KNN

√
74.0 26.0 1604.8√
65.9 34.1 4147.5√
72.8 27.2 598.4√
76.4 23.6 719.1

W-KNN

√
87.1 12.9 951.4√
83.0 17.0 2393.5√
84.3 15.7 687.2√
88.7 11.3 746.9

Subspace
Discriminant

√
89.5 10.3 5305.0√
87.5 12.5 6304.3√
88.3 11.7 1716.8√
89.7 10.3 2079.2

Subspace
KNN

√
87.0 13.0 2498.6√
83.2 16.8 2508.9√
86.9 13.1 1958.2√
89.4 10.6 2398.9

VGG19 DCNN with PCC-based Optimization: In this experiment, VGG19 is used for DCNN
feature extraction and PCC selected the optimized features. Selected 3000 features are then forwarded
to ten (10) different classifiers, out of which, the best classification accuracy at 89.6% and FNR of 10.4%
is recorded on C-SVM with a training time of 947.3 s. The classification accuracy of Cubic SVM is
confirmed by the confusion matrix shown in Figure 7b. The second highest accuracy of 87.1% with FNR
of 12.9%, and training time of 1996 s was achieved on Q-SVM. The detailed results of this experiment
on multiple classifiers are listed in Table 3 as well.

AlexNet and VGG19 DCNN feature fusion and PCC-based Optimization: A serial-based fusion
approach is applied to fuse the DCNN features of AlexNet and VGG19 models, which are later
optimized using the PCC-based selection. Both DCNN models extracted 4096 features each, and feature
fusion strategy is applied to combine both models’ characteristics.
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The proposed technique is validated on two cases for a fair comparison with existing techniques.
Initially, the proposed technique is validated using the original imbalanced Tobacco3482 dataset, where
it achieved the highest accuracy of 92.2% with FNR of 7.8% and training time of 329.5 s on C-SVM
classifier. While in another case, it is validated using an augmented dataset after the augmentation
process described in the proposed section, where the original dataset was balanced using a secondary
dataset RVL-CDIP. C-SVM achieved the best accuracy of 93.1% in 364.1 s with FNR of 6.9%. Figure 7c,d
shows the confusion matrices, which confirms classification accuracy of Cubic SVM on both cases.
Table 4 contains the results of all experiments mentioned above on ten selected classifiers along with
respective accuracies, FNR, and training time. There are other experiments, which are carried out to
validate the proposed model. Table 4 illustrates the results after feature fusion. The highest accuracy
of 91.5% is achieved using C-SVM. It is noteworthy that this experiment’s training time increases as
the total number of features increased after fusion. The fusion increases the chances of redundant and
irrelevant features, which are removed by employing PCC-based feature selection technique.

Table 4. Classification results after feature fusion. Best values are shown in bold.

Classifier

Performance Measures

Sensitivity
(%)

Precision
(%)

AuC
(%)

FNR
(%)

Accuracy
(%)

Training
Time (s)

C-SVM 91.6 91.6 99.3 8.50 91.5 3037.7
Linear Discriminant 81.2 81.3 89.7 18.7 81.3 3055.7

L-SVM 84.5 84.8 98.1 15.6 84.4 2861.1
Q-SVM 90.3 90.3 99.0 9.70 90.3 2989.4
F-KNN 86.7 87.0 92.6 13.2 86.8 2176.9
M-KNN 75.0 76.3 95.5 24.9 75.1 2176.7
C-KNN 74.5 76.0 95.3 25.5 74.5 5307.6
W-KNN 86.9 87.4 98.5 13.0 87.0 2174.4

Subspace Discriminant 86.1 86.2 98.5 13.7 86.3 8794.6
Subspace KNN 86.9 87.0 95.5 13.0 87.0 3876.5

4.4. Discussion

We discuss the significance of proposed results on several classifiers. Without statistical analysis,
it is not clear that which classifier outperforms for document classification. Therefore, we have
conducted more experiments and computed standard deviation, confidence interval (CI), denoted
by σx and margin of error at confidence level (95%, 1.96 σx). The values are tabulated in Tables 5
and 6. In Table 5, the minimum accuracy achieved on C-SVM after 100 iterations is 90.7% whereas
the average and best accuracies are 91.45% and 92.2%, respectively. The value of σ is 0.75 and σx
is 0.5303, respectively. The margin of error on confidence level (CL) (95%, 1.96 σx) is 91.45 ± 1.039
(±1.14%), which is better as compared to other classifiers. Similarly, the analysis is also conducted on
the augmented dataset and values are tabulated in Table 6. For C-SVM, CL (95%, 1.96 σx) is 92.7 ± 0.554
(±0.60%), which is better as compared to other classifiers performance.
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Table 5. Analysis of proposed method on original data. Best values are shown in bold.

Method Min (%) Avg (%) Max (%) σ σx ME (95%, 1.96 σx)

C-SVM 90.7 91.45 92.2 0.75 0.5303 91.45 ± 1.039 (±1.14%)

LD 79.4 80.90 82.4 1.5 1.0606 80.9 ± 2.079 (±2.57%)

L-SVM 78.3 80.05 81.8 1.75 1.2374 80.05 ± 2.425 (±3.03%)

Q-SVM 84.8 86.10 87.4 1.3 0.9192 86.1 ± 1.802 (±2.09%)

F-KNN 83.2 84.10 85.0 0.9 0.6363 84.1 ± 1.247 (±1.48%)

M-KNN 70.6 72.25 73.9 1.65 1.6670 72.25 ± 2.87 (±3.17%)

C-KNN 71.1 71.95 72.8 0.85 0.6010 71.95 ± 1.178 (±1.64%)

W-KNN 81.6 82.95 84.3 1.35 0.9545 82.95 ± 1.871 (±2.26%)

ESDA 85.4 86.85 88.3 1.45 1.0253 86.85 ± 2.010 (±2.31%)

ESKNN 83.2 85.05 86.9 1.85 1.3081 85.05 ± 2.564 (±3.01%)

Table 6. Analysis of proposed method on augmented dataset. Best values are shown in bold.

Method Min (%) Avg (%) Max (%) σ σx ME (95%, 1.96 σx)

C-SVM 92.3 92.7 93.1 0.4 0.2828 92.7 ± 0.554 (±0.60%)

LD 81.7 82.8 84.0 1.15 0.8131 82.85 ± 1.594 (±1.92%)

L-SVM 82.6 83.4 84.3 0.85 0.6010 83.45 ± 1.178 (±1.41%)

Q-SVM 89.4 90.6 91.8 1.2 0.8485 90.6 ± 1.663 (±1.84%)

F-KNN 87.1 88.3 89.5 1.2 0.8485 88.3 ± 1.663 (±1.88%)

M-KNN 73.8 75.1 76.5 1.35 0.9545 75.1 ± 1.871 (±2.59%)

C-KNN 73.6 75.1 76.4 1.4 0.9899 75.0 ± 1.940 (±2.59%)

W-KNN 84.9 86.8 88.7 1.9 1.3435 86.8 ± 2.633 (±3.03%)

ESDA 85.7 87.7 89.7 2.0 1.4142 87.7 ± 2.772 (±3.16%)

ESKNN 86.3 87.8 89.4 1.55 1.0969 87.85 ± 2.148 (±2.45%)

Several previous techniques had also used the Tobacco3482 dataset to validate their models.
A custom CNN-based architecture, inspired by AlexNet, was proposed in [44] for document
classification. Multiple experiments were performed including 20 images per class and 100 images per
class for training and validation, respectively, and achieved classification accuracies of 68.25% and
77.6%, for both tests respectively. Another approach utilized DCNN model as a feature extractor and
extreme learning machine (ELM) for classification in [45]. Overall accuracy of 83.24% was achieved
on the Tobacco3482 dataset. A DCNN-based approach utilizing AlexNet, VGG16, GoogLeNet, and
ResNet-50 was proposed in [46], where classification accuracy of 91.13% is recorded. In [47], a spatial
pyramid model is proposed to extract high discriminant multi-scale features of document images by
utilizing the inherited layouts of images. A deep multi-column CNN model is used to classify the
images with an overall classification accuracy of 82.78%. In [48], combining semantic information
with visual information of images allowed an improved separation toward document classification.
The model has tested on the Tobacco800 [49] dataset and achieved an accuracy of 93%. Tobacco-800 is a
subset of the actual Tobacco3482 dataset, with fewer classes. The purpose of comparing this dataset is
to validate the proposed methodology demonstrating that it still outperforms other techniques tested
with less classes. The performance of related work is summarized in Table 7.
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Table 7. Comparison with existing techniques on the Tobacco3482 dataset.

Paper Dataset
Accuracy

(%)
Training
Time (s)

Prediction
Time (s)

Afzal et al. [44] Tobacco3482 77.6 - -
Kölsch et al. [45] Tobacco3482 83.24 - -
Afzal et al. [46] Tobacco3482 91.13 - -

Sarkhel & Nandi [47] Tobacco3482 82.78 - -
Wiedemann & Heyer [48] Tobacco-800 93 - -

Proposed

Primary:
Tobacco3482
Secondary:
RVL-CDIP

AlexNet: 90.1 670.8 2.34
VGG19: 89.6 947.3 3.95
Original: 92.2 329.5 1.62

Augmented: 93.1 364.1 0.78

The proposed technique obtained a classification accuracy of 93.1% with an average training time
of 364.17 s and an average prediction time of 0.78 s. Note that the proposed technique’s training time
increases when it is tested on the augmented dataset due to the increased number of images in each
class. But as the training proceeds, the prediction time is reduced in half, which shows the balanced
dataset’s importance.

5. Conclusions

In this article, a hybrid approach to classify the documents using deep convolutional neural
networks is proposed, consisting of data augmentation, data normalization, feature extraction, feature
fusion, and feature selection steps. In the data augmentation step, the dataset is analyzed, and classes
within the dataset with fewer images are fed using the secondary dataset RVL-CDIP. After that,
data normalization is performed, which resized the dataset images according to pre-trained models’
sizes. The pre-trained AlexNet and VGG19 models are used to extract deep features, which are fused
using a serial-based fusion, and, in the end, the Pearson correlation coefficient-based technique selects
the best features. The selected features are then forwarded to the Cubic SVM classifier for document
classification. The proposed technique is validated on the publicly available Tobacco3482 dataset,
achieving an accuracy of 93.1%. The obtained results outperformed the previous techniques and
validated the proposed technique.

Moreover, this technique reduces training and prediction time, which is also an essential
development in the document classification field. There are several open questions for this research
including: (a) The selection of CNN models (other pre-trained or custom CNN models may perform
better on this domain); (b) the selection of the technique to fuse different features is also not a limitation,
as there are several other fusion techniques [50–53], which can perform better; and (c) feature selection
technique used in this work is also not a limitation as other feature selection methods can also be
implemented and tested.

In the future, a new generic method for document image classification will be developed by
combining the hand-crafted features with the DCNN features to achieve a further improved classification
accuracy. Furthermore, a real-time application also will be developed to classify documents in real-time.
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12. Ptak, R.; Żygadło, B.; Unold, O. Projection-based text line segmentation with a variable threshold. Int. J.
Appl. Math. Comput. Sci. 2017, 27, 195–206. [CrossRef]

13. Akhtar, Z.; Lee, J.W.; Khan, M.A.; Sharif, M.; Khan, S.A.; Riaz, N. Optical character recognition (OCR) using
partial least square (PLS) based feature reduction: An application to artificial intelligence for biometric
identification. J. Enterp. Inf. Manag. 2020. [CrossRef]

14. Tensmeyer, C.; Martinez, T. Analysis of convolutional neural networks for document image classification.
In Proceedings of the 14th IAPR International Conference on Document Analysis and Recognition (ICDAR),
Kyoto, Japan, 9–15 November 2017; pp. 388–393. [CrossRef]

15. Kumar, B.S.; Ravi, V. Text Document Classification with PCA and One-Class SVM. In Proceedings of the
5th International Conference on Frontiers in Intelligent Computing: Theory and Applications, FICTA 2016,
Bhubaneswar, India, 16–17 September 2016; pp. 107–115. [CrossRef]

16. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of
the 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017.

17. Lenc, L.; Král, P. Deep neural networks for Czech multi-label document classification. In Proceedings of
the International Conference on Intelligent Text Processing and Computational Linguistics, Konya, Turkey,
3–9 April 2016; pp. 460–471.

18. Jiang, X.; Ringwald, M.; Blake, J.A.; Arighi, C.; Zhang, G.; Shatkay, H. An effective biomedical document
classification scheme in support of biocuration: Addressing class imbalance. Database 2019, 2019. [CrossRef]

19. Das, A.; Roy, S.; Bhattacharya, U.; Parui, S.K. Document Image Classification with Intra-Domain Transfer
Learning and Stacked Generalization of Deep Convolutional Neural Networks. In Proceedings of the 24th
International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 3180–3185.
[CrossRef]

20. Rashid, M.; Khan, M.A.; Sharif, M.; Raza, M.; Sarfraz, M.M.; Afza, F. Object detection and classification: A joint
selection and fusion strategy of deep convolutional neural network and SIFT point features. Multimed. Tools
Appl. 2019, 78, 15751–15777. [CrossRef]

100



Sensors 2020, 20, 6793

21. Nasir, I.M.; Rashid, M.; Shah, J.H.; Sharif, M.; Awan, M.Y.H.; Alkinani, M.H. An Optimized Approach for
Breast Cancer Classification for Histopathological Images Based on Hybrid Feature Set. Curr. Med. Imaging
2020, 16. [CrossRef] [PubMed]

22. Nasir, I.-M.; Khan, M.A.; Alhaisoni, M.; Saba, T.; Rehman, A.; Iqbal, T.A. Hybrid Deep Learning Architecture
for the Classification of Superhero Fashion Products: An Application for Medical-Tech Classification.
Comput. Model. Eng. Sci. 2020, 124, 1–9. [CrossRef]

23. Kapočiūtė-Dzikienė, J.; Damaševičius, R.; Woźniak, M. Sentiment analysis of lithuanian texts using traditional
and deep learning approaches. Computers 2019, 8, 4. [CrossRef]

24. Wei, W.; Ke, Q.; Nowak, J.; Korytkowski, M.; Scherer, R.; Woźniak, M. Accurate and fast URL phishing
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Abstract: Recently, attention has surged concerning intelligent sensors using text detection. However,
there are challenges in detecting small texts. To solve this problem, we propose a novel text detection
CNN (convolutional neural network) architecture sensitive to text scale. We extract multi-resolution
feature maps in multi-stage convolution layers that have been employed to prevent losing information
and maintain the feature size. In addition, we developed the CNN considering the receptive field size
to generate proposal stages. The experimental results show the importance of the receptive field size.

Keywords: scene text detection; multiple scales; convolutional neural networks

1. Introduction

Recently, attention has surged concerning intelligent sensors using text detection [1,2].
Texts in a natural scene image are useful for many applications, such as translator,
mobile visual search, and so on. Thus, text detection is a hot topic in computer vision.
A convolutional neural network, CNN, is widely used in object detection tasks since its
high performance. Particularly, Faster R-CNN [3] is a standard method. Moreover, there
are YOLO [4–6] and SSD [7]. Text detection benefits from CNN-based object detection to
achieve high performance.

It is unsuitable to directly apply object detection methods [3–7] to text detection.
As shown in Figure 1a, the small texts “reuse” and “in” were missed in the left example,
and large text “lowns-uk.co” was divided in the right example. The CNNs transformed
images into a low-resolution feature maps. Thus, some texts are transformed to appropriate
scales in the feature maps. However, small and large texts became inappropriate scales,
resulting in detection failures.

There is room in Faster R-CNN to improve scale sensitivity. Its limited scale sensi-
tivity is due to a fixed receptive field in region proposal network (RPN), a Faster R-CNN
module. RPN extracts context features around objects using convolutional computation.
The receptive field size of the RPN is essential. The convolutional computation produces
one pixel in a feature map from a fixed area context. For example, 3 × 3 kernel of the
convolution produces one output from 3 × 3 input. The receptive field depends on the
number of convolutional computations. In the case of Faster R-CNN, the receptive field
is 228 × 228. We doubt whether Faster R-CNN can utilize the context information well
because it has a fixed receptive field.

The problem of small object detection is caused by detection from only one feature
map. Recently, multi-stage convolutional feature maps [8,9] are applied to many works for
not only object detection but also other tasks. While this strategy is useful, but there are
few discussions about quantitative analysis. He et al. [10] introduced a skip-connection
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module to prevent overfitting, which was the first attempt to merge different feature maps.
Wang et al. [11] explained the effectiveness of using convolutional layers simultaneously.
These explain the effectiveness of using multi-feature maps; however, there are no detailed
works on the receptive field, to our knowledge. Our proposed idea computes the receptive
field size. Therefore, it can extract adequate context features for generating proposals.
Besides, the proposed idea can be applied to other detection modules and tasks.

(a) Faster R-CNN

(b) The proposed method

Figure 1. Detection examples. (a) Faster R-CNN (convolutional neural network) failed to detect small
texts and detected large texts only partially. Green circles are the missed texts. (b) The proposed
method detected small and large texts successfully. Although, there is the false-positive detection in
the left example.

To reinforce the scale sensitivity, we propose a CNN that can detect small and large
texts simultaneously. Specifically, we propose to use multiple RPNs to generates text pro-
posals in different resolution feature maps. These multiple RPNs have different receptive
field sizes. As shown in Figure 1b, the proposed method detected small and large texts
successfully. The contribution of this paper is the integration of Faster R-CNN and a multi-
resolution detection approach using multiple anchors of the appropriate dimensions for
texts. The proposed architecture is sensitive to text region scale by using a multi-receptive
field size. We confirm that the receptive field is an important factor when using the CNN,
and the proposed concept can contribute to other detection methods.

This paper is an extended version of our conference paper [12]. There are four
differences from the conference paper. Firstly, we reorganized the related work section
using more than 20 additional literature to clarify the background of the proposed method.
Secondly, we conducted an ablation study to confirm improvements of the two proposed
components, multiple RPNs and Anchor. Section 4.3 summarizes the results. Thirdly, we
visualized the output of each RPN to confirm output scales are appropriate. Section 4.4
showed that text detection is performed by RPNs that are responsible for small and large
scale, respectively. Finally, we analyzed failure results by investigating the output of the
RPNs and activated feature maps. Section 4.5 illustrated the output. Overall, these four
additional discussions and experiments reinforced the conference paper.
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2. Related Works

A text detection method is based on object detection. Hence, we describe object
detection methods. Then, we address some studies to use multi-resolution feature maps
for object detection. Finally, we introduce text detection studies.

2.1. Object Detection

Object detection is a popular research subject in computer vision. There have been
many attempts, such as deformable part model [13] and histograms of sparse codes [14]
which use engineered feature expression and support vector machine. These methods
incur high computation cost because they need many feature expressions and parameters
for evaluation. Recently, the CNN-based method and R-CNN [15] have been used for
object detection. R-CNN is composed of a proposal generation stage and a classification
stage. Proposals from a given image are generated using modules of other methods such
as Selective Search [16]. The proposal regions cropped from an original input image are
fed into the classification stage, which uses the CNN to classify proposals into the object or
background classes. In addition, the bounding-box regression process adjusts the proposal
rectangles to object sizes accurately. The problem of R-CNN is high computation cost
because the CNN computes the feature map for each proposal. In the Fast R-CNN [17],
RoI-pooling (region of interest pooling) is introduced to share precomputed convolution
features. Given an input image, the CNN computes the feature maps of the whole image.
The feature maps of the proposal regions are cropped and pooled to the fixed size by
using RoI-pooling. This reduces the computation cost; however, the Fast R-CNN requires
another pipeline to generate proposals. Therefore, it cannot process end-to-end consistently.
The Faster R-CNN [3] uses the RPN to generate proposals with only convolutional layers.
In the RPN, the convolutional layer (3 × 3 kernel) is applied to obtain the feature map,
which is fed into two sibling convolutional layers (1 × 1 kernel) for binary classification
(object/background) and bounding-box regression. In each pixel position of the feature
map, some proposals with confidence scores are generated from fixed-size rectangles
called anchors in the bounding-box regression. Therefore, the Faster R-CNN does not
require an external proposal generating method by RPN module. The Faster R-CNN is a
baseline method for achieving state-of-the-art accuracy and inference speed. This realizes
end-to-end processing and improves the detection speed and accuracy.

YOLO (you only look once) [4–6] is a one-shot detector and is not a region-based
method. It predicts proposals with object likelihood scores and class probabilities. There-
fore, it does not need any computation modules per proposal. This leads to less computa-
tion than the Faster R-CNN. SSD (single shot multibox detector) [7] is similar to YOLO,
except for using a multi-resolution feature map for detection. SSD predicts the proposals
from each convolutional layer. Therefore, it has various features for detection, unlike the
Faster R-CNN and YOLO.

2.2. Strategy Using Multi-Features

The CNN is composed of many convolutional layers, e.g., 13 layers in VGG16 [18].
In general, a shallow layer extracts simple features of an image, called as a low-level
feature, and a deeper layer can extract complex features, called as a high-level feature.
Therefore, many works using the CNN use many convolutional layers. However, using
many convolutional layers incurs high computation cost. To avoid this, a downsampling
operation called pooling is inserted after some convolutional blocks; however, it leads
to loss of feature information as a trade-off. Many recent works have pointed out this
phenomenon, particularly in object detection, face detection, and text detection.

A recent trend of using multi-stage convolutional feature maps is called feature
pyramid. Kong et al. [9] pointed out that region-based methods struggle with small-size
objects. To solve this problem, they use conv1, conv3, and conv5 feature maps of VGG16
and merge them into one feature map. This generates large-size feature maps using multi-
feature states. Kong et al. [19] merge the convolutional feature map and deeper feature
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for accurate object localization. Lin et al. [8] applied feature merging to the Faster R-CNN
and concluded that using feature hierarchy saves memory cost. Wang et al. [11] used a
multi-convolutional layer for high-order statistics to represent feature maps with negligible
computation cost.

These strategies are inspired by skip-connection [10], and it leads to semantic segmen-
tation [20–22] along with detection. In this work, we also considered receptive fields of the
multi-stage convolutional layer.

2.3. Text Detection

Text detection has been widely studied for decades. Wang et al. [23] detected char-
acters using the sliding window and random ferns [24] and connected the characters
using pictorial structures [25]. Wang et al. [26] detected word regions using the sliding
window and CNN, and recognized characters using the CNN and dictionary-matching.
Milyaev et al. [27] binarized images and generated word proposals integrated from con-
nected components by edge information and engineered features such as position and
color. The character proposals classified by AdaBoost were connected to word propos-
als, which were followed by recognizing the word proposals by OCR (optical character
recognition). Opitz et al. [28] generated a text region confidence map using the slid-
ing window and AdaBoost, and detected word regions by maximally stable extremal
region [29]. After detection, they recognized the text using CNN from a pre-defined dictio-
nary. Jaderberg et al. [30] used edge boxes [31] and aggregate channel features detector [32]
to generate text proposals and eliminate false positive proposals using random forest. Then,
they used the CNN for bounding-box regression and recognizing characters. Tian et al. [33]
generated character proposals using the sliding window and fast cascade boosting algo-
rithm [34] and connected the characters using the CNN. These methods involve multi-stage
processing and complex pipeline. Hence, they require fine parameter tuning for generating
proposals and classifying them. Recently, the deep learning approach has been frequently
used because it does not require engineered features. In addition to this, the CNN-based
detection approach involves a simple architecture, realizing end-to-end consistent flow
without complexity.

Therefore, many approaches are based on the recent progress in the end-to-end process
of object detection. Liao et al. [35] proposed end-to-end CNN-based SSD, employing a hori-
zontally long anchor to detect the text region efficiently. SSD uses multi-stage convolutional
feature maps. Therefore, this approach is close to our proposed method. Tian et al. [36]
predicted parts of the text region using the RPN to predict vertically long proposals hav-
ing fixed widths. The proposals are connected by bi-directional LSTM (long short term
memory), and the final output is the bounding-boxes of the text regions. Zhong et al. [37]
improved the Faster R-CNN for text detection. By introducing an inception module [38],
they used convolutional operations having multi receptive field and this leads to extract
features efficiently compared with the conventional convolutional layer.

Recently, segmentation-based approaches are often employed. Tang et al. [39] used
three CNNs for text region segmentation: One predicts the text region roughly, the second
one refines the text region pixels, and the last one judges whether the text region is correct or
not. Dai et al. [40] combined the Faster R-CNN and segmentation for arbitrary-oriented text.
This predicts the text mask after generating the proposals. Lyu et al. [41] predicted position-
sensitive segmentation, which is robust to arbitrarily inclined text positions. Zhou et al. [42]
proposed segmentation- and parameterize-inclined text region by expressing the distance
from the pixels. Bounding-boxes were generated based on the distance from one pixel in
the text mask. This approach has simple architecture and can predict arbitrary coordinates
of the bounding-boxes. He et al. [43] also predicted the parameters of the relative positions
for the bounding-boxes using segmentation strategy with fully convolutional network.

Not only text detection but also recognition methods are studied for recognizing words
by CRNN (convolutional recurrent neural networks) [44] using connectionist temporal clas-
sification loss [45]. Bušta et al. [46] predicted the text region using an anchor-based detector
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such as Faster R-CNN, and each region was recognized using the CRNN. Li et al. [47] com-
bined the LSTM with the Faster R-CNN to realize text spotting (detection and recognition).
First, the Faster R-CNN block outputs text bounding-boxes, and the two LSTMs, encoder
LSTM and decoder LSTM, recognize the word in the bounding-box. This method detects
text and recognizes end-to-end consistently using one deep learning model. Liu et al. [48]
also combined text detection and recognition. In the text detection stage, this predicts
arbitrarily oriented regions such as [42]. In the recognition stage, the proposals are rotated
by affine transformation and are inputted in the CRNN module containing bi-directional
LSTM and outputs labels.

Thus, the text detection methods have progressed notably in the virtue of CNN.
We applied Faster R-CNN for object detection because this can be expanded to many
works and be used as a baseline.

3. The Proposed Methods

In this section, we describe the proposed CNN module and its core concept.

3.1. Scale-Sensitive Pyramid

The proposed architecture is depicted in Figure 2. The main difference between Faster
R-CNN and the proposed method is the total number of RPNs. While Faster R-CNN has
one RPN in conv5-3 of VGG16, the proposed method has four RPNs in each convolutional
layer. Specifically, RPN1, 2, 3, and 4 are added to conv4-6, conv5-3, conv6-3, and conv7-3,
respectively. To use a large receptive field in the proposed architecture, we added two
convolutional blocks containing one max-pooling and three convolutional layers such as
VGG16. In addition, we used deep-feature representation in the conv4 stage and added
extra three convolutional layers after conv4-3.

(a) Faster R-CNN

(b) The proposed method

Figure 2. Architectures.

In this paper, we define the number of RPNs as four to consider two purposes. Firstly,
we aim to maximize two evaluation metrics, Recall and Precision. There is a trade-off
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between them. We can obtain a higher recall value by increasing the number of RPNs since
more RPNs produce more text candidates. In contrast, the precision value decreases as the
number of candidates increases. Thus, we determined the number of RPNs heuristically by
considering the trade-off. Secondly, we aim to make training stable and feasible. There will
be more training parameters when the number of RPNs increased. Consequently, training
will be unstable. Besides, the amount of GPU memory is limited. Therefore, four is
a feasible amount of RPNs for training. Although there is no experimental support,
the above purposes are based on general facts. The trade-off between recall and precision
is widely known. Moreover, training may be unstable if learning parameters increased.
Thus, we believe the reasons are convincing.

The RPNs generate proposals using each pixel of the feature maps. Thus, the proposals
were largely influenced by the convolutional layers. The convolutional layer having 3 × 3
kernel gathers 3 × 3 the size context in the input feature map to one pixel as the output.
Therefore, two accumulated convolutional layers gather 5 × 5 the context to one pixel.
Considering this for an input image, we can determine the context size in the input image,
which influences the generation of proposals in the RPN. In this paper, we denote this
context size as a receptive field. The RPN of Faster R-CNN has a 228 × 228 size of the
receptive field. However, it is not sufficient to obtain information for detection, considering
that the input size is about 600 × 600. On the other hand, the proposed method has four
RPNs, which have various receptive fields. The receptive fields of the RPN1, 2, 3, and 4
are 156 × 156, 228 × 228, 468 × 468, 948 × 948, respectively. Therefore, while RPN1 can use
fine context to generate tiny proposals, RPN3 and RPN4 can use a large context to enclose
large text. We call this proposed architecture SSP-RPNs (scale-sensitive pyramid RPNs)
for convenience.

The SSP-RPNs have more RPNs than Faster R-CNN. Therefore, we introduce an RoI-
merge layer to prevent the increase in the computation cost for the proposals. The RoI-merge
layer receives 400 proposals (each RPN outputs 100 proposals) and applies non-maximum
suppression to eliminate the overlapped proposals. Then, it selects up to 100 proposals by
a higher confidence score as output proposals.

3.2. Anchor for Text Detection

Anchor is rectangular with a fixed size in the RPN, and this is regressed to arbitrary-
sized nonlinear transformation called bounding-box regression. However, transformation
parameters are determined from anchor’s height or width. Hence, the proposals are mainly
dependent on the anchor. Thus, we need to select an efficient anchor size for text detection.
The main target of this work is Latin scripts containing alphabets and digits, and we can
consider Latin scripts to be horizontally long instead of vertically long.

First of all, we performed the statistics for the text sizes in natural scene images.
Figure 3 shows that the histogram result of the aspect ratio (width/height) in three train-
ing datasets: COCO Text [49], Synth Text [50], and our dataset described in Section 4.1.
The reliability of the histogram is based on diversity in the datasets. Specifically, our dataset
is composed of five public datasets, which are widely used in text detection studies.
Furthermore, COCO Text and Synth Text are large datasets containing 173 K texts and 8 M
words, respectively. The histograms shows that the text bounding-boxes are horizontally
long, and particularly the half of them have widths two to four times the height. Faster
R-CNN prepares various anchors depicted in Figure 4a. It contains horizontally long and
vertically long aspect ratios of 1:2, 1:1, 2:1. Considering the statistics of the text bounding-
boxes, a vertically long anchor is unnecessary, and we need more horizontally long anchors.
In addition to this, the demand for a small-scale anchor increases because of the smallest
receptive field size of the SSP-RPNs module of 156 × 156.
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Figure 3. Histogram of the aspect ratio of texts in Datasets.

Based on the above reasons, we proposed new anchors for text detection shown in
Figure 4b. We eliminated vertically long anchors and added horizontally long anchors for
the Latin text. Moreover, we added a small-scale anchor for tiny text. For large-scale text,
Faster R-CNN prepares large scale anchors, and we do not add any large-scale anchors.
In the experiments, we confirmed that the proposed anchors were more efficient than the
default anchors, and the anchor was an important factor for generating proposals.

(a) Faster R-CNN (b) The proposed method

Figure 4. Comparison on anchors.

3.3. Training Strategy

The total loss for the proposed method is Equation (1).

Ltotal = ∑
i∈{1,2,3,4}

λiLrpni + λ f astrcnnL f astrcnn (1)

Lrpni represents the loss of each RPN, and L f astrcnn is the loss of Fast R-CNN. λ∗ means
the hyper parameter to define the loss balance, we set λ∗ = 1 in the experiments. Lrpni

and L f astrcnn are composed of the classification loss and bounding-box regression loss,
respectively. Detailed explanation can be found in [3,17].

We assign ground-truths to RPNs according to their sizes. Let ground-truth’s size be
maximum of either height or width. RPN1 is responsible for sizes less than 140. Followed
by [3], RPN2 undertakes all ground-truths. Both of RPN3 and RPN4 take responsibility for
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sizes larger than 220. Overall, RPN1 is trained to be suitable for small-scale text, RPN3 and
RPN4 are used for large-scale text.

4. Experiments

In this section, we evaluated the proposed method and compared it with other text
detection methods. In training, the proposed model’s parameters were initialized using
ImageNet pretrained model, and the layers other than VGG16 were initialized according
to Gaussian distribution (mean is 0, the standard deviation is 0.01). The learning rate
was fixed to 0.001, weight decay was 0.0005, momentum was 0.9, and we iterated 100 K.
For both training and testing, we used GPU NVIDIA TITAN X (Pascal). We implemented
the proposed method using the faster R-CNN based on the deep learning framework, Caffe
(Implementation of Faster R-CNN with Caffe: https://github.com/rbgirshick/py-faster-
rcnn accessed on 29 December 2020).

4.1. Datasets and Evaluation Metrics

We compiled our training dataset including 7152 natural scene images containing
texts. Our dataset is composed of five public datasets: ICDAR2013 RRC focused scene
text training dataset (229 images) [51], ICDAR2015 RRC incidental scene text training
dataset (1000 images) [51], ICDAR2017 RRC multi lingual text training dataset (5425 im-
ages) [52], street view text training dataset (SVT Dataset: http://vision.ucsd.edu/~kai/svt
accessed on 29 December 2020), and KAIST dataset (KAIST Dataset: http://www.iapr-tc1
1.org/mediawiki/index.php/KAIST_Scene_Text_Database accessed on 29 December 2020)
(398 images). We evaluated the methods on the ICDAR2013 RRC focused scene text test
dataset (233 images).

We used DetEval [53] containing three evaluation protocols, recall, precision,
and F-score. The Recall represents that how much ground-truth is covered by the detection
results. Precision means that how accurately the methods generate the bounding-boxes.
F-score is the harmonic mean between recall and precision.

4.2. Numerical Results

The numerical results are shown in Table 1. The full results are available online
(Online results (Proposed): https://rrc.cvc.uab.es/?ch=2&com=evaluation&view=method_
info&task=1&m=50094 accessed on 29 December 2020)

We compared the proposed method to other methods [3,33,35,37,43,50]. Particularly,
Faster R-CNN [3] is an essential baseline of the proposed method. The fundamental
difference is the number of RPNs: one in the Faster R-CNN, four in the proposed method.
Using only one RPN struggles with detecting small and large texts. Therefore, we proposed
to use four RPNs that are responsible for small and large texts, respectively. To verify the
effectiveness of using four RPNs, a comparison with Faster R-CNN is necessary.

The proposed method outperformed Faster R-CNN more than seven points at F-score.
Thus, we confirmed that the scale sensitivity could bring a certain improvement to text
detection. Moreover, we showed the results of the proposed method in competition mode.
The full results are available online (Online results (Proposed, Competition mode): https:
//rrc.cvc.uab.es/?ch=2&com=evaluation&view=method_info&task=1&m=51720 accessed
on 29 December 2020).

The comparison methods can be divided into two approaches in the aspect of scale
strategy: multi-scale [35,43,50] and single-scale [3,33,37]. The multi-scale approach pro-
duces multiple resolution images using various scale ratios. A post-processing is required
to merge results in multiple images. The single-scale approach uses a single resolution
image and applies multiple-sized kernels to detect various scaled texts.

According to the numerical results, the multi-scale methods were superior to the
single-scale methods. Especially, the results of [43] are better because of the number of
input images, such as seven images by scale ratios, 2{−5,··· ,1}. The abundant input images
are essential in the multi-scale approach. However, simultaneous detection for small and
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large texts is difficult in the multi-scale approach since small texts are collapsed easily.
On the other hand, the proposed method keeps small and large texts intact. The multiple
RPNs search texts in different resolution feature maps extracted from only one single image.
As shown in Figure 5, the proposed method can detect various texts containing tiny-scale
and large-scale texts.

Table 1. Numerical results on ICDAR2013.

Method Input Scale Recall Precision F-Score Time

Gupta+. [50] Multiple 75.5 92.0 83.0 -
He+ [43] Multiple 81 92 86 0.9 s

Liao+. [35] Multiple 83 89 86 0.73 s
Tian+ [33] Single 75.9 85.2 80.3 -

Zhong+ [37] Single 83 87 85 1.7 s

Baseline Faster
R-CNN [3] Single 70.3 83 76.1 0.101 s

Proposed Single 76.3 91.8 83.3 0.137 s
Proposed

(competition mode) Single 87.1 87.7 87.4 -

Figure 5. Result examples on ICDAR2013. Red rectangles are detection results by proposed method.

4.3. Ablation Study

We discuss the effectiveness of the proposed method by ablation study. There are four
variations. The first is baseline Faster R-CNN. The second is Faster R-CNN with the pro-
posed anchors (Anchor). The third is Faster R-CNN with SSP-RPNs (SSP-RPNs). The last is
the proposed method with the proposed anchors and SSP-RPNs (Proposed). We used the
same environment and hyperparameters for training all the variations.

We showed the results in Table 2. Compared to the baseline and Anchor, F-score im-
proved by 6 points, which indicates the effectiveness of the proposed anchors. The anchor
is an important factor to generate bounding-boxes in the RPN. Compared to the baseline
and SSP-RPNs, F-score improved by 1.5 points. We confirmed that the scale sensitive
module made detection effective. The proposed method was better than other methods.
Therefore, both the proposed anchors and modules should be robust for text detection.
The proposed method also improved the precision with a large margin. Thus, the pro-
posed method learned to generate proposals by reducing negative proposals. Overall,
the proposed method improved robustness with the help of the multiple RPNs.
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Table 2. Results on ablation study.

Method Anchor SSP-RPNs Recall Precision F-Score Time

Baseline 70.28 82.99 76.11 0.101
Anchor � 77.21 88.35 82.40 0.103

SSP-RPNs � 70.26 86.63 77.86 0.125
Proposed � � 76.29 91.81 83.33 0.137

Subsequently, we discuss the detected bounding-boxes. Figure 6 shows that the
proposed method can utilize the receptive field and context. On the other hand, the baseline
failed to enclose the texts entirely. The RPN in the baseline has 228 × 228 receptive field,
which is smaller than the target text scale. We assumed that this failure was due to
less context. Compared to the baseline, the proposed method enclosed large-scale text
completely. The large receptive field of the proposed method extracted enough context to
confirm the existence of large texts in image. Consequently, we achieved accurate detection.

The third row in Figure 6 also shows the validity of Proposed. The anchor model
detected large texts, however, they are partial. This failure was caused by a small context
in target texts. On the other hand, the SSP-RPNs model and the proposed model detected
large texts successfully. These results show that a horizontally long anchor is necessary for
Latin text detection. Besides, receptive field positively contributes to generating proposals.
Thus, SSP-RPNs module is essential.

Baseline Anchor SSP-RPNs Proposed

Figure 6. Detection examples in ablation study.

4.4. Scale Sensitive Strategy

In this section, we evaluate the SSP-RPNs module. Figure 7 showed that the outputs
of each RPN, RoI-merge layer, and results. The upper row in Figure 7 is a tiny-scale text
case. The RPN1 generated proposals fitted to the tiny text with high confidence, whereas
RPN3 and RPN4 failed. After the RoI-merge layer, the proposals of RPN1 were selected.
Consequently, detection succeeded in the final result. These results verified that RPN1
learned small texts. The lower row in Figure 7 is a large text case. The proposals of RPN1
were too small to enclose the entire text region. Whereas RPN3 and RPN4 generated
proposals enclosing the whole text region. Consequently, the large texts were detected in
the final result.

Overall, each RPN learned to detect each suitable scale text corresponding to their
receptive field sizes, i.e., RPN1 was optimized for small-scale, and RPN3 and 4 were
optimized for large-scale. Therefore, these RPNs can help RPN2, which is in its original
position after conv5-3. Moreover, the RoI-merge layer is necessary for the SSP-RPNs
module to reject unnecessary proposals.
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RPN1 RPN2 RPN3 RPN4 RoI-Merge Result

Figure 7. The outputs from each region proposal network (RPN). Red rectangles have high confidence,
and blue rectangles have low confidence.

4.5. Failure Analysis

We analyzed the failure results of the proposed method. The failure examples are
shown in Figures 8 and 9a–e show the proposals from each RPN and RoI-merge layer,
(f) is the outputs of the classification by the Fast R-CNN and non-maximum suppression,
(g) shows the final output, and (h) is some examples of the output feature map from conv5-3.

Figure 8 shows some text regions in the bottom-right image were not detected.
The RPNs generated proposals of all the text regions, as well as RoI-merge layer. However,
proposals were misclassified. Thus, some proposals were rejected by low confidence as the
final output. As shown in Figure 8h, the bottom-right text regions were not activated well.
To correct the proposed method, the classifier in the proposed method needs more training.
The total loss is mostly occupied by the RPN losses, in Equation (1). Thus, we need to take
a balance over Lrpni and L f astrcnn.

(a) RPN1 (b) RPN2 (c) RPN3 (d) RPN4

(e) RoI-merge layer (f) Output (g) Final Result

(h) conv5-3 activation map

Figure 8. Failure examples 1. (f) classification results of the proposals. Red and blue represent text
and background, respectively. Activation maps in (h) are resized to the input size.

Moreover, we discuss on the case of Figure 9. The results contained the digit regions,
however, they included large background regions. There are some proposals fitted to only
digits. However, such proposals were misclassified. On the other hand, proposals with
large background regions were classified to text with high confidence. According to (h),
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background regions were activated. We can suppress the activation in the background by
assigning more weight to the classifier.

(a) RPN1 (b) RPN2 (c) RPN3 (d) RPN4

(e) RoI-merge layer (f) Output (g) Final Result

(h) conv5-3 activation map

Figure 9. Failure example 2.

5. Conclusions

We proposed a text detection method that is robust to text scales in natural scene
images. The proposed method is based on the Faster R-CNN [3]. The main improve-
ment is to introduce multiple RPNs to detect texts from different resolution feature maps.
We designed the anchors suitable for Latin text detection by the analysis on the three
datasets: COCO Text, Synth Text, and our dataset. We stress that these datasets are publicly
and widely used in text detection studies. Thus, the proposed anchors ensure the general-
ization capability. The experimental results show that the proposed method outperformed
the Faster R-CNN at F-score with more than 7 points. Moreover, the proposed method
achieved comparable results to other methods. Therefore, we verified the effectiveness of
the proposed method, especially for text scales.
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Abstract: Clustering analysis of massive data in wireless multimedia sensor networks (WMSN) has
become a hot topic. However, most data clustering algorithms have difficulty in obtaining latent
nonlinear correlations of data features, resulting in a low clustering accuracy. In addition, it is
difficult to extract features from missing or corrupted data, so incomplete data are widely used in
practical work. In this paper, the optimally designed variational autoencoder networks is proposed
for extracting features of incomplete data and using high-order fuzzy c-means algorithm (HOFCM)
to improve cluster performance of incomplete data. Specifically, the feature extraction model is
improved by using variational autoencoder to learn the feature of incomplete data. To capture
nonlinear correlations in different heterogeneous data patterns, tensor based fuzzy c-means algorithm
is used to cluster low-dimensional features. The tensor distance is used as the distance measure
to capture the unknown correlations of data as much as possible. Finally, in the case that the
clustering results are obtained, the missing data can be restored by using the low-dimensional
features. Experiments on real datasets show that the proposed algorithm not only can improve the
clustering performance of incomplete data effectively, but also can fill in missing features and get
better data reconstruction results.

Keywords: feature learning; incomplete multimedia data; fuzzy c-means; variational autoencoder

1. Introduction

The rapid development of communication technologies and sensor networks leads to the increase
of heterogeneous data. The proliferation of these technologies in communication networks also
has facilitated the development of the wireless multimedia sensor network (WMSN) [1]. Currently,
multimedia data on WMSNs are successfully used in many applications, such as industrial control [2],
target recognition [3] and intelligent traffic monitoring [4].

Nowadays, multimedia sensors produce a great deal of heterogeneous data, which require
new models and technologies to process, particularly neural computing [5], to further promote the
design and application of WMSNs [6,7]. However, heterogeneous networks and data are often very
complex [8,9], which consist of structured data and unstructured data such as picture, voice, text,
and video. Because heterogeneous data come from many input channels in the real world, these data
are typical multimodal data, and there is a nonlinear relationship between them [10]. Different modes
usually convey different information [11]. For example, images have many details, such as shadows,
rich colors and complex scenes, and use titles to display invisible things like the names of objects in the
image [12]. Moreover, different forms have complex relationships. In the real world, most multimedia
data suffer from a lot of missing values due to sensor failures, measurement inaccuracy and network
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data transmission problems [13,14]. These features, especially incompleteness, lead to the widespread
use of incomplete data in practical applications [15,16]. Lack of data values will affect the decision
process of the application servers for specific tasks [17]. The resulting errors can be important for
subsequent steps in data processing. Therefore, the recovery of data missing values is essential for
processing big data in WMSNs.

As a fundamental technology of big data analysis, clustering divides objects into different clusters
based on different similarity measures, making objects in the same cluster more similar to other objects
in different groups [18,19]. They are commonly used to organize, analyze, communicate, and retrieve
tasks [20]. Traditional data clustering algorithms focus on complete data processing, such as image
clustering [21], audio clustering [22] and text clustering [23]. Recently, heterogeneous data clustering
methods have been widely concerned by researchers [24–26]. In addition, many algorithms have been
proposed—for example, Meng et al. optimized the unified objective function by an iterative process,
and a spectral clustering algorithm is developed for clustering heterogeneous data based on graph
theory [27]. Li et al. [28] proposed a high-order fuzzy c-means algorithm to extend the conventional
fuzzy c-means algorithm from vector space to tensor space. A high-order possibilistic c-means
algorithm based on tensor decompositions was proposed for data clustering in Internet of Things (IoT)
systems [29]. These algorithms are effective to improve clustering performance for heterogeneous
data. However, they can only obtain clustering results and lack further analysis of incomplete data
low-dimensional features. Therefore, their performance is limited with the heterogeneous data in the
WMSNs’ big data environment. More importantly, other existing feature clustering algorithms do not
consider data reconstruction and missing data. WMSN systems require different modern data analysis
methods, and deep learning (DL) has been actively applied in many applications due to its strong
data feature extraction ability [30]. Deep embedded clustering (DEC) learns to map from data space to
low-dimensional feature space, where it optimizes the clustering objectives [31]. Ref. [32] shows the
feature representation ability of variational autoencoder (VAE). VAE learns the multi-faceted structure
of data and achieves high clustering performance [33]. In addition, VAE has a strong ability in feature
extraction and reconstruction, and it can be a good tool for handling incomplete data.

Aiming at this research object, the variational autoencoder based high-order fuzzy c-means
(VAE-HOFCM) algorithm is presented to cluster and reconstruction incomplete data in WMSNs in this
paper. It can effectively cluster complete data and incomplete data and get better reconstruction results.
VAE-HOFCM is mainly composed of three steps: feature learning and extraction, high-order clustering,
and data reconstruction. First, the feature learning network is improved by using a variational
autoencoder to learn the feature of incomplete data. To capture nonlinear correlations of different
heterogeneous data, tensors are applied to form a feature representation of heterogeneous data. Then,
the tensor distance is used as the distance measure to capture the unknown distribution of data as
much as possible in the clustering process. The results of feature clustering and VAE output both affect
the final clustering results. Finally, in the case of clustering results, the missing data can be restored by
the low-dimensional features.

The rest of the paper is organized as follows: Section 2 presents related work to this paper.
The proposed algorithm is illustrated in Section 3, and experimental results and analysis are described
in Section 4. Finally, the whole paper is concluded in the last section.

2. Preliminaries

This section describes the variational autoencoder (VAE) and the fuzzy c-means (FCM), which will
be useful in the sequel.

2.1. Variational Autoencoder

The variational autoencoder, which is a new method for nonlinear dimensionality reduction,
is a great case of combining probability plots with deep learning [34,35]. Consider a dataset
X = {x1, x2, ..., xN} which consists of N independent and identically distributed samples of continuous

120



Sensors 2019, 19, 809

or discrete variables x. To generate target data x from hidden variable z, two blocks are used: encoder
block and decoder block. Suppose that z is generated by some prior normal distribution pθ = N

(
μ, σ2).

The true posterior density pθ (z |x ) is intractable. Approximate recognition model qφ (z |x ) as
a probabilistic encoder. Similarly, refer to pθ (x |z ) as a probability decoder because, given the code
z, it produces a distribution over the possible corresponding value x. The parameters θ and φ are
used to represent the structure and weight of the neural network used. These parameters are adjusted
as part of the VAE training process and are considered constant later. Minimize the true posterior
approximation of the KL divergence (Kullback–Leibler Divergence). When the divergence of KL is
zero, pθ (z |x ) = qφ (z |x ). Then, the true posterior distribution can be obtained. The KL divergence of
approximation from the true posterior DKL

(
qφ (z |x ) ‖pθ (z |x )

)
can be formulated as:

(
qφ (z |x ) ‖pθ (z |x )

)
=

∫ ∞
−∞ qφ (z |x ) log qφ(z|x )

pθ(z|x )dz
= log pθ (x) + DKL

(
qφ (z |x ) ‖pθ (z)

)− Eqφ(z|x ) [log pθ (x |z )]
≥ 0,

(1)

which can also be written as:

log pθ (x) ≥ −DKL
(
qφ (z |x ) ‖pθ (z)

)
+ Eqφ(z|x ) [log pθ (x |z )] . (2)

The right half of the inequality is called the variational lower bound on the marginal likelihood of
data x, and can be written as:

L (θ, φ; x) ≥ −DKL
(
qφ (z |x ) ‖pθ (z)

)
+ Eqφ(z|x ) [log pθ (x |z )] . (3)

The second term Eqφ(z|x ) [log pθ (x |z )] requires estimation by sampling. A differentiable
transformation gφ (x, ε) of an auxiliary noise variable ε is used to reparameterize the approximation
qφ (z |x ). Then, form a Monte Carlo estimates of Eqφ(z|x ) [log pθ (x |z )]:

Eqφ(z|x ) [log pθ (x |z )] = 1
M

M

∑
m=1

log pθ (x |zm ) , (4)

where zm = gφ (x, εm) = μ + εm � σ, εm ∼ N (0, I) and m denotes the number of samples.

2.2. Fuzzy C-Means Algorithm (FCM)

The fuzzy c-means algorithm (FCM) is a typical soft clustering technique [36,37]. Given a
dataset X = {x1, x2, ..., xN} with N objects and m observations, fuzzy partition of set X into
predefined cluster number c and the number of clustering centers denoted by V = {v1, v2, ..., vc}.
Their membership functions are defined as uik = uvi (xk), in which uik denotes the membership of
xk towards the i th clustering center and c denotes. FCM is defined by a c × m membership matrix
U = {uik |1 ≤ i ≤ c; 1 ≤ k ≤ m}. FCM minimizes the following objective function [38,39] to calculate
the membership matrix U and the clustering centers V:

Jm (U, V) =
n

∑
k=1

c

∑
i=1

(uik)d2 (xk, vi) , (5)

where every uik belongs to the interval (0,1), the summary of all the uik belonging to the same point is
one (∑c

i=1 uik = 1). In addition, none of the fuzzy clusters is empty, neither do any contain all the data
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0 < ∑m
k=1 uik < m, 1 ≤ i ≤ c. Update the membership matrix and clustering centers by minimizing

Equation (5) via the Lagrange multipliers method:

uik =
1

c
∑

j=1

(
dik/djk

)1/(m−1)
, (6)

vi =
∑n

k=1 um
ik xk

∑n
k=1 um

ik
. (7)

In the traditional FCM algorithm, dik denotes the Euclidean distance between xi and vk, and djk
denotes the Euclidean distance between xj and vk.

3. Problem Formulation and Proposed Method

Consider a dataset X = {x1, x2, . . . xN} with N objects. Each object is represented by m
observations, in the form of Y = {y1, y2, . . . , ym}. The purpose of data clustering is to divide datasets
into several similar classes based on similarity measure, so that objects in the same cluster have
great similarity and are easy to be analyzed. Multimedia data cluster tasks bring many problems
and challenges, especially for missing or damaged data. Key challenges are discussed in three areas
as below.

1. Learning the features of incomplete data: feature extraction and analysis are the basic steps of
clustering. In general, many feature extraction methods, such as machine learning and deep
learning, have been successfully applied to image, text, and audio feature learning. However,
the current algorithm focuses on feature learning and extraction of high quality data. In other
words, they can not effectively extract the features of lossy data. Therefore, feature learning of
incomplete data is the primary problem of heterogeneous data clustering.

2. Clustering in feature space: an important feature of large-scale multimedia data is its diversity,
which means that large-scale data sources are diverse, including structured, unstructured data
and semi-structured data from a large number of sources. In particular, a large number of objects
in large data sets are multi-model. For example, web pages usually contain both images and text.
Each mode of multimodal object has its own characteristics, which leads to the complexity of data.
Therefore, the feature representation of multimedia data is significant in cluster tasks.

3. Filling missing values to reconstruct data: in wireless multimedia sensor networks, reliable
data transmission is critical to provide the ideal quality of network-based services. However,
multimedia data transmission may not be successful due to different reasons such as sensory
errors, connection errors, or external attacks. These problems can result in incomplete data and
degrade the performance of WMSNS applications. After feature extraction and cluster analysis,
it is very important to recover missing data from the sensor network.

3.1. Description of the Proposed Method

The variational autoencoder based high-order fuzzy c-means (VAE-HOFCM) algorithm is divided
into three stages: unsupervised feature learning, high-order feature clustering, and data reconstruction.
Architecture of the proposed method is shown in Figure 1.

To learn the features of incomplete multimedia data, the original data set is divided into two
different subsets Xc and Xinc. Samples in subset Xc have no missing values while each sample contains
some missing values in subset Xinc.
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Figure 1. Architecture of the proposed method.

3.2. Feature Learning Network Architecture

For trained variational autoencoder, qφ (z |x ) will be very close to pθ (z |x ), so the encode
network can reduce the dimensionality of the real dataset X = {x1, x2, ..., xN} and obtain
low-dimensional distribution. In this case, the potential variables may get better results than
the traditional dimensionality reduction methods. When the improved VAE model is obtained,
the encode network is used to learn the potential feature vectors of missing value sample
z = Encoder (x) ∼ qφ (z |x ). The decode network is then used to decode the vector z to generate
the original sample x̄ = Decoder (z) ∼ pθ (x |z ).

According to the original VAE and to build a better generation model, convolution kernels are
added to the encoder. There is a variational constraint on the latent variable z, that is, z obeys the
Gauss distribution. Here, each xi (1 ≤ i ≤ N) is fitted with an exclusive normal distribution. Sample z
is then extracted from the exclusive distribution, since zi is sampled from the exclusive xi distribution,
the original sample xi can be generated through a decoder network. The improved VAE model is
shown in Figure 2.

Figure 2. The improved VAE model.
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In general, assume that qφ (z) is the standard normal distribution, qφ (z |x ), pθ (x |z ) are the
conditional normal distribution, and then plug in the calculation to get the normal loss of VAE, where z
is a continuous variable representing the coding vector, and y is a discrete variable that represents a
category. If z is directly replaced in the formula with (z, y), the loss of the clustered VAE is obtained:

DKL
(
qφ (z, y |x ) ‖pθ (z, y |x ) ) = ∫ ∞

−∞
qφ (z, y |x ) log

qφ (z, y |x )
pθ (z, y |x )dz. (8)

Set the scheme as: qφ (z, y |x ) = qφ (y |z ) qφ (z |x ), pθ (x |z, y ) = pθ (x |z ),
pθ (z, y) = pθ (z |y ) pθ (y). Substituting them into Equation (8) and it can be simplified as follows:

Eqφ(x)

[
− log pθ (x |z ) + ∑

y
qφ (y |z )DKL

(
qφ (z |x ) ‖pθ (z |y )

)
+ DKL

(
qφ (y |z ) ‖pθ (y)

)]
, (9)

where the first term − log pθ (x |z ) wants the reconstruction error to be as small as possible, that is,
z keeps as much information as possible. ∑

y
qφ (y |z )DKL

(
qφ (z |x ) ‖pθ (z |y )

)
plays the role of

clustering. In addition, DKL
(
qφ (y |z ) ‖pθ (y)

)
makes the distribution of each class as balanced as

possible; there will not be two nearly overlapping situations. The above equation describes the coding
and generation process:

• Sampling to x from the original data, coding feature z can then be obtained by qφ (z |x ). Then,
the coding feature is classified by classifier qφ (y |z ) to obtain the classification.

• Select a category y from distribution pθ (y), select a random hidden variable z from distribution
pθ (z |y ), and then decode the original sample through generator pθ (x |z ).
The VAE is outlined in Algorithm 1.

Algorithm 1 Variational Autoencoder Optimization.

Input: Training set X = {xt}N
t=1, corresponding labels Y = {yt}N

t=1, loss weight λ1, λ2, λ3.

Output: VAE parameters θ,φ.

1: Initialization: random initialized θ0, φ0.

2: Repeat: Sample xt in the minibatch.

3: μzt = Encoder (xt) ∼ qφ (z |x )
4: Sample: zt ← μzt + ε � σz, ε ∼ N (0, I)

5: μxt = Decoder (zt) ∼ pθ (x |z )
6: Compute reconstruction loss: Lrec = − log pθ (xt |zt ).

7: Compute regularization loss: Lreg = DKL
(
qφ (yt |zt ) ‖pθ (yt)

)
.

8: Compute clustering loss: Lcls = ∑
y

qφ (yt |zt )DKL
(
qφ (zt |xt ) ‖pθ (zt |yt )

)
.

9: Fuse the three loss: L (θ, φ) = λ1Lrec (θ, φ) + λ2Lreg (θ, φ) + λ3Lcls (θ, φ).

10: Back-propagate the gradients.

11: Until maximum iteration reached.
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3.3. Variational Autoencoder Based High-Order Fuzzy C-Means Algorithm

Variational autoencoder gets the low-dimensional features and initial clustering results of data
by feature learning. Then, the final clustering results will be optimized by the FCM algorithm
clustering results. Traditional FCM work in vector space. It is better to use higher-order tensor to
represent the feature of data because the tensor distance can capture the correlation in the high-order
tensor space and measures the similarity between two higher-order complex data samples. Given an
N-order tensor X ∈ RI1×I2×...×IN , x is denoted as the vector form representation of X, and the element
Xi1i2...iN(1≤ij≤Ij ,1≤j≤N) in X is corresponding to xl . That is, the N element in X is l = i1 + ∑N

j=2 ∏
j−1
t=1 It.

Then, the tensor distance between two N-order tensors is defined as:

dtd =

√√√√I1×I2×...×IN

∑
l,m=1

glm (xl − yl) (xm − ym) =

√
(x − y)TG (x − y), (10)

where glm is the metric coefficient and used to capture the correlations between different coordinates
in the tensor space, which can be calculated by:

glm =
1

2πδ2 exp

{
−‖pl − pm‖2

2
2δ2

}
, (11)

where ‖pl − pm‖2 is defined as:

‖pl − pm‖2 =

√(
i1 − i1′

)2
+ · · ·+ (

iN − iN
′)2. (12)

Minimizing the objective function of high-order fuzzy c-means algorithm:

Jm (U, V) =
n

∑
k=1

c

∑
i=1

(uik)d2
td. (13)

To update the membership value uik, we differentiate with respect to uik, as follows:

∂Jm(U,V)
∂uij

=
∂((uik)

md2
td(xk ,vi))

∂uij

= m · (uij
)m−1d2

td
(

xj, vi
)

.
(14)

Setting Equation (14) to 0, uik is calculated:

uik =
1

c
∑

j=1

( d(td)ik
d(td)jk

)1/(m−1)
. (15)

Then, the equation for updating vi is obtained:

vi =
∑n

j=1 um
ij xj

∑n
j=1 um

ij
. (16)

For each iteration, this operation requires O (c × n), so the total computational complexity of k
iterations is O (kc × n). From the above, the VAE-HOFCM algorithm can be described as Algorithm 2:
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Algorithm 2 The VAE-HOFCM algorithm.
Input: X = {x1, x2, ..., xn}

Output: U =
(
uij

)
and V = (vi).

1: Initialize X = {x1, x2, ..., xn} randomly.

2: Perform Algorithm 1 to calculate low dimensional representation of dataset X: x = Encoder (xn)

3: for iteration = 1, 2, . . . , max iter

4: for: i = 1, 2, . . . , c

5: vi =
∑n

j=1 um
ij xj

∑n
j=1 um

ij

6: for: i = 1, 2, . . . , c

7: for: j = 1, 2, . . . , c

8: uij =
1

c
∑

j=1

(
d(td)ik
d(td)jk

)1/(m−1)

9: (x, y) = Decoder (zt).

10: Obtain the modified clustering results using the uij.

By comparing the steps of the HOFCM algorithm, VAE-HOFCM can restore incomplete data
simultaneously in the clustering process. Equally, the VAE-HOFCM algorithm has a total time
complexity of O (kc × n). However, before that, it needs to train the variational autoencoder network.

4. Experiments

This section evaluates the performance of the proposed VAE-HOFCM algorithm on three
representative datasets. To show the effectiveness of VAE-HOFCM, the unsupervised clustering
accuracy (ACC) and adjusted rand index (ARI) for verification are adopted. ACC is calculated by:

ACC = max
m

∑n
i=1 1 {li = m (ci)}

n
, (17)

where li and ci indicate the ground-truth label and the cluster assignment produced by the algorithm,
respectively. m ranges overall possible one-to-one mappings between clusters and labels. ARI is used
to measure the agreement between two possibilistic partitions of a set of objects, where U denotes
the true labels of the objects in datasets, and U′ denotes a cluster generated by a specific algorithm.
A higher value of ARI (U, U′) represents that the algorithm has more accurate clustering results.

To study the performance and generality of different algorithms, experiments are performed on
three datasets:

• MNIST: The MNIST dataset consists of 70,000 hand-written digits of 28-by-28 pixel size. The digits
are centered and and the size is standardized.

• STL-10: A dataset consists of 96-by-96 color images. It contains 13,000 labeled images and 100,000
unlabeled images.

• NUS-WIDE: The NUS-WIDE dataset consists of 269,648 images and can be downloaded from
Flickr.com, a famous photo-sharing website.
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4.1. Experimental Results on Complete Datasets

This section evaluates the performance of variational autoencoder based high-order fuzzy c-means
algorithm (VAE-HOFCM) in clustering compared to other algorithms. The input dimensions of these
three datasets are 784, 3072 and 500, respectively. The dimension of VAE hidden layer is set as 25,
and the number of training iterations of the training set as 50. After obtaining the low-dimensional
features, start clustering, and the membership factor is set as 2.5. Then, the required clustering center
is calculated and the final normalized membership matrix U is returned to obtain the clustering result.

The clustering results are shown in Tables 1 and 2. Table 1 displays the optimal performance of
unsupervised clustering accuracy of each algorithm. For MNIST data clustering class, the proposed
VAE-HOFCM algorithm has achieved the highest accuracy of 85.54%. Compared with VAE clustering,
the VAE-HOFCM encoder training time and cluster running time sum is slightly more than the former,
but the clustering accuracy is improved. Then, the clustering performance and running time of
VAE-HOFCM algorithm are generally better than traditional clustering algorithms, such as k-means
and fuzzy c-means. Since the dimension of STL-10 dataset is higher and the information content is
larger, the operation time of extracting features and clustering is relatively long. However, the proposed
algorithm still gets the best running results. Visual features and text features are extracted from the
NUS-WIDE dataset, and then these features are connected to form feature vectors. Finally, the feature
vectors are clustered. The clustering results show the performance of the proposed algorithm.

Table 1. Clustering accuracy of ACC.

Algorithm/Dataset MNIST STL-10 NUS-WIDE

k-means 53.49% 28.40% 81.51%
HOPCM 80.34% 33.12% 92.75%

VAE 84.20% 35.48% 93.32%
DEC 84.31% 35.90% 93.75%

VAE-HOFCM 85.54% 36.44% 95.14%

Table 2 shows the clustering results in terms of ARI (U, U′), VAE-HOFCM produces high value
than other algorithms in most cases. K-means usually has the worst performance and the longest
running time, whereas VAE and DEC achieve the better result than HOPCM. ARI is not used as an
indicator in the STL-10 dataset because the value may be negative in the case of clustering accuracy.

Table 2. Clustering accuracy of ARI.

Algorithm/Dataset MNIST STL-10 NUS-WIDE

k-means 0.41 - 0.74
HOPCM 0.69 - 0.89

VAE 0.75 - 0.90
DEC 0.76 - 0.90

VAE-HOFCM 0.78 - 0.92

There are two reasons for the results of these results in terms of ACC and ARI. On the one hand,
HOFCM integrates the learning characteristics of different modes, uses the cross product to model
the nonlinear correlation under various modes, and uses the tensor distance as a measure to capture
the high-dimensional distribution of multimedia data. On the other hand, VAE successfully learns
low-dimensional features and achieves the best performance in feature dimension reduction and
clustering accuracy.

VAE has good data clustering and data generation performance. Feature extraction is carried
out by the VAE to reduce the dimension to two dimensions. These categories have clear boundaries
as shown in Figure 3, indicating that the VAE has effectively extracted low-dimensional features.
This proves that the VAE has strong data feature expression ability.
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Figure 3. Visual analysis of MNIST datasets.

To obtain better performance in the three constraints of data feature dimension, clustering
performance and reconstruction quality, the quality of data reconstruction in different dimensions is
compared. Figure 4 shows the reproduction performance of learning generation models for different
dimensions. When the latent space is set at 25, this method can obtain a good reconstruction quality.

(a) Input image. (b) 10-D latent space. (c) 25-D latent space.

Figure 4. Reconstruction quality for different dimensionalities.

Figure 5 shows the generated images of two clustering results categories 1 and 6 of MNIST.

Figure 5. Cluster category sampling.

128



Sensors 2019, 19, 809

4.2. Experimental Results on Incomplete Data Sets

To estimate the robustness of the proposed algorithm, each dataset is divided into complete
datasets and incomplete datasets. Now, incomplete datasets are used for simulation analysis.
Since clustering performance depends on the number of missing values, six miss rates are set, which are
5%, 10%, 15%, 20%, 25% and 30%, respectively.

Figure 6 shows the clustering results accuracy of ACC with the increase of the missing ratio on the
MNIST dataset and NUS-WIDE dataset. Figure 7 shows the average values of ARI with the increase of
the missing ratio on the MNIST dataset and NUS-WIDE dataset. The results show that the increase of
missing rate will lead to the decrease of clustering accuracy. However, the proposed algorithm still has
a high accuracy because VAE successfully extracts incomplete data features and reduces the difference
with the incomplete data features.

(a) Clustering accuracy of ACC on the MNIST dataset. (b) Clustering accuracy of ACC on the NUS-WIDE dataset.

Figure 6. Clustering accuracy of ACC.

(a) Clustering accuracy of ARI on the MNIST dataset. (b) Clustering accuracy of ARI on the NUS-WIDE dataset.

Figure 7. Clustering accuracy of ARI.

According to Figures 6 and 7, with the increase of missing rate, the average value of ACC and
ARI would decrease, which indicates that the missing rate destroys the original data content, leading
to the decrease of clustering accuracy. The average ACC and ARI values based on the VAE-HOFCM
algorithm are significantly higher than those of the other three methods at the six missing rates.
Therefore, VAE-HOFCM clustering has the best performance, indicating that VAE-HOFCM is also
effective for clustering incomplete data.

Then, data with different missing rates are reconstructed, as shown in Figure 8. Inputs
are incomplete data with different missing rates, and the output are recovered data using VAE.
The reconstruction results show that the proposed algorithm not only improves the clustering accuracy,
but also ensures that the data can be reconstructed with high quality.
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(a) Input image of 5% missing ratio. (b) Input image of 10% missing ratio. (c) Input image of 15% missing ratio.

(d) Output image of 5% missing ratio. (e) Output image of 10% missing ratio. (f) Output image of 15% missing ratio.

(g) Input image of 20% missing ratio. (h) Input image of 25% missing ratio. (i) Input image of 30% missing ratio.

(j) Output image of 20% missing ratio. (k) Output image of 25% missing ratio. (l) Output image of 30% missing ratio.

Figure 8. Reconstruction quality for different dimensionalities.

The variational auto-coder also has the function of de-noising. As shown in Figure 9, noise is
added into the input data to enable VAE to effectively de-noise and restore the original input image.
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(a) Original input image. (b) Input image with noise. (c) Restored image via VAE.

Figure 9. Reconstruction quality for noise data.

5. Conclusions

In this paper, a VAE-HOFCM algorithm, which can improve the performance of multimedia
data clustering, has been proposed. Unlike many existing technologies, the VAE-HOFCM algorithm
learns the data features by designing an improved VAE network, and uses a tensor based FCM
algorithm to cluster the data features in the feature space. In addition, VAE-HOFCM captures as many
features of high quality multimedia data and incomplete multimedia data as possible. In experiments,
the performance of the proposed scheme has been evaluated on three heterogeneous datasets, MNIST,
STL-10 and NUS-WIDE. Compared with traditional clustering algorithms, the results show that
VAE can achieve a high compression rate of data samples, save memory space significantly without
reducing clustering accuracy, and enable low-end devices in wireless multimedia sensor networks to
achieve clustering of large data. In addition, VAE can effectively fill the missing data and generate
the specified data at the terminal, so that the incomplete data can be better utilized and analyzed.
Although VAE needs to be trained well, the sum time of training and clustering is still less than
most clustering algorithms. Therefore, when performing clustering tasks on low-end equipment with
limited computing power and memory space, trained VAE-HOFCM can be adopted.
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Abstract: Data charts are widely used in our daily lives, being present in regular media, such as
newspapers, magazines, web pages, books, and many others. In general, a well-constructed data chart
leads to an intuitive understanding of its underlying data. In the same way, when data charts have
wrong design choices, a redesign of these representations might be needed. However, in most cases,
these charts are shown as a static image, which means that the original data are not usually available.
Therefore, automatic methods could be applied to extract the underlying data from the chart images
to allow these changes. The task of recognizing charts and extracting data from them is complex,
largely due to the variety of chart types and their visual characteristics. Other features in real-world
images that can make this task difficult are photo distortions, noise, alignment, etc. Two computer
vision techniques that can assist this task and have been little explored in this context are perspective
detection and correction. These methods transform a distorted and noisy chart in a clear chart, with
its type ready for data extraction or other uses. This paper proposes a classification, detection, and
perspective correction process that is suitable for real-world usage, when considering the data used
for training a state-of-the-art model for the extraction of a chart in real-world photography. The
results showed that, with slight changes, chart recognition methods are now ready for real-world
charts, when taking time and accuracy into consideration.

Keywords: chart recognition; deep learning; visualization; classification; detection; perspective
correction

1. Introduction

Data charts are widely used in technical, scientific, and financial documents, being present in many
other subjects of our daily lives, such as newspapers, magazines, web pages, and books. In general, a
well-designed data chart leads to an intuitive understanding of its underlying data. In the same way,
wrong design choices on chart generation can lead to misinterpretation or later preclude correct data
analysis. For example, wrong chart choice and poor mapping of visual variables can reduce the chart
quality due to lack of relevant items, such as labels, names of axes, or subtitles. A redesign of those
visual representations might be needed to fix these misconceptions.

With the original chart data available, it is possible to perform the necessary changes for mitigating
the problems that are presented earlier. However, in the majority of cases, these charts are displayed as
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static images, which means that the original data are not usually available. Like so, automatic methods
could be applied to perform the chart analysis from these images, aiming to obtain the raw data.

When the input image contains other elements besides the chart image (text labels, for example),
the detection of these charts must come as a prior step. This detection aims to locate and extract the
data chart only, improving recognition performance. Additionally, in a real-world photograph, there is
the factor of perspective to take into account. This factor means that the chart can be misaligned and
might need some correction for the extraction step. Figure 1 illustrates an example of this situation.
The chart is in the middle of a book page and slightly tilted, which indicates that it needs some
perspective correction.

Figure 1. A Bar chart on real-world photography: tilted and in the middle of the text. The image is
taken from a book [1]. Modern Chart Recognition methods do not cover real-world situations like
this one.

The process of automatic chart data extraction has two main steps [2,3]: chart recognition; and data
extraction following a specific extraction algorithm for each type of data chart. This reverse-engineering
for chart data extraction from static images is explored in the literature and softwares [2,4–7],
with algorithms and methods for many chart types. After the data extraction, it is simple to rebuild
the chart, while using a visualization library or software. The main process of automatic data chart
extraction in Figure 2 covers the steps from the input image to the interaction with the rebuilt chart.
The information visualization pipeline is the key of the main process in the reconstruction of new
charts, as it can be directly applied on new environments, being used to overlay a new chart in place
of the recognized one or simply store the data. This figure also highlights the fundamental initial step
of chart recognition (blue area of Figure 2), as the focus from here onward.

136



Sensors 2020, 20, 4370

Figure 2. Automatic main process of chart recognition, from the input image to applications.
The main process can transform a static environment in a rich user interface for manipulation of
data. The information visualization pipeline is environment free, allowing the applications to be used
in many environments. This is only possible when the initial step cleans the chart and gives information
(blue area).

Research papers regarding chart recognition usually focus on the type classification approach,
while assuming a clean image to be classified as a specific chart type. Real-world situations are not
that simple, the scenario where a user has a smartphone and wants to manipulate data from the chart
is possible, as we have advances in many areas of research that soon will allow for the technology to
get in this stage. The features of these scenarios and other real-world usage are not well defined by
any modern work of chart recognition.

In this way, chart recognition can be defined as a process that is composed of three computer
vision tasks: classification, detection, and perspective correction. Following the literature, the main
usage scenario of chart recognition is to discover the chart type [2,3,5,8–11], using it to choose a
proper data extraction pipeline. Nevertheless, even without data extraction, there are scenarios that
chart recognition can be applied to. Take a set of digital documents as context, like a set of medical
papers [12]. In this scenario, it can be useful to create metadata by chart type to support searches.

In the case where the documents have image tags (just as in some PDF and docx files), it is possible
to apply classification algorithms to tag these files. However, if the chart is available as a raster-based
image only, detection methods should be used. Webpages represent a similar scenario, since an online
document can have image tags or SVG-based information for classification. For the printed documents
scenario, the detection and perspective correction are fundamental steps to identify and correct chart
images. The diagram presented in Figure 3 presents various scenarios and how each step of the process
of chart recognition can be used on them.

Figure 3. Process for Chart Recognition. Classification is common in literature, but other scenarios can
be used if other vision tasks are aggregated. Chart Detection and perspective correction used together
can make chart recognition more accurate and usable in new real-world scenarios, like Augmented
Reality applications.
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Each step of this process of chart recognition brings many difficulties, for example, chart
classification is complex due to variations not only between the different types, but also between charts
of the same kind, which may differ in data distribution, layout, or presence of noise. Noise removal
can be a challenging task, as the environment of the task dictates what is noise. In the context of chart
recognition, two scenarios of noise are possible: the noise comes from real-world photography, so
lightning and angle could generate an undesired effect on the images, and digitally with resolution
loss by image softwares and screens. The other one is noise free, as some charts are generated by
visualization libraries or softwares, and are directly integrated in digital documents.

Detection of a chart adds the bounding box search to the classification task, as it needs to locate
the charts on a document file, report, or scanned print. Some works have addressed the standard
approach for perspective correction through image rectification while using vanishing points [13–16].
However, to the best of our knowledge, none applied to the scenario of chart or document images for
chart recognition. Some visual elements may appear in more than one type of chart, hindering the
generalization of the classes. For example, consider two recurrent elements of line charts: lines and
points. Lines can be found in Area charts, Arc charts, or Parallel Coordinates; points are also present in
other chart types, such as scatter plots and some line charts [17]. Additionally, the legends and labels
can be mixed with the context of the document, making it hard to locate and correct the chart image.

In the context of chart recognition, we propose an approach for classification, detection, and image
rectification on static chart images. This work presents an evaluation of chart classification, paired with
experiments on each task of the chart recognition process, namely, detection of charts on document
images, and perspective correction using image rectification. The experiments were conducted with
state-of-the-art techniques, using datasets of chart images collected from the internet and adapted
for each task, with evaluations for each method, in order to analyze the efficiency and efficacy of
adding these two steps in the chart recognition process. The results of our experiment presented
accuracy in accordance with the most recent challenges in its respective areas. When considering each
task’s results and the process at hand, it is possible to create applications and models that address
the current needs of research on this area, such as preparing chart images for data extraction, image
tagging for search, and usage on real-time scenarios. Classification and detection experiments use deep
learning models for each step since these methods present outstanding results in several Computer
Vision tasks. Furthermore, deep learning methods have been widely used by various chart recognition
works [3,5,9,18,19]. Reverse engineering for chart data extraction from static images is explored in the
literature and softwares, but it is not the focus of this work. It will be possible to use our process with
data extraction methods (use the chart type, position to choose the right algorithms or guide the user,
or both), as our process focuses on the starting steps of chart recognition.

Our proposal also used two scenarios of noise removal in the form of perspective correction.
Because the classification step is based on clean images with no correction to be done, the detection step
uses real document images with clean charts, and the perspective correction step using the distorted
chart and document dataset. These scenarios represent the digital documents (no correction) and
real-world images (perspective correction).

Moreover, as an example, with the advances of Augmented Reality (AR) technologies [20],
it would be possible to recognize charts on the fly by applying the approach proposed here. With
a mobile device, users can perform real-time chart recognition on a document and interact with it
without changing the context. The usage of AR goggles will allow us to present virtual information
directly into the user’s field of view while walking on a shopping center, comparing prices, or simply
reading a report, providing seamless interactions with charts that were formerly static. This scenario is
one use case of edge computing, as some processing could be done on a grander scale on edge than
in a traditional cloud service. At the same time, advances are being made on the interaction of AR
systems and in nanosystems to allow for in-place processing of these chart recognition models [21].

Despite our work having extensive experiment description sections, the main contributions of
our work are to present a whole process for chart recognition that uses many computer vision tasks to
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cover different tasks. Highlighting the main scenario as recognizing charts in the real world and to
present a real-world use case of an example working with no modifications from the trained models.

The organization of this paper is as follows: a rundown on common approaches and terminology
for the problem of chart recognition is in Section 2, followed by related works in Section 3.
The description of methods is depicted in Section 4, presenting dataset preparation, training regime,
and evaluation metrics. The results are in Section 5 and a discussion of chart recognition process based
in the results is in Section 6. Final remarks and future works are in Section 7.

2. Chart Recognition

Some Computer Vision tasks are complex, demanding a high level of abstraction and speed, like
classification, tracking, and object detection [22]. A natural way to deal with these problems is to
use a technique that admits grid-like data as input and does not need a specific feature extractor [23],
learning representations with a dataset. Convolutional Neural Network (CNN) is specialized in these
requirements and it has achieved excellent results on image classification and other tasks [24].

2.1. Image Classification

In the context of chart image recognition, there has been a focus on the task of image classification,
which consists of categorizing a static input image based on a chart image dataset of chart images.
Throughout the years, computer vision methods followed the classical methods until the advent of
deep learning [2,3].

The image classification task shows the efficiency of representation learning through deep learning
as compared to the classical approaches. Classical methods for image classification use handcrafted
feature extractors paired with a machine learning classifier. This way, even when the feature extractor
is robust, intrinsic spatial data are lost if not explicitly extracted. Furthermore, feature extractors are
not universal, so each computer vision problem required manual engineering of features [23]. Thus,
CNNs are the current state of the art for image classification tasks.

A CNN groups the filters into hierarchical layers, learning complex and abstract representations
from the dataset [25], and orders the filters as layers. State-of-the-art architectures are being used on
recent works for chart recognition [3,5,9,19], focusing on the ones that won the ILSVRC challenge [24].
The main ones, which are present in most deep learning textbooks and courses, are: VGG [26],
ResNet [27], MobileNet [28] and Inception [29].

The evaluation of these architectures usually follows traditional classification accuracy metric,
while using the inference results and comparing with the ground truth labels. In more detail, top 1
accuracy uses the best class of the inference and compares with the ground truth, and the top 5 accuracy
uses the range of the best five classes to compare with the target label.

2.2. Object Detection

Object detection is one of the most challenging problems on computer vision, comprehending both
classification and localization of objects in an image [30]. In this task, the classification is extended with
the bounding boxes’ regression, as the identified objects must match in their respectively ground-truth
position. A straightforward solution for this task is sliding windows of predefined sizes in all areas of
the image and classify each patch. However, this is computationally expensive, making impossible its
use on real-world applications. CNN-based solutions can tackle this issue, extending grid-like data
processing to object location.

Detection frameworks that are grounded in CNN methods are presenting outstanding results
on various object detection domains [24,31,32], as they can learn localization information along with
object feature information. These frameworks have a neural network backbone that works as a CNN
feature extractor for classification. This backbone can be any CNN model (e.g., Inception, ResNet,
or VGG), and its computation can be shared depending on the implementation. There are two main
types of these frameworks: one stage detectors and two stage detectors. One stage detectors are fast
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enough to use in some real-time scenarios, as it speeds up computation without losing accuracy, like
RetinaNet [33]. Two-stage detectors usually provide stable results, but they have slower inference
time when compared to one-stage detectors, Faster R-CNN [34] being one of them.

The evaluation of object detection frameworks is usually done while using the same metrics of
the MS-COCO Recognition Challenge [31], which are the Average Precision (AP) and the Average
Recall (AR), both with different scales and thresholds. The AP metric is a relation between precision
and recall, and it is separately computed for each class and then averaged. The metric calculation,
which uses the true positives and the false positives (for precision and recall), consider two criteria:
the predicted class; and the Intersection over Union (IoU) ratio, which measures the overlap of the
predicted bounding box and the ground truth bounding box in a certain threshold. If a certain object
has its class predicted correctly, and the bounding box predicted IoU is over the threshold, then it is a
true positive; otherwise, it is a false positive. The AP is also known as mean Average Precision (mAP),
and, in this work, they are equivalent. The equations for AP and IoU are exposed on (1) and (2),
respectively, with the variables: Cr the total of classes, c a class, Pb the predicted bounding box, and Tb
is the ground truth bounding box.

AP =
1

Cr ∑
Cr

∑
c

precision(c)× Δrecall(c) (1)

IoU =
Area(Pb ∩ Tb)

Area(Pb ∪ Tb)
(2)

The COCO challenge defines different average precision notations for different IoU thresholds,
notably for an average of 10 values of IoU threshold values ranging from 0.5 to 0.95 with a step of 0.05
(notated as [0.5 : 0.05 : 0.95] from here onward); the 0.50 threshold; and, the 0.75 threshold. These
metrics are notated, respectively, as AP (for IoU = [0.5 : 0.05 : 0.95]), APIoU=.5 and APIoU=.75.

2.3. Perspective Correction

The perspective correction has been applied in many computer vision tasks, such as automobile
license plate recognition, non-Latin characters OCR, and document rectification [35]. These corrections
are applied to perspective distortions that can be found in real-world photography, as digital cameras
follow a pinhole camera model that generates it [36]. Real-world chart recognition is subject to these
perspective distortions and also of its corrections.

Techniques for perspective correction have been widely used in real-world situations in the
scenario of planar document rectification, where a distorted document is corrected for future processing,
mostly OCR. Chart detection models frameworks could benefit from a rectified document image before
performing object detection, as the image comes from a digital camera. For example, it is possible to
use some approaches directly of image rectification over photos to chart document rectification.

Image rectification is the reprojection of image planes onto a common plane, and this common
plane is parallel to the line between camera centers. Formally, given two images, image rectification
determines a transformation of each image plane, such that pairs of conjugate epipolar lines
become collinear and parallel to one of the image axes [13]. A way of achieving this is through
homography transformations.

The homography is a transformation that defines a relationship of two images on the same plane.
This transformation can be used to rectify an image, given relationship hints of the distorted image
with its rectified version. One way of achieving this is discovering the vanishing points of an image
and using these points to estimate homography between the distorted image and its rectified version.

While vanishing points for homography estimation is present in many methods of image
rectification, the method for finding these vanishing points can vary from simple methods to more
robust ones. An example of simple methods is matching epipolar lines directly [13] or finding parallel
lines [35]. Additionally, robust method examples are searching edgelets [14], using RANSAC on radon
transformed images [15] or even training a neural network [37].
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Usually, the evaluation is done by comparing images or counting correctly recognized words by
OCR software [37–39]. In cases where one has the homography matrices that distorted the images, an
evaluation of errors can be measured with an error metric, like Mean Absolute Error (MAE), since it
can be used to measure an estimator.

3. Related Works

Several works have been developed on the topic of data chart image classification and detection.
These tasks have gained attention, mainly due to its importance in the automatic chart analysis process.
Following the traditional image classification pipeline, Savva et al. [2] presents Revision, a system that
classifies and extracts data to recreate charts. The dataset used has 2500 images and is collected from
the internet and it is composed of 10 classes—area charts, bar charts, curve plots, maps, Pareto charts,
pie charts, radar plots, scatter plots, tables, and Venn diagrams. A set of low-level image features and
text-level image features were used as input of an SVM classifier, with an average accuracy of 80%.
Our work and many others follow this concept of collecting datasets from the internet.

Jung et al. [5] proposed the ChartSense, an interactive system for chart analysis, including the
chart classification and data extraction steps. They also used CNNs for classification, comparing
three well-known models from the literature: LeNet-1, AlexNet, and GoogLeNet. The models were
evaluated while using the Revision dataset. For final classification, more images were collected and
added to the Revision dataset, achieving the best accuracy of 91.3% while using GoogLeNet.

Chagas et al. [9] proposed an evaluation of more robust CNN models for chart image classification.
Unlike the previously cited works, the proposed methodology has two main tasks: training using
synthetically generated images only, comparing the CNN models with conventional classifiers, such as
decision trees and support vector machines. The proposed approach aimed to evaluate how the models
behave when training with “clean” generated images and testing on noisy internet images. They used a
10-class dataset (arc diagram, area chart, bar chart, line chart, parallel coordinate, pie chart, reorderable
Matrix, scatter plot, sunburst, and treemaps) with 12,059 images for training (approximately 1.200
instances for class) and 2683 images from test, evaluating three state-of-art CNN models: VGG-19,
Inception-V3, and Resnet-50. The best result was the accuracy of 77.76% while using Resnet-50.

The work of Dai et al. [3] uses few classes (Bar, Pie, Line Scatter, and Radar) than ChartSense,
Revision, and the work of Chagas et al., but with accuracy around 99% for all CNNs evaluated.
The dataset is also collected from the internet, it has 11,174 images with semi-balanced instances for
classes, and the work follows the classification with data extraction. In this context, CNNs showed
state-of-the-art results throughout the years for the problem of chart image classification, and our work
extends the classes of charts used (10 for 13), followed by a straightforward parameter selection for the
state-of-the-art architectures.

Although some works have addressed the chart analysis problem, most of them focused on the
chart classification and data extraction tasks, while only a few approached the chart detection issue.
Kavasidis et al. [10] introduced a method for automatic multi-class chart detection in document images
using a deep-learning approach. Their approach used a trained CNN to detect salient regions of the
following object classes: bar charts, line charts, pie charts, and tables. Furthermore, a custom loss
function based on the saliency maps was implemented, and a fully-connected Conditional Random
Field (CRF) was applied at the end to improve the final predictions. The proposed model was
evaluated on the standard ICDAR 2013 dataset (tables only) [40], and on an extended version with
new annotations of other chart types. Their best results achieved an average F1-measure of 93.35%
and 97.8% on the extended and standard datasets, respectively.

Following a similar path to chart detection, some works have been tackling the table recognition
task on document images. Gatos et al. [41] proposed a technique for table detection in document
images, including horizontal and vertical line detection. Their approach is only based on image
preprocessing and line detection, not requiring any training or heuristics. Schreiber et al. [42] developed
the DeepDeSRT, a system for detecting and understanding tables in document images. Their work
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used Faster R-CNN architecture, which is a state-of-art CNN model for object detection. The proposed
model was evaluated on the ICDAR 2013 table competition dataset [40] and a dataset containing
documents from a major European aviation company. Document images are used in our work to build
a chart detection dataset with chart overlay.

The primary goal of chart detection is finding the localization of the chart image on the input
image, which is usually a document page. Huang and Tan [43] proposed a method for locating charts
from scanned document pages. The strategy of their work is finding figure blocks from an input image
and then to classify this figure in a chart or not. The figure localization used an analysis of logical layout
and bounding box, and the image classification is based on statistical features from charts and non-chart
elements. Even though their method does not return a specific chart type, the proposed approach
achieved promising results, obtaining 90.5% of accuracy on figure location. For figure classification,
the results were 91.7% and 94.9% of precision for chart and non-chart classification, respectively. Their
work focuses on finding charts and does not fall on the direct definition of multi-class object detection
used in our work.

Multi-class chart detection in document images is still an active field of research. One major
challenge in this field is defining relevant features for classifying different chart classes, which may
vary depending on specialist skills or chart types. This way, deep-learning methods have the advantage
of not relying on hand-crafted features or domain-based approaches [23]. Accommodatingly, recent
papers have used deep-learning-based architectures for chart classification; in this way, the work
presented in this article uses more classes (13) and more images (approx. 21.000) as well as chart
detection and perspective correction.

These papers cover specific steps of chart recognition, while allied with some other steps from the
main process of chart recognition, extraction, and reconstruction. We take influence on many aspects
of these works, like the dataset collection, the classes division, and the chart overlay on document
approach, despite that, different from the previous works, our work covers all of the steps from the
chart recognition, filling a gap of a complete process to compute static chart image into information.
In addition, it also introduces a real-world example of chart recognition of charts on a book.

4. Methods

Most of the choices for the methods used in this work are based on the challenges that emerged
from the following tasks, ImageNet for classification, MS-COCO for detection, and ICDAR dewarping
for perspective correction. These are hard challenges that proved the efficacy of these models.
The methods that are used to train the models, hyperparameter selection, dataset collection, and
evaluation are described in the next subsections.

4.1. Datasets

A chart dataset must cover significant differences of each chart type. Data aggregation,
background, annotations, and visual marks placement are visual components that vary from chart
to chart, even as the same class. This variability is expected and some authors [2,3,5,18,44] address
this variability on the collection step, searching the images from the internet, where chart designers
publish their work in various different styles. While some datasets could be used for training and
evaluation of these techniques, as the ReVision dataset [2] or the MASSVIS dataset [45], we choose to
collect data from the internet to use a large number of images to train the methods.

The dataset collection step of this work follows the approach of [3], downloading the images from
six web indexers: Google, Baidu, Yahoo, Bing, AOL, and Sogou. The chart types used are arc, area, bar,
force-directed graph, line, scatterplot matrix, parallel coordinates, pie, reorderable matrix, scatterplot,
sunburst, treemap, and wordcloud with the following keywords (and its chinese translations): arc chart,
area chart, bar chart, bars chart, force-directed graph, line chart, scatterplot matrix, parallel coordinates,
pie chart, donut chart, reorderable matrix, scatterplot, sunburst chart, treemap, wordcloud, and word
cloud. More than 150,000 images were collected using these queries, and we kept only the visualization
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that falls on the following criteria: two-dimensional (2D) visualizations, not hand drawing, and no
repetitions. The total of images downloaded that falls in our rules was 21,099, and the summary of the
dataset is in Table 1, with its respective train/test split. The split process was automatically done by a
script on the image files, and the training split ranges from 85% to 90%, depending on the number of
instances of the class. All 13 classes are used for all of the experiments.

Table 1. Dataset summary, with train and test split by each chart type. This dataset is used throughout
all steps, with modifications pertinent to each one of them.

Chart Types
Instances

Train Test Train + Test

Arc 129 26 155
Area 494 87 581
Bar 3883 761 4644
Force Directed Graph 1137 228 1365
Line 2618 529 3147
Parallel Coordinates 702 168 870
Pie 2415 481 2896
Reorderable Matrix 242 42 284
Scatterplot 1797 228 2025
Scatterplot Matrix 837 158 995
Sunburst 540 65 605
Treemap 626 73 699
Wordcloud 2557 276 2833
Total 17,977 3122 21,099

The selected types cover most usages of visualizations. The bar chart, line chart, scatterplot,
pie chart, and word cloud are chosen, as they are broadly used [4]. Sunburst and treemap are
hierarchical visualizations, reorderable matrix, and scatterplot matrix are a multi-facet visualization
type. Area and parallel coordinates are multi-dimension visualizations, and arc and force-directed
graphs are graph-based visualizations. The selection of these types covers most users’ needs. Some
classes have few images, as they are not as popular.

The classification experiment uses the downloaded images, ratio scaled and padded to (100 × 100)
size, randomly received augmentation on shear, and zoom by a factor of 0.2 and a 0.5 chance of
horizontal flipping, and the pixel values are normalized to be in the –1 and 1 range. For the detection
dataset, context insertion is used to create a scenario for chart detection close to a real document page.
For this step, the generated charts are overlaid over real document images. Some works used similar
approaches, showing results that were at par with the classic approaches [46–48].

The charts were uniformly located entirely in the document image. In some documents, scale
transformation is used, by 1/2 or 1/4 of the size of charts. The size of the document images is scaled
to 1068 × 800, where the charts have dimensions that vary from 32 × 32 to 267 × 200. The document
images used in this work are from the Document Visual Question Answering challenge in the context of
CVPR 2020 Workshop on Text and Documents in the Deep Learning Era [49], which features document
images for high-level tasks.

A distorted images test dataset of the detection experiment is used for the perspective correction
experiment. These distortions are applied while using homography matrices generated with a
simple method of perturbation, where a factor of 2 moves each corner of the document image and a
homography is calculated with this new distorted image. Figure 4 shows samples of the three datasets.
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Figure 4. Samples of three datasets for the experiments (from left to right): classification, with added
chart images; detection, with chart overlaying document images; and, perspective correction, with
distorted images.

4.2. Training and Evaluation

The most common training approach for deep-learning applications uses a pre-trained model and
then retrains the model on a new domain dataset. This strategy also applies to CNN classification and
detection problems, aiming to exploit features learned on a source domain, leading to a faster and better
generalization on a target domain [50]. For this work, the models were pre-trained on the ImageNet
dataset [24] for classification and MS COCO [31] for detection. This retraining step is also called
fine-tuning, where some (or all) layers must be retrained, adapting the pre-trained model to the chart
detection domain. We chose the transfer-learning approach based on fine-tuning the entire network on
the target domain. For object detection, this could be done in two ways: with a pre-trained backbone
only or with the whole network pre-trained, including the object boxes subnetworks. We chose the
pre-trained backbone on ImageNet, because it allows results that reflect some common use cases.

The backbone can be fine-tuned from a large-scale image classification dataset, such as ImageNet.
The features can be easily transferred to the new domain, since the backbone is necessarily a set of
convolutional layers that can identify features, just like in the classification domain. The subnetworks
for box prediction are fine-tuned similarly, but using the knowledge of the region proposal stage (for
two-stage detectors) or using the last layers of the convolutional body (for one-stage detectors) to
improve box location precision.

For both classification and detection experiments, no mid training changes were used (early
stopping, schedule for learning rate changes). They followed the default parameters of the engines
unless explicitly stated. The models were trained and evaluated in two different machines, classification
and perspective correction in one computer with a GTX 1660 with 6 GB of memory, and the detection
experiment ran on a computer with a Titan V video card with 12 GB memory. The engines used for the
training (Tensorflow [51] and PyTorch [52]) allow for the training of the models in one machine and
run on others with different configurations, given some engine restrictions. It is not decisive for the
following sections after training.
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4.2.1. Classification

The classification experiment evaluated four different CNN architectures: Xception [53],
VGG19 [26], ResNet152 [27], and Mobilenet [28]. These architectures have been chosen, as
they are considered to be classic in the literature and they are available in most deep learning
frameworks [51,52,54].

Their weights are pre-trained on the ImageNet dataset [24], and Hyperparameter selection is used,
the training of the five models for architecture is done in a random search fashion, tunning learning
rate, and weight decay with values [10−4, 10−5, 10−6] and [10−6, 10−7], respectively, for 30 epochs in
batches of 32 images each.

Classification evaluation is done by measuring accuracy on the test set, picking the best prediction
of the CNN. The evaluation is done over all classes, and separately on four classes: bar, pie, line,
and scatter. These chart types are popular, and they can be used as an estimate to comparison with
other works [2,3,18]. All of the models are evaluated using top-1 accuracy.

Tensorflow 2 [51] is used as the Deep Learning engine for training and evaluation. Datasets are
loaded and augmented while using native Tensorflow 2 generators. This experiment ran on a GTX
1660 6 GB video card on an 8 GB memory computer.

4.2.2. Detection

The detection experiment evaluated two distinguished object detectors: RetinaNet [33] and Faster
R-CNN [55]. The backbone CNNs are ResNets pre-trained on the ImageNet dataset, and the weights
of the whole models were pre-trained on the COCO dataset [31], following the work of the original
authors. We choose two one-stage detectors that present state-of-the-art results on COCO and Pascal
VOC datasets [56], following our premise of using fast methods for detection inference, in order to
enable real-time applications. Hyperparameters of the two detectors are used, as defined by the original
authors, only changing the batch size to four images and the iterations for 90,000 (approximately
20 epochs).

The evaluation of these detectors is done while using the COCO challenge metrics alongside
inference time. The inference time is a critical metric for object detection, since real-time applications
can use fast detection in various tasks. It can be computed as the time in seconds that the framework
process the input image and returns the class and the bounding box of the objects on the image. Hence,
the frameworks process the input image returning the class and the bounding box of the objects on the
image. For this work, the frameworks are evaluated while using the AP, APIoU=0.5, APIoU=0.75, and
the inference time.

We used the original authors’ recommended engine for the implementation of the selected
detectors. RetinaNet and Faster R-CNN frameworks are implemented in the Detectron 2 [57] platform,
its implementation is publicly available, runs on the Python language, and it is powered by the PyTorch
deep-learning framework. Detectron2 is maintained by the original authors of RetinaNet and Faster
R-CNN. This experiment ran on a Titan V 12 GB video card on a 64 GB memory computer.

4.2.3. Perspective Correction

The method for perspective correction follows an image rectification approach. Only one method
is evaluated once the ready to use ones are not available, and they are not easy to implement from
scratch. Also, commercial approaches have data sharing and usage restrictions. The chosen method
is a slight variation of the work of [14], and it is available online in [58]. This method estimates the
vanishing points to compute a homography matrix to rectify the original image.
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The evaluation applied MAE to measure the estimated homography between the ground truth
and the distorted image. The assessment considered three scenarios: raw homography, no scaling,
and no translation. Some real-time scenarios could benefit from controlling the scaling and position at
will without it being imbursed on the transformation. The experiment ran on a 32 GB memory Intel
core i7 machine.

5. Results

We present the results of each individual step using recent state of the art of the art methods.
The discussion is provided at the end of the section.

5.1. Classification

The classification step shows remarkable results in different conditions. The best models present
results for accuracy over 95% results corresponding to all classes (13) and only four classes. The results
for the four classes are overall slightly better than 13 classes, but it uses only chart types with a great
number of samples. Table 2 shows the best two models of each architecture. The best model is an
Xception with a learning rate of 10−4 and a decay of 10−6. The other architectures have an error
margin of no more than 3.5% as compared to the best, showing that the moderns architectures could
be used if some other task is needed to do so. This result indicates that finetuning the models with
little hyperparametrization can deliver good results in this task.

Table 2. Results of Chart Classification. Highlight to Xception network with best accuracy results.
Blue cells indicate the right predictions and orange ones indicate high error rate.

Architecture Learning Rate Decay Accuracy–13 Classes Accuracy–4 Classes

Xception 10−4 10−6 0.954 0.95
10−7 0.953 0.95

ResNet152 10−5 10−6 0.948 0.95
10−4 10−7 0.947 0.946

VGG19 10−5 10−7 0.945 0.953
10−6 0.944 0.945

MobileNet 10−4 10−6 0.926 0.94
10−5 10−7 0.922 0.923

The confusion matrix prsened in Table 3 shows the best Xception model performance for each
class and the most common errors over the test set. The scatterplot matrix chart had the most errors
than any chart class, with errors pointing to force-directed graph and scatterplot. This mismatch shows
that some characteristics of the layout organization are being lost. Arc charts have no errors, and no
other class missed itself for it. The mistake could be a clue of a distinct chart type with little data.
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Table 3. Results of Chart Classification Confusion Matrix of the best model.

Arc Area Bar
Force
Directed
Graph

Line
Parallel
Coordinates

Pie
Reorderable
Matrix

Scatterplot
Scatterplot
Matrix

Sunburst Treemap Wordcloud

Arc 26 0 0 0 0 0 0 0 0 0 0 0 0
Area 0 87 0 0 0 0 0 0 0 0 0 0 0
Bar 0 0 728 0 28 1 0 0 1 2 0 1 0
Force
Directed
Graph

0 0 0 222 1 1 1 0 0 0 0 1 2

Line 0 2 9 1 511 0 4 0 1 1 0 0 0
Parallel
Coordinates 0 0 1 0 0 151 0 0 0 6 0 0 0

Pie 0 0 1 0 1 1 164 0 0 1 0 0 0
Reorderable
Matrix 0 1 2 0 0 0 0 477 0 1 0 0 0

Scatterplot 0 0 0 0 0 1 1 0 40 0 0 0 0
Scatterplot
Matrix 0 0 2 10 16 10 2 0 1 184 0 0 3

Sunburst 0 0 0 2 0 0 0 10 0 1 50 0 2
Treemap 0 0 3 1 0 0 0 0 1 0 0 66 2
Wordcloud 0 0 1 2 0 0 0 1 0 1 0 0 271

5.2. Detection

RetinaNet presented the best values for all APs, endorsing the use of Focal Loss for precision
improvement on detection. Furthermore, being a one-stage detector also brought the best result for
inference time. More training time could be necessary to achieve better results, as Faster R-CNN is a
two-stage detector. The inference time for both methods is below 0.25 seconds per image. Given the
high resolution of the images and the framework used alongside the video card, it is acceptable for
some applications. Table 4 shows the overview results of the detection experiment.

Table 4. Results of AP, APIoU=.5, and APIoU=.75 inference values and time. RetinaNet has the best
results for any AP value and inference time.

Method AP APIoU=0.5 APIoU=0.75 Inference Evaluation Time ( s/img )

RetinaNet 81.987 91.127 89.428 0.199285
Faster R-CNN 69.68 79.101 77.428 0.210505

The AP results for each class follow the total AP shown in Table 5, except for the arc chart and
wordcloud classes. This discrepancy of the values for Faster R-CNN and RetinaNet does not comply
with results from the literature on other challenges, where RetinaNet is faster, but Faster R-CNN has
better AP [33] overall. Our work showed that RetinaNet got better results with time and AP. We did
not make any hyperparametrization besides batch size and number of epochs and this might produce
results that are more in line with the expected from the literature with cautious hyperparameter
search. However, this is beyond the focus of this work. It is important to notice that this time is of the
evaluation alone, and it is not from the next section results.

Table 5. Average Precision (AP) values for each class in RetinaNet and Faster R-CNN. RetinaNet has
the best class AP for all class besides arc and wordcloud.

Class RetinaNet Faster R-CNN

Arc 86.513 88.52
Area 78.004 76.447
Bar 87.428 82.334
Force Directed Graph 79.746 45.519
Line 83.494 61.618
Scatterplot Matrix 81.072 70.266
Parallel Coordinates 81.669 61.582
Pie 88.26 83.063
Reorderable Matrix 67.69 61.392
Scatterplot 76.751 66.804
Sunburst 76.84 52.785
Treemap 89.843 73.419
Wordcloud 88.52 88.633
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5.3. Perspective Correction

The rectification experiment for perspective correction presents three scenarios: the estimation of
the raw homography (no changes on any parameter), homography without scale, and homography
without translation. The MAE from the raw homography and homography without scale had a similar
average, 33.16.

We highlight the results that were obtained with homography without translation, as the average
value of 0.12 achieved by the method showed that document positioning on the new rectified plane
generates more errors because removing the translation from the estimation removes most of the errors.
It is essential to notice that the position is not decisive for this process, once it is only is a preprocessing
step for chart detection, and it can be safely ignored in most cases.

5.4. Discussion

The process of chart recognition can be used in many scenarios, such as indexing, storage of data,
and real time overlay of information. While many works [3,5,9] focused on chart classification, only a
few addressed the chart detection problem on documents [10,11]. The chart detection in documents
can use general approaches of other vision tasks for it context, as we used state-of-the-art models and
methods of the MS-COCO challenge, and it can be amplified enough to use techniques of document
analysis research field, like the approaches of real-world photography in document images. Even so,
the first experiment is a chart classification, once some works did it with fewer classes than others [3],
using different methods [9], and not presented parameter selection.

Various works have used a dataset collected on the internet, which is more important than
the classification method chosen, as the classification step’s difference is minimal for each CNN
architecture. For example, Chagas et al. [9] used synthetic datasets for training and internet collected
for testing, with ten classes, and using the same architectures. The results showed that there was
a difference in the accuracy of training and testing with the internet collected dataset is above 15%.
In this context, some studies regarding hyperparameter selection must be performed, but it should not
be exhaustive given a reasonable amount of data.

The results of the classification experiment showed that state-of-the-art architectures could
perform very well given enough data, even for the problem of chart classification with many classes.
The work of [3] already showed this with four classes, and we expanded it to 13 classes, while using
more recent CNN architectures. The safety that is given by these methods allows for interchangeably
using these architectures for other tasks aside chart classification, which usually uses a CNN classifier.
For example, ResNets are backbones on many detection frameworks [57]. The ImageNet trained
Inception architecture is used on the base example of DeepDream [59] application. The MobileNet
architectures [28] are small and fast. The loss function of SRGAN is based on VGG19 feature maps [60].
One could choose the best architecture and train a chart classifier to bootstrap another task.

Despite that detection did not reflect the results of literature, it showed that with little to none
hyperparametrization, it is possible to train a detector that acquires AP good enough in document
scenarios. Although it lacks a dataset of real-world charts annotated, the training of a method using a
chart overlay can be successfully used in real-world scenarios, as shown in the next subsection.

Perspective correction presented good results, with low MAE for the non-translation scenario.
Some image rectification solutions are industry-ready, embedded in some applications [61], and using
a perspective correction on the process of chart recognition looks a natural next step on the document
analysis scenario. The implementation of this process also guarantees that old pipelines do not break,
as data extraction methods require rectified images. Other image corrections could also be applied
with no extra tooling.

One application of the process of chart recognition process proposed can be a real-time use of
these methods, as stated in the introduction. While using a Titan V video card, it is possible to detect
charts in almost real-time, so for most high-end specs cards, it is possible to use this process on
these time-intensive applications [62]. Even if it is not acceptable for frame-by-frame real-time use in
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time-intensive applications [63], some shortcuts can be used, such as frame skipping, resolution scaling,
and object tracking to minimize the perceived latency for the users. For an augmented reality mobile
application, a high-end video card could be part of a cloud service that does the heavy computation,
allowing for the mobile device to position the results correctly.

6. Use Case

We propose a task of detecting real-world charts in documents using the models trained in our
work, and of the best of our knowledge, there is not any annotated dataset for this task. We chose a
simple evaluating metric: full detection and partial detection of a chart image. The first one detects all
of the charts and no text outside of it, and the second one detects only part of the chart, or there is some
text outside it. Only the highest score of the full detection is used. We choose the Bishop’s book [1] as
our physical document and manually searched all of the bar charts with axes (most popular chart for
several uses [4]), and took photographs of them. The images for this task are displayed in Figure 5.

Figure 5. Bar chart photographs taken from a book [1] and transformed for evaluation. (a,d) present
two bar charts with text, (b) shows one bar chart, and (c,e) present three bar charts. For this evaluation,
the detector considers only the most accurate detection.

These photographs are transformed by rotations from −4 to 4 degrees with step 0.5, while
using the center as the pivot, summing 16 (original + 15 transformations) images for each book page.
Two modes are evaluated: a normal mode, with no rectification, and one with rectification, with a total
of 160 images at the end. The results are shown on Table 6.

Table 6. Results for chart recognition applied to the images of the book based on two approaches:
normal and rectified, for full and partial detection. Each image has 15 other versions, varying by slight
rotations. Charts (a) and (d) got no detection in any mode. Rectified images got better detection results
for other cases.

Mode Image Full Partial

Camera

Chart (a) – –
Chart (b) 9/16 –
Chart (c) 6/16 4/16
Chart (d) – –
Chart (e) – –

Rectified

Chart (a) – –
Chart (b) 12/16 –
Chart (c) 12/16 1/16
Chart (d) – –
Chart (e) – 6/16

Even with rectification, some charts are very hard to detect (Figure 5a,d), which implies that
even using synthetic overlayed charts, more transformations should be applied. For example, the
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pure white pages used do not reflect the reality of white from photographs, that receive heavy light
influence, as well as more images resolutions to capture the quality of high-end digital cameras. Even
so, the rectification results showed that the image preprocessing leads to better results.

Illustrative Example

A single example of a user scenario can showcase the complete step by step chart recognition
process. The goal of this example is, given a real-world photograph with a bar chart, to highlight the
bar chart position, following the previous use case. This example computes the perspective correction
of a real-world photograph with a chart image and detects the position. All steps of this process are
executed in a single machine, with a GTX 1060 video card with 6GB of RAM. It is not a high-end video
card, but it compensates for its cost. When considering the real world, it is safe to assume that the
process will not always have access to the high-end video card specs all the time. The input image is
shown in Figure 6.

Figure 6. Input image from the use case. The bar chart must be located and extracted.

The first step in this scenario is the perspective correction of the image, so the image rectification
method is used. After rectification of the image, the second step is to use the chart detector to recover
the chart position and isolate it. These two steps are shown in Figure 7, with its located bar chart.

In total, these two steps took detection + correction = 0.25 + 0.62 = 0.87 sec to compute, less time
than some camera apps take to save a photography on mobile devices. It is slow to real time frame
by frame computation. However, expanding this example, it is possible to use Augmented Reality
techniques to superimpose these annotations on the input image directly from the camera stream.
Saving the position and using key points of the region makes it possible to track the chart location
much faster. In the end, with an extraction method, it is possible to extract the data and highlight it on
the image.
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Figure 7. Illustrative example: (a) tilted input image, following the (b) perspective correction, (c) that
eased the chart detection (d) resulting in a clean-cut bar chart.

Adjustments can be made on the detection model training to recognize charts more accurately,
such as introducing different noise options on training, and more training time. However, the results of
this use case show that, even with some modifications of state-of-the-art trained models, it is possible
to achieve real-time usage of these models. Some hints can be given to the users to position the camera
to help the detector. The detection worked without any correction in the simpler cases, but it failed to
detect the most tilted charts, and when the detector used the perspective corrected image, it showed a
jump in the accuracy of results. In the cases where it is easier to detect, the time of correction could be
sparred, but in other hand there is a solution more robust to noise. Our intent with this work is not to
show how well the models are trained, but that it is possible to use them on a real-world application of
chart recognition chaining these methods.

7. Final Remarks and Future Works

The analysis process of a data chart usually has two main steps: to classify the image into a chart
type and to extract data from it. These steps already present several solutions, despite the constant
need for better approaches to these tasks. Nevertheless, the majority of these solutions only focus
on the classification step, and we have noticed that there is a lack of works in the literature linking
real-world photos with the task of labeling charts since before labeling. There are many issues to
solve, such as locating charts in images and removing camera distortions. This work presented a
modern approach in the process of chart recognition, covering classification, detection, and perspective
correction, presenting training methods, dataset collection, and methods already in use by the industry
for image rectification. It is the first of this kind, bridging the gap of real-world photography and
literature research on the field.

A step little-explored in the literature is detecting the data chart in the image. This step is essential
if other elements, such as text or pictures, are present in the image that contains the chart, which is quite
common in books, newspapers, and magazines. Along with detection, image rectification could be
applied to correct the perspective of documents that contain charts. The experiments presented that, for
some scenarios, chart recognition already has the technical toolbox available, but it was not organized
on an established process. This work hopes to cover this gap, showing that classification, detection,
and perspective correction are ready to be used for initial steps of chart recognition, searching for
accuracy or time.

The results of the experiments showed that they individually are pairwise with state of the
art chart recognition methods, which is important to validate the main contribution of our work.
The perspective correction improved by a significant margin (19 detections of 64 without corrective

151



Sensors 2020, 20, 4370

perspective and 31 of 64 using it) the problem of chart detection for a real-world application. Implying
that document noise removal approaches can aid the process of chart recognition.

Future works include adding more visualization types for classification, data extraction algorithms
on the process, alongside more image corrections. Lightning and noise are aspects unexplored on this
work but they have a wide array of solutions on the document analysis field. The evaluation of more
perspective correction methods and how to use them have also be considered. A real-world annotated
dataset could help with the assessment of more sophisticated methods, as we proposed in the final
sections but lacked the data to make it more robust.

The next generation of mobile devices, paired with high bandwidth of 5G, can launch chart
recognition in the real world. This novel process of chart recognition covers the literature and expands
it to fill some gaps in real-world applications. For instance, it is possible to create augmented reality
applications with a process for chart recognition to be used on new scenarios, creating new research
opportunities and challenges.
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