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The late Professor Miron Amusia was a key figure in theoretical atomic physics on the
international stage for more than five decades. His main achievement was the discovery of
a collective nature of atomic processes and the role played by many-electron correlations,
which have a profound effect on atomic interactions with radiation [1] and matter [2].
Amusia was one of the pioneers in the application of many-body theoretical methods in
atomic physics, which offered a universal approach for studying a wide range of processes.
It also led to the creation of an unparalleled suite of codes that enabled early calculations
of many such processes: photoionization, electron and positron scattering, Auger decays,
post-collision interaction, multi-hole decays, and many others.

Amusia’s work in atomic physics began in 1966–1967 at the Ioffe Institute in St Pe-
tersburg, Russia. There, after discussions with experimentalists [3], severe limitations of
the single-electron approximation in atoms became clear. A fundamental result by Amu-
sia from those and the next few years was a theoretical justification and computational
implementation of the Random Phase Approximation with Exchange (RPAE)—the first
self-consistent (and gauge invariant) method capable of accounting for collective, many-
electron effects in atomic photoionization [4–6]. That period saw the creation of the first
computer codes of what later became the ATOM suite of programs for atomic calculations.
It was followed by a rapid expansion of the community of theorists involved in atomic
calculations, extension of the work to new processes and targets, and emergence of inter-
national contacts and collaborations (something that was by no means encouraged in the
USSR at the time). These collaborations grew to establishing productive ties with leading
atomic physics groups in Serbia, Germany, the United States, and Israel. Miron Amusia
held invited positions with these groups and was a frequent speaker at conferences and
seminars.

For many years, Amusia led a very active weekly atomic physics seminar at the Ioffe
Institute. In addition to local speakers, these two-hour seminars saw many invited guests,
theorists and experimentalists alike, from around the globe. Suitably qualified graduate
students were also involved, first as part of the audience, and later, reporting on their
progress, which provided them with an invaluable exposure to sometimes heated but
always genuinely interesting and insightful discussions. Later, many of Amusia’s pupils
created their own groups, often continuing and expanding the work they started in that
creative and stimulating environment. Some of their work is represented in this Special
Issue, which is dedicated to the memory of Professor Miron Amusia, eminent physicist and
great human being.

The papers in this Special Issue reflect the lasting legacy of Professor Amusia. His
seminal ideas have been developed by his many long-term collaborators, colleagues, and
former students. A special emphasis is on many-electron atomic processes driven by
radiation and a charged particle impact. Radiation sources include conventional and
free-electron lasers taken to extreme intensities where strongly non-linear multiphoton
processes take place.

Atoms 2023, 11, 18. https://doi.org/10.3390/atoms11020018 https://www.mdpi.com/journal/atoms1
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It is fitting to first mention the topical review by Chernysheva and Ivanov [7]. Their
contribution describes the ATOM program suite and its extensive use for various com-
putational experiments. This suite of codes summarizes many years of computational
developments that were led by Miron Amusia and carried out by his group at the Ioffe
Institute in St. Petersburg, Russia [8]. The programs included in the ATOM suite are
designed to study the electronic structure, transition probabilities, and cross sections of
various processes in many-electron atoms. The main numerical methods are presented for
taking into account many-electron correlations and determining their role in photoioniza-
tion, elastic and inelastic particle scattering, decay of vacancies, and several other processes.
The most significant results obtained with the ATOM software are highlighted.

One of the key computational developments of the ATOM system was an efficient
numerical solution of the Hartree–Fock (HF) equations for many-electron atoms, making it
a standard starting point for higher-level calculations. This development has aided and
stimulated many other fields of computational atomic physics. Bray et al. [9] have utilized
the HF method to take the convergent close-coupling (CCC) method beyond the simplest
hydrogen and helium atoms [10,11]. The CCC method was initially developed to describe
electron scattering on atomic hydrogen and hydrogenic ions, such as He+. The latter allows
implementation of double photoionization (DPI) of the helium atom. For more complex
single-valence-electron atomic and ionic targets, the direct and exchange interaction with
the inner electron core needs to be taken into account. For this purpose, the self-consistent
field and frozen-core HF computer codes from the ATOM system have been adopted. The
utility of the HF technique is demonstrated by examples of electron scattering on Li and
the DPI of the H− and Li− ions. The authors also discuss the possibility of running modern
computer infrastructure associated with the CCC code directly via the Atomic, Molecular
and Optical Science Gateway.

The topical review by Shaginyan et al. [12] describes the peculiar physics of heavy-
fermion metals, a topic that Amusia actively contributed to over the past decade [13–15].
The present review considers the topological fermion condensation quantum phase transi-
tion that leads to flat bands and elucidates the special behavior of heavy-fermion metals,
not exhibited by common metals described by the Landau Fermi-liquid theory. The authors
bring together theoretical considerations and experimental data on heavy-fermion metals,
which demonstrate peculiar thermodynamic, transport, and relaxation properties.

Recent progress in low-energy electron elastic collisions with multi-electron atoms
and fullerene molecules is reviewed by Msezane et al. [16]. The authors describe the
application of the Regge pole analysis to this process, treating the fullerene molecules
as “big atoms” [17]. The authors demonstrate the sensitivity of the Regge-pole-calculated
Ramsauer–Townsend minima and shape resonances to the electronic structure and dynam-
ics of the actinide atoms, and their use as a novel and rigorous approach to validation of
recent experimental observations.

Nora Berrah [18] provides a perspective on probing fullerene molecules using free-
electron lasers (FELs). Non-linear processes in the interaction of atoms and molecules with
intense EUV and X-ray fields have been the subject of Amusia’s keen interest [19]. Ultra-
short and ultra-intense FELs have allowed molecular research in a new photon-energy
regime. Illuminated from within by the flow of photoelectrons, the fullerenes reveal fine
details of the structural and electronic properties. FELs have allowed the study of the
response of fullerenes to X-rays, which includes femtosecond multiphoton processes, as
well as time-resolved ionization and fragmentation dynamics.

Grundmann et al. [20] put the process of quasi-free photoionization under the reaction
microscope. The novel quasi-free mechanism (QFM) of single-photon double ionization
of the helium atom was predicted theoretically by Amusia and co-authors [21], to be con-
firmed experimentally nearly 50 years later in the group of Experimental Atomic Physics at
the Goethe University Frankfurt [22,23]. The work by Grundmann et al. [20] provides new
insights into the elusive QFM photoionization. They found a distinct four-fold symmetry
in the angular emission pattern of QFM electrons from the He atom and H2 molecule. Fur-

2



Atoms 2023, 11, 18

thermore, they provided experimental evidence that during the quasifree photoionization,
the photon momentum is not imparted onto the centre of mass, in contrast to the single
ionization and double ionization mediated by the shake-off and knock-out mechanisms.

Horst Schmidt-Böking [24] describes his personal encounters with Professor Amusia,
which led to a patented proposal of a new and efficient method of energy storage. The
method is based on producing long-life multiply-excited spin-polarized atoms or ions,
whose decay is strongly delayed or even blocked by the intra-ionic magnetic stabilization.
Specific configurations with huge internal magnetic fields capture only spin-polarized
electrons in collisions with spin-aligned atomic hydrogen gas targets.

The work by Lagutin et al. [25] exploits the use of super-intense free-electron laser
sources driving atomic photoionization in a strongly non-linear multiphoton regime. The
authors studied sequential two-photon double ionization of the Ar atom, with a focus on
the role of electron correlations in this process. They demonstrated a strong dependence of
the low-energy part of the photoelectron spectrum on both the photon energy and the flux
of the exciting beam.

Dolmatov and Manson [26] explore photodetachment of giant and nested fullerene
anions. Miron Amusia contributed vastly to the study of the interaction of particles
and light with fullerenes and endo-fullerenes [17,27,28]. The negative molecular ions
(CN@CM@ . . .)− are formed by adding an electron to several nested fullerene cages, where
the attached electron is captured into the s-wave ground state. The authors gain insight
into the changes in photodetachment of this valence electron as a function of the differ-
ent geometries and potentials of the various underlying fullerenes, depending on their
increasing size and packing.

Gregg and Gribakin [29] calculate low-energy positron-atom scattering, taking into
account meaning is retained strong electron–positron correlations, including the effect
of virtual positronium formation. Amusia and co-workers were probably the first to
recognize the importance of this effect [30]. The aim of the present study is to find the most
computationally economical way of accounting for correlations using a square-integrable
wave-function basis. As a demonstration of the utility of their method, the authors calculate
the phaseshift and the annihilation rate parameter Zeff, which are found to be in good
agreement with other benchmark calculations.

Kheifets [31] considers, theoretically, the shake-off process in non-sequential single-
photon double-ionization of closed-shell atomic targets. This process is facilitated by a
sudden re-arrangement of the residual ionic core which shakes off an extra electron into
continuum. Amusia and Kheifets [32,33] introduced the Green’s function formalism to
describe the effect of many-electron correlations on the ionization spectra of atoms. This
formalism is used in the present work. It is validated by making a comparison with more
elaborate techniques, such as convergent and time-dependent close coupling.

Deshmukh and Manson [34] consider photoionization of atomic systems using the
relativistic random-phase approximation. In this article, the historical reasons behind
the term “random-phase approximation” (RPA) are revisited. A brief introduction to the
relativistic RPA (RRPA) is provided, illustrated by a number of applications.

Vinbladh et al. [35] present a theory of two-photon above-threshold ionization and its
application to heavy atoms in attosecond science. They employ the Dirac–Fock formalism
and account for many-body effects using the relativistic random-phase approximation.
Strong relativistic effects are revealed close to ionization thresholds and Cooper minima,
predicting differences in the fine-structure level delays as large as tens of attoseconds.

Kabachnik and Sazhina [36] describe theoretically the spin polarization effects in XUV
photoionization of atoms dressed with an optical laser field. They show how different
photoelectron spectral lines originating from the ionizing XUV radiation and supplemented
by the optical dressing display various degrees of spin polarization.

Popova et al. [37] explore theoretically various spectroscopic peculiarities of the Ne
photoionization, focusing on the Cooper minima and auto-ionizing resonances. They use
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the R-matrix approach to calculate the photoionization cross sections for metastable and
dipole-allowed excited states.

Kornev et al. [38] consider theoretically the process of X-ray bremsstrahlung in electron
scattering from noble-gas atoms. The calculated isochromatic (i.e., fixed-photon energy)
spectra as functions of the electron energy, are consistent with the absolute values of the
experimental differential cross sections.

Yarzhemsky and Teterin [39] describe the effects of many-electron correlation on
the formation of complex satellite structures in photoelectron spectra. In the absence of
correlations, the spectra contain only single lines corresponding to one-hole states. The
theoretical results obtained for satellites and low-energy Auger lines in Ne, Co, and Th
atoms are found to be in agreement with the experiment.

Fritzsche and Böning [40] present the Jena Atomic Calculator, a novel computational
tool for studying relativistic atomic structure and dynamics. They illustrate its use by
evaluating the above-threshold ionization process for many-electron targets in the strong-
field regime. The authors also discuss how this approach can be extended to incorporate
re-scattering and high-harmonic generation.

Liverts and co-authors [41,42] focus their attention on spectroscopically accurate
calculations for two-electron atomic systems. Such systems are a testbed for various
computational techniques aiming to describe many-electron correlations [43,44]. The
authors propose a compact, yet very accurate method for computing S-wave functions as
linear combinations of a few single exponentials. They further employ the Fock expansion
to calculate high-order angular coefficients.

Amusia, Baltenkov, and Woiciechowski [45] study the angular-dependent time delay
in the low-energy electron elastic scattering by spherical targets. Specific features of both
angular and energy dependencies of the time delay are discussed in detail. Examples of
the hard-sphere and delta-shell potential well are considered for illustration.

In conclusion, this brief Editorial summarizes only a fraction of efforts of the followers,
colleagues and former students of Miron Amusia, who developed his seminal ideas in
various areas of computational and theoretical atomic physics. The present collection of
works demonstrates vividly that the ideas and methods pioneered by Amusia are still
relevant and fruitful, and continue to impact on this field of research.

Author Contributions: All authors contributed equally to writing this Editorial. All authors have
read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no known conflicts of interest.
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Abstract: The article is devoted to a brief description of the ATOM computer program system,
designed to study the structure, transition probabilities and cross sections of various processes in
multielectron atoms. The theoretical study was based on the concept of a computational experiment,
the main provisions of which are discussed in the article. The main approximate methods used in the
system of programs for taking many-electron correlations into account and determining their role in
photoionization processes, elastic and inelastic electron scattering, the decay of vacancies, and many
others are presented. The most significant results obtained with this software are listed.

Keywords: atom; RPAE; photoionization; electron-impact ionization; ionization of the inner shells;
decay of vacancies; computer

1. Introduction

In the theoretical study of multielectron atomic systems, software plays an important
role because it is necessary for calculating the energy and spatial structure and characteris-
tics of various processes occurring in atoms. Calculations in the framework of relatively
simple one-electron models did not lead to agreement between calculations and experi-
mental data, despite the fact that the pair interaction between electrons is the well-known
Coulomb interaction [1–7]. In the 1960s–1970s, it became completely clear that in order to
describe the structure and reaction of atoms to external influences, it is necessary to go
beyond single-electron concepts and take collective multielectron effects into account [3–7].
At the same time, in the theoretical group of the St. Petersburg Ioffe Institute, under the
guidance of Prof. Miron Ya. Amusia, began to create a package of applied programs known
as ATOM [8–10], which was improved in subsequent years and aided a huge number
of direct calculations that were carried out in atomic systems to describe experimental
data and predict new many-particle effects. These calculations laid the foundation for the
development of the concept of a computational experiment.

Theoretical studies of many-body systems, as a rule, are accompanied by the need
to take many-body interactions into account. At the same time, the determination of the
spatial and energy structure, as well as the response of such systems to external influences,
faces significant computational difficulties, especially in cases where perturbation theory
cannot be consistently applied [7–11]. The theory of atoms and atomic particles is also
facing such difficulties despite the fact that the pair interaction between electrons has been
well-known to physicists for more than a century. Nevertheless, a significant development
of methods for describing multielectron atoms and their interactions with external fields
began in the second half of the last century when the apparatus of many-body theory
was developed, great computational capabilities appeared, and experimental studies of
atomic systems began to be widely carried out [8–10]. These experiments showed that
the simplest description of atoms based on single-particle models—the Hartree–Fock (HF)
approximation, in particular [12]—is unable to describe the characteristics and properties
of the behavior of atoms in cases of their interactions with electromagnetic fields and
other particles.
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One of the most successful theoretical approaches to describing the structure and
processes in atoms are approximations based on many-body theory, particularly including
perturbation theory [13] and random phase exchange approximation (RPAE) [3,5,6]. It was
the RPAE method, developed as the 1960s turned into the 1970s, that first made it possible to
describe the photoionization cross sections of multielectron atoms and to show the decisive
role of many-particle (collective) interactions in atomic systems. The big advantage of the
RPAE is the self-consistency of this approximation, within which the main general laws of
the processes of the ionization and excitation of electrons, such as the oscillator sum rule
and the condition of gradient invariance, are satisfied [7,8]. Subsequently, the application of
this approximation made it possible to describe and explain numerous experimental data
and predict many-electron effects that manifest themselves in the processes of the ionization
and excitation of atomic systems. It is these calculations that have stimulated numerous
theoretical and experimental studies of many-particle processes in various research centers
and laboratories.

The theoretical group created by Prof. Miron Ya. Amusia has developed and described
the concepts of a computational experiment that is currently considered to be a new
methodology and technology of scientific research [14,15]. The implementation of this
concept makes it possible to use the capabilities of computers in combination with existing
traditional research methods, creating a new style of research work that combines the work
of theoreticians, experimenters and computer programmers.

The purpose of this work was to present a brief description of the ATOM program
system and its capabilities, as well as a generalization of the results obtained in atomic
physics using the developed software. In particular, this paper describes a computational
experiment on the development and study using the ATOM system of theoretical models for
studying the structure of atoms, simple molecules, endohedral atoms and their interactions
with external fields.

2. Software for the Computational Experiment

The main task of the computational experiment is to develop numerical models for the
specified range of problems within the framework of a pre-selected theoretical approach.
The Hartree–Fock (HF) method is taken as the initial approximation, and many-electron
correlations in atoms are taken into account in the framework of the RPAE or its simplified
modifications [8–10].

The theoretical model of any process under study in the chosen approximation should
provide a satisfactory mathematical description of the experiment. First of all, this model
includes the choice of the wave functions of atomic electrons in both the ground and excited
states, as well as additional external particles participating in the process. The wave func-
tions of the ground state of an atom are determined in the HF approximation. The functions
of excited states in the HF method can be found in a self-consistent field or in the field
of the “frozen” atomic core for electrons. The choice of the one-particle approximation
is determined by both the problem under consideration and the role of many-electron
interactions, some of which can be taken into account by the choice of one-particle wave
functions. In addition, not only electrons but also other particles can act as additional
external particles, e.g., mesons and positrons. The single-particle transition amplitudes are
determined in terms of wave functions, which makes it possible to calculate the characteris-
tics of atoms or the probabilities of processes in the HF approximations. Then, the matrix
elements of the interaction between electrons in various processes are calculated, and this
makes it possible to find the characteristics of atoms or the probabilities of processes while
considering multielectron correlations, RPAE in particular [8,9].

The ATOM system was created as a result of many years of research into the structure
and processes in multielectron atoms; it was designed to calculate the characteristics of
atoms, endohedral fullerenes, and diatomic molecules, as well as the probabilities of the
processes of interaction of electrons, photons and other particles, on a computer [3–10,16,17].
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Let us briefly list some main characteristics of atoms and processes that are determined
within the framework of this system:

• Wave functions of atoms in the ground and excited states in the HF and Hartree–Fock–
Dirac approximations.

• Amplitudes and cross sections of photoionization (including the strength of oscillators
of discrete transitions) of atoms with filled and half-filled shells while taking the
interaction between electrons of one, two or more shells into account.

• Atom polarizability.
• Characteristics of the angular distribution of photoelectrons and secondary electrons

both in the dipole and outside the dipole approximation.
• Parameters of the spin polarization of photoelectrons.
• Scattering cross sections of fast electrons through the generalized oscillator strengths,

taking the influence of electrons in one, two or more shells into account.
• Angular distribution of secondary electrons arising from the inelastic scattering of fast

particles on atoms.
• Phases and cross sections of the elastic and inelastic scattering of particles (electrons,

positrons, and mesons) of low and medium energies on atoms.
• Photoabsorption cross sections with allowance for the decay of vacancies and the

inelastic scattering of a photoelectron.
• Cross sections of the ionization and excitation of an atom by electron impact.
• Probabilities of the single-electron and double Auger decay of vacancies in atoms.
• Probabilities of the one-photon decay of one- and two-hole states.
• Characteristics of bremsstrahlung of high and intermediate energy incident particles.
• Characteristics of capture of mu-mesons by atoms.
• Amplitudes, photoionization cross sections, and angular anisotropy parameters of

endohedral atoms and the decay of vacancies in such atoms.
• Characteristics of the inelastic scattering of fast electrons on endohedral atoms.
• Characteristics of photoabsorption processes in negative and positive ions.

The creation of theoretical models is only the first step in a computational experiment.
On their basis, numerical models are constructed and make it possible to obtain an approxi-
mate solution of the initial problems on a computer with the required accuracy. The wave
functions of an atom in the HF approximation are represented as a product of the radial,
angular and spin parts. Radial functions are the solution of the HF equation (or system of
equations) through the method of successive approximations. Integration over the angular
variables of the wave functions and summation over the spins are carried out analytically
and enter the expression for the matrix elements, which are the results of solving integral
equations in RPAE [9,10]. The multidimensional integrals in these equations are reduced
to one-dimensional ones after separating the corner parts and integrating over the angle
variables. The RPAE equations are transformed into a system of algebraic equations, the so-
lutions of which are reduced to the inversion of matrices. The expression for the amplitudes
of physical processes, defined in terms of matrix elements in RPAE, often contains sum-
mation and integration over intermediate states and may have singularities due to energy
denominators [9,10]. The integrals of the emerging singularities are analytically calculated.
The resulting expression is “matched” with the contribution of non-singular regions, which
is found as a result of numerical integration. In this case, the presence of an imaginary
additive in the energy denominator of the calculated amplitudes leads to the fact that the
process amplitude has both real and imaginary parts.

The numerical solution of the problem, which makes it possible to study the cho-
sen physical process, is sought without separation from physical considerations, which
often lead to model simplification. For example, when discretizing the original model,
an important element of the calculation is the choice of a sufficiently high upper limit;
up to this limit, instead of integration over the continuous spectrum, summation is carried
out on a computer [8,9]. The practice of calculations shows that in the physics of the atom,
one has to deal with matrix elements that rather quickly decrease as the energies of the
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states entering into them increase. In addition, to improve the accuracy of calculations, it is
advisable to choose sampling points so that the largest number is in the region of relatively
low energies E. This condition is ensured by using the electron momentum p = E1/2 as an
integration variable.

3. Organization of the Computational Experiment

The optimal organization of the computational process depends on the choice of theo-
retical and technical characteristics of computational algorithms. The theoretical parameters
of the algorithms are related to the formulation of the problem. They include a formal
description of the problem, a solution method, the algorithm itself, and its implementation
in the chosen language. Technical characteristics depend on the computer used and include
system tools, the capabilities and features of the algorithmic languages used, the form of
presentation, and the storage of initial information.

The choice of strategy in the development of the algorithm itself includes a number of
issues. First, in all possible cases, the complex initial problem is divided into a number of
simple ones that are easier to implement on a computer. Due to the allocation of subtasks
into independent modules, such as the calculation of dipole and Coulomb matrix elements,
integration with a pole, matrix inversion, the problem of using them in the study of new
physical processes is simplified. Furthermore, in each of the subtasks, the necessary alge-
braic simplifications are carried out. In particular, the change of variable required in the
calculation of wave functions is carried out in the calculation of all characteristics of atoms,
since the matrix elements used in them are expressed in terms of wave functions. Access to
auxiliary (intermediate) quantities is as important for a theoretical physicist as measure-
ments are for an experimenter in an experiment. In the processes under study, auxiliary
quantities usually refer to the matrix elements that are used to obtain qualitative estimates.

One of the components of the algorithm is the analysis of the accuracy of calculations.
The accuracy of theoretical models is generally unknown, and it is established with the
help of estimates obtained as a result of roughly approximate calculations. The accuracy
of computer calculations can be very high. It is advisable to use an accuracy that it is
somewhat higher than the expected error of the physical result itself. Often the error of
intermediate results is more important, since the value obtained in a physical experiment
is found as the difference of large numbers. In addition, in the process of computing,
the error can accumulate, and, as a rule, it is difficult to evaluate it. Therefore, the final
result on a computer often does not require a level of accuracy as high as that needed for
intermediate data and that realized at intermediate stages. All this is considered when
choosing numerical methods for solving problems.

The development of computational algorithms is the second stage of the computa-
tional experiment. In the next steps, computer programs are compiled that implement the
selected algorithms. The ATOM system uses numerical methods for the theoretical study
of the structure of complex atoms and the processes occurring with their participation [11].
The high-level language Fortran, which is the main language in many physical calculations,
is used to write the algorithms. To facilitate the implementation of the ATOM system on
other computers, Fortran does not use the features and extensions of languages imple-
mented in some translators. Algorithms are recorded in accordance with the respective
technology. Algorithms are designed in the form of modules, which are divided into three
groups. Modules of the first type are procedures without formal parameters and include
the description of variables, the input and printing of initial data, the description of the
algorithm containing printing of intermediate values, and the output of results. These are
executive programs, each of which solves an independent physical problem. Modules of
the second type (specialized) are programs or function procedures with formal parameters.
They contain descriptions of the variables and the algorithm. Modules of the third type
(service) contain descriptions of variables, the input and printing of initial data, or the
printing of results. These modules are used in the development and assembly of modules
of the first type. Modules of the fourth type (generic) implement standard mathematical
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methods. For clarity and ease of finding errors, variables in modules are grouped according
to their purpose; variables common to all modules are assigned permanent identifiers,
and the names of the variables are usually abbreviated names of the physical processes
under study. The input of initial data is accompanied by the printing of all physical quanti-
ties. The same is done for intermediate values and program results. Detail printing turns a
software module into a theoretical physicist’s tool; it plays the same role as diagnostics in a
natural experiment for an experimenter.

The ATOM system includes an application program (AP) and a database (DB). The AP
contains more than 50 executive modules (according to the number of physical tasks to
be solved), more than 10 service modules, more than 70 specialized modules and more
than 16 generic modules, and it has a hierarchical structure. During its development,
the following requirements were taken into account: the modular principle of organization,
the constant expansion of the system’s capabilities, the convenience of users, ease of
implementation, and the use of the system as part of the software for the computing network
for collective use. The ATOM system was built with basic tools, so it is easily implemented
and widely used in many places. For each atom and each physical process under study,
the DB contains the required wave functions, input and output physical characteristics.

The input language of the ATOM system belongs to the class of task languages that
allow for a wide class of users who do not have special training in programming to work.

An important stage of the computational experiment is the implementation of com-
puter calculations, during which the capabilities of the created programs are constantly
expanding. At present, the ATOM system enables the solving of the following prob-
lems [8,9]. In the Hartree and HF approximations, one can obtain various wave functions,
namely wave functions of the ground state of an atom, wave functions of excited states
consistent with the functions of the ground state, wave functions of excited states in a
continuous spectrum for given energies in a fixed field of an atom with or without orthogo-
nalization to the wave functions of the ground state, wave functions of excited states in the
discrete spectrum for given values of the principal quantum number in a fixed core field
with or without orthogonalization to the wave functions of the ground state, and wave
functions of the mu-meson and positron.

Because it has a set of necessary wave functions in the DB, the ATOM system allows
one to determine, in the HF and RPAE approximations, matrix elements within one or
two transitions, each of which is characterized by one wave function of the ground (hole)
state and a set of wave functions of excited (partial) state discrete and continuous spectra
for a finite series of energies, namely dipole matrix elements of the length and velocity
form, the Coulomb matrix of effective interaction, matrix elements of the terms of the
expansion of a plane wave in a series in terms of Legendre polynomials, and Coulomb
matrix elements such as “three particles–one hole”, “two particles–two holes”, and “three
holes–one particle”. The resulting matrix elements are the basis for studying a number
of processes.

Using the example of calculations of the photoionization processes in the framework
of the RPAE, we present the main stages of calculations. First, the wave functions of the
ground and excited states are determined in the HF approximation. Using the obtained
wave functions, the dipole matrix elements of phototransitions to discrete states and states
of the continuous spectrum are calculated in the zeroth approximation. In the next stage,
the matrix elements of the Coulomb interaction between all the HF states involved in the
process, both real and virtual, are calculated. Furthermore, integral equations are solved
in the program to determine the amplitudes and cross sections of phototransitions while
taking multielectron correlations within the framework of the RPAE into account.
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Thus, the analytical expression for the photoionization amplitude upon the absorption
of a quantum with frequency ω, considering intra- and intershell interactions, can be
represented in the following symbolic form [9,11]:

〈
ν
∣∣D̂(ω)

∣∣i〉 = 〈ν
∣∣∣d̂∣∣∣i〉+

⎛
⎜⎜⎜⎜⎜⎝ ∑

k 2 > F
k 1 < F

− ∑
k 1 > F
k 2 < F

⎞
⎟⎟⎟⎟⎟⎠

〈
k2
∣∣D̂(ω)

∣∣k1
〉〈

ν, k1
∣∣Û∣∣i, k2

〉
ω − Ek 2 + Ek 1 + iδ

(
1 − 2nk 2

) (1)

Here,
〈

ν
∣∣∣d̂∣∣∣i〉 and

〈
ν
∣∣D̂(ω)

∣∣i〉 are the dipole matrix elements of the transition between the
|i〉-initial and 〈ν|-final states in the HF and RPAE approximations, respectively. The matrix
element of the interaction between electrons involved in the transition between inter-
mediate |k1〉 and final |k2〉 states is determined by the sum of the direct and exchange
matrix elements. 〈

ν, k1
∣∣Û∣∣i, k2

〉
=
〈
ν, k1

∣∣V̂∣∣i, k2
〉
−
〈
ν, k1

∣∣V̂∣∣k2, i
〉

(2)

where
〈
ν, k1

∣∣V̂∣∣i, k2
〉

is the matrix element of the Coulomb interaction. Summation (inte-
gration) over the intermediate states |k1〉 and |k2〉 with energies Ek1 and Ek2 involved in the
process above and below Fermi level F is carried out in both a time-direct process and a

time-reversible process; nk is the Fermi step nk =

{
0 k > F
1 k < F

.

When only intrashell correlations are taken into account, summation in (1) is carried
out only over intermediate excited states of electrons in one shell under consideration.
When intershell interactions are taken into account in the summation, the correlation term
takes the transitions of electrons in different shells involved in the process into account.

As a result of Solution (1), we obtain the transition amplitude in the RPAE approxima-
tion, which is substituted into the formulas for determining the partial or total photoioniza-
tion cross sections (� = me = e = 1) [11]:

σi→ν(ω) =
4π2

ωc

∫
|Diν(ω)|2δ(Eν − Ei − ω)dν (3)

where ωνi = Ev − Ei is the transition energy and ν is the total set of quantum numbers that
characterize the final state.

4. Interference Effects in the Processes of Photoionization of Atoms

The photoionization cross section (oscillator strengths) and the anisotropy coefficients
of the angular distribution of photoelectrons are expressed in terms of the dipole matrix
elements of the coordinate or momentum and are determined by considering the inter-
actions of all electrons of the shell under study with each other, as well as intershell and
intersubshell interactions.

Within the framework of the one-particle HF approximation, it was not possible to
obtain agreement between the theory and the available experimental data, on photoabsorp-
tion in atoms in particular. In addition, the results of calculations in the HF approximation
did not obey the conditions of gauge invariance, since the photoionization cross sections
obtained with different transition dipole operators gave different results. It became obvious
that it is necessary to go beyond the HF approximation when describing photoionization
processes. This means, by definition, that it is necessary to consider the many-electron
correlations caused by the part of the electron–electron interaction that is neglected in
determining the self-consistent mean field.

The correlation interaction between the electrons of an atom can be taken into account
using a number of theoretical methods (review [18]). Those that use the apparatus of the
theory of many bodies and apply the diagram technique, namely RPAE [5,11,19] and many-
particle perturbation theory (MPT) [20], are widespread. Based on the HF approximation as
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the zeroth approximation, the apparatus of many-body theory makes it possible to represent
the mechanism of any process under consideration in the lowest nonvanishing order of
perturbation theory in terms of interelectronic interaction and to present corrections to it in
higher orders.

The development of the RPAE to account for many-electron correlations in atoms was
the next step after the HF approximation in the creation of self-consistent approximations
in many-body theory. From a many-body perspective, RPAE takes an infinite sequence of
perturbation series terms of a certain class (class of diagrams) that contribute the most in
each order of perturbation theory into account. The self-consistency of the approximation
and its advantage also lie in the fact that, within its framework, one can obtain the gauge in-
variance of the obtained photoionization cross sections, namely the equality of the results in
calculations with different types of dipole operators (in contrast to the HF approximation).

The first natural step in considering the correlation interaction, sometimes called
residual, was to consider it between the electrons of only one shell, since the latter are
well-separated spatially and energetically from the electrons of other shells. In application
to the study of the processes of the ionization and excitation of atoms, correlations were first
successfully taken into account in the framework of the RPAE [5,11]. In these calculations,
it turned out to be sufficient to take the residual interaction between the electrons of the
ionizable shell (intrashell interaction) into account in order to obtain satisfactory agreement
with the experimental data on the total photoionization cross sections in the photon energy
range from ionization thresholds to several hundreds of electron volts. It turned out
that the residual interaction between electrons is essential for all outer and intermediate
multielectron shells (p6, d10, and f14), which make the largest contribution to the total
photoionization cross section.

Intrashell correlations can significantly change the value of the photoionization cross
section but usually do not lead to its qualitative changes depending on the energy. Intershell
interaction, on the contrary, often leads to qualitative changes.

In partial ionization cross sections of few-electron shells whose electrons participate in
relatively “weak” transitions, the role of intrashell correlations is usually small. However,
when describing the partial cross sections for the ionization and excitation of such electrons,
it is necessary to take intershell correlations (intershell effects) into account, since few-
electron shells, e.g., ns2, are subject to a strong screening effect of the surrounding many-
electron shells. In other words, their behavior is completely collectivized and determined by
the surrounding many-electron shells. Although the atomic shells are well-separated from
each other spatially and energetically, considering the connection of electrons in different
shells turns out to be very important in describing a number of dynamic processes in the
atom. Intershell interactions manifest themselves most strongly in the ionization cross
sections of few-electron shells, total ionization cross sections at the thresholds of inner shells,
the angular distribution and polarization of photoelectrons, the decay of vacancies in inner
shells, and photoelectron spectra. The prediction of a significant effect of many-electron
shells on few-electron shells [7,11,21], the complete loss of their individuality by the latter,
and their consequent collectivization served as the impetus for a wide experimental and
theoretical study of the manifestations of intershell interactions.

Intershell interactions most clearly manifest themselves in the study of the photoioniza-
tion cross sections of 5s2 shells in atoms whose electrons have completely lost the features
of individual behavior. In this case, it is appropriate to speak of the collectivization of
5s2 electrons under the influence of the surrounding 4d10 and 5p6 multielectron shells.
Under the influence of external electrons, a minimum appears in the partial cross section
for the photoionization of 5s electrons, followed by a maximum under the influence of
electrons from the inner shell. Such collectivization is typical for the 5s2 shells of many
elements, beginning with Cd (Z = 48). However, the dependence of the photoionization
cross section on energy undergoes successive changes with increasing nuclear charge Z.
Thus, when going from Xe to La, the interference minimum shifts to the region of the
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discrete excitation spectrum. It should be noted that the collectivization of ns2 electrons
was initially theoretically predicted and then confirmed by experimental measurements.

The study of the angular distribution and polarization of photoelectrons in principle
provides more detailed information about dipole transitions in atoms and the effect of
many-electron correlations, since the parameters describing these processes are determined
by the transition amplitudes together with the scattering phases of a photoelectron in the
ion field. Thus, the angular distribution of photoelectrons knocked out of a shell with
quantum numbers n, l when an unpolarized atom is irradiated with unpolarized light is
determined by the expression [7–9]:

dσnl
dΩ

=
σnl(ω)

4π

[
1 − 1

2
βnl(ω)P2(cos θ)

]
(4)

where P2(cos θ) is the Legendre polynomial, dΩ is the element of the solid angle of emission
of a photoelectron, and σnl(ω) is the total photoionization cross section of the nl-shell
(obtained from (1)–(3)). The angular anisotropy parameter βnl(ω) is expressed in terms of
dipole matrix elements and photoelectron scattering phases with angular momenta (l ± 1).

The intrashell interaction, as a rule, does not lead to qualitative changes in the depen-
dence of the anisotropy parameter in comparison to a single-particle calculation. The sit-
uation is different when the intershell interaction is taken into account: the transition
amplitude can acquire additional zeros, maxima, and minima, which is reflected in quan-
titative and qualitative changes in the partial photoionization cross sections and angular
distributions of photoelectrons [7,11]. A striking example is the behavior of the angular
anisotropy parameter of electrons in the 5p6 shell [22,23].

The study of the polarization of photoelectrons also makes it possible to obtain even
more detailed information about the behavior of dipole amplitude. The experimental
determination of partial cross sections, angular distributions of photoelectrons, and their
polarization forms a so-called full quantum-mechanical experiment, which makes it possi-
ble to measure all the amplitudes characterizing photoionization, including their real and
imaginary parts. Calculations have shown that the degree of polarization of photoelectrons
as a function of energy is very sensitive to variations in the amplitudes of dipole transitions
and, consequently, to manifestations of intershell interactions [11,24].

Many-electron effects are often more significant in negative atomic ions [11,25] than
in neutral atoms, since the interaction between outer electrons is relatively stronger due
to more complete screening of the Coulomb field of the nucleus. The formation of neg-
ative ions mainly occurs due to the polarization attractive interaction between an addi-
tional electron and a neutral atom. Therefore, in determining the cross sections for the
photodetachment of electrons from negative ions, in addition to RPAE correlations, it is
necessary to take the polarization potential into account. The latter can be conveniently
achieved by redefining the wave functions of the additional electron: instead of the HF
functions, use Dyson orbitals, which take the self-energy parts of the external electron
into account [25].

Let us list the most important results obtained in the study of many-electron corre-
lations in the processes of photoionization and photoexcitation. Most of the results were
obtained using the ATOM system [7–11,16,17,24].

1. It has been demonstrated that giant resonances in the photoionization cross sections
of a number of atoms, xenon (Xe) and its neighbors such as iodine (I), cesium (Cs) and
lanthanides in particular, are completely multielectron in nature. They are analogues
of plasmons in solids, and at least all ten electrons of the 4d10 subshell participate in
their formation in atoms.

2. It was predicted that the action of multielectron shells qualitatively changes the
photoionization cross section of few-electron subshells, leading to a new continuous
spectrum, the so-called interference resonances [6,11]. These resonances are a direct
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consequence of the interaction between electrons that belong to different subshells or
even shells, and they have indeed been observed in many atoms.

3. It has been shown that the interelectronic interaction and the correlation effects caused
by it are sharply manifested not only in the photoionization cross sections but also in
the angular distributions of photoelectrons [22] and spin orientation [24].

4. It has been demonstrated that multielectron correlations significantly affect the pho-
toionization cross sections of outer and intermediate atomic subshells in a very wide
frequency range. These effects are especially strong near the subshell ionization
thresholds, but they are quite noticeable at relatively high photon frequencies of up to
1.5 or 2 keV and even above the threshold values [7,9,11].

5. Researchers have identified specific examples of the strong interaction of electrons
belonging to two or even three different subshells, which leads to strong changes
in their cross sections far from any ionization threshold, including the formation of
completely new maxima [21,26].

6. It has been shown that along with the main line, which corresponds to the removal
of an electron from a given subshell, there are satellite and shadow lines of a pure
many-electron nature in the photoelectron spectrum. They appear at any incoming
frequency of photons with the same strength relative to the main line. Quite often,
the strength of these lines is high, which is a direct manifestation of the very important
role played by the interelectronic interaction [27].

7. It has been demonstrated that the interelectronic interaction can in some cases be
so strong that single-electron lines completely disappear [27] This effect, called the
“melting” of electron shells, has been observed in Xe and some of its neighbors.
In atomic physics, this effect is less common than other manifestations of corre-
lations, but it is of great importance as an example of the possible power of the
interelectronic interaction.

8. It has been shown that one photon, which can interact with only one electron, is able
to simultaneously remove two or even more electrons from an atom. This process
only occurs due to the presence of interelectronic interactions when the electron of the
inner shell is removed from the atom and is accompanied by the Auger effect [7,9,16].
One photon can simultaneously remove two or even more electrons from the outer sub-
shell, even if the photon frequency is below the intermediate photoionization threshold.

9. The autoionization of the continuous spectrum was predicted [25,28] due to the
existence of relatively narrow resonances in the photoabsorption cross section of
negative ions that arise as a result of the strong interaction of electrons belonging to
two outer subshells.

10. Researchers have identified strong autoionization resonances that arise due to the
effective interaction between the discrete excitation “two electrons–two vacancies”
from one subshell with the continuum “one electron–one vacancy” of the other [29].
Therefore, almost everywhere, with the exception of the immediate vicinity of the first
ionization potential, the photoionization cross section has a fine structure consisting
of narrow autoionization resonances.

11. Researchers have predicted unexpectedly large low-energy non-dipole corrections
in the angular anisotropy of photoelectrons, which lead to the creation of resistance
currents that are quite observable macroscopic joint effects during the photoionization
of atomic gases [30].

The intershell interactions in atoms with open np- and nd-shells have been theoretically
and experimentally studied to a lesser extent than in atoms with filled shells. The reasons
for this are not only computational difficulties but also experimental ones associated
with obtaining these atoms in a vapor state. There are a number of calculations of the
photoionization cross sections for atoms of groups VI and VII of the periodic system in the
single-particle approximation while taking correlations into account. These calculations
indicate that the correlations between electrons—both intrashell and intershell—should
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be no less in these atoms, and sometimes even more, than in atoms neighboring in the
periodic system with filled shells.

5. Many-Electron Effects in Electron-Impact Ionization Processes

The study of the ionization of atoms by fast electrons (or other particles) makes it
possible to trace the dependence of intershell interactions on the momentum q and angular
momentum Δl transferred during scattering. The transfer of various moments to an atom
leads to (along with dipole moments) monopole, quadrupole, and other transitions in the
atom, thus making it possible to find out the role of the intershell interaction components
of different multipolarities. The cross section for inelastic scattering of fast electrons on
atoms is determined in terms of the generalized oscillator strengths (GOS), which are
calculated for transitions of different multipolarities and describe the reaction of an atom
to the transfer of momentum and energy to it. The differential cross section for inelastic
scattering of fast electrons is proportional to the density of the GOS.

In the limiting case of the transferred momentum, only the dipole component of the
interaction “survives”; therefore, in ionization by fast electrons, the influence of intershell
correlations manifests itself similarly to that in the process of photoionization. Following
the change in the influence of the intershell interaction with increasing momentum transfer
q using the dipole-density component GOS as an example, we note that with increasing q,
the influence of the outer shells on the ionization of the deeper ones decreases. The reason
for this is that as q increases, the incident electron penetrates deeper and deeper into the
atom and the effective radius r of the interaction with it finally becomes smaller than the
radius of the outer shell. The outer electrons shield the inner shell from the impact of the
incident electron to a lesser extent [11,16].

The differential cross section for inelastic scattering of fast electrons is proportional to
the density of the GOS ∂ f (ω, q)/∂ω and can be written as [31]

d2σ

dω dΩ
=

4π
ωE

∂ f (ω, q)
∂ω

d ln q2

dΩ
(5)

where E is the energy of the incident electron; ω and q are the energy and momentum,
respectively, transferred to the atom during scattering; and dΩ = 2π sin θdθ is the element
of the solid angle into which the incident electron was scattered. When many-electron
correlations are taken into account, instead of the single-electron matrix element included
in (5), the corresponding matrix element—which is determined by expressions similar to
those written for the dipole component of the photoionization amplitude—is substituted.

The differential cross section is proportional to the total density GOS. For small trans-
ferred momenta q, the GOS is determined by the contribution of the dipole component.
As q increases, the contribution of monopole and especially quadrupole transitions in-
creases, for which the influence of surrounding shells is smaller than for dipole ones.

As q increases, the influence of the outer shells on the ionization of the deeper ones
decreases. The aforementioned reason for this is that as q increases, the incident electron
penetrates deeper and deeper into the atom and the effective radius rэ of the interaction
with it becomes smaller than the radius of the outer shell. The outer electrons shield the
inner shell from the action of the incident electron to a lesser extent [32].

On the contrary, the influence of inner shells on the ionization of electrons from outer
shells can remain significant even at sufficiently large transferred momenta q. Moreover,
since the rate of decrease in the ionization amplitude is determined by the product qrэ and
the radius of the inner shell is less than the radius of the outer one, the contribution of the
direct amplitude usually decreases with increasing q faster than the correlation one. Thus,
the relative role of internal electrons can increase.

As in the process of photoionization, the scattering cross section for fast electrons with
ionization of outer s-electrons has a collective character. The influence of the surrounding
multielectron shells on their ionization leads to qualitative changes in the dependence of
the cross section on the transferred energy and momentum [11,32].
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When studying the scattering of slow electrons by atoms, information about the
role of many-electron correlations and the probability of the process can be obtained by
determining the self-energy part of a hole or a particle of a single-particle Green’s function
in a simplified RPAE.

The cross section for elastic scattering of electrons with energy E is expressed in terms
of the scattering phases δl(E) of partial waves with moment l. Using the ATOM system,
RPAE corrections Δδl(E) to the HF phases of elastic scattering δHF

l
(E) are calculated [9,11].

eiΔδl(E) sin Δδl(E) = −π
〈

El
∣∣Σ̂(E)

∣∣El
〉

(6)

where
〈

El
∣∣Σ̂(E)

∣∣El
〉

is the matrix element of the polarization interaction of the incident
electron with the atom. The self-energy part of the Green’s function depends on the energy
of the incident electron and describes the nonlocal interaction between the incident electron
and the electrons of the atom. This approach first made it possible to describe experimental
data on the elastic scattering of slow electrons by a significant number of atoms with high
accuracy and without using the phenomenological polarization potential. The total cross
section of inelastic scattering is expressed in terms of the imaginary part of the phase shifts
(6) Imδl(E).

The same methods were applied to the description of the elastic scattering of slow
positrons by atoms [11,33]. In contrast to the scattering of electrons, in this problem,
on the one hand, it is not necessary to consider the exchange interaction, but it was neces-
sary to consider the formation of a bound state, such as positronium, which complicates
its solution.

Below, we present the most important results of the study of electron or positron
scattering, both elastic and inelastic [8–11,16]. Some of the obtained results are also impor-
tant for understanding the collisions of atoms involving heavy charged particles, such as
protons and μ-mesons.

1. It was demonstrated that in the cross section of the elastic scattering of electrons on
atoms, there is a Ramsauer minimum that arises due to the action on the incoming elec-
tron, along with the self-consistent HF potential and the polarization potential. This
potential has a purely many-electron nature. This leads to Ramsauer minima in the
electron scattering cross sections, not only on atoms of the noble gases Ar, Kr, and Xe
but also on alkaline earth elements such as Ca. In the latter atoms, the Ramsauer
minima have very high energies [11,25,34].

2. The polarization potential turned out to be strong enough to form stable nega-
tive ions of a number of atoms with filled subshells, alkaline earth elements in
particular [25,34,35], although with a very low binding energy. These negative ions
have been observed in experiments.

3. The important role of the polarization potential in the elastic and inelastic scat-
tering of slow positrons by atoms was investigated and discovered. It has been
demonstrated that the possibility of an incoming positron to form a bound state
(called positronium) with an external atomic electron during scattering, greatly affects
polarization potential [11,36]. Accounting for this temporary formation of positron-
ium can lead to bound states of a positron with an atom, which is a completely new
kind of positively charged ion [37].

4. The temporary formation of positronium during the elastic scattering of positron
atoms can, in principle, lead to a qualitative modification of the polarization potential,
i.e., it can become repulsive instead of always being attractive [38]. This reversal of
the sign of the potential explains the qualitative difference between the low-energy
elastic scattering cross sections of a positron on He and a positron on Li and also why
the former is orders of magnitude smaller than the latter.

5. It has been demonstrated that many-electron correlations play a very important role
in inelastic collisions for practically any projectile energy. The cross section of inelastic
scattering is strongly affected by not only such collective excitations as dipole giant
resonances but also multielectron nondipole excitations [10,11].
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6. It was shown that for incident particles with energies close to the excitation thresholds
of the intermediate or inner shell, the spectra of the inelastically scattered projectile
are strongly modified due to the Auger decay of the created vacancy. This effect is
called the post-collision interaction [39]. The many-particle theory of this effect can be
found in [11,40].

7. A new mechanism for the generation of continuous spectrum electromagnetic radi-
ation in inelastic collisions in atoms was proposed. This radiation, called atomic or
polarization bremsstrahlung, is mainly due to the dipole deformation of the target
atom during the collision. This radiation is strongly influenced by the interaction
between atomic electrons and the collective effects caused by it [41].

6. Ionization of the Inner Shells of the Atom and Decay of Vacancies

Collective effects during the photoionization of inner shells near their threshold are
more complex than those of outer shells. Along with the forced joint ordered motion of
electrons of one or several neighboring shells occurring under the action of an external
electromagnetic field, various relaxation processes also take place. Relaxation, or rearrange-
ment, is a complex dynamic process that reflects the reaction of atomic electrons to the
appearance of a vacancy in one of the shells and its subsequent decay. Accounting for
the rearrangement leads to changes in the photoionization amplitudes and the interaction
between electrons.

The simplest method that considers the reaction of atomic electrons to a vacancy
appearing in an atom after photoabsorption is the “static rearrangement” approximation.
In this case, during the decay time of the hole, the photoelectron with low energy does not
have time to move far enough from the remaining ion and almost immediately moves into
the field of the ion field that has already been rearranged due to decay [7,9].

The “static” rearrangement approximation becomes inapplicable when the lifetime
of a vacancy Tnl in a shell with quantum numbers nl is comparable to the photoelectron
escape time t from an atom. In this case, it is necessary to take the dynamics of the process
into account. During Auger decay, the new field acting on a photoelectron corresponds to a
charge one greater than the initial field formed during the absorption of a quantum. As a
result of increased attraction, the slow electron in the new field has an energy lower than
that which it would have if the decay of the vacancy was neglected. The released energy is
carried away by a fast Auger electron. This phenomenon, associated with the redistribution
of energy between a photoelectron and an Auger electron, is a strong correlation effect called
the post-collision interaction (PCI) [39,40]. This effect significantly changes the amplitude
and, accordingly, the photoionization cross section, as well as the energy distribution of
Auger and photoelectrons. Recently, the effects of PCI have been intensively studied both
experimentally and theoretically. An analytical study of the amplitude of the photoprocess,
taking the PCI into account, showed a redistribution of energy between electrons: a fast
electron is accelerated while a slow one is decelerated [40]. The analysis of this correlation
effect is simplified when the width of the deep vacancy is not too large and (as a result of its
decay) a sufficiently fast electron is formed, so that the interaction with a slow photoelectron
can be neglected.

Many-electron correlations are clearly manifested in the decay of vacancies formed
during the interaction of photons, electrons, or positrons with atoms. Decay with the
emission of even one electron (Auger decay) is in itself a manifestation of the interelectronic
interaction. However, in some decay processes, the role of interaction with other electrons
of the atom (many-electron correlations), which are not directly involved in the decay,
is especially important.

Through the matrix element of the energy proper part of the single-particle Green’s
function, taken between the wave functions of the occupied states, the shift of the ionization
potential is expressed in comparison with its HF value due to the correlation interaction of
atomic electrons. The imaginary part of this matrix element gives the total width of the hole
level with respect to the Auger decay. In addition to direct Auger decay, in which another
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atomic electron is removed as a result of the transition of an electron from an occupied
level to a free one, a more complex process (which proceeds due to the effective interaction
of electrons and is taken into account in RPAE) is also investigated.

The main results obtained in the study of the decay of vacancies are presented below.

1. Taking the interaction between the electrons of an atom into account, it was shown that
the probability of both radiative and non-radiative—i.e., flowing with the emission of
electrons (Auger electrons)—decays can be significantly reduced or increased. Owing
to correlations, radiative decay can be completely blocked, which is called the radiative
self-blocking of vacancies [11].

2. It has been demonstrated that a state with one vacancy can decay upon the simultane-
ous emission of one electron and one photon, several electrons, or several photons [42].
At the same time, states with two vacancies can decay upon the emission of one photon
or electron [16,17].

3. It was shown that the energy of an Auger electron leaving an atom after the decay of
an internal vacancy shifts towards higher energies when a vacancy is created near the
threshold of its formation. This shift increases with a decrease in the energy of the
photoelectron that leaves the atom when an internal vacancy is created. This shift is a
manifestation of the interaction after the collision [11,16].

4. The increase in the energy of the Auger electron mentioned in the previous paragraph
can be so large that a slow photo- or inelastically scattered electron does not actually
have enough energy to leave and remains in the atom because it is intercepted by one
of the higher excited levels of the residual ion.

5. The creation of the innermost shell vacancies leads to avalanches of secondary elec-
trons. Most of them are formed as a result of multistage Auger decay. However,
multielectron Auger processes also play an unexpectedly large role in the creation of
these avalanches.

7. Conclusions

With the help of the developed ATOM software, a huge number of calculations of
various atomic processes have been carried out, in most of which multielectron processes
play a decisive role. These calculations can be considered the result of a computational
experiment in which many-particle effects are studied for a well-defined and well-known
pair interaction between electrons. Naturally, in this short review of the obtained results
and the possibilities of applying the presented experiment, not all processes associated
with the reaction of the electronic system of atoms to external influences are discussed.

In the processes mentioned above, relativistic effects that have little impact on the
partial photoionization cross sections of individual shells were neglected. However, when
describing photoprocesses in atoms, such characteristics that are directly related to relativis-
tic corrections to the interaction are also determined. One of them is the parameter called
the “branching ratio” [18], which characterizes the relative probability of the ionization of
shell sublevels with different total angular momenta j. The presence of a spin in an electron
leads to the fact that during the photoionization of shells, the remaining ion can be in states
that differ in the total momentum j = l ± 1/2.

In the process of the photoionization of internal atomic shells with a total moment
j > 1/2 (l > 0), the resulting ions have a certain alignment (the predominant orientation
of the total moment j) along the direction of the incident photon beam. This alignment,
which arises as a result of the uneven population of states with different projections
of the total momentum of the ion M, manifests itself in the anisotropy of the angular
distribution of emission photons or Auger electrons emitted during the decay of a vacancy.
The alignment of ions depends on the squares of the dipole amplitudes in a different way
than the photoionization cross section, and the measurement of the angular anisotropy of
electrons or photons therefore also provides additional independent information about the
photoionization process.
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The final stage of the computational experiment is the analysis of the results and their
comparison with the experimental data. The ATOM system has turned out to be very
effective in solving a wide class of problems in the study of atomic processes, including
processes involving atomic ions, endohedral fullerenes, diatomic molecules, and atomic
clusters, as well as processes in a number of problems in solid state physics.

The ATOM system was created on the initiative and with the active participation of
Prof. Miron Ya. Amusia. It was his ideas that led to the creation of the self-consistent RPAE
approximation, which was the next step in many-body theory after the HF approximation.
The development of the proposed approach and the creation of the ATOM complex of
computational programs continued for more than a year of research in the field of physics
of multielectron atoms. The development of such systems will make it possible to carry out
mass molecular calculations, as well as calculations of atoms placed in strong electric or
magnetic fields. The obtained results will become the theoretical base, the starting point for
comparing theory and experiment. Thus, the area of applicability of the approach that a
group of theoretical physicists under the leadership of Miron Ya. Amusia developed in the
theory of the atom will be significantly expanded, providing experimenters with theoretical
results of initial approximations that have a relatively high accuracy “on average”.

The results of a computational experiment using the ATOM system can be found in
supplementary materials and in a number of our monographs [7–11,16,17,19,43].

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/atoms10020052/s1. List of main publications in which the results
were obtained using the ATOM program system.
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Abstract: The convergent close-coupling (CCC) method was initially developed to describe electron
scattering on atomic hydrogen and the hydrogenic ions such as He+. The latter allows implementation
of double photoionization (DPI) of the helium atom. For more complex single valence-electron atomic
and ionic targets, the direct and exchange interaction with the inner electron core needs to be taken
into account. For this purpose, the Hartree-Fock (HF) computer codes developed in the group of
Miron Amusia have been adapted. In this brief review article, we demonstrate the utility of the HF
technique by examples of electron scattering on Li and the DPI of the H− and Li− ions. We also
discuss that modern-day computer infrastructure allows the associated CCC code, and others, to be
readily run directly via the Atomic, Molecular and Optical Science Gateway.

Keywords: electron–atom scattering; atomic photoionization; many-electron correlation; electronic
structure

PACS: 32.80.Rm; 32.80.Fb; 42.50.Hz

arXiv: 2108.02392

1. Introduction

Collisions between particles on the atomic scale are ubiquitous throughout the uni-
verse. Our interest is in the collisions of fundamental particles such as electrons, positrons,
photons, and protons with atoms and molecules. The field relies on strong interactions be-
tween experimental and theoretical approaches to the collision problems. The expectation
is that experiments provide benchmark measurements for theorists to test their models,
and when deemed sufficiently accurate the models provide extensive data for use in ap-
plications. The latter include astrophysics, fusion, lighting, nanolithography, and medical
imaging and therapy. Accordingly, it is of great concern whenever there are substantial
discrepancies between theory and experiment that are not understood. One such case
was the discrepancy for the angular correlation parameters in the fundamental Coulomb
three-body collision problem of e-H excitation of the 2p state [1,2].

From the theoretical side, the difficulties associated with calculating e-H scattering
relate to the fact that the target has a countably infinite number of discrete states, an un-
countably infinite continuum, and that the Coulomb interaction extends to infinite distances
for charged particles. The convergent close-coupling (CCC) method [3,4] was developed
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in response to the abovementioned discrepancy by providing a systematic and mathemat-
ically rigorous approach to the underlying computational difficulties. By expanding the
target wave-functions in a truncated complete Laguerre basis the target is represented
with a finite number of target states N. Furthermore, due to the exponential falloff of the
basis, the interactions do not extend to infinite distances. The problem is then reduced to
obtaining convergence in the scattering amplitudes of interest with increasing N. Despite
demonstrating such convergence, the CCC method was unable to resolve the discrep-
ancy with the experiment, and yielded results similar to other sophisticated theoretical
approaches to the problem [4]. However, it was able to yield excellent agreement with the
measurements of the total ionization cross section and its spin asymmetry [5], which is a
particularly stringent test of any theory.

While atomic hydrogen is the ideal starting point for testing any electron–atom scatter-
ing theory, it is not ideal from the experimental point of view. Alkali atoms such as Li and
Na are easier to prepare in the laboratory, and yet their chemistry is very similar to that of
H, having just one valence electron. This allowed for some very accurate measurements of
e-Li [6–8], e-Na [9–12], and e-K [13–15] scattering systems. So the next stage in trying to
understand the discrepancy for the e-H system was to extend the CCC method to the alkali
atoms. The group of Miron Amusia generously provided the Hartree-Fock computational
code [16,17] for a self-consistent treatment of the core electrons. This allowed the reduction
of the electron–alkali atom collision problem to also be a Coulomb three-body problem,
albeit with some more complicated nonlocal potentials [18]. The Hartree-Fock code also
enabled the extension of the two-electron CCC code [19] to quasi two-electron targets such
as alkaline earth metals [20,21]. Reviews of the development of the CCC method, including
application to differential ionization, are available [22–25].

Unlike the case of the e-H system, the agreement between the CCC calculations and
experiment for the electron–alkali collisions was spectacular, so much so, that the e-H
collision system was remeasured by other groups, who found excellent agreement with
the CCC calculations [26,27]. Subsequently, errors in the original measurements were
identified [28].

A similar development track was taken by DPI on He, where the final state is deter-
mined from the e-He+ collision system. Here too. theoretical predictions did not always
agree with the initial experiment. Mergel et al. [29] measured the DPI of He using circularly
polarized light. However, the corresponding CCC calculations did not yield agreement
with the measurements [30]. Subsequently, Achler et al. [31] revisited the experiment and
found excellent agreement with the CCC calculations. The CCC method was then extended
to describe double ionization of He by electron impact (the so-called (e,2e) reaction [32,33]).
Then an extension was made to the process of two-photon double ionization of He [34].
The utility of the HF theory was instrumental to describe the valence-shell DPI of alkaline–
earth metal atoms [35]. These calculations were later found in good agreement with
experiments [36]. Most recently, the CCC technique aided by the HF theory was applied
to time-resolved atomic photoemission. The time delay in photoemission, expressed via
the phase of the complex ionization amplitude, became experimentally accessible [37,38].
While the measurements are restricted at present to single active electron targets, theoretical
predictions for two-electron targets have been made [39,40]. Most recently, photodetach-
ment time delay was analyzed to reveal the implications of the fundamental threshold
laws [41].

Here we shall demonstrate the agreement between theory and experiment by focusing
on just the simplest electron–alkali collision system, that of e-Li scattering. This collision
system is also a key component in calculating the DPI of Li−, as upon single or double
photoionization the e-Li wave-function corresponds to the final state of Li−. The CCC
computer codes utilize modern computational infrastructure including massive parallelism
and GPU acceleration and are readily accessible for execution via the Atomic, Molecular
and Optical Science Gateway, https://amosgateway.org (accessed on 4 February 2022) [42].

2. Theory

The details of the implementation of the CCC theory to electron scattering on quasi
one-electron targets, such as the alkalis, have been given by Bray [18]. Briefly, the core-
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electron wave-functions ψj of target T are solved for by utilizing the Self-consistent-Field
Hartree-Fock (SCHF) equations [16](

K + VHF − ε j

)
ψj(r) = 0, ψj ∈ T, (1)

where

VHFψj(r) =

⎛
⎝−Z

r
+ 2 ∑

ψj′ ∈T

∫
d3r′

| ψj′(r′) |2
| r − r′ |

⎞
⎠ψj(r)

− ∑
ψj′ ∈T

∫
d3r′

ψ∗
j′(r

′)ψj(r′)

| r − r′ | ψj′(r). (2)

The core-electron wave-functions are then used to define the Frozen-Core Hartree-Fock
(FCHF) potential VFC as

VFCφj(r) =

⎛
⎝−Z

r
+ 2 ∑

ψj′ ∈C

∫
d3r′

| ψj′(r′) |2
| r − r′ |

⎞
⎠φj(r)

− ∑
ψj′ ∈C

∫
d3r′

ψ∗
j′(r

′)φj(r′)

| r − r′ | ψj′(r), (3)

where the notation C indicates the set of frozen-core wave-functions. The target wave-
functions are then obtained from the effective one-electron Hamiltonian K + VFC via(

K + VFC − εj

)
φj(r) = 0. (4)

The eigenstates can be obtained directly [17] or via diagonalization in some suitable
basis. In the CCC method we do both, with the utilization of the Laguerre basis, which
yields negative-energy eigenstates and a discretization of the target continuum.

With all of the potentials V defined, the close-coupling equations are formed in
momentum space as coupled Lippmann-Schwinger equations directly for the transition
amplitudes 〈k f φ f |TS|φiki〉, as if the problem was a three-body one [4,18]

〈k f φ f |TS|φiki〉 = 〈k f φ f |VS|φiki〉+
N

∑
n=1

∫
d3k

〈k f φ f |VS|φnk〉〈kφn|TS|φiki〉
E(+) − εn − k2/2

, (5)

where S is the total electron spin, and N is the number of Laguerre-based target states. We
check for convergence in the required 〈k f φ f |TS|φiki〉 by simply increasing N.

3. Results

3.1. Electron-Lithium Excitation
In the seminal publications of Bederson [43,44], the idea of perfect scattering exper-

iments was introduced. In such experiments, the maximum amount of the underlying
scattering information is measured. In the case of P-state excitation, the angular correlation
parameters discussed above, or the equivalent Stokes parameters [45], which may depend
on total electron spin [46], complement the differential cross sections in providing the extra
experimental information to compare with the theory. In the following three figures, we
examine e-Li excitation of the 2P state by presenting spin-dependent and -weighted results
for the differential cross sections (DCS) and the three Stokes parameters. For each total
electron spin S, at every scattering angle, there are two independent scattering (complex)
amplitudes resulting in four independent theoretical predictions. While experiment [8]
is available only for the spin-weighted parameters, it can be thought of as perfect for the
spin-weighted case.

In addition to presenting the CCC calculations, which are convergent in the treatment
of both the target discrete and the continuous spectrum, the CC calculations are also
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presented. These are convergent in the treatment of just the discrete spectrum; hence, the
differences between CCC and CC highlight the importance of the inclusion of the target
continuum on the transition of interest.

In Figure 1, we present the results for 7 eV e-Li excitation of the 2P state. We see that
there is a substantial dependence of the results on the total electron spin S. The importance
of the continuum is quite small at this energy. The agreement of the calculations with
the experiment of Karaganov et al. [8] is quite extraordinary. Note that this experiment
utilises the superelastic technique, which yields much better statistics than the traditional
electron–photon coincidence experiments [1,2].
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Figure 1. Differential cross section and (reduced) Stokes parameters for 7 eV electron-lithium 2P
excitation. CCC results are convergent in the treatment of the Li discrete and continuous spectrum,
whereas CC results are convergent in the treatment of the discrete spectrum only. Experiment is due
to Karaganov et al. [8].

The results for 14 eV e-Li excitation of the 2P state are presented in Figure 2. This time
we see substantial differences between the CCC and CC calculations, though mostly for the
S = 0 DCS and Stokes parameters. These differences are much less visible when compared
with the experiment for the spin-weighted Stokes parameters, where the agreement is
again outstanding.

Lastly, the 22 eV e-Li excitation of the 2P state is presented in Figure 3. At this
energy the inclusion of the target continuum is clearly important for S = 0, though this
is less visible for the spin-weighted parameters. The agreement with the experiment is
outstanding once more. It was such good agreement, first reported by [6], that others
seriously questioned the accuracy of the corresponding e-H 2P excitation measurements.
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Figure 2. Same as for Figure 1, except for 14 eV.
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Figure 3. Same as for Figure 1, except for 22 eV.

3.2. Double Photoionisation
The knowledge of the scattering T-matrix allows expression of the two-electron dipole

matrix element in the form of an integral [47]:

〈Ψ(−)
j (k)|D|Ψ0〉 = 〈k(−)φj|D|Ψ0〉

+∑
i

∑
∫

d3κ
〈k(−)φj|T|φiκ

(+)〉〈κ(+)φi |D|Ψ0〉
E − εκ − εi + i0

. (6)
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Here, the bare dipole matrix element 〈k(−)φj|D|Ψ0〉 is calculated between the two-

electron initial state Ψ0 and the final channels 〈k(−)
b φj|. The initial state is expressed in the

form of the multiconfiguration Hartree-Fock (MCHF) expansion

Ψ0(r1, r2) =
lmax

∑
l=0

nmax

∑
m=n

Cml |ψml(r1)ψml(r2) : 1S〉. (7)

The MCHF orbitals ψml(r) are found in the frozen 1s2 core in the case of Li− (n = 2),
while this core is absent in the case of H−(n = 1). Only diagonal ml2 terms are included in
expansion (7), as is always the case for the closed-shell MCHF ground state. The coefficients
Cml in the MCHF expansion (7) are found by using the multiconfiguration Dirac-Fock
computer code [48].

The cross section of a two-electron transition, measured as a function of the photon
energy ω and corresponding to a particular state j of the remaining bound electron, is given
by [49]:

σj(ω) =
4π2

ωc ∑
mj

∫
d3k |〈Ψ(−)

j (k) |D|Ψ0〉|2δ(ω − E + E0) . (8)

Here, c � 137 is the speed of light in atomic units, while other fundamental constants
are set to e = m = h̄ = 1. The final channels are separated into single and double ionization
according to the energy εj, which is positive for the double ionized channels and negative
for the singly ionized channels.

The phase of the ionization amplitude

δj(k) = arg〈Ψ(−)
j (k) |D|Ψ0〉 , τj(k) = ∂δj(k)/∂E (9)

is used to calculate the photoemission time delay τj(k) in the given emission direction as
the phase derivative with respect to the photoelectron energy E = k2/2 (see Equation (S10)
of [37]).

Our numerical results for photodetachment of H− and Li− are displayed in Figures 4 and 5,
respectively. We select these two targets because the threshold laws manifest themselves
particularly clearly in negative ions, which have a very simple spectrum and can support only a
limited number of discrete excited states in comparison to an infinite number in their neutral
atomic counterparts.

The photodetachment cross section (8) as well as the phase and the time delay (9) of
H− near the n = 2 threshold are presented in Figure 4. The top panel displays the partial
photodetachment cross sections in various channels leaving the H atom in the ground 1s
and excited 2s or 2p states. The total cross section is compared with the experiment [50].
The sharp resonance below the n = 2 threshold is due to autodetachment of a two-electron
bound state into the ground state of the H atom (Feshbach resonance). We see that all four
autodetachment channels have very similar cross sections. The time delay in the n = 2
channels is strongly angular-dependent. Near the opening of the n = 2 channels, it reaches
very large negative values.

Figure 5 displays the set of Li− results analogous to that of H− shown in Figure 4.
The photodetachment cross section exhibited in the top panel of Figure 5 displays a very
clear threshold cusp prescribed by the Wigner threshold law [51], which suppresses all the
partial waves in the photoelectron wave packet in the newly opened channel except the
s-wave.
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Figure 4. (Color online) (a) The cross section (8), (b) the phase of the transition amplitude, and (c) the
time delay (9) of H− in various photodetachment channels near the n = 2 threshold. The experi-
ment [50] is displayed in the top panel.

In the Wigner theory, the cross section near the opening of a new channel can be
parameterized as

σ(E) = σ0 − 2A|E − E0|1/2 ×
{

sin2 δ0 for E > E0
sin δ0 cos δ0 for E < E0

. (10)

The scattering phase δ0 is rather small in H−, as the inelastic threshold is 3/4 Ry above
the photodetachment threshold. In contrast, in Li− , the inelastic 2p threshold is only
2 eV above the photodetachment threshold, and the phase δ0 is rather large. The Wigner
Formula (10) predicts the falling cross section above the threshold, while it is always rising
below the threshold, hence the cusp formation and the strong dominance of the s-wave in
the inelastic channel of Li− . This dominance reduces dramatically the angular dependence
of the phase and time delay. The latter is only weakly angular dependent in comparison
with the H− ion.
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Figure 5. (Color online) (a) The cross section (8), (b) the phase of the transition amplitude, and (c) the
time delay (9) of H− in various photodetachment channels near the n = 2 threshold. Experimental
cross section results [52,53] are displayed in the top panel.

3.3. Atomic, Molecular and Optical Science Gateway
The CCC calculations presented here may be reproduced in a matter of minutes using the

Atomic, Molecular and Optical Science (AMOS) Gateway https://amosgateway.org (accessed
on 4 February 2022), which is accessible to anyone who is able to authenticate via their own
institution. The gateway is a sustainable community-oriented platform for enabling AMOS
applications as a service for the AMOS community with intuitive interfaces. Several other
AMOS codes are either available, or being made available, via this interface [42].

The gateway-accessible CCC code has been installed and compiled for efficient exe-
cution on the machines of the Extreme Science and Engineering Discovery Environment
(XSEDE). The code has inbuilt hybrid MPI and OpenMP parallelization, as well as GPU
acceleration. The latter has only been implemented recently [54] and continues to be a focus
of development. Sample e-Li scattering inputs for the presented calculations are available.
The gateway is constantly under development and we expect that more user-friendly
interfaces will be built in due course.

4. Conclusions

We are grateful for our interactions with Miron Amusia and their group. Here, we have
shown how the incorporation of the Self-Consistent Field and Frozen Core Hartree-Fock
routines of the group have played a very important role in the development of the CCC
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method beyond atomic hydrogen and helium. Not only did this simply broaden the utility
of the method but also helped resolve what previously seemed as intractable discrepancies
between theory and experiment.
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Abstract: This review considers the topological fermion condensation quantum phase transition
(FCQPT) that leads to flat bands and allows the elucidation of the special behavior of heavy-fermion
(HF) metals that is not exhibited by common metals described within the framework of the Landau
Fermi liquid (LFL) theory. We bring together theoretical consideration within the framework of the
fermion condensation theory based on the FCQPT with experimental data collected on HF metals.
We show that very different HF metals demonstrate universal behavior induced by the FCQPT and
demonstrate that Fermi systems near the FCQPT are controlled by the Fermi quasiparticles with the
effective mass M∗ strongly depending on temperature T, magnetic field B, pressure P, etc. Within
the framework of our analysis, the experimental data regarding the thermodynamic, transport and
relaxation properties of HF metal are naturally described. Based on the theory, we explain a number of
experimental data and show that the considered HF metals exhibit peculiar properties such as: (1) the
universal T/B scaling behavior; (2) the linear dependence of the resistivity on T, ρ(T) ∝ A1T (with
A1 is a temperature-independent coefficient), and the negative magnetoresistance; (3) asymmetrical
dependence of the tunneling differential conductivity (resistivity) on the bias voltage; (4) in the case
of a flat band, the superconducting critical temperature Tc ∝ g with g being the coupling constant,
while the M∗ becomes finite; (5) we show that the so called Planckian limit exhibited by HF metals
with ρ(T) ∝ T is defined by the presence of flat bands.

Keywords: topology; quantum phase transition; flat bands; fermion condensation; HF metals;
thermodynamic; transport properties

PACS: 64.70.Tg; 75.40.Gb; 78.20.-e; 71.10.Hf

1. Introduction

Strongly correlated Fermi systems such as heavy-fermion metals, graphene, and high-Tc
superconductors exhibit the non-Fermi-liquid (NFL) behavior. Theoretical predictions [1–4]
and experimental data collected on many of these systems show that at low temperatures a
portion of their excitation spectrum becomes approximately dispersionless, giving rise to
so-called flat bands and high-Tc superconductivity, see, e.g., [1,5–12]. The emergence of flat
bands at low T indicates that the system is close to a special quantum critical point, namely
a topological fermion condensation quantum phase transition (FCQPT), leading to the
formation of flat bands dubbed the fermion condensation (FC). The flat bands are formed by
the Landau interaction between quasiparticles, while a frustration and van-Hove singulari-
ties can facilitate the process. Flat bands have notable features, e.g., raising temperatures,
and the superconducting phase transition makes them upward tilted [3,4,13–17]. These
observations have been predicted [3,4,14,15,17] and are in accordance with experimental
data, see, e.g., [13,16,18]. Moreover, the FC theory allows one to qualitatively and quantita-
tively evaluate the NFL and Landau Fermi liquid (LFL) behaviors of strongly correlated
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Fermi systems, and explain the crossover from one another [1,2,4,15,19,20]. We note that
in our review we analyze strongly correlated Fermi systems formed by and located near
their topological FCQPT and consider experimental observations that are collected on such
systems. Consideration of systems located relatively far from their topological FCQPT is
possible within the framework of the FC theory as well, see, e.g., [15,19,20]. We review
and explain recent prominent experimental results that to our best knowledge have not
found alternative explanations and that strongly suggest that the topological FCQPT is a
generic feature of many strongly correlated Fermi systems, being the universal cause of
their non-Fermi-liquid behavior, and the fermion condensation theory is able to explain the
extraordinary behavior of strongly correlated Fermi systems.

In our review we consider exciting experimental facts such as:
(1) Recent experimental findings of linear dependence on temperature T of the resis-

tivity ρ(T) ∝ T, collected on high Tc superconductors (HTSC), graphene, heavy fermion
(HF) and common metals reveal that the scattering rate 1/τ of charge carriers reaches the
Planckian limit 1/(Tτ) = kB/h̄, with 1/τ being the scattering rate and kB and h̄ being
the Boltzmann and Plank constants, respectively [21–24]. Within the framework of the FC
theory, we show that the quasi-classical physics is still applicable for describing the linear T-
dependence of resistivity of strongly correlated metals at their quantum criticality since flat
bands, forming the quantum criticality, generate transverse zero-sound mode with the De-
bye temperature TD [25]. At T ≥ TD, the mechanism of the linear T-dependence is the same
in both ordinary metals and strongly correlated ones and is represented by the electron–
phonon scattering. Therefore, it is the electron–phonon scattering at T ≥ TD that leads
to the near material-independence of the lifetime τ that is expressed as 1/(τT) ∼ kB/h̄.
As a result, we describe and explain recent exciting experimental observations of univer-
sal scattering rate related to the linear T-dependent resistivity of a large number of both
strongly correlated Fermi systems and common metals [21–24]. We show that the observed
scattering rate is explained by the emergence of flat bands formed by the topological FQCPT
rather than by the so-called Planckian limit at which the assumed Planckian scattering
rate occurs [25,26]. The Planckian limit then has to occur in common metals. Moreover, in
magnetic fields, HF metals transit from the NFL to LFL behavior and ρ(T) ∝ T vanishes,
being replaced by the LFL behavior ρ(T) ∝ A2T2, with A2 as the temperature-independent
coefficient.

(2) Recent observations of the linear T-dependence, ρ(T) ∝ T, at low temperatures,
T → 0, relate the slope of the linear T-dependent resistivity ρ to the London penetration
depth λ0, indicating a universal scaling property

dρ

dT
∝ λ2

0 (1)

for a large number of strongly correlated high-temperature superconductors [27]. This
scaling relation spans several orders of magnitude in λ0, attesting to the robustness of the
empirical law (1) [28].

(3) We also analyze recent challenging experimental findings of tunneling differential
conductivity dI/dV = σd(V) as a function of the applied bias voltage V, collected under the
application of magnetic field B on the twisted graphene and the archetypical heavy-fermion
metals YbRh2Si2 and CeCoIn5 [5,29,30]. We explain the emergence of the asymmetrical
part Δσd = σd(V) − σd(−V) and demonstrate that Δσd vanishes in magnetic fields as
predicted [31].

(4) We consider the recent outstanding experimental observation of the density ns
of superconducting electrons that turns out to be much less than the total density nρ of
electrons at T → 0 [32] as predicted [33].

(5) We show that the transition temperature Tc is proportional to the superconducting
coupling constant g,

Tc ∝ g. (2)
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This fact, see Equation (2), leads to creating high-Tc superconductors [1,5–12]. This
observation is supported by special features of high-Tc superconductivity based on flat
bands, namely that Tc is proportional to the Fermi velocity VF ∝ 1/Ns(0) VF ∝ Tc, rather
than Ns(0) ∝ 1/VF ∝ Tc as stated in standard BCS-like theories [13,16] as predicted [17].

Our results are in good agreement with experimental data and demonstrate that the
topological FCQPT is an intrinsic feature of strongly correlated Fermi systems, and the FC
theory can be viewed as the universal agent explaining the physics of strongly correlated
Fermi systems.

2. Fermion Condensation

The theory of FC has been described several times, see, e.g., [4,15,19,20]; nonetheless,
for the readers’ convenience, we briefly present this methodology. The usual approach to
describe the ensembles of itinerant Fermi particles is the well-known Landau Fermi liquid
theory [34,35]. This theory represents the real properties of a solid with itinerant electrons
in terms of a Fermi gas of so-called quasiparticles with weak interaction. In this case, the
quasiparticles represent the excited states of a solid or liquid states and are responsible
for the low temperature thermodynamic, transport and relaxation properties of common
metals. These quasiparticle excitations are characterized by the effective mass M∗, that is
of the order of the bare mass of electron, M, and depends weakly on external parameters
such as temperature T, magnetic field B, external pressure P, etc. [34,35]. However, the
LFL theory cannot explain why the effective mass M∗ begins to depend strongly on the
stimuli above and, for example, can even be a divergent function of magnetic field B or
temperature T, see, e.g., [4,15,19,36]. Such a dependence is called the NFL behavior and
is connected to the growth of the effective mass that occurs when the system approaches
the topological fermion condensation quantum phase transition (FCQPT) leading to an
FC state with flat bands [1,4,15,19]. Beyond the FCQPT, the system develops a flat band,
formed by FC, and characterized by the topological charge that is different from both
the topological charges of the Landau Fermi liquid (LFL) and marginal Fermi liquid,
representing a new type of Fermi liquid [2,4,15,19,37]. Thus, the stability of FC is ensured
by its topological charge, and it can be destroyed only by the first order phase transition,
since the topological charge cannot acquire continuous values [2,15,19,37]. As a result of
these unique properties of the FC state, a new state of matter is generated, represented by
QSL, HF metals, quasicrystals, 2D liquids such as 3He and high-Tc superconductors, so
that 1D, 2D and 3D strongly correlated Fermi systems exhibit universal scaling behavior
irrespective of their microscopic structure [15,19,20,38,39].

The main feature of FC theory is the existence of one more instability channel (ad-
ditional to those of Pomeranchuk) that cannot be described within the framework of the
Landau theory of Fermi liquid [35]. Indeed, under some conditions, the effective mass M∗

of LFL quasiparticle diverges, see, e.g., [15,19]. As a result, to keep the finite and positive
effective mass at zero and finite temperatures, the Fermi surface changes its topology: the
Fermi surface transforms into a Fermi layer, as seen in Figure 1. This topological phase
transition generates the effective mass dependence on temperature, magnetic field, etc.
We assume, without loss of generality [15,19], that the Fermi liquid is homogeneous. That
is, in our model we account for the most important and common features only, neglect-
ing marginal effects related to the crystalline anisotropy of solids [15,19,20]. The Landau
equation for the quasiparticle effective mass M∗ reads [15,34,35]

1
M∗

σ(B, T)
=

1
M

+ ∑
σ1

∫
pFp

p3
F

Fσ,σ1(pF, p)

× ∂nσ1(p, T, B)
∂p

dp
(2π)3 , (3)

where Fσ,σ1(pF, p) is the interaction function, introduced by Landau. The function Fσ,σ1(pF, p),
depending on momentum p, Fermi momentum pF and spin indices σ, σ1, has the form of
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spherical harmonics with coefficients taken from the best fit to experiment. The fermion
occupation number n in the Fermi–Dirac statistics reads

nσ(p, T) =
{

1 + exp
[
(εσ(p, T)− μσ)

T

]}−1

, (4)

where εσ(p, T) is the single-particle spectrum, and μσ is a spin-dependent chemical poten-
tial: μσ = μ ± μBB where μB is the Bohr magneton. The magnetic field dependence occurs
due to the Zeeman splitting shifting the system from its topological FCQPT [15].

(a)

(b)

Figure 1. Diagram of flat bands near the FCQPT at zero temperature, T = 0. Panel (a) shows normal
Fermi sphere and corresponding quasiparticles spectrum ε(p) � p2/(2M) and occupation number
n(p) being a step function. Panel (b) displays the system in the FC state after the topological FCQPT.
The Fermi sphere alters its topology, which is shown schematically as an emergence of a spherical
layer of the thickness p f − pi. In this case, the Fermi momentum pF is hidden inside the flat band,
defined by the condition ε(p) = μ (7). This condition defines the flat band, shown as a dispersionless
part of the spectrum ε(p) = μ, with μ being the chemical potential. The function n(p) decreases
gradually from n(pi) = 1 to n(p f ) = 0 without violating the Pauli exclusion principle.

The standard procedure for obtaining the single-particle spectrum εσ(p, T) in the
Landau theory is to vary the system energy E[nσ(p, T)] with regard to the occupation
number n

εσ(p, T) =
δE[n(p)]
δnσ(p)

. (5)

We note that the Landau interaction entering Equation (3) is not of a special form
since it is fixed by the simple condition that the system is in the FCQPT point [15,19]. The
explicit form of the variational Equation (5) reads

∂εσ(p, T)
∂p

=
p
M

− ∑
σ1

∫
∂Fσ,σ1(p, p1)

∂p
nσ1(p1, T)

d3 p1

(2π)3 , (6)
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Later on for simplicity, we omit the spin indexes σ. In the FC phase (i.e., beyond the
FCQPT) at T = 0, Equation (5) takes the form [1]

ε(p, T = 0) = μ, pi ≤ p ≤ p f ; 0 ≤ n(p) ≤ 1. (7)

where pi, f stands for initial and final momenta (not to be confused with Fermi momentum
pF), where the flat band resides, see Figure 1. Condition (7) defines the flat band since
in this case the quasiparticles have no dispersion. By this virtue, quasiparticles have the
Fermi velocity VF = 0 and at T = 0 are condensed with the same energy ε(p, T = 0) = μ,
representing the superconducting state with the finite order parameter κ, while the super-
conducting gap Δ = 0, see Section 7. As this resembles the case of Bose condensation, the
corresponding phenomenon is called fermion condensation, being separated from LFL by
the first order phase transition [1,2,37]. The system with FC acquires properties, being very
different from those of ordinary Fermi liquids, since the Fermi liquid with FC forms a new,
topologically-protected (and thus “extremely stable”) state of matter. This means that if FC
is formed in a substance, it will define its properties at T = 0 and at elevated temperatures
as well. Figure 1 visualizes (at T = 0) the consequences of the FCQPT on the Fermi surface,
spectrum and occupation number of a Fermi liquid. The transformation from panel (a)
(normal Fermi liquid) to panel (b) is represented by altering the Fermi surface topology so
that in the normal Fermi liquid the layer of finite length p f − pi appears instead of the Fermi
surface located at Fermi momentum p = pF. This immediately implies the emergence of
the flat part of the spectrum defined by Equation (7), where all the condensed fermions are
located. This, in turn, generates the gradual (instead of abrupt on the panel (a) decay of the
occupation numbers n(p) from n = 1 at p < pi to n = 0 at p > p f .

Equations (3) and (7) allow one to determine the energy spectrum εσ(p, T) and oc-
cupation numbers nσ(p, T) in a self-consistent way. These quantities, in turn, permit the
calculation of the effective mass, pF/M∗ = ∂ε(p)/∂p|p=pF = VF. We emphasize that both
magnetic field and temperature dependences of the effective mass M∗(B, T) in the FC phase
come from Equation (3) and from the T, B-dependence of εσ(p) and nσ(p). Calculated (by
Equations (3) and (7)) spectrum and occupation numbers [15] in the FC phase are reported
in Figure 2. At (almost) zero temperature, the flat portion of the spectrum is clearly seen
at pi < p < p f . This shape of the spectrum defines n(p) (Figure 2, panel (b)) in the form
of “two steps”, gradually decaying from one to zero. Simultaneously, at relatively high
temperatures (equal to T/EF = 0.01, which at EF ∼ 1eV implies T � 100 K) this part
is rather strongly upward tilted. This shows that finite temperatures erode the FC state,
making the effective mass M∗ finite, while the system acquires features similar to ordinary
Fermi liquid [4,15].

To gain more insights into the physical properties of the FC state, it is helpful to explore
the system behavior at T → 0. It was shown earlier [1,15,19] that the ground state of a
system with FC is highly degenerate. In this case, the occupation numbers n0(p) of the
FC state quasiparticles (i.e., having dispersionless spectrum or belonging to the flat band)
change gradually from n = 1 to n = 0 at T = 0. This variation occurs at pi ≤ p ≤ p f . It is
clear that such a property of the occupation numbers drastically differs from the property
of the usual Fermi–Dirac function property at T = 0. Indeed, in that case, the Fermi–Dirac
function is represented by the step function between n = 1 and n = 0 at p = pF, where pF
stands for Fermi momentum, see Figure 1.

At T = 0, the infinite degeneracy of the ground state with FC leads to a T-independent
entropy term [4,15], remaining finite at T = 0 in violation of the Nernst theorem

S0 = −∑
p
[n0(p) ln n0(p) + (1 − n0(p)) ln(1 − n0(p))]. (8)
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Figure 2. Flat band induced by FC. The calculated single-particle spectrum (a) and the quasiparticle
occupation number (b) at small but finite temperatures versus the dimensionless momentum k = p/pF,
where pF is the Fermi momentum [15]. Temperature is measured in the units of EF . At T = 0.01EF

and T = 0.0001EF, the vertical lines show the position of the Fermi level EF at which n(k, T) = 0.5
(see the horizontal line in panel (b)). At T = 0.0001EF (blue curve), the single-particle spectrum
ε(k, T) is almost flat (marked “Flat band”) in the range k f − ki (with ki = pi/pF and k f = k f /pF

denoting, respectively, the initial and final momenta for FC realization, and k = p/pF). Thus, in
the range k f − ki the density of states N0 → ∞, and outside the range N0 is finite. The distribution
function n(k, T) becomes more asymmetric with respect to the Fermi level EF, generating the NFL
behavior, and C invariance is broken. To illuminate the asymmetry, the area occupied by holes in
panel (b) is labeled h (red) and that occupied by quasiparticles by p (maroon).

Thus, the infinite degeneracy of the FC ground state generated by flat bands, see
Refs. [19,20] for a comprehensive discussion. We note that for systems where the Nernst
theorem is violated due to the ground state degeneracy is a spin glass [40,41]. It is well
known that in normal Fermi liquid the function n(p) at finite temperatures loses its step-
like feature at p = pF, becoming continuous around this point. The same is valid for a
Fermi liquid with flat bands; this conclusion follows from Equation (4). This means that
at small but finite temperatures T �= 0 the degeneracy of the above ground state is lifted,
consequently the single-particle energy ε(p, T �= 0) acquires a small dispersion [4]

ε(p, T → 0) = T ln
1 − n0(p)

n0(p)
. (9)

From Equation (9), we see that the dispersion is proportional to T since the occupation
numbers n0 approximately remain the same as at T = 0. This means that the entropy S
in this case still remains S(T) ≥ S0. This situation also jeopardizes the Nernst theorem.
To avoid this unphysical situation, the nearly flat bands representing the FC state should
acquire dispersion in a way that the excess entropy S0 should “dissolve” as T → 0. This
occurs by virtue of some additions to the FCQPT phase transition such as a ferromagnetic
and/or a superconductive one, etc. [4,15,19]. Thus, at low temperatures the FC state has to
be consumed by a number of phase transitions. This “consumption” can be viewed as a
complicated phase diagram of an HF metal at its quantum critical point. In fact, at T = 0
the FC state is represented by the superconducting state with the superconducting order
parameter κ =

√
n(p)(1 − n(p)) that is finite in the region (pi − p f ) [15,33,42], for in the

region n(p) < 1, as shown in Figure 2. Nonetheless, the superconducting gap , Δ = 0, can
be absent provided that the superconducting coupling constant g = 0. In case of finite
g, the gap exhibits very specific non-BCS behavior [43] Δ ∝ g, see, e.g., [1,4,44,45] and
Section 7.
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3. Scaling of Physical Properties

Experimental manifestations of the FC phenomenon correspond to the universal
behavior of the physical properties of HF metals [15,19,20,46]. The physical properties of
HF metals are formed due to flat bands and are widespread compounds [6]. To reveal
the scaling, consider now the approximate solutions of Equation (3) [15,19,20]. At B = 0,
Equation (3) becomes strongly temperature dependent, which is a typical NFL feature and
can be solved analytically [15,19,20,46]:

M∗(T) � aTT−2/3. (10)

At T = 0, the analytical solution is

M∗(B) � aBB−2/3. (11)

Here, aT and aB are constants. Under the application of a magnetic field, the system
transits to the LFL state with the effective mass becoming almost temperature independent
and strongly dependent on B, as seen from Equation (11).

3.1. Internal Variables Revealing the Scaling Behavior

Equations (10) and (11) allow us to construct the approximate solution of Equation (3)
in the form M∗(B, T) = M∗(T/B). The introduction of “internal” scales simplifies the
problem of constructing the universal scaling of the effective mass M∗, since in that case
we eliminate the microscopic structure of the compound in question [15,19,20]. From the
Figure 3a, we see that the effective mass M∗(B, T) reaches a maximum M∗

M at a certain
temperature TM ∝ B [15]. Accordingly, to measure the effective mass and temperature,
it is convenient to introduce the scales M∗

M and TM. In this case, we have new variables
M∗

N = M∗/M∗
M that we call normalized effective mass and TN = T/TM that we call

normalized temperature. As a result, M∗
N becomes a function of the only variable TN ∝ T/B,

as seen from Figure 3b.
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Figure 3. Electronic specific heat of YbRh2Si2. Panel (a): Specific heat C/T, versus temperature T as
a function of magnetic field B [36] shown in the legend. Panel (b): The normalized effective mass
M∗

N as a function of normalized temperature TN ∝ T/B. M∗
N is extracted from the measurements

of the specific heat C/T on YbRh2Si2 in magnetic field B [36], see panel (a), listed in the legend.
Approximate constant effective mass M∗ at TN < 1 is typical for the normal Landau Fermi liquids,
and is shown by the arrow.
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In the vicinity of the FCQPT, the normalized effective mass M∗
N(TN) can be well ap-

proximated by a certain universal function [15,19], interpolating the solutions of Equation (3)
between the LFL state, given by Equation (11), and the NFL one, given by Equation (10) [15]

M∗
N(TN) ≈ c0

1 + c1T2
N

1 + c2T8/3
N

. (12)

Here, TN = T/TM, c0 = (1 + c2)/(1 + c1), where c1 and c2 are free parameters. Since
the magnetic field B enters Equation (3) as μBB/T, the maximum temperature TM ∼ μBB.
Consequently, from Equation (12),

TM � a1μBB; TN =
T

TM
=

T
a1μBB

∝
T
B

, (13)

where a1 is a dimensionless parameter, and μB is the Bohr magneton. Equation (13)
shows that Equation (12) determines the effective mass as a function of the single variable
TN ∝ T/B. That is, the curves M∗

N(T, B) merge into a single one M∗
N(TN), TN = T/TM,

as shown in Figure 4. Since TM ∝ B, from Equation (13) we conclude that the curves
M∗

N(T, B) coalesce into a single one M∗
N(TN = T/B), TN = T/TM = T/B, demonstrating

the universal scaling in HF metals [15,19,20]. This universal scaling exhibited by MN is also
shown in Figure 4. We note that Equations (12) and (13) allow one to describe the universal
scaling behavior of HF metals, see, e.g., [15,19,20].
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Figure 4. Scaling of the thermodynamic properties governed by the normalized effective mass M∗
N in

the case of the application of a magnetic field TN ∝ T/B, as follows from Equation (13). The solid
curve depicts M∗

N versus normalized temperature TN . It is clearly seen that at finite TN < 1, the
normal Fermi liquid properties take place. At TN ∼ 1, M�

N enters the crossover state, and at growing
temperatures it exhibits the NFL behavior.

One more important feature of the FC state is that apart from the fact that the Landau
quasiparticle effective mass starts to depend strongly on external stimuli such as T and B,
all relations, inherent in the LFL theory, formally remain the same. Namely, the famous
LFL relation [35],

M∗(B, T) ∝ χ(B, T) ∝
C(B, T)

T
∝ γ0. (14)

still holds. Here, γ0 is the Sommerfeld coefficient. Expression (14) has been related to the
FC case, where the specific heat C, magnetic susceptibility χ and effective mass M∗ depend
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on T and B. Taking Equation (14) into account, we obtain that the normalized values of
C/T and χ are of the form [15,19]

M∗
N(B, T) = χN(B, T) =

(
C(B, T)

T

)
N

. (15)

From Equation (15) we see that the above thermodynamic properties have the same
scaling displayed in Figure 4. As a result, we shall see that the observed scaling allows us
to construct a general schematic phase diagram, see Section 3.3.

3.2. Magnetoresistance

In the LFL state, the resistivity ρ(T, B) ∝ A2(B)T2. In the case of common metals, it
is well known that ρ(T, B) increases with the increasing applied magnetic field B and is
described by the Kohler’s rule, see, e.g., [47]. In contrast, HF metals exhibit decreasing
resistivity in magnetic fields when the metal in question transits from the NFL behavior to
the LFL one, see, e.g., [48,49]. The A(B) coefficient, being proportional to the quasiparticle
Â—quasiparticle scattering cross section is found to be A ∝ (M∗(B))2, as follows from
Equation (11) [15,48]. Taking into account Equation (11), we obtain

A(B) � A0 +
D

B − Bc0
, (16)

where A0 and D are fitting parameters. Figure 5 displays experimental data for A(B)
collected on two HF metals: YbRh2Si2 [48] and Tl2Ba2CuO6+x [49]. The solid curves
represent our calculations, and the inset demonstrates that the well-known Kadowaki–
Woods ratio [50] is conserved [48]. This experimental result is in good agreement with
Equations (15) and (16).
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Figure 5. The charge transport coefficient A(B) as a function of magnetic field B obtained in mea-
surements on YbRh2Si2 [48] and Tl2Ba2CuO6+x [49]. The different field scales are clearly indicated.
The solid curves represent our calculations based on Equation (16) [15]. The inset (adapted from [51])
shows that A(B) ∝ χ(B)2 ∝ γ2

0 ∝ (C/T)2.

To further elucidate the scaling of A(B), we rewrite Equation (16) in the re-scaled
variables A/A0 and B/Bc0. Such a recasting immediately reveals the scaling nature of the
behavior of these two substances. Both of them are driven to common QCP related to the
FCQPT and induced by the application of a magnetic field. As a result, Equation (16) takes
the form

A(B)
A0

� 1 +
DN

B/Bc0 − 1
, (17)

where DN = D/(A0Bc0) is a constant. From Equation (17), it is seen that upon applying the
scaling to both coefficients A(B) for Tl2Ba2CuO6+x and A(B) for YbRh2Si2, they are reduced
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to a function depending on the single variable B/Bc0, thus demonstrating the universal
behavior. To support Equation (17), we plot both dependencies in the reduced variables
A/A0 and B/Bc0 in Figure 6; the universal scaling nature of the coefficients A(B) of these
two substances is immediately revealed. We note that the negative magnetoresistance of
both Tl2Ba2CuO6+x and YbRh2Si2 results from diminishing A(B) under the application of
a magnetic field as follows from Equation (11).
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Figure 6. Normalized coefficient A(B)/A0 � 1 + DN/(y − 1) given by Equation (17) as a function of
a normalized magnetic field y = B/Bc0 shown by squares for YbRh2Si2 and by circles for high-Tc

Tl2Ba2CuO6+x. DN is the only fitting parameter.

The scaling behavior of the longitudinal magnetoresistance (LMR) collected on
YbRh2Si2 [48] confirms our above conclusions. This scaling behavior is displayed in
Figure 7. Clearly, our calculations are in good agreement with the experimental data. Thus,
the fermion condensation theory explains both the negative magnetoresistance and the
crossover from the NFL behavior to the LFL one under the application of magnetic fields.

0,01 0,1 1 10

0,0

0,5

1,0

1,5

ρ N

 0.3 K 
 0.2 K 
 0.1 K 
 Theory

BN

YbRh2Si2

inflection point

LFL

NFL

Figure 7. Magnetic field dependence of the longitudinal normalized magnetoresistance LMR versus
a normalized magnetic field. The LMR ρN was extracted from the LMR of YbRh2Si2 at different
temperatures [48] listed in the legend. The solid line represents our calculations [15]. The arrows
show the NFL behavior at B � T, the inflection point and the LFL behavior at B � T.

3.3. Schematic Phase Diagram

Based on Equation (12) and Figures 3 and 4, we can construct the schematic T − B
phase diagram of HF metals [52], reported in Figure 8. We assume here that at T = 0
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and B = Bc0 the system is approximately located at the FCQPT. In the case of Bc0 = 0,
the system is located at the FCQPT without tuning. At fixed temperatures, the system is
driven by the magnetic field B along the horizontal arrow (from the NFL to the LFL parts
of the phase diagram). In turn, at fixed B and increasing T, the system moves from the
LFL to the NFL regime along the vertical arrow. The hatched area indicating the crossover
between the LFL and the NFL phases separates the NFL state from the slightly polarized
paramagnetic LFL state. The crossover temperature TM(B) is given by Equation (13).
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Figure 8. Schematic T − B phase diagram of a strongly correlated Fermi system. The vertical
and horizontal arrows crossing the transition region marked by the thick lines depict the LFL–
NFL and NFL–LFL transitions at fixed B and T, respectively. At B < Bc0, the system is in its
possible antiferromagnetic (AF) state, with Bc0 shown by the arrow as denoting a critical magnetic
field destroying the AF state. Both the hatched areas shown by the arrow and by the solid curve
Tcross(B ∼ T) represent the crossover separating the domain of NFL behavior from the LFL domain.
A part of the crossover is hidden in the possible AF state.

4. The Linear T-Dependent Resistivity and the Planckian Limit

For very different metals such as HF metals, high Tc superconductors and common
metals, ρ(T) ∝ T, the linear dependence of resistivity on temperature and the universality
of their fundamental physical properties have been explained within the framework of the
FC theory [15,19,25]. On one hand, at low T, the linear T-resistivity

ρ(T) = ρ0 + A1T, (18)

is experimentally observed in many strongly correlated compounds such as high-temperature
superconductors and heavy-fermion metals located near their quantum critical points and
therefore exhibiting quantum criticality and a new state of matter, see, e.g., [21,32]. Here,
ρ0 is the residual resistivity and A is a T-independent coefficient. Explanations based
on quantum criticality for the T-linear resistivity have been given in the literature, see,
e.g., [53–59] and Refs. therein. At room temperatures the T-linear resistivity is exhibited by
conventional metals such as Al, Ag or Cu. In the case of a simple metal, the resistivity reads
e2nρ = pF/(τvF) [60], where e is the electronic charge, τ is the lifetime, n is the carrier
concentration and pF and vF are the Fermi momentum and the Fermi velocity, respectively.
Writing the lifetime τ (or inverse scattering rate) of quasiparticles in the form [58,61]

h̄
τ
� a1 +

kBT
a2

, (19)

we obtain [25]

a2
e2nh̄
pFkB

∂ρ

∂T
=

1
vF

, (20)
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where h̄ is Planck’s constant, kB is Boltzmanns constant, and a1 and a2 are T-independent
parameters. Challenging problems for a theory dealing with strongly correlated Fermi
systems are:

(1) Experimental data corroborate Equation (20) in the case of both strongly correlated
metals and ordinary ones, provided that these demonstrate the linear T-dependence of
their resistivity [21], see Figure 9;

(2) Under the application of a magnetic field, HF metals and high-Tc superconductors
exhibit the LFL behavior, see Figure 8, and the Planckian limit dissolves in magnetic fields.
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Figure 9. Scattering rates of different strongly correlated metals such as HF metals, high-Tc supercon-
ductors, organic metals and conventional metals [21]. All these metals exhibit ρ(T) ∝ T, and their
Fermi velocities VF vary by two orders of magnitude. The parameter a2 � 1 gives the best fit shown
by the solid green line, see Equation (20). The region occupied by the common metals is displayed by
the two blue arrows, and the two maroon arrows show the region of strongly correlated metals.

Moreover, the analysis of data in the literature for various compounds and ordi-
nary metals with the linear dependence of ρ(T) shows that the coefficient a2 is always
0.7 ≤ a2 ≤ 2.7, notwithstanding the large differences in the absolute values of ρ, T
and Fermi velocities vF, varying by two orders of magnitude [21]. As a result, from
Equation (19), the T-linear scattering rate is of the universal form, 1/(τT) ∼ kB/h̄, re-
gardless of different systems displaying the T-linear dependence [19,21,25]. Indeed, this
dependence is demonstrated by ordinary metals at temperatures higher than the Debye
temperature, T ≥ TD, with an electron–phonon mechanism and by strongly correlated
metals that are assumed to be fundamentally different from the ordinary ones since the
linear T-dependence of their resistivity at temperatures of a few Kelvin is assumed to
originate from excitations of electronic origin rather than from phonons [21]. We note that
in some cuprates, the scattering rate has a momentum and doping x dependence omitted
in Equation (20) [62–64]. Nonetheless, the fundamental picture outlined by Equation (20)
is strongly supported by measurements of the resistivity on Sr3Ru2O7 for a wide range
of temperatures: At T ≥ 100 K, the resistivity again becomes linearly T-dependent at all
applied magnetic fields, as it does at low temperatures and at the critical field Bc � 7.9 T but
with the coefficient A lower than that seen at low temperatures [21,25]. The same strongly
correlated compound exhibits the similar behavior of the resistivity at both quantum critical
regime and high temperatures. These facts allow us to expect that the same physics governs
the Planckian limit in the case of strongly correlated and ordinary metals. As we will see,
the physics here is explained within the fermion condensation theory, and is related to flat
bands, the existence of which has been predicted many years ago [1,2,4,15,26,37].

As seen from Figure 9, the scaling relation spans two orders of magnitude in VF,
attesting to the robustness of the observed empirical law [21]. This behavior is explained
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within the framework of the FC theory since in both cases of common metals and strongly
correlated ones, the scattering rate is defined by phonons [25]. In the case of common
metals at T > TD, it is well known fact that phonons make a main contribution to the linear
dependence of the resistivity, see, e.g., [60]. It has been shown that quasi-classical physics
describes the T-linear dependence of the resistivity of strongly correlated metals at T > TD,
since flat bands, forming the quantum criticality, generate transverse zero-sound mode with
the Debye temperature TD located within the quantum criticality area [25,57,58]. Therefore,
the linear T- dependence is formed by electron–phonon scattering in both ordinary metals
and strongly correlated ones. As a result, it is electron–phonon scattering that leads to the
near material independence of the lifetime τ that is expressed as

1
τT

∼ kB
h̄

. (21)

We note that there can be another mechanism supporting the linear T-dependence
even at T < TD that fails to warrant a constant τ regardless of the presence of the linear
T-dependence of resistivity [25,58]. The mechanism comes from flat bands that are formed
by the FC state and contribute to both the linear dependence of the resistivity and to
the residual resistivity ρ0, see Equation (18). Notably, these observations are in good
agreement with the experimental data [25,58]. The important point here is that under the
application of a magnetic field, the system in question transits from its NFL behavior to an
LFL one, and both the flat bands and the FC state are destroyed [15,19], see the T − B phase
diagram depicted in Figure 8. Therefore, with resistivity ρ(T) ∝ T2, magnetoresistance
becomes negative, while the residual resistivity ρ0 jumps down by a step [19,24,25,58].
Such a behavior is in accordance with experimental data, see, e.g., the case of the HF metal
CeCoIn5 [65] that also demonstrates the universal scattering rate at its NFL region, see
Figure 9.

5. Asymmetrical Conductivity (Resistivity) of Strongly Correlated Conductors

Direct experimental studies of quantum phase transitions in HTSC and HF metals are
of great importance for understanding the underlying physical mechanisms responsible for
their anomalous properties. However, such studies of HF metals and HTSC are difficult
because the corresponding critical points are usually concealed by their proximity to other
phase transitions, commonly antiferromagnetic (AF) and/or superconducting (SC).

Furthermore, extraordinary properties of tunneling conductivity in the presence of
a magnetic field were recently observed in a graphene preparation having a flat band [5],
as well as in HTSCs and the HF metal YbRh2Si2 [29,30]. Measuring and analyzing these
properties will shed light on the nature of the quantum phase transitions occurring in
these substances. Very recently, the scattering rate has been measured in graphene, and it
is located near the universal value [23] given by Equation (21), being in accordance with
data shown in Figure 9. All these experimental observations qualify graphene as a very
interesting material for revealing the physics of strongly correlated Fermi systems.

Most of the experiments on HF metals and HTSCs explore their thermodynamic prop-
erties. However, it is equally important to determine other properties of these strongly
correlated systems, notably quasiparticle occupation numbers n(p, T) as a function of
momentum p and temperature T. These quantities are not linked directly to the density
of states (DOS) Ns(ε = 0) determined by the quasiparticle energy ε or to the behav-
ior of the effective mass M∗. Scanning tunneling microscopy [66–68] and point contact
spectroscopy [28,69,70], being sensitive to both the density of states and quasiparticle occu-
pation numbers, are ideal tools for exploring the effects of C and T symmetry violation.
When C and T symmetries are not conserved, the differential tunneling conductivity and
dynamic conductance are no longer symmetric functions of the applied voltage V.

Indeed, if under the application of bias voltage V, the current of electrons with the
charge −e, traveling from HF to a common (i.e., “non-HF”) metal changes the sign of a
charge carrier to +e, then current character and direction alter. Namely, now the carriers
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are holes with the charge +e traveling from the common to the HF metal. Turning this
around, one can obtain the same current of electrons provided that V is changed to −V.
The resulting asymmetric differential conductivity Δσd(V) = σd(V)− σd(−V) becomes
nonzero, as seen from Figure 10. On the other hand, if time t is changed to −t (but charge
is kept intact), the current changes its direction only. The same result can be achieved
by V → −V, and we conclude that T symmetry is broken, provided that Δσd(V) �=
0. Thus, the presence of Δσd(V) �= 0 signals violation of both C and T symmetries.
Simultaneously, the change of both e → −e and t → −t returns the system to its initial
state so that CT symmetry is conserved bearing in mind that the same consideration
is true when analyzing ρd(V). Note that the parity symmetry P is conserved, and the
well-known CPT symmetry is not broken in the considered case. However, the time-
reversal invariance and particle-hole symmetry remain intact in normal Fermi systems;
the differential tunneling conductivity and dynamic conductance are symmetric functions
of V. Therefore, conductivity asymmetry is not observed in conventional metals at low
temperatures [28].

To determine the tunneling conductivity, we first calculate the tunneling current I(V)
through the contact point between the two metals. This is performed using the method
of Harrison [66–68], based on the observation that I(V) is proportional to the particle
transition probability introduced by Bardeen [43]. Bardeen considered the probability P12
of a particle (say an electron) making a transition from a State 1 on one side of the tunneling
layer to a State 2 on the other side. Probability behaves as P12 ∼ |t12|2N2(0)n1(1 − n2)
where N2(0) (at ε = 0) is the density of states in State 2, n1,2 is the the electron occupation
numbers in these states and t12 is the transition matrix element. The total tunneling current
I is then proportional to the difference between the currents from one to two and that from
two to one, and is as follows.

I ∼ P12 − P21 ∼ |t12|2N1(0)N2(0)×[
n1(1 − n2)− n2(1 − n1)

]
=

|t12|2N1(0)N2(0)(n1 − n2). (22)

Harrison applied the WKB approximation to calculate the matrix element [66–68],
t12 = t(N1(0)N2(0))−1/2, where t denotes the resulting transition amplitude. Multiplica-
tion of expression (22) by two to account for the electron spin and integration over the
energy ε leads to the expression for total (or net) tunneling current [66–68]:

I(V) = 2|t|2
∫
[nF(ε − μ − V)− nF(ε − μ)]dε. (23)

Here nF(ε) is the electron occupation number for a metal in the absence of a FC, and
we have adopted atomic units e = m = h̄ = 1, where e and m are the electron charge
and mass, respectively. Since temperature is low, nF(ε) can be approximated by the step
function θ(ε − μ), where μ is the chemical potential.

From Equation (23), it follows that quasiparticles with single-particle energies ε in
the range μ ≤ ε ≤ μ + V contribute to the current, I(V) = c1V and σd(V) ≡ dI/dV = c1,
with c1 = const. Thus, wthin the framework of LFL theory, the differential tunneling
conductivity σd(V), being a constant, is a symmetric function of the voltage V, i.e., σd(V) =
σd(−V). In fact, the symmetry of σd(V) holds provided C and T symmetries are observed,
as is customary for LFL theory. Therefore, σd(V) is symmetric, and this is common in the
case of contact of two ordinary metals (without FC), regardless of whether they are in a
normal or superconducting state. Note that a more rigorous consideration of the densities of
states N1 and N2 entering Equation (22) for ε � μ requires their inclusion in the integrand of
Equation (23) [71–73]. For example, see Equation (7) of Ref. [73], where this refinement has
been carried out for the system of a magnetic adatom and scanning tunneling microscope tip.
However, this complication does not break the C symmetry in the LFL case. Nonetheless, it
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will be seen below that if the system hosts FC, the presence of the density-of-states factors
in the integrand of Equation (23) initiates the asymmetry of the tunneling spectra, since the
density of states strongly depends on ε � μ, see Figure 2. Indeed, the situation becomes
quite different in the case of a strongly correlated Fermi system in the vicinity of the FCQPT
that causes a flat band [1,2] and violates the C symmetry [15,19,74]. We note that as we have
seen above, the violation of the C symmetry entails the violation of the T symmetry. Panel
(a) of Figure 2 illustrates the resulting low-temperature single-particle energy spectrum
ε(k, T). Panel (b), which displays the momentum dependence of the occupation numbers
n(k, T) in such a system, shows that the flat band induced by the FCQPT, as we have seen
above, in fact, violates T symmetry as well. The broken C symmetry is reflected in the
asymmetry of the regions occupied by particles (labeled p) and holes (labeled h) [15]. We
note that the system in its superconducting state and located near the FCQPT exhibits
asymmetrical tunneling conductivity, since the C symmetry remains broken in both the
superconducting and the normal states. This observation conforms with the experimental
facts [15,70], as seen from Figure 8.

We see from Figure 2 that at low temperatures the electronic liquid of the system
has two components. One is an exotic component comprised of heavy electrons occu-
pying momentum range pi < p < p f surrounding the Fermi volume near the Fermi
surface p = pF. This component is characterized by the superconducting order parameter
κ(p) =

√
n(p)(1 − n(p)). The other component is made up of normal electrons occupying

the momentum range 0 ≤ p ≤ pi [15,33]. In particular, the density of paired charge carriers
that form the superfluid density is no longer equal to the total particle density nel repre-
sented by paired and unpaired charge carriers. This violation of Leggett’s theorem is to be
expected since both C and T invariants are violated in the NFL state of some HF metals
and compounds [15,19,31,74].

We are proposing that for the strongly correlated many-fermion systems in question,
the approximate equality ns � nel that would normally be expected for a real system
approximating BCS behavior must be replaced by the inequality ns = nFC � nel, where
nFC is the density of particles in the FC state [42]. This implies that the main contribution to
ns comes from the FC state. Indeed, the wave function Ξ describing the state of the Cooper
pairs as a whole concentrates its associated probability density in the momentum domain
of the flat band such that |Ξ|2 ∝ ns, with |Ξ|2 � 0 outside this range. Being defined by the
properties of FC, ns can be very small. Nor does it depend on nel , so it can be expected that
ns � nel [33,42].

It is worth noting that the first studies of the overdoped copper oxides suggested that
ns � nel , but this was attributed to pair-breaking and disorder [75–77], while recent studies
with the measurements on ultra-clean samples of La2−xSrxCuO4 authenticate the result
that ns � nel [32]. It is also relevant that the observed high values of Tc together with the
linear dependence of ρs0 ∝ Tc [32] of the resistivity are not easily reconciled with the pair-
breaking mechanism proposed for dirty superconductors, see, e.g., [53] and Section 7. One
cannot expect that such a mechanism would be consistent with high values of Tc and the
increase of Tc with doping x. It is worth noting that experimental observation shows that
A1(x)/Tc(x) � const [32,78]. This observation supports the theory of the FC condensation
that demonstrates the same result A1(xc − x)/Tc(xc − x) = const [79,80]. Here, xc is the
doping concentration at which the superconductivity sets in, and (xc − x) ∝ ns [42]. As a
result, these evidences support the fermion condensation theory, suggesting the topological
FCQPT as the underlying physical mechanism of both the unusual properties of overdoped
copper oxides and the asymmetry of tunneling conductivity [1,2,15,19,81].

In case of a strongly correlated Fermi system with FC, the tunneling current be-
comes [15,31,82,83]

I(V) = 2|t|2
∫
[n(ε − μ − V, T)− nF(ε − μ, T)]dε. (24)
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Here one of the distribution functions of ordinary metal nF on the right-hand side
of Equation (23) is replaced by n(ε, T), shown in Figure 2b. As a result, the asymmetric
part of the differential conductivity Δσd(V) = σd(V) − σd(−V) becomes finite, and we
obtain [15,19,31,70,82]

Δσd(V) � c
(

V
2T

) p f − pi

pF
, (25)

where p f and pi define the location of FC, see Figure 2, pF is the Fermi momentum and c is
a constant of order unity.

It is worth noting that Equation (25) is also valid even if the density of states N1 and
N2 are taken into account, since all this does is change c. Note that the conductivity Δσd(V)
remains asymmetric in the superconducting phase of both HTSC and HF metals as well. In
such cases, it is again the occupation number n(p) that is responsible for the asymmetric
part of Δσd(V), since this function is not appreciably disturbed by the superconductive
pairing. This is because usually, in forming the function n(p), the Landau interaction
contribution is stronger than that of the superconductive pairing [15]. As a result, Δσd(V)
remains approximately the same below the superconducting Tc [15,31]. It is seen from
Equation (25) and Figure 10 that with rising temperatures, the asymmetry diminishes and
finally vanishes at T ≥ 40 K. Such a behavior has been observed in measurements on the
HF metal CeCoIn5 [84,85], displayed in Figure 10.
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Figure 10. Conductivity spectra σd(V) = dI/dV measured on the HF metal CeCoIn5 with point
contacts (Au/CeCoIn5) over a wide temperature range [84]. Curves σd(V) are shifted vertically
by 0.05 for clarity and normalized by the conductance at −2 mV. The asymmetry develops at
T � 40 K, becoming stronger at decreasing temperature and persisting below T < Tc � 2.3 K in the
superconducting state [84].

Under the application of a magnetic field B at sufficiently low temperatures kBT � μBB,
where kB and μB are the Boltzmann constant and the Bohr magneton, the strongly correlated
Fermi system transits from the NFL to the LFL regime [15,86]. As we have seen above,
the asymmetry of the tunneling conductivity vanishes in the LFL state [15,31,70,82]. It is
seen from Figure 11, that Δσd(V), displayed in Figure 10 and extracted from experimental
data [85], vanishes in the normal state at sufficiently high magnetic fields applied along
the easy axis and low temperatures kBT << μB(B − Bc) with the critical field Bc � 5 T
in agreement with the prediction, see, e.g., [15,31,87]. Under this condition, the system
transits from the NFL to the LFL behavior, with the resistance ρ becoming a quadratic
function of temperature, ρ(T) ∝ T2 [15]. The examples of suppression of the asymmetric
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parts of differential conductivity and resistance under the application of a magnetic field
are shown in Figure 11, Figure 12 and Figure 13, respectively.
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Figure 11. Asymmetric part Δσd(V) of the tunneling differential conductivity measured on CeCoIn5

and extracted from the experimental data [85]. The asymmetric part vanishes at B = 14 T and
T = 1.75 K, with Bc0 � 5 T.

Δσ
d(V

)

V (mV)

YbRh2Si2

Figure 12. Asymmetric parts Δσd(V) of the tunneling differential conductivity measured on YbRh2Si2
and extracted from the data shown in Figure 14.

0 10 20 30 40 50 60 70 80
Current, I (na)

-0.8

-0.6

-0.4

-0.2

0

A
s(

I)
 (k

Ω
)

40 mT
80 mT
140 mT

graphene

Figure 13. Magnetic field (legend) dependence of the asymmetric part As(I) = dV/dI(I) −
dV/dI(−I) versus the current I, extracted from the data of Figure 15 for graphene.
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Figure 14 shows the differential conductivity σd observed in measurements on
YbRh2Si2 [29,30]. It is seen that asymmetry diminishes with increasing magnetic field
B, as the minima of the curves shift to the point V = 0, see also Figure 12 for details. The
magnetic field is applied along the hard magnetization direction, B ‖ c, with Bc � 0.7 T [30],
where Bc is the critical field suppressing the AF order [51]. The asymmetric part of the
tunneling differential conductivity, Δσd(V), extracted from the measurements shown in
Figure 14, is displayed in Figure 12. It is seen that Δσd(V) decreases as B increases. We
predict that application of the magnetic field in the easy magnetization plane, B⊥c with
Bc � 0.06 T, leads to a stronger suppression of the asymmetric part of the conductivity,
observing that in this case the magnetic field effectively suppresses the antiferromagnetic
order and the NFL behavior. Indeed, the experimental data show that low-temperature
electrical resistivity ρ(T) of the HF metal YbRh2Si2, measured at T � 20 mK, under the
application of the magnetic field B ≥ 75 mT along an easy magnetization plane, exhibits the
LFL behavior ρ(T) ∝ T2, while at B � 60 mT it demonstrates the NFL behavior, ρ(T) ∝ T.
At the same time, under the application of a magnetic field B along the hard magnetization
direction, resistivity shows the LFL behavior at much higher B ≥ 0.8 T [51]. The same
transition from the NFL behavior to the LFL one is observed in measurements of the ther-
modynamic, transport and relaxation properties, see, e.g., [15,19,51]. We surmise that the
asymmetric part Δσd(V) vanishes as soon as YbRh2Si2 enters its AF state, exhibiting the
LFL behavior ρ(T) ∝ T2 at B = 0 and T < 70 mK.
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Figure 14. Differential conductivity σd(V) = dI/dV measured on YbRh2Si2 under the application of
a magnetic field (legend) along the hard magnetization direction [30].

Measuring the differential resistance ρd(V) = dV/dI as a function of current I, one
finds that the its symmetry properties are the same as those of σd(V). Namely, under the
application of a magnetic field, the asymmetry of the differential resistance vanishes as
the system transits into the LFL state. The differential resistance ρd(V) of graphene as a
function of a direct current I for different magnetic fields B is reported in Figure 15 [5]. The
asymmetric part of the differential resistance As(I) = ρd(V)− ρd(−V) diminishes with an
increasing magnetic field, vanishing near B � 140 mT. Such a behavior corroborates our
conclusion, since the strongly correlated graphene sample has a perfect flat band, implying
that the FC effects should be clearly manifested in this material [5].

Thus, in accordance with prediction [15,31,70,82], the asymmetric part tends to zero
at tiny magnetic fields of 140 mT, as seen from Figure 13. Note that suppression of the
asymmetric part under the application of a magnetic field has been observed in the HF metal
YbCu5−xAlx [81]. The asymmetry persists in the superconducting state of graphene [5]
and is suppressed at B � 80 mT. Disappearance of the asymmetric part of the differential
conductivity in Figure 13 indicates that as the magnetic field increases, graphene transits
from the NFL to the LFL state. We remark that the disappearance of the asymmetric
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part of the differential conductivity was predicted many years before the experimental
observations [31,70,82]. It is worth noting that the decrease of the asymmetric part under the
application of a magnetic field is an important feature, since the presence of the asymmetric
part can be observed by a simple device, e.g., by a diode, since the asymmetric part does
not vanish in a magnetic field. Moreover, at B = 0, the asymmetric part observed in HF
metals and HTSC can be explained in many ways, see, e.g., [88].
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Figure 15. Differential resistance dV/dI of graphene versus current I at different magnetic fields B
shown in the legend [5]. Weak asymmetry is observed at small magnetic fields.

To support the statement that the NFL behavior of graphene vanishes in magnetic
fields, we surmise that the resistance ρ(T) should exhibit linear dependence ρ(T) ∝ A1T in
the normal state at zero magnetic field, as is generally the case in other strongly correlated
Fermi systems. Indeed, at elevated magnetic fields and low temperatures kBT << μBB, the
system transits from the NFL behavior to the LFL behavior, causing the resistance to become
a quadratic function of temperature ρ(T) ∝ T2 that confirms the LFL behavior [15,19,58].

6. Heavy-Fermion Metals and High-Temperature Superconductors: Scaling Relations

It has been shown that the behavior ρ(T) ∝ T as T → 0 is an intrinsic property of
cuprates associated with a universal scattering rate as well as the property of HF met-
als [21,22,24], see Section 4. It is stated that the behavior ρ(T) ∝ T is achieved when the
scattering rate hits the Planckian limit, given by Equation (21), irrespective of the origin of
the scattering process [22,24]. However, it is hardly possible that the linear T-dependence of
resistivity of common metals is formed by the Planckian limit, as observed in Ref. [21], see
Figure 9 and explanation in Ref. [25]. Moreover, HF metals and high-Tc superconductors
demonstrate scaling behavior under the application of a magnetic field, pressure, etc., see
Figure 3a,b. In magnetic fields, these compounds are shifted from the NFL to the LFL
behavior, see, e.g., [15,24]. All these extraordinary features are explained within the frame-
work of the FC theory [1,15,19]. As a result, we can safely suggest that the main reason for
the behavior given by Equation (21) is defined by phonons, taking place at T ≥ TD in both
strongly correlated Fermi systems and common metals [25].

Another experimental result [27] providing insight into the NFL behavior of strongly
correlated Fermi systems is the universal scaling, which can also be explained using the flat
band concept. The authors of Ref. [27] measured the temperature dependence dρ/dT of the
resistivity ρ for a large number of HTSC substances for T > Tc. Among these were LSCO
and the well-known HF compound CeCoIn5; see Table I of Ref. [27]. They discovered quite
remarkable behavior: for all substances considered, dρ/dT shows a linear dependence on
the London penetration depth λ2

0. All of the superconductors considered belong to the
London type for which λ0 >> ξ0, where ξ0 is the zero-temperature coherence length, see,
e.g., [42].

53



Atoms 2022, 10, 67

It has been shown that the scaling relation [27]

dρ

dT
∝

kB
h̄

λ2
0 (26)

remains valid over several orders of magnitude of λ0, signifying its robustness. At the
phase transition point T = Tc, the relation (26) yields the well-known Holmes law [27], see
also [89] for its theoretical derivation:

σTc ∝ λ−2
0 , (27)

in which σ = ρ−1 is the normal state dc conductivity. It has been shown by Kogan [89] that
Holms law applies even for the oversimplified model of an isotropic BCS superconductor.
Within the same model of a simple metal, one can express the resistivity ρ in terms of
microscopic substance parameters [60]: e2nρ � pF/(τvF), where τ is the quasiparticle
lifetime, n is the carrier density, and vF is the Fermi velocity. Taking into account that
pF/vF = M∗, we arrive at the equation [28]

ρ =
M∗

ne2τ
. (28)

Note that Equation (28) formally agrees with the well-known Drude formula. It has
been shown in Ref. [42] that good agreement with experimental results [32] is achieved
when the effective mass and the superfluid density are attributed to the carriers in the FC
state only, i.e., M∗ ≡ MFC and n ≡ nFC. Keeping this in mind and utilizing the relation
1/τ = kBT/h̄ [19,25,87], we obtain

ρ =
MFC

e2nFC

kBT
h̄

≡ 4πλ2
0

kBT
h̄

, (29)

i.e., dρ/dT is indeed given by the expression (26). Equation (29) demonstrates that fermion
condensation can explain all the above experimentally observed universal scaling relations.
It is important to note that the FC approach presented here is not sensitive to and transcends
the microscopic, non-universal features of the substances under study. This is attributed to
the fact that the FC state is protected by its topological structure and therefore represents
a new class of Fermi liquids [2,19]. In particular, consideration of the specific crystalline
structure of a compound, its anisotropy, its defect composition, etc., do not change our
predictions qualitatively. This strongly suggests that the FC approach provides a viable
theoretical framework for explaining universal scaling relations similar to those discovered
in experiments [27,32]. In other words, condensation of the charge carrier quasiparticles in
the considered strongly correlated HTSCs, engendered by a quantum phase transition, is
indeed the primary physical mechanism responsible for their observable universal scaling
properties. This mechanism can be extended to a broad set of substances with very different
microscopic characteristics, as discussed in detail in Refs. [15,19,20].

7. Influence of Superconducting State on Flat Bands

We continue to study Fermi systems with FC at T = 0, employing weak BCS-like
interaction with the coupling constant g [43]. We analyze the behavior of both the super-
conducting gap Δ and the superconducting order parameter κ(p) as g → 0. In case of
BCS-like theories, one obtains the well-know result. Both κ → 0 and Δ → 0, while the FC
theory yields Δ ∝ g [1,4,45,90,91]. To study the latter case, we start from the usual pair of
equations for the Green’s functions F+(p, ω) and G(p, ω) [60]

F+ =
−gΞ∗

(ω − E(p) + i0)(ω + E(p)− i0)
, (30)
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G =
u2(p)

ω − E(p) + i0
+

v2(p)

ω + E(p)− i0
, (31)

where E2(p) = ξ2(p) + Δ2, where ξ(p) = ε(p)− μ. Here, ε(p) is the single particle energy,
and μ is the chemical potential. The gap Δ and the function Ξ are given by

Δ = g|Ξ|, iΞ =
∫ ∫ ∞

−∞
F+(p, ω)

dωdp
(2π)4 . (32)

Denoting v2(p) = (1 − ξ(p)/E(p))/2, v2(p) + u2(p) = 1, simple algebra yields

ξ(p) = Δ
1 − 2v2(p)

2κ(p)
. (33)

Here κ(p) = u(p)v(p) is the superconducting order parameter. It follows from
Equation (33) that ξ → 0 when Δ → 0, provided that κ(p) �= 0 in some region pi < p < p f ;
thus, the band becomes flat in the region, since ε(p) = μ [15,17]. Note that in this case the
BCS-like theory gives the standard result implying that both Δ = 0 and κ = 0 since it is
assumed that ξ(p) is fixed. Then, we derive from Equations (32) and (33) that

iΞ =
∫ ∞

−∞
F+(p, ω)

dωdp
(2π)4 = i

∫
κ(p)

dp
(2π)3 . (34)

From Equations (32)–(34), we readily see that as g → 0 the superconducting gap
Δ → 0, while the density ns of the superconducting electrons defined by Ξ = ns is finite,
and the dispersion ε(p) becomes flat, ξ = 0. While κ(p) is finite in the region pi ≤ p ≤ p f ,
making Ξ finite. As a result, in systems with FC, the gap Δ vanishes when g → 0, but both
the order parameter κ(p) and ns are finite. When the coupling constant g increases, the gap
Δ is given by Equation (2), and the superconducting temperature Tc ∝ gΞ = gns [1,15]. As
a result, one obtains the possibility to construct the room-Tc superconductors [5–12]. At the
same time ns � nρ, where nρ is the density of electrons [33,42]. Thus, in case of overdoped
superconductors ns � nρ rather than ns = nρ, as should be in BSC like theories [32,33,42].
Employing Equations (32) and (33), we deduce from Equations (30) and (31) that

F+ = − κ(p)
ω − E(p) + i0

+
κ(p)

ω + E(p)− i0
(35)

G =
u2(p)

ω − E(p) + i0
+

v2(p)

ω + E(p)− i0
. (36)

In the region occupied by FC, the coefficients v2(p), u2(p) = 1 − v2(p), v(p)u(p) =
κ(p) �= 0 are given by ε(p) = μ, while E(p) → 0 [1,4,15]. From Equations (35) and (36), it
is seen that when g → 0, the equations for F+(p, ω) and G(p, ω) are transformed in the FC
region to [90]

F+(p, ω) = −κ(p)
[

1
ω + i0

− 1
ω − i0

]
(37)

G(p, ω) =
u2(p)
ω + i0

+
v2(p)

ω − i0
. (38)

Integrating G(p, ω) over ω, one obtains v2(p) = n(p). From Equation (32), it follows
that Δ is a linear function of g [1,33,45,91]. Since the transition temperature Tc ∼ Δ ∝ g → 0,
κ(p) vanishes at T → 0 via the first order phase transition [2,15]. Thus, on one hand, the
FC state with its flat band represents a special solution of the BSC equations. On the other
hand, representing a contrast to BSC-like theories, Equation (33) gives the dependence of
the spectrum ξ on Δ ∝ g, thus, leading to VF ∝ Tc [13,15–17].
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Now we use Equation (33) to calculate the effective mass M∗ by differentiating both
sides of this equation with respect to the momentum p at p = pF [15,17] and obtain

M∗ � pF
p f − pi

2Δ
. (39)

From Equation (39), we obtain that VF ∝ Tc ∝ Δ and conclude

VF � 2Δ
p f − pi

∝ Tc. (40)

From Equations (33) and (40), we see that as Tc ∝ Δ → 0, the Fermi velocity VF → 0
and the band becomes exactly flat [13,17]. When Tc � gΔ becomes finite at g increasing,
the plateau starts to slightly tilt and is rounded at its end points, as seen from Figure 16.
At increasing Δ ∝ Tc, both M∗ and the density of states Ns(0) are diminished, causing
increasing VF. As seen from Figure 16, the plateau of the flat band of the superconducting
system with FC is slightly upward tilted, and M∗ is diminished. It follows from Equation (9)
that at T > Tc the slope of the flat band is proportional to T, and this dependence can
be measured by using ARPES. It is also seen from Figure 2 that both the particle - hole
symmetry C and the time invariance T are violated generating the asymmetrical differential
tunneling conductivity at the NFL behavior, and the NFL behavior is suppressed under the
application of a magnetic field that drives the system to its Landau Fermi liquid state, see
Section 5.
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Figure 16. Flat band versus superconducting (SC) state. At T = 0, the flat single particle spectrum
with VF = 0 is depicted by the solid curve. The transformed flat band by SC with finite VF is
displayed by the red dashed line, see Equation (40). This change is shown by the arrow and by
the blue solid and red dashed lines. The dashed area shows the flat band deformation by the SC
state. Inset: the occupation numbers n(k) at T = 0 as a function of the dimensionless momentum
k = p/pF. FC location is displayed by the arrow, with labels pi/pF and p f /pF revealing the area
where 0 < n(p) < 1, see Equation (7).

Measurements of VF as a function of Tc [16] are depicted in Figure 17. The inset in
Figure 17 shows experimental data collected on the high-Tc superconductor Bi2Sr2CaCu2O8+x
in measurements using scanning tunneling microscopy and spectroscopy; here, x is oxygen
doping concentration [92]. The integrated local density of states is shown in arbitrary units
(au). The straight line depicts the local density of states that is inversely proportional to Δ.
Note that the tunneling current is proportional to the integrated local density of states [92].
From the inset, it is clear that the data taken at the position with the highest integrated
local density of states has the smallest gap value Δ [92]. These observations are in good
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agreement with Equations (39) and (40). Thus, our theoretical prediction [15,17] agrees
very well with the experimental results [16,92,93]. We note that VF → 0 as Tc → 0, as seen
from Figure 17. This result shows that the flat band is disturbed by the finite value of Δ,
and possesses a finite slope that makes VF ∝ Tc, as seen from Figure 16. Indeed, from
Figure 17, the experimental critical temperatures Tc do not correspond to the minima of the
Fermi velocity VF as they would in any theory wherein pairing is mediated by phonons
(bosons) that are insensitive to VF as they would in any theory wherein pairing is mediated
by phonons, or any other bosons, that are insensitive to VF [16].

Thus, such a behavior is in stark contrast to that expected within the framework of
the common BSC-like theories that do not assume that the single particle spectra strongly
depends on Tc [15,16,43]. This extraordinary behavior is explained within the framework
of the FC theory based on the topological FCQPT, forming flat bands [15,17,19,20].
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Figure 17. Experimental results (shown by the squares) for the average Fermi velocity VF versus the
critical temperature Tc for graphene (MATBG) [16]. The downward arrows depict that VF ≤ V0, with
V0 the maximal value shown by the red square. Theory is displayed by the solid straight line. Inset
is adapted from [92] and shows experimental dependence of the superconducting gap Δ versus the
integrated local density of states collected on the high-Tc superconductor Bi2Sr2CaCu2O8+x. Here x is
oxygen doping concentration. The darker color represents more data points with the same integrated
local density of states and the same size gap Δ [92]. The straight blue line shows average value Δ
versus the integrated local density of states.

8. Discussion and Conclusions

The central message of the present review article is that if the electronic spectrum
of a substance happens to feature a dispersionless part, or flat bands, it is invariably this
aspect that is responsible for the measured properties that depart radically from those of
the familiar condensed-matter systems described by the Landau Fermi liquid theory. This
is the case regardless of the diverse microscopic details characterizing these substances,
such as crystal symmetry and structure defects. The explanation of this finding rests on the
fact that the fermion condensation most readily occurs in substances hosting flat bands,
see, e.g., [1,5–12]. Experimental manifestations of the fermion condensation phenomena
are varied, implying that different experimental techniques are most suitable for detecting
and analyzing them.

To support the above statements, we have also considered recent challenging experi-
mental observations within the framework of the fermion condensation theory. In summary,
we have:

Explained the universal T/B scaling behavior of the thermodynamic and transport
properties, including the negative magnetoresistance of the HF metals;

Analyzed the recent challenging experimental facts regarding the tunneling differential
conductivity dI/dV = σd(V) as a function of the applied bias voltage V collected under
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the application of a magnetic field B on the twisted graphene and the archetypical heavy-
fermion metals YbRh2Si2 and CeCoIn5 [5,29,30];

Explained the emergence of the asymmetrical part Δσd = σd(V)− σd(−V) as well as
that Δσd vanishes in magnetic fields as was predicted [31];

We further examined the linear dependence on temperature of the resistivity ρ(T) ∝
A1T, demonstrated that A1(xc − x)/Tc(xc − x) = const and explained the data collected
on high Tc superconductors, graphene, heavy fermion (HF) and common metals, revealing
that the scattering rate 1/τ of charge carriers reaches the Planckian limit;

Elucidated empirical observations of scaling properties [27] within the fermion con-
densation theory;

Investigated the recent extraordinary experimental observations of the density of
superconducting electrons that turns out to be much less than the total density of electrons
at T → 0;

Shown that the transition temperature Tc is proportional to the Fermi velocity VF,
VF ∝ Tc, rather than Ns(0) ∝ 1/VF ∝ Tc;

Demonstrated that flat bands make Tc ∝ g, with g being the coupling constant. It is of
crucial importance to note that the flat band superconductivity has already been observed
in twisted bilayer graphene, where due to the flat band, the transition temperature Tc
highly exceeds the limit dictated by the conventional BCS theory [5–12]. Thus, the basic
task now is to attract more experimental groups to search for the room-Tc superconductivity
in graphite and other perspective materials.

Indeed, the physics here has been explained within the fermion condensation theory [33]
and related to flat bands whose existence was predicted many years ago [1,2,4,15,26,33,37] and
paved the way for high-Tc superconductors [5–12]. In conclusion, this is a review of the
recent outstanding experimental results that strongly suggest that the topological FCQPT
is an intrinsic feature of many strongly correlated Fermi systems and can be viewed as
the universal agent defining their non-Fermi liquid behavior. In addition, the fermion
condensation theory is able to explain challenging features exhibited by strongly correlated
Fermi systems.
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Abstract: We briefly review recent applications of the Regge pole analysis to low-energy 0.0 ≤ E ≤ 10.0 eV
electron elastic collisions with large multi-electron atoms and fullerene molecules. We then conclude
with a demonstration of the sensitivity of the Regge pole-calculated Ramsauer–Townsend minima
and shape resonances to the electronic structure and dynamics of the Bk and Cf actinide atoms, and
their first time ever use as novel and rigorous validation of the recent experimental observation that
identified Cf as a transitional element in the actinide series.
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molecules; elastic cross sections; binding energies; Ramsauer–Townsend minima; shape resonances;
electron affinities

1. Introduction

Progress towards the theoretical understanding of the fundamental mechanism un-
derlying stable negative-ion formation in low-energy electron collisions with complex
heavy multi-electron atoms and fullerene molecules has been very slow. This physical
mechanism is of fundamental importance in physics and chemistry. More specifically, it has
important implications for a wide range of applications, from catalysis to drug delivery and
water purification. Unfortunately, the complexity of the interactions among electrons in
heavy multi-electron atoms and fullerene molecules has, for a long time, made it virtually
impossible to reliably predict the energetics of the electron binding and the properties
of the resulting negative ions. A theoretical breakthrough was achieved in low-energy
electron scattering from complex heavy multi-electron systems through our rigorous Regge
pole method, wherein is embedded the electron–electron correlation effects and the core-
polarization interaction, identified as the two crucial physical effects responsible for electron
attachment resulting in stable negative-ion formation.

Consequently, the robust Regge pole method has allowed us to reliably explore, for the
first time ever, negative-ion formation in complex heavy multi-electron systems such as the
lanthanide and actinide atoms, as well as the fullerene molecules through the electron elastic
total cross sections (TCSs) calculation. Importantly, these directly yield the anionic binding
energies (BEs), the shape resonances (SRs) and the Ramsauer–Townsend (R-T) minima.
From the TCSs unambiguous and reliable ground, metastable and excited state negative-
ion BEs of the formed anions during the collisions are extracted and compared with the
measured and/or calculated electron affinities (EAs) of the atoms and fullerene molecules.
The novelty and generality of the Regge pole approach is in the extraction of rigorous
negative-ion BEs from the TCSs, without any assistance whatsoever from either experiments
or any other theories. Whether the measured EAs are identified with the ground state
anionic BEs or with the excited states anionic BEs of the formed negative ions during the
collisions, the rigorous Regge pole-calculated BEs are available to guide measurements.
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Essential to the understanding of chemical reactions involving negative ions are ac-
curate and reliable atomic and molecular affinities [1]. Moreover, low-energy electron
collisions, resulting in negative-ion formation, provide a special insight into quantum
dynamics [2]. Consequently, the careful determination of the EAs is needed. The Ramsauer–
Townsend (R–T) effect is an important inter alia for understanding sympathetic cooling and
the production of cold molecules using natural fermions and SRs. Additionally, the EAs
provides a stringent test of theoretical calculations when their results are compared with
those from reliable measurements. For ground state collisions, the Regge pole-calculated
negative-ion BEs correspond to the challenging to calculate theoretically EAs, yielding
outstanding agreement with the standard measured EAs for Au, Pt and the highly radioac-
tive At atoms as well as for the C60 and the C70 fullerene molecules. In general, for the
fullerenes C20 through C92, our Regge pole-calculated ground-state anionic BEs have been
found to excellently match with the measured EAs. These results give great credence to the
power and ability of the Regge pole method to produce unambiguous and reliable ground
state anionic BEs of complex heavy systems through the TCSs calculation. Significantly, the
Regge pole method achieves the remarkable feat without the assistance from experiments
or any other theories.

Unfortunately, for most of the lanthanide atoms, producing sufficient anions that can
be used in photodetachment experiments is challenging [3]. Due to their radioactive nature
the actinide atoms are difficult to handle experimentally. Thus, there is a great need for
reliable theoretical EAs to guide measurements. The EAs of atomic Au, Pt, and At have
been measured [4–9], including those of the C60 and C70 fullerene molecules [10–14]. For
the highly radioactive At atom, various sophisticated theoretical calculations, including
the Multiconfiguration Dirac Hartree–Fock (MCDHF) value [15] agree excellently with
the measured EAs [9]. Reference [9] employed the Coupled-Cluster method, while [15]
used the MCDHF method. Furthermore, in [15] an extensive comparison among various
sophisticated theoretical EAs has been carried out. For all these atoms, the measured EAs
matched excellently the Regge pole-calculated BEs of the anionic ground states of the
formed negative ions during the collisions, see Table 1 for comparisons. Moreover, the
measured EAs of the fullerenes C20 through to C92 agree excellently with the Regge pole-
calculated anionic ground states BEs [16,17]. This gives great credence to our interpretation
of the EAs of these complex systems, viz. as corresponding to the ground state BEs of the
formed negative ions during the collisions.

Recently, the EAs of the highly radioactive actinide atoms Th [18] and U [19,20]
were measured as well. The experimentalists concluded that the EAs of both Th and U
corresponded to the BEs of the weakly bound electron to the neutral atoms. For the Ti atom,
two measurements obtained the EAs as 0.377 eV [21] and 0.075 eV [22]. The former value
is close to various theoretical calculations [23,24], including the Regge pole-calculated BE
of the second excited state, namely 0.281 eV [25]. However, the value of 0.075 eV [22] is
close to the Regge pole BE of the highest excited state of the formed Ti; anion, 0.0664 eV; its
ground state BE is 2.42 eV [25]. The measured EA of Hf is 0.178 eV [26]. It is close to the
Regge pole SR at 0.232 eV, the RCI EA of 0.114 eV [27] and the Regge pole second excited
state anionic BE of 0.113 eV [28]. The Hf highest excited state BE is at 0.017 eV [29]. Indeed,
here we are faced with the problem of interpretation of what is meant by the EA.

For the lanthanide atoms problems regarding what is meant by the EA have already
been discussed [29,30]. Briefly, for the Nd atom, there are two measured EA values, viz.
1.916 eV [31] and 0.0975 eV [32]. The value of [31] is close to the Regge pole ground state
anionic BE value of 1.88 eV [33], while the EA of [32] is close to the RCI EA [34] and the
Regge pole anionic BE of the highest excited state [33]. Similarly, the measured EAs for
the Eu atom are 0.116 eV [3] and 1.053 eV [35]. The former value agrees excellently with
the Regge pole BE of the highest excited state, viz. 0.116 eV [33], and with the RCI EA of
0.117 eV [36]. The EA of [35] agrees very well with the Regge pole-metastable anionic BE
value of 1.08 eV [33]. For the large Tm atom, the measured EA [37] is close to the Regge
pole-metastable BE (1.02 eV) [33]. Clearly, the results here demonstrate the need for an
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unambiguous meaning of the EA. The crucial question also considered here is: does the
EAs of heavy multi-electron systems (atoms and fullerene molecules) correspond to the BE
of the attached electron in the ground, metastable or excited state of the formed negative ion
during the collision? Indeed, the meaning of the measured EAs of multi-electron atoms and
fullerene molecules is also discussed here within the context of two prevailing viewpoints:

(1) The first considers the EA to correspond to the electron BE in the ground state of the
formed negative ion during collision; it is exemplified by the measured EAs of Au, Pt
and At atoms and the fullerene molecules from C20 through C92.

(2) The second view identifies the measured EA with the BE of electron attachment in
an excited state of the formed anion. The measured EAs of Ti, Hf, lanthanide and
actinide atoms provide representative examples of this viewpoint.

We conclude the paper with a demonstration of the first ever use of the Regge pole-
calculated TCSs as probes of the electronic structures of the actinide atoms Bk and Cf to
identify the transitional element in the actinide series [38].

2. Method of Calculation

In this paper we have used the rigorous Regge pole method to calculate the electron elastic
TCSs. Regge poles, singularities of the S-matrix, rigorously define resonances [39,40] and in
the physical sheets of the complex plane they correspond to bound states [41]. In [42], it was
confirmed that the Regge poles formed during low-energy electron elastic scattering become
stable bound states. In the Regge pole method, also known as complex angular momentum
(CAM), the important and revealing energy-dependent Regge Trajectories are also calculated.
Their effective use in low-energy electron scattering has been demonstrated in [33,43], for
example. The near-threshold electron–atom/fullerene collision TCS resulting in negative-ion
formation as resonances is calculated using the Mulholland formula [44]. In the form below,
the TCS fully embeds the essential electron–electron correlation effects [45,46] (atomic units are
used throughout):

σtot(E) = 4πk−2
∫ ∞

0
Re[1 − S(λ)]λdλ − 8π2k−2∑

n
Im

λnρn

1 + exp(−2πiλn)
+ I(E) (1)

In Equation (1), S(λ) is the S-matrix, k =
√

2mE, m being the mass and E the impact
energy, ρn is the residue of the S-matrix at the nth pole, λnand I(E) contains the contributions
from the integrals along the imaginary λ-axis (λ is the complex angular momentum); its
contribution has been demonstrated to be negligible [33].

As in [47], here we consider the incident electron to interact with the complex heavy
system without consideration of the complicated details of the electronic structure of the sys-
tem itself. Therefore, within the Thomas–Fermi theory, Felfli et al. [48] generated the robust
Avdonina-Belov-Felfli (ABF) potential which embeds the vital core-polarization interaction.

U(r) = − Z
r(1 + αZ1/3r)(1 + βZ2/3r2)

(2)

In Equation (2), Z is the nuclear charge, α and β are variation parameters. For small r,
the potential describes Coulomb attraction between an electron and a nucleus, U(r) ~ −Z/r,
while at large distances it has the appropriate asymptotic behavior, viz. ~ −1/(αβr4) and
accounts properly for the polarization interaction at low energies. For an electron, the
source of the bound states giving rise to Regge Trajectories is the attractive Coulomb well it
experiences near the nucleus. The addition of the centrifugal term to the well ‘squeezes’
these states into the continuum [49]. For larger complex angular momentum (CAM) λ, the
effective potential develops a barrier. Consequently, a bound state crossing the threshold
energy E = 0 in this region may become a long-lived metastable state or an excited state. As
a result, the highest “bound state” formed during the collision is identified with the highest
excited state, here labeled as EXT-1. As E increases from zero, the second excited state may
form with the anionic BE labeled, EXT-2. For the metastable states, similar labeling is used
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as MS-1, MS-2, etc. However, it should be noted here that the metastable states are labeled
relative to the anionic ground state. Regge poles are generalized bound-states, namely
solutions of the Schrödinger equation where the energy (E) is real and positive, and λ is
complex. The CAM methods have the advantage in that the calculations are based on a
rigorous definition of resonances, viz. as singularities of the S-matrix, see [49,50].

The strength of this extensively studied potential [51,52] lies in that it has five turning
points and four poles connected by four cuts in the complex plane. The presence of the
powers of Z as coefficients of r and r2 in Equation (2) ensures that spherical and non-
spherical atoms and fullerenes are correctly treated. Moreover, small and large systems are
appropriately treated. The effective potential V(r) = U(r) + λ(λ + 1)/2r2 is considered
here as a continuous function of the variables r and complex λ. The details of the numerical
evaluations of the TCSs have been described in [46] and references therein; see also [53]. In
the solution of the Schrödinger equation as described in [46], the parameters “α” and “β”
of the potential, Equation (2) are varied. With the optimal value of α = 0.2 the β-parameter
is then varied carefully and when the dramatically sharp resonance appears in the TCS, it
is indicative of negative ion formation; this energy position matches the measured EAs of
the atom/fullerene, for example Au or C60 fullerene. This has been found to be the case in
all the atoms and fullerenes we have investigated thus far.

3. Results

3.1. Cross Sections for the Representative Atom Au and Fullerene Molecule C60

Figure 1, taken from Ref. [54] presents TCSs for atomic Au and fullerene molecule
C60. They typify the TCSs of complex heavy multi-electron atoms and fullerene molecules,
respectively. Importantly, they are characterized by dramatically sharp resonances rep-
resenting negative-ion formation in ground, metastable and excited anionic states, R–T
minima and SRs. In both Figs. the red curves represent ground states electron TCSs, while
the green curves denote excited state TCSs. Here the ground states anionic BEs in both Au
and C60 appearing at the absolute R–T minima matched excellently with the measured EAs,
see Figure 1 and Table 1 for comparisons with various measurements. In both systems,
the ground states anionic BEs determine their EAs and not the excited anionic BEs (green
curves). The data in Table 1 for Pt, At, Ti and Hf atoms as well as for the C70 fullerene
were extracted from similar curves, as in Figure 1. Notably, the TCSs for the atoms and
fullerene molecules become more complicated as the systems considered become larger as
exemplified by the actinide atoms in Ref. [54] and the fullerene molecules in [16].

The availability of excellent measured EAs for the Au and Pt atoms [4–8] and the
C60 fullerene molecule [10–12] allowed us to implement the rigorous Regge pole method
to complex multi-electron atoms and fullerene molecules. Excellent agreement with the
measurements were obtained for the Au, Pt and At atoms and the fullerene molecules C60
and C70, as demonstrated in Table 1. Thus, the Regge pole-calculated ground state anionic
BEs were benchmarked on the measured EAs of both Au and C60. Subsequently, the Regge
pole method was implemented in the calculation of low-energy electron elastic TCSs for
various complex multi-electron atoms, including atomic Hf and Ti. The calculated ground
states anionic BEs for the Au, Pt and At atoms matched excellently with the measured EAs
of these atoms. For the fullerene molecules C20 through to C92, the obtained anionic ground
states BEs [16,17] generally agreed very well with the measured EAs. Indeed, the Regge
pole method accomplished an unprecedented feat in the calculation of the challenging to
theoretically calculate EAs of both multi-electron atoms and the fullerene molecules, from
C20 through to C92.
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Figure 1. Total cross sections (a.u.) for electron elastic scattering from atomic Au (left panel) and the
fullerene molecule C60 (right panel) are contrasted. For atomic Au the red, blue and green curves
represent TCSs for the ground, metastable and excited states, respectively. For the C60 fullerene
the red, blue and pink curves represent TCSs for the ground and the metastable states, respectively,
while the green and brown curves denote TCSs for the excited states. The very sharp resonances in
both figures Correspond to the Au− and C60

− anionic formation. The anionic Bes in the Figures are
intended to guide the eye; the complete values are also presented in Table 1 for better comparisons.

Table 1 already demonstrates the ambiguous meaning of the measured EAs in the
large atoms Ti and Hf versus the meaning in the Au, Pt and At atoms. The interpretation of
the EAs in the former atoms is that they correspond to the anionic BEs of excited states,
while in the latter atoms the EAs are identified with the Regge pole BEs of the formed
anions in their ground states.

Table 1. Negative-ion binding energies (BEs) and ground states Ramsauer–Townsend (R-T) minima,
all in eV extracted from TCSs of the atoms Au, Pt, At, Ti and Hf and the fullerene molecules C60

and C70. They are compared with the measured electron affinities (Eas) in eV. GRS, MS-n and EXT-n
(n = 1, 2) refer, respectively, to ground, metastable and excited states. Experimental EAs, EXPT and
theoretical EAs are also included. The numbers in the square brackets are the references.

System
Z

BEs
GRS

BEs
MS-1

BEs
MS-2

EAs
EXPT

BEs
EXT-1

BEs
EXT-2

R-T
GRS

BEs/EAs
Theory

Au 79 2.26 0.832 -
2.309 [4]
2.301 [5]
2.306 [6]

0.326 - 2.24 2.262 [25]

Pt 78 2.16 1.197 -
2.128 [4]
2.125 [7]
2.123 [8]

0.136 - 2.15 2.163 [25]

At 85 2.41 0.918 - 2.416 [9] 0.115 0.292 2.43

2.38 [15]
2.42 [55]
2.51 [56]
2..80 [57]

C60 2.66 1.86 1.23
2.684 [10]
2.666 [11]
2.689 [12]

0.203 0.378 2.67
2.663 [17]
2.63 [58]
2.57 [59]
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Table 1. Cont.

System
Z

BEs
GRS

BEs
MS-1

BEs
MS-2

EAs
EXPT

BEs
EXT-1

BEs
EXT-2

R-T
GRS

BEs/EAs
Theory

C70 2.70 1.77 1.27
2.676 [11]
2.72 [13]
2.74 [14]

0.230 0.384 2.72 3.35 [60]
2.83 [60]

Ti 81 2.42 - - 0.377 [21]
0.075 [22] 0.066 0. 281 2.40 0.27 [23]

0.291 [24]

Hf 72 1.68 0.525 - 0.178 [26] 0.017 0.113 1.67 0.114 [27]
0.113 [28]

3.2. Ground State Fullerene Cross Sections

The main reason for following up with the fullerene molecules immediately after
Section 3.1 is that excellent measured EAs from C20 through to C92 are available in the
literature. Benchmarked on the measured EAs of C60 and C70, as indicated under Section 3.1,
the Regge pole method was used to calculate the ground state electron elastic TCSs of the
fullerene molecules from C20 through to C240 [16,17]. It is noted here that in the paper [17]
only the ground state anionic BEs were calculated and some of the fullerenes ground state
BEs can be found there. The novelty and generality of the Regge pole approach is in
the extraction of the anionic BEs from the calculated TCSs of the fullerenes, for ground
state collisions these BEs yield the unambiguous and definitive challenge to calculate
theoretically EAs. In [16,17], the ground state anionic BEs of the fullerenes C20 through
to C92 were found to generally match excellently with the measured EAs. Indeed, these
results provided great credence to the ability of the Regge pole method to extract from the
calculated TCSs reliable EAs of the fullerene molecules for the first time. The obtained
agreement represented an unprecedented accomplishment by the Regge pole method,
requiring no assistance whatsoever from either experiment or any other theory for the feat.
This allowed the interpretation of the EAs of fullerenes as corresponding to the ground
state anionic BEs calculated by the Regge pole method. For the fullerenes, other theories
continue to struggle to go beyond the theoretically simple C20 and C60 fullerenes.

The focus in this Section is on the ground state anionic BEs of the fullerenes from C20
through to C240 [16,17]. These ground states TCSs are typified by the red curve of the C60
TCSs of Figure 1. In addition to the ground state curve, the revealing metastable and excited
state TCSs curves demonstrate the richness in structure of the fullerene TCSs (the larger
fullerenes reveal more metastable and excited state TCSs than shown in Figure 1). For
the C20, C24, C26, C28 and C44 we have used the data of [16] to demonstrate the reliability
of the Regge pole-calculated anionic BEs, since their measured EAs are available. The
BE values in Table 2 cover a wider range of the fullerene anionic BEs than those shown
in the papers [16,17]. They include values where the experimental EAs are unavailable.
In [16], the smaller fullerenes C20, C24, C26, and C28 as well as the larger fullerenes C92
and C112 were studied to assess the extent to which fullerenes behave like “big atoms”,
as suggested by Amusia [61]. These TCSs were found to be characterized generally by
ground, metastable and excited states negative-ion formation, R–T minima and SRs. The
ground states anionic BEs correspond to the measured EAs of the fullerenes, see Table 2 as
well as Figure 1 for the C60 TCSs. The Regge pole method does not determine the orbital
angular momentum of the attached electron. This is particularly important for the C60
fullerene since there is an uncertainty in the literature regarding whether the C60 EA of
2.66 eV corresponds to an s-state or a p-state of the attached electron. Since the ground
state anionic BE (EA) of C60 is determined here, we believe that a structure-type calculation
could use our calculated ground state anionic BE (EA) of C60 to determine the ground-state
fine-structure energies, since the metastable energies are also available. Thus, the lingering
question could be answered.
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The Regge pole-calculated low-energy electron elastic TCSs for the ground and the
first (highest) excited states of fullerenes are robust. For C20 (smallest fullerene), the first
excited state TCS (highest TCS) resembles that of atomic Au, see Figure 1. Defining R as
the value of the ratio of the second to the first R–T minima in the first excited state TCS
of C20, in [16] we explored the variation of R from C20 through to C70. We found that for
C20 R (~1.4), greater than unity was close to that for Au (~2.) or Th (~1.9), indicative of
atomic behavior, while for C24 R was about 1.0. For C70, R was less than 0.5 demonstrating
strong departure from atomic behavior due to the significant polarization interaction in
C70; which also induces long-lived metastable anions in the C70 TCSs. When probed with
low-energy electrons, the results for C20 exhibited fullerene behavior consistent with the
view that fullerenes behave like “big atoms” [61]. The atomic behavior quickly disappears
with the increase in the fullerene size. As seen from the Figures of [16], the behavior in
C28 is no longer atomic because R is less than unity. By C92, the departure from atomic
behavior has become significant, due to the increase in the polarization interaction in these
larger systems.

For C20, the excited state TCS [16] exhibits a deeper R–T minimum near threshold
in comparison with the second R–T minimum, while the ground state TCS ends with a
deep R–T minimum, wherein appears the dramatically sharp resonance representing the
stable negative ion formed in the ground state during the collision, see also Figure 1. These
characteristic R–T minima, also observed in the Dirac R-matrix low-energy electron elastic
scattering cross sections calculations for the heavy, alkali-metal atoms Rb, Cs and Fr [62],
manifest that the important core-polarization interaction has been accounted for adequately
in our calculation, consistent with the conclusion in [63]. The vital importance of the core-
polarization interaction in low-energy electron collisions with atoms and molecules was
recognized and demonstrated long ago, see [64] for examples and references therein. In C20,
the TCSs are characterized by a ground, metastable and excited states TCSs. However, the
C24, C26 and C28 TCSs consist of more metastable and excited states TCSs. Suffice to state
that the increased energy space determined mainly by the ground states BEs is conducive
to the appearance of the polarization-induced metastable TCS in general. Indeed, these
results reveal the complicated interplay between the R–T minima and the shape resonances.

Notably, in all the fullerene molecules investigated here, the ground states anionic BEs
occur at the absolute R–T minima of the TCSs, see Figure 1 for example. This facilitates
considerably the determination of unambiguous and reliable EAs of the fullerene molecules.
Noted here also is that generally the sharp resonances of the metastable TCSs lie between the
ground states SRs and the dramatically sharp resonances of the ground states. In Table 2, we
have presented various fullerene anionic BEs, but mainly ground states BEs and compared
them with the measured EAs where these are available. The results demonstrate the power
of the Regge pole method to reliably calculate the anionic BEs of fullerene molecules.

Clearly, the Regge pole approach, entirely new in the field of electron-cluster/fullerene
collisions, implemented here represents a theoretical breakthrough in low-energy electron
scattering investigations of fullerenes/clusters and complex heavy atoms. Its implemen-
tation should speed up the long overdue fundamental theoretical understanding of the
mechanism underlying low-energy electron scattering from fullerenes, including heavy
and complex atoms, leading to negative ion formation. These results should also help in
the construction of the popular square-well potentials for the investigated fullerenes. Most
importantly, its great strength is in the ability to produce reliable data without assistance
from experiments and/or other theories.
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Table 2. Fullerene ground (GR-S), metastable (MS-n, n = 1, 2, 3) and first excited (EXT-1), second
excited (EXT-2) and third excited (EXT-3) anionic states binding energies (BEs). The measured EAs
are represented as EXPT and the other theoretical values are denoted as Theory. All the energies
are in eV and the numbers in the square brackets are the references. For most of the fullerenes the
parameters “α” and “β” of the potential, Equation (2) are tabulated in [17].

System
EA
EXPT.

BE(Ours)
GR-S

BEs
MS-1

BEs
MS-2

BEs
MS-3

BEs
EXT-1

BEs
EXT-2

BEs
EXT-3

EA
Theory

C20

2.44 [65]
2.60 [66]
2.70 [67]

2.72 1.48 - - 0.466 - - -

C24
3.750 [66]
2.90 [67] 3.79 2.29 1.41 - 0.428 0.801 - -

C26
3.100 [66]
2.95 [67] 2.67 1.59 - - 0.464 - - -

C28
2.80 [66]
3.00 [67] 3.10 1.80 - - 0.305 0.505 - -

C44 3.30 [68] 3.15 1.89 1.47 - 0.319 0.492 -

C74 3.28 [69] 4.03 2.83 2.01 1.48 0.251 0.407 0.643

C76 2.89 [69] 2.79

C78 3.10 [69] 2.98

C80 3.17 [69] 3.28

C82 3.14 [69] 3.15 3.37 [59]

C84 3.05 [13] 2.94

C86 ≥3.0 [13] 2.92

C90 ≥3.0 [13] 3.06

C92 ≥3.0 [13] 3.09 2.35 1.58 - 0.266 - -

C100 - 3.67 2.70 2.04 - 0.242 0.379 0.531

C112 - 3.31 2.53 1.73 - 0.243 0. 315 0.519

C120 - 3.74 2.97 2.04 1.58 0.244 0.372 0.576

C124 - 3.06 2.30 1.71 - 0.289 0.393 0.569

C132 - 3.59 2.60 1.93 - 0.251 0.338 -

C136 - 3.75 2.64 2.19 1.67 0.260 0.345 0.488

C140 - 3.94 3.06 2.23 1.75 0.360 0.562 0.716

C180 - 3.75 2.64 2.19 1.67 0.260 0.345 0.488 2.61 [70]

C240 - 4.18 - - - - 3.81 [71]
2.32 [72]

3.3. Cross Sections for the Large Atoms Hf, Pt, Au, Ti and At

In the context of the viewpoints (1) and (2) of the Introduction, it is appropriate
to discuss the measured EAs of the large atoms Hf(72), Pt(78), Au(79), Ti(81) and the
radioactive At (85) in an attempt to understand the meaning of the measured EAs of the Hf
and Ti atoms (the numbers within the brackets are the Zs). That is, do their EAs correspond
to electron BEs in the ground, the metastable or the excited states of the formed anions
during the collision? As seen from Table 1, the meaning of the EAs of Au, Pt and At is clear,
namely it corresponds to the ground state anionic BEs of the formed anions during the
collisions. However, for Hf and Ti the meaning lacks definitiveness.

For clarity, Figure 2 shows the TCSs for the Hf atom; a similar Figure was obtained
for the Ti atom. As seen from the Figure, it is difficult to understand any selection of the
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anionic BEs other than the ground state anionic BE as the EA of Hf. A similar argument
applies to the Ti atom. The measured EA of Hf at 0.178 eV [26], the Regge pole-calculated
SR of 0.232 eV, the RCI EA of 0.114 eV [27] and the Regge pole-calculated second excited
state anionic BE of 0.113 eV [28] are reasonably close together. The highest excited state BE
of Hf is at 0.017 eV [29]. The TCSs for Hf presented in Figure 2 demonstrate the additional
presence to the above discussed anionic BEs, a metastable TCS (green curve) and a ground
state TCS (pink curve) with anionic BEs of 0.525 eV and 1.68 eV, respectively. Indeed, here
we are faced with the problem of interpretation of what is meant by the EA.

Figure 2. Total cross sections (a.u.) for electron elastic scattering from Hf. The pink, green, orange and
purple curves represent the TCSs for the ground, metastable and the two excited states, respectively.
The dramatically sharp resonances correspond to the Hf; anionic formation during the collisions.

As indicated in the Introduction, for the Ti atom two measurements obtained its
EAs as 0.377 eV [21] and 0.075 eV [22]. The former value is close to various theoretical
calculations [23,24], including the Regge pole-calculated BE of the second excited anionic
state, namely 0.281 eV [56], see comparisons in Table 1. However, the measured value of
0.075 eV [22] and the Regge pole-calculated BE of the highest excited state of the formed Ti;
anion, 0.0664 eV are close together. We note that the Regge pole-calculated ground state
anionic BE of Ti is 2.42 eV [56], very close to that of the At atom. Clearly, the results of the
Hf and Ti atoms are difficult to interpret without a rigorous theoretical data, as discussed
under Section 3.4 dealing with the lanthanide atoms.

3.4. Cross Sections for the Lanthanide Atoms

The EA provides a stringent test of theory when the theoretical EAs are compared
with those from reliable measurements. This statement holds strongly in the case of
the lanthanide atoms. The general problem of interpretation of the measured EAs of the
lanthanide atoms has been exposed in [29], as well as elucidated through the rigorous Regge
pole method [73]. Appropriately, we begin this section by placing in perspective the existing
measurements/calculations of the EAs of the lanthanide atoms. Low-energy electron elastic
collision cross sections for the lanthanide atoms, La through Lu were first investigated
using the CAM (Regge pole) method [33]. Unfortunately, the investigation was limited
to the near threshold energy region, 0.0 ≤ E ≤ 1.0 eV and focused upon the comparison
with the existing measured and theoretical EAs and never questioned the meaning of the
EAs. The CAM calculated TCSs were found to be characterized generally by dramatically
sharp resonances whose energy positions were identified with the measured/calculated
EAs of the lanthanide atoms. The extracted EAs from the TCSs varied from a low value of
0.016 eV for Tm to a high value of 0.631 eV for atomic Pr. In that paper [33], one sees the
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effective use of the Regge Trajectories and the Im L (L is the complex angular momentum)
in analyzing and interpreting the results. Moreover, the lanthanide parameters “α” and “β”
of the potential, Equation (2) are tabulated in that paper [33].

Subsequently, when the energy range was increased from 1.0 eV to 10.0 eV, ground,
metastable and excited states anionic BEs were clearly revealed and delineated. Then, the
question persisted: do the measured EAs of the lanthanide atoms correspond to the anionic
BEs of electron attachment in the ground, metastable or excited states of the formed anions
during the collision? For atomic Eu, the resonance at E = 0.116 eV with Im L = 7.6 × 10−6

of the Figure 6 of Ref. [33] should be compared with the results of Figure 2 of Ref. [30]
reproduced here for convenience as Figure 3 (left panel). In Figure 13 of Ref. [33] depicting
the TCSs of Tm the dramatically sharp resonance at E = 0.016 eV with Im L = 3.4 × 10−5

should be viewed in the context of the recent Figure 2 of Ref. [30], also presented here as
Figure 3 (right panel).

Figure 3. Total cross sections (a.u.) for electron elastic scattering from atomic Eu (left panel) and Tm
(right panel). For Eu the pink, red and blue curves represent the TCSs for the ground, metastable
and the excited states, respectively. For Tm atom the red, green, pink and black curves represent
the TCSs for the ground, metastable and the two excited states, respectively. The dramatically sharp
resonances in both figures correspond to the Eu; and Tm; negative-ions formed during the collision.

The lanthanide and the Hf atoms provide clear cases of the ambiguous and confusing
measured and/or calculated EA values. As examples, for Eu we focus on the ground
state, pink curve with the BE value of 2.63 eV and the blue curve with the BE of 0.116 eV,
corresponding to an excited state TCS. The measured EA (0.116 eV) [3] is in outstanding
agreement with the excited state BE value above and the RCI calculated EA (0.117 eV) [36],
see Table 1 of [30]. The metastable BE value of 1.08 eV, red curve in Figure 3 (left panel)
agrees excellently with the measured EA (1.053 eV) [35]. This clearly demonstrates the
ambiguous and confusing meaning of the measured EA of Eu by Refs. [3,35]. Does the
EA of Eu correspond to the BE of electron attachment in the metastable state or in the
excited state of the formed anion during the collision? Similarly with the case of the Tm
atom, the Regge pole calculated ground and excited states BEs are, respectively, 3.36 eV
and 0.274 eV. The measured EA of Tm is 1.029 eV [37] and agrees excellently with the
Regge pole calculated metastable state BE value of 1.02 eV, green curve in the Figure 3
(right panel). Accordingly, here the meaning of the measured EA of Tm corresponds to the
BE of the metastable state. In both Eu and Tm atoms, the meaning of the measured EAs is
ambiguous and confusing as well.

A comment is appropriate here regarding the importance or unimportance of Rela-
tivistic effects in the calculation of the EAs using the Regge pole method. With a relatively
high Z of 63, but a small measured EA of 0.116 eV [3], the Eu atom provides a stringent test
of the nonrelativistic CAM method when its prediction (EA = 0.116 eV) [33] is compared

72



Atoms 2022, 10, 79

with that calculated using the MCDF-RCI (EA = 0.117 eV) [36]. The interpretation aside,
the results demonstrate the unimportance of relativistic effects in the calculation of the EA
of Eu. Indeed, the EAs calculated using structure-based theoretical methods tend to be
riddled with uncertainty and lack definitiveness for complex multi-electron systems and
fullerene molecules. For instance, relativistic effects in gold chemistry were investigated by
Wesendrup et al. [74] who performed large-scale fully Relativistic Dirac–Hartree–Fock and
MP2 calculations as well as nonrelativistic pseudopotential calculations and obtained the
EAs of 2.19 eV and 1.17 eV, respectively. These values should be contrasted with the CAM
calculated value of 2.263 eV [25] and compared with the measured EAs of Au in Table 1. Of
importance, also, is the review on relativistic effects in homogeneous gold catalysis [75].

3.5. Cross Sections for the Actinide Atoms

In [54], we investigated the low-energy electron scattering from the radioactive actinide
atoms Th, Pa, U, Np and Pu through the elastic TCSs calculations. The objective was to
delineate and identify the characteristic resonance structures, as well as to understand
and assess the reliability of the existing theoretical EAs. The recent measurement of the
EA value of Th warrants some remark. There is no reason whatsoever for the selective
comparison of data by the experiment; there are calculated EAs in the literature [36,76].
Particularly interesting in the study above [54], is the finding for the first time that the TCSs
for atomic Pu exhibited fullerene molecular behavior near threshold through the TCS of
the highest excited state, while maintaining the atomic character through the ground state
TCS. Also, the first appearance of the near threshold deep R–T minimum in the actinide
TCSs was first identified in the TCSs of atomic Pu, see Figure 5 of [54].

Figure 4, taken from Ref. [54] with a slight modification due to recalculation presents
the TCSs for atomic Th (top figure) and U (bottom figure). They typify the TCSs of the
complex multi-electron actinide atoms. Importantly, they are characterized by dramatically
sharp resonances representing negative-ion formation in the ground, metastable and excited
anionic states, R–T minima and SRs. In both Figures, the red curves represent electron
attachment in the ground states while the pink curves denote the highest excited states. For
Th, Figure 4 (top) the measured and the calculated EA values are 0.608 eV and 0.599 eV [18],
respectively. These values are close to the Regge pole-calculated anionic BE of the second
excited state, pink curve (0.549 eV). Close to this value there is a SR at 0.61 eV defined by
the blue curve; the ground state anionic BE is at 3.09 eV. Not shown is the highest excited
state curve with anionic BE value of 0.149 eV. Importantly, here we note the clear atomic
behavior exhibited by the Th TCSs (pink curve) as expected [16]. However, the pink curve
in the U TCSs shows strong fullerene behavior [16]. The EAs of U have been measured
very recently to be 0.315 eV [19] and 0.309 eV [20] as well as calculated to be 0.232 eV [20].
These values are close to the Regge pole anionic BE value of 0.220 eV for the highest excited
state, see Table 3 and Ref. [54] for additional comparisons. Here we do not understand the
inconsistency in the meaning of the EAs in Figures 1 and 4, namely as corresponding to the
BEs of electron attachment in the ground and the excited anionic states, respectively.

Of particular interest and importance here are the contrasted TCSs for atomic Am and
Lr in [77]. In that paper, the polarization-induced TCS (brown curve) of Am exhibited a
deep R–T minimum near the threshold. This brown curve behaves similarly to that in the
TCSs of Pu, while in Lr it has already flipped over to a SR. Where does the actual flipping
take place? This is the subject of Section 3.7. To understand the measurement [38], we
need the previously unavailable data for the Cf, Fm and Md atoms to determine where the
actual flipping takes place. There are no measured EAs for the actinide atoms beyond U to
compare our BEs. However, theoretical EAs are available [36,76,78,79] and these have been
compared with our data for the actinide atoms [54,77,80], see also Table 3. For atomic Lr
the EA values of 0.310 eV [78] and 0.295 eV [36] are very close to the Regge pole BE of the
highest excited state, namely 0.321 eV. These values should guide the reliable measurement
of the EA of Lr. We have brought together the data for most of the actinide atoms in Table 3
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mainly for convenience of analysis. Hitherto fore, they were scattered all over the literature.
Importantly, the recent data from [80] are crucial for understanding Section 3.7.

Figure 4. Total cross sections (TCSs) for atomic Th (top figure) and U (bottom figure) Figures. In this
paper the relevant curves in both TCSs are the ground states (red curves) and the excited states (pink
curves). The dramatically sharp resonances in both Figures with attendant BEs represent electron
attachment. These BE values are intended to guide the eye; the complete values are presented in
Table 3. There are also shape resonances next to these sharp peaks.

Table 3. Negative ion binding energies (BEs) in eV and energy positions of ground-state Ramsauer–
Townsend (R-T) minima, in eV obtained from the TCSs for the actinide atoms from Pu through Lr.
Additionally, included for comparison are the data for Au, Th and U. GRS, MS-n and EXT-n (n = 1,
2) represent ground, metastable and excited states, respectively. The experimental EAs, EXPT and
the theoretical EAs, including RCI [36] and GW [76] are also presented. The numbers in the square
brackets are the references.

System/
Z

BEs
GRS

BEs
MS-1

BEs
MS-2

EAs
EXPT

BEs
EXT-1

BEs
EXT-2

R-T
GRS

BEs/EAs
Theory

EAs
[36]

EAs
[76]

Au 79 2.26 0.832 - 2.309 [4] 0.326 - 2.24 2.262
[25] - -

Th 90 3.09 1.36 0.905 0.608
[18] 0.149 0.549 3.10 0.599

[18] 0.368 1.17
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Table 3. Cont.

System/
Z

BEs
GRS

BEs
MS-1

BEs
MS-2

EAs
EXPT

BEs
EXT-1

BEs
EXT-2

R-T
GRS

BEs/EAs
Theory

EAs
[36]

EAs
[76]

U 92 3.03 1.44 -

0.315
[19]
0.309
[20]

0.220 0.507 3.01

0.232
[20]
0.175
[36]

0.373 0.53

Pu 94 3.25 1.57 1.22 N/A 0.225 0.527 3.26 - 0.085 −0.503
−0.276

Am 95 3.25 1.58 0.968 N/A 0.243 0.619 3.27 - 0.076 0.103
0.142

Bk 97 3.55 1.73 0.997 N/A 0.267 0.505 3.53 - 0.031 −0.503
−0.276

Cf 98 3.32 1.70 0.955 n/A 0.272 0.577 3.34 - 0.018
0.010

−0.777
−1.013

Es 99 3.42 1.66 0.948 N/A 0.272 0.642 3.44 - 0.002 0.103
0.142

Fm 100 3.47 1.79 1.02 N/A 0.268 0.623 3.49 - - 0.597
0.354

Md 101 3.77 1.81 0.996 N/A 0.259 0.700 3.78 - 1.224
0.978

No 102 3.83 1.92 1.03 N/A 0.292 0.705 3.85 - - −2.302
−2.325

Lr 103 3.88 1.92 1.10 N/A 0.321 0.649 3.90

0.310
[78]
0.160
[78]
0.476
[79]

0.465
0.295

−0.212
−0.313

It is now clear why many existing experimental measurements and sophisticated
theoretical calculations have considered the anionic BEs of the stable metastable and/or
excited negative ion formation to correspond to the EAs of the considered lanthanide and
actinide atoms. This is contrary to the usual meaning of the EAs found in the standard
measurement of the EAs of such complex systems as atomic Au, Pt and the radioactive At,
as well as of the fullerene molecules. In these systems, the EAs correspond to the ground
state BEs of the formed negative ions. The negative ions obtained here are also important
in catalysis.

3.6. Fullerene Negative-Ion Catalysis
3.6.1. Overview

The extensive and crucial applications of fullerenes in science, nanotechnology and
industrial research, as well as in astrophysics have motivated this study. The acceptor
material used particularly in modern organic solar cells is usually a fullerene derivative [81].
Understanding the stability and degradation mechanism of organic solar cells is essential
before their commercialization. Toward this end, designing polymers and fullerenes with
larger electron affinity (EA) has been proposed [82]. This motivated our first ever study of
the large fullerenes [83], as well as the present study to search for fullerenes with larger
EAs. The rich long-lived metastable resonances that characterize the Regge pole-calculated
large fullerenes TCSs, presented for the first time in [83], support the important conclusion
that the experimentally detected fullerene isomers correspond to the metastable states [84]
and further confirm the need to identify and delineate the resonance structures in gentle
electron scattering.
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The fundamental mechanism underlying atomic negative-ion catalysis was proposed
by our group in the context of muon catalyzed nuclear fusion [85,86]. The mechanism
involves anionic molecular complex formation in the transition state (TS), with the atomic
negative-ion breaking the hydrogen bond strength. The mechanism has been demonstrated
in the synthesis of H2O2 from H2O catalyzed using the Au; and Pd; anions to understand
the experiments of Hutchings and collaborators [87–89], in the catalysis of light, intermedi-
ate and heavy water to the corresponding peroxides [90] and in the oxidation of methane
to methanol without the CO2 emission [91]. More recently, the experiment [89] has used
the less expensive atomic Sn for possible water purification in the developing world. In
this context, we explored [92] the effectiveness of the fullerene anions C20; to C136 ; in the
catalysis of water oxidation to peroxide and water synthesis from H2 and O2 hoping to find
inexpensive effective negative-ion catalysts.

3.6.2. Results

The electron elastic TCSs for the typical large fullerenes C100, C120 and C140 demon-
strate negative-ion formation [92–94] with significant differences among their EAs, namely
3.67 eV, 3.74 eV and 3.94 eV, respectively, see also Table 2. It is now clear that the ground
state anionic BEs located at the absolute R–T minima of the ground state TCSs yield the
challenging to calculate theoretically EAs. Indeed, the R–T minimum provides an excellent
environment that is conducive to negative-ion catalysis and the creation of new molecules.
The underlying physics in the fullerene TCSs has already been explained in [93,94]. The
obtained results are consistent with the observation that low-energy electron-fullerene
interactions are characterized by rich resonance structures [95,96] and that the experimen-
tally detected fullerene isomers correspond to the metastable TCSs [84]. They also support
the conclusion that the EAs of fullerene molecules are relatively large. The results of [83]
including those presented in Table 2 should satisfy part of the requirement to increase
fullerene acceptor resistance to degradation by the photo-oxidation mechanism through the
use in organic solar cells of fullerenes with high EAs [82]. The extracted EAs from the TCSs
could also be used to construct the widely used simple model potentials for the fullerene
shells, including endohedral fullerenes [97–105], as well as in the study of the stability of
An@C40(An = Th, —–, Md) [106]. Notably, the EAs are at the hearts of many of the model
potentials. Indeed, the rich resonance structures in the fullerenes TCSs and their large Eas
explain the tendency of fullerenes to form compounds with electron-donor anions and their
vast applications as well.

The utility of the generated fullerene anions has been demonstrated in the catalysis
of water oxidation to peroxide and water synthesis from H2 and O2 using the anionic
fullerene catalysts C20

− to C136
− [92]. Figure 5 taken from [92], demonstrates the Den-

sity Functional Theory (DFT) calculated TS energy barriers for both processes. DFT and
dispersion corrected DFT approaches have been employed for the TS evaluations. Geome-
try optimization of the structural molecular conformation utilized the gradient-corrected
Perdew-Burke-Ernzerhof parameterizations [107] of exchange-correlation as implemented
in DMol3 [108]. DFT calculated energy barriers reduction in the oxidation of H2O to H2O2
catalyzed using the anionic fullerene catalysts C20

− to C136
− are shown in the Figure 5 (left

panel). The results in Figure 5 (right panel), also from [92] are for the water synthesis from
H2 and O2 catalyzed using the anionic fullerene catalysts C20

− to C136
− as well. For both

water oxidation and water synthesis DFT TS calculations found the C52; and C60
− anions

to be numerically stable and the C36
− and C100

− anions to increase the energy barriers the
most in the water oxidation to H2O2 and water synthesis using H2 and O2, respectively.
The C136

− anion has proved to be the most effective in reducing the energy barrier sig-
nificantly when catalyzing both water oxidation to peroxide and synthesis from H2 and
O2. Importantly, a single large fullerene such as the C136, or even the C74 could replace
the Au, Pd and Sn atoms in the catalysis of H2O2 from H2O in the experiments [87–89]
acting as a multiple-functionalized catalyst. These fullerenes have their metastable Bes
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close to the EAs of the atoms used in the experiments. Thus, an inexpensive dynamic water
purification system for the developing world could be realized [89].

  

Figure 5. Transition state energy barriers of anionic fullerenes sizes C20
− to C136

− for catalyzing
water oxidation to peroxide (left panel) and catalyzing hydrogen and oxygen synthesis to water
(right panel).

Indeed, the utility of the fullerene molecular anions has been demonstrated in the
catalysis of water oxidation to peroxide and water synthesis from H2 and O2 using the
catalysts C20

− to C136
−. DFT TS calculations found C52

− and C60
− anions numerically

stable for both. The C136
− anion has proved to be the most effective in reducing the energy

barrier significantly when catalyzing both water oxidation to peroxide and synthesis.

3.7. Atomic Structure and Dynamics of Bk and Cf: Experiment Versus Theory

The recent experiment [38] using nanogram material identified a weak spin-orbit-
coupling in atomic Bk while a jj coupling scheme described atomic Cf. It concluded that
these observations strengthen Cf as a transitional element in the actinide series. Here the
Regge pole-calculated low-energy electron elastic TCSs for Bk and Cf atoms are used as
novel validation of the experimental observation through the sensitivity of R–T minima
and SRs to the electronic structure of these atoms.

In Figure 6, we present the Regge pole-calculated electron elastic TCSs for the Bk (left
panel) and Cf (right panel) actinide atoms. As seen the TCSs are characterized generally
by dramatically sharp resonances, representing ground, metastable and excited states
negative-ion formation, SRs (broad peaks) and R–T minima. Moreover, the highest excited
states TCSs (green curves) exhibit fullerene molecular behavior [16]. The energy positions
of the sharp resonances, well delineated correspond to the BEs of the formed negative ions
during the electron collisions with the Bk and Cf atoms. Each figure consists of BEs of the
ground (red curve), metastable (blue and orange curves) and excited (green and brown
curves) states TCSs. At first glance these TCSs appear a little complicated. However, they
can be readily understood if each curve is discussed separately, see also [93,94] for example.
The R–T minima manifest the effects of the polarization interaction [62], while the SRs
convey the trapping effect of the centrifugal potential. The underlying physics has already
been discussed in [93,94]; it will not be repeated here.
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Figure 6. Total cross sections (a.u.) for electron elastic scattering from atomic Bk (left panel) and
Cf (right panel). For both Bk and Cf the red and the blue and orange curves represent TCSs for the
ground state and the metastable states, respectively. The green and the brown curves denote TCSs for
the excited states. The orange curve with a deep R–T minimum in the Bk TCSs is the polarization-
induced TCS due to size. In the Cf TCSs the orange curve has flipped over to a pronounced shape
resonance very close to threshold. The dramatically sharp resonances in both figures correspond to
the Bk; and Cf; anions formed during the collisions. The labeled BEs are intended to guide the eye;
the complete values are presented in Table 3 for clarity.

For our objective here, we focus mainly on the polarization-induced TCSs (orange
curves) and the ground state TCSs in both Figs. 3.7. For a better understanding and
appreciation of the results, it is appropriate to place in perspective the polarization-induced
TCSs that are characterized by a deep R–T minimum near threshold in the TCSs of Bk and
a pronounced SR very close to threshold in the Cf TCSs. The polarization-induced TCS
with the deep R–T minimum near threshold first appeared in the actinides TCSs through
the atomic Pu TCSs [54]. It was attributed to the size effect and the first 6d-orbital collapse
impacting the polarization interaction significantly. The first 6d-collapse occurred in the
transition Np[Rn]7s25f46d to Pu[Rn]7s25f6. This caused the ground state anionic BE of the
Np atom to increase from 3.06 eV to 3.25 eV in Pu. Moreover, the anionic BE of the first
metastable state increased from 1.47 eV in Np to 1.57 eV in Pu, see also Table 1 of Ref. [54].
It is the increase in the ground state energy space that facilitated the first appearance of the
polarization-induced metastable TCS with the deep R–T minimum near threshold to appear
in the Pu TCSs. This R–T minimum in the Pu TCSs continued through the Bk TCSs [77].
Indeed, the increase in the number of polarization-induced TCSs with size has already been
clearly demonstrated in the fullerene molecular TCSs [83,92], see also Figure 1 of [54].

The second 6d-orbital collapse occurs in the transition Cm[Rn]7s25f76d to Bk[Rn]7s25f9.
To facilitate the discussion, we have included for convenience Table 4; the data have been
taken from [54,77,80]. Table 4 shows that the ground state anionic BE increased significantly
from 3.32 eV in Cm to 3.55 eV in Bk, thereby widening the energy space for the flip over
to take place. Subsequently, the ground state anionic BE dropped from 3.55 eV in Bk to
3.32 eV in Cf. Similarly, for the first metastable states the anionic BEs increased from 1.57 eV
in Cm to 1.73 eV in Bk, while it decreased to 1.70 eV in Cf. In Table 4, it is informative
to look at mainly the ground state energy values. Briefly, in Bk the ground state anionic
BE is 3.55 eV; it decreased to 3.32 eV in Cf after the R–T minimum flipped over to a SR
very close to threshold. This is indicative of the smaller energy space required by the SR
compared to the R–T minimum. On the other hand, in Pu the ground state anionic BE
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is 3.25 eV having increased from 3.06 eV in Np to accommodate the first appearance of
the polarization-induced TCS with the deep R–T minimum in Pu. Here we also see the
appearance of the 1.22 eV BE as MS-2; the Figures are also quite informative.

Table 4. Negative-ion binding energies (BEs), in eV extracted from the TCSs for the actinide atoms Np
through Fm are taken from [54,77,80]. GRS, MS-n and EX-n (n = 1, 2) represent respectively ground,
metastable and excited anionic states. The experimental EAs, EXPT, denoted by N/A are unavailable.

Z Atom
BEs
GRS

EAs
EXPT

BEs
MS-1

BEs
MS-2

BEs
EX-2

BEs
EX-1

93 Np 3.06 N/A 1.47 - 0.521 0.248

94 Pu 3.25 N/A 1.57 1.22 0.527 0.225

95 Am 3.25 N/A 1.58 0.968 0.619 0.243

96 Cm 3.32 N/A 1.57 1.10 0.519 0.258

97 Bk 3.55 N/A 1.73 0.997 0.505 0.267

98 Cf 3.32 N/A 1.70 0.955 0.577 0.272

99 Es 3.42 N/A 1.66 0.948 0.642 0.272

100 Fm 3.47 N/A 1.79 1.02 0.623 0.268

The flip over of the near threshold Ramsauer–Townsend minimum from the Bk
polarization-induced metastable TCS to a pronounced shape resonance very close to thresh-
old in the Cf metastable TCS provides a sensitive probe of the electronic structure and
dynamics of these atoms, thereby permitting the first ever use of the R–T minimum and
the SR as novel confirmation of Cf as a transitional element in the actinide series, consistent
with the experimental observation [38]. Indeed, the rigorous Regge pole method requires
no assistance whatsoever from either experiments or any other theory for the remarkable
feat, namely of probing reliably the electronic structure of these complicated actinide atoms.

4. Summary and Conclusions

The Regge pole-calculated low-energy electron elastic total cross sections (TCSs) of
complex heavy multi-electron systems are characterized generally by dramatically sharp
resonances manifesting negative-ion formation. These yield directly the anionic binding
energies (BEs), the shape resonances (SRs) and the Ramsauer–Townsend(R-T) minima.
From the TCSs unambiguous and reliable ground, metastable and excited states negative-
ion BEs of the formed anions during the collisions are extracted and compared with the
measured and/or calculated electron affinities (EAs) of the atoms and fullerene molecules.
The novelty and generality of the Regge pole approach is in the extraction of rigorous
negative-ion BEs from the TCSs, without any assistance whatsoever from either experiment
or any other theory. The EA provides a stringent test of theoretical calculations when their
results are compared with those from reliable measurements. For ground states collisions,
the Regge pole-calculated negative ion BEs correspond to the challenging to calculate
theoretically EAs, yielding outstanding agreement with the standard measured EAs for
Au, Pt and the highly radioactive At atoms as well as for the C60 and C70 fullerenes. For
C20 through to C92 fullerenes our Regge pole-calculated ground-state anionic BEs matched
in general excellently the measured EAs. These results give great credence to the power
and ability of the Regge pole method to produce unambiguous and reliable ground state
anionic BEs of complex heavy systems through the TCSs calculation.

The meaning of the measured EAs of multi-electron atoms and fullerene molecules
has also been considered here within the context of two prevailing viewpoints:

(1) The first considers the EA to correspond to the electron BE in the ground state of the
formed negative ion during collision; it is exemplified by the measured EAs of Au, Pt
and At atoms and the fullerene molecules from C20 through to C92.
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(2) The second view identifies the measured EA with the BE of electron attachment in
an excited state of the formed anion. The measured EAs of Ti, Hf, lanthanide and
actinide atoms provide representative examples of this viewpoint.

This experimental breakthrough [38], including the recent first ever measurements of
the EAs of the highly radioactive element At [9], as well as the Th [18] and U [19,20] atoms
represent significant advances in the measurements of the challenging highly radioactive
elements. In addition, more such measurements of other radioactive atoms can be expected
in the near future. Consequently, reliable theoretical predictions are essential for a funda-
mental understanding of the underlying physics. Here we have presented an entirely new
approach to the validation of the experimental observation in [38], namely through the
behavior of the R–T minima and the SRs in the metastable electron elastic TCSs of atomic
Bk and Cf. Finally, with the available ground, metastable and excited negative-ion BEs
calculated here for the multi-electron atoms and the fullerene molecules, sophisticated theo-
retical methods such as the Dirac R-matrix, Coupled-Cluster method, MCDHF, MCDF-RCI,
etc. can now be used to generate reliable EAs, wave functions and fine-structure energies.
Indeed, for unambiguous and definitive meaning of the EAs of multi-electron atoms and
the fullerene molecules our anionic BEs can be used in sophisticated theoretical methods to
carry out careful investigations such as has been done in [15] for the At atom.
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Perspective

Probing C60 Fullerenes from within Using Free Electron Lasers

Nora Berrah

Physics Department, University of Connecticut, Storrs, CT 06268, USA; nora.berrah@uconn.edu

Abstract: Fullerenes, such as C60, are ideal systems to investigate energy redistribution following
substantial excitation. Ultra-short and ultra-intense free electron lasers (FELs) have allowed molecular
research in a new photon energy regime. FELs have allowed the study of the response of fullerenes
to X-rays, which includes femtosecond multi-photon processes, as well as time-resolved ionization
and fragmentation dynamics. This perspective: (1) provides a general introduction relevant to
C60 research using photon sources, (2) reports on two specific X-ray FEL-based photoionization
investigations of C60, at two different FEL fluences, one static and one time-resolved, and (3) offers a
brief analysis and recommendations for future research.

Keywords: fullerenes; C60; photoionization; fragmentation; free electron laser; femtosecond; dynamics;
pump probe

1. Introduction

The behavior of C60 in relation to ionizing radiation is important because it sheds light
on the fundamental many-body problem due to the numerous nuclei–electron responses
exhibited in a large molecule. Investigating C60 using different light sources may reveal
responses, which may impact other research fields. We thus studied C60 using short wave-
length lasers, and in particular, with free electron lasers (FELs), which are still relatively new
light sources compared to table-top lasers or synchrotron facilities. FELs have opened up
new research opportunities because they deliver photons in a new energy regime for many
scientific fields, from physics to chemistry, as well as to matter under extreme conditions
and biology [1]. These VUV/X-ray lasers are accelerator-based tools, which are a hybrid
between synchrotron radiation facilities and typical table-top lasers. FELs produce high
brightness radiation with typical femtosecond (fs) pulse duration [2] and have been avail-
able since 2005, with the first VUV FLASH FEL at DESY in Germany [3]. There are currently
several X-ray FELs around the world in addition to XUV FELs. The first X-ray FEL, the
Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory [1,2], was
commissioned and made available to scientists in 2009. It was used to carry out the static
and time-resolved work reported here. The LCLS so far has a repetition rate up to 120 Hz,
including a fs time scale where the pulse duration can be as short as 2–3 fs and as long as
500 fs [1,2]. Since 2017, the LCLS FEL also provides pulses as short as ~280 attoseconds (as)
in the soft X-ray regime, which is an unprecedented technical progress that already impacts
current X-ray as research [4].

X-ray FELs have opened up the possibility to investigate the ultra-fast response of
matter to intense femtosecond X-ray pulses as well as to their pulse duration. The initial
research on atoms and small molecules uncovered new aspects of this response, such as
rapid sequences of inner-shell photoionization and the Auger–Meitner decay [5,6]. More
recently, fullerenes were investigated with FELs because they bridge the gap between
molecules and nanoparticles and are model systems for studying the dynamical behavior
of large systems when exposed to intense, X-ray short pulses. Fullerenes have displayed
molecular [7] and bulk [8] behavior and have proven to be an excellent testing ground
for experiments and theories [9]. The behavior of C60 in relation to ionizing radiation
is intriguing due to the numerous nuclei–electron responses exhibited, since it consists
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of a cage of 60 atoms with 240 valence electrons [10]. The interaction of such a large
system is key to investigating many-body problems induced on the system’s electrons by
the photon electric field. The photon interaction with the electronic fullerene’s degrees
of freedom results in electronic dynamics, which leads to nuclei dynamics, since they
are inter-connected. Thus, the investigation of the interaction of C60 with photons has
been carried out extensively, theoretically and experimentally [11], to advance, in some
cases, the quantitative understanding of the electronic and nuclear structure of these
large molecules.

The photon used by the scientific community to study C60 varied from IR to X-rays,
and some studies were static, while others were time dependent, in order to under-
stand the ultra-fast dynamics that arises in these systems subsequent to photoabsorption.
The time-resolved experiments and calculation of the interaction of C60 with photons have
the ultimate goal to control ultra-fast molecular dynamics and understand the chemi-
cal transformation at the fs timescale. These studies include probing the multi-electron
interactions in fullerenes as well as between the electrons and the carbon nuclei [12].

Non-linear physics and strong-field table-top laser research with C60 was extensively
studied, and the photoionization mechanisms were found to be wavelength and pulse dura-
tion dependent [13]. The single-active-electron (SAE) method was used to calculate the ion-
ization of C60 in intense, 4 × 1013 W/cm2 laser pulses with durations between 27 and 70 fs
and for a wide range of wavelengths ranging from 395 to 1800 nm [14], which agreed with
the measurements. For a long I.R. wavelength of 1800 nm and 70 fs pulse duration, the SAE
picture predicts “over the barrier” ionization for a peak intensity of 1015 W/cm2, leading
to non-fragmented parent molecule but highly charged C60

q+ (q = 1–12) [12] ions. At a
short wavelength of 355 nm, the excitation of C60 with 10 ns pulses led to fragmentation by
delayed ionization and C2 emission as well as other fragments, even for small intensities of
about 2 × 106 W/cm2 [15].

We investigated and we report here on two studies regarding the X-ray ionization
and fragmentation of C60 under high- and mid-fluence X-ray femtosecond pulses from the
LCLS. One study is static, and the other one is time resolved. The results of the static study
demonstrated that intense X-ray FEL multiply ionizes the parent molecules before breaking
into molecular ions as well as into highly charged atomic C states. This work contributed
toward understanding the radiation damage, and in particular, electronic damage, due
to X-ray radiation, which is essential to understand for the progress of bio-molecular
imaging. The result of the time-resolved study gave new insights into the dynamics
of the C60 fragmentation subsequent to mid-fluence absorption of the X-ray photon. It
demonstrated the importance of chemical effects and charge transfer in stabilizing the
molecule against fragmentation over several hundred femtoseconds after the X-ray pump
pulse. We conclude this article by identifying and providing recommendations for future
research opportunities using as pump-probe techniques.

2. Materials and Methods

The measurement of the ions resulting from the ionization and fragmentation dynam-
ics of C60 under X-ray exposure was achieved by using a magnetic bottle spectrometer [16]
at the LCLS AMO hutch. The method is described elsewhere [16]; thus, our description here
is brief. The C60 sample was produced via a collimated molecular beam using an evapora-
tive oven introducing the gas phase C60 into the vacuum chamber. The oven was resistively
heated and had a small nozzle and skimmer through which the C60 molecules entered the
interaction region. The oven was heated to ~700–800 K, and a liquid-nitrogen-cooled dump
opposite the skimmer captured the target after it passed through the interaction region.
X-ray optics focused the incoming X-ray pulses to a peak focal intensity of ~ 1015 W cm–2.
The magnetic bottle spectrometer consisted of a 2 m long ion drift path, providing high ion
mass-to-charge and KE resolution. The pulse energies of the two beams, centroid photon
energy and pulse duration were recorded and used as statistical filters in the analysis. The
interaction region, defined by the intersection of the focused X-ray beam and the molecular
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beam, covered a volume around the focus with an inhomogeneous X-ray spatial fluence
distribution. Therefore, the measured data contain contributions from a wide range of
fluence (volume integrated signal), with peak X-ray fluence only at the center of the focus.
To model the interaction region, the X-ray spatial fluence distribution was calibrated using
the ion yields from Ar. This spatial fluence distribution was then applied in the modeling
of the X-ray interaction with C60 to account for low- and high-fluence regions, allowing
quantitative comparison of theoretical predictions to the experimental data.

3. Results

3.1. Photoionization of C60 with High-Fluence X-ray FEL Pulses

One of the scientific motivations to study C60 with fs X-ray FELs is because these
sources target atomic orbitals instead of molecular orbitals, and they allow simple mea-
surements of the response of inner-shell electrons (localized with each atom forming the
molecule) compared to the complex response of the molecular orbitals composed of all
valence electrons. Probing inner-shell electrons with short wavelengths allows an efficient
probing of physical and chemical phenomena from within, since it is an inside-out ioniza-
tion. Inner-shell photoionization was carried out with synchrotron radiation [17], but the
difference between these two light sources is that FELs have a fs time structure and are
super intense [18] compared to synchrotrons. A synchrotron pulse on average has about
104 photons while FELs have about 1012, allowing the investigation of non-linear processes
as well as time-resolved photoionization and fragmentation of the molecules [19].

Another motivation to choose to carry out the photoionization of C60 with intense
FELs was to understand the radiation damage of large systems because this finding could
contribute to the understanding of biomolecular imaging using X-ray scattering techniques,
which do not provide detailed spectroscopic information. C60 is considered a benchmark
molecule because it consists of chemically bonded carbon atoms with representative bond
lengths and damage processes to bio-molecules [20]. Although FELs provide the incident
brightness needed to achieve diffraction-limited atomic resolution experiments, they, nev-
ertheless, induce possible electronic and structural damage, altering the sample despite the
use of short pulse durations [21].

We carried out an experimental and theoretical investigation of C60 dynamics with
intense fs X-rays to provide a spectroscopic study that offers either a quantitative or qual-
itative understanding of molecular dynamics. To understand the effects of increased
per-atom fluence dose in the photon–molecule interaction, we used the large photoabsorp-
tion cross-section of carbon 1 s electrons. We ionized C60 with 485 eV photon energy to
reach conditions in which each atom in a C60 molecule in the X-ray focus absorbs multiple
photons. The study was performed with three pulse durations (4 fs, 60 fs, 90 fs) to ascertain
the effect of the pulse duration. The core ionization induces the Auger–Meitner process,
resulting in many photo- and Auger–Meitner electrons due to the cyclic multiphoton ioniza-
tion. This process leads to secondary ionization of C60, and it fragments ions by the photo-
and Auger–Meitner electrons, which are found to be weak in isolated small molecules
and absent in atoms. These effects were found, however, to be very significant for the
ionization and fragmentation of C60 under high photon dose rate conditions and had to
be incorporated in the model calculation to account for the experimental data. The C60
molecule charges up to C60

8+, based on our observation, and because of the short C–C
bond lengths, it fragments via Coulomb repulsion into molecular and C ion charge states
distribution from C+ to C6+ at 90 fs pulse duration. At a shorter pulse duration, 4 fs, the
higher charge state obtained is only C5+, since the pulse is shorter, giving less multi-cyclic
photoionization and Auger–Meitner decay. Our investigation focused on the production of
charged atomic C states and not on the molecular fragments.

We show in Figure 1 some of the multi-ionized parent C60 as well as its fragmentation
products, such as the molecular charged carbon chains, compared with the model [22]. Not
all fragments are shown or taken into consideration in the calculation here; thus, the sum
over all fractional fragmentation ion yields is not unity. Furthermore, we do not measure
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the formation of neutral fragments in our experiment. As can be seen, there is not an
agreement between the experimental molecular data and the model, which was tailored for
the formation of charged atomic C states. The calculation is based on a model that follows
both electronic and ionic dynamics in space and time, where the atoms/ions are treated
as classical particles using Newtonian mechanics, but the rate equations and the cross
sections are introduced quantum mechanically. The charges interact via Coulomb forces,
and a non-relativistic equation of motion is used [22]. However, the molecular effects were
not included, which is the reason for the discrepancy between the measurements and the
calculation for the molecular fragment shown in Figure 1. Nonetheless, in the case of atomic
carbon charge states, this model, which describes the charged particles behaving as if they
were classical particles, agrees well with the experimental data, as shown in Figure 2.

Figure 1. Sequential multi-photon ionization of C60 displaying molecular ion fragments. The photon
energy was 485 eV, the pulse duration was 90 fs, and the pulse energy was 0.61 mJ.

Figure 2. Charged atomic C state distribution measured with pulse duration of 90 fs and 900 μJ.
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Figure 2 depicts the comparison between the experimental data and the model of the
atomic Cn+ (n = 1–6) ion charge states generated after the Coulomb explosion of C60

8+. As
can be seen, the pulse intensity allowed the formation of fully stripped C ions with 90 fs
pulse duration. The model initially predicted more abundant charge states; however, the
strong recombination of electrons with the C ions after the pulse ends led to the observed
ion yield results [22].

In summary, the static experimental and theoretical investigation of C60 with intense
pulses resulted in demonstrating that an intense X-ray FEL multiply ionizes the parent
molecules before breaking into molecular ions as well as into highly charged atomic C
states. We learned that, in the case of charged atomic C, secondary ionization (collisional
ionization by trapped electrons) and recombination of electrons with C ion fragments were
extremely important to the interaction of C60 with intense photons because the interaction
created a microplasma that allowed high kinetic energy electrons to also ionize the C60
atomic fragments. The calculation for the charged atomic C states will not have agreed
with the measurement if it did not include these effects. These effects were not sufficient
for the case of the molecular fragment ions, which was not the focus of our investigation.
Our work with intense X-ray pulses also contributed a detailed understanding of electronic
damage (photoelectron, Auger–Meitner electrons) due to X-ray radiation, which is essential
for the progress of bio-molecular imaging [22].

3.2. Time-Resolved Photoionization of C60 with Mid-Fluence X-ray FEL Pulses

The instrumental advances that provided the generation of pairs of synchronized
femtosecond X-ray FEL pulses [23] has made it possible to carry out time-resolved studies
enabling tracking, probing and ultimately understanding the time evolution of X-ray-
induced photo processes. We thus extended our static investigation of C60 by carrying out a
time-resolved experimental and theoretical investigation of its dynamics with mid-fluence
fs X-rays. Specifically, we examined the role of chemical effects, such as chemical bonds
and charge transfer, on the fragmentation following multiple ionization of the molecules.
The X-ray pump-probe investigations enabled probing charge and nuclear dynamics after
inner-shell photoabsorption. In this mid-fluence X-ray multiphoton regime, like in the
previous intense case, there is a high degree of ionization, challenging the time-resolved
theoretical work because of the response of a large number of degrees of freedom and the
formation of highly excited states.

We performed X-ray pump/X-ray probe measurements [23] in which the X-ray pump
pulse with 640 eV photons from the LCLS enabled K-shell ionization of the carbon atoms
and induced a substantial degree of ionization. We then used an X-ray probe pulse to
observe the dynamics initiated by the pump pulse, by detecting molecular and atomic frag-
ment ions. The time evolution of the observed fragment ions was interpreted by numerical
simulations. The ion fragments were detected with an ion time-of-flight spectrometer [22],
which recorded the evolution of C60 into fragment ions. The time delays between the pump
and probe pulses were between 25 and 925 fs [23]. The pulse duration of the first and second
pulses was 20 fs and 10 fs, respectively. The measured total energy was 0.77 +/− 0.01 mJ,
while the estimated energy of the two pulses was 45% for the pump (peak intensity of
4 × 1015 W/cm2) and 55% for the probe pulse. The theoretical modeling employed a
molecular-dynamics-based simulation tool with recent additions to include the treatment
of chemical bonds via classical force fields [22] and valence-electron charge transfer [24].
Under the current experimental conditions, multiphoton ionization and Auger–Meitner
decay lead to multiply charged C60 molecules, stable up to C60

13+, which break up into
atomic and molecular fragments.

The examination of the charged atomic C fragments demonstrated a time-delay de-
pendence to characterize the molecular time evolution. Figure 3 compares the experimental
and theoretical atomic ion yields for C1+ to C4+ as a function of pulse delay, showing a
qualitative good agreement between the experiment and modeling regarding only the
dynamical behavior, not the absolute values of the yield of the charged atomic C states. As
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can be seen, for both the measurements and the calculations, the behavior of the C+ ion
yield changes little as a function of time delay between 25 and 925 fs. However, the ion
yield behavior for C2+ - C4+ increases steadily over a time-delay range of approximately
600 fs; then, a plateau is observed at a longer time delay.

Figure 3. Comparison between experiment and modeling of the time-resolved ionization and
fragmentation dynamics of C60 displaying charged atomic C fragments. The top panels show the
measurements while the bottom panels show the calculations. Panels (a,e) show the C1+; (b,f) show
the C2+; (c,g) show the C3+; and (d,h) show the C4+ fragment ions. See text for details.

Our analysis of the data guided by the calculation allowed us to understand the
real-time evolution of the parent fragments after the pump pulse. Specifically, we found
out that a substantial fraction of the ejected fragments, subsequent to the ionization of C60,

are neutral carbon atoms. We calculated that beyond about 300 fs, there is an even larger
number of C neutral than C+ ions. This modeling allowed us to deduce that the probe pulse
generates C2+ predominantly through the ionization of neutral C by a photoionization and
Auger–Meitner decay (P-A) sequence, while C3+ is created similarly after ionization of C1+

by a P-A sequence. C4+ is formed from neutral C via two P-A sequences or from C1+ by a
P-A sequence and a valence ionization or secondary ionization. Based on the measurement
and modeling, we concluded that the production of C2+, C3+ and C4+ is primarily due to
the ionization of C/C1+ fragments by the probe pulse.

Our modeling demonstrated that chemical bonds and valence charge transfer are
important in the photoionization of C60, since we found no time-delay dependence in
the yield of the C2+, C3+ and C4+ ions without inclusion of such chemical effects. We
found that the parent ion C60

13+ does not undergo instantaneous fragmentation because
it is delayed, as shown in Figure 3. The fragmentation is delayed relative to the pump
pulse due to the still existing chemical bonds because it takes time for the 60-atom system
to break up into smaller fragments, most of which exist only transiently for several tens
of femtoseconds. In addition, during this structural transformation, it takes additional
time for those fragments to eject neutral and singly charged atomic ion fragments. We
show the impact of the chemical effects in Figure 4 (top panel) by plotting the maximum
atomic displacement for the parent ion C60

13+ based on MD simulations, for two situations:
(1) chemical phenomena, such as bonding and charge transfer, are removed; (2) the full
model that includes both chemical bonding and charge transfer.

It is clear that chemical effects minimize significantly the maximum displacement
of C atoms, demonstrating evidently that C60 is structurally resistant, on time scales
of tens of femtoseconds, against the impact of X-ray multiphoton ionization. Figure 4
(bottom panel) shows the simulation snapshots of the real-time evolution of C60

13+ for the
full model, illustrating the ionization and fragmentation dynamics of C60 irradiated by
femtosecond X-rays.
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Figure 4. Movie snapshots of the real-space and real-time simulation dynamics of C60
13+ induced by

XFEL pulse.

The implications of this work for the field of femtosecond molecular imaging is that
charge transfer, nuclear arrangement, chemical bonds, and thus, the chemical structure are
resistant to the intense electromagnetic environment created by XFEL irradiation. The im-
pact of this work is that delayed fragmentation will play a critical role in most other intense
X-ray multiphoton ionizations of molecules. With the advent of several new FELs all over
the world, our results, which lay the foundation for a deeper understanding and quantita-
tive modeling of XFEL-induced radiation damage, will impact biomolecular imaging.

In summary, this time-resolved investigation gave new insight into the dynamics
of the C60 fragmentation subsequent to mid-fluence absorption of the X-ray photon. It
revealed the importance of chemical effects, such as covalent bonding and charge transfer,
in stabilizing the molecule against fragmentation over several hundred femtoseconds after
the X-ray pump pulse. Such detailed understanding of X-ray-induced ionization dynamics
and atomic motions in molecules is crucial for the applications of high-intensity X-ray
beams [25].

4. Discussion

Our experimental work in the high- [22] and mid-fluence [25] X-ray regime, investigat-
ing the response of C60 to fs FEL pulses, revealed new physical and chemical processes that
were validated either qualitatively or quantitatively by state-of-the-art simulation method-
ology. Specifically, the static X-ray high-fluence, 90 fs study showed that the Coulomb
explosion subsequent to multiphoton ionization is so violent that it leads to fully stripped C
atoms, and the model does not require the inclusion of detailed molecular effects. The most
important effect that needed to be included in the calculation was the secondary electron
collision with the ions fragments as well as the recapture of electrons by the ion fragments.
On the other hand, the time-resolved mid-fluence study demonstrated that chemical bonds
and the charge transfer effect were crucial to be included in the calculation to observe
dynamics as a function of time delay. These effects had to be included to agree with
the measurements that depicted dynamics as a function of time delay. In this situation,
the simulations and the experiment revealed that despite significant ionization induced
by the ultra-short (20 fs) X-ray pump pulse, the fragmentation of C60 was significantly
delayed. This work uncovered the persistence of the molecular structure of C60, which
hinders fragmentation over a timescale of hundreds of femtoseconds. Furthermore, the
calculation demonstrated that a substantial fraction of the ejected fragments is neutral
carbon atoms. In fact, it is these neutral fragments’ ejection from C60, as the molecule cools
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off, that prohibits a strong Coulomb explosion. These findings, interpreted by the most
advanced modeling and theory, provide insights into X-ray FEL-induced radiation damage
in large molecules, including biomolecules [25]. In fact, this work seems to indicate that
experiments conducted with up to 20 fs, with mid fluence, will not experience radiation
damage due to the delayed ionization. Thus, bio-molecule X-ray diffraction at this fluence
will not suffer the “diffract before destroy” scenario. Furthermore, our simulation [25]
provides a solid basis for the reliable interpretation of processes in systems even larger than
C60. Future XFEL-based experimental research into a wide range of systems will benefit
from our results and the theoretical advances needed to interpret the experimental work.

Recently, a time-resolved experiment was conducted with intense XUV photons at
the FLASH-II FEL that probed the resonance structure at about 20 eV, and this work
might reveal new insight regarding the ionization and fragmentation of C60 at lower
photon energy [26]. In addition, an experiment was conducted with hard X-rays at LCLS to
visualize the light-induced reshaping of C60 via X-ray diffraction. Specifically, time-resolved
X-ray diffraction images of C60 molecules were recorded during and after their interaction
with intense near-infrared fields, giving direct access to structural changes of the molecules
and their neutral or ionic fragmentation, in real time [27].

The current experiments so far focused on measuring the charged fragments resulting
from absorption of X-ray photons by neutral C60 to investigate the ionization processes or
using X-ray diffraction to visualize the transformation of C60. Future work could investigate
the anion, C60

− [28,29] or C60
+ [30]. Additionally, what is missing are experiments that

will use photoelectron spectroscopy to measure in detail the ionization and fragmentation
dynamics. In particular, the electron-ion coincidence techniques could be used, especially
with the now available high repetition rate at FELs sources, to measure the momenta of the
ions as well as identify the possible coincidences among the fragments and to visualize the
different coincidence channels. Furthermore, the use of ultra-fast electron diffraction (UED)
techniques [31] will allow the imaging of the molecular changes as a function of time delay
between the pump and probe pulse.

Finally, the exciting advent of as X-ray pulses from FELs opens up the opportunity to
study the electronic dynamics that precedes the nuclear dynamics [32]. Specifically, inner-
shell X-ray pump-probe studies with as pulses could allow the probing and understanding
of the electronic dynamics on its natural timescale. Currently, as pulses from the LCLS-II
X-ray FEL are provided to scientists with photon energies tunable across the soft X-ray
regime and with spectral brightness six orders of magnitude greater than HHG sources [32].
This as capability will soon be reproduced at other FEL facilities around the world, enabling
previously impossible as experiments in all research fields.

5. Conclusions

Intense and short X-ray FELs allowed new understanding of the interaction and re-
sponse of C60 fullerenes in a new energy regime. Furthermore, FELs facilities offer the
possibility to carry out time-resolved experiments that allow us to extract molecular movies
of the system’s transformation as it evolves as a function of time. Future work could focus
on using shorter X-ray pulses, for example, as pulses, as well as using other experimental
methodologies, such as electron spectroscopy, coincidence techniques or ultra-fast elec-
tron diffraction. The combination of X-ray as FEL facilities and differential experimental
techniques will enable scientists to understand the first steps in the photoabsorption or
scattering investigations, resulting in new breakthrough that will push the frontiers of
science and may result in new discoveries.
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Abstract: We experimentally investigated the quasifree mechanism (QFM) in one-photon double
ionization of He and H2 at 800 eV photon energy and circular polarization with a COLTRIMS reaction
microscope. Our work provides new insight into this elusive photoionization mechanism that was
predicted by Miron Amusia more than four decades ago. We found the distinct four-fold symmetry
in the angular emission pattern of QFM electrons from H2 double ionization that has previously only
been observed for He. Furthermore, we provide experimental evidence that the photon momentum is
not imparted onto the center of mass in quasifree photoionization, which is in contrast to the situation
in single ionization and in double ionization mediated by the shake-off and knock-out mechanisms.
This finding is substantiated by numerical results obtained by solving the system’s full-dimensional
time-dependent Schrödinger equation beyond the dipole approximation.

Keywords: two-electron systems; one-photon double ionization; many-electron correlation

1. Introduction

The quasifree mechanism (QFM) is a special case of photo-double ionization (PDI)
that was predicted by M. Amusia et al. in 1975 [1]. The name of the process originates
from the idea that the photon interacts with a quasifree electron pair without involvement
of the nucleus. The kinematic profile of QFM is characterized by electrons being emitted
back-to-back with equal kinetic energy, which leave the nucleus with close-to-zero recoil
momentum [2,3]. The interaction between photons and atoms is generally dominated
by electric-dipole contributions, but the QFM profile is forbidden in a dipole transition
due to angular momentum and parity conservation [4]. Hence, QFM facilitates double
ionization by means of a pure electric-quadrupole transition. As QFM ejects two electrons
only from the small part of the initial-state two-electron wave function where both electrons
are spatially close together [5,6], its transition amplitude is extremely small and experi-
mental investigations of QFM are challenging [7]. However, nearly four decades after the
prediction, the existence of the quasifree mechanism was finally experimentally confirmed
by Schöffler et al. in 2013 through the observation of doubly charged helium nuclei with
close-to-zero momentum [8]. Note that this signature of QFM is similar to what is found for
double ionization by Compton scattering which becomes the dominant double-ionization
channel at high photon energies [9–11].

The recently renewed interest in nondipolar photoionization in the one-photon and
strong-field ionization regimes (see, e.g., Refs. [12–17]) encouraged further experimental
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and theoretical investigations of QFM. In 2018, electrons emitted back-to-back with equal
energy were observed for helium PDI at 1100 eV photon energy [18]. This work displayed
the angular emission pattern of electrons originating from a pure quadrupole transition.
Two years later, QFM was confirmed for H2 PDI at 800 eV photon energy and it was
shown how the QFM cross section relates to the initial spatial probability density at the
two-electron cusp, which is the point where both electrons coalesce [19]. In the present
work, we examine once again the experimental data used in Refs. [18,19] to continue the
investigation of QFM. First, we will show that the angular distribution of QFM electrons
originating from H2 PDI displays the same four-fold symmetry that was already observed
for He PDI. Furthermore, second, we will provide evidence for the assumption that the
photon momentum is not imparted onto the center of mass in quasifree photoionization.
The latter finding is supported by numerical results from solving the full-dimensional
time-dependent Schrödinger Equation (TDSE) beyond the dipole approximation.

2. Methods

The two experiments reported here have been performed at beamline P04 at the
PETRA III synchrotron (DESY, Hamburg, Germany [20]) using circularly polarized light
at 800 eV photon energy. We employed a cold target recoil ion momentum spectroscopy
(COLTRIMS) reaction microscope [21–23] and intersected a supersonic gas jet of He or H2
with the photon beam at a right angle. Due to the supersonic expansion, the H2 were in
their vibrational ground state. The charged reaction fragments were projected by an electric
field and guided by a magnetic field to two time- and position-sensitive detectors with
delay-line position readout [24,25]. The initial momenta after PDI were retrieved from the
particles’ times-of-flight and positions of impact. The concept of a COLTRIMS reaction
microscope is illustrated in Figure 1. The experimental results reported in the present work
were obtained from the same experimental runs as Refs. [18,19], where further experimental
details can be found.

Figure 1. Concept of cold target recoil ion momentum spectroscopy (COLTRIMS). A supersonic jet
(green) of a target gas is crossed with synchrotron light (violet) at a right angle. A homogeneous
electric field E, generated by a spectrometer (copper plates), and a homogeneous magnetic field B,
created by a Helmholtz pair (copper tubes), guide the charged reaction fragments (red trajectory: ion,
blue trajectory: electron) towards time- and position-sensitive detectors. The initial three-dimensional
momentum vector of each reaction fragment (blue and red arrows) was calculated from the time-of-
flight and the position of impact on the detectors (marked with a blue and a red cross).
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The two-electron nondipole TDSE code used here was developed based on our pre-
vious dipole code for helium, which has been successfully applied in a series of studies
on the two-photon double ionization of helium [26–28]. The form of the Hamiltonian with
the nondipole corrections and the chosen parameters in the calculations can be found in
Ref. [29]. After the end of the light pulse, the two-electron wave function was further prop-
agated freely for a time of 10 a.u. Then, it was projected onto the uncorrelated symmetrical
product of two single-electron scattering states to obtain the joint momentum distribution of
the two ejected electrons P(k1, k2). The momentum spectrum of the ion P(Q) could then be
obtained from P(k1, k2) by momentum conservation: P(Q) =

∫
P(k1, kphoton −k1 −Q)dk1.

For the case of the dipole approximation, kphoton was set to 0. In the calculations, a linearly
polarized light pulse along the z axis was adopted, with its propagation direction in the
x axis. Therefore, the momentum spectrum of the ion in the propagation direction of the
light pulse was given by P(Qx) =

∫∫
dQzdQyP(Q). For the distribution of P(Q) in the

PDI of helium, previous studies showed that the majority of the events are located close
to the surface of a sphere in the momentum space with a radius of psingle =

√
ω − Ip,

where ω and Ip, respectively, represent the photon energy and ionization potential of
helium. Such a behavior is closely related to the shake-off (SO) and the electron knock-out
mechanism [8]. In order to show the effect of the QFM mechanism, we used a similar
method as that in Ref. [8]. The integral interval in the light polarization direction of Qz was
limited from −psingle/4 to psingle/4. Furthermore, the integral interval of Qy was limited
by |Qy| ≤ psingle/2.

3. Results

3.1. Separating a Pure Quadrupole Contribution to Photo-Double Ionization

In quasifree photoionization, the photon is absorbed by the electron pair and the
nucleus is only a spectator that receives no recoil momentum. By means of momentum
and energy conservation, the ejection of two electrons back-to-back with equal energy is a
strict consequence of a vanishing recoil momentum, if one neglects the photon momentum.
For a dipole transition, this kinematic profile is forbidden for PDI of He and H2, whose
ground-state wave functions both have the same 1S symmetry [4,30]. Hence, the QFM
is a pure quadrupole contribution to PDI and it can be isolated particularly clearly in
a differential cross section that shows the double-ionization yield as a function of the
electron energy sharing ε = Ee1/(Ee1 + Ee2) and the angle enclosed by the two electron
momentum vectors ϑ12 = cos−1[pe1 · pe2/(|pe1| × |pe2|)] (electron mutual angle). This is
done in Figure 2 where we show the measured yield from the double ionization of H2 (A,B)
and He (D,E) at 800 eV photon energy as a function of ε and ϑ12. Panels A and D show the
full range of the two variables, but panels B and E show only the region indicated by the
dashed black lines in A and D. A comparison between panels A and D points out a strong
resemblance in the electron emission patterns of H2 and He double ionization, as expected
from the similarities in the electronic ground states. A distinctive difference can be seen
around equal energy sharing (ε = 0.5) and back-to-back emission (cos ϑ12 = −1) where
there appears to be a noticeable signal in panel A, corresponding to QFM, but apparently a
node in panel D. Panels C and D highlight this relevant region of the cross section. While
the QFM is evident for H2, a logarithmic-scale display is required in panel D to make the
weak relative contribution of QFM to the total double-ionization cross section of helium
visible at all (see Ref. [19] for further discussions on this finding).
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Figure 2. Measured electron distributions of H2 double ionization (A–C) and He double ionization (D–F)
by a single 800 eV circularly polarized photon. (A,D) Measured electron yield as a function of the
electron energy sharing ε and the electron mutual angle ϑ12. (B,E) Detailed section from panels A
and D as indicated by the dashed black lines therein. Note the logarithmic-scale display in panel E.
Contributions around ε = 0.5 and cos ϑ12 = −1 correspond to the QFM electrons. (C,F) Angular
distributions of QFM electrons as a function of the polar angle enclosed by the electron momentum
vector and the light propagation direction. The shown data are limited to 0.35 < ε < 0.65 and
ϑ12 > 160◦, as indicated by the dashed black lines in panels B and E. For this selection, the dipole
contribution to photoionization vanishes. The red lines represent |Y21|2 and are normalized to the
data points.

To highlight the quadrupole nature of QFM, we selected a subset of our data limited
to 0.35 < ε < 0.65 and ϑ12 > 160◦, as indicated by the dashed black lines in Figures 2B,E,
and present in Figures 2C,F—the measured electron yield as a function of the angle ϑγ,
which is enclosed by the electron momentum vector and the light propagation direction.
The angular-momentum transfer is an important physical difference between dipole and
quadrupole transitions. By definition, a dipole transition transfers one unit of angular
momentum to the two-electron final state due to the photon spin, while two units of angu-
lar momentum are available in a quadrupole transition. The angular momentum of the
outgoing electron wave becomes observable in the angular distribution of the electron. The
red lines in Figures 2C,F represent the square of the spherical harmonic for � = 2 and m = 1,
|Y21|2 ∝ cos2 ϑγ × sin2 ϑγ, which describes the final-state angular distribution of electrons
that result from a pure electric-quadrupole transition from any initial s-subshell. Here, we
have chosen the photon propagation direction k̂γ as the quantization axis. The photon spin
vector is (anti-)parallel to k̂γ and we get Δ� = 1 and Δm = 1 through the transfer of the
spin angular momentum. The additional unit of orbital angular momentum— kγ × re = h̄—
is oriented perpendicularly to the quantization axis. It increases the magnitude of the
electron angular momentum but has no effect on its projection m onto k̂γ. The strong resem-
blances between the measured angular emission patterns and |Y21|2, as demonstrated in
Figures 2C,F, underline that QFM electrons originate from a pure quadrupole contribution
to photoionization. Note that this agreement is better for He, and we suspect this is simply
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due to larger momentum uncertainty in case of H2. In our experiment, one of the two
QFM electron momentum vectors is reconstructed by means of momentum conservation.
This is less accurate for H2 because the ions’ center-of-mass momentum has to be retrieved
from two protons instead of being measured via the doubly charged nucleus. Thus, the
momentum uncertainty propagating to the calculated electron is larger in the case of H2
than for He (see Refs. [15,19] for further details). While such a four-fold symmetry in the
angular emission pattern of QFM electrons has already been shown for He PDI at 1100 eV
photon energy [18], the results shown in Figure 2C for H2 PDI further support our current
understanding of quasifree photoionization.

3.2. Transfer of Photon Momentum

Nondipolar photoionization induces a forward-backward asymmetry in light propa-
gation direction into the momentum distributions of the reaction fragments. This is due
to the nonzero linear photon momentum kγ and the interference between electric dipole
and higher multipole contributions to the photoionization process. The question of which
fragments obtain the photon momentum after the reaction has been investigated since
the early days of photoionization studies [31,32]. In the case of photo-single-ionization,
momentum and energy conservation dictate that the center of mass—which is essentially
the residual photo-ion—obtains the photon momentum [21]. Additional degrees of free-
dom allow for a more intricate sharing of the photon momentum between the reaction
fragments in photo-double ionization. However, a recent experiment–theory collabora-
tion investigated He PDI up to 1100 eV photon energy and showed that the momentum
distribution of helium nuclei after double ionization exhibits the same forward-backward
asymmetry as helium nuclei from single ionization [29]. In this photon–energy range, He
PDI is dominated by the shake-off process while the quasifree mechanism is negligible in
absolute terms. Apparently, the shake-off process, where the second electron is emitted
due to electron–electron correlation [33,34], treats the photon momentum similarly to how
single ionization does, and the photon momentum is imparted onto the doubly charged
helium nucleus. However, the quasifree mechanism proceeds without involvement of the
nucleus, as the photon couples directly to the two electrons. Hence, one could expect that
the photon momentum is not imprinted onto the photo-ion.

In order to test this assumption, we inspect the momentum distributions of photo-ions
after He PDI at 800 eV photon energy in Figure 3 for SO (A) and QFM (B) by selecting
subsets of our data.

In panel A, the measured photo-ion momenta accumulate on a semicircle with a radius
that equals the maximum electron momentum and which is off-centered to the right by the
magnitude of the photon momentum (kγ = 0.215 au), indicating the transfer of the photon
momentum onto the photo-ion. Note that this is the same behavior that has previously
been shown for He single ionization [35]. In panel B, however, the measured average
momentum of QFM photo-ions in light propagation direction is much closer to zero. This is
even more apparent in panel C, where we projected the distribution shown in panel B onto
the light propagation direction and determined the center through a Gaussian fit (solid
blue line). Our experimental results speak in favor of the assumption that QFM photo-ions
do not receive the photon momentum in the double-ionization process.

Further proof are the results of nondipole TDSE calculations for He double ionization
at 800 eV photon energy, and linearly polarized light that are shown in Figure 3D. The local
maximum of the nondipole curve (red line) that corresponds to QFM is exactly at zero, while
the outer local maxima are shifted to the right by the magnitude of the photon momentum.
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Figure 3. Photo-ion distributions of He double ionization by a single 800 eV photon. (A) The
experimental data shown are limited to ε < 0.005 or ε > 0.995 and correspond to double ionization
through the shake-off process. The blue semicircle is shifted to the right by the photon momentum.
The SO photo-ions accumulate on this semicircle. (B) The experimental data shown are limited
to 0.35 < ε < 0.65 and ϑ12 > 160◦. They resemble double ionization via QFM. (C) Projection of
data from B onto the x axis (black) and Gaussian fit (blue) to obtain the center of the momentum
distribution of QFM photo-ions along the light propagation direction (red, μGauss). Note that the
indicated error is the standard deviation of the mean value from the Gaussian fit estimated as the
square root of the respective diagonal element of the covariance matrix. The green line indicates the
photon momentum for comparison. (D) Dipole (green) and nondipole (red) TDSE calculations for
helium double ionization with 800 eV linearly polarized photons. The polarization vector is parallel
to the z axis and the data shown are limited to pi,y = 0 ± psingle

2 & pi,z = 0 ± psingle
4 . Experiment and

theory suggest that the photon momentum is not imprinted onto QFM photo-ions.

4. Conclusions

We have investigated the quasifree mechanism of one-photon double ionization of
He and H2 at 800 eV photon energy and addressed two open questions concerning this
intriguing process. We found the four-fold symmetry in the angular emission pattern of
QFM electrons from H2 double ionization that underlines the quadrupole nature of the
process. Furthermore, we showed that the photon momentum is not transferred onto the
photo-ion in quasifree photoionization, which is in contrast to single ionization in general
and double ionization by means of electron–electron correlation.
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Abstract: We describe a method of producing long-lived multiply excited spin polarized atoms or
ions, the decay of which is strongly delayed or even blocked by intra-ionic magnetic stabilization.
Special configurations with huge internal magnetic fields capture only spin polarized electrons
in collisions with spin aligned atomic hydrogen gas targets. It is expected that the spin aligned
configuration yields an extremely high internal magnetic field which will effectively block spin flip
transitions. By this the lifetime of inner shell vacancies is expected to strongly increase.

Keywords: spin-polarized atoms; highly charged ions; energy storage

Over thirty years ago, Miron Amusia was a frequent visitor to our institute at Frankfurt
University. The actual reason for this was that at the time his granddaughter was staying
in nearby Wiesbaden. Miron made use of the opportunity of seeing her to visit us at
our Frankfurt institute and discuss interesting physics problems. One of them was ball
lightning [1]. Miron made mention of research that was going on before 1990 in the then
Soviet Union on the question of storing energy in light ball matter. Therefore, the question
of the nature of light ball matter was intensively discussed.

The onset was somewhat similar to this: ball lightning occurs in thunderstorms in
normal air. Characteristic for it is that it is a plasma-like object. Its size is about that of a
ball of 50 cm in diameter, it emits light for about 30 s after creation, and it moves rotating
(Figure 1). To account for the 30 s half-life of light emission, the emitting states in the
corresponding atoms or ions would have to be metastable. The rotation of the light ball
means that its angular momentum probably is the sum of the angular momenta of space
quantized atoms, similar to what occurs in the Einstein-de Hass effect [2]. Since air consists
mainly of N2, we were speculating that a special metastable spin polarized configuration
of N2* or N* produced in a lightening event might be causing the ball-lightning effect. An
N* configuration could possibly be (1s2, 2s1, 2p3, 3s1), where a 2s electron is excited into
the 3s shell by the strongly varying magnetic field in the lightning flash. In the process the
excited electron makes a spin flip. Thus, all the electrons in the 2s, 2p, and 3s shells have
the same spin orientation (Figure 2). The 1s2 remains a closed shell and the electrons in 3s
can only decay via spin flip into the 2s state, and the transition is strongly delayed.

Excited atoms and ions with inner shell vacancies have been explored in slow ion-
atom collisions. Many groups investigated their formation and decay [3–8]. It is well
known that inner shell vacancies of multiply excited hollow atoms or ions decay mostly
within fractions of a picosecond by Auger or X-ray emission, when the electrons undergo
transitions without spin-flip. In some experiments metastable configurations have been
observed with a delayed decay in the nanosecond regime. In nature and also under
laboratory conditions so far, no evidence has been found that long-lived (millisecond or
longer) metastable multiply excited ionic or atomic systems are created in such collisions.
To our knowledge, in all these experiments the spin configuration was not known. Only in
some instances of highly ionized few-electron ions the spin configuration was known. Here
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only one electron is excited, and its decay is highly forbidden, i.e., the state can only decay
by magnetic dipole or two-photon transition or spin-flip. Such ionic configurations have
lifetimes of the order of microseconds or even longer. Ninomiya et al. [9] found evidence
for longer living “metastable hollow atoms” that were formed by penetration of highly
charged ions through very narrow channels in thin films. Therefore, to create metastable
configurations with multiple vacancies and with long lifetimes one must be able to create
ionic configurations in a controlled way where the spin orientation of the electrons can
be manipulated.

Figure 1. A 1901 illustration of ball lightning (Ball lightning—Wikipedia).

Figure 2. N-atom configuration, left in the ground state and right in the excited state. “Red” electrons
are in spin-up state, blue ones in spin-down state. The open circle indicates the vacancy state.

If in a multiple-capture process all captured electrons have parallel spins, the energy
barrier for a spin flip should strongly increase. In this case it might be possible to block
or delay spin flip transitions due to the very strong internal magnetic field. The multiple-
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capture process, however, must be fast enough (in the order of a microsecond) that, until
the formation of the very high internal magnetic field, the highly excited ion has no time to
decay. Due to such a strong internal magnetic field and the blocking of spin-flip transitions
caused by it, even in special neutral atoms the lifetime of inner-shell vacancies might be
strongly enhanced and may last up to milliseconds or even longer. For such special ionic
configurations, an internal magnetic field strength much stronger than achievable up to
now in laboratories (≥90 Tesla [10]) may exist.

For obtaining qualitative information on the lifetime of such metastable subjects we
contacted experts in calculating the configuration of multiply excited ions or atoms [11].
However, their theoretical approach was not capable of calculating transitions in extremely
strong inner atomic magnetic fields. They also were not able to calculate the magnetic
field-strength, e.g., for an S = 9 configuration. They told us, however, that no spin-flip
should occur when the magnetic field is infinitely large. The theorists thought it is not
likely that such configurations would have a lifetime sufficiently long for applications in
everyday life, e.g., for efficiently storing energy by use of long living inner shell vacancies
in so-called spin-polarized matter. However, nobody excluded that it might be possible
nevertheless to produce such matter.

Therefore, this short letter is also written to stimulate the interest of theorists in
such spin-polarized configurations. Since to our knowledge no data on the lifetime of
such spin-polarized metastable states and the strength of the inner-atom magnetic field is
available in literature, we will only outline an experimental route of how to produce such
atoms with very high S value in the laboratory. It may be noted in passing that the here
presented scheme of producing spin-polarized matter has been patented by the German
Patent Office [12] (Figure 3).

Figure 3. German patent on formation of spin-polarized atoms for energy storage [12].
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Figure 4 schematically shows the experimental arrangement for producing spin-
polarized neutral-atom beams. The apparatus consists of three experimental sections:
highly charged ions in a special charge state are produced in an Electron Cyclotron Reso-
nance ion source (ECR) [13]. With modern ion source techniques nearly any kind of ions in
any charge state can be produced. Present ECR ion sources or EBIS or EBIT devices can
produce high intensity low energy beams of highly charged ions.

Figure 4. Scheme of experimental set-up to create spin-polarized neutral atoms (see text).

The magnetically selected beam penetrates a nearly completely spin-polarized hy-
drogen gas-jet and thereby captures within a few microseconds many spin-polarized
electrons for getting neutralized. To our knowledge spin-polarized H targets (super-
sonic jets) with an 80% degree of polarization are extant [14]. Since this kind of target
provides a very high target thickness, we believe that the degree of polarization can be
enhanced in a second Stern-Gerlach device, with loss of target thickness, however. The
non-neutralized beam components are magnetically deflected behind the gas target in the
Stern-Gerlach apparatus and removed. The neutralized beam is spin-state selected in the
same Stern-Gerlach device [15,16]. In this way a neutral spin-polarized atomic beam is
generated: thus, a larger fraction of the highly spin-polarized atoms have possibly the same
spin-polarized configuration.

As an example, we consider the production of spin-polarized Kr atoms, starting with
the extraction of Kr13+ ions from an ECR ion source, having 23 electrons in their ionic
shells. This ion charge state is chosen because it has a high internal magnetic field. This is
due to the ionic electron-configuration being such that all lower shells (1s2, 2s2, 2p6, 3s2,
3p6) are filled and the 3d shell is half filled, 3d5. According to Hund’s rule [17,18], in this
configuration the Kr13+ ions should have a total L value of zero, the total S value should be
maximum, S = 2.5.

The selected ion beam is injected in a spin-polarized hydrogen-gas target-jet (Figure 4).
The intersection of the ion beam and the hydrogen jet is arranged thus that both the ion
beam and the atoms in the jet move in parallel (for about 10 cm), improving by their
larger intersection length the capture probability. After capturing another 13 spin-polarized
electrons, a measurable fraction of the neutral Kr atoms should be in the S state of S = 9.

The neutralized Kr beam is injected in another Stern-Gerlach device which separates
the Kr atoms according to their S value and to the orientation of the total spin. Out of the
second Stern-Gerlach device several Kr beams emerge, being separated according to their
spin polarization.

It may even be possible to produce in such a set-up neutral uranium being in a
S = 37 state. One would start with extracting U69+ ions from an ion source (ground state
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configuration: 1s2, 2s2, 2p6, 3s2, 3p6, 3d5) (Figure 5). When these ions capture 69 spin-
oriented electrons in a spin-polarized hydrogen-jet all higher states (higher than 3d) can be
filled with electrons of the same spin direction in the deepest allowed states. In the most
favorable case one might obtain even a (1s2, 2s2, 2p6, 3s2, 3p6, 4s1, 4p, 4d5, 4f7, 5s1, 5p3,
5d5, 5f7, 5g9, 6s1, 6p3, 6d5, 6f7, 7s1, 7p3, 7d5, 8s1, 8p2) configuration. The S value of this
configuration would be S = 37.

Figure 5. Electron shell configurations. Left, for the neutral uranium atom, middle, for the uranium
69+ ion, right, for a neutral uranium atom after capture of 69 spin-orientated electrons [19] (see text).

Extremely magnetic atoms of this kind may show many new quantum features. The
magnetic field might be so strong that, for instance, in Kr atomic bonding proceeds via
magnetic forces. This would possibly provide matter with unexpected e-e- correlation fea-
tures. In addition, the amount of energy stored in the empty states would be huge, because
the states of different spin polarization in the atom are empty. For a single uranium atom,
it might exceed 30 keV. This is 10,000 times more than a conventional electric battery can
store. Whether this would be practically applicable is very unlikely, but who may know?

To conclude: the procedure outlined above of how to produce spin-polarized atoms
in an unusual high spin state seems rather exotic. However, we believe that it should be
possible, as discussed, to produce sufficiently many atoms of this kind for exploring the
physics of such exotic spin-polarized quantum systems in the laboratory. Spin-polarized
matter can open up new interesting fields in atomic and solid-state physics.

Without the stimulating discussions with Miron Amusia in Frankfurt more than
30 years ago, we would never have come in contact with the question of what ball- lightning
matter might be. We have written this short letter to present the ideas Miron initiated.
We think we owe to Miron Amusia the publication of these ideas. When Max Born tried
to prevent Otto Stern from performing the Stern-Gerlach experiment because it seemed
infeasible to him, Otto Stern replied: no experiment is as dumb as not to perform it.
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Abstract: Sequential two-photon ionization is a process that is experimentally accessible due to
the use of new free-electron laser sources for excitation. For the prototypical rare Ar gas atoms, a
photoelectron spectrum (PES) corresponding to the second step of the sequential two-photon double
ionization (2PDIII) at a photon excitation energy of 65.3 eV was studied theoretically with a focus on
the consequences of electron correlations in the considered process. The calculation predicts many
intense lines at low photoelectron energies, which cannot be explained on the basis of a one-electron
approximation. The processes that lead to the appearance of these lines include many-electron
correlations, either in the first or second step of photoionization. A significant fraction of the intensity
of the low-energy part of PES is associated with the Auger decay of the excited states formed at the
second step of 2PDI. The shape of the low-energy part of the 2PDIII PES is expected to be dependent
on both the energy of photon excitations and the flux of the exciting beam.

Keywords: sequential photoionization; double ionization; photoelectron spectra; argon; many-electron
correlations; free-electron laser

1. Introduction

The first studies of multiphoton photoionization of atoms by free electron lasers (FELs)
focused on the charge distributions of ions (see [1–3] and a brief review [4]). Subsequently,
it became possible to study photoelectron spectra (PES) due to the multiphoton ionization
of atoms with energy and angular resolution [5,6] (see also the review devoted to studies of
double- and triple-sequential ionization of atoms [7]).

If the photon excitation energy of an intense photon beam interacting with individual
atoms exceeds the ionization threshold of an atom, then the most probable process among
the different mechanisms of multiphoton ionization is sequential photoionization [6–8].
The theory to describe sequential two-photon double ionization (2PDI) [9,10] has, in the
past, been applied to an experiment performed for Ar when the impinging-photon energy
was less than the 3s ionization threshold [4,11]. In this case, the interpretation of the experi-
mental data can be limited to considering the main 3p ��� ε� channel only, i.e., considering
the variety of 3s23p6 ��� 3s23p4ε�ε′�′ channels. At larger photon excitation energies, ω,
e.g., when ω exceeds the 3s ionization threshold, it is expected that the influences of many
electron correlations will dramatically increase, considerably complicating the interpre-
tation of an experiment. This conjecture is based on past findings, where considerable
correlative contributions were identified for conventional single-photon ionization of Ar
at these photon excitation energies, namely inter-shell correlations [12–15] and the dipole
polarization of electron shells [16].
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The main goal of the present paper is, therefore, to study the influences of the most
significant single-electron and double-electron excitations on the 2PDI of Ar. We calculated
the 2PDI PES of Ar at a photon excitation energy of ω = 65.3 eV for which an experiment
was planned in the near future. We limited ourselves to computing the 2PDIII PES obtained
for the second step of the sequential two-photon double ionization, which can be extracted
from the total signal using its quadratic flux dependence [17].

2. Two-Photon Processes Involving Valence and Sub-Valence Electrons

Possible processes resulting in lines in the 2PDIII PES of Ar predicted for a photon
excitation energy of 65.3 eV are presented in Figures 1 and 2.
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Figure 1. Energy scheme of the sequential two-photon double ionization of argon. (a) Direct
one-electron ionization at each step. (b) Correlational processes relevant to the first ionization
step. Designations: bold violet arrows—energies of the exciting photons: solid arrows—direct (D)
photoionization processes and dash-dotted arrows—correlational (C) processes in the photoionization.
Thin arrows—kinetic energy of the emitted photoelectrons (blue) and Auger electrons (red). Vertical
rectangles represent a set of energy levels of the proper configuration allowed according to the
selection rules. Energy levels were computed in the HF approach with DPES. The heights of the
rectangles were estimated using the “transition array” technique [18,19].
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Figure 2. Energy schemes of the sequential two-photon double ionization of argon with a correlational
process at the second ionization step. Designations are the same as in Figure 1.

2.1. Direct Processes

In the following, we will call 2PDIII processes, where one electron from a certain shell
is removed by a first photon and a second electron is removed from the shell of the ion by a
second photon; “direct” processes are abbreviated by the symbol D in the depicted graphs;
2PDIII process, removing two 3p electrons from Ar (DpDp), is shown in panel (a), column
DpDp:

3s23p6 + γ1 ��� 3s23p5 + ε1�(� = 0, 2); (1)

3s23p5 + γ2 ��� 3s23p4 + ε2�(� = 0, 2). (2)

This process was studied in detail both experimentally and theoretically [4,7,11,17,20,21]. It
results in three 2PDIII PES lines with the kinetic energy of electrons in the region from 33 to
40 eV. This part of the spectrum is the most intense.

In column DpDs of Figure 1a another two-step process is shown in which the first step
is as process (1) above, but where in the second step, a 3s electron is removed from the ion

3s23p5 + γ2 ��� 3s13p5 + ε2 p (3)

In the final stage of the process (3), the strong dipole polarization of the electron
shells (DPES) [16] was taken into account. This effect is described by 3p3p − 3sn�(� = 0, 2)
excitations in the current approach. As a result, the two lowest levels shown in column
DpDs of Figure 1a mainly contains the 3s13p5(3P) and 3s13p5(1P) basis states. Higher
levels (not shown in Figure 1a) mainly contain 3s23p3n�(� = 0, 2)(LS) basis states and
result in low-energy satellite lines (sat).

In the 2PDIII process, a 3s electron is removed from the 3s shell of the atom, and in the
second step, a 3p electron is removed from the singly charged ion

3s23p6 + γ1 ��� 3s13p6 + ε1 p; (4)

3s13p6 + γ2 ��� 3s13p5 + ε2�(� = 0, 2); (5)

is depicted in column DsDp of Figure 1a. Processes (4) and (5) result in photoelectron lines
for electrons with kinetic energies larger than 30 eV.
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2.2. Correlational Processes

The direct (D) processes considered above are transitions that are described by one-
electron electric dipole interaction. The other atomic electrons are spectators in the transi-
tions. Below, we consider correlational (C) processes influencing both the first and second
steps of the sequential two-photon double ionization.

The DsC column of Figure 2 (left column) shows a two-step process that leads to the
appearance of 2ph(II) lines with electron energy in the range from 0 to 20 eV. The first step
of this process is the direct (D) transition (4). Note that in this transition, the important
inter-shell correlation between the 3s13p6ε1 p and 3s13p5ε2d channels [14] in the final state
was taken into account. The second step is possible only due to electron correlations (C)
either in the initial or the final state, since the direct single-electron transition

3s13p6 + γ2 ��� 3s13p43d1 + ε2�(� = 1, 3) (6)

is forbidden due to the selection rule.
Possible correlational transitions of the second step of the two-photon DsC processes

in the lowest order of the Coulomb interaction are the following:

3s13p6 −→ 3s13p43d1ε′�′(�′ = 0, 2, 4) ��� 3s13p43d1ε2�(� = 1, 3) (7)

3s13p6 −→ 3s23p43d1 ��� 3s13p43d1ε2 p (8)

3s13p6 −→ 3s13p4ε′�′(�′ = 1, 3)ε2� ��� 3s13p43d1ε2�(� = 1, 3) (9)

3s13p6 −→ 3s03p53d1ε2�(� = 1, 3) ��� 3s13p43d1ε2�(� = 1, 3) (10)

3s13p6 ��� 3s13p5ε′�′(�′ = 0, 2) −→ 3s13p43d1ε2�(� = 1, 3) (11)

3s13p6 ��� 3s03p6ε2 p −→ 3s13p43d1ε2 p (12)

3s13p6 ��� 3s13p53d1 −→ 3s13p43d1ε2�(� = 1, 3) (13)

In all Equations (7)–(13), and following, the dashed arrows denote the electric dipole
interaction and the solid arrows denote the Coulomb interaction.

We estimated the amplitudes (7)–(13) using the “transition array” technique [18,19],
which was created to solve astrophysical problems in order to avoid cumbersome “level-
to-level” calculations in atoms with a large number of open shells. In the case of the
problem solved in the present paper, applying the “transition array” technique required
calculating discrete and continuum atomic orbitals (AOs) for channels with orbital numbers
� = 0 − 4, in addition to the core AOs. Discrete AOs with an average radius of up to 20 a.u.
and continuum AOs with energy ε = 800 Ry were computed in the frozen Hartree–Fock
(HF) field of Ar2+. In this configuration space, all single- and double-electron excitations in
the initial and final states were taken into account, contributing to the 2PDI process under
consideration. Among hundreds of channels contributing to the 2PDI (excluding the direct
channels DpDp and DpDs) the greatest contributions to the 2PDI were given by those that
contained a 3d electron (see Equations (7)–(13)). At the same time, among all correlational
amplitudes (7)–(13), amplitude (7) had the largest value. The main aim of the present work
was to identify the main processes contributing to the low-energy part of the photoelectron
spectrum rather than a detailed quantitative description of the spectral structure. Therefore,
in computing the photoionization cross section (PICS) of the second step of the DsC process,
we restricted our description to the most significant amplitude (7) only and neglected the DPES.

The final states stemming after the DsC two-photon double-ionization, decay by the
Auger process

3s13p43d1 −→ 3s23p3εA�(� = 1, 3) (14)

The Auger electrons of process (14) also contributed to the 2PDIII spectrum at low
kinetic energies. This is depicted in column DsC of Figure 2 by red vertical arrows.

Column DpC of Figure 2 represents a correlational process similar to DsC, but creates
the 3s23p5 ionic state after the first ionization step.
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The DpC(res) correlational process depicted in the right column of Figure 2 is of
particular interest. In this process, the second photon does not knock out the electron, but
excites it into states of the 3s13p43d2 configuration, with a subsequent Auger decay. Since
the excitation to the 3s13p43d2 states is resonant, the shape of the 2PDIII spectrum would
strongly depend on the photon excitation energy. The “Auger part” of the photoelectron
spectrum should be rich due to a large number of possible Auger decays (see multiple red
arrows in the right column of Figure 2):

3s13p43d2 −→ 3s13p5εA�(� = 1, 3) (15)

3s13p43d2 −→ 3s23p4εA�(� = 0, 2, 4) (16)

3s13p43d2 −→ 3s23p33d1εA�(� = 1, 3) (17)

Correlational transitions may also take place in the first step of 2PDI. The CDs column
of Figure 1b shows a two-step process, the first step of which is possible only because of
the configuration interaction in the initial or the final state, since the direct transition

3s23p6 + γ1 ��� 3s23p43d1 + ε1�(� = 1, 3) (18)

is dipole forbidden. One of the possible correlation transitions leading to the appearance of
the 3s23p43d1 ionic state after the first ionization step is the following:

3s23p6 ��� 3s23p5ε′�′(�′ = 0, 2) −→ 3s23p43d1ε1�(� = 1, 3). (19)

The second step of the CDs process is a direct transition

3s23p43d1 + γ2 ��� 3s13p43d1 + ε2 p. (20)

The process CDs result in lines in the same region of the 2PDIII PES as the DsDp
process, i.e., with an electron kinetic energy larger than 30 eV.

Another possible two-photon process is depicted in the CDp column of Figure 1b.
Similar to the CDs case, the first step is possible due to the configuration interaction either
in the initial or the final configuration only, since the direct transition

3s23p6 + γ1 ��� 3s13p53d1 + ε1�(� = 0, 2) (21)

is dipole forbidden. One of the possible correlational transitions leading to the appearance
of the 3s13p53d1 ionic state after the first ionization step is the following:

3s23p6 ��� 3s23p5ε′�′(�′ = 0, 2) −→ 3s13p53d1ε1�(� = 0, 2). (22)

The second step of the CDp process is the direct transition

3s13p53d1 + γ2 ��� 3s13p43d1 + ε2�(� = 0, 2). (23)

The peculiarity of the CDp process is the fast Auger decay of the intermediate 3s13p53d1

states
3s13p53d1 −→ 3s23p4εA�(� = 1, 3) (24)

which reduce the intensities of respective 2PDIII lines (if the intensity of the exciting
radiation is small). A similar situation was considered in [22], where the process of the
two-photon ionization of the Ne atom was studied.

Our estimates show that the average Auger width of the 3s13p53d1 states is about 1 eV,
whereas the largest photoionization cross section of these states at the energy of 65.3 eV
does not exceed 0.5 Mb. Then, at the exciting–radiation flux of 1.5 × 1015 W/cm2 [4], the
probability of process (23) is less than 10−9. When the probability of process (23) reaches a
noticeable value at a radiation flux of more than 1016 W/cm2, it will become 5%.
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Thereby, at a lower flux of the exciting radiation, the Auger decay (24) will most likely
occur after the first ionization step in the CDp process. Consequently, the ionization of the
state of a doubly charged ion will occur in the second step as

3s23p4 + γ2 ��� 3s23p3 + ε2�(� = 0, 2). (25)

or
3s23p4 + γ2 ��� 3s13p4 + ε2 p. (26)

The kinetic energies of electrons in process (25) exceed 20 eV, and process (26), similar
to process (3), with low intensity. Therefore, the CDp process will not be discussed later.

3. Calculation Details

The atomic orbitals (AOs) used in the calculation of the cross sections for the first
ionization step were obtained by solving the non-relativistic Hartree–Fock (HF) equations
for the ground 1s22s22p63s23p6 configuration of Ar. The AOs of continuum electrons were
calculated by solving the HF term-dependent equations for the 3s23p5εs(1P), 3s23p5εd(1P)
configurations in the case of the DpDp process and for the 3s13p6εp(1P) configuration in
the case of the DsC process with frozen core AOs.

The total experimental cross sections of Ar [23] were compared with the presently
computed σ3p(ω) in Figure 3. One can recognize that the HF cross sections calculated in
the length form (dash curve) and velocity form (short dash curve) of the dipole transition
operator differed by more than 1.5 times at the threshold.
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Figure 3. Total experimental PICS of Ar [23] (Samson 2002) and presently computed PICS of the Ar
3p shell in the single-electron HF approximation in length

(
σHF

L
)

and velocity
(
σHF

V
)

forms and the
geometric average between the length and velocity forms

(
σgav

)
. Results of the calculation, taking

into account intra-shell correlation(s) (ICHF) in length and velocity forms are depicted as well. Panel
(b) represents an enlarged part of panel (a) in the region of the Cooper minimum.
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We also calculated the 3p shell PICS, taking into account the intra-shell correlation(s)
(ICHF) via a technique described in [14]. These cross sections (dash–dot curve for the
length form and dash–dot-dot curve for the velocity form) are very close to each other and
to the experimental cross sections in the photon energy range from the threshold up to
30 eV. At higher photon energies, of more than 30 eV, the theoretical PICS of the 3p shell of
Ar differ from the experimental ones (see panel (b)), since for these energies, in addition
to photoionization of the 3p shell, photoionization of the 3s shell is possible to the main
3s13p6 and satellite 3s23p4n� ionic states.

Intensities of the photoelectron lines Iij(ω) were calculated using the formula

Iij(ω) ∼ σ1i(ω) · σ2ij(ω), (27)

where σ1i(ω) is the cross section to the first 2PDI step—photoionization of the neutral
atom leading to the formation of a single-charged ion state i; σ2ij(ω) is the cross section
for the second 2PDI step—photoionization of the ionic state i leading to the formation of a
double-charged ion state j.

Cross sections σ1i(ω) and σ2ij(ω), calculated within the Hartree–Fock (HF) approxi-
mation in the length (σHF

L ) and velocity (σHF
V ) gauges could have significant differences that

disappear when taking into account the inter-shell and intra-shell correlations, applying all
orders of the perturbation theory [14,15]. In some cases, cumbersome calculations associ-
ated with taking into account these correlations can be avoided if the geometric average
(gav) value of these cross sections, σgav, is used:

σgav =
(

σHF
L · σHF

V

)1/2
(28)

Figure 3 illustrates that, in the case of Ar 3p-photoionization, using σgav achieves an
inaccuracy of 10% when computing PICS in the photon excitation energy range of interest.
Therefore, the σgav- approximation was used throughout the present paper.

The following set of AOs was used in our calculations of the second step of 2PDIII. In
the DpDp and the DpDs processes, the AOs were obtained by solving the HF equations for
the 1s22s22p63s23p5 configuration. The AOs of continuum electrons for the DpDp process
were calculated by solving the term-depending HF equation for the 3s23p4(1S, 1D, 3P)ε�(LS)
states with frozen core AOs. The AOs of continuum electrons for the DpDs process were
calculated similarly but for the 3s13p5(1P, 3P)εp(LS) states using frozen core AOs. The
total cross section was obtained as a sum of partial cross sections over the LS quantum
numbers.

In order to take into account the DPES in the second step of the DpDs process, the
interaction between the 3s13p5 and 3s23p3nd (n = 3, 4) configurations was taken into account.

The cross sections for the second ionization step in the case of the DsC process were
computed applying the amplitude (7) only, which is described in more detail. The expres-
sion for the photoionization cross section is

σ2

(
3s13p6 −→ 3s13p43d1, ω

)
=

4
3

π2αa2
0ω±1 ∑

�

∣∣∣A(3s13p6 −→ 3s13p43d1ε2�
)∣∣∣2, (29)

where the signs (+) and (−) correspond to the length and velocity gauges of the transition
dipole operator D, respectively; ω determined by E(3s13p6) + ω = E(3s13p43d1) + ε2
stands for the photon excitation energy in atomic units; α = 1/137.036 is the fine-structure
constant; and the square of the Bohr radius a2

0 = 28.0028 Mb converts the atomic units to
cross sections in Mb = 10−22 m2.
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The transition amplitude (7) is:

A
(

3s13p6 −→ 3s13p43d1ε2�
)
=

∑
ε′�′

〈
3s13p43d1ε2�|D|3s13p43d1ε′�′

〉〈
3s13p43d1ε′�′|Hee|3s13p6〉

−IP(3s13p43d1)− ε′
(30)

where D is the dipole transition operator; Hee is the Coulomb interaction operator; IP(3s13p43d1)
is the ionization potential for the configuration 3s13p43d1 in respect with the 3s13p6 state;
the summation/integration over ε′ includes both the discrete and continuum states.

The calculation was performed using the AOs obtained by solving the HF equations
for the 1s22s22p63s13p6 configuration. The 3d AO was obtained in the 1s22s22p63s13p43d1

configuration. The continuum AOs for the intermediate and final 3s13p43d1ε′�′ and
3s13p43d1ε2� configurations were calculated using frozen core AOs averaged over the
configuration. Since the amplitude (7) contained divergent radial integrals 〈ε2�|r|ε′�′〉, it
was calculated using the correlation function method [24].

When calculating the energy levels of the 1s22s22p63s13p43d1 configuration, the AOs
obtained by solving the HF equations for this configuration were used. The same atomic
orbitals were used to calculate the Auger decay probabilities (14).

Intensities of the Auger components for the PES were calculated using the formula

I(ij −→ LS, ω) = Iij(ω) ·κ(j −→ LS), (31)

where I(ij −→ LS, ω) is the intensity of the Auger line corresponding to the decay of
the 3s13p43d1(j) state to the configuration 3s23p3(LS)ε�; Iij(ω) is the intensity (27) of the
photoelectron line and κ(j −→ LS) is the Auger yield computed as

κ(j −→ LS) = Γ(j −→ LS)

[
∑
L′S′

Γ(j −→ L′S′)

]−1

, (32)

where Γ(j −→ LS) is the partial width of the j −→ LS Auger-transition and the summation
in the denominator includes all terms of the configuration 3s23p3(LS), the decays that are
energetically allowed. The partial Auger width in the atomic units was calculated as

Γ(j −→ LS) = 2π
∣∣∣〈3s23p3(LS)ε�|Hee|3s13p43d1(j)

〉∣∣∣2. (33)

4. Results and Discussion

The most relevant calculation of the photoelectron spectrum during the sequential
two-photon double ionization of the Ar atom, known to date, was the calculation by
Kiselev et al. in 2020 [11]. In that work, the photoionization cross sections (at a photon
energy of 33.4 eV) were measured and computed using the R-matrix technique with the
B-spline R-matrix package [25]. At this photon energy, the DpDs direct process described
in Section 2.1 and the correlational processes considered in Section 2.2 do not occur due to
the insufficient energy of the incident radiation.

The experimental spectrum contains the lines of both the first and second ionization
steps. In particular, the electron energies in the 3s23p6 + γ1 ��� 3s13p6ε1 p first-step transition
are very close to those for the second-step transition 3s23p5 + γ2 ��� 3s23p4(1D)ε2�(� = 0, 2).
Therefore, the corresponding lines in the photoelectron spectrum overlap. As a result, it
is impossible to determine the intensity of the line corresponding to the 3s23p4(1D) state
using the experimental spectrum obtained in [11].

In the present work, we calculated the 2PDIII PES of Ar at a photon energy of 33.4 eV.
In accordance with the above, we compare the results of both calculations only. From
Figure 1 of [11], we estimate that the relative line intensities in the computed 2PDIII PES
are I(3P) : I(1D) : I(1S) = 100 : 45 : 15. In our calculation, this ratio is 100:32:11. The two
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calculations yield similar ratios, and we are, thus, confident that our calculation method
provides sufficient accuracy to explain the features of a possible new experiment in the
“correlation” region of exciting photon energies.

As discussed above, only transitions (1)–(4), and (7) were taken into account in
the present calculations. In total, this stage required computing 3 partial PICS to the
first 2DPI step (see processes (1) and (4)) and 34 PICS for the second 2DPI step (see
processes (2), (3), and (7)). The PICS to the first 2DPI step (1) are depicted in Figure 3.
The PICS to the first 2DPI step (4) at an exciting photon energy 65.3 eV are σ1(ω =
65.3 eV) = 0.22 Mb. The largest correlational PICS of the second 2DPI step are compared
with the PICS of the direct transition (2) in Figure 4. It can be seen that for all three terms
3s23p4(1S, 1D, 3P), the shapes of the PICS profiles for direct transitions are qualitatively
similar to the usual 3p PICS (see Figure 3), which are determined by the Cooper minimum.
The correlational cross section has a qualitatively different dependence on the photon
excitation energy, which is mainly determined by the energy dependence of the 3d ��� ε f
transition and, to some extent, is a manifestation of the 3d ��� ε f giant resonance. The ratio
of partial cross sections for the εp and ε f channels in the photon excitation energy range of
50–80 eV varied by almost three times, which suggests a significant energy dependence of
the photoelectron angular distribution parameter in the specified energy range and may be
of interest for experimental research.
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Figure 4. Calculated photoionization cross section(s) (PICS) for the second step of the direct
3s23p5 ��� 3s23p4ε2� and the largest correlational 3s13p6 ��� 3s13p43d1ε2� 2PDI transitions of
Ar. For the correlational transition, partial PICS are also shown. The vertical dash-dotted line shows
the photon excitation energy used for computing the photoelectron spectrum in Figure 5.

The photoelectron spectra computed in several approximations are depicted in Figure 5.
Figure 5a shows the spectrum due to direct transitions (1)–(3) only. Transitions (1) and (2)
lead to the appearance of three 2PDIII lines in the energy range from 32 to 40 eV, correspond-
ing to the Ar2+ 3s23p4(1S, 1D, 3P) states, and transitions (1) and (3) lead to the appearance
of a structure in the range of electron kinetic energies from 0 to 25 eV. The components of
the computed spectrum were convolved using Gaussian functions, FWHM = 0.5 eV. For
a better comparison, we present all of the calculated relative intensities of the groups of
lines with respect to the total intensity of the 3p4 (DpDp) multiplet, which is considered
100%. The calculated ratio of the intensities I(DpDp) : I(DpDs) is 100 : 25. Within the DpDs
structure the ratio of the I(3s13p5) group to the I(3s23p3nd1(sat)) group is 14:11.
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Figure 5. The 2PDIII PES of Ar for photon excitation energy 65.3 eV; (a) direct DpDp and DpDs

processes; (b) DsC correlational process: photoelectron lines of processes (4) and (7) (3s13p43d1);
Auger lines of process (14) (Auger) and total spectrum (Sum); (c) the sum of the spectra depicted in
panels (a,b).

The theoretical spectrum caused by the DsC process is shown in Figure 5b. Ac-
counting for transitions (4) and (7) results in fairly intense structures in the energy range
from the threshold to 20 eV (short dash curve). We also took into account the Auger
decay channel (14). The lines corresponding to Auger electrons, computed according to
Equations (31)–(33), are also shown in Figure 5b by the dash–dot curve. The total spectrum
is presented in Figure 5b by the solid curve. For a better perception of the contributions
of the photoelectron and Auger-electron parts of the spectrum, the intensity scale was
increased by a factor of 5 compared to Figure 5a. Since the Auger width of the transition
(14) was 1 eV on average, when constructing this part of the spectrum, its components
were convolved using Lorentz functions, FWHM = 1 eV, and additionally convolved by
an instrumental broadening using Gaussian functions, FWHM = 0.5 eV. Finally, the total
spectrum, taking into account all processes (1)–(3), (4), (7), and (14), is shown in Figure 5c.
Both correlation effects have comparable intensities with a ratio I(3s13p43d1) : I(Auger)
equaling to 72:64 (in respect with I(DpDp)).

To summarize, the calculated in the described approximation integral intensity of PES
lines for the photoelectrons with low kinetic energies, stemming from the correlational
DsC process, is 136% of the I(DpDp) intensity of the direct (non-correlational) two-photon
DpDp process associated with transitions to the Ar2+ 3s23p4(1S, 1D, 3P) states.

Further theoretical investigations could be taken into account regarding the DPES,
which involves mixing the 3s13p6 configuration with the 3s23p4n�(� = 0, 2) configurations
in the first ionization step (4). In the second ionization step, the amplitude (7), remaining
amplitudes (8)–(13), and the DPES in these processes should be taken into account.
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5. Conclusions

We computed a theoretical photoelectron spectrum for photoelectrons of low kinetic
energies for the second step of sequential two-photon double ionization (2PDIII PES) of
Ar at a photon excitation energy of 65.3 eV, exceeding the 3s ionization threshold. The
calculation takes into account the most significant electron correlations stemming from
single- and double-electron excitations.

The calculation predicts that in the low-energy part of the 2PDIII PES, correlation
satellites should be observed whose intensities exceed the intensity of the main (direct)
transition to the Ar2+ 3s23p4(1S, 1D, 3P) states. Correlation satellites consist of lines
associated with conventional photoelectron emissions and the Auger decay of the 3s13p4n�1

states; the cross sections of both processes are comparable in magnitude. The lines of the
first type should change their energy with changing photon excitation energy, while the
energy of the Auger lines should remain unchanged.

The dependence of the intensities of correlation satellites may have resonant characters
associated with the excitation of discrete levels at certain energies. In this case, the excitation
of resonances at the second step of the two-photon process (e.g., those stemming from
the second-step configuration 3s13p43d2) will contribute to the 2PDIII PES even at small
exciting radiation fluxes. At large fluxes, there should be a contribution from resonances
excited at the first step (e.g., those stemming from the first-step configuration 3s13p53d1).
The estimates of the lifetime of the 3s13p53d1(LSJ) states showed that the contribution of
these processes can be significant at fluxes exceeding 1016 W/cm2.
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Abbreviations

The following abbreviations are used in this manuscript:

FEL free electron laser
PES photoelectron spectrum
2PDIII the second step of the sequential two-photon double ionization
FWHM Full width on half maximum
PICS photoionization cross section
DPES dipole polarization of electron shells
HF Hartree–Fock
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Abstract: We focus on the study of the photodetachment of bare, i.e., single-cage (CN)− as well
as nested (multi-cage) (CN@CM@ . . .)− singly charged fullerene anions. We calculate the attached
electron’s wavefunctions, energies, oscillator strengths and photodetachment cross sections of the
C−

60, C−
240, C−

540, (C60@C240)
−, (C60@C540)

−, (C240@C540)
− and (C60@C240@C540)

− fullerene anions,
where the attached electron is captured into the ground s-state by the resultant external field pro-
vided by all fullerene cages in the anion. The goal is to gain insight into the changes in behavior
ofphotodetachment of this valence electron as a function of the different geometries and potentials of
the various underlying fullerenes or nested fullerenes (fullerene onions) both due to their increasing
size and due to “stuffing” of a larger bare fullerene with smaller fullerenes. To meet this goal, we
opt for a simple semi-empirical approximation to this problem: we approximate each individual
fullerene cage by a rigid potential sphere of a certain inner radius, thickness and potential depth, as
in numerous other model studies performed to date. The results reveal a number of rather significant
differences in the wavefunctions, oscillator strengths and photodetachment cross sections among
these fullerene anions, some of which are completely counter-intuitive. The results obtained can
serve as a “zeroth-order-touchstone” for future studies of single-cage and nested fullerene anions
by more rigorous theories and/or experiments to build upon this work to assess the importance of
interactions omitted in the present study.

Keywords: photodetachment; carbon fullerenes; carbon fullerene anions; carbon fullerene onions

1. Introduction

The photoionization/photodetachment of various neutral (q = 0) and charged (q �= 0)
fullerenes, C±q

N , and their endohedral counterparts, A@C±q
N (where A is the atom encapsu-

lated inside C±q
N cage), has been the subject of experimental (see, e.g., [1–7] and references

therein) as well as intense systematic theoretical studies for many years now (see, e.g., a
recent review paper [8] with an abundance of references therein). In particular, Professor
M.Y. Amusia, to the legacy of whom this Special Issue of Atoms is devoted to, has con-
tributed vastly to the study of the interaction of particles and light with fullerenes and
endo-fullerenes, see, e.g., [9–18], to name a few.

Although the research on the interaction of fullerenes and endo-fullerenes with light
has also touched upon the subject of fullerene anions (see, e.g., [1–4,8,9,19–24] and refer-
ences therein), yet, to the best of the authors’ knowledge, the subject of photodetachment
of giant fullerenes anions [(CN)

− with N � 60] as well as of nested fullerene anions,
(Cn@Cm>n@ . . .)−, referred to as fullerene onion-anions in the present paper, has not been
studied. Given the current strong interest in studying various elementary processes of
basic importance involving fullerene formations, it is appealing to fill in this gap in the
present state of knowledge. The present paper remedies the situation by presenting a first

Atoms 2022, 10, 99. https://doi.org/10.3390/atoms10040099 https://www.mdpi.com/journal/atoms121



Atoms 2022, 10, 99

insight into the phenomenon of photodetachment of both giant fullerene and fullerene
onion-anions.

In general, elementary processes involving fullerene formations present a formidable
multifaceted problem for theorists, thereby requiring the investment of considerable efforts
to comprehensibly address all facets of the problem as well as the interaction(s) between
them. Therefore, before investing such efforts in a comprehensive study, a kind of roadmap
is needed as a guide to the subsequent comprehensive study of this multifaceted problem.
Thus, the main narrow goal of the present study is to gain insight, using the simplest
reasonable approximation, for modifications of the photodetachment cross sections of giant
and nested fullerene anions owing to changes in their geometry induced by stuffing of a
larger bare fullerene with smaller and smaller fullerenes: (C240)

−, (C540)
−, (C60@C240)

−,
(C60@C540)

−, (C240@C540)
− and (C60@C240@C540)

−. To meet this goal, we approximate
each individual fullerene cage by a rigid potential sphere of a certain inner radius rin,
thickness Δ and potential depth U0, as in many earlier model studies of fullerene-involved
processes cited above. Within the framework of this approximation, we detail how the
photodetachment of the fullerene onion-anions differs crucially from the photodetachment
of the largest bare (i.e., single-cage) fullerene anion owing to the differences in geometries
between the fullerene formations.

To label the discrete states occupied by the attached electron in a fullerene anion,
we adopt, just as a matter of labeling, the traditional notation used for atoms, i.e., the
n�-notation, where � is the orbital quantum number and n ≥ �+ 1. Thus, in our notations,
the first s-state of the attached electron is 1s, the next s-state is a 2s state, the first p-state is a
2p state, the next p-state is a 3p state, and so on.

Finally, atomic units (a.u.) (|e| = h̄ = m = 1, where e and m are the electron’s charge
and mass, respectively, and h̄ is a reduced Planck’s constant) are used throughout the paper
unless stated otherwise.

2. Review of Theory

We model an individual CN cage (N being the number of carbon atoms in the cage)
by a UCN (r) spherical annular potential of the inner radius, rin, finite thickness, Δ, and
depth, U0:

UCN (r) =
{−U0, rin ≤ r ≤ rin + Δ

0, otherwise.
(1)

Such modeling of a CN cage was suggested in the early work by Puska and Niem-
inen [25] and, since then, has found an extensive use in numerous studies to date; the
reader is referred to [5,13,16,18,21,22,25–27] and to the review paper [8] for many more
references on the subject, as well as, e.g., to references [6,8–10,18,21,22,29,31,46] from [21]
(and references therein).

We emphasize that, with regard to C60, such model has been proven [5,18,26] (and
references therein) to produce results in a reasonable agreement with the experimental
photoionization spectrum of endohedral Xe@C+

60 [5] and a qualitative and even semi-
quantitative agreement with experimental differential elastic electron scattering off C60 [6].
Such modeling was also shown [27] to result in a semi-quantitative agreement with some
of the most prominent features of the e− − C60 total elastic electron scattering cross section
predicted by a far more sophisticated ab initio molecular-Hartree–Fock approximation [27].
This lays out a supporting background for a reasonable suitability of such modelling of C60
for the application to photodetachment of a C60 fullerene anion as well. Furthermore, our
model replaces the earlier fullerene-anion-photodetachment approximations [9,19], which
utilized the idea of an infinitesimally thin fullerene wall, by a more realistic finite-width-
wall approximation, which is certainly an improvement to the cited approximations.
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A fullerene onion, then, is modeled by a potential which is a linear combination of the
corresponding UCN (r) potentials, as in [28]:

UCN @CM@ . . . = UC60 + UC240 + . . . . (2)

The parameters rin, U0 and Δ of the individual C60, C240 and C540 fullerene cages in
fullerene onion-anions are assumed to be the same as for the corresponding isolated bare (single-
cage) fullerenes. In the present paper, we take the values for rin, Δ and U0 for C60/C240/C540
from [28]: rin = 5.8/12.6/18.8, Δ = 1.9/1.9/1.9and U0 = 8.22/10/12 eV, respectively.

A fullerene anion, C−
N , or a fullerene onion-anion, (CN@CM@ . . .)−, then, is formed

by binding of an external electron into a s-state or a p-state in the field of corresponding
UCN(r) or UCN@CM@... potential, respectively. Thus, the bound, Pn�, and continuum, Pε�,
radial wavefunctions for the attached electron in a corresponding fullerene anion satisfy
the radial Schrödinger equation:

−1
2

d2Pn/ε�

dr2 +

[
UC +

�(�+ 1)
2r2

]
Pn/ε�(r) = En/ε�Pn/ε�(r). (3)

Here, n and � are is the principal and orbital quantum numbers, respectively, ε is the
photoelectron energy and UC is the fullerene potential determined by Equations (1) or
(2), respectively.

This equation is solved with the following boundary conditions for the discrete and
continuum states:

Pn�(r)|r→0,∞ = 0, whereas Pε�(r)|r�1 →
√

2
kπ

sin
(

kr − π�

2
+ δ�(ε)

)
. (4)

Here, δ�(ε) is the phase of the continuum state wavefunction and k is the
photoelectron momentum.

Note that such model of fullerene anion photodetachment is similar in spirit to the one
suggested earlier [9,19], albeit there is a Dirac-bubble potential, rather than the spherical
annular potential, was used to approximate the C60 cage.

The photodetachment cross sections, σn�→ε,�±1, as well as the oscillator strengths of the
discrete, fn�→n′ ,�±1, and continuum, fn�→ε,�±1, spectra of fullerene anions, were calculated
using well-known formulas, see, e.g., [29]:

σn�→ε,�±1 =
4
3

π2α
Nn�

2�+ 1
ωd2

�±1, (5)

fn�→n′ ,�±1 =
Nn�

3(2�+ 1)
ωd2

�±1, (6)

fn�→ε,�±1 =
1

2π2α

∫ ∞

0
σn�→ε,�±1dω. (7)

Here, α is the fine-structure constant, ω is the photon energy, Nn� is the number of
electron in the n� state (a single electron in our case), and d�±1 is the reduced radial matrix
element for the transition from the n� state to a n′(ε), �± 1 final state.

3. Results and Discussion

3.1. Single-Cage Fullerene Anions

As the first step, we scrutinize the 1s ground-states and 2p excited-states in the bare
fullerene anions: C−

60, C−
240 and C−

540. We note that our calculations revealed no np excited-
states with n > 2 in any of these anions. The corresponding ground-state P1s(r) and
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excited-state P2p(r) radial functions and the corresponding E1s and E2p energies of the
attached electron in the C−

60, C−
240 and C−

540 anions are presented in Figure 1.
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Figure 1. Calculated ground-state P1s(r) and excited- state P2p(r) radial functions and corresponding
E1s and E2p binding energies of the attached electron in C−

60, C−
240, and C−

240 anions, as designated.

One can see that the P1s and P2p functions reach their maxima within the wall of a
corresponding fullerene, i.e., within 5.8 < r < 7.7 in C60, 12.6 < r < 14.5 in C240 and
18.85 < r < 20.75 in C540. This, actually, has been expected, for an obvious reason. A
strikingly unexpected result (at first glance), though, is that P1s ≈ P2p to a high degree of
approximation, particularly in C−

240 and C−
540. This seems strange, because the Schrödinger

equations for a s-state and a p-state differ by the presence of a centrifugal potential Ucfg =
�(�+1)

2r2 for a p-state. Correspondingly, the P1s function should have differed from the P2p
function. To understand why the situation is opposite to the expected one, we depict, for the
case of C60, the cage model potential UC60(r), the centrifugal potential Ucfg = �(�+1)

2r2 = 1
r2

for a p-electron, and the 2p probability density distribution, ρ2p = P2
2p, in Figure 2.
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Figure 2. Calculated cage model potential UC60 (r), the centrifugal potential Ucfg = �(�+1)
2r2 = 1

r2 for a
p-electron, and the 2p probability density distribution, ρ2p = P2

2p, as designated.

One can see that, inside the hollow interior of C60 (UC60 = 0), the ρ2p probability
density is practically a zero up to about r = 3. Therefore, the presence of the centrifugal
potential, however large it is, does not matter in this spatial region. ρ2p starts differ from
ρ2p ≈ 0 between approximately 3 < r < 5.8. There, however, Ucfg is already small and,
additionally, only less than 20% of electronic charge is concentrated in this spatial region.
Hence, again, a role of the small Ucfg �= 0 is largely obliterated in there. Inside the C60 wall
itself Ucfg, on average, is less than 3% of UC60 = 0.302, whereas outside of the C60 wall,
Ucfg � UC60 in addition to a rapidly damping probability density distribution. Thus, it now
becomes clear that the presence of the centrifugal potential for a p-electron cannot make the
solution of the Schrödinger equation to differ any notably from its solution for a s-electron.
This discussion explains why P1s differs from P2p only insignificantly, in C−

60. Additionally,
we believe that the reader can easily extend this discussion of the behavior of P1s and P2p
in C−

60 to giant fullerene anions to understand why P1s and P2p become practically identical
in each of the C−

240 and C−
540 anions.

Although the energies are generally more sensitive quantities to parameters in the
Schrödinger equation than the wavefunctions, the difference between E1s and E2p binding
energies is more noticeable than between the wavefunctions, although still small: it is about
25% of E1s for C−

60, 4% for C−
240, and 1.6% for C−

540. Note that the difference between E1s and
E2p is decreasing with increasing size of the fullerene anion. The largest energy difference
25% is in C−

60, as is the largest difference between P1s and P2p (see Figure 1). This is because
the 2p-centrifugal potential energy in C−

60 is larger than in other fullerene anions, owing to
a significantly smaller size of the C60 cage as compared to the other two.
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Because P1s ≈ P2p, the corresponding f1s→2p oscillator strengths in the C−
60, C−

240 and
C−

540 anions must be large. Our calculations show that f1s→2p ≈ 0.807, 0.962, and 0.679 in
C−

60, C−
240 and C−

540, respectively (see Table 1 for more details).

Table 1. Calculated E1s ground-state energies, ω2p and ω3p energies of the 1s → 2p&3p transitions
(all in eV), discrete f1s→2p&3p, and continuum, f1s→εp, oscillator strengths in the single-cage and
multi-cage fullerene anions. Note, our calculations showed no existence of the np excited states with
n > 2 in the single-cage fullerene anions.

Anions E1s ω2p ω3p f1s→2p f1s→3p f1s→(2p+3p) f1s→εp

C−
60 −2.654 0.6743 - 0.807 - 0.807 0.194

C−
240 −3.646 0.155 - 0.692 - 0.692 0.307

C−
540 −4.855 0.0831 - 0.6795 - 0.6795 0.326

(C60@C240)
− −3.691 0.1782 1.8314 0.7345 0.025 0.7595 0.239

(C60@C540)
− −4.855 0.0831 2.8902 0.6795 0.000 0.6796 0.324

(C240@C540)
− −4.903 0.092 1.514 0.696 0.052 0.748 0.260

(C60@C240@C540)
− −4.903 0.093 1.483 0.699 0.052 0.751 0.256

We note that the oscillator strength f1s→2p is decreasing with increasing size of the
fullerene cage. At first glance this is strange, because the approximate equality P1s ≈ P2p
is getting only stronger with increasing size of the fullerene cage, as discussed above.
Thus, the overlap between P1s and P2p is increasing and so should have been f1s→2p as
well, with increasing size of the anion. However, the ω1s→2p ≡ ω2p excitation energy (see
Table 1), is decreasing with the increasing size of the fullerene cage. This counterbalances
the increase in the overlap between P1s and P2p, thereby resulting in a smaller f1s→2p (which
is proportional to ωnp) in a bigger fullerene anion. This decrease in the f1s→2p oscillator
strength with increase in the fullerene size leads to an important conclusion. Namely, we
conclude there is an increasing transfer of oscillator strength of a fullerene anion from
a discrete spectrum to continuum with increasing size of the fullerene cage, as clearly
follows from the oscillator strength sum rule: f1s→εp = 1 − f1s→2p. Calculated f1s→εp’s are
presented in Table 1 as well. At this point it is important to emphasize that the continuum
oscillator strengths, presented in Table 1, were calculated using Equation (7) rather than
as 1 − f1s→2p from the sum rule. The fact that the independently calculated f1s→εp and
the f1s→εp = 1 − f1s→2p are equal to a high degree of approximation speaks about the
adequacy of the calculated photodetachment cross sections themselves, discussed later in
the paper.

3.2. Fullerene Onion-Anions

We now move to the discussion of the wavefunctions of the valence electron in the
fullerene onion-anions (C60@C240)

− , (C60@C540)
−, (C240@C540)

− and (C60@C240@C540)
−.

We note first that the potentials of these fullerene onions are, obviously, either double-well
or triple-well potentials. Correspondingly, one can expect a greater number of bound states
available to the attached electron in these fullerene onion-anions. In our case, the calcula-
tions predicted the existence of only two discrete p-states—the 2p and 3p excited states—,
in contrast to only the 2p excited-state in the bare fullerene anions. The corresponding P1s,
P2p and P3p functions are plotted in Figure 3 where a number of new features are exhibited.

The most striking discovery relates to the behavior of the P3p excited-state wave
functions. Their highly peculiar behavior is completely different from the behavior of
the P1s and P2p functions in any of these fullerene onion-anions. Indeed, we find that a
significant part of the P3p function and, thus, the electron density of the attached electron,
is packed inside the wall of the inner cage directly adjacent to a larger fullerene cage in
each of these double- and triple-cage fullerene onion-anions. Although this is evident
from Figure 3, this is also supported by looking at the mean radii, r̄3p, of the 3p orbitals in
these fullerene onion-anions as well. The calculated r̄3p’s are: r̄3p ≈ 7 in both (C60@C540)

−
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and (C60@C240)
− (thus, the 3p orbital falls into the C60 potential well), whereas r̄3p ≈ 14

in both (C240@C540)
− and (C60@C240@C540)

− (thus, r̄3p falls into the C240 potential well).
This is in a sharp contrast to the P1s and P2p functions that are mainly packed in the
potential well of the largest fullerene cage (C540, in our case) in corresponding fullerene
onion-anions, respectively, as is evident from Figure 3 (also, r̄1s ≈ r̄2p ≈ 20 in all fullerene
onion-anions under discussion). Especially surprising is the behavior of the P3p function in
(C60@C540)

−, where its probability density is almost entirely located inside C60, despite
the size of C60 being significantly smaller than C540, so that the C60 potential well should
not have affected the attached valence electron at all, as in the case of the P1s and P2p
functions (see Figure 3c,d). In any case, the behavior of P3p in these fullerene onion-anions
is extraordinary, a complete break with conventional wisdom.
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Figure 3. Calculated radial ground-state P1s(r) and excited-state P2p and P3p (due to the 1s →
np transitions, n = 2, 3) of the attached electron in fullerene onion-anions: (a) (C60@C240)

−, (b)
(C240@C540)

−, (c) (C60@C540)
−, (d) (C60@C240@C540)

−: solid, P2p; dashed, P1s; dash–dot, P3p. Also
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540, as designated, for comparison

purposes. Note, to avoid any confusion, that the graphs for the P1s and P2p functions in the fullerene
onion-anions tightly overlap with each other and are practically indistinguishable from each other
with some exception in the case of (C60@C240)

−.
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We interpret the predicted behavior of the P3p excited-state functions in the fullerene
onion-anions as being due to both the multi-well nature of the fullerene onion-anion
potentials and the fact that, in contrast to the nodeless P1s and P2p functions, the P3p
function has one node. That is, the P3p function is distinctly split into an inner part (before
the node) and an outer part (beyond the node). It appears that the inner part of the
P3p function falls into the potential well associated with a fullerene cage adjacent to the
outermost cage in the fullerene onion-anion. Thus, the attached electron partially resides in
the inner well.

We note, though, that the behavior of the P3p function in the fullerene onion-anions
is somewhat reminiscent of the behavior of the excited P3d and P4d functions, excited
from the 3p subshell, in endohedral calcium, Ca@C60 [30]. There, a significant transfer of
the 4d, but not 3d, electron density into the inner space of C60 was demonstrated. That
resulted in a significant increase in the amplitude of the P4d orbital in the inner space of C60.
Consequently, the mean radius of the 4d orbital was reduced from r̄4d ≈ 14 in free Ca to
only r̄4d ≈ 4.3 < rc = 5.8 in Ca@C60 [30]. That situation, in turn, was commented on to be
somewhat reminiscent of the behavior of the excited 4 f and 5 f orbitals in Ba+ [31,32] that
was shown to be due to the double-well nature of the potential of Ba+ that caused partial
orbital collapse of 5 f into the inner well, thereby causing 5 f , rather than 4 f , to have the
greater amplitude near r = 0.

3.3. Oscillator Strengths and Photodetachment Cross Sections

Calculated oscillator strengths, f1s→np, of the C−
60, C−

240, and C−
540 bare fullerene anions

as well as the (C60@C240)
−, (C60@C540)

−, (C240@C540)
−, and (C60@C240@C540)

− fullerene
onion-anions are/were listed in Table 1 which contains a wealth of information. Since
a principal goal of this work is to explore the spectral distribution of oscillator strength,
we focus on a comparison among the total oscillator strengths of the discrete spectra, i.e.,
f1s→2p + f1s→3p ≡ f(2p+3p), for the single and nested fullerene cages Thus, as we transition
from C−

240 → (C60@C240)
−, the f(2p+3p) oscillator strength is increased. The same change

in f(2p+3p) is characteristic along all other transition paths as well: C−
540 → (C240@C540)

−,
C−

540 → (C60@C240@C540)
−, and, in principle, C−

540 → (C60@C540)
−, too. Hence, we have

unraveled a general tendency: stuffing of a bigger fullerene cage with a smaller fullerene
cage, as well as progressively stuffing the biggest fullerene cage with several smaller
fullerene cages, results in the transfer of a part of the oscillator strength from a continuum
spectrum into a discrete spectrum.

Now, how does the discovered tendency affect the 1s-photodetachment cross section,
σ1s? Obviously, the total area under the graph for σ1s should be decreasing along the
discussed fullerene transition paths. This may result in the disappearance of some of
the resonance structures in σ1s, or making them narrower, or decreasing their heights, or
lowering the values of other parts of σ1s, or all of the above cumulatively. It is, therefore,
extremely interesting to study the modifications in σ1s’s on a comparative one-to-one basis
for different fullerene anions.

Calculated σ1s’s for C−
240 versus (C60@C240)

−, as well as C−
540 versus (C60@C540)

−,
(C240@C540)

−, and (C60@C240@C540)
− are depicted in Figure 4 as functions of the pho-

toelectron momentum κ, in order to eliminate the impact of differences in 1s ionization
potentials between the fullerene anions on details of σ1s’s, for the adequacy of the compari-
son between these anions.

We first note that the calculated cross sections exhibit the oscillatory behavior versus
the photoelectron momentum, k. Such resonances have been well understood for both
photoionization and photodetachment of, as well as electron scattering by, fullerene and
endo-fullerene complexes in a large body of research; we refer the reader to the above
references, to the review paper [8] for many more references on the subject, as well as,
e.g., to [4–8,10–24,29,31,38,39,46] from [21] (and references therein). Following [33], these
resonances are commonly referred to as the confinement resonances.
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Figure 4. Calculated σ1s photodetachment cross sections of bare fullerene anions and nested fullerene
onion-anions, as designated in the figure. Note, on all parts of the figure, the σ1s of C−

60 is represented
by a dashed-line.

Secondly, note that the prediction mentioned above on the modification of the pho-
todetachment cross section along the path from the bare fullerene anions to the double-
and triple-cage fullerene onion-anions is seen to be correct. Indeed, we see the disappear-
ance of one or even two confinement resonance structures (near the lower energy end
of the spectrum), and the significant decrease in their amplitudes (except for the case of
the (C60@C540)

− onion-anion, which is an extraordinary case anyway, as was discussed
above). Furthermore, it is interesting that the resonances in σ1s of (C60@C540)

− are seen
to be shifted towards higher k’s, compared to σ1s of the bare (C540)

− anion, whereas in all
other nested fullerene onion-anions they shift toward lower k’s, compared to corresponding
bare counterparts.

Thirdly, it is quite interesting that σ1s’s of all fullerene onion-anions, whether double-
cage or triple-cage anions, do not differ much in magnitude from σ1s of the smallest C−

60
anion in this sequence of fullerene anions (except for σ1s of extraordinary (C60@C540)

−

at a lower end of the spectrum). To emphasize this, we added σ1s of C−
60 to all plots in

Figure 4 to facilitate this comparison. One can see that σ1s’s, associated with the nested
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fullerene onion-anions, oscillate around σ1s of C−
60 with average amplitudes that are not

much different from σ1s of C−
60.

Lastly, we note that, to check the connection of calculated σ1s’s to calculated oscillator
strengths, we calculated the oscillator strength of the continuum spectrum, f1s→εp, by
appropriately integrating σ1s’s in accordance with Equation (7). These calculated f1s→εp’s
are presented in Table 1, and the fact that they have the same values as those obtained
from the oscillator sum rule ( f1s→εp = 1 − f1s→(2p+3p)) speaks to the accuracy of the
calculated σ1s’s.

4. Conclusions

In the present paper, we have provided a glimpse into the structure and photode-
tachment cross sections of bare fullerene anions and nested fullerene onion-anions and
uncovered the existence of a number of unusual features. The results were obtained on a
zeroth-order basis, so to speak. However, the zeroth-order basis is a valuable and neces-
sarily part of any study of any multielectron atomic and molecular systems and processes.
This is because, firstly, it provides a kind of a roadmap where more sophisticated theoretical
studies of these systems should be conducted and, secondly, the comparison between the
results obtained with a more accurate calculation with those obtained in this zeroth-order
study is the only way to understand the importance and strength of the physical interac-
tions that are not accounted in the framework of the zeroth-order approximation. We hope
that the results of the present study will serve as an impetus to more complete theoretical
studies of the structure and photodetachment spectra of fullerene (onion–)anions, now that
we know that they might be quite unusual.
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Abstract: The variational method is applied to the low-energy positron scattering and annihilation
problem. The ultimate aim of the investigation is to find a computationally economical way of
accounting for strong electron–positron correlations, including the effect of virtual positronium
formation. The method is applied to the study of elastic s-wave positron scattering from a hydrogen
atom. A generalized eigenvalue problem is set up and solved to obtain s-wave positron–hydrogen
scattering phase shifts within 8 × 10−3 rad of accepted values. This is achieved using a small number
of terms in the variational wavefunction; in particular, only nine terms that depend on the electron–
positron distance are included. The annihilation parameter Zeff is also calculated and is found to be
in good agreement with benchmark calculations.

Keywords: theoretical atomic and molecular physics; positron; hydrogen; annihilation; phase shift;
scattering

1. Introduction

The aim of this paper is to explore a numerically frugal method of including important
electron–positron correlations in the calculations of positron (e+) scattering from atoms
and molecules. A good understanding of positron interactions with matter is a crucial
element in the development of current and future applications of antimatter [1,2]. It is also
important for tests of quantum electrodynamics [3] and fundamental experiments with
antihydrogen [4].

Since the prediction [5] and discovery [6] of the positron’s existence, many experimen-
tal and theoretical studies have been focussed on revealing the nature of its interactions
with atoms and molecules [7]. Measurements and calculations show that low-energy
positron interaction with atoms and molecules is characterized by strong electron–positron
correlations. The first of these correlation effects is polarization of the target electron
distribution by the positron. It gives rise to the attractive polarization potential with the
asymptotic form −αe2/2r4, where α is the dipole polarizability of the target, e is the charge
of the projectile (positron), and r is the distance between the positron and the target. This
polarization potential is similar to that which affects electron scattering.

The second correlation effect, which is specific to positrons, is virtual positronium
formation. Positronium (Ps) is a light hydrogen-like atom that consists of an electron and
a positron. Ps has a binding energy of EPs = 6.8 eV. For positron energies ε > EI − EPs,
where EI is the ionization energy of the target, Ps formation is an important ionization
channel in positron collisions. For targets with EI > EPs and ε < EI − EPs, the Ps formation
channel is closed. However, atomic electrons can still tunnel from an atom or molecule to
the positron to form a Ps-like state temporarily. This effect makes a distinct and sizeable
attractive contribution to the interaction of low-energy positrons with atoms and molecular
targets. At the same time, this contribution makes positron scattering and annihilation
calculations particularly challenging.

Amusia and co-workers [8] were probably the first to recognize the importance of vir-
tual Ps formation. They were able to incorporate this effect and gauge its magnitude using
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many-body theory calculations for He. (Very recently, this approach was used for positron
scattering from atoms with half-filled valence shells [9].) A more accurate approximation
for the Ps formation contribution to the positron–atom correlation potential [10] enabled
predictions of positron binding to neutral atoms [11] and reliable calculations of positron
scattering from noble gas atoms [12]. Ultimately, a consistent ab initio method for calculating
the Ps formation contribution was developed and tested [13]. It provided a complete and
accurate picture of positron scattering and annihilation from noble-gas atoms [14], and has
now been generalized to molecular calculations that can yield high-quality predictions of
positron–molecule binding energies [15].

Many-body theory allows one to identify the virtual Ps formation contributions with
a particular class of diagrams that contribute to the positron–target correlation potential.
When other approaches are used, the physical effect of virtual Ps formation is still present,
but it manifests itself in a different way. In single-center convergent close-coupling calcula-
tions of positron scattering from hydrogen, one observes it as slow convergence with respect
to the maximum orbital momentum of the electron and positron states used [16]. This
is also seen in configuration–interaction calculations of positron–atom bound states [17].
Such high-angular-momentum states are needed to describe an electron–positron pair (Ps)
localized some distance away from the atomic nucleus. This “problem” is immediately
removed, however, when a two-center approach is used, in which functions that depend
on the electron–positron distance (and hence, describe Ps) are included in the expansion
of the wavefunction [18]. It was also seen in Kohn-variational calculations [19,20] that the
inclusion of such “virtual Ps” terms in the wavefunction yields significant improvements
in the convergence of the scattering phase shifts and a pronounced enhancement of the
positron annihilation rate at energies just below the Ps formation threshold. Finally, when
the Schwinger multichannel method is used for positron scattering from molecules [21],
calculations are significantly improved by adding basis states on extra centers placed away
from the atomic nuclei [22]. In this case, such centers help to describe Ps formed virtually
outside the molecule. Such “ghost” centers are also used in the most sophisticated many-
body theory calculations of positron–molecule binding to enable the accurate description
of virtual Ps formation [15].

It can be seen from the above that a well-converged positron scattering calculation
should either include a large number of wavefunction terms centered on the nuclei or in-
clude terms with explicit dependence on the electron–positron distance. The first approach
is more straightforward numerically but may lead to very large basis sizes. The second one
is more economical but with an added complexity of dealing with a multicenter problem.
It is the latter approach that we want to explore, aiming to include as few correlation terms
as strictly necessary to obtain good-quality scattering and annihilation data.

In this paper, the scattering and annihilation of positrons is explored for the positron–
hydrogen system through use of the variational method with square-integrable trial wave-
functions. Important correlation effects, including that of virtual Ps formation, are ac-
counted for by including functions which depend on the electron–positron distance. The
variational method is set up as a generalized eigenvalue problem. From this, elastic s-wave
phase shifts δ and the annihilation parameter Zeff for the e+-H system are calculated at
energies below the Ps formation threshold. Good agreement with benchmark values of
both the phase shifts [23–25] and the annihilation parameter [26] is achieved using only
a small number of terms in the wavefunction. By providing evidence that this method is
a valid approach to the problem, avenues for future research are opened in which more
complex matter–antimatter interactions may be explored. It should be added that the
positron–hydrogen system has long been used as a testbed for various calculation methods,
with many accurate results available at both low and high energies (see, e.g., Refs. [27–29]).

The paper is structured as follows. In Section 2, we set up the generalized eigenvalue
problem which is employed to solve the scattering problem and show how to obtain the
scattering phase shifts from bound-state calculations. In Section 3, the method is applied
to elastic s-wave scattering of a positron from a hydrogen atom. Three sets of phase shift
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results are presented, beginning with a simple model and progressing toward more detailed
descriptions of the system. In Section 4, the annihilation parameter Zeff is calculated using
the same trial wavefunctions as in Section 3. Section 5 summarizes the work and indicates
its future applications.

2. Scattering as a Bound-State Problem

In this section, we recap how a simple variational method can be used to calculate
s-wave elastic scattering phase shifts for scattering from an atomic target.

2.1. Generalized Eigenvalue Problem

The method begins with the choice of a trial wavefunction. Consider a system in
the state |Ψ〉 expanded in terms of a set of linearly independent square-integrable basis
functions {|ϕi〉}N

i=1 which, in general, are neither normalized nor orthogonal:

|Ψ〉 =
N

∑
i=1

ci |ϕi〉 . (1)

This basis is chosen at the beginning of the problem, and the coefficients ci are the variational
parameters.

Central to the problem is the minimization of the energy functional,

〈E〉 = 〈Ψ| Ĥ |Ψ〉 , (2)

with respect to the parameters ci, whilst holding 〈Ψ|Ψ〉 = 1. The minimum energy calcu-
lated using a trial wavefunction provides an upper bound on the exact ground-state energy
of the system.

The normalization constraint is imposed during the minimization through use of a
Lagrange multiplier E. At the minimum (or a stationary point), we require

∂

∂ck

[
〈Ψ| Ĥ |Ψ〉 − E(〈Ψ|Ψ〉 − 1)

]
= 0, k = 1, . . . , N. (3)

Substituting the expansion of |Ψ〉 from (1) into (3) gives a system of N linear equations.
Assuming that the ci values are independent of each other, performing partial differentiation
with respect to a particular ck yields the following:

∑
j

cj 〈ϕk| Ĥ |ϕj〉+ ∑
i

ci 〈ϕi| Ĥ |ϕk〉 − E

(
∑

j
cj 〈ϕk|ϕj〉+ ∑

i
ci 〈ϕi|ϕk〉

)
= 0. (4)

Since the matrix elements of the Hamiltonian are real (assuming real basis functions |ϕi〉),
the first two sums in (4) are identical and hence may be combined. Similarly, the scalar
product of any two basis functions in our problem is real, and the second pair of sums may
also be combined. This results in the following equation:

∑
i
〈ϕk| Ĥ |ϕi〉︸ ︷︷ ︸

Hki

ci = E ∑
i
〈ϕk|ϕi〉︸ ︷︷ ︸

Qki

ci, (5)

where Hki and Qki are the elements of matrices H and Q, respectively. Hence, (5) takes the
form of a matrix equation:

Hc = EQc, (6)

where the vector c contains the ci values.
The eigenvalues En of the generalized eigenvalue problem (6) are energy eigenvalues

of the system with Hamiltonian Ĥ, with the state |Ψ〉 defined by coefficients ci, i.e., the
elements of the corresponding eigenvector. For a system that has a few bound states or no
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bound states at all, most of the energy eigenvalues will lie in the continuum. The corre-
sponding states |Ψ〉, often called pseudostates, will not be the true states of the system that
represent scattering states. However, it is possible to use the energies and wavefunctions
of the pseudostates to determine important properties of the scattering states, e.g., phase
shifts or (for positrons) the normalized annihilation rate Zeff.

In this work, the generalized eigenvalue problem is solved using Python’s eigh func-
tion [30] which, given matrices H and Q, provides the energy eigenvalues and normalized
eigenvectors of the system.

2.2. Scattering Phase Shifts

Once the energy eigenvalues have been calculated, they can be used to find the phase
shifts δ, e.g., for s-wave scattering. This assumes that the target is spherically symmetric
and states |Ψ〉 have zero total angular momentum. The method used by Gribakin and
Swann in [31] is implemented here. Firstly, the eigenvalue problem is solved for a free
particle, i.e., using a chosen basis-state expansion but neglecting the interaction between
the projectile and the target in Ĥ. The free-particle energy eigenvalues are denoted E(0)

n
and increase monotonically with n. Hence, it is possible to introduce an invertible function
f (n) such that

f (n) = E(0)
n (7)

for n = 1, . . . , N. Next, the eigenvalue problem is solved with the full Hamiltonian using
the same basis. The corresponding eigenvalues En are shifted with respect to those in
equation (7), which can be written as

En = f
(

n − δ

π

)
, (8)

where δ is the phase shift [31].
Rearranging (8), the phase shifts may be extracted as a function of the energy eigen-

values En:

δ =
[
n − f−1(En)

]
π. (9)

With the introduction of a phase shift δ, the function f (n) must now be defined for real
values of n, and equivalently, its inverse must be defined for values of energy other than
the free-particle energy eigenvalues. The value of f−1(E) for these intermediate values
of energy may be found by interpolating between the free-particle energy eigenvalues.
However, for particular bases, e.g., those using even-tempered exponents, the function f (n)
varies rapidly and is difficult to interpolate accurately. In this case, a new function g(ln E)
can be defined, such that f−1(E) ≡ g(ln E); this function changes more slowly, making
accurate interpolation possible. In the problems that follow, this interpolation is completed
using a cubic spline fit to the data for integer n. The phase shift may then be calculated as

δ = [n − g(ln En)]π. (10)

In the following analysis, the phase shift will be considered as a function of momentum
k =

√
2E rather than energy E, where we use atomic units and assume that the projectile

(positron) has a unit mass and set E = 0 at the continuum threshold.

3. Calculation of Elastic s-Wave Positron–Hydrogen Phase Shifts

In this section, the variational method is used to calculate elastic scattering phase shifts
for a positron scattering from a hydrogen atom. The calculation is restricted to s-wave
scattering which dominates at low positron energies.
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3.1. One-Particle Problem

To test the method, we consider the simple problem of positron scattering from a
“frozen” hydrogen atom. In this case, the wavefunction depends only on the distance
between the positron and the nucleus. Figure 1 contains a schematic diagram of the system
with the interparticle distances labeled.

r12r1

r2

e−

e+
p+

Figure 1. A diagram of the positron–hydrogen system with the interparticle distances labeled.

In the frozen-target approximation, the electron moves in the field of the nucleus
(considered infinitely massive) and is “fixed” in the ground (1s) state of the atom. The
dependence of the wavefunction on r12 is neglected. Hence, the total wavefunction becomes
a product of the 1s electron wavefunction and the unknown positron wavefunction, which
we denote Ψ(r), with r ≡ r2. Considering Ψ(r) as the wavefunction of the radial motion,
the boundary condition at the origin Ψ(0) = 0 is imposed. In this problem, we select a trial
wavefunction of the form

Ψ(r) = r
N

∑
i=1

ci exp(−βir), (11)

where ci are variational parameters and βi are chosen real exponents. The corresponding
basis functions are

ϕi(r) = r exp(−βir), i = 1, . . . , N. (12)

In the following calculations, the exponents βi are chosen as

βi = β1ζ i−1, i = 1, . . . , N, (13)

i.e., forming an even-tempered basis, with ζ = 1.5, N = 20 and β1 = 0.01.
The elements of matrix Q are calculated as follows:

Qij =
∫ ∞

0
ϕi(r)ϕj(r)dr =

2
(βi + β j)3 . (14)

Next, the Hamiltonian for the system is considered1. The electrostatic potential of the
ground-state hydrogen atom is (see, e.g., Ref. [32], §36, Problem 2):

Û =
1
r
+ φe(r) =

(
1
r
+ 1
)

e−2r, (15)

where φe(r) is the mean-field potential of the electron cloud and the 1/r term accounts for
the positron-nucleus interaction.

In addition to Û, the Hamiltonian of the radial motion of the positron contains its
kinetic energy, hence

Ĥ = −1
2

d2

dr2 +

(
1
r
+ 1
)

e−2r. (16)
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The Hamiltonian matrix elements are calculated as follows:

Hij =
∫ ∞

0
ϕi(r)

(
−1

2
d2 ϕj(r)

dr2

)
dr +

∫ ∞

0
ϕi(r)

(
1
r
+ 1
)

e−2r ϕj(r)dr,

= −1
2

βiβ j

(βi + β j)3 +
βi + β j + 4

(βi + β j + 2)3 . (17)

The generalized eigenvalue problem (6) for the matrices (14) and (17) was then solved using
a simple Python code, and the phase shifts were calculated as described in Section 2.2.

Figure 2 is a plot of n against ln E for the basis (13). It explains how the phase shifts
are found from the pseudostate energy eigenvalues. By construction, for the free-positron
eigenvalues E(0)

n (obtained using Ĥ = − 1
2 d2/dr2), the function g(ln E(0)

n ) takes integer
values, but for the eigenvalues En of the positron in the static hydrogen potential, this
function takes non-integer values n − δ/π, which yield δ for specific positron energies En.

Figure 2. Red circles: values of n = 1, 2, . . . plotted against ln E(0)
n . Black line: the function n = g(ln E)

obtained using cubic-spline interpolation between the free-particle eigenvalue data. Yellow circles:
the points on the interpolated curve for the positron energies En in the static hydrogen potential.
From this, it can be seen that ln En corresponds to non-integer ordinates n − δ/π.

The phase shifts for low-momentum positrons were compared to those obtained from
a numerical solution of the radial Schrödinger equation in the static hydrogen potential
(obtained using the codes described in [33]). This comparison is displayed in Figure 3. There
is a good agreement between these sets of data, especially at low momenta k, providing
evidence that the present variational method allows one to extract the scattering phase
shifts from a simple bound-state calculation.
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Figure 3. Positron–hydrogen s-wave scattering phase shifts in the static approximation. Red data
points: phase shifts obtained using the present variational method. Black line: data obtained by
solving the radial Schrödinger equation using the suite of codes described in [33].

3.2. Two-Particle Problem

In this section, a full two-particle dynamics of positron scattering from a hydrogen
atom is considered. Here, the electron is no longer fixed in the 1s state of the hydrogen
atom and generally, the wavefunction for this system will depend on the distances between
all three pairs of particles2, as labeled in Figure 1. A wavefunction of the following form
will be considered:

Ψ(r1, r2, r12) =
N

∑
i=1

ci exp(−αir1 − βir2 + γir12), (18)

where the values of coefficients αi, βi and γi are chosen and the constants ci are the
variational parameters. The integrals to be evaluated in this section are greatly simplified
by using the elliptic (Hylleraas [34]) coordinate system (s = r1 + r2, t = r1 − r2, u = r12), so
these coordinates are employed to carry out all of the calculations. The full set of standard
integrals used is found in Appendix A. Our calculations begin with a simplified version
of (18) using a single value of αi = 1 and γi = 0, i.e., equivalent to the frozen-target
approximation of Section 3.1, gradually building toward the more general case. With each
added element of flexibility in the wavefunction, a more accurate solution to the scattering
problem is obtained.

Labeling the basis functions

ϕi(r1, r2, r12) = exp(−αir1 − βir2 + γir12), (19)

elements of the overlap matrix Q are calculated as follows:

Qij =
∫

ϕi ϕjdτ, (20)

where dτ = π2(s2 − t2)uds dt du is the volume element, and the integration is over 0 ≤ s <
∞, 0 ≤ u ≤ s, −u ≤ t ≤ u. Substituting ϕi from (19) into (20), we find the overlap integral
in the form

Qij =
∫

exp
[
2(−Aijs − Bijt + Γiju)

]
dτ, (21)
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where

Aij =
1
4
(αi + βi + αj + β j), (22)

Bij =
1
4
(αi − βi + αj − β j), (23)

Γij =
1
2
(γi + γj). (24)

This integral shares its structure with the standard integral Ĩ1 from Appendix A; hence,

Qij = Ĩ1(Aij, Γij, Bij). (25)

The Hamiltonian operator of the system is given by

Ĥ = −1
2
∇2

1 −
1
2
∇2

2 −
1
r1

+
1
r2

− 1
r12

. (26)

The first two terms represent the kinetic energy of the electron and positron T̂. The third
and fourth terms describe the interaction of the electron and positron with the nucleus Û,
and the final term represents the electron–positron interaction V̂. Hence, the Hamiltonian
matrix element Hij is considered as the sum of three contributions:

Hij = Tij + Uij + Vij. (27)

In the elliptic coordinates, the expectation value of the kinetic energy takes the form

〈Ψ| T̂ |Ψ〉 =
∫ {(

∂Ψ
∂s

)2
+

(
∂Ψ
∂t

)2
+

(
∂Ψ
∂u

)2

+
2

u(s2 − t2)

∂Ψ
∂u

[
s(u2 − t2)

∂Ψ
∂s

+ t(s2 − u2)
∂Ψ
∂t

]}
dτ. (28)

Replacing one of the Ψ by φi and the other by φj, and mapping the integrals that arise to
the set of standard integrals in Appendix A, one obtains

Tij =
1
4
[
(αi + βi)(αj + β j) + (αi − βi)(αj − β j) + 4γiγj

]
Ĩ1(Aij, Γij, Bij)

−γi
[
(αj + β j) Ĩ2(Aij, Γij, Bij) + (αj − β j) Ĩ3(Aij, Γij, Bij)

]
. (29)

The matrix element of the electron and positron interaction with the nucleus is

Uij =
∫

ϕi

[
− 2

s + t
+

2
s − t

]
ϕjdτ. (30)

This integral is reduced to the standard integrals J̃1 and J̃3 (Appendix A), which gives

Uij = −2[ J̃1(Aij, Γij, Bij)− J̃3(Aij, Γij, Bij)] + 2[ J̃1(Aij, Γij, Bij) + J̃3(Aij, Γij, Bij)]. (31)

Clearly, the J̃1 terms will cancel here. However, when calculating the free-positron energy
eigenvalues, only the first bracketed term on the right-hand side of this equation is required,
since the positron–nucleus interaction (second term) is not included in the free-positron
Hamiltonian. When both of the Coulomb terms are included, the expression simplifies to

Uij = 4 J̃3(Aij, Γij, Bij). (32)
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Lastly, the matrix element of the electron–positron Coulomb interaction is given by

Vij = −
∫

ϕi
1
u

ϕjdτ. (33)

This integral reduces to the standard integral J̃2 in Appendix A to give

Vij = − J̃2(Aij, Γij, Bij). (34)

Combining the results in (29), (32) and (34), an expression for the Hamiltonian matrix
element is obtained:

Hij =
1
4
[
(αi + βi)(αj + β j) + (αi − βi)(αj − β j) + 4γiγj

]
Ĩ1(Aij, Γij, Bij)

− γi
[
(αj + β j) Ĩ2(Aij, Γij, Bij) + (αj − β j) Ĩ3(Aij, Γij, Bij)

]
+ 4 J̃3(Aij, Γij, Bij)− J̃2(Aij, Γij, Bij). (35)

Note that for γi �= 0, the matrix element (35) derived using equation (28) is not symmetric,
i.e., Hij �= Hji. Hence, Hij must be replaced by the symmetrized combination

H′
ij =

1
2
(Hij + Hji), (36)

before solving the generalized eigenvalue problem (6), which is consistent with the deriva-
tion in Section 2.1.

After setting up the Hamiltonian and overlap matrices, the generalized eigenvalue
problem (6) is solved for the energy eigenvalues and eigenvectors. The eigenvalues for
the free positron (omitting the positron–nucleus and positron–electron interaction terms)
and those for the full Hamiltonian are analyzed to extract the phase shifts, as outlined
in Section 2.2. It is noted here that solving (6) provides energy eigenvalues of the whole
system. Hence, to obtain the positron energies E(0)

n and En, the energy of the ground-state
hydrogen atom (−0.5 a.u.) must be subtracted from the eigenvalues.

3.2.1. Reproducing the Frozen-Target Results.

In the first instance, the frozen-target problem is revisited to check that the two-
particle code produces the same results as the one-particle code. The dependence of the
wavefunction on r12 is eliminated by setting γi = 0. In addition, the electron is fixed in the
ground state by setting αi = 1. These restrictions will subsequently be lifted to allow the
electron to move and to account for the electron–positron correlations. As before, describing
the positron requires a wide range of exponents βi, which are defined as in (13).

Taking all of this into account, we have the following wavefunction:

Ψ(r1, r2) =
N

∑
i=1

ci exp[−r1 − βir2]. (37)

Figure 4 shows that the corresponding phase shifts match those from the one-particle
problem 3.1. Figure 4 also shows the phase shifts over a larger range of positron momenta.
As expected, at large projectile energies, the scattering phase shift tends to zero. Note also
that the phase shift is negative at all energies. This is a consequence of the positron–atom
interaction being repulsive in the frozen-target approximation.
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Figure 4. Positron–hydrogen s-wave scattering phase shifts in the static approximation calculated
using a two-particle model (red circles), plotted over two contrasting ranges of k. The meaning of the
black curve is the same as in Figure 3. Agreement with Figure 3 can be noted.

3.2.2. Variation of α: Radial Correlations.

To probe the effect of electron–positron radial correlations, the wavefunction is aug-
mented by including extra terms with αi �= 1. Physically, this adjustment allows the
incident positron to cause displacement of the atomic electron in the radial direction due
to the attraction between the two particles. Inclusion of a term, or several terms, in the
wavefunction with αi = 0.5 will facilitate this type of distortion. The wavefunction in this
case is written as

Ψ(r1, r2) =
N

∑
i=1

ci exp[−αir1 − βir2]. (38)

For now, the restriction on the γi parameters remains in place, in that γi = 0 and the
dependence of the wavefunction on the electron–positron distance is neglected. Note that
this approximation corresponds to the so-called Temkin–Poet model that was used earlier
to test electron–hydrogen and positron–hydrogen scattering [35].

Firstly, a single term is added with αi = 0.5 and βi = 0.4. This value of βi is chosen
because we expect radial correlations to be important when the positron is close to the
hydrogen atom. At such distances, it is most likely to attract the electron sufficiently to
cause significant distortion. Terms with αi = 0.5 and a full range of βi values are not
immediately introduced because we aim to achieve good accuracy with as few correlation
terms as possible. Hence, extra terms are introduced individually to test their importance: if
a notable change in the phase shift is seen by adding a particular term, the term is retained
and used in the basis. If not, the term is discarded and a different choice is made.

Phase shifts were obtained for various sets of parameters, using up to 20 additional
terms. It was found that overall, the effect on the phase shift from adding these terms is
small. In Figure 5, a set of results is displayed for a calculation with just three additional
terms in the basis, which were found to generate a close-to-maximum shift from the
frozen-target results (with αi = 0.5 and βi = 0.2, 0.4, 1.0).

A comparison of Figure 5 with Figure 4 shows that the phase shifts have become
slightly less negative due to the addition of the extra terms. This means that electron–
positron correlations make the positron–atom interaction less repulsive than in the frozen-
target case. However, the overall effect of allowing for the radial correlations between the
electron and positron remains very small.
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Figure 5. Phase shifts obtained by addition of three terms with αi �= 1 to the basis. Black line:
numerical solution of the radial Schrödinger equation in the static potential of the hydrogen atom
included for comparison.

3.2.3. Nonzero γ: Effect of Angular Correlations.

In this section, the flexibility of the wavefunction is increased further by allowing for
nonzero values of γi, so that the wavefunction takes the most general form

Ψ(r1, r2, r12) =
N

∑
i=1

ci exp(−αir1 − βir2 + γir12). (39)

The addition of r12-dependence to the wavefunction allows for much stronger correlation
between the positron and the electron. Physically, these terms account for effects such as
virtual Ps formation and polarization of the atom by the positron. In particular, setting
γi = −0.5 corresponds to the ground-state Ps wavefunction, allowing the calculation to
account for the effect of virtual positronium formation. Note that formation of “real”, free
Ps is not possible in the chosen energy range, as the incident positron momenta are kept
below the Ps formation threshold.

In general, terms with any values of βi and γi may be used, provided that

βi − γi > 0, (40)

to ensure that Ψ(r1, r2, r12) → 0 for r2 → ∞.
Taking all of this into consideration, an initial basis was set up identically to that in

the frozen-target problem with all values of γi = 0 and αi = 1. The nonzero γi terms were
added one by one. Quasi-optimal values of the parameters for these extra terms were
selected by completing the calculations for different sets of exponents and keeping the
term which caused the largest upward change in the phase shifts overall. In the present
approach, larger phase shifts are obtained when the energy eigenvalues En are lower
relative to E(0)

n . In a variational calculation, lower energy eigenvalues are obtained when
better wavefunctions are used. Hence, it is correct to assume that the best possible choice
of terms to add to the basis is that which yields the largest values for the phase shifts.
Physically, including electron–positron correlations allows for positron attraction to the
atom, increasing the value of the phase shift. Small adjustments are made to all three
parameters near the optimum to ensure the best possible value of each parameter, correct
to two decimal places.

For a single correlation term, the optimal values of α, β and γ were found to be
α = 0.80, β = 0.04 and γ = −0.54. Once the first term had been optimized, a second
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was added. The values of the parameters for this term were also selected in the manner
described above. With each additional term, an improvement (i.e., increase) in the phase
shift values is seen.

This process of adding an individual term may be continued for as many terms as
required to reach a desired level of accuracy. However, our aim was to achieve good
accuracy using as few terms as possible. Hence, the process was terminated after including
a maximum of nine additional terms, yielding a basis with a total of 29 functions.

Figure 6 is an overview of the phase shifts obtained using one, three, five and nine
additional terms. These results are also shown in Table 1. Details of the parameters used in
these calculations can be found in Appendix B. The results obtained here can be compared to
the accurate phase shifts, such as those calculated by Schwartz [23] or, later, by Humberston
et al. [24]. In Figure 6, the frozen-target phase shifts are also plotted as a lower bound, while
the accurate results from a Kohn variational calculation by Humberston et al. [24] provide
an upper bound. It is remarkable that including a single well-chosen correlation term with
α = 0.80, β = 0.04 and γ = −0.54 provides about 80% of the increase in the phase shift
with respect to the uncorrelated frozen-target result. Adding the next few correlation terms
brings the variational phase shift to within 0.01 rad of the benchmark result.

Figure 6. Positron–hydrogen s-wave scattering phase shifts obtained using various numbers of terms
with γi �= 0 in the wavefunction (colored circles, blue: one term, green: three terms, yellow: five terms,
red: nine terms). Details of the parameters used in each wavefunction can be found in Appendix B.
Pink circles are the Kohn variational calculations of Humberston et al. [24], which are connected by
the dashed line to guide the eye. The black solid line is the result of the frozen-target approximation.

In Figure 7, the final phase shifts obtained using all nine correlation (i.e., nonzero γi)
terms are displayed. Compared with an interpolation of the Kohn variational results of
Humberston et al. [24], agreement is seen to within 8 × 10−3 rad. In Table 2, the present
results obtained with nine correlation terms are shown alongside the results of Ref. [24]
interpolated to the same momentum values. This level of agreement provides evidence
that the method employed here is a valid approach to the positron scattering problem, and
that it is possible to obtain good-quality scattering data from a bound-state-type calculation
that contains only a small number of correlation terms in the wavefunction.
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Table 1. Results from positron–hydrogen s-wave phase shift calculations with wavefunctions con-
taining NE = 1, 3, 5 and 9 terms with nonzero γi to describe electron–positron correlations (see
Appendix B). Phase shift values are shown for the first 11 eigenvalues En.

NE 1 3 5 9

n k/a.u. δ/rad k/a.u. δ/rad k/a.u. δ/rad k/a.u. δ/rad

1 0.0046 0.0049 0.0046 0.0063 0.0046 0.0075 0.0046 0.0082
2 0.0104 0.0115 0.0104 0.0145 0.0104 0.0176 0.0104 0.0189
3 0.0183 0.0201 0.0183 0.0257 0.0183 0.0307 0.0183 0.0334
4 0.0299 0.0326 0.0299 0.0415 0.0299 0.0494 0.0299 0.0526
5 0.0470 0.0504 0.0470 0.0638 0.0470 0.0752 0.0470 0.0807
6 0.0725 0.0748 0.0725 0.0938 0.0725 0.1086 0.0725 0.1130
7 0.1107 0.1051 0.1107 0.1296 0.1107 0.1449 0.1107 0.1509
8 0.1680 0.1335 0.1680 0.1597 0.1680 0.1725 0.1680 0.1770
9 0.2540 0.1384 0.2540 0.1593 0.2540 0.1713 0.2540 0.1791
10 0.3834 0.0841 0.3834 0.0957 0.3834 0.1176 0.3833 0.1204
11 0.5782 −0.0512 0.5782 −0.0378 0.5782 −0.0163 0.5781 0.0120

Figure 7. Positron–hydrogen s-wave scattering phase shifts obtained using nine nonzero γi terms in
the wavefunction with various αi, βi and γi values (red circles). Details of the parameters used in this
wavefunction can be found in Appendix B. Pink circles connected by the dashed line are calculations
of Humberston et al. [24].

Table 2. Results from positron–hydrogen s-wave phase shift calculations with nine γi �= 0 terms
in the wavefunction (see Appendix B) for the first 11 energy eigenvalues En. The phase shifts of
Humberston et al. [24] δH interpolated to the same values of k are also shown.

n k/a.u. δ/rad δH/rad Error/rad

1 0.0046 0.0082 0.0100 0.0018
2 0.0104 0.0189 0.0219 0.0030
3 0.0183 0.0334 0.0375 0.0041
4 0.0299 0.0526 0.0586 0.0059
5 0.0470 0.0807 0.0862 0.0055
6 0.0725 0.1130 0.1202 0.0071
7 0.1107 0.1509 0.1564 0.0055
8 0.1680 0.1770 0.1835 0.0065
9 0.2540 0.1791 0.1815 0.0024
10 0.3833 0.1204 0.1287 0.0083
11 0.5781 0.0120 0.0163 0.0043
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4. Calculation of the Annihilation Parameter

In this section, the quality of the variational wavefunctions constructed as described in
Section 3 is probed by calculating the normalized annihilation rate, Zeff. Zeff is the effective
number of electrons available to the positron for annihilation [36]. For a positron incident
on the hydrogen atom, it is given by [13]:

Zeff =
∫∫

δ(r1 − r2)|Ψk(r1, r2)|2d3r1d3r2, (41)

where the wavefunction is normalized to the incident positron plane wave, i.e., Ψk(r1, r2) �
ψ1s(r1) exp(ik · r2), or, for s-wave positron scattering, Ψk(r1, r2) � ψ1s(r1) sin(kr2 + δ)/kr2.

Carrying out the integration over r1 and renaming r2 ≡ r gives

Zeff =
∫
|Ψk(r, r)|2d3r. (42)

In this integral, |Ψk(r, r)|2 is the electron–positron contact density localized near the atom.
Unlike the scattering phase shifts which characterize the wavefunction at large positron
distances, the Zeff parameter probes the wavefunction at small positron–atom separa-
tions. Here, the bound-state-type variational wavefunction Ψ is proportional to the true
continuous spectrum wavefunction Ψk, i.e., we have

Ψ(r1, r2) =
A√
4π

Ψk(r1, r2), (43)

where A is a normalization constant. For s-wave scattering, the normalization constant is
obtained from the energy eigenvalue spectrum as (see Ref. [31] for details)

A2 =
2
√

2E
π

dE
dn

. (44)

The wavefunctions Ψ generated by solving the generalized eigenvalue problem (as
outlined in Section 3) are automatically normalized to unity. Hence, to achieve the correct
normalization, these wavefunctions must be divided by A when calculating Zeff from (42).
The value of A is calculated for each eigenfunction by substituting the corresponding energy
eigenvalue into (44). The derivative dE/dn is evaluated using the function n = g(ln E)
from Section 3 and the fact that

dE
dn

= E
d ln E

dn
. (45)

This facilitates a more accurate calculation of the derivative than that obtained by directly
calculating dE/dn.

The annihilation parameter is first calculated in the frozen-target approximation, after
which the two-particle problem is considered to include electron–positron correlations.

4.1. One-Particle Calculation

In the one-particle frozen-target calculation, the wavefunction only depends on the
positron radial coordinate r. The trial wavefunction (11) is employed for this calculation.
The ci values calculated previously are used again here, but each eigenfunction is divided
by A to fulfill the normalization condition (43).

In Figure 8, the eigenfunctions obtained using the present method are divided by A
and multiplied by

√
k/π, and they are compared to the true continuous-spectrum radial

function Pk(r) obtained by solving the radial Schrödinger equation [33] and normalized as

Pk(r) �
sin(kr + δ)√

πk
. (46)
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For small r, these were found to be in good agreement. As the energy eigenvalues increase,
the range of r over which the wavefunctions closely match decreases. However, there is
always a very good match at r ∼ 1 a.u., which dominates in the calculation of Zeff.

Figure 8. Eigenfunctions obtained from solving the generalized eigenvalue problem (6) in the static
approximation (red) and those obtained using the atomic codes [33] (black) for n = 2, 4, 6 and 8.

The following integral is used to evaluate Zeff in this problem [13]:

Zeff =
1

A2

∫ ∞

0
P2

1s(r)Ψ
2(r)r−2dr, (47)

where P1s(r) = 2re−r is the ground-state radial wavefunction of the hydrogen atom.
Substituting (11) into (47) gives the following expression for the annihilation parameter:

Zeff =
8

A2

N

∑
i,j=1

cicj

(2 + αi + αj)3 . (48)

Figure 9 shows the corresponding frozen-target Zeff values and compares them with those
obtained using true continuous-spectrum positron states in the same approximation [13,33].
Apart from some “noise” related to inaccuracies in the calculation of the normalization con-
stant A at low energies, there is a good general agreement between the two sets of results.
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Figure 9. Red circles: values of Zeff obtained in the one-particle model with variational wavefunctions
from (48). Black line: Zeff data obtained for the frozen-target model from atomic codes [13,33].

4.2. Two-Particle Calculation

In this section, the annihilation parameter is calculated for the two-particle problem.
Firstly, the frozen-target results are reproduced by the two-particle code, using a wave-
function with the form of (39) with all αi = 1 and γi = 0. After verifying that the results
match those from the one-particle calculation, these restrictions on the αi and γi values are
lifted, and the full correlated wavefunction is used, subject to (40). Here, it is noted that
r12 = 0 in the Zeff calculation, so exp(γir12) = 1 for each of the γi. In addition, r1 = r2 ≡ r
is required, and the wavefunction takes the form

Ψ(r, r, 0) =
N

∑
i=1

ci exp[−(αi + βi)r]. (49)

As before, the ci coefficients are calculated such that the eigenfunctions are normalized to
unity. Hence, the normalization must be corrected to satisfy (43) using the value of A for
each eigenfunction.

In this case, evaluation of the integral (42) with the wavefunction (49) yields the
following expression for Zeff:

Zeff =
16π2

A2

∫ ∞

0
|Ψ(r, r, 0)|2r2dr =

32π2

A2

N

∑
i,j=1

cicj

(αi + αj + βi + β j)3 . (50)

The coefficients ci in this calculation differ from those in the one-particle calculation by
a factor of 1/2π. Taking this into account, the equivalence of the one- and two-particle re-
sults can be verified by setting αi = αj = 1 in (50) to recover the result from the frozen-target
approximation (48). Here, however, the focus is on including terms in the wavefunction to
describe electron–positron correlations.

When incorporating correlation terms, the same sets of αi, βi and γi parameters are
used in the basis as for the phase shift calculations in Section 3.2.3 (the values of which are
listed in Appendix B). The accuracy of the Zeff calculation does not increase monotonically
with the number of correlation terms included the wavefunction, unlike the case of the
phase shifts determined by the energy eigenvalues alone. This is shown in Figure 10,
where the overall results obtained using one correlation term are more accurate than
those obtained using three correlation terms. However, the most accurate set of values
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was obtained for the wavefunction with the maximum (nine) correlation terms included.
The Zeff values from [26] are used as benchmark values to evaluate the accuracy of our
calculation. The results from the final calculation are displayed in Table 3 alongside those
from [26] interpolated to the same values of momentum.

Table 3. Zeff values obtained using a wavefunction with nine nonzero γi terms (Appendix B) to
describe electron–positron correlations and the benchmark results from [26] (Zeff,H) interpolated to
the same values of momentum.

k/a.u. Zeff Zeff,H Error

0.0046 9.2538 9.6013 0.3475
0.0104 8.1989 9.4644 1.2655
0.0183 8.4351 9.2767 0.8416
0.0299 8.2262 9.0083 0.7821
0.0470 8.0325 8.6212 0.5887
0.0725 7.6456 8.0667 0.4211
0.1107 6.9813 7.2876 0.3063
0.1680 6.0719 6.2319 0.1600
0.2540 4.8017 4.8951 0.0934
0.3833 3.6024 3.4371 −0.1653
0.5781 2.0695 2.3833 0.3138

Figure 10. Zeff values obtained in the two-particle model using one (green), three (yellow), five (pink)
and nine (red) terms in the wavefunction to describe correlations between the electron and positron.
Black circles and line: results from [26] and their interpolation using cubic splines.

Overall, good agreement between our results and the benchmark values is found in
the range k = 0.1–0.6 a.u. using a trial wavefunction with nine nonzero γi terms. Apart
from two data points, the accuracy of our variational calculation is better than 10%, which
is evidence of the good quality of the wavefunction that incudes only a small number of
correlation terms.
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5. Conclusions

The variational method was explored as a means of studying positron–hydrogen
scattering and annihilation using square-integrable trial wavefunctions. By setting up and
solving a generalized eigenvalue problem, s-wave elastic phase shifts and Zeff values for
the positron–hydrogen system were obtained in good agreement with benchmark values.
Importantly, this was achieved using only a small number of correlation terms in the
trial wavefunction, indicating that processes such as virtual positronium formation and
polarization of the hydrogen atom can be accounted for using this approach.

Looking forward, this method could facilitate the study of more complex interactions,
such as the interaction of positrons with molecules. The key benefit of our approach is the
small number of terms required to describe strong electron–positron correlations, meaning
that the method is quite economical. To improve upon the current approach, a formal
optimization of the trial wavefunction parameters could be performed to increase the
accuracy of the calculation. With such a process in place, it would become possible to carry
out more complex calculations efficiently.
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Appendix A. Standard Integrals

This appendix contains results for the six standard integrals employed throughout
our calculations. These are evaluated using the elliptic coordinate system: s = r1 + r2,
t = r1 − r2 and u = r12:

Ĩ1(a, b, g) = π2
∫ ∞

0
ds e−2as

∫ s

0
du ue2bu

∫ u

−u
dt e−2gt(s2 − t2)

= π2 8a3 − 13a2b + 6ab2 − b3 + bg2

8a3((a − b)2 − g2)3 , (A1)

Ĩ2(a, b, g) = π2
∫ ∞

0
ds se−2as

∫ s

0
du e2bu

∫ u

−u
dt e−2gt(u2 − t2)

= π2 5a2 − 6ab + b2 − g2

8a2((a − b)2 − g2)3 , (A2)

Ĩ3(a, b, g) = π2
∫ ∞

0
ds e−2as

∫ s

0
du (s2 − u2)e2bu

∫ u

−u
dt te−2gt

= π2 g(−5a2 + 6ab − b2 + g2)

8a3((a − b)2 − g2)3 , (A3)

J̃1(a, b, g) = π2
∫ ∞

0
ds se−2as

∫ s

0
du ue2bu

∫ u

−u
dt e−2gt

= π2 (a − b)2(4a − b)g + bg3

8a2g((a − b)2 − g2)3 , (A4)
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J̃2(a, b, g) = π2
∫ ∞

0
ds e−2as

∫ s

0
du e2bu

∫ u

−u
dt e−2gt(s2 − t2)

= −π2 −5a2 + 4ab − b2 + g2

8a3((a − b)2 − g2)2 , (A5)

J̃3(a, b, g) = π2
∫ ∞

0
ds e−2as

∫ s

0
du ue2bu

∫ u

−u
dt te−2gt

= −π2 (a − b)g
2a((a − b)2 − g2)3 . (A6)

Appendix B. Parameters for Positron-Scattering Wavefunction Bases

The positron–hydrogen wavefunctions used in Sections 3.2 and 4.2 all contain the 20
basis functions defined by (13) with n = 20, ζ = 1.5 and β1 = 0.01 (where all αi = 1 and
γi = 0). Additional terms with varying αi and nonzero γi values were then incorporated
to account for electron–positron correlations. The table below contains the sets of quasi-
optimal values for the parameters obtained using the method described in Section 3.2.
These values are displayed for wavefunctions containing one, three, five and nine terms
with nonzero γi where NE denotes the number of nonzero γi terms.

Table A1. Parameters used for the electron–positron correlation terms, i.e, terms with nonzero γi, in
positron–hydrogen wavefunctions with NE = 1, 3, 5 and 9 such terms.

NE α β γ NE α β γ

1 0.80 0.04 −0.54 9 0.79 0.06 −0.53
3 0.80 0.05 −0.56 0.99 0.40 0.11

0.88 0.45 0.10 1.00 0.14 −0.03
0.97 0.28 −0.46 0.40 0.04 −0.38

5 0.80 0.05 −0.54 0.85 0.88 −0.38
0.98 0.46 0.06 0.29 0.40 −0.70
0.99 0.14 −0.11 0.85 0.50 −0.27
0.45 0.12 −0.67 0.84 −0.20 −0.65
0.86 0.93 −0.31 0.99 0.67 −0.01

Notes

1 Atomic units are used throughout (in which e = m = h̄ = 1, where e is the elementary charge and m is the electron or positron
mass).

2 For a state with a zero total angular momentum, the wavefunction is spherically symmetric, so there is no dependence on the
directions of r1 and r2, except the angle between them, i.e., dependence on r12.
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Abstract: Amusia and Kheifets in 1984 introduced a Green’s function formalism to describe the effect
of many-electron correlation on the ionization spectra of atoms. Here, we exploit this formalism to
model the shake-off (SO) process, leading to the non-sequential single-photon two-electron ionization
(double photoionization—DPI) of closed-shell atomic targets. We separate the SO process from
another knock-out (KO) mechanism of DPI and show the SO prevalence away from the DPI threshold.
We use this kinematic regime to validate our model by making a comparison with more elaborate
techniques, such as convergent and time-dependent close coupling. We also use our model to evaluate
the attosecond time delay associated with the SO process. Typically, the SO is very fast, taking only
a few attoseconds to complete. However, it can take much longer in the DPI of strongly correlated
systems, such as the H− ion as well as the subvalent shells of the Ar and Xe atoms and Cl− ion.

Keywords: atomic photoionization; many-electron correlation; non-sequential double ionization

PACS: 32.80.Rm 32.80.Fb 42.50.Hz

1. Introduction

The simultaneous removal of two electrons from an atom following absorption of a
single photon is an archetypal process driven entirely by many-electron correlation. Such a
non-sequential single-photon two-electron ionization (double photoionization or DPI in
short) has been the focus of experimental and theoretical activities for several decades [1–3].
The correlation mechanisms of DPI are well understood and can be described as the shake-
off (SO) and knock-out (KO) processes [4–7]. Shake-off is driven by a sudden change of the
atomic potential after a fast removal of the primary photoelectron. Conversely, knock-out
is a slow process in which the departing electron impinges on the ionic core and ejects the
secondary photoelectron. A complementary quasi-free mechanism (QFM) of PDI, in which
the nucleus remains a spectator, was predicted theoretically by Amusia and co-workers [8].
Recently, the QFM was studied experimentally [9–11], and it was ascribed to a combination
of the SO and KO processes.

The first theoretical description of DPI in atoms invoked the lowest order perturbation
theory [12–15]. With a growing computational power, more sophisticated non-perturbative
methods were developed. The convergent close-coupling (CCC) [16,17] and the time-
dependent close-coupling (TDCC) [18] are among the many predictive and accurate nu-
merical techniques.

A resurged interest in DPI was stimulated by a newly acquired experimental capability
to resolve atomic photoionization in time. Laser pulses are shaped in such a way that they
can probe atomic ionization on the attosecond (1 as = 10−18 s) time scale. Firstly, single
photoionization was time resolved [19,20]. Then a DPI process was traced in time [21].
The accompanying theoretical studies have also appeared [22,23].

An alternative theoretical approach to DPI can be provided by the single-hole Green’s
function (SHGF) formalism introduced to photoionization [24,25]. Originally, this method
was utilized to calculate shake-up satellites in atomic photoionization spectra [26–29].
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However, by construction, the SHGF contains the DPI continuum, which can be attributed
to the SO process. This capability of the SHGF method has been overlooked so far. Here,
we rectify this omission.

The present work is structured in the following way. We start with a brief introduction
of the SHGF technique, using a diagrammatic expansion of the ionization amplitude. We
identify the double ionized continuum in this amplitude and link it with the imaginary part
of the SHGF self-energy. This allows us to derive the analytic expressions for the DPI cross
section resolved with the photoelectron energy as well as the time delay associated with
the SO process. Next, we test our energy resolved DPI cross sections against experiments
as well as the earlier CCC and TDCC calculations. This way, we identify the photoelectron
energy range where the SO process makes the dominant contribution to DPI. Finally, we
evaluate the time that it takes to shake off a bound electron. As expected, the SO process is
fast with only a few attoseconds needed to shake off the secondary photoelectron into the
two-electron continuum. However, there are few notable exceptions when the SO process
takes much longer time to complete. We find this situation in strongly correlated targets
such as the negative H− ion as well as the subvalent shells of the Ar and Xe atoms and
the Cl− ion. The binding of the H− ion is wholly owed to many-electron correlation, and
the photoionization of subvalent ns shells in Ar, Xe and Cl− is affected very strongly by
correlation satellites. As the result, the SO process in H− takes as much as 30 as, whereas
the similar process in Ar 3s and Xe 5s requires nearly 50 as to complete. The same process
in Cl− 3s takes in excess of 100 as. We conclude by evaluating other components of the
measurable time delay in DPI and thus making the case for the experimental resolution of
the SO process in time.

2. Theory

The SO process leading to the ejection of two electrons in the continuum can be
exhibited graphically by an infinite sequence of diagrams presented in Figure 1a. Here, we
use the following graphical symbols. A straight line with an arrow to the right represents
the electron continuum states k, f whereas an arrow pointing to the left exhibits the holes in
atomic shells i, l, m. Before photoabsorption, all the atomic shells are presumed to be fully
occupied and thus closed. The atomic ground state (the “vacuum” state) contains neither
holes nor excited electrons. The wavy line denotes the Coulomb interaction between the
electrons. The dashed line represents an absorbed photon. A circle denotes the diagonal
matrix element of the self-energy part of the Green’s function Σi. The SHGF self-energy is
expanded graphically in more detail in Figure 1b.

Figure 1. (a) Schematic representation of the SO process leading to a two-electron continuum.
The circle represents the self-energy part of the SHGF expanded in more detail in (b).

The corresponding DPI amplitude can be found by summing a geometric progression
of terms in Figure 1a that leads to the following expression:

〈 f ‖MSO‖i〉 = 〈 f ‖r‖i〉
(

1 − Σi(ε)

ε − εi − iδ

)−1 〈ik‖UL‖lm〉
ε − εi − iδ

. (1)

Here, 〈 f ‖r‖i〉 is a dipole matrix element of the single-photon absorption and 〈ik‖UL‖lm〉
is a Coulomb matrix element, which includes a direct and exchange l ↔ m terms and
involves a transfer of the angular momentum L. Both the dipole and Coulomb matrix
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elements are reduced to strip their angular momentum projections dependence. The symbol
ε = ε f − ω < 0 denotes an effective hole energy. In the absence of correlation, ε = εi is the
orbital energy. Many-electron correlation adds a discrete spectrum of shake-up satellites and
a shake-off continuum, which starts at the DPI threshold E∞ = εl + εm. The infinitesimally
small δ → 0 in the energy denominator defines the pole bypass.

The imaginary part of Equation (1) gives rise to an additional phase of the DPI
amplitude due to the final state correlation:

arg MSO = arctan
ImΣi(ε)

Re[ε − εi − Σi(ε)]
≈ arctan

ImΣi(ε)

Re[ε − εi]
. (2)

Here ImΣi = π(2L + 1)−1|〈ik‖UL‖lm〉|2 . The approximate equality is satisfied under the
condition that |ε − εi| � |Σi(ε)| . This condition defines the part of the double ionized
continuum sufficiently far from the main photoelectron line.

The energy resolved single-differential cross-section (SDCS) is given by Equation (9)
of [25]:

dσ2+
i

dε f
= σ+

i
1
π

ImΣi(ε)

|ε − εi − Σi(ε)|2
≈ σ+

i
1
π

ImΣi(ε)

|ε − εi|2
. (3)

By solving this equation relative to ImΣi, we can express the additional phase of the DPI
amplitude due to the final state correlation in the following form:

arg MSO = arctan
π

σ+
i

dσ2+
i

dε f
|ε − εi| . (4)

We note that all the quantities entering this expression are known from the experiment,
which are the single photoionization cross-section of the primary photoelectron σ+

i and the
energy differential DPI cross-section dσ2+

i /dε f .
By integrating the SDCS Equation (3) over the fast photoelectron energy, we can obtain

the double-to-single photoionization cross-section ratio:

R =
σ2+

σ+
=

1
σ+

∞∫
0

dσ2+

dε f
dε f . (5)

This ratio is known in He, and its isoelectronic sequence of ions [30]. It will serve as a
convenient reference in Section 3.2.

Following [25], we can introduce the inverse SHGF

F(ε) = G−1(ε) = ε − εi − Σi(ε) (6)

Then the argument of the SO amplitude Equation (2) can be rewritten as

arg MSO = arg G−1(ε) = arg F(ε) (7)

This expression allows to use the integral rule presented by Equation (5) of [25], which
relates the energies of the discrete shake-up satellites with the time delay:

∞

∑
k=0

(εk − Ek) =
1
π

E∞∫
−∞

ετ(ε) dε , where τ(ε) =
∂

∂ε
arg MSO =

∂

∂ε
arg F(ε) (8)

Here Ek = εl + εm − εk and E0 = εi are non-correlated energies of the shake-up excita-
tions calculated from the HF orbital energies. Meanwhile, εk are the corresponding energies
shifted by the final-state correlation and found as the poles of the SHGF. The integral time
delay rule Equation (8) presents an analytical test for the numerical SO time delay values.
This test will be conducted in Section 3.3.
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3. Numerical Results

3.1. Computation Details

We use the ATOM suite of programs developed by Miron Amusia and co-workers [31].
The SCFHF and FCHF computer codes calculate the atomic ground and excited states in
the self-consistent and frozen-core Hartree–Fock (HF) approximations, respectively. Then
the Coulomb matrix elements are evaluated, and the SHGF and its self-energy are found.
The latter are used to calculate the SDCS, the R ratio and the time delay associated with the
SO process.

We consider the two types of the SO process. In the first type, all the hole states i, l, m
are confined to the same ns shell. The fast primary photoelectron is ejected from this shell
into the p-continuum, whereas the slow electron is shaken off into the s-continuum. Such an
intra-shell SO process takes place in the outer valence shell of the He, Be and Mg atoms as
well as the H− ion. The second inter-shell type of the SO process accompanies ionization of
the sub-valent ns shells of noble gas atoms Ne, Ar and Xe. While the primary hole i is made
in the ns shell, the secondary holes l, m are made in the outermost np shell. The primary
fast photoelectron is ejected in the p-wave, whereas the secondary electron is shaken off
primarily into the d-wave.

3.2. Energy Resolved DPI Cross-Sections

In Figure 2, we exhibit the energy resolved DPI cross section of helium at the excess
energies above the DPI threshold E = 100, 450 and 720 eV (from left to right). The SDCS
Equation (3) is symmetrized by adding the two energy distributions of the slow and fast
photoelectrons, thus giving it a characteristic U-shape. The present shake-off calculations
using Equation (3) are compared with various reference data indicated in the figure caption.
The integrated cross-sections of single photoionization σ+

1s are used as tabulated in [32].
We can observe in Figure 2 that the SO mechanism is becoming gradually dominant as
the photon energy grows. This is particularly true for a highly asymmetric energy sharing
between the photoelectrons. Under this kinematics, the primary photoelectron takes nearly
all the photon energy and is ejected in the dipole channel as a p-wave. At the same time,
the secondary SO photoelectron is very slow and is ejected almost isotropically as an s-wave
in the intra-shell SO process. It is this characteristic photoelectron angular distribution that
was observed experimentally in He at E = 450 eV [7].
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Figure 2. The energy resolved DPI cross-section of helium dσ2+/dE) (in bn/eV) at the excess
energies above the DPI threshold E = 100, 450 and 720 eV (from left to right). The present shake-off
calculations using Equation (3) are compared with the following reference data. At E = 100 eV,
the relative measurement [33] is normalized to the TDCC calculation [34] and shown along with
an analogous CCC calculation [35]. At E = 450 eV, the relative experiment [7] is normalized to
the CCC calculation from the same reference. At E = 720 eV, the TDCC [36] and the CCC [11]
calculations are shown.

Meanwhile, the equal energy sharing between the photoelectrons is affected by a
competing KO process and deviates from the present SO predictions. This deviation, which
is strongest at E = 100 eV, can also be seen at higher photon energies near the mid-point of
the photoelectron energy distribution.
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The double-to-single ratios as calculated by the SO model using Equation (5) are
presented in Table 1. The SO ratio in He is equal to 1.44%, which is very close to the CCC
ratio of 1.67% [30]. For other targets, this comparison is less accurate, especially for the
H− ion, which is twice overestimated, while Be and Mg are 50% underestimated.

Table 1. Asymtptoc double-to-single cross-section ratios in various targets as calculated by the SO
model using Equation (5) and compared with earlier CCC calculations.

Target E0 Threshold Raio, %
Ry Ry SO CCC Ref.

He 1s 1.836 5.807 1.44 1.67 [30]
H− 1s 1.000 1.055 3.43 1.60 [30]
Be 2s 0.618 1.951 0.26 0.37 [37]
Mg 3s 0.506 1.558 0.16 0.25 [38]

3.3. Time Delay

Results of the time delay calculations by taking the energy derivative of the SO phase
Equation (2) are displayed in Figure 3. The horizontal axis in the figure denotes the slow
photoelectron energy. It is assumed that the photon energy is very large and nearly all of it
is carried away by the second fast photoelectron. The three panels of this figure display the
time delay results for the He 1s, Be 2s, Ne 2s and Mg 3s (left), H− 1s (center) and Ar 3s, Cl−

3s and Xe 5s (right). We observe a very small SO time delay in He 1s not exceeding a few
attoseconds. A similarly small time delay is found in the intra-shell SO process in Be 2s
and Mg 3s as well as the inter-shell SO process in Ne 2s. Incidentally, the time delay in the
inner 1s shell of Be is much smaller than that in the valence 2s shell, the reason being the
Coulomb field of the bare nucleus, which makes many-electron correlation and associated
time delay negligible.

The SO time delay in H− 1s is markedly higher by nearly an order of magnitude. Time
delay grows further in Ar 3s and Xe 5s, while it exceeds the 100 as mark in the negative Cl−

ion. We relate this growth of time delay to much bolder shake-up and shake-off processes
in these targets, which are strongly affected by many-electron correlation.

Another indication of this effect is presented in Table 2. Here we compare the summary
displacement of the main and shake-up satellite lines in the photoelectron spectra of He 1s
and Ar 3s with the corresponding time delay integral Equation (8). We observe in this table
that the many-electron correlation causes a much stronger line displacement in Ar than in
He. This is matched by a much larger SO time delay in Ar in comparison with He.
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Figure 3. Shake-off time delay (in attoseconds) in He 1s, Be 2s, Ne 2s and Mg 3s (left), hydrogen H−

1s (center) and Ar 3s, Cl− 3s and Xe 5s (right), calculated by taking the energy derivative of the SO
phase Equation (2).
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Table 2. The energies of the shake-up satellites in the photoelectron spectra of He 1s and Ar 3s as
calculated in the HF approximation Ek and as the poles of the SHGF εk. The sum ∑k(Ek − εk) in each
target is compared with the corresponding time delay integral Equation (8).

k Ek εk Ek − εk

Helium 1s
0 1.8360 1.7287 0.1073
1 4.7360 4.8053 −0.0693
2 5.3540 5.3622 −0.0082
3 5.5540 5.5568 −0.0028
4 5.6460 5.6473 −0.0013
5 5.6950 5.6957 −0.0007

Sum 0.0250
SO integral Equation (8) 0.025

k Ek εk Ek − εk

Argon 3s
0 2.5550 2.1508 0.4042
1 2.5920 2.8389 −0.2469
2 2.9630 3.0235 −0.0605
3 3.1070 3.1274 −0.0204
4 3.1780 3.1879 −0.0099
5 3.2180 3.2235 −0.0055

Sum 0.0610
SO integral Equation (8) 0.063

4. Summary and Outlook

In the present work, we demonstrated that the SO process is prevalent in DPI at
large photon energies exceeding significantly the double ionization threshold. Under this
condition, the two-electron energy sharing is highly asymmetric with the primary photo-
electron taking nearly all of the photon energy, while the secondary SO electron is rather
slow. The slow electron can be delayed by repeated interaction with the ionic core. In the
intra-shell shake-off process, this interaction is confined to the same shell and is typically
rather quick. The intra-shell SO processes in He 1s, Be 2s and Mg 3s take no more than
several attoseconds to complete. The marked exception is the intra-shell SO in the H− ion,
which may take several tens of attoseconds. We attribute this effect to a strongly correlated
nature of H− which will not bind in the absences of correlation. The inter-shell SO process
are more involved and take typically longer time. We observe a considerable delay in the
SO of Ar 3s and Xe 5s. The Cl− ion, which is iso-electronic to Ar, demonstrates a very
significant SO delay exceeding 100 as. All these targets are prone to strong final-state
correlation and display intense shake-up satellite spectra with a strong line displacement
relative to the corresponding HF energies. The only exception is the inter-shell SO in Ne,
which is still rather quick.

It is instructive to compare the SO time delay in DPI with the analogous character-
istic of single photon one-electron ionization (single photoionization—SPI). The energy
derivative of the SPI amplitude is known as the Wigner time delay. Similarly to electron
elastic scattering [39], it characterizes the photoelectron group delay in the dispersive
potential of the ionic core. This potential includes an exchange with the core electrons [40].
In addition, the Wigner time delay in SPI is strongly affected by inter-shell correlation [41].
All these characteristics of the Wigner time delay are present in DPI. The SO adds an extra
component of the time delay which is specific to DPI.

To resolve the SO process in time, one needs to use various laser-based interferometric
techniques which introduce an additional component to the measurable time delay. This
component, known commonly as the Coulomb laser coupling (CLC) [42] or the continuum–
continuum (CC) correction [43], depends on laser frequency and the asymptotic Coulomb
charge Z acting on the departing photoelectron. For the fast primary photoelectron, this
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charge Z = 1 for the neutral targets and Z = 0 for the negative ions. In the former case,
the fast photoelectron does not experience any CLC correction, while in the latter case, this
correction is relatively small because the photoelectron is sufficiently fast. The slow electron
sees the asymptotic charge Z = 2 for the neutral targets and Z = 1 for the negative ions. So
while the CLC correction still affects the slow SO elecrtron, it will be relatively weaker.
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Abstract: The theory of one-photon ionization and two-photon above-threshold ionization is formu-
lated for applications to heavy atoms in attosecond science by using Dirac–Fock formalism. A direct
comparison of Wigner–Smith–Eisenbud delays for photoionization is made with delays from the
Reconstruction of Attosecond Beating By Interference of Two-photon Transitions (RABBIT) method.
Photoionization by an attosecond pulse train, consisting of monochromatic fields in the extreme
ultraviolet range, is computed with many-body effects at the level of the relativistic random phase
approximation (RRPA). Subsequent absorption and emission processes of infrared laser photons in
RABBIT are evaluated by using static ionic potentials as well as asymptotic properties of relativistic
Coulomb functions. As expected, light elements, such as argon, show negligible relativistic effects,
whereas heavier elements, such a krypton and xenon, exhibit delays that depend on the fine-structure
of the ionic target. The relativistic effects are notably close to ionization thresholds and Cooper
minima with differences in fine-structure delays predicted to be as large as tens of attoseconds.
The separability of relativistic RABBIT delays into a Wigner–Smith–Eisenbud delay and a universal
continuum–continuum delay is studied with reasonable separability found for photoelectrons emitted
along the laser polarization axis in agreement with prior non-relativistic results.

Keywords: attoscience; attophysics; photoionization; above-threshold ionization; Wigner–Smith–
Eisenbud delay; Dirac–Fock; RRPA; RABBIT; krypton; xenon

1. Introduction

The study of attosecond photoionization dynamics has been made possible by coher-
ent light sources in the extreme ultraviolet (XUV) regime based on high-order harmonic
generation (HHG) [1]. Experimental techniques that were originally used for pulse charac-
terization, such as the Reconstruction of Attosecond Beating By Interference of Two-photon
Transitions (RABBIT) [2] and the attosecond streak-camera [3], have proved useful to
gain novel insights into the time it takes for electrons to escape the binding potentials of
atoms [4–16], molecules [17–21], and solid-state targets [22–24]. The main observables are
delay-dependent modulations in the photoelectron spectra that arise due a phase-locked
laser probe field in the infrared (IR) regime [25–30]. For “weak” fields, these modulations
can be understood from perturbation theory, where absorption of one XUV photon (Ω)
is followed by exchange of one IR photon (±ω). It is a rather technical task to evaluate
laser-driven continuum–continuum transitions numerically in the presence of the long-
range Coulombic potential: k′ → k [26,31,32]. Thus, analytical continuum–continuum
phase shifts φcc(k, k′), have been derived by using the Wentzel–Kramers–Brillouin (WKB)
approximation, in order to interpret the RABBIT delays at sufficiently high kinetic energy
of the photoelectrons [33]. Asymptotic theories based on the Eikonal Volkov Approxima-
tion (EVA) have also been developed [34]. The main result of these asymptotic theories
is that delays observed in RABBIT experiments can be separated into two terms: (i) a
finite-difference approximation to the Wigner–Smith–Eisenbud delay of the photoelectron
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after absorption of one XUV photon: τW [35–37], and (ii) a universal continuum–continuum
delay: τcc(k; ω), with an analytical expression that only depends on the final momentum
of the photoelectron and the frequency of the IR field. In the case of a single angular
momentum channel λ = �i + 1 with �i being the initial angular momentum, this separation
has been successfully implemented to measure the Wigner-like delay of the 2s-orbital in
neon atoms [12]. In the more general case, where multiple intermediate angular momenta
are populated, λ = �i ± 1, the probe process becomes more complicated and care must be
taken to account for the weight of all intermediate transitions, which leads to an “effective”
Wigner delay [33]. As an example, the RABBIT delay measured close to the 3p-Cooper
minimum in argon [38] is much reduced in magnitude when photoelectrons are detected
over all emission angles, rather than along the polarization axis of the fields [7]. Nonethe-
less, the asymptotic theory has been extended to interpret delays from molecules, where
contributions of multiple partial waves in the initial orbital and the orientation of the target
relative to the laser polarization, adds more complexity to the process [21,39]. Although
it has been shown that the separability of delays remains valid at high kinetic energies,
by using full two-photon matrix elements from time-independent R-matrix theory [40],
the target-specific delay in molecules τPI, cannot be interpreted as a Wigner-like delay,
due to interference effects of multiple partial waves in the two-photon transitions [39] and
various channel coupling effects [21,40]. The use of full two-photon R-matrix theory [40] is
undoubtedly an important milestone in the field of photoionization delays from molecules,
which has allowed for quantitative analysis of many recent experiments [18–21].

In the case of atoms, full two-photon matrix elements have been used for a decade
to compute delays in photoionization at various levels of Many-Body Perturbation The-
ory (MBPT) [41–44]. Although the importance of the random-phase approximation with
exchange (RPAE) for attosecond science was first realized by Kheifets [45,46], numerical
simulations of the one-photon ionization process, developed by Amusia [47], are inherently
insufficient to interpret RABBIT delays. Thus, a two-photon approach was developed,
whereby the many-body response of XUV absorption was computed at the level of RPAE,
and the IR exchange in the continuum was computed numerically by using an effective one-
body ionic potential [41,42]. This two-photon matrix approach has shown good agreement
with a range of RABBIT experiments [7,8,12,13,48]. Noble gas atoms consist of multi-
ple valence states, which implies experimentally unresolved ionic states with magnetic
quantum numbers |m| ≤ �i. However, any problem with incoherent final channels can
easily be avoided by detecting photoelectrons along the polarization axis ẑ, where only
m = 0 contributes. In this configuration, it has been shown that a numerically obtained
continuum–continuum delay, τMBPT

cc , can be accurately separated from the one-photon
Wigner delay τMBPT

W , computed for photoelectrons along the polarization axis with the
unique ionic state m = 0 [41,43]. In this way, a precise separation of delays has been
demonstrated down to 5 eV, which is much lower than the high-energy regime predicted by
the original asymptotic theory [33]. The two-photon matrix elements have also been used
to study effects beyond the asymptotic approximation. Firstly, a strong angle-dependence
of RABBIT delays from the isotropic helium atom was evidenced in experiments by Heuser
et al. [48]. Secondly, the role of universal asymmetries between absorption and emission
processes in the continuum was identified by Busto et al. [49]. Finally, a weak angular-
momentum dependence of continuum–continuum phases was measured by Fuchs et al.
in helium atoms [50]. The latter discovery was in good agreement with theoretical predic-
tions based on exact two-photon matrix elements for hydrogen, provided by Taïeb [33], as
well as full two-photon matrix elements based on MBPT [13]. Thus, several effects that
depend on the exact form of continuum states have been identified by using RABBIT delay
measurements in recent years [51].

Due to the energy spacing between the odd harmonics from HHG, ΔΩ = 2ω, the
temporal resolution in traditional RABBIT experiments is limited to probe processes that
are much shorter than 2π/ΔΩ = Tω/2 ≈ 1.3 fs (assuming an IR laser system with
h̄ω = 1.55 eV). At a first glance, this seems to preclude any studies of autoionizing dynamics
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in atoms or molecules, which typically unfold on a time scale of a few femtoseconds, or
more [29,52]. However, the subject of combined time–frequency non-linear metrology
is quite subtle, and it has been found that a high-energy resolution of photoelectrons in
RABBIT sidebands can be used to reconstruct autoionizing processes in time [11]. In this
case of resonant excitation, via bound Rydberg states or autoionizating states, it is useful
to consider the RABBIT scheme as a combination of one “structured” (resonant) path
and another “unstructured” (reference) path [10,11,13,16,53,54]. In this case, the phase
variation of the resonant path is typically much stronger than any continuum–continuum
(or other non-resonant) phase shift, and the phenomena can be understood by expanding
Fano’s model for autoionization to laser-assisted photoionization, within the strong-field
approximation [55], or by using approximate two-photon two-color matrix elements [56,57].
In the latter works, it was shown that finite pulses, in the time domain, can lead to non-
periodic structures in RABBIT experiments due to autoionizing states. The two-photon
Fano model has proven essential to disentangle dynamics from multiple autoionizing states
measured by the RABBIT technique [14]. Although we find that the theory development for
autoionization in RABBIT is another milestone in the field, we will not consider this class of
processes in the following work. Rather, we will focus on correlation effects in unstructured
continuum, where MBPT is a numerically efficient route to describe correlation effects and
RABBIT data can be safely assumed to be periodic.

Despite these many successes, there remained disagreement between experimental and
theoretical results for the relative RABBIT delay between the 3p and 3s orbitals in argon, first
measured by Klünder et al. in 2011 [5], which was mostly ascribed to the low signal close to
the correlated minimum in the 3s-partial photoionization cross section [6,41,42,58–60]. The
fact that this exceptionally deep minimum from 3s arises due to correlation effects, was first
showed by Amusia in 1972 by applying the RPAE method to describe photoionization from
inner atomic orbitals [61]. By using two-photon matrix elements, it has now been shown
that the position, height, and sign of the associated RABBIT delay from 3s is similarly
sensitive to correlation effects [41,42], which largely stems from the sensitivity of the one-
photon Wigner delay peak from the correlated minimum in the photoionization cross
section [62]. In order to solve this long-standing problem, a full two-photon two-color
RPAE (2P2C-RPAE) method was developed for RABBIT delays [44]. This new method
allowed for detailed examination of correlated IR exchange processes. It was found that,
apart from a rather minor discrepancy at the correlated 3s-minimum in argon, the universal
separability of the MBPT continuum–continuum delay and Wigner delay was achieved.
However, this discrepancy was still not enough to reach agreement with the experimental
results [5,6]! It was not until the argon experiment was repeated, with higher photon
energies by Alexandridi et al. in 2021 [15], that excellent agreement with 2P2C-RPAE results
was found in a broad energy range above the 3s-minimum in argon. It was also concluded
that the long-standing 3p-3s problem was caused by an “accidental” harmonic satellite,
namely the 3s23p4(1D)4p(2P) shake-up process, predicted by Wijesundera and Kelly in
1989 by using MBPT [63], which overlapped with the 3s-RABBIT sidebands. Prior to that,
the importance of “two-electron-two-hole” excitations in argon had been found by Amusia
and Kheifets by considering effects beyond RPAE in 1981 [64].

The 2P2C-RPAE method also opened up for gauge-invariance tests of the RABBIT
theory [44]. It was concluded that the so-called length-gauge formulation of light-matter
interaction was much favoured, which is in line with the gauge theory of Kobe [65,66].
In the velocity-gauge formulation of RABBIT, it was found that the interaction with the
second photon required a more detailed many-body treatment, beyond the one-body ionic
potential, with important contributions from both time-orders of the fields XUV+IR and
IR+XUV. Although it was shown that only the complete 2P2C-RPAE theory leads to gauge-
invariant results, the approximate one-body treatment of the IR-exchange was shown to be
an excellent approximation in length gauge. For this reason, we will use the length gauge,
with an effective ionic potential to describe IR exchange processes, in our current work,
which aims to quantitatively account for relativistic effects in RABBIT experiments.
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The study of relativistic effects is quite a recent development in attosecond physics. In
our view, Saha et al. have pioneered this field with calculations of relativistic one-photon
Wigner delays [62,67,68], based on the relativistic random phase approximation (RRPA).
Although RRPA theory was originally developed in the late seventies by Johnson and
Cheng to describe one-photon ionization cross sections in heavy elements [69,70], the
interest in such phenomena is revived by recent RABBIT experiments that have targeted
heavy elements. First, Jordan et al. [71] and Jain et al. [72] have compared photoelectrons
from the fine-structure split valance orbitals: 4pj and 5pj with j = 1/2 and 3/2 of krypton
and xenon atoms, respectively, and secondly, Jain et al. [73] and Zhong et al. [74], have
compared photoelectrons from inner orbitals in xenon, down to the 4d orbital. The 4d
orbital is of special interest because it is known to posses a giant collective resonance in
the photoionization cross section, as evidenced by MBPT in the early seventies by Amusia
and Wendin [75,76]. Thus, it is now possible to study the role of sizable relativistic effects,
such as the spin-orbit effect in xenon, in the time domain with RABBIT. This opens a
call for time-dependent methods to solve the Dirac equation for heavy many-electron
atoms; as an example we mention the recently developed relativistic time-dependent
configuration–interaction singles (RTDCIS) method [77], but also extend the computation
of two-color, two-photon matrix elements to the relativistic domain. Concerning the
lack of such relativistic theories, we mention that in refs. [71,73], the experiments were
accompanied by photoionization delay calculations with one-photon matrix elements at
the level of RRPA for XUV absorption, whereas various asymptotic formulas from non-
relativistic theory were used to account for IR exchange effects. Our goal here is to treat the
whole process within a relativistic framework and below we discuss the different points
where the relativistic treatment differs from that of the non-relativistic one with an effective
ionic potential for IR exchange [41–43]. We also mention that the method presented here has
already been utilized in various projects, such as [49,74], without any detailed description
of the theoretical formulation. A full development of the two-photon, two-color relativistic
random phase approximation (2P2C-RRPA) is beyond the scope of the present work, but
we expect that it would not lead to any major modification of the results presented here,
because we base our entire theory on the length gauge formulation of the light–matter
interaction, where the one-body ionic potential description of IR exchange processes is a
good approximation [44].

In Section 2 below, some basic concepts are introduced, and the relativistic scattering
phases, as well as the asymptotic form of the continuum solutions, are discussed in detail.
Section 3 discusses photoionization delay in a relativistic framework, and in Section 4
the many-body implementation is outlined, and the technique to calculate the needed
two-photon matrix elements is explained. Some results are finally shown in Section 5.

2. Theory

2.1. The Dirac Equation

The starting point for calculations in a relativistic framework is the Dirac equation. We
aim here for calculations on many-electron systems, and as a first approximation we let
the electron–electron interaction be approximated by an average potential: the relativistic
version of the Hartee–Fock (HF) potential, usually called the Dirac–Fock (DF) potential.
Each electron is then governed by the one-particle Hamiltonian:

hDF = cα · p +

(
uDF −

e2

4πε0

Z
r

)
14 + mc2β, (1)

with eigenvalues labeled by E, and where α is expressed in Pauli matrices and β has the
corresponding form

α =

(
0 σ
σ 0

)
, β =

(
12 0
0 −12

)
. (2)
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For closed shell atoms, as the rare gases treated here, the Dirac–Fock potential is
spherically symmetric, and the two-component radial part of the wave function can be
separated out and determined by the radial Hamiltonian

(
hDF

κ (r)− mc2
)( fκ(r)

gκ(r)

)
=
(

E − mc2
)( fκ(r)

gκ(r)

)
= ε

(
fκ(r)
gκ(r)

)
(3)

with

(
hDF

κ (r)− mc2
)
=

⎛
⎝ uDF(r)− e2

4πε0
Z
r −ch̄

(
d
dr − κ

r

)
ch̄
(

d
dr +

κ
r

)
uDF(r)− e2

4πε0
Z
r − 2mc2

⎞
⎠, (4)

where fκ is the upper, typically larger, component, and gκ the lower, typically smaller, com-
ponent. The four-component eigenfunction to the one-particle Hamiltonian in Equation (1)
can now be written as [78]

ψn�jm(r, θ, φ) =

( fn�j(r)
r χκm(θ, φ)

ign�j(r)
r χ−κm(θ, φ)

)

=

⎛
⎝ fnj�(r)

r ∑ν,μ〈�μsν | jm〉ξνY�,μ(θ, φ)
ignj�(r)

r ∑ν,μ〈(2j − �)μsν | jm〉ξνY(2j−�),μ(θ, φ)

⎞
⎠, (5)

where χκm(θ, φ) is a vector coupled function of a spherical harmonic and a spin function ξν.
The relativistic quantum number κ is defined by the eigenvalue equation (σ · �+ 1)χκm =
−κχκm and takes the value κ = �(�+ 1)− j(j + 1)− 1/4. When κ is negative, (j = �+ 1/2),
the spherical harmonic associated with the small component, will be one unit of orbital
angular momenta larger than that for the large component, and vice verse for positive κ
(j = �− 1/2).

The RRPA method, which is also known as the linear response within the time-
dependent Dirac–Fock (TDDF) formalism, will be used to describe the atomic response to
electromagnetic radiation. It accounts for the interaction with the electromagnetic field in
lowest order, including also corrections to the static Dirac–Fock potential by field-perturbed
orbitals [47,79]. The method is discussed further in Section 4. In the next section, we
will discuss expressions for the radial continuum wave functions at large, but not infinite
distances from the ion.

2.2. The Scattering Phase of the Photoelectron

Although the total photoionization cross section is determined by the amplitude of
the outgoing electron wave packet, its phase is crucial for its angular dependence as well
as its delayed appearance in the continuum. In the following, we discuss the difference of
the scattering phase in a relativistic formulation compared to the non-relativistic one.

We consider first an N-electron atom that absorbs a photon and subsequently ejects
a photoelectron from orbital b. The radial photoelectron wave function will in the non-
relativistic case be described by an outgoing phase-shifted Coulomb wave that asymptoti-
cally has the form

u(1)
q,Ω,b(r) ≈ −πM(1)

nrel(q, Ω, b)

√
2m

πkh̄2 ei
(

kr+ Z
ka0

ln2kr−� π
2 −σZ,k,�+δk,�

)
. (6)

Here energy normalization is assumed, and M(1)
nrel is the non-relativistic electric dipole

transition matrix element to the final continuum state q with momenta k, �, and m. Although
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M(1)
nrel can be chosen to be real in a one-electron context it will be complex when correlation

effects are considered. The Coulomb phase is

σZ,k,� = arg
[

Γ
(
�+ 1 +

iZ
ka0

)]
, (7)

for a photoelectron in the field from a point charge of Ze. Note that in Equations (6) and (7),
we use the negative Coulomb phase convention, rather than the equivalent positive sign
convention that is more commonly used: cf. Equations (1) and (2) in Ref. [44], in order
to easily relate the phase expressions to existing relativistic theory in the literature [80].
The additional phase shift δk,� comes from the short range many-body potential of the final
state. The Bohr radius is here denoted with a0. In the relativistic case, the asymptotic radial
wave function will have an upper and a lower component, cf. Equation (5), which will have
the form [80]

u( f ,1)
q,Ω,b(r) ≈ −πM(1)(q, Ω, b)

√
2m

πkh̄2

(
1 +

ε

2mc2

)
× ei(kr+ηln2kr−γ π

2 −σ̃Z,k,γ+ν+δ̃Z,k,γ),

u(g,1)
q,Ω,b(r) ≈ −iζπM(1)(q, Ω, b)

√
2m

πkh̄2

(
1 +

ε

2mc2

)
× ei(kr+ηln2kr−γ π

2 −σ̃Z,k,γ+ν+δ̃Z,k,γ), (8)

where the superscripts f and g indicate the large (upper) and small (lower) components
respectively and

ζ =

√
E − mc2

E + mc2 =
kh̄

2mc
1(

1 + ε
2mc2

) (9)

is the relation between the large and small component at infinity. This asymptotic relation
is given directly by Equation (4), with ε = E − mc2 being the kinetic energy at infinity. The
form of the components in Equation (8) is indeed the same as in the non-relativistic case,
but the parameters have slightly changed definition: M(1) is now the relativistic matrix
element, and k is calculated from the relativistic kinetic energy as

k =

√
E2 − m2c4

h̄c
=

√
2εm
h̄

√
1 +

ε

2mc2 . (10)

The first factor on the right-hand side of Equation (10) is identical to the non-relativistic
expression for k, which is thus only slightly adjusted as long as the kinetic energy of the
released electron is modest: ε � mc2. The constant η is given by

η = ZαE
√

1
E2 − m2c4 =

Z
a0k

( ε

mc2 + 1
)

(11)

where α is the fine structure constant, α = h̄/(a0mc). In the non-relativistic limit η will thus
tend to Z/(a0k) as expected by comparison with Equation (6). The relativistic Coulomb
phase is

σ̃Z,k,γ = arg[Γ(γ + iη)] (12)

with

γ =
√

κ2 − α2Z2 (13)
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and

ν =
1
2

arg

[
−κ + iZ

ka0

γ + iη

]
. (14)

The phase induced by the short-range part of the many-body potential for the final
state is denoted with δ̃Z,k,κ .

2.3. Phase-Shifted Relativistic Coulomb Functions at Large Distances

Calculations on many-body systems have to be done numerically. While the wave
function for the escaping photoelectron will differ from the analytically known Coulombic
ones at short distances, it will approach a combination of a phase-shifted known regular
and irregular Coulomb function outside the core of the remaining ion. Because transition
matrix elements between continuum states do not converge on a finite grid, it is convenient
to have access to continuum solutions, with a possible phase shift δ, that can be used
to continue the integration to infinity. We are here interested to find expressions for the
relativistic case, but it is illustrative to compare with the more studied non-relativistic
formulation.

The solutions to the hydrogen-like Schrödinger equation with positive energy is given
by the Coulomb functions (see e.g., [81]). The regular Coulomb function is in particular

F�(ηnrel, kr) =
1
2

e
π
2 ηnrel

|Γ(�+ 1 + iηnrel)|
(2�+ 1)!

e−ikr(2kr)�+1M(�+ 1 + iηnrel, 2�+ 2, 2ikr), (15)

where M is the confluent hypergeometric function, σ is defined in Equation (7) and ηnrel =
Z/(a0k). Non-relativistic Coulomb functions expressions, valid for large kr, are provided
in Ref. [82]:

F� = ḡ cos Δnrel + f̄ sin Δnrel (16)

G� = f̄ cos Δnrel − ḡ sin Δnrel, (17)

for the regular, F�, and irregular, G�, Coulomb functions respectively, where

Δnrel ≡ kr +
Z

ka0
ln 2kr − π

2
�− σZ,k,� + δ (18)

and f̄ and ḡ, which depend on Z, r, k , and �, can be obtained through simple recursive
formulas given in ref. [82]. When r → ∞, ḡ → 0 and f̄ → 1 and thus the regular function
approaches a sin-function, and the irregular a cos-function, both with amplitude one. The
combination

F�(ηnrel, kr)− iG�(ηnrel, kr) (19)

will thus asymptotically approach an outgoing wave, with modulus square equal to unity.
Energy normalized continuum functions are obtained by multiplications with

√
2m/πkh̄2.

It is interesting to note that Equations (16) and (17) imply that the irregular (regular)
function can readily be obtained when the regular (irregular) one is at hand. In the former
case, the irregular solution is found as

G� =

(
dF�
dr − F�

ḡ2+ f̄ 2

(
dḡ
dr ḡ + d f̄

dr f̄
))

k + η/r + 1
ḡ2+ f̄ 2

(
dḡ
dr f̄ − d f̄

dr ḡ
) . (20)

Turning to the relativistic Coulomb problem, we set out to find the relativistic counter-
parts to Equations (16) and (17), which to the best of our knowledge, are not available in the
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literature. The exact two-component relativistic regular, F̃γ, and irregular, G̃γ, solutions are
given in a pioneering article by Johnson and Cheng [80]. In particular the regular solution is

F̃γ(η, kr) =

√
E + mc2

2E
1
2

e
π
2 η |Γ(γ + iη)|

Γ(2γ + 1)
(−2ikr)γeikr

⎛
⎝

(
−κ + iZ

ka0

)
Mγ + (γ − iη)Mγ+1

−iζ
((

−κ + iZ
ka0

)
Mγ − (γ − iη)Mγ+1

)
⎞
⎠ (21)

with ζ, γ, η and k given in Equations (9)–(11) and (13), and the short-hand notation

Mγ = M(γ − iη, 2γ + 1,−2iz)
Mγ+1 = M(γ + 1 − iη, 2γ + 1,−2iz) (22)

has been used for the confluent hypergeometric functions.
An asymptotic expansion of the confluent hypergeometric function, M can be found

in ref. [83], which indeed can be used to obtain asymptotic expansions for F̃γ and G̃γ on
forms similar to Equations (16) and (17):

F̃γ =

√
E + mc2

2E

(
f̄large cos Δ − ḡlarge sin Δ

−ζ
(

ḡsmall cos Δ + f̄small sin Δ
) ) (23)

and

G̃γ =

√
E + mc2

2E

(
−
(

ḡlarge cos Δ + f̄large sin Δ
)

−ζ
(

f̄small cos Δ − ḡsmall sin Δ
)
)

(24)

with

Δ = kr + η ln 2kr − πγ/2 − σ̃Z,k,γ + ν + δ̃ (25)

with σ̃ and ν given in Equations (12) and (14). The possible extra phase shift is denoted by
δ̃. In the non-relativistic limit Δ → Δnrel ± π/2, for κ > 0 and κ < 0 respectively, and thus
the sin/cos—functions in Equations (16) and (17) are replaced with ∓ cos / ± sin in the
upper components of Equation (23) and (24). The relativistic f̄ , ḡ functions are obtained as

f̄large/small = Re(ℵ±) (26)

ḡlarge/small = Im(ℵ±) (27)

from

ℵ± = ∑
n=0

(γ − iη)n(−γ − iη)n
n!

(2ikr)−n±

∑
n=0

(γ + 1 + iη)n(−γ + 1 + iη)n
n!

(−2ikr)−n (28)

where (a)n = a(a + 1)(a + 2) . . . (a + n − 1), (a)0 = 1. Similarly to the non-relativistic case
ḡlarge/small → 0 and f̄large/small → 1 when r → ∞. Thus the upper regular, and the lower
irregular, approach cos Δ, whereas the lower regular and the upper irregular tend to sin Δ.
The asymptotic expressions are thus

F̃γ(η, kr) →
√

E + mc2

2E

(
cos Δ

−ζ sin Δ

)
, (29)
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G̃γ(η, kr) →
√

E + mc2

2E

( − sin Δ
−ζ cos Δ

)
, (30)

when kr → ∞, and the combination

F̃γ(η, kr)− iG̃γ(η, kr) →
√

E + mc2

2E

(
1
iζ

)
eiΔ (31)

will, in close analogy with the non-relativistic expression in Equation (19), asymptotically
approach an outgoing wave, with modulus square unity. The energy normalized functions
are again obtained by multiplication with

√
2m/πkh̄2. We note finally that Equation (20)

holds also in a relativistic framework. It provides the irregular solution, G̃γ from F̃γ, if f̄
and ḡ are just replaced with f̄large and ḡlarge or f̄small and ḡsmall for the upper and lower
components respectively.

3. Delay in Photoionization

We will here briefly discuss the calculation of delays in laser-assisted photoionization,
emphasizing the differences compared to the non-relativistic description. A detailed
account of the latter can be found in refs. [42,44].

3.1. The Wigner Delay

The concept of delay was introduced by Wigner [35], Smith [36] and Eisenbud [37]
as the derivative of the scattering phase with respect to energy. With a finite difference
approximation of the derivative Δω = 2ω, the Wigner contribution to the atomic delay
measured in a RABITT experiemnt is

τW =
φ> − φ<

2ω
, (32)

where φ>/< refer to the phases acquired in the XUV absorption step in the two paths where
either the higher or the lower harmonic is absorbed. Non-relativistically, and for detection
of the photoelectron in the ẑ direction, these phases are

φnrel
> = arg

(
∑
�

Mnrel
> (�)ei(−� π

2 −σZ,k> ,�+δk> ,�)Y�,0(ẑ)

)

φnrel
< = arg

(
∑
�

Mnrel
< (�)ei(−� π

2 −σZ,k< ,�+δk< ,�)Y�,0(ẑ)

)
, (33)

where the short-hand notation for the one-photon matrix elements, M>/<(�) ≡ M(1)(q>/<,
Ω>/<, b), with final photoelectron wave number k>/< and angular momentum �, after
absorption of a photon with angular frequency Ω>/<, is used. Relativistically the corre-
sponding amplitudes have two components and it is more appropriate to define the Wigner
delay as

τW =
1

2ω
arg

[
∑

m=± 1
2(

∑
κ

M<

(
χκm(ẑ)

iζχ−κm(ẑ)

)
ei(−γ π

2 −σ̃Z,k,γ+ν+δ̃Z,k,γ)

)†

(
∑
κ′

M>

(
χκ′m(ẑ)

iζχ−κ′cm(ẑ)

)
ei
(
−γ′ π

2 −σ̃Z,k,γ′+ν′+δ̃Z,k,γ′
))]

, (34)
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where the calculation of the delay of electrons emitted along the z-axis requires an incoher-
ent sum over m = ±1/2. The two incoherent contributions to the Wigner delay are due to
unresolved photoelectron spin in the final state.

3.2. The Atomic Delay

We now consider measurements that employ the RABBIT technique [2], where an
XUV comb of odd-order harmonics of a fundamental laser field with angular frequency
ω, is combined with a synchronized, weak laser field with the same angular frequency.
In RABBIT, the one-photon ionization process is assisted by an IR photon that is either
absorbed or emitted. The same final state is reached when both an XUV harmonic with
energy h̄Ω< = (2n − 1)h̄ω and an IR photon is absorbed, as when the next XUV harmonic,
h̄Ω> = (2n + 1)h̄ω, is absorbed while an IR photon is emitted. This gives rise to modulated
sidebands in the photoelectron spectrum at energies corresponding to the absorption of an
even number of IR photons. Schematically the intensity of such a sideband can be written
as [25]

S =| Aa + Ae |2=| Aa |2 + | Ae |2 +A∗
e Aa + Ae A∗

a

| Aa |2 + | Ae |2 +2 | Ae || Aa | cos[arg(Ae)− arg(Aa)], (35)

where Aa/e are the complex quantum amplitudes for the two-photon processes involving
absorption (a) or emission (e) of an IR photon, and leading to the same final energy. The
modulation arises from the last term in Equation (35) and can be shown to be governed
by the delay between the IR and XUV pulses, τ, the group delay of the attosecond pulses
in the train, τXUV , and by a contribution from the atomic system which is due the phase
difference between the emission and the absorption paths in the atom:

cos[arg(Ae)− arg(Aa)] = cos[2ω(τ − τXUV) + φe − φa]. (36)

The atomic contribution can be interpreted as an atomic delay: τA = (φe − φa)/2ω.
Because the delay between the two light fields is controlled in the experiments and the pulse
train group delay can be canceled through relative measurements, the atomic contribution
can be extracted. A recent review of the experimental method can be found in [84]. In the
following, we discuss the determination of φa and φe.

The outgoing radial wave function for the large component, after interaction with
two photons, will, in accordance with the one-photon situation in Equation (8), have the
asymptotic form

u( f ,2)
q,ω,Ω,b(r) ≈ −πM(2)(q, ω, Ω, b)

√
2m

πkh̄2

(
1 +

ε

2mc2

)
ei(kr+ηln2kr−γ π

2 −σ̃Z,k,γ+ν+δ̃Z,k,γ), (37)

where the important difference compared to the one-photon case lies in the presence of the
two-photon transition element M(2), which connects the initial state b to the continuum
state q through all dipole-allowed intermediate states. The small component follows as in
Equation (8). The phases acquired in the absorption and emission paths (cf. Equation (36)),
are given by the corresponding two-photon matrix element and the phase of the photo-
electron. In the non-relativistic case, and for photoelectrons with momentum along the
common polarization axis of the fields, ẑ, they are given as

φnrel
a = arg

(
∑
�

Ma,nrel(�)e
i(−� π

2 −σZ,k,�+δk,�)Y�,0(ẑ)

)

φnrel
e = arg

(
∑
�

Me,nrel(�)e
i(−� π

2 −σZ,k,�+δk,�)Y�,0(ẑ)

)
, (38)

170



Atoms 2022, 10, 80

where the short-hand notation

Ma,nrel(�) = M(2)
nrel(q, ω, Ω<, b),

Me,nrel(�) = M(2)
nrel(q,−ω, Ω>, b) (39)

has been used and the subscripts a and e stand for IR absorption and emission, respectively.
For photoelectron emission along the ẑ-direction, i.e., θ = 0, the spherical harmonic is
non-zero only for azimutal quantum number m� = 0. The atomic delay, defined as the
phase difference divided by 2ω, can subsequently be calculated as

τA =
φe − φa

2ω
. (40)

In the Dirac case, there are two distinct differences. First, a sum over m = ±1/2 is
required, because both spin-directions contribute to the emission along the ẑ-direction.
Second, due to the multi-component wave function the Dirac case the expression gets more
involved:

τA =
1

2ω
arg

[
∑

m=± 1
2(

∑
κ

Ma

(
χκm(ẑ)

iζχ−κm(ẑ)

)
ei(−γ π

2 −σ̃Z,k,γ+ν+δ̃Z,k,γ)

)†

×
(

∑
κ′

Me

(
χκ′m(ẑ)

iζχ−κ′m(ẑ)

)
ei
(
−γ′ π

2 −σ̃Z,k,γ′+ν+δ̃Z,k,γ′
))]

, (41)

where the sum over m = ±1/2 is done incoherently (see e.g., the discussion in ref. [85]) ,
whereas the sum over κ is done coherently. The two incoherent contributions to the atomic
delay are due to unresolved photoelectron spin in the final state. The expression for the
Wigner and atomic delay for electrons detected along an arbitrary direction have been
discussed in ref. [86]

4. Method

In the following, we label the full four-component “perturbed wave function”, associ-
ated with absorption of one photon with angular frequency Ω and a hole in orbital b, by∣∣ρΩ,b

〉
, including both radial and spin-angular parts implicitly. As in [41–43], we use here

the RPAE-approximation for the many-body response to the absorption of an XUV-photon,
albeit within a relativistic framework.

4.1. The Form of the Light–Matter Interaction

The standard expression for light–matter interaction,

hI = ecα · A(r, t), (42)

comes from applying minimal coupling: p → p + eA to the Dirac Hamilonian in Equation (1).
Within the dipole approximation, the vector potential is assumed to be space-independent:
A(r, t) → A(t). This is often referred to as the “velocity gauge” expression for light—matter
interaction:

hvelocity
I = ecα · A(t). (43)
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A unitary transformation can be made to recast the interaction in the alternative
“length gauge” form

hlength
I = er · E. (44)

For details see e.g., ref. [87]. Because our interest here is low-energy photoelectrons, we will
stick to the dipole approximation. It is well known that the two gauge forms give identical
results when evaluated by an exact wave function, but also for approximations that employ
a local potential to describe electron–electron interaction. The non-local exchange potential
in the Hartree–Fock approximation can lead to different results in the two gauges when
static orbitals are assumed [65,66]. As was shown in the 1970s, the gauge invariance for
one-photon processes is restored by the RPAE class of many-body effects [88]. Recently,
this was discussed in connection with the calculation of two-photon processes, as needed
for the calculation of atomic delays [44], and it was shown that gauge invariance required
a full two-photon RPAE treatment. Because ref. [44] also showed that the length gauge
results are completely dominated by the time-order where the XUV photon is absorbed
first and much less sensitive to final state interactions (after absorption of two photons)
than velocity gauge, only the length form will be used here.

With linearly polarized light, we may now write the lowest order approximation of
the transition matrix elements from Equation (8) as

M(1)(q, Ω, b) = 〈q | ez | b〉EΩ, (45)

and similarly the two-photon matrix element in Equation (37) as

M(2)(q, ω, Ω, b) = lim
ξ→0+

∑
p

∫ 〈q | ez | p〉〈p | ez | b〉
εb + h̄Ω − εp + iξ

EωEΩ, (46)

where intermediate states, p, are to be summed and integrated over for the bound and
continuum part of the spectrum respectively. An important difference compared to the one-
photon matrix element is that the two-photon matrix element is intrinsically complex for
the above threshold ionization, i.e., when h̄Ω exceeds the binding energy, even if correlation
effects are neglected.

4.2. Diagrammatic Perturbation Theory

The approximation is illustrated by the diagrams in Figure 1, and a detailed derivation
can be found in ref. [44]. The solution of the RPAE equations is done iteratively as indicated
in Figure 1 and includes the linear response to the interaction with the XUV photon,

(
εb ± h̄Ω − hDF

κ

)
| ρ±Ω,b〉 =

exc

∑
p
| p〉〈p |

(
dΩj + δu±

Ω

)
| b〉, (47)

where δu±
Ω is the (linearized) corrections to the Dirac–Fock potential induced by the elec-

tromagnetic field (cf. Figure 1c–f,i–l). The Dirac–Fock potential, cf. Equation (4) is defined
from its matrix element between orbitals m, n (occupied or unoccupied):

〈m | uDF | n〉 =
core

∑
c
〈{mc} | V12 | {nc}〉, (48)

where curly brackets denote anti-symmetrization. V12 denotes here the Coulomb interaction.
It is also possible to define a Hartree–Fock type potential for the Breit interaction [89,90], but
this aspect of the electron–electron interaction is neglected here. In addition to the Dirac–
Fock potential, we usually add a so-called projected potential, uproj, to the Hamiltonian
in Equation (4). Aiming for a final state with a hole in one of the originally occupied
orbitals, the projected potential cancels the removed electron’s monopole interaction with

172



Atoms 2022, 10, 80

all unoccupied orbitals, without affecting the interaction between the electrons in the
ground state. More details can be found in [44]. Through this extra potential, some of the
contributions from Figure 1c, precisely those which ensure that the photoelectron feels the
correct long-range potential, are accounted for already in lowest order. When converged,
the iterative procedure gives the same results if the projected potential is used or not, but
the convergence is often much improved in the latter case, especially close to ionization
thresholds.

p a

b

(c) (e)

pa

p a

b

b

p a

(k)(i)

b

p a

b

(d)

p a

b

(f)

pa

b

(j)

pa

b

(l)

p a

(b)

pa

(h)

p a

(a)

pa

(g)

Ti
m
e

Ti
m
e

Figure 1. Goldstone diagrams illustrating RPAE for the many-body screening of the photon interac-
tion. The set labelled with (a,g) are forward and backward propagation, respectively. Diagrams (b,h)
are the lowest order contributions, while (c–f) and (i–l) give the many-body response. The sphere
indicates the correlated interaction to infinite order. The wavy line indicates the photon interaction
and the dashed line the Coulomb interaction. Downward lines (labelled with a, b) stand for holes
created when electrons are removed from initially occupied orbitals, and upward lines (labelled with
o, p) for initially unoccupied orbitals.

The calculations are performed with a basis set obtained through diagonalization of the
radial one-particle Dirac–Fock Hamiltonians in a primitive basis of B-splines [91], defined
on a knot sequence in a spherical box. B-splines are piecewise polynomials of a given order
k. The radial components f and g of the relativistic wave function, (cf. Equation (5)) are
expanded in B-splines of different orders: typically k = 7 and k = 8 respectively. It has been
shown by Froese, Fischer, and Zatsarinny [92] that the use of different B-spline orders is a
way to get rid of the so-called spurious states, which are known to appear in the numerical
spectrum after discretization of the Dirac Hamiltonian. Details of the use of B-splines to
solve the Dirac equation can be found in ref. [93].

We use further exterior complex scaling (ECS)

r →
{

r, 0 < r < RC
RC + (r − RC)eiϕ, r > RC,

(49)

and thus the eigenenergies of the virtual orbitals are complex in general. As a conse-
quence, the energy integration path avoids the pole in Equation (46) and thus the sum and
integration over unoccupied states p can be represented by a finite sum [41,42].

With converged RPAE results the two-photon matrix elements in Equation (37) can be
calculated for the absorption as well as the emission path to sideband n:

M(2)
a/e = 〈q | ez | ρ+

(2n∓1)ω,b〉, where εq = εb + 2nω, (50)

where length gauge has been assumed. The integration in Equation (50) involves two
continuum functions and will not converge on any finite interval. The integrand is therefore
divided into two parts. The first is an inner region 0 ≤ r < R < RC, where the perturbed
wave function and final state can be determined numerically on the B-spline basis. The
second is an outer region R ≤ r < ∞ where the functions can be assumed to be solutions to
the pure Coulomb problem, albeit with a possible phase shift. By using different breakpoints
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R, we can check that the result is independent on where the change from numerical to
the analytical integration is done. This procedure was described in ref. [42] but has to be
slightly changed for the relativistic case, as will be discussed in the next subsection.

4.3. The Continuum–Continuum Transition

To evaluate Equation (50), we need the final continuum state, q, for a photoelectron
of energy εq, obtained in a relativistic framework and with the phase shift it gets from the
many-body environment. A good approximation is found as the solution of

hψq = εqψq (51)

where h = hDF
κ + uproj. By expanding the radial functions f and g (cf. Equation (5)), in

B-splines, fq(r) = ∑ ciBi(r), and vice versa for g, we can reformulate Equation (51) to
a system of linear equations for the coefficients ci. Exclusion of the first B-spline yields
a regular solution, that is zero at the origin. This determines ψq up to a normalization
constant. After normalization, which will be discussed below, ψq is used for the first part of
the integration in Equation (50), i.e., from zero to R. We note in passing that in practice it is
enough to obtain the large component of the relativistic wave function for a specific energy,
because in the region dominated by the Coulomb potential, the Dirac equation gives the
small component directly from the large one:

ug(r) =
ch̄
(

d
dr +

κ
r

)
u f (r)

ε + 2mc2 +
e2Ze f f
4πε0

1
r

, (52)

where Ze f f is the effective Coulomb potential felt by the escaping electron.
For the second part of the integration, from R to infinity, we need to extract infor-

mation from the numerical representations of q and ρ to perform the rest of the integral
in Equation (50) analytically as was described in ref. [42]. The final state q, is a phase
shifted regular solution to the Coulomb problem, which should be correctly normalized,
and the perturbed wave function ρ, is a phase-shifted outgoing solution with an amplitude
determined by the photoionization process.

The outgoing solution ρ well outside the ionic core can easily be compared with
the pure Coulomb solutions, Equations (23) and (24), combined as in Equation (31), to
determine the phase shift, δ̃ in Equation (25). It can easily be checked that the obtained
phase shift is independent of r, and then Equations (23) and (24) can be used again to
construct the solution at any large r.

The final state phase-shifted regular solution from Equation (51) can be complimented
by its irregular counterpart through Equation (20), evaluated with the relativistic forms
of f̄ and ḡ, and then again the phase shift can be determined from comparision with
Equations (23) and (24), combined as in Equation (31), and finally Equation (23) can be
used to construct the final state at any r.

An additional advantage with the possibility to complement a regular solution with
its corresponding irregular solution, and be able to construct the outgoing function, is that
it is easy to normalize. The probability flux through the surface of a sphere of radius R is

J (R) = ic
(

u f (r)∗ug(r)− ug(r)∗u f (r)
)

r=R
(53)

and is constant for any large value of R, far outside the core. Because the asymptotic
expressions for the large and small components are simple oscillating waves and their
relation is ζ (cf. Equation (8)), the rate should be 2cζ|A|2 and from that we can determine
the amplitude A. From the expression for ζ in Equation (9), we note the close resemblance
with the non-relativistic rate h̄k|A|2/m, just slightly adjusted for relativistic effects.

The last part of the integral, from R to r → ∞, in Equation (50) can now be calculated as was
described in ref. [42], but now with continuum solutions obtained from Equations (23) and (24).
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5. Results

The two-photon matrix elements for the absorption, Ma, and emission, Me, paths are
calculated as indicated in Equation (50) and then the atomic delay for electrons emitted
in the direction of the laser field polarization is obtained from Equation (41). The Wigner
delays are calculated as in Equation (34).

5.1. A Light Element: Argon

Results for ionization of argon atoms to the outermost p doublet 3p−1
1/2 and 3p−1

3/2, are
shown in Figure 2. The two curves for the atomic delays are, more or less, indistinguishable.
The negative atomic delay peak at 50 eV is due to the 3p-Cooper minimum in the cross
section of argon. A slight shift of the negative atomic delays peaks of a few meV is observed.
The similarity of the two fine-structure split channels is expected for such a light system

with ΔE
Ar:3pj
FS = 0.18 meV. The Wigner delays from the two fine-structure channels are also

mostly indistinguishable. Just below the threshold for release from the 3s-orbital, ∼30 eV,
there are narrow resonances that are not fully resolved in the present calculation.

Figure 2. The atomic and Wigner delay calculated in length gauge for ionization from Ar 3pj, for
electrons emitted along the polarization axis. The figure shows the region in the vicinity of the Cooper
minimum. The thick dashed blue line shows the atomic delay for electrons ionized from 3p3/2. It is
hardly distinguishable from the dashed–dotted red line that shows the atomic delay for electrons
ionized from 3p1/2. The thin dashed green and solid grey lines show the Wigner delay for electrons
ionized from 3p1/2 and 3p3/2 respectively. Dirac–Fock orbital energies have been replaced with
experimental ionization energies: For 3p3/2 the binding energy is 15.76 eV, and for 3p1/2 it is 15.94 eV.

5.2. Heavy Elements: Krypton and Xenon

Atomic and Wigner delays for ionization to the outermost p-doublet in krypton and
xenon are shown in Figures 3 and 4, respectively. Here the delay differences between the
electrons ionized to the 4p−1

1/2 and 4p−1
3/2 (5p−1

1/2 and 5p−1
3/2) in krypton (xenon) show that

relativistic effects are important. Differences between the delays are clearly visible on the
order of a few eV at the Cooper minima. Such shifts can be expected because the fine-

structure shifts are ΔE
4pj
FS = 0.67 eV for krypton (ΔE

5pj
FS = 1.3 eV for xenon). Furthermore, a

difference between the doublet channels is observed at low energies, where xenon shows
the largest delay difference that exceeds 10 as.
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Figure 3. The atomic and Wigner delay calculated in length gauge for ionization from Kr 4pj,
for electrons emitted along the polarization axis. The thick dashed blue line shows the atomic
delay for electrons ionized from 4p3/2, and the dotted–dashed red line shows the atomic delay for
electrons ionized from 4p1/2. The thin dashed green and solid grey lines show the Wigner delay for
electrons ionized from 4p1/2 and 4p3/2 respectively. Dirac–Fock orbital energies have been replaced
with experimental ionization energies: For 4p3/2 the binding energy is 14.00 eV, and for 4p1/2 it is
14.67 eV [94]. Dirac–Fock orbital energies are used for the deeper lying orbitals.

Figure 4. The atomic delay calculated in length gauge for ionization from Xe 5pj, for electrons emitted
along the polarization axis. The thick dashed blue line shows the atomic delay for electrons ionized
from 5p3/2, and the dotted–dashed red line shows the atomic delay for electrons ionized from 5p1/2.
The thin dashed green and solid grey lines show the Wigner delay for electrons ionized from 5p1/2

and 5p3/2 respectively. Dirac–Fock orbital energies have been replaced with experimental ionization
energies. For 5p3/2, the binding energy is 12.13 eV, and for 5p1/2 it is 13.44 eV [94]. Dirac–Fock orbital
energies are used for the deeper lying orbitals.
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5.3. Study of Continuum–Continuum Delay

The difference between the atomic and the Wigner delay is plotted for argon, krypton,
xenon, and radon in Figure 5. For all the elements, and all fine-structure components, the
results are very similar. This is in accordance with earlier findings, using non-relativistic
calculations [41,42,44], and the corresponding numerical continuum–continuum delay:
τMBPT

cc , is shown as a dotted line in Figure 5 for comparison with the relativistic results.
Thus, the contribution from the second photon depends on the kinetic energy and the
long-range potential, but only weakly, or not at all, on the structure of the remaining ion, or
its angular momentum, for photoelectrons emitted along the polarization axis.

Only in the vicinity of Cooper minima, or close to resonances, is there are a deviation
from this general trend. We stress that non-relativistic deviations, of a few attoseconds, have
also been found for Ar3p at the Cooper minimum by using the effective one-body potential
for the final state [44]. In that case, however, the complete 2P2C-RPAE method was used
to show that these deviations could be reduced, as shown Figure 9b of ref. [44]. Thus, we
may speculate that the present relativistic deviations at the Ar3pj Cooper minima could
be reduced by turning to 2P2C-RRRA theory. On the other hand, the correlation-induced
3s-minimum was shown to be non-separable by using the 2P2C-RPAE method, as shown
in Figure 9a of [44]. Obviously, fast photoelectrons are also well described by the analytical
cc-delay in ref. [33], but more importantly, Figure 5 demonstrates that a universal behaviour
extends to much lower energies than expected from the asymptotic theory (>20 eV) [33], in
good agreement with non-relativistic 2P2C-RPAE matrix elements [44].

Figure 5. The difference between the atomic delay and the Wigner delay for the two outermost
orbitals in Ar, Kr, Xe, and Rn calculated in length gauge and for for electrons emitted along the
polarization axis. The red dotted line shows the non-relativistic result calculated for Ne 2p, i.e., the
numerically obtained continuum–continuum delay discussed in the introduction.

5.4. Comparison with Experiments

The delay difference between photoelectrons originating from the outermost p3/2
and p1/2 orbitals in krypton and xenon have been studied in refs. [71,72] by using the
interferometric RABBITT technique. In Figure 6, this difference, as calculated here, is
shown for xenon. The experiment from ref. [71] includes one data point at 18.6 eV and
one at 24.8 eV which are in qualitative agreement both with the calculation presented here,
and with accompanying calculations in ref. [71], based on the Wigner delay from RRPA
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augmented with the the cc-delay from ref. [33]. Three other data points, on the other hand,
differ markedly from both theoretical results. Especially striking are the large measured
delays for higher energies (around 30 as at 30 eV), where the calculated result is very small.
This might be due to resonances, not fully accounted for in the calculations, as discussed in
ref. [71].

Moreover, a higher energy region has been explored. Ref. [72] measured the the delay
difference for the xenon 5p fine-structure components for the sideband at 90 eV (with
IR photon energies of 1.55 eV) to τA(5p3/2)− τA(5p1/2) = 14.5 ± 9.3 as. Moreover, the
calculated delay is much smaller, around 2 as (not shown in the figures). We note that the
cross section to produce photoelectrons in the 5�j channels at around 90 eV photon energy
is comparable to those for 4d and shake-up satellites [95]. Because shake-up channels can
have significantly larger delays [12], this region might need a more careful investigation of
all competing channels.

Figure 6. The delay difference between photoelectrons originating from the 5p3/2 and 5p1/2 orbitals
in xenon. The dashed blue line shows the atomic delay, and the solid red the Wigner delay.

Figure 7 shows finally the atomic and Wigner delay for photoelectrons released from
the xenon 4d orbitals. The result agrees within error bars with the measurement, from
threshold up to ∼100 eV, in ref. [74]. It is interesting to note the large difference between the
two channels, defined by the two fine-structure components, in the region just above the
4d thresholds at 67.5 and 69.5 eV, and the rapid variation of the delay with photon energy.
The experiments in refs. [96,97] have shown that also the cross-section branching ratio (for
leaving the ion with 4d−1

3/2 or 4d−1
5/2) shows a rapid variation in this region. In both cases,

this behaviour can be traced back to the presence of two resonances close to threshold.
They are of 3D and 3P character and cannot be populated by one-photon absorption in a
non-relativistic description. The spin-orbit-induced singlet-triplet mixing opens, however,
the route to ionization through these resonances, and thus for a population transfer from
one final channel to the other. This has been further discussed in refs. [74,98]. We note that
although the resonances in argon, mentioned above, are just unresolved in the calculation,
the reason that these xenon resonances are not seen directly is not a question of resolution.
The cross section in this region is completely dominated by the so-called giant resonance
of 1P character and the spin-orbit-induced resonances can simply not be seen against this
background. Still, their mark in the more sensitive observables, such as atomic delays and
branching ratios, is clearly seen.

Also for xenon 4d ref. [72] gives a value at 90 eV: τA(4d5/2)− τA(4d3/2) = −4.0± 4.1 as,
which agrees with our value of −1.2 as.
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Figure 7. The thick dashed blue line shows the atomic delay for electrons ionized from 4d3/2, and
the dotted–dashed red line shows the atomic delay for electrons ionized from 4d5/2. The thin
dashed green and solid grey lines show the Wigner delay for electrons ionized from 4d3/2 and 4d5/2

respectively. Dirac–Fock orbital energies have been replaced with experimental ionization energies.
For 4d5/2 the binding energy is 67.5 eV, and for 4d3/2 it is 69.5 eV [99].

6. Conclusions

We have shown how two-photon above-threshold ionization can be treated in a rel-
ativistic framework from first principles. Correlation is included in the photoionization
process at the level of the relativistic random phase approximation. As in the non-relativistic
case, the calculation of the subsequent continuum–continuum transition relies on knowl-
edge of the form of the intermediate wave packet when it is well outside the atomic
core. For this purpose, we present a convenient recursive formula for both the large and
small component of the regular and irregular solution to the relativistic Coulomb prob-
lem. The procedure have been applied to a few heavy elements, and it is shown that
the separation of the atomic delay into a Wigner–Smith–Eisenbud delay and a universal
continuum–continuum works reasonably well also for these systems.

We have further demonstrated qualitative agreement with existing experimental
photoionization-delay data for ionization from the 4d-orbitals in xenon, and with lower
energy results from the outermost orbitals in xenon and krypton. For higher photon ener-
gies, experiments report considerably larger delay differences between the fine-structure
split channels than supported by the calculations. This might be connected to resonances
or interfering shake-up channels, which can hopefully be resolved in the future.
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Attosecond timing of electron emission from a molecular shape resonance. Sci. Adv. 2020, 6, eaba7762. [CrossRef]

21. Kamalov, A.; Wang, A.L.; Bucksbaum, P.H.; Haxton, D.J.; Cryan, J.P. Electron correlation effects in attosecond photoionization of
CO2. Phys. Rev. A 2020, 102, 023118. [CrossRef]

22. Cavalieri, A.L.; Muller, N.; Uphues, T.; Yakovlev, V.S.; Baltuska, A.; Horvath, B.; Schmidt, B.; Blumel, L.; Holzwarth, R.; Hendel, S.;
et al. Attosecond spectroscopy in condensed matter. Nature 2007, 449, 1029–1032. [CrossRef]

23. Siek, F.; Neb, S.; Bartz, P.; Hensen, M.; Strüber, C.; Fiechter, S.; Torrent-Sucarrat, M.; Silkin, V.M.; Krasovskii, E.E.; Kabachnik,
N.M.; et al. Angular momentum–induced delays in solid-state photoemission enhanced by intra-atomic interactions. Science
2017, 357, 1274–1277. [CrossRef] [PubMed]

180



Atoms 2022, 10, 80

24. Heinrich, S.; Saule, T.; Högner, M.; Cui, Y.; Yakovlev, V.S.; Pupeza, I.; Kleineberg, U. Attosecond intra-valence band dynamics and
resonant-photoemission delays in W(110). Nat. Commun. 2021, 12, 3404. [CrossRef] [PubMed]

25. Véniard, V.; Taïeb, R.; Maquet, A. Phase dependence of (N + 1)-color (N >1) ir-uv photoionization of atoms with higher harmonics.
Phys. Rev. A 1996, 54, 721–728. [CrossRef]

26. Toma, E.S.; Muller, H.G. Calculation of matrix elements for mixed extreme-ultraviolet–infrared two-photon above-threshold
ionization of argon. J. Phys. B At. Mol. Opt. Phys. 2002, 35, 3435. [CrossRef]

27. Mauritsson, J.; Gaarde, M.B.; Schafer, K.J. Accessing properties of electron wave packets generated by attosecond pulse trains
through time-dependent calculations. Phys. Rev. A 2005, 72, 013401. [CrossRef]

28. Nagele, S.; Pazourek, R.; Feist, J.; Doblhoff-Dier, K.; Lemell, C.; Tőkési, K.; Burgdörfer, J. Time-resolved photoemission by
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Abstract: Approximation methods are unavoidable in solving a many-electron problem. One of the
most successful approximations is the random-phase approximation (RPA). Miron Amusia showed
that it can be used successfully to describe atomic photoionization processes of many-electron atomic
systems. In this article, the historical reasons behind the term “random-phase approximation” are
revisited. A brief introduction to the relativistic RPA (RRPA) developed by Walter Johnson and
colleagues is provided and some of its illustrative applications are presented.

Keywords: photoionization; random-phase approximation; relativistic-random-phase approximation

1. Introduction

About a half-century ago, Miron Amusia showed that the photoionization of the noble
gas atoms could be described quite accurately using the random-phase approximation
with exchange (RPAE); see [1] and references therein. RPAE includes two-particle two-hole
correlations in the initial state of the photoionization process and coupling among the
ionization channels in the final state, essentially configuration interaction in the contin-
uum. The methodology did not include relativistic interactions. Building upon Amusia’s
work, Walter Johnson and his co-workers developed a relativistic version, the relativistic-
random-phase approximation (RRPA) which is based on the Dirac equation rather than the
Schrödinger equation [2–5]. This advance allowed us to study heavier systems, where rela-
tivistic effects are large, and processes that are only possible owing to relativistic interactions.
In this paper, an exposition of the random-phase approximation is presented along with
some of the important advances using the relativistic version of Amusia’s methodology.

2. The Random-Phase Approximation

The random-phase approximation can be formulated in a few alternative ways. An ex-
tensive review of these methods and their equivalence is not attempted in this article.
Instead, we limit ourselves to comment on the expression “random-phase approximation”
and the “linearization” process that it entails. These expressions are widely used in the lit-
erature, but the historical reasons behind this terminology are seldom discussed. The scope
of this article is further limited to only illustrating some of the applications of the relativistic
RPA, RRPA, for which the earlier nonrelativistic work of [1] set the stage.

2.1. Beyond the Hartree–Fock Method

The simplest N-electron atomic problem, even if we leave out relativistic effects such
as the screen-orbit interaction, is described by the Hamiltonian

Atoms 2022, 10, 71. https://doi.org/10.3390/atoms10030071 https://www.mdpi.com/journal/atoms185
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H(N)(q1, q2, . . . , qN) =

{ N

∑
i=1

(
− h̄2

2m
∇2

i −
Ze2

ri

)}

+

{ N

∑
i<j=1

e2

rij

}
=

{ N

∑
i=1

f (�ri)

}
+

{
1
2

N

∑
i=1;i �=j

N

∑
j=1

e2

rij

}
, (1)

consisting of one- and two- electron operators. The electron–electron Coulomb interaction
must be described formally in terms of charge densities which require the electron wave-
functions, which is to say that one needs the solution of the N-electron Schrödinger equation
even before the differential equation is formulated. The single electron atomic problem
has analytical solutions at both non-relativistic and relativistic levels, but approximation
methods are necessary to solve the N-electron problem for N ≥ 2. The many-electron
problem is a vexing one on account of two types of correlations between the electrons:
(a) statistical (also called Fermi–Dirac or exchange) correlations and (b) Coulomb correla-
tions. The Hartree–Fock self-consistent field (HF-SCF) provides an effective strategy to
obtain solutions that are excellent approximations [6–8] to the required solutions using an
antisymmetrized product of N single-electron wave wavefunctions.

The two-electron terms render the electron–electron potential non-local. The Hartree–
Fock method obtains atomic wavefunctions employing numerical procedures, using varia-
tional calculus to obtain a self-consistent field in the frozen orbital approximation.

Since the wavefunction employed in the HF method is antisymmetrized, statistical
correlations are accounted for, but not the Coulomb correlations. In fact, the Coulomb
correlations are defined to be just those that are left out of the HF method. There is no
method available to account for the Coulomb correlations exactly.

One must employ approximation methods. Various approximation methods have
been developed to address the Coulomb correlations, such as the Multi-Configuration
Hartree–Fock (MCHF), also called the Configuration Interaction (CI) method [9], diagram-
matic perturbation theory [10], Greens function method [11], etc. A very successful ap-
proximation method to treat the electron correlations is the random-phase approximation
(RPA). There are various routes to the RPA such as the method of canonical transfor-
mations [12], the equation of motion method [13], and the linearized Time-Dependent
Hartree–Fock method—commonly known as the random-phase approximation with exchange,
or RPAE, for short [1,14,15]. All of these routes to RPA are equivalent; they depend on
employing a linear approximation to the electron correlations.

We shall first briefly visit salient features of the method of canonical transformation of
the Hamiltonian employed by Bohm and Pines [12,16–19] since: (i) their method lucidly
illustrates the linear approximation to electron correlations and (ii) explains the RPA which
involves cancellation of terms associated with the term random-phase, arrived at using a
linearization process. This linearization process is the heart of the RPA. We shall then review
the linearization of the Time-Dependent Hartree–Fock system (TDHF) of equations devel-
oped by Dalgarno and Victor (1968). This approach is equivalent to that of Bohm–Pines
on account of the linearization process that drives it. It is especially insightful toward
appreciating the treatment of the many-electron system beyond the Hartree–Fock model.
The linearized TDHF thus provides the essential platform toward methods in the analysis
of atomic collisions and photoionization processes [1] employing the technique known
as the random-phase-approximation with exchange (RPAE). Finally, we shall summarize
the relativistic improvisation of the RPAE, called the relativistic-random-phase approxi-
mation (RRPA) developed by Johnson, Lin, and Dalgarno [2–5,14] which is arrived at by
linearizing the Time-Dependent Dirac–Hartree–Fock (TDDHF, often abbreviated as TDDF)
and illustrate some of its applications.
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2.2. Linear approximation to Coulomb correlations

Strong electron–electron correlations in a free electron gas were dealt with by Bohm and
Pines by subjecting the many-electron Hamiltonian to a series of canonical transformations.
These transformations result in weakly interacting elementary excitations (plasmons) which
represent collective elementary excitations of the electron gas.

Using the second quantized notation [20] for the electron creation (c†) and annihilation
operator (c), the Schrödinger equation for an N-electron free electron gas is

∂

∂t
|Ψ(t)〉 =

[
∑

i
∑

j
c†

i 〈i| f |j〉cj

+
1
2 ∑

i
∑

j
∑
k

∑
l

c†
i c†

j 〈ij|v|kl〉clck

]
|Ψ(t)〉, (2a)

where
〈ij|v|kl〉 =

∫
dq1

∫
dq2ψ∗

i (q1)ψ
∗
j (q2)v(q1, q2)ψk(q1)ψl(q2), (2b)

with the subscripts i, j, k, l denoting the set of four one-electron quantum numbers and the
arguments (qr) denoting the four coordinates of the rth electron, three of which being the
space coordinates and the fourth being the spin coordinate. The operator f is a single-electron
operator, similar to that in Equation (1), but consisting of only the kinetic energy terms,
the electrons being free. In Equation (2b), a typical spin-orbital is represented by

ψi(q) = ψi(�r)χi(ζ), (2c)

wherein the spin part is either

χi(ζ) = α =

[
1
0

]
, (2d)

for msi = + 1
2 i.e., ↑, or

χi(ζ) = β =

[
0
1

]
, (2e)

for msi = − 1
2 i.e., ↓.

The second quantized Hamiltonian in Equation (2a) is equivalently written as

H =

[
∑
i,α

∑
j,β

c†
iα

( ∫
ψ∗

iα(q) f (q)ψ∗
jβ(q)dq

)
cjβ

+
1
2 ∑

iα
∑
jβ

∑
kγ

∑
lδ

c†
iαc†

jβ

×
( ∫

dqdq′ψ∗
iα(q)ψ

∗
jβ(q)v(q, q′)ψlδ(q)ψkγ(q)

)
ckγclδ

]
, (3a)

or more compactly using the Dirac notation for the integrals as

H = ∑
i,α

∑
j,β

c†
iα〈iα| f |jβ〉cjβ +

1
2 ∑

iα
∑
jβ

∑
kγ

∑
lδ

c†
iαc†

jβ

×〈iα, jβ|v|lδ, kγ〉ckγclδ. (3b)

Without compromising the above Hamiltonian in any way, we can place the most part
of the two-electron interactions
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{
1
2

N

∑
i=1;i �=j

N

∑
j=1

v(�ri,�rj)

}

in Equation (1) in a one-electron operator

{ N

∑
i=1

F(�ri)

}

by writing

H(N)(q1, q2, . . . , qN) =
N

∑
i=1

f (�ri) +
N

∑
i=1

F(�ri)

+
1
2

N

∑
i=1;i �=j

N

∑
j=1

v(�ri,�rj)−
N

∑
i=1

F(�ri), (4a)

or briefly as

H(N)(q1, q2, . . . , qN) =

( f + F) + (H2 − F) = O1 + O′, (4b)

where O1 is a one-electron operator and O′ is only a small part of the full Hamiltonian.
The notations employed in Equations (4a) and (4b) are self-explanatory. Essentially, the N-
electron Hamiltonian is re-written such that it can be approximated by ( f + F), since

{
1
2

N

∑
i=1;i �=j

N

∑
j=1

v(�ri,�rj)−
N

∑
i=1

F(�ri)

}

is small; we shall treat it perturbatively. The choice of the operator F is so made that the
total energy functional

E(N) = 〈Ψ(N)|H(N)|Ψ(N)〉, (5)

is minimized.
When O′ is neglected, the unperturbed ground state wavefunction of the N-electron

system is expressible as a determinant:

Φ(N) =
1√
N!

⎡
⎢⎢⎢⎢⎢⎣

ψ1↑(1) . . . . . . ψ1↑(N)
ψ1↓(1) . . . . . . ψ1↓(N)

. . . . . . . . . . . .
ψ N

2 ↑(1) . . . . . . ψ N
2 ↑(N)

ψ N
2 ↓(1) . . . . . . ψ N

2 ↓(N)

⎤
⎥⎥⎥⎥⎥⎦

N×N

=

1√
N!

⎡
⎢⎢⎢⎢⎣

ψ1(1) . . . . . . ψ1(N)
ψ1(1) . . . . . . ψ1(N)

. . . . . . . . . . . .
ψN−1(1) . . . . . . ψN−1(N)

ψN(1) . . . . . . ψN(N)

⎤
⎥⎥⎥⎥⎦

N×N

, (6)

wherein [
f (�r) + F(�r)

]
ψiσ(�r) = εiψiσ(�r), (7)

with ψiσ(�r) = ψi↓(�r) or ψi↑(�r). Observe that the one-particle eigenvalue εi is doubly degener-
ate with the spin-orbitals for spin up and down being linearly independent. In the second
determinant in Equation (6), we have only re-designated the single-electron spin-orbitals.
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Φ(N) =
1√
N!

⎡
⎢⎢⎢⎢⎣

ψ1(1) . . . . . . . . . ψ1(N)
ψ1(1) . . . . . . . . . ψ1(N)

. . . . . . . . . 〈j|i〉 = ψi(qj) . . .
ψN−1(1) . . . . . . . . . ψN−1(N)

ψN(1) . . . . . . . . . ψN(N)

⎤
⎥⎥⎥⎥⎦

N×N

. (8)

Re-designation of the single-electron spin-orbitals in Equation (6) is appropriate for
closed shell atoms for which the random-phase approximation is applicable. Wave func-
tions of the excited unperturbed states are also Nth order determinants made up of eigen-
functions of Equation (7), but with one or more εi > εN/2. In an ordered set of spin-orbitals,
let us denote p ≤ N and q > N. Thus, we denote a typical spin-orbital in the ground
state Slater determinant by p and an excited state spin-orbital corresponding to a single
excitation by q. The operator ( f + F) is diagonal with respect to one-electron functions, and
q �= p. The choice of the operator F(�r) which makes the energy functional (Equation (5)) a
minimal is the one for which the matrix element

〈q|F|p〉 =
N

∑
i=1

[
〈iq|v|ip〉 − 〈qi|v|ip〉

]
, (9)

as can be shown using a variational method under the frozen orbital approximation; i.e., for
the excited state we use a Slater determinant only the pth spin-orbital replaced by the
excited qth—all other spin-orbitals in the Slater determinant (8) retain their occupancies.

The one-electron Hartree–Fock equation satisfied by the SCF ground-state spin-orbitals is[(
− h̄2

2m
∇2 − Ze2

r

)
ψp(ξ)

+
N

∑
i=1

[ ∫
d4V′ ψ

∗
i (ξ

′)ψi(ξ
′)ψp(ξ)e2

�r −�r′

]

−
N

∑
i=1

δ(msp , msi )

[ ∫
d4V′ ψ

∗
i (ξ

′)
(
ψp(ξ ′)ψi(ξ)

)
e2

�r −�r′

]]
=

εpψp(ξ). (10a)

The four-dimensional integration
∫

d4V′ in Equation (10a) includes integration over the
three (continuous) space coordinates and the discrete summation over the spin-coordinate.
The second and the third terms on the left-hand side of Equation (10a) involve two-electron
terms; the second is the Coulomb term and the third is the exchange term. We consider non-
ferromagnetic systems so that the number of spin-up and -down terms is equal. The energies
εp are doubly degenerate with two linearly independent functions corresponding to up- and
down-spins. Carrying out the summation over the spin variable, Equation (10a) simplifies to[(

− h̄2

2m
∇2 − Ze2

r

)
ψp(�r)

+2
N/2

∑
i=1

[ ∫
dV′|ψi(�r′)|2v(�r,�r′)

]
ψp(�r)

−
N/2

∑
i=1

ψi(�r)
[ ∫

dV′ψ∗
i (
�r′)ψp(�r′)v(�r,�r′)

]]
=

εpψp(�r), (10b)

in which we have written the inter-electron Coulomb interaction as

e2

�r −�r′
= v(�r,�r′). (11)
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Now,

Fψp(�r2) =

2
N/2

∑
i=1

∫
d3�r1|ψi(�r1)|2v(�r1, �r2)ψp(�r2)

−
N/2

∑
i=1

∫
d3�r1ψ∗

i (�r1)v(�r1, �r2)ψp(�r1)ψi(�r2),

hence the HF SCF equation becomes[(
− h̄2

2m
∇2 − Ze2

r

)
ψp(�r) + Fψp(�r) =

( f + F)ψp(�r) = εpψp(�r). (12)

We write the momentum-dependent energies as ε(�k) or equivalently as ε(�k), since
�p = h̄�k. The free electron gas is the only many-electron system for which the HF SCF
equation can be obtained analytically. The linearization of the Coulomb approximation was
developed by Bohm and Pines [17] in which the positive charges of the nuclei were consid-
ered to be spread out uniformly over a volume V as jellium (Figure 1). The electron gas is
also spread out over the volume V in which the electron wavefunction is box-normalized.

Figure 1. The uniform spread of the potential generated by the positive nuclei as a jellium.

Adding the jellium potential V(�r) in the HF SCF equation we get[
− h̄2

2m
∇2ψp(�r) +�����V(�r)ψp(�r)

+
����������������
2

N/2

∑
i=1

[ ∫
dV′|ψi(�r′)|2v(�r,�r′)

]
ψp(�r)

−
N/2

∑
i=1

ψi(�r)
[ ∫

dV′ψ∗
i (
�r′)ψp(�r′)v(�r,�r′)

]]
=

εpψp(�r). (13)

The attractive jellium potential (second term on the left-hand side of Equation (13))
exactly cancels the electron–electron Coulomb repulsion term (third term). We are then left
with [

− h̄2

2m
∇2 − Vexchange(q)

]
ψp(q) =

εpψp(�r), (14)
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where

Vexchange(q)ψp(q) =
N

∑
i=1

Vexchange
i (q)ψp(q) =

N

∑
i=1

ψi(q)
[ ∫

dq′
ψ∗

i (q
′)ψp(q′)

|�r −�r′|

]
, (15a)

i.e.,

Vexchange(q)ψp(q) =
N/2

∑
i=1

ψi(�r)
[

ψ∗
i (
�r′)ψp(�r′)v(�r,�r′)

]
. (15b)

Using (i) box-normalized wavefunctions

ψ�kσ
(�r) = L−3/2ei�k·�rχσ(ζ), (16)

and (ii)

φ(�r1) =
∫

d3�r2
ei(�k−�k′)·�r2

r12
=

4πei(�k−�k′)·�r1

|�k − �k′|2
, (17)

the Hartree–Fock equation for the free-electron gas (with exchange) in the positive jellium
potential becomes

− h̄2

2m
∇2ψ�k(�r1) + ε�kψ�k(�r1) = ε(�k)ψ�k(�r1), (18)

with the exchange term given by

ε�k =
4πe2

L3 ∑
�k′

1

|�k − �k′|2
. (19)

It follows that

ε(�p) =
p2

2m
εexchange(�p), (20)

where

εexchange(�p) =
−e2 p f

h̄π

[
1 +

p2
f − p2

2p f p
ln
∣∣∣∣ p + p f

p − p f

∣∣∣∣
]

, (21)

p f being the electron momentum at the highest occupied energy level; viz., Fermi level.
Whereas the HF SCF energy of an atom described by the Hamiltonian (Equation (1)) is

Eatom
HF = 〈ψ(N)|H|ψ(N)〉 =

N

∑
i=1

〈i| f |i〉+ 1
2

N

∑
j=1

N

∑
i=1

[
〈ij|g|ij〉 − 〈ij|g|ji〉

]
, (22)

that of an electron gas in the jellium potential of the positive charges is

Eelectron gas in jellium potential
HF = EKE + Eexchange correlation, (23)
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where

EKE = 2
L3

(2πh̄2)

∫ p=p f

p=0
p2dp

∫ θ=π

θ=0
sinθdθ

×
∫ φ=2π

φ=0
dφ
[�p.�p

2m
]
=

h̄2L3

10π2m
k5

f , (24)

with

k f =

(
3π2N

V

) 1
3

, (25)

and

Eexchange correlation = 2
L3

(2πh̄2)

×
∫ p=p f

p=0
p2dp

∫ θ=π

θ=0
sinθdθ

∫ φ=2π

φ=0
dφ
[1

2
εexchange(�p)

]
=

h̄2L3

10π2m
k5

f , (26a)

Eexchange correlation = − Ve2

4π3

∫ k=k f

k=0
dk
[

2k f k2

+k(k2
f − k2)ln

( k f + k
k f − k

)]
. (26b)

If we now consider the entire physical volume under consideration to consist of spheres
of radius rs (Seitz parameter in Bohr units), each having one unit of electron charge, then

N ×
(

4
3

πr3
s

)
= V =

3π2N
k3

f
, (27)

then the K.E. contribution to the average HF ground state energy per electron in a free-
electron gas is

EKE
N

=
3h̄2

10m

(
9π

4

) 2
3 1

r2
s
=

2.21
r2

s
Ryd, (28a)

and the exchange correlation energy per electron is

Eexchange correlation

N
= −0.916

rs
Ryd. (28b)

Thus, for electron gas in the SCF jellium potential, the average Hartree–Fock energy
per electron is

EHF
N

=

(
2.21
r2

s
− 0.916

rs

)
Ryd. (29)

A first order perturbative treatment gives essentially the same result as above. electron–
electron exchange interactions reduce the energy below that of the Sommerfeld gas in a
positive jellium potential; exchange energy is negative.

In the mid-1950s, Bohm and Pines improvised on the above model by considering a
random mutual displacement of the centers of the positive and negative charge densities
(Figure 2). In the jellium potential, these are coincident; their mutual displacement can be
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considered to have been triggered by a random event, but once displaced, the positive and
negative charges are set in oscillations of the plasma as the system seeks its original config-
uration. Bohm and Pines modeled these oscillations using a harmonic oscillator potential,
inclusive of a dispersive wavelength-dependent frequency of the plasma oscillations.

The Hamiltonian for N electrons in a volume V together with a uniform positive
charge background jellium distribution is

H0 = Hel + Hb + Hel−b, (30)

where

HEL =
N

∑
i=1

p2
i

2m
+

1
2

e2
N

∑
j=1;j �=i

N

∑
i=1

exp(−μ|�ri −�rj|)
|�ri −�rj|

, (31)

represents the many-electron part,

Hb =
1
2

e2
∫ ∫ ∫

d3�x
∫ ∫ ∫

d3�x′
ρ+�x ρ+�x′

exp(−μ|�x − �x′|)
|�x − �x′|

, (32)

represents the jellium background and

Hel−b = −e2
N

∑
i=1

∫ ∫ ∫
d3�x

ρ+�x exp(−μ|�x −�ri|)
|�x −�ri|

, (33)

represents the interaction between the electrons and the jellium background.The N-electron
system in the jellium background potential constitutes an electrically neutral system, but
the relative displacements of the positive and negative charges allow for plasma oscillations
of the electron gas. A mathematical device using the coefficient μ in the exponential terms
in Equations (31)–(33) is introduced to avoid some divergences; solutions are finally sought
in the limit μ → 0. As a result of carrying out the integrals in Equations (32) and (33),
the Hamiltonian (Equation (30)) turns out to be

H = Hel −
1
2

e2 N2

V
4π

μ2 , (34)

which manifestly diverges in the limit μ → 0. This is commonly referred to as the μ2-
divergence.

It is most convenient to: (i) use the second quantized representations of the Hamiltonian for
the bulk electron gas in a uniform positive background jellium potential (Equation (30)) using
electron creation operator c†

�kiσi
and the annihilation operator c�kiσi

, �kiσi being the momentum (in

units of h̄) and spin quantum numbers; (ii) employ the Fourier representation of the screened
Coulomb interaction that appears in Equations (31)–(33); and finally (iii) seek the limits (L3 =
V) → ∞ (specifically in this order, with L−1 << μ). Using the three steps described, after some
tedious algebra, one finds that terms corresponding to momentum transfer�q in the two-electron
interactions term for which�q =�0 in the Hel part of the Hamiltonian cancels the abovementioned
μ2-divergence, and along with the limits sought as per (iii), the Hamiltonian in the second
quantized notation is

H0 = ∑
�k

∑
σ

h̄2�k2

2m
c†
�kσ

c�kσ

+
1
2

e2

V ∑
�k,σ1

∑
�p,σ2

∑
�q �=�0

(
4π

q2 c†
�k+�qσ1

c†
�p−�qσ2

c�pσ2
c�kσ1

)
. (35)
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Scaling

�̃k = rs�k, (36a)

�̃p = rs�p, (36b)

Ṽ =
V
r3

s
, (36c)

and

q̃ = rsq. (36d)

allows us to write the Hamiltonian as

H0 =

(
e2

a0r2
0

)[
∑̃
�k

∑
σ

�̃k2

2
c†
�̃kσ

c�̃kσ

+
1
2

r0

Ṽ ∑̃
�k

∑̃
�p

∑̃
�q �=�0

∑
σ1

∑
σ2

(
4π

q̃2 c†
�̃k+�̃qσ1

c†
�̃p−�̃qσ2

c�̃pσ2
c�̃kσ1

)]
, (37)

where we have introduced a dimensionless variable r0 = rs
a0

, a0 being the Bohr radius.
In the high density limit r0 → ∞, the second term in Equation (37) can be treated using
first order perturbation theory even if the electron–electron interactions in the second
term are quite strong. The result in the first order turns out to be essentially the same
as in Equation (29), but higher order perturbation theory does not converge. Therefore,
Bohm and Pines developed a non-perturbative approximation by carrying out canonical
transformation of the Hamiltonian to represent pseudoparticles (elementary excitations of
the many-electron gas) called plasmons which represent collective oscillations of the electron
gas. The approximation involves linearization of the Hamiltonian concomitant with the
neglect of certain terms whose phases are random and hence cancelable. Prior to discussing
the canonical transformation of the Hamiltonian, we briefly visit their earlier semi-classical
model which helps build insight in the linearization process and also in the approximation
involved in the concomitant cancellation of terms having random phases.

In the semi-classical model, both the electron gas and the positive charge in the bulk
medium are considered to be uniformly spread over the entire volume with their collective
centers coincident. An incidental movement of the electron density ρ (Figure 2) sets in
oscillations of the electron gas described by the classical equation of motion:

m
d2ξ

dt2 =

(
1
ε0

eρ̄ξ

)
(−e), (38)

wherein eρ̄ξ denotes the surface charge density σ, the static average volume charge density
being written as

ρ̄ =
N

N 4
3 πr3

s
=

3
4πr3

s
. (39)

The zero-point energy of the plasma oscillations is 1
2 h̄ωp wherein the natural frequency

of the plasma oscillations is

ωp =

√
ρ̄e2

mε0
=

√
3e2

mr3
s

. (40)
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Figure 2. The ‘jellium model’ considers the collection of positive nuclear charges and negative
electron charges smeared out uniformly across the region of a metal; the centers of positive and
negative charges being coincident. A slight relative displacement of the centers of positive and
negative parts of the total charge density sets in plasma oscillations.

Using the Fourier decomposition of the inter-electron interaction,

e2

rij
=

1
V ∑

�k

c�kei�k·(�ri−�ri),

the potential energy of the ith electron due to one electron charge uniformly smeared through-

out the box is e2
∫∫∫

d3�rj, i.e., e2 ∑
�k

c�k
{ 1

V

∫∫∫
d3�rjei�k·(�ri−�ri)

}
.

Hence, the potential energy due to all the electrons is:

P(�ri) =
N

∑
j=1
j �=i

e2

rij
=

1
V

N

∑
j=1
j �=i

∑
�k

c�kei�k·(�ri−�ri), (41a)

where c�k = 4πe2∣∣�k2
∣∣ , except for�k =�0. The term corresponding to�k =�0 cancels the positive

jellium; hence the potential energy of the ith electron due to all the electrons and the positive
background is

U(�ri) =
1
V

N

∑
j=1
j �=i

∑
�k

�k �=�0

4πe2

k2 ei�k·(�ri−�ri). (41b)

Now, in terms of the electron field operators, the total number of electrons is

N = ∑
ζ

∫∫∫
d3�rψ†(q)ψ(q) = ∑

ζ

∫∫∫
d3�rρ(q) =

∫∫∫
d3�rρ(�r) =

N

∑
i=1

∫∫∫
d3�rδ(�r −�ri), (42)

and the electron density is

ρ(�r) =
N

∑
i=1

δ(�r −�ri) =
1
V

N

∑
k=1

ρ�kei�k·�r, (43)

wherein we have used the Fourier expansion of the charge density with the Fourier compo-
nents being given by

ρ�k =
N

∑
i=1

e−i�k·�ri . (44)

Identifying the force on the electron force as the negative gradient of the potential
in Equation (41b), we arrive at the semi-classical equation of motion for the harmonic
oscillator

m�̈ri = m�̇vi = − �∇iU(�ri),
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which translates to the equation of motion for density fluctuations of the Fourier compo-
nents in Equation (43):

ρ̈�k =
(
−

N

∑
i=1

(
�k · �̇ri

)2e−i�k·�ri − 1
V

4πNe2

m
ρ�k −

1
V

4πe2

m ∑
�k′ �=�k
�k′ �=�0

ρ�k′
(
ρ�k − ρ�k′

)
. (45)

The first term in Equation (45) is quadratic in k. It can be ignored if
〈(
�k · �̇ri

)2〉
average �

ω2
p; i.e., if one limits k to be small. The ‘upper bound’ on the wave number, denoted by kc,

of the plasma oscillations is

kmax = kc ≈
ωp

v f
. (46)

Now, the integral of the charge density over the entire space adds up to the total
number of electrons N, i.e.,∫∫∫

d3�rρ(�r) =
N

∑
i=1

∫∫∫
d3�rδ(�r −�ri) = N, (47a)

corresponding to

ρ(�r) =
N

∑
i=1

δ(�r −�ri). (47b)

Using the fact that the Fourier expansion of the charge density

ρ(�r) =
1
V

N

∑
�k=1

ρ�kei�k·�r, (48)

with ρ�k =
N

∑
i=1

e−i�k·�ri and ρ∗�k =
N

∑
j=1

e+i�k·�rj .

In the third term on the right-hand side of Equation (45), we have ρ�k =
N

∑
i=1

e−i�k·�ri and

ρ�k−�k′ =
N

∑
i=1

ei�k′−�k·�ri , which involve oscillatory terms consisting of phase factors of modulus

unity. It is like carrying out a sum of vectors in a complex plane whose directions are
random, and one expects this to be a zero-sum addition. Thus: (i) neglecting the first term
(enabled by placing an upper limit on k) and (ii) linearizing Equation (45) (i.e., neglecting the
quadratic terms, taking advantage of the random-phases), we obtain

ρ̈�k = −4πρ̄e2

m
ρ�k = ω2

pρk, (49)

which essentially is an equation of motion for a simple harmonic oscillator. Quantized
collective excitations of this system are elementary excitations. They are pseudo-particles
called plasmons. The frequency of plasma oscillations is

ωp =

√
4πρ̄e2

m
=

√√√√4π
(

3
4πr3

s

)
e2

m
=

√
3e2

mr3
s

. (50a)

The zero-point energy of the plasma oscillations is 1
2 h̄ωp , where

h̄ωp =
2
√

3

r
3
2
s

Ryd. (50b)
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In the Bohm–Pines method of canonical transformation of the Hamiltonian discussed
below, the significance of the approximation involving linearization of the Hamiltonian
concomitant with the neglect of terms having random phases gets further accentuated.

We have seen that the Hamiltonian for a bulk electron gas in a uniform positive
background jellium potential is

H0 =
N

∑
i=1

p2
i

2m
+

1
2

e2

V

N

∑
j=1
j �=i

N

∑
i=1

∑
�k

�k �=�0

4πe2

k2 ei�k·(�ri−�ri), (51a)

and noting that the j = i term adds up to N, the total number of electrons, we arrive at

H0 =
N

∑
i=1

p2
i

2m
+

2πe2

V ∑
�k

�k �=�0

1
k2

N

∑
i=1

ei�k·�ri
N

∑
j=1
j �=i

e−i�k·�rj =
N

∑
i=1

p2
i

2m
+

2πe2

V ∑
�k

�k �=�0

1
k2

(
ρ∗�k ρ�k − N

)
, (51b)

where the last form is obtained by adding and subtracting the term corresponding to the
j = i.

The quantum problem to be solved for the above Hamiltonian is

H0ψ = Eψ. (52)

Bohm and Pines recognized that the classical model which yielded plasma oscillations
described by Equation (49) would be an approximation to a quantum model. One ought
to seek a transformation of the Hamiltonian (Equations (51a) and (51b)) such that plasma
oscillations appear explicitly as a set of Hamiltonians for simple harmonic oscillators for various
�k values limited by Equation (46). They therefore proposed canonical transformations
(q, p) → (Q, P) of the Hamiltonian in Equations (51a) and (51b) to a new set of generalized
coordinates Q and momenta P such that the new quantum Hamiltonian would have
the form

Hk =
P†

k Pk

2
+

1
2

ω2Q†
k Qk, (53a)

which is characteristic of the Hamiltonian for a simple harmonic oscillator represented by
the Hamiltonian (in units of m = 1)

hSHO =
p2

2
+

1
2

ω2q2. (53b)

The transformation we seek is not inspired by actual measurements of the new coordi-
nates and momenta; it is motivated only by seeking the form in Equation (53a). Hence, the
operators Q & P need not necessarily be Hermitian. The Bohm–Pines strategy consists of
starting with an auxiliary Hamiltonian

H1 = ∑
�k

�k<�kc

1
2

P†
�k

P�k − MkP†
�k

ρ�k, (54a)

with

Mk =

√
4πe2

Vk2 . (54b)

We do not demand the operators Q & P to be Hermitian. Instead, by choosing

P†
�k
= P−�k, (55a)
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and

Q†
�k
= Q−�k, (55b)

we see on recognizing that the summation over�k and that over −�k is equivalent consid-
ering the symmetry in the momentum space that, H1 is Hermitian, even if Q and P are
not. The wavefunction depends only on the original set of electron coordinates; it can-
not depend on any additional degrees of freedom. It is therefore judicious to employ
subsidiary conditions

∂ψ

∂Q�k
= 0, (56a)

however, limited by k < kc. The derivative operator is the momentum,

Pk = −ih̄
∂

∂Q�k
, (56b)

hence

Pkψ = 0 for k < kc, (56c)

and
[Qk, Pk′ ] = ih̄δk,k′ , (57)

which is just the uncertainty relation for canonically conjugate coordinates and momenta.
Use of Equation (56c) in Equation (54a) ensures that

(H0 + H1)ψ = Eψ, (58)

and the Hamiltonian (H0 + H1) describes the same quantum system. We seek a transfor-
mation affected by an operator

U = e
i
h̄ s, (59a)

with

S = ∑
�k;�k<�kc

MkQ�kρ�k, (59b)

and

S† = ∑
�k;�k<�kc

MkQ†
�k

ρ∗�k = ∑
�k;�k<�kc

MkQ−�kρ−�k = S, (59c)

which gives

U† = e−
i
h̄ s = U−1, (59d)

and we see that the transformation is unitary. It follows that

(Pk)new = U−1
(
− ih̄

∂U
∂Q�k

+ UPk

)
= Pk − ih̄U−1 ∂U

∂Q�k
= Pk + U−1[Pk, U]− = Pk + Mkρ�k, (60a)

and the ith component of the operator is

(�pi)new = �pi − i ∑
�k;�k<�kc

M�kQ�k
�kei�k·�ri . (60b)
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Essentially, under the transformation under consideration, the operators �ri, Q�k, ρ�k
remain invariant, but (�p)new and (Pk)new are different. We now ask what the transformed
Hamiltonian,

Hnew = U−1(H0 + H1)U, (61)

is. After some tedious algebra, it turns out to be

H = Hnew =
N

∑
i=1

p2
i

2m
+ ∑

�k
�k<�kc

1
2
(

P†
�k

P�k + ω2
pQ†

�k
Q�k

)
− ∑

�k;�k �=�0

2πe2

Vk2 N + Hs.r. + Hint + K, (62)

where

Hs.r. =
1
2 ∑
�k;�k �=�0,�k>�kc

(
ρ∗�k ρ�k − N

)
, (63)

Hint = − i
2m ∑

j
∑
�k

�k �=�0

M�kQ�k
�k · (2�pj + h̄�k)e−i�k·�rj , (64)

and

K =
1

2m

k �=l

∑
−�k

�k<�kc

∑
�l

�l<�kc

M−�k M�k(
�k ·�l)

{
∑

j

(
Q−�ke+i�k·�rj × Q�ke−i�k·�rj

)}
, (65)

The new Hamiltonian has a manifestly complicated form. The term K (Equation (65))
is quadratic in the new coordinates and has random phases which would cancel out in a
linearization process, as explained earlier in the context of the classical model and arrived at
Equation (49). Linearization of the H = Hnew makes it possible to drop the operator K and
justifies the term random-phase approximation. The rest of the Hamiltonian is

H = Hnew =
N

∑
i=1

p2
i

2m
+ ∑

�k
�k<�kc

1
2
(

P†
�k

P�k + ω2
pQ†

�k
Q�k

)
− N

V ∑
�k;�k �=�0

2πe2

k2 + Hs.r. + Hint, (66)

in which Hs.r. (Equation (63)) represents a set of quasi-particles interacting via short-range
screened-Coulomb potential and given by

Hs.r. =
1
V ∑

�k;�k �=�0,�k>�kc

2πe2

k2

(
ρ∗�k ρ�k − N

)
, (67)

and

− N
V ∑

�k;�k �=�0

2πe2

k2 (68)

is the self-energy of the electron gas.
Hint is accounted for by a further canonical transformation of the Hamiltonian (in

which K is ignored) written in terms of transformed coordinates and momenta. Using the
random-phase approximation concomitant with linearization of the transformed Hamiltonian (i.e.,
neglect of quadratic terms in the newer set of coordinates), the Hint term gets dropped,
but in the process, the first two terms get somewhat modified, and the new approximate
Hamiltonian becomes

H = Hnew = { ∑
�k;�k<�kc

1
2
(P†

�k
P�k + ω2

pQ†
�k

Q�k)}+ {
N

∑
i=1

p2
i

2m
(1 − β2

6
) + Hs.r.} − { ∑

�k;�k �=�0

2πe2

Vk2 N}, (69)
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where
β =

kc

kF
, (70)

and
ω2

k = ω2
p +

2
m

EFk2 (71)

expresses a weak k-dependent dispersion of the plasma frequency.
We have another subsidiary condition, similar to Equation (56c):

(Pk + MKρ�k)ψnew = 0 for k < kc. (72)

The kinetic energy part in the newer Hamiltonian is diminished by the factor (1 − β2

6 );
actual calculations show that β � 0.7 and hence the kinetic energy part is reduced by
about 8%. The long-range part of the interaction is what leads to the plasma oscillations
corresponding to the first curly bracket in Equation (69). Hs.r. denotes the short-range
screened-Coulomb interaction between the new pseudo-particles, which are elementary
excitations called plasmons. The Hartree–Fock approximation accounted for only the static
part of the density fluctuations of the collective behavior of an electron gas. The frozen-
orbital approximation that leads us to the Koopmans theorem highlights this approximation
which limits it to the neglect of the Coulomb correlations. The method of canonical
transformation of the Hamiltonian enables us address the Coulomb correlations albeit in an
approximate manner by systematic and straightforward interpretation of Equation (69) in
which the first curly bracket represents the collective oscillations of the electron gas resulting
from the long-range part of the Coulomb interaction. A quantum of these oscillations is the
plasmon. The second curly bracket represents the Hamiltonian for the screened Coulomb
interaction, and the third represents the self-energy of the electron gas.

EBP =
2.21
r2

s
− 0.916

rs
+

√
3

2r3/2
s

β2 − 0.916
rs

( β2

2
− β4

48

)
.

The Bohm–Pines method elucidates the physical content of the random-phase approxi-
mation (RPA) and the linearization process it involves. There are other methods of arriving at
the RPA, such as the Equation of Motion method [13] and the Greens function method [11].
The approximation is equivalent to summing over all the ring diagrams (along with the
diagrams for the exchange interaction corresponding to each Coulomb term) in Feynman
diagrammatic perturbation theory. Another equivalent approach to the RPA(E) results
from the linearization of the Time-Dependent Hartree–Fock (TDHF) method developed
by Dalgarno and Victor [14] and Amusia [15], and its relativistic version, namely the lin-
earized Time Dependent Dirac–Hartree–Fock (TDDHF, often briefly denoted as TDDF)
developed by Johnson and Lin [4]. In the next section, we summarize the linearized
TDHF/TDDF approximations.

2.3. Linearization of TDHF and that of TDDF Formalism

The Hartree–Fock self-consistent field (HF-SCF) method accounts for correlations in
many-electron dynamics that result by demanding that a many-fermion wavefunction
must be anti-symmetric with respect to every exchange of pairs of the elementary par-
ticles. These correlations are therefore equivalently referred to as exchange correlations
or as statistical (Fermi–Dirac) correlations. The Pauli Exclusion Principle automatically
follows from it; hence, they are also sometimes called the Pauli correlations. The HF-SCF,
however, only accounts for a static average of the density fluctuations of the many-electron
system and thus leaves out what are known as Coulomb correlations. In the previous section,
we discussed the RPA which employs a linearization technique and provides for a very
successful methodology to account for the Coulomb correlations. We now proceed to
discuss the RRPA [4], which is essentially based on linearization of the Time-Dependent
Dirac–Hartree–Fock (TD-DHF, or just TDDF) family of coupled integro-differential equa-
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tions. The linearized TDHF (RPAE) approximation [Amusia] was the precursor to the
RRPA; it employs the linearization of the TDHF family of equations. The RPAE employs
two-component spin-orbitals obtained as SCF solutions to the non-relativistic Schrödinger
equation for the many-electron system. These spin-orbitals go into the construct of the
Slater determinantal single-configuration wavefunctions. The RRPA is the relativistic exten-
sion of the RPAE. It employs four-component bi-spinor SCF solutions to the Dirac equation
for the many-electron system which appear in the Slater determinant. The bi-spinors
(spin-orbitals) are, however, admittedly time-dependent allowing for density fluctuations
of the many-electron system. The resulting TD-DHF (TDHF) equations are non-linear;
making a linear approximation to the TD-DHF (TDHF) equations result in the RRPA (RPAE).

The time-independent DHF equations for an N-electron closed-shell atomic system are

(h0 + VDHF)ui = εiui . . . i = 1, 2, . . . , N, (73)

where ui represent the four-component bispinor, h0 represents the Dirac Hamiltonian,

h0 =�α · �p + βm − Ze2

r
(h̄ = 1, c = 1), (74)

εi represent the DHF eigenvalue and VDHF(�r) represents the DHF potential, given by

VDHFu(�r) =
N

∑
j=1

e2
∫

d3r′

{(
u†

j uj
)′u −

(
u†

j u
)′uj

}
|�r −�r′|

, (75)

and the prime denotes the argument over which integration is carried out. Solutions to the
DHF equations are best represented by a Slater determinant

ψ(N) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣

u1(1) . . . . . . . . . u1(N)
u1(1) . . . . . . . . . u1(N)

. . . . . . . . . . . . 〈N|i〉

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
uN(1) . . . . . . . . . uN(N)

∣∣∣∣∣∣∣∣∣∣∣∣
, (76a)

where

unκm =
1
r

(
iGnκ(r)Ωκm(r̂)
Fnκ(r)Ω−κm(r̂)

)
=

(
u+

u−

)
, (76b)

with

for j = �+
1
2

, Ωκm =

⎛
⎜⎝
√
( j+m

2j )Y(
�=j− 1

2

)(
m
�′=m− 1

2

)
(r̂)√

( j−m
2j )Y(

�=j− 1
2

)(
m
�′=m+ 1

2

)
(r̂)

⎞
⎟⎠

for j = �− 1
2

, Ωκm =

⎛
⎜⎝−

√
( j−m+1

2j+2 )Y(
�=j+ 1

2

)(
m
�′=m− 1

2

)
(r̂)√

( j+m+1
2j+2 )Y(

�=j+ 1
2

)(
m
�′=m+ 1

2

)
(r̂)

⎞
⎟⎠. (76c)

The electron densities of the DHF one-electron bispinors (spin-orbitals) represent only
a time-average since the DHF model ignores electron correlations. Due to the electron cor-
relations in the initial and the final state of a transition affected by what may be represented
by an interaction operator

Ω = ν+e−iωt + ν−e+iωt, (77)
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with the positive and negative frequency driving terms respectively denoted by

ν+ =�α · �A; ν− = ν†
+. (78)

�A being the vector potential of the electromagnetic field, the DHF orbitals must be repre-
sented by time-dependent functions described by

ui(�r) → ui(�r) + wi−(�r)eiωt + wi+(�r)e−iωt + · · · (79)

The dots . . . at the end in Equation (79) represent higher harmonics. If we rebuild the
(Time-Dependent) Dirac–Hartree–Fock scheme with all the higher harmonics, we obtain
Non-Linear Time-Dependent Dirac–Hartree–Fock equations. Dalgarno and Victor [14]
proposed the RPA linearization of the (non-relativistic TD-HF equations by dropping the
higher harmonics. Following a similar logic, Johnson, Lin and Dalgarno [2–5] introduced
the very same linearization in the TD-DHF system of coupled integro-differential equations
for the orbitals wi±.The orbitals wi+ represent perturbation of the DHF orbitals due to the
positive frequency part of the perturbation, and the orbitals wi− represent perturbation
of the DHF orbitals due to the negative frequency part. The linearized Time-Dependent
Dirac–Hartree–Fock (L-TslatdetD-DHF) equations are

(h0 + VDHF − εi ∓ ω)wi± =
(
ν± − V(1)

±
)
ui + ∑

j
λij±uj; i = 1, 2, . . . , N, (80)

with

V(1)
± ui(�r) =

N

∑
j=1

∫
d3r′

[(
u†

j wj±
)′ui +

(
w†

j∓uj
)′ui −

(
w†

j∓ui
)′uj −

(
u†

j ui
)′ujwj±

]
|�r −�r′|

, (81)

which includes the Coulomb correlations that are omitted in the DHF method. The fac-
tors λij± in Equation (80) are the Lagrange’s variational multipliers, introduced in the
algebraic equations to ensure orthogonality of the perturbed orbitals wj∓ with respect
to the unperturbed ones uj. Omission of the driving terms ν± gives us the fundamental
RRPA equations:

± (h0 + V − εi)wi± + V(1)
± ui ∓ ∑

j
λij±uj = ωwi±; i = 1, 2, . . . , N, (82)

The eigenvalues of the RRPA equations provide the linear approximation to the
excitation spectra in both the discrete and the continuum. The positive and negative
components wi± of the eigenfunctions describe the correlations which are omitted in the
DHF formalism, respectively, in the excited state (both discrete and continuum) and in the
initial states. The amplitude of transition from an initial state to the excited state described
by the RRPA function wi±(�r) corresponding to the frequency ω brought about by the
interaction (Equation (76)) is

T =
N

∑
j=1

∫
d3r
(
w†

i+v+ui + w†
i−v−ui

)
, (83a)

i.e.,

T =
N

∑
j=1

∫
d3r
(
w†

i+�α · �Aui + w†
i−�α · �Aui

)
. (83b)

It is a very important property of the (R)RPA equations that the transition matrix
element is invariant under gauge transformations of the electromagnetic potentials. In ac-
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tual calculations, one often employs truncated RRPA in which only the most important
interchannel coupling is used. This leads to a slight disagreement in the estimation of the
transition matrix elements in the length gauge and in the velocity gauge.

It is very convenient to have a pictorial representation of the correlations that are
addressed in a many-electron theory. The diagrammatic representation developed by
Feynman, first presented in the Spring of 1948 at the Pocono Conference, is suitable for
our purpose. In AMO sciences, we (normally) do not work with positrons, but there are
‘hole’ states which are vacant states normally occupied by electrons. Thus we represent
evolution of atomic states by vertical solid lines with reference to a time-axis going from
the bottom to the top (left to right is an alternative convention). The atomic state lines are
sometimes referred to as the ‘trunk’ of the diagram. A vertex in the diagram represents an
intersection of a photon wavy line and the trunk. Particle lines point upwards and hole
lines point downwards. Summing over only the ring graphs, as shown by Gell-Mann and
Brueckner [21] has precisely the same effect as the linearization approximation that results
in the random-phase approximation introduced by Bohm and Pines. Electron correlations
are interpreted by recognizing that electrons exchange virtual photons which mediate the
interaction between the electrons. The electromagnetic interaction is treated at the level of
quantum theory. A positron is anelectron propagating backward in time. Figure 3 shows
some of the lowest order diagrams [22] which contribute to the RRPA matrix elements.

Figure 3. Lowest order Feynman diagrams which contribute to the RRPA transition amplitude for
the transition a → ā. Time axis is from the bottom to the top of the page. The dashed lines represent
electron–electron correlations, and the wiggly lines correspond to the photon operator. Arrows
pointing upward (downward) are the electron (hole): (a) represents uncorrelated transition matrix
element; (b,c) represent, respectively, the first order time-forward (i.e., final state) Coulomb and
exchange terms; and (d,e) represent, respectively, the first order time-backward (i.e., initial state)
Coulomb and exchange terms. (f–h) represent higher order ring diagrams.
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Time-forward diagrams represent correlations in the final state in which configuration-
interaction in the continuum is taken care of. In the RRPA, this corresponds to interchannel
coupling. The time-backward diagrams represent correlations in the initial state. Variants of
the RRPA that offer some advantages include the R-MCTD (Relativistic Multi-Configuration
Tamm–Dancoff) method [23] and the RRPA-with-relaxation (RRPA-R) method [24]. The par-
ticle and the hole creation and annihilation operators that are referenced in the ring
diagrams (Figure 3) are defined with respect to a vacuum consisting of a closed-shell
Hartree–Fock (or Dirac–Hartree–Fock) fermion system, such as that described by Equa-
tion (8). Two-particle two-hole correlations are included, accommodating both creation and
annihilation of a particle-hole pair. The focus of this article is to discuss the linearization
approximation involved in the RPA and illustrate a few applications of the RRPA; hence,
we omit an elaboration of the RRPA-R and R-MCTD techniques.

3. Illustrative Examples

As a first example, consider the dipole photoelectron angular distribution resulting
from the photoionization of the 5s subshell of the closed-shell Xe atom. The general form
of the dipole angular distribution for linearly polarized incident radiation for subshell i is
given as the differential photoionization cross section by [25]

dσi
dΩ

=
σi
4π

[1 + βiP2(cos θ)], (84)

where σi is the total subshell cross section, P2(x) = (3x2 − 1)/2, θ is the angle between
photon polarization and photoelectron momentum directions, and βi is the dipole angular
distribution asymmetry parameter. Nonrelativistically, for a closed shell atom, βi = 2 and is
independent of energy for an initial ns subshell [24]. From a physical point of view, this
occurs because, nonrelativistically, there is only a single final state partial wave, charac-
terized by ns → εp, so that there is nothing to interfere with, and the angular distribution
is just determined by the symmetry of the εp-wave. When relativistic interactions are
included, the situation is changed in that there are then two possible photoionizing tran-
sitions ns → εp1/2 and ns → εp3/2, and these can interfere with one another, giving rise
to both a deviation of βi from the value two, and an energy dependence. This behavior
will be most evident near Cooper minima [26] owing to the fact that the two relativistic
channels exhibit the minima at slightly different energies [27], so that in this region the
matrix elements for the two relativistic channels can be vastly different, both in magnitude
and phase.

The Xe 5s photoionization cross section and β parameter calculated using RRPA,
including correlation in the form of interchannel coupling with 5p and 4d relativistic pho-
toionization channels, are depicted in Figure 4. The cross section exhibits a deep minimum,
indicative of the Cooper minima in the 5s → εp1/2 and 5s→ εp3/2 channels. Correspond-
ingly, the β parameter shows a deep minimum around that energy, and over a significant
energy range, β is energy-dependent. It is to be emphasized, that, while the nonrelativistic
RPAE does pretty well on the cross section [1], the β parameter predicted by the nonrela-
tivistic calculation is constant and equal to two at all energies. Thus, it is evident that the
addition of relativistic effects to the original nonrelativistic RPAE brings out additional
physical effects. It should also be noted that, although the RRPA result for the cross section
is rather good in the Cooper minimum region, the predictions for β are not, owing to the
mission of satellite photoionization channels in the RRPA [28].
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Figure 4. Xe 5s photoionization cross section (upper curve) and β parameter vs. photon energy, ω,
calculated using RRPA [29].

The next example is the phenomenon of spin-orbit-activated interaction interchan-
nel coupling (SOIAIC). Basically, this results from the interchannel coupling among the
photoionization channels emanating from the two members of a spin-orbit doublet, nl,
with j = l ± 1

2 . The phenomenon was discovered experimentally in the photoionization of
the 3d subshell of Xe [30] and subsequently explained theoretically [31]. The explanation
given in [31] was based upon the nonrelativistic RPAE that was artificially made to include
the spin-orbit splitting of the Xe 3d spin-orbit split levels. Subsequently, RRPA was applied
and verified the explanation [32]. The results, both experimental and theoretical, are shown
in Figure 5.

Figure 5. Photoionization cross sections for the 3d subshell of xenon. Solid lines represent calculated
13-channel RRPA (with relaxation) cross sections for the respective 3d5/2 and 3d3/2 subshells [32].
The calculated cross sections in length and velocity gauge differ by at most 3%, so that the corre-
sponding curves are almost indistinguishable in the scale of the figure. Dashed lines represent the
results of SPRPAE results of [31]. Dotted-dashed lines represent results of the ASFA calculations [30].
Closed and open circles denote the respective experimental results for 3d5/2 and 3d3/2 subshells [30].
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The key point here is that both the 3d5/2 and 3d3/2 cross sections exhibit shape
resonances [33] just above their respective thresholds. As a result, the 3d3/2 cross section
is significantly larger than the 3d5/2 cross section just above the 3d3/2 threshold. As a
general rule, when a large photoionization cross section is degenerate with a small one,
the small cross section is altered owing to interchannel coupling (configuration interaction
in the continuum) [34]. This is exactly what is seen here in the form of the structure in the
3d5/2 cross section just above the 3d3/2 threshold. It is evident that the relativistic spin-
orbit splitting of the 3d thresholds is crucial to the existence of this SOIAIC phenomenon,
and it is also clear that SOIAIC is likely to be in evidence for the photoionization of inner
subshells that have a significant spin-orbit splitting and exhibit a near-threshold shape
resonance. Furthermore, as a result of the fact that the photoionization cross sections of
inner shells of confined atoms often have significant near-threshold maxima [35], owing
to the phenomenon of confinement resonances [36], the SOIAIC should be much more
generally exhibited [37].

The asymptotic branching ratios of spin-orbit doublets have been a topic of interest since
the 1960s. Earlier, it was expected that far above thresholds, the ratio of cross sections for the
members of a spin-orbit doublet, nl, with j = l ± 1

2 , respectively, should approach (l + 1)/l,
known as the statistical value, at asymptotically high energies [38]. However, it was later
shown that relativistic effects on the initial state wave functions would cause the ratio to drop
below the statistical [39,40]. Recently, experimental technology has improved to the point
that this prediction has been verified experimentally [41]. In addition, it had been found
that, in the vicinity of inner shell thresholds, there can be very large swings of the branching
ratio over relatively small energy ranges [41,42]. However, all of this phenomenology cannot
occur within a nonrelativistic framework; relativistic interactions are required.

As a particular example, the calculated branching ratio for Xe 5p using the RRPA with
coupling among relativistic channels from all subshells except 1s [42] is depicted in Figure 6
over a very large energy range, from threshold to 500 a.u. (approximately 13.6 keV), where
it is seen that, at the highest energies, that branching ratio is about 1.6, well below the
statistical value for an initial np doublet, in keeping with the earlier predictions. In addition,
there are seen to be significant excursions from monotone decreasing results in the vicinity
of the n = 4, n = 3 and n = 2 thresholds. These excursions are the result of interchannel
coupling between the relativistic photoionization channels resulting from the 5pj initial
states and the channels from the inner shells. The fact that there are significant excursions
of the branching ratios in these energy ranges means that the actual interchannel coupling
matrix elements are themselves dependent upon relativistic interactions.

Figure 6 also shows the results of RRPA calculation including only coupling among
the five 5p relativistic photoionization channels. It is evident that the truncated RRPA
results agree quite well with the fully coupled branching ratios away from the inner shell
thresholds but do not reproduce the significant excursions from the smooth curve in the
vicinity of the inner shell thresholds, thereby showing conclusively that these excursions
are the result of interchannel coupling with the inner shell photoionization channels.

The Cooper minimum [26] mentioned above in connection with Xe 5s photoionization,
is a ubiquitous phenomenon that pervades the photoionization of outer and/or near-outer
subshells of all of the elements of the periodic table [43,44]. Among the interesting facets
of the influence of relativistic interactions which cause a single nonrelativistic Cooper
minimum to be split into several relativistic Cooper minima dependent upon the total
angular momentum, j, is of the initial and final states of the relativistic photoionizing
transition [45,46]. In addition, the locations of Cooper minima depend very sensitively on
many-body correlations, in addition to relativistic interactions; as a matter of fact, the Xe
5s Cooper minimum is below threshold in the discrete region at the level of single parti-
cle calculations [47] but appear in the continuum in calculations that include significant
many-body effects [5]. Thus, RRPA is an ideal formalism to study these relativistic effects
in Cooper minima. For completeness, it should be pointed out here that in the neighbor-
hood of the Xe 5s Cooper minimum, quadrupole effects become important in the angular
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distribution, although the total subshell cross section is virtually unaffected. The interfer-
ence between dipole and quadrupole photoionizing transitions leads to extra terms in the
expression for the differential cross section, but β remains unaffected to the first order [29].
In addition, calculations of the effects of quadrupole transitions on the differential cross
section (photoelectron angular distribution) using the RRPA methodology has been shown
to be in good agreement with the experiment [48].

Figure 6. Photoionization cross section branching ratios for Xe 5p3/2/5p1/2 calculated using RRPA
with full coupling (red dots) and with only coupling among the 5p photoionization channels (blue
squares) [41,42]. The vertical dashed lines indicate the thresholds.

Recent work on the splitting of Cooper minima (CM) for heavy and superheavy atoms
has illustrated the importance of including correlation in the calculations [49]. As an
example, given in Table 1 are the positions of the various 6s CM for six elements obtained
at three levels of calculation: independent particle Dirac–Fock (DF), two-channel RRPA
coupling on the two relativistic channels arising from 6s photoionization, and RRPA with
full coupling of all the channels that might affect the result. To begin with, there are huge
differences between the positions of the 6s → εp3/2 CM and the 6s → εp1/2 CM, and the
differences increase with Z to an astounding degree in Og—a splitting of more than 4.5 keV.
This comes about owing to the spin-orbit force which is attractive for the 6s → εp1/2 final
state but repulsive for the 6s → εp3/2 final state. In addition, it is clear from Table 1 that
correlation in the form of interchannel coupling induces rather significant changes in the
location of 6s → εp3/2 CM compared to the two-channel and DF results, changes that
generally increase with Z, indicating the crucial importance of the interchannel coupling in
the determination of the position of the CM in these heavy and superheavy elements.
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Table 1. Positions of the Cooper minima (CM) in Dirac–Fock (DF), two-channel RRPA and RRPA
with full coupling in photoelectron energy in (a.u.) [5].

Atoms

Photoelectron Energy (a.u.) Photoelectron Energy (a.u.)
of the 6s → εp3/2 CM of the 6s → εp1/2 CM

DF RRPA RRPA (Full DF RRPA RRPA (Full
(2 Channel) Coupling) (2 Channel) Coupling)

Hg (Z = 80) 2.73 2.17 4.17 0.55 0.67 3.67

Rn (Z = 86) 3.63 1.43 5.93 4.43

Ra (Z = 88) 4.01 1.38 6.38 3.88

No (Z = 102) 10.91 5.70 11.70 6.70

Cn (Z = 112) 32.53 29.32 24.82 4.82

Og (Z = 118) 62.12 63.02 171.02 3.52

4. Concluding Remarks

It is clear from the above exposition and examples that RRPA, which includes sig-
nificant many-body correlation including initial state two-particle two-hole terms and
final state interchannel coupling, can be suitably applied to a number of aspects of atomic
photoionization and give physical insight into what makes the results for these processes
what they are. Furthermore, it must be noted that only a few of the many examples that
have been studied over the years are presented above. Thus, it is evident that the RRPA
methodology has contributed greatly to our understanding of atomic photoionization as
well as many other atomic processes [50]. However, it must be recalled that all of this
was made possible by the pioneering work on the RPAE method by Miron Amusia and
his collaborators.
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Abstract: The spin polarization of photoelectrons in two-color XUV + optical multiphoton ionization
is theoretically considered using strong field approximation. We assume that both the XUV and the
optical radiation are circularly polarized. It is shown that the spin polarization is basically determined
by the XUV photoabsorption and that the sidebands are spin polarized as well. Their polarization
may be larger or smaller than that of the central photoelectron line depending on the helicity of the
dressing field.
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1. Introduction

The spin polarization of photoelectrons is one of the fundamental characteristics of
photoionization processes. Starting from the pioneering paper by U. Fano [1] and the
seminal papers by M. Amusia’s pupil N. Cherepkov [2,3], it was realized that in spite of
the weakness of the spin-orbit interaction, the spin polarization of photoelectrons may be
large, of the order of unity. During the last 50 years, a large number of experimental and
theoretical works have been devoted to studying the spin polarization of photoelectrons
in the photoemission from atoms, molecules and solids (see [3–5] and references therein).
There are two main reasons why these investigations are considered important. One
is that a high degree of polarization of photoelectrons is an important prerequisite for
creating sources of polarized electrons, which in turn may serve as a tool for investigating
various aspects of magnetism in solids [6,7]. Another reason is that measurements of spin
polarization provide additional information about the mechanism of the photoemission; in
particular, they are necessary for the realization of the so-called complete experiment, i.e.,
the experimental determination of the complex amplitudes of photoionization [8].

Until quite recently, the majority of the experimental investigations of spin polarization
of photoelectrons have been performed at synchrotron radiation sources. Since the intensity
of the sources is rather low, the interpretation of these experiments was based on the linear
single-photon approximation describing the interaction of the photons with a quantum
system. Spin polarization in multiphoton processes has been considered theoretically first
for relatively weak laser fields where perturbation theory is applicable [9–11]. Here, it
was demonstrated that the degree of polarization may be high also in the multiphoton
processes. With the advent of free-electron lasers with extremely high intensities of the
photon beam, the possibility arises to study experimentally the spin polarization in mul-
tiphoton ionization in a wide range of photon wavelengths. A theoretical prediction of
high degree of spin polarization in multiphoton strong-field ionization was presented in
Ref. [12]. Recently, first experiments of this kind were reported [13–15]. Photoelectron spin
polarization, in an interesting particular case of the three-photon bichromatic (ω + 2ω)
ionization, was theoretically considered in papers [16,17].
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A special case of multiphoton processes is the photoionization of atoms and molecules
by extreme ultraviolet (XUV) or soft X-ray pulses in the presence of infrared (IR) or optical
radiation [18]. In the following, in order to shorten the explanations, we shall discuss the
XUV+IR two-color case, although all discussed properties and conclusions are also valid
for ionizing by soft X-rays and for dressing by an optical pulse (OP). If the energy of the
XUV photons in these two-color experiments is sufficient to ionize the atom, a series of
sidebands appear in the photoelectron spectrum at both sides of the photoline, due to the
simultaneous emission or absorption of the IR photons [19]. The energy separation between
the sidebands is equal to the photon energy of the IR field. This process is convenient for
studying the photoinduced transitions in the continuum. The appearance of the sidebands
was used for measuring the duration and the arrival time of the XUV pulses from the
free-electron lasers (FELs) [20,21]. Sidebands were also used for the determination of
the circular polarization of the FEL beams [22,23] by measuring the circular dichroism of
the sidebands.

As far as we know, there are no investigations of the spin polarization of photoelec-
trons generated in two-color XUV+IR processes, although it is clear that the photoelectrons
both in the central line and in the sidebands should be spin polarized, provided that the fine
structure of the lines is resolved in the experiment [3]. In this paper, we report a theoretical
investigation of the spin polarization in such processes. We suggest a simple theoretical
model based on the description of the XUV+IR processes in the strong field approximation
(SFA) [24], which was widely used in the description of multiphoton processes [25]. We an-
alyze the spin polarization of photoelectrons induced by circularly polarized XUV photons
in the presence of collinear circularly polarized IR beams. In particular, we consider the
component of the spin polarization parallel to the light helicity, the so-called “polarization
transfer”. This component is non-zero not only in angle-resolved measurements, but also
in angle-integrated experiments [4]. We show that the spin polarization of sidebands is
different from the spin polarization of the central photoline and changes with the sideband
order. It strongly depends on the helicity of the IR beam.

As a particular example, we chose a short-pulse two-color photoionization of Xe atoms.
The ground state of Xe contains a closed 5p electronic subshell. Upon photoionization, the
lowest state of the Xe+ ion is a spin-orbit doublet 2P3/2 and 2P1/2. The spin-orbit splitting is
sufficiently large at 1.3 eV, which simplifies the spin-polarization measurements in which it is
necessary to resolve the fine-structure components [4]. The spin polarization of photoelectrons
from the single-photon ionization of Xe is well investigated both theoretically and experi-
mentally (see, for example, [4] and references therein). Additionally, the spin polarization of
emitted electrons in single-color multiphoton ionization of Xe was investigated [13–15] .

In this paper, we consider the two-color multiphoton ionization of Xe by ultrashort
(femtosecond) XUV and optical pulses. In the following Section 2.1, a short description
of the theoretical approach is given, which is based on the strong field approximation
(SFA) [24,25]. Section 2.2 contains the parameters and details of the calculation. Section 3
presents the results of the calculations as well as a discussion including simple approximate
formulas for the spin polarization of the sidebands. Finally, Section 4 gives conclusions and
an outlook. In the Appendix A, we present a derivation of the approximate expressions for
the related matrix elements, which is used for obtaining a simple approximate expression
for the spin polarization of photoelectrons in two-color experiments.

2. Theory

2.1. Theoretical Description of Spin Polarization in Two-Color Multiphoton Ionization

Consider the photoionization of an atom by two spatially and temporally overlapping
electromagnetic pulses of XUV and IR radiations. Both pulses are circularly polarized
and collinear, propagating along the z-axis. To describe the interaction of these pulses
with the atom, we use the strong field approximation (SFA) [24,25]. We suppose that the
XUV pulse is comparatively weak so that its interaction with electrons can be considered
in the first-order perturbation theory, and we use the rotating wave approximation. The
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IR pulse is rather strong 1011–1013 W/cm2, but not strong enough to distort the bound
atomic states. For a description of the atomic wave function, we use a single-active-electron
approximation. The final continuum states of the emitted electron are described by the non-
relativistic Volkov wave functions [26]. Note that we ignore the influence of the magnetic
field of the IR pulse on the spin orientation of the emitted electron. As it was shown
in paper [27], this influence is generally rather small. In this case, the amplitude of the
photoionization can be written using the time-dependent distorted wave approximation as
follows (we use atomic units throughout the paper unless otherwise indicated) [28]

A�k,ms ,mj
= −i

∫ ∞

−∞
dt ẼX(t)〈ψ�k(�r, t)χms | d̂ | φj,mj(�r)〉ei(Eb−ωX)t . (1)

Here, ẼX(t) is the envelope of the XUV pulse electric field, ωX is its mean frequency,
and Eb is the ionization potential. The matrix element 〈ψ�k(�r, t)χms | d̂ | φj,mj(�r)〉 describes
a transition from the initial state of the atomic electron φj,mj(�r) with the total angular
momentum and its projection j, mj, to the final continuum state in the IR field ψ�k(�r, t)χms

with the momentum�k and spin state χms , with ms being the projection of the spin on the
z axis, and d̂ being the dipole operator. Note that we ignore the spin-orbit interaction in
the continuum.

For a circularly polarized XUV beam with the polarization vector �ε±X , the dipole
operator is given by

d̂± = (�ε±X�r) = −
√

4π/3 rY1,±1(r̂) , (2)

where plus and minus signs correspond to right- and left-circularly polarized XUV photons,
respectively, and Yl,m is a spherical harmonic. The wave function ψ�k(�r, t) in Equation (1)
describes the “dressed” photoelectron in the laser field, which is characterized by the final
(asymptotic) momentum �k. Within the SFA, the wave function of the photoelectron is
represented by the non-relativistic Volkov wave function [26]:

ψ�k(�r, t) = exp
{

i[�k − �AL(t)]�r − iΦ(�k, t)
}

. (3)

Here,

Φ(�k, t) = −1
2

∫ ∞

t
dt′
[
�k − �AL(t′)

]2
(4)

with �AL(t) being the vector potential of the laser field, which we define as �AL(t) =∫ ∞
t dt′�EL(t′) (�EL(t) is the IR laser electric field vector). For circularly polarized IR laser

light, �EL(t) is
�EL(t) =

1√
2
ẼL(t)[x̂ cos ωLt ± ŷ sin ωLt] , (5)

where ẼL(t) is the envelope of the laser pulse, ωL is its mean frequency, x̂(ŷ) is a unit vector
along the x (y) axis, and the plus (minus) sign corresponds to the right- (left-) circularly
polarized IR light.

Consider the matrix element in Equation (1) and uncouple the spin angular momentum
in the initial state wave function using Clebsch–Gordan coefficients:

〈ψ�k(�r, t)χms | d̂ | φj,mj(�r)〉 = 〈ψ�k(�r, t)χms | d̂ | ∑m0,m′
s

(
l0m0, 1

2 m′
s | jmj

)
φl0,m0(�r)χm′

s
〉 . (6)

Here φ�0,m0(�r) describes the initial state of the electron with the orbital angular mo-
mentum �0 and its projection m0. Taking into account that the dipole operator does not act
on the spin variables, the matrix element is reduced to

〈ψ�k(�r, t)χms | d̂ | φj,mj(�r)〉 = 〈ψ�k(�r, t) | d̂ | φl0,m0(�r)〉
(

l0m0, 1
2 ms | jmj

)
. (7)
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Substituting this expression into the amplitude (1), one obtains

A�k,ms ,mj
=
(

l0m0, 1
2 ms | jmj

)
δm0,mj−msM�k,m0

, (8)

where δm,m′ is the Kronecker symbol and

M�k,m0
= −i

∫ ∞

−∞
dt ẼX(t)〈ψ�k(�r, t) | d̂ | φl0m0(�r)〉ei(Eb−ωX)t . (9)

The probability for the photoelectron to have a certain projection ms is proportional
to the square of the amplitude (8) averaged over projections mj:

Wj
ms(

�k) =
1

2j + 1 ∑
mj

|
(

l0m0, 1
2 ms | jmj

)
δm0,mj−msM�k,m0

|2 . (10)

In the following, we consider the z-component of the polarization vector, Pj
z which

is parallel to the photon beam direction. This is the largest component in the considered
energy range [3]. Additionally, this is the only non-zero component which characterizes
the angle-integrated spin polarization of the total photoelectron flux. The degree of spin
polarization (z-component of the polarization vector) is usually defined as the ratio

Pj
z(�k) =

Wj
1/2(

�k)− Wj
−1/2(

�k)

Wj
1/2(

�k) + Wj
−1/2(

�k)
. (11)

In particular, for the photoionization of p atomic shell (l0 = 1), j = 1/2, mj = ±1/2
and j = 3/2, mj = ±1/2,±3/2. Then for j = 1/2 one has

W1/2
1/2 (

�k) =
1
2

{
| 1√

3
M�k,0|

2 + |
√

2√
3
M�k,−1|

2
}

, (12)

W1/2
−1/2(

�k) =
1
2

{
|
√

2√
3
M�k,1|

2 + | 1√
3
M�k,0|

2
}

. (13)

For j = 3/2, one has

W3/2
1/2 (

�k) =
1
4

{
|M�k,1|

2 + |
√

2√
3
M�k,0|

2 + | 1√
3
M�k,−1|

2
}

, (14)

W3/2
−1/2(

�k) =
1
4

{
| 1√

3
M�k,1|

2 + |
√

2√
3
M�k,0|

2 + |M�k,−1|
2
}

. (15)

Thus the spin polarization Pz for the case of j = 1/2 is

P1/2
z (�k) =

|M�k,−1|2 − |M�k,1|2

|M�k,0|2 + |M�k,1|2 + |M�k,−1|2
, (16)

while for j = 3/2 the polarization is

P3/2
z (�k) =

1
2

|M�k,1|2 − |M�k,−1|2

|M�k,0|2 + |M�k,1|2 + |M�k,−1|2
. (17)

Note that in the considered model, P3/2
z (�k) = − 1

2 P1/2
z (�k), as it is in the single photon

ionization [4].
For calculating the amplitudes M�k,m0

we expand the continuum wave function ψ�k in
partial waves and apply the dipole selection rules. Then the matrix element of the dipole
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operator for circularly polarized light, Equation (2), and for a particular projection m0 can
be written as

d±�k0,m0
= d�0+1,m0±1Y�0+1,m0±1(θ0, φ0)e

iδ�0+1

+d�0−1,m0±1Y�0−1,m0±1(θ0, φ0)e
iδ�0−1 . (18)

Here d�0±1,m0±1 are the partial dipole amplitudes for the transitions from the initial
state (�0, m0), and δ�0±1 are the photoionization phases. The angles (θ0, φ0) give the direction
of electron emission from the atom before propagation in the optical laser field. These
angles are connected with the detection angles (θ, φ) after propagation in the IR field by
the relations:

θ0(t) = arccos(kz/k0(t)) , (19)

exp(iφ0(t)) =
(kx − ALx(t)) + i(ky − ALy(t))

(k2
0(t)− k2

z)
1/2

,

where k2
0(t) = (�k − �AL(t))2.

In the particular case of p-subshell ionization (�0 = 1, m0 = 0,±1) in the absence of
the IR field, s and d partial waves contribute. Then, collecting Equations (9), (18) and (19),
one can obtain for a circularly polarized XUV pulse and a circularly polarized IR pulse the
following expression

M�k,m0
= −i

∫ ∞

−∞
dtẼX(t)

[
d2,m0±1Y2,m0±1(θ0(t), φ0(t))eiδd

+d0,0δm0±1,0Y0,0eiδs
]

eiΦ(�k,t)ei(Eb−ωX)t , (20)

where δm,0 is a Kronecker symbol.
Suppose that the XUV pulse is right-circularly polarized (upper sign in Equation (18)),

then

M�k,0 = −i
∫ ∞

−∞
dtẼX(t)d2,1Y2,1(θ0(t), φ0(t))eiδd eiΦ(�k,t)ei(Eb−ωX)t , (21)

M�k,1 = −i
∫ ∞

−∞
dtẼX(t)d2,2Y2,2(θ0(t), φ0(t))eiδd eiΦ(�k,t)ei(Eb−ωX)t , (22)

M�k,−1 = −i
∫ ∞

−∞
dtẼX(t)

[
d2,0Y2,0(θ0(t), φ0(t))eiδd + d0,0Y0,0eiδs

]
eiΦ(�k,t)ei(Eb−ωX)t . (23)

2.2. Choice of Parameters and Details of Calculations

In particular calculations for Xe atoms, the matrix elements d2,2, d2,1 and d2,0 and
phases δd and δs were calculated using the Herman–Skillman potential [29] in the non-
relativistic single electron model. To test the results, we calculated the spin polarization of
photoelectrons by expression (16) but for a negligibly small IR field. The results agree well
with more advanced calculations by Cherepkov [3] within the time-independent RPAE.

The XUV pulse was assumed to be of a Gaussian shape:

ẼX(t) = exp[−(t − t0)
2/(2τ2

X) , (24)

where t0 determines the delay of the XUV pulse relative to the optical pulse (OP), and τX
determines its duration. The duration FWHM was taken to be 23 fs. The duration of the
OP is 60 fs, and we suppose that the XUV pulse is at the middle of the optical pulse.

The fine structure spitting of the 5p state in Xe is 1.3 eV. Therefore, in order to avoid
overlapping of the two series of sidebands from 5p3/2 and 5p1/2 ionization, the optical
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photon energy is set equal to 3.1 eV as it was chosen in a recent experiment [15]. At this
photon energy, the two combs of sidebands are clearly separated, which makes it possible
to determine the spin polarization for each peak [15]. For the illustrations below, we chose
the electron emission angle of 90◦, where the number of sidebends is maximal. We also
present the angle-integrated polarization.

The calculated cross section and spin polarization were convoluted with a Gaussian
function which imitates the energy resolution of about 0.7 eV in a possible experiment.

In the following, we assume that the XUV pulse is right circularly polarized, while the
helicity of the optical pulse is changing. Below, we present the calculated spin polarization
component P1/2

z for the photoionization of the Xe(5p1/2) state. We remind that the spin
polarization for the second component of the spin-orbit doublet Xe(5p3/2) can be easily
obtained multiplying the calculated results by −1/2. If in an experiment the spin-orbit
doublet is not resolved, the spin polarization of the photoelectrons is negligibly small [4].

3. Results for Ionization of Xe and Discussion

Figure 1a shows the results of the calculations for the Xe(5p1/2) ionization at the XUV
photon energy of 38.4 eV (photoelectron energy without optical field is 25 eV) and emission
angle of 90◦. At this energy, the calculated photoelectron spin polarization in the absence of
the optical field is P1/2

z = 0.35. The dressing laser intensity is 5 × 1011 W/cm2 and photon
energy is 3.1 eV. At this intensity, there are two noticeable sidebands. We remind that the
XUV pulse is right-circularly polarized. When the OP is also right-circularly polarized, the
electron polarization at the sidebands becomes smaller (green solid line) than at the central
line. On the contrary, for the left-circular polarization of optical beam, the spin polarization
at the sideband is larger than at the central line. The polarization of the central line is
increasing (decreasing) when the OP is right- (left-) circularly polarized in comparison with
the case of the negligible optical field. We note that the calculated polarization is practically
constant along the spectral line and changes abruptly to another value at the other line.

Figure 1. The photoelectron spin polarization component P1/2
z for the XUV photon energy

h̄ωX = 38.4 eV and the emission angle of 90◦. Red line: left-circularly polarized dressing opti-
cal pulse (OP), green line: right-circularly polarized OP. The thin solid line shows electron spectrum
in arbitrary units. The OP intensity is panel (a) 0.5 × 1012 W/cm2, panel (b) 5 × 1012 W/cm2. The
dashed straight line shows the spin polarization when the OP is absent.

Figure 1b shows similar values but for larger intensity 5 × 1012 W/cm2. With the
increase in intensity, the number of sidebands is increasing. Qualitatively, the polarization
results are similar to the previous case. Note that the shift of polarization for the central
line increases. From the other side, the polarization of the sidebands exhibits a weak
dependence on the laser field intensity.

The angular distributions of the spin polarization for the same parameters as in
Figure 1b are shown in Figure 2 (upper panel) for the central line (CL), first high-energy
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sideband (SB1) and first low-energy sideband (SB-1). One can see that in all cases, the spin
polarization component P1/2

z has a minimum at the emission angle of 90◦. The minimal
value of polarization is different for left- and right-circularly polarized optical pulses, as it
is seen also in Figure 1b. In Figure 2 (lower panel), the angular distribution of the electron
yield is shown for the same parameters as in the upper panel. Interestingly, the behavior of
the polarization near angles 0◦ and 180◦ is drastically different for the central line, where
P1/2

z → 1, and for the first high-energy sideband at the left-polarized IR pulse and first
low-energy sideband at the right-polarized IR pulse, where P1/2

z → 0.

(a)

(b)

Figure 2. Angular distribution of the spin-polarization component P1/2
z (a) and of the electron yield

(b) for the XUV photon energy of 38.4 eV (the photoelectron energy without optical field is 25 eV)
and the OP intensity 5.0 × 1012 W/cm2. Solid lines correspond to the left-circularly polarized OP,
dashed lines, to the right-circularly polarized. CL denotes central line. SB1—high-energy sideband.
SB-1—low-energy sideband.

This behavior may be explained using conservation of the angular momentum projec-
tion. Indeed, in our non-relativistic model, the projection of the orbital angular momentum
is conserved. For the central line and right-circularly polarized XUV pulse, this gives
Mi + me = +1, where Mi and me are projections of the ion and the electron orbital angular
momenta. If the electron is emitted at zero angle, me = 0 and therefore, Mi = 1. Then in
the final state 2P1/2, the projection of spin Si must be Ms = −1/2. Since in photoionization
the spin projection is also conserved, Ms + se = 0 and therefore se = 1/2, i.e., P1/2

z = +1.
For the first high-energy sideband and left-circularly polarized optical photon, the sum
of the projections of XUV and laser photons is zero, and therefore Mi + me = 0. In the
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forward emission, me = 0, thus Mi = 0 and the spin projection may be Ms = ±1/2 with
equal probability, which means that P1/2

z = 0. Similarly one can show that for the first
low-energy sideband and the right- circularly polarized OP photon, the polarization is also
zero in the forward direction. We note that the behavior of the spin polarization in forward
and backward directions, although interesting, is practically not very important since the
cross section of the sideband formation at emission angles 0◦ and 180◦ is negligibly small
for circularly polarized light (see lower panel of Figure 2).

Figure 3 shows the polarization for the electron energy of 35 eV and OP intensity
1 × 1012 W/cm2. All other parameters are the same as in Figure 1. For this energy, the
electron polarization without laser field is larger [3], P1/2

z ≈ 0.7. When the optical radiation
is switched on, the polarization for sidebands is changing similarly to the previous case.

Figure 3. The same as in Figure 1 but for the XUV photon energy 48.4 eV (the photoelectron energy
without optical field is 35 eV) and the OP intensity is 1.0 × 1012 W/cm2. Red line—left-circularly
polarized OP, green line—right circularly polarized OP.

The total angle-integrated polarization for sideband electrons behaves qualitatively
similarly to that for the emission angle of 90◦. As an example, the angle integrated po-
larization is shown in Figure 4 for the electron energy of 25 eV and laser intensity of
5.0 × 1012 W/cm2.

Figure 4. Total spin polarization P1/2
z (solid lines) and spin polarization at 90◦ (dashed lines) at the

XUV photon energy of 38.4 eV. Red lines: left-circularly polarized OP, green lines: right-circularly
polarized OP. The IR intensity is 5.0 × 1012 W/cm2. The thin solid line shows the electron spectrum
in arbitrary units.
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The general behavior of the total (angle integrated) spin polarization is similar to that
of the polarization at 90◦ emission angle. However, the total polarization is larger than at
90◦, since the angular distribution of the polarization P1/2

z has a minimum in the direction
perpendicular to the beam.

Qualitatively, the above discussed behavior of the spin polarization of the photoelec-
trons in the dressing laser field can be explained as follows. If one assumes that both the
XUV pulse and the laser pulse are sufficiently long (i.e., contain many oscillations of the elec-
tric field), then following the procedure described in paper [30], one can obtain analytical
expressions for the matrix elements M�k,m. We also make additional approximations. First,
we take into account that we consider electron emission at 90◦. Thus we can neglect the
contribution of the matrix element M�k,0 (Equation (21)), containing the spherical function
Y2,1 which is small around 90◦. In the matrix element M�k,−1 (Equation (23)), we neglect
the term containing d2,0Y2,0, since in the considered energy range d2,0 << d0,0 (i.e., the
contribution of the d partial wave is much smaller than the contribution of the s partial
wave). Then, using the Jacobi–Anger expansion in terms of Bessel functions, the matrix
elements M�k,−1 and M�k,+1 can be presented as a sum of contributions corresponding to
different sidebands (for the derivation of these expressions, see the Appendix A)

M�k,−1 = −i
1√
4π

d00

+∞

∑
n=−∞

Ẽ (n)
X in Jn(q) , (25)

M�k,1 = −i
√

15√
32π

d22

+∞

∑
n=−∞

Ẽ (n)
X in

[
Jn(q)±

2AL
k

J′n(q)
]

. (26)

Here Jn(q) and J′n(q) are Bessel functions and their derivatives, q = kAL
ωL

, where AL is
the amplitude of the laser vector potential, and

Ẽ (n)
X =

∫
dtẼX(t) exp[i(Eb − ωX + k2/2 + nωL)t] . (27)

For a long pulse, the right-hand side of the last equation is close to a delta function,
which expresses the energy conservation. Each term in the sums (25) and (26) presents
the contribution of the n-th sideband. If one neglects the interference between different
terms and the contribution from the neighboring terms, then the squares of the matrix
elements (25) and (26) for the sideband number n are

|M�k,−1(n)|
2 =

|d0,0|2
4π

[Jn(q)]2 , (28)

|M�k,1(n)|
2 =

15|d2,2|2
32π

[Jn(q)±
2AL

k
J′n(q)]

2 . (29)

Ignoring small terms of the order ( AL
k )2, one can write the spin polarization Pj

z(n) of
the n-th sideband:

P1/2
z (n) ≈

1 − α(1 ± 4 AL
k

J′n(q)
Jn(q)

)

1 + α(1 ± 4 AL
k

J′n(q)
Jnq )

, (30)

where α = 15
8 |d2,2|2/|d0,0|2. Taking into account that α << 1, one can finally obtain

the following simple approximate equation for the electron spin polarization at the n-th
sideband:

P1/2
z (n) ≈ 1 − 2α

[
1 ± 4

AL
k

J′n(q)
Jn(q)

]
. (31)
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Upper (lower) sign in Equation (31) corresponds to the right- (left-) circularly polarized
laser pulse. (We remind that the XUV pulse is assumed to be right-circularly polarized.)

For sidebands with n �= 0, and for small q, Equation (31) can be rewritten as

P1/2
z (n) ≈ 1 − 2α

[
1 ± 4

|n|ωL

k2

]
. (32)

It follows that for the right-circularly polarized IR pulse, the electron polarization
diminishes with the increase in |n|, while for the left polarized pulse, it increases, as we see
in Figures 1 and 3. Additionally, the polarization of the sidebands does not depend on the
IR laser intensity.

For the central line, the situation is different. Here, J′0(q)/J0(q) = −J1(q)/J0(q) and at
small q

P1/2
z (n = 0) ≈ 1 − 2α

[
1 ∓ 2

A2
L

ωL

]
. (33)

Thus, the electron polarization in the central line is larger for pulses with the same he-
licity and smaller when the pulses have different helicity, and the difference of polarizations
increases with the increase in laser intensity. This is clearly seen in Figures 1 and 3.

4. Conclusions

We presented a theoretical analysis of the spin polarization of photoelectrons in the
two-color ionization of atoms by short circularly polarized XUV + optical pulses. Based
on the non-relativistic SFA model, we showed that spin polarization of the main line and
the sidebands can be large. Basically, it is determined by the spin polarization induced by
the XUV ionization. Spin polarization in the sidebands depends strongly on the helicity of
the pulses and varies with the order of the sideband. Simple approximate expressions are
suggested for the spin polarization of the main line and the sidebands. As an example, the
spin polarization of the 5p photoelectrons from Xe atoms is calculated. Measurements of
the spin polarization in two-color experiments could give important information about the
photo processes in the continuum.
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Appendix A

Let derive expressions (25) and (26) for the case of a long IR pulse. Suppose that the IR
pulse is circularly polarized, then the pulse electric field may be presented as

EL(t) = g(αt)
ĒL√

2
[x̂ cos(ωLt)± ŷ sin(ωLt)] , (A1)

where ĒL is the field amplitude and upper (lower) sign corresponds to right- (left-) circularly
polarized IR field. The corresponding vector potential is

AL(t) = g(αt)AL[x̂ sin(ωLt)∓ ŷ cos(ωLt)] (A2)

with AL = −ĒL/
√

2ωL. Here, and in Equation (A1), we introduced an auxiliary function
g(x) which is smooth, equal to unity at small x and tends to zero limit at large |x|. It allows
us to calculate the integral (4) when t → ±∞, and α → 0. In the following, we assume
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that k � AL and ignore the quadratic term A2
L in Equation (4). In this approximation,

taking into account that kx = k sin θ cos φ and ky = k sin θ sin φ, the Volkov phase can be
presented as

Φ(�k, t) =
k2

2
t +

kAL
ωL

sin θ cos(φ ∓ ωLt). (A3)

Substituting this expression into Equations (22) and (23) and using the Jacobi–Anger
expansion,

exp(iκ cos α) =
+∞

∑
n=−∞

in exp(inα)Jn(κ) , (A4)

where Jn(κ) is the Bessel function, one obtains for M(�k,−1)

M�k,−1 = −i
+∞

∑
n=−∞

∫ ∞

−∞
dt ẼX(t)d00Y0,0in exp(inφ) (A5)

× exp(∓inωLt)Jn(q) exp
[

i(Eb +
k2

2
− ωX)t

]

= −id00
1√
4π

+∞

∑
n=−∞

in exp(∓inφ) Jn(q) Ẽ (n)
X ,

where q = kAL sin θ/ωL and the following notation is introduced:

Ẽ (n)
X =

∫ ∞

−∞
dtẼX(t) exp

[
i
(

Eb − ωX +
k2

2
+ nωL

)
t
]

. (A6)

Similarly for M(�k, 1) one obtains

M�k,1 = −i
+∞

∑
n=−∞

∫ ∞

−∞
dt ẼX(t)d2,2Y2,2(θ0, φ0)in exp(inφ) (A7)

× exp(∓inωLt)Jn(q) exp
[

i(Eb +
k2

2
− ωX)t

]
.

The spherical harmonic Y2,2(θ0, φ0) can be expressed in terms of angles θ, φ using
Equation (19) as follows:

Y2,2(θ0, φ0) ≡
√

15
32π

sin2 θ0 exp(i2φ0)

≈
√

15
32π

[
sin2 θ exp(2iφ)± 2i

AL
k

sin ϑ exp(iφ) exp(±iωLt) (A8)

+2
AL
k

sin3 θ exp(2iφ) sin(ωLt ∓ ϕ)

]
.

Here, the upper (lower) sign corresponds to the right (left) circular polarization of the
IR field, and we kept only linear terms in AL/k, which is considered to be small AL/k � 1.

Substituting this expression into Equation (22), one obtains the matrix element M�k,1

M�k,1 = −id2,2

√
15

32π

+∞

∑
n=−∞

in exp(∓inφ)Jn(q) (A9)

×
[

sin2 θ exp(2iφ)Ẽ (n)
X ± i

AL
k

sin θ(2 − sin2 θ) exp(iφ) Ẽ (n±1)
X

±i
AL
k

sin3 θ exp(3iφ)Ẽ (n∓1)
X

]
.
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This expression can be rewritten by rearranging the terms in the sums as

M�k,1 = −id2,2

√
15

32π

+∞

∑
n=−∞

Ẽ (n)
X in exp[i(2 ∓ n)φ] (A10)

×
[

sin2 θ Jn(q) +
AL
k
(2 − sin2 θ) Jn∓1(q)

− AL
k

sin3 θ Jn±1(q)
]

.

From Equations (A5) and (A10), by setting θ = 90◦ and φ = 0 and using identity
Jn−1(q)− Jn+1(q) = 2J′n(q), one obtains equations

M�k,−1 = −i
1√
4π

d00

+∞

∑
n=−∞

Ẽ (n)
X in Jn(q) , (A11)

M�k,1 = −i
√

15√
32π

d22

+∞

∑
n=−∞

Ẽ (n)
X in

[
Jn(q)±

2AL
k

J′n(q)
]

, (A12)

which coincide with Equations (25) and (26).
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Abstract: An extensive study of photoionization from neon excited states was performed. The
R-matrix approach was applied to calculate a photoionization cross-section from the metastable
2p5(2PJf )3s[K]0,2 and dipole-allowed 2p5(2PJf )3s[K]1 states. The resonance structures and Cooper
minimum accessible in photoionization from the excited states by the photons with energy below
30 eV were analyzed. The parameters of the lowest autoionizing states (AISs) of even parity were
extracted by fitting of the photoionization cross-section. For the dipole-allowed states, calculations
are presented for unpolarized, linearly and circularly polarized radiation.

Keywords: photoionization; neon; excited states; spectroscopy; Cooper minimum; electrons correla-
tions; R-matrix; autoionizing state; metastable state

1. Introduction

The investigations of photoprocesses from excited states being particularly interesting
for studies in non-linear optics, plasma physics and the interpretation of astrophysical data
from planet and stellar atmospheres [1] are suppressed by the fact that their relaxation may
occur faster than photoionization. Up to recently, there were two frameworks overcoming
this obstacle: measuring photoionization of metastable states and pump-probe experiments.
Both schemes are restricted in terms of states they may be applied to. The first one because
only the lowest atomic states are metastable, and the second one because at least one of
the pump-probe fields should be intense, and therefore is supposed to be in the optic
region. The extensive review of both the experimental and theoretical research devoted to
ionization from excited states is presented in [2]. With the advent of Free Electron Laser
facilities (FEL), the available set of states has extended enormously. Due to such sources of
high-intensity radiation, the photoionization of excited states can be studied in two-photon
resonance ionization.

It was M.Ya. Amusia [3] who pointed out that, opposite to common expectations
that with the increase of a shell quantum number photoionization cross-sections would
tend to become hydrogen-like, ionization from an excited state may manifest even more
characteristic features: “The deviations of many-electron atoms from hydrogen-like ones
are still essential even for comparatively high values of the ionised level’s quantum number
n for any frequencies in the vicinity of the threshold and far away from it”.

In particular, Cooper minimum [4,5] may appear even in the l → l − 1 channel [6] in
photoionization cross-sections from excited states, in contrast to the photoionization from
ground states [7,8]. The Cooper minimum is one of the most famous among characteristic
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features, which can be explained in terms of single-electron amplitudes, but its position,
form and depth are very sensitive to electron–electron correlations.

Electron–electron correlations are known to be of a great importance for the explana-
tion of characteristic features in photoionization [9–14]. They provide a very severe and
challenging test for theoretical models. Nowadays, the characteristic features of noble gases
have attracted a lot of attention in connection with time-delay studies [15–18].

Another important characteristic feature of a continuum is autoionizing states [19,20].
In the noble gases, odd-parity AISs with J = 1 can be photoexcited from the ground state
and have been investigated in great detail [21–24]. AISs with J �= 1, including the AISs of
even parity, are populated in multiphoton processes, probably involving discrete excited
states [25–27]. A multistep or multiphoton excitation allows reaching a state of any parity
and angular momentum, but Cooper minima in this process has another nature [28,29].
From this point of view, the photoionization of prepared or pumped states provides
different pieces of information about atomic continuum.

In noble gases, even the lowest discrete states (∼10 eV) may be excited only by VUV
radiation. The setup based on the joined action of synchrotron radiation and optic (IR)
laser (pump-probe scheme) has been widely used for investigations of the photoionization
of excited states to the near-threshold region, including the Rydberg AIS [30–33]. The
ionization of the metastable states of noble gases populated by glow discharge method
(optogalvanic spectroscopy) or by electron or ion impact [34] also has been a subject of nu-
merous investigations [35–42]. To describe characteristic features in the photoionization of
noble gases from excited states (Cooper minima and Rydberg AIS), different methods were
applied: quantum defect theory [43], R-matrix [44], configuration interaction Pauli–Fock
with a core polarization method [31,41,45] and MCHF [46].

While the Rydberg AIS of the np5(2P1/2)ml configuration can be reached via VUV +
IR two-photon transition, even-parity AIS with the hole-particle or doubly excited config-
urations can be reached only via two-photon (resonantly enhanced) ionization by VUV
radiation [47–50]. Before FEL development, these AISs were investigated basically by
electron- or ion-impact method [51–53].

Since intense photon pulses were obtained with the advent of FELs, and resonance
few-photon ionization of atoms and ions of noble gases was observed [54–57], the problem
of obtaining accurate two-photon cross-sections and cross-sections from the excited states
in the XUV region has arisen.

Here, we present an extensive study of neon photoionization from excited states. The
lowest excited states are metastable 2s22p5(2PJf )3s[K]0,2 (here and after core 1s2 is omitted
for brevity) and the states which can be reached from the ground by dipole excitation
(dipole-allowed) 2s22p5(2PJf )3s[K]1. We use the intermediate jK-coupling scheme, where
a core angular momentum J f is coupled with an electron orbital momentum l to quantum
number K, and then intermediate momentum K and electron spin 1/2 are coupled to total
angular momentum J of a system. The cross-sections are obtained by the B-spline R-matrix
approach in realization by O.I. Zatsarinny [58,59]. This approach provided a high quality
of oscillator strength for neon ground state excitations [60] and excellent agreement for the
ionization of potassium excited states [61].

The paper is organized as follows: in Section 2, we present the results obtained within
different models for metastable 2s22p5(2PJf )3s[K]0,2 states and compare the models with
each other and with available experimental data; in Section 3, we present the results
obtained in a few models chosen based on Section 2 and calculated for different field
polarizations for dipole-allowed 2s22p5(2PJf )3s[K]1 states; and in Section 4, we discuss the
parameters of autoionizing structures.

2. PhotoIonization of Metastable 2s22p5(2P1/2)3s[1/2]0 and 2s22p5(2P3/2)3s[3/2]2 States

The B-spline R-matrix (BSR) approach [58] allows the orbitals of initial and target
states, as well as different target states, to be non-orthogonal. With this advantage, wave
functions of the initial (excited atomic) and target (ionic) states can be obtained in series of
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independent MCHF calculations [62]. The approach allows to account for the dependence
of the individual one-electron orbitals on states of interest and accurately describe them,
keeping configuration expansions compact. The R-matrix approach automatically accounts
for electron correlations in the continuum, leading to essential channel interactions.

In a pure jK-coupling scheme, the allowed ionization channels are:

2s22p5(2P1/2)3s[1/2]0 + γ → 2s22p5(2P1/2) + εp J = 1 ; (1)

2s22p5(2P3/2)3s[3/2]2 + γ → 2s22p5(2P3/2) + εp J = 1 , 2 , 3 ; (2)

but due to channel interactions, the weaker channels, including ε f -wave, emerge:

2s22p5(2P1/2)3s[1/2]0 + γ → 2s22p5(2P3/2) + εp/ε f J = 1 ; (3)

2s22p5(2P3/2)3s[3/2]2 + γ → 2s22p5(2P1/2) + εp/ε f J = 1 , 2 , 3 . (4)

We explore three models with the subsequent Breit–Pauli diagonalization
procedure [63] to take into account spin–orbit interaction: the model based on using
real orthogonal orbitals (addressed as R-model), the model with the use of non-orthogonal
virtual orbitals (V-model) and the approach combining both real and virtual orbitals (C-
model). For all of them, different numbers of target ionic states (see Table 1) are considered
in the B-spline, bound-state close-coupling calculations. The number of accounted target
states was varied: two (2s22p5 (2P3/2,1/2)) — to include direct photoionization only; six (+
2s2p6 (2S1/2) and 2s22p43s (4P5/2,3/2,1/2)) — to allow generation of the lowest AISs, either
hole-particle or doubly excited; ten (+ 2s22p43s (2P3/2,1/2) and 2s22p43s (2D5/2,3/2)); and
thirteen (+ 2s22p43p (4P5/2,3/2,1/2)) — to shift the AIS energies closer to their experimental
positions [53,64].

Table 1. Target states (named by the leading term in LSJ approximation), the leading terms in
configuration mixing (in percent) and energies according to NIST database [65]. Core 1s2 is omitted
for brevity.

Target Energy R-Model V -Model C-Model

2s22p5 (2P3/2) 21.5645 99.92 2s22p5+0.03 2s22p43p+ 92.80 2s22p5+3.16 2s22p43p̄+ 98.24 2s22p5+0.56 2s22p34p̄2+
2s22p5 (2P1/2) 21.6613 0.02 2s22p33p2+0.01 2s22p44p 2.70 2s2p53s̄+0.36 0.37 2s22p33p̄2 0.54 2s22p33d̄2+0.35 2s2p53d̄

2s2p6 (2S1/2) 48.4750 95.39 2s2p6+4.03 2s22p43s+ 93.58 2s2p6+2.26 2s22p43d̄+ 94.70 2s2p6+2.33 2s22p43d̄+
0.23 2sp53p+0.21 2s22p44s 0.77 2s2p43d̄2+0.67 2s22p43s 0.79 2s2p43d̄2+0.75 2s2p44p̄2

2s22p43s (4P5/2) 48.7333 95.13 2s22p43s+3.76 2s22p44s
0.79 2s22p33s3p+0.10 2s2p53p 97.28 2s22p43s+1.24 2s2p43s2+

0.58 2s2p43s3d̄+0.35 2s22p23s3p̄2
91.68 2s22p43s+4.98 2s22p44s̄
0.66 2s22p33s4p̄+0.62 2s2p43s3d̄

2s22p43s (4P3/2) 48.7975

2s22p43s (4P1/2) 48.8345 91.80 2s22p43s+3.63 2s22p44s
3.48 2s2p6+0.76 2s22p33s3p

2s22p43s (2P3/2) 49.3478 95.40 2s22p43s+3.41 2s22p44s+ 97.70 2s22p43s+0.72 2s2p43s2+ 94.02 2s22p43s+2.50 2s22p44s̄+
2s22p43s (2P1/2) 49.4237 1.38 2s22p33s4p+0.84 2s22p33s3p 0.59 2s2p43s3d̄+0.35 2s22p23s3p̄2 1.38 2s22p33s4p̄+0.74 2s22p33s3p

2s22p43p (4P5/2) 52.0885 94.37 2s22p43p+4.70 2s22p44p+
0.55 2s22p33p2+0.14 2s22p33p4p

90.78 2s22p43p+6.67 2s22p33p4p̄+
1.77 2s2p43p3s̄+0.48 2s2p43p3d̄

96.73 2s22p43p+1.67 2s22p33p4p̄+
0.58 2s22p43p3d̄+0.49 2s22p33p22s22p43p (4P3/2) 52.1161

2s22p43p (4P1/2) 52.1388

2s22p43s (2D5/2) 52.1135 95.30 2s22p43s+3.71 2s22p44s+ 97.38 2s22p43s+1.01 2s2p43s2+ 92.77 2s22p43s+4.03 2s22p44s̄+
2s22p43s (2D3/2) 52.1139 0.73 2s22p33s3p+0.16 2s22p33s4p 0.62 2s2p43s3d̄+0.38 2s22p23s3d̄2 1.16 2s22p33s4p̄+0.66 2s2p43s3d̄

For the interpolation procedure, we use B-splines of the 8th order. The R-matrix radius
is chosen to be 80 a.u. Moreover, we fix grid parameters: h = 0.0125 a.u. (step size at the
origin, from 0 to 1) and hmax = 0.5 a.u. (maximum step size of the grid). These parameters
were chosen in such a way that for all of the models the resulting accuracy is enough to
correctly reproduce the radial part of the wave functions.

The models have the same set of configuration state functions (CSFs), including the ones
with excited core to account the core–valence correlations. The initial 2s22p5(2PJf )3s [K]0,1,2
states’ CSFs include all possible single and double replacements of 2s, 2p and 3s orbitals
with n = 3, 4 ; l = s, p, d, f -orbitals; and target states’ CSFs include single and double
replacements of 2s, 2p and 3s orbitals to each of the orbitals n = 3, 4 ; l = s, p, d, f solely.
For example, in the 2s2p6 (2S1/2) decomposition, there are 2s2p43p2 and 2s2p44p2 configu-
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rations, but there is no 2s2p43p4p. In the calculation, we use the energies of target states
adjusted to the experimental values [65].

In the R-model, the initial and target states are obtained using the same real orbitals:
the first set of 1s, 2s and 2p orbitals is optimized on the 2s22p5 configuration and frozen
for forthcoming calculations, then each of the real 3s–4 f orbitals is optimized on the corre-
sponding configuration with the highest weights in the CSFs set of 2s22p5(2P3/2)3s[3/2]1
state, i.e., 3s , 4s , 3d and 4d orbitals are optimized on 2s22p5nl configuration and 3p , 4p and
4 f orbitals on 2s22p43snl. The main contributions to both metastable 2s22p5(2PJf )3s[K]0,2
states came from

2s22p53s(99.81%) , 2s22p54s(0.07%) , 2s22p43s3p(0.05%) , 2s22p33s3p2(0.03%) , 2s22p53d(0.02%)

configurations. The main contributions to the target states are presented in Table 1.
In the V-model, the CSFs of the initial and target states are optimized independently.

Thereof, the orbitals of the leading configuration (1s , 2s and 2p ) are real; orbitals 3d − 4 f
are correlation pseudo-orbitals, and 3s and 3p orbitals may be real or virtual depending on
the state of interest. All orbitals were allowed to vary together. The main contributions to
both 2s22p5(2PJf )3s[K]0,2 states came from

2s22p53s(93.09%) , 2s22p43s3p(2.86%) , 2s2p53s4s(2.45%) , 2s22p33s3p2(0.42%) , 2s2p33s3d(0.37%)

configurations. The main contributions to the target states are presented in Table 1. The
difference between theoretical and experimental target energies in this model is less than
0.1 eV.

In the C-model, we keep all of the orbitals presented in target states leading configura-
tions (1s − 3p) as they are obtained in the R-model; therefore, they are real and orthogonal.
The other (3d − 4 f ) pseudo-orbitals are optimized separately for different targets and non-
orthogonal. The initial states are the same as in the R-model. The main contributions to
the target states are presented in Table 1.

In Figures 1 and 2, cross-sections of photoionization from 2s22p5(P1/2)3s[1/2]0 and
2s22p5(P3/2)3s[3/2]2 metastable states are presented for these three models, with different
numbers of target states in length and velocity gauges. The upper row (a,b,c) in Figure 1
and bottom row (d,e,f) in Figure 2 present results for photoionization which is forbidden
within the pure jK-coupling scheme, the bottom row in Figure 1 and upper row in Figure 2
for allowed. In the featureless region (from 3 to 20 eV), cross-sections for allowed ionization
are higher than for forbidden one.

The cross-section of allowed photoionization manifests the Cooper minimum near
the threshold; the one of the forbidden photoionization does not. The energy of Cooper
minimum is basically determined by the nodes of 3s-orbital. That is the reason why cross-
sections in R- and C-models based on the same 3s-orbitals are alike at low energies. The
Cooper minimum is more pronounced in the V-model because the wave function of the
initial state is more compact when virtual orbitals are included. The more target states
are included, the farther Cooper minimum is pushed below the ionization threshold. A
further analysis has shown that for larger CSF sets of target states, the Cooper minimum
is pushed less. With the exception of the model with the fewest (two) number of target
states, Cooper minima are deeper and situated at a little higher energy for calculations in
the length gauge.
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Figure 1. Photoionization cross-section of 2s22p5(P1/2)3s[1/2]0 state of neon to 2s22p5 (2P3/2) (upper
row) and 2s22p5 (2P1/2) (bottom row). Calculations are performed within R- (a,d), V- (b,e) and
C-model (c,f). Solid lines are for calculations in the length gauge and dashed lines in the velocity
gauge; different colors mark the number of accounted target states: two (black), six (blue) and ten
(red). Experimental data points are taken from [38] and labeled by orange.
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Figure 2. Photoionization cross-section of 2s22p5(2P3/2)3s[3/2]2 state of neon to 2s22p5 (2P3/2)

(upper row) and 2s22p5 (2P1/2) (bottom row). Calculations are performed within R- (a,d), V- (b,e)
and C-model (c,f). Solid lines are for calculations in the length gauge and dashed for the velocity
gauge; different colors mark the number of accounted targets: two (black), six (blue) and ten (red).
Experimental data points are taken from [38] and labeled by orange.

The resonance structure at ∼22 eV is hole-particle 2s2p63s (3S1) AIS generated on
the 2s2p6 (2S) target; inclusion of the other targets may shift the position of the structure.
Their influence depends on how close a target energy is to the 2S-target. Note that only
states with total momentum J = 1 can be excited from the 2s22p5(2P1/2)3s[1/2]0 metastable
state. The position of the AIS weakly depends on the model and is in accordance with that
reported in [53], except for the R-model, where the enabling of 2s22p43s (2D5/2,3/2) target
states leads to a dramatic jump in the resonance energy position (Figures 1a and 2a, red
curves). In the V- and C-models, these 2D targets slightly (by 0.3 eV) move the resonance
position down towards the experimental value. In the R-model, it is impossible to match
the energy position of 2s2p6 (2S1/2) and 2s22p43s (2D5/2,3/2) target states, and interference
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between them is more essential than it is supposed to be in reality. The parameters of the
resonance are discussed in Section 4.

As was pointed out in [60], introducing virtual orbitals is necessary to obtain good
agreement between length and velocity gauges, and in the considered case, overall agree-
ment is better for the V-model, especially for the forbidden photoionization. We checked
that the addition of 5l̄(l̄ = s̄, p̄, d̄, f̄ ) orbitals to the expansion of 2s22p5(2PJf )3s[K]0,2 states
in R- and C-models makes the cross-sections look similar to the ones obtained within
the V-model (not shown) and pulls the Cooper minimum above the threshold. Neverthe-
less, it is important to notice that while the V-model provides much faster convergence
than the R- and C-models, the last two reproduce near-threshold behavior of angular
anisotropy parameter β for the forbidden photoionization much better. Among the models
with virtual orbitals, the ones including only 2s2p5nl̄2-type (with n = 3, 4; l = s, p, d, f )
pair-excitations additionally to 2s22p5ns̄ + 2s22p5nd̄ (n = 3, 4) single-excitations provide an
angular anisotropy parameter similar to the one in [38] and hit the experimental values. The
models allowing contributions of single excitations to 3p, 4p, 4 f fail because configuration
2s22p43s3p̄ obtains the highest weight after 2s22p53s. However, in the cross-sections, the
difference between the use of the two sets of orbitals described above is hardly seen.

The issue is very similar to that recorded for electron scattering involving 2p53s states:
while there are models reproducing angle-integrated data [66], additional actions are
needed to reproduce differential parameters [67].

3. Photoionization of Dipole-Allowed 2s22p5(2PJf )3s[K]1 States

In this section, we present calculations of photoionization cross-sections from dipole-
allowed 2s22p5(2PJf )3s[K]1 states, which can be effectively excited by an electromagnetic
field. To the best of our knowledge, there are very few updated data for them in the
literature [47,50,68]. This data may be useful for the interpretation of experiments involving
two-photon (probably two-color) processes at FELs [54–56]. One of the advantages of
modern FELs and synchrotron facilities is that the generated radiation is polarized. Bearing
in mind this possibility, we present here calculations for three cases: both exciting and
ionizing fields are unpolarized, linearly polarized in the same direction and circularly po-
larized with equal helicities. Accounting for the dipole selection rules, the cross-section for
unpolarized radiation is σ(u) = s0(|DJ=0|2 + |DJ=1|2 + |DJ=2|2)/3, for linearly polarized
σ(l) = s0(|DJ=0|2/3+ 2|DJ=2|2/15) and for circularly polarized σ(c) = s0|DJ=2|2/5 [46,69],
where s0 = 4πω/3c and DJ is the reduced dipole matrix transition amplitude. The cross-
sections by unpolarized and polarized radiation do not share spectroscopic features because
different channels are involved.

In Figures 3 and 4, we present results for photoionization of 2s22p5(2P3/2)3s[3/2]1
and 2s22p5(2P1/2)3s[1/2]1 states, correspondingly calculated within the V- and C-models
accounting for six and ten target states. The upper row (a,b,c) in Figure 3 and bottom row
(d,e,f) in Figure 4 present allowed photoionization.

2s22p5(2P1/2)3s[1/2]1 + γ → 2s22p5(2P1/2) + εl J = 0 , 1 , 2 ; (5)

2s22p5(2P3/2)3s[3/2]1 + γ → 2s22p5(2P3/2) + εl J = 0 , 1 , 2 ; (6)

The bottom row (d,e,f) in Figure 3 and upper row (a,b,c) in Figure 4 present forbidden
photoionization:

2s22p5(2P1/2)3s[1/2]1 + γ → 2s22p5(2P3/2) + εl/ε f J = 0 , 1 , 2 ; (7)

2s22p5(2P3/2)3s[3/2]1 + γ → 2s22p5(2P1/2) + εl/ε f J = 0 , 1 , 2 . (8)
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Figure 3. Cross-section calculated within the V- (dash-dotted lines correspond to length gauge,
dotted lines to velocity gauge) and C- (solid lines correspond to length gauge, dashed lines to
velocity gauge) models with six (cyan and blue) and ten (orange and red) target states for ionization
of 2s22p5(2P3/2)3s[3/2]1 state to 2s22p5 (2P3/2) (upper row) and 2s22p5 (2P1/2) (bottom row) ionic
states for unpolarized (a,d), linearly polarized (b,e) and circularly polarized (c,f) fields.
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Figure 4. Cross-section calculated within the V- (dash-dotted lines correspond to length gauge,
dotted lines to velocity gauge) and C- (solid lines correspond to length gauge, dashed lines to
velocity gauge) models with six (cyan and blue) and ten (orange and red) target states for ionization
of 2s22p5(2P1/2)3s[1/2]1 state to 2s22p5 (2P3/2) (upper row) and 2s22p5 (2P1/2) (bottom row) ionic
states for unpolarized (a,d), linearly polarized (b,e) and circularly polarized (c,f) fields. Within the
V-model, orange and cyan lines in panels (d,e,f) practically coincide.

Notice that in the smooth region, “allowed” and “forbidden” photoionization does not
differ that much as for the metastable states, because these states are not pure, neither in the
jK-scheme, nor in the LS one: in the C-model 2s22p5(2P1/2)3s[1/2]1 = 0.89 2s22p53s 1P −
0.45 2s22p53s 3P + . . . and in the V-model 2s22p5(2P1/2)3s[1/2]1 = 0.89 2s22p53s 1P −
0.38 2s22p53s 3P + . . . , which differs from the pure jK-scheme where the coefficients are
2s22p5(2P1/2)3s[1/2]1 = 0.82 2s22p53s 1P − 0.58 2s22p53s 3P.

For the allowed photoionization, the manifestation of the Cooper minimum strongly
depends on polarization; in the case of circular polarization where only channels with J = 2
can contribute, it is placed very close to the threshold (Figures 3c and 4f). In the case of
linear polarization, additional allowed channels with J = 0 shift the Cooper minimum to
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higher energy (Figures 3b and 4e). Finally, the channels with J = 1 allowed for unpolarized
radiation smear it out (Figures 3a and 4d).

For the forbidden photoionization (Figures 3d–f and 4a–c), general tendencies are
quite different from the ones observed for the metastable states (Figures 1a–c and 2d–f).
While there is no Cooper minimum in the photoionization of the metastable states and
the cross-section drops down from the threshold, in the photoionization of the dipole-
allowed states, the cross-section may increase from threshold (Figure 3d–f), indicating
that the Cooper minimum has fallen under the threshold or appears above the threshold
(Figure 4a–c). In the last case, the Cooper minimum is more pronounced for circularly
polarized fields.

Calculations in the velocity gauge are again more sensitive to a model than in the length
gauge and more sensitive when it comes to photoionization from 2s22p5(2P1/2)3s[1/2]1
than from 2s22p5(2P3/2)3s[3/2]1.

In comparison with the photoionization from the metastable states, the channels
with J = 0 bring up two more autoionizing states: hole-particle 2s2p63s [1S0] AIS and
doubly excited 2s22p43s2 [3P0] AIS visible in case of linearly polarized and unpolarized
light (Figures 3 and 4a,b,d,e). For unpolarized fields (Figures 3 and 4a,d), channels with
J = 1 manifest resonance 2s2p63s [3S1], which dominates over the energy region. The
parameters of the AISs are discussed in the next section.

4. The Resonance Structures

There are three lowest resonance structures of even parity: hole-particle resonances
2s2p63s (1,3S0,1) generated on 2s2p6 (2S1/2) target and doubly excited resonance
2s22p43s2 (3P0) generated on 2s22p43s (4P1/2) target. Within the jK-coupling scheme, the
R-matrix [58] does not generate the AIS of configuration 2p43s2 with J = 1 , 2 on any of the
target states 2p43s(4P3/2,5/2,2 D3/2,5/2).

In Figure 5, there is the region with AISs excited from the metastable and dipole-
allowed states by unpolarized fields plotted in a more detailed way for the models with
six and ten targets. The AISs’ positions are different due to interchannel interaction.
The inclusion of 2s22p4(3P)3s [2DJ ] lowers the position of the hole-particle resonances
2s2p63s [1,3S0,1] and, following the addition of higher targets, does not change them sig-
nificantly. The inclusion of 2s22p4(3P)3s [2PJ ] lowers the position of the doubly excited
2s22p4(3P)3s2 [3P0] resonance and places it in experimental position [64] in C-model. The
further inclusion of 2s22p4(3P)3p [4PJ ] targets (not shown) does not improve the position of
the doubly excited state: in the C-model, it is pulled 0.3 eV below the experiment, while in
the V-model, it is by 0.6 eV above. It is found that the lowest AISs of even parity in neon are
excited very effectively from the excited states and dominate over direct photoionization in
the corresponding energy region.

The R-matrix approach does not produce values of energy E, width Γ and Fano
profile index q [19], but one can fit a resonance structure and extract these values (see
Table 2). All of the resonances are excited very efficiently, whereby transitions 2s → 2p and
2p → 3s, as a result, the AISs are practically symmetric with huge q-indexes. The large
value of q makes the extraction procedure problematic, and in Table 2, we replace |q| > 100
by ∞ with the corresponding sign. The particle-hole AISs’ width ratio is close to the ratio
of their statistical weights. The Fano index may take different values and signs depending
on the state it is excited from, the target state and the polarization of radiation. The latter
occurs because different contributions of the channels with different angular momentum J
to the cross-sections result in different backgrounds and heights of resonance.

As for the doubly excited AIS 2p43s2[3PJ ] within the jK-coupling scheme, there is only
2p43s2[3P0] with Γ ≈ 0.003 eV. Within the LSJ-coupling scheme, all of the triplet states
2p43s2[3PJ ] are generated with Γ ≈ 0.001 eV separated approximately by 0.15 eV. We
checked that the hole-particle resonances are weakly affected by a coupling scheme and
that they are just a little broadening (Γ = 0.122 and 0.079 eV). To the best of our knowledge,
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there is no experiment able to resolve the fine structure of this AIS and the choice between
the jK- and LSJ-coupling schemes for them is insurmountable so far.
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Figure 5. Cross-section calculated in the length gauge within the V- (dash-dotted lines) and
C- (solid lines) models with six (cyan and blue) and ten (orange and red) thresholds for ion-
ization of 2s22p5(2P1/2)3s[1/2]0 (a,e), 2s22p5(2P3/2)3s[3/2]2 (b,f) and 2s22p5(2P3/2)3s[3/2]1 (c,g),
2s22p5(2P1/2)3s[1/2]1 (d,h) states to 2s22p5 (2P3/2) (upper row) and to 2s22p5 (2P1/2) (bottom
row) ionic states for unpolarized fields. The arrows mark positions of very narrow resonances
2p43s2[2PJ=1,2] where they would appear within the LSJ-coupling scheme.

Table 2. AISs parameters in a model within ten target states: energy position E (eV), width Γ (eV)
and Fano profile index q at excitation of different initial states for different polarization.

Parameter

AIS
2s2p63s [3S1] 2s2p63s [1S0]

E C-model 22.03 22.13
Γ 0.119 0.028
qun (2P3/2)3s[3/2]1 → 2p5 (2P3/2) −70 ∞
qun (2P3/2)3s[3/2]1 → 2p5 (2P1/2) −50 −75
qun (2P1/2)3s[1/2]1 → 2p5 (2P3/2) ∞ ∞
qun (2P1/2)3s[1/2]1 → 2p5 (2P1/2) −15 ∞
qlin (2P3/2)3s[3/2]1 → 2p5 (2P3/2) - ∞
qlin (2P3/2)3s[3/2]1 → 2p5 (2P1/2) - −80
qlin (2P1/2)3s[1/2]1 → 2p5 (2P3/2) - −∞
qlin (2P1/2)3s[1/2]1 → 2p5 (2P1/2) - ∞

E V-model 22.07 22.05
Γ 0.116 0.002
qun (2P3/2)3s[3/2]1 → 2p5 (2P3/2) −75 −∞
qun (2P3/2)3s[3/2]1 → 2p5 (2P1/2) −50 ∞
qun (2P1/2)3s[1/2]1 → 2p5 (2P3/2) 65 ∞
qun (2P1/2)3s[1/2]1 → 2p5 (2P1/2) −15 ∞
qlin (2P3/2)3s[3/2]1 → 2p5 (2P3/2) - −∞
qlin (2P3/2)3s[3/2]1 → 2p5 (2P1/2) - ∞
qlin (2P1/2)3s[1/2]1 → 2p5 (2P3/2) - −∞
qlin (2P1/2)3s[1/2]1 → 2p5 (2P1/2) - −∞
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5. Conclusions

The photoionization cross-section of the lowest excited states of neon are presented.
The R-matrix approach is applied with a variety of different parameters, and the comparison
of the usability of real and virtual orbitals is carried out. Results are presented for the
metastable states (total angular momentum J = 0 , 2) ionized by unpolarized light and for
the dipole-allowed states (J = 1) ionized by the light with the same polarization as those
causing their excitation: unpolarized, linearly and circularly polarized. The spectroscopic
features such as Cooper minimum, particle-hole and doubly excited autoionizing states are
found to appear differently depending on polarization.

It was shown that the model based on virtual orbitals provides much better conver-
gence in terms of length and velocity gauge, as well as in terms of target states involved. It
predicts a deeper Cooper minimum placed at higher energy. On the other hand, V-model
has a tendency to become overcorrelated (unrealistically compact wave functions), which
imposes the problem of a correct positioning of the narrow AISs. Based on real orbitals,
the C-model turns out to be more stable and better reproduces the AIS structures. The
hole-particle AISs are found to be much broader than the doubly excited ones.

This work may serve as building blocks for the investigation of multi-photon, probably
two-color ionization by VUV radiation.
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Abstract: We calculate double-differential cross sections of ultrasoft X-ray bremsstrahlung in electron
scattering by Ar, Kr, and Xe atoms in the soft-photon approximation. The calculations are done for
the isochromatic spectra (i.e., dependence on the electron energy at a fixed photon energy of 165 and
177 eV). The results are consistent with the absolute values of the differential cross sections measured
by Gnatchenko et al. (Phys. Rev. A 80, 022707 (2009)) for the above-mentioned photon energies. For
low electron energies, our theoretical isochromatic spectra are in quantitative agreement with the
experimental data for Ar. For Kr, the agreement is qualitative while agreement with the Xe data
is poor.

Keywords: ultrasoft X-ray bremsstrahlung; isochromatic spectra

1. Introduction

The long-wavelength range of the bremsstrahlung (BS) spectra has been studied for
a long time because it is the region where the famous “infrared catastrophe” arises [1].
The relative intensity of BS in the long-wavelength range was first measured in [2] on thin
metal targets bombarded by low-energy electrons. The experimental data were described
well by the nonrelativistic Sommerfeld theory [3] which, in fact, is the theory of BS on
a Coulomb center, accounting for the exponential screening of nuclei by the atomic elec-
trons [4]. BS spectra play an important role in engineering and technical applications such
as ion beam monitoring [5], plasma diagnostics [6], medical tomography imaging [7], etc.

In addition to the BS photon spectra, the dependence of BS cross sections on the scatter-
ing electron energy at a fixed photon energy (isochromatic spectra) is also of interest. These
spectra were first measured for solid targets in [8], and the results are cited in a well-known
monograph [9]. Korsunsky et al. [8] observed an increase of the BS probability from the
zero value (at the minimal possible electron energy equal to the fixed photon energy) and a
decrease of the BS probability at higher electron energy. A similar shape of the isochromatic
spectra was registered for atomic targets in [10,11] in which the quasi-resonance character
of the isochromatic spectra was observed. It should be noted that the detection technique
for the isochromatic BS soft X-photons was proposed in [12,13]. A technique for detecting
isochromatic BS photons in the UV range was proposed earlier in [14].

An analysis of the Sommerfeld [3] formula performed in [10] showed that an isochro-
matic spectrum maximum is achieved at the initial electron energy, Ei, equal to the following:

Emax
i = 1.53 h̄ω, (1)

where ω is the photon frequency.
It should be noted that the knowledge of BS cross sections on atomic targets is impor-

tant for studying BS generated in electron scattering on molecules [15] and clusters [16].
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The “atomic” BS data are also used in Monte Carlo simulation of BS on solid targets (see,
e.g., [17,18]).

All the above-cited works studied relative BS intensities only. At the same time, there
exist some absolute BS cross-section value measurements. For example, high-precision
(�5.5%) absolute cross sections of BS on thin C, Al, Te, Ta, and Au targets have been
recently measured in [19], which also contains references to earlier absolute BS cross-section
measurements on solid targets.

To the authors’ best knowledge, the first absolute BS intensity measurements on atoms
(Ne, Ar, Kr, and Xe) were performed in [20] for incident electron energies ranging from
28 to 50 keV. The experimental results were shown to be in qualitative agreement with
the theory that takes into account not only the traditional BS mechanism (developed by
Sommerfeld [3] for the nonrelativistic case and by Bethe and Heitler [21] and Sauter [22] for
the relativistic case) but also the polarization bremsstrahlung (PBS) theory [23–25], which
takes into account the photons emitted by the electrons of the atomic target. However,
the quantitative difference between the experimental and theoretical results was quite
significant, and this discrepancy increased with the decrease of BS photon energy. Similarly,
discrepancy exists between the experimental cross sections measured in [19] and the data
tabulated in [26,27], which also increases with the decrease of the BS photon energy. García-
Alvarez et al. [19] noted this fact as one important result of their study. Similar discrepancy
between theory and experiment was also observed in recent calculations [28].

However, the authors in [19,20] did not consider BS for photon energies in the ultrasoft
X-ray region. Therefore, the absolute BS cross sections measured in [12,13] in the low-
energy photon energy range are of great interest. These authors recorded the BS photon
spectra for 600 eV electrons scattered on Ar, Kr, and Xe atoms, as well as the isochromatic
spectra for the electron energies from 0.4 to 2 keV. Their results differ by 3–4 times from the
calculations by Pratt et al. [29,30], who used the radial electron wavefunctions obtained in
partial-wave series by numerically integrating the radial Dirac equation with a relativistic
self-consistent screened potential. In recent calculations [28], the Dirac equation for the
continuum wave function was solved by the power-series method with the interaction
potential obtained from the Kohn–Sham density functional theory.

In the present work, we develop an interpretation of the experimental results of [12,13]
using the soft-photon approximation (SPA); the validity conditions are discussed below.
The general SPA formulas are presented in Section 2. SPA was used for interpretation of the
ultrasoft X-ray spectra recorded in [31,32]. The BS photon spectra were measured in [12,13]
for Ar, Kr, and Xe gaseous targets. Two types of BS spectra were recorded:

(i) “Convenient” BS (or photon BS spectrum) that is the spectral and angular distribution
of BS photons emitted in collisions with electrons whose energy, Ei, is fixed. Such
spectra were analyzed in our recent study [33].

(ii) Isochromatic BS spectrum that is the angular distribution of BS photons as function
of the colliding electron energy, Ei (which varies in some interval), at a fixed photon
energy, h̄ω. The isochromatic spectra are analyzed in Section 3 of the present work.

The results are discussed in Section 4. The main conclusions are given in Section 5.

2. Methods

2.1. General Formalism of Soft-Photon Approximation (SPA)

In the nonrelativistic SPA framework, the double-differential cross section, dσBS, of BS
in the electron scattering on a target can be factorized. In particular, dσBS is the product
of the differential cross section, dσs, of the electron scattering on the same target without
γ-radiation, by the probability, dwγ, of the photon radiation [1]:

dσBS = dσs dwγ, (2)

dwγ =
α

4π2

[
k

ω
(vi − v f )

]2 dω

ω
dΩγ.
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where α �1/137 is the fine structure constant, vi, v f are the electron velocity in the initial
and final state, respectively; k is the photon wave vector, and dΩγ is the element of solid
angle to which the photon is radiated. The cross section in (2) is averaged over the electron
spin in the initial state and summed over the photon polarizations and the electron spin in
the final state.

If the ejection direction of the electron is not fixed, we should integrate Equation (2)
over this direction. To do this, we choose the z axis directed along the vi vector and write
dσs in the following form:

dσs(Ei, θ) = σs(Ei, θ)dΩv f , (3)

where θ is the polar angle of the v f vector, Ei is the energy of the impact electron. Then,
Equation (2) can be written in the following form:

dσBS =
α

4π2ω
σs(Ei, θ)

[
v2

i
c2 cos2 Θ − 2vi

cω
(kv f ) cos Θ

+
(kv f )

2

ω2

]
dΩv f dω dΩγ

=
α

4π2c2ω
σs(Ei, θ)

[
v2

i cos2 Θ

− 2viv f cos Θ(sin Θ sin θ cos ϕ + cos Θ cos θ) +

+ v2
f (sin Θ sin θ cos ϕ + cos Θ cos θ)2

]
dΩv f dω dΩγ.

where ϕ is the azimuthal angle of the v f vector, Θ is the polar angle of the k vector (i.e., the
angle between vi and k vectors), and the azimuthal angle of the k vector is assumed to be
zero. After integration over ϕ, we obtain the following:

dσBS =
α

2πc2ω
σs(Ei, θ)Q(Θ, θ) sin θ dθ dω dΩγ, (4)

where

Q(Θ, θ) = v2
i cos2 Θ − 2viv f cos2 Θ cos θ + v2

f

(
1
2 sin2 Θ sin2 θ + cos2 Θ cos2 θ

)
. (5)

2.2. SPA: Validity Conditions

SPA is valid when the irradiated photon energy is low as compared to the scattering
electron energy, Ei:

ω � Ei/h̄. (6)

Apart the condition (6), it is also required for SPA validity that the momentum,
q = pi − p f , transferred to the atom from the scattering electron, is much higher than
the electron momentum change due to irradiation of the photon [1]. In the nonrelativistic
approximation, this condition takes the following form [1]:

h̄ω/(viq) � 1. (7)

It is seen that the condition (7) is violated at low transferred momentum values, i.e.,
at small scattering angles, θ. However, the contribution of the small angles into BS cross
section is small due to the angular factor, Q(Θ, θ) in Equation (4). This factor is plotted in
Figure 1 as function of the scattering angle, θ, for the value of Θ = 83◦ used experimentally
in [12,13]. It is clearly seen that Q(Θ, θ) is small for θ → 0.
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Figure 1. The angular factor, Q(Θ, θ)/v2
i , from Equation (5) at Θ = 83◦ and v f � vi.

3. Results on Isochromatic Spectra

Wavelength dependence of the BS intensity was obtained in experiment [13] and
analyzed theoretically in [33].

Now, we proceed to the analysis of the isochromatic spectra. These spectra show
the dependence of BS intensity on the electron energy, Ei, at a fixed photon energy, h̄ω.
The authors in [13] list the experimental values for a modified (as compared to that in
Equation (4)) differential BS cross section. This modification, as compared to Equation (4),
implies calculating the angle-differential cross section of BS photon radiation into a finite
small wavelength interval, Δλ, integrated over the scattering angle, θ,

dσBS

dΩγ
=

α

2πc2
Δλ

λ

∫ π

0
σs(Ei, θ)Q(Θ, θ) sin θ dθ, (8)

where λ = 2πh̄/k is the photon wavelength, the factor Q(Θ, θ) is defined in Equation (5).
In other words, a change dω/ω → Δλ/λ should be done in Equation (4). In the experiment
presented in [13], photons were registered in the wavelength interval of Δλ = 0.1 nm.
Equation (8) requires knowledge of the following integrals:

Jab(Ei) =
∫ π

0
σs(Ei, θ) cosa θ sin1+b θ dθ, (ab) = (00), (10), (20), (02). (9)

In particular, the cross section of elastic electron–atom scattering is σel(Ei) = 2πJ00(Ei).
Equation (8) implies using differential cross sections of elastic electron–atom scattering,

σs(Ei, θ), tabulated as functions of the scattering angle, θ. Such data can be obtained by
numerical simulation using various models for interaction of the incident electrons with
atoms. For instance, the cross-section database [34] contains data for the majority of
atoms of the Periodic system. These data were used in our earlier work [33] for analysis
of experimental BS photon spectra at fixed energy of an electron scattering on rare gas
atoms [13].

In the case of electron scattering on argon atom, the data calculated in [35] can be used
as an alternative to the NIST database [34]. The results of the cross-section calculation at
particular electron energies, Ei, using both datasets are presented in Table 1.
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Table 1. Simulated cross section in elastic electron–atom scattering (Å2).

Ei, keV Ar Kr Xe

[34] [35] [36] [34] [36] [34] [36]

0.4 2.30 2.21 1.99 2.98 2.92 4.20 3.82
0.5 2.05 1.97 1.76 2.69 2.51 3.86 3.42
0.6 1.85 1.78 1.59 2.46 2.27 3.58 3.11
0.7 1.70 1.63 1.45 2.28 2.03 3.34 2.76
0.8 1.57 1.51 1.34 2.14 1.94 3.14 2.71
0.9 1.47 1.41 1.25 2.01 1.81 2.98 2.64
1.0 1.38 1.33 1.17 1.90 1.73 2.83 2.29
1.5 1.07 1.03 0.91 1.53 1.19 2.33 1.94
2.0 0.88 0.86 0.76 1.30 1.01 2.02 1.65

It can be seen that the cross sections of elastic electron scattering on Ar calculated
in [34,35] coincide within 4%. However, the angle-differential cross sections differ signifi-
cantly. As it is seen from Figure 2, the differential cross section has a sharp maximum for
the forward scattering. This maximum calculated in [35] is two times higher as compared
to the results of [34], and the differential cross section drops down for the scattering angles
θ > 15◦. Cross sections of electron scattering on Ar, Kr, and Xe atoms were also calculated
in [36]. They are presented in Table 1 as well and their values are less as compared to those
of [34]. This difference increases with the electron energy, Ei, up to 40% at Ei = 2 keV.
Unfortunately, the angle-differential cross sections are not listed in [36].

Figure 2. The differential cross section of elastic e–Ar scattering at Ei = 0.4 keV from [34] (solid line)
and from Figure 7a of [35] (dashed line).

The results of our calculations of isochromatic BS spectra by Equation (8) are given
in Figures 3–5 in comparison with the experimental data shown in Figures 5–7 of [13],
respectively. We note a misprint in [13]: the cross section shown in these figures should
be measured in mbarn/sr, not barn. As seen from these figures, the calculated BS cross
sections increase with the initial electron energy, Ei, for Kr and Xe, and slightly decrease for
Ar. We recall that calculations of the isochromatic spectra according to Pratt et al. [29,30]
(as given in [13]) predict a monotonic decrease of the BS intensity as a function of Ei.
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Figure 3. Isochromatic spectrum for Ar: double-differential BS cross section (8) as a function of the
initial electron energy at the fixed photon energy of 177 eV. Solid line: elastic-scattering differential
cross sections are taken from [34]; dashed line: from [35]. Black points with error bars: experimental
values adopted from Figure 5 in [13] by manual digitization.

Figure 4. Same as in Figure 3 for Kr, h̄ω = 165 eV. Experimental values adopted from Figure 6 in [13].

Figure 5. Same as in Figure 4 for Xe, h̄ω = 177 eV. Experimental values adopted from Figure 7
in [13].

242



Atoms 2022, 10, 86

Note the maximum value of BS cross sections is reached at Ei = Emax
i (see Equation (1))

and predicted by Sommerfeld [3] in the pure Coulomb potential. Under the conditions of
the experiment of [13], this maximum should be observed at Ei ≈ 0.26 keV.

4. Discussion

In the geometry of the experiment [13] (Θ = 83◦), according to Equation (5), the main
contribution into the BS cross section (8) is made by the following term:(

dσBS

dΩγ

)
0
=

α

4πc2
Δλ

λ
v2

f sin2 ΘJ02(Ei), (10)

where the factor J02(Ei) is defined by Equation (9). The Ei-dependence in Equation (10) is
due not only to the v2

f factor but also to the J02(Ei) dependence.
For the total (scattering + impact ionization) cross section σtot(Ei), this dependence

on Ei in the range 0.5–2.0 keV, according to [36], can be approximated by the following
equation:

σtot(Ei) ∼ E−B
i , (11)

where parameter B varies from 0.90 for He to 0.59 for Xe. These values make the slow
dependence (11) unable to compensate the linear increase of v2

f . However, the dependence
of J02 on Ei can differ from (11). Of course, the discrepancy between theory and experiment
can be also due to inaccuracy of SPA in this case.

In the case of argon (see Figure 3), the maximum in the isochromatic spectrum mea-
sured in [13] appears at the electron energy, Eexpt

i = 0.7 keV, which is greater compared
to that given by Equation (1). For the energies less than 0.7 keV, our theoretical results are
in satisfactory accord with the experiment. However, theoretical dependence of BS cross
section on Ei, obtained using the differential cross section of elastic scattering from [34]
has a less sharp maximum at Etheor

i = 1.11 keV. When the differential cross-section data
from [35] are used, the maximum appears at Etheor

i = 1.31 keV. In both cases, the calcu-
lated cross section decreases with Ei slower compared to the experiment. Unfortunately,
we have no explanation of such a behavior of the cross section. We note that using the
elastic cross sections from [35] results in lesser BS cross section compared to using the data
from [34] that make better agreement with the experiment. This can be caused by the fact
that the results in [35] give (i) a more sharp maximum at the forward differential cross
section and (ii) less magnitude of the cross section in the θ > 15◦ domain, as compared
to [34] (see also Figure 2). It is this angular domain that makes the main contribution into
the value of J02(Ei) in (9) due to sin3 θ in the integral. Thus, in the case of Ar, we have
quantitative agreement with the experiment at the electron energy Ei < Eexpt

i = 0.7 keV,
and a qualitative agreement for higher energies.

In the case of krypton (see Figure 4), the experimental isochromatic spectrum [13]
has the maximum at Eexpt

i = 1.0 keV which is higher than the value given by (1) as well.
Our BS cross section calculated using the differential cross section of elastic scattering
from [34], slowly increases in the studied energy range, Ei = 0.4–2.0 keV. Unfortunately,
the authors in [35] do not provide differential cross sections of elastic e–Kr scattering, so
our calculations for Kr can achieve only qualitative agreement with the experiment yet.

An even worse situation takes place for xenon (see Figure 5). Both experimental and
theoretical isochromatic spectra increase with the electron energy, Ei, the former [13] in-
creasing much faster than the latter. Extrapolating the Ar and Kr data, one can suppose that
Eexpt

i increases with the nuclear charge of the atomic target. Probably, one has Eexpt
i > 2 keV

for Xe. A similar discrepancy between theoretical and experimental BS spectra in e–Xe
scattering with fixed electron energy, Ei = 0.6 keV, was noted in our earlier work [33]. A
possible explanation of this discrepancy could be due to greater role of so-called polariza-
tion BS [23,31,37] for Xe, as compared to the lighter rare gases. Indeed, the main atomic
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feature responsible for the polarization bremsstrahlung is the dipole polarizability [23].
The contribution of polarization BS into the experimental BS spectra of rare gases should
increase with the nuclear charge since the polarizabilities of these gases are 11, 17 and
27 bohr3 for Ar, Kr and Xe, respectively [38]. The discrepancy between theory and exper-
iment for Kr isochromatic spectra can be also due to polarization BS, as well as to some
inelastic processes, such as impact ionization (in Equations (4) and (8), we take into account
conventional BS and elastic cross section only).

The main disadvantage of the presented theory is that it does not reproduce the BS
intensity decrease for sufficient high electron energy, Ei > Eexpt

i , as seen from Figure 4.

5. Conclusions

The isochromatic spectra recorded in [10] and studied in detail in [13] are quasi-
resonant, i.e., demonstrate a prominent maxima at some electron energy Ei = Eexpt

i . It
should be noted that the experimental values of Eexpt

i are much higher than those given by
the BS theory, Emax

i , in pure Coulomb potential (1). This excess of Eexpt
i value increases with

the target nucleus charge. Therefore, the isochromatic spectra reported in [13] for Xe did
not display any maxima, since the electron energies studied in [13] did not exceed 2 keV,
which is probably lower than the Emax

i value for Xe. Our model gives the first quantitative
description of the increase of BS intensity at low Ei < Emax

i in the isochromatic spectra for
Ar and the first qualitative description for Kr and Xe. The other theoretical models [29,30]
predict a monotonic (without maxima) decrease of the BS intensity as a function of Ei.

It should be emphasized that the agreement with experiment demonstrated in this
work is achieved with the help of very simple analytical expressions.

Unlike the BS spectra with the fixed electron energy [13,33], the isochromatic spectra
can possibly be more sensitive indicators of the polarization component of BS since this
component appears not only in xenon, but probably also in krypton.
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Abstract: Satellite excitations and final state configuration interactions appear due to the many-
electron correlations and result in a photoelectron spectrum complex final state structure instead of
single lines corresponding to one-hole states. In the present work, both processes are considered in a
framework of the many-body perturbation theory, and two techniques, namely the spectral function
and CI (configuration interaction) methods are considered. It is shown that for the calculation of
satellite lineshapes and low-energy Auger decay, the spectral function method is more appropriate,
but in the case of strong final state interactions, the methods of solution of Dyson equation or secular
matrix are superior. The results obtained for satellites and low energy Auger decay in the Ne 1s, Ne
2p photoelectron spectra, the Co 3s, and the Th 5p photoelectron spectra are in agreement with the
experimental data.

Keywords: atomic photoionization; photoelectron spectroscopy; many-electron effects; satellites; Ne
1s; Ne 2p; Co 3s; Th 5p photoelectron spectra

1. Introduction

The interaction of a single vacancy with more complex states with two vacancies and
one excited electron results in a breakdown of the one-electron picture in the 4p photoelec-
tron spectra of lanthanides and the 5p spectra of actinides [1–5], and strong deviation of
multiplet structure of the 3s spectra of 3d metals from that obtained in Hartree–Fock ap-
proximation [6–11]. The theory of these effects is essential in the investigations of materials
by photoelectron spectroscopy. Satellite lines in the photoelectron spectra of noble gases
have been the subject of several experimental works and their study provides detailed
information on the dynamics of many electron correlations [12–17]. It was obtained theo-
retically [18,19] and confirmed experimentally [20] that monopole shake-up and shake-off
satellites take about 20% of the intensity of the main line. Thus, the account for satellite
intensities is required in using theoretical photoionization cross-sections in the elemental
analysis by photoelectron spectroscopy. The first satellite calculations were made in the
“overlapping” approximation [21–24], in which the satellite intensity was proportional to
the square of overlap integral between ground state Hartree–Fock wave functions and
relaxed final state wave functions. In addition, a combination of configuration interaction
and “overlapping” methods was used for satellite calculation [25,26].

It was an idea of Miron Ya. Amusia to consider the hole potential as a perturbation
potential for the ground state wave functions and to use the spectral function of the initial
hole (see, e.g., [1]) to calculate the whole spectrum, i.e., main line, shake-up satellites,
and shake off continuum [27]. This technique was applied for the shake-up satellites
in photoelectron spectra of noble gases [28–30] and extended to valence and core Auger
transitions [31–35]. Some predictions of these theoretical results for the valence Auger
transitions were confirmed experimentally [36,37]. The creation of a new of HAXPES
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(hard x-ray photoelectron spectroscopy) experimental techniques [38,39] caused further
development of the theory of many-electron effects in photoionization [40,41]. Similar
theoretical approaches were used for the understanding of atomic many-electron effects in
photoelectron spectra of atoms in chemical compounds, namely the 3s-spectra of Co [42],
the 4p-spectra of Ba [43], the 5p-spectra of Th [44], and U [45].

Thus many-electron effects change the one-electron picture of photoionization [1] and
knowledge of the nature of many-electron effects is required for the correct interpretation
of XPS data on the compounds under investigation. Furthermore, in the case of noble
gases, a comparison of theoretical and experimental results is required to understand
photoionization and related phenomena [35]. In the present paper, the many-electron
approaches to core relaxation and multiplet splitting are developed and examples of their
applications are considered.

2. Theoretical Approach

The relaxation of atomic orbitals caused by ionization of the k-shell is described by the
excitations of electron-hole pairs under the action of suddenly switched potential of the
k-hole [27]. The corresponding Feynman diagram is shown in Figure 1a, where a wavy line
stands for the interaction, determined by the Coulomb integral, right (left) directed arrows
denote particles (holes), which are added to the initial atomic configuration.

Figure 1. Graphs for the satellite’s excitation. (a) Feynman diagram for the satellite excitation.
Arrows directed from left to right (right to left) denote particles (holes), wavy line denotes Coulomb
interaction. (b) angular momentum graph, corresponding to the Feynman diagram (a). Angular
momentum graph for the spin part in which interaction line is removed should be included.

Coulomb integral, corresponding to a wavy line may be written as:

Uγ(kjis) = ∑
λ,μ

αλ
γ

(
kj
∣∣∣Rλ

∣∣∣is)+ β
μ
γ(ki|Rμ|js), (1)

where λ and μ are multipole values of direct and exchange parts, and angular weight factors
αλ

γ and β
μ
γ depend on the coupling scheme γ. The case k = i corresponds to monopole shake-

up satellites, and the case k �= i corresponds to Auger decay or to final state configuration
interaction. The Coulomb integrals were calculated using the atomic wave functions Pv(r),
obtained by the Hartree-Fock method [46,47] using the standard formula:

(
ν1ν3

∣∣∣Rλ
∣∣∣ν2ν4

)
=

∞∫
0

Pν1(r)Pν2(r)dr
∞∫

0

rλ
<

rλ+1
>

Pν3(r
′)Pν4(r

′)dr′ (2)

To calculate the angular part of the Feynman diagram, one must plot an angular
momentum graph [48], in which the interaction vertex is topologically equivalent to the
Feynman diagram and the free particle and hole lines are connected in correspondence to
the coupling scheme [35]. Figure 1b shows the angular momentum graph for the satellite
excitation in the case of the LS-coupling scheme. The spin momentum graph is obtained by
removing an interaction line [48]. Additional arrows are also added in the case of coupling
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of holes [49]. When reducing the angular momentum graph of Figure 1b together with the
spin momentum graph and adding factors for Coulomb interaction vertex [48] one obtains:

αλ = f (−1)Sij+1+λ

[
LijSij

]1/2

(2)1/2[lk]
1/2

{
λ lk li
Lij lj ls

}〈
li
∥∥∥Cλ

∥∥∥lk
〉〈

lj

∥∥∥Cλ
∥∥∥ls
〉

, (3)

where f = 1 if electrons li and lj are non-equivalent, f =
√

2 if electrons li and lj are
equivalent, and [a] denotes 2a + 1.

For the exchange graph, one must interchange lines of i- and j-holes at the Coulomb
interaction line, what results in additional phase factors, and one obtains the weight factor
before exchange integral:

βμ = − f (−1)Lij+li+lj+μ

[
LijSij

]1/2

(2)1/2[lk]
1/2

{
μ lk lj
Lij li ls

}〈
lj‖Cμ‖lk

〉
〈li‖Cμ‖ls〉 (4)

where f = 1, if electrons li and lj are non-equivalent, and f = 0, if electrons li and lj are
equivalent. Formulas (3) and (4) differ from the formulas for Auger decay [50], obtained by
coupling of initial hole’s and final electron’s angular momentums and spins into Lij and Sij,
by inessential common phase factor only.

The k-vacancy spectrum, which includes the main line, discrete shake-up, continuum
shake-off excitations, and Auger decay is represented by a spectral function:

Ak(E) =
1
π

ImΣk(E)

(E − εk − ReΣk(E))2 + ImΣk(E)2 , (5)

where E is the energy parameter of k-hole, which runs over all relevant values and Σk(E)− is
the self-energy of k-vacancy.

In the second order of perturbation theory, the self-energy is represented by the
Feynman diagrams of Figure 2a–c, and is defined by its real and imaginary parts as follows:

ReΣ(2)
k (E) = ∑

i,j,s

〈kj|U|is〉2

E − εi − ε j + εs
(6)

ImΣ(2)
k (E) = π∑

i,j,s
〈kj|U|is〉2δ

(
E − εi − ε j + εs

)
(7)

It is assumed, that the sums in Equations (6) and (7) include integration over contin-
uum energies εs also.

The integral of the spectral function equals to the unity and the intensity of all
spectral distribution is proportional the photoionization cross-section σk(ω) calculated
in Hartree–Fock approximation [27].

The positions Eν of discrete satellites are the solutions of the Dyson equation:

Eν = εk + ReΣk(Eν) (8)

The intensities of the main line and shake-up satellite relative to all spectral distribution
are proportional to the spectroscopic factors:

fν =
1

1 − ∂ReΣk(E)
∂E

∣∣∣
E=Eν

(9)

If the discrete line is in the continuum of another transition, its spectroscopic factor
may be calculated as an integral of the spectral function. Spectroscopic factors of all main
lines in photoelectron spectra calculated by spectral function [18] and “overlapping” [19]
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methods are approximately the same and all are close to the value 0.8, and in general agree
with the experiment [20].

Figure 2. Feynman diagrams for the spectral function in a simplified forth-order approach.
(a–c) Direct and exchange second-order diagrams, (d,e) direct and exchange third-order diagrams for
the decay of satellite into continuum, (f) fourth-order diagram (exchange parts are not shown).

The second-order diagrams and Formula (7) represent the broadening of the satellite
due to the direct transitions from one-hole states to the shake-off continuum k−1 → k−1l−1q .
If there exist at the same energy a discrete shake-up satellite k−1 j−1s it is broadened by the
decay into underlying continuum k−1 j−1s → k−1l−1q . This process is represented by the
Feynman diagram in Figure 2f and the contribution to the imaginary part of the self-energy
is written as:

ImΣ(4)
k (E) =

π〈kj|U|ks〉2(
E − εk − ε j + εs

)2 ∑
l,q
〈js|U|lq〉2δ(E − εk − ε l + εq) (10)

Figure 2d,e represent the interference between two ways of excitation of shake-off contin-
uum, namely direct k−1 → k−1l−1q , and via shake-up resonance k−1 → k−1 j−1s → k−1l−1q .
The contribution of these diagrams to the spectral function is written as:

ImΣ(3)
k (E) =

2π〈kl|U|ks〉
E − εk − ε j + εs

∑
l,q
〈kl|U|kq〉〈js|U|lq〉δ(E − εk − ε l + εq) (11)
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It is seen from Formulas (5), (7), (10) and (11), that contributions of decay channels
to the spectral function are additive (in the numerator of Equation (5)) and the spectral
functions for decay channels can be separated. Thus one can obtain the spectral function
for low-energy Auger decay [31].

3. Noble Gases

Calculation of spectral functions in the simplified forth order approach (see
Formulas (5)–(7), (10) and (11), and Figure 2) made it possible to reproduce strongly
asymmetrical satellite lineshapes and to estimate intensities and lineshapes of low en-
ergy Auger decay. Figure 3 shows theoretical lineshape of the satellite 2s−12p−1(1P)3s(2P),
which is broadened by the decay into three continua 2p−2(3P)εp(2P), 2p−2(1D)εp(2P),
and 2p−2(1S)εp(2P). The spectral densities of the satellite transferred to these three low
energy Auger transitions are also shown. According to our calculations, the most intense is
the transition to 2p−2(1D

)
εp continuum, the intensity of transition to 2p−2(1S

)
εp is signifi-

cantly smaller, and a transitions to 2p−2(3P
)
εp continuum is almost completely depressed.

This prediction was confirmed by Kaneyashi et al. [36], who obtained the relative intensities
1D:1S:3P = 1500:400:300.

Figure 3. Theoretical lineshape of the satellite 2s−12p−1(1P)3s(2P) which is broadened by the
decay into three continua 2p−2(3P)εp(2P), 2p−2(1D)εp(2P) and 2p−2(1S)εp(2P) (at the satellite
energy scale).

Figure 4 shows the satellite state 1s−12s−1(3S
)
3s
(2S
)
, which is asymmetrically broad-

ened due to decay into 1s−12p−1(3P
)
εp
(2S
)

and 1s−12p−1(1P
)
εp
(2S
)

continua. Theo-
retical curve reproduces experimental strongly asymmetrical lineshape having a Fano
profile [12]. Theoretical lineshapes of low-energy Auger decay of this state are shown
in Figure 5. It is seen in Figure 5, that the intensity of decay into the singlet chan-
nel 1s−12p−1(1P

)
εp
(2S
)

is larger than the intensity of decay into the triplet channel
1s−12p−1(3P

)
εp
(2S
)
. This result is in qualitative agreement with the experimental data of

Hikosaka et al. [37].
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Figure 4. Theoretical lineshape of satellite 1s−12s−1(3S
)
3s
(2S
)

of Ne photoionization (solid line),
diamonds experiment [12].

Figure 5. Theoretical lineshape of valence Auger decay of satellite state 1s−12s−1(3S
)
3s
(2S
)

into two
continua 1s−12p−1(3P

)
εp
(2S
)

and 1s−12p−1(1P
)
εp
(2S
)
.

4. Atoms in Chemical Compounds

The photoionization of 3s-levels of 3d elements with the configuration 3dN(2S+1L
)

due to the interaction between 3s-hole and unfilled 3d-shell results in a line split in two
components. These components correspond to two states: a low spin state with total
spin St = S − 1/2 and a high spin state with total spin St = S + 1/2. It can be shown
that this splitting is proportional to the spin S of the initial 3dN state. However, for
Co3+(3d6(5D)) using atomic Hartree–Fock wavefunctions [46,47], we obtained exchange
integral

〈
3s3s

∣∣R2
∣∣3d3d

〉
= 0.492 a.u., resulting in a splitting 13.4 eV between the states 4D

and 6D, whereas experimental splitting is just 4.7 eV. Furthermore, the ratio of the spectral
line intensities is not equal to a statistical ratio (2S + 2):2S = 6:4 [42]. In some works, this
problem was solved by multiplication of the exchange integral by some scaling factor [10,11].
However, this formal decrease of the exchange integral is due to the interaction of the initial
one-hole state 3s−13dN with more complex two-hole-one-particle states 3p−23dN+1 [7–9].
This interaction is represented by the Feynman diagram shown in Figure 2a. Since holes
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i and j in the final state are equivalent, the exchange part is absent. The corresponding
angular momentum graphs are shown in Figure 6. In this graph, all lines correspond to
holes and a black square denotes fractional parentage coefficients for the 3d4l+2−N hole
configurations. Using graphical methods for calculating angular momentum graphs [48],
we obtain the following formula for the weight factor before the Coulomb integral:

αλ = (−1)Lt+L1+L2+l1+l3 GLS
L1S1

{
L2 l1 l3
λ l2 l2

}{
Lt L l1
l3 L2 L1

}{
St S 1/2

1/2 S2 S1

}
×(

l1 λ l2
0 0 0

)(
l3 λ l2
0 0 0

)(
2N
)1/2

[l1l3]
1/2[l2][S2SL2L]1/2

(12)

where l1, l2, and l3 correspond to s-, p-, and d-electrons, respectively, GLS
L1S1

is the frac-
tional parentage coefficient for the hole configurations of the 3d shell; N = 4l + 2 − N
is the number of holes in the 3d shell in the initial state. In our case, we obtained coeffi-
cients α1 for the interaction of the term 3s−13d6(5D)(4D) of initial state with excited states
3p−2(1D)3d7(4F)(4D) and 3p−2(1D)3d7(4P)(4D) 0.683 and 0.446, respectively.

Figure 6. Angular momentum graphs for the calculation of angular weight factors for the interac-
tion between initial state in photoionization 3s−13dN and a the state 3p−23dN+1. (a) Orbital part,
(b) spin part.

Formula (12) makes it possible to draw some qualitative conclusions about the config-
uration interaction under consideration. In the first line of the first 6j-symbol l1 = 0 and
l3 = 2. Thus, according to the triangle rule for the first line of this 6j-symbol there is only
one possible value for L2, i.e., L2 = 2. Therefore, only the term 1D among three possible
terms 3P, 1D, and 1S, of the 3p−2 shell is involved in the configuration interaction. This
circumstance makes it possible not only to simplify the calculations but also to qualitatively
estimate the effect of the configuration interaction on the splitting of the 3s-line in the
photoelectron spectrum. Consider atoms with the shell more than half-filled N ≥ 2l + 1
in the state of the ground term 3dN(2S+1L). According to the table of fractional parentage
coefficients [51], the addition of one electron to the ground term results in terms of the
configuration 3dN+1 with the spin S1 = S − 1/2. As shown above, the interaction of the
state 3s−13dN with the states 3p−23dN+1 is possible only if the 3p−2 shell has the term 1D.
For this reason and because the relation S1 = S − 1/2 is fulfilled for ground terms when
N ≥ 2l + 1 the high-spin state St = S + 1/2 of 3s−13dN configuration does not interact
with the configuration 3p−23dN+1. Therefore, the configuration interaction at N ≥ 2l + 1
affects only the position of the low-spin state, resulting in the reduction of the splitting
between low-spin and high-spin states.

In the case under consideration (the ground term 5D of the 3d6 shell), the interaction
between the excited states involving two terms 4P and 4F of the configuration 3d7 is also
possible. The Feynman diagrams of such an interaction are shown in Figure 2d,e. The
corresponding formula for the self-energy part is written as:
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ReΣ(3)(E) = ∑
γ

〈kj|U|js〉2
γ

E +
(
−ε j − ε j + εs

)
γ

+ ∑
γ �=δ

2〈kj|U|js〉γ〈kj|U|js〉δ〈js|U|js〉γδ[
E +

(
−ε j − ε j + εs

)
γ

][
E +

(
−ε j − ε j + εs

)
δ

] (13)

where sums run over all distinct terms γ and δ of the configuration under consideration.
Since only term 1D of 3p−2 configuration is possible, the sum runs over terms of 3dN+1

configuration with S1 = St.
The experimental 3s-photoelectron spectrum of Co3+ ion in paramagnetic BiCoO3 [42]

is shown in Figure 7. Theoretical splitting of the 3s-line with account for configuration
interaction (CI) 5.1 eV is in good agreement with experimental value 4.7 eV and with theo-
retical result 5.4 eV [7], obtained with account for a larger number of configurations. In the
Hartree–Fock approximation (HF), the value of splitting equals 13.4 eV. The spectroscopic
factor of the low-spin state calculated by Formula (9) equals 0.75. Taking into account the
statistical ratio of the high-spin to low-spin component 1.5, we obtain theoretical ratio 2,
which is equal to the experimental value. It was also pointed out that interaction with exited
configuration 3p-4f is important [9]. However, the value of leading Coulomb integral in this
case

〈
3s3p

∣∣R1
∣∣3p4 f

〉
= −0.0088 a.u. is significantly less then

〈
3s3p

∣∣R1
∣∣3p3d

〉
= 0.650 a.u.,

used in the present work for the main channel of CI. That is why the main features of the
spectrum can be reproduced by our method, which is equivalent to solving the secular
matrix of dimension 3.

Figure 7. Experimental 3s-photoelectron spectrum of Co3+ ion in paramagnetic BiCoO3 [42]. Theoret-
ical line splitting in HF approximation (HF) and with account for configuration interaction (CI) are
also shown.

In photoelectron spectra of the Th 5p [44] and U 5p [45] of ThO2 and UO2 a complex
structure is observed instead of two components of the spin doublet 5p1/2 and 5p3/2. In
XPS spectrum of ThO2, shown in Figure 8 a strong satellite peak with a binding energy
of about 20 eV larger than the energy of the 5p3/2 peak appears. The experimental spin-
orbit splitting 55.5 eV is significantly larger than the result of our Dirac–Fock calculation
of 47.9 eV and the line 5p1/2 is asymmetrically broadened. These many-electron effects
appear due to the interaction of the initial hole states 5p3/2(1/2) with the more complex
two-hole-one-particle states 5d−2(2S+1LJ)5 f (ε f ). In this case, we used an intermediate
coupling scheme and the corresponding momentum graph is shown in Figure 9. Reduction
of this momentum graph results in the following formula for the weight factor:
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αλ(L, S, J) =
√

2
(

l1 λ l2
0 0 0

)(
l2 λ l3
0 0 0

)
[l1l2l2l3]

1/2[LSJj3]
1/2[j1]

−1/2
{

l1 L l3
l2 λ l2

}

×
{

j1 κ l3
1/2 j3 J

}
L+1/2

∑
κ=L−1/2

(−1)
2κ+L+3J+l1+l3+j1+j3+1{

l3 j1 κ
1/2 L l1

}{
J 1/2 κ

1/2 L S

} (14)

Figure 8. Experimental Th5p photoelectron spectrum of ThO2 [44].

Figure 9. Momentum graph for the calculation of final state configuration interaction in intermediate
coupling scheme.

Where l1, l2, and l3 correspond to 5p-, 5d-holes, and 5f -electron, respectively, j1 is the
total momentum of the 5p−1 hole, L, S, and J correspond to the terms of configuration 5d−2,
the summation is over all half-integer κ in the specified interval, and λ takes values 1 and
3. Formula (14) is a generalization of the non-relativistic formula for Auger decay [50] in
the case of intermediate coupling. Note that the first of the 6j-symbols in Formula (14) is
also present in the non-relativistic formula [43]. It follows from the triangular condition for
elements of the first row of this 6j-symbol, that interaction of the initial vacancy is possible
only with three terms 1DJ, 3FJ, and 1GJ of the shell 5d−2.

Formula (14) was used to calculate the interaction of the initial hole 5p−1 with the
excited states 5d−25f in the secular matrix. In addition, the interaction between two-hole-
one-particle states was taken into account. The spectrum of the Th 5p3/2 electrons was
calculated by solving the secular matrix. The eigenvalues of the secular matrix correspond
to the positions of the spectral lines, and the squares of the elements of the eigenvector,
corresponding to the energy of the main line give the intensities of all lines. In the case of
ionization of the 5p1/2 subshell the levels of the excited 5d−2(2S+1L

)
5 f configuration are
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far from the single-hole state, whereas Auger decay into the 5d−2(2S+1L
)
εp, ε f continuous

states is possible, which leads to the asymmetrical broadening of the Th 5p1/2 line. To
calculate the spectrum of the 5p1/2 electrons, we used the spectral function method (see
Formula (5)). The theoretical spectrum with overall energy shift −9.6 eV representing
solid-state effects [44] is shown in Figure 10. The calculated Th 5p spectrum consists of
three groups of lines which can be attributed to the 5p1/2 and 5p3/2 lines and satellites,
i.e., the 5d−25 f states. Many-electron effects reduce the binding energies of the 5p3/2
electrons, and as a result, spin–orbit splitting reaches the value 55 eV, which corresponds to
the experimental value 56 eV. It is seen in Figure 10 that the 5p1/2 line is asymmetrically
broadened with raised low binding energy side. The spectroscopic factor of the 5p1/2 line,
estimated as the integral of the spectral function Equation (5) in an interval of 10 eV (which
corresponds to the interval where the intensity of the line was experimentally determined)
with background subtraction equals 0.69. Thus the theoretical ratio of the intensities
I(5p3/2):I(5p1/2), when the satellites are included in 5p3/2 line, equals 2.9:1. Experiential
value of this ratio depends on the background subtraction. When Shirley’s method was
used, this ratio equals 5:1, but in linear background subtraction, we obtained the ratio 3.6:1.

Figure 10. Theoretical Th 5p photoelectron spectrum. The satellite structures of the 5p3/2 line were
calculated by the CI method. The spectral function of 5p1/2 line was calculated in the second order
of perturbation theory. The lineshape 5p1/2 is slightly asymmetrical, with a raised low-binding
energy side.

5. Conclusions

In the present work, it was shown that for different relations between interaction
parameters in the final state, appearing after photoionization, different approaches of
MBPT can be used. A spectral function approach with account for the imaginary part of the
self-energy in simplified fourth-order make it possible to calculate asymmetrical lineshapes
of satellites in photoelectron spectra and of low-energy Auger spectra. Dyson’s equation
in the third-order makes it possible to calculate the line positions in the case of weak
interaction between excited states. In particular, in the case of 3s-spectra of 3d-elements
accounting for a very limited number of Feynman diagrams made it possible to reach
agreement with the experiment and to draw a qualitative conclusion on many-electron
effects for 3d-shell more than half-filled. However, in the case of strong CI in 5p-spectra, the
method of secular matrix solution is more appropriate. This series of research was inspired
by Miron Ya. Amusia, who was the first person to proposed to use unified MBPT technique
for CI and satellite excitations.

256



Atoms 2022, 10, 73

Author Contributions: V.G.Y., software and theoretical calculations; Y.A.T., methodology and experi-
mental investigations. All authors have read and agreed to the published version of the manuscript.

Funding: The work was supported by IGIC RAS state assignment and RRC “KI” state assignment.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board of IGIC RAS in agreement with RRC
“KI” 04.05.2022.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wendin, G. Breakdown of one-electron pictures in photoelectron spectra. In Structure and Bonding; Springer: Berlin/Heidelberg,
Germany, 1981; Volume 45, pp. 1–125, ISBN 978-3662157800.

2. Kowalczyk, S.P.; Ley, L.; Martin, R.L.; McFeely, F.R.; Shirley, D.A. Relaxation and final-state structure in XPS of atoms, molecules,
and metals. Faraday Discuss. Chem. Soc. 1975, 60, 7–17. [CrossRef]

3. Sham, T.K.; Wendin, G. Screening and configuration-interaction effects in the 5p X-ray-photoelectron spectrum of Th metal. Phys.
Rev. Lett. 1980, 44, 817–820. [CrossRef]

4. Boring, M.; Cowan, R.D. Satellite structure in the 5p and 5s X-ray-photoelectron spectra of the actinides. Phys. Rev. B 1981,
23, 445–448. [CrossRef]

5. Fadley, C.S.; Shirley, D.A. Multiplet splitting of metal-atom electron binding energies. Phys. Rev. A 1970, 2, 1109–1113. [CrossRef]
6. Kowalczyk, S.P.; Ley, L.; Pollak, R.A.; McFeely, F.R.; Shirley, D.A. New multiplet structure in photemission from MnF2. Phys. Rev.

B 1973, 7, 4009–4011. [CrossRef]
7. Viinikka, E.-K.; Ohrn, Y. Configuration mixing in the 3s-hole state of transition-metal ion. Phys. Rev. B 1975, 11, 4168–4175.

[CrossRef]
8. Bagus, P.S.; Freeman, A.J.F.; Sasaki, F. Prediction of new multiplet structure in photoemission experiments. Phys. Rev. 1975,

30, 850–853. [CrossRef]
9. Bagus, P.S.; Broer, R.; Ilton, E.S. A new near degeneracy effect for photoemission in transition metals. Chem. Phys. Lett. 2004,

394, 150–154. [CrossRef]
10. Kochur, A.G.; Ivanova, T.M.; Shchukarev, A.V.; Sidorov, A.A.; Kiskin, M.A.; Novotortsev, V.M.; Eremenko, I.L. Mn3s X-ray

photoelectron spectra of polynuclear trimethylacetate complexes of manganese. Bull. Russ. Acad. Sci. Phys. 2010, 74, 625–630.
[CrossRef]

11. Okada, K.; Kotani, A. Interatomic and intra-atomic configuration interactions in core-level X-ray photoemission spectra of late
transition metal compounds’. J. Phys. Soc. Jpn. 1992, 61, 4619–4637. [CrossRef]

12. Svensson, S.; Eriksson, B.; Martensson, N.; Wendin, G.; Gelius, U. Electron shake-up and correlation satellites and continuum
shake-off distributions in X-ray photoelectron spectra of the rare gas atoms. J. Electron Spectrosc. Relat. Phenom. 1988, 47, 327–384.
[CrossRef]

13. Pahler, M.; Caldwell, C.D.; Schaphorst, S.J.; Krause, M.O. Intrinsic linewidths of neon 2s2p5 (1,3P)nl 2L correlation satellites. J.
Phys. B At. Mol. Opt. Phys. 1993, 26, 1617–1625. [CrossRef]

14. Hall, R.I.; Dawber, G.K.; Ellis, K.; Zubek, M.; Avaldi, L.; King, G.C. Near-threshold study of the neon photoelectron satellites. J.
Phys. B At. Mol. Opt. Phys. 1991, 24, 4133–4146. [CrossRef]

15. Yarzhemsky, V.G.; Amusia, M.Y.; Bolognesi, P.; Avaldi, L. A study of the Ne 2s2p5(3P)3s and 3p correlation satellites up to 75 eV
above threshold. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 185204. [CrossRef]

16. Krause, M.O.; Whitfield, S.B.; Caldwell, C.D.; Wu, J.-Z.; Schaphorst, S.J.; van der Meulen, P.; de Lange, C.A.; Hansen, R.W.C.
Outer ns, np correlation satellites in the rare gases—A photoelectron spectrometry study with an undulator photon source. J.
Electron Spectrosc. Relat. Phenom. 1992, 58, 79–104. [CrossRef]

17. Kikas, A.; Osborne, S.J.; Ausmees, A.; Svensson, S.; Sairanen, O.-P.; Aksela, S. High-resolution study of the correlation satellites in
photoelectron spectra of the rare gases. J. Electron Spectrosc. Relat. Phenom. 1996, 77, 241–266. [CrossRef]

18. Yarzhemsky, V.G.; Nefedov, V.I.; Trzhaskovskaya, M.B.; Band, I.M.; Szargan, R. The influence of core hole relaxation on the
main-line intensities in X-ray photoelectron spectra. J. Electron Spectrosc. Relat. Phenom. 2002, 123, 1–10. [CrossRef]

19. Yarzhemsky, V.G.; Trzhaskovskaya, M.B. Spectroscopic factors of atomic subshells for HAXPES applications. At. Data Nucl. Data
Tables 2021, 139, 101387. [CrossRef]

20. Seah, M.P.; Gilmore, I.S. Quantitative X-ray photoelectron spectroscopy: Quadrupole effects, shake-up, Shirley background, and
relative sensitivity factors from a database of true X-ray photoelectron spectra. Phys. Rev. B 2006, 73, 174113, Erratum in Phys. Rev.
B 2007, 75, 149901. [CrossRef]

21. Åberg, T. Theory of X-ray satellites. Phys. Rev. 1967, 156, 35–41. [CrossRef]
22. Manne, R.; Åberg, T. Koopmans’ theorem for inner-shell ionization. Chem. Phys. Lett. 1970, 2, 282–284. [CrossRef]

257



Atoms 2022, 10, 73

23. Martin, R.L.; Shirley, D.A. Theory of core-level photoemission correlation state spectra. J. Chem. Phys. 1976, 64, 3685–3689.
[CrossRef]

24. Armen, G.B.; Åberg, T.; Karim, K.R.; Levin, J.C.; Crasemann, B.; Brown, G.S.; Chen, M.H.; Ice, G.E. Threshold double photoexcita-
tion of argon with synchrotron radiation. Phys. Rev. Lett. 1985, 54, 182–185. [CrossRef] [PubMed]

25. Sukhorukov, V.L.; Lagutin, B.M.; Petrov, I.D.; Schmoranzer, H.; Ehresmann, A.; Vollweiler, F.; Schartner, K.-H. Resonance structure
of the photoionization cross sections of the Kr atom in the energy region between single and double ionization thresholds. J.
Electron Spectrosc. Relat. Phenom. 1995, 76, 421–426. [CrossRef]

26. Lagutin, B.M.; Petrov, I.D.; Sukhorukov, V.L.; Whitfield, S.B.; Langer, B.; Viefhaus, J.; Wehlitz, R.; Berrah, N.; Mahler, W.; Becker, U.
Cross sections and angular distributions of the photoelectron correlation satellites of the Xe atom. J. Phys. B At. Mol. Opt. Phys.
1996, 29, 937–976. [CrossRef]

27. Kheifets, A.S.; Amusia MYa Yarzhemsky, V.G. On the validity of quasi-particle approximation in photoelectron spectroscopy. J.
Phys. B. At. Mol. Opt. Phys. 1985, 18, L343–L350. [CrossRef]

28. Yarzhemsky, V.G.; Armen, G.B.; Larkins, F.P. Calculation of the shake-up satellites in the 1s and 2s X-ray photoelectron spectra of
neon. J. Phys. B At. Mol. Opt. Phys. 1993, 26, 2785–2794. [CrossRef]

29. Kheifets, A.S. Green’s function calculation of the satellite spectrum of neon. J. Phys. B At. Mol. Opt. Phys. 1995, 28, 3791–3803.
[CrossRef]

30. Yarzhemsky, V.G.; Kheifets, A.S.; Armen, G.B.; Larkins, F.P. Linewidths and intensities of satellites in photoelectron spectra in the
presence of an underlying continuum. J. Phys. B At. Mol. Opt. Phys. 1995, 28, 2105–2112. [CrossRef]

31. Yarzhemsky, V.G.; Larkins, F.P. The shapes of Auger decay lines in photoelectron satellite spectra. Eur. Phys. J. D At. Mol. Opt.
Plasma Phys. 1999, 5, 179–184. [CrossRef]

32. Yarzhemsky, V.G.; Amusia, M.Y.; Chernysheva, L.V. Lineshape of Ne 1s photoionization satellite [1s2s](3S) 3s and its valence
Auger decay spectrum. J. Electron Spectrosc. Relat. Phenom. 2002, 127, 153–159. [CrossRef]

33. Yarzhemsky, V.G.; Nefedov, V.I.; Amusia MYa Chernysheva, L.V. The shapes of photoelectron satellite spectra. Surf. Rev. Lett.
2002, 9, 1209–1212. [CrossRef]

34. Yarzhemsky, V.G.; Sgamellotti, A. Auger rates of second-row atoms calculated by many-body perturbation theory. J. Electron
Spectrosc. Relat. Phenom. 2002, 125, 13–24. [CrossRef]

35. Amusia, M.Y.; Chernysheva, L.V.; Yarzhemsky, V.G. Handbook of Theoretical Atomic Physics; Springer: Berlin/Heidelberg, Germany,
2012; p. 799. [CrossRef]

36. Kaneyasu, T.; Hikosaka, Y.; Shigemasa, E.; Penent, F.; Lablanquie, P.; Aoto, T.; Ito, K. Autoionization of the Ne+ Rydberg states
formed via valence photoemission. J. Phys. B At. Mol. Opt. Phys. 2007, 40, 4047–4060. [CrossRef]

37. Hikosaka, Y.; Aoto, T.; Lablanquie, P.; Penent, F.; Shigemasa, E.; Ito, K. Experimental investigation of core-valence double
photoionization. Phys. Rev. Lett. 2006, 97, 053003. [CrossRef]

38. Püttner, R.; Goldsztejn, G.; Céolin, D.; Rueff, J.-P.; Moreno, T.; Kushawaha, R.K.; Marchenko, T.; Journel, L.; Lindle, D.W.;
Piancastelli, M.N.; et al. Direct Observation of Double-Core-Hole Shake-Up States in Photoemission. Phys. Rev. Lett. 2015,
114, 093001. [CrossRef]

39. Goldsztejn, G.; Marchenko, T.; Püttner, R.; Journel, L.; Guillemin, R.; Carniato, S.; Selles, P.; Travnikova, T.; Céolin, D.;
Lago, A.F.; et al. Double-Core-Hole States in Neon: Lifetime, Post-Collision Interaction, and Spectral Assignment. Phys. Rev. Lett.
2016, 117, 133001. [CrossRef]

40. Amusia, M.Y.; Chernysheva, L.V.; Yarzhemsky, V.G. On photoionization in the hard X-ray region. JETP Lett. 2013, 97, 704–707.
[CrossRef]

41. Yarzhemsky, V.G.; Amusia, M.Y. Calculation of Ar photoelectron satellites in the hard-X-ray region. Phys. Rev. A 2016, 93, 063406.
[CrossRef]

42. Yarzhemsky, V.G.; Teterin, Y.A.; Presnyakov, I.A.; Maslakov, K.I.; Teterin, A.Y.; Ivanov, K.E. Many-electron effects in Co 3s X-ray
photoelectron spectra of diamagnetic ScCoO3 and paramagnetic BiCoO3 Cobaltites. JETP Lett. 2020, 111, 422–427. [CrossRef]

43. Yarzhemsky, V.G.; Teterin, Y.A.; Sosulnikov, M.I. Dynamic dipolar relaxation in X-ray photoelectron spectra of Ba4p subshell in
barium compounds. J. Electron Spectrosc. Relat. Phenomom. 1992, 59, 211–222. [CrossRef]

44. Yarzhemsky, V.G.; Teterin Yu, A.; Maslakov, K.I.; Teterin, A.Y.; Ivanov, K.E. Many-electron effects in Th 5p and 5s X-ray
photoelectron spectra of ThO2. JETP Lett. 2021, 114, 609–615. [CrossRef]

45. Maslakov, K.I.; Yarzhemsky, V.G.; Teterin, Y.A.; Teterin, A.Y.; Ivanov, K.E. Complex XPS spectra structure of U5p electrons and the
uranium oxidation state. Radiochemistry 2020, 62, 608–616. [CrossRef]

46. Amusia, M.Y.; Chernysheva, L.V. Computation of Atomic Processes; IOP Publishing: Bristol/Philadelphia, PA, USA, 1997;
ISBN 9780750302296.

47. Amusia, M.Y.; Chernysheva, L.V. Computation of atomic and molecular processes. In Introducing the ATOM-M Software Suite;
Springer: Berlin/Heidelberg, Germany, 2021; p. 456, ISBN 978-3-030-85142-2.

48. Lindgren, I.; Morrison, J. Atomic Many-Body Theory; Springer: Berlin/Heidelberg, Germany, 1982; p. 472. ISBN 978-3-642-96614-9.
49. Judd, B.R. Second Quantization and Atomic Spectroscopy; Baltimore MD Johns Hopkins press: Baltimore, MD, USA, 1967;

ISBN 0801803225/9780801803222.

258



Atoms 2022, 10, 73

50. Walters, D.L.; Bhalla, C.P. Nonrelativistic auger Rates, X-ray rates, and fluorescence yields for the K shell. Phys. Rev. A 1971,
3, 1919–1926. [CrossRef]

51. Sobelman, I.I. Atomic spectra and radiative transitions. In Chemical Physics Book Series (CHEMICAL, V. 1); Springer:
Berlin/Heidelberg, Germany, 1979; p. 308, ISBN 978-3-662-05905-0.

259





Citation: Fritzsche, S.; Böning, B.

Strong-Field Ionization Amplitudes

for Atomic Many-Electron Targets.

Atoms 2022, 10, 70. https://doi.org/

10.3390/atoms10030070

Academic Editors: Anatoli Kheifets,

Gleb Gribakin and Vadim Ivanov

Received: 3 June 2022

Accepted: 27 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atoms

Article

Strong-Field Ionization Amplitudes for Atomic
Many-Electron Targets

Stephan Fritzsche 1,2,3,* and Birger Böning 1,2

1 Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena, Germany; b.n.boening@hi-jena.gsi.de
2 GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
3 Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
* Correspondence: s.fritzsche@gsi.de

Abstract: The strong-field approximation (SFA) has been widely applied in the literature to model
the ionization of atoms and molecules by intense laser pulses. A recent re-formulation of the SFA
in terms of partial waves and spherical tensor operators helped adopt this approach to account for
realistic atomic potentials and pulses of different shape and time structure. This re-formulation
also enables one to overcome certain limitations of the original SFA formulation with regard to the
representation of the initial-bound and final-continuum wave functions of the emitted electrons. We
here show within the framework of JAC, the Jena Atomic Calculator, how the direct SFA ionization
amplitude can be readily generated and utilized in order to compute above-threshold ionization (ATI)
distributions for many-electron targets and laser pulses of given frequency, intensity, polarization,
pulse duration and carrier–envelope phase. Examples are shown for selected ATI energy, angular
as well as momentum distributions in the strong-field ionization of atomic krypton. We also briefly
discuss how this approach can be extended to incorporate rescattering and high-harmonic processes
into the SFA amplitudes.

Keywords: atomic; Coulomb–Volkov; direct amplitude; distorted-Volkov; electron emission; Jena
Atomic Calculator; partial-wave representation; relativistic; strong-field approximation; strong-
field ionization

1. Introduction

During the past decades, strong-field ionization measurements in atoms and molecules
have led to numerous insights into the electron dynamics on short time scales. In particular,
several nonlinear optical processes, such as the above-threshold ionization (ATI, [1,2]),
tunneling ionization, high-order harmonic generation (HHG, [3,4]), or the nonsequential
double ionization (NSDI, [5]) have attracted much interest and can be readily controlled by
tailoring the temporal shape and duration of ultrashort laser pulses. In ATI, for example,
the energy and momentum distributions of photoelectrons are often recorded for different
targets and (short) laser pulses of different frequency ω, intensity I, polarization ε, pulse
duration (i.e., number of laser cycles, np), or by even steering the carrier–envelope phase
φ (CEP). In contrast to the detailed modeling of the driving laser pulse, however, the target
atoms are typically described in rather a simplified manner, and especially the initial state
of the active electron is often just taken as a hydrogenic 1s state [6,7]. Because of this and
further simplifications in modeling the target atoms, many observations are still understood
only qualitatively so far.

Figure 1a displays the prototypical geometry and observables of an ATI experiment.
Here, atoms are exposed to an intense driving laser pulse with given intensity I, wavelength
λ, ellipticity ε or, perhaps, even a superposition of such light fields. A detector D records
the photoelectrons that are emitted due to the interaction of laser pulse with the target
atoms. Routinely, the photoelectron energy distributions are recorded at a fixed detector
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position within the x − y polarization plane (Figure 1b). The observed photoelectron energy
spectra then exhibit ATI peaks that are spaced by the photon energy. If the detector position
is varied within the polarization plane, azimuthal angular distributions can be recorded for
photoelectrons of selected energy (Figure 1c). These angular distributions strongly depend
not only on the shape of the driving laser pulse but also on the outgoing electron wave in
the potential of the photoion. In addition, the full photoelectron momentum distributions
are often measured within the polarization plane as shown in Figure 1d.

(a) (b) (c) (d)

z, k

p
x

y

p

D

p

Figure 1. ATI experiment and typical observables. (a) geometry of an ATI experiment: An atom is
irradiated by a strong laser pulse (red) of intensity I and wavelength λ that propagates along the
z-axis and is polarized with ellipticity ε within the x − y plane . Due to the interaction with the
laser field, a photoelectron is emitted with momentum p = (p, ϑp, ϕp) in spherical coordinates and
measured at the detector D. (b) For a given position of the detector within the polarization plane,
the measured photoelectron energy distributions exhibit several ATI peaks that are just spaced by
the photon energy. (c) For a few-cycle driving laser pulse, the angular distribution of photoelectrons
with fixed energy reveals an asymmetry which encodes details of the pulse structure and the electron
continuum. (d) In addition, full photoelectron momentum distributions are often recorded within the
polarization plane.

While any reliable theory of the strong-field (ionization) processes from above must
have its roots in the time-dependent Schrödinger equation, a direct (numerical) integration
of this equation becomes unfeasible already for the three-dimensional motion of a single
(active) electron in a static soft-core potential, not to speak about the many-electron nature
of most targets [8]. Therefore, a number of analytical methods have been developed as
well and nowadays provide good insights into the underlying electron dynamics. In
particular, the strong-field approximation (SFA) [9–11] provides an efficient single-electron
treatment and has become, despite several limitations in its original form, a very valuable
tool for computing the ATI and HHG spectra for a wide range of laser parameters and
targets [12–14]. Here, however, a re-formulation of the SFA in terms of partial waves and
spherical tensors [15] is applied and help adopt this method towards modern strong-field
measurements. This re-formulation enables one to incorporate all central features of the
incident laser pulse as well as the electronic structure of the target atoms.

To support the analysis of different strong-field measurements, this work reports an
implementation of the (direct) SFA amplitude in its partial-wave representation within
the framework of JAC, the Jena Atomic Calculator [16]. This toolbox, which facilitates the
(relativistic) computation of atomic structures and processes [17,18], has been expanded
here in order to model the initial-bound and final-Volkov states in the computation of strong-
field amplitudes. Apart from the active-electron waves, however, our implementation
below is flexible also in choosing the polarization, shape (envelope) and even the CEP
phase of the driving laser pulse. Indeed, all these features have been found to be (very)
crucial to further adopt the theoretical modeling of strong-field ionization processes to
ongoing experiments.

The paper is structured as follows: After a brief discussion of the SFA and the direct
amplitude in terms of partial waves in Section 2, emphasis is placed on the implemen-
tation within the framework of JAC as well as the role of appropriate data structures for
simplifying the communication with and within the program. Section 3 then explains and
discusses how the different energy, angular and momentum distributions can be obtained
quite readily by just specifying the initial and final levels of the target atom as well as the
parameters of the laser pulse. This includes the choice of atomic potential and the Volkov
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states in the evaluation of the amplitudes. Finally, a short summary and conclusions are
given in Section 4, with emphasis on possible extensions of the code towards rescattering
phenomena, or the computation of harmonic spectra.

2. Strong-Field Amplitudes and Probabilities

2.1. Brief Account of the Strong-Field Approximation

The SFA has been known as perhaps the most straight avenue for modeling strong-field
ionization processes and for analyzing most of the associated ATI spectra and momentum
distributions. In this approximation, a (so-called) active electron is assumed to undergo
a transition from its initial bound state |ψi(t)〉 into the laser-dressed continuum

∣∣χ p(t)
〉

owing to its interaction with the laser pulse (cf. Figure 1a), while the motion of all other
electrons of the target is typically assumed to be unaffected. Not much need to be said
here about the basic SFA theory, which can be found in various texts [12,13]. In this
approximation, the probability for the strong-field ionization of atoms and for finding a
photoelectron with asymptotic momentum p at the detector,

P (p) = p |T (p)|2, (1)

can then be expressed in terms of transition amplitudes as [6]

T(p) = T0(p) + T1(p),

T0(p) = −i
∫ ∞

−∞
dτ
〈
χp(τ)| Vle(r, t) |ψi(τ)

〉
, (2)

T1(p) = (−i)2
∫ ∞

−∞
dτ

∫ ∞

τ
dτ′ 〈χp(τ

′)
∣∣V(r) U le(τ

′, τ) Vle(r, τ)
∣∣ψi(τ)

〉
, (3)

and where Vle(r, t) refers to the laser–electron interaction, U le(t′, t) the time evolution and
V(r) to the atomic potential as seen by the outgoing electron.

Indeed, the two (strong-field) amplitudes T0(p) and T1(p) can be readily interpreted
in terms of a (re-) scattered photoelectron and are often referred to as the direct and
rescattering amplitudes, respectively. In this work, we shall focus especially on the direct
amplitude T0(p) that describes those photoelectrons which are directly released from the
target atom by the laser potential, Vle(r, t) |ψi(t)〉, and then freely propagate within the laser
field as Volkov solution

∣∣χp

〉
, until they reach the detector. Indeed, this amplitude often

provides a good approximation for most strong-field ionization processes and, in particular,
if the laser field is not linearly polarized. Typically, the following assumptions are made to
further simplify the amplitude (2):

1. The initial-bound state |ψi(t)〉 is entirely determined by the atomic potential V(r) and
is not affected by the laser field.

2. The photoelectron with asymptotic momentum p arrives as plane-wave at the detector,
i.e.,

∣∣χp(t → ∞)
〉
= |p〉.

3. Once the electron is released from the atom, the atomic potential does not affect its
(electronic) motion within the continuum.

Often, moreover, a Coulomb potential V(r) = − Z (eff)/r = −√ 2 Ip/r has been
applied, in line with the ionization potential of the target atoms, and the initial state
|ψi(t)〉 has been taken just as 1s ground state orbital in this (Coulomb) potential. With
these assumptions in mind, the momentum distribution of the photoelectrons can then be
expressed by a closed (analytical) formula. Obviously, however, these assumptions neglect
both a proper representation of the initial state of the atoms as well as the (static) potential
of the photoion upon the outgoing electron wave (continuum) and, hence, quite major
parts of the electronic structure of the target atoms.

Several, if not most, of these assumptions can be easily released, if the initial and
final states are consequently expressed in terms of partial waves as typical for atomic
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structure theory [15]. In such a partial wave expansion, the representation of the initial
bound and (Volkov) continuum states can be incorporated along with the parameterization
of the short an intense laser pulses. It is this representation of the (direct) transition
amplitude T0(p) on which we shall focus in the implementation below and which paves
the way for extending the strong-field theory towards the study of non-dipole contributions
in light-atom interactions as well as towards many-particle correlations in strong-field
ionization processes.

2.2. Partial-Wave Representation of Strong-Field Amplitudes
In the derivation of the SFA amplitude ((2) and (3)), indeed, no additional assumptions

have to be made about the form of the atomic potential V(r) or about the potentials Φ(r, t)
and A(r, t) of the driving laser field, but which—of course—affect the Volkov states

∣∣χp

〉
.

If, for the coupling of the radiation field, we restrict ourselves to the dipole approximation
[ A(r, t) ≈ A(t) ] and the velocity gauge [ Φ(r, t) = 0 ], the vector potential of an elliptically-
polarized laser pulse can be written in terms of its spherical tensor components as

A(t) = Re {Ac(t)} =
1
2
(Ac(t) + A∗

c (t)), Ac(t) = Ao u f (t) e− i (ωt+ φ (CEP)) (4)

and where Ao denotes the (real-valued) amplitude, f (t) the pulse envelope, ω = 2π c/λ
the fundamental frequency, and where φ (CEP) refers to the carrier–envelope phase of the
laser pulse. In this notation, moreover, the (complex) polarization unit vector

u =
1√

1 + ε 2

(
ex + i ε ey

)
(5)

defines the orientation of the polarization ellipse in terms of the ellipticity −1 ≤ ε ≤ 1.
The vector potential (4) therefore implies already all the properties ω, I, f (t), ε and φ (CEP)

of the laser field which can be controlled experimentally.
A partial-wave representation of the amplitudes ((2) and (3)) also enables one to adapt

both the initial bound state |ψi〉 and the final continuum state to the target potential of
interest [15,19]. This is readily achieved, for instance, by using (self-consistent) solutions
from atomic structure theory. For the outgoing photoelectron

∣∣χp(t)
〉

=
1

(2π) 3/2 e−i SV (t)
∣∣∣φ(A)

p

〉
, (6)

moreover, one only needs to replace the partial wave
∣∣∣φ(A)

p

〉
in the expansion of a plane-

wave Volkov state by the corresponding solutions of either a Coulomb–Volkov or distorted-
Volkov state in order to account for a realistic potential of the target, including the associated
Coulombic and non-Coulombic phase shifts [20,21]. Here, we shall provide only a brief
discussion of the theory, just enough to follow our implementation below, while all further
details are given in Refs. [15,19].

For the direct SFA transition amplitude (2), Equations (23) and (24) of reference [15]
display a rather lengthy formula that is written in a basis of well-defined total angular
momenta for the initially bound and the final (photo-) electron. This expression depends
explicitly on the Volkov phase and all the parameters of the driving laser pulse, and it
also accounts for the spatial dependence of the active electron in terms of the reduced
one-particle matrix elements

〈
εp�p jp‖ p ‖n�j

〉
of the momentum operator, as typical for

atomic structure theory. The advantage of such an expression in a spherical basis arises
from the—prior and separate—integration over all radial and spherical coordinates. This
expression therefore also enables one to readily incorporate and discuss different contri-
butions from the electron–photon interaction and the representation of the active electron
without any need to re-derive the transition amplitude(s) for every target potential and/or
laser (pulse) configuration separately. Below, we shall focus especially upon realistic (single-
electron) initial states and the improved representation of the continuum for the outgoing
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photoelectron. It is this partial-wave representation of the direct SFA amplitude which
makes the present extension an integral part of the JAC toolbox and which goes well beyond
of what has been used originally in the SFA. However, since the expression in Ref. [15] is
still restricted to the electric-dipole approximation, it neither accounts for the magnetic
field nor any spatial dependence of the electric field, though this can likely be done as well
(cf. Section 4).

2.3. Implementation of the (Direct) Strong-Field Amplitude

Like in atomic structure theory, a partial-wave representation of all (strong-field)
amplitudes enables one to deal quite independently with atomic potentials, the Volkov
state for the outgoing electron or the laser–electron interaction in terms of the given laser
parameters. Such a representation also helps identify the building blocks for computing
the photoelectron spectra and/or momentum distributions, as they are observed exper-
imentally. In the JAC toolbox, we therefore aim to distinguish between the target and
laser parameters as the input of a computations, and the generated observables (spectra)
as output. A simple access to all individual input parameters will enable us to compute
the strong-field ionization amplitudes in quite different approximations. Although the
current implementation is still restricted to the direct SFA amplitude in velocity gauge, the
same or very similar building blocks will occur if other amplitudes or gauges are to be
considered in the future. The use of partial waves and spherical tensors even ensures that
these amplitudes can be readily combined with atomic structure codes to further include
electronic correlations and relativistic contributions to the strong-field ionization studies.

Not much need to be said about JAC itself, the Jena Atomic Calculator [16] that
supports atomic (structure) calculations of different kind and complexity and that has
been summarized at various places [22–24]. Apart from energies and wave functions
for open-shell atoms and ions, this toolbox also helps compute a good number of their
excitation and decay processes. With the design and implementation of JAC [25], we
moreover aim for establishing a descriptive language that (i) is simple enough for both, a
seldom or more frequent use of this toolbox, (ii) emphasizes the underlying atomic physics
and, furthermore, (iii) avoids most technical slang as common to many other electronic
structure codes. The implementation of JAC is based on Julia [26,27], a recently developed
programming language for scientific computing, and supports its use without much prior
knowledge about neither the language nor the code itself.

Figure 2 displays a few selected atomic processes that are presently supported by JAC,
and which are shown together with useful features and control parameters for calculating
strong-field amplitudes. The set of parameters in the right panel of Figure 2 hereby indicates
how between different pulses we shall distinguish in these computations geometries and/or
gauges for the coupling of the radiation field, and as far they have been worked out until
the present. In particular, the initial bound and final Volkov states of the (photo-) electron
just appear in the reduced matrix elements

〈
εp�p jp‖ p ‖n�j

〉
, and can be taken either as a

hydrogenic orbital, scaled upon the ionization potential, or as realistic one-electron wave
function. Here, the continuum orbitals are generated in the static potential of the photoion
and with energies as measured at the detector [28].

Special care has to be taken about the envelope of the laser pulses. In a spherical-wave
expansion, this envelope enters the direct amplitude in terms of (so-called) pulse-shape
integrals F1[±ω; f ; p] and F2[ f ; p], cf. Ref. [15]. These one-dimensional, (time) integrals are
often obtained numerically but can be evaluated also analytically for continuous beams and
a few other forms of the envelope. In our implementation below, the envelope (shape) of
the laser pulse is accessed by a proper (abstract) data type, quite similar to the frequency, in-
tensity, number of cycles and the polarization of the incident pulses. In typical applications
of JAC, one needs to select these parameters based on the given setup of the experiment
and different practical considerations in order to keep the computations feasible.
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Figure 2. Selected applications of the JAC toolbox that help calculate atomic structures and processes
as well as strong-field ionization amplitudes in various approximations. Apart from choosing between
typical strong-field observables, the Volkov states and the parameterization of the laser pulses can be
controlled rather flexibly. See Refs. [16,25] for a detailed account of all other features of this toolbox.

2.4. Data Types for Modeling Photoelectron Distributions and Above-Threshold Experiments

From a physics viewpoint, we normally wish to trace back the simulation of different
spectra and photoelectron distributions to just computing the (direct) SFA amplitude from
above, though for specifically selected target atoms, approximation of wave functions and
parameters of the laser pulse. Obviously, this requires simple access to all these data as well
as special care to bring them together with the internal calls of the program. To facilitate the
communication with and the data transfer within the program, the JAC toolbox is built upon
a large number of data structures in order to specify useful and frequently recurring objects
in such computations, and which also establish their language elements. Two prominent
examples for such data structures, that frequently appear in atomic structure theory, are
an Orbital for specifying the quantum numbers and radial components of single-electron
orbital functions, or a Level for the full representation of an approximate initial or final
bound state of the target atoms, and which itself comprises all information about the
orbitals, the coupling of the angular momenta and the mixing of the many-electron target
states. These target states are typically obtained self-consistently in a Dirac–Fock–Slater
potential and hence are based on orbitals in line with the given target. JAC’s explicit set of
data structures has been enlarged for the present update of the code by several types and
now helps compute, analyze and explore the desired photoelectron spectra for different
laser pulses and targets. In total, there are about 250 of these data structures in JAC, though
most of them remain hidden to the user.

To model different strong-field ionization measurements, we wish (and need) to char-
acterize especially the incident laser pulse in terms of its frequency, intensity, shape and
polarization as well as the observables (spectra) to be simulated. In addition, we wish
to control the target potentials and representation of the Volkov states in the strong-field
amplitude. All this input is very central to the implementation and must be readily accessi-
ble by the given hierarchy of data structures. While we shall not explain these structures
in all detail here, Figure 3 displays a few of them from JAC’s Pulse and StrongField
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modules. The abstract type Pulse.AbstractEnvelope (middle panel), for example, just
deals with the envelope of the laser pulse and comprises various concrete types for spec-
ifying a particular shape, pulse duration or number of cycles. Similarly, the data type
StrongField.AbstractSFAObservable enables one to specify the observable of choice and
its resolution. All this information about the observable, target and pulse parameters
finally define (an instance of) a StrongField.Computation (lower panel), and which can
be utilized in JAC analogue to the previously implemented Atomic.Computation [16,29] or
Cascade.Computation [30,31].

abstract type StrongField.AbstractSFAObservable ... defines an abstract as well as a number of

concrete data types for observables that can be computed by means of the implemented SFA

amplitude.

+ struct SfaEnergyDistribution ... to compute an energy spectrum of the photoelectrons.

+ struct SfaMomentumDistribution ... to compute a momentum distribution.

+ struct SfaAzimuthalAngularDistribution ... to compute an angular distribution of photoelectrons

as function of the azimuthal angle phi but for a

fixed energy and polar angle.

+ struct SfaPolarAngularDistribution ... to compute the angular distribution as function of

theta but for fixed energy and phi.

StrongField.SfaEnergyDistribution <: StrongField.AbstractSFAObservable, etc.

abstract type Pulse.AbstractEnvelope ... defines an abstract type to deal with the envelope

of a laser pulse; it comprises the following (concrete) subtypes:

+ InfiniteEnvelope ... to represent an infinte (plane-wave) pulse.

+ RectangularEnvelope ... to represent a finite rectangular pulse.

+ SinSquaredEnvelope ... to represent a finite sin^2 pulse.

+ GaussianEnvelope ... to represent a Gaussian light pulse.

Pulse.RectangularEnvelope <: Pulse.AbstractEnvelope, etc.

struct StrongField.Computation ... defines a type for the computation of strong-field amplitudes

and observables; it enables the user to specify all the parameters as they are typically known

from strong-field ionization experiments.

+ observable ::AbstractSFAObservable ... SFA obserable to be calculated in this run.

+ nuclearModel ::Nuclear.Model ... Model, charge and parameters of the nucleus.

+ grid ::Radial.Grid ... Radial grid to be used for the computation.

+ initialLevel ::Level ... Initial level of the atom.

+ finalLevel ::Level ... Final level of the atom.

+ beam ::Pulse.AbstractBeam ... Type and properties of the incident pulse.

+ envelope ::Pulse.AbstractEnvelope ... Envelope of the incident light pulse.

+ polarization ::Basics.AbstractPolarization ... Polarization of the pulse.

+ volkov ::AbstractVolkovState ... Approach for the Volkov states.

+ settings ::StrongField.Settings ... Settings to control the SFA computation.

Figure 3. Selected data structures of the JAC toolbox that help specify and perform a
StrongField.Computation (lower panel). Apart from the observable of interest (upper panel), the nu-
clear model, radial grid as well as the initial and final level of the target atom, one needs to specify the
properties of the laser pulse in terms of its beam type, envelope (middle panel) and the polarization
of the incident light. Moreover, the user can select the Volkov state approach and a number of further
settings. See Table 1 for other data types that are closely related to StrongField.Computations.

Finally, Table 1 displays several other data structures that are relevant as well for the
computation and analysis of strong-field photoelectron distributions. They are explained
only in brief, while further details can be obtained from JAC’s User Guide [25] or by just
using Julia’s help facilities [32]. The definition and hierarchy of these data structures how-
ever nicely illustrate how they help implement different strong-field ionization scenarios
and, hence, a wide range of potential applications in atomic and atto-second physics. In
the next section, we make use of these data types to simulate various energy, angular and
momentum distributions for a krypton target.
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Table 1. Selected data structures of the JAC toolbox that are relevant for StrongField.Computations.
Here, only a brief explanation is given, while further details can be found by using Julia’s help
facilities.

Struct & Brief Explanation.

Basics.AbstractPolarization: defines an abstract type to deal with different polarizations of light and electron beams; it presently
comprises the concrete subtypes: LinearPolarization, LeftCircular, RightCircular, LeftElliptical, RightElliptical.

ManyElectron.Level: defines a type for an atomic level in terms of its quantum number, energy and with regard to an explicitly
specified relativistic basis.

Pulse.AbstractBeam: defines an abstract type to deal with various basic laser pulses as they often characterized in terms of their
amplitude, frequency, carrier–envelope phase, etc. In general, the basic beam properties are independent of the (pulse) envelope and
the polarization properties which are handled and communicated separately (to and within the program).

Pulse.AbstractEnvelope: defines an abstract type to deal with different envelopes of the laser pulses with regard to their shape, pulse
duration or number of cycles; it comprises the concrete subtypes: InfiniteEnvelope, RectangularEnvelope, SinSquaredEnvelope
and GaussianEnvelope.

StrongField.AbstractVolkovState: defines an abstract type to specify the Volkov states in the computation of SFA amplitudes; it
comprises the concrete types: FreeVolkov, CoulombVolkov, DistortedVolkov.

StrongField.SphericalAmplitude: to compute and store the amplitude at a given energy-angular point (energy, theta, phi) in the
momentum space of the outgoing electron.

StrongField.Settings: specifies further settings for the computation of SFA amplitudes and observables, including the choice of
the multipole field, gauge and several others.

3. Energy and Momentum Distributions for Atomic Krypton

In the literature, the SFA has been frequently applied for comparing the energy and
momentum distributions with experiments and for studying pulses and targets of quite a
different sort. In these computations, more often than not, the active electron has initially
been assumed to be in a hydrogenic 1s state, and by just matching the ionization potential to
the target of interest. However, such a simple approach provides only little insight into the
role that the target atoms play in strong-field ionization. Here, we wish to demonstrate that
our partial-wave representation of the SFA amplitude enables us to adopt the initial-bound
and final-Volkov states to realistic target potentials. We also show how the ATI spectra and
momentum distributions can be obtained for pulses of different intensity, polarization and
pulse duration. All these computations are performed by applying the JAC toolbox [16],
which integrates the electronic structure and a good deal of atomic processes within a single
computational framework, and which has now been expanded to facilitate the simulation of
strong-field ionization distributions. For the sake of convenience, all simulations below are
performed for krypton (Ip = 14 eV) and a right-circularly polarized, np = 8 cycle driving
laser pulse with wavelength λ = 800 nm, intensity I = 1014 W/cm2 and carrier–envelope
phase φ (CEP) = 0. Here, we shall not compare our implementation with experiment or
previous computations, which have been done recently for a number of other targets [19].

3.1. Above-Threshold Energy Spectra

Often, the observed ATI spectra can be qualitatively reproduced by simply using the SFA
and plane-wave Volkov continuum states, since the peak structure of these photoelectron
spectra itself arises from the interaction of the (quasi-) free electron with the electric field
of the ionizing laser pulse. For these reasons, most energy spectra also exhibit distinct
peaks, which are just spaced by the photon energy of the incident laser beam. These peaks
become easily visible by measuring the photoelectron energy for a fixed azimuthal angle
ϕo along some line in the px − py polarization plane. Besides the selected laser parameters,
these energy spectra depend of course also on the target atoms as well as on how the
photoelectrons are described on their way to the detector, including the Volkov continuum
and, possibly, even a re-scattering of the photoelectrons.
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The ATI energy spectra of the strong-field photoelectrons can be modeled also by
the present extension to the JAC toolbox. Figure 4 displays the (Julia) input which needs
to be prepared by the user and which enables one to calculate such spectra for different
targets and pulses. In this input, we have assumed that the 4p 6 1S0 ground level of atomic
krypton and the 4p 5 2P1/2,3/2 final levels of the photoion have been computed before
by the JAC toolbox and are just provided by the variables initialLevel and finalLevel.
Here, we make use of a slightly larger charge of the nucleus in order to adopt the 4p
ionization potential to experiment. To characterize the laser pulse, moreover, we provide
the wavelength, intensity and carrier–envelope phase and assume a sin2 envelope as well
as a right-circularly polarized plane-wave beam. Some of these given parameters first
need to be converted to atomic units in order to be applicable in the computation of
the field amplitude. We also specify here the velocity gauge and the electric-dipole (E1)
interaction, even if these parameters must not be changed in the present implementation.
The choice of a hydrogenic orbital with scaled nuclear charge can be made by a boolean in
the StrongField.Settings().

nuclearModel = Nuclear.Model(36.53)

grid = Radial.Grid(Radial.Grid(false), rnt = 4.0e-6, h = 5.0e-2, hp = 2.0e-3, rbox = 20.0)

# Choose electron continuum in the laser field
volkov = StrongField.FreeVolkov()

# Define laser beam parameter
wavelength = 800.; intensity = 1e14; CEP = 0.;

envelope = Pulse.SinSquaredEnvelope(8)

polarization = Basics.RightElliptical(1)

omega = convertUnits("energy: from wavelength [nm] to atomic", wavelength)

intensity = convertUnits("intensity: from W/cm^2 to atomic", intensity)

A0 = Pulse.computeFieldAmplitude(intensity, omega)

beam = Pulse.PlaneWaveBeam(A0, omega, CEP)

# Spectral observations and settings
observable = StrongField.SfaEnergyDistribution(pi/2, 0.0, 200, 10*omega)

sfaSettings = StrongField.Settings([E1], "VelocityGauge", true, true, false, false, true)

comp = StrongField.Computation(observable, nuclearModel, grid, initialLevel, finalLevel,

beam, envelope, polarization, volkov, sfaSettings)

StrongField.perform(comp, output=true)

Figure 4. Julia input for generating the black-solid ATI spectrum in the left panel of Figure 5 for
a krypton target, if irradiated by an np = 8 cycle sin2 laser pulse with a central wavelength of
λ = 800 nm and intensity I = 10 14 W/cm2. The laser pulse is right-circularly polarized and has a
carrier–envelope phase φ (CEP) = 0. This input describes the complete strong-field computation, but
where the 4p 6 1S0 ground and the final 4p 5 2P1/2,3/2 levels of krypton are assumed to be generated
before by the JAC toolbox. Although no attempt is made to explain this input in all detail, this
figure nicely demonstrates how readily JAC can be utilized to generate rather different spectra and
distributions. See text for further explanations.

In the input above, we finally also specify as observable an SfaEnergyDistribution(),
and which is to be calculated for ϑ = π/2 and ϕ = 0 (i.e., along the x-axis), and
for 200-electron energies in the interval 0 ≤ ε kin ≤ 10 ω ≈ 15 eV. All this input to-
gether determines the (strong-field) computation comp::StrongField.Computation and
can be readily adopted to many other experimental scenarios. All that is needed in JAC

is to perform(comp, output=true) this computation, and where the optional parameter
output=true just tells JAC to return the calculated data (amplitudes) to the user for printing
and post-processing.

Figure 5 displays the photoelectron energy spectra, emitted along the x-axis, for a
krypton target and a right-circularly polarized laser pulse. The left panel shows the spectra
as obtained for a computed with a hydrogenic 1s initial wave function with adopted
ionization potential and for a plane-wave Volkov continuum (black-solid curve) as well
as a Coulomb–Volkov continuum (red dashed curve). On the right panel, in contrast,
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the spectra are computed for an initial 4p orbital of neutral krypton and a plane-wave
Volkov continuum (black-solid curve), a Coulomb–Volkov continuum (red-dashed curve)
as well as a distorted-Volkov continuum (blue-dotted curve). In all these computations, a
right-circularly polarized sin2 pulse of wavelength λ = 800 nm, intensity I = 1014 W/cm2,
carrier–envelope phase φ(CEP) = 0 and with just np = 8 cycles has been utilized.
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Figure 5. Photoelectron energy spectra, emitted along the x-axis within the polarization plane, for a
neutral krypton target and a right-circularly polarized laser pulse. The left panel shows the spectra
as computed with a hydrogenic 1s initial wave function with adopted ionization potential and
for a plane-wave Volkov continuum (black-solid curve) as well as a Coulomb–Volkov continuum
(red-dashed curve). On the right panel, in contrast, the spectra are computed for an initial 4p orbital
of neutral krypton and a plane-wave Volkov continuum (black-solid curve), a Coulomb–Volkov
continuum (red-dashed curve) as well as a distorted-Volkov continuum (blue-dotted curve). In all
these computations, a right-circularly polarized sin2 pulse of wavelength λ = 800 nm, intensity
I = 1014 W/cm2, carrier–envelope phase φ(CEP) = 0 and with np = 8 cycles has been utilized.

Input quite similar to Figure 4 can be employed also for studying the angle and
momentum distributions of photoelectrons for different laser pulses and targets. While no
further input data will be shown below, we refer the reader for details to the User Guide
and the online documentation of the JAC program. Moreover, rather moderate changes
to this input will be sufficient in the future to expand the StrongField module to other
gauges, amplitudes or many-electron features. While such an expansion of the code indeed
appears straightforward, major effort will still be needed for its implementation and testing.

3.2. Photoelectron Angular Distribution for Elliptically-Polarized Laser Pulses

In the electric-dipole (E1) approximation, the angular distribution of the photoelectrons
is restricted to the x − y polarization plane and just reflects at fixed photoelectron energy
the ionization probability in Equation (1) for different azimuthal angles 0 ≤ ϕ ≤ 360◦. If,
moreover, the laser field dominates the electron dynamics in the continuum, the observed
photoelectron angular distribution (PAD) should also reflect the symmetry of the vector
potential of the laser beam. In practice, however, a Coulomb asymmetry in the PAD was
(first) observed by Goreslavski et al. [33] in the ATI of xenon gas targets and, since then, has
been found to be a valuable testbed for improving theory. For lithium, argon and xenon,
for example, the SFA theory was shown to reproduce this asymmetry, if a target-specific
initial orbital function is chosen along with a distorted-Volkov continuum for the active
electron [34].

Figure 6 displays different photoelectron angular distributions in the polarization
plane (ϑp = π/2) for a krypton target. Angular distributions are shown for elliptically-
polarized laser pulses with ε = 0.36 (left panel) and ε = 0.56 (right panel) at fixed
photoelectron energy εp ≈ 2.9 ω according to the third ATI peak in Figure 5. Different
approximations are compared for these angular distributions: a hydrogenic 1s initial orbital
together with a plane-wave Volkov continuum (black-solid curves); a self-consistent initial
4p orbital of neutral krypton together with a Coulomb–Volkov continuum (red long-dashed
curves); the same initial 4p orbital but together with a distorted-Volkov continuum (blue-
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dashed curves). All these distributions are normalized on their maximum, while all other
laser parameters are the same as in Figure 5. Indeed, a self-consistent 4p orbital of neutral
krypton together with a Coulomb–Volkov continuum (red long-dashed curves) leads to
a clear rotation of the PAD as mentioned above. Moreover, the PAD no longer exhibits
an inversion symmetry with regard to the origin because of the short duration of the
laser pulse. If, in addition, the Coulomb–Volkov continuum is replaced by an distorted-
Volkov continuum (blue-dashed curves), and which accounts for an outgoing electron in
the potential of the Kr+ photoion, the rotation angle still changes rather remarkably. In
Ref. [19], it was shown that such a distorted-Volkov continuum (often) leads for different
targets to better agreement with experiment.
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Figure 6. Photoelectron angular distributions in the polarization plane (ϑp = π/2) for a krypton
target. Angular distributions are shown for elliptically-polarized laser beams with ε = 0.36 (left

panel) and ε = 0.56 (right panel) at fixed photoelectron energy εp ≈ 2.9 ω according to the third ATI
peak in Figure 5. Different approximations are compared for these angular distributions: a hydrogenic
1s initial orbital together with a plane-wave Volkov continuum (black-solid curves); a self-consistent
initial 4p orbital of neutral krypton together with a Coulomb–Volkov continuum (red long-dashed
curves); the same initial 4p orbital but together with a distorted-Volkov continuum (blue-dashed
curves). All distributions are normalized on their maximum, while all other laser parameters are the
same as in Figure 5.

3.3. Photoelectron Momentum Distribution for Few-Cycle Laser Pulses

Theoretical photoelectron momentum distributions (PMD) have been calculated in
the literature by means of quite different methods, and by making use of even a larger
number of case-specific modifications to these methods. Generally, the experimentally
observed symmetries of the PMD cannot be explained so readily by just applying a plane-
wave Volkov continuum [33], but can be improved further if the Coulomb potential of the
residual ion is taken into account. In our implementation of the SFA direct amplitude, this
is achieved by replacing the plane-wave Volkov continuum by either Coulomb–Volkov
or distorted-Volkov states. For the low-energy photoelectrons with (say) εp � 2ω, the
ionization probability is then often enhanced by up to an order of magnitude, if the ionic
charge just increases from Z = 0 to 1. This has been explained by the attractive Coulomb
potential of the residual ion that pulls the electron back to the ion and hence reduces
its kinetic energy. The low-energy part of the ATI spectra can be further improved by
adding a short-range potential to the (long-range) Coulomb potential and by making use
of distorted-Volkov states.

Figure 7 shows the photoelectron momentum distributions in the polarization plane
(ϑp = π/2) for the strong-field ionization of a krypton target. Momentum distributions are
shown for circularly-polarized laser beams with three different CEP phases: φ(CEP) = 0 ◦

(left panel), φ(CEP) = 45 ◦ (middle panel) and φ(CEP) = 90 ◦ (right panel) and by applying
a self-consistent initial 4p orbital of neutral krypton together with a plane-wave Volkov
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continuum. All further laser parameters are the same as in Figure 5. Obviously, the PMD in
this figure exhibits a (very) clear rotation since the photoelectrons are preferably emitted in
the polarization plane along the maximum of the vector potential [6], and which changes
with the carrier envelope phase φ(CEP). It will be interesting to explain with JAC in future
work how the Coulomb asymmetry and the CEP dependence act together upon the angular
or momentum distributions, and, especially of the initial-bound and distorted-Volkov
continuum states of different atomic targets, are taken properly into account. In these
studies, both the Coulomb and short-range interactions can be easily incorporated into the
continuum by just replacing the radial wave functions of the active electron.

Figure 7. Photoelectron momentum distributions in the polarization plane (ϑp = π/2) for a krypton
target. Momentum distributions are shown for circularly-polarized laser beams with three different
CEP phases: φ(CEP) = 0 ◦ (left panel), φ(CEP) = 45 ◦ (middle panel) and φ(CEP) = 90 ◦ (right panel)
and by applying a self-consistent initial 4p orbital of neutral krypton together with a plane-wave
Volkov continuum. All further laser parameters are the same as in Figure 5.

4. Conclusions and Outlook

Up to the present, the SFA has been found as perhaps the most powerful method
for predicting or analyzing the electron dynamics in strong-field ionization. Often, this
approximation helps describe features in the observed electron distributions even quantita-
tively, if the initial-bound and final-continuum states of the photoelectron are well adopted
to the target atoms, and if combined with a proper parameterization of the laser field.
With the present implementation of the direct SFA amplitude into the JAC toolbox, this
method can now be applied to different targets and strong-field scenarios. In particular, the
implementation of the SFA in the partial-wave representation enables us to readily control
(and replace) the wave functions and various details about the laser–electron interaction. It
also enables us to extend this implementation for incorporating further interactions and
mechanisms into the modeling.

Detailed calculations are performed for a krypton target as well as for different ATI
spectra and PMD. These examples clearly show how the target potential affects the photo-
electrons on their way to the detector and, hence, all the observed spectra. In particular,
we have demonstrated how the electronic structure of the atomic targets can be taken into
account in the representation of the active electron and how the dynamics of the outgoing
electron can be readily controlled by applying different approximations for the Volkov
continuum. Moreover, the use of partial waves and spherical tensor operators facilitates
a simpler comparison of different pulse shapes and how they influence the observed ATI
spectra and PMD.

Several extensions to the SFA are still desirable and appear feasible within a framework,
which is based on a partial-wave representation of the associated strong-field amplitudes.
While further effort will be needed to decompose these amplitudes into a form, suitable for
computations, a few useful extensions concern:

• Non-dipole interactions: For spatially-structured light fields, non-dipole contribu-
tions to the Volkov continuum usually arise from the spatially dependent Volkov
phase [35–37], and which need first to be expressed into a partial-wave representation
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in order to become applicable within JAC. These non-dipole terms beyond the widely
used E1 approximation capture the combined-electric and magnetic-fields upon the
electron dynamics [38,39]. Their implementation into the JAC toolbox will help predict
the energy and momentum shifts at long wavelengths of the driving fields.

• Coupling of the radiation field: Apart from the (commonly applied) velocity gauge,
the direct amplitude can be also implemented in length gauge. This leads to more
complicated pulse-shape integrals that also comprise the reduced matrix elements of
the momentum operator, since the kinetic momentum then needs to be replaced by
the (time-dependent) canonical momentum. While such an implementation requires
further work, the direct SFA amplitude in length gauge was shown to provide more
accurate results for the ionization of non-spherical np electrons [40].

• Rescattering amplitude: For laser pulses with proper polarization, the electrons
are known to be partly rescattered by the photoion, which then leads to processes,
such as high-order ATI, the non-sequential double ionization, or even to high-order
harmonics beyond the well-known cut-off law [41]. A partial-wave representation of
the rescattering amplitude (2) is currently worked out and can be applied to account
for realistic rescattering potentials.

• High-harmonic generation: Similar to the rescattering ATI amplitude above, a recom-
bination amplitude needs to be computed in order to obtain the dipole moment of
emitted high-harmonic radiation. For modeling HHG, again, we expect to benefit
from a re-formulation of the dipole amplitude in terms of partial waves and from
including realistic initial and continuum orbitals [42,43].

• Role of bound states: The coupling of the ground and continuum states to other
excited (bound) states has been analyzed in the literature for just a (very) few selected
HHG spectra [44]. A partial-wave representation of the SFA amplitudes facilitates
the coupling to excited states of the target and may help explain the formation and
influence of (autoionizing) resonances in the HHG plateau.

• Many-electron effects: A consequent partial-wave decomposition of all strong-field
amplitudes enables one to incorporate many-electron contributions beyond a (spher-
ical) short-range potential into the formalism. Apart from the self-consistent field
and the mixing of important configurations, this also refers to the treatment of the
multipole contributions (higher than E1), if the corresponding many-electron matrix
elements are utilized [45,46].

• Nonsequential double ionization (NSDI): When the photoelectron returns to the
photoion, the electron can scatter inelastically under the ionization of a second electron.
Theoretically, the NSDI is typically described semi-classically by using excitation
and/or ionization cross sections for the second (ionizing) step of the process [47,48].
A partial-wave representation of all associated quantum SFA amplitude facilitates a
coherent treatment of this nonlinear ionization process.

For all these desirable extensions, the partial-wave representation of the SFA [15], and
its implementation in JAC provides a straight and conceivably the best way to advance
theory and the light–atom interaction in strong fields.
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Abstract: In the framework of the study of helium-like atomic systems possessing the collinear
configuration, we propose a simple method for computing compact but very accurate wave functions
describing the relevant S-state. It is worth noting that the considered states include the well-known
states of the electron–nucleus and electron–electron coalescences as a particular case. The simplicity
and compactness imply that the considered wave functions represent linear combinations of a few
single exponentials. We have calculated such model wave functions for the ground state of helium
and the two-electron ions with nucleus charge 1 ≤ Z ≤ 5. The parameters and the accompanying
characteristics of these functions are presented in tables for number of exponential from 3 to 6. The
accuracy of the resulting wave functions are confirmed graphically. The specific properties of the
relevant codes by Wolfram Mathematica are discussed. An example of application of the compact
wave functions under consideration is reported.

Keywords: two-electron atoms; wave functions; collinear configuration; Fock expansion; Wolfram
Mathematica

1. Introduction

In this paper, we present a technique for building compact and simple wave functions
of high accuracy, describing two-electron atomic systems such as H−, He, Li+, Be2+ and
B3+ with the collinear arrangement of the particles [1]. The study of mechanism of double
photoionization of the helium-like atomic systems by high energy photons [2,3] can serve
as an example of possible application (see the details in the next Section).

Methods enabling us to calculate the relevant wave function (WF) and the correspond-
ing non-relativistic energy differ from each other by the calculation technique, spatial
variables and basis sets. It is well-known that the S-state WF, Ψ(r1, r2, r12), is a function
of three variables: the distances r1 ≡ |r1| and r2 ≡ |r2| between the nucleus and electrons,
and the interelectron distance r12 ≡ |r1 − r2|, where r1 and r2 represent radius-vectors of
the electrons. We shall pay special attention to the bases that differ from each other both in
the kind of the basis functions and in its number (basis size). The Hartree atomic units are
used throughout the paper.

It would be useful to give some examples of basis sets intended for describing the
relevant S states. The correlation function hyperspherical harmonic method (CFHHM) [4,5]
employs the basis representing the product of the hyperspherical harmonic (HH) as an
angular part, and the numerical radial part. The corresponding basis size N equals (as a
rule) 625. The Pekeris-like method (PLM) [6–8] is used intensively in the current work. The
basis size of the PLM under consideration is N = 1729 (for the number of shells Ω = 25),
and the basis functions can be finally reduced to the form exp(αr1 + βr2 + γr12)rl

1rm
2 rn

12,
where α, β and γ are the real constants and l, m, n are non-negative integers. Hylleraas [9]
(see also [10,11]) was the first who employed the same basis but with γ = 0. The authors
of Ref. [12] have performed variational calculations on the helium isoelectronic sequence
using modification of the basis set that employed by Frankowski and Pekeris [13]. They
managed to get very accurate results using the reduced basis of the size N = 230. The
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variational basis functions of the type exp(α̃r1 + β̃r2 + γ̃r12) with complex exponents were
used in the works of Korobov [14] (N = 1400–2200) and Frolov [15] for N = 600–2700 (see
also references therein). Application of the Gaussian bases of the size N > 100 can be found
in the book [16]. The reviews on the helium-like atomic system and the methods of their
calculations can be found, e.g., in the handbook [17].

In this paper, we propose a simple method of calculation of the compact but very ac-
curate WFs describing the two-electron atom/ion with collinear configuration. The results
and example of application of the relevant technique are presented in the next sections.

2. Calculation Technique

The simplicity of the WFs under consideration implies that the form

fN(r) =
N

∑
k=1

Ck exp(−bkr) (1)

represents the sum of a few single exponentials, whereas the compactness means that their
number 3 ≤ N ≤ 6 in Equation (1), unlike the basis sizes mentioned in the introduction.
The relevant accuracy will be discussed later. It is seen that the RHS of Equation (1) includes
N linear parameters Ck and N nonlinear parameters bk with k = 1, 2, . . . , N.

The collinear arrangement of the particles consisting of the nucleus and two electrons
can be described by a single scalar parameter λ as follows [1]:

r1 = r, r2 = |λ|r, r12 = (1 − λ)r, (2)

where λ ∈ [−1, 1], and r is the distance between the nucleus and the electron most distant
from it. Clearly λ = 0 corresponds to the electron–nucleus coalescence, and λ = 1 to the
electron–electron coalescence. The boundary value λ = −1 corresponds to the collinear
e-n-e configuration with the same distances of both electrons from the nucleus. In general,
0 < λ ≤ 1 corresponds to the collinear arrangement of the form n-e-e where both electrons
are on the same side of the nucleus. Accordingly, −1 ≤ λ < 0 corresponds to the collinear
arrangement of the form e-n-e where the electrons are on the opposite sides of the nucleus.
The absolute value |λ| measures the ratio of the distances of the electrons from the nucleus.

Thus, for the particles with collinear arrangement we can introduce the collinear WF of
the form

Φ(r, λ) ≡ Ψ(r, |λ|r, (1 − λ)r)/Ψ(0, 0, 0). (3)

It should be emphasized that, e.g., the PLM WF with collinear configuration reduces to
the form

ΦPLM(r, λ) = exp(−δλr)
Ω

∑
p=0

cp(λ)rp, (4)

where Ω = 25 for the current (standard) consideration, as it was mentioned earlier.
We can give an example of the physical problem where the collinear WF of the form

(4) cannot be applied, but the quite accurate WF of the form (1) is required instead. In
Refs. [2,3], the mechanism of photoionization in the two-electron atoms is investigated.
Calculations of various differential characteristics (cross sections) of ionization are based
on computation of the triple integral of the form∫

d3r eiqr
1F1(iξ1, 1, ip1r − ip1r)1F1(iξ2, 1, ip2r − ip2r)Φ(r, 1), (5)

where pj (j = 1, 2) are the momenta of photoelectrons, q is the recoil momentum, ξ j = Z/pj,
i is the imaginary unit, and 1F1(. . . ) is the confluent hypergeometric function of the first
kind. The most important for our consideration is the fact that integral (5) contains the
collinear WF Φ(r, 1) describing the case of the electron–electron coalescence (λ = 1) in the
helium-like atom/ion with the nucleus charge Z. It is clear that the numerical computation
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of the triple integral (5) is not impossible, but rather a difficult problem, especially for
building the relevant graphs. Fortunately, already in 1954 [18], the explicit expression for
the triple integral which is very close to integral (5) was derived. In fact, integral (5) can be
calculated by simple differentiation (with respect to a parameter) of the explicit form for
the integral mentioned above, but only under condition that the WF, Φ(r, 1) is represented
by a single exponential of the form exp(−br) (with positive parameter b, of course).

According to the Fock expansion [19,20] (see also [21,22]), we have:

Ψ(r1, r2, r12)/Ψ(0, 0, 0) =
R→0

1 − Z(r1 + r2) +
1
2

r12 − Z
(

π − 2
3π

)(
R2 − r2

12

)
ln R + O(R2), (6)

where R = (r2
1 + r2

2)
1/2 is the hyperspherical radius. Using Equation (6) and the collinear

conditions (2), we obtain the Fock expansion for the collinear WF in the form:

Φ(r, λ) =
r→0

1 + ηλr + ζλr2 ln r + ξλr2 + . . . (7)

where
ηλ = −Z(1 + |λ|) + 1 − λ

2
, (8)

ζλ = −2Zλ(π − 2)
3π

, (9)

and the general form of the coefficient ξλ being rather complicated will be discussed later.
The necessity of the equivalent behavior of the model WF, (1) and the variational WF,
Φ(r, λ) near the nucleus (r → 0) results in the following two coupled equations for 2N
parameters CN ≡ {C1, C2, . . . , CN} and bN ≡ {b1, b2, . . . , bN} of the model WF:

N

∑
k=1

Ck = 1, (10)

N

∑
k=1

Ckbk = Z(1 + |λ|) + λ − 1
2

. (11)

Equation (10) follows from the condition Φ(0, λ) = 1, whereas Equation (11) is ob-
tained by equating the linear (in r) coefficients of the power series expansion of the model
WF (1) and the Fock expansion (7).

As it was mentioned above, to obtain the fully defined model WF of the form (1) one
needs to determine 2N coefficients. To solve the problem with given Equations (10) and (11),
we need to find extra 2(N − 1) coupled equations for parameters of the exponential form
(1). To this end, we propose to use the definite integral properties of the collinear WF (3).

A number of numerical results presenting expectation values of Dirac-delta functions
〈δ(r1)〉, 〈δ(r12)〉 ≡ 〈δ(r1 − r2)〉 and 〈δ(r1)δ(r2)〉 for the helium-like atoms can be found in
the proper scientific literature (see, e.g., [15,17,23] and references therein). It was shown [1]
that expectation values mentioned above represent the particular cases of the more general
expectation value

〈δ(r1 − λr2)〉 = 4π〈δ(r1)δ(r2)〉
∫ ∞

0
|Φ(r, λ)|2r2dr, (12)

where
〈δ(r1)δ(r2)〉 = Ψ2(0, 0, 0)/

∫
ψ2(r1, r2)d3r1d3r2 (13)

is a square of the normalized WF taken at the nucleus. It is seen that the expectation value
(12) is fully defined by the collinear WF, Φ(r, λ).
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We propose to use the integrals of the form

Sn =
∫ ∞

0
|Φ(r, λ)|2rndr, (n = 0, 1, 2, . . . ) (14)

for deriving 2(N − 1) extra coupled equations required, in its turn, for determining 2N
coefficients defining the model WF, (1). Replacing Φ(r, λ) in the RHS of Equation (14) by
the model WF (1) and using the closed form of the corresponding integral, one obtains n
equation of the form

Sn = n!
N

∑
j=1

N

∑
k=1

CjCk

(bj + bk)n , (15)

where, in fact, CN ≡ CN(Z, λ), bN ≡ bN(Z, λ) are the coefficients we are requested,
whereas the integrals Sn ≡ Sn(Z, λ) can be computed using, for example, the PLM WFs
according to definition (14). The technique proposed, in fact, represents a variant of
the “Method of Moments” (see, e.g., [24]) supplemented by the boundary conditions
(10) and (11).

The problem is that it is necessary to select a set (sample) of integers
{

n1, n2, . . . , n2(N−1)

}
describing Equations (14) and (15) for each triple of numbers (Z, λ, N). Those selected samples
are presented in Tables 1–4, along with the corresponding parameters of the model WFs.

Table 1. Parameters of the model WFs f3(r).

λ Z b1 b2 b3 C1 C2 C3 n1, n2, n3, n4 104R3

−1 1 1.31221085126 2.30773912084 10.6895455708 1.21535118385 −0.203680351269 −0.0116708325859 1, 2, 3, 4 5.1
2 3.30331779151 5.37300989029 23.5666840162 1.10218667377 −0.0971397085718 −0.00504696520154 1, 2, 3, 4 2.8
3 5.29600197779 8.57050886387 37.1879160606 1.06342095849 −0.0603343891163 −0.00308656937009 1, 2, 3, 4 1.8
4 7.29186771909 11.8104087791 51.8308243021 1.04554901504 −0.0433987968749 −0.00215021816402 1, 2, 3, 4 1.3
5 9.28979602694 14.9934154050 64.5399905936 1.03580989481 −0.0340832362749 −0.00172665853579 1, 2, 3, 4 1.0

−0.5 1 0.34947029202 0.917929731034 3.34452782210 0.00104484900062 1.06791415059 −0.0689589995860 2, 4, 6, 8 26.1
2 2.42281226939 4.84214960756 20.8946624090 1.05104853479 −0.0479768260983 −0.00307170869253 2, 3, 4, 5 0.82
3 3.92179097813 7.24103626268 28.1658903414 1.03561982532 −0.0330601878282 −0.00255963748729 2, 3, 4, 5 0.38
4 5.42080777652 9.74980079227 37.6087443483 1.02691550123 −0.0249667281386 −0.00194877309539 2, 3, 4, 5 0.31
5 6.92015063432 12.2629734705 46.2827741201 1.02161443408 −0.0200074716239 −0.00160696245286 2, 3, 4, 5 0.25

0 1 0.298919116361 0.595029813767 7.19650438253 0.297067039246 0.704003189159 −0.00107022840522 0, 2, 3, 4 34.8
2 1.37487894240 1.79415111548 6.51734657710 0.692940198275 0.307826353261 −0.000766551535934 2, 3, 4, 5 0.16
3 2.38544848722 2.98500782211 11.9948030706 0.806354227022 0.193817876564 −0.000172103585808 2, 3, 4, 5 0.06
4 3.39003538779 4.18238632004 44.1576144385 0.860366370158 0.139650495901 −0.0000168660592834 2, 3, 4, 5 0.05
5 4.39300951665 5.38932092160 77.5849424817 0.892332808812 0.107671063544 −3.87235633559×10−6 2, 3, 4, 5 0.05

0.5 1 0.866272795833 1.35400690862 4.90509052234 0.445709671715 0.522361791814 0.0319285364710 2, 3, 4, 5 13.7
2 2.43745271333 3.52128593757 13.1425881206 0.790450763794 0.200669891111 0.00887934509580 2, 3, 4, 5 3.06
3 3.94735833664 5.62554439840 21.0951038899 0.867392165040 0.127429856680 0.00517797827994 2, 3, 4, 5 1.72
4 5.45119270055 7.71384461880 28.7740927992 0.902403168528 0.0938941380922 0.00370269337946 2, 3, 4, 5 1.18
5 6.95360810088 9.81345881494 36.9476130590 0.923088330095 0.0740947033493 0.00281696655580 2, 3, 4, 5 0.91

1 1 1.53675502654 2.33712280638 8.25913664369 0.596515660760 0.379791535994 0.0236928032457 2, 3, 4, 5 9.5
2 3.58172751587 5.24357995810 19.2222658045 0.819528550521 0.172004590265 0.00846685921408 2, 3, 4, 5 2.85
3 5.58931707310 8.08649238609 29.9307024541 0.881008315694 0.113793976078 0.00519770822784 2, 3, 4, 5 1.7
4 7.59237815227 10.9111334599 40.2659747119 0.910825396831 0.0853703529884 0.00380425018111 2, 3, 4, 5 1.19
5 9.59453605830 13.7549847587 51.2908698042 0.929005400236 0.0680615517954 0.00293304796837 2, 3, 4, 5 0.94

Table 2. Parameters of the model WFs f4(r).

λ Z b1 b2 b3 b4 n1, n2, n3, n4, n5, n6

C1 C2 C3 C4 105R4

−1 1 1.32020535772 2.02749050880 4.54443362311 23.5929861083 1, 2, 3, 4, 5, 6
1.26227358934 −0.227201776295 −0.0326343898304 −0.00243742321816 2.7

2 3.32040412399 4.62849779909 10.9532235110 59.9204389330 0, 1, 2, 3, 4, 5
1.14400570872 −0.128974625641 −0.0142762170106 −0.000754866072272 4.24
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Table 2. Cont.

λ Z b1 b2 b3 b4 n1, n2, n3, n4, n5, n6

C1 C2 C3 C4 105R4

3 5.31424074104 7.36821061275 17.2777611913 91.9038190157 0, 1, 2, 3, 4, 5
1.09045506589 −0.0810843733976 −0.00889378923384 −0.000476903253974 2.64

4 7.30994394442 10.1897566947 24.4040098169 148.641527280 0, 1, 2, 3, 4, 5
1.06441904628 −0.0579854208721 −0.00616816635722 −0.000265459051415 2.18

5 9.30868327139 12.8750916787 29.9556776119 155.981269889 0, 1, 2, 3, 4, 5
1.05138164659 −0.0460610340035 −0.00504641308811 −0.000274199500577 1.48

−0.5 1 0.760415630622 0.980090816301 1.92593212146 8.20874671468 2, 3, 4, 6, 7, 8
0.170778873309 0.969455001129 −0.130694209709 −0.00953966472852 11.0

2 0.454124268500 2.42341297045 4.76754499162 19.5795924347 2, 3, 4, 5, 6, 7
3.82312760898×10−6 1.05207275919 −0.0486110885984 −0.00346549372265 8.6

3 0.436440152659 3.92140440426 7.30105365639 28.9040922033 2, 3, 4, 5, 6, 7
−7.40656697931×10−7 1.03517571156 −0.0327434647393 −0.00243150616122 8.3

4 5.42161394245 9.42798545298 25.0471247671 233.462987854 1, 2, 3, 4, 5, 6
1.02782877628 −0.0249202692879 −0.00283800779973 −7.04991926150×10−5 0.94

5 6.92122844867 11.7547534041 29.3462817580 174.466927481 1, 2, 3, 4, 5, 6
1.02259238932 −0.0200065945557 −0.00247182415422 −1.13970613965×10−4 0.55

0 1 0.262567575399 0.389274177978 0.649724323343 2.23082077059 2, 3, 4, 5, 10, 12
0.124958793217 0.334742657170 0.549255567787 −0.00895701817486 8.6

2 0.863128362371 1.37696102972 1.80094039452 6.23029650467 2, 3, 4, 5, 10, 12
0.000151625897771 0.700462341914 0.300247696739 −0.000861664550097 0.85

3 1.99107587529 2.39179071871 3.00926579184 10.6422108618 2, 3, 4, 5, 10, 12
0.00268122936659 0.817445974254 0.180106425521 −0.000233629141750 0.16

4 2.81017418133 3.39598731473 4.21438633241 27.4015188295 2, 3, 4, 5, 10, 12
0.00171603685935 0.868965245468 0.129353924670 −3.52069972580×10−5 0.18

5 4.38456769518 5.14428012476 6.14092966448 16.8182459760 2, 3, 4, 5, 10, 12
0.865405670253 0.120564394928 0.0141051979746 −7.52631553724×10−5 0.047

0.5 1 0.813357864690 1.16216119635 2.11035956249 8.06302367772 2, 3, 4, 5, 6, 7
0.270203654224 0.601608930427 0.118017239524 0.0101701758248 12.8

2 2.39591108217 3.04778032570 5.77051889963 23.1405644612 2, 3, 4, 5, 6, 7
0.666977476198 0.298527484633 0.0320148612526 0.00248017791627 2.7

3 3.90776167717 4.88664625816 9.27871837715 37.4614080792 2, 3, 4, 5, 6, 7
0.781821062131 0.198012796435 0.0187434533393 0.00142268809457 1.5

4 5.41235086929 6.71460919468 12.7195616951 50.2714813824 2, 3, 4, 5, 6, 7
0.836936916554 0.148699140499 0.0133242070845 0.00103973586269 1.0

5 6.91531456746 8.55334168563 16.2935883030 66.2413275150 2, 3, 4, 5, 6, 7
0.870584918595 0.118467258140 0.0101878055295 0.000760017736373 0.81

1 1 1.45895844248 1.94229863142 3.64144369441 14.6402400267 2, 3, 4, 5, 6, 7
0.374761964378 0.526163652625 0.0926648508651 0.00640953213255 11.9

2 3.52660868338 4.46313533469 8.41366993352 33.9863982377 2, 3, 4, 5, 6, 7
0.702939199818 0.262807685971 0.0319120324665 0.00234108174421 2.9

3 5.53691125164 6.92690040645 13.1173116907 53.3038611455 2, 3, 4, 5, 6, 7
0.800429839233 0.178804526892 0.0193437507870 0.00142188308737 1.7

4 7.54061400125 9.36808709974 17.6989833742 70.3315968499 2, 3, 4, 5, 6, 7
0.848381505855 0.136508216332 0.0140382215614 0.00107205625181 1.1

5 9.54371206725 11.8356042739 22.5015053896 91.8749584959 2, 3, 4, 5, 6, 7
0.878994353474 0.109401348385 0.0108088103065 0.000795487835141 0.91
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Table 3. Parameters of the model WFs f5(r).

λ Z b1 b2 b3 b4 b5 n1, n2, n3, n4,
C1 C2 C3 C4 C5 n5, n6, n7, n8 106R5

−1 2 3.33403942234 4.15321766999 7.22771669209 18.0394750352 98.9124103713 0, 1, 2, 3, 4, 5, 6, 7
1.19779177816 −0.165381648981 −0.0277431203764 −0.00439609964953 −0.000270909151645 4.5

3 5.32933696681 6.59886648653 11.4228762079 28.2096051133 145.866483798 0, 1, 2, 3, 4, 5, 6, 7
1.12638430126 -0.105910712803 −0.0175600965385 −0.00273317456436 −0.000180317352143 2.8

4 7.32573160412 9.10153474687 15.9377755826 40.8969472027 290.857815110 0, 1, 2, 3, 4, 5, 6, 7
1.09052624934 −0.076177131758 −0.0124353779117 −0.00183726599787 −7.64736726593×10−5 2.4

5 9.32452700647 11.5219291480 19.8392221432 48.4980928929 239.735778051 0, 1, 2, 3, 4, 5, 6, 7
1.07219627060 −0.060471688997 −0.0100638089132 −0.00155216378212 -0.000108608909614 1.5

−0.5 1 0.782723673384 1.00579499131 1.67516053163 3.84347571684 20.7036985208 1, 2, 3, 4, 6, 7, 8, 9
0.247875527976 0.932587577289 −0.156445025546 −0.0223795177635 −0.00163856195617 12.3

2 2.01254813456 2.43474345293 4.24085899493 9.91825838265 49.9226239551 0, 2, 3, 4, 5, 6, 7, 9
0.0111225319077 1.05138001690 −0.0543797090181 −0.00759679366215 −0.000526046127036 6.3

3 2.66771135582 3.92527807057 6.68858179039 15.1815880350 69.4634730215 1, 2, 3, 4, 5, 6, 7, 8
0.000323581113314 1.03908286278 −0.0341431378917 −0.00487131736096 −0.000391988635926 3.6

4 5.02658424937 5.43330301186 8.82243334116 19.5615991527 96.7309045026 1, 2, 3, 4, 5, 6, 7, 8
0.0176544037925 1.01381753461 −0.0270777601306 −0.00410558781973 −0.000288590450437 3.6

5 6.76854109699 6.93768261467 11.4098098294 26.4501588397 130.894355406 0, 1, 2, 3, 4, 5, 6, 7
0.08493484927950 0.939048336705 −0.0209035403321 −0.00289062795813 −0.000189017693978 3.7

0.5 1 0.790902643508 1.06035478911 1.50532224818 3.03736727252 11.1410180677 2, 3, 4, 5, 6, 7, 8, 9
0.196607406672 0.508558045232 0.247655549880 0.0423479201908 0.00483107802464 20.9

2 2.37639295406 2.86725870274 4.29974756696 8.77965927735 35.0370610367 2, 3, 4, 5, 6, 7, 8, 9
0.590329529453 0.341324441817 0.0576037324822 0.00973365189967 0.00100864434805 3.8

3 3.88798021172 4.60274029470 6.92722664338 14.1907934142 57.3767081273 2, 3, 4, 5, 6, 7, 8, 9
0.721150604506 0.238651951852 0.0340403271804 0.00558868261345 0.000568433848049 2.1

4 5.39378534978 6.35210931219 9.65638723913 19.9037177229 76.9969095748 2, 3, 4, 5, 6, 7, 8, 9
0.791446509718 0.181080013887 0.0233325486312 0.00373563625064 0.000405291512930 1.2

5 6.89631641077 8.08529427507 12.3139186919 25.6710836429 107.258963467 2, 3, 4, 5, 6, 7, 8, 9
0.831962265527 0.146815487037 0.0180923679551 0.00285602492664 0.000273854553497 1.1

1 1 1.40532919228 1.76542107311 2.67094532497 5.73653600501 28.8596269922 2, 3, 4, 5, 6, 7, 8, 9
0.228872138883 0.564008891655 0.177278010589 0.0281992012650 0.00164175760899 26.2

2 3.49162225456 4.12954660811 6.24917362659 13.0406927609 55.6660835808 2, 3, 4, 5, 6, 7, 8, 9
0.600886634251 0.328953425818 0.0598766127109 0.00945702883157 0.000826298388269 5.2

3 5.50808155281 6.48741655765 10.0193133315 21.4634677872 95.2150755643 2, 3, 4, 5, 6, 7, 8, 9
0.736257943800 0.224466915903 0.0337303661233 0.00511826651080 0.000426507663627 2.8

4 7.51732319016 8.88501166054 14.1919981920 32.7751210282 162.408084363 1, 2, 3, 4, 5, 6, 7, 8
0.807735699959 0.166935972380 0.0220982375951 0.00303510193517 0.000194988130580 2.5

5 9.52058905892 11.2258539229 17.9584770013 41.6932712805 236.717424813 1, 2, 3, 4, 5, 6, 7, 8
0.845567446616 0.134819493378 0.0171241354063 0.00236103746563 0.000127887134412 2.0

Table 4. Parameters of the model WFs f6(r) for the negative ion of hydrogen (Z = 1).

λ b1 b2 b3 b4 b5 b6 n1, n2,
C1 C2 C3 C4 C5 C6 . . . , n10 106R6

−1 0.616882428065 1.32144483672 1.98116133623 3.89714002309 10.7703678294 117.105539565 0, 1, 2,
0.0000220356978505 1.27099937960 −0.227846680046 −0.0372255443263 −0.00577032259649 −0.000178868331372 . . . , 9 7.7

−0.5 0.784443648962 1.00933647226 1.62815973825 3.28191702383 9.07710968927 175.255656318 0, 1, 2,
0.255668095458 0.933467043932 −0.159437110775 −0.0255522308928 −0.00407564245776 −0.0000701552652768 . . . , 9 3.5

0.5 0.787145306516 1.03714737333 1.42318385820 2.66484832743 7.69976806889 534.086213753 0, 1, 2,
0.183792703068 0.466750597846 0.288402624695 0.0530568221124 0.00798238877269 0.0000148635064310 . . . , 9 7.2

1 1.36357313996 1.649819114196 2.20488118195 3.61727560292 8.21954358047 125.741386557 2, 3, 4,
0.134755301707 0.5137129189258 0.272937433228 0.0657008289814 0.0126953713973 0.000198145760468 . . . ,11 4.8

To solve the set of Equations (10), (11) and 2(N − 1) nonlinear equations of the form
(15) we apply, as the first step, the built-in function NSolve[. . . ] of the Wolfram Mathematica.
The additional conditions (inequalities) bN > 0 are used. The program NSolve generates
all possible solutions. However, only one of them represents the nodeless solution that
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corresponds to the ground-state WF. We have computed and presented the parameters of
the model WFs for 3 ≤ N ≤ 6. It was mentioned above that the NSolve is used only at
the first step. The reason is that this program works normally (with no problems) only
for N ≤ 3, that is for number of equations 2N ≤ 6. Even for 2N = 6 computer freezes
for a few second capturing 100 % of CPU time, and then normal operation is restored.
However, for 2N = 8 Mathematica (through NSolve) takes all CPU time, and computer
freezes for an indefinite time. This is happened for any settings of Mathematica, e.g., for
any settings in “Parallel Kernel Configuration”. We checked that this problem persists in
different computers and for different version of Mathematica (9, 10.3, 11.0, 12.1). Therefore,
to solve the relevant set of nonlinear equations for the number of exponentials N > 3 we
employed the built-in (Mathematica) program FindRoot[. . . ]. Unlike NSolve this program
generates only one solution (if it exists, of course) starting its search from some initial
values C

(0)
N , b

(0)
N for which we take the values CN−1, bN−1 of the corresponding calculation

on the N − 1 exponentials. The conditions of the positive exponents and the WF nodeless
are certainly preserved.

To estimate the accuracy of the model WF we employ the following integral represen-
tation

RN =
∫ ∞

0
r| fN(r)− Φ(r, λ)|dr

(∫ ∞

0
r|Φ(r, λ)|dr

)−1
. (16)

Note that the function rΦ is more indicative than Φ, at least, for the ground state.

3. Results

The two-exponential representations (excepting the case of Z = 1) for the two-particle
coalescences only (corresponding to the particular cases λ = 0 and λ = 1) were reported
in Ref. [25]. In the current paper, we calculate the parameters CN and bN of the model
WFs, fN(r) ≡ fN(r; λ) for the number of exponentials 3 ≤ N ≤ 6. Our calculations are
represented for various collinear configurations including in particular the two-particle
coalescences and the boundary case λ = −1. The results are presented in Tables 1–4 together
with the corresponding accuracy estimations RN and the sets {n1, n2, . . . , 2(N − 1)} of
integers included into the integrals (14). It is seen from all tables that the more exponentials
generate the higher accuracy of the model WF.

One should note that for λ = 0, describing the case of the electron–nucleus coalescence,
we were able to calculate the model WFs, fN(r) represented by three and four exponentials
only (N = 3, 4). However, at least the case of N = 4 shows very high accuracy, which is
confirmed by the following. Recall that the integral RN characterizes the general accuracy
of fN(r). In order to track changes in accuracy with distance r we used the logarithmic
function of the form

L(λ)
N (r) = log10|1 − fN(r)/ΦPLM(r, λ)|. (17)

It is seen from Tables 1 and 2 that at least for λ = 0 and given N the minimal accuracy
(represented by maximum RN) is demonstrated by the negative ion H−, whereas the
maximum accuracy (represented by minimum RN) is demonstrated by the positive ion
B3+. The logarithmic functions L(0

N (r) are shown in Figures 1 and 2 for these two-electron
ions with boundary (under consideration) nucleus charges Z = 1 and Z = 5. It is seen that
the deviations of the model WF from the PLM WF are practically uniform along the r-axis,
and that one extra exponential improves accuracy by 1-2 (decimal) orders. Regarding the
accuracy of the model WF, f4(r) we would like to emphasize the following. In Ref. [1]
(see Fig. 3(b) therein) it was displayed the logarithmic function L(r) of the form (17),
which describes the difference between the PLM WF and the CFHHM WF for the λ = 0
collinear configuration of the H− ion. The so called correlation function hyperspherical
harmonic method (CFHHM) [4,5] with the maximum HH indices Km = 128 (1089 HH basis
functions) was used for calculation of the fully (3-dimensional) WF of the negative ion H−.
Comparison of the logarithmic estimations L(0

4 (r) and the corresponding L(r) shows that
the model WF f4(r) is even more close to the PLM WF than the CFHHM WF for all values

283



Atoms 2022, 10, 4

of r, which indicates the extremely high accuracy of the model WF (at least for λ = 0 and
Z = 1) represented by four exponentials only. It is seen (see Figure 2) that the accuracy of
the model WF f4(r) for B3+ is higher by about 2 decimal orders than the 4-exponential
WF for H−. The logarithmic estimation L(r) for B3+ is not presented in Ref. [1]. However,
the relevant calculations show that for this case (λ = 0 and Z = 5), the model WF f4(r) is
more close to the PLM WF than the CFHHM WF, as well.

0.0
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0.8

r
(r,0) (a)

0 5 10 15 20 25
-7
-6
-5
-4
-3
-2
-1

r
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g 1
0|1-

PL
M
(r,0)/

f N
(r)|

(b)
N=3
N=4

Figure 1. Negative ion of hydrogen H−(Z = 1): (a) the WF, Φ(r, 0) at the electron-nucleus coalescence

(the collinear configuration with λ = 0) times r; (b) the logarithmic estimates L(0
4 (r) and L(0

3 (r) of
the difference (see Equation (17)) between the model WF, f4(r) and the PLM WF (solid curve, blue
online), and between the model WF, f3(r) and the PLM WF (dashed curve, red online), respectively.
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Figure 2. Ground state of the positive ion of boron B3+(Z = 5): (a) the WF, Φ(r, 0) at the electron–
nucleus coalescence (the collinear configuration with λ = 0) times r; (b) the logarithmic estimates

L(0
4 (r) and L(0

3 (r) of the difference between the model WF, f4(r) and the PLM WF (solid curve, blue
online), and between the model WF, f3(r) and the PLM WF (dashed curve, red online), respectively.

It was mentioned earlier that the behavior of the two-electron atomic WF near the
nucleus is described by the Fock expansion (6), which reduces to expansion (7) for the
collinear arrangement of the particles. The most compact model WFs represented by
the sum of three or four exponentials were obtained for the case of the electron-nucleus
coalescence corresponding to the collinear parameter λ = 0. Tables 1 and 2 together
with Figures 1 and 2 demonstrate the high accuracy of those model WFs. It should be
emphasized that the accuracy of f4(r) for λ = 0 is close to the accuracy of the variational
PLM WF, ΦPLM(r, 0) for all r > 0. Furthermore, the relevant calculations show that the
model WF f4(r) mentioned above is, in fact, more accurate than ΦPLM(r, 0) in the vicinity
of nucleus (r → 0). We can argue this because the leading terms of the series expansion of
f4(r) (for λ = 0) are more close to the corresponding terms of the Fock expansion than the
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ones for ΦPLM(r, 0). Actually, Equations (10) and (11) provide by definition the condition
f4(0) = 1 and f ′4(0) = −Z + 1/2, corresponding exactly to the Fock expansion. Moreover,
it is seen from Equation (9)) that for λ = 0 the logarithmic term of the Fock expansion is
annihilated because ζ0 = 0, and hence F′′(0)/2 = ξ0, where we denoted F(r) ≡ Φ(r, 0).
One should notice that λ = 0 is, in fact, the single case of the collinear arrangement when
the explicit expression for the angular Fock coefficient ξλ can be derived in the form [1,22]

ξ0 =
1 − 2E

12
− Z

(
3 − ln 2

6

)
+

1
3

Z2, (18)

where E is the non-relativistic energy of the two-electron atom/ion under consideration.
It is seen from Table 5 that (besides f ′4(0)) the values of f ′′4 (0)/2 is much closer to the
theoretical values (18) than F′′

PLM(0)/2 for all Z. These results confirm the above conclusion
about the accuracy of the model WF near the nucleus.

Table 5. The first and second derivatives of the collinear WF with λ = 0 at the nucleus. The PLM WF,
F(r) ≡ ΦPLM(r, 0) at the electron–nucleus coalescence is introduced.

Z F′(0) −Z + 1/2 F′′(0)/2 f ′′4 (0)/2 ξ0

1 −0.506379 −0.5 0.169101 0.123314 0.12015

2 −1.50228 −1.5 1.20558 1.13429 1.13167

3 −2.50175 −2.5 3.24348 3.14574 3.14323

4 −3.50323 −3.5 6.38221 6.15306 6.15469

5 −4.50140 −4.5 10.3165 10.1691 10.1661
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Abstract: We have studied the angular time delay in slow-electron elastic scattering by spherical
targets as well as the average time delay of electrons in this process. It is demonstrated how the angular
time delay is connected to the Eisenbud–Wigner–Smith (EWS) time delay. The specific features of both
angular and energy dependencies of these time delays are discussed in detail. The potentialities of
the derived general formulas are illustrated by the numerical calculations of the time delays of slow
electrons in the potential fields of both absolutely hard-sphere and delta-shell potential well of the
same radius. The conducted studies shed more light on the specific features of these time delays.

Keywords: electron scattering from atoms and molecules; Eisenbud–Wigner–Smith (EWS) time
delay; angular time delay

1. Introduction

In the first experiments, the purpose of which was to study the time delays of electrons in
atomic photoeffect, electrons with the wave vector k emitted along the polarization vector e of
the absorbed photon were recorded [1–3]. With this experimental technique, the delay times of
the electrons escaping at an arbitrary angle to the vector e were unknown. Now, investigations
of time delays as a function of the emission angle θ have become available [4–7], and the
corresponding calculations have been able to reproduce this dependence for different
atoms [8–13]. The electron delay time is a function depending on both the photoelectron
emission angle θ with respect to the radiation polarization vector e and the photoelectron
energy E. In most calculations of the time delay, its dependence on the energy E is
analyzed at fixed values of the angle θ, revealing the pronounced angle dependence for
large emission angles.

The angular dependence of the time delay of the wave packet scattered (or emitted)
by a spherical target was obtained by Froissard, Goldberger, and Watson in [14], where the
following expression for the angular time delay of the packet scattered in the direction θ
was derived:

Δt(k, θ) = h̄
∂

∂E
arg f (k, θ), θ �= 0. (1)

Here, f (k, θ) denotes the amplitude of electron elastic scattering by a target [15]

f (k, θ) =
1

2ik ∑
i
(2l + 1)(exp 2iδl − 1)Pl(cos θ), (2)

where δl(k) is the partial scattering phase shifts and Pl(cos θ) are the Legendre polynomials.
According to (1), the forward scattering θ = 0 must be excluded due to the interference

Atoms 2021, 9, 105. https://doi.org/10.3390/atoms9040105 https://www.mdpi.com/journal/atoms289



Atoms 2021, 9, 105

effects between the forward scattered wave and the incident wave that give rise to the
optical theorem [15].

The domain of applicability of the angular time delay Δt(k, θ) (1) is considerably broader
than that of the Eisenbud–Wigner–Smith (EWS) partial-wave time delay [16–18]

τl(k) = 2h̄
∂δl
∂E

. (3)

In particular, Equation (1) serves as the basis for describing the temporal picture of
atomic photoionization processes [17–25]. Equation (1) in this case needs not to be modified
to exclude θ = 0 as the problem of the interference with the unscattered wave does not
exist in the case of photoionization. The scattering amplitude f (k, θ) for this process must
be replaced in Equation (1) by the photoionization amplitude f ph(ω, θ), where ω is the
photon energy

τ(ω, θ) = h̄
∂

∂ω
arg f ph(ω, θ). (4)

The dipole selection rules in photoionization of l-states of atom A lead to emission
into the continuum of the pair of electronic spherical waves Yl+1,m(k) and Yl−1,m(k),
propagating in the potential field of the atomic residue A+ with the phase shifts δl+1(k)
and δl−1(k), correspondingly, where k is the linear photoelectron momentum. The function
f ph(ω, θ), therefore, is a linear combination of these spherical functions, the coefficients of
which are determined by the corresponding dipole matrix elements Dl±1(ω). The energy
derivative of the function (1) implicitly includes the derivatives of both phase shifts δ′l±1(k)
and matrix elements D′

l±1. The prime sign here and further denotes differentiation with
respect to the electron kinetic energy E.

The time delay (4) at some electron emission angles θ was studied in the series of
works on photoionization [19–24]. To the best of our knowledge, the angular dependence
of the time delay in elastic electron scattering (1) has received no attention so far. Our goal
in this article is to close somewhat the gap in the area of investigation of the angular time
delay in electron scattering (1) by spherical targets.

We will see further that when only one scattering phase is different from zero in the
scattering amplitude (2), the angular time delay (1) does not depend on the scattering angle.
Here, we analyze the scattering amplitude f (k, θ) containing two Legendre polynomials
only, i.e., we will consider model targets, in which, as in the case of the dipole photoelectric
effect, only one pair of phase shifts is different from zero.

In Section 2, the angle dependence of the angular time delays Δt(k, θ) for some fixed
electron momenta k is investigated. In Section 3, the time delay is studied as a function of k
for some fixed polar angles θ of the scattering of an incident plane wave train. Finally, the
function Δt(k, θ) is averaged over the distance of the order of the de Broglie wavelength,
and the average angular time delay 〈Δt(k)〉 is obtained in Section 4.

2. Angular θ-Dependence of the Function Δt(k, θ)

The argument of the amplitude f (k, θ) is determined by the ratio of the imaginary
part of the function (2) � f (k, θ) to its real part � f (k, θ)

arg f (k, θ) = arctan
� f (k, θ)

� f (k, θ)
(5)

whereas the angular time delay (1) is described by the general expression

Δt(k, θ) =
d

dE
arg f (k, θ) =

(� f )
′
(� f )− (� f )

′
(� f )

| f |2 (6)
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Here, and everywhere below, we use the atomic system of units. Let us first consider
the case when all the phase shifts in (2), with the exception of δl(k), are equal to zero. In
this case,

f (k, θ) =
1
2k

(2l + 1)Pl(cos θ) sin 2δl + i
1
k

Pl(cos θ) sin2 δl ,

arg f (k, θ) = arctan(tan δl), (7)

Δt(k, θ)l =
dδl
dE

≡ δ
′
l .

It is seen that the angular time delay does not depend on the scattering angle θ and it
is equal to half of the EWS-partial time delay (3).

Suppose that only two scattering phases δ0(k) and δ1(k) are nonzero. In this case, the
scattering amplitude and its argument are represented as

f (k, θ) =
1
2k

(P0 sin 2δ0 + 3P1 sin 2δ1) + i
1
k
(P0 sin2 δ0 + 3P1 sin2 δ1)

arg f (k, θ) = arctan
2(P0 sin2 δ0 + 3P1 sin2 δ1)

(P0 sin 2δ0 + 3P1 sin 2δ1)
, P0,1 ≡ P0,1(cos θ). (8)

Differentiating the argument of the scattering amplitude (8), we obtain the expression
for the time delay

Δt(k, θ)01 =
P0[P0 sin2 δ0+3P1 sin(2δ0−δ1) sin δ1]δ

′
0+3P1[3P1 sin2 δ1+P0 sin(2δ1−δ0) sin δ0]δ

′
1

P2
0 sin2 δ0+6P0P1 sin δ0 sin δ1 cos(δ0−δ1)+9P2

1 sin2 δ1
(9)

as a function of both scattering angle θ and electron momentum k =
√

2E.
Repeating the calculations similar to those in formulae (8), we obtain the expression

for the time delay in the case of nonzero phases δ0(k) and δ2(k)

Δt(k, θ)02 =
P0[P0 sin2 δ0+5P2 sin(2δ0−δ2) sin δ2]δ

′
0+5P2[5P2 sin2 δ2+P0 sin(2δ2−δ0) sin δ0]δ

′
2

P2
0 sin2 δ0+10P0P2 sin δ0 sin δ2 cos(δ0−δ2)+25P2

2 sin2 δ2
. (10)

It is easy to demonstrate that when only two scattering phases δl(k) and δl′(k) are
nonzero in the electron scattering amplitude (2), the angular delay time (5) is determined
by the following combination of the Legendre polynomials Pl(cos θ) and Pl′(cos θ):

Δt(k, θ)ll′ =
∑i=l,l′ ∑j=l,l′ [(2i + 1)(2j + 1)PiPj sin(2δi − δj) sin δj]δ

′
i

∑i=l,l′ ∑j=l,l′(2i + 1)(2j + 1)PiPj sin δi sin δj cos(δi − δj)
. (11)

Explicit expressions for the time delays for selected nonzero scattering phase pairs
(11) are given in [26], where the results of the calculations of the θ- and E-dependencies
of the corresponding angular time delays are also given. We use both hard-sphere and
delta-shell potentials as potential functions for the model targets. For these potentials, the
analytical expressions for the scattering phases are known. When an electron is scattered
by the model target in the form of an ideally repulsive solid sphere of radius R, the phase
shifts of the electron are determined by the formula [27]

tan δl(k) =
jl(kR)
nl(kR)

, (12)

where jl(kR) and nl(kR) are the spherical Bessel functions.
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The scattering phase shifts of an electron for another model target taken in the form of
an attractive delta-shell (delta-shell potential well [28]) are determined by the expression
(see Equation (10) in [29])

tan δl =
xj2l (x)

xjl(x)nl(x)− 1/RΔL
, (13)

where the variable x = kR. The parameter ΔL in (13) is the jump of the logarithmic
derivative of the electron wave functions at the point r = R where the delta-shell potential
U(r) = −U0δ(r − R) is infinitely negative. In the numerical calculations of phase shifts
(12) and (13), the radii R and the parameter ΔL have the same values as those used in
our article [29], where the EWS time delay of slow electrons scattered by a C60 cage was
calculated.

Figure 1 shows the results of the calculation by formula (9) of the angular time delay
Δt(k, θ)01 as a function of the scattering angle θ for some fixed electron momenta k. The left
panel corresponds to the scattering on the solid sphere. The right panel corresponds to the
delta-shell target. The angular time delays in these figures are given in atomic units. The
atomic unit of time is equal to 24.2 attoseconds. Despite the different scales of the graphs
on both panels, they show qualitatively similar behavior. The only exceptions are for the
curves at k = 0.68. The graph of the angular dependence for the hard-sphere is almost
a straight line passing from a positive to a negative half-plane at the angle of about 60◦,
whereas on the right panel, this curve almost coincides with the x-axis. According to both
panels, at low electron energies (k = 0.17 and 0.34), the time delay of the scattering packet
is negative at all the scattering angles. The rest of the curves (except the hard-sphere target
at k = 0.85) are alternating for both targets. At the momenta k = 0.51 and k = 1.0, the time
delays on the right panel reach its maximum (∼ 298 atomic units (au) at θ = 95◦ in the
first case and ∼140 au at the same angle in the second one). The appearance of these sharp
peaks in the curves in Figure 1 is due to the almost vanishing of the denominator in the
expression (9). The curves at k = 0.85 and k = 1.0 on the left panel cross the x-axis into the
positive half-plane in the region of 90◦, forming a peak with a height of ~30 atomic units.
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Figure 1. Angular time delay Δt(k, θ)01 (9) as a function of the polar angle θ for fixed electron wave
vectors k. The functions P0(cos θ) and P1(cos θ) used in (9) is the pair of Legendre polynomials in the
amplitude of electron elastic scattering f (k, θ) (2).
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Figure 2 depicts the curves corresponding to the pair of polynomials P0(cos θ) and
P2(cos θ). We see here the results of the calculation with formula (10) of the angular time
delay Δt(k, θ)02 as a function of the scattering angle θ. As the sum of the orbital moments
(indices of the Legendre polynomials) is an even number, the curves Δt(k, θ)02 in Figure 2
are symmetric relative to the angle θ = 90◦. The curves on the left panel, except for the
curve at k = 0.34, lie entirely in the lower half-plane. The situation is quite different when
the wave packet scatters by the delta-shell target. The behavior of the curve at k = 1.0 on
the right panel is particularly interesting. This curve lies entirely in the positive half-plane,
which allows it to be depicted in polar coordinates (see the inset in the right panel). The
3D-picture of the function Δt(k, θ)02 is a figure of rotation of this curve around the polar
axis z, along which the incident plane wave train hits the target. The “wings of the star”
shown there correspond to the polar scattering angles θ = 57◦ and 123◦. The qualitative
similarity of the curves on both panels of Figure 2 is obvious.
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Figure 2. Angular time delay Δt(k, θ)02 (10) as a function of the polar angle θ for fixed electron wave
vectors k. The functions P0(cos θ) and P2(cos θ) used in (10) is the pair of Legendre polynomials in
the amplitude of electron elastic scattering f (k, θ) (2). The inset in the right panel is the plot at k = 1.0
in a polar coordinate system. The 3D-plot of the function Δt(k, θ)02 is a figure of rotation of this curve
around the polar axis z, along which the incident plane wave train hits the target.

Note the similarity of the curves in Figure 2 and the angular spectra in Figure 1a,b of
the article in [10] (devoted to the study of angular resolved time delays in photoemission
from different atomic sub-shells of noble gases). A direct comparison of the function
Δt(k, θ) for the processes of photoionization and elastic scattering cannot be conducted.
An exclusion is the case when the dipole matrix element of photo-transitions varies slightly
with the radiation frequency, and their derivatives with respect to the photon energy are
negligible. Nevertheless, photoelectron spectra are similar to the scattering spectra in that
they are symmetric relative to the angle θ = 90◦. Qualitative behavior of the scattering
spectrum on the delta-shell at k = 0.51 in Figure 2 and the photoelectron spectrum in panel
(a) of Figure 1 is similar. The same is to be for the curves at k = 0.85 in Figure 1 and those
in panel (b) of Figure 1 in [10].

Summarizing, we note that according to Figures 1 and 2, the angular θ-dependencies
of the function Δt(k, θ) are represented by nontrivial rapidly oscillating curves lying at low
electron energies mainly in the negative half-plane. The situation changes with increasing
the electron energy where the dependencies become smooth.
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3. k-Dependence of Function Δt(k, θ)

We now investigate the angular time delay Δt(k, θ) as a function of the electron energy
E for some fixed values of polar angles θ. The calculation results by formulas (9) and (10)
are shown in Figure 3.
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Figure 3. The angular time delay Δt(k, θ) as a function of the electron energy E for some fixed values
of the polar angle θ. P0(cos θ)-P1(cos θ) is the pair of Legendre polynomials in the upper panels.
P0(cos θ) and P2(cos θ) are the polynomials used in both lower panels.

All curves in this figure tend to infinity at small electron momenta. The reason for this
is that the scattering phase shift in short-range potentials must follow the Wigner threshold
law δl(E) ∝ El+1/2 [30]. In the case of s-phase shift, we have δ0(E → 0) ∝ π − E1/2. The
time delay Δt(k, θ)01 and Δt(k, θ)02, that contain the derivative of the s-phase shift, for
k → 0 tends to infinity: δ′0(E → 0) ∝ −E−1/2. For the orbital moments l > 0 the derivative
of the phase shifts does vanish at the threshold as δ′0(E → 0) ∝ −El−1/2.

The left column of the figures corresponds to the electron scattering by the hard-
sphere potential. The figures in the right column correspond to scattering by the delta-shell
potential. In the upper right panel of Figure 3, the curves practically coincide with each
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other at small scattering angles θ, up to the angle of 45◦. The graphs corresponding
to the angles of 135◦ and 180◦ have alternating signs, and they are characterized by
the peaks in both positive and negative half-planes of the coordinate system. We see
a qualitatively similar picture in the lower panel of this column where the curves for
Δt(k, θ)02 are presented. The presence of the derivative of the s-phase shift in formula (
10) also leads this function to infinity at small electron energies. The curves for angles
30◦ and 180◦ almost coincide in this figure. The curve at θ = 90◦ is characterized by
the maximum negative amplitude of oscillations. In the lower-left panel of Figure 3, we
observe strong resonance behavior of all curves, except for the one at θ = 90◦ and energy
E ≈ 0.4 atomic units.

In the second and third sections, we limited ourselves to the specific examples of two
nonzero phases in the expansion of the wave function of a scattered electron (2) into partial
waves. It is very difficult to interpret rapidly oscillating dependence of the time delays
upon the energy E and scattering angle θ even for this simple example. An increase in
the number of included essential scattering phases significantly affects the picture of the
angular time delays. The increase makes the time delays rapidly oscillating when they
are averaged over the energy of incident electrons. As a consequence, the scattering angle
becomes inevitable to make the angular time delay Δt(k, θ) observable in an experiment.

4. Average Time Delay of Scattering Process

The average angular time delay 〈Δt(k)〉 is obtained from (1) by averaging over the
energy spectrum of the incident wave packet, as well as over the directions weighted by
the differential cross section | f (k, θ)|2. This averaging is reduced to the calculation of the
integral of the product | f (k, θ)|2Δt(k, θ) over all angles of electron scattering by the target
and division of the obtained result by the total cross section of elastic electron scattering
σtot(k). The calculation of the integral is complicated by the fact that, according to (1), the
function Δt(k, θ) is not defined at θ = 0. It was shown in [31] that the contribution to the
integral from the forward scattering of an electron is determined by the real part of the
scattering amplitude at zero angles. As a result of such averaging, Nussenzweig [31–33]
obtained the expression

〈Δt(k)〉 = 1
σtot(k)

(∫
| f (k, θ)|2Δt(k, θ)dΩ +

2π

k2
d

dE
[k� f (k, 0)]

)
= (14)

=
π

σtotk2 ∑
l
(2l + 1)2δ

′
l =

π

σtotk2 ∑
l
(2l + 1)τl(k).

The second term on the left-hand side of Equation (14) eliminates the contribution of
the forward scattering into the average angular time delay. Thus, the average time delay
for the plane wave train 〈Δt(k)〉 is a linear combination of the EWS time delays τl(k) (3).
The results of the calculation of the function 〈Δt(k)〉 (14) in the case of electrons scattered
by the hard-sphere target are shown in Figure 4.

Figure 4 also shows the dependencies calculated under the assumption that the
statistical weight of τl(k) in the sum (14) is not equal to π(2l + 1)/σtotk2. Instead, it is the
ratio of the electron elastic scattering partial cross section σl(k) to the total cross section
σl(k)/σtot(k). For more information about this assumption see, for example, Equation (10)
in [10] or Equation (8) in [29]. The deep peak of the curve corresponding to the combination
of the Legendre polynomials P0 and P2 is due to the resonant behavior of curves at E ∼ 0.4
au in Figure 3.
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Figure 4. The function (14) in the case of electrons scattered by the hard-sphere target. P0 + P1 and
P0 + P2 are the pairs of Legendre polynomials Pl(cos θ). Note that Equation (10) corresponds to
Formula (10) in [10].

5. Concluding Remarks

Using the instructive soluble example of electron scattering by the hard-sphere po-
tential and delta-shell potential well, we for the first time explicitly obtained the angular
time-delay Δt(k, θ) in terms of the scattering phase shifts δl(k) and their energy derivatives
δ′l(k). We demonstrated the complexity of Δt(k, θ) as a function of the incoming electron
energy E and the scattering angle θ. We saw that Δt(k, θ) and the function 〈Δt(k)〉, even
averaged over proper intervals of E and θ, are more sensitive to the scattering phases than
the absolute cross section σtot(k) and even the differential in angle scattering cross section
that is proportional to | f (k, θ)|2. This is because the time delay functions depend not only
on the cross section phases, but also upon their energy derivatives. This makes theoretical
and experimental investigation of time delays a promising direction of research in the area
of atomic scattering.
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Abstract: The Fock expansion, which describes the properties of two-electron atoms near the nucleus,
is studied. The angular Fock coefficients ψk,p(α, θ) with the maximum possible value of subscript p are
calculated on examples of the coefficients with 5 ≤ k ≤ 10. The presented technique makes it possible
to calculate such angular coefficients for any arbitrarily large k. The mentioned coefficients being
leading in the logarithmic power series representing the Fock expansion, they may be indispensable
for the development of simple methods for calculating the helium-like electronic structure. The
theoretical results obtained are verified by other suitable methods. The Wolfram Mathematica is used
extensively.

Keywords: two-electron atom/ion; wave function; Fock expansion; angular coefficients; Wolfram
Mathematica

1. Introduction

The properties of a two-electron atomic (helium-like) system with an infinitely massive
nucleus of charge Z and nonrelativistic energy E are defined by the wave function (WF)
Ψ(r1, r2, r12), where r1 and r2 are the electron–nucleus distances, and r12 is the distance
between the electrons. The behavior of the ground state WF in the vicinity of the nucleus
located at the origin is determined by the Fock expansion [1]

Ψ̄(r1, r2, r12) ≡ Ψ(R, α, θ) =
∞

∑
k=0

Rk
[k/2]

∑
p=0

ψk,p(α, θ) lnp R, (1)

where the hyperspherical coordinates R, α and θ are defined by the relations:

R =
√

r2
1 + r2

2, α = 2 arctan
(

r2

r1

)
, θ = arccos

(
r2

1 + r2
2 − r2

12
2r1r2

)
. (2)

The convergence of expansion (1) was proven in Ref. [2]. The angular Fock coefficients
(AFC) ψk,p satisfy the Fock recurrence relation (FRR)[

Λ2 − k(k + 4)
]
ψk,p(α, θ) = hk,p(α, θ) (3)

with the RHS of the form [3,4]:

hk,p = 2(k + 2)(p + 1)ψk,p+1 + (p + 1)(p + 2)ψk,p+2 − 2Vψk−1,p + 2Eψk−2,p. (4)

The dimensionless Coulomb potential representing the electron–electron and electron–
nucleus interactions is

V ≡ R
r12

− Z
(

R
r1

+
R
r2

)
=

1
ξ
− 2Zη

sin α
, (5)

where we have introduced the important (in what follows) angular quantities:

ξ =
√

1 − sin α cos θ, η =
√

1 + sin α. (6)
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The hyperspherical angular momentum operator, projected on S states, is defined as

Λ2 = −4
[

∂2

∂α2 + 2 cot α
∂

∂α
+

1
sin2 α

(
∂2

∂θ2 + cot θ
∂

∂θ

)]
. (7)

It is clear that all circumnuclear features of the two-electron atoms (ions) are defined by
the Fock expansion (1). There are a large number of methods for calculating the electronic
structure of the two-electron atomic systems. An excellent review on this topic can be
found in Refs. [3,5–8]. However, we know only one technique that correctly represents the
WF Ψ(r1, r2, r12) near the nucleus. It is the so-called correlation function hyperspherical
harmonic method (CFHHM) [9–11]. The expansion in hyperspherical harmonics (HHs)
provides the correct representation of the AFCs. However, the HH expansion is known to
converge very slowly. Although this method makes it possible to increase the convergence
of the HH expansion, a sufficiently good accuracy requires a large HHs’ basis size, which,
in turn, creates great computational difficulties.

Thus, it would be extremely useful to develop a much simpler method for calculating
the WF with correct behavior near the nucleus. In this regard, we would like to emphasize
the following important peculiarities of the Fock expansion (FE). It follows from definition
(1) that the FE can be split into individual power series (lines) associated with definite
power of lnR. In other words, the FE can be represented in the form:

Ψ = (ln R)0
(

ψ0,0 + Rψ1,0 + R2ψ2,0 + ...
)

+(ln R)1R2
(

ψ2,1 + Rψ3,1 + R2ψ4,1 + ...
)

+(ln R)2R4
(

ψ4,2 + Rψ5,2 + R2ψ6,2 + ...
)

(8)

+(ln R)3R6
(

ψ6,3 + Rψ7,3 + R2ψ8,3 + ...
)

+(ln R)4R8
(

ψ8,4 + Rψ9,4 + R2ψ10,4 + ...
)
+ ...

It is seen that the leading term of each line represents the product (ln R)k/2Rkψk,k/2(α, θ)
with even k. The first AFCs (ψ0,0 = 1) corresponding to k = 0, 2, 4 are well-known (see,
e.g., [3,4]):

ψ1,0 =
1
2

ξ − Zη, (9)

ψ2,1 = −Z(π − 2)
3π

(1 − ξ2), (10)

ψ3,1 =
Z(π − 2)

36π

[
6Zη(1 − ξ2) + ξ(5ξ2 − 6)

]
, (11)

ψ4,2 =
Z2(π − 2)(5π − 14)

540
√

π

[
Y40(α, θ) +

√
2 Y42(α, θ)

]
. (12)

The normalized HHs are

Y40(α, θ) = π−3/2(4 cos2 α − 1), Y42(α, θ) = 2
√

2π−3/2 sin2 αP2(cos θ), (13)

where the Pn(x) denote the Legendre polynomials.
In this paper, we present the theoretical calculations of the AFCs ψ5,2(α, θ), ψ6,3(α, θ),

ψ7,3(α, θ), ψ8,4(α, θ) and ψ9,4(α, θ) included into the k = 4, k = 6 and k = 8 “lines” of the
expansion (8), and also the AFC ψ10,5(α, θ) representing the leading term of the k = 10
“line”. It is important to note that all mentioned angular coefficients represent the AFCs
ψk,p with the maximum possible p for a given k.
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2. Derivation of the Angular Fock Coefficient ψ5,2(α, θ)

The FRR (3) and (4) for k = 5 and p = 2 reduce to the form(
Λ2 − 45

)
ψ5,2(α, θ) = h5,2(α, θ), (14)

where

h5,2(α, θ) = −2Vψ4,2(α, θ). (15)

Using Equations (5), (6), (12) and (13), it is convenient to represent the RHS of Equation (14)
in the form

h5,2(α, θ) = −Z2(π − 2)(5π − 14)
270

√
π

[
3π−3/2(2h1 + h2)− 2Z(h3 +

√
2h4)

]
, (16)

where

h1 =
(1 − ξ2)2

ξ
, h2 =

cos(2α)

ξ
, h3 =

ηY40(α, θ)

sin α
, h4 =

ηY42(α, θ)

sin α
. (17)

Accordingly, we obtain the solution of Equation (14) in the identical form

ψ5,2(α, θ) = −Z2(π − 2)(5π − 14)
270

√
π

[
3π−3/2(2 f1 + f2)− 2Z( f3 +

√
2 f4)

]
, (18)

where the AFC-components fi satisfy the individual Fock recurrence relations (IFRRs)(
Λ2 − 45

)
fi = hi. (i = 1, 2, 3, 4) (19)

We sequentially find solutions to each of the IFRRs (19) using various methods presented
in Ref. [4].

2.1. Solution of the IFRR (Λ2 − 45) f3 = ηY40/ sin α

Moving from simpler to more complex solutions, let us start with IFRR(
Λ2 − 45

)
f3 = h3. (20)

The RHS h3 ≡ h3(α) represents the function of only one angle variable α. It was shown [4]
that the solution of the corresponding IFRR (20) reduces to the solution g(ρ) = f3(α) of the
inhomogeneous differential equation

(ρ2 + 1)2g′′(ρ) + 2ρ−1(ρ2 + 1)g′(ρ) + 45g(ρ) = −h(ρ), (21)

where ρ = tan(α/2), and

h(ρ) ≡ h3(α) =
(4 cos2 α − 1)

√
1 + sin α

π3/2 sin α
=

(ρ + 1)(3ρ4 − 10ρ2 + 3)
2π3/2ρ(ρ2 + 1)3/2 . (22)

For convenience, we solve the Equation (21) with the RHS h(ρ) not containing the multiplier
π−3/2. The final solution f3 will be multiplied by this factor.

Using the method of variation of parameters, one obtains [4] the particular solution of
Equation (21) in the form

g(p)(ρ) = v50(ρ)
∫ u50(ρ)h(ρ)dρ

(ρ2 + 1)2W0(ρ)
− u50(ρ)

∫ v50(ρ)h(ρ)dρ

(ρ2 + 1)2W0(ρ)
, (23)

where

W0(ρ) = −(ρ2 + 1)/ρ2. (24)

The independent solutions of the homogeneous equation associated with Equation (21)
are [4]:
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u50(ρ) =
(ρ2 + 1)9/2

ρ
2F1

(
4,

7
2

;
1
2

;−ρ2
)
=

1 − 7ρ2(3 − 5ρ2 + ρ4)

ρ(ρ2 + 1)5/2 , (25)

v50(ρ) = (ρ2 + 1)9/2
2F1

(
4,

9
2

;
3
2

;−ρ2
)
=

1 − 35ρ2 + 21ρ4 − ρ6

7(ρ2 + 1)5/2 , (26)

where 2F1(...) is the Gaussian hypergeometric function. The substitution of Equations (24)–(26)
into the general representation (23) yields

g(p)(ρ) =
−7ρ{ρ[5ρ(3ρ − 4)(3ρ + 5)− 24] + 23} − 23

420ρ(ρ2 + 1)5/2 . (27)

The general solution of the inhomogeneous equation can be expressed as the sum of
the general solution of the associated homogeneous (complementary) equation and the
particular solution of the inhomogeneous equation, whence

g(ρ) = g(p)(ρ) + cuu50(ρ) + cvv50(ρ), (28)

where the coefficients cu and cv are currently undetermined. To choose these coefficients, it
is necessary to determine the behavior of all independent solutions on the boundaries of
the domain [0, ∞]. We easily obtain:

g(p)(ρ) =
ρ→0

− 23
420ρ

− 23
60

+
451ρ

840
+ O(ρ2), (29)

g(p)(ρ) =
ρ→∞

− 3
4ρ

− 1
4ρ2 +

85
24ρ3 + O(ρ−4), (30)

u50(ρ) =
ρ→0

1
ρ
− 47ρ

2
+ O(ρ3), (31)

u50(ρ) =
ρ→∞

−7 +
105
2ρ2 + O(ρ−4), (32)

v50(ρ) =
ρ→0

1 − 15ρ2

2
+ O(ρ4), (33)

v50(ρ) =
ρ→∞

−ρ

7
+

47
14ρ

+ O(ρ−3). (34)

It is seen that the particular solution g(p)(ρ) is divergent at ρ = 0, whereas the solutions of
the homogeneous equation associated with Equation (21) are divergent, at ρ = 0 and ρ = ∞
for u50(ρ) and v50(ρ), respectively. Thus, to avoid the divergence on the whole range of
definition, one should set cu = 23/420 and cv = 0 in the general solution (28). Then, the
final physical solution becomes

f3(α) = − (ρ + 1)(23ρ4 + 22ρ3 − 122ρ2 + 22ρ + 23)
60π3/2(ρ2 + 1)5/2 =

= − 1
60π3/2 [11 sin α + 21 cos(2α) + 2]

√
1 + sin α. (35)

2.2. Solution of the IFRR (Λ2 − 45) f4 = ηY42/sinα

It was shown in Ref. [4] that the solution f4 ≡ f4(α, θ) of the IFRR(
Λ2 − 45

)
f4 = 2π−3/2η

√
2 sin αP2(cos θ) (36)

can be found in the form
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f4 = 2
√

2 π−3/2 sin2 αP2(cos θ)g4(ρ), (37)

where the function g4(ρ) satisfies the equation

(ρ2 + 1)2g′′4 (ρ) + 2ρ−1[1 + ρ2 + 2(1 − ρ4)]g′4(ρ) + 13g4(ρ) = −h4(ρ), (38)

with

h4(ρ) =
η

sin α
=

(ρ + 1)
√

ρ2 + 1
2ρ

. (39)

Using the method of variation of parameters, one obtains [4] the particular solution of
Equation (38) in the form

g(p)
4 (ρ) = v52(ρ)

∫ u52(ρ)h4(ρ)dρ

(ρ2 + 1)2W2(ρ)
− u52(ρ)

∫ v52(ρ)h4(ρ)dρ

(ρ2 + 1)2W2(ρ)
, (40)

where

W2(ρ) = −5
ρ

(
ρ2 + 1

ρ

)5

. (41)

The independent solutions of the homogeneous equation associated with Equation (38) are:

u52(ρ) =
(ρ2 + 1)13/2

ρ5 2F1

(
4,

3
2

;−3
2

;−ρ2
)
=

1 + 11ρ2 + 99ρ4 − 231ρ6

ρ5
√

ρ2 + 1
, (42)

v52(ρ) = (ρ2 + 1)13/2
2F1

(
4,

13
2

;
7
2

;−ρ2
)
=

231 − 99ρ2 − 11ρ4 − ρ6

231
√

ρ2 + 1
. (43)

Thus, the particular solution (40) reduces to the form:

g(p)
4 (ρ) = −11(21ρ5 + 9ρ4 + ρ2) + 1

2772ρ5
√

ρ2 + 1
. (44)

Considering the series expansions for g(p)
4 (ρ), u52(ρ) and v52(ρ) on the boundaries of the

range of definition (ρ ∈ [0, ∞]), it can be shown that function

g(p)
4 (ρ) +

1
2772

u52(ρ) = − ρ + 1
12
√

ρ2 + 1
= − 1

12

√
1 + sin α (45)

represents the physical (finite) solution of Equation (38), and hence we finally obtain:

f4(α, θ) = −
√

2
6π3/2 (sin α)2

√
1 + sin α P2(cos θ). (46)

2.3. Solution of the IFRR (Λ2 − 45) f1 = (1 − ξ2)2/ξ

It is important to note that the RHS h1 (see Equation (17)) of the IFRR(
Λ2 − 45

)
f1 = h1(ξ) (47)

is a function of ξ (only) defined by Equation (6). For this case [4,12], the solution of
Equation (47) coincides with the solution of the inhomogeneous differential equation

(ξ2 − 2) f ′′1 (ξ) + ξ−1(5ξ2 − 4) f ′1(ξ)− 45 f1(ξ) = h1(ξ). (48)

A particular solution of Equation (48) can be found by the method of variation of parameters
in the form [12]

f (p)
1 (ξ) =

1
7
√

2

[
u5(ξ)

∫
v5(ξ)w(ξ)dξ − v5(ξ)

∫
u5(ξ)w(ξ)dξ

]
, (49)

where
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w(ξ) = h1(ξ)ξ
2
√

2 − ξ2. (50)

The linearly independent solutions of the homogeneous equation associated with Equa-
tion (48) are defined by the relations

u5(ξ) =
P1/2

13/2(ξ/
√

2)

ξ 4
√

2 − ξ2
=

21/4(8ξ6 − 28ξ4 + 28ξ2 − 7)√
π(2 − ξ2)

, (51)

v5(ξ) =
Q1/2

13/2(ξ/
√

2)

ξ 4
√

2 − ξ2
=

√
π(−8ξ6 + 20ξ4 − 12ξ2 + 1)

23/4ξ
. (52)

where Pμ
ν (x) and Qμ

ν (x) are the associated Legendre functions of the first and second kind,
respectively. A substitution of the representations (50)–(52) into (49) yields the particular
solution:

f (p)
1 (ξ) = − 1

60
ξ(13ξ4 − 30ξ2 + 15). (53)

It can be verified that the particular solution f (p)
1 (ξ) is finite on the whole range of defi-

nition (ξ ∈ [0,
√

2]), whereas the solutions of the homogeneous equation associated with
Equation (48) are divergent at ξ =

√
2 (α = π/2, θ = π) and ξ = 0 (α = π/2, θ = 0) for

u5(ξ) and v5(ξ), respectively. Thus, we can conclude that the final physical solution of the
IFFR (47) coincides with the particular solution (53), whence

f1 = − 1
60

ξ(13ξ4 − 30ξ2 + 15) = − 1
60

√
1 − sin α cos θ[sin α cos θ(4 + 13 sin α cos θ)− 2]. (54)

2.4. Solution of the IFRR (Λ2 − 45) f2 = cos(2α)/ξ

To solve the IFRR (
Λ2 − 45

)
f2 = h2, (55)

with the RHS h2 defined by Equation (17), first of all, it is necessary to recall Sack’s
representation [13] (see also [3,4]) for ξν with ν = −1:

ξ−1 =
∞

∑
l=0

Pl(cos θ)

(
sin α

2

)l
Fl(ρ), (56)

where

Fl(ρ) = 2F1

(
l
2
+

1
4

,
l
2
+

3
4

; l +
3
2

;
4ρ2

(ρ2 + 1)2

)
=

{
Fl(ρ) 0 ≤ ρ ≤ 1
Fl(1/ρ) ρ ≥ 1

(57)

with

Fl(ρ) = (ρ2 + 1)l+ 1
2 . (58)

This enables us to present the RHS of Equation (55) in the form

h2 ≡ cos(2α)

ξ
=

∞

∑
l=0

Pl(cos θ)(sin α)lhl(ρ), (59)

where

hl(ρ) = 2−l Fl(ρ) cos(2α) = 2−l Fl(ρ)

[
1 − 8ρ2

(ρ2 + 1)2

]
. (60)

In turn, it was shown in Ref. [4] that in the case where the RHS is determined by Equa-
tion (59), the solution of the corresponding IFRR (55) can be found in the form
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f2(α, θ) =
∞

∑
l=0

Pl(cos θ)(sin α)lσl(ρ), (61)

where the function σl(ρ) satisfies the inhomogeneous differential equation

(ρ2 + 1)2σ′′
l (ρ) + 2ρ−1[1 + ρ2 + l(1 − ρ4)]σ′

l (ρ) + (5 − 2l)(9 + 2l)σl(ρ) = −hl(ρ). (62)

The linearly independent solutions of the homogeneous equation associated with Equa-
tion (62) are:

u5l(ρ) =
(ρ2 + 1)l+9/2

ρ2l+1 2F1

(
4,

7
2
− l;

1
2
− l;−ρ2

)
=

(ρ2 + 1)l−5/2

ρ2l+1 ×[
ρ6
(

1 +
120

2l − 5
− 120

2l − 3
+

24
2l − 1

)
+ 3ρ4

(
1 +

40
2l − 3

− 24
2l − 1

)
+ 3ρ2

(
1 +

8
2l − 1

)
+ 1
]

, (63)

v5l(ρ) = (ρ2 + 1)l+9/2
2F1

(
4,

9
2
+ l;

3
2
+ l;−ρ2

)
= (ρ2 + 1)l−5/2 ×[

ρ6
(

1 − 24
2l + 3

+
120

2l + 5
− 120

2l + 7

)
+ 3ρ4

(
1 +

24
2l + 3

− 40
2l + 5

)
+ 3ρ2

(
1 − 8

2l + 3

)
+ 1
]

. (64)

The method of variation of parameters enables us to obtain the particular solution of the
inhomogeneous differential Equation (62) in the form

σ
(p)
l (ρ) = v5l(ρ)

∫ u5l(ρ)hl(ρ)dρ

(ρ2 + 1)2Wl(ρ)
− u5l(ρ)

∫ v5l(ρ)hl(ρ)dρ

(ρ2 + 1)2Wl(ρ)
, (65)

where

Wl(ρ) = −2l + 1
ρ

(
ρ2 + 1

ρ

)2l+1

. (66)

Note that due to different representations for the function Fl(ρ) (see Equation (57)) at values
of ρ less and greater than 1, we obtain special representations for a particular solution in
these two regions:

σ
(0)
l (ρ) =

(ρ2 + 1)l−5/2

2l+1(2l − 1)(2l − 3)

[
(2l − 3)ρ4 − 4(l − 2)ρ2 − 4l2 + 4l − 27

3(2l − 5)

]
, 0 ≤ ρ ≤ 1 (67)

σ
(1)
l (ρ) =

ρ−2l−1(ρ2 + 1)l−5/2

2l+1(2l + 3)(2l + 5)

[
4l2 + 4l − 27

3(2l + 7)
+ 4(l + 3)ρ2 − (2l + 5)ρ4

]
. ρ ≥ 1 (68)

It can be verified that both functions (67) and (68) have no singularities on their domains
of definition. On the other hand, function u5l(ρ) is singular at ρ = 0, whereas v5l(ρ) is
singular at ρ = ∞. This means that one should search the general solution of Equation (62)
in the form:

σl(ρ) = σ
(0)
l (ρ) + c(v)5l v5l(ρ), 0 ≤ ρ ≤ 1 (69)

σl(ρ) = σ
(1)
l (ρ) + c(u)5l u5l(ρ). ρ ≥ 1 (70)

Note that two coefficients c(v)5l and c(u)5l are presently undetermined. To calculate them, we
need to find two equations relating these coefficients. The first equation is quite obvious.
It follows from the condition that the representations (69) and (70) are coincident at the
common point ρ = 1, that is
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σ
(0)
l (1) + c(v)5l v5l(1) = σ

(1)
l (1) + c(u)5l u5l(1). (71)

This relationship reduces to the first desired equation:

c(u)5l (2l + 3)(2l + 5)(2l + 7) = c(v)5l (2l − 5)(2l − 3)(2l − 1) +
27 − 4l − 4l2

3 × 2l+1 . (72)

It can be verified that hl(0) = hl(∞) = 2−l . It follows from these relations that σ
(0)
l (0) +

c(v)5l v5l(0) = σ
(1)
l (∞) + c(u)5l u5l(∞). It can be assumed that the last equation represents the

second desired equation. However, this assumption turns out to be false, because it again
leads to Equation (72).

We propose the following method to find the second desired equation. Recall that
any suitable function of the angles α and θ may be expanded into HHs since they form a
complete set:

f (α, θ) =
∞

∑
n=0(2)

n/2

∑
l=0

fn,lYn,l(α, θ), (73)

where (see, e.g., [3])

fn,l =
∫

f (α, θ)Yn,l(α, θ)dΩ (74)

with

dΩ = π2 sin2 α sin θdαdθ. α ∈ [0, π], θ ∈ [0, π] (75)

For the function f (α, θ) = f2(α, θ) represented by Equation (61), the expansion coefficient
with n = 2l becomes

f2l,l = π2
∫ π

0

∫ π

0
f2(α, θ)Y2l,l(α, θ) sin2 α sin θdαdθ =

2π2N2l,l

2l + 1

[
K0(l) + c(v)l Kv(l) + c(u)l Ku(l)

]
, (76)

where

K0(l) =
∫ π/2

0
(sin α)2l+2σ

(0)
l (ρ)dα +

∫ π

π/2
(sin α)2l+2σ

(∞)
l (ρ)dα =

=

√
2
(
−24l3 − 100l2 + 198l + 249

)
(2l − 5)(2l − 3)(2l + 3)(2l + 5)(2l + 7)(2l + 9)

, (77)

Kv(l) =
∫ π/2

0
(sin α)2l+2v5l(ρ)dα =

2l+3/2(2l − 1)
(2l + 5)(2l + 9)

, (78)

Ku(l) =
∫ π

π/2
(sin α)2l+2u5l(ρ)dα =

2l+3/2(2l + 3)(2l + 7)
(2l − 5)(2l − 3)(2l + 9)

. (79)

To derive the results (76)–(79), we use the representation Y2l,l(α, θ) = N2l,l sinl αPl(cos θ) for
the particular case of the HHs, and the orthogonality property for the Legendre polynomials.
It should be noted that the explicit form of the normalization constant N2l,l is not required.

On the other hand, expanding f2(α, θ) in HHs, and inserting this expansion into the
LHS of the IFRR (55), we obtain(

Λ2 − 45
)

f2(α, θ) =
∞

∑
n=0(2)

n/2

∑
l=0

fn,l [n(n + 4)− 45]Yn,l(α, θ). (80)

To derive the last equation, we use the fact that Yn,l(α, θ) is an eigenfunction of the operator
Λ2 with an eigenvalue equal to n(n + 4), that is
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Λ2Yn,l(α, θ) = n(n + 4)Yn,l(α, θ). (81)

The HH expansion of the RHS of Equation (55) is

h2(α, θ) =
∞

∑
n=0(2)

n/2

∑
l=0

hn,lYn,l(α, θ). (82)

Hence,

f2l,l =
h2l,l

4l(l + 2)− 45
. (83)

Using again Sack’s representation (56) and (57) and Equation (74), we obtain the expansion
coefficient h2l,l in explicit form:

h2l,l = π2
∫ π

0

∫ π

0
h2(α, θ)Y2l,l(α, θ) sin2 α sin θdαdθ = − 27/2π2N2l,l(4l2 + 24l + 19)

(2l + 1)(2l + 3)(2l + 5)(2l + 7)
. (84)

Thus, inserting (84) into the RHS of Equation (83) and equating the result to the RHS of
Equation (76) we obtain the desired second equation in the form:

c(u)5l (2l + 3)(2l + 5)(2l + 7) = −c(v)5l (2l − 5)(2l − 3)(2l − 1)− 2−l−1(2l + 1). (85)

Solving the system of two linear Equations (72) and (85) gives the desired coefficients:

c(u)5l = − 2−l−1(l + 4)(2l − 3)
3(2l + 3)(2l + 5)(2l + 7)

, c(v)5l =
2−l−1(l − 3)(2l + 5)

3(2l − 5)(2l − 3)(2l − 1)
. (86)

It should be noted that the method described above for calculating the coefficients c(u)5l and

c(v)5l is very reliable, but quite complex. A much simpler method is based on the statement
that the point ρ = 1 represents the match point for the functions defined by Equations (69)
and (70). This means that not only these functions, but also their first (at least) derivatives
must coincide at this point. Thus, the second required equation relating the coefficients c(u)5l

and c(v)5l is:

dσ
(0)
l (ρ)

dρ

∣∣∣
ρ=1

+ c(v)5l
dv5l(ρ)

dρ

∣∣∣
ρ=1

=
dσ

(1)
l (ρ)

dρ

∣∣∣
ρ=1

+ c(u)5l
du5l(ρ)

dρ

∣∣∣
ρ=1

. (87)

The solution of the system of two Equations (72) and (87) again gives the coefficients defined
by Equation (86). Substituting these coefficients into the representations (69) and (70), we
finally obtain:

f2(α, θ) =
1
6

∞

∑
l=0

ζl(ρ)Pl(cos θ)

(2l − 1)(2l + 3)
, (88)

where

ζl(ρ) =

{
χl(ρ), 0 ≤ ρ ≤ 1
χl(1/ρ), ρ ≥ 1

(89)

with

χl(ρ) =
ρl

(ρ2 + 1)5/2

[
(l − 3)(2l − 1)ρ6

2l + 7
+ 9lρ4 − 9(l + 1)ρ2 − (l + 4)(2l + 3)

2l − 5

]
. (90)

It is clear that only the function (69) is required for calculating the function χl(ρ). Thus,
in fact, we need to calculate only one coefficient c(v)5l to define this function. In this regard,
it is important to emphasize that the representation (89) reflects the fact that the WF of a
two-electron atomic system must preserve its parity when interchanging the electrons. For
the singlet S-states (which include the ground state) this means that the AFC and/or its
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component preserves its form (including the sign) under the transformation α � π − α.
For the AFC-component f2(α, θ), represented by the series expansion (61), this property
corresponds (in terms of variable ρ) to the relationship:

σ
(0)
l (ρ−1) + c(v)5l v5l(ρ

−1) = σ
(1)
l (ρ) + c(u)5l u5l(ρ). (91)

The elimination of the RHSs between Equations (71) and (91) for ρ = 1 yields the identity,
whereas the use of Equation (87) instead of Equation (71) yields the required equation:

dσ
(0)
l (ρ)

dρ

∣∣∣
ρ=1

+ c(v)5l
dv5l(ρ)

dρ

∣∣∣
ρ=1

=
dσ

(0)
l (ρ−1)

dρ

∣∣∣
ρ=1

+ c(v)5l
dv5l(ρ

−1)

dρ

∣∣∣
ρ=1

. (92)

The solution of the last equation gives the coefficients c(v)5l presented by Equation (86). Note

that the coefficient c(u)5l can then be calculated by the use of Equation (71) if needed.
In the general case, we cannot sum the infinite series (88) to obtain the function f2(α, θ)

in an explicit closed form. However, this can be done for some special angles α and/or
θ. For example, it is worth noting that the angles θ = 0, π correspond to the collinear
configuration [14] of the two-electron atomic system in question. For these cases we obtain

f2(α, 0) = ± (ρ − 1)(12ρ4 − 13ρ3 − 88ρ2 − 13ρ + 12)
90(ρ2 + 1)5/2 , (93)

f2(α, π) = − (ρ + 1)(12ρ4 + 13ρ3 − 88ρ2 + 13ρ + 12)
90(ρ2 + 1)5/2 . (94)

Sign “+” in Equation (93) corresponds to 0 ≤ α ≤ π/2 (0 ≤ ρ ≤ 1), whereas “−” to
π/2 ≤ α ≤ π (ρ ≥ 1). The list of special θ-angles can be supplemented with an intermediate
angle θ = π/2:

f2

(
α,

π

2

)
= −2(ρ4 − 3ρ2 + 1)

15(ρ2 + 1)2 . (95)

It is worth noting that for the important cases of the nucleus–electron and electron–electron
coalescence, Equation (88), respectively, reduces to:

f2(0, θ) = − 2
15

, f2

(π

2
, 0
)
= 0. (96)

To derive the results (93)–(96) we used the relationships:

Pn(0) =
√

πΓ−1
(

1 − n
2

)
Γ−1

(n
2
+ 1
)

, Pn(1) = 1, Pn(−1) = (−1)n, (97)

where Γ(x) is the gamma function.

3. Derivation of the Angular Fock Coefficient ψ6,3(α, θ)

We start this section by considering the FRR (3) and (4) for k = 6 and p = 2:(
Λ2 − 60

)
ψ6,2 = 48ψ6,3 − 2Vψ5,2 + 2Eψ4,2. (98)

Next, let us expand each function in Equation (98) into HHs, using Equation (73). This gives

ψk,p =
∞

∑
n=0(2)

n/2

∑
l=0

c(kp)
nl Yn,l(α, θ), (99)

with {k, p} = {6, 3}, {6, 2}, {4, 2} and

Vψ5,2 =
∞

∑
n=0(2)

n/2

∑
l=0

fnlYn,l(α, θ), (100)
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where the dimensionless potential V is defined by Equation (5), whereas the expansion
coefficient fnl can be calculated by the formula

fnl =
∫

Vψ5,2Yn,l(α, θ)dΩ, (101)

according to Equation (74).
It follows from Equation (4) that hk,k/2 = 0 for even k. Using additionally Equation (81),

we can conclude that the AFC ψk,k/2 (with even k) represents the linear combination of the
HHs, Yk,l(α, θ). Hence,

c(63)
nl = 0 f or n �= 6, (102)

c(42)
nl = 0 f or n �= 4. (103)

Equating the coefficients for the HHs, Y6,l(α, θ) in both sides of Equation (98), we obtain:

0 = 48c(63)
6l − 2f6l . (104)

Hence, (using additionally Equation (101)),

c(63)
6l =

1
24

∫
Vψ5,2Y6,l(α, θ)dΩ. (105)

Note that the LHS of Equation (104) equals zero, because (Δ2 − 60)Y6,l = 0 as follows from
Equation (81).

Thus, according to Equations (99) and (102), the AFC ψ6,3(α, θ) represents a linear
combination of four HHs, Y6,l(α, θ) with l = 0, 1, 2, 3. The contribution of each HH is

determined by the coefficient c(63)
6l given by Equation (105). However, it is easy to prove

that only the coefficients with odd values of l are nonzero for ψ6,3(α, θ). Indeed, this
has already been mentioned in Section 2.4 that the WF of a two-electron atom/ion must
preserve its parity when interchanging the electrons. For the singlet S-states this means
that only the HHs, which preserve the sign under transformation α � π − α, differ from
zero in the expansion of the WF, and hence in the expansion of any AFC. In turn, it is easy
to show that only Yn,l(α, θ) with even values of (n/2 − l) satisfy the above property. Hence,
the AFC in question, becomes

ψ6,3(α, θ) = a61Y6,1(α, θ) + a63Y6,3(α, θ), (106)

where we denoted a6l ≡ c(63)
6l (l = 1, 3) for convenience and simplicity, and where the

normalized HHs are

Y6,1(α, θ) =
2[sin α + 3 sin(3α)] cos θ

π3/2
√

5
, Y6,3(α, θ) =

8 sin3 αP3(cos θ)

π3/2
√

5
. (107)

Using Formula (105) and taking into account the representations (5) and (18) for the
dimensionless potential V and the AFC ψ5,2, respectively, we can represent the desired
coefficients in the form

a6l = − (π − 2)(5π − 14)
6480

(
Il,4Z4 + Il,3Z3 + Il,2Z2

)
, (l = 1, 3) (108)

where

Il,4 = 4π3/2
∫ π

0

∫ π

0

[
f3(α, θ) +

√
2 f4(α, θ)

]
ηY6,l(α, θ) sin α sin θdαdθ, (109)

Il,3 = −2
∫ π

0

∫ π

0

⎧⎨
⎩3η[2 f1(α, θ) + f2(α, θ)]

sin α
+

π3/2
[

f3(α, θ) +
√

2 f4(α, θ)
]

ξ

⎫⎬
⎭×

×Y6,l(α, θ) sin2 α sin θdαdθ, (110)
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Il,2 = 3
∫ π

0

∫ π

0
[2 f1(α, θ) + f2(α, θ)]ξ−1Y6,l(α, θ) sin2 α sin θdαdθ. (111)

To calculate the integral (110), it is useful to separate the contributions which include the
functions f1, f3 and f4, represented by the explicit closed expressions, and the function f2,
represented by the infinite series (88). We obtain:

Il,3 = I(134)
l,3 − 6I(2)l,3 , (112)

where

I(134)
l,3 = −2

∫ π

0

∫ π

0

⎧⎨
⎩6η f1(α, θ)

sin α
+

π3/2
[

f3(α, θ) +
√

2 f4(α, θ)
]

ξ

⎫⎬
⎭Y6,l(α, θ) sin2 α sin θdαdθ, (113)

I(2)l,3 =
∫ π

0

∫ π

0
f2(α, θ)ηY6,l(α, θ) sin α sin θdαdθ. (114)

The integrals (113) can be taken in an explicit (closed) form that gives:

I(134)
1,3 =

3(45π − 122)
35π3/2

√
5

, I(134)
3,3 =

245π − 816
70π3/2

√
5

. (115)

The problem of calculating the integrals (114) is that the corresponding integrands contain
the function f2(α, θ) represented by the infinite series (88). Fortunately, using the orthogo-
nality relationship for the Legendre polynomials, we can get these integrals also in explicit
form. Changing the order of summation and integration, we easily obtain:

I(2)1,3 =
π−3/2

3
√

5

∞

∑
l=0

∫ π

0
[sin α + 3 sin(3α)] η

[
ζl(ρ)

(2l − 1)(2l + 3)

]
sin αdα

∫ π

0
Pl(cos θ) cos θ sin θdθ

=
2π−3/2

45
√

5

∫ π

0
[sin α + 3 sin(3α)] η ζ1(ρ) sin αdα =

7π + 22
210π3/2

√
5

, (116)

I(2)3,3 =
4π−3/2

3
√

5

∞

∑
l=0

∫ π

0
η

[
ζl(ρ)

(2l − 1)(2l + 3)

]
sin4 α dα

∫ π

0
Pl(cos θ)P3(cos θ) sin θdθ

=
8π−3/2

945
√

5

∫ π

0
η ζ3(ρ) sin4 α dα =

3π − 32
180π3/2

√
5

. (117)

Recall that η ≡ η(α) is defined by Equation (6) and ρ = tan(α/2).
It can be shown (using fairly long nontrivial derivations) that the integrals Il,2 and Il,4

vanish both for l = 1 and l = 3. This means that (according to the representations (106) and
(108)) the AFC, ψ6,3(α, θ) is proportional to the third power of the nucleus charge Z (only),
which is in full agreement with Formula (13) from Ref. [4].

Thus, combining the results of this section, we obtain the nonzero coefficients a6,l in
the simple final form:

a61 = − (π − 2)(5π − 14)(32π − 97)
56700π3/2

√
5

Z3, (118)

a63 = − (π − 2)(5π − 14)(357π − 1112)
680400π3/2

√
5

Z3. (119)

4. Derivation of the Angular Fock Coefficients ψ7,3(α, θ) and ψ8,4(α, θ)

In Sections 2 and 3 we detailed the derivation of the AFCs ψ5,2(α, θ) and ψ6,3(α, θ),
respectively. Therefore, for the AFCs ψ7,3(α, θ) and ψ8,4(α, θ), we give only abbreviated
derivations, and include extended explanations only in case of significant differences.
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4.1. The AFC ψ7,3(α, θ)

The FRR (3) and (4) for k = 7 and p = 3 reduces to the form(
Λ2 − 77

)
ψ7,3(α, θ) = h7,3(α, θ), (120)

where

h7,3(α, θ) = −2Vψ6,3(α, θ). (121)

Using Equations (106), (107) and (5) the RHS of Equation (120) can be represented in
the form:

h7,3(α, θ) =
(π − 2)(5π − 14)Z3

340200
√

5π3/2

{
h̄1 + h̄2√

5π3/2
− 2Z

[
12(32π − 97)h̄3 + (357π − 1112)h̄4

]}
, (122)

where

h̄1 = 20ξ−1
[
12(32π − 97)(1 − ξ2) + (357π − 1112)(1 − ξ2)3

]
, (123)

h̄2 = 60(688 − 255π)ξ−1 sin3 α cos θ, (124)

h̄3 = η(sin α)−1Y6,1(α, θ), h̄4 = η(sin α)−1Y6,3(α, θ). (125)

Accordingly, the solution of the FRR (120) can be found in the form:

ψ7,3(α, θ) =
(π − 2)(5π − 14)Z3

340200
√

5π3/2

{
f̄1 + f̄2√

5π3/2
− 2Z

[
12(32π − 97) f̄3 + (357π − 1112) f̄4

]}
, (126)

where the AFC components f̄i satisfy the IFRRs(
Λ2 − 77

)
f̄i = h̄i. (i = 1, 2, 3, 4) (127)

Note that the components h̄i of the RHS h7,3 of the FRR (120) for the AFC ψ7,3 are reasonably
close to the components hi of the RHS h5,2 of the FRR (14). Therefore, we only briefly dwell
on the conclusions of the corresponding results, as we noted earlier.

It is seen from Equation (123) that the RHS h̄1 is a function of a single variable ξ defined
by Equation (6). The solution of the corresponding IFRR was described in Section IV of
Ref. [4] (see also Section II of Ref. [12]) and illustrated (among others) in Section 2.3 of the
current article. Thus, following the technique mentioned above, we obtain:

f̄1 =

(
41437π

12
− 74342

7

)
ξ7 +

(
36476 − 35588π

3

)
ξ5 +

+
5
2
(4931π − 15156)ξ3 + 5(2276 − 741π)ξ. (128)

It can be verified that the RHSs h̄3 and h̄4 represent functions of the form f (α)Pl(cos θ)
with l equals 1 and 3, respectively. The solution of the corresponding IFRR was described
in Section V of Ref. [4] and illustrated in Sections 2.1 and 2.2 of the current article. This
enables us to obtain:

f̄3 = −ρ(1 + ρ)(29 + ρ{16 + ρ[ρ(16 + 29ρ)− 114]}) cos θ

9
√

5 π3/2(ρ2 + 1)7/2
, (129)

f̄4 = − sin3 α
√

1 + sin α

2
√

5 π3/2
P3(cos θ). (130)

Recall that the ρ variable was defined previously in Section 2.1.
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The RHS h̄2 represented by Equation (124) is slightly more complicated than h2 dis-
cussed in Section 2.4. In this regard, it would be useful to clarify two points.

First, using representation (56) for ξ−1, we can rewrite Equation (124) in the form:

h̄2 = 60(688 − 225π)h̃2 (131)

where

h̃2 =
∞

∑
l=0

2−l(sin α)l+3Fl(ρ) cos θPl(cos θ), (132)

and where Fl(ρ) is defined by Equations (57) and (58). In order to apply the solution of the
corresponding IFRR by the method described in Section 2.4 (see also [4]), the θ-dependent
l-component in the series expansion of h̃2 must be pure Pl(cos θ). To solve the problem,
one could use the general formula representing the Clebsch–Gordan series for a product
of two spherical harmonics. However, in our simple case, it is easier to use the recurrence
relation for the Legendre polynomials

(l + 1)Pl+1(x)− (2l + 1)xPl(x) + lPl−1(x) = 0, (133)

which enables us to represent h̃2 in the desired form:

h̃2 =
∞

∑
l=0

h̄l(ρ)(sin α)l Pl(cos θ), (134)

where

h̄l(ρ) =
l

2l−1(2l − 1)
sin2 αFl−1(ρ) +

l + 1
2l+1(2l + 3)

sin4 αFl+1(ρ). (135)

The second point is related to the calculation of the coefficient

h̃2l,l = π2
∫ π

0

∫ π

0
h̃2(α, θ)Y2l,l(α, θ) sin2 α sin θdαdθ (136)

in the HH expansion of h̃2 (see the corresponding Equation (84) for calculation of ψ5,2(α, θ)).
Of course, we can use representation (134) and (135) and then apply the orthogonality
condition for the Legendre polynomials. However, the simpler way is to use the original
representation (132) taking into account that cos θ ≡ P1(cos θ). In this case, we can apply
the well-known formula for the integral of three Legendre polynomials∫ 1

−1
Pl(x)PL(x)Pl′(x)dx = 2

(
l L l′

0 0 0

)2

, (137)

where the RHS represents twice the square of the Wigner 3-j symbol.
Thus, applying the methodologies outlined in Section 2.4, and given the above features,

one obtains

f̄2 =
1

48

∞

∑
l=0

ζ̄l(ρ)Pl(cos θ)

(2l − 1)(2l + 3)
, (138)

where

ζ̄l(ρ) =

{
χ̄l(ρ), 0 ≤ ρ ≤ 1
χ̄l(1/ρ), ρ ≥ 1

(139)

with

χ̄l(ρ) = − ρl

(ρ2 + 1)7/2

{ (32l2 + 26l − 25)ρ6

2l + 5

[
(2l − 1)ρ2

2l + 9
+ 4
]
+

+
1

2l − 3

[
6(84l2 + 84l − 95)ρ4

2l + 5
− (32l2 + 38l − 19)

(
2l + 3
2l − 7

+ 4ρ2
)]}

. (140)

Recall that the component f̆2 in the RHS of Equation (126) is equal to 60(688 − 225π) f̄2
according to representation (131).
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As in the case of the AFC ψ5,2(α, θ), there are combinations of special hyperspherical
angles α and θ for which the component f̄2 ≡ f̄2(α, θ) of the AFC ψ7,3(α, θ) can be obtained
in closed form. In particular, one obtains:

f̄2(α, 0) = ∓ (ρ − 1)(95ρ6 + 1166ρ5 − 1879ρ4 − 8844ρ3 − 1879ρ2 + 1166ρ + 95)
5040(ρ2 + 1)7/2 , (141)

f̄2(α, π) =
(ρ + 1)(95ρ6 − 1166ρ5 − 1879ρ4 + 8844ρ3 − 1879ρ2 − 1166ρ + 95)

5040(ρ2 + 1)7/2 , (142)

f̄2(α,
π

2
) =

19ρ4 + 10ρ2 + 19
1008(ρ2 + 1)2 . (143)

Sign “−” in Equation (141) corresponds to 0 ≤ α ≤ π/2 (0 ≤ ρ ≤ 1), whereas “+”
corresponds to π/2 ≤ α ≤ π (ρ ≥ 1).

For the important cases of the nucleus–electron and electron–electron coalescence,
representation (138)–(140) is simplified to:

f̄2(0, θ) =
19

1008
, f̄2

(π

2
, 0
)
= 0. (144)

4.2. The AFC ψ8,4(α, θ)

Having at our disposal the AFC ψ7,3 ≡ ψ7,3(α, θ), we can calculate the AFC ψ8,4 ≡
ψ8,4(α, θ) using the FRR (3) and (4) for k = 8 and p = 3:(

Λ2 − 96
)

ψ8,3 = 80ψ8,4 − 2Vψ7,3 + 2Eψ6,3. (145)

It follows from Equation (81) and the FRR (3) and (4) for k = 8 and p = 4 that the AFC ψ8,4
is a linear combination of the HHs, Y8,l ≡ Y8,l(α, θ). Moreover, given that only Yn,l(α, θ)
with even values of n/2 − l are suitable for singlet S-states, we obtain:

ψ8,4 = a80Y8,0 + a82Y8,2 + a84Y8,4. (146)

For further derivations, it is advisable to represent the HHs in the form

Y8,l(α, θ) = y8l(α)Pl(cos θ), (147)

where

y80(α) = π−3/2[2 cos(4α) + 2 cos(2α) + 1], (148)

y82(α) =
2

π3/2

√
10
7

sin2 α[4 cos(2α) + 3], (149)

y84(α) =
8

π3/2

√
2
7

sin4 α. (150)

It was found in Section 3 that ψ6,3 ≡ ψ6,3(α, θ) is the linear combination of the HHs Y6,l(α, θ).
Thus, expanding each function of Equation (145) in HHs, and equating the coefficients for
Y8,l , we obtain (see the corresponding result (105) for a6l)

a8l =
1
40

∫
Vψ7,3Y8,ldΩ, (151)

where the potential V is defined by Equation (5). When deriving the last equation, it was
taken into account that (Δ2 − 96)Y8,l = 0, as follows from Equation (81).

A direct substitution of the representations (5), (126) and (147) into the RHS of Equa-
tion (151) yields:
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a8l =
(π − 2)(5π − 14)Z3

13608000
√

5 π3/2
×

×
∫ (1

ξ
− 2Zη

sin α

){
f̆1 + f̆2√

5π3/2
− 2Z

[
12(32π − 97) f̆3 + (357π − 1112) f̆4

]}
Y8,l(α, θ)dΩ. (152)

It follows from Equation (13) of Ref. [4] that only the coefficients at Z4 are nonzero on the
RHS of the last equation. Hence, Equation (152) reduces to the form:

a8l = − (π − 2)(5π − 14)Z4

6804000
√

5 π3/2

[
S1l + S2l√

5π3/2
+ 12(32π − 97)S3l + (357π − 1112)S4l

]
, (153)

where

S1l = π2
∫ π

0

∫ π

0
f̆1(ξ)Y8,l(α, θ)η sin α sin θdαdθ, (154)

S2l = π2
∫ π

0

∫ π

0
f̆2(α, θ)Y8,l(α, θ)η sin α sin θdαdθ =

=
5π2(688 − 225π)

(2l − 1)(2l + 1)(2l + 3)

∫ π/2

0
χ̄l(ρ)y8l(α)η sin αdα, (155)

Snl = π2
∫ π

0

∫ π

0
f̆n(α, θ)Y8,l(α, θ)ξ−1 sin2 α sin θdαdθ. (n = 3, 4) (156)

The identifiers ξ and η are defined by Equation (6), whereas functions χ̄l(ρ) can be cal-
culated by Formula (140). When deriving Equation (155), we applied the orthogonality
condition for the Legendre polynomials. Fortunately, all integrals (154)–(156) can be taken
in closed form. Thus, by collecting these results and substituting them into the RHS of
Equation (153), we finally obtain the desired coefficients in the form:

a8l =
Z4(π − 2)(5π − 14)

π5/2 b8l , (157)

with

b80 =
π(150339π − 927292) + 1430792

19289340000
, b82 =

π(751965π − 4654046) + 7200976
1928934000

√
70

,

b84 =
π(3190317π − 19828996) + 30802176

25719120000
√

14
. (158)

5. Results and Discussions

The angular Fock coefficients ψk,p ≡ ψk,p(α, θ) with the maximum possible value of
subscript p were calculated on examples of the coefficients with 5 ≤ k ≤ 10. The results
obtained in Sections 2–4 are summarized in Appendices A and B. The AFCs ψ9,4 and ψ10,5
are presented in Appendix C without derivations. To find the latter AFCs, the methods
described in the main sections were used. The presented technique makes it possible
to calculate such AFCs for any arbitrarily large k. These coefficients are leading in the
logarithmic power series representing the Fock expansion (see Equation (8)). As such,
they may be indispensable for the development of simple methods for calculating the
helium-like electronic structure.

The proposed technique, as well as the final results, are quite complex. Therefore, both
require verification. We are aware of two ways for the above-mentioned verification. The
first one is to use the Green’s function (GF) approach (see Ref. [1] and also Ref. [15], Section
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4) which enables us to calculate (at least, numerically) the AFC (or its component) by the
following integral representation:

ψk,p(α, θ) =
1

8π

∫ π

0
dα′ sin2 α′

∫ π

0
dθ′ sin θ′ hk,p(α

′, θ′)
∫ π

0

cos
[(

k
2 + 1

)
ω
]

sin ω
(1 − λ)dϕ, (159)

where ω is an angle defined by the relation

cos ω = cos α cos α′ + sin α sin α′
(
cos θ cos θ′ + sin θ sin θ′ cos ϕ

)
, (160)

whereas

λ =

{
0 k odd

ω/π k even
. (161)

For even k and maximum value of p = k/2, the RHS hk,k/2 of the FRR (3) equals zero.
This implies that the GF formula (159) cannot be applied in this case. Hence, only the
AFCs ψk,p with odd values of k (and maximum p) can be verified with the GF method.
Thus, numerically calculating (for various combinations of angles α and θ) the triple
integrals (159) representing the AFCs ψ5,2(α, θ), ψ7,3(α, θ) and ψ9,4(α, θ), we verified that
the representations obtained for them in Sections 2 and 4.1 and in Appendix C were correct.

The second verification method considered, covering all possible combinations of
angles, being quite complex, is the only method known to us that correctly displays the WF
near the nucleus. This is the CFHH method mentioned in the Introduction. It is based on
decomposing the full WF into a form

ΨCFHH(r1, r2, r12) = exp[ f (r1, r2, r12)]ΦCFHH(R, α, θ), (162)

where the so-called correlation function f can be taken in a simple linear form

f (r1, r2, r12) = c1r1 + c2r2 + c12r12. (163)

The so-called “cusp parametrization”

c1 = c2 = −Z, c12 = 1/2 (164)

is used as a rule. For a small enough hyperspherical radius R, the function Φ is repre-
sented as

ΦCFHH(R, α, θ) =
1

d0,0(α, θ)

K

∑
k=0

(2κR)k
[k/2]

∑
p=0

dk,p(α, θ) lnp(2κR), (165)

where κ =
√
−2E, and functions dk,p(α, θ) are expanded in N (basis size) HHs. It follows

from representation (165) that the AFCs ψk,p(α, θ) can be expressed in terms of the functions
dk′ ,p′(α, θ) calculated by the CFHHM. For example, for the AFCs in question, one obtains:

ψCFHH
k,k/2 (α, θ) =

(2κ)kdk,k/2(α, θ)

d0,0(α, θ)
. (166)

We calculated all AFCs discussed in this article using CFHHM with K = 18 and N = 1600.
The angles 0 ≤ α ≤ π and 0 ≤ θ ≤ π with step π/6 were considered. The relative
difference |1 − ψk,p(α, θ)/ψCFHH

k,p (α, θ)| was less than 10−7 for all examined cases, including
1 ≤ Z ≤ 5. This indicates that all our theoretical calculations were correct.
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Appendix A

Summarizing the results of Section 2, one obtains.

ψ5,2(α, θ) = −Z2(π − 2)(5π − 14)
270

√
π

[
3π−3/2(2 f1 + f2)− 2Z( f3 +

√
2 f4)

]
, (A1)

where

f1 = − 1
60

√
1 − sin α cos θ[sin α cos θ(4 + 13 sin α cos θ)− 2], (A2)

f3(α) = − 1
60π3/2 [11 sin α + 21 cos(2α) + 2]

√
1 + sin α, (A3)

f4(α, θ) = −
√

2
6π3/2 (sin α)2

√
1 + sin α P2(cos θ), (A4)

f2(α, θ) =
1
6

∞

∑
l=0

ζl(ρ)Pl(cos θ)

(2l − 1)(2l + 3)
. (A5)

The ζ function is defined as follows:

ζl(ρ) =

{
χl(ρ), 0 ≤ ρ ≤ 1
χl(1/ρ), ρ ≥ 1

(A6)

where

χl(ρ) =
ρl

(ρ2 + 1)5/2

[
(l − 3)(2l − 1)ρ6

2l + 7
+ 9lρ4 − 9(l + 1)ρ2 − (l + 4)(2l + 3)

2l − 5

]
. (A7)

Recall that ρ = tan(α/2), and special cases of the function f2 ≡ f2(α, θ), when they can be
obtained in closed form, are represented by Equations (93)–(96).

Summarizing the results of Section 3, one obtains:

ψ6,3(α, θ) =
Z3(π − 2)(5π − 14)

56700π3/2
√

5

[
(97 − 32π)Y6,1(α, θ) +

(1112 − 357π)

12
Y6,3(α, θ)

]
, (A8)

where Yn,l(α, θ) are the normalized hyperspherical harmonics.

Appendix B

Summarizing the results of Section 4.1, one obtains:

ψ7,3(α, θ) =
(π − 2)(5π − 14)Z3

340200
√

5π3/2

{
f̄1 + f̄2√

5π3/2
− 2Z

[
12(32π − 97) f̄3 + (357π − 1112) f̄4

]}
, (A9)
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where

f̄1 =

(
41437π

12
− 74342

7

)
ξ7 +

(
36476 − 35588π

3

)
ξ5 +

+
5
2
(4931π − 15156)ξ3 + 5(2276 − 741π)ξ. (A10)

f̄3 = −ρ(1 + ρ)(29 + ρ{16 + ρ[ρ(16 + 29ρ)− 114]}) cos θ

9
√

5 π3/2(ρ2 + 1)7/2
, (A11)

f̄4 = − sin3 α
√

1 + sin α

2
√

5 π3/2
P3(cos θ), (A12)

f̄2 =
1

48

∞

∑
l=0

ζ̄l(ρ)Pl(cos θ)

(2l − 1)(2l + 3)
. (A13)

The ζ̄ function is defined as follows:

ζ̄l(ρ) =

{
χ̄l(ρ), 0 ≤ ρ ≤ 1
χ̄l(1/ρ), ρ ≥ 1

, (A14)

where

χ̄l(ρ) = − ρl

(ρ2 + 1)7/2

{ (32l2 + 26l − 25)ρ6

2l + 5

[
(2l − 1)ρ2

2l + 9
+ 4
]
+

+
1

2l − 3

[
6(84l2 + 84l − 95)ρ4

2l + 5
− (32l2 + 38l − 19)

(
2l + 3
2l − 7

+ 4ρ2
)]}

. (A15)

Recall that variable ξ is defined by Equation (6), and special cases of the function f̄2 ≡
f̄2(α, θ), when they can be obtained in closed form, are represented by Equations (141)–(144).

Summarizing the results of Section 4.2, one obtains:

ψ8,4 =
Z4(π − 2)(5π − 14)

π5/2 [b80Y8,0(α, θ) + b82Y8,2(α, θ) + b84Y8,4(α, θ)], (A16)

where

b80 =
π(150339π − 927292) + 1430792

19289340000
, b82 =

π(751965π − 4654046) + 7200976
1928934000

√
70

,

b84 =
π(3190317π − 19828996) + 30802176

25719120000
√

14
. (A17)

Appendix C

In Sections 2 and 3, the AFCs ψ5,2(α, θ) and ψ6,3(α, θ) were calculated with detailed
derivations. In Section 4, the AFCs ψ7,3(α, θ) and ψ8,4(α, θ) were presented with a very
brief derivations. The corresponding results were summarized in Appendices A and B.
The current Appendix presents the AFCs ψ9,4 ≡ ψ9,4(α, θ) and ψ10,5 ≡ ψ10,5(α, θ) without
derivations. To find the latter AFCs, the methods described in the main sections were used.

So, the first AFC under consideration can be represented as:

ψ9,4 = 2Z4[2ZX1(α, θ)− X2(α, θ)], (A18)

where

X1(α, θ) = ǎ80 f̌1 + ǎ82 f̌2 + ǎ84 f̌3, (A19)
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X2(α, θ) =
35

π3/2

√
2
7

ǎ84 f̌4 +
(π − 2)(5π − 14)
123451776000π4

[
c5 f̌5 + c6 f̌6 + c7 f̌7 + 16(c8 f̌8 + c9 f̌9)

]
. (A20)

Here, ǎ8l = Z−4a8l , where the coefficients a8l are defined by Equations (157) and (158),
whereas the other coefficients are:

c5 = π(29757524 − 4780401π)− 46286848, c6 = π(9581100π − 59458928) + 92239360,

c7 = π(28060 + 10149π)− 167168, c8 = 9π(134543π − 828732) + 11488128,

c9 = π(4804833π − 29773780) + 46119680. (A21)

The functions f̌i ≡ f̌i(α, θ) are:

f̌1 = − (ρ + 1)(563ρ8 + 1012ρ7 − 8932ρ6 − 3668ρ5 + 23954ρ4 − 3668ρ3 − 8932ρ2 + 1012ρ + 563)
1260π3/2(ρ2 + 1)9/2 , (A22)

f̌2 = −
(

8
π3/2

√
10
7

)
ρ2(1 + ρ)(126 + 49ρ − 424ρ2 + 49ρ3 + 126ρ4)

300(ρ2 + 1)9/2 P2(cos θ), (A23)

f̌3 = − 2
5π3/2

√
2(1 + sin α)

7
sin4 α P2(cos θ), (A24)

f̌4 = − ξ(315 − 1680ξ2 + 2814ξ4 − 1854ξ6 + 419ξ8)

1260
, (A25)

f̌5 = − ξ

60
(2ξ2 − 3)(2ξ2 − 1)(4ξ4 − 10ξ2 + 5). (A26)

The remaining f̌ functions are represented by series:

f̌ j =
(ρ2 + 1)−9/2

kj

∞

∑
l=0

ρl ζ̌ jl(ρ)

(2l − 1)(2l + 3)
Pl(cos θ), (j = 6, 7, 8, 9) (A27)

where

k6 = 6, k7 = 60, k8 = 24, k9 = 40, (A28)

and the corresponding ζ̌ functions are:

ζ̌6l(ρ) =
(2l − 15)(2l − 1)(l + 1)ρ10

(2l + 7)(2l + 11)
+

(22l2 − 5l − 12)ρ8

(2l + 7)
+

10(2l2 + 11l + 3)ρ6

2l + 7
−

−10(2l2 − 7l − 6)ρ4

2l − 5
− (22l2 + 49l + 15)ρ2

2l − 5
− l(2l + 3)(2l + 17)

(2l − 9)(2l − 5)
, (A29)

ζ̌7l(ρ) =
(2l − 1)(4l2 + 160l − 189)ρ10

(2l + 7)(2l + 11)
+

35(4l2 + 40l − 9)ρ8

(2l + 7)
− 350(4l2 + 16l + 3)ρ6

2l + 7
+

+
350(4l2 − 8l − 9)ρ4

2l − 5
− 35(4l2 − 32l − 45)ρ2

2l − 5
− (2l + 3)(4l2 − 152l − 345)

(2l − 9)(2l − 5)
, (A30)
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ζ̌8l(ρ) = − (2l − 1)(56l3 + 250l2 + 338l + 171)ρ10

(2l + 5)(2l + 7)(2l + 11)
− (136l3 + 314l2 − 110l − 153)ρ8

(2l + 5)(2l + 7)
−

−2(80l4 + 652l3 + 566l2 − 1824l − 873)ρ6

(2l − 3)(2l + 5)(2l + 7)
+

2(80l4 − 332l3 − 910l2 + 1320l + 945)ρ4

(2l − 5)(2l − 3)(2l + 5)
+

+
(136l3 + 94l2 − 330l − 135)ρ2

(2l − 5)(2l − 3)
+

(2l + 3)(56l3 − 82l2 + 6l − 27)
(2l − 9)(2l − 5)(2l − 3)

, (A31)

ζ̌9l(ρ) =
(2l − 1)(24l3 − 150l2 − 670l − 439)ρ10

(2l + 5)(2l + 7)(2l + 11)
+

5(72l3 + 162l2 − 70l − 103)ρ8

(2l + 5)(2l + 7)
+

+
10(16l4 + 220l3 + 222l2 − 804l − 423)ρ6

(2l − 3)(2l + 5)(2l + 7)
− 10(16l4 − 156l3 − 342l2 + 652l + 399)ρ4

(2l − 5)(2l − 3)(2l + 5)
−

−5(72l3 + 54l2 − 178l − 57)ρ2

(2l − 5)(2l − 3)
− (2l + 3)(24l3 + 222l2 − 298l − 57)

(2l − 9)(2l − 5)(2l − 3)
, (A32)

It is important to emphasize that the representations (A27)–(A32) are valid only for
0 ≤ ρ ≤ 1. For values ρ > 1, one should replace ρ with 1/ρ, which is equivalent to
simply redefining ρ as cot(α/2).

The second AFC under consideration is of the form:

ψ10,5 = −Z5(π − 2)(5π − 14)
π7/2 [b10,1Y10,1(α, θ) + b10,3Y10,3(α, θ) + b10,5Y10,5(α, θ)], (A33)

where

b10,1 =
π[3π(6840010557π − 63828704998) + 595609133656]− 617517605744

401025378600000
√

105
, (A34)

b10,3 =
π[π(9194460432π − 85833963053) + 267084629592]− 277009842768

100256344650000
√

30
, (A35)

b10,5 =
π[π(622341848670π − 5812646794643) + 18095537797140]− 18776793358080

10025634465000000
√

42
, (A36)

and Y10,l(α, θ) with l = 1, 3, 5 are the normalized HHs.
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