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Abstract: Background: The society is aging in China, and the cognitive level of elderly post-stroke
patients gradually declines. Face-to-face cognitive functional training is no longer sufficient. Immer-
sive virtual reality (IVR) is a promising rehabilitation training device. In this study, we developed an
IVR-based puzzle game to explore its effectiveness, feasibility, and safety in elderly stroke patients
with cognitive dysfunction. Methods: A total of 30 patients with mild post-stroke cognitive impair-
ment after stroke were randomly assigned to a control or IVR group. Patients in both groups received
routine rehabilitation therapy. Patients in the control group received traditional cognitive training,
and those in the IVR group received IVR-based puzzle game therapy. Before and after treatment,
Montreal cognitive assessment (MOCA), trail-making test-A (TMT-A), digit symbol substitution test
(DSST), digital span test (DST), verbal fluency test (VFT), and modified Barthel index (MBI) were
evaluated in both groups. In addition, the IVR group was administered a self-report questionnaire
to obtain feedback on user experience. Results: There was no significant difference in the baseline
data between the two groups. After six weeks of treatment, the cognitive assessment scores were
improved in both groups. Moreover, the IVR group showed more improvements than the control
group in the DSST (Z = 2.203, p = 0.028 < 0.05, η2 = 0.16); MOCA (T = 1.186, p = 0.246 > 0.05, d = 0.44),
TMT-A (T = 1.791, p = 0.084 > 0.05, d = 0.65), MBI (T = 0.783, p = 0.44 > 0.05, d = 0.28), FDST (Z = 0.78,
p = 0.435 > 0.05, η2 = 0.02), BDST (Z = 0.347, p = 0.728 > 0.05, η2 = 0.004), and VFT(Z = 1.087, p = 0.277
> 0.05, η2 = 0.039) did not significantly improve. The significant difference in DSST represents an
improvement in executive function and visual–spatial cognitive characteristics. The other assessment
scores did not show such features. Therefore, we did not observe significant differences through
this measure. According to the results of the self-report questionnaire, most of the patients were
satisfied with the equipment stability and training content. Several individuals reported mild adverse
reactions. Conclusions: This pilot study suggests that IVR-based puzzle games are a promising
approach to improve post-stroke cognitive function, especially executive cognitive function, and
visual–spatial attention in older adults.

Keywords: immersive virtual reality; stroke; post-stroke cognitive impairment; aging
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1. Introduction

The population aging is proceeding at an accelerating rate in China. In 2020, the
number of people over 65 years old was 1906.4 million, accounting for 13.5% of the total
population [1]. The number of elderly people who are unable to live independently and
need help due to cognitive decline and dementia has also relatively increased. Stroke is
the leading cause of long-term physical and cognitive impairment and death in China.
Cognitive degeneration is significantly faster in elderly patients after stroke than in healthy
elderly people [2]. More and more studies are showing that the cognitive function of
patients with stroke sequelae will continue to decline [3,4], including global cognition,
attention, processing speed, memory, language, perceptual motor skills, and executive
function [2,5]. The prevalence of dementia ranges from 7% to 49.8% 1 to 10 years after
stroke [3,6,7]. Cognitive impairment not only affects the lives of individuals, caregivers, and
families, but also places a heavy economic burden on medical resources. It has become one
of the main causes of dysfunction, institutionalization, and death of the elderly in China.

Cognitive training has been proven to improve mild cognitive impairment after
stroke [8,9]. The traditional cognitive training pattern usually uses paper and tools, re-
quiring the therapist to interact face-to-face with the patient, and is limited by therapeutic
tools that cannot meet the treatment needs. After long-term training, patients feel bored
and lose their enthusiasm for training, so their compliance with treatment reduces. With
the development of science and technology, cognitive training is no longer limited to the
therapist’s manual interventions. The elderly are increasingly aware and accepting of
computer technology due to the pervasiveness the Internet, computers, mobile phones,
and other electronic devices in daily life.

Compared with traditional cognitive training methods, immersive virtual reality (IVR)
is an intelligent technology that uses a head-mounted device (HMD) or cave automatic
virtual environment (CAVE) equipped with motion sensors to artificially create a virtual
environment similar to the real world. Because it can present three-dimensional objects
and create complex visual, auditory, and tactile multisensory virtual environments, it
brings people an immersive feeling of daily activities, so is more and more popular in
the medical and rehabilitation fields [10]. This nonintrusive multisource stimulation can
more effectively improve the level of nerve remodeling in damaged brain regions, which is
conducive to rehabilitation therapy [11].

Some studies have applied IVR to improve mood [12,13], balance gait [14–16], or limb
function [17] in the elderly population; however, there is limited academic evidence on
how the elderly after a stroke with cognitive impairment experience IVR [18]. Most studies
have focused on cognitive dysfunction in the acute phase [17–19], but ignore cognitive
decline in the chronic phase. On the other hand, the training content and scene design of
IVR are relatively unitary. For example, Huang et al. [20] designed IVR recall scenarios to
improve and maintain cognitive function in elderly patients with dementia. Researchers
from South Korea improved attention and executive function in patients with MCI by
designing a 3D VR program for shopping at a supermarket [21]. Manera et al. [22] tried to
develop a kitchen and cooking game to assess and rehabilitate elderly people with MCI and
Alzheimer’s. Currently, there are still no systematic and comprehensive cognitive training
programs for IVR applications on the market.

To solve these problems, we combined IVR with puzzle games. Puzzle games are
patterns with different forms and content and a variety of training programs. Recent studies
have indicated that puzzle games are enjoyable; repeatable; easy to operate by the elderly;
and can improve attention, visuospatial, and executive functions [23–25]. Compared with
the literature, the advantages of our method are: the IVR puzzle game system contains
plentiful training content, which contains 3 major categories and 16 intelligible puzzle game
items from which therapists and patients can choose. Our IVR uses a light HMD, stress-free
smart sensor. It is easy for the elderly to understand and operate. Completion of the task
is not dependent on motor function, and the proposed IVR is suitable for patients with
varying degrees of limb impairment. It can also be combined with rehabilitation equipment
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during training, which is practical. The game interface is clear and real, producing a strong
feeling of “faking the real”. The system has an automatic feedback system and does not rely
on human supervision. We selected elderly patients in the chronic phase after stroke and
aimed to explore the initial effectiveness, feasibility and safety of this intelligent training
system in elderly patients with post-stroke cognitive impairment.

2. Materials and Methods

2.1. Participants

This study was performed from January 2022 to October 2022. A total of 30 elderly
patients with post-stroke cognitive impairment were recruited from the Department of
Geriatric Rehabilitation, Shanghai Fourth Rehabilitation Hospital. The inclusion criteria
were as follows: (1) stroke was diagnosed according to the criteria of Chinese Guidelines
for the Prevention and Treatment of Cerebrovascular Diseases; (2) 60 ≤ age < 90 years old,
with stroke onset ≥ 6 months; (3) met the diagnostic criteria of PSCI [26]; (4) Montreal
cognitive assessment scale (MoCA): 18 ≤ MoCA < 26; (5) Fugl–Meyer motor scale > 85 for
at least one upper and lower limb; (6) educational attainment ≥ 9 years. The exclusion
criteria were as follows: (1) those who were difficult to evaluate or examine or could not
cooperate with instructions; (2) patients with severe hearing impairment, visual impairment,
mental disorders, or a history of epilepsy; (3) patients with previous vertigo; (4) those who
were participating in other clinical studies of cognitive function at the same time. The
discontinuation indicators were as follows: (1) patients who were unwilling to continue the
trial; (2) intolerable or serious adverse events occurred, such as severe dizziness, vertigo, or
other discomforts, and the investigator judged that the risk to the patients was greater than
that to the beneficiaries; (3) during the study period, the patient’s condition deteriorated or
had a recurrent stroke; (4) unplanned discharge of the patient.

All individuals signed an informed consent form before the start of the study. The
study was approved by the Ethics Committee of Huashan Hospital (KY2022-549) and
registered with the Chinese Clinical Trial Registry (ChiCTR2200061932)

2.2. Study Design

In our study, PASS15 software (NCSS LLC., Kaysville, UT, USA) was used to calculate
the sample size based on the assumption of equal variance of two samples. We set the
power to 0.80 and α to 0.05. The Montreal cognitive assessment (MoCA) was used as the
outcome index according to previous similar studies [27]. We considered the cognitive
improvement effect of the IVR group was 3.2 higher than that of the non-IVR group as
effective, the standard deviation of the individual MoCA was 2.2, and the loss rate was
20%. Finally, 15 cases in the experimental group and 15 cases in the control group were
enrolled, for a total of 30 cases.

The 30 individuals were randomly divided into a control group (CG) or immersive vir-
tual reality group (IVRG); each group has 15 individuals. All individuals received routine
secondary medicine stroke prevention and 90 min of daily rehabilitation physiotherapy and
occupational therapy. After that, individuals in the CG received traditional cognitive train-
ing and, those in the IVRG received IVR training. Traditional cognitive training included
(1) processing speed and attention training: Schulte table training; (2) memory training:
retelling content after seeing pictures such as cards and calendars; (3) computational ability
training: performing addition and subtraction operations within 100; (4) executive and
problem-solving ability training: such as using building block shapes, picture information
classification, and reasoning simulation training. The training content of the IVRG system
includes 3 categories: life skills training, exergames and entertaining games; a total of
16 game items are included (Figure 1). The difficulty level of each game is divided into
five stars, where one star is the simplest and five stars is the most difficult. Investigators
selected one item in each category in turn according to the patient’s interest. Individuals in
the IVRG wore head-mounted displays for training and started at the difficulty level of one
star. The difficulty of the training was gradually adjusted from simple to complex, and each
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item lasted 5 min, with 2 min rest between the items. During the treatment, if individuals
experienced any intolerable discomfort, the treatment was immediately stopped. The extra
intervention time was the same in both groups: 15 min per day, 6 sessions per week, for a
total of 6 weeks. Cognitive function was assessed for all subjects before and after 6 weeks
of treatment, and self-report questionnaires were administered only for the IVR group
after 6 weeks of training. Assessors were therapists who were specifically trained but
not involved in the intervention study. The assessment was conducted in a quiet room
in the Department of Rehabilitation Assessment. The evaluator was responsible for the
evaluation, collecting the evaluation and questionnaire results of all subjects, and making
the final statistical analysis.

(A) (B)

(C) (D)

(E) (F)

(G) (H)

Figure 1. Cont.
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(I) (J)

(K) (L)

(M) (N)

(O) (P)

Figure 1. A total of 16 training items were available for researchers and individuals. (A–D) Life skills:
cooking (A), cleaning a window (B), crossing a road (C), and watering flowers (D); (E–H) exergames:
playing squash (E), shooting antiaircraft guns (F), flying gliders (G), and playing baseball (H);
(I–P) entertaining games: breaking eggshells (I), swatting insects (J), lighting fireworks (K), whack-
a-mole (L), pumping up a balloon (M), flying a Kongming lantern (N), Fruit Ninja (O), and Bubble
Jab (P).

2.3. Assessments and Questionnaire

The global cognitive function was used as the primary outcome, and the MOCA-
Beijing version was used for evaluation [28]. Each score was added to the final score if
the patient’s education years was ≤ 12 years plus 1 point, and the highest score was 30
points [29].

Secondary indicators include the trail-making test-A (TMT-A) [30], which assesses
attention and information processing speed; the digit symbol substitution test (DSST) [31],
which is used to measure executive function and visuospatial attention; the digital span
test (DST) from the Wechsler adult intelligence scale IV in China [32], which is used to
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evaluate performance and memory; verbal fluency test (VFT), animal category [33], which
used to assess language ability; and modified Barthel index (MBI) [34], which is used to
assess activities of daily living.

TMT has good objectivity and is recommended by the National Institutes of Neuro-
logical Disorders and Stroke–Canadian Stroke Network (NINDS-CSN) as one of the three
scales to evaluate executive function [35]. DSST is relatively independent of intelligence,
education, and age, and is suitable for the elderly [31]. DST includes the forward digit span
test (FDST) and backward digit span test (BDST). There are 10-digit strings in the FDST
and 9-digit strings in the BDST. They measure immediate memory or short-term memory,
attention, and working memory [32]. VFT is a simple measure of semantic fluency that
requires individuals to name as many animals as possible in one minute and is widely
used for cognitive assessment in older adults [36]. MBI is one of the most recommended
methods for measuring activities of daily living, having good internal consistency, and is
suitable for stroke patients [37].

The self-report questionnaire mainly consisted of 3 parts and 14 items to investigate the
IVR group (Supplementary Materials Table S1). Part I inquired how often individuals used
smart devices before the intervention. Part II was the satisfaction survey regarding IVR
equipment and training content after 6 weeks of IVR intervention using a five-point Likert
scale (ranging from “strongly disagree”, designated as 1, to “strongly agree”, designated
as 5). In Part III, the visual analogue scale (VAS) was used to record the occurrence and
degree of adverse reactions during the intervention.

2.4. VR Equipment
2.4.1. VR Integrity System Construction

Our study used a virtual reality post-stroke intelligent motor training system that was
divided into 4 modules, including observation, doctor, patient, and server terminals. The
observation and doctor terminals were installed on the same Android tablet. The doctor
terminal, as a signal source for IVR all-in-one networking, was responsible for managing
the patient’s personal information and hardware equipment information and controlling
the start and stop of the patient’s rehabilitation. For the patient terminal, patients wore the
HMD. The direction of motion in the HMD screen could be changed by turning the head.
The sensor used 3DOF inertial motion technology and a built-in acceleration gyroscope.
Wearing the smart sensor on the patient’s limb or motion device, the angle and acceleration
could be fed back to the patient to complete the training. The observation terminal was
connected via Bluetooth, a sensor, and VR all-in-one, allowing the doctor to watch the
scene of patient training in real time on the Android tablet, and to perform hand position,
head position correction, and horizontal switching while guiding patient training. The
architecture used by the server terminal was a Spring MVC, which was a module for web
development based on the Spring framework, and the database was MYSQL5.6 established
by MySQL AB. The system could save the patient’s training data at any time, which were
fed back to the doctor after processing (Figure 2).

2.4.2. Scene Modeling

The aim of scene modeling is to be as close to reality as possible based on interest.
Therefore, as the most critical and directly touched limb in the scene, 1:1 modeling was
used to restore the human arm function to the greatest extent possible. In addition, consid-
ering the acceptance of the virtual environment by the elderly, we created a comfortable
environment to relax the individuals. For the game background, we selected quiet and
relaxed venues such as beaches, street scenes, and parks. Background music was melo-
dious, soothing, and calm. For the construction of the visual environment, we used 8K
high-definition 360 degree panoramic shooting to create the most realistic scene.

6
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Figure 2. Product structure diagram for immersive virtual reality (IVR).

2.5. Statistical Analysis

SPSS version 20.0 (IBM Inc., Chicago, IL, USA) was used for statistical analysis. Mea-
surement data were tested for normal distribution and homogeneity variance. Enumera-
tion data were analyzed by Fisher’s precision probability test. Normally distributed data
are expressed as mean ± standard deviation, a paired-sample t-test was used for intra-
group comparison, and the independent-sample t-test was used for intergroup comparison.
Skewed distributions are expressed as the median (interquartile range), the Wilcoxon W
test was used for intragroup comparison, and the Mann–Whitney U test was used for inter-
group comparison. We considered differences with a two-sided p < 0.05 to be statistically
significant. Self-report questionnaires were analyzed as percentages.

3. Results

3.1. Baseline Clinical Data

A total of 30 patients were included in our study, with an average age of 74.16 ± 7.08
years old, with 15 cases in the IVRG, and 15 cases in the CG. All patients completed the
training, including 17 men and 13 women, 21 cases of cerebral infarction, and 9 cases of
cerebral hemorrhage. There was no significant difference in the baseline data between the
two groups (p > 0.05) (Table 1).

Table 1. Baseline clinical data of elderly stroke patients between the IVRG and CG.

IVRG n = 15 CG n = 15 T p Value

Age (Years) 74.93 ± 6.81 73.40 ± 7.5 0.586 0.562
Male/Female 9/6 8/7 1 a

Time since onset
(months) 42.93 ± 34.54 29.27 ± 36.51 1.053 0.301

Type, n (%) 0.427 a

Cerebral
infarction 12(80) 9(60)

Cerebral
hemorrhage 3(20) 6(40)

IVRG, immersive virtual reality group; CG, control group; a Fisher’s precision probability test.
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3.2. Results of the Cognitive Evaluation

There were no significant differences in MOCA, TMT-A, MBI, DSST, FDST, BDST,
or VFT scores between the IVR and control groups before treatment (p > 0.05) (Table 2).
After 6 weeks of treatment, the scores for the MOCA (IVRG: T = 8.981, p < 0.001; CG:
T = 13.229, p < 0.001), TMT-A (IVRG: T = 5.644, p < 0.001; CG: T = 4.112, p = 0.001), MBI
(IVRG: T = −2.779, p = 0.015; CG: T = −6.089, p = 0.000) (Figure 3), DSST (IVGR: Z = 3.422,
p = 0.001; CG: Z = 3.482, p < 0.001), FDST (IVGR: Z = 2.887, p = 0.004; CG: Z = 2.121,
p = 0.034), BDST (IVGR: Z = 3.317, p = 0.001; CG: Z = 2.111, p = 0.035), and VFT (IVGR:
Z = 3.332, p = 0.001; CG: Z = 3.429, p = 0.001) (Figure 4) in both groups significantly
improved compared with those before treatment (p < 0.05). The comparison of scores
after treatment between the two groups showed that the DSST scores of the IVR group
(21,6) were higher than those of control group (14,11), and the difference was statistically
significant (Z = 2.203, p = 0.028 < 0.05, η2 = 0.16); MOCA (T = 1.186, p = 0.246 > 0.05,
d = 0.44), TMT-A (T = 1.791, p = 0.084 > 0.05, d = 0.65), MBI (T = 0.783, p = 0.44 > 0.05,
d = 0.28) (Figure 3), FDST (Z = 0.78, p = 0.435 > 0.05, η2 = 0.02), BDST (Z = 0.347, p = 0.728
> 0.05, η2 = 0.004), and VFT (Z = 1.087, p = 0.277 > 0.05, η2 = 0.039) were not significantly
improved. The size effect of the differences between groups in DSST was η2 = 0.16 > 0.14
(p = 0.028 < 0.05), which means the significant difference in DSST was reliable.

Table 2. Comparisons of baseline cognitive evaluation between the IVR and control groups be-
fore treatment.

IVRG (n = 15) CG (n = 15) T/Z p-Value

MOCA 21.47 ± 2.67 21.27 ± 2.76 0.202 0.842 a

TMT A(s) 155 ± 67.48 159.4 ± 97.33 0.144 0.887 a

MBI 64.67 ± 11.41 59.33 ± 10.83 1.313 0.200 a

DSST 14,6 12,12 0.956 0.339 b

FDST 7,1 7,2 0.441 0.659 b

BDST 4,1 4,1 0.334 0.738 b

VFT 14,5 11,6 1.494 0.135 b

IVRG, immersive virtual reality group; CG, control group; MOCA, Montreal cognitive assessment; TMT-A,
trail-making test-A; MBI, modified Barthel index; DSST, digit symbol substitution test; FDST: forward digit span
test; BDST: backward digit span test; VFT, verbal fluency test; a, independent-sample t-test; b, Mann–Whitney
U test.

 
(A) (B) 

Figure 3. Cont.
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(C) 

Figure 3. Bar plots for comparison of MOCA (A), TMT-A (B), and MBI (C) between the IVRG and
CG before and after treatment. Significant differences were observed in intragroup. *, p < 0.05; **,
p < 0.01; ***, p < 0.001. Abbreviation: MOCA, Montreal cognitive assessment; TMT-A, trail-making
test-A; MBI, modified Barthel index; IVRG, immersive virtual reality group; CG, control group.

(A) (B)

(C) (D)

Figure 4. Boxplots comparing DSST (A), FDST (B), BDST (C), and VFT (D) between the IVRG and CG
before and after treatment. Significant differences were observed in intragroup. *, p < 0.05; **, p < 0.01;
***, p < 0.001. Abbreviation: DSST: digit symbol substitution test; FDST: forward digit span test;
BDST: backward digit span test; VFT: verbal fluency test; IVRG, immersive virtual reality group; CG,
control group.

3.3. Self-Report Questionnaire

In the IVRG, 73.33% of the elderly stroke patients had never used smartphones. They
used geriatric cellular phones with buttons or had no phones. A total of 60% of individuals
had never used portable Android devices (PADs), and 20–13.33% of individuals seldom or
sometimes used PADs to watch TV shows or play games. Of the individuals, 60% were
still willing to use smart devices and 66.67% could completely understand the training
directive. None of the individuals were dissatisfied with the training content, and 53.34%
of them derived enjoyment from the IVR training process. More than 73.33% of individuals
approved of the stability and maneuverability of our IVR device. A total of 73.34% of
individuals were willing to promote the IVR device (Figure 5).
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(A) (B)

(C) (D)

(E) (F)

Figure 5. Cont.
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(G) (H)

(I)

Figure 5. Histograms (A–C) depict the frequency of smart device usage experienced and the will-
ingness to accept smart devices by the IVR group. Histograms (D–I) depict satisfaction with IVR
equipment and training contents experience. PAD, portable android device; IVR, immersive vir-
tual reality.

3.4. Side Effects

During IVR intervention, there were two individuals who reported dizziness without
nausea and vomiting, and their VAS score was one. Two individuals reported dry eyes,
and three individuals reported eye fatigue, of which two individuals had a VAS score of
one and one individual had a VAS score of two (Figure 6). The other individuals did not
report any adverse reactions that occurred.
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Figure 6. The bar diagram depicts the self-reported incidence and extent of adverse reactions associ-
ated with the IVR experience. The horizontal axis represents the percentage of adverse symptoms
that occurred, including dizziness, nausea, headache, dry eyes, and eye strain. The vertical axis
represents the severity of adverse symptoms experienced by individuals using a VAS, where 0 means
no occurrence, and the higher the number, the more severe the adverse symptoms. Five colored lines
are used to represent five adverse symptoms. VAS, visual analog scale.

4. Discussion

The purpose of this study was to investigate the initial effect and feasibility of IVR-
based puzzle games in elderly patients with cognitive impairments after stroke. We initially
found that IVR could improve their cognitive function, especially the executive functioning
and visuospatial attention of elderly stroke patients. It is feasible to provide them with 15
min of IVR training 6 times a week.

4.1. Effectiveness of IVR-Based Puzzle Games

After six weeks of treatment, the global cognitive function (MoCA), attention and
information processing speed (TMT-A), executive function and visuospatial attention
(DSST), performance and memory (FDST and BDST), language ability (VFT), and activities
of daily living (MBI) in both groups significantly improved. Moreover, the IVRG showed
more improvements than the CG in the DSST (Z = 2.203, p = 0.028 < 0.05). This result
is similar to those of a previous meta-analysis [38] of 894 patients from 23 randomized
controlled trials, which showed significant improvements in executive and visuospatial
function after VR interventions compared with conventional rehabilitation. However, there
were no significant differences observed in global cognitive function, attention, verbal
fluency, depression, or quality of life.

The significant difference in DSST represents an improvement in executive function
and visual–spatial cognitive characteristics. The other assessment scores such as DST
and MBI, did not show such improvements. Therefore, we did not observe significant
differences in this measure. The DSST test required subjects to fill in the corresponding
symbols of numbers on a blank form as fastest as possible within 90 s. In this process, the
subjects needed to match nine digits corresponding to symbols and fill them in within the
time limit. Executive functions include task setting, behavioral initiation, monitoring, and
self-regulation [39]. In older adults, these domains all play an important role in cognitive
tasks. For example, in our preset training, when completing the task of cooking, subjects
needed to understand the whole cooking process, from washing vegetables under the tap,
cutting dishes, to cooking. In this process, the system broadcasted the steps that needed
to be completed by voice prompts, and only when the content of one stage was complete
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could the subject proceed to the next step, which required the subject to make appropriate
choices and respond to the task.

The underlying mechanism through which IVR training improves cognitive function is
unclear. The current possible hypothesis is that the virtual environment stimulates and acti-
vates brain metabolism, increases cerebral blood flow and neurotransmitter release [40,41],
and reactivates and improves various cortical functions [41,42]. A study also found that the
input of sensory function activates the brain regions associated with executive function [43].
Virtual reality technology is characterized by immersion, interactivity, and imagination [44].
Participants are isolated from the real world by different sensory capture devices [45]. IVR
allows individuals to interact with virtual environments and three-dimensional entities
to promptly obtain natural feedback information. The multiple sensory function declines
experienced in elderly patients are associated with cognitive decline [46,47]. Especially for
elderly patients, multisensory intervention learning is more beneficial than single-sensory
intervention for those with cognitive decline [48,49]. Our IVR-based puzzle game system
integrates interactive screens, immersive vision, voice prompts, and physical vibrations to
stimulate the various senses of the participants in the virtual environment.

Exergames are thought to improve both motor function and cognition in older adults [43],
which are defined as physical exercise that combines interaction with cognitive stimulation in
a game environment. In our study design, the post-stroke elderly patients in the IVRG could
choose a suitable or interesting game from options including playing squash or baseball, using
an antiaircraft gun, and gliding. The subjects who chose to play squash or baseball were given
a stick or, which they could swing as if they were hitting the ball in a game. The antiaircraft
gun and gliding required the subject to use a pedal or limb linkage. A HMD was used as the
aiming direction, and the head needed to be moved to aim in the shooting direction. The
patient also needed to shake their arm or pedal the bicycle. The faster the speed, the more
bullets could be emitted. Our results support previous findings. Htut et al. [50] found that
virtual-reality-based game exercise not only improved the balance and muscle endurance of
the elderly but also increased the patient’s enthusiasm and improved the global cognitive
level on the MOCA more than traditional physical activity. Huang [11] suggested that the
combination of immersive VR and exergames enhanced the sense of presence during exercise
and had the potential to further improve executive function in older adults after 4 weeks of
exergame training. Executive function plays an important role in improving the ability to
perform activities daily living. However, unfortunately, the IVRG did not show significant
advantages over the non-IVRG in our results. This may be related to the standard of the MBI
scale. Although the MBI is reliable and effective, it lacks detailed assessment of the cognitive
field and the participation in some social activities [51]. Moreover, our puzzle games are
extensive but goal-oriented, so need further improvement. The complexity of future life skills
training projects and steps need to be further upgraded.

IVR may improve the visual–spatial function of elderly patients through the character-
istics of ecological validity [52]. IVR may mistakenly make subjects believe that they are in
the real world through immersive stimulation. The interference from the outside world can
be eliminated, and the participants can be immersed in the virtual world through increased
attention and reduced distraction [19]. In addition, in our study, for the VR background, we
selected diversified and comfortable natural environments, and the kitchen, road, and room
were all three-dimensional simulated spaces that accurately mimicked real environments,
which could improve the patient‘s visual spatial ability through visual stimulation. Kim
et al. [53] mentioned in their discussion that for their virtual background, they selected nat-
ural landscapes such as mountains, fields, ski resorts, and football fields. Visual attention
and short-term visuospatial memory in the VR group were significantly improved in acute
stroke patients with cognitive impairment, which was similar to our finding.

IVR can not only be used to train executive ability, spatial disorientation, but also to
improve episodic and verbal memory, attention [52], and living ability [18,54]. However,
because different training items have varying training effects, the results of our study are
different from those of previous studies. Gamito et al. [55] used several activities of daily
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living as VR cognitive function training content, such as purchasing items, finding routes,
finding characters, recognizing signs, and calculating. After 4–6 weeks of two to three
sessions per week, stroke patients had improved memory and attention but not visual
function. Previous studies have been conducted to help patients improve episodic memory
by showing them familiar environments, including streets, residences, and childhood
scenes [56,57]. The task of listing supermarket shopping items has also been used to
help elderly patients improve age-related memory decline [21,58]. Combined with our
research, most of our training was aimed at the patient completing a task but did not
involve memorizing or recalling. However, the performance and memory of the IVRG
group were improved compared with those before treatment. The reason may be that VR
can improve the memory function of the elderly by enhancing concentration [56–58].

Our IVR-based puzzle game training program provided variety and enjoyment. It inte-
grates diversified and plentiful life skills, exergames, and entertainment modules. It could
improve cognitive function in terms of episodic memory, verbal memory, attention and
daily living ability, and had a significant effect on executive ability and spatial orientation.
However, previous studies have also pointed out that [55,59] there is insufficient evidence
that the cognitive function of the IVR group improved more than that of the non-IVR group.
Therefore, we hope that IVR may maintain and, if possible, improve cognitive function
in elderly patients with chronic stroke. There are a large number of elderly patients with
stroke sequelae in China. At present, the rehabilitation of patients after stroke is carried out
in rehabilitation hospitals. The disadvantages are short hospitalization time, shortage of
ward beds, and lack of therapists, so are not suitable for long-term rehabilitation of elderly
patients. In the long run, community-based rehabilitation can meet the needs of some
patients, but only if there are enough therapists. According to the results, the therapeutic
effect of IVR with a smart device is consistent with that of therapists and is acceptable to
elderly stroke patients, which makes it possible for IVR to replace manual therapy and
have the opportunity to be widely used [60,61].

4.2. Feasibility and Safety of IVR in Elderly Stroke Patients

The results of self-report Part I (Figure 5A–C) showed that most elderly patients had
no experience with using smart devices, and nearly half of them were unwilling to use
smart devices. However, the results of the final survey of IVR are encouraging. Almost all
the elderly patients gave positive answers to our training content and the manipulability of
the IVR equipment, and they were willing to try this new training method. Morganti [62]
also reported that elderly participants were initially unfamiliar with the VR device, but
after continuous training, they showed enthusiasm for the rehabilitation exercise. In Part
II (Figure 5D–F), more than half of the older participants approved of the content of the
puzzle games, indicating that they were receptive to such games. The IVR-based puzzle
games attracted these older patients for several reasons. On the one hand, a comfortable
visual backdrop and gentle auditory experience attracted the participants and enabled them
to quickly immerse in the training environment during the training process. The built-in
automatic voice broadcast system of the HMD interactive system encouraged participants
when they completed one stage of the task to enhance their self-confidence and desire
to make further efforts, which could have increase participants’ motivation to persist in
completing the training. On the other hand, the three categories of puzzle games were
easily understood by the elderly, and the instructions of the game were acceptable and
operable. Participants could have fun while training.

It should be noted that one-quarter of the participants had a neutral attitude toward
the game contents, which means that the puzzle games need to be further improved to be
more suitable for the interests of the elderly. We will adjust the game contents to include
activities such as tai chi, painting, cross-stitch, square dancing, chess, cards, and other
puzzle activities in the future.

HMD and smart sensors are linked to VR through a network and Bluetooth. If the
network is unstable or the Bluetooth disconnects during patient training, it will affect the
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stability and control performance of the device, including the inability of the doctor, on
the observation side, to keep abreast of the patient’s training. About three-quarters of the
participants were satisfied with the device, and the rest were neutral (Figure 5G–H). This
may be related to network instability during training as well as the interruption of smart
sensor transmission.

Considering that all the elder stroke patients were wearing a HMD and using IVR
equipment for the first time, we were not sure how well the patients would accept them,
so each training session was no longer than 15 min. Similar to other studies [56–58], the
incidence of dizziness in elderly stroke patients was very low, which automatically resolved
after the end of the intervention. In the beginning, we were concerned about the vision
problems of the elderly: whether they could see the pictures on the screen after wearing
the HMD or whether those who wore glasses would feel uncomfortable wearing the HMD.
The participants were tested and asked whether they could see clearly on the screen before
training, and no patients complained about related problems after adjusting the position of
the HMD. It is feasible for the elderly who wear glasses to wear a HMD at the same time.
One patient reported mild dry eyes and eye strain before the intervention, but the IVR did
not significantly worsen his symptoms; in addition, he successfully completed the entire
study task. A small number of patients will experience eye fatigue, which can be relieved
after rest. Dizziness, nausea, headache, dry eyes, eye strain, and other adverse reactions
were not reported in the remaining patients. This means that the vast majority of elderly
patients with mild cognitive decline after stroke well-tolerated IVR and were receptive to it.

Reliable, sensitive, and safe training environments are provided by precise control and
manipulation in a virtual environment. IVR-based puzzle games have great potential to be
used for cognitive intervention in elderly patients with mild cognitive decline after stroke.
Moreover, if this interactive technology can be used for social contact, interest activities,
and other long-term rehabilitation training goals [63], it may become possible to reduce
therapist workload by increasing training initiative [48].

4.3. Limitations and Prospects

There are some limitations to this study. The sample size in this study was relatively
small, so future studies with larger sample sizes are needed. Moreover, six weeks is too
short for patients who need rehabilitation for a long time, and the long-term effects of IVR
on cognition are unclear. Cognitive assessment scales were used to evaluate the outcomes
in our study, but there was a lack of objective measurement tools. Participants could
not be blinded to the trial design, but, fortunately, no participants withdrew from the
study. Further studies may address these shortcomings in the future by increasing the
sample size; using a longer-duration intervention and follow-up; applying task-related
electroencephalograph (EEG), functional near-infrared spectroscopy (fNIRS), and func-
tional magnetic resonance imaging (fMRI) for objective evaluation. Considering that
improvements in the cognitive domain are related to training content, it is suggested that
systematic training content should also be added to improve memory and performance on
command tasks.

5. Conclusions

Overall, our research preliminarily demonstrated that IVR-based puzzle games may
improve global cognitive, episodic memory, verbal memory, attention, and daily living
ability, especially executive ability and spatial orientation, in elderly patients with post-
stroke cognitive impairments. This intelligent interactive experience has better applicability
in the elderly. The IVR-based puzzle game was well accepted and tolerated in elderly
stroke patients and can be recommended for use. Our study changes the traditional two-
dimensional training mode to increase the authenticity of the training scene, and brought
enjoyment to the elderly patients. Virtual reality technology may have the same efficacy
as conventional cognitive rehabilitation; as a noninvasive intervention, it may have the
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advantages of interest and rich content. It may have application value and development
prospects in improving the cognitive function of the elderly with chronic stroke.

Supplementary Materials: Details of self-report questionnaire and the example of VR training video
can be found in the supplemental file (Supplementary Materials); https://www.mdpi.com/article/
10.3390/brainsci13010079/s1.
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Abstract: Approximately two-thirds of stroke survivors experience chronic upper-limb paresis;
however, treatment options are limited. Repetitive transcranial magnetic stimulation (rTMS) can
enhance motor function recovery in stroke survivors, but its efficacy is controversial. We compared
the efficacy of stimulating different targets in 10 chronic stroke patients with severe upper-limb
motor impairment. Motor imagery-based brain–computer interface training augmented with virtual
reality was used to induce neural activity in the brain region during an imagery task. Participants
were then randomly assigned to two groups: an experimental group (received high-frequency rTMS
delivered to the brain region activated earlier) and a comparison group (received low-frequency
rTMS delivered to the contralesional primary motor cortex). Behavioural metrics and diffusion tensor
imaging were compared pre- and post rTMS. After the intervention, participants in both groups
improved somewhat. This preliminary study indicates that in chronic stroke patients with severe
upper-limb motor impairment, inducing activation in specific brain regions during motor imagery
tasks and selecting these regions as a target is feasible. Further studies are needed to explore the
efficacy of this intervention.

Keywords: stroke; motor imagery; brain–computer interface; virtual reality; rTMS; DTI

1. Introduction

Stroke is the second most common cause of death globally, and its prevalence is
projected to increase in the coming years in parallel with an increase in life expectancy [1].
Notwithstanding considerable improvements in managing the acute phase of stroke, some
residual disability persists in most patients, necessitating rehabilitation [2], which incurs
a heavy economic burden on families and society [3]. Hemiplegia is the most common
impairment following a stroke [4,5], and approximately 37–50% of stroke survivors live
with chronic severe upper-limb paresis, characterised by limited active range of motion
(AROM), limited strength, impaired coordination from the shoulder to the hand and fingers,
and severely diminished ability to perform activities of daily living (ADL) [6]. Therefore,
rehabilitation interventions that are both effective and applicable for recovery from severe
upper-limb motor impairment are an urgent clinical need.

Transcranial magnetic stimulation (TMS) is a brain stimulation technique that mod-
ulates brain activity noninvasively. This is accomplished by inducing electrical currents
via rapidly changing magnetic field pulses. When TMS is applied in repetitive trains of
stimulation, i.e., repetitive TMS (rTMS), its effects on cortical excitability can outlast the
period of stimulation [7]. Two general types of rTMS protocols are used in stroke rehabilita-
tion. The first is excitatory high-frequency (HF) rTMS stimulation, which is applied over
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the ipsilesional primary motor cortex (M1) or adjacent brain areas. The mechanism behind
these protocols may strengthen synaptic connections in descending motor pathways [8].
The second protocol involves applying low-frequency (LF) rTMS over a contralesional M1,
which may reduce the interhemispheric inhibition exerted by the contralesional M1 on the
ipsilesional M1, thus promoting cortical reorganisation in the ipsilesional hemisphere. Both
protocols have been reported to improve motor recovery in post-stroke patients [8]. How-
ever, the inter-individual variability of the responses to rTMS intervention remains high.
Several studies [9,10] have investigated the efficacy of rTMS in promoting the recovery of
upper-limb motor function in stroke patients, but the results are contradictory.

The question of how to precisely select the stimulation target is presently one of the
most concerning issues in this space. In previous studies, the stimulated target and the
protocol were heterogeneous. Some studies [11] indicate that HF-rTMS may contribute
more to the functional connectivity reorganisation of the ipsilesional motor network and
realise greater benefit to motor recovery than LF-rTMS. Other studies [12] have indicated
that LF-rTMS has a positive effect on grip strength and lower-limb function, as assessed
using the Fugl–Meyer Assessment (FMA) scale. Presently, however, applying LF-rTMS
to the contralesional M1 for hand motor recovery in the post-acute stage of stroke is
recommended based on level A evidence (“definitely effective or ineffective”), and HF-
rTMS of the ipsilesional M1 is recommended based on level B evidence (“probably effective
or ineffective”) [13]. However, in some stroke patients with severe brain injury, motor-
evoked potentials (MEPs) cannot be recorded on the affected side of the brain; consequently,
the stimulus target cannot be precisely determined. Furthermore, the residual function of
the injured cortex may not be sufficient to dominate the paretic extremity for the completion
of simple activities [14]. In contrast, the results of other studies indicate that, among these
stroke patients, HF-rTMS over the contralesional side may improve motor function to some
degree [9,11]. Because the accuracy of this neural modulation technique is correlated with
the outcome of this intervention, the choice of stimulation target is crucial. Therefore, it
is worth researching whether such a functional area exists in stroke patients with severe
motor impairment and, if it exists, whether HF-rTMS over this region can further improve
the motor function of a paretic wrist and hand.

In chronic stroke patients, a recent model known as the “bimodal-balance recovery”
hypothesis has attempted to define the role of contralesional and ipsilesional cortices [15].
This hypothesis highlights the role of contralesional motor cortices varied based on the
amount of ipsilesional reserve and neural pathways available to contribute to recovery. In
patients with mild motor impairment, contralesional influence is believed to be in inhibitory,
whereas in patients with severe motor impairment, the contralesional influence is thought
to be supportive for paretic limb motor function. More recently, Lin et al. [16] further
investigated the relationship between interhemispheric balance and motor performance
and confirmed the above hypothesis. Therefore, it is worth further investigating the role of
different hemispheres in chronic stroke patients. Moreover, in chronic stroke patients with
severe upper-limb motor impairment, it is difficult to locate the brain regions activated by
a motor task focused on the affected wrist and hand because there is no actual movement
of the paretic wrist and hand. However, motor imagery ability is retained even in patients
with severe motor impairment [17]. Furthermore, several studies have revealed that
motor imagery possesses many of the same properties—in terms of temporal regularities,
programming rules, and biomechanical constraints—observed in the corresponding real
action [18,19]. In our previous research [20,21], we also found that even stroke patients with
severe upper-limb motor impairment could elicit activation of the associated brain regions
during motor imagery involving their paretic wrist and hand using a motor imagery-based
brain–computer interface (BCI) with different end effectors. After several sessions of BCI
training, the motor imagery (MI)-related electroencephalogram (EEG) activity had more
discriminable patterns. These changes gradually converged, appearing predominantly
in the centro-parietal cortical region (e.g., C3 and C4). Considering the aforementioned
theoretical basis, we further investigated whether HF-rTMS stimulation applied over the
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brain regions activated during MI would improve motor function of the paretic upper limb
in stroke patients. In this study, we first had stroke patients with severe upper-limb motor
impairment undergo MI-based BCI training augmented with virtual reality to induce neural
activity in the brain region typically activated during MI tasks. Subsequently, HF-rTMS was
delivered to this activated brain region. This preliminary study investigates the feasibility
and efficacy of this stimulation protocol.

2. Materials and Methods

2.1. Participants

This study is a randomised, parallel, controlled, single-blinded clinical trial. Ten stroke
patients who had suffered a stroke at least six months previously and continued to expe-
rience severe chronic upper-limb motor impairment were recruited for this preliminary
study. A clinical assessment of the motor impairment of the participants was performed by
a physiatrist who was unaware of the randomisation assignment of the participants. The
inclusion criteria were as follows: (1) aged 18–90 years old at the time of randomisation;
(2) more than 6 months since their first clinical cortical or subcortical, ischaemic, or haem-
orrhagic stroke, confirmed via computed tomography (CT) or magnetic resonance imaging
(MRI); (3) no active extension of the paretic wrist and scores of grade 0–1 on the manual
muscle test (MMT) for wrist extension; (4) no cognition impairment, with a Montreal
Cognitive Assessment (MOCA) score of ≥26; and (5) no hearing or visual impairments.
The exclusion criteria included the following: (1) patients with contraindications for MRI or
rTMS, (2) participation in other clinical trials, and (3) pregnancy. The study was approved
by the Ethics Committee of Huashan Hospital and was conducted in accordance with the
tenets of the Declaration of Helsinki. All participants provided written informed consent
before participating. This study was registered with the China Clinical Trial Registration
Centre (registration number: ChiCTR2000036423).

2.2. Intervention

The intervention was divided into two phases. The first phase involved inducing the
brain regions typically activated during MI involving the paretic wrist and hand using an
MI-based BCI system augmented with virtual reality (VR). In the second phase, rTMS was
used to stimulate the brain, with the participants randomly divided into two groups: an
experimental group and a comparison group. The stimulation target of the experimental
group was the aforementioned brain regions activated by MI-based BCI augmented with
VR, while the comparison group received an LF-rTMS intervention applied over the con-
tralateral M1. An overview of the study design showing the timeline, intervention, and
measured outcomes is presented in Figure 1.

2.2.1. Inducing Neural Activity in Associated Brain Regions during Motor Imagery
Involving a Paretic Wrist and Hand

An 11-channel, high-resolution EEG system, g.USBamp (g.tec Medical Engineering,
Schiedlberg, Austria), was used for this study. The electrodes were attached to the scalp, per
the 10–20 international electrode placement system, as follows: FC3, FC4, C5, C3, C1, CZ,
C2, C4, C6, CP3, and CP4. The ground electrodes were placed on the medial frontal cortex.
The reference electrodes were fixed at the left and right mastoids, and the average value
from the bilateral electrodes was used as the reference. The EEG signals were collected at a
sampling rate of 256 Hz.

This process is described in detail in our previous research [20]. Each session lasted
30 min (four cycles of six minutes each, with two-minute intervals) and was conducted five
days a week for four weeks.
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Figure 1. Overview of study design showing the timeline, intervention, and outcome measures.
MI, motor imagery; BCI, brain–computer interface; VR, virtual reality; rTMS, repetitive transcranial
magnetic stimulation; LF, low frequency; HF, high frequency; fMRI, functional magnetic resonance
imaging; DTI, diffusion tensor imaging.

2.2.2. Activated Brain Regions during MI Tasks Determined Using fMRI

fMRI was performed to determine the brain regions activated during the MI task. We
used a block design with three tasks: A is a prompt to imagine the grasping movement
of the left hand, B is a prompt to imagine the grasping movement of the right hand, and
C is a prompt to rest. Each task lasted for 20 s. During the MI task, short videos of the
grasping movement of the left hand, the grasping movement of the right hand, and a blank
screen were shown to the participants. The three tasks were performed in the order ABC,
BCA, and CAB, and each sequence was repeated three times (Figure 2). The participants
were instructed to do the following: (1) mentally imagine the action of grasping using
their left/right hand following the video instruction and (2) just rest without any action or
imagery when presented with blocks of blank screen.

Figure 2. fMRI tasks.

The participants were scanned in a 3.0 Tesla Siemens MAGNETOM Prisma whole-body
60 cm bore human scanner equipped with 80 mT/m gradients and a 200 T/m/s slew rate
(Siemens Healthineers, Erlangen, Germany) at Shanghai University of Sport. We used an
eight-channel head coil for radio frequency (RF) transmission and reception. We collected
sagittal T1-weighted images as the localiser and performed a semiautomated high-order
shimming programme to ensure global field homogeneity. A three-dimensional fast spoiled
gradient echo pulse sequence was chosen for acquiring high-resolution structural images
with the following parameters: repetition time (TR) = 8.156 s, inversion time (TI) = 450 ms,
echo time (TE) = 3.18 ms, voxel size = 1 × 1 × 1 mm3, 166 contiguous slices, field of view
(FOV) = 25.6 cm2, flip angle = 12◦, sense factor = 2. A single session of functional images,
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which are sensitive to blood oxygen level-dependent (BOLD) contrast, were acquired using
an echo planar imaging (EPI) sequence (TR = 2 s, TE = 30 ms, voxel size = 3 × 3 × 3 mm3,
FOV = 19.2 cm2, flip angle = 90◦, SENSE factor = 1, 42 contiguous oblique axial slices
parallel to the anterior commissure–posterior commissure line, interleaved acquisition)
before and after BCI training. Three initial RF excitations were performed to achieve steady
state equilibrium, and these were excluded from subsequent analyses.

Preprocessing was carried out using statistical parametric mapping (SPM) version 12
(SPM12; Wellcome Institute of Cognitive Neurology, London, UK) running under MAT-
LAB (Mathworks Inc., Natick, MA, USA). In each functional session, all EPI images were
realigned to the first EPI image to correct for head motion, followed by slice time correction,
co-registration between functional images and structural images, and spatial normalisation
to a standard Montreal Neurological Institute (MNI) EPI template. A cut-off of 25 mm
was chosen for discrete cosine transform functions, and all normalised EPI images were
smoothed with a 6 mm full-width half-maximal Gaussian smoothing kernel. Statistical mod-
elling was performed using a general linear model implemented in SPM12. To minimise
potential nuisance variables in comparisons across sessions, the two functional sessions
were concatenated into a single session per the procedures in previous research.

For the fixed-effect analysis, the design matrix comprised the following independent
events: MI of left hand, MI of right hand, rest (null event) before intervention, MI of left
hand, MI of right hand, and rest after intervention together with a set of linear trend
predictors, six head motion parameters, and a confound-mean predictor. To detect neural
activation of the entire block, each 20 s block was modelled using a canonical hemodynamic
response function (HRF), and the onset of each block was taken as the onset of the block in
the SPM analysis model with a duration of 20 s.

Significant activations were thresholded at p < 0.001, voxel-level uncorrected and at
p < 0.05, cluster-level corrected, and for multiple comparisons unless otherwise stated. The
SPM coordinates are reported in the MNI space. Brain regions were identified using the
automated anatomical labelling (AAL) atlas [22] and Brodmann templates, as implemented
in MRIcron.

2.2.3. Transcranial Magnetic Stimulation
Measurement of Cortical Excitability

We used MEG-TD (Wuhan Yiruide Medical Equipment New Technology Co., Ltd.,
Wuhan, China) in this study. MEG-TD generates a bidirectional pulse waveform with a
pulse width of 340 ± 20 μs and the pulse rise time of 60 ± 10 μs.

Electromyography (EMG) data were recorded from the first dorsal interosseous (FDI)
using standard Ag/AgCl electrodes and a ground electrode positioned on the wrist. The
EMG signals were amplified with a band pass filter of 10 Hz to 2 kHz. Because the
participants in our study had no detectable MEP in the lesioned hemisphere, the motor
threshold and MEP of the contralesional hemisphere were recorded. To determine the
resting motor threshold (RMT), TMS was administered a commercially available figure-
of-eight coil (YRD, maximum magnetic field intensity = 2 T, diameter = 9 cm; Wuhan
Yiruide Medical Equipment New Technology Co., Ltd., Wuhan, China) using MEG-TD.
The coil was placed in a tangent direction to the head, with the centre towards stimulating
target. The RMT was assessed per the guidelines of the International Federation for Clinical
Neurophysiology, and the minimum TMS intensity capable of producing at least five
MEPs of 50 μV amplitude in 10 consecutive stimuli was estimated [23]. TMS intensity
was adjusted to achieve an MEP of 1 mV peak-to-peak amplitude in the FDI muscle, and
10 consecutive MEPs were subsequently recorded.

Repetitive TMS

The 10 participants were randomly divided into two groups, with five participants in
each group. rTMS was delivered according to the group assignment using MEG-TD with
a figure-of-eight coil. For the comparison group, LF-rTMS was delivered to the contrale-
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sional M1 per the stimulation protocol recommended by the guideline (100 pulses of 1 Hz
stimulation per session, with a 1 s interval between sessions and 12 sessions per treatment,
totaling 1200 pulses at 80% rMT) [13]. In the experimental group, HF-rTMS was delivered
to the brain regions activated during the MI task. We first determined the associated
brain regions using fMRI and then converted the fMRI data, per the 10–20 international
electrode placement system, to locate the stimulation target. The stimulation scheme was
10 Hz stimulation for 3 s per session, with an 8 s interval between sessions, 30 sessions per
treatment, totalling 1200 pulses at 100% rMT. rTMS was conducted once a day, five times a
week for 10 times in total.

2.3. Assessments
2.3.1. Primary Outcome

The change in upper-limb motor impairment at the end of the treatment was assessed
using the motor status scale (MSS). MSS measures shoulder, elbow (maximum score = 40),
wrist, hand, and finger movements (maximum score = 42), and it affords a reliable and
valid assessment of upper limb impairment and disability following a stroke [24].

2.3.2. Secondary Outcomes

Secondary measures included the FMA scale (used for the upper extremities, range of
motion, or wrist motor function) and the action research arm test (ARAT).

2.3.3. Commissural Fibres across the Corpus Callosum

Diffusion tensor imaging (DTI) was also performed to assess the white matter integrity
of the fibres across the corpus callosum. Fractional anisotropy (FA) was measured at the
corpus callosum because it is one of the most important white matter structures in the brain;
the corpus callosum connects the two cerebral hemispheres and transmits information
between them [25]. Previous research indicates that the anisotropy of the corpus callosum
may be corelated with motor impairment and with functional gains following rehabilitation
intervention [26,27].

DTI analysis was performed using the software library of the Oxford Centre for
Functional Magnetic Resonance Imaging of the Brain. Skull-stripped DTI images were
registered to b = 0 images to correct for eddy current distortions and simple head motion.
Diffusion tensors were fitted to each voxel of the diffusion-weighted images, and Markov
chain Monte Carlo sampling was used to build up distributions at these voxels. The
resulting DTI images were then co-registered to the T1-weighted anatomical images. For
fibre tracking, we adapted the two-step fibre-tracking method described by Wahl [28].
First, we placed a rectangular region of interest (ROI) in the primary motor regions of the
precentral gyri (M1) of both hemispheres. Following the tracking step, a second ROI on
the corpus callosum was added where the fibres from the first tracking emerged, and a
second tracking was performed. After obtaining the DTI data, the FA value of the entire
transcallosal motor tract was determined. The assessments were conducted before and
after rTMS intervention.

2.4. Statistical Analysis

The Statistical Package for the Social Sciences (SPSS) version 20.0 (IBM, Chicago, IL,
USA) was used to complete the statistical analysis. Considering the small sample size of
this study, Wilcoxon signed-ranks test was used for within-group comparison before and
after the intervention. Mann–Whitney U-test was used for between-group comparison. The
level of significance was set at p < 0.05.

3. Results

3.1. Participants

We recruited ten participants: nine male and one female, and all ten participants
were right-handed. Demographic information is presented in Table 1. All participants
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completed the two phases of the intervention and all the assessments. All the participants
were assessed with the kinaesthetic and visual imagery questionnaire (KVIQ) [29], and all
of their scores were above 25, which indicated they could actually perform motor imagery.

Table 1. Demographic characteristics of the participants (n = 10).

Participant Group Sex Age (y) Diagnosis Affected UE
Post-Stroke

Duration (mo)

1 Experimental M 43 Haemorrhagic Left 8
2 Experimental M 68 Ischaemic Left 16
3 Experimental M 42 Haemorrhagic Left 20
4 Experimental M 75 Ischaemic Left 6
5 Experimental F 58 Haemorrhagic Right 7
6 Comparison M 65 Haemorrhagic Left 11
7 Comparison M 32 Haemorrhagic Left 6
8 Comparison M 56 Ischaemic Right 8
9 Comparison M 66 Ischaemic Left 7

10 Comparison M 41 Haemorrhagic Left 20

M, male; UE, upper extremity; y. year; mo, month.

3.2. Activated Brain Regions during Motor Imagery Tasks and the Stimulation Target

fMRI was performed before and after MI-based BCI augmented with VR to determine
the activated regions during MI tasks involving the paretic wrist and hand. The characters
of each participant and the stimulating target of the experimental group are presented in
Table 2.

3.3. Behavioural Outcome Metrics

There was no significant difference between the two groups for all measured be-
havioural outcomes before the intervention (Table 3). Compared with the pre-rTMS scores,
the MSS scores of both groups (experimental group: pre 14.72 ± 6.01; post 16.72 ± 7.14;
comparison group: pre 14.04 ± 6.07; post 14.88 ± 6.42) improved, but there was no signifi-
cant improvement (p = 0.066 and p = 0.109). There was also no significant difference when
comparing the two groups.

After the intervention, the FMA scores of both groups improved to a certain extent;
however, there was no significant difference within and between the groups. All the
participants could not flex or extend their wrists at baseline, but they regained some AROM
after the rTMS intervention. For the experimental group, the AROM for wrist flexion was
16.00 ± 26.08 after the rTMS intervention, while it was 6.00 ± 8.94 for the comparison
group. There was also no change in the ARAT scores, which indicate the practical functional
capacity of the hand. The changes in the measured behavioural outcomes are presented in
Figure 3.

3.4. Commissural Fibres across the Corpus Callosum

FA was measured at the corpus callosum before and after the rTMS intervention, and
there was no significant difference between the FA values of the two groups. After the
rTMS intervention, FA in the experimental group showed a trend of increase, while the FA
values of the comparison group did not change significantly (Table 4).
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Table 2. Characteristics of each participant and the stimulating target of the experimental group.

Affected
Hemisphere

Activated Brain
Regions
in fMRI

Activated Brain Regions
Converted According to

10–20 International System
Activated Brain Regions

Participant 1 Right

Mainly in the right
premotor cortex
(BA 6) and precentral
gyrus (M1, BA 4)

FC4

Participant 2 Left

Mainly in the right
precentral gyrus (M1,
BA 4), premotor cortex,
and supplementary
motor cortex (SMA,
BA 6)

C2

Participant 3 Right

Mainly in the left
precentral gyrus (M1,
BA 4) and premotor
cortex (BA 6)

C3

Participant 4 Right

Mainly in the left
precentral gyrus (M1,
BA 4) and premotor
cortex (BA 6)

C1

Participant 5 Right

Mainly in the right
precentral gyrus (M1,
BA 4) and premotor
cortex (BA 6)

C1

Table 3. Behavioural Outcome Metrics.

Participant Group
Pre

MSS
Post
MSS

Pre
FMA

Post
FMA

Pre
ARAT

Post
ARAT

Pre
AROM
Flexion

Post
AROM
Flexion

Pre AROM
Extension

Post AROM
Extension

1 Experimental 18.80 21.80 12.00 15.00 4.00 18.00 0◦ 0◦ 0◦ 0◦

2 Experimental 13.00 13.00 10.00 10.00 0.00 0.00 0◦ 0◦ 0◦ 0◦

3 Experimental 15.00 18.20 11.00 13.00 0.00 2.00 0◦ 20◦ 0◦ 0◦

4 Experimental 21.20 24.20 16.00 22.00 5.00 8.00 0◦ 60◦ 0◦ 25◦
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Table 3. Cont.

Participant Group
Pre

MSS
Post
MSS

Pre
FMA

Post
FMA

Pre
ARAT

Post
ARAT

Pre
AROM
Flexion

Post
AROM
Flexion

Pre AROM
Extension

Post AROM
Extension

5 Experimental 5.60 6.40 5.00 6.00 0.00 0.00 0◦ 0◦ 0◦ 0◦

6 Comparison 16.40 17.00 11.00 12.00 0.00 0.00 0◦ 20◦ 0◦ 0◦

7 Comparison 22.80 24.20 22.00 24.00 8.00 8.00 0◦ 10◦ 0◦ 20◦

8 Comparison 11.00 13.20 9.00 12.00 0.00 2.00 0◦ 0◦ 0◦ 0◦

9 Comparison 6.60 6.60 6.00 6.00 0.00 0.00 0◦ 0◦ 0◦ 0◦

10 Comparison 13.40 13.40 11.00 12.00 0.00 0.00 0◦ 0◦ 0◦ 0◦

Figure 3. Behavioural Outcomes in Experimental group and Comparison group. (A) For FMA; (B) for
ARAT; (C) for MSS.

Table 4. FA for fibres across corpus callosum.

Experimental Group Comparison Group

Baseline Post rTMS Baseline Post rTMS Sig. a Sig. b Sig. c

FA 0.53 ± 0.05 0.56 ± 0.06 0.55 ± 0.04 0.56 ± 0.06 0.059 0.828 0.909
a,b FA (pre–post), within-group comparisons in experimental group and comparison group, respectively. c FA
between groups.

4. Discussion

Rehabilitation is critical for reducing stroke-related disability [30], and there is growing
recognition that cortical neuroplasticity supporting adaptive recovery may extend for years
after stroke [31]. However, up to 50% of stroke survivors still have persistent, severe upper-
extremity paresis even after receiving rehabilitation treatment. TMS is a safe, non-invasive
method of stimulating the cerebral cortex [32]. When used at low or high frequencies, rTMS
may potentially enhance the ability of the brain to relearn task-specific functions as well as
augment the effects of rehabilitation via modulating corticomotor excitability [33]. However,
the reported efficacy of this intervention differs significantly. Furthermore, in light of the
negative results from the NICHE trial [34], evidence for the efficacy of LF-rTMS to the
contralesional M1 for motor recovery during the chronic stage of stroke is controversial.
Meanwhile, the conventional approach of facilitating excitability of the ipsilesional primary
motor cortex also fails to produce motor improvement in stroke survivors with severe
loss of ipsilesional substrate [35]. Previous studies indicate that different stimulation
targets may affect the efficacy of rTMS for the recovery of upper-limb motor function
differently [36]. Therefore, it is worth considering how to select appropriate targets before

29



Brain Sci. 2022, 13, 69

rTMS intervention is applied. In this study, the brain regions activated by MI were selected
as the intervention target, and we investigated the effect of stimulating this target on the
recovery of upper-limb motor function in chronic stroke patients with severe upper-limb
motor impairment.

Our results indicate that MI ability is retained even in stroke patients with severe motor
impairment, and this ability can be further enhanced after specific feedback training, which
is consistent with the findings of previous research [17], including our previous study [20].
Therefore, in stroke patients with severe motor impairment, selecting the brain regions
activated during MI tasks as rTMS intervention targets is feasible and has certain potential
value. Our preliminary results also confirm the feasibility of identifying intervention
targets using this approach. In addition, we further compared this new target with the
conventional target [13]. After the intervention, the MSS scores of both groups increased,
but there was no significant difference between and within the two experimental groups.
The results of other behavioural assessments also indicate some improvement, but the
improvements were not statistically significant. For this study, we recruited stroke patients
in the chronic stage. Brain plasticity in this stage might experience a more complicated
reconstruction and follow other recovery patterns [37]. In a chronic stroke brain, there may
be a new functional cerebral architecture, one that is not as effective as that in the intact
brain but still attempts to generate some form of motor signal to the downstream neurons in
the most effective way it can. Both the ipsilesional and contralesional motor sensory regions
may be involved in this process [38]. Lin et al. [16] confirmed that balance and recovery
have a bimodal dependence. They also identified a threshold of the clinical score useful
to stratify stroke patients (UEFM = 43). Above this threshold, better motor performance
is associated with low transcallosal inhibition from the contralesional hemisphere, while
below this threshold, better performance is associated with higher transcallosal inhibition.
In our study, we recruited patients whose UEFM were all below 43. As Lin et al. indicated
in their study, the contralesional hemisphere might play a supportive role in the recovery of
the aforementioned participants. However, in our results, we did have participants (2,3,4)
that showed the recovery pattern that Lin et al. pointed out in their study. Still, participants
(1,5) showed the activation of ipsilesional brain regions during motor imagery task, which
was contrary to the results of Lin et al.’s study. This indicates that there are different types
of brain remodelling in chronic stroke patients. Therefore, an individualised target selection
may further increase the therapeutic effect of rTMs. Considering the preliminary nature
and small sample size of our study, we could not make a concrete conclusion. Further
studies should be performed to investigate the relationship between the two hemispheres
in chronic stroke patients.

In this study, we converted the activated brain regions determined using fMRI per
the 10–20 international electrode placement system. Although it would be more precise to
locate the target using an rTMS navigator, considering the coverage of the navigator, it is
more feasible to perform the conversion per the 10–20 international electrode placement
system for rTMS stimulation.

We also traced the transcallosal fibres in our participants. In healthy individuals,
interhemispheric neural activity between the homologous motor cortices is well-balanced
through the opposing inhibitory influences exerted by the M1s of both hemispheres [39].
Previous research indicates that increased transcallosal fibre microstructure may be predic-
tive of the interhemispheric inhibitory capacity in healthy individuals [40]. Investigating
fibres via the corpus callosum can reflect brain plasticity from a structural perspective. In
this study, we found that FA increased in the experimental group (p = 0.059) after rTMS
intervention. Because our participants were stroke patients with severe upper-limb im-
pairment, the FA of fibres across the corpus callosum may primarily reflect fibres from the
contralesional M1 to the ipsilesional M1. With improvements in upper-limb motor function,
the increased FA may indicate the specific role of the contralesional M1 in recovery from
severe brain injury. These results are also in agreement with the findings of the study by
Grefkes [41], in which they concluded that movement of a stroke-affected hand showed
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additional inhibitory influences from the contralesional to ipsilesional M1 that correlated
with the degree of motor impairment. Further studies are needed to confirm the effect of
rTMS delivered to different brain regions and how it affects the balance between the two
hemispheres and the recovery from motor impairment.

There are some limitations to this study. First, this is a preliminary study, and only
10 participants were recruited, which certainly impacts its efficacy. Second, in this study,
there were exactly 10 sessions of rTMS interventions. Whether increasing the number of
intervention sessions will further increase the efficacy of rTMS treatment also needs to
be verified in future studies. Third, although all participants underwent task-oriented
training focused on the upper limbs, we did not further define the implementation time
of the training. In future research, we will implement task-oriented training immediately
after rTMS, which may yield the benefit of improving recovery. Therefore, we will increase
the sample size and optimise the intervention plan based on the results of this study and
continue to conduct randomised, controlled studies to investigate the effect of using task-
activated brain regions as the intervention target for the improvement of upper-limb motor
function in chronic stroke patients with severe upper-limb motor impairment.

5. Conclusions

In chronic stroke patients with severe upper-limb motor impairment, determining
the brain regions activated during an MI task and selecting them as the target of an rTMS
intervention is feasible. Due to the preliminary nature of this study, further studies are
needed to explore the efficacy of this intervention.
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Abstract: Brain–computer interfaces (BCIs) are becoming more popular in the neurological reha-
bilitation field, and sensorimotor rhythm (SMR) is a type of brain oscillation rhythm that can be
captured and analyzed in BCIs. Previous reviews have testified to the efficacy of the BCIs, but seldom
have they discussed the motor task adopted in BCIs experiments in detail, as well as whether the
feedback is suitable for them. We focused on the motor tasks adopted in SMR-based BCIs, as well
as the corresponding feedback, and searched articles in PubMed, Embase, Cochrane library, Web of
Science, and Scopus and found 442 articles. After a series of screenings, 15 randomized controlled
studies were eligible for analysis. We found motor imagery (MI) or motor attempt (MA) are common
experimental paradigms in EEG-based BCIs trials. Imagining/attempting to grasp and extend the
fingers is the most common, and there were multi-joint movements, including wrist, elbow, and
shoulder. There were various types of feedback in MI or MA tasks for hand grasping and extension.
Proprioception was used more frequently in a variety of forms. Orthosis, robot, exoskeleton, and
functional electrical stimulation can assist the paretic limb movement, and visual feedback can be
used as primary feedback or combined forms. However, during the recovery process, there are many
bottleneck problems for hand recovery, such as flaccid paralysis or opening the fingers. In practice,
we should mainly focus on patients’ difficulties, and design one or more motor tasks for patients, with
the assistance of the robot, FES, or other combined feedback, to help them to complete a grasp, finger
extension, thumb opposition, or other motion. Future research should focus on neurophysiological
changes and functional improvements and further elaboration on the changes in neurophysiology
during the recovery of motor function.

Keywords: brain–computer interfaces; motor task; sensorimotor rhythm; stroke; hand rehabilitation

1. Introduction

Stroke causes the highest morbidity associated with disability-adjusted life years lost
in China, with two million new cases annually [1]. Up to 66% of stroke survivors expe-
rience upper limb and hand motor impairments, which results in functional limitations
in activities of daily living and decreased life quality [2,3], and leads to a heavy burden
for the family and society. Hand rehabilitation after a stroke is difficult during neuroreha-
bilitation. Traditional rehabilitation methods cannot fully meet the need of patients and
the expectations of doctors [4]. Various methods were being applied in hand function
rehabilitation, including central interventions such as mirror therapy, transcranial mag-
netic stimulation, transcranial direct current stimulation, brain–computer interfaces (BCIs),
motor imagery, etc., peripheral interventions such as a robot, physical therapy, functional
electrical stimulation, etc., and medicine such as botulinum for spasticity [5]. BCIs have
been proven to be effective for hand motor recovery after stroke [6–8]. According to its
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working mechanism, BCIs can be classified as assistive or rehabilitative devices based on
their clinical applications. In some laboratories, assistive BCIs are used as communication
tools for amyotrophic lateral sclerosis patients [9,10] or as daily activity assistance for
tetraplegia, such as drinking assistance [11,12]. Meanwhile, rehabilitative BCIs are mainly
used in promoting functional recovery for such as stroke patients.

There were various kinds of rehabilitative BCIs equipment. In practice, the workflow
of BCI is acquiring brain signals, extracting features, transforming the signal into command
via external devices, and activating the sensory feedback. In non-invasive systems, BCIs
involve brain activities measured by different kinds of equipment, such as electroencephalo-
graph (EEG), functional magnetic resonance imaging, and functional near-infrared imaging,
and the user’s movement intention such as motor imagery or motor attempt is decoded in
real-time from the ongoing electrical activity of the brain by extracting relevant features [6].
Based on different features, such as common spatial pattern (CSP), and event-related desyn-
chronization (ERD), different movement intentions can be classified by linear discriminant
analysis (LDA) classifier, support vector machine. The algorithm converts the brain signals
into information, then the external devices, such as the computer screen, robot, functional
electrical stimulation (FES), or orthosis received the information and provide feedback
to the subjects. The whole process forms a closed loop called neural feedback [13,14].
Auditory, visual, tactile, and proprioceptive feedback is commonly adopted in BCI, and
their combination is used extensively in clinical experiments [15–17]. Motor imagery (MI),
motor attempt (MA), or motor execution (ME) can activate several signal rhythm changes
in the cerebral cortex [18,19], which can be captured and used to modulate the amplitude
of sensorimotor rhythm (SMR) to control external devices. In addition, BCIs are a kind
of active rehabilitation device. They achieved control of devices by catching the subject’s
initiative. In particular, the motor task is not only the start factor for BCIs, but also the
repeated training of task can promote motor recovery. Well-designed motor tasks and
befitting feedback for the patients can enhance the BCI training and lead to a successful
rehabilitation process.

Motor tasks usually concern the movement intention or the actual movement of
the paretic limb. As we all know, hand recovery is a long and rough process. Several
stroke patients in the acute stage can hardly move their hands, neither completely nor
incompletely grasp, and they encounter kinds of difficulties, such as opening the fingers
or moving their thumb or other fingers independently. The recovery of the hand function
conforms to some rules, such as the six Brunnstrom recovery stages [20], but many of the
hand functions stagnate at some specific stages. According to Brunnstrom recovery stage
for stroke, in stage I, there is no muscle contraction at all; in stage II, there is subtle flexion
of the hand; in stage III, the hand can flex more actively but cannot be opened; in stage
IV, patients can volitionally extend the thumb and other fingers partially; in the stage V,
patients can hold a ball or a cylinder, and they can extend their fingers simultaneously; and
in the stageVI, the paretic hand can almost accomplish every kind of functional grasping
and extending, but the speed and coordination are a little bit worse than the contralateral
limb. The recovery rules can also be applied to shoulders, elbows, forearms, and wrists. It is
obvious that an improvement from no active movement to active movement is a hard step,
and the separation movement, from finger grasping to finger opening, is also a difficult
process. Therefore, facing a series of difficulties, the task specificity of hand motions is of
great importance, and the correlation with feedback is the main link and is discussed in
detail in the review.

Clinical efficacy in hand function rehabilitation of stroke patients has been revealed
by several reviews. Remsik et al. [21] considered BCIs as a method of hand function
rehabilitation after stroke with a review. Monge–Pereira et al. [22] suggested EEG-based
BCIs interventions may be a promising rehabilitation approach in subjects with stroke by a
systematic review. Carvalho et al. [23] suggested that neurofeedback training with EEG-
based BCIs might promote both clinical and neurophysiologic changes in stroke patients.
Bai et al. [24] investigated the effectiveness of BCIs in restoring upper extremity function
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after stroke. Even though they have testified to the effectiveness of the BCIs, hardly have
they forced deeply on these questions: Why was a motor task chosen in each BCI trial, and
is it suitable for a stroke patient? Some stroke patients received BCIs training but gained
small improvements. Except for other reasons such as a lack of treatment times, short
treatment duration, etc., can the motor tasks help promote better motor recovery? Thus,
this review concentrates on the motor tasks and feedback of BCI clinical trials based on
upper limb and hand interventions with BCIs systems in patients after stroke, which is
truly suitable for them to solve their problems. We use the traditional method to search
articles and draw clinical recommendations. This review aims: (1) to explore the motor
tasks design in EEG-based BCIs clinical trials, (2) to analyze the association between motor
tasks and the neurologic mechanism, and (3) to discuss the feedback combing the motor
tasks that were suitable for stroke patients.

2. Methods

2.1. Search Strategy

We searched articles in PubMed, Embase, Cochrane library, and Web of Science. At
the same time, we screened the reference of previous systematic reviews in PubMed in case
of missed articles. For PubMed, JF and SC took advantage of subject terms and entry terms
for each subject, extended each subject term with the virtue of mesh categories, and then
searched the corresponding entry terms separately. These subject terms and entry terms
can be the reference for other databases. However, due to different search strategies in each
database, other databases went through the same process to retrieve articles. The specific
search strategy for each database can be found in Supplement S1.

2.2. Study Selection

The inclusion criterion is following the PICO principle:

(1) Subjects were hemiplegic paralysis, and were diagnosed with ischemic or hemor-
rhagic stroke;

(2) Subjects received EEG-based BCIs training, which described the motor tasks in de-
tail in the papers, and the control group received conventional therapy or sham
BCI training;

(3) The Fugl–Meyer Assessment Upper Extremity Scale (FMA-UE), Action Research
Arm Test (ARAT), the Jebsen Hand Function Test, etc. were used for functional
recovery assessments;

(4) We concentrated on randomized controlled trials.

The PEDro scale was used to assess the methodological quality of the controlled
studies (details are shown in Table 1).

Table 1. Methodological quality assessment of the enrolled studies.

Author/PEDro Item 1 2 3 4 5 6 7 8 9 10 11 Total

Ramos–Murguialday et al., 2013a [17] 1 1 1 1 1 1 1 1 1 8
Angand Guan et al., 2014a [25] 1 1 1 1 1 1 1 6

Li et al., 2014a [15] 1 1 1 1 1 1 1 1 7
Angand Chua et al., 2014a [26] 1 1 1 1 1 1 1 6

Rayegani et al., 2014a [27] 1 1 1 1 1 1 5
Ang et al., 2015a [16] 1 1 1 1 1 1 1 1 7

Pichiorri et al., 2015a [28] 1 1 1 1 1 1 1 6
Kim et al., 2016 [29] 1 1 1 1 1 1 1 1 7

Frolov et al., 2017a [30] 1 1 1 1 1 1 5
Biasiucci et al., 2018a [7] 1 1 1 1 1 1 1 1 1 1 9

Ramos–Murguialday et al., 2019a [31] 1 1 1 1 1 1 1 1 1 8
Chen et al., 2020 [32] 1 1 1 1 1 1 1 6
Miao et al., 2020 [33] 1 1 1 1 1 1 5
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Table 1. Cont.

Author/PEDro Item 1 2 3 4 5 6 7 8 9 10 11 Total

Cheng et al., 2020 [34] 1 1 1 1 1 1 1 1 8
Chen et al., 2021 [35] 1 1 1 1 1 1 1 7

1. Eligibility criteria were specified; 2. subjects were randomly allocated to groups; 3. allocation was concealed;
4. the groups were similar at baseline regarding the most important prognostic indicators; 5. there was blinding of
all subjects; 6. there was blinding of all therapists; 7. there was blinding of all assessors; 8. measures of at least one
key outcome were obtained from more than 85% of the subjects initially allocated to groups; 9. all subjects for
whom outcome measures were available received the treatment or control condition as allocated; 10. the results of
between-group statistical comparisons are reported; 11. the study provides both point measures and measures
of variability.

3. Results

We searched articles in PubMed, Embase, Cochrane library, Web of Science, and
Scopus and obtained a total of 442 articles. After screening, 15 randomized controlled
studies were eligible for analysis. We mainly concentrated on the motor task design and
the corresponding BCI system feedback in their research (characteristics of the enrolled
studies are shown in Table 2).

Table 2. Characteristics of the enrolled studies.

Study, Year Country
n(E/C),
Study Design

Experimental (E)/Control Group (C) Feedback Outcome Measures Dosage Main Results

Ramos–Murguialday et al.,
2013a [17] Germany 16/16, RCT

E: PT rehab + BCI-orthosis
MA task: attempt to open and close
the hand and arm extension
C: PT rehab + sham BCI

The hand orthosis
drives extending
fingers, and arm
orthosis assists the
upper arm extension.

FMA-UE, GAS, MAL,
MAS

40 min/d, 5 d/wk,
4 wk, 20 d

FMA-UE scores improved
more in the experimental
than in the control group,
FMA-UE scores
(3.41 ± 0.563, p = 0.018).

Angand Guan et al., 2014a [25] Singapore 6/8, RCT
E: mobilization + BCI-robot
MI task: imagine hand grasping
C: mobilization + robot

The haptic knob robot
for the hand
grasping action.

FMA-UE 1.5 h/d, 3 d/wk,
6 wk, 18 d

FMA-UE score improved
in all groups, but no
intergroup differences
were found at any
time point.

Li et al., 2014a [15] China 7/7, RCT

E: Con-rehab + BCI-FES, visual and
auditory feedback
MI task: imagine the upper extremity
movements according to the
direction of the arrow
C: Con-rehab + FES

Once patients correctly
imagined the
movement five times in
succession, FES was
triggered, which
stimulated the affected
upper extremity’s
extensor carpus
radialis muscles.

FMA-UE, ARAT, EEG 1–1.5 h/d, 3 d/wk,
24 d

A significant improvement
in the motor function of the
upper extremity for the
BCI group was confirmed
(p < 0.05 for ARAT),
simultaneously with the
activation of bilateral
cerebral hemispheres.

Angand Chua et al., 2014a [26] Singapore 11/14, RCT

E: BCI-Manus robot
MI task: imagine moving the paretic
arm and hand forward to reach for
an imagery target in front of them
and to reach the clock-face target
C: Manus robot

passive resistance-free
movement of the
paretic arm within the
exoskeletal arm from
the center toward the
target displayed on the
screen, along with
visual feedback.

FMA-UE 1.5 h/d, 3 d/wk,
4 wk, 12 d

No intergroup differences
(p = 0.51).

Rayegani et al., 2014a [27] Iran 10/10, RCT

E: con-rehab + BCI-visual feedback
MI task: contract the abductor
pollicis brevis muscle and perform
thumb opposition
C: Con-rehab

Patients were provided
with visual
and audio feedback by
watching the
contractions on the
screen as a
game (puzzle).

JHFT 30 min/d, 5 d/wk,
2 wk, 10 d No intergroup differences.

Ang et al., 2015a [16] Singapore 10/9, RCT

E: tDCS + BCI- robot
MI task: imagine moving their
stroke-affected hand toward the
target indicated on the 8-point
clock-face video game.
C: sham tDCS + BCI- robot

Passive resistance-free
movement of the
paretic arm within the
exoskeletal arm from
the center toward the
target is displayed on
the screen, along with
visual feedback.

FMA-UE 1 h/d, 5 d/wk,
2 wk

No intergroup differences.
Online accuracies of the
evaluation part from the
tDCS group were
significantly higher than
those from the sham group.

Pichiorri et al., 2015a [28] Italy 14/14, RCT

E: con-rehab + BCI-visual feedback
MI task: imaging a sustained
grasping movement and sustained
complete extension of the finger.
C: con-rehab+ MI

A simulated hand was
projected to
demonstrate the
imaginary movement as
the visual feedback.

FMA-UE, MAS,
EEG

30 min/d, 3 d/wk,
4 wk. 12 d

The FMA-UE score
improved (p < 0.03) in the
BCI group.

Kim et al., 2016 [29] USA
Korea 15/15, RCT

E: con-rehab + AOT + BCI-FES
ME: Participants performed 18 action
observational tasks related to their
daily living by watching DVDs of a
sequence of movements that should
be performed with their own hands
including (1) folding a towel,
(2) cutting a toilet roll, (3) using
scissors, (4) tightening shoelaces,
(5) opening and closing a square
airtight container, (6) opening a
bottle top, (7) turning a faucet, etc.
C: con-rehab

If patients correctly
imagined the
movement and their
attention level went up
to the attention
threshold, FES was
triggered and
stimulated wrist
extensor muscles of
the affected
upper extremity.

FMA-UE, MAL,
MBI

30 min/d, 5 d/wk,
4 wk, 20 d

The FMA-UE was
significantly higher in the
BCI-FES group (p < 0.05).
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Table 2. Cont.

Study, Year Country
n(E/C),
Study Design

Experimental (E)/Control Group (C) Feedback Outcome Measures Dosage Main Results

Frolov et al., 2017a [30] Russia 55/19, RCT

E: Con-rehab + BCI-arm exoskeleton
MI task: Kinesthetic imagination of a
continuous opening of the right hand
and the left hand.
C: Con-rehab + sham BCI

The hand exoskeleton
helped patients to
extend their fingers.

FMA-UE, ARAT 30 min/d, 3 d/wk,
12 d

Both groups improved in
FMA-UL. Upon training
completion, 21.8% and
36.4% of the patients in the
BCI group improved their
ARAT and FMA-UE
scores respectively.

Biasiucci et al., 2018a [7] Switzerland 14/13, RCT

E: BCI-FES
MA task: attempt to extend the
affected hand, fingers, and wrist.
C: Sham BCI

If a “movement
attempt” was detected,
FES was triggered,
with which a single
bipolar channel is
applied on the affected
limb to inject current
into the extensor
digitorum communis
muscle.

FMA-UE, MRC, MAS,
EEG 1 h/d, 2 d/wk, 5 wk

BCI patients exhibit a
significant functional
recovery after the
intervention. EEG analysis
pinpoints significant
differences in favor of the
BCI group, mainly
consisting of an increase in
FC between motor areas in
the ipsilesional
hemisphere.

Ramos–Murguialday et al.,
2019a [31] Germany 16/12, RCT

E: PT rehab + BCI-orthosis
MA task: instructed to try to move
their paretic upper limb. (1) open
and close the fingers or (2) move the
paretic upper limb forward
and backward.
C: PT rehab + Sham BCI

The robotic orthosis
was used to open and
close the fingers or
move the paretic upper
limb forward and
backward just like the
given motor task.

FMA-UE, GAS, MAL,
MAS

1 h/d, 5 d/wk,
4 wk, 20 d

The experimental group
presented with FMA-UE
scores significantly higher
in Post2 (13.44 ± 1.96) as
compared with the
Pre-session (11.16 ± 1.73;
p = 0.015).

Chen et al., 2020 [32] China 7/7, RCT

E: BCI + exoskeleton + co-rehab
MA task: attempt motion of
wrist extension
C: co-rehab

The exoskeleton drives
the patients’ affected
hands to complete the
wrist extension motion.

FMA-UE 40 min/d, 3 d/wk,
4 wk

Both the BCI group
(p = 0.032) and the control
group (p = 0.048) improved
in FMA-UE scores.

Miao et al., 2020 [33] China 8/8, RCT
E: BCI-FES + co-rehab
MI task: KMI of wrist dorsiflexion
C: co-rehab

Perform the MI task
upon the appearance of
the cue (“left” or
“right”), the avatar
would give the subjects
visual feedback and the
FES would be activated
to cause the wrist
dorsiflexion of the
corresponding side.

FMA-UE 40 min/d, 3 d/wk,
4 wk

The average improvement
score of the BCI group was
3.5, which was higher than
that of the control
group (0.9).

Cheng et al., 2020 [34] Singapore 5/5, RCT E: BCI-SRG + Soft Robotic Glove
C: Soft Robotic Glove

Imagine ADL
movement, like
scanning goods,
moving an object
upward to a cabinet,
etc.

FMA-UE, ARAT 120 min/d, 3 d/wk,
6 wk No intergroup differences.

Chen et al., 2021 [35] China 16/16, RCT
E: BCI-FES
MI task: wrist-extension
C: NMES

The electrode slices
were attached to the
skin above the two ends
of the extensor
carpi ulnaris

FMA-UE 40 min/d, 4 d/wk,
3 wk.

The FMA-UE was
significantly higher than
that in the sham group.

Abbr: Brain–computer interfaces, BCI; Functional Electrical Stimulation, FES; Neuromuscular Electrical Stimula-
tion, NMES; the Fugl–Meyer Assessment Upper Extremity Scale, FMA-UE; Action Research Arm Test, ARAT; the
Jebsen Hand Function Test, JHFT; the Goal Attainment Scale, GAS; Motor Activity Log, MAL; Modified Ashworth
Scale, MAS; Electroencephalogram, EEG; Modified Barthel Index, MBI.

3.1. Motor Task

Detailed information about different kinds of BCI motor tasks such as MI, MA, and
ME is listed as follows.

3.1.1. MI Task

The movement of the paretic hand is the main point in the design of the BCIs exper-
iment. Imaging finger movements [25,36–38], including grasping alone, grasping, and
opening [39–41], was applied in several experiments. Ang et al. [25] recruited stroke pa-
tients to receive hand grasp motor imagery training, and the control group received robot
training. Finger extension imagery is still common in trials. Rayegani et al. [27] instructed
the experimental group to contract the abductor pollicis brevis muscle and perform thumb
opposition. Pichiorri et al. [28] assigned the MI task to imagine a sustained grasping move-
ment and sustained complete extension of the finger. In Frolov et al.’s experiment [30], the
experimental group received BCI-arm exoskeleton training, and the patients kinesthetically
imagine a continuous opening of the right hand and the left hand.

Motor tasks may also involve movements of multiple joints, including the joints of the
shoulder, elbow, and wrist. In several BCI research, patients were instructed to imagine the
extension of the wrist [33,35]. Angand Chua et al. [26] instructed patients to imagine their
paralyzed hands to reach out and reach the clock-face target on the computer screen. In
another experiment [16], patients who were severely injured were enrolled and divided into
two groups. The motor task was to imagine moving their affected hand toward the target
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indicated on the 8-point clock face on the computer screen. Stroke patients were recruited
by Li et al. [15] to test the efficacy of MI-based BCIs training. Before treatment, the subjects
in the BCI group were trained to complete MI tasks for effectively performing MI. They
were trained to practice the experienced task, such as drinking water, and complete the MI
task through a video by the unaffected hand. Then during the training course, the subjects
were instructed to imagine the upper extremity movements according to the direction of
the arrow following the voice “Begin to imagine left/right” and the randomized green
arrow with a left or right command showing on the computer screen. In Cheng’s study [34],
they designed some movements from activities of daily living (ADL), such as scanning
goods, moving an object upward to a cabinet, using two hands to move a towel, pouring
water into a cup, eating actions, and fine motor movement of picking up a small block
using two fingers. The MI task was imagining arm movements and was matched to the
performance of the ADL movements that were talked about above.

3.1.2. MA Task

Attempting to extend fingers has also been applied in some experiments. Biasiucci et al. [7]
asked the patients to attempt to extend or rest the affected hand (both fingers and wrist).
Chen et al. [32] designed a study for subacute stroke patients, in which the BCIs group
patients attempted to extend the wrist of the paretic hand. Ramos–Murguialday et al. [17]
conducted a randomized controlled clinical trial, and trained patients to move the upper
limb and reach forward with the help of arm orthosis. When the patients heard the
corresponding auditory cue, they were instructed to try to reach, grasp, and bring an
imaginary apple to their lap, and finger extension was involved in the reaching and
grasping movement. In another study [31], patients were instructed to try to move their
paretic upper limb to open and close the fingers or move forward and backward.

3.2. Different Feedback for the Motor Tasks

There are various types of feedback in MI or MA tasks for hand grasping and extension,
including visual, auditory, tactile, and proprioceptive feedback.

3.2.1. Visual

Visual feedback is a common choice for the BCIs experiment [16,27,28,34], and it is
often presented as a computer screen or projection screen. In practice, patients watch the
muscle contractions on the screen [27] as a game or some curtain displaying the simulated
hand which demonstrated the imaginary movement [27,28]. In some combination cases,
visual and movement feedback was provided by the Manus shoulder–elbow robot, and
the exoskeleton assist the paretic arm moved from the center to the target displayed on the
screen and back along a predetermined robotic trajectory [16,26].

3.2.2. Proprioception

(1) Orthosis

The orthosis was used to assist the paretic limb to move. In some research, the paretic
hand was attached to the orthosis to drive fingers extending (hand opening), and other
researchers used arm orthosis (reaching) to assist the upper arm extension. The arm and
hand orthoses targeted the patient’s ability to open and close the hand [17]. In another
study [31], robotic orthosis was used to open and close fingers or move the paretic upper
limb forward and backward just like the given motor task. The level of paresis determined
the kind of movement to be performed during BCIs training, but all patients performed
the movement of opening and closing the fingers. When the mu ERD was detected after
the cue instruction to imagine finger extension, the star-shaped cursor moved down on
the screen as visual feedback, and then the motor-driven orthosis extended their affected
fingers [42].

(2) Robot
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The robot used in BCIs is usually in the active-assist mode. The active assist mode
likely generates greater proprioceptive sensory signals to the brain than the active non-
assist mode does [43]. The Haptic Knob robot helped with the hand-grasping action [25].
They carried out an MI-based BCIs and tactile selective attention experiment. In the MI
group, kinesthetic motor imaging (KMI) of the left or right hand was performed according
to the direction of the arrow presented on the screen. In the tactile selective attention group,
vibration stimulation of the left and right thumbs was implemented. Some KMI movements
may be designed with ADL movements, and their feedback from the soft robotic glove is
moving the fingers [34].

(3) Exoskeleton

The exoskeleton was also applied in a BCI designed to produce proprioceptive feed-
back. Frolov et al. [30] instructed patients to imagine the extension of their left or right hand,
and the exoskeleton helped them to extend their fingers after receiving the commands.
After the BCIs system correctly recognized the intention of the patient’s motor attempt, it
would output command and manipulate the exoskeleton, driving the patient’s affected
hands to complete the wrist extension motion [32].

(4) FES

The FES can also be used as feedback in the BCIs system. When patients correctly
imagined the movement and their attention level went up the attention threshold, FES
was triggered and stimulated wrist extensor muscles of the affected upper extremity. If a
“movement attempt” was detected, FES would be triggered, with which a single bipolar
channel was applied on the affected limb to inject current into the extensor digitorum
communis muscle [7], and the threshold that initiated FES was adjusted after each run for
each patient by the therapist, to determine the task difficulty. The FES can act on any muscle
as requested, such as extensor carpus radialis muscles [15] or extensor carpi ulnaris [35].

4. Discussion

We summarized the commonly used MI/MA tasks in the BCI experiments. MI [44]
refers to mental activity that involves specific movements without actual movement. An
example of kinesthetic motor imaging involves imagining the feeling of the hand opening
from the perspective of the first person while maintaining muscle relaxation. MA [45] is
attempting to move the paralyzed limb while there is still no actual or little movement,
and the electromyography (EMG) activities in the affected arm are several times higher
during the motion phase than those in the rest phase. MI has been considered a therapy
for promoting motor recovery after stroke [46], and they were often connected to the BCIs
equipment. BCI has been proven to be effective in subacute and chronic stages of hand
recovery of stroke patients. However, patients might encounter kinds of hand recovery
difficulties during their rehabilitation courses. In the literature we have referred to, for
the MI task, hand-grasping imagery [25,36–38], involving grasping alone, grasping, and
opening [39–41], was applied in several BCIs studies. Finger extension imagery is also
common in the BCI trials [27,28,30,42]. In some research, patients were instructed to
imagine the extension movement of the wrist [33,35]. Grasping and opening are basic
functions of a hand, and many motor tasks were designed based on these motions. At the
same time, motor tasks may also involve movements of multiple joints, including the joints
of the shoulder, elbow, and wrist [15,16,26,34]. As for the motor attempt task, attempting
to extend fingers has also been carried out in several experiments [7,17,31,32].

There are various types of feedback in MI or MA tasks for hand grasping and extension,
including visual, auditory, tactile, and proprioceptive feedback. Many experiments are
designed from their combinations. Proprioception was more frequently used and in a
variety of forms, including orthosis [17,25,31,42], robot [16,25,26], exoskeleton [30,32],
and functional electrical stimulation (FES) [7,15,29]. We analyzed the specific motor task
adopted in BCI experiments. Some researchers trained patients on the MI ability before the
treatment to obtain good training effects, some may increase the threshold that initiates
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the FES to enhance task difficulties, and other experiments set two tasks for hand and arm
with the help of a specific robotic orthosis.

As is known to all, motor recovery and functional improvements mainly depend on
motor training, and task-based motor relearning is also important for hand rehabilitation
after a stroke. After repetitive motor training, the motor function improved following the
brain plasticity. Although motor tasks are an essential and non-negligible part of a BCI
system, how to choose a motor task of the BCI training system for a stroke patient with
hand motor dysfunction remains an unsolved problem, and is of great importance to their
clinical outcome. MI and MA tasks are common experimental paradigms in EEG-based
BCIs trials. They were used in post-stroke hand function rehabilitation. Patients who
received BCIs training were asked to perform motor tasks of different motions. These
motions included grasping, fingers extending, and wrist extending. All these motor tasks
designed are essential for rehabilitative BCIs. From a meta-analysis published recently [24],
we have known that MA in BCIs training appears to be more effective than MI, and we
believe that MA may be a better choice in BCIs trials, especially since the task can be
referred to the functional status in stroke patients. However, for people with different levels
of hand motor impairments, what kind of motor task should be designed for them? As has
been mentioned above, the Brunnstrom stage recovery rule for stroke can be an indication
for study design. During the recovery, the process from no to mild active movement and
segregation movement is a difficult step, so setting the proper task is an urgent need.
In Ramos–Murguialday et al. [31] research, they designed two motor tasks for different
levels of paresis in stroke patients. Thus, according to the rules, we may mainly focus on
patients’ difficulties. For patients with no actual movement, we may focus on basic primary
functions, such as grasp ability, with the help of embodied BCI feedback, to practice the
motion repeatedly.

Different motor tasks may also match different types of feedback. The proprioceptive
feedback is provided by an exoskeleton, orthosis, robots, or FES. In addition, virtual
feedback can be another type of feedback that directly enters the brain. Feedback is a
key element in motor rehabilitation in clinical work, and it has been reported to enhance
brain plasticity and promote neural remodeling after rehabilitation training. Thus, varying
modalities of feedback have been employed during BCI training. A combination of two or
more feedback may create an enriched multi-element environment and be more helpful
for stroke rehabilitation. Some studies have demonstrated that proprioceptive feedback is
more suitable than visual feedback for entraining the motor network architecture during
the interplay between motor imagery and feedback processing [47], and thus, it results in
better volitional control of regional brain activity, but the two above are often combined in
practice. In Bai et al.’s meta-analysis [24], they made a subgroup analysis, focusing on the
relationship between different feedback and effectiveness. They mainly analyzed robot,
FES, and visual feedback, and the results indicated that only BCIs triggering the stimulation
of FES had a significantly larger effect size on motor function recovery, compared with
control interventions. In Xie’s meta-analysis [48], they considered BCI combined with FES
or visual feedback may be a better combination for functional recovery than a robot.

However, up to now, the mechanism of BCI promotes motor recovery is not very
clear. MI-based BCIs involve neural mechanisms that volitionally control the movement of
the hand [21], guide nerve plasticity, and enhance the connection between the motor area
and the ipsilesional hemisphere [6]. Some studies have shown that after BCI training, the
sensorimotor cortex of the ipsilesional hemisphere participates more, which might increase
the excitability of the ipsilesional hemisphere [49,50] and change the rhythm of EEG, such
as producing stronger ERD [15,28]. Patients with better SMR control may have higher
functional improvements [51], and the performance of BCI is related to the improvement of
motor function [15,30,52,53]. The proprioceptive sensory signals from these movements
reach the motor cortex, the activation or continuous sensory input to the motor cortex
of the ipsilesional hemisphere [21,54,55], and increase the afferent feedback, which has
been considered useful for improving motor learning [56,57]. The recruitment of muscle
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spindles and Golgi tendon organs via FES may be effective. Some researchers believed
that FES depolarized more motor and sensory axons, sending larger sensory volleys from
muscle spindles and Golgi tendon organs into the central nervous system [58], FES or
tactile input accompanying MI can produce stronger ERD [59,60], and the monosynaptic
excitatory projections from spindles onto motoneurons may activate them concurrently
with the presumed descending cortical command, thereby causing Hebbian association.

Facing the current need of patients as well as physicians, we need to design suitable
motor tasks and choose corresponding BCI feedback to reach a higher hand function
recovery after stroke. If a patient has difficulty extending fingers, the motor task can be
designed as an attempt to extend fingers. Then the FES or the robot should assist the
patient to extend fingers in an active-assist mode. Similarly, if a patient has difficulty
flexing fingers, the motor task can be designed as an attempt to flex fingers and the FES
or the robot will also be used as assistance with various feedback. However, there are
some limitations to this review. First, our review only focuses on RCT. Thus, more motor
tasks could not be presented. Second, the effects of different motor tasks and different
feedback were not quantified. Future research should focus on neurophysiological changes
and functional improvements and further elaboration on the changes in neurophysiology
during the recovery of motor function, which may promote the development of BCI in the
neurological field fundamentally.

5. Conclusions

To sum up, we focus on the motor tasks adopted in EEG-based BCIs research, as well
as the corresponding feedback adopted in the BCI trial from the very perspective of the
clinic. Many motor tasks involve imagining or attempting to grasp or extend the hand and
were matched with the BCIs-triggered robot or FES combined with visual feedback. To
optimize BCI rehabilitation training, we should focus on patients’ difficulties during BCI
training to help them to complete grasp motions, finger extension, thumb opposition, and
other complex motions with the assistance of the robot or FES, or other combined feedback.
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Abstract: Background: Hand dysfunction is one of the main symptoms of stroke patients, but there is
still a lack of accurate hand function assessment systems. This study focused on the application of the
multi-dimensional intelligent visual quantitative assessment system (MDIVQAS) in the rehabilitation
assessment of hand function in stroke patients and evaluate hand function rehabilitation in stroke
patients. Methods: Eighty-two patients with stroke and unilateral hand dysfunction were evaluated
by MDIVQAS. Cronbach’s Alpha coefficient was used to assess the internal consistency of MDIVQAS;
the F-test is used to assess the differences in MDIVQAS for multiple repeated measures. Spearman’s
analysis was used to identify correlations of MDIVQAS with other assessment systems. t-tests
were used to identify differences in outcomes assessed with MDIVQAS in patients before and
after treatment. p < 0.05 were considered significant. Results: (1) Cronbach’s Alpha coefficient of
MDIVQAS in evaluating hand’s function > 0.9. (2) There was no significant difference between
the other repeated measurements, except for thumb rotation in MDIVQAS. (3) MDIVQAS had a
significant correlation with other assessment systems (r > 0.5, p < 0.01). (4) There were significant
differences in the evaluation of hand function in patients before and after treatment using MDIVQAS.
Conclusion: The MDIVQAS system has good reliability and validity in the evaluation of stroke hand
function, and it can also better evaluate the treatment effect.

Keywords: assessment; rehabilitation; stroke; upper extremity; hand

1. Introduction

Stroke is a major noncommunicable disease that harms the health of people all over
the world. As of 2019, stroke is the second leading cause of death worldwide and the
third leading cause of death caused by disability. From 1990 to 2019, the disability rate
caused by stroke increased by 32.0% [1], and 70% to 90% of patients after stroke have
upper limb dysfunction [2,3], 60–70% of them with hand dysfunction [1,4]. As one of the
most important organs of the human body, the hand is involved in many daily activities,
and its function accounts for 90% of the upper limb function. Hand dysfunction seriously
affects patients’ daily life and social participation ability [5]. Rehabilitation therapy is an
important method to restore hand function, and accurate treatment is based on an accurate
assessment. At present, the commonly used methods for assessing hand function after
stroke are mainly qualitative or semi-quantitative, which mainly include the protractor
measurement of Active Range of Motion (AROM), FMA-UE, FMA-W/H, Brunnstrom,
ARAT and so on. The above evaluation methods have been widely used in clinical practice
for a long time, and their reliability and validity are also widely recognized. However, the
actual application is easily influenced by personal experience [6–9]. Therefore, there is great
interest in developing an automated system to achieve intelligent, objective and quantitative
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assessment of hand function rehabilitation after stroke. In the last two decades, significant
advances have been made in human motion measurement and analysis, providing the
technical basis for automated assessment of upper limb and hand function [10]. In recent
years, modern methods for quantitative hand function assessment include the 3D motion
capture system, Kinect technology, rehabilitation robots and micro sensors, etc. However,
the above instruments are still lacking in large sample studies, and some instruments are
too bulky and have not been widely used in clinical practice [11–13].

In clinical rehabilitation work, intelligent, quantitative, accurate and efficient hand
function assessment tools are needed to provide a better choice for clinical practice. There-
fore, this study uses a newly developed intelligent assessment method, application of
multi-dimensional intelligent visual quantitative evaluation system (MDIVQAS) to objec-
tively and quantitatively assess the function of the affected hand after stroke.

MDIVAQAS is the core technology of hand motion calculation jointly developed
by Huashan Hospital affiliated with Fudan University and Shanghai University with
completely independent intellectual property rights. Through the optical smart capture
and the integration of computer vision technology, complete animation action standard
hand more guidance, the contralateral national health model and subject to lateral hand
evaluation process, belongs to the field initiative, and it can complete the quantitative
assessment of hand function. The purpose of this study was to verify the reliability
of MDIVQAS, and to observe the evaluation effect of the system in clinical application
compared with traditional evaluation methods.

2. Materials and Methods

2.1. General Information

Using the pwr package and WebPower package in R, it is assumed that there is a
large effect size, statistical testing power 1-β = 0.8 and significance level a = 0.05, and the
minimum sample size required for each stage is calculated. From November 2019 to October
2021, 88 stroke patients who met the inclusion criteria and signed informed consent in the
Department of Rehabilitation Medicine, the First Affiliated Hospital of Xinjiang Medical
University were selected. Inclusion criteria: 1© The diagnosis was in line with the diagnostic
criteria for stroke (including cerebral infarction and cerebral hemorrhage) formulated by the
Cerebrovascular Department of the Neurology Branch of the Chinese Medical Association
in 2019 [14]. 2© One-hand dysfunction, and in the hand of Brunnstrom recovery stages
(BRS-H) II and above. 3© The National Institute of Health Stroke Scale (NIHSS) score ≤ 4,
the nerve damage was mild, the condition was relatively stable. 4© Modified Ashworth
Scale (MAS) score < level 2. 5© Sitting balance ≥ 2 level and can remain seated for 60 min.
6© no serious defects in communication, memory or understanding, and the ability to

follow the instructions of the assessor; 7© Willing to cooperate with the completion of the
subject assessment, signed informed consent.

Exclusion criteria: 1© Congenital or prior to the onset of the malformation of the
affected hand due to other reasons, limited joint activity, etc. 2© Motor dysfunction of
both hands; 3© the condition is unstable. 4© Poor compliance, patients or family members
refused to participate. This study has received ethics approval of hospital (20200624-11).
After recruitment, Figure 1 represents the number of samples in each stage.

2.2. Methods

The rehabilitation physician makes a clear diagnosis and refers the patient to a system-
atically trained rehabilitation therapist, who explains the purpose of the assessment to the
patient, informs the assessment content, demonstrates the specific actions before the assess-
ment, obtains the relevant information of the patient and informs the relevant procedures
and precautions before the test, so that the patient can fully understand and cooperate.

Before rehabilitation treatment, the enrolled patients were selected to complete the
reliability and validity verification. Fifty-seven males completed the comparison and evalu-
ation of the healthy hand modeling and patient hand of the 10 movements of MDIVQAS,
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among which twenty-four patients completed three repeated measurements by the same
examiner with an interval of no more than 24 h. After the completion of MDIVQAS, all
enrolled patients underwent the propiometric measurement of AROM, FMA (FMA-UE,
FMA-W/H), Brunnstrom (upper limb, hand) and ARAT assessment, once each, within
24 years in sequence. The above assessment was repeated 2 weeks after rehabilitation.

Figure 1. Flow chart of each stage in the study.

Enrolled patients were allowed a short rest between each method of assessment. All
patients were required to complete the assessment at the same test site and under the same
test conditions. The total assessment time for each patient was approximately 60 min.

The specific assessment methods were as follows:

(1) MDIVQAS: Based on the pathological motor characteristics of hemiplegic hand and a
set of post-stroke hand function rehabilitation evaluation actions corresponding to
the Brunnstrom scale, Fugl-Meyer Rating Scale and range of motion measurement,
it is a computer-aided technology-based assessment tool. Using the comprehensive
quantitative evaluation method of healthy hand modeling and comparison evaluation
of the affected hand, the 3D spatial position and motion vector information of various
joints of the phalanx, metacarpal and wrist were acquired in real time with the help of
video equipment, and then various motion parameters of the hand joint were analyzed
as the system parameters of the hand function evaluation standard. In order to prevent
the ambiguity and subjectivity in the guidance process of the standard movement
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demonstration, At the bottom left of the screen, there is a 3D animation of the action
being evaluated to achieve a consistent demonstration of standard hand movements.
The assessment items included three parts as forearm, wrist and hand, with a total
of 10 movements, including ulnar wrist deviation, wrist dorsiextension, five fingers
adduction and abduction, forearm pronation, forearm supination, spherical grip,
cylindrical grip, thumb flexion and extension, thumb abduction and thumb rotation.

When the patient was seated, the patient information was first input, such as number,
name, age, brief medical history, assessment results of common scales, etc. The pathological
information of the patient included healthy hand, affected hand, stroke type, stroke brain
area, etc. The hospital information includes the name, address and contact information of
the hospital. Then, the movements to be evaluated were selected. The patient placed the
healthy hand and the affected hand in the evaluation device at the same time, and the same
visual and optical acquisition devices were configured for the healthy hand and the affected
hand, respectively. In the first step of evaluation, the patient’s healthy hand was guided by
the standard animated hand to complete the extraction of the motion characteristics and
node parameters of the patient’s healthy hand and the modeling of the healthy hand model.
The 3D animated hand part was captured by Maya software. The standard hand video
obtained the foreground hand through the background learning algorithm, and the spatial
motion trajectory was tracked by the hand particle filter. In the second step of assessment,
the affected hand completed the extraction of motion characteristics and joint parameters in
the affected hand working area. In the third step of evaluation, the multi-dimensional hand
motion parameters of the patient’s affected hand to be evaluated were comprehensively
analyzed, and the joint motion of the affected hand, the percentage of joint motion of the
affected hand in the healthy hand and the evaluation time were automatically calculated.
In the third step of evaluation, the multi-dimensional hand movement parameters of the
patient’s hand to be evaluated are comprehensively analyzed, and the joint range of motion
of the affected hand, the percentage of joint mobility of the affected hand to the healthy
hand and the time of evaluation are automatically calculated. Evaluate twice, and the
system will automatically select the better angle result for saving. MDIVQAS flow block
diagram, see Figure 2.

Figure 2. MDIVQAS workflow chart.

(2) Measuring AROM with protractor: A universal protractor was used to measure the
forearm pronation, forearm supination, ulnar deviation, wrist dorsiextension and the
angle between the fingers of the five fingers [9].
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(3) FMA-UE [15,16]: It mainly includes movement, speed, coordination and reflex ac-
tivities, with a total of 66 points, and each item is scored on a 3-level scale: that is,
0 points, unable to perform; 1 point, partially implemented; 2 points, fully imple-
mented. Among them FMA-W/H is a part of the FMA rating scale, which evaluates
the wrist and hand. There are 12 items in total, each item is 0~2 points, full score
is 24 points. The higher the score, the better the motor function of the upper limb
is indicated.

(4) Brunnstrom Scale [7,17]: upper limb and hand parts; each is divided into stage I–VI,
and the higher the level, the better the motor function. Stage I: no exercise; Stage II:
slight flexion; Stage III: flexion but not extension; Stage IV: the thumb can be pinched
and loosened, and the fingers can be extended semi-randomly in a small area; Stage V:
can do spherical or cylindrical grip, and can be free to extend the whole finger, but
the range of size is not equal; Stage VI: full range extension of various grips, but with
less speed and accuracy than the healthy side.

(5) ARAT [18,19]: Consisting of 4 subscales (grasp, grip, pinch and gross motion), which
mainly evaluates the ability of the affected hand to handle objects of different sizes,
weights and shapes. ARAT requires a standardized assessment toolbox, consisting of
19 items with a full score of 57, and each item is scored in a 4-point order (0: unable
to complete any part of the task within 60 s, 1: complete part of the task within 60 s,
2: The task is completed, but the difficulty is very high or the time is too long (5~60 s),
3 points: the normal completion within 5 s). Each of ARAT’s subscales is arranged
in a hierarchical order, testing the most difficult items first, then the easiest and then
increasing the items in turn. The higher the score, the better the feature.

2.3. MDIVQAS
2.3.1. Overall Design Scheme of MDIVQAS

MDIVQAS was a fully independent intellectual property technology jointly devel-
oped by Huashan Hospital affiliated with Fudan University and Shanghai University. By
collecting video signals and conducting computer vision analysis, the automatic detection
and dynamic tracking based on hand position are completed. Then, combined with the
intelligent voice prompt module, the real-time hand movements and spatial positions
of patients in the process of healthy hand modeling and affected hand assessment are
dynamically detected. Through optical intelligent motion capture equipment, real-time
acquisition of three-dimensional space information and motion vector data of each joint
point of palm, finger and wrist. Aiming at the current hand function rehabilitation training
qualitative assessment Brunnstrom scale and other corresponding sets of post-stroke hand
function rehabilitation assessment actions such as forearm pronation or supination, wrist
radial deviation, wrist ulnar deviation and wrist dorsiextension, thumb adduction and
abduction, four fingers (except the thumb) adduction and abduction and other movements,
combined with function of this platform hand movements intelligent analysis algorithm
software module, feature data dimension reduction and mode matching, analysis of hand
joint movement parameters, as the hand function recovery system evaluation parameters of
quantitative evaluation criteria. At the same time, through multi-point network connection,
a remote management server was set up to achieve quantitative, accurate, standardized
and consistent quality management of the evaluation process through data spot check and
video monitoring. Using the new idea of unilateral healthy hand to guide the affected
hand, the animation standard hand guidance of multiple actions, the modeling of the
healthy hand on the healthy side and the assessment of the affected hand on the affected
side were completed. A set of standardized and comprehensive quantitative assessment
process and implementation methods based on standard hand, patient’s healthy hand and
patient’s affected hand were designed to scientifically and quantitatively solve the problem
of phased quantitative assessment of hand function rehabilitation after stroke.
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2.3.2. Hardware Platform of MDIVQAS

The platform was mainly composed of the hardware of the operating platform and the
computing software of hand function evaluation, which is in line with the characteristics
of patient ergonomics and motion. In this study, the industrial design process was used
to carry out a complete industrial product-level design through the form frame structure
mold opening, the integrated optimization of video and optical motion capture equipment,
and the integrated configuration of touch control. The data collected by each hospital can
be uploaded to the cloud platform, so as to obtain big data for quantitative evaluation of
hand function of different populations for effective data classification and analysis [20].
The evaluation tool has declared a total of 5 patent achievements, of which 3 are invention
patents, 1 is design patent and 1 is utility model patents. The project team further developed
the identity authentication function based on face recognition, which has been tested in the
cloud system, enabling patients to use “face brushing”, greatly reducing the complexity of
login and other procedures. The core hardware structure frame of this platform was shown
in Figure 3.

Figure 3. Block diagram of core hardware structure of hardware platform of multi-dimensional intel-
ligent visual quantitative assessment system. 1—Touch display; 2—Computer; 3 and 4—Workspace;
5—External structure frame; 6 and 7—Video capture device; 8, 9, 10 and 11—Optical intelligent
motion capture device and 12—Light source.

The touch display was responsible for the input and output of interactive information.
Computer was responsible for data processing, logic control, intelligent analysis algorithm
and information storage functions. The left and right workspaces were the detection areas
of the platform, and patients can complete the functions of modeling the healthy hand and
assessing the affected hand. Dual-channel video acquisition equipment could complete
video signal acquisition.

A four-way optical motion capture device (developed by Shanghai University,
Shanghai, China) was used to obtain real-time 3D spatial data and multiple motion vec-
tor information of each joint point of the patient’s finger, palm and wrist. The external
structure frame was the overall scaffold of the platform. The light source provided a good
illumination environment for the working area, reduced noise and improved detection
accuracy. A physical photo of the hardware platform prototype of MDIVQAS was shown
as Figure 4.
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Figure 4. Hardware platform prototype of MDIVQAS.

2.4. Statistical Analysis

SPSS17.0 statistical software was used for statistical processing. Measurement data
with normal distribution and homogeneity of variance were expressed as x ± s. Univariate
t-test was used for comparison between the two groups, and Pearson coefficient was used
for correlation. The data that did not meet the above conditions were described by the
median (interquartile range), the comparison between the two groups was performed by
Wilcoxon’s Kolmogorov–Smirnov Z (K–S) test and the correlation analysis was by Spear-
man’s test. Cronbach’s Alpha coefficient and repeated measures were used to analyze the
internal consistency of the assessment system. The pwr package in R was used to analyze
the required sample size in the study. p < 0.05 was considered statistically significant.

3. Results

General data from November 2019 to October 2021: 88 stroke patients who met
the inclusion criteria and signed informed consent in the Department of Rehabilitation
Medicine, the First Affiliated Hospital of Xinjiang Medical University, were selected, of
which six patients were missed (two missed the proposed evaluation time, three failed to
cooperate and one dropped out midway). A total of 82 patients, including 57 males (69.5%)
and 25 females (30.5%), completed the evaluation of the multi-dimensional intelligent
visual quantitative assessment system, with an average age of (54.29 ± 13.12) years.

3.1. Reliability of MDIVQAS

The consistency test preset large effect size f = 0.4 [21], statistical testing power
1-β = 0.8, significance level a = 0.05 and at least 18 subjects were required. Consider-
ing the possibility of sample loss in the process of clinical research, the sample size was
appropriately increased by 10% [22], and the results showed that at least 20 subjects were
needed. This sample size was used to guide the content consistency test of this study.
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The 24 patients enrolled in the group completed 10 movements using MDIVQAS,
and each movement was repeated three times by the same examiner. Cronbach’s alpha
coefficient method was used to analyze the internal consistency of the assessment system.
All the 10 actions were greater than 0.9, indicating that the internal homogeneity reliability
of MDIVQAS was excellent, and the internal consistency was good. See Table 1 for details.

Table 1. Reliability of MDIVQAS for assessing hand functions.

Movement (n = 24) Cronbach’s Alpha N of Items

Wrist ulnar deviation 0.989 3
Wrist dorsiextension 0.993 3

Finger adduction and abduction 0.987 3
Forearm pronation 0.998 3
Forearm supination 0.998 3

Cylindrical grip 0.981 3
Spherical grip 0.990 3

Thumb abduction 0.976 3
Thumb flexion and extension 0.989 3

Thumb rotation 0.994 3
Hand function 10 movements overall 0.989 30

Each patient enrolled was completed by MDIVQAS, and each action was evaluated
three times within 24 h. Statistical analysis of the internal consistency of the assessment
system by repeated measures showed that there was a statistical difference in the consis-
tency test of thumb rotation (p < 0.05). However, no statistical difference was found in the
repeated measurement of other movements, and there was consistency. See Figure 5 and
Supplementary Table S1 for details.

Figure 5. Consistency of the MDIVQAS for repeated measures to assess hand functions. (A) Wrist
ulnar deviation; (B) Wrist dorsiextension; (C) Finger adduction and abduction; (D) Forearm pronation;
(E) Forearm supination; (F) Cylindrical grip; (G) Spherical grip; (H) Thumb abduction; (I) Thumb
flexion and extension; (J) Thumb rotation.

3.2. Validity of MDIVQAS
3.2.1. Correlation between MDIVQAS, FMA-W/H, Brunnstrom and ARAT Assessment

The correlation had a statistically large effect size f2 = 0.35 [21], statistical test power
1-β = 0.8 and significance level a = 0.05. At least 30 subjects are needed, considering
the possibility of sample loss in the process of clinical study, and the sample size was
appropriately increased by 10% on this basis [22], the results showing that at least 33 subjects
were needed. This sample size was used to guide the correlation test of this study.
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Among the subjects who met the inclusion criteria, Brunnstrom (upper limb) at stage
IV or above and Brunnstrom (hand) at stage II or above completed the measurements of the
percentage of affected side functions in the healthy side functions of wrist dorsiextension,
wrist ulnar deviation, finger adduction and abduction, spherical grip, cylindrical grip,
thumb flexion and extension and thumb rotation. Within 24 h, the same patient was
given the Fugl-Meyer Assessment of Wrist and Hand (FMA-W/H), which is the wrist–
hand assessment part of FMA-UE, Brunnstrom and ARAT scale. Statistical analysis was
performed on the correlation between the percentage of the affected hand on the unaffected
side measured by MDIVQAS and the various scales. Bivariate Correlations, Pearson’s
Correlations and two-tailed tests were used for the statistical parameters. The results
showed that MDIVQAS was strongly correlated with FMA-W/H, Brunnstrom (hand) and
ARAT (r > 0.5, p < 0.01). See Figure 6 and Supplementary Table S2.

Figure 6. Correlation between MDIVQAS, FMA-W/H, Brunnstrom (hand) and ARAT. (A) Cor-
relation between MDIVQAS and FMA-UE. (B) Correlation between MDIVQAS and FMA-W/H.
(C) Correlation between MDIVQAS and Brunnstrom (hand). (D) Correlation between MDIVQAS
and ARAT.
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3.2.2. Correlations MDIVQAS and Protractor Measurement

The patients who met the inclusion criteria used the multi-dimensional intelligent
visual quantitative assessment system and the protractor to measure the AROM of joint
for the movement of forearm pronation, forearm supination, wrist dorsiextension, wrist
ulnar deviation and finger adduction and abduction 1 (angle between the thumb and index
finger of the affected hand); finger adduction and abduction 2 (angle between the index
finger and the middle finger of the affected hand); finger adduction and abduction 3 (angle
between the middle finger and the ring finger of the affected hand) and finger adduction
and abduction 4 (angle between the ring finger and the little finger of the affected hand)
within 24 h, respectively. Statistical analysis was performed on the correlation of the AROM
of joint of the same movement for the two methods. Bivariate Correlations, Spearman’s
Correlations and two-tailed tests were used to analyze the correlations. The correlation
coefficient (r) between MDIVQAS and the protractor measurement in the above actions
were all >0.5, indicating a strong correlation. See Figure 7 and Supplementary Table S3.

Figure 7. Correlation between MDIVQAS and protractor measurement. (A) Forearm pronation;
(B) Forearm supination; (C) Ulnar deviation of wrist; (D) wrist dorsiextension; (E) Finger adduc-
tion and abduction1; (F) Finger adduction and abduction2; (G) Finger adduction and abduction3;
(H) Finger adduction and abduction4; (I) Sum of finger adduction and abduction.
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3.3. Reactivity before and after Treatment
3.3.1. Comparison of Differences of MDIVQAS, FMA-UE, FMA-W/H, Brunnstrom and
ARAT before and after Treatment

The difference test between the two groups was presupposed to have a large effect
size d = 0.8 [21], statistical testing power 1-β = 0.8 and significance level a = 0.05, and at
least 26 subjects were required. Considering the possibility of sample loss in the process
of clinical research, the sample size was appropriately increased by 10% [22]. The results
showed that at least 29 participants were required.

The enrolled patients used FMA-UE, FMA-W/H, Brunnstrom and ARAT before and
2 weeks after rehabilitation treatment to explore the differences before and after treatment.
FMA-UE, FMA-W/H, Brunnstrom and ARAT all met the normality test (p > 0.05) and
were described as x ± s. Paired t-test was used to analyze the differences between the
assessment methods before and after treatment. The results showed that the differences of
the above five assessments before and after treatment were statistically significant (p < 0.05),
suggesting that the results of hand function evaluation of patients after treatment were
improved compared with those before treatment. As shown in Figure 8 and Supplementary
Table S4.

Figure 8. Comparison of differences of FMA-UE, FMA-W/H, Brunnstrom and ARAT before and
after treatment. (A) FMA-UE; (B) FMA-W/H; (C) Brunnstrom (hand); (D) Brunnstrom (upper limb);
(E) ARAT.

The patients who met the inclusion criteria were measured with a protractor before
and after rehabilitation treatment to measure the AROM in finger adduction and abduction.
Nonparametric Tests: Two related samples were used to analyze the differences before and
after treatment, and the results showed that there were statistically significant differences
in adduction and abduction between the fingers before and after treatment (p < 0.05), as
shown in Figure 9 and Supplementary Table S5.

The enrolled patients were evaluated by MDIVQA before rehabilitation treatment
and 2 weeks after treatment to evaluate the percentage of the affected hand in the healthy
hand. The data of wrist ulnar deviation, wrist dorsiextension, finger adduction and
abduction, forearm pronation, forearm supination, cylindrical grip, spherical grip, thumb
abduction, thumb flexion and extension and thumb rotation did not meet the normality
test (p < 0.05) and were described by the median (interquartile range). Nonparametric
Tests 2: Related samples was used to analyze the differences assessed by MDIVQA before
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and after rehabilitation treatment, and the results suggested that the above actions had
statistical significance before and after treatment (p < 0.05). It is suggested that MDIVQA
could sensitively assess changes in patients’ hand functions, as shown in Figure 10 and
Supplementary Table S6.

Figure 9. Comparison the differences of the AROM in finger adduction and abduction. With pro-
tractor before and after rehabilitation treatment. (A) Finger adduction and abduction 1; (B) Finger
adduction and abduction 2; (C) Finger adduction and abduction 3; (D) Finger adduction and abduc-
tion 4; (E) Sum of finger adduction and abduction. Z represents the effect size of the two-sample K-S
test (see Methods).

Figure 10. Comparison of differences before and after rehabilitation treatment using MDIVQAS.
(A) Wrist ulnar deviation; (B) Wrist dorsiextension; (C) Forearm pronation; (D) Forearm supination;
(E) Cylindrical grip; (F) Spherical grip; (G) Thumb abduction; (H) Thumb flexion and extension;
(I) Thumb rotation; (G) Finger adduction and abduction 1; (K) Finger adduction and abduction 2;
(L) Finger adduction and abduction 3; (M) Finger adduction and abduction 4; (N) Sum of finger
adduction and abduction. Z represents the effect size of the two-sample K–S test (see Methods).
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3.3.2. Comparison of the Difference between MDIVQAS and Protractor Measurement of
AROM in the Increase of Joint Motion before and after Treatment

The reactivity of the two evaluation methods to the treatment effect was basically
the same, and there was no statistical significance in the increase of the range of motion
between the two evaluation methods before and after treatment (p > 0.05), indicating that
the two evaluation methods had the same reactivity to the treatment effect. See Table 2.

Table 2. Comparison of the MDIVQAS and protractor before and after treatment.

Item n P25 P50 P75 Z P

Ulnar deviation increase A 37 0.0 1.0 5.0 −0.184 b 0.854Ulnar deviation increase B 37 0.0 0.0 6.0
Forearm pronation increase A 37 −1.5 1.0 11.5 −0.516 b 0.606Forearm pronation increase B 37 0.0 3.0 10.0
Forearm supination increase A 37 −0.5 2.0 20.0 −1.034 c 0.301Forearm supination increase B 37 0.0 0.0 10.0
Wrist dorsiextension increase A 37 −0.5 3.0 17.5 −0.403 c 0.687Wrist dorsiextension increase B 37 0.0 3.0 15.0
Increase in angle between the fingers 1A 37 −0.5 1.0 7.0 −1.267 b 0.205Increase in angle between the fingers 1B 37 0.0 0.0 12.0
Increase in angle between the fingers 2A 37 0.0 2.0 5.0 −0.502 b 0.616Increase in angle between the fingers 2B 37 0.0 0.0 5.0
Increase in angle between the fingers 3A 37 0.0 1.0 4.0 −0.868 b 0.386Increase in angle between the fingers 3B 37 0.0 0.0 7.0
Increase in angle between the fingers 4A 37 0.0 1.0 2.0 −1.783 b 0.075Increase in angle between the fingers 4B 37 0.0 0.0 5.0

Note: A: MDIVQAS B: protractor b: Based on the positive rank c: Based on the negative rank. Z represents the
effect size of the two-sample K–S test (see methods).

4. Discussion

Hand function plays an important role in people’s daily life, affecting people’s working,
eating, dressing, modifying and other activities. The improvement of hand and upper limb
function will maximize the recovery of overall function and improve the quality of life of
stroke patients. Effective rehabilitation requires objective, quantitative, effective and reliable
rehabilitation assessment [23]. Photoelectric capture technology in intelligent evaluation
tools is considered as the gold standard of human motion analysis [24]. MDIVQAS in
this study is a newly developed intelligent evaluation method using optical intelligent
capture technology. This system is a hand function assessment tool jointly developed by
Huashan Hospital affiliated with Fudan University and Shanghai University. It uses optical
intelligent motion capture equipment and computer vision technology to conduct hand
modeling and hand evaluation and obtain three-dimensional spatial data and motion vector
information of each point of fingers, palms and wrists. At present, it has been able to carry
out specific intelligent analysis algorithm for the 10 movements of five fingers adduction
and abduction, wrist ulnar deviation, wrist dorsiextension, spherical grip, cylindrical grip,
thumb flexion and extension, thumb abduction, thumb rotation, forearm pronation and
forearm supination, and the exercise parameters of the healthy hand angle value, the
affected hand angle value and the affected hand/healthy hand ratio were analyzed. At
present, the feasibility study and quantitative evaluation application of the equipment with
small samples of normal volunteers have been carried out [25,26]. In the early stage, the
research team tested the semi-reliability and duplicate reliability in terms of reliability, and
the reliability coefficients are both >0.850, indicating that the system has good reliability,
consistency and stability. The reliability of the 10 actions of MDIVQAS showed a statistically
significant difference in the reliability of the evaluators (p < 0.01), indicating that the
reliability of MDIVQAS retest was high, and good and stable results could be obtained
by repeating the measurement in a short period of time. In terms of validity test, the
content validity test of MDIVQAS in the early stage of our research team showed that all
10 movements were common hand dysfunction after stroke, the I-CVI of the entry level
was 1 and each action had a high correlation with the total score (p < 0.01), suggesting
that it had certain evaluation value. The structural validity test adopts the exploratory

59



Brain Sci. 2022, 12, 1698

factor analysis, a total of one common factor is extracted and the cumulative variance
contribution rate is >60%, according to the functional component of the action, indicating
that the system has good structural validity and can well reflect the hand motor function,
and the structural validity test results show that MDIVQAS is single-dimensional in terms
of evaluation content, has strong pertinence and is suitable for quantitative evaluation of
hand function. In terms of the convergence validity test, the AVE of the system > 0.500,
indicating that it has good convergence validity [27].

The team expanded the sample size of the previous study and, at the same time, used
MDIVQAS to test the intra-group consistency of 10 movements of the affected hand of
stroke patients, and Cronbach’s alpha > 0.9, indicating good internal consistency. The
repeatability of 10 actions was measured, and the results showed that the differences in
the repeated measurement of nine actions were not statistically significant (all p > 0.05),
indicating that the system had good repeatability. Only one of the movements (thumb
rotation) had a statistically significant difference (F = 3.603, p = 0.045), indicating that the
repeatability of this action needs to be explored. In conclusion, the above evidence shows
that MDIVQAS has good confidence in the assessment of hand function after stroke. The
consideration of the results of thumb rotation may be related to the fact that the current
development of computer vision and pattern recognition algorithms has not reached the
level of good recognition of any complex actions. When the dysfunctional hand of stroke
patients is the hand, and the Brunnstrom stage ≥ IV on this side, the thumb rotation action
is more flexible than the healthy hand (the hand that builds the model), the data exceed
the modeling range and the data accuracy is reduced. According to the experience of the
evaluator, when the hand function is relatively good or recovers to a certain extent, due to
the flexibility of the hand, the completion of the action is better than the healthy side, and
the accuracy of the data is reduced. It is recommended to debug and rectify the evaluation
and measurement methods of the above actions.

At the same time, MDIVQAS was used in this study to test the calibration validity of
AROM, FMA-UE, FMA-W/H, Brunnstrom and ARAT, and the results were all > 0.5 and
p < 0.01, indicating that MDIVQAS was strongly correlated with the above four widely
used clinical evaluation methods. It is suggested that MDIVQAS has good validity. Fugl-
Meyer, Brunnstrom, ARAT and protractor measurements of AROM are the most commonly
used classical methods in clinical evaluation of poststroke motor dysfunction [15,17,18].
Especially, FMA-W/H, FMA-UE and ARAT are the most commonly used scales to evaluate
the efficacy of upper limb and hand motor function after stroke and are often used as
the gold standard to test the validity of other scales [28]. This study confirmed that all
the 10 movements evaluated by MDIVQAS had strong correlation with the above four
evaluation methods, so MDIVQAS had good validity.

In this study, the evaluation methods of MDIVQAS and protractor measurement of
AROM, Brunnstrom, FMA-W/H, FMA-UE and ARAT were put into clinical practice of
stroke hand function rehabilitation, and the effects of hand function rehabilitation before
and 2 weeks after treatment were evaluated. The results showed significant differences
before and after treatment (p < 0.01~0.05), indicating that MDIVQAS could reflect the
change of clinical treatment effects such as other classical methods. At the same time, the
differences between MDIVQAS and a protractor to measure the increase in AROM before
and after treatment were compared, and the results showed that there was no significant
difference in the increase in the range of motion before and after treatment between the
two evaluation methods (p > 0.05), indicating that the responsiveness of MDIVQAS to the
treatment effect was consistent with that of the classical methods.

In clinical use, we have found that, first, the spherical grip, cylindrical grip and thumb
rotation designed by MDIVQAS can make up for the shortcomings of traditional evaluation
methods. Second, based on the automatic detection and dynamic tracking of hand position,
combined with intelligent voice prompts and standard 3D animation guidance modules,
the system facilitates the dynamic detection of real-time hand movements and spatial
positions of patients in the process of healthy hand modeling and affected hand evaluation
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and realizes real-time dynamic evaluation of hand functions, which is simple to operate,
convenient to use and dynamically adjusts and guides rehabilitation treatment plans. Third,
the system can also set up a remote management server through a multi-point network
connection, and the data collected by each hospital can be uploaded to the cloud platform
so as to obtain the big data of the quantitative evaluation of the manual functions of differ-
ent groups of people and can achieve quantitative, accurate, standardized and consistent
evaluation process quality management through data spot checks, video monitoring and
other methods. As more data accumulates, MDIVQAS can be optimized gradually. Fourth,
the current intelligent quantitative motion evaluation methods for hand function are di-
vided into wearable sensor schemes and noncontact vision schemes [10,29–31]. MDIVQAS
is a noncontact evaluation scheme, which avoids the disadvantage that wearable sensor
solutions restrict the freedom of movement of patients, especially for the evaluation of fine
movements of the hand, which tends to produce large errors. Fifth, the system has certain
limitations for subject selection, such as hand dysfunction, critical condition and people
who cannot sit for a long time.

5. Conclusions

In conclusion, MDIVQAS has good reliability and validity in the evaluation of hand
function in stroke, as well as good evaluation of the treatment effect. However, there are
some shortcomings in the application that need to be further studied and improved.
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Abstract: Early rehabilitation with the right intensity contributes to the physical recovery of stroke
survivors. In clinical practice, physicians determine whether the training intensity is suitable for reha-
bilitation based on patients’ narratives, training scores, and evaluation scales, which puts tremendous
pressure on medical resources. In this study, a lightweight facial expression recognition algorithm
is proposed to diagnose stroke patients’ training motivations automatically. First, the properties of
convolution are introduced into the Vision Transformer’s structure, allowing the model to extract both
local and global features of facial expressions. Second, the pyramid-shaped feature output mode in
Convolutional Neural Networks is also introduced to reduce the model’s parameters and calculation
costs significantly. Moreover, a classifier that can better classify facial expressions of stroke patients is
designed to improve performance further. We verified the proposed algorithm on the Real-world
Affective Faces Database (RAF-DB), the Face Expression Recognition Plus Dataset (FER+), and a
private dataset for stroke patients. Experiments show that the backbone network of the proposed
algorithm achieves better performance than Pyramid Vision Transformer (PvT) and Convolutional
Vision Transformer (CvT) with fewer parameters and Floating-point Operations Per Second (FLOPs).
In addition, the algorithm reaches an 89.44% accuracy on the RAF-DB dataset, which is higher than
other recent studies. In particular, it obtains an accuracy of 99.81% on the private dataset, with only
4.10M parameters.

Keywords: facial expression recognition (FER); vision transformer (ViT); convolutional neural
networks (CNNs); stroke; rehabilitation

1. Introduction

The incidence, mortality, and disability of stroke in China have been higher than those
in developed countries such as the United Kingdom, the United States, and Japan in the
past 15 years [1]. Most stroke survivors cannot normally live because of suffering from
sequelae such as hemiplegia, limb numbness, swallowing disorders, and depression. Brain
neurobiology suggests that early training, at the right intensity, will aid recovery [2].
However, physicians need to be aware of patients’ feelings in real-time during early
rehabilitation to determine whether the training matches their physical recovery, then tailor
the most rehabilitation-friendly training for each patient. This existing manual monitoring
mode in clinical practice, which causes an enormous burden on medical resources, urgently
needs to be improved and optimized.

Deep learning, as one of the powerful medical assistance technologies, has been widely
applied in the medical field [3]. These applications include but are not limited to automatic
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diagnosis of breast cancer based on whole slide imaging [4], accurate measurement of
morphological changes in intervertebral discs based on axial spine Magnetic Resonance
Image (MRI) [5], detection of fundus lesions based on fundus imaging [6], and segmenta-
tion of brain tumors based on T1-weighted MRI [7]. These studies show that deep learning
dramatically reduces the heavy and urgent workload of physicians and improves the
efficiency of medical care. In particular, deep learning and machine learning also play an
important role in stroke prediction, prognostics, and management. Iqram and Se proposed
a real-time health monitoring system for stroke prognostics [8] and a cardiac monitoring
system for stroke management [9]. These studies provide technical support for early stroke
prognostics and have medical practice implications for predicting acute stroke. In addition,
emotion classification techniques for stroke patients based on electroencephalography
(EEG) [10–12] and facial electromyography (EMG) [13] also provide physicians with mean-
ingful assessment information to replace traditional clinical methods based on observation
or scoring.

However, these physiological signal-based approaches to stroke prognostics inevitably
require contact with the patient’s skin to capture the information. For stroke rehabilitation,
wearable devices are likely to interfere with patients’ training. In contrast, the facial
expression recognition (FER) technique based on computer vision can acquire the state of
patients in training without contact, which is more suitable for stroke rehabilitation. At
present, although the application of the FER technique in the field of stroke rehabilitation is
less than that of other medical fields, such as Down syndrome prediction [14], depression
diagnosis [15], and autism spectrum disorder identification [16], it is significantly improving
stroke management and quality of stroke care [17,18].

Few studies have published facial expression datasets and FER algorithms for stroke
patients because of their privacy and sensitive nature. However, FER for healthy people
is one of the mainstream tasks in computer vision. The relevant datasets contain a large
number of samples, such as the Facial Expression Recognition 2013 dataset (FER2013,
35,886 images) [19], the Static Facial Expression in the Wild (SFEW, 1766 images) [20],
the Real-world Affective Faces Database (RAF-DB, 29,672 images) [21], and AffectNet
(400,000 images) [22]. In terms of algorithms, Convolutional Neural Networks (CNNs),
such as Visual Geometry Group (VGG) [23], Google Inception Network (GoogleNet) [24],
and Residual Network (ResNet) [25], are the most commonly used structures in this field
because of their excellent robustness to changes in face position and image scale. With
Attention [26] proposed, many studies used it to replace part of CNNs or combine them to
improve performance while the model’s overall structure remained unchanged [27–29]. In
2020, Vision Transformer (ViT) did not use convolution and outperformed state-of-the-art
CNNs on mainstream small- and med-sized image classification datasets [30]. Moreover,
in recent years, improved algorithms based on Transformer have continuously surpassed
the previous algorithms in performance [31,32]. Fayyaz et al. [33] showed that ViT is
more robust than CNNs in handling occluded images, feature transformation, and token
reorganization. Nevertheless, the proposers of ViT also illustrated that ViT outperforms
ResNet only when trained on enormous datasets (14–300 million images). To address
this problem, some studies have combined CNNs and Transformers to model both local
and global dependencies for image classification [34,35]. However, these algorithms are
designed to achieve higher accuracy, inevitably requiring huge parameters, computational
cost, and Giga Floating-point Operations Per Second (GFLOPs), which make them hard to
embed into rehabilitation medical equipment.

We aim to design a lightweight FER algorithm for stroke rehabilitation in clinical
practice, so as to assist physicians in determining whether the training intensity of stroke
patients matches their physical rehabilitation and whether patients are active or focused
during training. The key contributions of this paper can be summarized as follows:

• We propose a lightweight FER algorithm named Facial Expression Recognition with
Patch-Convolutional Vision Transformer. It requires less memory and computation for
model training/inference while ensuring high accuracy.
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• The proposed algorithm effectively combines the local perception ability of CNN and
the advantages of ViT in extracting global features, which makes the algorithm achieve
the highest accuracy on the RAF-DB dataset.

• We treat emotion features as the weighted sum of neutral and V-A-like emotion
features at different scales and design a unique classifier, which has been verified
that more detailed facial emotion information of stroke patients has been extracted
for classification.

2. Materials and Methods

2.1. Data Sources and Data Preprocessing

There are three datasets used in this study: (1) two public datasets for healthy people,
RAF-DB [21] and FER+ [36]; (2) a private dataset for stroke patients. Table 1 describes the
sample properties of three datasets in detail.

Table 1. Properties of three datasets with data.

Class
FER+ RAF-DB Private Dataset

Simple Size Proportion (%) Simple Size Proportion (%) Simple size Proportion (%)

happy 5165 24.41 5957 38.84 141 10.83
surprised 3963 18.73 1619 10.55 62 4.76

sad 3765 17.79 2460 16.04 78 5.99
angry 2594 12.26 867 5.65 44 3.38

neutral 4748 22.44 3204 20.89 509 39.09
fearful 633 2.99 355 2.31 - -

disgusted 145 0.69 877 5.72 - -
contempt 148 0.70 - - - -
painful - - - - 85 6.53
strained - - - - 298 22.89

tired - - - - 85 6.53

Min/Max
sample size 0.0281 - 0.0596 - 0.0864 -

SUM 21,161 100 15,339 100 1302 100

• RAF-DB dataset

The Real-world Affective Faces Database (RAF-DB) contains a single-label subset
with 15,339 images, which can be divided into seven basic emotional classes: happy, sad,
surprised, angry, fearful, disgusted, and neutral. These samples are of significant variability
in subjects’ age, ethnicity, head poses, lighting conditions, occlusions (e.g., glasses, facial
hair, or self-occlusion), and post-processing operations (e.g., various filters and effects) [21].
These diverse differences make the trained models have better generalization.

• FER+ dataset

The Face Expression Recognition Plus dataset (FER+) contains 35,887 images of size
48 × 48 that can be divided into 10-class emotions. Only 21,161 images/8 emotions are
used in this experiment: happy, sad, surprised, angry, fearful, disgusted, neutral, and
contempt.

• Private dataset

The inclusion criteria were as follows: (1) patients aged 18–85 years old; (2) diagnosed
with stroke confirmed by computed tomography (CT) and/or magnetic resonance imaging
(MRI); (3) ≥2 weeks post-stroke; (4) upper limb of the healthy or affected side can use
the upper limb rehabilitation robot for training; (5) patients signed the informed consent.
The exclusion criteria were: (1) patients with unstable cerebrovascular disease; (2) patients
with sensory aphasia or motor aphasia, and those who were unable to cooperate with
assessment and testing; (3) Montreal Cognitive Assessment (MoCA) score ≤ 25; (4) patients
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with severe organ dysfunction or with malignant tumors; (5) House–Brackmann (H-B)
grade ≥ III.

There were 42 participants in the experiment, of which 37 patients with stroke (25 men
and 12 women, 31–87 years old) were confirmed cases from the Shanghai Third rehabilita-
tion hospital and 5 healthy controls (4 physicians and 1 student). All subjects signed an
informed consent form before the experiment.

In this study, four basic emotions (happy, sad, surprised, and angry) were used
as biomarkers to assess the patient’s concentration, and four special emotions (painful,
strained, tired, and neutral) were used as biomarkers to determine whether the current
training intensity is suitable for the patient. There were two schemes for collecting emo-
tional videos. First, we guided patients to express these four basic emotions through videos
and pictures. Second, these four special emotions were collected while patients were train-
ing with the upper limb rehabilitation robot. In addition, we asked patients to repeatedly
lift the upper extremity and gradually increase the range of motion to capture these desired
emotions. In this experiment, each patient participated in collections of two emotions at
least, which ensured that each subject’s sample had positive and negative labels.

After collecting the emotional videos, data preprocessing is an indispensable step,
mainly sampling images, correcting faces, and labeling samples. The DB Face [37], a face
detection algorithm, was used to predict the anchor boxes of faces and corresponding
confidence scores in emotional videos automatically. Then, we removed face images with
low confidence and incomplete from numerous video slices containing facial expressions.
These preserved facial images were adjusted by rotating so that the line connecting the
eyes’ feature points detected by the DB Face algorithm was in the horizontal direction, with
the midpoint of the line as the center of rotation. The line’s rotation angle θ is calculated by
Equation (1). The transformation matrix M of all pixels in the original image is defined as
Equation (2). The coordinates of all original pixels can be transformed into the corrected
coordinates using Equation (3).

θ = tan−1 yr − yl
xr − xl

(1)

A =

[
cos θ sin θ
− sin θ cos θ

]
, B =

[
(1 − cos θ)·xc − sin θ·yc
sin θ·xc + (1 − cos θ)·yc

]
, M =

[
A B

]
(2)

[
x′
y′
]
= A

[
x
y

]
+ B = M

⎡
⎣x

y
1

⎤
⎦ (3)

where (xl , yl), (xr, yr), and (xc, yc) are the feature coordinates of the left eye, the right eye,
and the midpoint of the line connecting eyes in the original image, respectively. (x′, y′) is
the corrected coordinate.

We labeled the face-aligned images using the Facial Action Coding System (FACS) [38].
First, the emotional label of each sample was initially determined based on the content
of the corresponding emotional video of the sample. Then, these images were annotated
again according to FACS definitions of eight expressions. Table 2 shows FACS definitions
of eight expressions in this experiment. In addition to the five expressions of happy, sad,
angry, surprised, and neutral, the other expressions required for this experiment must be
clearly defined by FACS. Referring to the PSPI [39], FACS features of painful expressions
include lowered brow (AU4), raised cheeks (AU6), tightened lid (AU7), wrinkled nose
(AU9), raised upper lip (AU10), and closed eyes (AU43). By comparing the facial features
corresponding to each AU, we defined that FACS features of strained expressions are
lowered brow (AU4), raised cheeks (AU6), tightened lips (AU23), pressed lips (AU24), and
sucked lips (AU28); FACS features of tired expressions are closed eyes (AU43) and downed
head (AU54), as shown in Figure 1.
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Table 2. FACS definitions of eight expressions.

Emotions Code *

painful AU4 + (AU6/AU7) + (AU9/AU10) + AU43
strained AU4 + AU6 + (AU23/AU24/AU28)

tired AU43 + AU54
neutral /
happy AU6 + AU12

sad AU1 + AU4 + AU15
surprised AU1 + AU2 + AU5 + AU26

angry AU4 + AU5 + AU7 + AU23
* AU1: Inner Brow Raiser; AU2: Outer Brow Raiser; AU4: Brow Lowerer; AU5: Upper Lid Raiser; AU6: Cheek
Raiser; AU7: Lid Tightener; AU9: Nose Wrinkler; AU10: Upper Lip Raiser; AU12: Lip Corner Puller; AU15:
Lip Corner Depressor; AU23: Lip Tightener; AU24: Lip Pressor; AU26: Jaw Drop; AU28: Lip Suck; AU43: Eyes
Closed; AU54: Head down.

  
(a) (b) 

Figure 1. FACS features of strained and tired expressions: (a) the strained expressions spontaneously
appeared by patients when their limb muscles were tense during training; (b) the tired expressions
occurred when the patients were resting or undergoing prolonged passive training.

After labeling and collation, the private dataset contains 1302 samples/8 categories,
with no sample crossover and duplicates. Some samples of the private dataset are shown
in Figure 2.

 
(a) (b) 

Figure 2. Partial samples of the private dataset: (a) these four basic expressions are used to assess
training attention and positivity of stroke patients; (b) these four special expressions are used to
determine whether the training intensity is proper for the patient.

2.2. Model Building

In order to occupy fewer computing resources to identify eight facial expressions
of stroke patients accurately, we propose a lightweight FER model shown in Figure 3,
named the Facial Expression Recognition with Patch-Convolutional Vision Transformer
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(FER-PCVT). The FER-PCVT designed with ViT as the baseline mainly consists of three
modules: the Convolutional Patch Embedding (CPE), the Pyramid Transformer (PTF), and
the Valence-Arousal-Like Classifier (V-ALC). The first two modules combine to form the
backbone network, Patch-Convolutional Vision Transformer (PCVT). The V-ALC is an
expression classifier designed based on the Valence-Arousal (V-A) emotion theory [40].

Figure 3. The overall architecture of the FER-PCVT, where r, l, and nt f are the numbers of repetitions
of the Block Scaling, the Conv-TF Encoder, and the Pyramid Transformer, respectively. HA: happy;
SA: sad; AN: angry; SU: surprised; NE: neutral; TI: tired; ST: strained; PA: painful.

2.2.1. Convolutional Patch Embedding

Compared with the direct processing of pixel information of images using the trans-
former encoder of ViT, the accuracy will be further improved by using CNNs to extract
the feature information from images and then processing them with the transformer en-
coder [35,41]. Based on this, the convolutional patch embedding module is implemented
as a pixel-to-sequence mapping module to extract the feature sequences as the input of the
Conv-TF Encoder of the pyramid transformer module. Specifically, the feature information
extracted from the image by the convolutional layer and pooling layer is reduced to the
patch size by the Block Scaling module. The Block Scaling module, consisting of two
convolutional layers (size 2 × 2, stride 2, and size 1 × 1, stride 1), is applied to adjust the
dimensions of feature maps entered into the Conv-TF Encoder by varying the number of
repetitions. That is, the length and width of the sequence will be shortened to 1/2r of the
original size after repeating r times. This method of introducing convolutions into ViT
achieves feature mapping from pixel to sequence while preserving the position information
between patches. The detailed structure is shown in Figure 4a.

70



Brain Sci. 2022, 12, 1626

 
(a) (b) 

Figure 4. The pipeline of the PCVT architecture. (a) Details of the Convolutional Patch Embedding
(CPE). (b) Details of the Pyramid Transformer (PTF).

2.2.2. Pyramid Transformer

ViT requires the input and output sequences in the transformer encoder to have the
same dimensions. However, the length of sequences output by CNNs is reduced as the
network deepens. This pyramidal output mode in the CNNs, significantly reducing the
computational cost, has been shown to be beneficial in extracting feature information at
different scales [42]. Thus, the PTF designed by introducing this output mode aims to
reduce the storage, parameters, and GFLOPs required for computation. Details of the PTF
are shown in Figure 4b. We use convolutional mapping instead of the linear mapping in the
transformer encoder of ViT to extract the three feature matrices: Q, K, and V. Then, they are
fed into the Multi-Head Self-Attention to be given different weights. In the Feed-Forward
module, a bottleneck structure is formed by two convolutional layers with output channels
di/2 and di, respectively, which compresses the channel dimension in the model. The
activation function GeLU between the two convolutional layers is used to make the model
fit data faster, and its expression is Equation (4).

GeLU(x) =
1
2

x
(

1 + er f
(

x√
2

))
(4)

where er f (·) is the Gauss Error Function. In the Block Combined Pooling module, d0
convolution kernels (size 3 × 3) expand the channel dimension of the input feature map,
followed by downsampling with a max pooling window (size 3 × 3, stride 2). The module
allows feature maps to be resized from di × hi × wi to d0 × hi/2× wi/2, gradually reducing
the feature output, like a pyramid.

In addition, the layer normalization constrains the outputs of the Conv-TF Encoder
module and the Feed-Forward module to avoid the vanishing gradient. The inputs and
outputs of the above two modules are connected by residual connections to prevent the loss
of feature information extracted by the model. At the same time, the batch normalization
regularizes the output of the Block Combined Pooling module.

2.2.3. Valence-Arousal-Like Classifier

FACS defines the neutral expression as no AU, meaning that no facial muscle move-
ment can be used as a biomarker. It makes neutral expressions more challenging to identify
than other expressions. Especially neutral expressions of some stroke patients are different
from those of ordinary people when all facial muscles are completely relaxed. The V-A
emotion theory [40] suggests that each emotion is a mixture of arousal and valence in dif-
ferent proportions. Referring to the theory, we design the V-ALC as an expression classifier,
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considering emotion as a weighted sum of neutral and V-A-like features. Details of the
V-ALC are shown in Figure 5.

Figure 5. Details of the Valence-Arousal-Like Classifier (V-ALC).

We adopt the pixel shuffle method to reshape low-resolution feature maps into high-
resolution ones. That is, the length and width of the input feature map are up-sampled
by 12 times, and the result is condensed using a convolution kernel of size 12 × 12. These
compressed sequences are grouped into the Channel Mean and the Batch Sharing to
obtain the V-A-like and neutral features with one dimension, respectively. The result of
multiplying the neutral feature with the adaptive weight wAD is added to the V-A-like
feature to output a complete feature map of emotion. Among them, wAD is a parameter
learned by the model from many training samples. The Channel Mean means averaging the
values of different channels in the same batch, thereby reducing the channel dimension. The
Batch Sharing refers to averaging the values in different batches on the basis of the Channel
Mean, which aims to extract the most appropriate characteristics of neutral emotions from
batches. Their expressions are Equations (5) and (6).

Channel Meal (xb) =
1
c

c

∑
i=1

xbi (5)

Batch Sharing (x) =
1
bc

b

∑
j=1

c

∑
i=1

xij (6)

where x is the input feature tensor, xb is the feature sequence of different batches in the
input tensor, i is the ith channel, j is the jth batch, c is the total number of channels, and b is
the total number of batches.

After outputting a complete feature map of emotion, considering that emotion may
be a composite state, we normalize these sequences using the Sigmoid function to avoid
mutually exclusive results using the Softmax function. Finally, the prediction confidence of
each category is output, where the expression with the highest confidence is the final result
of the model’s prediction.

3. Results

3.1. Setup

Table 3 shows the training settings in this experiment, including the selected optimizer,
the loss function, and some specific hyperparameters. Table 4 shows the detailed structural
parameters for each module combined in this experiment.
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Table 3. Training parameter settings.

Parameter Setting

optimizer AdamW [43] 1

loss function the Cross Entropy Loss
batch size 120

epoch 200
learning rate 0.0003

exponential LR 0.99
1 The optimizer selected AdamW from the Adam series commonly used in training ViT [44].

Table 4. Structural parameters for each module.

Module Structural Params Internal Params Input Size Output Size

CPE r = 1 patch size 1 = 8 3 × 128 × 128 64 × 16 × 16
PTF1 2 l = 2 d0 = 192, heads 3 = 8 64 × 16 × 16 192 × 8 × 8
PTF2 2 l = 4 d0 = 576, heads 3 = 4 192 × 8 × 8 576 × 4 × 4
V-ALC - dclass = 7 576 × 4 × 4 1 × 7

1 The patch size is the size of each patch when the image is split into patches. 2 The PTF module is repeated twice
in the model’s overall structure, i.e., nt f = 2, so the PTF1 and PTF2 refer to the first and second times, respectively.
3 The heads are the setting of the Multi-Head Self-Attention in the PTF module.

3.2. Performance Evaluation of PCVT Based on Public Datasets

We evaluate the learning capabilities of CvT [35], PvT [42], ResNet18 [25], ResNet18*,
and PCVT on the RAF-DB dataset, focusing on accuracy and resource consumption. Among
them, both CvT and PvT are hybrid variant networks formed by introducing convolution
into ViT, which are of the same type as this study. ResNet 18 is the most commonly used
convolutional neural network for image classification, and ResNet18* is a pre-trained model
of ResNet18. CvT, PvT, ResNet18, and PCVT are retrained from scratch using the same
computer to obtain experimental results that are not affected by the device conditions. For
ResNet18*, we further trained it using this emotion dataset on top of the parameter weights.

As shown in Figure 6, the iterative curves of these five networks trained and validated
on the RAF-DB dataset show that the PCVT proposed in this study performs better on the
validation data than other models except for ResNet18*. It means that PCVT has better
generalization than PvT, CvT, and ResNet18. Admittedly, as a pre-trained model, ResNet18*
predictably shows the best classification ability from the beginning of the iteration. Compare
the parameters, GFLOPs, and accuracy of the above five networks on the RAF-DB dataset,
as shown in Table 5. The accuracy of PCVT is 84.22%, second only to that of ResNet18*
(86.28%). Meanwhile, PCVT has the fewest parameters and GFLOPs.

3.3. Performance Evaluation of FER-PCVT Based on Public Datasets
3.3.1. Comparison with State-of-the-Art Methods

The proposed FER-PCVT is compared with the state-of-the-art methods on RAF-DB
and FER+ datasets. As shown in Table 6, two FER-PCVT models without pretrained
weights trained from scratch on two public datasets achieved 89.44% and 88.21% accuracy,
respectively. The FER-PCVT learned on the RAF-DB achieves the highest accuracy, while
the FER-PCVT learned on FER+ performs lower than other models.

3.3.2. Analysis Based on Confusion Matrix

The detailed performance of FER-PCVT for each class on the RAF-DB and FER+
datasets is analyzed based on the confusion matrix. As shown in Figure 7, FER-PCVT
is sensitive to whether the dataset is balanced. There is no significant deviation in the
predicted results on the RAF-DB dataset. However, the model shows significant bias on
the FER+ dataset. As shown in Figure 7b, the model’s predictions have extreme errors
in the “disgust” and “contempt” classes with small samples; conversely, the model has
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highly accurate for the “happy” and “neutral” classes. Moreover, V-ALV determines
the expression baseline based on the features of neutral expressions in the batch, so the
imbalance of dataset affected the expression baseline generation. In addition, the Precision,
Specificity, Sensitivity, F1-Score, and G-mean of FER-PCVT are also analyzed based on the
confusion matrix, as shown in Table 7. We set the Precision and Recall to the same weight
to obtain the F1-Score of FER-PCVT for each emotional category. On the RAF-DB dataset,
the F1-Score values of FER-PCVT for surprised, fear, disgust, happy, sad, angry, and neutral
are 84.2%, 73.3%, 67.9%, 94.5%, 86.7%, 80.4%, and 92.4%, respectively. However, on the
FER+ dataset, FER-PCVT only performs well for categories with many samples, such as
surprised (86.4%), happy (89.4%), sad (69.1%), and neutral (73.6%). G-mean reflects the
contribution of each category to the model’s accuracy. Although the model’s accuracy
reaches 88.21% on the FER+ dataset, the G-mean values of both disgust and contempt are
0%, which means that the accuracy depends on surprised (89.8%), fear (72.3%), happy
(94%), sad (75.8%), angry (78.8%), and neutral (86.5%). In contrast, the G-mean values of all
categories are higher than 90% in the RAF-DB dataset, and the order from high to low is
neutral (96.8%), happy (95.6%), sad (92.1%), surprised (89.4%), anger (85.2%), fear (81.1%),
and disgust (81.1%).

 
(a) (b) 

 
(c) (d) 

Figure 6. Iterative curves of CvT, PvT, ResNet18, ResNet18*, and PCVT on the RAF-DB dataset.
(a) Loss plots of these five networks on the training data of RAF-DB. (b) Loss plots of these five net-
works on the validation data of RAF-DB. (c) Accuracy plots of these five networks on the training data.
(d) Accuracy plots of these five networks on the validation data. * It represents a pretrained model.
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Table 5. Training results of five networks on the RAF-DB dataset.

Model Params (M) GFLOPs Accuracy (%)

ResNet18 11.20 0.29 81.52
ResNet18 * 11.20 0.29 86.28

CvT 19.55 0.66 81.45
PvT 6.25 0.14 77.80

PCVT(Ours) 2.46 0.12 84.22
* It represents a pretrained model.

Table 6. Performance comparison of FER-PCVT and recent FER models.

Model Tags Year
Accuracy

FER+ RAF-DB

SPWFA-SE [45] CNN 2020 - 86.31%
RAN [29] ResNet 2019 89.16% 86.90%

Ad-Corre [46] CNN 2022 86.96%
DACL [28] ResNet 2021 - 87.78%
VTFF [34] ViT 2022 88.81% 88.14%
SCN [47] CNN 2020 89.35% 88.14%

FER-VT [48] ViT 2021 90.04% 88.26%
PSR [49] VGG-16 2020 - 88.98%
RUL [50] ResNet 2021 - 88.98%

LResNet50E-IR [51] ResNet 2020 89.257% 89.075%

FER-PCVT(Ours) ViT 2022 88.21% 89.44%

 
(a) (b) 

Figure 7. Confusion matrices of FER-PCVT on the RAF-DB dataset (a) and the FER+ dataset (b). SU:
surprise; FE: fear; DI: disgust; HA: happy; SA: sad; AN: angry; NE: neutral; CO: contempt.
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Table 7. Precision, Specificity, Sensitivity, F1-score, and G-mean of FER-PCVT on the Raf-DB and
FER+ datasets.

Class
RAF-DB FER+

Precision Specificity Sensitivity F1-Score G-Mean Precision Specificity Sensitivity F1-Score G-Mean

surprised 0.877 0.987 0.81 0.842 0.894 0.912 0.982 0.82 0.864 0.898
fear 0.824 0.996 0.66 0.733 0.811 0.555 0.987 0.53 0.542 0.723

disgust 0.688 0.982 0.67 0.679 0.811 0 1 0 0 0
happy 0.941 0.962 0.95 0.945 0.956 0.861 0.951 0.93 0.894 0.940

sad 0.864 0.974 0.87 0.867 0.921 0.835 0.975 0.59 0.691 0.758
angry 0.895 0.995 0.73 0.804 0.852 0.462 0.886 0.70 0.557 0.788

neutral 0.882 0.966 0.97 0.924 0.968 0.632 0.851 0.88 0.736 0.865
contempt - - - - 0 1 0 0 0

The above parameters for evaluating performance are calculated using the standard
formulas shown in Equations (7)–(11):

Precision =
TP

TP + FP
(7)

Speci f icity =
TN

TN + FP
(8)

Sensitivity = Recall =
TP

TP + FN
(9)

F1 − Score =
2 × Precision × Recall

Precision + Recall
(10)

Gmean =
√

Recall × Speci f icity (11)

where TP, TN, FP, and FN mean the true positive, the true negative, the false positive, and
the false negative, respectively.

3.3.3. Visualization of Clustering Ability

The clustering ability of FER-PCVT on the RAF-DB dataset is visualized by the t-SNE
plot based on the inputs and outputs of the last linear layer of V-ALC. As shown in Figure 8,
the boundaries between the various categories are clear and intuitive, which means that
FER-PCVT can distinguish and cluster the seven emotions well.

3.4. Performance Evaluation of FER-PCVT Based on the Private Dataset
3.4.1. Accuracy Comparison and Impact of Pretrained Weights

We compare FER-PCVT with ResNet18 and the structure combining PCVT with
the Multi-layer Perceptron (MLP) on the private dataset, focusing on the accuracy and
parameters of these models with and without pretrained weights. Figure 9 shows the
training and validation accuracy curves of ResNet18, PCVT+MLP, and FER-PCVT on the
private dataset. As shown in Table 8, the structure formed by PCVT combined with MLP
exhibits the worst precision on the private dataset, although it has the lowest number of
parameters. FER-PCVT has similar accuracy to ResNet18 on the private dataset with or
without pre-trained weights. However, the algorithm proposed in this experiment has only
4.10M parameters, about one-third of the parameters of ResNet18.
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Figure 8. The t−SNE of FER-PCVT on the RAF-DB dataset. SU: surprise; FE: fear; DI: disgust; HA:
happy; SA: sad; AN: angry; NE: neutral; CO: contempt.

  
(a) (b) 

  
(c) (d) 

Figure 9. Training and validation accuracy curves of ResNet18, PCVT+MLP, and FER-PCVT on the
facial expression dataset of stroke patients. (a) Accuracy curves for models with pretrained weights
on the basic dataset; (b) accuracy curves for models without pretrained weights on the basic dataset;
(c) accuracy curves for models with pretrained weights on the special dataset; (d) accuracy curves for
models without pretrained weights on the special dataset. Among them, “Train” means training, and
“Val” means validation, and the bold font indicates the algorithm proposed in this study.
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Table 8. Accuracy comparison on the facial expression dataset of stroke patients.

Model Params (M) Pre-Training
Accuracy (%)

Basic Categories 1 Special Categories 2 AVG

ResNet18 11.19
� 98.72 99.66 99.19
� 99.58 99.72 99.65

RCVT+MLP 4.06
� 88.46 97.22 92.84
� 98.64 99.21 98.93

PCVT+V-ALC
(Ours) 4.10

� 99.15 99.42 99.29
� 99.89 99.72 99.81

1 The basic categories include surprised, happy, sad, and angry expressions. 2 The special categories include tired,
neutral, strained, and painful expressions.

3.4.2. Visualization of Clustering Ability

To visualize the model’s ability to classify the eight facial expressions of stroke patients,
we plot the t-SNE of FER-PCVT on the private dataset. As shown in Figure 10, the model
can cluster the four basic expressions and four special expressions of stroke patients
well. Especially in special categories, the distribution of neutral expressions with other
expressions is similar to that of the V-A emotion theory.

  
(a) (b) 

Figure 10. The t−SNE of FER-PCVT on the private dataset. (a) Visualization of the clustering
performance of FER-PCVT for five basic expressions; (b) Visualization of the clustering performance
of FER-PCVT for four special expressions. SU: surprised; HA: happy; SA: sad; AN: angry; NE: neutral;
PA: painful; TI: tired; ST: strained.

3.5. Visual Analysis

We perform a global visual analysis of models to find the regions that models focus
on for classification. The Grad-CAM [52] is used to visualize ResNet18*. For ViT and FER-
PCVT, visualization is achieved by stacking the attention weights of each layer in order.
ResNet18*, ViT, and FER-PCVT have different focus points when identifying the facial
emotions of stroke patients, as shown in Figure 11. The part covered in red is the region
of the model’s most concern when classifying and recognizing expressions. ResNet18*
focuses on localized facial regions, while ViT extracts information globally. Although the
red regions in the visualization images of ViT appear more on the periphery of the image,
ViT also pays attention to the details of the facial features. However, FER-PCVT can focus
more on muscle changes due to different expressions while extracting global information.
For example, for strained expression, a common emotion when muscles are tense during
training, FER-PCVT notices more changes in areas such as eyebrows, eyes, and lips than in
other models. Moreover, the facial features of neutral expressions extracted by FER-PCVT
are more specific than those of other models. In addition, FER-PCVT also showed a better
ability to extract emotional features for these four basic expressions.
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Figure 11. Visualization of ResNet18*, ViT, and FER-PCVT. * It indicates that the model is a pre-
trained model.

4. Discussion

Experienced physicians can determine stroke patients’ intervention strategies by
observing their emotional changes [13]. Similarly, stroke rehabilitation systems based on
deep learning/machine learning can also sense the patients’ emotions and provide training
suggestions according to emotional changes. Currently, more researchers use the patients’
physiological signals as the information source of perceived emotion [10–13]. Few studies
have designed FER algorithms for stroke rehabilitation. To assist physicians in analyzing
the degree of physical recovery and adjusting the training intensity of stroke patients, we
use eight common emotions of patients during rehabilitation as biometrics and design a
lightweight FER algorithm. By detecting the positive emotions of stroke patients during
rehabilitation, such as happy, surprised, and strained, patients’ training motivation and
interest will be provided to physicians. When painful emotions are detected, it means that
the training intensity exceeds the patient’s muscle tolerance, and the intensity should be
adjusted in time to avoid secondary injuries. In addition, if negative emotions are detected
frequently, such as sad, tired, and angry expressions, physicians must pay attention to
patients’ mental health.

The FER algorithm proposed in this study is an automated assessment technology
for stroke rehabilitation, which acquires the training status of patients in a non-contact
way. ViT is the basic framework for algorithm design since the global modeling of images
using ViT is critical to the emotional classification task, as shown in Figure 11. However,
CNNs structures are better at extracting local and detailed information in expression
images than ViT. Therefore, introducing the characteristics of CNNs into the ViT structure
can improve performance and robustness while maintaining high accuracy and memory
efficiency. ViT converts the pixel information (2D) in the patch into the feature sequence
(1D) required by the encoder through linear projection and Patch Embedding. The position
relationships between patches need to be learned through the Position Embedding module.
However, the sequence extracted by convolution contains position information, which is
the inductive bias property of convolution. Thus, the CPE module containing convolutional
layers and pooling layers is designed to replace the linear projection, the Patch Embedding,
and the Position Embedding in ViT. There are some studies that have also introduced
convolution into ViT. For example, VTFF [34] extracts the information from the original
and local binary pattern images using two ResNet18. Then, it flattens and linearizes feature
information to obtain patches with features instead of patches with image blocks in ViT.
This network achieves an accuracy of 88.14% on RAF-DB while containing a large number
of parameters (51.8M). However, the algorithm proposed in this study performs better on
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RAF-DB with 1.3% higher accuracy than VTFF. CvT [35] divides transformers into multiple
stages, constituting the transformers’ hierarchy. A convolutional token embedding module
is added at the beginning of each stage, which is implemented as a convolutional projection
to replace the linear projection before each self-attention in ViT. The algorithm proposed
in this paper mainly realizes the convolutional mapping between pixels to sequences
by combing convolution and pooling instead of linear projection in ViT. At the same
time, the location information between patches is preserved. In contrast, we incorporate
convolutional features in ViT more concisely. According to the experimental data in Table 5
and Figure 6, PCVT proposed in this study has higher accuracy and lower parameters than
CvT on the RAF-DB dataset.

In addition, high accuracy and low parameters are necessary for a model to run
well in rehabilitation equipment with less computing power than professional computers.
Therefore, we designed the PTF module that introduced a pyramidal feature output mode
to reduce parameters and GFLOPs, inspired by PvT [42]. PvT is proposed as a backbone
model to serve downstream tasks in various forms, such as image classification, object
detection, and semantic segmentation. Similar to this study, both PvT and FER-PCVT
have reduced the sequence length of the transformer output as the network deepens,
significantly decreasing computational overhead. Regarding implementation details, PvT
splits the image/feature map into many patches (size of Pi × Pi, where i is the ith stage), and
then feeds each patch into the linear projection to obtain many feature sequences whose
dimensions are Pi times shorter than the input. However, we mainly down-sample the
feature map by combining convolutional and pooling to get a feature map that the size is
reduced by half each time. Validated by the experiments shown in Figure 6 and Table 5, the
proposed algorithm has higher accuracy and requires about 3.79M lower parameters than
PvT in model training/inference.

Furthermore, considering that some stroke patients have different facial expressions
due to impaired facial muscles, we designed a classifier that is more suitable for the emotion
classification of stroke patients to improve the accuracy further. We designed the V-ALC
classifier based on the V-A emotion theory, treating emotion as the weighted sum of V-
A-like and neutral features. The addition of V-ALC improves the model’s accuracy from
84.22% to 89.44%, as shown in Tables 5 and 6. According to Table 8, the structure obtained
by PCVT splicing V-ALC performs better than that obtained by PCVT splicing MLP in
classifying the emotions of stroke patients.

We also visually analyze models to find the attention regions of ViT, ResNet18*, and
FER-PCVT in classifying emotions and verify that FER-PCVT combines the advantages of
the other two structures well. As shown in Figure 11, ResNet18, a typical CNNs structure,
focuses on the facial regions that best represent emotions, similar to the areas humans
notice when recognizing the emotions of stroke patients. For example, the tightened and
open lips when angry, the wrinkled eyebrows when sad, the raised cheeks when strained,
and the relaxed eyes and mouth when tired. Unlike ResNet18, ViT extracts global features
while also paying attention to some facial regions located inside the image, especially for
surprised and painful expressions. FER-PCVT extracts information globally like ViT but
perceives more detailed facial regions than ViT, which means more details about emotions
can be captured by FER-PCVT.

However, the algorithm proposed in this study recommends using a dataset with
better balance for training, since the designed classifier sums neutral emotion features with
weights with other emotion features for classification. Unbalanced sample sizes will affect
the model’s ability to extract an unbiased emotion baseline. The RAF-DB dataset is more
balanced than the FER+ dataset, so the proposed method achieves the highest accuracy on
the RAF-DB dataset, as shown in Table 6 and Figure 7. However, its performance on the
FER+ dataset is weaker than other FER algorithms, such as RAN [29], VTFF [34], SCN [47],
and FER-VT [48].

To summarize, the proposed method has several advantages: (1) It achieves higher
recognition accuracy than other existing FER algorithms on the RAF-DB dataset. (2) The
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network structure successfully combines the local perception of CNNs and the global
extraction capability of ViT, which effectively improves the ability of the model to extract
feature sequences used to classify patients’ emotions. (3) It has fewer parameters and
GFLOPs than other algorithms, making it easier to embed in medical rehabilitation equip-
ment with poorer computing performance than professional computers. Although the
proposed method has shown lower consumption and better effectiveness on both public
datasets and the private dataset, there are still some problems to be improved: (1) The
algorithm performs better on the balanced dataset. Therefore, it is necessary to balance
the sample size of each category in order to obtain unbiased prediction results. (2) The
sample size of the private dataset used in this study is insufficient compared to public
datasets, especially for painful and tired expressions. We hope to collect more clinical data
to improve the model’s generalization. (3) This study only conducted a qualitative analysis
of emotions and did not further classify each emotion. For example, painful emotions are
divided into severe, moderate, and slight pain in detail. It is hoped that future research can
bring more specific and quantitative rehabilitation recommendations for the early training
of stroke patients.

5. Conclusions

This study proposes a lightweight FER algorithm, FER-PCVT, which is more con-
ducive to embedding in medical rehabilitation equipment to determine whether the current
training intensity received by a stroke patient is most suitable for his physical recovery. To
verify the performance of FER-PCVT, we collect and annotate a private dataset of stroke
patients containing 1302 samples, which can be divided into 8 classes: painful, strained,
tired, neutral, happy, sad, angry, and surprised. This algorithm is compared with other
FER algorithms on two public datasets (FER+ and RAF-DB) and a private dataset. The
experimental results show that: (1) PCVT, the backbone network of FER-PCVT, achieves
an accuracy of 84.22%, parameters of 2.46M, and GFLOPs of 0.12 on the RAF-DB dataset,
which is better than CvT, PvT, and ResNet18. (2) FER-PCVT achieves 88.21% and 89.44%
on the FER+ and RAF-DB datasets, respectively. Its performance exceeds that of other
existing expression recognition algorithms on the RAF-DB dataset. (3) FER-PCVT achieves
an accuracy of 99.81% on the private dataset, with only 4.10M parameters. (4) FER-PCVT
effectively combines the local perceptual ability and the feature output mode of the CNNs
and the global extraction capability of ViT, which significantly reduces the parameters and
ensures recognition accuracy. This method has excellent performance on public and private
datasets, providing an intuitive and efficient automated assessment technique for stroke
patients to receive more suitable early training.
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Abstract: Globally, stroke is a leading cause of death and disability. The classification of motor
intentions using brain activity is an important task in the rehabilitation of stroke patients using
brain–computer interfaces (BCIs). This paper presents a new method for model training in EEG-based
BCI rehabilitation by using overlapping time windows. For this aim, three different models, a convo-
lutional neural network (CNN), graph isomorphism network (GIN), and long short-term memory
(LSTM), are used for performing the classification task of motor attempt (MA). We conducted several
experiments with different time window lengths, and the results showed that the deep learning
approach based on overlapping time windows achieved improvements in classification accuracy, with
the LSTM combined vote-counting strategy (VS) having achieved the highest average classification
accuracy of 90.3% when the window size was 70. The results verified that the overlapping time
window strategy is useful for increasing the efficiency of BCI rehabilitation.

Keywords: brain–computer interface; motor attempt (MA); EEG; deep learning method; overlapping
time window

1. Introduction

Stroke leads to high rates of disability and death worldwide [1]. To restore brain
function affected by stroke, patients need to undergo rigorous rehabilitation. Currently,
there are a variety of approaches to help restore motor function after a stroke, including
the use of mirror therapy [2], virtual reality [3], aerobic exercise [4], and brain–computer
interface (BCI) technology [5–7]. BCI technology can help patients recover independently
and perform tasks by efficiently controlling additional devices, making it a good option
for patients.

The use of a non-invasive BCI for motor rehabilitation has become a focus of current
research and is considered a mainstream experimental method. Patients perform motor
imagery (MI) or motor attempt (MA) tasks based on cues from the system. The BCI then
decodes and converts the motor intents from the electroencephalogram (EEG) signals into
commands and provides feedback according to the experimental protocol [8,9]. However,
EEG signals may be unstable or random and show significant individual differences.
In addition, EEG signals intended for the same behavior but collected at different times
and under different circumstances may also have large differences; hence, it is difficult to
classify EEG signals directly. Feature extraction and classification algorithms are needed to
extract meaningful information from the multidimensional EEG signals [10].

Based on previous studies, the features extracted by traditional machine learning
methods can be classified into three categories: spatial, time, and frequency. In dichotomous
BCI tasks, the common spatial pattern (CSP) algorithm is the most common method for

85



Brain Sci. 2022, 12, 1502

extracting spatial features [11], as it is able to extract the spatially distributed components of
each class from multichannel EEG signals. Many studies have expanded the CSP algorithm,
and the filter bank CSP (FBCSP) developed from the CSP algorithm has achieved very good
classification performance in MI-BCI [12]. Analyzing EEG signals in a time series can yield
rich statistical features. Geethanjali et al. extracted seven time-domain features from EEG
signals and classified them using linear discriminant analysis [13]. As many EEG signal
features are reflected in the frequency domain, analysis of frequency domain features is
important for BCIs. Furthermore, by converting EEG signals from the time domain to the
frequency domain, the distribution and variation of EEG frequencies can be visualized.
Chen et al. visualized event-related synchronization and event-related desynchronization
in MA and MI tasks in different frequency bands [14]. Although the above method can be
applied to MA-BCI and MI-BCI to some extent, they require prior knowledge and manually
designed features combined with the use of machine learning for classification, which may
present problems of insufficient feature extraction and low adaptability to different patients.
Hence, many studies have tried to use deep learning (DL) to automatically learn features
gathered from EEG signals for classification.

In contrast to traditional machine learning methods, DL does not require predefined
feature vectors, as it can automatically learn latent and highly abstract features from raw
EEG signals. The combination of BCI with DL methods has been used in the rehabilitation
of patients. Lin et al. developed a convolutional neural network (CNN)-based model for
predicting BCI rehabilitation outcomes [15]. Liang et al. used the long short-term memory
(LSTM) neural network for generating motor trajectories of the lower-extremity exoskeleton
for stroke rehabilitation [16] and a graph embedding-based model, Ego-CNN, for identify-
ing key graph structures during MI [17]. However, BCI systems using DL methods require
large amounts of EEG data for training models, which results in a bottleneck in therapy.
At present, independent patients experience more difficulty performing control tasks due
to tedious experimental steps, which often leads to less data collected and less than optimal
accuracy for classification using DL methods.

For smaller datasets, data augmentation techniques have proven to be an effective
way to improve the performance of DL models, and the approach is to generate more data
from the original data for training the model. In previous studies, some have performed
data enhancement by adding noise to the original EEG signals [18]. Sliding time windows
are advantageous in augmenting EEG signal data. Hartmann et al. used an overlapping
time window to expand a dataset of epileptic patients [19], and Zhang et al. extracted
time and frequency domain features from multiple windows for a classification task of
left versus right hand movements [20]. In addition, several studies have used generative
adversarial network models for generating new data similar to the original EEG signal [21].
This approach can help to compensate for the inability to collect large amounts of EEG
signals from patients during motor rehabilitation and further improve the performance of
DL methods for classifying EEG signals.

The purpose of this paper was to improve the performance of DL on MA-BCI through
data augmentation techniques to contribute to the rehabilitation training of patients. Specif-
ically, we provide more accurate neurofeedback by improving the recognition accuracy
of a patient’s motor intention. To achieve this aim, we propose a DL method based on
overlapping time windows for the classification tasks of MA-BCI. This study compares the
classification performance of three different DL models on MA tasks. To investigate the
effect of different time periods on BCI classification, we visualized the classification results
on a time series and analyzed the differences in EEG signals at different time slices using
the power spectral density topography of the brain.

2. Materials and Methods

The data used in our experiment were collected from 7 stroke subjects using BCI
interventions. Demographic information and clinical data are reported in Table 1. All
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subjects typically performed three sessions per week; one session included ninety trials,
and each trial corresponded to one type of task: motor attempt (MA) or idle state (IS).

2.1. Experimental Protocol

Figure 1 shows the experimental protocol during rehabilitation training. The exper-
imental setup consists of two components: a BCI module and a force feedback device.
The BCI module is responsible for the collection and analysis of EEG signals, and the force
feedback device is responsible for providing neurofeedback. The patient’s stroke-affected
hand was immobilized on the force feedback device that was controlled by the BCI system.
When the experimental task was a motor attempt, patients continually attempted wrist
extension with the affected hand. When the experimental task was in an idle state, they
were ordered to rest and do nothing. The force feedback device drove the patient’s stroke-
affected hand to complete a wrist extension movement when the BCI system accurately
identified the patient’s motor intention. For incorrect identification, the device would
stay stationary.

Table 1. Demographic information of the subjects.

Subject Sex Age Affected Limb Stroke Stage

Sub1 Male 31 Right Subacute
Sub2 Male 40 Left Subacute
Sub3 Male 42 Right Subacute
Sub4 Male 47 Right Subacute
Sub5 Male 36 Right Subacute
Sub6 Male 30 Right Subacute
Sub7 Male 65 Left Subacute
Mean - 41.6 ± 12.0 - -

Figure 1. Experimental protocol of rehabilitation training. During the cueing period, a red rectangle is
used to alert the user to perform specific tasks. When the cue is a red square, the patient will attempts
wrist extension using the stroke-affected hand as hard as possible until the white cross disappears.
When the cue is a red rectangle, the patient just needs to stay rested. The patient’s stroke-affected
hand was passively extended by the force feedback device when the system accurately identified the
patient’s motor intention.

2.2. Data Acquisition and Preprocessing

According to Figure 1, the EEG signals of each trial were recorded for 11 seconds and
started with a white arrow image used to prompt the patient to be prepared. Three seconds
later, a task cue (red geometrical shapes) was displayed on the screen, and the patient was
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asked to perform either a movement attempt or a rest state. After the cue disappeared,
the patient was told to continue performing the task following the cue until the white cross
disappeared. Then, the patients rested for 1.5 s. The recorded signals were sampled by a
32-channel EEG cap, and the EEG electrodes were placed according to the international
10–20 system. The sampling frequency was 200 Hz. Data from 31 channels were used
for calculation, and the filter range was 4 to 40 Hz. Some examples of the preprocessed
EEG signals (C3, C4) from the motor function areas of the brain are shown in Figure 2.
Five seconds of EEG before the white cross disappeared from each trial were extracted for
training the model.

Figure 2. Examples of preprocessed EEG signals from different brain activities.

2.3. Overlapping Time Window

The performance of DL models is very heavily dependent on the quantity of data
involved in the training. Due to the difficulty of collecting MA data, the amount of data
collected for individual patients is small. In existing work, a promising approach is to
split the individual signals into multiple subsignals for training the model [19,20,22]. We
propose a data augmentation method based on an overlapping time window for increasing
the number of instances during training. The raw EEG data were segmented by overlapping
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windows; each data window served as an independent instance. The number of windows
was controlled by two parameters: the time window length L and the overlap rate O.
For the original input of experimental data Xi = [x1, x2, . . . , xT ] ∈ RC∗T , i represented the
type of task, C represented the channel, and T represented the sampling point; in this
experiment, C = 31 and T = 1000. Given the parameters O, L. The raw data were segmented
into Di

L,O .

Di
L,O =

{
Xi

1,X
i
2,··· ,X

i
s, . . . Xi

n

}
∈ Rn∗C∗L (1)

Xi
s = {xt, xt+1, . . . , xt+L | t = 1 + (s − 1)LO} (2)

n = T − L
LO + 1, which denotes that the original data were sliced into n time segments.

The segmented data and the original data had the same task label i. When n = 1, the data
were not segmented. We divided the original dataset into a training set and a test set.
For the training set, each signal Xtrain with a length of 1000 was divided into 32 windows
(L = 60, O = 0.5). In this way, the signals in each window were used as instances to train the
model. In the testing phase, for each signal Xtest with a length of 1000 in the test dataset, we
divided it into 32 windows using the same approach. The data from these windows were
fed into the trained model, and the classification results were obtained on these windows.
After that, multiple window classification results of windows were fused into one decision
for Xtest by using the vote-counting strategy (VS). In addition, we also designed another
method for classifying Xtest. We combined the features of different windows from the last
hidden layer of the model by summing, and the combined feature was fed into the softmax
layer for classification, which is called the feature fusion strategy (FFS) in this paper. “&VS"
and “&FFS” refer to strategies for validating trained models on the test set using voting
and feature fusion, respectively.

2.4. Graph Isomorphism Network Model
2.4.1. Graph Data Construction

The aim of graph neural networks (GNNs) is to use graph structure data and node
features as input to learn a representation of the node (or graph) for relevant tasks [23].
Because EEG data are easily converted to graph structure data, several studies have in-
vestigated GNNs applied to EEG signal-based tasks [17,24–27]. An important aspect of
using a GNN to classify EEG signals is building graph data, the original data first need
to be converted into graph structure data. The EEG signal of a window can be defined
as G = (V, E), where V and E represent the sets of nodes and edges, respectively. In this
experiment, we treated the individual channel as a node and the closed channels as con-
nected edges. Specifically, the average Euclidean distance d between the CZ channel and
the other channels was calculated, and the two channels with an electrode distance less
than d were treated as connected.

2.4.2. Graph Isomorphism Network

Most GNNs complete the graph classification process through a strategy of aggregating
information from neighbors. Formally, node updates and the graph embedding hG are
obtained using the following formula.

a(k)v = AGGREGATE(k)
({

h(k−1)
u | u ∈ N(v)

})
(3)

h(k)
v = COMBINE(k)

(
h(k−1)

v , a(k)v

)
(4)

hG = READOUT
({

h(K)v | v ∈ G
})

(5)

where h(k)v is the feature vector of node v at the k -th iteration layer, h(0)v represents node
input , and N(v) is a set of nodes adjacent to v. AGGREGATE and COMBINE represent
the aggregation of information about neighbors and the aggregation of information about
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oneself and neighbors, respectively. The choices of AGGREGATE(k)(·) and COMBINE(k)(·)
in GNNs are crucial. The output hG aggregates node features via the READOUT function
at the final iteration.

In this study, we used a graph isomorphism network (GIN) model for classifying EEG
signals. The GIN network is a kind of GNN and uses the summation method to complete
AGGREGATE, COMBINE, and READOUT [28]. Following the literature [28], we used the
following formula for feature updates of node features:

h(k)v = MLP(k)

⎛
⎝(

1 + ε(k)
)
· h(k−1)

v + ∑
u∈N(v)

h(k−1)
u

⎞
⎠ (6)

MLP represents multilayer perceptrons, and ε is a parameter that can be trained. We
tuned the hyperparameters through a grid search over the training set in this experiment.
The search space ranges for the network depth and the number of neurons in GIN were
defined as {1, 2, 3, 4} and {32, 64, 128, 256}, respectively. After hyperparameter optimiza-
tion, the network depth k and the number of neurons were set to 2 and 256, respectively.
The learned graph embedding hG passes through two fully connected layers to output the
final feature representation. This experiment focused on the binary classification problem,
so the number of neurons in the final fully connected layer was 2. In this study, the output
layers of the three models were the softmax layer, and the loss functions were all set to the
cross-entropy loss function.

2.5. CNN

Convolutional neural networks (CNNs) are considered to be one of the most suc-
cessful deep learning models and have been widely used for feature extraction of EEG
signals [24,29,30]. The CNN is a deep feed-forward neural network that includes crucial
convolutional operations. Compared to traditional neural networks, CNNs reduce the
training parameters by local sensing and weight sharing. Each convolutional layer consists
of multiple convolutional kernels of the same size for feature extraction. The mathematical
description of the convolutional operation is as follows:

ymn = f

(
J−1

∑
j=0

I−1

∑
i=0

xm+i,n+jwij + b

)
(7)

where x represents the matrix on which the convolution operation is performed, and y
is the output of the convolution. I, J corresponds to the size of the convolution kernel
w, b represents a bias, and f is the activation function, which was ReLu in this study.
The grid search ranges of the parameters were defined as follows: number of convolution
layers and max-pooling layers {1, 2, 3, 4}, length of the convolutional kernels {2, 3, 4, 5},
number of convolutional kernels {16, 32, 64, 128}, and number of neurons in the fully
connected layer {32, 64, 128, 256}. The optimized model structure in this study consisted
of 3 convolutional layers and 3 max pooling layers. The size of the convolutional kernels
was 4 ∗ 4, 2 ∗ 2, and 2 ∗ 2, and the number of convolutional kernels was 32, 64, and 128,
respectively. After completing the pooling of the final layer, we flattened the extracted
features and fed them into a fully connected layer f c1, which contained 128 neurons. Finally,
the output of the fully connected layer f c1 passed through the ReLu activation function and
another fully connected layer f c2 to output the final 2-dimensional representation feature.

2.6. LSTM

Due to the long duration of the patient performing the task, some useful features still
needed to be retained despite the long interval. LSTM can retain the motor intention of EEG
signals that are both long and short. LSTM networks are a modified version of recurrent
neural networks (RNNs) [31]. Based on RNNs, the LSTM added a multiple gate structure
(forget gate ft, input gate it, and output gate ot) for updating the cell state. The LSTM
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network layer contains the cell state Ct, which represents the cell information stored at time
t. The data features xt at time t, the hidden features ht−1 at moment t − 1, and the cell state
Ct−1, were fed into the LSTM nodes, which were processed by gates to output the hidden
state and cell state at the next moment. The calculations are as follows.

ft = sigmoid
(

w f [xt, ht−1] + b f

)
(8)

it = sigmoid(wi[ht−1, xt] + bt) (9)

C̄t = tanh(wc[ht−1, xt] + bc) (10)

Ct = ft ∗ Ct−1 + it ∗ C̄t (11)

where w f and b f indicate the weight and bias of the forget gate, respectively. The sigmoid
function in the forget gate determines which messages need to be deleted. The corre-
sponding input gate it determines which information to retain, and wi and bi indicate the
weight and bias of the input gate. C̄t represents the candidate hidden state, and wc and bc
correspond to the weight and bias, respectively. The output of the forget gate and the input
gate are jointly calculated to obtain the cell state value Ct at the current moment.

Finally, the current cell state Ct and the output ot of the output gate are calculated as
follows to obtain the current hidden state ht.

ot = sigmoid(wo[ht−1, xt] + bo) (12)

ht = ot ∗ tanh(Ct) (13)

where wo and bo are the weight and bias of the output gate, respectively. For a multilayer
LSTM model, the hidden state ht at moment t of the previous layer is used as the input
of the next network layer at moment t. The number of LSTM hidden layer units was
determined by the time window length, and each time point was a unit. In this study, we
employed a two-layer LSTM, and we fed the hidden state at the last moment of the last
layer into a fully connected layer to output the final feature representation. The hidden
state features of the LSTM perform a grid search in the range {32, 64, 128, 256}, with an
optimized feature size of 128.

2.7. Evaluation Procedures

One of the most important aspects of BCI is accuracy. To test the effectiveness of dif-
ferent methods, we used 3-fold cross-validation. For one session, the data were randomly
divided into a training set containing 60 trials and a test set containing 30 trials, with a ratio
of 2:1. We first optimized hyperparameters on the training set via grid search, with 90%
of the data used to train the model and 10% to validate the performance of the hyperpa-
rameters and choose the model structure with the highest average accuracy. The data ratio
between the two task categories was always 1:1 in the different sets. After completing hy-
perparameter optimization, we trained the final classification models using all the training
data. The average accuracy of each fold was used to evaluate the performance of the model.
In addition, we used the information transfer rate (ITR) to evaluate the performance of the
BCI [32]. The units of ITR are bits/min, which are calculated from Equation (14). N is the
number of task types, which is set to 2 in this study, P is the accuracy rate, and T is the time
during the task (60 s).

B =

{
log2 N + P log2 P + (1 − P) log2

[
1 − P
N − 1

]}
× 60

T
(14)

3. Results and Discussion

3.1. Overall Performance

In this study, the average classification results for seven subjects are reported in Table 2.
The results listed include six methods and the accuracies achieved with the same segmen-
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tation strategy (L = 60, O = 0.5). The results showed that the LSTM&FFS achieved the
highest mean accuracy of 90.1% for all subjects, while the GIN&VS had the lowest accuracy
of 81.9%. One of the explanations for differences in accuracy between different methods
could be different types of extracted features. To verify that our method is superior to
the existing method, we compared our methods with the traditional algorithms [14,33].
After comparison, compared with CSP and FBCSP, the six methods in this study yielded
an average improvement of 11.71% and 23.01% in regard to average accuracy. The results
indicated that the methods can learn distinctive features of multiple windows for classifi-
cation and that these features improved classifier performance. To analyze the impact of
age on the algorithm, patients were divided into two age groups based on the median age
(40 years). Compared to the group aged <40, the group aged ≥40 showed higher accuracy
on different algorithms, and the results suggest that the patient’s age may be a factor in the
accuracy of the classification.

To identify the performance of different models, we recorded the training loss and
validation accuracy during model training for Subject 1 in Figure 3. The loss in the CNN
and LSTM training set dropped to 0.2 after 100 iterations and the top accuracy of the test sets
converged to approximately 93% and 98%, respectively. A faster convergence was observed
in GIN, but the accuracy was relatively low. Figure 4 illustrates the training time and the
number of training parameters for different models. Although the training parameters of
the LSTM model were not the highest, training of the model required more time. This may
partially be because of the structure of the LSTM model [34], which could not complete
parallel computing in the training process. For real-world applications, the choice of
method can consider multiple factors of accuracy and computational complexity.

Paired-sample t-tests were used to determine whether the difference among individ-
ual methods was statistically significant. The results are presented in Table 3. Significant
differences were found across multiple methods at the 0.05 significance level, and the
difference between LSTM&VS and LSTM&FFS was not significant at the 0.01 significance
level. Although the performance was different in the six methods, the overall accuracy
was high.

Figure 3. Losses of the training sets for deep learning models and classification accuracies of test sets
for different methods.
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Figure 4. The number of parameters and running times for different models.

Table 3. Paired-sample t-test results of different methods.

Method Comparsion Method T df Sig. (2-Tailed)

GIN&VS

GIN&FFS −5.451 6 0.002
CNN&FFS −5.345 6 0.002
LSTM&FFS −7.528 6 <0.001
CNN&VS −6.705 6 0.001
LSTM&VS −7.140 6 <0.001

CNN&VS

GIN&FFS 1.146 6 0.295
CNN&FFS −0.999 6 0.356
LSTM&FFS −5.976 6 0.001
LSTM&VS −5.805 6 0.001

LSTM&VS
GIN&FFS 6.823 6 <0.001
CNN&FFS 4.333 6 0.005
LSTM&FFS −3.527 6 0.012

GIN&FFS CNN&FFS −1.501 6 0.184
LSTM&FFS −8.477 6 <0.001

CNN&FFS LSTM&FFS −5.400 6 0.002

3.2. Effects of Window Size

To investigate the effect of window size, we experimented with multiple window sizes
and evaluated the performances of the models in the corresponding window. The sizes of the
comparison time windows were 1000, 200, 100, 90, 80, 70, and 60. Figure 5 presents the average
accuracy of the six methods for the different windows. The lowest accuracy was achieved
when the window size was 1000, which means without data augmentation. The most likely
reason for this phenomenon is probably because the models overfit fewer training data. We
illustrate the performance of each method for three window sizes in Table 4. The LSTM&VS
accuracy was 90.3% when the window size was 70. However, the LSTM model showed only
a classification accuracy of 65.4% without using a time window. The difference in accuracies
occurred because the different window sizes changed the lengths of the input time series.
In addition, according to the results, when the window size was 70, the average accuracy
of each method was higher than that of the method with a window size of 100. This may
indicate that relatively small sizes of windows had better performance.
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Figure 5. Accuracies for all methods with different window lengths, each column represents the
average of the six method accuracies.

3.3. Generic Performance of BCI

It is difficult to compare different BCI systems since there are many aspects that can
influence the performance of BCI, such as input, preprocessing, and outputs. The ITR is a
widely and generally accepted standard by which the performance of different BCI systems
can be compared [35]. Figure 6 illustrates the distribution of ITRs for the sessions. The average
ITR for all seven subjects was 10.72 ± 4.82 bits/min. Several subjects (1, 3, 4 and 7) reached
the highest ITR with 12 bits/min. Subject 7 had the lowest ITR of 1.73 bits/min. For the ITR
of motor attempts, fewer results have been reported. Khalaf et al. obtained an average ITR of
40.83 bits/min for a four-class task [36]. Zeng et al. achieved the highest ITR of 24 bits/min
during ankle rehabilitation robot training [37]. In this study, the value of ITR is negatively
correlated with T, and the value of ITR is limited by task time.

Figure 6. Boxplots represent the ITRs of different sessions for each subject. Each box plot includes
12 sessions of data. The upper and lower lines represent the maximum and minimum ITRs, respec-
tively. The lines in the boxplot represent the median ITR.

3.4. The Visualization of Feature Distribution

To investigate the validity of the time window. A visualization technique called
TSNE [38] was used to downscale the learned features for visualization. Figure 7 shows
the distribution of features for different time windows. The different colored scatter
points in the figure indicate the different task types, and each scatter represents the
extracted feature by one window. We observed that the features extracted by methods
with time windows were easier to classify. After training, multiple EEG signals of time
segments were well identified. However, some EEG signals from different windows
were hard to identify. In addition, it was also found that among CNN, GIN, and LSTM,
LSTM performed best in feature extraction, which had fewer segments that could not be
distinguished. To further observe the LSTM performance, we constructed the LSTM&VS
confusion matrices of the seven subjects in Figure 8. The correct classification accuracies
are shown on the diagonal cells. It can be seen that the LSTM&VS accuracy in each task
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was similar for individual subjects. The results demonstrated that LSTM&VS obtained
good overall performance.

Figure 7. Feature visualization of different models for Subject 1. For time window (a), each scatter
represents a feature extracted on one trail, and for time window (b), each scatter represents a feature
extracted on one time window of one trail.
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Figure 8. The confusion matrices for all subjects with the LSTM&VS method.

3.5. The Impact of the Number of Network Layers

The number of network layers usually affected the model performance. Table 5 shows
the accuracy of models with different numbers of network layers. Compared with other
settings, the accuracy of 1 layer was lower. In addition, the accuracies of the CNN&VS and
CNN&FFS were more likely to be influenced by the number of network layers, while the
accuracies of LSTM&VS and LSTM&FFS were more stable.

Table 5. Accuracy comparison between different numbers of network layers.

Conv Layers
Accuracy

GIN&VS CNN&VS LSTM&VS GIN&FFS CNN&FFS LSTM&FFS

1 layer 0.803 ± 0.082 0.821 ± 0.091 0.882 ± 0.079 0.834 ± 0.074 0.791 ± 0.072 0.900 ± 0.065
2 layers 0.819 ± 0.085 0.844 ± 0.086 0.884 ± 0.078 0.846 ± 0.075 0.846 ± 0.068 0.901 ± 0.066
3 layers 0.816 ± 0.078 0.851 ± 0.083 0.883 ± 0.068 0.843 ± 0.082 0.854 ± 0.080 0.896 ± 0.069
4 layers 0.806 ± 0.089 0.844 ± 0.088 0.882 ± 0.079 0.821 ± 0.078 0.847 ± 0.069 0.900 ± 0.072
Mean 0.810 0.840 0.882 0.836 0.835 0.900

The highest classification accuracy for a given method are bold marked.
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3.6. The Visualization of Accuracy on Time Window

In this section, to analyze the classification differences in each time window, we con-
ducted statistics and visualized the classification results of the EEG signals on the windows
by using the LSTM&VS method. Figure 9 shows the sequence of classification results. Each
row represents a session, and each column represents the classification statistics of the
time window, in which the time windows with higher accuracy are highlighted. As seen
in the figure, the distribution of accuracy across the time windows differs in patients.
For Subject 3, the time window with higher classification accuracy appeared in the first
window, and the window with lower classification accuracy appeared in the last window.
The difference in sequence probably occurred because the appearances of the discriminative
motor intentions were random during the MA experiment.g

Figure 9. Visualization of classification results learned by LSTM&VS. In each state, two different
sessions (1, 2) of seven subjects are visualized. Each row represents a session and each square
represents the correct result for classification in a time window.

3.7. Study of Cortical Activity on the Time Window

To further investigate the differences in the EEG signals of time segments with dif-
ferent classification accuracies, we used power spectral density topography to represent
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the frequency domain information of brain signals. Figure 10 illustrates the topography
of alpha power for two tasks. Based on the classification accuracy of the time segments
in Figure 9, four different time windows were selected for visualization. For the motor
attempt task, the PSD of patients was higher in the frontal lobe. Several studies have
indicated that stroke can affect the brain function in the frontal lobe [39,40]. The obser-
vations may suggest that motor attempts of patients were associated with the frontal
cortical regions, which is consistent with a previous study [41]. Channel information
from frontal regions may be important for identifying the brain’s motor intentions. When
the EEG signals in the frontal lobe are not significant enough, it may contribute to lower
classification accuracy.

Figure 10. The visualization of the averaged topography of the PSD over the alpha band in different
time windows. Session 3 with two task types for Subject 3 is visualized.

3.8. Limitations in Current Work

The findings in this study are limited by the quantity of data collected, and it is difficult
to determine the quantity of data that can be classified well without using a time window.
In addition, the optimal filter band and model hyperparameters were not selected according
to the subjects, which may limit the ability of the models in different patients. In future
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work, we will investigate the use of feature engineering for reducing the dimensionality
of the model inputs. In addition, the fixed starting point for time window sampling may
reduce the performance of the BCI system [42]. Therefore, we will optimize the set of time
windows by using a window selection algorithm in the feature work.

4. Conclusions

This study showed that for classification tasks during BCI-based stroke rehabilitation,
deep learning algorithms based on overlapping time windows achieved good accuracy. It
may support improvements in the performance of brain–computer interfaces to generate
accurate neurofeedback. One of the more significant findings to emerge from this study
is that the distribution of classification results differed across the time windows of the
subjects, and it means that there is a possibility of improving classification performance by
choosing different windows for classification for different subjects. Therefore, future work
can expand on the selection of the time window.
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Abstract: Motor function assessment is essential for post-stroke rehabilitation, while the requirement
for professional therapists’ participation in current clinical assessment limits its availability to most
patients. By means of sensors that collect the motion data and algorithms that conduct assessment
based on such data, an automated system can be built to optimize the assessment process, benefiting
both patients and therapists. To this end, this paper proposed an automated Fugl-Meyer Assessment
(FMA) upper extremity system covering all 30 voluntary items of the scale. RGBD sensors, together
with force sensing resistor sensors were used to collect the patients’ motion information. Meanwhile,
both machine learning and rule-based logic classification were jointly employed for assessment
scoring. Clinical validation on 20 hemiparetic stroke patients suggests that this system is able to
generate reliable FMA scores. There is an extremely high correlation coefficient (r = 0.981, p < 0.01)
with that yielded by an experienced therapist. This study offers guidance and feasible solutions to a
complete and independent automated assessment system.

Keywords: stroke rehabilitation; upper limb; automated system; motor function assessment; Fugl-
Meyer Assessment

1. Introduction

Stroke is one of the leading causes of motor function impairment worldwide, and 30%
to 66% of post-stroke hemiplegic patients suffer from permanent upper limb deficits [1].
Restoring upper limb motor function through rehabilitation can considerably improve
patients’ lives.

As a crucial step in the stroke rehabilitation process [2], assessment contributes much
to rehabilitation training guidance and patients’ self-confidence enhancement. Traditional
clinical assessment relies on the professional therapist observing the patient’s behavior
based on various scales. According to the International Classification of Functioning,
Disability and Health (ICF), these scales can be divided into three main categories [3]: body
functions such as Fugl-Meyer Assessment (FMA) and Motor Status Score (MSS), activity
ability such as Wolf Motor Function Test (WMFT) and Arm Motor Ability Test (AMAT),
and participation such as Stroke Impact Scale (SIS) and EuroQol Quality of Life Scale
(QLS). Among them, FMA [4] is probably the most widely used one in both clinical and
research applications [5]. It has excellent intra-rater and inter-rater reliability and construct
validity [6,7], and is sensitive to change [8]. The FMA upper extremity (FMA-UE) section
(Table 1) consists of 33 items, and each item is scored on a 3-point ordinal scale from 0 to 2.

However, the requirement of therapist participation substantially limits the imple-
mentation of the assessment. As for patients, especially discharged patients, scientific
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assessment is not readily available. For therapists, it is time-consuming and laborious.
Consequently, automated scale evaluation systems are proposed to solve these problems.

Table 1. Target FMA items and Grouping 1.

Category 2 Motion 3 FMA Item Sensors 4

1. Flexors
Reflex activity

2. Extensors
3. Shoulder elevation RS
4. Shoulder retraction RS
5. Shoulder abduction(90◦) RS
6. Shoulder external rotation RS
7. Elbow flexion RS
8. Forearm supination RS
9. Shoulder adduction/internal rotation RS
10. Elbow extension RS

Shoulder/Elbow

Volitional movement
within synergies

I

11. Forearm pronation RS

II 12. Hand to lumbar spine RSShoulder/Elbow

Volitional movement
mixing synergies III 13. Shoulder flexion 0∼90◦ RS

V 15. Shoulder abduction 0∼90◦ RSShoulder/Elbow

Volitional movement
with little or no synergy III 16. Shoulder flexion 90∼180◦ RS

Normal reflex activity 18. Biceps, triceps, finger flexors
IV + VI90 14. Forearm pronation-supination with elbow 90◦ RS + LM
III + VI0 17. Forearm pronation-supination with elbow 0◦ RS + LM

19. Stability at 15◦ dorsiflexion with elbow 90◦ LM
VII90 20. Repeated dorsiflexion/volar flexion with elbow 90◦ LM

21. Stability at 15◦ dorsiflexion with elbow 0◦ LM
VII0 22. Repeated dorsiflexion/volar flexion with elbow 0◦ LM
VIII 23. Circumduction LM

24. Mass flexion LM

Wrist/Hand

IX
25. Mass extension LM

X 26. Hook grasp FSRs
XI 27. Thumb adduction FSRs
XII 28. Pincer grasp FSRs
XIII 29. Cylinder grasp FSRs

Grasp

XIV 30. Sphere grasp FSRs
31. Tremor RS
32. Dysmetria RSCoordination/Speed XV
33. Time RS

1 The gray part indicates the items not included in the automated system, the red part indicates the items scored
using random forest classification, and the blue part indicates the items scored using rule-based logic classification.
2 The FMA items involved in the automated system were grouped into four categories (bolded) based on the
execution actions and evaluation methods. 3 30 FMA items were implemented in this automated system with 17
motion tasks, with multiple FMA items corresponding to one motion, or one FMA item split into two motions in
some cases. 4 RS means RealSense, LM means Leap Motion, and FSRs means Force Sensitive Resistors.
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A few studies on automated evaluation of the upper extremity motor function have
been conducted using various sensors. Wearable sensors, including inertial measurement
units (IMUs) (or only accelerometers) [9,10], flex sensors, and their combinations [11], have
been heavily applied to automate FMA or WMFT [12]. They are portable and accurate.
Nevertheless, these sensors are inconvenient for patients to wear and the preparation can
take a long time, especially when using the glove sensor to track hand motion. Electromyo-
graphy (EMG) is a bioelectric signal that reflects neuromuscular behaviors, which is of great
significance for understanding motor function levels and guiding rehabilitation [13]. By us-
ing EMG, both longitudinal [14] and cross-sectional [15] assessments can be implemented
from a more physiological perspective. The multi-camera-based optoelectronic system,
such as Vicon (Vicon Motion System, USA) and Impulse (Phase Space, USA) [16], is another
commonly used sensor with acute precision for automated assessment system construction.
However, their high price and complicated operation limit their use in the laboratory.

Compared with the three kinds of sensors mentioned above, the depth camera, such as
Kinect (Microsoft, Redmond, WA, USA), RealSense (Intel, Santa Clara, CA, USA), and Leap
Motion (Leap Motion Inc., San Francisco, CA, USA), has the advantages of low cost,
convenient installation, and high comfort. These advantages, together with acceptable
precision, promote their widespread use in rehabilitation. Kim et al. [17] automated 13 FMA-
UE items using Kinect. Bai et al. [18] fused Kinect One and a posture sensor to evaluate
15 FMA items as well as the reachable workspace area. Fang et al. [19] proposed a novel
hand assessment framework compliant with Swanson impairment evaluation and FMA
based on Leap Motion. Further, Lee et al. [20] combined Kinect v2 and FSRs and achieved
the automated evaluation of 26 FMA-UE items. It is worth noting that most of these
systems merely consider part of the scale: some aim to evaluate the shoulder and elbow
joints [17,18], and others focus on assessing hand function [19,21]. The incompleteness
diminishes their practical value. In other words, there is still much room for improvement
in these systems for application in independent clinical evaluation.

Aiming to achieve complete, independent, and low-cost assessment without therapists’
involvement, this paper proposed an automated evaluation system covering all voluntary
FMA-UE items, using no body-worn sensors. Two RGBD cameras (An RGBD camera is a
type of depth camera that provides both depth (D) and color (RGB) data) and several force-
sensing resistors were included. Both machine learning and rule-based logic classification
were applied for score prediction according to different categories. The feasibility of the
proposed system was demonstrated with data from 20 hemiparetic stroke patients.

2. Materials and Methods

2.1. Participants

Applying the two-stage sample size approximation method for the Pearson corre-
lation [22], with the estimated correlation coefficient r̃ = 0.9, Fisher confidence interval
ω = 0.3, and significance level α = 0.01 as parameters, a correct sample size n = 20
can be obtained. Therefore, twenty stroke patients (fifteen males, five females; age:
58.95 ± 10.58 years) from the Rehabilitation Medicine Department of Huashan Hospital
were recruited for this study. The inclusion criteria for participation in the study were:
(1) age between 21 and 75 years old; (2) diagnosis of unilateral hemiplegia caused by
ischemic or hemorrhagic stroke; (3) absence of apraxia and severe medical complications
(including shoulder pain); (4) with no serious cognitive impairment and able to understand
and follow instructions (Mini-Mental State Examination (MMSE) score > 20 [23]). The study
was pre-approved by the Huashan Hospital Institutional Review Board (KY2018-248) and
registered at the Chinese Clinical Trial Registry (ChiCTR1800017568). All participants were
provided with and signed the informed consent prior to the experiment.

107



Brain Sci. 2022, 12, 1380

2.2. System Design
2.2.1. FMA Items

The complete scale of FMA-UE is shown in Table 1. All these FMA items except the
three reflex ones (item 1, 2, and 18 filled with grey) requiring external forces, were covered
in this automated system. It has been suggested that the three reflex items contribute little
to volitional movement ability measurement and can be excluded from the FMA-UE evalua-
tion [24,25]. Based on assessment joints and execution actions, the FMA-UE can be divided
into four categories: Shoulder/Elbow, Wrist/Hand, Grasp, and Coordination/Speed. Over-
all, 30 FMA items (33 in total) were implemented in this automated system with 17 motion
tasks. According to the scale instruction, item 3–11 only involve one movement, and so
do item 24–25, 31–33. For convenience, item 13 and 16 were combined into one action:
shoulder flexion 180°. Besides, several minor adjustments have been made in view of the
actual application. Item 14 and 17 were broken down into two movements respectively:
shoulder/elbow moving to the initial position and forearm pronation/supination at this
position. Item 19 and 20 were combined into one action because the automated system
could not provide resistance to wrists, and so were item 21 and 22. Each of the rest items
corresponded to one indicated action.

2.2.2. Hardware and Software

The sensors used by the system included a RealSense D435, a Leap Motion, and Force
Sensitive Resistors (FSRs) (Interlink Electronics, Westlake Village, CA, USA). The hardware
layout is shown in Figure 1A.

RealSense D435, a mainstream depth camera having the potential to measure health
outcomes [26], was applied to record the movement of the Shoulder/Elbow and Coordi-
nation/Speed parts. In this system, RealSense was positioned on a tripod in front of the
patient, and data streams were captured at 30 frames per second (fps). The coordinates
of 18 joints (Figure 2A) could be extracted from raw data based on skeleton tracking SDK.
Leap Motion controller is a depth-sensing camera designed for tracking hand and finger
motion at up to 200 fps, which was mainly used in the Wrist/Hand part. At the same
time, a support mechanism was specially designed, aiming to fix Leap Motion and human
arm comfortably and keep their relative position. The support was placed on the other
tripod to achieve the change in pitch angle (Figure 1A). In order to quantitatively measure
the interaction force between the hand and the object in the Grasp part, five FSRs were
respectively attached to five corresponding grip tools [20]. The detailed information of the
raw data collected by the above sensors is summarized in Table 2.

Table 2. Raw data information.

Data Source RealSense D435 Leap Motion Force Sensitive Resistors

Sampling frequency 30 fps 200 fps 10 Hz
Experimental protocol Perform motions I–V, XV Perform motions VI-IX Grasp 5 specified tools
Original data format Color and depth images Hand tracking data Voltage and force
Features 1 3D coordinates of joints ( f × 18 × 3) Angles ( f × a) Force ( f × 1)
Sample Size 20 subjects × 2 repetitions 20 subjects 20 subjects

1 f is the frame number, and a is the angle number.
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RealSense D435

Display

Five grip tools
attached with FSRs

Support

Leap
Motion

A

B

C

1.8m

elbow at 0˚

elbow at 90˚

Figure 1. (A) The hardware setup and scene of the experiment. On the right are the two initial
positions for the Wrist/Hand part. (B) The graphical user interface (GUI) of the assessment system.
(C) The experimental protocol.
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Figure 2. (A) 18-joint skeleton of RealSenseD435. (B) The 3D coordinates of the wrist joint in the
Shoulder/Elbow part motions. Left: The curves of raw RealSense (RS) data, data processed by two
denoising methods, and Vicon data of motion I. Right: The SSA-filtered RS data and the Vicon data
of four motions, and the red dots mark the motion start and end time.

The automatic administration is also a critical aspect of automated evaluation sys-
tems [27], which is mainly embodied in the interaction with the user. Therefore, user-
friendly software was also developed (Figure 1B). It has the function of patient information
register, data collection, data analysis, and results generation. In the data collection interface
(left top of Figure 1B), when an evaluation action is selected, the corresponding instruction
video will be played on the left, and the real-time sensor data will be displayed on the
right. In the results generation interface (left bottom of Figure 1B), the scores and vital
kinematic features of single items are available. Finally, a complete FMA-UE report (right
of Figure 1B) from this automated system can be viewed and saved.

2.2.3. Experimental Protocol

As shown in the experimental scene in Figure 1A, the subject sat in a chair facing a
display. For each movement, an instruction video was played first, and the subject was
asked to try to perform the demonstrated action without assistance (Figure 1C). The four
Shoulder/Elbow part motions (I, II, III, V) were performed twice. All other motions were
performed once on the less-affected side and paretic sides respectively. At the same time,
one experienced therapist also participated to observe and rate each FMA item according
to the consistency between patients’ performance and the scale instructions.

2.3. Assessment
2.3.1. Data Analysis Procedure

Figure 3A depicts the data analysis procedure of the proposed system, in which the
extracted features are listed in Table 3. The data from sensors were first preprocessed, and
then specific features were extracted. These features served as inputs to the scoring method.
Different scoring methods were applied to different categories. The Shoulder/Elbow
part was scored using random forest (RF) classification, an effective machine learning
algorithm for estimating scale scores from kinematic features [28,29]. It has the advantages
of non-parametric nature, feature importance evaluation capability, and high classification
accuracy [30]. The other three were scored using rule-based (RB) logical classification,
because the movement evaluation criteria are explicit and concise, suitable to directly
abstract logical rules with interpretability for scoring. Meanwhile, it was also found that the
RF classification could not achieve better results. The following two sections will separately
introduce the automated evaluation process of the Shoulder/Elbow part and the other
three parts in detail.
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Figure 3. (A) Flow chart of data analysis. SSA: singular spectrum analysis. (B) The general IF-ELSEIF-
ELSE logic model of scoring rules, where the gray part indicates that several items require prerequisites.

2.3.2. The Shoulder/Elbow Part

The RealSense Data consisted of a time series of the 18-key-point 3D positions. Re-
garding the data with high confidence collected by Vicon as the baseline, it could be found
that the raw RealSense data were contaminated by noise (Figure 2B-left). Two algorithms,
low pass filter and singular spectrum analysis (SSA) [31], have been compared to attenuate
the influence of noise. Finally, SSA was selected because of its stronger smoothing effect.
The main steps of SSA include embedding, singular value decomposition, grouping, and re-
construction. It decomposes diverse components (trend, periodic components, noise, etc.)
from the initial time series. Selecting the top k components with the largest contribution for
reconstruction can achieve the purpose of denoising. Taking the wrist joint in motion I as an
example, it can be seen from Figure 2B-left that the data filtered by SSA is highly consistent
with the Vicon data. Next, the start time and end time were automatically detected by
marking the first and the last frames with higher endpoint velocities than the average one.
The preprocessed data (i.e., denoised and segmented data) of the wrist joint are shown in
Figure 2B-right, where the red dots represent the motion segmentation points. The wrist
joint position offsets (mean Euclid distance between the corresponding joints in each time
frame) for the four motions (I, II, III, V) were 54, 43, 138, 150 mm, respectively, with a
mean offset of 96mm, which was acceptable and close to that of Kinect V2 (72 mm) [32].
Therefore, the RealSense data processed by SSA could achieve high precision with limited
data acquisition conditions.

Before the scoring method was applied, 36 kinematic features in Table 3 were calcu-
lated to describe the properties of the preprocessed data, which could be divided into three
aspects [33]: endpoint kinematics (6 features, e.g., path length, velocity, smoothness [34]),
angular kinematics (24 features, e.g., angles and angular velocity of four degrees of free-
doms (DoFs)) and other kinematics (6 features, e.g., inter-joint coordination index (IJCI) [35],
time, trunk compensation [36]).The detailed calculation of these features are elaborated
in Appendix A. 13 RF classifiers, respectively corresponding to 13 items, were trained,
for item 3–13,15,16 (Table 1). The features stated above were used as input and the scores
evaluated by one experienced therapist were used as labels.

Comprehensively considering the smoothing effect and computation time, the two
main parameters of the SSA filter, the window length L and the reconstruction subsequence
number k, were set to 15 and 2, respectively. Additionally, the two main parameters of
the RF classifier, the number of trees n and the number of features f, were set to 100 and 6.
The parameter n was selected by five-fold cross validation. A sequence of increasing values
was applied until the results tended to stabilize.
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Table 3. Extracted Features for Each FMA Test Item.

Category FMA Item
Feature
Category/Symbol

Feature

Shoulder/Elbow

3–17

(except

14,17)

Endpoint Path length of the
endpoint

Max velocity

Mean velocity

Velocity variance

Spectral arc length

Dimensionless jerk

Angle

(Shoulder flexion,

shoulder adduction,

shoulder rotation,

elbow flexion)

Range of motion
(ROM)

Max angle

Min angle

Max angular velocity

Mean
angular velocity

Angular velocity
variance

Others Inter-joint
coordination index

Time

Max shoulder joint
displacement (X, Y, Z)

Trunk compensation

Wrist/Hand

14 δmax, Φmax

Max elbow flexion
angle and forearm
angle

17 αmax, Φmax

Max shoulder flexion
angle and forearm
angle

19–22 θmax, θmin
Wrist pitch angle
(max, min)

23 θmax, ψmax
Wrist pitch angle and
yaw angle (max, min)

24, 25 ηi,max, ρmax

Finger tip anlge and
hand grab strength
(max, min)

Grasp 26–30 Vmax, Fmax Max voltage and force

Coordination/Speed

31 SPARC Spectral arc length

32 dr,min

Min relative distance
between wrist and
nose

33 T Time

2.3.3. The Other Three Parts

For the Coordination/Speed part, the parameter L of the SSA algorithm was slightly
adjusted so as to avoid removing motion details and maintain the tremor information
for item 31. For the Wrist/Hand part, the Leap Motion Data was composed of hand
bone vectors and some variables (palm orientation, hand opening, closing degree, etc.)
generated by Leap Motion SDK. Data were also first preprocessed using an SSA filter. Then
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specific features listed in Table 3 were selected for each FMA item for later scoring based
on logical rules.

All these rules were based on an IF-ElSEIF-ELSE logic model, as shown in Figure 3B.
There was an additional prerequisite for FMA items 14, 17, and 33 (marked gray). For
14 and 17, the prerequisite was whether the subject could move to the initial position,
and for 33, the prerequisite was whether the subject could point to the nose with the paretic
limb. With regard to item 24 and 25, there was such a logic model for scoring each finger,
and finally, the item score was obtained by another model with the total score of four fingers
as input. Detailed rules for each item are provided in the Appendix B. The variable with
the subscript p represents the feature of the paretic side, with the subscript h represents
the less-affected side, and with the subscript N represents the normal reference, which is a
constant calculated from the mean value of all subjects’ less-affected side features. Notably,
the threshold λ1 and λ2 in each rule were set as 1/3 and 2/3, respectively, achieving the
effect of three equal divisions, which were approved by experienced clinicians.

2.4. Data Analysis

The following metrics were calculated in this study. By default, the Leave-One-Out
Cross-Validation (LOOCV) method [37] was used for performance evaluation of the RF
segment, and the average less-affected-side kinematic features of all subjects were used
as the standard references for the RB segment. The LOOCV method uses one subject as
the test set and all other subjects as the training set and iterates this step n times (n is the
sample size). Then offline scores for each item of each person could be obtained.

1. Total scores: Using Pearson’s correlation coefficient, the correlation between the
system and therapist scores was investigated. In addition, in order to further prove the
system value in practical applications, a simulated online test was also implemented.
The 20 participating patients were first ranked in ascending order according to their
FMA-UE scores. In order to ensure the involvement of different motor function
levels, every other subject was selected to construct a ten-patient training set, and the
remaining ten patients made up the test set. For convenience, the result predicted by
the automated system was abbreviated as S_FMA and that evaluated by the therapist
was abbreviated as T_FMA.

2. Single FMA items: To evaluate the scoring accuracy of the proposed system, both
the prediction accuracy and mean absolute error (MAE) of each item were calculated,
using scores obtained from the therapist as the gold standard. The consistency between
all the scores for a total of 600 items (30 items for each of 20 subjects) obtained by these
two assessment methods was estimated by linear weighted Cohen’s kappa coefficient.
Four additional macro-averaged metrics, including F1-score, sensitivity, specificity,
and precision, were also calculated according to the confusion matrix.

All statistical analyses were performed via SPSS (IBM, Chicago, IL, USA).

3. Results

3.1. Participants

A total of 20 patients with stroke participated in this study. Table 4 presents the
detailed characteristics of the population.
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Table 4. Characteristics of Stroke Subjects.

Index Age Sex
Time since

Stroke Onset
(Month)

Paretic Side MMSE Brunnstrom FMA-UE

P1 54 M 2 Left 28 2 14

P2 70 F 4 Right 29 6 66

P3 51 M 1 Left 30 4 54

P4 61 M 7 Left 28 3 32

P5 43 F 2 Left 29 4 45

P6 70 F 24 Left 27 2 9

P7 69 F 3 Left 29 5 57

P8 58 M 2 Right 30 5 61

P9 58 M 4 Right 28 3 20

P10 54 M 1 Right 28 2 13

P11 73 M 7 Left 24 2 25

P12 68 M 2 Right 28 4 28

P13 33 M 11 Left 28 4 30

P14 56 M 24 Right 29 4 40

P15 74 M 2 Right 27 3 16

P16 61 M 22 Left 27 2 12

P17 70 F 1 Left 28 3 20

P18 58 M 5 Left 28 5 55

P19 51 M 2 Left 27 3 16

P20 47 M 1 Left 28 5 50

3.2. Performance Evaluation on Total Scores

Correlation between S_FMA and T_FMA was particularly high (r = 0.981, p < 0.01)
(Figure 4), indicating that the system has a strong ability to produce FMA-UE scores
consistent with the therapist.
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r=0.981, p<0.01

Figure 4. The correlation between the summed scores of the 30 items obtained by the automated
system and by a therapist (n = 20).
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In order to further verify the system value in practical applications, online testing was
simulated. The FMA-UE scores of the 20 participating patients in this study are displayed
in Figure 5A in ascending order, which are evenly distributed. As shown in the Figure 5B,
Pearson’s correlation coefficient between S_FMA and T_FMA (r = 0.982, p < 0.01) of the
simulated online test was equal to the offline test.

Figure 5. (A) The FMA-UE scores of 20 subjects. The subjects with red triangle markers were
regarded as the training set in the simulated online test, and other subjects were used as the test set.
(B) Simulated online test results, the correlation between the total scores of the 30 items obtained by
the automated system and by a therapist in the test set (n = 10).

3.3. Performance Evaluation on Single FMA Items

Figure 6A depicts the performance of single FMA items in two indicators: classification
accuracy and MAE. Due to different scoring methods and accuracy evaluation approaches,
all items were divided into two segments to show the results: the Shoulder/Elbow part
and the other three parts, distinguished by two different colors. Item 3, 4, 5, and 7 had
the highest accuracy (100%), and item 12 and 23 had the lowest accuracy (60% and 55%,
respectively) among each segment. The maximum error (0.55 points) appeared in item 12,
which was still far less than the resolution of the scale: 1 point.

Figure 6B shows the confusion matrix of FMA scores assigned by the therapist versus
scores estimated by the automated system. The accuracy for score 0 (78.3%) and 2 (90.2%)
was higher than that for score 1 (75.1%), implying that the system performed better in
extreme cases. Meanwhile, prediction errors mainly occurred in misjudgment of score 0 as
1 (16.3%) and misjudgment of score 1 as 2 (15%), that is, the system tended to overestimate
results when it deviated from the therapist assessment. Cohen’s kappa coefficient was
0.757, demonstrating a substantial agreement between the two scoring manners.

The mean accuracy, macro-averaged F1-score, precision, sensitivity, and specificity,
and MAE for each segment and for all the selected 30 FMA items are shown in Table 5.
The average accuracy of the RF classification segment was as high as 88.08% and of all
30 items was over 80.83%. The macro-averaged F1-score, precision, sensitivity, and speci-
ficity of all 30 items were 80.97%, 81.11%, 81.22%, and 90.40%, respectively, and there is no
significant deviation between precision and sensitivity. It suggests that the system was well
behaved under all these performance measures. The average MAE of all 30 items was 0.21.
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Figure 6. The results of single FMA items. (A) Prediction accuracy (%) and mean absolute error (MAE)
(points) of each automated FMA item, where the red part denotes the items of the Shoulder/Elbow
category scored by random forest classification, and the blue part denotes those of the other three
parts scored by rule-based logic methods. The bar graph is the accuracy, while the line graph is the
MAE. (B) A confusion matrix showing single item scores assigned by a therapist versus estimated by
the automated system, with 600 items in total (30 items for each of 20 subjects).

Table 5. Average results of performance metrics for single items.

Indicators Shoulder/Elbow Part The Other Three Parts All Four Parts

Accuracy (%) 88.08 75.30 80.83
F1-score (%) 86.59 74.58 80.97
Precision (%) 88.70 74.27 81.11

Sensitivity (%) 85.81 75.22 81.22
Specificity (%) 93.77 87.72 90.40

Mean absolute error 0.15 0.26 0.21

4. Discussion

In the present study, we proposed a complete automated FMA system to indepen-
dently assess upper limb motor function in stroke patients and performed preliminary
validation. On the whole, the total scores of the system were highly linearly correlated
with that of the therapist, which was very close to 1. In terms of single FMA items scores,
there was a considerable agreement between these two assessment methods (System and
Therapist), as shown in Cohen’s kappa coefficient. Meanwhile, detailed scores for each
FMA item were also available, though some still had room for improvement in accuracy.

For the Shoulder/Elbow part using RF classification, the accuracy of each item could
exceed 75% except for item 12 (hand to lumbar spine). For the other three parts using
rule-based logical classification, the accuracy of each item exceeded 65% except for item
23 (wrist circumduction). The highest accuracy 100% occurred in item 3, 4, 5 and 7, which
were parsed from one motion. This reveals that the system can successfully evaluate mul-
tiple aspects in a comprehensive motion with synergies. Apart from the latent defects in
data processing and scoring methods, the motion implementation was also an essential
factor contributing to the poor results of item 12 and 23. Item 12 has a short action stroke,
enhancing the difficulty of motion distinction. Besides, some patients who could complete
this motion well hid their entire forearms behind their backs, causing the misidentifica-
tion of key skeletal points. For item 23, it was found that some subjects had difficulty
understanding and performing the wrist circumduction movement. Even when using the
less-affected side, they might perform compensatory movements. This could mislead both
the therapist and the system.

In the previous studies of automated FMA, Kim et al. [17] only used Kinect to auto-
mate 13 FMA with an average accuracy below 80%. Bai et al. [18] combined Kinect and
one posture sensor to automate 15 items and the accuracy rates range from 73% to 92.7%.
Song el al. [38] used a cellphone as a wearable sensor and developed a cellphone-based sys-
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tem for 20 items, whose average accuracy is 85%. However, they only recruited 10 patients,
and patients with scores between 30–50 were missing. Lee et al. [20] combined Kinect and
FSRs to increase the automated items to 25, achieving an average accuracy of 92% in merely
9 subjects. Compared with them, the proposed system had comparable results with more
automated items validated in a larger number of subjects.

The single item result of MAE was highly negatively correlated with that of accu-
racy (r = −0.976, p < 0.01 for RF classification, r = −0.961, p < 0.01 for RB classification).
The two indicators were almost identical, and most items with the same accuracy rate also
had the same error. One possible reason is that the number of cross-level misclassification
samples for this system was small. In the confusion matrix of Figure 6B, only 5.4% of
0 points were mistakenly predicted as 2 points, and 1.1% of 2 points were mistakenly
predicted as 0 points. This additionally indicates that the system performs well under the
comprehensive evaluation of these two indicators. In terms of the accuracy in 600 items,
the order from high to low was score 2, 0, and 1. The characteristics of extreme levels
tended to be more pronounced and easier to classify accurately. In contrast, the boundaries
between median and extreme levels could be ambiguous, thus resulting in a worse result.
Additionally, system errors generally occurred in evaluating a level higher than the thera-
pist, which should be paid attention to when patients or physicians utilize the automated
system results.

Furthermore, the satisfactory simulated online test result further proved the accuracy
and reliability of the system.It also implied that the proposed method could be promoted
and applied in practice without difficulty, especially no additional experiments or prior
knowledge was needed for the parameter determination.

Compared with other automated assessment systems based on wearable sensors (such
as IMUs) and EMG, the proposed system, mainly relying on RGBD cameras, still has limi-
tations. Wearable sensors allow for more accurate motion data collection without occlusion
issues. More importantly, their use is not limited by the time and location, i.e., by applying
wearable sensors continuous assessment of activities of daily living [39] and assessment
performed at the bedside or in bed can be possible [40]. Unlike kinematic data, EMG can
be utilized to analyze the neuromuscular differences under different motor functions from
a more fundamental perspective, which cannot be obtained by other sensors. Neverthe-
less, the preliminary validation of the system is promising, and the assessment results are
even better [11,15]. In addition, the proposed system can cover a wider assessment scope,
and there is no need to calibrate and wear in advance. To conclude, it is more automated,
convenient, and low cost.

By promoting strengths and avoiding or compensating for weaknesses, the proposed
assessment system can be improved in the following aspects in the future. First, the accuracy
of some single items is kind of unsatisfactory, which resulted in the system tending to
overestimate patients’ motor function. In addition to optimizing data processing methods,
refining the instructions and adjusting evaluation paradigms of this automated system may
also help improve results. Second, the feasibility of the system has only been preliminarily
verified in a small number of subjects. The test-retest reliability will subsequently be
measured with more patients participation. Moreover, although the sensors used are all
non-wearable sensors, the number of sensor types is relatively large (three types of sensors
including RealSense, Leap Motion, and FSRs). This automated system, which is preferably
arranged in a separate room, is more suitable for hospitals, local clinics, or communities.
There is still room for improvement in its convenience. Future work will focus on using RGB
cameras alone to simplify the proposed system. In this way, patients can use a computer or
a smartphone with cameras for evaluation at home.

5. Conclusions

This paper proposed an automated FMA system combining software and hardware,
which is suitable for use in hospitals and communities. A high correlation coefficient
of 0.981 between system and therapist and an average accuracy of over 80% for single
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FMA items were achieved, with 20 patients participating. It demonstrates that this system
can supplement and has the potential to replace the manual evaluation of the therapist.
Compared to previous studies, the completeness of the system eliminates the need for
therapists to perform complementary assessment items. This significantly saves their time
and reduces their workload, allowing them to focus on rehabilitation training.
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Appendix A. Detailed Feature Extraction Methods

To construct the kinematic metrics in the endpoint space, the endpoint displacement
di between two frames is calculated first: di = ‖Wi − Wi−1‖, i = 1, · · · , n where Wi is the
Cartesian 3D coordinates of the wrist in the ith frame and n is the total number of recorded
frames. di multiplies fps is the velocity and the sum is the path length.

The computable joint angles involved in the moving process include: shoulder flex-
ion/extension angle (α), adduction/abduction angle (β), internal/external rotation angle
(γ) and elbow flexion/extension angle (δ). The first three angles were defined by Euler
angles from the rotation matrix with XZY sequence, which is further elaborated below.

The coordinate systems of the thorax and the humerus segments for both sides from
the 18-joint skeleton of RealSense is shown in Figure A1. Take the right side as an example,
and the left side is similar.

Figure A1. Coordinate systems of the thorax and the humerus segments.
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The definition of the thorax segment coordinate system C1 is as follows: SpineMid
(SM) is defined as the midpoint of HR and HL (A1). The y-axis is the unit vector going
from SM to SS (A2), the z-axis is the unit vector perpendicular to the the plane formed by
y-axis and the vector from SR to SM (A3), and the x-axis is defined by y and z-axes to create
a right-hand coordinate system (A4).

SM =
1
2
(HR + HL) (A1)

yC1 =
SS − SM

‖SS − SM‖ (A2)

zC1 =
(SS − SR)× yC1∥∥(SM − SR)× yC1

∥∥ (A3)

xC1 =
yC1 × zC1∥∥yC1 × zC1

∥∥ (A4)

C1 = [xC1 , yC1 , zC1 ] (A5)

The definition of the right humerus segment coordinate system C2 is as follows: the
y-axis is the unit vector going from ER to SR (A6), the z-axis is the unit-vector perpendicular
to the plane formed by y-axis and the vector from ER to WR (A7), and the x-axis is also
defined by y and z-axes to create a right-hand coordinate system (A8).

yC2 =
SR − ER

‖SR − ER‖ (A6)

zC2 =
(WR − ER)× yC2∥∥(WR − ER)× yC2

∥∥ (A7)

xC2 =
yC2 × zC2∥∥yC2 × zC2

∥∥ (A8)

C2 = [xC2 , yC2 , zC2 ] (A9)

Then the rotation Matrix R1
2 can be obtained via the parent coordinate system C1 and

the child coordinate system C2 (A10). Shoulder flexion/extension, adduction/abduction,
and internal/external rotation angles (α, β, γ in order) are Euler angles from R with XZY
sequence.

R1
2 = C−1

1 C2 (A10)

Additionally, the elbow flexion/extension angle is defined as:

δ =

−→
SE · −→EW

‖SE‖‖EW‖ (A11)

where
−→
SE = SR − ER or SL − EL, and

−→
EW = ER − WR or EL − WL.

The minimum relative distance between wrist and nose is defined as:

dr,min = min(
‖NW‖
‖NK‖ ) (A12)

where NW = N − WR, NK = N − KR or NW = N − WL, NK = N − KL.

Appendix B. Scoring Rules

The scoring rules are listed in Tables A1 and A2.
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Table A1. Logic Classification Rules.

Category FMA Item Rule 1 Score 2

Wrist/Hand

(Rule2 3)

14

If Δ 0

Else If Φ1 0

Else if Φ2 2

Else 1

17

If A 0

Else If Φ1 0

Else if Φ2 2

Else 1

19, 21
If Θ1 0

Else if Θ2 2

Else 1

20, 22
If (Θ1 AND Θ3) OR Θ5 0

Else if Θ2 AND Θ4 AND Θ6 2

Else 1

23
If Θ5 AND Ψ1 0

Else if Θ6 OR Ψ2 2

Else 1

24

If H1i si = 0

Else if H2i AND H6i si = 2

Else si = 1

If ∑5
i=2 si < 8λ1 0

Else if ∑5
i=2 si > 8λ2 AND P1 2

Else 1

25

If H3i OR H5i si = 0

Else if H4i si = 2

Else si = 1

If ∑5
i=2 si < 8λ1 0

Else if ∑5
i=2 si > 8λ2 AND P2 2

Else 1

Grasp

(Rule3)
26–30

If Fmax,p = 0

If Vmax,p = 0 0

Else 1

Else if Fmax,p > λ2Fmax,h 2

Else 1

Coordination

/Speed

(Rule1)

31
If SPARCN

SPARCp
< λ1 0

Else if SPARCN
SPARCp

> λ2 2

Else 1

32
If dr,min,h > λ2 0

Else if dr,min,h < λ1 2

Else 1

33

If dr,min,p > λ2 0

Else If Tp − Th > 6 0

Else if
∣∣Tp − Th

∣∣ < 2 2

Else 1
1 λ1 = 1/3, λ2 = 2/3. 2 Score 0 = cannot perform, 1 = partially completed, 2 = fully completed. 3 The meanings of
symbols in Rule2 are explained in Table A2.
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Table A2. Symbol meanings in Rule2.

Symbol Logic Operation 1

A αmax,p < 30◦

Δ δmax,p < 90◦

Φ1 φmax,p < λ1φmax,N

Φ2 φmax,p > λ2φmax,N

Θ1 θmax,p < λ1θmax,N

Θ2 θmax,p > λ2θmax,N

Θ3 −θmin,p < −λ1θmin,N

Θ4 −θmin,p > −λ2θmin,N

Θ5 (θmax,p − θmin,p) < λ1(θmax,N − θmax,N)

Θ6 (θmax,p − θmin,p) > λ2(θmax,N − θmax,N)

Ψ1 (ψmax,p − ψmin,p) < λ1(ψmax,N − ψmax,N)

Ψ2 (ψmax,p − ψmin,p) > λ2(ψmax,N − ψmax,N)

H1i ηmin,pi >
ηmin,Ni

λ1

H2i ηmin,pi <
ηmin,Ni

λ2

H3i ηmax,pi < λ1ηmax,Ni

H4i ηmax,pi > λ2ηmax,Ni

H5i ηmax,pi − ηmin,pi < λ1(ηmax,Ni − ηmin,Ni)

H6i ηmax,pi − ηmin,pi > λ2(ηmax,Ni − ηmin,Ni)

P1 ρmax,p == 1

P2 ρmin,p == 0
1 λ1 = 1/3, λ2 = 2/3.
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Abstract: Background: Facial paralysis (FP) is a common symptom after stroke, which influences
the quality of life and prognosis of patients. Recently, peripheral magnetic stimulation (PMS) shows
potential effects on peripheral and central nervous system damage. However, the effect of PMS on FP
after stroke is still unclear. Methods: In this study, we applied PMS on the facial nerve of nine stroke
patients with FP. At the same time, laser speckle contrast imaging (LSCI) was used to explore the
facial skin blood flow (SkBF) in 19 healthy subjects and nine stroke patients with FP before and after
the PMS intervention. The whole face was divided into 14 regions to compare the SkBF in different
sub-areas. Results: In baseline SkBF, we found that there were no significant differences in the SkBF
between the left and right faces in the healthy subjects. However, there was a significant difference in
the SkBF between the affected and unaffected faces in Region 7 (Chin area, p = 0.046). In the following
five minutes after the PMS intervention (Pre_0–5 min), the SkBF increased in Region 5 (p = 0.014)
and Region 7 (p = 0.046) and there was an increasing trend in Region 3 (p = 0.088) and Region 6
(p = 0.069). In the five to ten minutes after the intervention (Post_6–10 min), the SkBF increased in
Region 5 (p = 0.009), Region 6 (p = 0.021) and Region 7 (p = 0.023) and there was an increasing trend
in Region 3 (p = 0.080) and left and right whole face (p = 0.051). Conclusions: These pilot results
indicate that PMS intervention could increase facial skin blood flow in stroke patients with FP. A
further randomized controlled trial can be performed to explore its possible clinical efficacy.

Keywords: facial paralysis; peripheral magnetic stimulation; blood flows; laser speckle; stroke

1. Introduction

Central facial paralysis (CFP) is the common sequela for people who suffer from stroke,
which affects about 45% of stroke patients according to a previous study [1]. CFP patients
often present facial muscle dysfunction in the lower part of the face, which refers to the
regions of the face below the eye clefts. It not only affects the facial appearance of patients
but also causes some relevant deficits such as dysphagia and dysarthria [2,3]. Furthermore,
patients with facial paralysis are more likely to have negative emotions like anxiety and
depression than those who do not have facial paralysis [4]. Obviously, it may affect the
training motivation of the CFP patients, which has a negative impact on clinical treatments.
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Thus, paying attention to facial paralysis after a stroke is important, as it influences the
quality of life and prognosis of stroke patients [5].

In clinical practice, the common modalities for treating facial paralysis include oro-
facial exercises [6], mirror therapy [7], acupuncture [8], electrical stimulation [9], and
cupping [10]. Training in which the patient actively activates his facial muscles is called
active rehabilitation, such as orofacial training. Training in which the patient accepts
stimulation passively is called passive rehabilitation, such as acupuncture. Unlike skeletal
muscles of limbs, facial muscles contain smaller motor units [11,12]. It seems difficult
for patients to control facial movements precisely. Thus, applying active rehabilitation
training alone might not achieve satisfactory efficacy. A passive and effective method as a
complementary therapy is needed in treating facial paralysis better [13,14].

In recent years, neurostimulation techniques have been widely used for stroke patients
in motor and sensory function rehabilitation [15]. For example, electrical stimulation is
a common-used technique for facial paralysis in stroke patients [2]. Lee et al. [16] tried
to determine the positive effect of neuromuscular electrical stimulation (NMES) on the
masseter muscle in acute stroke patients. The results showed that it had a therapeutic effect
on oral dysfunction in post-stroke patients. OH et al. [17] applied NMES to stroke patients
on their orbicularis oris muscle and they found the lip strength and lip closure function
of patients were significantly improved. Choi [2] et al. verified the effect of NMES on
improving facial muscle strength and oral function in stroke patients with facial paralysis.
However, the potential for painful feelings and allergic reactions to the electrodes during
treatment limits the further application of electrical stimulation [18,19]. Peripheral magnetic
stimulation (PMS) has been proposed as an alternative to electrical stimulation [20] as it
generates a magnetic field and causes eddy currents inside the body, which is similar to the
operating principle of electrical stimulation. It could directly penetrate deeper structures
and tissues [21] with a less painful sensation of the skin [22] and no risk of inducing
allergic reactions.

As a noninvasive treatment method, PMS induces muscle contractions and sensory
afferents and it is considered to be an effective treatment in individuals with stroke or
other nerve disorders [23–25]. The underlying mechanism of PMS in stroke rehabilitation
has been explored for years. There were studies [26,27] speculating that by using PMS
on hemiplegia limbs, the activation of frontoparietal loops promoted the improvement of
patients’ motor function. Besides, it was found that the increased corticomotor excitability of
the lesioned hemisphere might be one of the key points [28]. Although PMS has been shown
to improve the motor function of the upper and lower limbs in post-stroke patients [14,29],
it has not yet been used in treating the facial dysfunction of stroke patients.

Most post-stroke patients suffer from motor dysfunction and it is mostly manifested
as increased muscle tension, decreased muscle strength, and decreased blood flow [30,31].
Blood flow is one of the most important objective indicators for motor recovery. Several
studies have demonstrated that motor function is related to tissue perfusion or blood flow
in stroke patients [32,33]. As a general evaluation tool, laser speckle contrast imaging
(LSCI) technology is recognized as a useful tool to determine skin blood flow (SkBF). It is
a method of using the speckle pattern created after a laser strikes the moving red blood
cells [34]. A unique edge of LSCI is that it provides real-time imaging to monitor near-
continuous flow and it is a non-invasive method [35]. According to the previous study,
LSCI is recommended for use as an important quantitative tool in clinical studies [36].

As a pilot study, this study aims to compare the facial skin blood flow of healthy
subjects and stroke patients with facial paralysis. As for stroke patients, the whole face
was divided into 14 regions to explore the SkBF characteristics of different facial areas. The
pre-intervention SkBF and post-intervention SkBF were compared to reflect the peripheral
effects of a single peripheral magnetic stimulation. Moreover, a customized questionnaire
was offered to patients and it was a window to reflect the patients’ real feelings and
acceptance of PMS. We hypothesized that the blood flow would increase on the affected
face of stroke patients after the PMS intervention.
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2. Materials and Methods

2.1. Patients Recruitment

This study was performed from March 2022 to April 2022. Nine stroke patients (male,
n = 5) with central facial paralysis and 19 healthy subjects (male, n = 5) without organic
diseases were enrolled in the Department of Rehabilitation Medicine, Shanghai Jing’an
District Central Hospital. The inclusion criteria of stroke patients were: (1) diagnosed
with first unilateral hemispheric stroke confirmed by computed tomography (CT), and/or
magnetic resonance imaging (MRI); (2) stroke onset after two weeks; (3) with unilateral
central facial paralysis; (4) have not been administered drugs like corticosteroids for facial
paralysis. The exclusion criteria were: (1) obvious wounds on faces; (2) diseases that affect
blood flow except for hypertension (e.g., metabolic diseases or limb edema); (3) without
enough cognitive ability to complete the study. Table 1 lists the patients’ demographic and
baseline clinical characteristics.

Table 1. The demographic and baseline clinical characteristics of the stroke patients with facial paralysis.

Patients Sex Age (y) Type of Injury Affected Face
Time Post-Stroke

(Month)
House-

Brackmann

S1 Male 46–50 hemorrhage Right 11 IV
S2 Male 66–70 ischemia Right 4 III
S3 Male 51–55 ischemia Right 4 II
S4 Male 46–50 hemorrhage Left 52 IV
S5 Female 66–70 ischemia Left 6 III
S6 Female 71–75 hemorrhage Right 2 II
S7 Female 66–70 ischemia Right 1 II
S8 Female 51–55 hemorrhage Right 105 II
S9 Male 71–75 ischemia Left 5 IV

The study received approval from the Ethics Committee of Shanghai Jing’an District
Central Hospital (KY2022-06), and each participant or his/her authorized representatives
provided written informed consent for study participation. This study was registered in
the Chinese Clinical Trial Registry (ChiCTR2200057805).

2.2. Measurement of Facial Skin Blood Flow

In this study, prototype imaging equipment was used to measure the skin’s blood flow.
It includes a CCD camera (acA1300-60 gmNIR, Basler AG, Ahrensburg, Germany) and a
height-adjustable vertical stand. By starting measurements, a diverging near-infrared laser
beam with a wavelength of 830 nm was used to illuminate the imaging area. The reflected
light was then collected by the CCD camera with a frame rate of 30 fps and resolution of
640 × 480 (binning 2 × 2). The distance between the laser head and the skin surface was
kept at 25 cm [37] and the imaging area was about 30 cm × 30 cm in size.

All the participants, including the healthy subjects and stroke patients, received the fa-
cial skin blood flow measurement. The healthy subjects received five minutes of facial blood
flow measurement and did not take PMS intervention. Stroke patients sequentially under-
went a 5-min pre-intervention blood flow measurement and a 10-min post-intervention
blood flow measurement. Figure 1 presents the experimental setup.

Before starting the SkBF measurement, both healthy subjects and stroke patients were
asked to rest for 20 min in an air-conditioned room which is maintained at around 22 ◦C
and 40–60% humidity. In addition, the measurements were performed under normal
fluorescent lighting conditions. During measurements, the participants were asked to lie
down on the examination bed and close their eyes. They were also asked to keep their faces
neutral and not to make facial movements. SkBF measurement was performed as soon as
the single PMS intervention finished.
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Figure 1. Experimental setup and intervention protocol.

2.3. PMS Intervention

In this study, only stroke patients received PMS intervention. By using a Mag-Pro R30
magnetic device (Tonica Elektronik A/S, Farum, Denmark) and a coil (MMC-140, Tonica
Elektronik A/S), PMS intervention was administered. With the special parabola shape,
the coil generates focused stimulation. The inner diameter of the coil is 25 mm and the
outer diameter is 120 mm. Each stimulation was set as 20 Hz for 1.5 s and the intervals of
every two stimulations were set at 3 s. The intensity level of magnetic stimulation was set
at 15% of the maximal stimulator output for the device. In total, the entire intervention
took about 20 min (1215 s) and produced 270 cycles of stimulation (8100 pulses). During
the intervention, the patients maintained the supine position, and they were asked to keep
relaxing. The stimulating coil was placed over the affected face of the FP patients and kept
perpendicular to the skin to stimulate the outlet of the facial nerve and its branches of the
lower part of the face (zygomatic branch, buccal branch, and mandibular branch).

2.4. The Facial Regions of Interest (ROIs)

In this study, the whole face was divided into 14 regions of interest (ROIs) based on
previous research [38,39]. The 14 regions can represent the characteristics of different parts
of the face in FP patients. There are seven ROIs on each side and are the frontal region
(L1/R1), ocular region (L2/R2), infraorbital region and zygomatic region (L3/R3), nasal
region (L4/R4), buccal region (L5/R5), lip region (L6/R6) and the chin region (L7/R7). All
the ROIs are distributed in pairs on the left and right sides of the face (Figure 2).

 

Figure 2. The facial regions of interest. L, left; R, right.
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2.5. Safety Section

In order to reflect the patients’ treatment experience of PMS, a questionnaire including
five subcomponents (tolerance, comfort, preference, pain, and numbness) was designed
and applied. A seven-point Likert scale was used, and “1” means “strongly disagree”
and “7” means “strongly agree” in the questionnaire. After the post-intervention blood
flow measurements, the questionnaire and an open-ended question was answered by the
patients. The question is “Use one word to explain your main feelings during intervention”
(Question 1). Furthermore, on the next day after the PMS intervention, patients were
requested to answer another question “Use one word to explain your intervention-related
feelings today” (Question 2).

2.6. Statistics

We used P1 to stand for 0–5 min before the PMS intervention, P2 for 0–5 min after
the PMS intervention, P3 for 6–10 min after the PMS intervention, and P4 for 0–10 min
after the PMS intervention. Averaged SkBF was calculated for P1, P2, P3, and P4. A t-test
was conducted to compare the differences in SkBF between the healthy subjects and stroke
patients. It is also applied to analyze the skin blood flow in the left and right sides of
the faces of healthy subjects and the skin blood flow in the affected and unaffected faces
of stroke patients. A paired t-test was adopted for the comparison before (P1) and after
the PMS intervention (P2, P3, and P4) in stroke patients. Analyses were conducted using
SPSS version 23.0 (IBM Inc., Chicago, IL, USA). Data of skin blood flow and scores of five
subcomponents of the questionnaire are presented as the mean ± standard deviation. A
p-value of <0.05 (two-sided) was considered to indicate a significant result.

3. Results

3.1. Left and Right Facial Skin Blood Flow of Healthy and Stroke with FP

Table 2 shows the facial skin blood flow between healthy subjects and stroke patients
with facial paralysis. There were no significant differences in the SkBF between the left and
right faces of the seven regions and both half faces in the healthy subjects. There were also
no significant differences in SkBF between the affected and unaffected face except for a
significant difference in Region 7 (p = 0.046) between the affected (219.32) and unaffected
(231.56) face in the stroke patients with FP. The facial skin blood flow in Region 7 of the
affected face was lower than that on the unaffected face.

Table 2. The facial skin blood flow between healthy subjects and stroke patients with facial paralysis.

Healthy Subjects (n = 19)
Stroke Patients (n = 9)

Pre-Intervention

Region Left Right p Value Affected Unaffected p Value

1 151.00 151.36 0.947 145.89 156.43 0.139
2 203.18 201.86 0.659 200.52 206.09 0.378
3 209.23 215.95 0.142 181.84 199.50 0.286
4 233.10 230.75 0.616 235.45 240.20 0.192
5 191.90 191.16 0.931 134.45 166.05 0.181
6 237.20 236.17 0.639 225.00 237.11 0.130
7 232.16 238.53 0.099 219.32 231.56 0.046

half face 197.44 198.14 0.695 193.60 201.30 0.289

Compared to the SkBF of the left (197.44) or right (198.14) face of the healthy subjects
(p = 0.695), the facial skin blood flow of the stroke patients (p = 0.289) on the affected face
(193.60) was lower while that of the unaffected face (201.30) was higher. However, no
significant differences were found between the two groups.
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3.2. Left and Right Facial Skin Blood Flow before and after PMS in Stroke with FP

Table 3 shows the facial skin blood flow before and after a single PMS intervention in
stroke patients with FP. Before the intervention, the SkBF on the affected face (both on the
half face and seven regions) of all patients was lower than that on the healthy side. After
the intervention, the SkBF on the affected face (both on the half-face and seven regions)
in stroke patients all increased and it even exceeded that of the unaffected side in some
areas (half face, Region 2, Region 3, Region 4, Region 5, Region 6, Region 7). There was no
statistical difference between the affected and unaffected sides after the PMS intervention,
but it shows a trend. For the affected and unaffected half face, the facial skin blood flow
changed from 193.60 (P1) to 203.62 (P2) and 205.58 (P3) on the affected face, and from 201.30
(P1) to 200.51 (P2) and 205.13 (P3) on the unaffected face.

Table 3. The facial skin blood flow between the affected and unaffected faces in stroke patients with
facial paralysis.

Pre_0–5 min (P1) Post_0–5 min (P2) Post_6–10 min (P3) Post_0–10 min (P4)

Region Affected Unaffected p Value Affected Unaffected p Value Affected Unaffected p Value Affected Unaffected p Value

1 145.89 156.43 0.139 151.87 153.96 0.665 155.63 160.35 0.268 154.01 156.81 0.501
2 200.52 206.10 0.378 209.56 205.15 0.079 208.71 208.44 0.959 209.21 206.54 0.435
3 181.84 199.50 0.286 203.11 198.85 0.581 200.96 205.54 0.783 202.48 201.86 0.958
4 235.45 240.20 0.192 238.36 239.37 0.496 241.08 239.47 0.284 239.71 239.41 0.820
5 134.45 166.05 0.181 181.21 169.77 0.457 182.27 174.71 0.633 182.72 172.68 0.509
6 225.00 237.11 0.130 238.16 228.50 0.054 242.69 236.06 0.124 240.61 232.49 0.064
7 219.32 231.55 0.046 230.06 221.67 0.116 234.33 226.93 0.170 232.53 224.50 0.107

half face 193.60 201.30 0.289 203.62 200.51 0.306 205.58 205.13 0.919 204.81 202.66 0.510

3.3. The Change of Facial Skin Blood Flow before and after PMS in Stroke with FP

Table 4 shows the statistical differences between pre-PMS and post-PMS intervention
in stroke patients with facial paralysis. On the affected face in stroke patients, the facial
skin blood flow increased significantly in Region 5 (p = 0.014) and Region 7 (p = 0.046)
and there was an increasing trend in Region 3 (p = 0.088) and Region 6 (p = 0.069) before
(P1) and after (P2) the PMS intervention. Furthermore, the SkBF on the affected face of
patients increased in Region 5 (p = 0.009), Region 6 (p = 0.021) and Region 7 (p = 0.023)
significantly, and there was an increasing trend in Region 3 (p = 0.080) and left and right
face (p = 0.051) before (P1) and after (P3) the PMS intervention (Figure 3). However, there
was no significant difference in the SkBF on the unaffected face of stroke patients between
pre-PMS and post-PMS intervention (Figure 4).

Table 4. The statistical differences of the facial skin blood flow between pre-PMS and post-PMS
intervention in stroke patients with facial paralysis. P1, 0–5 min before the PMS intervention; P2,
0–5 min after the PMS intervention; P3, 6–10 min after the PMS intervention; P4, 0–10 min after the
PMS intervention.

Affected Side Unaffected Side

Region\Time P1-P2 P1-P3 P1-P4 P1-P2 P1-P3 P1-P4

1 0.483 0.289 0.362 0.579 0.357 0.929
2 0.150 0.195 0.152 0.823 0.599 0.921
3 0.088 0.080 0.072 0.937 0.538 0.792
4 0.273 0.067 0.115 0.773 0.833 0.800
5 0.014 0.009 0.010 0.778 0.533 0.617
6 0.069 0.021 0.035 0.173 0.832 0.388
7 0.046 0.023 0.023 0.107 0.403 0.197

half face 0.126 0.051 0.077 0.838 0.395 0.744
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Figure 3. Bar plots of facial skin blood flow of the affected face before and after peripheral magnetic
stimulation in stroke patients with facial paralysis. P1, 0–5 min before the PMS intervention; P2,
0–5 min after the PMS intervention; P3, 6–10 min after the PMS intervention; AF, the affected face;
PU, perfusion index. #, 0.05 < p < 0.1; *, 0.01 < p < 0.05; **, p < 0.01.

Figure 4. Bar plots of facial skin blood flow of the unaffected face before and after peripheral magnetic
stimulation in stroke patients with facial paralysis. P1, 0–5 min before the PMS intervention; P2,
0–5 min after the PMS intervention; P3, 6–10 min after the PMS intervention; UF, the unaffected face;
PU, perfusion index.

3.4. Safety Section

Of the nine stroke patients, six felt muscle twitch, one reflexed vibration sensation,
one felt uncomfortable with the noise of the equipment, and one reported numbness in
Question 1. In Question 2, four patients reported an increase in muscle strength subjectively,
two with a feeling of skin tightening, one with a feeling of skin lifting, and two with no
special feeling on the next day after PMS intervention. Table 5 shows the results of the
questionnaire. The scores of the five subcomponents are tolerance (6.33 ± 0.71), comfort
(5.11 ± 1.36), preference (6.56 ± 0.73), pain (1.44 ± 1.33), and numbness (4.11 ± 2.20),
respectively. Patients reported high tolerance and almost no pain during and after the
PMS intervention.
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Table 5. Results of the questionnaire.

Subcomponent (Description) Scores (Mean ± SD)

Tolerance (I accepted the treatment and stick to finish it until the
end easily for me) 6.33 ± 0.71

Comfort (The treatment process is comfortable) 5.11 ± 1.36
Preference (If the treatment effects are the same, I would prefer
peripheral magnetic stimulation to other facial treatments) 6.56 ± 0.73

Painful (During the treatment, I felt pain in the treated area) 1.44 ± 1.33
Numbness (During the treatment, I felt numbness) 4.11 ± 2.20

4. Discussion

In this study, we compared the face characteristics of SkBF in 19 healthy subjects
and nine stroke patients with FP. The difference in SkBF between healthy subjects and
FP patients was analyzed. Furthermore, a single session of PMS was applied to the nine
stroke patients with facial paralysis. Through the change of SkBF before and after the PMS
intervention, we initially explored the peripheral effects of PMS. The SkBF of 0 to 5 min
and 6 to 10 min after the intervention were compared to find the continuous effect of PMS.
Moreover, a questionnaire was offered to the patients to test irsafety and to explore their
feelings and acceptance of PMS.

4.1. Facial Blood Flow on Both Sides of the Participants

Our results showed no statistical difference between the left side and right side in
the facial skin blood flow of healthy subjects. The result was the same as several previous
studies [40,41]. As for the stroke patients, some studies suggested that the blood flow of
stroke patients on the affected limbs was lower than on the unaffected side. Tiftik et al. [33]
showed that the radial and ulnar arteries of the affected side were significantly smaller
in volume flow and end-diastolic velocity. Billinger et al. [42] found that the blood flow
was also reduced in the femoral artery of the affected body. A major reason for this is
likely a lack of physical activity and the disuse of the limbs [32]. Our study firstly explored
the facial skin blood flow of both faces in stroke patients and showed similar conclusions,
of which the SkBF of the affected side was lower than the unaffected side. However, the
differences in SkBF in most of the regions were not statistically significant (R1, R2, R3, R4,
R5, R6). This might be related to the anatomy of the face. Unlike the limbs, the face cannot
complete facial movement with unilateral muscles, but with the coordinated movement of
both sides. It might reduce differences in the blood flow on both sides.

Compared to healthy subjects, the incidence of stroke affects the motor performance
of stroke patients. Some studies speculated that it might be related to the hemodynamic
changes after the stroke onset [32]. Murphy et al. [43] found that a lower magnitude of
muscle perfusion through the femoral artery was observed in the stroke group than in the
neurologically intact participants. Zhang et al. [36] demonstrated that superficial perfusion
of hands which was measured by laser speckle contrast imaging was lower than healthy
volunteers. In our study, compared to healthy volunteers, we also found the affected side
face of stroke patients had a lower skin blood flow.

4.2. The Effects of PMS on Facial Skin Blood Flow

Normal muscle function requires a certain amount of SkBF. Decreased perfusion
after stroke has been suggested as one of the possible reasons for the impact on muscle
performance [36]. Some studies have demonstrated that with the advancement of treatment,
motor recovery is accompanied by an increase in blood perfusion [32]. It may suggest the
potential of blood perfusion as one of the indicators of exercise improvement. As a pilot
study, the outcome measurement was the key to exploring the effectiveness because the
common evaluation indicators were hard to reflect the change of a single intervention. A
real-time evaluation indicator is thus needed. Unlike the study mentioned above which
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applied long-term intervention, we chose the facial skin blood flow as the index to monitor
the change in muscle status.

In our study, patients presented a higher facial skin blood flow after the PMS interven-
tion. The SkBF in Region 5 and Region 7 both significantly increased in P2 and P3 compared
to P1. It is likely that the continuous stimulation of PMS leads to passive facial muscle
movement in stroke patients which contributed to the increase in blood flow. Furthermore,
the major symptom of central facial paralysis patients is mouth drooping. That is one of the
reasons why Region 5 and Region 7 (related regions) have obvious changes compared to
other regions [44]. The SkBF in Region 3 maintained an increasing trend in both P2 and P3.
Interestingly, as time went on, the SkBF in Region 6 changed from an increasing trend in P2
to a significant increase in P3 compared to P1, which suggested an accumulative effect of
the PMS intervention [45]. Besides, there was also an increasing trend in the affected face
which covered Region 1 to Region 7. This suggested the activation effect on SkBF from the
PMS intervention [28]. Previous studies [46–48] considered that both peripheral magnetic
and electrical stimulations can have a modulating and activating effect, which would lead
to improvements in sensorimotor function. Additionally, the possible mechanisms that may
underlay regional differences in facial SkBF are the autonomic control, and local control of
vasomotion in facial skin vessels [49]. That means when facing different physiological or
psychological stimulation, human faces present unique responses in facial regions [50].

4.3. The Acceptance of the Facial PMS Intervention

According to the questionnaires, patients had a high tolerance and comfort during the
PMS intervention. They felt little pain caused by the magnetic stimulation. However, some
patients reported a feeling of mild numbness. It might be due to the stimulation affecting
the surrounding nerve (trigeminal nerve), which is mainly responsible for facial sensation.
Overall, patients had a higher preference for PMS compared to other treatments, which
suggested the high acceptance of PMS. In addition, through the open-ended questions, we
found that the immediate feeling during treatment and the subsequent feeling the next
day after intervention were not the same. During PMS stimulation, most patients felt
the twitching of the muscles. On the next day, most patients felt an increase in muscle
strength on the affected side. It might be caused by the legacy effects of PMS stimulation
on the receptors.

There are some limitations to be noted in this study. First of all, the sample size was
small, which consisted of only nine stroke patients and 19 healthy subjects. With a larger
sample, it might help to eliminate outliers and present robust data better. Furthermore,
although we performed a single PMS intervention, it could not reflect the efficacy of
peripheral magnetic stimulation in improving facial function. Indeed, a direct effect would
take several weeks to occur [45 s].

5. Conclusions

This study demonstrated that the facial skin blood flow increased on the affected
face of stroke patients with facial paralysis after a single session of PMS intervention. The
findings of this study extended the possible application of PMS and preliminarily verified
the feasibility of applying PMS to stroke patients with facial paralysis.
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Abstract: Objective: To assess the effects of repetitive transcranial magnetic stimulation (rTMS) on
the gait and postural control ability of patients with executive dysfunction (ED) after stroke. Methods:
A total of 18 patients with ED after stroke were randomly assigned into two groups, including
an experimental group and a sham group. Patients in both groups received routine rehabilitation
therapy, and patients in the experimental group underwent rTMS on the left dorsolateral prefrontal
cortex (DLPFC) for 2 weeks (5 HZ, 80%MT, 1200 pulses). In the sham group, patients experienced
sham stimulation treatment, in which the coil was placed vertically with the head. Before and
after treatment, patients in both groups were subjected to Montreal cognitive assessment (MoCA)
scoring, Fugl–Meyer assessment of lower extremity (L-FMA), Stroop color-word test (SCWT), gait
analysis, foot plantar pressure test, 10-m walking test (10MWT), Berg balance scale (BBS), and timed
up and go test (TUGT). In the SCWT, it was attempted to record the time of each card (SCWT-T),
the correct number (SCWT-C), Stroop interference effect-time (SIE-T), and SIE correct count (SIE-C).
The TUGT was categorized into four stages: getting up (GT), walking straight (WT), turning around
(TT), and sitting down (ST), in which the total time of TUGT was calculated. Results: After two
weeks of treatment, the evaluation indexes were improved in the two groups, some of which were
statistically significant. In the experimental group, SCWT-T, SIE-T, SIE-C, GT, WT, TT, ST, and TUGT
were significantly improved after treatment (p < 0.05). SCWT-C, L-FMA score, 10MWT, GT, WT,
stride length, step width, foot plantar pressure, pressure center curve, and activities of daily living
were not statistically different from those before treatment (p > 0.05). After treatment, SCWT-T,
SIE-C, SIE-T, BBS score, TT, and ST in the experimental group were significantly shorter than those
before treatment, with statistical differences (p < 0.05). Compared with the sham group, SCWT-C,
L-FMA score, 10MWT, GT, WT, TUGT, stride length, step width, foot plantar pressure, pressure center
curve, and motor skills were not significantly improved (p > 0.05). Conclusion: It was revealed that
post-stroke rTMS treatment of patients with ED could improve executive function, improve postural
control function, and reduce the risk of falling. In addition, rTMS of DLPFC could be a therapeutic
target for improving postural control ability and reducing the risk of falling.

Keywords: stroke; executive function; postural control; gait; repetitive transcranial stimulation

1. Introduction

The need for post-stroke care due to motor dysfunction and decreased activities of
daily living remarkably limits patients’ ability to participate in society and poses a great
economic burden to their families and society. Decreased postural control after stroke is the
main factor affecting patients’ daily mobility capability and quality of life. The incidence of
post-stroke falling is still noticeable. It has been reported that up to 65% of patients have
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fallen during hospitalization, and 73% of patients have experienced falling at home or in
the community within 6 months after stroke [1].

In our previous study, we found that patients with reduced executive function (EF)
had poorer balance and postural control ability and were at a higher risk of falling [2].
EFs reflect a series of cognitive processes that are necessary for the control of cognitive
behaviors, including decision-making, planning, cognitive flexibility, attention, working
memory, etc. [3]. These important mental abilities can assist people to adapt to complex
conditions. When EF is impaired, patients cannot make plans and perform self-adjustment
according to rules, remarkably hindering patients’ attendance in their families and society.
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation
therapeutic technique that uses a series of magnetic stimuli to target brain areas to modulate
the excitability of neurons in the cortex at the stimulated site. Which can produce long-
term potentiation (LTP) or long-duration long-term depression (LTD) [4]. It is generally
believed that low-frequency rTMS are stimuli with frequency < 1 Hz, while high-frequency
rTMS have frequency > 5 Hz. Low-frequency rTMS reduces cortical excitability, while
high-frequency rTMS upregulate dermal excitability [5]. After a stroke, rTMS can promote
functional recovery by inhibiting the unimpaired excitability of the injured motor cortex or
increasing the impaired hemispheric cortex.

Studies have shown a consistent improvement in cognitive function with rTMS. It has
not been reported that improving post-stroke EF can enhance walking and postural control
abilities. However, whether improving executive function can improve motor function
and postural control ability, and whether TMS treatment on the dorsolateral prefrontal
cortex can improve motor function and postural control after improving executive function
has not been reported. In this study, we tried to improve patients’ executive function by
regulating DLPFC with rTMS and observed whether the patients’ motor function, gait,
balance, and postural control ability were improved while the patients’ executive function
was improved. Through this research, we ultimately want to provide a new treatment
concept for improving patients’ walking and postural control ability.

2. Methods

2.1. Participants

A total of 18 patients with stroke who were admitted to the Department of Rehabilita-
tion Medicine, Beijing Tiantan Hospital Affiliated to Capital Medical University (Beijing,
China) from September 2021 to March 2022 were enrolled (like Figure 1). The inclusion
criteria were as follows: (1) patients aged 35–65 years old; (2) right-handed patients; (3) pa-
tients with a history of the first cerebral hemorrhage or cerebral infarction in basal ganglia;
(4) ≤3 months post-stroke; (5) patients with educational level of junior high school or above;
(6) 15 ≤ MOCA score ≤ 25; (7) ability to walk more than 10 meters independently. The
exclusion criteria were as follows: (1) patients with aggravated/unstable cerebrovascular
disease; (2) patients with a history of complications, such as cerebral hemorrhage due to
trauma, and other neurological or psychological diseases; (3) with infarction in other brain
area or white matter lesions; (4) basal ganglia hemorrhage but no softening foci in the
external capsule; (5) patients with serious heart, lung, liver, or renal dysfunction or with
malignant tumors; (6) patients with sensory aphasia, abnormal sensory and other cognitive
domains, anxiety and depression before or after stroke, and those who were unable to
cooperate with assessment and treatment; (7) a history of epilepsy, or a family history of
epilepsy; (8) the deterioration of conditions, and the emergence of new infarction or a large
area of cerebral infarction. The following criteria were considered for trial suspension:
(1) participants with severe adverse reactions or being unable to continue their participation
in the study; (2) deterioration of the conditions or serious complications; (3) participants
who did not cooperate or did not receive treatment according to regulations; (4) leaving the
study by participants and their family members.
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Figure 1. Recruitment flow chart.

A total of 18 patients were finally enrolled in this study. Using the random number
table method, patients were assigned into 2 groups (n = 9 cases in each group). In the
treatment group, there were 7 men and 2 women who were aged (54.6 ± 11.83) years
old, including 5 cases of cerebral infarction and 4 cases of cerebral hemorrhage (3 cases of
left-sided lesions and 6 cases of right-sided lesions). They had been educated for 9–15 years.
In the sham group, there were 8 men and 1 woman who were aged (57.37 ± 12.78) years
old, including 5 cases of cerebral infarction and 4 cases of cerebral hemorrhage (5 cases of
right-sided lesions and 4 cases of left-sided lesions). There was no statistically significant
difference in baseline data between the two groups (p < 0.05).

All patients signed informed consent. The study was approved by the Ethics Com-
mittee of Beijing Tiantan Hospital Affiliated to Capital Medical University (Approval
No. KY2021-040-02).

2.2. Study Design

A randomized, double-blind study was designed. Patients were randomly assigned
into two groups, including rTMS group (experimental group) and sham group (control
group). All patients were blinded to the treatment. Evaluators were also unaware of
patients’ grouping. Patients in both groups received routine secondary prevention of
cerebrovascular events and routine rehabilitation treatment. Standardized comprehensive
rehabilitation treatment program is the use of nerve promotion technology, Bobath therapy,
exercise relearning method, and traditional exercise therapy to comprehensively apply
to the overall rehabilitation of stroke patients with hemiplegia. Each patient received
rehabilitation training for 45 m/day.

The rTMS protocol: in the experimental group, the “8” coil was positioned on the
surface of the scalp of the left dorsolateral prefrontal cortex (DLPFC) projection area. The
coil was placed vertically in the sham group [6]. Electromyographic electrode was used
to record motor evoked potentials (MEPs) at the muscular abdomen of the first dorsal
interosseous muscle. According to the guidelines of the International Federation of Clinical
Neurophysiology published in 2012, when determining the threshold of resting exercise,
subthreshold stimulation should be used to start with the initial detection of 35% maximum
output intensity (MOI), and the stimulus intensity gradually increased. Generally, 5% MOI
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gradually increases, which can continuously lead to MEP with wave amplitude > 50 μV.
Then, the stimulus intensity gradually decreases until no more than 5 effective MEPs in
10 stimuli, and an additional 1% increase in the output intensity indicates the resting motor
threshold (MT). In the present study, stimulation frequency was 5 Hz, and it was attempted
to use a stimulus intensity of 80% MT and 1200 pulses for 5 days/week for 2 weeks. If
patients feel uncomfortable, the treatment was immediately stopped, and it was essential
to indicate whether there were any uncomfortable symptoms 20 min after the treatment.

At present, the relevant parameters of TMS treatment for motor function, cognitive
function, and sensory function after stroke are not unified, and the results are mostly
effective, but there is no comparison of the efficacy of two different parameters. According
to “Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic
stimulation (rTMS): An update (2014–2018)” [7], Mainly studies choose the stimulation
frequency was 5 Hz–20 Hz, stimulus intensity of 80–110% MT and 600–2000 pulses for
5 days/week for 2–4 weeks”. Considering that our enrolled patients were all patients in
the early stage of stroke, we conservatively chose the prescription of the disclosed dose
and frequency, also taking the advice from some experts.

2.3. Assessments

Screening: the scores of MoCA and the Stroop color-word test (SCWT) were utilized as
the outcome measures of EF. The lower limb Fugl–Meyer assessment of (L-FMA) was used
to assess the lower limb motor function. The 10-m walking test (10MWT), gait analysis,
and plantar pressure analysis were employed to assess the gait and postural control ability.
Berg balance scale (BBS) and timed up and go test (TUGT) were used to assess the balance
and postural control function.

MoCA scoring was developed by Nasreddine et al. [8]. It is a simple screening tool to
assess cognitive and attentional/executive functions, and it has also been used in studies
on executive function assessment [9]. SCWT was used to measure executive function. It has
three cards: card A included 50 color words (yellow, red, blue, and green); card B consisted
of dots in four colors (yellow, red, blue, and green); card C covered four color words, which
were printed in four different colors (yellow, red, blue, and green). In lieu of thinking
about the meaning of each word, subjects were asked to identify color of each word as
quickly and accurately as possible. Examiner recorded the time of each card (SCWT-T) and
the correct number (SCWT-C). Stroop interference effect (SIE) was calculated as follows:
SIE-time (SIE-T) = time of card C − time of card B; SIE correct count (SIE-C) was calculated
as follows = correct number of card B − correct number of card C. The greater of the SIE,
the worse the interference inhibition function, and the worse the EF.

Analysis of gait and plantar pressure: using the Zebris FDM 1.12 measuring system,
subjects were asked to wear tight clothing, and thin socks on test board with their upper
limbs swinging in a natural rhythm. “START” was clicked, and data were collected 30 s
after adaptation. The following parameters of walking cycle were extracted: step speed,
stride length, step width, foot plantar pressure, the peak values of forefoot and rear foot
pressure, the length of support line in front and back directions of COP in a single support
period, and the difference between the left and right symmetries.

In the TUGT, as described previously [2], the TUGT was categorized into the four
stages: getting up (GT), walking straight (WT), turning around (TT), and sitting down (ST),
and the total time of TUGT was also recorded.

2.4. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 8.0 software (GraphPad Soft-
ware, Inc., San Diego, CA, USA). The basic data were presented by frequency, constituent
ratio, mean and standard deviation, etc., and the continuous variables were statistically
described by mean ± standard error. The measurement data satisfied normal distribution
and homogeneity of variance. The paired-sample t-test was used for intra-group compari-
son at different time points, the independent sample t-test was employed for inter-group
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comparison at the same time point, and the chi-square test was utilized for the analysis of
count data. A two-sided p < 0.05 was considered statistically significant.

3. Results

3.1. Baseline Data

There was no statistically significant difference between the two groups in the baseline
data before treatment (p > 0.05) (Table 1).

Table 1. The baseline data.

Group Age (Year) Sex (n)
Hemiplegic

Limb (n)
Onset Time

(Month)
Type (n)

Sham group 57.37 ± 12.78 F 1
M 8

L 4
R 5 1.34 ± 0.27 CH 4

CI 5

Experimental group 54.6 ± 11.83 F 2
M 7

L 3
R 6 1.01 ± 0.32 CH 4

CI 5

CH: cerebral hemorrhage; CI: cerebral infarction.

3.2. SCWT before and after Treatment

Before treatment, there was no significant difference in SCWT score between the two
groups (p > 0.05). After 2 weeks of treatment, SCWT-T, SIE-T, and SIE-C in the experimental
group were significantly improved compared with those before treatment (p < 0.05). SCWT-
C was elevated, while there was no statistical significance (p > 0.05). In the sham group,
SCWT-T, SCWT-C, SIE-C, and SIE-T were not significantly improved compared with those
before treatment (p > 0.05). In the experimental group, significant differences were found
in SCWT-T, SIE-C, and SIE-T after treatment compared with those in the sham group
(p < 0.05), while no significant difference was noted in SCWT-C compared with that in the
sham group (p > 0.05) (Table 2).

Table 2. SCWT and SIE test.

Group SCWT-T (s) SCWT-C (n)

Before After T p Before After T p

Sham group 130.36 ± 26.78 118.78 ± 38.34 2.35 0.36 134.90 ± 2.38 140.34 ± 43.25 −2.72 0.23
Experimental

group 125.98 ± 31.70 99.26 ± 18.62 5.43 0.006 # 126.47 ± 3.69 146.73 ± 43.25 3.42 0.09

T 1.58 5.69 1.32 −2.79
p 0.67 0.009 * 0.59 0.25

Group SIE-T (s) SIE-C (n)

Before After T p Before After T p

Sham group 35.36 ± 16.78 28.78 ± 11.26 1.98 0.48 11.05 ± 4.27 8.79 ± 2.52 2.47 0.37
Experimental

group 41.03 ± 9.37 15.37 ± 8.04 5.79 0.002 † 10.74 ± 3.39 4.28 ± 0.98 5.78 0.002 †

T 2.36 5.21 1.47 6.79
p 0.35 0.004 ‡ 0.49 0.001 ‡

Before: before treatment; after: after treatment; #: SCWT-T in the experimental group was significantly improved
compared with those before treatment (p < 0.05); *: In the experimental group, SCWT-T was significant differences
compared with those in the sham group after treatment (p < 0.05); †: SIE-T and SIE-C in the experimental group
were significantly improved compared with those before treatment (p < 0.05); ‡: In the experimental group, SIE-T
and SIE-C were significantly improved compared with those in the sham group after treatment (p < 0.05).

3.3. L-FMA Score before and after Treatment

Before treatment, there was no statistically significant difference in L-FMA score
between the two groups (p > 0.05). After weeks of treatment, the L-FMA scores in the
experimental group were not significantly elevated compared with those before treatment
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(p > 0.05). There was no significant difference in L-FMA score between the two groups
before and after treatment (p > 0.05) (Table 3).

Table 3. The lower limb Fugl–Meyer assessment.

Group
Before

Treatment
After Treatment T p

Sham group 20.27 ± 7.37 29.82 ± 9.25 −1.98 0.48
Experimental

group 24.01 ± 8.27 31.95 ± 10.28 −1.70 0.51

T −1.99 −1.38
p 0.43 0.51

There was no significant difference in L-FMA score between the two groups before and after treatment (p > 0.05);
there was no significant difference in L-FMA score in each group before and after treatment (p > 0.05).

3.4. MWT and BBS Scores before and after Treatment

Before treatment, there was no significant difference in the 10MWT and BBS scores
between the two groups (p > 0.05). After two weeks of treatment, the BBS score in the
experimental group was significantly higher than that before treatment (p < 0.05). There
was no significant difference in the 10MWT score before and after treatment (p > 0.05).
After treatment, the BBS score in the experimental group was significantly higher than that
in the sham group (p < 0.05). There was no significant improvement in the 10MWT score
between the two groups, and there was no statistical difference in the 10MWT and BBS
scores in the sham group before and after treatment (p > 0.05, Table 4).

Table 4. The 10MWT and BBS score.

Group 10MWT (s) BBS

Before After T p Before After T p

Sham group 21.57 ± 10.36 16.47 ± 6.36 2.01 0.31 41.73 ± 12.32 46.79 ± 12.51 −2.56 0.39
Experimental

group 19.28 ± 7.61 16.28 ± 4.23 1.98 0.42 39.69 ± 13.47 52.37 ± 13.48 −5.12 0.002 #

T 1.27 0.96 2.03 −4.79
p 0.57 0.64 0.35 0.011 *

There was no significant difference in 10MWT score between the two groups before and after treatment
(p > 0.05); there was no significant difference in 10MWT score in each group before and after treatment (p > 0.05).
#: The score of BBS in the experimental group was significantly improved compared with those before treatment
(p < 0.05); *: in the experimental group, the score of BBS was significantly higher than those in the sham group
after treatment (p < 0.05).

3.5. TUGT Score before and after Treatment

Before treatment, there were no significant differences in GT, WT, TT, ST, and TUGT
between the two groups (p > 0.05). After two weeks of treatment, the total time of GT,
WT, and TUGT in the experimental group was not significantly different from that before
treatment (p > 0.05). In addition, the duration of TT and ST in the experimental group
was significantly shortened after treatment compared with that before treatment (p < 0.05).
There were no significant differences in WT, TT, ST, TT, ST, and TUGT in the sham group
compared with those after treatment (p > 0.05). After treatment, in the experimental group,
the duration of TT and ST significantly decreased compared with that in the sham group
(p < 0.05). Moreover, GT, WT, and TUGT showed no significant improvement compared
with the sham group (p > 0.05) (Table 5).

3.6. Gait and Foot Plantar Pressure Parameters before and after Treatment

Stride length, step width, and COP are the line from front to back and bilateral
symmetry (the difference between left and right lateral COP trajectories) in a single support
period. There was no significant difference between the two groups before and after
treatment (p > 0.05). After treatment, there were no statistically significant differences in
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stride length, step width, and COP in the anteroposterior distance and the left and right
symmetries between the two groups (p > 0.05) (Table 6).

Table 5. TUGT (s).

Group
Before

Treatment
After

Treatment
T p

GT
Sham group 3.27 ± 0.25 2.92 ± 0.56 1.35 0.5

Experimental group 4.01 ± 0.82 2.95 ± 0.22 1.65 0.51
T 1.90 −0.8
p 0.63 0.81

WT
Sham group 12.84 ± 4.3 9.85 ± 2.31 1.78 0.42

Experimental group 14.01 ± 5.24 10.05 ± 4.26 1.81 0.39
T −1.61 −1.23
p 0.48 0.77

TT
Sham group 4.27 ± 1.34 3.81 ± 0.85 1.75 0.48

Experimental group 5.01 ± 1.21 1.95 ± 0.68 4.85 0.01 #
T −1.99 5.38
p 0.43 0.00 *

ST
Sham group 3.83 ± 0.31 2.03 ± 0.45 2.18 0.07

Experimental group 3.90 ± 0.63 1.29 ± 0.08 4.97 0.01 #
T −1.12 4.63
p 0.63 0.01 *

TUGT
Sham group 24.36 ± 7.36 21.36 ± 9.28 2.24 0.28

Experimental group 26.21 ± 8.39 20.95 ± 8.2 4.29 0.02 #
T −1.64 1.47
p 0.33 0.45

#: Time of the TT, ST, TUGT was significantly shorter compared with those before treatment in the experimental
group (p < 0.05); *: in the experimental group, the time of ST, TT was significantly higher than those in the sham
group after treatment. TUGT: time of stand up and go test; GT: time of getting up; WT: time of walking straight,
TT: time of turning around, ST: time of sit down (p < 0.05).

Table 6. Gait analysis and plantar pressure parameters.

Group
Before

Treatment
After

Treatment
T p

Stride (cm)
Sham group 35.21 ± 10.24 40.97 ± 16.4 1.37 0.53

Experimental group 34.01 ± 12.34 42.95 ± 14.52 1.67 0.48
T 1.02 −0.87
p 0.83 0.76

Step width
(cm)

Sham group 14.85 ± 6.34 11.85 ± 4.31 1.48 0.52
Experimental group 16.01 ± 5.72 12.05 ± 6.26 1.61 0.39

T −1.05 −1.03
p 0.68 0.77

Front and
rear support

lines (cm)

Sham group 14.27 ± 1.34 16.81 ± 0.85 −1.25 0.57
Experimental group 15.01 ± 1.21 18.95 ± 0.68 −1.75 0.41

T −1.38 −1.49
p 0.43 0.58

Bilateral
symmetry

(cm)

Sham group 4.83 ± 0.31 4.03 ± 0.45 1.68 0.17
Experimental group 5.42 ± 0.63 3.79 ± 0.08 2.07 0.09

T −1.18 1.63
p 0.52 0.31

There was no significant difference in gait analysis and plantar pressure parameters between the two groups
before and after treatment (p > 0.05); there was no significant difference in gait analysis and plantar pressure
parameters in each group before and after treatment (p > 0.05).

4. Discussion

The results of the present study suggested that high-frequency rTMS stimulation of
DLPFC could improve the response time and anti-interference ability of patients. Although
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no significant changes were observed in gait or L-FMA, balance and postural control were
significantly improved, and the risk of falling during independent daily activities was
significantly reduced.

At present, there is no perfect treatment plan for EF rehabilitation. No controlled
study has concentrated on the efficiency of treatment strategies, and no report has guided
clinicians in the selection of strategies for individual cases. It has been shown that patients
who received rTMS (5~20 Hz at 80%~110% MT) of the left DLPFC could significantly im-
prove ED patients’ EF after stroke. rTMS is a non-invasive brain stimulation technique that
applies pulsed magnetic field to the brain to cause neuronal excitation or inhibition, thereby
affecting brain metabolism and electrical activity. Studies of animal models reported that
the beneficial effect of rTMS may be induced by the upregulation of neurotrophic or growth
factors [10], and rTMS can improve CI in dementia model rats by changing the activity
of N-methyl-d-aspartic acid receptor and brain-derived neurotrophic factor (BDNF) [11].
Studies have shown that cortical plasticity is enhanced after rTMS, which is related to
inhibitory cortical circuits and BDNF upregulation in different functional brain regions [12].
The increased concentration of BDNF in the cerebral cortex may complete synaptogenesis
and promote the formation and branching of dendritic spines, thus promoting cortical
functional remodeling in stroke patients [13].

The cognitive dysfunction after stroke is characterized by impairment of memory,
attention, executive ability, and social behavior. In an epidemiological cohort study on
chronic brain injury, Jaillard et al. [14] reported that the most common cognitive symptoms
were memory impairment (90%), attention impairment (82%), and ED (75%). Different
incidence rates of ED have been reported, depending on the cognitive domain tested and
the definition of executive function. Post-stroke ED may be ignored under perfect environ-
mental conditions in hospitals with the care of nursing, doctors, therapists, and barrier-free
facilities. When they return to their families, communities, or social occupational activities,
their disabilities may be revealed. ED was not detected at the early stage and missed
treatment time, resulting in more serious consequences [3].

EF plays a critical role in post-stroke recovery and has a high risk of functional depen-
dence. Some patients are unable to perform different tasks and others cannot inhibit erroneous
or unrelated behaviors. The majority of patients are only able to complete a single step of a
complex problem, while they are unable to present the right solution. In addition, ED patients
are mainly unable to return to work and have poor social participation ability [15].

EF in the early stage of a stroke may seriously affect the recovery of motor function [16].
A previous study showed that patients with cognitive dysfunction had a worse motor
function recovery one year after stroke. The number of patients with ED who could not
recover their motor function was four times higher than that without ED [17]. A cross-
sectional study of 20 patients with stroke revealed that patients with ED performed worse
on a complex walking test compared with patients with a normal EF [18]. The results of
the present study showed that ED had an effect on walking ability with complex postural
changes, such as turning and sitting, while it slightly influenced walking straight, which
was evidenced by the results of 10MWT, TUGT, and gait analysis.

Disruption of dorsolateral prefrontal subcortical circuitry leads to ED [19]. A previous
study [20] showed that the MoCA score decreased after continuous theta-burst stimulation
(cTBS) damage to the left DLPFC after temporary virtual injury. However, right DLPFC
stimulation did not affect the task performance. The present study suggested that the left
DLPFC is associated with EF. Liu-Ambrose et al. [21] confirmed that ED was independently
associated with poor balance, mobility, and exercise endurance in patients with chronic
stroke. A longitudinal study reported that participants with a poor EF at 3 months and
1 year after a stroke had significantly lower levels of balance and physical activity than
participants without these impairments [20]. From a clinical point of view, individuals who
exhibit deficits in the management of their thoughts and activities after stroke may have
difficulty organizing a family exercise program at discharge [22]. Our previous study also
confirmed that patients with a poor ED in the early stage stroke had poor postural control
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and balance, and balance function and postural control ability were significantly correlated
with EF. Horak et al. [23] hypothesized that individuals with cognitive dysfunction may
more frequently use existing cognitive processing methods to posture control and falling
may be caused by insufficient cognitive processing to posture control, while they are busy
with secondary cognitive tasks. The present study showed that patients with improved EF
in the TUGT could significantly enhance the indicators of turning around and sitting in the
secondary task during walking.

Wagner et al. [24] found that the Stroop task and Wisconsin card sorting test were
significantly improved after dorsolateral prefrontal rTMS treatment. Another study re-
ported that [25] the cognitive function index was significantly elevated in patients with
mild cognitive impairment who received rTMS (10 Hz at 120% of MT) of the left DLPFC.
The results of this study revealed that SCWT-T, SIE-C, and SIE-T of patients significantly
improved after 2 weeks of rTMS treatment. In addition, with the improvement of EF, the
patient’s postural control was significantly enhanced.

According to previous reports, executive dysfunction can hinder the recovery of motor
function. People with ED have worse balance and a higher risk of falling. Therefore, in this
study, we designed to observe the changes in motor function, gait, balance, and postural
control in patients with executive dysfunction before and after treatment. However, the
results of this study showed that there was no significant difference between the two groups
before and after treatment in gait or L-FMA. This result may suggest that the mechanism of
executive function on motor function and gait is different from that of postural control, or
that there is little effect of executive function on motor function.

In the present study, it was found that the inhibitory control ability of patients who
received high-frequency rTMS of the left DLPFC after stroke was significantly improved,
their anti-interference ability was ameliorated, and their postural control ability was raised
during walking. With the improvement of EF, patients’ abilities to turn around and perform
sit-to-stand transfers were significantly improved, BBS was significantly ameliorated, and
the risk of falling was significantly reduced. Although it was proven that improved
cognition could reduce patients’ risk of falling, the gait, and COP were not significantly
improved in the present study, which could be related to the sample size or treatment
duration. Additionally, in order to avoid the effects of biomechanical factors (abnormal
muscle strength, muscle tone, movement pattern) on poor control of posture, patients’
L-FMA scores were generally high, and the abnormal movement patterns were not obvious,
thus, no significant difference was found in the FMALE score after treatment. Gait and
COP may be more influenced by biomechanics, and rhythmic walking requires fewer
cognitive resources [2]. Executive function has a greater impact on postural control than
motor function and gait. After the left DLPFC rTMS, motor function and gait were not
significantly improved with the improvement of executive function, but postural control
ability and balance ability were significantly changed.

5. Conclusions

In summary, ED increases the risk of falling. Moreover, post-stroke rTMS treatment
of the left DLPFC can improve EF, enhance postural control function, and reduce the risk
of falling. It was revealed that rTMS of DLPFC may be a therapeutic target for improving
postural control ability and attenuating the risk of falling.

6. Limitations and Prospects

There are some limitations to the study. It is difficult to collect participants in order to
ensure the consistency of the affected brain regions, further study is still needed because
of the limited cases allotted. In the study, we used the modality to place the coil vertically
in the sham group, which does not ensure adequate simulated stimulation—a sham coil
would be better. That may also have affected the results. In this study, all patients were in
the early stage of stroke, and we conservatively chose the prescription of the disclosed dose
and frequency. Further studies are needed to determine whether there is a better treatment
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option. We will improve them in further research to obtain more meaningful results and
guide clinical practice better.

Author Contributions: Conceptualization, H.Z. and H.Y.; methodology, H.Z. and H.Y.; software,
C.L.; validation, H.Z., S.L. and H.Y.; formal analysis, Z.W.; investigation, H.Y.; resources, H.Y. and
P.D.; data curation, Z.W.; writing—original draft preparation, H.Y.; writing—review and editing, H.Y.
and S.L.; visualization, H.Y.; supervision, H.Z.; project administration, H.Z.; funding acquisition, Z.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by grants from the National Natural Science Foundation of China
(Grant Numbers: 82072548, 81974357, and 81772438), and the National Natural Science Foundation
of Capital Medical University (grant numbers: XZR2021-114).

Institutional Review Board Statement: The study was approved by the Ethics Committee of Beijing
Tiantan Hospital Affiliated with Capital Medical University (approval no. KY2021-040-02).

Data Availability Statement: The data presented in this study are openly available in “Clinical Trial
Management Public Platform”(Number: ChiCTR2200055412). Also, the data can be available on
request from the corresponding author.

Acknowledgments: Thanks to the experts and colleagues who provided guidance and assistance in
this study, and all enrolled patients.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Guo, Q.; Zhou, T.; Li, W.; Dong, L.; Wang, S.; Zou, L. Single-trial EEG-informed fMRI analysis of emotional decision problems in
hot executive function. Brain Behav. 2017, 7, e00728. [CrossRef] [PubMed]

2. Yu, H.-X.; Wang, Z.-X.; Liu, C.-B.; Dai, P.; Lan, Y.; Xu, G.-Q. Effect of Cognitive Function on Balance and Posture Control after
Stroke. Neural Plast. 2021, 2021, 28. [CrossRef] [PubMed]

3. Sergeev, D.V.; Domashenko, M.A.; Piradov, M.A. Poststroke cognitive impairment and dementia. Meditsinskiy Sov. Med. Counc.
2016, 34–37. [CrossRef]

4. Diekhoff-Krebs, S.; Pool, E.M.; Sarfeld, A.S.; Rehme, A.K.; Eickhoff, S.B.; Fink, G.R.; Grefkes, C. Interindividual differences in
motor network connectivity and behavioral response to iTBS in stroke patients. Neuroimage Clin. 2017, 15, 559–571. [CrossRef]
[PubMed]

5. Pacheco-Barrios, K.; Lima, D.; Pimenta, D.; Slawka, E.; Navarro-Flores, A.; Parente, J.; Rebello-Sanchez, I.; Cardenas-Rojas, A.;
Gonzalez-Mego, P.; Castelo-Branco, L.; et al. Motor cortex inhibition as a fibromyalgia biomarker: A meta-analysis of transcranial
magnetic stimulation studies. Brain Netw. Modul. 2022, 1, 88–101.

6. Kim, S.H.; Han, H.J.; Ahn, H.M.; Kim, S.A. Effects of five daily high-frequency rTMS on Stroop task performance in aging
individuals. Neurosci. Res. 2012, 74, 256–260. [CrossRef]

7. Lefaucheur, J.P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.;
Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS):
An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [CrossRef]

8. Wonsetler, E.C.; Bowden, M.G. A systematic review of mechanisms of gait speed change post-stroke. Part 2: Exercise capacity,
muscle activation, kinetics, and kinematics. Top Stroke Rehabil. 2017, 24, 394–403. [CrossRef]

9. Xu, B.; Yan, T.; Yang, Y.; Ou, R.; Huang, S. Effect of normal-walking-pattern-based functional electrical stimulation on gait of the
lower extremity in subjects with ischemic stroke: A self controlled study. Neuro Rehabil. 2016, 38, 163–169. [CrossRef]

10. Toledo, R.S.; Stein, D.J.; Sanches, P.R.S.; da Silva, L.S.; Medeiros, H.R.; Fregni, F.; Caumo, W.; Torres, I.L. rTMS induces analgesia
and modulates neuroinflammation and neuroplasticity in neuropathic pain model rats. Brain Res. 2021, 1762, 147427. [CrossRef]

11. Shang, Y.; Wang, X.; Li, F.; Yin, T.; Zhang, J.; Zhang, T. rTMS Ameliorates Prenatal Stress–Induced Cognitive Deficits in Male-
Offspring Rats Associated With BDNF/TrkB Signaling Pathway. Neurorehabilit. Neural Repair 2019, 33, 271–283. [CrossRef]
[PubMed]

12. Velioglu, H.A.; Hanoglu, L.; Bayraktaroglu, Z.; Toprak, G.; Guler, E.M.; Bektay, M.Y.; Mutlu-Burnaz, O.; Yulug, B. Left Lateral
Parietal rTMS Improves Cognition and Modulates Resting Brain Connectivity in Patients with Alzheimer’s Disease: Possible
Role of BDNF and Oxidative Stress. Neurobiol. Learn. Mem. 2021, 180, 107410. [CrossRef] [PubMed]

13. Stanne, T.M.; Åberg, N.D.; Nilsson, S.; Jood, K.; Blomstrand, C.; Andreasson, U.; Blennow, K.; Zetterberg, H.; Isgaard, J.; Svensson,
J.; et al. Low Circulating Acute Brain-Derived Neurotrophic Factor Levels Are Associated with Poor Long-Term Functional
Outcome After Ischemic Stroke. Stroke 2016, 47, 1943–1945. [CrossRef]

14. Jaillard, A.; Naegele, B.; Trabucco-Miguel, S.; LeBas, J.F.; Hommel, M. Hidden dysfunctioning in subacute stroke. Stroke 2009, 40, 2473.
[CrossRef] [PubMed]

144



Brain Sci. 2022, 12, 1185
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Abstract: (1) Objective: To investigate the feasibility, safety, and effectiveness of a brain–computer
interface (BCI) system with visual and motor feedback in limb and brain function rehabilitation after
stroke. (2) Methods: First, we recruited three hemiplegic stroke patients to perform rehabilitation
training using a BCI system with visual and motor feedback for two consecutive days (four sessions)
to verify the feasibility and safety of the system. Then, we recruited five other hemiplegic stroke
patients for rehabilitation training (6 days a week, lasting for 12–14 days) using the same BCI system
to verify the effectiveness. The mean and Cohen’s w were used to compare the changes in limb
motor and brain functions before and after training. (3) Results: In the feasibility verification, the
continuous motor state switching time (CMSST) of the three patients was 17.8 ± 21.0s, and the motor
state percentages (MSPs) in the upper and lower limb training were 52.6 ± 25.7% and 72.4 ± 24.0%,
respectively. The effective training revolutions (ETRs) per minute were 25.8 ± 13.0 for upper limb
and 24.8 ± 6.4 for lower limb. There were no adverse events during the training process. Compared
with the baseline, the motor function indices of the five patients were improved, including sitting
balance ability, upper limb Fugel–Meyer assessment (FMA), lower limb FMA, 6 min walking distance,
modified Barthel index, and root mean square (RMS) value of triceps surae, which increased by 0.4,
8.0, 5.4, 11.4, 7.0, and 0.9, respectively, and all had large effect sizes (Cohen’s w ≥ 0.5). The brain
function indices of the five patients, including the amplitudes of the motor evoked potentials (MEP)
on the non-lesion side and lesion side, increased by 3.6 and 3.7, respectively; the latency of MEP
on the non-lesion side was shortened by 2.6 ms, and all had large effect sizes (Cohen’s w ≥ 0.5).
(4) Conclusions: The BCI system with visual and motor feedback is applicable in active rehabilitation
training of stroke patients with hemiplegia, and the pilot results show potential multidimensional
benefits after a short course of treatment.

Keywords: brain–computer interface; active rehabilitation training; stroke; motor function; brain function

1. Introduction

Stroke is the second leading cause of death worldwide, but is the first leading cause
of death in China, the world’s most populous country [1–3]. Stroke after interruption
of cerebral perfusion causes rapid loss of brain function, often leading to hemiplegia [4],
which describes partial or complete paralysis on one side of the body, usually due to
extensive cerebral infarction contralateral to the main symptoms [5]. About 60% of stroke
survivors experience persistent impairment of motor function and, consequently, need
rehabilitation [6]. In addition, stroke survivors often suffer from a range of non-motor
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disabilities, including visual and cognitive impairment [7], the composite of which has a
serious impact on daily activities. Therefore, effective treatment and rehabilitation of stroke
patients have been a research focus for many years.

The treatment and rehabilitation of stroke patients entails extensive efforts to help the
brain recover damaged neural connections and compensate for broken neuronal pathways.
The conventional rehabilitative treatments target motor dysfunctions in the upper and lower
limbs, and includes various facilitation techniques [8], functional electrical stimulation
(FES) [9], and other interventions, which generally have lesser effects on the functioning of
the upper limbs in a patient recovering from a serious stroke. In recent years, some emerging
technologies have been applied to the rehabilitation of stroke, such as powered exoskeleton
technology [10] and multi-degree-of-freedom stroke rehabilitation robot technology [11],
and positive effects have been achieved. These emerging technologies may create new
rehabilitation paradigms aimed at accelerating functional recovery in stroke patients [12].

Brain–computer interface (BCI) is a relatively new technology for exchanging informa-
tion between the brain and external devices. With the help of BCI technology, patients can
actively participate in rehabilitation training. BCI has been reported for the rehabilitation of
stroke and similar disorders like Parkinson’s disease, cerebral palsy, and spinal cord injury,
and can significantly promote the recovery of limb function in these patients [13–16]. How-
ever, how to get stroke patients to imagine target tasks more effectively and stably; how to
monitor the performance of imaginary tasks; how to accurately capture and identify task-
related EEG signals; how to convert EEG signals into views, movements, sounds, etc., in
order to achieve the enhanced efficacy of BCI training with multiple sensory feedback; and
how to solve BCI training fatigue to ensure effective training time are still challenges [17].

Most BCI rehabilitation systems adopt single feedback modality, such as systems
based on vision [18–20], kinesthetic sense [21–23], or perception [24,25]. The main purpose
is to provide perceptual or sensory feedback, and these feedback modalities can lead to
motor function recovery. How these feedback patterns affect clinical outcomes remains
elusive. However, a study has shown that sensory feedback of exercise may be a key
factor in BCI-based rehabilitation, and single visual feedback is not sufficient to arouse
functional gain [26]. In addition, immersive visual feedback may help enhance the effect
of feedback [27,28].

In the present report, we introduce a new BCI system, namely the L-B300 Electroen-
cephalogram (EEG) Acquisition and Rehabilitation Training System (Zhejiang Mailian
Medical Technology Co., Ltd., Hangzhou, China). Compared with other BCI rehabilitation
systems, the BCI rehabilitation system used in this report has the advantage of both visual
and motor feedback and high time efficiency: its real-time feedback is only 110 ms, and
this parameter is smaller than those of other systems (300 ms [29] and 200 ms [30]); it is so
responsive and user-friendly that the user is not easy to feel tired [31]; it is very convenient
in clinical use and can guide and timely monitor target task imagination of patients. The
purpose of this study was to observe the feasibility and safety of this novel BCI system for
rehabilitation of stroke patients with hemiplegia, and the effects of a short course of BCI
treatment on patients’ limb movement and brain function.

2. Materials and Methods

Eight stroke patients with hemiplegia were recruited in the Department of Reha-
bilitation Medicine of the Second Hospital of Anhui Medical University to perform BCI
rehabilitation training with visual and motor feedback from August 2021 to October 2021.

2.1. Subjects

Inclusion criteria: (1) 18–80 years old, either sex; (2) patients with de novo post-stroke
hemiplegia were diagnosed by imaging examination as having had cerebral infarction or
cerebral hemorrhage; (3) the strength of all the muscles of the upper and lower limbs on the
hemiplegic side was grade 4 or less (manual muscle testing, MMT) [32], while there was no
obvious dysfunction on the healthy side; (4) patients could sit without support for 30 min;
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(5) stable vital signs; (6) clear awareness and ability to participate in the rehabilitation
intervention; (7) patients understood and signed informed consent.

Exclusion criteria: (1) patient’s condition continued to deteriorate, vital signs unstable;
(2) had severe heart disease, or carried pacemakers that might interfere with the BCI;
(3) patients with recurrent (≥2 times) cerebral infarction or cerebral hemorrhage; (4) poor
cognitive level, with Mini-mental State Examination (MMSE) score less than 21, and, thus,
unable to comply with rehabilitation therapy [33]; (5) patients receiving craniectomy;
(6) patients after cranioplasty; (7) patients with motor dysfunction contralateral to the
hemiplegic limbs; (8) could not sit alone for 30 min; (9) patients or their families refused to
sign informed consent; (10) patients were participating in other clinical experiments.

General information of patients: three patients (48 ± 15 years old) were recruited for
the initial feasibility and safety observation study. After verifying the feasibility and safety
of the system, another five patients (48 ± 9 years old) were recruited for the effectiveness
evaluation of the system. The demographic information of all eight patients is shown in
Table 1.

Table 1. Information of the eight patients.

Subject Age Gender Sites of Injury
Course of
Disease(d)

BCI Treatment Times

1 58 Male Left basal ganglia cerebral hemorrhage 34 4
2 31 Male Right basal ganglia cerebral hemorrhage 127 4
3 55 Female Right basal ganglia cerebral infarction 30 4
1′ 34 Male Left cerebellar hemisphere hemorrhage 41 26
2′ 44 Male Left basal ganglia cerebral hemorrhage 37 26
3′ 51 Male Left basal ganglia cerebral infarction 18 28
4′ 52 Female left basal ganglia cerebral infarction 15 24

5′ 58 Male Left basal ganglia, left paraventricular
cerebral infarction 41 26

This study was carried out in the Department of Rehabilitation Medicine of the Second
Hospital of Anhui Medical University. The experimental method was approved by the
Ethics Committee of the Second Hospital of Anhui Medical University [Approval No.
YX2020-103(F1)] and implemented according to the ethical standards of the 1975 Helsinki
Declaration (revised in 2008). Written informed consent was obtained from each participant
before enrollment.

2.2. L-B300 EEG Acquisition and Rehabilitation Training System

The rehabilitation training system used in this study was the new L-B300 EEG Acquisi-
tion and Rehabilitation Training System. In this system, the patient wore an 8-lead EEG cap
with electrodes over the left and right prefrontal cortex (FP1, FP2), left and right frontal cor-
tex (F3, F4), left and right central area (C3, C4), frontal midline area (Fz), and central midline
area (Cz), respectively. The electrode placement was in line with the 10/20 international
standard lead system [34], as shown in Figure 1. The left and right ear clip electrodes
(A1 and A2) were, respectively, the reference and bias electrodes. The patients’ bilateral
upper/lower limbs were fixed on the corresponding left and right rotary shafts of the
system for upper/lower limb rehabilitation training. The system provides a training mode,
in which the equipment was driven completely by the patient’s EEG signals generated
through the subject’s motor imagery (MI). The display screen in the device established a
visual feedback platform between the system and the patient. When the patient intended
to perform upper/lower limb exercise training, the researcher needed to set the virtual
character on the display screen to the corresponding exercise preparation. Thus, in upper
limb training, the virtual character was displayed for swimming preparation, whereas for
lower limb training, the display was for cycling preparation. The patient carried out the
corresponding motor imagery tasks according to the virtual character training type on the
display screen and followed the voice prompt. When the patient’s Mscore [35] (the specific
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EEG signals) reached a certain threshold, the virtual character on the display screen began
to move accordingly. At the same time, the rotary shafts of the system began to rotate to
drive the patient’s limbs to move accordingly. When the patient’s motor intention fell below
the set threshold, the virtual character on the display screen stopped its corresponding
motion, and the rotary shafts stopped rotating, thus ceasing to drive the patient’s limbs.

Figure 1. Electrode placement diagram of L-B300 EEG Acquisition and Rehabilitation Training System.

The system gave patients real-time visual and motor perception feedback, that is,
during the training, the progress bar on the right side of the display screen showed the
intensity of the patient’s motor imagery in real time (updates every 110 ms); when the
intensity of the patient’s motor imagery (i.e., Mscore) reached a certain threshold, the
virtual character on the display screen would start corresponding movements (swimming or
cycling), and the virtual character’s movement would generate visual feedback; meanwhile,
the rotary shafts of the system drove the patient’s limb movement (update rate > 1 Hz),
thus giving the patient motor perception feedback [35,36].

2.3. Training and Evaluation Methods
2.3.1. Feasibility and Safety Verification of the System

First, three stroke patients with hemiplegia were recruited to perform L-B300 system
rehabilitation training on a routine basis to verify the feasibility and safety of this system.
The training method: with upper and lower limb training twice per day (15 min of upper
limb training and 15 min of lower limb training per session, each in the morning and
afternoon); thus, a total of 30 min for upper limb training and 30 min for lower limb
training per day. The three patients thus completed four training session during two
consecutive days. The positioning of a patient during upper and lower limb BCI training is
shown in Figure 2.

 

Figure 2. BCI training. (A) A patient with right hemiplegia undergoing upper limb BCI training
(imagined swimming) (B) The same patient undergoing lower limb BCI training (imagined cycling).
In the safety evaluation of the system, the three patients were observed and evaluated for any
discomfort, seizures, recurrent cerebral hemorrhage, and cerebral infarction during training.

We evaluated the feasibility of the system by first recording the continuous motor state
switching time (CMSST) of each patient when using BCI; this refers to the time taken by
the patient to switch from a resting state to a concentrated motor intention state that can
continuously drive the system [35]. We also recorded the motor state percentage (MSP),
which refers to the proportion of time when the patient’s motor intention exceeds the
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selected threshold [35], and the effective training revolution (ETR), which is the number of
times that the patient commands the robot to rotate during each training session [35].

2.3.2. Effectiveness Evaluation of the System

Upon finding in the validation study in the three stroke patients with hemiplegia that
the L-B300 system was feasible and safe to use for rehabilitation training, we proceeded to
study the rehabilitation training of a separate group of five stroke patients with hemiplegia.
The rehabilitation training method for these five patients was much as in the feasibility and
safety study, but they trained for six days a week to a total of complete 12–14 days; thus,
24–28 sessions of training. We measured limb motor function and brain function indices of
these patients at baseline and after rehabilitation treatment.

Detection of limb motor function: (1) to determine sitting balance ability, we used the
three-level method to evaluate static sitting balance (level 1), self-dynamic sitting balance
(level 2), and other-dynamic sitting balance (level 3). Here, static sitting balance refers to
the process of maintaining the stability of sitting posture without the influence of external
forces when the participant opens his/her eyes. Self-dynamic sitting balance refers to
the process by which the patient can adjust from one posture to another and maintain
balance without the influence of external forces. Other-dynamic sitting balance refers to
the process whereby the body can quickly adjust its center of mass and posture to maintain
balance when the center of gravity of the body changes under an external force [37]. (2) The
Fugel–Meyer Assessment (FMA) was used to evaluate the motor function of the upper and
lower limbs, where the maximum total score is 100; higher scores indicate better limb motor
function [38]. (3) The 10 m walking speed test (m/s) was applied only in those patients who
could walk independently. The subjects were asked to walk along a 10 m straight line on a
level ground at their fastest speed, which was recorded [39]. (4) A 6 min walking distance
(6MWD) is the most widely used clinical submaximal exercise test to evaluate systematic
and complete responses during exercise. During the test, subjects were asked to walk back
and forth at their fastest speed for six minutes along a 30 m straight and level course, and
their total walking distance was recorded [40]. (5) The Modified Barthel Index (MBI) was
used to assess their ability to complete activities of daily living, with a total score of 100;
higher the score indicated better ability to complete activities of daily living [41]. (6) Surface
electromyography (sEMG) signal was acquired by using the Delsys® Trigno wireless EMG
acquisition system (Delsys Inc., Natick, MA, USA) and EMGWorks® Acquisition software
(version 4.7.6, Delsys Inc., Natick, MA, USA). Test parameters: common mode rejection
ratio (CMRR) > 80 dB, noise < 750 nV RMS, analog/digital conversion was 16 bit, sampling
frequency was 2000 Hz, each data collection time was 5s, used band-pass filter in the
analysis software, bandwidth 20–450 Hz, passband ripple <2%, effective measurement
range was ±8000 μV, available channel number was 8. Recorded the sEMG signals of
the following muscles: biceps brachialis, triceps brachialis, flexor digitorum, extensor
digitorum, abductor pollicis brevis, quadriceps femoris, hamstring muscle, anterior tibial
muscle, and triceps surae on the hemiplegic side during maximum isometric contraction
(MIVC). From these recordings, we selected the root mean square (RMS) values of the 1s
peaks [42]. The values of the 1s peaks referred to the maximum values of the 1s regions
containing the strongest signals in the 5s sEMG signals collected. We recorded the sEMG
signals sequentially in triplicate, and then calculated the average values.

In the brain function test, the motor evoked potential (MEP) of the M1 region (primary
motor cortex) in the cerebral hemisphere both on the lesion side and non-lesion side was
collected using a transcranial magnetic stimulator (CR Technology Co., Ltd., Daejeon,
Korea) with an 8-wire coil (12.5 cm in diameter, 3.0 T in maximum intensity) [43]. The
latent period and amplitude were calculated to detect the conduction of the efferent nerve
pathway and the excitability of the underlying cerebral cortex.
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2.4. Statistical Analysis

Data were analyzed using the MATLAB 2021a. Quantitative variables were expressed
as mean ± standard deviation (mean ± SD). The feasibility and safety evaluation data
before and after intervention were statistically compared in terms of numerical size. Cohen’s
w was used to report the effect size, and thresholds for small, medium, and large effects
were 0.10, 0.30, and 0.50, respectively [44].

3. Results

3.1. Feasibility and Safety Verification of the System

All three testing phase patients received four training sessions of the system over two
days. The first two sessions and the second two sessions for each patient were counted
as stage 1 and stage 2, respectively. In the four training sessions, the CMSST of the three
patients was 17.8 ± 21.0 s (range 0.1 to 50.7 s), and the indicator value at stage 2 was lower
than that in stage 1, as shown in Figure 3.

Figure 3. The continuous motor state switching times of the three patients in the feasibility test.

The analysis results of the MSPs and the ETRs per minute of the initial three patients
in upper and lower limb training are in Figures 4 and 5. The MSPs in upper and lower limb
training were 52.6 ± 25.7% (maximum 86%, minimum 11%) and 72.4 ± 24.0% (maximum
100%, minimum 39.0%), respectively. The ETRs per minute in upper and lower limb
training were 25.8 ± 13.0 (maximum 36.3, minimum 3.2) and 24.8 ± 6.4 (maximum 33.3,
minimum 18.6), respectively. Comparing stage 2 with stage 1, there were slight declines
of these two indicators in the upper limb training of patients P1 and P3. At stage 2, there
was a conspicuous improvement in lower limb training of all three patients compared with
stage 1.

Figure 4. The motor state percentages (A) and the effective training revolutions per minute (B) of the
three test patients in upper limb training at the two stages of training.
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Figure 5. The motor state percentage (A) and the effective training revolutions per minute (B) of the
three pilot patients at the two stages of lower limb training.

During the entire training process, the three pilot patients had no discomfort, recur-
rence of seizure, or any other adverse events, showing the system to be safe and reliable.

3.2. Rehabilitation Effects of the System
3.2.1. Clinical Indicators in the Limb Motor Function of Patients

We calculated the changes in motor function relative to the baseline condition in the
five patients with rehabilitation training. The results indicated conspicuous improvements
in the patients’ sitting balance ability, upper limb FMA, lower limb FMA, 10 m walking
speed, 6MWD, and MBI after treatment. All of the improvements were of large effect size,
other than 10 m walking speed (with a small effect size), as shown in Table 2.

Table 2. Clinical efficacy evaluation (mean ± SD) of the five patients.

Assessment Item Before After Difference Cohen’s w

Sitting balance ability 2.4 ± 0.9 2.8 ± 0.5 0.4 ± 0.55 1.22 **
Upper limb FMA 22.2 ± 10.1 30.2 ± 8.9 8.0 ± 5.61 5.18 **
Lower limb FMA 19.6 ± 10.1 25.0 ± 5.7 5.4 ± 5.18 5.44 **

10 m walking speed 0.5 ± 0.2 0.5 ± 0.2 0.04 ± 0.03 0.16
6MWD 155.6 ± 50.0 167.0 ± 48.9 11.4 ± 4.30 2.29 **

MBI 65.0 ± 7.1 72.0 ± 7.6 7.0 ± 2.70 2.06 **

** (Cohen’s w ≥ 0.5) indicates a large effect size.

3.2.2. The RMSs of the Limb Muscles on the Hemiplegic Side

The RMS changes showed that, compared with the baseline, the RMSs were numer-
ically increased for the biceps brachii, triceps brachii, extensor digitorum, quadriceps
femoris, hamstring muscle, anterior tibial muscle and triceps surae of the five stroke pa-
tients. However, the mean RMSs of flexor digitorum and abductor pollicis brevis decreased
slightly, as shown in Table 3.

Table 3. Comparison of the RMSs (mean ± SD) before and after treatment in the five patients.

Assessment Item Examined Position Before After Difference Cohen’s w

RMS (μV)

Biceps brachii 2.9 ± 1.1 3.0 ± 1.1 0.2 ± 0.09 0.25
Triceps brachii 6.8 ± 7.7 7.0 ± 7.9 0.2 ± 0.25 0.20

Flexor digitorum 0.6 ± 0.5 0.6 ± 0.4 0.0 ± 0.07 0.11
Extensor digitorum 0.7 ± 0.8 0.7 ± 0.8 0.0 ± 0.01 0.06

Abductor pollicis brevis 0.3 ± 0.2 0.3 ± 0.2 0.0 ± 0.03 0.08
Quadriceps femoris 18.5 ± 12.5 19.0 ± 12.8 0.5 ± 0.68 0.35 *
Hamstring muscle 15.1 ± 8.0 15.5 ± 8.2 0.4 ± 0.35 0.24

Anterior tibial muscle 9.0 ± 6.4 9.1 ± 6.5 0.2 ± 0.14 0.14
Triceps surae 10.0 ± 6.5 10.8 ± 7.6 0.9 ± 1.06 0.71 **

** (Cohen’s w ≥ 0.5) indicates a large effect size, * (Cohen’s w < 0.5 and ≥0.3) indicates a medium effect size.
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3.2.3. Brain Function Test Results of Subjects

The MEP differentials before and after treatment were measured. It was found that
the MEP latent periods on the lesion side and non-lesion side were shortened and the
amplitudes were enhanced after treatment, All Cohen’s w > 0.4, with more than medium
effect size, as shown in Table 4.

Table 4. Comparison of the MEPs (mean ± SD) before and after treatment in the five patients.

Assessment Item Examined Position Testing Indicator Before After Difference Cohen’s w

MEP

M1 area on the
non-lesion side

Latent period (ms) 42.1 ± 8.3 39.5 ± 8.6 −2.6 ± 2.17 1.11 **
Amplitude (10−5) 32.7 ± 10.9 36.2 ± 9.0 3.6 ± 3.78 2.41 **

M1 area on the
lesion side

Latent period (ms) 14.4 ± 5.7 13.8 ± 5.9 −0.6 ± 0.39 0.44 *
Amplitude (10−5) 20.0 ± 7.7 23.9 ± 7.8 3.7 ± 3.89 2.83 **

** (Cohen’s w ≥ 0.5) indicates a large effect size, * (Cohen’s w < 0.5 and ≥0.3) indicates a medium effect size.

4. Discussion

In this study, we undertook preliminary clinical experiments to investigate the fea-
sibility, safety, and potential rehabilitation efficacy for restoring limb and brain functions
of hemiplegic stroke patients using the new BCI system. This system differs from the
traditional active/passive rehabilitation training mode with respect to the multichannel
feedback, and adopts the active rehabilitation training mode of bidirectional synchronous
stimulation of the central and peripheral nervous systems [13,14]. Using this system re-
quires patients to actively participate in the whole process and focus on their training done
through motor imagery. Mscore is the specific EEG signals used in this system to timely
evaluate the degree of active target task imagination of patients [45,46]. The Mscore was
collected through the brain cap, decoded and transmitted to the terminal devices (the rotary
shafts and the display screen) via Bluetooth to control the rotary shafts and the virtual
character on the display screen. When Mscore meets with certain requirements, the rotary
shafts can drive the patient’s limb movement and provide motor perception feedback to
the patient’s body sensation, while simultaneously giving visual feedback to the patient
on the display screen [36]. In this study, we first validated the feasibility and safety of the
novel system in a pilot test of three stroke patients with hemiplegia. We then proceeded to
test the rehabilitative efficacy of the system with 24–28 training sessions in another group
of five hemiplegic stroke patients.

In the feasibility verification, we used three indicators (CMSST, MSP, and ETR) to
evaluate the usability of the system. Among these indicators, CMSST represents the speed
whereby patients enter the active training state. In the pilot study, the mean value of
the CMSST was 17.8 s, and this indicator was shortened at stage 2 compared to stage 1,
indicating that all three patients could quickly adapt to the rehabilitation training of the
system [47]. The factor affecting the MSP is mainly the degree of active participation of the
patient. In this study, the mean MSP values of the upper and lower limbs of patients were
52.6 and 72.4%, respectively, which revealed that the three stroke patients with hemiplegia
could maintain continuous and high-intensity active rehabilitation training instead of
giving up training because of fatigue [47]. The ETRs per minute of the system reflects the
amount of exercise of a patient [47]. In this study, the average ETRs per minute in the upper
and lower limbs of the patients were 25.8 and 24.8, respectively, suggesting that the upper
and lower limbs of the patients were fully trained. As observed in Figures 3 and 4, CMSST,
MSPs, and ETRs of the three patients differed greatly, and in MSPs and ETRs, stage 2 of
the first and third patients was less than stage 1, while stage 2 of the second patient was
larger than stage 1. As can be seen from Figure 5, in MSPs and ETRs, there were not
many differences among the three patients, and stage 2 of the three patients was all greater
than stage 1. These above results were considered to be related to the fact that cycling
is relatively easier to imagine than swimming (since most Chinese people have cycling
experience, while many do not have swimming experience) [48]. Therefore, there was no
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great difference in the performance of the three patients on the task of imagining lower
limb cycling, while the imagining upper limb swimming task not only showed greatly
different performances among the three patients, but also showed unstable performances in
different stages of the same patient [47]. In conclusion, all three patients in the pilot study
could effectively complete the training task. More importantly, no discomfort, seizure, or
other adverse events occurred in association with the study. Thus, stroke patients with
hemiplegia could use the system safely and reliably.

Regarding the efficacy of the system for rehabilitation training, we evaluated motor
function at baseline and after 12–14 days of rehabilitation treatment in a group of five patients.
Scores numerically improved relative to pretreatment baseline, with respect to sitting
balance ability, upper limb FMA, lower limb FMA, 10 m walking speed, 6MWD, and MBI,
reflecting an improvement in limb motor function and daily living abilities of patients.
The sEMG results showed that the RMSs of all these tested muscles except for flexor
digitorum and abductor pollicis brevis rose after treatment, indicating that the intervention
boosted the vitality of these muscle groups. The results of MEP differences before and
after training displayed that the MEP latent periods on the lesion side and non-lesion
side were shortened and the amplitudes were increased, signifying that the functions of
bilateral cerebral hemispheres were strengthened after treatment [49,50]. The short-term
training using the novel BCI system adopted by these stroke patients with hemiplegia
could produce multidimensional effects, which should be related to the system’s ability
to enhance bidirectional stimulation. Enhancing bidirectional stimulation is the core of
the BCI system used in this study. The BCI system selects the characteristic EEG signals
related to motor intention during training as the main control index, which is helpful to
guide patients to continuously and actively give downward motor control signals. On
the one hand, such a design can accurately apply the downward control signals to the
peripheral neuromuscular system; on the other hand, repeated high-intensity training
of the peripheral neuromuscular system may also improve the function in certain brain
areas through visual and motor feedback, thus achieving “bidirectional stimulation” [51].
According to Hebb’s theory (Hebb, 1949) [52], such bidirectional stimulation can cause
neural reorganization including the reorganization of brain region excitability and brain
networks in humans, thereby improving cognitive, language, and motor functions.

5. Limitations

This paper is a case report of 5 BCI rehabilitation training instead of a randomized
controlled study. The sample size is relatively small, and the condition of each patient was
different, so this report did not conduct paired sample t-tests of pre- and post-intervention
data, and only the Cohen’s w values were shown. In addition, the CMSST, MSP, and ETR
values of each patient were tested only once before and after training without repeated
measurements, and this may be one of the reasons for the large variation of these indica-
tors in the three patients during the feasibility verification; moreover, even in discussing
rehabilitation effects of the system, the 5 patients only received 12–14 days of rehabilitation
treatment, thus 24–28 sessions of training, which means short treatment courses. All of
these are the limitations of this paper, which need to be improved in future studies.

6. Conclusions

In summary, the new BCI system including visual and motor feedback is applicable
in a program of active rehabilitation training of stroke patients with hemiplegia. It is not
only safe, but also enables the patients to enter the active-training state quickly, and attain
a sufficient training intensity. In this pilot study, responses after a short course of treatment
show promise for therapeutic effects in multiple dimensions, which must be established in
a randomized controlled study of a much larger patient population, with follow-up after
active training sessions.
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Abstract: The incidence of stroke and the burden on health care and society are expected to increase
significantly in the coming years, due to the increasing aging of the population. Various sensory,
motor, cognitive and psychological disorders may remain in the patient after survival from a stroke.
In hemiplegic patients with movement disorders, the impairment of upper limb function, especially
hand function, dramatically limits the ability of patients to perform activities of daily living (ADL).
Therefore, one of the essential goals of post-stroke rehabilitation is to restore hand function. The
recovery of motor function is achieved chiefly through compensatory strategies, such as hand
rehabilitation robots, which have been available since the end of the last century. This paper reviews
the current research status of hand function rehabilitation devices based on various types of hand
motion recognition technologies and analyzes their advantages and disadvantages, reviews the
application of artificial intelligence in hand rehabilitation robots, and summarizes the current research
limitations and discusses future research directions.

Keywords: hand function rehabilitation; hand rehabilitation robot; computer vision technology;
wearable devices; sensors; artificial intelligence

1. Introduction

A stroke is one of the most common causes of adult labor loss. It significantly affects
people’s quality of life. A patient may endure certain movement disorders after a stroke,
such as paralysis of the face, arm, and leg on one side of the body. This is known as
hemiplegia [1]. Reduced motor function of the upper limbs, especially the hands, essentially
limits the ability of the patients to perform activities of daily living (ADL). The hand, a
distal part of the body, is the most challenging part of the upper limb to recover [2].
Accordingly, the degree of rehabilitation of hand function can also be used to measure
the rehabilitation of the upper limbs from movement disorders. In recent years, many
therapeutic methods for upper limb movement recovery after strokes have been developed,
among which rehabilitation robots are considered to be an efficient rehabilitation training
method [3], which can not only help patients recover the motor function of their limbs, but
also significantly reduce the burden of rehabilitation therapists [4].

Effective hand function rehabilitation training based on rehabilitation systems should,
at least, meet the following three principles [5,6]: first, the rehabilitation system can ensure
the training motivation of patients and help patients stick with the training. In addition, its
training program should be customized according to patients’ conditions. Furthermore,
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the rehabilitation system needs to be able to objectively assess the patient’s hand function
and training outcomes on a regular basis. Therefore, acquiring and recognizing hand
postures is crucial in the rehabilitation and evaluation of hand function. It has the following
applications. First, it can be applied to the active training mode of rehabilitation robots.
Specifically, the active motion intention of patients can be stimulated, extracted, and
utilized through detection technology and modern control technology. This can not only
promote the recovery of patients’ motor perception, but also help patients reshape the
central nervous system circuit. Secondly, gesture recognition can also be applied in the
human–computer interaction module of the telerehabilitation system and the evaluation
system. The main methods of gesture acquisition can be divided into computer vision
technology and sensor-based wearable devices according to the different input devices. The
former uses external devices for vision capture and analysis, which poses no interference
to patients. The latter requires wearing some sensor devices and recognizes fewer gestures,
but is beneficial for portability.

In the development of hand rehabilitation robots, software systems are equally impor-
tant in the design and production of hardware devices. With the development of artificial
intelligence, big data, cloud computing, and 5G technology, the requirements for the soft-
ware system of hand rehabilitation robots have also increased. It should not only fulfill
the basic hardware control function and the human–machine interaction function, but also
be more intelligent, diverse, and personalized [7]. Artificial intelligence can be applied to
many modules of hand rehabilitation robots, which can not only expand the functions of
hand rehabilitation robots, improve the accuracy, effectiveness, and wisdom of the devices,
but also reduce the pressure on medical resources and improve the comfort and fun of
patients during rehabilitation [8].

The outline of this paper is as follows: Section 2 reviews the developments in the
hardware of the hand function rehabilitation systems, which mainly includes the gesture
recognition devices applied based on computer vision technology and wearable sensors.
Section 3 reviews the developments in the software of the hand function rehabilitation
systems, including application of artificial intelligence in the seven modules of the hand
function rehabilitation robot, although some of them are still in the research stage and whose
actual rehabilitation effects are yet to be verified. Section 4 lists the existing problems and
limitations during the current phase and discusses the potential directions for future study.

2. Hand Function Rehabilitation System Based on Gesture Recognition

2.1. Hand Function Rehabilitation System Based on Computer Vision Technology

Hand gesture recognition based on computer vision technology mainly uses external
devices to collect image data of gestures, such as cameras, and then processes the images
with vision techniques, such as deep convolutional networks, to complete recognition and
classification. This method is non-invasive, does not require wearing extra equipment, the
user is not easily fatigued, and the calibration procedure is simple and convenient to use.
It can be applied to fine hand rehabilitation training and hand function assessment tasks.
However, this method also has some shortcomings. First, it has high requirements for the
external environment. Second, the recognition speed and accuracy of it are relatively low.
Third, sometimes, it needs to affix specific markers. The devices that collect gestures usually
include color cameras, depth cameras, etc. These hand gesture recognition techniques
based on computer vision have been applied to hand rehabilitation robots and independent
hand function rehabilitation game systems.

2.1.1. Hand Function Rehabilitation System Based on the Virtual Environment

First of all, some cameras and computer vision techniques can be used to locate the
hand’s position and recognize some basic hand gestures, which will provide patients with
some more exciting games through augmented reality and virtual reality to enhance their
interest in training. Studies have shown that video games are beneficial for improving
cognitive dysfunction in patients [9]. Other studies indicated that virtual environment
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training is significantly more effective than traditional training [10–15]. A virtual environ-
ment also provides a safe and customizable training system that can be changed according
to users’ interests. It can also monitor users’ actions to analyze their performance during
training [16].

For example, Hondori et al. [17] developed a low-cost augmented reality system
for hand rehabilitation training assistance and progress assessment, which provides task
instructions through virtual objects projected on the desktop, and uses a web camera to
collect and track the color markers of hand recognition to identify patient actions and task
completion. This device can allow patients to train in the hospital or at home and can be
remotely accessed and controlled by therapists. However, some additional markers need to
be worn, which is not very convenient, and the hand positioning recognition ability also
needs to be improved.

In addition to webcams, similar hand modeling, tracking, and recognition functions
can be accomplished using depth cameras and color cameras without markers. The primary
devices currently used are Leap Motion, Microsoft Kinect V1 and V2, etc.

The Leap Motion uses infrared LED and a gray-scale camera, which is cheaper and
can handle hand models only. Wang et al. [18] demonstrated that Leap Motion-based
virtual reality training could promote cortical reorganization and may aid in the recovery
of upper extremity motor function in patients with subacute stroke. However, its effects on
severe patients are unknown. Alimanova et al. [19] developed a set of hand rehabilitation
games using Leap Motion controllers to help patients relax and train their hand muscles by
performing different virtual reality tasks related to daily living activities, such as picking
up objects, moving household objects, matching color blocks, throwing garbage, holding
objects, etc. These games can also motivate patients by making the rehabilitation process
more exciting and effective, and they can help patients relieve muscle tension and restore
hand function.

Mukai et al. [20] developed the hand rehabilitation robot “ReRoH”. It comprises
flexible pneumatic gloves, ERB, an electrical stimulator, Leap Motion non-contact sensor,
and game controller. The Leap Motion has an infrared transmitter and receiver that can
identify hand coordinates and movements, and the game controller can display an image
of the hand on a display in real-time. With rehabilitation games, the ability to grasp and
stretch the hand can be trained, and the motor function of the fingers and hands can also
be assessed.

The Kinect uses depth cameras, infrared emitters, color sensors, infrared depth sensors,
turnover motors, RGB cameras, etc., all of which are needed to generate a full-body or
half-body model, resulting in the latter being less efficient and accurate in operation than
the former.

For example, Cipresso et al. [21] developed a virtual reality system for rehabilita-
tion by using Kinect V1. It combines rehabilitation technology with virtual environment
recognition. It can track patients’ hand motions through Kinect’s depth images and color
space model, and provides real-time feedback. Through the virtual reality of daily life
activities with highly realistic visual effects, patients’ motivation to participate in treat-
ment is stimulated, and their ADL ability is better trained and evaluated. Likewise, Wang
et al. [22] developed a Kinect-based rehabilitation assistance system consisting of the re-
habilitation training subsystem, and rehabilitation evaluation subsystem that performed
similar functions.

However, these systems lack tactile feedback, game angle, and time-based safety
constraints based on the patient’s motor ability. Saini et al. [23] solved this problem by
designing a “watchdog” to ensure the safety of patients’ hand motion angle and time
during the game. Additionally, the game framework of the stroke rehabilitation program
designed by them only uses Kinect V1 equipment and a single camera to capture human
motion, without the need to affix markers.

Avola et al. [24] proposed an interactive and low-cost full-body rehabilitation frame-
work for generating 3D immersive serious games. The hardware part includes Kinect V2
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and a head-mounted display (HMD), and acquires depth information in the way of time
of flight (TOF), which is different from Kinect V1 using light coding. The software part
uses gated recurrent unit recurrent neural networks (GRURNN). The framework’s natural
user interface (NUIs) can be used for hand modeling, tracking the movement of hand joints
and fingers through an infrared stereo camera, and then performing rehabilitation training
through a customizable interactive virtual environment. Experiments showed that this
system can restore patients’ hand function. However, it only has a few hand games to
choose from, and HMD may cause vertigo in some patients.

2.1.2. Hand Rehabilitation Robot Based on Computer Vision Technology

In addition to the above applications, computer vision technology can also be used
simply for gesture recognition. The hand rehabilitation robot can be controlled by rec-
ognized gestures to carry out the corresponding motion. It can also identify the current
motion state of the rehabilitation robot and provide feedback to the system for further
adjustment of the robot or evaluation of the training situation.

Cordella et al. [25] developed a set of camera-based calibration programs for the
bending sensor of the commercial exoskeleton hand rehabilitation robot glove “Gloreha
Sininfonia,” which uses 8 photoelectric cameras to locate and reconstruct the angles of
18 reflective markers on the glove, and then connects them with the voltage of the glove
bending sensor to form closed-loop control, in order to calibrate the angle of the exoskeleton
better. The system can also assess a patient’s hand function or measure the improvement of
hand motion by comparing their range of motion (ROM) before and after treatment.

Farulla et al. [26] proposed a hand exoskeleton system that can be used for master-
slave control of telerehabilitation. It uses an RGB-D camera to locate the position of the
therapist’s hand joint in real-time through the VPE algorithm and remotely transmits the
position to the exoskeleton. In this way, the movement of the index finger and thumb of
the patient’s hand can be controlled. The grip force sensor on the exoskeleton can record
the interaction force and feed it back to the therapist for real-time quantitative assessment
and adjustment.

Nam et al. [27] developed an exoskeleton that can remotely train the ability of hand
grasping and forearm pronation and supination, and also used camera-based computer
vision technology to identify the user’s intention. However, unlike other systems, this
device is equipped with a Microsoft LifeCam Studio camera on the exoskeleton. The
patient uses the residual force of the proximal upper limb to move the robot to the target
position and identify the target object. Firstly, the recognition algorithm identifies and
locates the target through the real-time image collected by the camera. Then, the control
system controls the aiming and grasping of the exoskeleton. Finally, the system realizes the
motion-vision-sensation closed-loop feedback. To prevent hand injury caused by excessive
grasping movements of the robot, the exoskeleton of the hand is placed on the palm side.

There are also many related types of research and achievements in China. For example,
Hefei University of technology [28–31] developed a rehabilitation robot system. When the
patient completes the specified gesture in front of the camera on the mechanical arm, the
processor will display it on the screen after recognition through the internal algorithm.
Then, the system can analyze, evaluate, and record the patient’s rehabilitation. It can
also cooperate with the virtual reality system for more exciting training to improve the
patient’s cognitive ability and hand function and adjust the training scheme as needed.
When the camera cannot capture the complete hand image, the system can automatically
identify and locate the position of the patient’s hand, adjust the manipulator to the position
where the complete gesture can be captured, and use the exoskeleton to compensate for the
hand motion.

Nanchang University [32] developed a near-synchronous hand rehabilitation robot. It
can collect the motion posture information of the unaffected hand in real-time through Leap
Motion, decode and transmit the data through a genetic algorithm and neural network, and
then control the exoskeleton to complete the corresponding action and drive the patient’s
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hands for training. The system has a fast response time and high accuracy in gesture
recognition and control, but it can only train the thumb, index finger, and middle finger.

Liu Hongmei et al. [33] from Shanghai Normal University developed a flexible hand
rehabilitation robot by using the Vicon system, which has eight infrared cameras. They can
capture the three-dimensional motion of the hand, obtain the joint angle, and recognize the
hand motion to identify the relationship between the extension of the Bowden line and the
bending angle of the finger, so as to control the hand rehabilitation robot more accurately.

2.2. Hand Function Rehabilitation System Based on Wearable Devices

Gesture recognition based on wearable devices requires users to wear devices, such
as gloves, rings, bracelets, wristbands, armbands, etc., and collect the motion data or
physiological signal data of the user’s hand movements through the sensors on the devices
for recognition. This method can recognize more gestures with small input data and high
precision. It can identify hand motion and three-dimensional information in space in
real-time. It is not easily disturbed by external interference and has good robustness, but it
is usually expensive. Wearing equipment may interfere with the therapist’s motion, and
the accuracy may be affected when the user is sweating. It is also easy to make the patient
tired, and calibration is usually required before each use. According to the types of data
collected, wearable devices can be divided into physiological signal sensors, kinematic
signal sensors, optical signal sensors, etc. Multiple transmissions are often selected simulta-
neously as multi-mode fusion data inputs in actual use. Gestures recognized by wearable
devices can provide control targets for hand function rehabilitation robots and complete
hand function training in the active mode. They can also be used for the evaluation of a
patient’s rehabilitation.

2.2.1. Physiological Signal Sensor-Based Hand Function Rehabilitation Robot

The bioelectric signals that can be used for hand function rehabilitation robots usually
include electroencephalogram (EEG), electro-oculogram (EoG), electromyography (EMG),
etc. Generally, the acquisition system collects the required bioelectric signals from the
patient’s body surface, processes and analyzes the signals to obtain the patient’s motion
intention, which is equivalent to synchronously identifying the patient’s hand action, and
then transmits the corresponding motion instructions to the hand rehabilitation robot to
drive the patient’s hand to make related motions.

Wang Jing et al. [34] from Xi’an Jiaotong University developed the upper limb reha-
bilitation platform by using the commercialized product Myo gesture control armband to
recognize the gesture intention of patients. Gestures are then mapped to a virtual environ-
ment, and patients’ hand grasping functions are trained through VR glasses and immersive
games. The armband is composed of an inertial sensor unit, eight surface electromyogra-
phy (sEMG) sensors, and a Bluetooth receiver, which is low-cost and portable. Liu Wei
et al. [35] from Nanjing University of Aeronautics and Astronautics designed an underac-
tuated hand rehabilitation robot, which also uses MYO gesture control armbands. It can
recognize five gestures of the unaffected hand in real-time, and control the exoskeleton to
drive the affected hand to complete the corresponding movements for training. Similarly,
the low-cost exoskeleton “RobHand” developed by Casnal et al. [36] also completes the
bilateral cooperative control of the rehabilitation robot by fixing multiple sEMG sensors.
Li et al. [37] designed an exoskeleton that selects 16 muscles in both arms and hands for
sEMG acquisition. Combined with the optimized algorithm, it can recognize seven gestures
and control the exoskeleton. In addition, it can also estimate the strength of the patient
when grasping the object by collecting sEMG signals, and control the rehabilitation robot
to provide the required auxiliary force, such as the exoskeleton designed by Leonardis
et al. [4]

Soekadar et al. [38] from Germany developed the hand function rehabilitation ex-
oskeleton. This exoskeleton uses an innovative brain/neurocomputer interaction (BNCI)
system that integrates EEG and EOG to better compensate for the decline in signal quality
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and fatigue sensitivity over time. This system can also recognize gestures better and control
the exoskeleton. Similarly, Huo Yaopu et al. [39] from Southeast University designed a
3D-printed hand exoskeleton based on the motor imagination brain computer interface
(MI-BCI), which also identifies the motion intention of patients by collecting their EEG, and
then controls the hand exoskeleton to assist them in completing corresponding actions.

Zhang et al. [40] from Changsha Institute of Mechanical Engineering proposed the
multi-mode human–computer interaction flexible rehabilitation robot, which uses three
modes, EEG, EOG and EMG. Under the condition of meeting the requirements of classi-
fication speed, it improves the accuracy of the classification and dramatically improves
the performance and applicability of the system, but also reduces the system’s response
speed. Similarly, Xi’an Jiaotong University [41] designed the multi-mode human–computer
interaction flexible manipulator, which also integrates the instructions of three modes, so
that patients can choose their own multi-modal human machine interface (mHMI) mode.

Bioelectrical signals to control hand rehabilitation robots have considerable applica-
tion prospects. This mode is more in line with the physiological function of the human
body; that is, there are physiological signals first, and then muscle activities to produce
hand movements. However, the balance and optimization between comfort, diversity,
stability, accuracy, timeliness, and timeliness need to be further studied, and the safety of
unsupervised training is also worthy of attention.

2.2.2. Kinematics Sensor-Based Hand Function Rehabilitation Robot

The kinematic parameters of hand motion include fingers and joints’ coordinates,
displacement, angular displacement, motion speed, angular velocity, acceleration, inertia,
etc. The kinematic sensors used to measure these parameters in a hand rehabilitation robot
mainly include flexible angle sensors, accelerometers, gyroscopes, pressure sensors, etc.
Compared with rehabilitation robots based on physiological signals, most rehabilitation
robots with integrated kinematic sensors can provide a signal of superior quality and better
tolerance with regard to placement of electrodes. They can recognize finer gestures and
complete finer-grained training tasks, which is very helpful for the treatment of patients in
the later stages of stroke rehabilitation.

Most of the kinematic sensors of hand rehabilitation robots choose the angle sensors,
because they can obtain the angle information of each finger joint more directly and then
recognize more fine gestures, which can be used for hand function rehabilitation and
evaluation. For example, Hong et al. [42] from the National University of Singapore
designed a passive flexible mechanical glove. It uses the angle sensor placed on the finger
part of the glove to collect the kinematic information of the patient’s healthy hand to
judge the patient’s motion intention, and recognize the gesture. It then uses the pneumatic
actuator made of silicone elastic material to generate pressure to drive the affected hand
to move. Similarly, Rahman et al. [43] from Sydney University of Technology developed
a 15-DOF aluminum hand exoskeleton that also adopts angle sensors and the bilateral
cooperative mode.

When the patient has a certain degree of hand function, the tactile sensor and pressure
sensor can also be used to identify the motion intention of the affected hand when grasping
the object and judge the required force. For example, Nilsson et al. [44] from Sweden
developed SEM gloves with tactile sensors on the fingertips and pressure sensors on the
palm. After recognizing the patient’s motion intention of grasping and judging the vital
force, the robot will provide the corresponding auxiliary power to complete the training.

Many devices simultaneously use angle and pressure sensors to obtain more com-
prehensive kinematic information. For example, Chen et al. [45] proposed a flexible and
portable hand fine motor function rehabilitation robot, with ten flexible bending angle
sensors at the joints and ten pressure sensors on the palm and fingertips of the unaffected
hand’s glove. Through these sensors, the joint bending angle and clamping force of each
finger can be collected in real-time. Then, 16 gestures and 6 task gestures of a single finger
and multiple fingers motion can be recognized, and the affected glove can be controlled to
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complete the same action-driven training. There are also angle and pressure sensors on
the gloves on the affected hand, which can provide feedback on the current parameters for
closed-loop control and provide a basis for doctors to evaluate hand function and adjust the
training program. Similarly, the rehabilitation robot designed by Rakhtala et al. [46] also
uses angle and pressure sensors at the same position of gloves to identify the current hand
motion state to achieve a closed-loop control system. The same is true of the pneumatic
hand rehabilitation robot designed by Huazhong University of Science and Technology [47].

The angular information during a hand motion is not only the finger joint bending
angle mentioned above, but also the opening angle and the degree of overlap between each
finger. Sometimes, it is necessary to use an opening angle sensor to measure the degree of
the spread between fingers, which can better identify different types of hand gestures and
analyze the patient’s hand function rehabilitation more comprehensively. For example, Li
Nan et al. [48] designed intelligent-assisted rehabilitation gloves, which use bending angle
sensors, pressure sensors, and opening angle sensors at the same time.

For the recognition of dynamic hand motions, in addition to static motion information,
some dynamic posture information, such as velocity and acceleration, and spatial informa-
tion, such as relative coordinates, are required. At this time, accelerometers, gyroscopes,
and other sensors are needed. These applications are often combined with inertial sensors
or posture sensors in practice. For example, Zhengzhou University [49] designed the hand
motion rehabilitation training and evaluation system. This system uses bending sensors
and posture sensors simultaneously, which can obtain the motion state of the patient’s hand
and rehabilitation robot in real-time. Then, the software system compares the obtained
information with the expected values, and controls the rehabilitation robot to use the appro-
priate speed and angular speed to complete the required motion. When the system detects
that the status exceeds the pre-specified threshold, it will automatically and slowly return
to the safe state and inform the medical personnel in a timely manner. The Robot Research
Center of Zhejiang University [50] designed a hand function rehabilitation training system
that uses bending angle sensors, pressure sensors, and inertial sensors simultaneously. This
system can identify the patient’s hand actions, spatial motion state, and pressure value of
each part during grasping in real-time, and map them to the virtual hand. It is combined
with virtual reality to motivate patients’ training through more exciting games.

2.2.3. Optical Sensor-Based Hand Function Rehabilitation Robot

Conventional sensors are usually directly mounted on hand rehabilitation robots,
which are difficult to integrate with actuators, complex in structures, and challenging to
install on flexible actuators. Sensors made of elastomers or conductive liquids will deform
when subjected to surface pressure, resulting in non-linear output and compromising
accuracy. Optical sensors applied to hand rehabilitation robots mainly include optical fiber
sensors and photoelectric sensors. The fiber optic sensor has high sensitivity, a compact
structure, and strong anti-interference ability, which means it cannot affect the hand motion
when applied to the hand rehabilitation robot. Optical sensors generally work by measuring
the deviation of a light beam incident on a photosensitive surface.

He et al. [51] proposed an optical fiber pressure sensor for the hand rehabilitation
exoskeleton. This sensor consists of a small piece of optical fiber package attached to a rigid
3D-printed structure. It can capture the interaction force on the exoskeleton in real-time
to obtain the current hand motion and grasping situation. The sensor is small, simple,
sensitive, safe, and low-cost, and can be easily integrated into the exoskeleton of the hand
without affecting actuation. In a later study, the team also proposed a low-cost micro-hand
posture sensor based on photoelectric technology that can be integrated into the hand
exoskeleton [52], which measures the posture of multi-segment continuous structures in
the hand rehabilitation exoskeleton. The sensor has low energy consumption, low noise,
high sensitivity, and good real-time performance. It can be used to accurately control the
rehabilitation robot, assess patient hand function, and adjust the rehabilitation plan.
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Diez et al. [53] proposed a lightweight hand exoskeleton with micro-optical force
sensors, which also applies optical principles and can measure human–machine interaction
forces to estimate user intentions in rehabilitation scenarios. Due to its miniaturization, the
sensor can be inserted between the human interface and the force transmission element.
When the patient tries to act, the device can measure the force between the exoskeleton
and the patient, identify the patient’s intention, and continuously control the exoskeleton
to move in the desired direction to achieve the target posture. When the patient has
a particular hand motor function and the force measured by the sensor exceeds a pre-
calibrated threshold, the exoskeleton will automatically start a complete movement.

Liu Chenglong et al. [54] from Huazhong University of Science and Technology de-
veloped a soft actuator for the hand rehabilitation robot. It is embedded with optical
fiber curvature sensors. When the finger is bent, the sensor senses different surface pres-
sures and outputs voltage signals in a linear relationship. The software part can convert
voltage signals into angle information, and then recognize the gesture. In this way, the
rehabilitation robot can be tracked and controlled more accurately to assist in each training
mode. At the same time, the system can also display the current gesture with 3D texture
animation. The PMMA material is used as the light guiding medium of the sensor, which
can effectively eliminate the interference of the extrusion deformation caused by the soft ac-
tuator’s inflation on the sensor’s output and make the output more stable. Table 1 presents
a summary of the advantages and disadvantages of these hardware devices for functional
hand rehabilitation systems included in the review.

Table 1. This table is a summary of the different input device for the hand function rehabilitation
system and indicates the main advantages and disadvantages of these technologies.

Input Device Specific Device Reference Advantage Disadvantage

Camera
Virtual game [17–24] Non-invasive; does not require

wearing extra equipment; easy to
use

Has high requirements for the
external environment; low
recognition speed and the

accuracy rate; may need markersRobot [25–33]

Wearable device

Physiological signal
sensor [34–41] Can recognize more gestures with

small input data and high
precision in real time; has good

robustness

More expensive; require wearing
extra equipment; easy to cause

fatigue; requires calibrationKinematics sensor [42–50]

Optical sensor [51–54]

3. Artificial Intelligence Used in Hand Rehabilitation Robots

In addition to the above-mentioned research on hardware devices for hand movement
recognition, hand rehabilitation robots also require research in the field of software, com-
bining hardware and software to achieve intelligence and wisdom in the devices. With
the development of artificial intelligence technology, many new fields and products have
emerged. Artificial intelligence can be applied to various modules of hand rehabilitation
robots, such as hand movement recognition, control of hand rehabilitation robots, human-
machine intelligent collaboration, interactive game design, training program design and
result evaluation, cloud platform, structural design and optimization of hand rehabilitation
robots, and so on. However, in practice, the research and application of artificial intelligence
in hand rehabilitation robots are still not significant or not deep enough due to technical
limitations and insufficient deployment of related medical facilities [7].

3.1. Gesture Recognition Algorithm

In hand rehabilitation robots, gesture recognition mainly requires real-time isolated
dynamic gesture recognition, and artificial intelligence algorithms can be used for this
recognition. The core idea is mainly to build a matching model from the data training
set and then use the model to predict the recognized gestures. The more commonly used
methods are mainly linear discriminant analysis (LDA), support vector machines (SVM),
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convolutional neural networks (CNN), long short-term memory (LSTM) and recurrent
neural networks (RNN). For example, Zhang Guangxing [55] from Qingdao University of
Science and Technology designed an integrated wrist rehabilitation robot using the LDA
method that can recognize five kinds of movements, with an accuracy rate of over 90%.
Zhang Fahui [56] from Nanchang University used the SVM model to recognize four kinds
of gestures, with an average accuracy rate of 99.3%. Liu Wei [35] from Nanjing University
of Aeronautics and Astronautics developed a hand exoskeleton rehabilitation robot using
the convolutional neural network, which can recognize four kinds of gestures, with an
average accuracy rate of 96.18%. Zhang Jianxi [57] designed a hand rehabilitation robot
using a combination of RNN and LSTM algorithms for the recognition of nine gestures,
with an average accuracy of 91.44%.

3.2. Control of the Hand Rehabilitation Robot

Safety issues need to be addressed in the control strategy or algorithm of the hand re-
habilitation robot. More precise control strategies are needed, as well as balancing the ratio
between the degree of control the robot has over the hand and the risk of miscalculation.
For example, Jun Wu [58] designed a pneumatic flexible hand rehabilitation robot, used
a sliding mode control algorithm based on fuzzy compensation to control the pneumatic
muscles, proposed a dynamic surface control based on a nonlinear interference observer to
realize the control of the pneumatic muscle system, and used an echo state network (ESN)
with recursive least squares (RLS) for PID parallel adaptive control. Yihao Du et al. [59]
proposed an adaptive control strategy based on a variable impedance equation model,
which can combine the desired trajectory identified by physiological signals to obtain the
final trajectory and calculate the required motion of each joint of the rehabilitation robot.
Yonghao Yin [60] from Yanshan University also used RBF neural networks to approximate
the compensation of errors caused by external perturbations and uncertainties to control
the rehabilitation robot to achieve the desired results.

3.3. Human-Robot Intelligence Collaboration

Artificial intelligence can also be applied to the human-robot collaboration of hand
rehabilitation robots, mainly in the assisted training mode. For example, Wang Xiangyu [61]
from Harbin Institute of Technology designed an impedance control system to carry out
motion following the hand rehabilitation robot in the assisted mode, which can identify the
bending angle and muscle strength of the patient’s fingers when the patient’s hand has a
certain behavioral ability and apply the appropriate force to help the patient complete the
movement, and the system uses a fuzzy neural network.

3.4. Interactive Game Design

In order to increase patients’ interest and motivation during rehabilitation training, the
hand rehabilitation robot can be equipped with some interactive games, such as interactive
control based on voice recognition, virtual reality games based on visual recognition, and
games based on brain–computer interface, etc. Artificial intelligence is also applied here.
For example, Zhu Xikun [62] from Zhengzhou University designed a finger rehabilitation
training system that can interact with active modes through both gesture recognition and
voice recognition using algorithms such as neural networks and hidden Markov models.
Cao Yali [63] designed a hand function rehabilitation robot software system that uses
Unity3D to design different virtual games for different training modalities. Mou Yang
et al. [64] designed an Android-based portable virtual reality rehabilitation device that can
be applied to a hand rehabilitation robot. Ying Zhang [65] from Beijing University of Posts
and Telecommunications designed a monocular vision-based hand grasping interaction
training module.
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3.5. Training Program Design and Outcome Evaluation

Traditional rehabilitation training programs and assessment of rehabilitation results
are mostly conducted by doctors themselves, but this requires a lot of medical resources and
sometimes has a certain subjective component. Theoretically, the application of artificial
intelligence can improve this problem by digitizing and standardizing the assessment
report and training program, which can identify the patient’s current hand movement
status and physiological data in real time, combine it with the relevant medical program
data, assess the patient’s current muscle strength level and rehabilitation training effect,
and intelligently design the training program based on the assessment results. However,
the actual effectiveness of these applications has yet to be clinically validated. For example,
Neofect [66] has developed a Rapael Smart Glove, which has an intelligent system that can
provide segmented rehabilitation recommendations and evaluation reports, and its unique
RAPAEL intelligent rehabilitation algorithm that can build games that meet the patient’s
rehabilitation plan.

3.6. Cloud Platform

The cloud platform can be used for one-stop implementation of training program
design and evaluation of training results, as well as remote rehabilitation and real-time
interaction. The cloud platform can monitor equipment parameter data in real time and
provide safe and reliable rehabilitation training for patients. It can also apply digital twin
technology to break the limitation of time and space and share big data sets of patients’
medical records, intelligent rehabilitation assessment reports, and training reports. Through
these data, training programs are intelligently designed and pushed to rehabilitation robots,
with interactive games, real-time remote training, and full cloud health management. For
example, Xinyu Tang [67] from Southeast University designed a rehabilitation training and
assessment system that uses cloud platform technology to aggregate, store, analyze, and
display patient rehabilitation data. The system uses the DTW algorithm to compare the
similarity of patient movement data streams captured by Kinect with standard movement
data streams and uses them as indicators to assess the rehabilitation status of patients.

3.7. Hand Rehabilitation Robot Structure Design and Optimization

In addition to the software applications mentioned above, artificial intelligence can
be applied to the hardware structure of the rehabilitation robot. For example, AI can
optimize the mechanical mechanism based on human body data to make the machinery
more ergonomic and better fit the biological curve of the human body to enhance the
use experience.

4. Problems and Prospects of the Current Study

The previous context introduces the hardware and software of existing research on
hand function rehabilitation robots. However, problems also exist that require further
attention in future research. The following list summarizes the existing problems and
limitations of the employed techniques in the current studies.

(1) Hand function rehabilitation equipment based on computer vision techniques is
sometimes cumbersome, requires affixing markers, and is not convenient or portable
enough for the external environment. Some aspects of the equipment will even make
users feel dizzy. When using monocular vision, the recognition accuracy is affected by
the light and color of the environment, skin color, etc. Although these problems can be
improved to some extent when using binocular vision, it requires more complicated
calibration and correction, which increases the computational cost and creates other
interference factors that affect the image quality. Therefore, it is necessary to continue
to improve the equipment and optimize the algorithm.

(2) When using computer vision technology for bare hand gesture recognition and training
patients’ hand function with games in the virtual environment, the tactile feedback
of the affected hand is often not available, ignoring the motion angle and time that
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needs to be strictly set according to the patient’s motion ability to ensure the safety of
the game. The feedback is mandatory during sensorimotor rehabilitation. Therefore,
more attention should be paid to the design by adding some threshold limits.

(3) When using computer vision technology only for gesture recognition and rehabilitation
training, the type of data is relatively simple. When recognizing complex gestures,
it is inevitable to encounter a situation where the acquisition cannot be collected
or where the acquisition and recognition are inaccurate. Some other information
collection methods, such as physiological signals and so on, can be used to achieve
multi-information fusion.

(4) Most hand rehabilitation robots based on wearable device gesture recognition need to
wear additional sensors, which increases the cost and at the same time is inconvenient
to use and has certain restrictions for patients. The recognition algorithm and the
central processor of the wearable device have higher requirements, so there may be
some delays. The algorithm also needs to be retrained if the number of sensor positions
changes. Therefore, the balance and optimization between comfort, diversity, stability,
accuracy, and timeliness in acquisition need to be further studied, and the safety of
unsupervised training also deserves attention.

(5) The hand rehabilitation robots based on physiological signal gesture recognition are
prone to instability in signal acquisition and transmission, and the amount of data
that can be recognized is limited, making it difficult in the application to fine finger
motion rehabilitation and the recognition of continuous motion. To address this aspect,
multi-mode control strategies can also be used, in conjunction with kinematic signals,
optical signals, etc.

(6) Regardless of the techniques used, the rehabilitation robot should be designed with a
closed-loop control network, which can, for example, provide force feedback, angular
feedback, position feedback, haptic feedback, etc. through sensors to provide timely
feedback and adjust parameters according to the real-time status of patients.

(7) Most hand function rehabilitation robots are still in the research stage, and those
based on computer vision technologies require far more attention than those found on
wearable sensors. Evaluated using the “Technology Readiness Level (TRL) system”
by Mankins, most hand function rehabilitation systems based on computer vision
technology are still at TRL5 or 6 (technology demonstration). A few of them are
at TRL7 or 8 (system/subsystem development), and few reach TRL9 (system test,
deployment and ops, the highest level) [68]. On the other hand, those based on
wearable devices are at least TRL5 to 7, and many of them reach TRL9.

Besides the above existing problems, the clinical utility of hand function rehabilitation
robots has been evaluated in terms of appropriateness, acceptability, and practicability [69].
Most established rehabilitation robots had effective appropriateness, while some robots
still in the research stage had relevant appropriateness. Participants’ acceptability of reha-
bilitation robots and computer-vision-based games is mainly related to their effectiveness.
Some said that the games could increase their interest in training, and some expressed
concerns, such as comfort. Speaking of practicability, most of them perform well in terms
of functionality and suitability, but some technical problems hinder the user experience.
The variety of functionality and wearing comfort still require further improvements.

In the future, we expect that a hand function rehabilitation robot should first be able
to fully simulate a human therapist’s approach and achieve complete “human-machine
integration”. Secondly, it can be upgraded under human guidance to assess the patient’s
condition, give rehabilitation training plans and evaluate the training effect. Moreover, it
can realize a more convenient and intelligent human–machine interaction mode. Finally,
it can also assist in optimizing the allocation of medical resources to achieve efficient and
interesting telemedicine.
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Abstract: Understanding the patterns of brain glucose metabolism and connectivity in hypoxic-
ischemic encephalopathy (HIE) patients with prolonged disorders of consciousness (DOC) may
be of positive significance to the accurate assessment of consciousness and the optimization of
neuromodulation strategy. We retrospectively analyzed the brain glucose metabolism pattern and
its correlation with clinical Coma Recovery Scale-Revised (CRS-R) score in six HIE patients with
prolonged DOC who had undergone 18F-deoxyglucose brain positron emission tomography scanning
(FDG-PET). We also compared the differences in global metabolic connectivity patterns and the
characteristics of several brain networks between HIE patients and healthy controls (HC). The
metabolism of multiple brain regions decreased significantly in HIE patients, and the degree of local
metabolic preservation was correlated with CRS-R score. The internal metabolic connectivity of
occipital lobe and limbic system in HIE patients decreased, and their metabolic connectivity with
frontal lobe, parietal lobe and temporal lobe also decreased. The metabolic connectivity patterns of
default mode network, dorsal attention network, salience network, executive control network and
subcortex network of HIE also changed compared with HC. The present study suggested that pattern
of cerebral glucose metabolism and network connectivity of HIE patients with prolonged DOC were
significantly different from those of healthy people.

Keywords: hypoxic ischemic encephalopathy; disorders of consciousness; metabolic connectivity;
positron emission tomography; 18F-fluorodeoxyglucose

1. Introduction

Various causes, such as cardiac arrest and asphyxia, lead to brain injury caused by
global cerebral ischemia and hypoxia in adults, which can lead to continuous disorders
of consciousness (DOC). Behavioral assessment is the first-line assessment to evaluate
the degree of DOC in clinical practice. At present, the most commonly used clinical
scale with high sensitivity is the Coma Recovery Scale-Revised (CRS-R) [1], which is
possible to distinguish between vegetative state/unresponsive arousal syndrome (VS/UWS;
presence of eye opening and reflex behavior), minimally conscious state (MCS; showing
repeatable but inconsistent conscious behavior, such as command following or visual
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tracking) and emerging from MCS (EMCS; patients recover the ability to use objects in a
functional manner).

However, neurological deficits caused by hypoxic-ischemic encephalopathy (HIE),
such as limb paralysis, spasm and blindness, may affect the results of bedside behavioral
evaluation of DOC. In clinical practice, we found that even in VS patients, some still
retained emotional response adapted to the external environment, which is not included
in the evaluation of CRS-R. Through neuroimaging studies based on specific tasks, Owen
AM et al. [2] and Monti MM et al. [3] suggested that even patients with VS may still have
a certain degree of cortical activity. Schiff ND et al. [4] defined these DOC patients who
were unable to respond to external instructions but still had reactive cortical activity as
experiencing “cognitive motor dissociation” (CMD). Thibaut A et al. [5] introduced the
concept of “non-behavioral MCS” (MCS star) and diagnosed DOC patients with behavioral
evaluation as VS but with brain glucose metabolism preservation, indicated by Positron
emission tomography (PET) imaging as MCS star. Compared with VS patients with poor
brain glucose metabolism preservation indicated by PET imaging, MCS star patients may
have better prognosis.

A number of neuroimaging and electrophysiological studies have shown that the
structural and functional connections between bilateral frontal parietal lobe and cingulate
cortex in patients with DOC have decreased [6,7], and these brain regions are closely
related to arousal and consciousness [8]. The default mode network (DMN) is mainly
composed of medial prefrontal cortex, anterior cingulate gyrus, posterior cingulate gyrus,
precuneus and bilateral inferior parietal lobules. The functional activity of DMN in patients
with DOC is significantly reduced [9]. fMRI studies suggested that the low frequency
fluctuations and regional voxel homogeneity of various brain regions in DMN of patients
with DOC were reduced [10], while the functional connectivity of DMN is associated with
the level of consciousness [11–13]. The connection between medial prefrontal lobe and
posterior cingulate gyrus may be related to the prognosis of DOC [14]. In addition, the
functional disconnection between cortex and subcortical is also considered to be one of the
biological mechanisms of DOC [15]. Patients with DOC have interruption and disorder of
the effective connectivity between the left striatum and bilateral precuneus, cingulate gyrus
and left middle frontal gyrus [16]. The thalamus is also an important subcortical nucleus for
consciousness maintenance. The functional connectivity between medial thalamic nucleus,
prefrontal lobe and anterior cingulate gyrus in VS patients decreased significantly [17].

In recent years, various brain stimulation technologies have been explored and applied
to enhance the recovery of DOC patients. For example, transcranial pulsed-current stimula-
tion of the prefrontal lobe may enhance local brain functional connection [18]; the treatment
of invasive low-intensity focused ultrasound (LIFU) on the thalamus could improve the
behavior of patients with DOC, and a functional magnetic resonance imaging (fMRI) study
suggested that LIFU can improve the functional connection of the thalamus [19]; meta-
analysis showed that deep brain stimulation (DBS) treatment may improve the CRS-R score
of DOC patients in some studies, but there was diversity in the targets and parameters of
DBS [20]. Therefore, understanding the brain network model of patients with persistent
disorders of consciousness after cerebral ischemia and hypoxia may be of positive signifi-
cance for selecting more appropriate and accurate stimulation targets and neural regulation
strategies in the future.

PET imaging is safe, comfortable, and atraumatic and is currently the only imaging
technique that can quantitatively evaluate biochemical alterations in vivo, accurately re-
flecting the biology of the lesion. The present study retrospectively analyzed six DOC
patients with hypoxic-ischemic brain injury who underwent brain 18F-deoxyglucose PET
scanning in our center, and analyzed the brain glucose metabolism pattern of these HIE
patients as well as their correlation with CRS-R score. We also compared the differences in
brain metabolic connectivity patterns between HIE patients and healthy subjects, as well as
the metabolic connectivity characteristics of major brain networks in HIE patients.
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2. Materials and Methods

2.1. Participants

Six patients hospitalized in the Department of Rehabilitation Medicine of Huashan
Hospital, affiliated to Fudan University, Shanghai, China, and diagnosed with hypoxic-
ischemic encephalopathy (HIE) were included in this study (male/female, 3/3; age,
45.83 ± 16.23 years). The causes of cerebral hypoxia ischemia in these HIE patients were
cardiac arrest in 2 cases, anesthesia accident in abdominal surgery in 2 cases, massive
bleeding of gastric cancer in 1 case (no evidence of tumor intracranial metastasis) and as-
phyxia due to food choking in 1 case. All of them had prolonged disorder of consciousness
(DOC) after rescue. The average duration of DOC was 20.83 ± 8.93 weeks at the time of
PET scanning. The state of consciousness of these HIE patients was assessed according
to the Coma Recovery Scale-Revised Version (Chinese version) (CRS-R) [21,22], which
was completed by two experienced neurorehabilitation experts according to the standard
process of CRS-R [22]. We adopted the highest CRS-R score within 1 week before and after
the time of PET scan. Among them, 5 cases were VS and 1 case was MCS. The clinical
information and CRS-R assessments of HIE patients are listed in Table 1. In addition, we
included 18 gender and age matched healthy people as the healthy control (HC) group. The
demographic information is listed in Table 2. All subjects are right-handed. The study was
approved by the Ethics Committee of Huashan Hospital and was conducted in accordance
with the tenets of the Declaration of Helsinki.

Table 1. Patients with HIE.

Patient
No.

Gender Age (yrs)
Time Since HIE
Onset (Weeks)

Cause of HIE Level of DOC Total CRS-R Score

1 M 17 29 Cardiac arrest VS 6
2 F 50 13 Anesthesia accident VS 5
3 F 39 16 Anesthesia accident VS 4
4 M 57 27 Massive hemorrhage a VS 7
5 M 63 32 Chocking VS 5
6 F 49 8 Cardiac arrest MCS 10

HIE, hypoxic-ischemic encephalopathy. DOC, disorder of consciousness. CRS-R, coma recovery scale-revised
version. M, male. F, female. VS, vegetative state. MCS, minimally conscious state. a Patient 4 had a history of
gastric cancer, but there was no evidence of intracranial metastasis.

Table 2. Demographic data.

HIE (n = 6) HC (n = 18) p Value

Gender (M/F) 3/3 9/9 p > 0.05
Age (yrs) 45.83 ± 16.23 52.67 ± 2.28 p > 0.05

Handedness (R/L) 6/0 18/0 p > 0.05
HIE, hypoxic-ischemic encephalopathy. HC, healthy control. M, male. F, female. L, left. R, right.

2.2. FDG PET Scanning

All subjects were asked to fast for at least 6 h, but had free access to water before
PET imaging. PET scans were performed with a United Imaging uMI510 PET/CT (United
Imaging, Shanghai, China) in three-dimensional (3D) mode. A CT transmission scan
was first performed for attenuation correction. The emission scan was acquired between
60–70 min after intravenous injection of 185 MBq of 18F-fluorodeoxyglucose. The imaging
data was digitally registered onto a computer disk to create the sectional images of a
patient’s brain [23]. As no arterial blood sampling was taken in this clinical imaging
protocol, we used radioactivity images to measure changes in relative regional glucose
metabolism. All studies in patients and normal individuals were performed in a resting
state in a quiet and dimly lit room. All patients and normal individuals were monitored
via cameras during the course of uptake and scanning procedure.
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2.3. Image Preprocessing

Imaging data were processed by using Statistical Parametric Mapping (SPM8) software
(Wellcome Department of Imaging Neuroscience, Institute of Neurology, London, UK)
implemented in Matlab 8.3.0 (Mathworks Inc., Sherborn, MA, USA). Scans from each
subject were spatially normalized into Montreal Neurological Institute (MNI) brain space
with linear and nonlinear 3D transformations. The normalized PET images were then
smoothened by a Gaussian filter of 8 mm FWHM over a 3D space to increase signal to noise
ratio for statistical analysis.

Due to the decreased glucose metabolism in the whole brain of HIE patients, im-
proper use of global signal normalization may thus lead to incorrect increase of the relative
metabolic value [24]. The brainstem function of VS patients is relatively reserved, which
may be related to maintaining the awakening and autonomic nerve function of VS pa-
tients [25]. Considering that midbrain atrophy in patients with DOC may be related to
dopaminergic nerve dysfunction [26] and the volume of medulla oblongata is relatively
small, we chose pons as a reference for radioactive count correction in each brain region.

PET imaging data were analyzed by using SPM8 software as described previously [27].
To characterize metabolic activity in HIE patients compared with controls, we performed a
group comparison by using a two-sample t-test according to the general linear model at
each voxel. The contrasts for the decreased and increased metabolism were set as (1 −1)
and (−1 1). Mean signal differences over the whole brain were adjusted by radioactivity
counts of pons in each individual subject. To evaluate significant differences, we set the
peak threshold at p < 0.001 (uncorrected) over whole brain regions with an extent threshold
of 100 voxels (corresponding to a tissue volume of 800 mm3). For a stricter criterion, we
also highlighted clusters that survived a family wise error (FWE) correction at p < 0.05.
Significant regions were localized by Talairach Daemon software (Research Imaging Center,
University of Texas Health Science Center, San Antonio, TX, USA). The SPM maps for
increased or decreased metabolism were overlaid on a standard T1-weighted MRI brain
template in stereotaxic space.

To quantify metabolic changes in specific regions, we used a 3-mm radius spherical
volume of interest (VOI) within the image space, centered at the peak voxel of clusters that
were significant in the two-sample t-test. We then calculated the relative cerebral glucose
metabolic values (i.e., adjusted by pons) in all patients and normal individuals.

We also used a multiple regression analysis to determine the relationship between
clinical measures (i.e., CRS-R) and cerebral metabolic values in patients with HIE and the
peak threshold was set at p < 0.01 (uncorrected). The contrasts for the positive and negative
correlation were set as (0 1) and (0 −1). For a stricter criterion, we also highlighted clusters
that survived at p < 0.001(uncorrected). The overlaid SPM maps and relative metabolic
values were obtained using the same methods as mentioned before.

2.4. Metabolic Connectivity Matrix

To gain a deeper insight into potential mechanisms underlying altered glucose metabolism,
we assessed region-of-interest (ROI)-based metabolic connectivity. We used the pons as
reference region to count regional relative glucose metabolic values and further generated
the standardized uptake value ratio (SUVR) map. The regional relative glucose metabolic
activity was obtained from the 116 brain regions using the Automated anatomical labelling
atlas (AAL), which were assigned to the following 8 anatomical compartments: frontal
cortex, parietal cortex, temporal cortex, occipital cortex, limbic system, basal ganglia,
cerebellum hemisphere, and vermis of cerebellum. Then we calculated the Pearson’s
correlation between the ROIs of each group, creating a pairwise metabolic connectivity
matrix (116 × 116 ROIs).

In order to further analyze the characteristics of the major brain networks of HIE
patients, we selected the brain regions in AAL template related to the default mode net-
work (DMN), salience network (SN), dorsal attention network (DAN), executive control
network (ECN) and subcortex network described in previous studies [28–33] as ROIs. Then

176



Brain Sci. 2022, 12, 892

we calculated the Pearson’s correlation coefficient between these ROIs and generated a
metabolic connectivity matrix for each brain network.

2.5. Statistical Analysis

Shapiro-Wilk test was used for normality test. Demographic data were analyzed by
two-samples t-test or chi square test. Differences in regional metabolic values between HIE
and HC groups were assessed by using two-sample t-tests. In addition, correlations between
regional relative metabolic values and CRS-R score in HIE patients were assessed by computing
Pearson’s correlation coefficients. The above statistical analyses were performed using the SPSS
software (SPSS, Chicago, IL, USA) and considered significant at p < 0.05.

3. Results

3.1. Characteristics of Relative Brain Activity in Patients with HIE

In comparison with HC group, patients with HIE showed decreased metabolism
bilaterally in the medial frontal gyrus, posterior cingulate gyrus (extending to parietal-
occipital lobe), postcentral gyrus and superior temporal gyrus, and in the right anterior
cingulate gyrus and right caudate nucleus, associated with increased metabolism in the
bilateral anterior cerebellar lobe and left middle frontal gyrus and right lentiform nucleus
(Figure 1A and Table 3).

Table 3. Brain regions with significant metabolic differences in HIE patients compared with HC
subjects.

Structure Broadmann Area L/R
MNI Coordinates a

Zmax
Cluster Size

(mm3)x y z

Decreased metabolism b

Medial Frontal Gyrus 11 L −4 44 −12 3.8 150

10 R 8 48 −6 3.39

Anterior Cingulate 32 R 8 32 28 3.75 122

Posterior Cingulate c 23 L −2 −26 34 5.63 10,079

(Extending to
parietal-occipital lobe) 24 R 10 −22 44 5.88

Postcentral Gyrus c 5 L −12 −48 76 5.19 118

2 R 62 −24 52 3.84 125

Superior Temporal
Gyrus 22 L −50 −8 2 4.31 401

(Extending to insula) 22 R 54 −8 4 4.22 630

Middle Temporal Gyrus 37 L −54 −66 2 4.09 832

Caudate c Caudate Head R 14 16 −6 4.88 284

Increased metabolism b

Middle Frontal Gyrus c 11 L −22 42 −4 6.08 1000

Lentiform Nucleus Putamen R 28 −18 12 4.03 181

Anterior Lobe c Cerebellum L −20 −46 −38 6.21 8305

Cerebellum R 10 −42 −38 7.36

MNI, Montreal Neurological Institute. FEW, family-wise error corrected, a, MNI standard space. b, Survived at
uncorrected p < 0.001. c, Survived at FWE p < 0.05.
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Figure 1. Brain regions with relative abnormal metabolism in patients with hypoxic ischemic en-
cephalopathy (HIE) presenting with disorders of consciousness (DOC). (A) Normalized glucose
metabolism in the HIE patients decreased (blue) bilaterally in the medial frontal gyrus, posterior
cingulate gyrus (extending to parietal-occipital lobe), postcentral gyrus and superior temporal gyrus,
and in the right anterior cingulate gyrus and right caudate nucleus, but increased (red) in bilateral
anterior cerebellar lobe and left middle frontal gyrus and right lentiform nucleus relative to the
healthy controls (HC). The overlays are depicted in neurologic orientation. The gray-scale image is a
T1-weighted structural magnetic resonance imaging (MRI) that is representative of Montreal Neu-
rological Institute (MNI) space. The thresholds of the color bars represent T values. (B) Differences
in regional glucose metabolism in the HIE patients and HC subjects illustrated by post hoc values
obtained within a spherical volume of interest (VOI) (3 mm radius) with the center coordinates of
each VOI given in the parentheses. The graphs showed the relative metabolic value decreases in the
bilateral medial frontal gyrus, posterior cingulate gyrus, postcentral gyrus and superior temporal
gyrus, and right anterior cingulate gyrus and right caudate nucleus, while the relative metabolic
value increases in bilateral anterior cerebellar lobe and left middle frontal gyrus. The error bars
represent standard deviation. ns, no statistical difference. HIE, hypoxic ischemic encephalopathy.
HC, healthy control. L, left. R, right. *, p < 0.05. **, p < 0.01, ***, p < 0.001.

Figure 1B shows the differences in relative metabolism values between the HIE and
HC groups in the major functional regions (see Figure 1A). The decreased metabolic values
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in the spherical volume of interests (VOI) centered at the bilateral medial frontal gyrus,
posterior cingulate gyrus, postcentral gyrus and superior temporal gyrus, and right an-
terior cingulate gyrus and right caudate nucleus displayed significant group differences
between HIE and healthy individuals (p < 0.01, except for the right anterior cingulate gyrus
where p < 0.05). The increased metabolic value in the VOIs centered at the bilateral anterior
cerebellar lobe and left middle frontal gyrus also showed significant group discrimina-
tion between patients and controls (p < 0.01). There was a trend toward significance in
the metabolic value in the VOIs centered at the right lentiform nuclei in the HIE group
compared with the HC group (p = 0.106).

3.2. Correlation of Consciousness Level with Relative Brain Activity in Patients with HIE

The regression analysis yielded a positive correlation of CRS-R score in HIE patients
with metabolic activity bilaterally in the medial frontal gyrus, middle frontal gyrus, anterior
cingulate, and caudate, and in the left superior frontal gyrus, left inferior frontal gyrus
and right tuber of cerebellum. In contrast, CRS-R correlated negatively with metabolic
activity in the left lingual gyrus. (Figure 2A and Table 4). The sample plots for the six major
regions from the regression analysis (see Figure 2A) are given in Figure 2B–G. The CRS-R
score correlated significantly with relative metabolic values in the right medial frontal
gyrus (r = 0.969, p = 0.002), left superior frontal gyrus (r = 0.875, p = 0.023), right middle
frontal gyrus (r = 0.862, p = 0.027), left caudate (r = 0.857, p = 0.029), right caudate (r = 0.975,
p < 0.001), and right tuber of cerebellum (r = 0.977, p < 0.001).

Table 4. Brain regions correlated with total CRS-R score in patient with HIE.

Structure
Broadmann

Area
L/R

MNI Coordinates a

Zmax
Cluster Size

(mm3)x y z

Positive b

Medial Frontal Gyrus c 9 L 0 50 26 3.48 104

Anterior Cingulate 32 L 0 40 26 2.79

Medial Frontal Gyrus 9 R 6 52 2 2.43 5

Anterior Cingulate 32 R 4 32 26 2.44 3

Superior Frontal Gyrus 10 L −34 60 0 2.84 30

Middle Frontal Gyrus 10 L −26 52 26 2.7 12

Middle Frontal Gyrus 10 R 40 58 4 2.47 6

Inferior Frontal Gyrus c 47 L −30 32 −20 3.39 82

Caudate Caudate
Head L −8 6 −4 2.93 22

Caudate Caudate
Head R 12 18 −8 2.45 11

Tuber Cerebellum R 20 −90 −38 2.83 42

Negative b

Lingual Gyrus 17 L −14 −86 −6 2.75 113

MNI, Montreal Neurological Institute. L, left. R, right. a, MNI standard space. b, Survived at uncorrected p < 0.01.
c, Survived at uncorrected p < 0.001.
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Figure 2. Brain regions correlated with Coma Recovery Scale-Revised (CRS-R) score in hypoxic is-
chemic encephalopathy (HIE) patients presenting with disorders of consciousness (DOC). (A) Regions
with positive correlation (red) were observed bilaterally in the medial frontal gyrus, middle frontal
gyrus, anterior cingulate and caudate, and in the left superior frontal gyrus, left inferior frontal gyrus
and right tuber of cerebellum, whereas those with negative correlation (blue) were found in the
left lingual gyrus. The overlays are depicted in neurologic orientation. The gray-scale image is a
T1-weighted structural magnetic resonance imaging (MRI) that is representative of Montreal Neuro-
logical Institute (MNI) space. The thresholds of the color bars represent T values. (B–G) Correlation
between relative metabolic values and CRS-R score the right medial frontal gyrus. Dotted lines
represent 95% confidence bands of the best-fit line. (B), left superior frontal gyrus (C), right middle
frontal gyrus (D), left caudate (E), right caudate (F), right tuber cerebellum (G). The metabolic values
were obtained post hoc within a spherical volume of interest (VOI) (3 mm radius) with the center
coordinates of each VOI given in the parentheses on each panel. L, left. R, right. CRS-R, coma
recovery scale—revised version.

3.3. Metabolic Connectivity

The metabolic connectivity matrixes of HIE and HC groups are shown in Figure 3.
Compared with the HC group, the global metabolic connectivity decreased in the HIE
group. Within each anatomical partition, the internal metabolic connections of frontal,
parietal, temporal, and basal ganglia decreased in the HIE group compared with the HC
group, but with some degree of preservation remained. In the HIE group, the internal
metabolic connections were weakened in the occipital lobe and limbic system, whereas
they were enhanced in the cerebellum hemispheres and cerebellum vermis. The metabolic
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connectivity of the occipital lobe, limbic system, and basal ganglia with other brain regions
was reduced in the HIE group compared with the HC group, whereas the cerebellum
showed enhanced metabolic connectivity with the frontal, temporal, and occipital lobes.

Figure 3. Global metabolic connectivity matrix. Colors in the metabolic connectivity matrix represent
the magnitude of the correlation and colors are arranged as a rainbow color from red to purple
according to the magnitude of the correlation from positive to negative. HIE, hypoxic ischemic
encephalopathy. HC, healthy control. FRO, frontal cortex. PAR, parietal cortex. TMP, temporal cortex.
OCC, occipital cortex. LIM, limbic structures. BG, basal ganglia. CBH, cerebellum hemisphere. VM,
vermis of cerebellum.

3.4. Brain Network Metabolic Connectivity Patterns

Figure 4A–E demonstrate the metabolic connectivity among the brain regions related
to the default mode network (DMN), salience network (SN), dorsal attention network
(DAN), executive control network (ECN) and subcortex network in AAL template. In
the HIE group, the metabolic connectivity of the bilateral posterior cingulate gyrus with
other nodes within the DMN decreased, as did the connectivity of the bilateral precuneus
and left angular gyrus with other nodes within the network (Figure 4A). In the SN, the
metabolic connectivity of the bilateral insula and left anterior cingulate with other nodes
within the network decreased in the HIE group (Figure 4B). In the DAN, the metabolic
connectivity between brain regions within both hemispheres were preserved in the HIE
group, but the interhemispheric metabolic connections between bilateral superior parietal
gyrus, inferior parietal gyrus, supramarginal gyrus, and angular gyrus decreased in the
HIE group compared with the HC group (Figure 4C). Similarly, in the ECN, the cross
hemispheric metabolic connectivity between the nodes of bilateral parietal lobe in HIE
patients decreased, and the metabolic connectivity between the nodes of right frontal lobe
and left parietal lobe decreased, but the metabolic connectivity between the nodes of left
frontal lobe and right parietal lobe was preserved in the HIE group. Figure 4D). In the
subcortex network, the metabolic correlations between the caudate nucleus, putamen, and
globus pallidus were enhanced in the HIE group compared with the HC group (Figure 4E).
However, there was decreased metabolic correlation between the bilateral hippocampus
and amygdala and decreased metabolic connectivity with the contralateral caudate nu-
cleus, putamen, and globus pallidus, respectively, in the HIE group (Figure 4E). Metabolic
connectivity between the bilateral thalamus and caudate nucleus was also decreased in
HIE patients (Figure 4E).
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Figure 4. Metabolic connectivity matrix between brain regions associated with different brain
networks in the AAL template. (A) default mode network (DMN) (B) salience network (SN) (C) dorsal
attention network (DAN) (D) executive control network (ECN) (E) subcortex network. Colors in the
metabolic connectivity matrix represent the magnitude of the correlation and colors are arranged as
a rainbow color from red to purple according to the magnitude of the correlation from positive to
negative. HIE, hypoxic ischemic encephalopathy. HC, healthy control. L, left. R, right.

4. Discussion

In the present study, we retrospectively analyzed the FDG-PET brain images and
clinical information of six patients with hypoxic-ischemic encephalopathy with persistent
DOC, and compared and analyzed the characteristics of brain metabolism in HIE patients
with healthy people and the correlation between brain metabolism and the evaluation of
clinical consciousness level; We also constructed the metabolic connection matrix between
HIE patients and healthy people, and compared the brain metabolic connection patterns and
characteristics between HIE patients with DOC and healthy people; finally, we analyzed
several currently recognized brain networks of HIE patients, and discussed the connectivity
mode of key nodes in the brain network of DOC patients.

Our observation of decreased metabolism in the frontal lobe and cingulate gyrus in
HIE patients with the presence of DOC and the correlation between the degree of local
metabolic preservation and CRS-R scores are similar to the results of previous studies on
brain metabolism pattern in DOC patients [34–37]. Through the whole brain functional
connectivity analysis by anatomical partition, we found that the internal metabolic con-
nectivity in the frontal, parietal, and temporal lobes of HIE patients, although decreased
compared with healthy individuals, were still preserved to some extent compared with
other brain regions. However, the more pronounced decrease in metabolic connectivity
of the frontal, parietal, and temporal lobes with the occipital and limbic systems in HIE
suggests that cognitive processes in these patients may not be in interface with visual
input and there might be a dyscoordination of sensory input to motor output from the
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limbs, but the processing ability of auditory input might be relatively preserved in this
subset of patients. This may correspond to the “cognitive motor dissociation” (CMD) [4]
or “higher-order cortex motor dissociation” (HMD) [38], as described in previous studies.
In clinical practice, we also found that some VS patients had affective reactions that were
compatible with the surrounding context, but this partial functional preservation in DOC
patients could not be reflected in CRS-R scores. Visual and motor function partial rating
items, which corresponded with the behavioral performance of MCS in the CRS-R score,
both related to visual perceptual abilities. Therefore, the CRS-R score may not fully de-
scribe the level of consciousness in this subset of DOC patients with partially preserved
prefrontal cortical function but with a loss of liaison between the frontal and occipital lobes.
Clinical evaluation of such patients may also need to incorporate task-related imaging or
electrophysiological tests such as fMRI, PET and EEG, etc., and further studies were needed
to investigate the prognostic differences between such patients and VS patients without
affective reactions.

In terms of several major brain networks of the cortex, we observed a significant
loss of connectivity of the bilateral posterior cingulate and precuneus with bilateral me-
dial prefrontal lobes in the DMN of HIE group, which is similar to previous findings
of functional connectivity [39–42] and suggests an important role of the precuneus and
posterior cingulate in the maintenance of consciousness. We also observed that there
were metabolic negative correlations between posterior cingulate and medial prefrontal,
suggesting a potential mutual inhibitory interaction between them. We were also able
to see a trans-hemispheric loss of contact in the angular gyrus and precuneus, and the
same phenomenon with the DAN, especially at various nodes located in the parietal lobe,
suggesting a decreased contact between the bilateral parietal lobes in HIE group, which
may be related to the decreased higher-order sensory integration in response to environ-
mental stimuli in DOC patients [43]. The connectivity between the frontal and parietal
lobes is also closely related to the maintenance of the level of consciousness [44]. In the
ECN, we found that the metabolic connectivity between each node of the right frontal lobe
and the left parietal lobe decreased in the HIE group, whereas the metabolic connectivity
between each node of the left frontal lobe and the right parietal lobe was instead preserved,
and the laterality of frontoparietal functions in DOC patients needs further studies for
validation and mechanistic exploration. Recent studies have suggested that non-invasive
neuromodulation techniques, mainly applied to the prefrontal lobe, may improve local
cortical excitability and functional connectivity [18,45], but evidence for their efficacy on
the improvement of consciousness levels was insufficient. We speculated whether the opti-
mization of stimulation site and parameters could be performed according to the abnormal
metabolic connectivity pattern of frontoparietal network in DOC patients. In addition,
we found decreased metabolic connectivity between bilateral insula and various nodes of
the prefrontal lobe in the SN of the HIE group. Various sensory stimuli evoke excitation
in the insula, an important brain region for overall perception of the forming external
environment and intrinsic self-experience [46]. After propofol anesthesia in healthy people,
anterior insular function was depressed, which in turn affected the dynamic conversion of
the DMN to the DAN [47]. We speculated that the insula might also serve as one of the
potential targets of neuromodulation in DOC patients.

Recently, an increasing number of studies have focused on the functional connectivity
between subcortical structures, as well as between cortical brain regions, in DOC patients,
and a series of clinical investigations with DBS of subcortical structures in DOC patients
has been performed. Our results suggested that patients with HIE who present with DOC
had hypometabolism in the caudate nucleus and that the degree of hypometabolism in
the bilateral caudate nucleus was significantly correlated with the level of consciousness.
Metabolic connectivity analysis of subcortex networks suggested enhanced connectivity
between various nuclei within the bilateral striatum, while metabolic connectivity between
other subcortical structures of the thalamus was decreased. The striatum of DOC patients
may have reduced inhibition of the globus pallidus, which may then lead to hyperexcitabil-
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ity of the globus pallidus and, subsequently, increased inhibition of the thalamus [48,49]. In
addition, intracranial EEG studies have revealed that the ventral striatum may be involved
in the regulation of cortical information flow, which makes it an important part of the
experience of conscious perception [50]. It was also believed that the integration of the
parietal lobe with striatum and thalamus contributed more than the frontal cortex in the
maintenance of consciousness [15], and the metabolic connectivity matrix in our results
also showed decreased connectivity between basal ganglia and frontoparietal cortex in
the HIE group. Nonhuman primate studies suggested that neurons in the deep layers
of the thalamus and cortex were most sensitive to changes in the level of consciousness,
stimulation of the thalamus restored wakefulness in anesthetized macaques [51], and DBS
to different parts of the thalamus increases both the level of arousal and self-awareness [52],
suggesting that the thalamus was one of the important targets for DBS therapy in patients
with DOC.

Clearly, the present study still has some limitations. First, although the included
patients were all DOC patients after HIE occurrence, the sample size was indeed small.
Although there were significant differences in cerebral glucose metabolic and metabolic
connectivity in the HIE group compared to the healthy participants, we could no longer
perform further subgroup analyses to explore the cerebral metabolic patterns and corre-
lations with clinical scores in the VS and MCS patients. Second, in terms of PET brain
imaging processing, we chose the pons as a reference for normalization of whole brain
metabolic values, but also lost information on pons metabolism; moreover, there is cur-
rently no evidence that pons metabolism is not different in DOC patients compared with
healthy individuals. It is possible that in future studies we could choose radioactivity
counts at other sites for normalization, such as the soft tissue under the scalp, or perform
simultaneous arterial blood collection and radioactivity count measurements with PET
scan. Third, the results of the brain metabolic connectivity analysis of the population, which
cannot represent the metabolic connectivity of individuals, were not statistically analyzed
in intergroup comparisons. We performed the brain metabolic connectivity versus brain
network analysis when adopting an anatomical structure based partitioning approach with
a relatively small number of nodes. In further studies, we would continue to increase the
sample size, as well as conduct long-term follow-up of cases to explore the association of
cerebral metabolic patterns and prognosis, and perform subgroup analysis and comparison
of VS and MCS; in terms of data correction, we would attempt to acquire subject blood
samples for absolute value quantification of radioactivity counts, to reduce data correction
bias; we would also apply PET combined with resting-state fMRI and EEG for multimodal
measures of brain functional connectivity to compensate for the relative lack of temporal
and spatial resolution.

5. Conclusions

Through PET imaging analysis of HIE patients with prolonged DOC, the present study
found that patients with HIE had decreased metabolism in the frontal lobe and cingulate
gyrus, and that the degree of local metabolic preservation may have a correlation with level
of consciousness; the internal metabolic connections in the frontal, parietal, and temporal
lobes of HIE patients were to some extent preserved compared to healthy individuals.
However, there was a significant decrease in metabolic connectivity of the frontal, parietal,
and temporal lobes with the occipital and limbic systems in HIE. There may be abnormal
network connectivity patterns in HIE patients in several major brain networks. In the
DMN, there was a significant loss of connectivity of the bilateral posterior cingulate and
precuneus with bilateral medial prefrontal lobes in patients with HIE, and in the DAN and
ECN there was a decline in connectivity between each node in the bilateral parietal lobes
in patients with HIE, as well as a decline in metabolic connectivity between each node in
the right frontal lobe and the left parietal lobe. Patients with HIE have reduced metabolic
connectivity between the bilateral insula and various nodes of the prefrontal lobe in the SN.
Patients with HIE may also present with dysconnectivity in subcortex structures, as well
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as cortico-subcortex dysconnectivity. HIE patients have hypometabolism in the caudate
nucleus, and the degree of hypometabolism in the bilateral caudate nucleus correlates
significantly with the level of consciousness score. Metabolic connectivity analysis of
subcortical networks suggests enhanced functional connectivity between various nuclei
within the bilateral striatum, but decreased metabolic connectivity of the thalamus with the
other subcortical structures. The HIE group showed decreased connectivity between the
basal ganglia and the parietal cortex.
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Abstract: The electromyography bridge (EMGB) plays an important role in promoting the recovery
of wrist joint function in stroke patients. We investigated the effects of the EMGB on promoting
the recovery of upper limb function in hemiplegia. Twenty-four stroke patients with wrist dorsal
extension dysfunction were recruited. Participants were randomized to undergo EMGB treatment
or neuromuscular electrical stimulation (NMES). Treatments to wrist extensors were conducted for
25 min, twice a day, 5 days per week, for 1 month. Outcome measures: active range of motion
(AROM) of wrist dorsal extension; Fugl-Meyer assessment for upper extremity (FMA-UE); Barthel
index (BI); and muscle strength of wrist extensors. After interventions, patients in the NMES group
had significantly greater improvement in the AROM of wrist dorsal extension at the 4th week and
1st month follow-up (p < 0.05). However, patients in the EMGB group had a statistically significant
increase in AROM only at the follow-up assessment. No significant differences were observed in
the AROM between the EMGB group and the NMES group (p > 0.05). For secondary outcomes in
the EMGB group, compared to baseline measurements, FMA-UE, BI, extensor carpi radialis and
extensor carpi ulnaris muscle strength were significantly different as early as the 4th week (p < 0.05).
The muscle strength of the extensor digitorum communis muscle showed significant differences
at the follow-up (p < 0.05). There were no statistically significant differences between patients in
the two groups in any of the parameters evaluated (p > 0.05). The combination of EMGB or NMES
with conventional treatment had similar effects on the improvement of the hemiplegic upper limb as
assessed by wrist dorsal extension, FMA-UE, and activities of daily living. The improvement in both
groups was maintained until 1 month after the intervention.

Keywords: stroke; hemiplegia; electromyographic bridge; upper limb rehabilitation; randomized
controlled trial

1. Introduction

Stroke is the leading cause of adult disability worldwide [1]. More than 50% of stroke
survivors exhibit permanent neurological impairments, with motor impairment being the
most frequent. Even after standard neurological rehabilitation, approximately 80% of these
patients suffer from hand dysfunction [2]. The increased muscle tension of the wrist dorsal
extension in stroke patients severely affects the active range of motion (AROM) and the
wrist dorsal extension function, and wrist joint dysfunction directly affects the motor con-
trol function of the upper limb [3]. The improvement of wrist control improves the quality
of life for stroke survivors, reduces comorbidities associated with a loss of independence,
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and reduces the costs associated with the healthcare system [4–6]. Neuromuscular electrical
stimulation (NMES) is one of the most common strategies for improving limb function
in the clinical setting. Studies have shown that NMES can improve muscle strength, re-
duce spasticity, increase joint range of motion by promoting active movement, reorganize
the damaged cortico-cerebral circuit, and improve movement control [7–10]. However,
during the NMES process, the hemiplegic limb is passively moved, and bilateral limbs
exhibit no movement to work together, which greatly reduces the effect of the patient’s
rehabilitation training. Therefore, the combined modulation of bilateral movement and elec-
trical stimulation potentially play an important role in enhancing patient noncoordinated
movement [11,12].

Recently, the State Key Laboratory of Bioelectronics at Southeast University developed
a new type of self-controlled NMES system: the electromyography bridge (EMGB) [13,14].
In this instrument, the surface electromyography (sEMG) signals of the nonhemiplegic mus-
cles are converted to control the duration and frequency of the relevant stimulation pulses
applied to the muscles of the hemiplegic side. Therefore, the activation state of the control
muscles can better simulate the coupling of bimanual exercises and movement responses.
EMGB combined with NMES is effective in the short-term for improving upper limb injury
in patients with stroke [15]. In a study of eight healthy subjects, EMGB accurately repro-
duced voluntary muscle forces and was more resistant to fatigue than NMES [13]. Some
previous reports have shown that EMGB plays a certain role in promoting the recovery of
wrist joint function in stroke patients [16,17], but the results remain controversial. Stroke
patients were treated with EMGB for 4 weeks within 6 months of onset. The voluntary sur-
face electromyographic ratio of wrist and finger extensors, Brunnstrom stages for the hand,
and FMA-UE were significantly improved compared with the NMES group [16]. However,
other articles showed that when thirty-one stroke patients received three weeks of EMGB
or NMES treatments, the two treatment modalities showed no significant difference in
FMA-UE, self-care FIM, grip strength, or on the modified Ashworth scale [18]. The number
of studies of EMGB for stroke patients is limited. The effect of EMGB on wrist function in
stroke patients is yet to be elucidated.

Between 1 week and 6 months post-stroke (subacute period of stroke) is a critical
time for neural plasticity; most behavioral recovery and rapid changes occur in the first
weeks and months post-stroke for the majority of people [19]. Therefore, this study aimed
to compare the effects of EMGB and NMES on the recovery of upper limb motor and
functional performance in subacute rehabilitation.

2. Materials and Methods

2.1. Study Design

The study was designed as a 2:1, double-blinded, randomized controlled trial. All
subjects received 40 treatments twice a day, 5 days per week, for 4 weeks. The assessments
were made at baseline, at the 4th week during treatment, and at the 1st month after
discharge by a blinded therapist.

2.2. Participants and Setting

Stroke patients who participated in this work suffered from unilateral upper limb
hemiparesis, and they could not dorsally extend their wrists. They were hospitalized at
the Rehabilitation Medicine and Physical Therapy Department at the Second Affiliated
Hospital of Chongqing Medical University between May 2020 and January 2021. The
protocol of this study was registered with the Chinese Clinical Trial Registry (registration
number: ChiCTR2100051957). The inclusion criteria were as follows: (1) stroke diagnosis
that was confirmed by evidence on computed tomography (CT) or magnetic resonance
imaging (MRI) scans 3 days to 12 months before the study; (2) a patient of any sex who was
aged between 18 and 75 years; (3) poor upper limb function (AROM of the wrist extension
was 0◦), although the contralateral upper limb functioned well; (4) no progressive stroke
and stable vital signs; and (5) the ability to understand and agree to the trial procedures and
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to sign an informed consent form in accordance with national legislation. Patients with any
of the following criteria were excluded: (1) severe cognitive disorders [20] (Mini-Mental
State Examination score ≤16); (2) severe depression [21] (Hamilton Rating Scale for De-
pression (HAMD) ≥24); (3) a modified Ashworth scale (MAS) score of two or more points
for spasticity in carpal extension; (4) carpal contracture; (5) New York Heart Association
(NYHA) cardiac function was classified as Level 4; (6) alanine aminotransferase (ALT)
and aspartate aminotransferase (AST) were double the upper limit of normal; (7) severe
heart, liver, kidney or lung diseases, or cancer; (8) cardiac pacemakers and various im-
plantable electronic devices; (9) pregnant or lactating women; (10) muscles do not respond
to functional electrical stimulation (FES); (11) concurrent participation in another similar
clinical study during the 3 months before enrollment; and (12) other reasons deemed by
the investigators to render the subject unsuitable for this trial.

2.3. Procedure

Out of the 93 patients screened, 24 patients agreed to join the group and were random-
ized into either the EMGB group (n = 16) or the NMES group (n = 8). The plan accepted by
each patient was determined by random allocation. The members of the different groups
were recorded in order in a table. The patients’ group assignments documented in the table
were covered by an opaque coating. Only after scratching off the coating were the patients
informed of which group they were assigned to. Two patients in the EMGB group who
were discharged and failed to complete follow-up were excluded from the study. Patients
in the two groups were well-matched in age, sex, stroke type, hemiplegia side, muscle
tone, and HAMD score at baseline. However, the course of stroke onset was unbalanced
at baseline (p < 0.05). After a detailed analysis of the patients’ information, we found
that there were 6 patients in the EMGB group who had a relatively long course of stroke
(>6 months). Therefore, we removed those patients for further analysis (Table 1). As a
result, all remaining patients had similar courses of stroke (ranging from 1–6 months), and
other characteristics were also comparable at baseline [22]. The complete data are shown in
Supplementary Materials (Tables S1–S3). The Consolidated Standards of Reporting Trials
(CONSORT) patient flowchart is shown in Figure 1.

Table 1. Clinical characteristics of the patients in both groups (long course removed).

EMGB Group (n = 8) NMES Group (n = 8) p Value

Age, y 52.75 ± 17.16 53.88 ± 10.70 0.877
Sex, n (%)

Male 5 (62.5) 5 (62.5)
1Female 3 (37.5) 3 (37.5)

Stroke type, n (%)
Infarction 4 (50.0) 2 (0.25)

0.608Hemorrhage 4 (50.0) 6 (0.75)
Hemiplegia side

Left 6 (0.75) 5 (62.5)
1Right 2 (0.25) 3 (37.5)

Muscle tone 0.38 ± 0.52 0.50 ± 0.53 0.642
HAMD 4.75 ± 6.82 5.50 ± 6.72 0.838

Stroke onset, month 1.38 ± 1.06 1.63 ± 1.06 0.645
EMGB: electromyography bridge; NMES: neuromuscular electrical stimulation; HAMD: Hamilton Rating Scale for
Depression; y: year. Values are presented as the number of patients (n) or mean ± standard deviation. Significance
difference at p < 0.05.
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Figure 1. The CONSORT patient flowchart.

2.3.1. EMGB Group

We used the double-channel motor function reconstruction instrument based on the
EMGB principle as in previous studies [23]. Similarly, patients were seated in front of a desk
with their upper limbs attached to this system. Their elbows were flexed naturally, and their
wrists were pronated, fully exposing both forearms. For sEMG detection, the sEMG sensors
were placed on the wrist extensors of the nonhemiplegic limb to collect sEMG signals.
The stimulation electrode was fixed to the optimal stimulation points for wrist extensors
of the hemiplegic limb at a stimulating intensity below the threshold for uncomfortable
sensation. A gelled reference electrode was placed over the olecranon. Patients were asked
to perform simultaneous bilateral wrist extensions with a cycle comprising 5 s extension
and 5 s relaxation periods under the guidance of a rhythmic sound generated by a recorder.
The training consisted of two sessions of 10-min EMGB use with a 5-min interval between
sessions. Sessions were conducted twice a day (once in the morning and once in the
afternoon) for 4 weeks.

2.3.2. NMES Group

The patients were in the same position as the patients undergoing EMGB treatment.
The sEMG sensors were placed on the wrist extensors of the hemiplegic limb to collect
sEMG signals. A dorsal wrist extension of the hemiplegic side was passively elicited by
preprogrammed NMES with the same sound cues.

Licensed therapists with at least 3 years of clinical experience performing manipula-
tive therapies provided all treatments. None of the patients in either group experienced
serious adverse effects. In addition to EMGB or NMES treatments, patients were offered
conventional therapy (such as manual treatment and acupuncture). Figure 2A,B show the
setup for the training tasks completed by patients in the 2 groups.
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Figure 2. Electromyography bridge(EMGB) group and neuromuscular electrical stimulation(NMES)
group. (A) Patients undergoing EMGB treatment; (B) Patients undergoing NMES treatment.

2.4. Outcome Measurement

Evaluations were performed at baseline, at the 4th week and at the follow-up after
the 1st month of the trial by a therapist who had no information about the treatment
groups. The primary outcome was an assessment of joint mobility using AROM of wrist
dorsal extension. All patients had an AROM of 0◦ at enrollment. The secondary outcomes
were as follows: (1) the Fugl-Meyer Assessment for Upper Extremity (FMA-UE) was used
to evaluate motor recovery and motor function of upper limbs; (2) the manual muscle
test (MMT) was used to evaluate the muscle strength of the extensor wrist muscles to
evaluate muscle function around the wrist; and (3) the Barthel index (BI) was used to assess
ADL performance.

2.5. Statistical Analysis

Statistical analyses were performed using SPSS 26.0 (SPSS Inc., Chicago, IL, USA). Data
are expressed as the mean ± SD (standard deviation). Before performing the comparisons,
we tested the data to determine whether they were normally distributed, and the variances
were equal. The Shapiro–Wilk test was used to evaluate the data of the measurable
parameters for a normal distribution in each group. To compare the baseline characteristics
between the 2 groups, Fisher’s exact tests and independent sample t tests were used to
analyze variables. Repeated-measures ANOVA was used to compare the AROM of wrist
dorsal extension, FMA-UE, MMT, and BI at baseline, at the 4th week, and at the follow-
up after the 1st month with 95% confidence intervals. p values < 0.05 were considered
statistically significant.

3. Results

3.1. Patient Characteristics

Table 1 shows the baseline characteristics of the studied population. There were no
significant differences between groups in most of the demographic data and baseline vari-
ables related to stroke and neurological status at the time of admission. The patients in the
two groups were well-matched in age, sex, stroke type, hemiplegia side, and HAMD score.

3.2. Primary Outcomes

As shown by the mean changes from baseline (Table 2), AROM of wrist dorsal ex-
tension improvements were observed during the trial in both EMGB and NMES groups.
AROM improvements in the NMES group were significantly different from baseline at the
4th week and at the follow-up after the 1st month. (The mean change from baseline was
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equal to 6.92◦ and 7.70◦, p = 0.009 and 0.029, respectively.) The significant difference in
EMGB was at follow-up after the 1st month. (The mean change from baseline was equal
to 7.85◦, p = 0.026.) Notably, improvement was observed in 8 patients (3/8, 37.50% in the
NMES group and 5/8, 62.50% in the EMGB group) at the 4th week and in 10 patients (5/8,
62.50% in both the NMES and EMGB groups) at follow-up. At the follow-up after the
1st month, the AROM increase in the EMGB was slightly higher than that of the NMES (the
mean difference between groups was equal to 0.15◦, p = 0.97), but there was no significant
difference between the EMGB and NMES groups.

3.3. Secondary Outcomes

Patients in both groups acquired functional recovery to some extent, as assessed by
the FMA-UE, muscle strength of wrist dorsiflexion, and Barthel index.

Briefly, FMA-UE increased after intervention in both groups compared with baseline.
Differences in changes from baseline were significant at the 4th week (p = 0.001 and 0.004,
respectively) and follow-up after the 1st month (p = 0.001 and 0.007, respectively). No
differences were seen at any time point between groups (Table 2, Figure 3).

Figure 3. AROM: active range of motion; FMA-UE: Fugl-Meyer Assessment for Upper Extremity.
The outcomes changed (mean and 95% CI) across the 3 time points between the EMGB and NMES
groups. GraphPad Prism 8 was used to calculate the estimated marginal means: estimated marginal
means (y-axis) for the EMGB group (orange); and NMES group (blue) across time points (x-axis).

The muscle strengths of three major wrist dorsiflexion (extensor carpi radialis muscle,
extensor carpi ulnaris muscle, extensor digitorum communis muscle) are summarized in
Table 2 and Figure 3. Similarly, the strength of the wrist extensor muscles improved in both
groups at the 4th week (p = 0.009 for carpi radialis, and p = 0.023 for carpi ulnaris) and
lasted at follow-up (p = 0.005 for digitorum communis) (Table 2, Figure 3). No significant
differences were seen between the two groups at any time point.

Patients in both groups had improved activities of daily living as early as the 4th week
(p = 0.006 and p = 0.01, respectively). Again, there were no significant differences between
the groups at any time point (Table 2, Figure 3).
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4. Discussion

In this study, we found that EMGB significantly improved the upper limb motor
function of patients with subacute stroke. At the 1st-month follow-up, the AROM of wrist
dorsal extension and extensor digitorum communis muscle of patients were significantly
increased. Moreover, the FMA-UE score, muscle strengths of the extensor carpi radialis
muscle and extensor carpi ulnaris muscle, and BI of patients were also significantly im-
proved after 4 weeks of treatment. The results demonstrate that the improvement of wrist
and upper limb function led by EMGB can be maintained for at least 1 month.

The instrument used in this research was a two-channel motor function reconstruction
instrument for hemiplegic limbs. The instrument combines electromyography and the mean
absolute value/number of slope sign changes (MAV/NSS) and co-modulation algorithm
(MNDC) to control actions in real time through EMGB technology. Based on the principle
of bilateral training, the sEMG of the nonhemiplegic limb was used to detect and collect
the real-time motion status data and then generate stimulation pulses by the MNDC
algorithm on the corresponding muscles of the hemiplegic limb; this way, the movements
of the hemiplegic limb could be guided by the nonparalyzed side [13,24]. Other potential
mechanisms of this new instrument for hemiplegia were recently investigated: (1) repeated
intentional movement of the nonhemiplegic limb could activate the primary motor cortex
of the hemiplegic side, which is helpful for establishing new motor neurofeedback to
realize motor relearning and to increase the excitability and recruitment effect of the target
muscle contraction on the hemiplegic side [25,26]; (2) EMGB is conducive to promoting the
remodeling of the central neural network and triggering the function of movement [27,28];
(3) at the same time, noninvasive stimulation of EMGB increased peripheral blood flow and
muscle strength [29,30]. This occurrence is the mechanistic basis for the functional recovery
of stroke patients.

Some previous studies demonstrated the effectiveness of EMGB [17,31]. ZHOU [16]
administered EMGB treatment to patients for 4 weeks, and the Brunnstrom stages for
the FMA-UE, motor status scale, and voluntary sEMG ratio of the wrist and finger ex-
tensors of patients’ hemiplegic side were improved. The results favor EMGB treatment
for augmenting the recovery of volitional wrist motion in stroke patients. Shini et al. [32]
investigated the effect of EMG-triggered NMES on functional recovery of the affected
hand and related cortical activity in chronic stroke. After the intervention of 10 weeks of
EMG-triggered NMES, the hemiplegic hand showed significant improvements in the box
and block test (BBT), strength, accuracy index (AI), and on/off set time of muscle contrac-
tion. These results suggest that EMG-triggered NMES could improve exercise capacity,
exercise accuracy, and effective muscle recruitment in patients with hemiplegia. However,
other research articles have different results. By comparing the effectiveness of active
and passive neuromuscular electrical stimulation on the upper limbs of hemiplegia, no
significant difference was detected in wrist extensor spasticity and upper limb functional
between the two stimulation applications [18]. Hemmen and Seelen’s [33] study showed
that EMG-triggered stimulation did not increase upper limb function recovery relative
to NMES in subacute stroke patients. The results of these studies are consistent with our
findings. Compared with NMES group, the outcome indicators of the EMGB group showed
positive trends toward improved outcomes, but the trends were not statistically significant.
Possible explanations for the lack of differential effects between the groups was the small
sample size and the fact that only subacute patients were studied. EMGB treatment might
accelerate recovery during the subacute stage, but the NMES group might catch up and
have similar outcomes 6 months after stroke [22]. In addition, strict inclusion criteria
(AROM of wrist dorsal extension was 0◦ at baseline) limited the number of patients. A
total of 24 patients agreed to join our clinical trial, but only 16 patients could be included to
balance the patients’ course of the disease. Another possible explanation was that conven-
tional therapy was highly effective for the treatment of upper limb dysfunction, and other
additional effects on wrist function were too small.
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Most patients with stroke have better motor function in the proximal limb than in the
distal upper limb. This outcome mainly occurs because patients exert more muscle strength
with their shoulders and elbows when required to conduct upper limb movements [34,35].
This motor compensation develops new compensatory muscle activation patterns that
differ from those of the unimpaired muscles. However, the flexibility of the hand and
wrist has a great impact on the daily life of stroke patients. In some studies related to the
rehabilitation of the distal joints, temporary paralysis of the proximal joint muscles was
used to reduce the competition between the proximal and distal ends to obtain more distal
muscle training [36]. In this research, it was found that EMGB provides a way to improve
distal limb AROM. Deanna [37] quantified the ROM required for eight upper-extremity
ADLs in healthy participants and found the activities required a total wrist motion of 38◦
of flexion, 40◦ of extension, 38◦ of ulnar deviation, and 28◦ of radial deviation. Brumfield
and Champoux [38] reported that 10◦ of flexion and 35◦ of extension were required to
accomplish most ADLs. In our study, the AROM of the wrist extension in both groups
increased from 0◦ to approximately 8◦ at follow-up. They are still not able to complete
most functional movements. Future studies should include longer intervention periods to
achieve functional recovery.

This study had limitations. Firstly, there were only two groups in the current study,
and no control group received conventional rehabilitation treatment alone. This was
because patients in the control group would have received 50 min per day less treatment
than the other groups, which was a significant medical ethical problem. Secondly, there was
a limited number of patients. All participants included in our study were enrolled from a
single center, and there was a relatively small sample size. Thirdly, in terms of the selection
of evaluation indicators, we selected more indicators of body structure and function, but
the level of activity was less-evaluated. As the activity level indicator, the Jebsen hand
function test was not analyzed because most patients could not complete it. In addition, the
scales used in this paper are ordinal, which means the ability to detect meaningful change
may be impaired [39]. Future studies with larger populations, a multicenter clinical trial,
and strict, stratified randomization are needed.

5. Conclusions

The findings of the present study suggested that EMGB might be beneficial to upper
limb function recovery for patients with subacute stroke. However, our data did not show
that EMGB had better effects than traditional NMES treatment in improving hemiplegic
wrist extension, FMA-UE, and ADL performance. Further comprehensive studies should
include a larger sample size and a longer observation period of stroke patients using
balanced enrollment levels.
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Abstract: In recent years, the potential of non-invasive brain stimulation (NIBS) for the therapeutic
effect of post-stroke spasticity has been explored. There are various NIBS methods depending
on the stimulation modality, site and parameters. The purpose of this study is to evaluate the
efficacy of NIBS on spasticity in patients after stroke. This systematic review and meta-analysis
was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) guidelines. PUBMED (MEDLINE), Web of Science, Cochrane Library and Excerpta
Medica Database (EMBASE) were searched for all randomized controlled trials (RCTs) published
before December 2021. Two independent researchers screened relevant articles and extracted data.
This meta-analysis included 14 articles, and all included articles included 18 RCT datasets. The
results showed that repetitive transcranial magnetic stimulation (rTMS) (MD = −0.40, [95% CI]:
−0.56 to −0.25, p < 0.01) had a significant effect on improving spasticity, in which low-frequency
rTMS (LF-rTMS) (MD = −0.51, [95% CI]: −0.78 to −0.24, p < 0.01) and stimulation of the unaffected
hemisphere (MD = −0.58, [95% CI]: −0.80 to −0.36, p < 0.01) were beneficial on Modified Ashworth
Scale (MAS) in patients with post-stroke spasticity. Transcranial direct current stimulation (tDCS)
(MD = −0.65, [95% CI]: −1.07 to −0.22, p < 0.01) also had a significant impact on post-stroke
rehabilitation, with anodal stimulation (MD = −0.74, [95% CI]: −1.35 to −0.13, p < 0.05) being
more effective in improving spasticity in patients. This meta-analysis revealed moderate evidence
that NIBS reduces spasticity after stroke and may promote recovery in stroke survivors. Future
studies investigating the mechanisms of NIBS in addressing spasticity are warranted to further
support the clinical application of NIBS in post-stroke spasticity.

Keywords: non-invasive brain stimulation; stroke; spasticity; meta-analysis

1. Introduction

Post-stroke spasticity, as a neurological manifestation with a typical syndrome of
increased muscle tone, was reported to have a prevalence rate of up to 25% in stroke
survivors [1]. Spasticity leads to complications such as pain, muscle spasticity, abnormal
joint positions and anchylosis, which further decrease the motor function of patients after
stroke and bring great challenges to their daily activities [2]. Therefore, effective inter-
ventions for post-stroke spasticity are very important. Current management regimens for
post-stroke spasticity include electrical stimulation of muscles, botulinum toxin injections,
oral anti-spasticity drugs and wearable exoskeletons devices, etc. [3,4]. However, common
side effects of drugs and the invasiveness of local treatment are undesirable, which limits
their effectiveness.
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In recent years, non-invasive brain stimulation (NIBS) has been actively explored in
various diseases of the nervous system. Among various NIBS techniques, transcranial
magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are most
often used to treat patients with post-stroke spasticity [5,6]. Spasticity usually occurs
within one to six weeks after stroke and is caused by abnormal or hyperexcitable spinal
reflexes [7,8]. NIBS induces excitatory changes in the underlying cerebral cortex in a non-
invasive manner and lasting changes in neuroplasticity [9]. NIBS works by altering the
excitability of the cerebral motor cortex and indirectly reducing the excitability of motor
neurons in the spinal cord through the H-reflex [10].

Currently, the effects of NIBS on post-stroke spasticity are contradictory. Although
some studies have reported a beneficial effect of NIBS in the treatment of post-stroke
spasticity [11–13], other studies have shown no significant benefit of NIBS in reducing
muscle spasticity. A meta-analysis published in 2020 showed no significant effect of rTMS
in spasticity management. However, it included only five RCTs [14]. Results from two
published meta-analyses of tDCS for post-stroke spasticity also showed some variability
without uniform criteria [15,16]. Therefore, the aim of this study is to conduct a systematic
review and meta-analysis of the effectiveness of NIBS in the management of spasticity in
patients after stroke.

2. Methods

2.1. Literature Search Strategy

This meta-analysis was performed in accordance with the PRISMA guidelines for
systematic reviews and meta-analysis [17]. The PICO principles consist of four parts: popu-
lation, interventions, control and outcome and all articles included in systematic reviews
and meta-analyses are retrieved according to the PICO principles [18]. The inclusion criteria
for articles are (1) Population: patients who have been diagnosed as stroke patients by
clinical examinations and have post-stroke spasticity; (2) Interventions: NIBS; (3) Control:
sham stimulation; (4) Outcome: MAS; and (5) Research type: RCT. The research language
is limited to English. Two authors independently searched electronic databases, including
PUBMED (MEDLINE), Web of Science, Cochrane Library and EMBASE. We searched the
database for related articles published as of December 2021 by using MeSH terms including
“Stroke”, “Non-invasive Brain Stimulation” and “spasticity”. If there is a disagreement in
the article inclusion process, it will be discussed with the third author to determine the
eligibility for inclusion.

2.2. Study Selection

The article search strategy is shown in Figure 1. We retrieved a total of 2482 publica-
tions in our first search. The two authors screened titles and abstracts to determine relevant
research articles and then further reviewed the full text to finally determine the research
articles included in the meta-analysis. Any disagreements during the inclusion process
were discussed and resolved by the third author.

2.3. Quality Assessment

All included RCTs were independently evaluated by two authors using the Cochrane risk
of bias assessment tool [19]. It included six items: selection bias: random sequence generation
and allocation concealment; performance bias: blinding of participants and personnel; detec-
tion bias: blinding of outcome assessment; attrition bias: incomplete outcome data; reporting
bias: selective reporting; and other biases [20]. If there was a disagreement in the evaluation,
it would be resolved through a discussion with the third author.
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Figure 1. PRISMA flow diagram for search strategy and study selection.

2.4. Data Extraction

For each study that met the inclusion criteria, relevant information about experimental
design and result analysis was extracted. All extracted information included research
characteristics (author, publication year and sample size), treatment parameters (stimu-
lation method, stimulation parameters, stimulation time and control group) and main
measurement results (MAS).
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2.5. Statistical Analysis

A meta-analysis of the extracted studies was performed. Meta-analyses are useful
for assessing the strength of evidence for treatment from multiple studies. The aim is to
determine whether there is an effect, either positive or negative, and to obtain a single
pooled estimate of effect rather than a single estimate of individual studies. In this meta-
analysis, for each outcome related to continuous data, we calculated a pooled estimate and
95% confidence interval (CI) of the mean difference (MD) between the experimental and
control groups after the intervention.

This meta-analysis used RevMan 5.4 (The Nordic Cochrane Centre, The Cochrane
Collaboration, Copenhagen, Denmark) for statistical analysis. This was performed by
entering the mean and standard deviation of all continuous data in each study into the
software and calculating the mean difference (MD) of the 95% confidence interval (CI) to
analyze the results. Cochran’s Q test and the I2 index were used to assess the heterogeneity
of all studies included in the meta-analysis. Statistical heterogeneity between these studies
was calculated using Cochran’s Q test and the I2 index. An I2 index > 50% and p < 0.10
of the Cochran’s Q test indicated high heterogeneity, and the random-effects model was
used; otherwise, the fixed-effects model was used. The results of all data analyses in this
meta-analysis were shown by forest plots.

Funnel plots and Egger’s test to assess potential publication bias were applied. Still,
because the number of studies included in each meta-analysis was less than 10, the funnel
plot and Egger’s test could produce misleading results in this case [21]. Therefore, the
funnel plot and Egger’s test were not used in this meta-analysis to assess publication bias.

3. Results

3.1. Study Identification and Selection

A total of 2482 publications were retrieved from two authors independently by search-
ing the database. The search results are shown in Figure 1. Of these, 1673 duplicate
publications were firstly deleted, then 489 publications were screened based on titles, and
then 287 publications were based on abstracts, and finally, 33 full-text articles were re-
trieved. Through the final full-text review, 14 articles were ultimately included for this
review. This study included eight research articles [22–29] on rTMS, one of which included
three data sets, one article included two data sets and the other articles each had one data
set. A total of 128 patients received rTMS in all studies, and 104 patients served as the
control group. At the same time, this study included six research articles [13,30–34] on
tDCS. One article included two data sets, and the other articles had one data set. A total
of 199 patients in all studies received tDCS, and 146 patients served as the control group.
The information extracted from all research related to rTMS is shown in Table 1, and the
information extracted from all studies related to tDCS is shown in Table 2.

Details of each study are provided in Tables 1 and 2. In rTMS, the pooled sample size
was 135 individuals receiving rTMS, with sample sizes ranging from 7 to 22 participants
per group. In terms of study design, all articles in this review were RCTs. In tDCS, the
pooled sample size was 196 individuals receiving tDCS, with sample sizes ranging from
10 to 45 participants per group. In terms of study design, all articles in this review
were RCTs.
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3.2. Effects of rTMS

A total of 11 RCTs on the effect of rTMS on post-stroke spasticity were included in the
study, and the outcome measure of all the studies was MAS. The meta-analysis showed
that compared with the control group, rTMS had significant benefits for patients with post-
stroke spasticity, and the MAS was significantly reduced (MD: −0.40, 95% CI: −0.56 to −0.25,
p < 0.01). The meta-analysis showed that there was no significant heterogeneity between the
various studies (p = 0.42, I2 = 3%) (Figure 2A).

Figure 2. (A) Forest plot analysis of the effect of rTMS on post-stroke spasticity. (B) Forest plot
analysis of the effects of different stimulation methods for rTMS on post-stroke spasticity. (C) Forest
plot analysis of the effects of different stimulation sites for TMS on post-stroke spasticity.
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The different stimulation methods of rTMS were divided into different subgroups. Six
of all studies used LF-rTMS, two studies used intermittent theta-burst rTMS (iTBS), and
high-frequency rTMS (HF-rTMS), LF-rTMS combined with HF-rTMS and continuous theta-
burst rTMS (cTBS) each had one study. The meta-analysis showed that compared with the
control group, LF-rTMS had significant benefits for post-stroke spasticity, and the MAS was
significantly reduced (MD: −0.51, 95% CI: −0.78 to −0.24, p < 0.01). However, although other
studies had shown certain benefits, they did not reach statistical differences (Figure 2B).

The different stimulation sites of rTMS were divided into different subgroups. Six of
the studies included the unaffected hemispheres of patients with post-stroke spasticity, and
the other four studies included the affected hemispheres of patients. The meta-analysis
showed that compared with the control group, rTMS applied to stimulate the unaffected
hemispheres of patients with post-stroke spasticity had significant benefits, and the MAS
was significantly reduced (MD: −0.58, 95% CI: −0.80 to −0.36, p < 0.01). However, stim-
ulation of the affected hemispheres also had certain benefits but did not reach statistical
differences (Figure 2C).

3.3. Effects of tDCS

A total of seven RCTs on the effects of tDCS on post-stroke spasticity were included
in the study, and the measurement outcome for all studies was the MAS. The meta-
analysis showed that compared with the control group, tDCS had significant benefits
for patients with post-stroke spasticity, and the MAS was significantly reduced (MD: −0.65,
95% CI: −1.07 to −0.22, p < 0.01). This meta-analysis showed that there was heterogeneity
between different studies (p < 0.01, I2 = 78%) (Figure 3A).

The stimulation types of tDCS were divided into different subgroups. Four studies
used anodal stimulation, and three studies used cathodal stimulation. The meta-analysis
showed that compared with the control group, anodal stimulation had significant benefits
for patients with post-stroke spasticity (MD: −0.74, 95% CI: −1.35 to −0.13, p < 0.05);
however, although cathode stimulation also had certain benefits, it did not reach a statistical
difference (MD: −0.51, 95% CI: −1.31 to 0.29, p = 0.22) (Figure 3B).

The stimulation intensities of tDCS were divided into different subgroups. There
were five studies with a stimulation intensity of 2.0 mA and the other two studies with a
stimulation intensity of 0.7 mA and 1.2 mA, respectively. The meta-analysis showed that
compared with the control group, the stimulation intensity of tDCS of 0.7 mA (MD: −1.20,
95% CI: −1.40 to −1.00, p < 0.01) and 1.2 mA (MD: −1.00, 95% CI: −1.26 to −0.74, p < 0.01)
had significant effect on patients with post-stroke spasticity. However, the measurement
results of other studies had changed but did not reach statistical differences (Figure 3C).

3.4. Risk of Bias and Sensitivity Analysis

In this meta-analysis, three of the included articles [26,28,31] designed different ex-
perimental groups based on the stimulation method. There was no mutual interference
between the different experimental groups, so each study was treated as an RCT. Finally,
a total of 18 studies were obtained from 14 articles in the meta-analysis. Two authors
independently assessed the risk of bias assessment of 18 included studies. The results of
the risk of bias for all studies are shown in Figure 4. The risk of bias was assessed using the
Cochrane Collaboration recommendations, and the sensitivity results indicated that the
results of our meta-analysis appeared to be stable [20].
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Figure 3. (A) Forest plot analysis of the effect of tDCS on post-stroke spasticity. (B) Forest plot
analysis of the effects of different stimulation types for tDCS on post-stroke spasticity. (C) Forest plot
analysis of the effects of different stimulation intensities for tDCS on post-stroke spasticity.
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Figure 4. Risk of bias in the systematic review. (A) Risk of bias graph: review of the authors’
judgments about each risk of bias item, presented as percentages across all included studies. (B) Risk
of bias summary: review of authors’ judgments about each risk of bias item for each included study.

4. Discussion

In this current study, a meta-analysis of the effect of NIBS on spasticity for post-stroke
populations was performed. It included 18 RCTs, with the most relevant RCTs to date
based on stringent inclusion and exclusion criteria. The results of the meta-analysis proved
that NIBS has a positive effect on post-stroke spasticity. In addition, the sub-group analysis
of NIBS (i.e., tDCS and TMS) on post-stroke spasticity was also conducted.

In terms of rTMS, the results of different subgroup analyses showed that LF-rTMS had
a significant benefit in the unaffected hemispheres of patients with post-stroke spasticity
(Figure 2B,C). This finding is in line with clinical evidence-based guidelines, which have
shown that LF-rTMS acts on the unaffected hemisphere to promote post-stroke motor
function recovery [35]. rTMS uses magnetic signals of different frequencies to stimulate the
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central nervous system in the corresponding parts and relieve limb spasticity in patients
after stroke, and induce brain plasticity and brain network reorganization, promote the
rehabilitation of the primary and secondary motor cortex [36]. Studies have shown that
joint application of LF-rTMS acting on the unaffected hemisphere and HF-rTMS acting on
the affected hemisphere can achieve better therapeutic effects by regulating the excitability
of bilateral hemispheres [37]. However, there is no consistent standard for different stim-
ulation methods. The possible mechanism of LF-rTMS for addressing spasticity may be
related to the changes in the excitability of the cerebral motor cortex, thereby reducing the
excitability of spinal motor neurons [13].

For the stimulation types of tDCS, anodal stimulation has significant benefits for
spasticity treatment in post-stroke patients (Figure 3B). In terms of the stimulation strength,
tDCS at current strengths of 0.7 mA or 1.2 mA significantly reduced spasticity, but the
current strength of 2.0 mA showed no significant effect on post-stroke spasticity (Figure 3C).
tDCS uses a low-intensity current to act on the target brain area to change the charge
distribution of neuron membrane potential, resulting in depolarization or hyperpolariza-
tion, thereby changing the excitability of the cerebral cortex [38]. The anodal of tDCS is
placed on the affected side to increase the excitability of the target brain area, and the
cathodic is placed on the unaffected side to suppress the excitability of the target brain area.
Studies have shown that anodal stimulation on the affected side can reduce limb spasticity
symptoms in stroke survivors more than cathodal stimulation on the unaffected side [39].
The results of this meta-analysis are consistent with previous studies, which also showed a
better effect of anodal tDCS on post-stroke spasticity. However, the mechanism of action of
tDCS on post-stroke rehabilitation remains to be further investigated.

In the studies included in this meta-analysis, most of the brain regions stimulated by
NIBS were the primary motor cortex [22,27,28,30], and a few studies were stimulated in the
premotor cortex [23,30] and cerebellum [40]. The premotor cortex plays an important role
in motor control and is another stimulation target besides the primary motor cortex [41,42].
The cerebellum works in concert with the cerebral cortex, is involved in motor control and
has a role in the regulation of muscle tone [43]. The cerebellum may become a new target
for NIBS in future studies. Although NIBS on different brain regions has rehabilitation
effects on post-stroke spasticity, the interaction mechanism between different targets is still
unclear. The mechanism of action between different targets needs to be further investigated
in future studies.

There are several different scales for assessing spasticity in post-stroke patients in
rehabilitation studies. Currently, the MAS is used in most studies, and its main purpose
is to evaluate abnormal muscle tone, while a small number of studies use the Modified
Tardieu Scale (MTS) as a spasticity assessment tool [44]. As the number of other scale
studies (i.e., MTS) was too small, all studies included in this meta-analysis used MAS.
However, both the MAS and MTS are subject to a certain degree of subjectivity, and more
objective assessment methods need to be used in future research [45].

In patients after stroke, the balance between the two hemispheres of the brain is
disrupted, resulting in hyperexcitability of the unaffected hemisphere and increased inhibi-
tion of the affected hemisphere [46]. Most of the reported findings showed that LF-rTMS
had a positive effect on post-stroke spasticity [47–49]. Li et al. [50] showed that cTBS of
the cerebellum reduced symptoms in patients with post-stroke spasticity. In addition,
concomitant use of LF-rTMS and cTBS in post-stroke spastic patients resulted in better
outcomes in rehabilitation. Different research results showed that different stimulation
types of tDCS had certain therapeutic effects on patients with post-stroke spasticity [51–54].
The results of this meta-analysis are consistent with those of previous studies. Overall,
NIBS for post-stroke spasticity is still mainly focused on the research of rTMS and tDCS,
and the causal mechanisms underlying NIBS remain elusive. More comprehensive research
is needed in the future.

Based on this meta-analysis, the results of non-randomized controlled trials of NIBS
for post-stroke spasticity were also discussed. At this stage, no other NIBS have been found
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in RCTs of patients with post-stroke spasticity, and new techniques still need to be explored
in future studies.

5. Conclusions

The results of the current meta-analysis are encouraging as they suggest that NIBS
can promote rehabilitation in patients with post-stroke spasticity. At present, the NIBS
applied to the field of post-stroke spasticity rehabilitation are mainly rTMS and tDCS. Other
techniques, including transcranial alternating current stimulation (tACS) and transcra-
nial ultrasound stimulation (TUS), still have limited evidence of significant variability in
stimulation targets and stimulation parameters. Therefore, further in-depth study on the
mechanism of action in the rehabilitation of post-stroke spastic patients is required. We
hope that in the future, NIBS can be optimized and applied safely and efficiently to the
rehabilitation of post-stroke spasticity.
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