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Preface to ”Feature Papers in Mathematical and

Computational Applications”

This book comprises the first collection of papers submitted by the Editorial Board Members

(EBMs) of the journal Mathematical and Computational Applications (MCA), as well as outstanding

scholars working in the core research fields of MCA. Therefore, this collection typifies the most

insightful and influential original articles that discuss key topics in these fields. More precisely,

this book contains 11 chapters from 11 research articles published in MCA between January and

November 2022. The papers are in the following shortly presented, organized chronologically by

their publication times.

In Chapter 1, Monika Stipsitz and Helios Sanchis-Alepuz present a proof-of-concept study of

the application of convolutional neural networks to accelerate thermal simulations. Hereby, the focus

is on the thermal aspect of electronic systems to provide accurate approximations of full solutions

to quickly select promising designs. To this end, a custom network architecture that captures the

long-range correlations present in heat conduction problems is proposed and tested.

In Chapter 2, Roy M. Howard utilizes a spline-based integral approximation to define a sequence

of approximations to the error function that converge at a significantly faster manner than the

default Taylor series. Specifically, two generalizations are investigated, both leading to significantly

improved accuracy.

In Chapter 3, Sorena Sarmadi et al. perform automated analysis to quantify the growth dynamics

of a population of bacilliform bacteria. To this end, they propose an innovative approach to the

frame-sequence tracking of deformable-cell motion by the automated minimization of a new specific

cost function. Initial tests using experimental image sequences of E. coli colonies yield convincing

results, with a registration accuracy ranging from 90% to 100%.

In Chapter 4, Guzel Khayretdinova et al. propose a method for semi-supervised image

segmentation based on geometric active contours. The main novelty of the proposed method is

the initialization of the segmentation process, which is performed with a polynomial approximation

of a user-defined initialization. The method is compared with other segmentation algorithms, and

experimental results are given related to several medical and geophysical applications.

In Chapter 5, Moriz A. Habigt et al. conduct a porcine animal model to parameterize and

evaluate a computer simulation model. The results of an animal model on thirteen healthy pigs

were used to generate consistent parameterization data for the full heart computer simulation model.

Numerical results show that the simulation model used in this study was able to adapt to the high

physiological variability in the animal model.

In Chapter 6, Harri Hakula deals with harmonic extension finite elements for the numerical

solution of partial differential equations defined on complicated domains. It is shown that, in

combination with simple replacement rule-based mesh generation, the performance of the method

is equivalent to that of the standard p-version in problems where the boundary layers dominate

the solution. The performance over a parameter range is demonstrated in an application of

computational asymptotic analysis, where known estimates are recovered via computational means

only.

In Chapter 7, Daniele Mortari proposes a least-squares-based numerical approach to estimate the

boundary value geodesic trajectory and associated parametric velocity on curved surfaces. Numerical

examples are provided for several two-dimensional quadrics for which the estimated geodesic

solutions yield residuals at the machine-error level.

In Chapter 8, Lindomar Soares Dos Santos et al. derive analytical solutions of microplastic

ix



particles dispersion using a Lotka–Volterra predator–prey model with time-varying intraspecies

coefficients. Based on this, they solve analytically particular situations of ecological interest, which are

characterized by extreme effects on predatory performance, and propose a second-order differential

equation as a possible next step to address this model.

In Chapter 9, Quoc Khanh Nguyen et al. present a spectral analysis of the coefficient matrices

associated with the linear systems stemming from the finite-element discretization of a linearly elastic

problem for an arbitrary coefficient field in three spatial dimensions. Their analysis is then used to

design and study an optimal multigrid method in the sense that the (arithmetic) cost for solving the

problem up to a fixed desired accuracy is linear in the corresponding matrix size.

In Chapter 10, Sohail A. Khan and Tasawar Hayat examine the impacts of Dufour and Soret in

a radiative Darcy–Forchheimer flow. They investigate physical interpretations of the concentration,

entropy rate, velocity, and temperature parameters, and compare their observations with previously

published results, leading to an excellent agreement.

Finally, in Chapter 11, Gabriel Thomaz de Aquino Pereira et al. present a new material model for

an agglomerated cork based solely on well-known hypotheses of continuum mechanics using fewer

parameters than the classical model. Furthermore, a finite-element framework is used to validate the

new model against experimental data. This work represents an important step toward the production

of materials that are less polluting and harmful to the environment following the UN 2030 agenda for

sustainable development.

Gianluigi Rozza, Oliver Schütze, and Nicholas Fantuzzi

Editors
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Approximating the Steady-State Temperature of 3D Electronic
Systems with Convolutional Neural Networks

Monika Stipsitz and Hèlios Sanchis-Alepuz *

Silicon Austria Labs GmbH, Inffeldgasse 33, 8010 Graz, Austria; monika.stipsitz@silicon-austria.com
* Correspondence: helios.sanchis-alepuz@silicon-austria.com

Abstract: Thermal simulations are an important part of the design process in many engineering disci-
plines. In simulation-based design approaches, a considerable amount of time is spent by repeated
simulations. An alternative, fast simulation tool would be a welcome addition to any automatized
and simulation-based optimisation workflow. In this work, we present a proof-of-concept study of
the application of convolutional neural networks to accelerate thermal simulations. We focus on the
thermal aspect of electronic systems. The goal of such a tool is to provide accurate approximations of
a full solution, in order to quickly select promising designs for more detailed investigations. Based
on a training set of randomly generated circuits with corresponding finite element solutions, the
full 3D steady-state temperature field is estimated using a fully convolutional neural network. A
custom network architecture is proposed which captures the long-range correlations present in heat
conduction problems. We test the network on a separate dataset and find that the mean relative
error is around 2% and the typical evaluation time is 35 ms per sample (2 ms for evaluation, 33 ms for
data transfer). The benefit of this neural-network-based approach is that, once training is completed,
the network can be applied to any system within the design space spanned by the randomized
training dataset (which includes different components, material properties, different positioning of
components on a PCB, etc.).

Keywords: physics simulations; neural networks; electronic design; heat equation

1. Introduction

Physics simulations are becoming an essential aspect in the design of electronic sys-
tems. For an optimally designed electronic system, the interplay of many different physical
domains has to be taken into account. For instance, electronic and thermal co-simulations
for the design of an efficient power converter have been studied in [1]. Such coupled
simulations lead, however, to large computational requirements. Often, the long simulation
time render automatic optimizations of designs impossible.

Machine learning (ML) techniques are possible candidates to increase the computational
speed. The application of ML techniques to the design of electronic systems focuses mainly
on two aspects [2]. The first aims at reducing the number of required design iterations [3,4].
For example, a genetic algorithms required around 1000–10,000 FEM simulations to find the
optimal placement of a chip in a system [5], which takes a considerable amount of computation
time. Alternatively, ML is used to accelerate the evaluation of individual designs, i.e., replace
the time consuming simulations by neural networks [6–9].

In addition to thermal simulations, NNs are successfully applied to perform many
types of physics simulations. For instance, NNs have been explored for fluid dynamics
problems [10–12], for electro-convection [13], transport problems [14,15], magnetic field
estimation [16], classical mechanics [17] and in replicating multi-particle evolutions by
learning the pair-wise interaction function [18].

Recent works aim at embedding prior physics knowledge in machine learning: For
physics-informed NNs (PINNs) the physics knowledge is used to guide the convergence

Math. Comput. Appl. 2022, 27, 7. https://doi.org/10.3390/mca27010007 https://www.mdpi.com/journal/mca
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of the NN towards physics conforming solutions [19]. Typically, the auto-gradient feature
of the NN is used to construct a loss term based on the underlying differential equation.
PINNs led to promising results in many areas of computational science [20–26]. A review
on the application of PINNs to heat transfer problems can be found here [27]. In this work
we follow an alternative way to include some physics knowledge: The NN architecture
is chosen such that it forces the output to satisfy physical constraints [19]. For instance,
purely convolutional networks automatically preserve translational invariance [28].

Although realistic systems are three-dimensional, ML-based physics simulations have
mostly focused on lower-dimensional approximations. Especially, the representation of
three-dimensional full-field solutions for complex geometries remains a challenge. One
technical difficulty when going from 2D to 3D systems is the limited memory of the
GPUs [29]. A way to ensure a low memory requirement could be to use a more suitable
representation of the geometry instead of a stack of images [30]. Although some alternatives,
like point clouds based on CAD geometries [31–33] or octrees were proposed [34], most
available NN architectures are still developed for images.

The main contribution of this paper is to explore, for the first time, the approximation
of the 3D temperature distribution in an electronic system with complex geometry using
NNs. Note that in [35] the thermal problem on a 3D chip was studied but in a much more
simplified setting than we consider in this work. In addition to the difficulties discussed
above related to memory limitations, another major obstacle when studying 3D systems is
the generation of enough high quality training data. We have developed an automatized
workflow that creates 3D CAD geometries representing electronic circuits and performs
meshing and FEM simulations on them. The workflow generates data in a form suitable
for ML requiring no human intervention. In this first proof-of-concept study, we focus on
FEM solutions for the steady-state, equilibrium thermal configuration of the systems.

The paper is organized as follows. In Section 2.1, we describe our workflow for the
data generation and discuss how the postprocessing of CAD geometries and FEM results
into ML training data is performed. The chosen NN architecture and the objective function
is discussed in Section 2.2. We present our results and conclusions in Sections 3 and 4,
respectively. Details on the generation of the training and evaluation datasets are given in
Appendix A. For completeness, the general aspects of NNs most relevant for the under-
standing of this work are discussed in the Appendix B.

2. Materials and Methods

2.1. Dataset Generation

In this work a fully-convolutional neural network (FCN) was trained to approximate,
on 3D electronic systems, the FEM solution of the time-independent heat equation

− �∇ ·
(

k(x)�∇T(x)
)
= ρ(x)h(x) , (1)

where ρ is the density, k the heat conductivity and h a heat source. We use supervized learn-
ing, which requires a large dataset of random systems with corresponding FEM solutions.
The dataset needs to be representative of the design space. This entails that all properties
that one wants to change during the design process (component type/number/placement,
material properties, heat sink specifications, external temperature), were randomized in
the dataset. In total, 464 unique systems were generated using an automatized workflow in
python (see Figure 1 for a graphical summary) consisting of the following steps:

1. System generation: For each system the number and type of basic components were
randomly chosen and they were placed at random locations on a PCB. Material
parameters were assigned to the different parts of each component.

2. Generation of FEM solutions: A constant temperature was set at the bottom of the
PCB Text. A heat sink on top of the large IC was mimicked by a heat flux boundary
condition. All other outer surfaces were modelled as heat flux boundaries to air. For
each of the created systems, an external temperature Text and heat transfer coefficient

2
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to air α and for the sink αsink were randomly chosen. Heat sources (i.e., electric losses)
with random magnitude were assigned to some of the components. The systems were
meshed. FEM simulations were performed to obtain the temperature solutions.

3. Voxelization: During postprocessing the systems and the FEM solutions were con-
verted to a set of 3D images per system as input for the NN. Four 3D-images were
created per system, one for the distribution of a material property, the external tem-
perature, the heat sources and the heat transfer coefficient.

Figure 1. Illustration of the automatized workflow: Randomized systems are generated by randomly
choosing and placing basic components. After assigning randomized material properties and BC
values, the system is voxelized to create a stack of four 3D-images as input for the NN. Solutions for
the supervized training procedure are created using FE simulations.

Detailed information on the individual steps for generating the systems can be found
in Appendix A.

2.2. NN Architecture

A 3D fully-convolutional NN is used. The input of the NN consists of 4-channel 3D
images and the output is a single-channel 3D temperature image.

As discussed in Section 1, a major constraint for designing an appropriate NN architecture
comes from the limited GPU memory. A batch of the input images requires already a
significant amount of the available memory. Thus, a network with a relatively small number
of parameters is required to be trainable. Therefore, instead of applying a general-purpose
network, the NN architecture must be chosen to match the physical problem.

An initial rough design of the architecture was based on physical arguments and some
manual exploration, that we discuss next. Once the rough design was fixed, an automatic
exploration of the remaining free parameters was performed (e.g., kernel size, type of
activation, number of skip connections, etc.). The impact of this fine-tuning was not very
large (of the order of a percent in the relative L1 loss, see below).

2.2.1. Properties of Heat Propagation

During the design of the architecture, we found it instructive to explore exact analytical
solutions of the heat equation, even though they apply in very idealized situations only.
For example, the 1D heat kernel solution of the (time-dependent) heat equation reads

T(x, t) =
∫ t

0
dt′

∫ ∞

0
dy

h(y, t′)√
4πk(t− t′)

(
exp

(
− (x− y)2

4k(t− t′)

)
− exp

(
− (x + y)2

4k(t− t′)

))
. (2)
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Inspecting the heat kernel solution, it is possible to anticipate (1) the presence of expo-
nentials as a general feature of solutions of the heat equation, and (2) the fact that the
contributions from different spatial points are aggregated via an integral. These two fea-
tures are reflected in the NN architecture by means of the choice of activation functions
and what we refer to as fusion blocks, as described next.

2.2.2. Long-Range Correlations. Fusion Blocks

One of the most important aspects, that the NN must capture in order to successfully
approximate the steady-state temperature distribution is the presence of long-range effects.
Most of the convolutional NNs (CNNs) available in the literature have been developed
for the classification of images (in the case of 2D CNNs) or of video sequences (in the
case of 3D CNNs). The performance of several of the standard low-resource 3D CNNs
(e.g., SqueezeNet [36]) on the dataset described in Section 2.1 was analyzed but the tem-
perature fields obtained with such networks were very sharp, not resembling a realistic
situation where around a hot spot a temperature gradient is to be expected. Moreover, heat
propagation from a heat source to a distant but thermally connected point in the system
was absent.

To recover the long-range effects in the system, convolutional layers with large dila-
tions were applied. Dilations have been used previously, for example in [16], to capture
long-range correlations without increasing the convolutional kernel size. The maximum
dilations in the Fusions were chosen such that the receptive field of the NN spans the whole
system size (see Figure 2). This is required since in the steady-state case the temperature at
a point can depend on any (arbitrarily) far away point in the system. The kernel sizes were
chosen small (k = 3 or 4) since the NN parameters and the size of the backpropagation tree,
and, thus, the required GPU memory for training, increase quickly with the kernel sizes.

Moreover, as stressed in Section 2.2.1, the solution is an aggregation of long-range
effects (via an integration in the case of the heat kernel solution). To enable these ag-
gregations in the network we defined “Fusion blocks”: Each fusion block is composed
of N 3D convolutional layers with different dilations [d1, d2, . . . , dN ]. The result of those
convolutions is concatenated along the channel dimension. An illustration of a simple (2D)
fusion block is shown in Figure 3.

The fusion block turned out to be the decisive element to obtain realistic and accurate
enough predictions from the network.

2.2.3. Choice of Activation Functions

From the heat kernel solution, it can be seen that general solutions contain exponential
functions. To approximate that feature, whilst keeping the network small, it is convenient
to use non-linearities (activation functions) that contain an exponential. Using too many
of them, however, turns out to be damaging for the performance of the network. The
reason is that, several consecutive layers containing an exponential function lead to a
exp(− exp(− exp(...)))-type functions acting on the input. After some exploration, a SELU
activation function [37] was chosen for one of the layers only (see Figure 2). For the rest of
the layers a LeakyReLU [38] was used.

The impact of using a SELU was not large and it mostly helped in achieving the
desired accuracy with less training epochs.

4
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Figure 2. Architecture used in this work. In each block, k refers to the kernels size, s to the stride, d to
the dilations and C to the output channels of each layer (the same for all dimensions). See Section 2.2
for further details.

Figure 3. Schematic representation of the action of a 2D fusion block consisting of two convolutional
layers with 3 × 3 kernels and dilations 3 and 1.

5
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2.2.4. Input to the Network

The input of NNs is typically rescaled to be in the [0, 1] range since that makes
the training of the networks more stable numerically. In this work, a more physically
meaningful rescaling scheme was chosen. Characteristic values were introduced for each of
the relevant dimensional quantities: the maximum heat power Pmax = 20 W, the maximum
temperature Tmax = 1000 K, and a length scale l0 = 0.4 mm. Note, that the maximum
values defined here do not represent a hard limit at which the network will fail to work
since the network does not strictly require all values to be smaller than one.

The dimensionless channels are then defined as:

C0 = k
Tmaxl0
Pmax

(3)

C1 = hρVbody
1

Pmax
(4)

C2 = Text/Tmax (5)

C3 =
1

αAbody

Pmax

Tmax
, (6)

where Vbody is the total volume of the sub-part where the heat density is applied (e.g., the
die volume of an IC), and Abody is the total surface area over which the heat transfer is
specified (e.g., the surface area of the heat sink). The Dirichlet boundary condition is not
fed to the network as an input channel, but softly imposed via the loss (see Section 2.2.6).

2.2.5. Network Architecture

We performed a fairly thorough (manual and automatic) exploration of possible
network architectures containing the features discussed so far. We assessed manually the
impact of using Fusion layers or not. Furthermore, after several numerical experiments we
concluded that:

• Too many downsampling layers had a damaging effect on the accuracy of the output.
Downsampling in CNNs is used to extract useful features from images. In our case,
the most relevant features are already part of the input, as discussed above. The main
reasons for downsampling in our case are to aggregate long-range effects in addition
to the dilation in the fusion blocks, and to reduce the memory requirements. Thus,
only two downsampling layers were used.

• As is well known in FCNs, skip connections help avoid the usual checkerboard artifacts
in the output. In this work we found that using three additive skip connections led
to the best results. We had skip connections from the output of the fusion blocks
to the input of the two upsampling layers (transpose convolutions) and the final
convolutional layer, respectively.

• An initial depthwise fusion block (depthwise means that channels are not mixed)
provides the necessary additional preprocessing of the input data.

This fixed the rough architecture. The optimal size of the kernels, dilation values and the
type of activations (except for the SELU unit) were found using an automatic optimisation.

As a result, we propose the architecture shown in Figure 2. In the figure, k refers to the
kernels size, s to the stride, d to the dilations and C to the output channels of each layer
(the same for all dimensions). This network has only ∼370 K trainable parameters, which
is a tiny number compared to standard architectures. For comparison, the 3D version of
SqueezeNet [36,39], which was designed to be a small network, has 2.15 M parameters).

2.2.6. Objective Function and Training Process

For the loss function a mean L1 relative loss term, L1 = mean(|(TNN − TFEM)/TFEM|),
was combined with a penalty term for the Dirichlet boundary condition at the bottom layer
of the PCB (LPCB). Here, TNN and TFEM are the temperature distributions predicted by the
NN and obtained from the FEM simulation, respectively. The air region was excluded from
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the loss evaluation because no FEM solution is available there. A physics-informed loss as
proposed by [12] did not improve the solutions. In fact, it drove the system to a uniform
temperature distribution since in all parts of the system where no heat source is present, the
differential heat equation error can be minimized by minimizing the temperature gradient.
This is somewhat unexpected and further exploration on physics-informed losses for the
present problem will be the subject of future work.

We trained the network using the RMSProp optimiser [40] with a batch size of 7. The
network is trained in several steps. First a warm-up period of ∼10 epochs, with a learning
rate of 10−4. After that only the Fusion layers are trained (with all other layers frozen)
for 10 more epochs at a learning rate of 10−5. Next the Fusions are frozen and everything
else is trained for 10 epochs at a learning rate of 10−5. Finally the network is trained for
100–200 epochs, with a decreasing learning rate from 10−5 down to 5× 10−6. Each epoch
takes approximately 10 min.

3. Results

The size of the dataset was increased by four without further computational effort
via three 90 degree in-plane rotations of each system, so that the total dataset consisted of
1856 systems. 75% of the generated dataset was used as training set and the remaining 25%
as test set. It is the accuracy in reproducing the latter that truly measures the quality of the
network solution. Thus, all results reported in this section are taken from the test set.

The mean relative L1 error per system is at the percent level, with values below 2% in
most systems in the test set: This can be seen in Figure 4, where a histogram of all systems
of the test set binned according to their corresponding L1 error is shown. Additionally,
the Dirichlet BC at the bottom of the PCB was fulfilled by the network with an average
relative error of LPCB = 0.1%. The present work was intended as a proof-of-principle for
an NN-based tool to evaluate the viability of potential system designs from a thermal point
of view. The obtained accuracies are judged good enough for that goal.

The mean value of the relative error, however, does not fully represent the (in-)accuracy
of the NN results, as large but very localized error values can be smeared out when
averaging over the large number of voxels in a system. More insightful is thus to compare
FEM and NN solutions directly in their 3D representations. In Figure 4, a representative
collection of 3D solutions and 3D maps of the relative temperature differences is shown,
picking one sample from most of the bins in the histogram discussed above, as indicated
in the figure. For the majority of systems the NN solution reproduces the FEM solution
reasonably well. The main discrepancies appear in relation with the small chip and on the
surfaces of the components and the PCB.

Further details are shown in Figure 5, where a section of a selected system is presented.
There, on the surface of the PCB and also around the small chip, the L1 error is somewhat
larger. Furthermore, in the inner part of the large chip some localized discrepancies can be
seen, which are a reminiscence of the checkerboard artefacts of FCNs. However, these are
clearly localized and do not affect the overall temperature of the chip.

The second aspect to consider when judging whether the presented NN approach is
a valuable tool in the design workflow of electronic systems is the evaluation speed. In
Table 1, a comparison of the evaluation speeds between the NN and the FEM solutions is
shown. The NN was run on an NVIDIA Titan RTX GPU whilst the FEM solver was run on
a single thread of an Intel Xeon W-2145 CPU. This implies that the FEM evaluation time in
Table 1 does not correspond to the time a fully optimized and parallelized FEM simulation
would require. Nevertheless, we see that the NN provides a solution in ∼35 ms (with
most of the time, in fact, used in transferring the 3D system to the GPU memory), which is
certainly a significant speed-up over any conceivable full-field 3D FEM simulation.
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Relative Temperature Difference
(0) (2) (3) (4)
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Figure 4. Histogram of the average relative L1 error per test system (top). Below the temperature
distributions estimated by the NN (right) and the relative temperature difference (left) for selected
systems of the test dataset (the corresponding error bin of the histogram is indicated in brackets,
from 0 indicating the lowest mean error to 19 for the worst mean error). The average relative L1

error (top) is the mean of the absolute values of the relative temperature differences (bottom left)
per sample.

Figure 5. FE solution (left), NN prediction (center), and relative L1 error of the temperature distribu-
tion (right) on a horizontal cut of a selected system. High predictive errors are mostly found on the
surface of the system while the internal temperature distribution is well represented.

Table 1. Average evaluation time for a NN solution and a FEM solution (note that, the time for the
FEM simulation is not taken from a performance-optimized solver).

NN, GPU Transfer NN Inference Total NN FEM (Single Core)

0.033 s 0.002 s 0.035 s 160 s

This high evaluation speed comes at the cost of creating a training data set and training
the network. The time to create one system of the training/testing data set was about
17 min. The systems were created fully automatized, creating 8 systems in parallel, so that
in one day the full data set was created without requiring any manual intervention. Note,
that the workflow was not optimized for performance, 90% of the time was used for the
system creation in FreeCAD and preprocessing the system (meshing, identifying surfaces to
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apply the BCs, etc.). The voxelization of the system took only fractions of a second. Thus,
approximating FEM simulations with NNs is clearly not the right approach if only the
result of one specific system is of interest. However, possible application scenarios could
lie in design applications, where the impact of design variations could be studied in real
time using pre-trained NNs.

It is worth discussing now some of the limitations of the FCN architecture suggested
in this work. The first limitation stems from the fact that the architecture sets the maximum
effective receptive field on the input images, which is determined by the combination of
maximum dilation and number of downsamplings. Thus, even though the architecture is
fully convolutional—which implies that it can immediately process larger systems than
those it has been trained on—it will not be able to capture any heat transfer effects over
larger distances than those covered in the original receptive field. We have not tested
what the implications of this limitation are. A second limitation arises from the typical
length scales in the system. A minimum length scale is implicitly set by choosing the voxel
resolution and, in principle, if a different voxel resolution has to be chosen the network
would have to be retrained. The voxelized representation of the systems has, however, the
advantage that no tedious and time consuming meshing and preprocessing is required for
the evaluation of the NN on a system.

The main advantage of the approach presented here is that, once the network has been
trained, it can approximate the temperature field of any system within the design space
spanned by the randomized training dataset. This means that the network can be applied
to systems with different number of components, different placement of those components,
different material properties and different BCs than those it has been trained on. Therefore,
the simulation time spent in generating the dataset is compensated by the gain in future
simulations, as long as many of them are needed for a certain design task.

Confidence Estimation

Finally, we would like to discuss a possible confidence estimator for the NN solutions.
The goal of a confidence estimator in this context is to assess the quality of the NN approxi-
mation when no FE result exists to compare with, as would be the case in any realistic use
of our tool.

Our suggested confidence estimator is based on an integral form of the steady-state
heat equation ∫

∂V
k∂iTnidA +

∫
V

ρhdV = 0, (7)

where Gauss’ theorem was used to transform the integral over the system volume V to a
surface integral in the first term. Since the NN prediction is available at each voxel, the
equation is discretized to obtain an approximation per voxel e

6

∑
i=1

ek(∂iT)ni
eΔAi +

eρeheΔV ≈ 0. (8)

For the temperature gradient (∂iT), the finite difference of the temperature (as predicted
by the NN) of the voxel under consideration and its adjacent voxel (in the direction of
the normal ni) is inserted. If the two voxels have differing k values a piece-wise linear
interpolation of the temperature was used. The bottom of the PCB is kept at a fixed
temperature. On all other outer surfaces the flux boundary condition is included by
evaluating the first term with:

− k
∂T
∂n

= α(T − Text) . (9)

This heat equation error should measure the local violation of the steady-state heat equation.
If the net heat flux of a voxel is non-zero this implies that the temperature obtained from
the NN does not represent a steady state.
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The local L1 loss values are compared with the local heat equation error for a particular
sample (Figure 6) for different sections of the system in the z-direction. The proposed
estimator appears to qualitatively identify many of the regions where the error of the
NN estimation of the temperature map is high compared to the FEM solution. It is also
apparent, however, that not all voxels with high error values are identified.

Moreover, the estimator does not provide a clear quantitative measure of the error.
The absolute values of the heat equation error are much larger in regions with high k
than in regions with lower k. This could indicate that the piece-wise linear interpolation
used for the approximation of the temperature is not a good estimation of the actual
temperature distribution. However, at the current state, it is not possible to use higher
order approximations since they would require more voxels per uniform-k region, which
in turn conflicts with the limited RAM available on the GPU.

More research in the direction of finding a confidence estimator is clearly needed.

Slice 24
(last layer

within PCB)

Slice 28
(near bottom of

large chip)

Slice 69
(layer within

large chip)

Slice 89
(near top of
large chip)

Figure 6. Comparison of the heat equation error (top row), which can be used as error predictor if no
FE solution is available, and the L1 error (bottom row) on selected slices from bottom to top (left to

right). The heat equation error is able to indicate most of the regions with high error. It illustrates the
checkerboard pattern expected from purely convolutional networks. Since the heat equation error is
defined via the local imbalance of heat fluxes and sources, the detected errors can be slightly more
localized compared to the actual error (e.g., orange points in slice 69, top compared to bottom).

4. Conclusions

An approach to quickly approximate the full-field temperature distribution of 3D
electronic system using neural networks was proposed. The range of validity of the
developed network spans a realistically wide range of material parameters and heat sources.
Additionally, the network was trained to work with systems built with any number of the
basic components at any position in the system.

The network proposed is able to provide a simulation result in an evaluation time
of the order of milliseconds. The relative error achieved, when compared to a standard
FEM simulation, is around 2% averaged over the whole system, with larger errors localized
mostly on the surfaces of the components.

Finally we motivated a possible criterion for estimating the confidence of a prediction
based on an integral version of the heat equation. Even though the criterion proposed does
not allow for a quantitative estimate of the error of a given prediction, it may be used to
identify regions with large estimation errors.
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Appendix A. System Generation Details

Appendix A.1. System Generation

The main challenge we faced in generating systems was to obtain sufficiently diverse
3D geometries, and achieve enough variation of material properties and heat sources while
ensuring that the resulting temperature fields stay within a physically plausible range. To
simplify this task, we built the systems based on six different components. The components
were designed manually (once) using FreeCAD (one large and one small IC, one large and
one small capacitor, and copper layers of different shapes and sizes, see Figure 1a).

To generate a system, the components were randomly placed on a fixed-size PCB
of dimensions 25 mm× 25 mm× 2 mm (Figure 1b). Such a random placing procedure
does not produce functional electronic circuits. However, as long as the training dataset
captures the impact that different component placements have on the heat transfer, the NN
is expected to generalise also to (unseen) functional electronic circuits.

Most components (e.g., the ICs) have an internal structure (e.g., legs, die). Each of
these sub-parts was assigned a typical material (e.g., copper for the legs). To account for
variations in the material properties, a physically plausible range was specified for each
material type as the average value given in Table A1 ±25%. For each system, the material
properties of each part were chosen from a uniform distribution within those ranges.

Table A1. Average material properties: the actual values are chosen randomly from a range of
[0.75 Avg, 1.25 Avg].

Property Unit Avg. k (W/(m K)) Avg. cP (J/(kg K)) Avg. ρ (kg/m3)

Silicon 148 705 2330
Copper 384 385 8930
Epoxy 0.881 952 1682

FR4 0.25 1200 1900
Al2O3 35 880 3890

Aluminum 148 128 1930

Appendix A.2. Finite Element Simulations

Once the systems were generated, the correct temperature distributions were obtained
from FE simulations. Note, however, that instead of FE simulations any adequate simu-
lation methods could have been used. In this proof-of-concept study we focused on the
steady-state equation. Assuming that the material properties in the system do not change
with temperature, the thermal behavior of the system is determined by the heat equation

− �∇ ·
(

k(x)�∇T(x)
)
= ρ(x)h(x) , (A1)

where ρ is the density, k the heat conductivity and h a heat source. ρ, k and h are assumed to
be constant over time, i.e., independent of the current temperature. Three types of boundary
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conditions (BCs) were imposed on the systems for the Finite Element (FE) simulations: (1) a
Dirichlet-type BC at the bottom of the PCB, which was set to a constant external temperature
Text. The value of Text was assigned randomly to each of the systems we generated, from
the range 300 K± 25%. (2) a Neumann-type BC represented by a heat sink on the top of the
large IC, modelled via a heat transfer coefficient αsink (see Equation (9)). For each system,
αsink was randomly chosen from the range 2538.72 W/(Km2)± 25%. (3) on all other outer
exposed surfaces a heat transfer coefficient α was prescribed, taken randomly from the
range 14 W/(Km2)± 25%. Electronic losses were modelled as constant heat sources. The
magnitudes of the volumetric heat sources, located at the silicon die of the ICs and at the
core of the capacitors, were chosen randomly from the ranges specified in Table A2.

The material properties ρ and k depend on the position x, although in the generated
systems they are constant over the different sub-parts of each component. ρ and h do not
appear separately in Equation (A1), but rather as the product ρh. This implies that any
solution of the equation will depend on this product only and, thus, it is sensible to use the
product as input to the NN as explained below.

Next in the automatic workflow, a conformal mesh was generated using gmsh [41],
which consisted on average of 3 million elements. Steady-state solutions were obtained with
the open-source FEM solver ElmerSolver [42,43]. The main advantage of ElmerSolver
is that a scriptable interface between FreeCAD (for automatic geometry generation), to
ElmerGrid/gmsh (for automatic tetrahedral mesh generation) and ElmerSolver exists
which enables an automatized workflow for the system generation.

Table A2. Range of applied heat sources for the different components of the systems (in W).

Component Min Max

Center of large capacitor 0.1 0.3
Silicon die of large chip 10 19
Silicon die of small chip 0.1 0.5

Appendix A.3. Voxelization

For the NN, the 3D-systems were represented as a stack of 3D-images. This enabled
us to adapt NN methods previously developed for vision tasks to our problem (Figure 1d).
During postprocessing, each system was converted to four 3D-images. One 3D-image for
each of the physical properties (k, Text, ρh, α).

To create these 3D-images, the geometries of the basic components were voxelized
once using a custom FreeCAD-python script. The voxel size was 0.19× 0.19× 0.05 mm3

so that a batch of ten images fits in the GPU memory for training, while the voxel size
still resolves sufficient structural detail. The smaller resolution in z-direction was chosen
in order to resolve the thin copper layers. During the system generation workflow, each
component in the original system was then simply replaced by the previously voxelized
representation. To create the four different images, the voxelized geometry was replaced
part-by-part by the corresponding material parameter used in the FEM simulation. For our
systems, this procedure led to images with 128× 128× 128 voxels. The four 3D-images
were then stacked to create a four channel input for the network.

As labels for the supervized learning procedure the temperature solution obtained
by the FEM solver was used. The 3D temperature field was directly voxelized during
post-processing by Elmer. The FEM solution is only available and of interest within the
geometry (where a mesh is available). The outer image regions (we call them “air” regions)
were excluded in the loss definition (see Section 2.2.6).

Appendix B. Introduction to ANNs

In this section, we give an overview of neural networks, highlighting the aspects that
are most relevant to understand the rest of the paper; see, e.g., [44] for a detailed treatment.
In this work, NNs are used as highly versatile and non-linear function approximators.
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Generally speaking, a neural network can be visualized as a stack of layers, each of them
computing a set of linear operations on their input data, subsequently applying a fixed
non-linear operation and passing the result to the next layer. The input to the network in
this work is a voxelized representation of a 3D electronic system (i.e., a 3D image), where
the different properties of the system are passed as different channels (in analogy to the
RGB channels of a standard 2D image). Convolutional neural networks (CNNs), consisting
of a special type of layer called convolutional layer, are used for processing images.

The most important feature in a convolutional layer of a CNN is that not every pixel in
the input image of a layer is connected to every pixel in the output, but rather each output
pixel is determined by a small set of input pixels (the receptive field), the number of them is
given by the size of the so-called convolutional kernel (or filter). To be specific, the equation
defining the action of a 3D convolutional layer is:

zijk;C = bC +
kh

∑
α=0

kw

∑
β=0

kd

∑
γ=0

nc′

∑
F=0

xi′ j′k′F × wαβγ;CF , (A2)

with
i′ = i× sh + dh × α
j′ = j× sw + dw × β
k′ = k× sd + dd × γ

. (A3)

where zijk;C represents the value of the voxel at position i, j, k of the output 3D image, C
labels the channel (or feature map) of the output image, sh, sw and sd are natural numbers
called strides and dh, dw and dh are naturals called dilations (their meaning is explained in
Section 2.2), kh, kw and kd are the height, width and depth of the 3D convolutional kernels
applied to the input image x, with nc′ channels, bC is a bias parameter for each feature map
C and w are the weight parameters.

The next ideas to be presented are downsampling and upsampling. It is not necessarily
the case that the size of the output and input images of a convolutional layer coincide. It can
be inferred from Equation (A3), the output image size can be reduced by tuning the values
of the stride parameters. For example, choosing sh = sw = sd = 2, the size of the output
image will be halved. One refers to this process as downsampling. In image processing, the
purpose of downsampling is to force the CNN to extract relevant features from an image
(e.g., edges)but, in this work, extracting features is not so relevant since they are, to some
extent, manually implemented. Nevertheless, some degree of downsampling is necessary
to reduce the memory requirements of the network. The inverse action to downsampling
is upsampling. One can think of it as an interpolation procedure, where from one input
pixel a higher number of pixels are generated as output. In practice, this is achieved by
an operation called transposed convolution, which is mathematically very similar to the
standard convolution in Equation (A2), with different weights and biases to be learned.
Upsampling is necessary if downsampling is used in some of the layers of the network but
the output of a CNN must be another image of the same size of the input image, as is our
case. CNNs of this type are called fully-convolutional neural networks (FCNs).

Finally there is a different type of layer called pooling layer. They are parameter-free
layers (non-learnable) that apply a fixed operation on their receptive field. Typical pooling
layers include max-pooling and average-pooling layers, which give as output the maximum
or the average value, respectively, of the pixel (resp. voxel) values in their receptive field.

The training of a CNN consists of finding the optimal values of the parameters w
and b of each of the layers. This is achieved by minimising a certain objective function
(loss) on a labelled dataset. For this work, as discuss in the main text, the dataset consists
of a collection of simplified 3D circuits, each labelled by the result of a standard thermal
simulation. The training is performed on a subset of the whole dataset (training set), whilst
the rest are used to test the network (test set).
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Abstract: AbstractA spline-based integral approximation is utilized to define a sequence of ap-
proximations to the error function that converge at a significantly faster manner than the default
Taylor series. The real case is considered and the approximations can be improved by utilizing
the approximation erf(x) ≈ 1 for |x| > xo and with xo optimally chosen. Two generalizations are
possible; the first is based on demarcating the integration interval into m equally spaced subintervals.
The second, is based on utilizing a larger fixed subinterval, with a known integral, and a smaller
subinterval whose integral is to be approximated. Both generalizations lead to significantly improved
accuracy. Furthermore, the initial approximations, and those arising from the first generalization,
can be utilized as inputs to a custom dynamic system to establish approximations with better con-
vergence properties. Indicative results include those of a fourth-order approximation, based on
four subintervals, which leads to a relative error bound of 1.43 × 10−7 over the interval [0, ∞]. The
corresponding sixteenth-order approximation achieves a relative error bound of 2.01× 10−19. Various
approximations that achieve the set relative error bounds of 10−4, 10−6, 10−10, and 10−16, over [0, ∞],
are specified. Applications include, first, the definition of functions that are upper and lower bounds,
of arbitrary accuracy, for the error function. Second, new series for the error function. Third, new
sequences of approximations for exp(−x2) that have significantly higher convergence properties than
a Taylor series approximation. Fourth, the definition of a complementary demarcation function eC(x)
that satisfies the constraint e2

C(x) + erf2(x) = 1. Fifth, arbitrarily accurate approximations for the
power and harmonic distortion for a sinusoidal signal subject to an error function nonlinearity. Sixth,
approximate expressions for the linear filtering of a step signal that is modeled by the error function.

Keywords: error function; function approximation; spline approximation; Gaussian function

MSC: 33B20; 41A10; 41A15; 41A58

1. Introduction

The error function arises in many areas of mathematics, science, and scientific applica-
tions including diffusion associated with Brownian motion (Fick’s second law), the heat
kernel for the heat equation, e.g., [1], the modeling of magnetization, e.g., [2], the modelling
of transitions between two levels, for example, with the modeling of smooth or soft limiters,
e.g., [3] and the psychometric function, e.g., [4,5], the modeling of amplifier non-linearities,
e.g., [6,7], and the modeling of rubber-like materials and soft tissue, e.g., [8,9]. It is widely
used in the modeling of random phenomena as the error function defines the cumula-
tive distribution of the Gaussian probability density function and examples include, the
probability of error in signal detection, option pricing via the Black–Scholes formula, etc.
Many other applications exist. In general, the error function is associated with a macro
description of physical phenomena and the de Moivre–Laplace theorem is illustrative of
the link between fundamental outcomes and a higher-level model.

Math. Comput. Appl. 2022, 27, 14. https://doi.org/10.3390/mca27010014 https://www.mdpi.com/journal/mca
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The error function is defined on the complex plane according to

erf(z) =
2√
π

∫
γ

e−λ2
dλ, z ∈ C, (1)

where the path γ is between the points zero and z and is arbitrary. Associated functions
are the complementary error function, the Faddeyeva function, the Voigt function, and
Dawson’s integral, e.g., [10]. The Faddeyeva function and the Voigt function, for example,
have applications in spectroscopy, e.g., [11]. The error function can also be defined in terms
of the spherical Bessel functions, e.g., Equation (7.6.8) of [10], and the incomplete Gamma
function, e.g., Equation (7.11.1) of [10]. Marsaglia [12] provides a brief insight into the
history of the error function.

For the real case, which is the case considered in this paper, the error function is
defined by the integral

erf(x) =
2√
π

x∫
0

e−λ2
dλ, x ∈ R. (2)

The widely used, and associated, cumulative distribution function for the standard
normal distribution is defined according to

Φ(x) =
1√
2π

x∫
−∞

exp
[−λ2

2

]
dλ = 0.5 + 0.5erf

[
x√
2

]
. (3)

Being defined by an integral, which does not have an explicit analytical form, there
is interest in approximations of the error function and, in recent decades, many approxi-
mations have been developed. Table 1 details indicative approximations for the real case
and their relative errors are shown in Figure 1. Most of the approximations detailed in
this table are custom and have a limited relative error bound with bounds in the range of
3.05 × 10−5 [13] to 7.07 × 10−3 [14]. It is preferable to have an approximation form that
can be generalized to create approximations that converge to the error function. Examples
include the standard Taylor series, the Bürmann series, and the approximation by Abrarov,
which are defined in Table 1.

Figure 1. Graph of the magnitude of the relative error in the approximations, detailed in Table 1,
for erf(x).
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Many of the approximations detailed in Table 1 can be improved upon by approx-
imating the associated residual function, denoted g, via a Padé approximant or a basis
set decomposition. Examples of possible approximation forms, and the resulting residual
functions, are given in Table 2. One example is that of a 4/2 Padé approximant for the
function g3, which leads to the approximation:

erf(x) ≈

√√√√1− exp

[
−x2 · 4

π

[
1 +

n1x1 + n2x2
1 + n3x3

1 + n4x4
1

1 + d1x1 + d2x2
1

]]
, x1 =

x
x + 1

, x ≥ 0, (4)

n1 = 279
10,000,000 , n2 = −303,923

10,000,000 , n3 = 34,783
5,000,000 , n4 = 40,793

10,000,000

d1 = −21,941,279
10,000,000 , d2 = 3,329,407

2,500,000 .
(5)

The relative error bound in this approximation is 4.02 × 10−7. Higher-order Padé
approximants can be used to generate approximations with a lower relative error bound.
Matic [15] provides a similar approximation with an absolute error of 5.79 × 10−6.

An approximation of the error function can also be obtained by combining separate
approximations, which are accurate, respectively, for |x| 	 1 and |x| 
 1, via a demarcation
function d

erf(x) =
2x√

π
d(x) +

[
1− e−x2

√
πx

]
· [1 − d(x)], x ≥ 0, (6)

where

d(x) =
√

πxerf(x)−√πx + e−x2

2x2 −√πx + e−x2 . (7)

Naturally, an approximation of d requires an approximation of the error function.
Unsurprisingly, the relative error in the approximation for the error function equals the
relative error in the approximation utilized to approximate the error function in d.

Finally, efficient numerical implementation of the error function is of interest and
Chevillard [16] and De Schrijver [17] provide results and an overview. Highly accurate
piecewise approximations have long since been defined, e.g., [18].

The two-point spline-based approximations for functions and integrals, detailed in [19],
have recently been applied to find arbitrarily accurate approximations for the hyperbolic
tangent function [20]. In this paper, the general two-point spline approximation form is
applied to define a sequence of convergent approximations for the error function. The basic
form of the approximation of order n, denoted fn, is

erf(x) ≈ fn(x) = pn,0(x) + pn,1(x)e−x2
, (8)

where pn,1 is a polynomial of order n and pn,0 is a polynomial of order less than n. Conver-
gence of the sequence of approximations f1, f2, . . . to erf(x) is shown and the convergence
is significantly better than the default Taylor series. For example, the second-order approxi-
mation

f2(x) =
x√
π
·
[

1− x2

30

]
+

x√
π
·
[

1 +
11x2

30
+

x4

15

]
e−x2

(9)

yields a relative error bound of 0.056 over the interval [0, 2] which is better than a fifteenth-
order Taylor series approximation. The approximations can be improved by utilizing the
approximation erf(x) ≈ 1 for |x| 
 1 and thereby establishing approximations with a set
relative error bound over the interval [0, ∞).
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Table 1. Examples of published approximations for erf(x), 0 < x < ∞. For the third and second last
approximations, the coefficient definitions are detailed in the associated reference. The stated relative
error bounds arise from sampling the interval [0, 5] with 10,000 uniformly spaced points.

# Reference Approximation Relative Error Bound

1 Taylor series Tn(x) = 2√
π
·
[

x− x3

3·1 + x5

5·2! − . . . + (−1)(n−1)/2xn

n·[(n−1)/2]!

]
n ∈ {1, 3, 5, . . .}

2 Abramowitz [21], p. 297,
Equation (7.1.6)

2√
π

[
x + 2x3

1·3 + 22x5

3·5 + 23x7

3·5·7 + . . . + 2n x2n+1

1·3·5·...·(2n+1)

]
e−x2

3 Abramowitz [21], p. 299,
Equation (7.1.26) 1−

[
a1

1+px + a2

(1+px)2 +
a3

(1+px)3 +
a4

(1+px)4 +
a5

(1+px)5

]
e−x2 8.09 × 10−6

4 Menzel [14] and Nadagopal
[22]

√
1− exp

[
−4x2

π

]
7.07 × 10−3

5 Bürmann series [23], Equation
(33)

2√
π
·
√

1− exp(−x2) ·
[√

π
2 + 31

200 e−x2 − 341
8000 e−2x2

]
3.61 × 10−3

6 Winitzki [24], Equation (3)
√

1− exp
[
−x2 · 4/π+ax2

1+ax2

]
, a = 8(π−3)

3π(4−π)
3.50 × 10−4

7 Soranzo [25], Equation (1)
√

1− exp
[
−x2 · a1+a2x2

1+b2x2+b3x4

]
,

{
a1 = 1.2735457
a2 = 0.1487936

b2 = 0.1480931 b3 = 5.160× 10−4

1.20 × 10−4

8 Vedder [26], Equation (5) tanh
[

167x
148 + 11x3

109

]
4.65 × 10−3

9 Vazquez-Leal [27], Equation
(3.1) tanh

[
39x

2
√

π
− 111

2 · tan−1
[

35x
111
√

π

]]
1.88 × 10−4

10 Sandoval-Hernandez [13],
Equation (23)

2
1+exp[α1x+α3x3+α5x5+α7x7+α9x9]

− 1 3.05 × 10−5

11 Abrarov [28], Equation (16) 1− e−x2
[

1−e−τm x

τm x + τ2
m x√
π
·

N
∑

n=1

an[1−(−1)ne−τm x]
n2π2+τ2

m x2

]
an = 2

√
π

τm
· exp[−n2π2/τ2

m], τm = 12

3.27 × 10−3

(N = 6)

Table 2. Residual functions associated with approximations for erf(x), 0 < x < ∞.

# Error Function Residual Function

1 tanh
[

2x√
π

]
+ g1(x) g1(x) = erf(x)− tanh

[
2x√

π

]
2 tanh

[
2x√

π
[1 + g2(x)]

]
g2(x) =

√
π

2x ·atanh[erf(x)]− 1

3
√

1− exp
[
−x2· 4

π [1 + g3(x)]
]

g3(x) = −π
4x2 · ln

[
1− erf(x)2

]
− 1

Two generalizations are detailed. The first is of the form

erf(x) ≈ p0(x) + p1(x)e−k1x2
+ . . . + pm(x)e−kmx2

(10)

and is based on utilizing approximations associated with m equally spaced subintervals of
the interval [0, x]. The second is based on utilizing a fixed subinterval within [0, x] and then
approximating the error function over the remainder of the interval. Both generalizations
lead to significantly improved accuracy. For example, a fourth-order approximation based
on four variable subintervals, when used with the approximation erf(x) ≈ 1 for x 
 1, has
a relative error bound of 1.43 × 10−7 over the interval [0, ∞]. The corresponding sixteenth-
order approximation has a relative error bound of 2.01 × 10−19. Finally, by utilizing
the solutions of a custom dynamical system, approximations with better convergence
properties can be established.

Applications of the proposed approximations for the error function include, first,
the definition of functions that are upper and lower bounds, of arbitrary accuracy, for
the error function. Second, new series for the error function. Third, new sequences of
approximations for exp

(
−x2) that have significantly higher convergence properties than
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a Taylor series approximation. Fourth, the definition of a complementary demarcation
function eC(x) that satisfies the constraint e2

C(x)+ erf2(x) = 1. Fifth, arbitrarily accurate
approximations for the power and harmonic distortion for a sinusoidal signal subject to an
error function nonlinearity. Sixth, approximate expressions for the linear filtering of a step
signal modeled by the error function.

Section 2 details the spline-based approximation for the error function and its conver-
gence. Improved approximations, obtained by utilizing the nature of the error function
for large arguments, are detailed in Section 3. Two generalizations, with the potential for
lower relative error bounds, are detailed in Sections 4 and 5. Section 6 details how the
initial approximations, and the approximations arising from the first generalization, can be
utilized as inputs to a custom dynamical system to establish approximations with better
convergence properties. Applications are specified in Section 7. Conclusions are stated in
Section 8.

1.1. Notes and Notation

As erf(−x) = −erf(x), it is sufficient to consider approximations for the interval
[0, ∞).

For a function f defined over the interval [α, β], an approximating function fA has a
relative error, at a point x1, defined according to re(x1) = 1− fA(x1)/ f (x1). The relative
error bound for the approximating function over the interval [α, β] is defined according to

reB = max{|re(x1)|: x1 ∈ [α, β]}. (11)

The notation f (k)(x) = dk

dxk f (x) is used. The symbol u denotes the unit step function.
Mathematica has been used to facilitate the analysis and to obtain numerical results.

1.2. Background Results

The following result underpins the bounds proposed for the error function:

Lemma 1. Upper and Lower Functional Bounds. A positive approximation fA to a positive function
f over the interval [α, β], with a relative error bound

− εB < 1− fA(x)
f (x)

< εB, x ∈ [α, β], εB > 0, (12)

leads to the following upper and lower bounded functions:

fA(x)
1 + εB

< f (x) <
fA(x)

1− εB
, x ∈ [α, β]. (13)

The relative error bounds, over the interval [α, β], for the upper and lower bounded functions,
respectively, are:

2εB
1 + εB

,
2εB

1− εB
. (14)

Proof. The definition of the relative error bound, as specified by Equation (12), leads to

1− εB <
fA(x)
f (x)

< 1 + εB, (15)

which implies

1− εB
1 + εB

<
fA(x)/(1 + εB)

f (x)
< 1, 1 <

fA(x)/(1− εB)

f (x)
<

1 + εB
1− εB

(16)
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and the relative error bounds:

0 < 1− fA(x)/(1+εB)
f (x) < 1− 1−εB

1+εB
= 2εB

1+εB

1− 1+εB
1−εB

= −2εB
1−εB

< 1− fA(x)/(1−εB)
f (x) < 0

(17)

�

Convergent Integral Approximations

One application of the proposed approximations for the error function requires knowl-
edge of when function convergence implies convergence of associated integrals.

Lemma 2. Convergent Integral Approximation. If a sequence of functions f1, f2, . . . converges,
over the interval [0, x], to a bounded and integrable function f , then point-wise convergence is
sufficient for the associated integrals to be convergent, i.e., for

lim
n→∞

x∫
0

fn(λ)dλ =

x∫
0

f (λ)dλ. (18)

Proof. The required result follows if it is possible to interchange the order of limit and
integration, i.e.,

lim
n→∞

x∫
0

fn(λ)dλ =

x∫
0

lim
n→∞

fn(λ)dλ =

x∫
0

f (λ)dλ. (19)

Standard conditions for when the interchange is valid are specified by the monotone and
dominated convergence theorems, e.g., [29], (p. 26). Sufficient conditions for a valid inter-
change include point-wise function convergence, and for f to be integrable and bounded. �

2. Spline-Based Approximations for Error Function

2.1. Spline Approximation for Error Function

The following nth-order, two-point spline-based approximation for an integral has
been detailed in Equation (48) of [19], for a function f that is at least (n + 1)th-order
differentiable:

x∫
α

f (λ)dλ =
n
∑

k=0
cn,k(x− α)k+1

[
f (k)(α) + (−1)k f (k)(x)

]
+ Rn(α, x)

n ∈ {0, 1, 2, . . .}
(20)

where

cn,k =
n!

(n− k)!(k + 1)!
· (2n + 1− k)!

2(2n + 1)!
, k ∈ {0, 1, . . . , n}, (21)

R(1)
n (α, x) = −

n
∑

k=0
cn,k(k + 1)(x− α)k

[
f (k)(α) + (−1)k+1 · n+1

n−k+1 · f (k)(x)
]
+

cn,n(−1)n+1(x− α)n+1 f (n+1)(x).
(22)

Direct application of this result to the integral defining the error function leads to the
results stated in Theorem 1:

Theorem 1. Spline-Based Integral Approximation for Error Function. The error function can be
defined according to

erf(x) = fn(x) + εn(x), (23)
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where fn is the nth-order spline-based integral approximation defined according to

fn(x) =
2√
π
·

n

∑
k=0

cn,kxk+1
[

p(k, 0) + (−1)k p(k, x)e−x2
]

(24)

and εn(x) is the associated residual function whose derivative is

ε
(1)
n (x) = 2e−x2

√
π
− 2√

π
·

n
∑

k=0
cn,k(k + 1)xk p(k, 0)−

2e−x2
√

π
·

n
∑

k=0
cn,kxk(−1)k

[
(k + 1− 2x2)p(k, x) + xp(1)(k, x)

] (25)

In these equations,

p(k, x) = p(1)(k− 1, x)− 2xp(k− 1, x), p(0, x) = 1. (26)

A more general approximation is

erf(x)− erf(α) = 2√
π
·

n
∑

k=0
cn,k(x− α)k+1

[
p(k, α)e−α2

+ (−1)k p(k, x)e−x2
]
+ εn(α, x)

= fn(α, x) + εn(α, x).
(27)

Proof. The proof is detailed in Appendix A. �

2.1.1. Note

The polynomial function p(k, x) is equivalently defined by the kth-order Hermite
polynomial function ([21], p. 775, Equation (23.3.10)) and an explicit form is

p(k, x) =
�k/2

∑
i=0

(−1)i+kk!
i!(k− 2i)!

· 2k−2ixk−2i. (28)

A change of variable r = k − 2i, and noting that i ∈ {0, 1, . . . , �k/2
} implies
r ∈ {k, k− 2, . . . , k− 2�k/2
}, leads to the alternative form

p(k, x) =
k

∑
r=k−2�k/2


dk,rxr, dk,r =

(−1)(3k−r)/2
[

1+(−1)r−[k−2�k/2
]

2

]
k!2r

[(k− r)/2]!r!
. (29)

Substitution of this form into Equation (24) leads to the direct polynomial form for the
nth-order approximation to the error function:

fn(x) =
2√
π
·

n

∑
k=0

cn,k p(k, 0)xk+1 +
2e−x2

√
π
·

n

∑
k=0

⎡
⎣(−1)kcn,k

k

∑
r=k−2�k−2


dk,rxr+k+1

⎤
⎦. (30)

2.1.2. Approximations

The polynomial functions p, as defined by Equations (26), (28), and (29), have the
explicit forms:

p(0, x) = 1, p(1, x) = −2x, p(2, x) = −2[1− 2x2],
p(3, x) = 12x[1− 2x2/3], p(4, x) = 12[1− 4x2 + 4x4/3], . . .

(31)

Approximations for the error function, as defined by Equation (24) and for orders zero
to five, are:

f0(x) =
x√
π

+
x√
π
· e−x2

(32)
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f1(x) =
x√
π

+
x√
π

[
1 +

x2

3

]
e−x2

(33)

f2(x) =
x√
π

[
1− x2

30

]
+

x√
π

[
1 +

11x2

30
+

x4

15

]
e−x2

(34)

f3(x) =
x√
π

[
1− x2

21

]
+

x√
π

[
1 +

8x2

21
+

17x4

210
+

x6

105

]
e−x2

(35)

f4(x) =
x√
π

[
1− x2

18
+

x4

1260

]
+

x√
π

[
1 +

7x2

18
+

37x4

420
+

4x6

315
+

x8

945

]
e−x2

(36)

f5(x) =
x√
π

[
1− 2x2

33
+

x4

660

]
+

x√
π

[
1 +

13x2

33
+

61x4

660
+

67x6

4620
+

16x8

10, 395
+

x10

10, 395

]
e−x2

(37)

2.2. Results

The relative error in the zero- to tenth-order spline-based series approximations, along
with the relative error in Taylor series approximations of orders 1–15, are detailed in
Figure 2. The clear superiority, in terms of convergence, of the spline-based series relative
to the Taylor series is evident. The relative error in the spline approximations, of orders 16,
20, 24, 28, and 32, are shown in Figure 3.

Figure 2. Graph of the magnitude of the relative errors in approximations to erf(x): zero to tenth
order integral spline based series and first, third, ..., fifteenth order Taylor series (dotted).

Figure 3. Graph of the magnitude of the relative errors associated with the approximation erf(x) ≈ 1
and erf(x) ≈ 1− exp

(
−x2)/

√
πx along with the relative error in spline approximations of orders 16,

20, 24, 28 and 32.

The Mathematica code underpinning the results shown in Figure 2, is detailed in
Supplementary Material. Such code is indicative of the code underpinning the results
detailed in the paper.
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2.3. Approximation for Large Arguments

Zero- and first-order approximations for the error function, and for the case of x
 1, are

erf(x) ≈ 1, erf(x) ≈ 1− e−x2

√
πx

. (38)

The relative errors in such approximations, respectively, are

re(x) = 1− 1
erf(x)

, re(x) ≈ 1− 1− e−x2
/
√

πx
erf(x)

, (39)

and their graphs are shown in Figure 3.

2.4. Convergence

To prove the convergence of the sequence of functions f0, f1, f2, . . ., defined by Theorem 1,
to the error function, it is sufficient to prove that the corresponding sequence of residual
functions ε0, ε1, ε2, . . . converge to zero. This can be shown by considering the derivatives of
the residual functions defined by Equation (25). The derivatives of the residual functions of
orders zero, one, and two, respectively, are:

ε
(1)
0 (x) =

1√
π

[
1 + 2x2

]
e−x2 − 1√

π
(40)

ε
(1)
1 (x) =

1√
π

[
1 + x2 +

2x4

3

]
e−x2 − 1√

π
(41)

ε
(1)
2 (x) =

1√
π

[
1 +

9x2

10
+

2x4

5
+

2x6

15

]
e−x2 − 1√

π

[
1− x2

10

]
. (42)

Theorem 2. Convergence of Spline-Based Approximations. For all fixed values of x, the derivatives
of the residual functions converge to zero as the order increases, i.e., for all fixed values of x it is the
case that

lim
n→∞

ε
(1)
n (x) = 0, x > 0. (43)

This is sufficient for the convergence of the residual functions, i.e., lim
n→∞

εn(x) = 0, x > 0, and,
hence, for x fixed:

lim
n→∞

fn(x) = erf(x), x > 0. (44)

The convergence is nonuniform.

Proof. The proof is detailed in Appendix B. �

2.5. Improved Approximation Based on Iteration

Consider the general result

x∫
0

erf(λ)dλ =
1√
πx

[
1− e−x2

]
+ xerf(x) (45)

By using the approximations, fn, as defined in Theorem 1, in the integral, improved
approximations for the error function can be defined.
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Theorem 3. Improved Approximation via Iteration. An improved approximation, of order n, for
the error function is

Fn(x) = 1√
πx

[
1− e−x2

]
+ 2√

π
·

n
∑

k=0

cn,k p(k,0)
k+2 · xk+1+

2
x
√

π
·

n
∑

k=0

⎡
⎣(−1)kcn,k

k
∑

r=k−2�k/2


dk,r
2

[
r+k

2

]
!

⎡
⎣1− e−x2

r+k
2
∑

i=0

x2i

i!

⎤
⎦
⎤
⎦ (46)

where cn,k and dk,r are defined, respectively, by Equations (21) and (29).

Proof. From Equation (45), it follows that

erf(x) ≈ 1√
πx

[
1− e−x2

]
+

1
x
·

x∫
0

fn(λ)dλ. (47)

As
x∫

0

xue−λ2
dλ =

1
2

[
u− 1

2

]
!

[
1− e−x2

(u−1)/2

∑
i=0

x2i

i!

]
, u ∈ {1, 3, 5, . . .}, (48)

it follows, from the form for fn detailed in Equation (30), that

erf(x) ≈ 1√
πx

[
1− e−x2

]
+ 2√

π
·

n
∑

k=0

cn,k p(k,0)
k+2 · xk+1+

2
x
√

π
·

n
∑

k=0

⎡
⎣(−1)kcn,k

k
∑

r=k−2�k−2


dk,r
2

[
r+k

2

]
!

⎡
⎣1− e−x2

r+k
2
∑

i=0

x2i

i!

⎤
⎦
⎤
⎦ (49)

which is the required result. �

2.5.1. Explicit Approximations

Approximations to the error function, of orders zero to five, are:

f0(x) =
3

2
√

πx

[
1 +

x2

3

]
− 3e−x2

2
√

πx
(50)

f1(x) =
5

3
√

πx

[
1 +

3x2

10

]
− 5

3
√

πx

[
1 +

x2

10

]
e−x2

(51)

f2(x) =
7

4
√

πx

[
1 +

2x2

7
− x4

210

]
− 7

4
√

πx

[
1 +

x2

7
+

2x4

105

]
e−x2

(52)

f3(x) =
9

5
√

πx

[
1 +

5x2

18
− 5x4

756

]
− 9

5
√

πx

[
1 +

x2

6
+

23x4

756
+

x6

378

]
e−x2

(53)

f4(x) = 11
6
√

πx

[
1 + 3x2

11 − x4

132 + x6

13,860

]
−

11
6
√

πx

[
1 + 2x2

11 + 5x4

132 + 16x6

3465 + x8

3465

]
e−x2

(54)

f5(x) = 13
7
√

πx

[
1 + 7x2

26 − 7x4

858 + 7x6

51,480

]
−

13
7
√

πx

[
1 + 5x2

26 + 37x4

858 + 313x6

51,480 + 7x8

12,850 + x10

38,610

]
e−x2

(55)

Note that integration of these expressions leads to functions defined, in part, by the
Gamma function that is an integral. This makes further iteration impractical.
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2.5.2. Results

The relative errors in even order approximations, of orders 0–10, are shown in Figure 4.
A comparison of the results detailed in Figures 2 and 4 show the clear improvement in the
approximations specified by Equation (46).

Figure 4. Graph of the magnitude of the relative errors in the approximations to erf(x), of even orders,
as specified by Equation (46). The dotted results are for the fourth order approximation specified by
Theorem 1 (Equation (36)).

3. Improved Approximations

3.1. Improved Approximation for Error Function

An improved approximation for the error function can be achieved by noting, as
illustrated in Figure 3, that the approximation erf(x) ≈ 1 is increasingly accurate for the
case of x 
 1 and for x increasing. By switching at a suitable point xo, as illustrated
in Figure 5, from a spline-based approximation to the approximation erf(x) ≈ 1, an
improved approximation is achieved. Naturally, it is possible to switch to the approximation
erf(x) ≈ 1− e−x2

/
√

πx, or higher-order approximations, in a similar manner.

Figure 5. Illustration of the crossover point where the magnitude of the relative error in the approxi-
mation erf(x) ≈ 1 equals the magnitude of the relative error in a set order spline approximation.

Theorem 4. Improved Approximation for Error Function. Improved approximations for the error
function, based on the nth-order approximations detailed in Theorems 1 and 3, and consistent with
the illustration shown in Figure 5, are

erf(x) ≈ fn(x)u[xo(n)− x] + [1− u[xo(n)− x]]
erf(x) ≈ Fn(x)u[xo(n)− x] + [1− u[xo(n)− x]]

(56)

where the transition points, respectively, are defined according to

xo(n) = x :
∣∣∣1− 1

erf(x)

∣∣∣ = ∣∣∣1− fn(x)
erf(x)

∣∣∣
xo(n) = x :

∣∣∣1− 1
erf(x)

∣∣∣ = ∣∣∣1− Fn(x)
erf(x)

∣∣∣ (57)
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Proof. The improved approximation results follow from optimally switching, as illustrated
in Figure 5 and at the point specified by Equation (57), to the approximation erf(x) ≈ 1,
which has a lower relative error magnitude. �

Transition Points and Relative Error Bounds

The transition points, for various orders of spline approximation, are specified in
Table 3. The relationship between the transition point and order is shown in Figure 6 for the
case of the approximations fn. This relationship can be approximated, with a second-order
polynomial, according to

xo(n) = 1.3607 + 0.20511n− 0.002932n2, 0 ≤ n ≤ 24. (58)

Table 3. The transition points, xo, and the resulting relative error bounds for the spline-based
approximations specified by Equation (56). The transition points are based on sampling the interval
[0, 5] with 10,000 points.

Approx. Order: n Transition Point for fn
Relative Error Bound

for fn
Transition Point for Fn

Relative Error Bound
for Fn

0 1.3085 0.0851 1.465 0.0400
1 1.492 0.0362 1.769 0.0126
2 1.658 1.95 × 10−2 1.929 6.42 × 10−3

3 1.8975 7.36 × 10−3 2.1725 2.13 × 10−3

4 2.3715 1.03 × 10−3 2.6305 2.28 × 10−4

6 2.4715 4.75 × 10−4 2.73 1.13 × 10−4

8 2.963 2.79 × 10−5 3.1855 6.69 × 10−6

10 3.0785 1.35 × 10−5 3.324 2.59 × 10−6

12 3.4625 9.78 × 10−7 3.67 2.12 × 10−7

14 3.5845 4.00 × 10−7 3.8205 6.57 × 10−8

16 3.9025 3.44 × 10−8 4.101 6.66 × 10−9

18 4.0285 1.22 × 10−8 4.257 1.75 × 10−9

20 4.300 1.20 × 10−9 4.493 2.11 × 10−10

22 4.429 3.76 × 10−10 4.652 4.75 × 10−11

24 4.6655 4.18 × 10−11 4.854 6.70 × 10−12

Figure 6. Graph of the relationship between the optimum transition point xo(n), as defined by
Equation (57) for the case of fn and the order of the spline approximation.

However, as small variations in xo(n) can lead to significant changes in the maximum
relative error in the approximation for the error function, precise values for xo(n) are
preferable.

The graphs of the relative errors in the approximations fn to erf(x), as specified by
Equation (56), are shown in Figure 7 for orders 2, 4, 6, . . . , 20. The relative error bounds
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that can be achieved over the interval [0, ∞], using the optimally chosen transition points,
are detailed in Table 3.

Figure 7. Graph of the relative errors in the approximations, fn, to erf(x), of orders 2, 4, 6, . . . , 20,
based on utilizing the approximation erf(x) ≈ 1 in an optimum manner.

3.2. Improved Approximation for Taylor Series

The approximation of erf(x) ≈ 1 for x 
 1 can be utilized to improve the relative
error bound for a Taylor series approximation according to

erf(x) ≈ Tn(x)u[xo(n)− x] + [1− u[xo(n)− x]], (59)

where Tn is a nth-order Taylor series, with n odd, as specified in Table 1. The optimum
transition points and relative error bounds, for selected orders, are detailed in Table 4.
The variation of the relative errors, with order, are shown in Figure 8. The change in the
optimum transition point can be approximated according to

xo(n) ≈ 0.932 + 0.0560n− 0.0003503n2, 3 ≤ n ≤ 61, (60)

but, again, as small variations in xo(n) can lead to significant changes in the maximum
relative error in the approximation for the error function, precise values for xo(n) are
preferable. The clear superiority in the convergence of the spline-based series is evident
from a visual comparison of the relative errors shown in Figures 7 and 8.

Table 4. The transition points, and resulting relative error bounds, for Taylor series approximations
specified by Equation (59). The transition points are based on sampling the interval [0, 4] with
10,000 points.

Order: n Transition Point : xo(n) Relative Error Bound in Tn

1 0.8864 0.266
3 1.078 0.146
5 1.222 0.0917
7 1.344 0.0609
9 1.4532 0.0416
13 1.6452 0.0204
17 1.8144 0.0105
21 1.9672 5.44 × 10−3

25 2.1084 2.89 × 10−3

29 2.24 1.55 × 10−3

37 2.4812 4.53 × 10−4

45 2.70 1.35 × 10−4

53 2.902 4.09 × 10−5

61 3.09 1.24 × 10−5
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Figure 8. Graph of the magnitude of the relative error in Taylor series approximations to erf(x) that
utilize an optimized change to the approximation erf(x) ≈ 1.

4. Variable Subinterval Approximations for Error Function

An improved analytic approximation for the error function can be achieved by de-
marcating the interval [0, x] into variable subintervals, e.g., the subintervals [0, x/4],
[x/4, x/2], [x/2, 3x/4], and [3x/4, x] for the four-subintervals case, and by utilizing
spline-based integral approximations for each subinterval. Chiani [30] utilized subintervals
to enhance approximations for the complementary error function.

Theorem 5. Variable Subinterval Approximations for Error Function. The nth-order spline-based
approximation to the error function, based on m equal-width subintervals, is

fn,m(x) =
2√
π

m−1

∑
i=0

⎡
⎢⎣ n

∑
k=0

cn,k

[ x
m

]k+1

⎡
⎢⎣ p

[
k, ix

m

]
exp

[
− i2x2

m2

]
+

(−1)k p
[
k, (i+1)x

m

]
exp

[
− (i+1)2x2

m2

]
⎤
⎥⎦
⎤
⎥⎦ (61)

where
p(k, x) = p(1)(k− 1, x)− 2xp(k− 1, x), p(0, x) = 1. (62)

An alternative form is

fn,m(x) =
2√
π

[
pn,0(x) +

m−1

∑
i=1

pn,i(x) exp
[
− i2x2

m2

]
+ pn,m(x) exp(−x2)

]
(63)

where
pn,0(x) =

n
∑

k=0

cn,k
mk+1 · p(k, 0)xk+1

pn,i(x) =
n
∑

k=0

cn,k
mk+1 ·

[
1 + (−1)k

]
p(k, ix

m )xk+1

pn,m(x) =
n
∑

k=0

cn,k
mk+1 · (−1)k p(k, x)xk+1.

(64)

Proof. The first result follows by applying Equation (27) in Theorem 1 to the subintervals
[0, x/m], [x/m, 2x/m], . . . ,

[
x− x

m , x
]
. The alternative form arises by expanding the outer

summation in Equation (61) and collecting terms of similar form. �
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4.1. Explicit Expressions

A first-order approximation, based on m subintervals, is

f1,m(x) =
x

m
√

π

[
1 + 2

m−1

∑
i=1

exp
[−i2x2

m2

]
+ exp(−x2)

]
+

x3

3m2
√

π
· exp(−x2). (65)

For the four-subintervals case, explicit expressions are

f0,4(x) =
x

4
√

π

[
1 + 2 exp

[−x2

16

]
+ 2 exp

[−x2

4

]
+ 2 exp

[−9x2

16

]
+ exp(−x2)

]
(66)

f1,4(x) =
x

4
√

π

[
1 + 2 exp

[−x2

16

]
+ 2 exp

[−x2

4

]
+ 2 exp

[−9x2

16

]
+ exp(−x2)

]
+

x3

48
√

π
· exp(−x2) (67)

Using the alternative form, a fourth-order expression is

f4,4(x) = x
4
√

π

[
1− x2

288 + x4

322,560

]
+

x
2
√

π
· exp

[
−x2

16

][
1− x2

288 + 47x4

107,520 − x6

1,290,040 + x8

61,931,520

]
+

x
2
√

π
· exp

[
−x2

4

][
1− x2

288 + 187x4

107,520 − x6

322,560 + x8

3,870,720

]
+

x
2
√

π
· exp

[
−9x2

16

][
1− x2

288 + 1261x4

322,560 − x6

143,360 + 3x8

2,293,760

]
+

x
4
√

π
· exp

(
−x2)[1 + 31x2

288 + 101x4

15,360 − 19x6

80,640 + x8

241,920

]
+

(68)

A fourth-order spline approximation, which utilizes 16 subintervals, is detailed in
Appendix C. This expression, when utilized with the transition point xo = 7.1544, yields an
approximation with a relative error bound of 4.82 × 10−16.

Results

The relative errors in the spline approximations of orders one to six, and for the
case of four equal subintervals [0, x/4], [x/4, x/2], [x/2, 3x/4], and [3x/4, x], are shown
in Figure 9.

Figure 9. Graph of the relative errors in spline approximations to erf(x), of orders one to six and
based on four variable sub-intervals of equal width.

4.2. Improved Approximation

The spline approximations utilizing variable subintervals can be improved by using
the transition to the approximation erf(x) ≈ 1 at a suitable point, as specified by Equation
(56). The relative error in the spline approximations of orders one to seven, and for the
case of four equal subintervals [0, x/4], [x/4, x/2], [x/2, 3x/4], and [3x/4, x], are updated
in Figure 10 to show the improvement associated with utilizing the optimum transition
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point to the approximation erf(x) ≈ 1. The relative error bounds, and transition points, are
detailed in Tables 5 and 6 for the cases of four and 16 subintervals.

Figure 10. Graph of the relative errors in approximations to erf(x): first to seventh order spline based
series based on four sub-intervals of equal width and with utilization of the approximation erf(x) ≈ 1
at the optimum transition point.

Table 5. Transition point and relative error bound for the four equal subintervals case. The transition
points are based on sampling the interval [0, 8] with 10,000 points.

Spline Order Transition Point Relative Error Bound

0 2.7016 5.32 × 10−3

1 3.292 7.21 × 10−5

2 3.4544 1.27 × 10−6

4 3.7208 1.43 × 10−7

8 4.6616 4.34 × 10−11

12 5.6784 9.75 × 10−16

16 6.3736 2.01 × 10−19

20 7.1544 4.62 × 10−24

24 7.7136 1.06 × 10−27

Table 6. Transition point and relative error bound for the 16 equal subintervals case. The transition
points are based on sampling the interval [0, 12] with 10,000 points.

Spline Order Transition Point Relative Error Bound

0 5.5008 3.32 × 10−4

1 6.8796 2.82 × 10−7

2 7.0224 3.14 × 10−10

4 7.1544 4.82 × 10−16

8 7.5996 6.22 × 10−27

12 8.2032 4.16 × 10−31

16 8.9244 1.66 × 10−36

20 9.7284 4.68 × 10−43

24 10.584 1.21 × 10−50

Examples

A first-order approximation, based on m subintervals, as specified by Equation (65),
yields the relative error bound of 7.21 × 10−5 for four subintervals and the transition
point xo = 3.2928; 4.51 × 10−6 for eight subintervals with a transition point xo = 4.784;
2.82 × 10−7 for 16 subintervals and a transition point of xo = 6.88; and 1.10 × 10−9 for
64 subintervals and a transition point xo = 15.7888.
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The fourth-order approximation, based on four equal subintervals, as specified by
Equation (68), leads to the relative error bound of 1.43× 10−7 when used with the transition
point xo = 3.7208. A sixteenth-order approximation, based on four equal subintervals,
leads to an error bound of 2.01 × 10−19 when used with the optimum transition point of
xo = 6.3736.

5. Dynamic Constant plus Spline Approximation

Consider the demarcation of the areas, as illustrated in Figure 11 and based on a
resolution Δ, that define the error function. It follows that

erf(x) =
�x/Δ

∑
k=0

ck +
2√
π

x∫
Δ�x/Δ


e−λ2
dλ

{
c0 = 0

ck = erf(kΔ)− erf[(k− 1)Δ], k ≥ 1.
(69)

Figure 11. Illustration of areas comprising erf(x).

For the general case of nonuniformly spaced intervals, as defined by the set of mono-
tonically increasing points {x0, x1, x2, . . . , xm}, and where it is not necessarily the case that
x > xm, the error function is defined according to

erf(x) =
m

∑
k=1

cku(x− xk) +
2√
π

x∫
xS

e−λ2
dλ, (70)

where c0 = 0, x0 = 0 and

ck = erf(xk)− erf[xk−1], xS =
m

∑
k=1

[xk − xk−1]u(x− xk). (71)

A spline-based approximation, as defined by Equation (27), can be utilized for the
unknown integrals in Equations (69) and (70). This leads to the results stated in Theorem 6:

Theorem 6. Error Function Approximation: Dynamic Constant Plus a Spline Approximation. The
error function, as defined by Equations (69) and (70), can be approximated, respectively, by

fn,Δ(x) =
�x/Δ

∑
k=0

ck +
2√
π

[
n

∑
k=0

cn,k

[
x− Δ

⌊ x
Δ

⌋]k+1
[

p
[
k, Δ

⌊ x
Δ
⌋]

exp
[
−Δ2⌊ x

Δ
⌋2
]
+

(−1)k p(k, x)exp(−x2)

]]
(72)

erf(x) ≈
m

∑
k=1

cku(x− xk) +
2√
π

[
n

∑
k=0

cn,k(x− xS)
k+1

[
p(k, xS)exp(−x2

S)+

(−1)k p(k, x)exp(−x2)

]]
(73)

Proof. These results arise from spline approximation of order n, as defined by Equation (27),
for the integrals, respectively, over the intervals [Δ�x/Δ
, x] and [xS, x]. �
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5.1. Approximations of Orders Zeros to Four

Approximations of orders zero to four arising from Theorem 6 are:

f0,Δ(x) =
�x/Δ

∑
k=0

ck +
x− Δ�x/Δ
√

π
·
[
e−Δ2�x/Δ
2 + e−x2

]
(74)

f1,Δ(x) =
�x/Δ


∑
k=0

ck +
x−Δ�x/Δ
√

π
·
[
e−Δ2�x/Δ
2 + e−x2

]
−

(x−Δ�x/Δ
)2

3
√

π
·
[
Δ�x/Δ
e−Δ2�x/Δ
2 − xe−x2

] (75)

f2,Δ(x) =
�x/Δ


∑
k=0

ck +
x−Δ�x/Δ
√

π
·
[
e−Δ2�x/Δ
2 + e−x2

]
−

2(x−Δ�x/Δ
)2

5
√

π
·
[
Δ�x/Δ
e−Δ2�x/Δ
2 − xe−x2

]
−

(x−Δ�x/Δ
)3

30
√

π
·
[[

1− 2Δ2�x/Δ
2
]
e−Δ2�x/Δ
2 +

[
1− 2x2]e−x2

]
(76)

f3,Δ(x) =
�x/Δ


∑
k=0

ck +
x−Δ�x/Δ
√

π
·
[
e−Δ2�x/Δ
2 + e−x2

]
−

3(x−Δ�x/Δ
)2

7
√

π
·
[
Δ�x/Δ
e−Δ2�x/Δ
2 − xe−x2

]
−

(x−Δ�x/Δ
)3

21
√

π
·
[[

1− 2Δ2�x/Δ
2
]
e−Δ2�x/Δ
2 +

[
1− 2x2]e−x2

]
+

(x−Δ�x/Δ
)4

70
√

π
·
[

Δ�x/Δ

[

1− 2Δ2�x/Δ
2
3

]
e−Δ2�x/Δ
2 − x

[
1− 2x2

3

]
e−x2

]
. (77)

f4,Δ(x) =
�x/Δ


∑
k=0

ck +
x−Δ�x/Δ
√

π
·
[
e−Δ2�x/Δ
2 + e−x2

]
−

4(x−Δ�x/Δ
)2

9
√

π
·
[
Δ�x/Δ
e−Δ2�x/Δ
2 − xe−x2

]
−

(x−Δ�x/Δ
)3

18
√

π
·
[[

1− 2Δ2�x/Δ
2
]
e−Δ2�x/Δ
2 +

[
1− 2x2]e−x2

]
+

(x−Δ�x/Δ
)4

42
√

π
·
[

Δ�x/Δ

[

1− 2Δ2�x/Δ
2
3

]
e−Δ2�x/Δ
2 − x

[
1− 2x2

3

]
e−x2

]
+

(x−Δ�x/Δ
)5

1260
√

π
·
[[

1− 4Δ2�x/Δ
2 + 4Δ4�x/Δ
4
3

]
e−Δ2�x/Δ
2 +

[
1− 4x2 + 4x4

3

]
e−x2

]

(78)

5.2. Results

For a resolution of Δ = 1/2, the coefficients are tabulated in Table 7.
A resolution of Δ = 1/2 yields a relative error bound of 1.16× 10−5 for a second-order

approximation, a relative error bound of 1.35 × 10−9 for a fourth-order approximation, a
relative error bound of 7.15 × 10−14 for a sixth-order approximation and a relative error
bound of 9.03 × 10−37 for a sixteenth-order approximation. These bounds are based on
10,000 equally spaced samples in the interval [0, 8].
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Table 7. Coefficient values for the case of Δ = 1/2.

k Definition for ck ck

1 erf(1/2) 5.204998778 × 10−1

2 erf(1)− erf(1/2) 3.222009151 × 10−1

3 erf(3/2)− erf(1) 1.234043535 × 10−1

4 erf(2)− erf(3/2) 2.921711854 × 10−2

5 erf(5/2)− erf(2) 4.270782964 × 10−3

6 erf(3)− erf(5/2) 3.848615204 × 10−4

7 erf(7/2)− erf(3) 2.134739863 × 10−5

8 erf(4)− erf(7/2) 7.276811144 × 10−7

9 erf(9/2)− erf(4) 1.522064186 × 10−8

10 erf(5)− erf(9/2) 1.950785844 × 10−10

11 erf(11/2)− erf(5) 1.530101947 × 10−12

12 erf(6)− erf(11/2) 7.336328181 × 10−15

The variation of the relative error bound with resolution, and order, is detailed in
Figure 12. The nature of the variation of the relative error, for orders two, three, and four, is
shown in Figure 13 for a resolution of 0.5. It is possible to obtain better results by using
nonuniformly spaced intervals but the improvement, in general, does not warrant the
increase in complexity.

Figure 12. Graph of the relative error bound, versus the order of approximation, for various set
resolutions.

Figure 13. Graph of the relative errors, based on a resolution of Δ = 0.5, in second to fourth order
approximations to erf(x).

35



Math. Comput. Appl. 2022, 27, 14

6. A Dynamic System to Yield Improved Approximations

It is possible to utilize the approximations detailed in Theorems 1 and 5 as the basis
for determining new approximations with a lower relative error. The approach is indirect
and based on considering the feedback system illustrated in Figure 14, which has varying
feedback. The differential equation characterizing the system is

y′(t) + fM(t)y(t) = x(t). (79)

Figure 14. Feedback system with dynamically varying (modulated) feedback.

For specific input, x, and modulated feedback, fM, signals the output has a known
form. For example, for the case of x(t) = fM(t) = erf(t)u(t), the output signal, assuming
zero initial conditions, is

y(t) = 1− exp
[

1√
π
·
[
1− e−t2

]
− terf(t)

]
, t ≥ 0. (80)

For the case of
x(t) = fM(t) =

4√
π

e−t2
erf(t)u(t) (81)

the output signal, assuming zero initial conditions, is

y(t) = 1− exp
[
−erf2(t)

]
, t ≥ 0. (82)

This case facilitates approximations for the error function, which can be made arbitrar-
ily accurate and which are valid for the positive real line.

Theorem 7. Dynamical System Approximations for Error Function. Based on the differential
equation specified by Equation (79), a nth-order approximation to erf(x), for the case of x ≥ 0, can
be defined according to

fn(x) =
√

pn,0 + pn,1(x)e−x2 + pn,2(x)e−2x2 , (83)

where, for the case of n ≥ 2:

pn,1(x) = α0 + α2x2 + . . . + αmxm, m =

{
n− 1 m odd

n m even
pn,2(x) = β0 + β2x2 + . . . + β2nx2n

pn,0(x) = −(α0 + β0)

(84)
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and with

αm = −4
π · cn,mam,0

αm−2i =
(m−2i+2)αm−2i+2

2 − 4
π · cn,m−2iam−2i,0, i ∈

{
1, . . . , m

2 − 1
}

α0 = α2 − 4
π · cn,0a0,0

(85)

β2n = −2
π · (−1)ncn,nan,n

β2n−2i =
(n−i+1)β2n−2i+2

2 − 2
π

min{2n−2i,n}
∑

k=n−i
(−1)kcn,kak,2(n−i)−k, i ∈ {1, . . . , n− 1}

β0 = β2
2 − 2

π · cn,0a0,0

(86)

Here, the coefficients ai,j, i, j ∈ {0, 1, . . . , n} are defined by the expansion

p(k, x) = ak,0 + ak,1x + ak,2x2 + . . . + ak,kxk, k ∈ {0, 1, . . . , n}, (87)

arising from the polynomials (Equation (26))

p(k, x) = p(1)(k− 1, x)− 2xp[k− 1, x], p(0, x) = 1 (88)

Finally, it is the case that
lim

n→∞
fn(x) = erf(x), x ≥ 0, (89)

with the convergence being uniform.

Proof. The proof is detailed in Appendix D. �

6.1. Explicit Approximations

Explicit approximations for orders zero to four for erf(x), x ≥ 0 are:

f0(x) =
1√
π

√
3− 2e−x2 − e−2x2 (90)

f1(x) =
1√
π

√
19
6
− 2e−x2 − 7e−2x2

6

[
1 +

2x2

7

]
(91)

f2(x) =
1√
π

√
63
20
− 29e−x2

15

[
1− x2

29

]
− 73e−2x2

60

[
1 +

26x2

73
+

4x4

73

]
(92)

f3(x) =
1√
π

√
22
7
− 40e−x2

21

[
1− x2

20

]
− 26e−2x2

21

[
1 +

10x2

26
+

x4

13
+

x6

130

]
(93)

f4(x) =
1√
π

√√√√√ 377
120 − 596e−x2

315

[
1− 17x2

298 + x4

1192

]
−

3149e−2x2

2520

[
1 + 1258x2

3149 + 278x4

3149 + 112x6

9447 + 8x8

9447

] (94)

6.2. Results

The relative error bounds associated with the approximations to erf(x) are detailed
in Table 8. The graphs of the relative errors in the approximations are shown in Figure 15.
The clear advantage of the proposed approximations is evident, with the improvement
increasing with the order of the initial approximation (i.e., a function with an initial lower
relative error bound leads to an increasingly lower relative error bound). The other clear
advantage of the approximations, as is evident in Figure 15, is that the relative error is
bounded as x → ∞ .
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Table 8. Relative error bounds, over the interval (0, ∞), for approximations to erf(x) as defined in
Theorem 7.

Order of Approx.
Relative Error Bound: Original

Series—Optimum Transition Point (Table 3)
Relative Error Bound: Approx. Defined by

Equation (83)

0 0.0851 2.68 × 10−2

1 0.0362 3.98 × 10−3

2 1.95 × 10−2 1.34 × 10−3

3 7.36 × 10−3 2.03 × 10−4

4 1.03 × 10−3 1.82 × 10−5

6 4.75 × 10−4 9.20 × 10−7

8 2.79 × 10−5 1.69 × 10−8

10 1.35 × 10−5 7.43 × 10−10

12 9.78 × 10−7 1.67 × 10−11

14 4.00 × 10−7 6.47 × 10−13

16 3.44 × 10−8 1.68 × 10−14

18 1.22 × 10−8 5.90 × 10−16

20 1.20 × 10−9 1.73 × 10−17

22 3.76 × 10−10 5.56 × 10−19

24 4.18 × 10−11 1.79 × 10−20

Figure 15. Graph of the relative errors in approximations, of orders one to eight, to erf(x) as defined
in Theorem 7.

6.3. Extension

By utilizing the approximations detailed in Theorem 5, similar approximations can be
detailed, with lower relative error. For example, the first-order approximation, f1,4, which is
based on four equal subintervals and is defined by Equation (67), yields the approximation

f1,4(x) =
1√
π

√√√√√√
128,177
40,800 − e−x2

2 − 16e−17x2/16

17 − 4e−5x2/4

5 − 16e−25x2/16

25

− 25e−2x2

96

[
1 + 2x2

25

] (95)

which has a relative error bound of 2.83 × 10−6. With an optimum transition point of 3.292,
the original approximation has a relative error bound of 7.21 × 10−5 (see Table 5).
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6.4. Notes

First, the constants pn,0, n ∈ {0, 1, . . .}, as defined in Equation (84), form a series that
in the limit converges to 1. It then follows that the corresponding series converges to π:

3,
19
6

,
63
20

,
22
7

,
377
120

,
174, 169
55, 440

,
4, 528, 409
1, 441, 440

, . . . . (96)

Second, the square root functional structure has been utilized for approximations to
the error function, as is evident from the approximations detailed in Table 1. It is easy to
conclude that the form

fn(x) =
√

pn,0 − pn,1(x)e−k1x2 − pn,2(x)e−k2x2 − . . . (97)

is well suited for approximating the error function.

7. Applications

This section details indicative applications for the approximations to the error function
that have been detailed above.

The distinct analytical forms specified in Theorems 1, 3, 5 and 7, for approximations
to the error function, in general, facilitate analysis for different applications. For example,
the form detailed in Theorem 1 underpins approximations to exp(−x2), as detailed in
Section 7.2. The form detailed in Theorem 7 underpins analytical approximations for the
power associated with the output of a nonlinearity modeled by the error function when
subject to a sinusoidal signal. The approximations are detailed in Section 7.6.

For applications, where a set relative error bound over a set interval is required, the
suitable approximation will depend, in part, on the domain over which an approximation is
required as well as the level of the relative error bound that is acceptable. For example, the
approximations detailed in Theorems 1 and 3 lead to simple analytical forms and modest
relative error bounds over [0, ∞) when used with an appropriate transition point for the
approximation of erf(x) ≈ 1. Without the use of a transition point, such approximations
are likely to be best suited for a restricted domain—for example, the domain

[
0, 3√

2

]
,

which is consistent with the three sigma case arising from a Gaussian distribution. The
fourth-order approximations, as specified by Equations (36) and (54), have relative error
bounds, respectively, of 1.02 × 10−3 and 1.90 × 10−4 over

[
0, 3√

2

]
. Section 7.1 provides

examples of approximations that are consistent with set relative error bounds, over the
interval [0, ∞), of 10−4, 10−6, 10−10, and 10−16.

7.1. Error Function Approximations: Set Relative Error Bounds

Consider the case where an approximation for the error function, with a relative error
bound over the positive real line of 10−4, is required. A 47th-order Taylor series, with a
transition point of xo = 2.752, yields a relative bound of 1.00 × 104.

An eighth-order spline approximation, with a transition point of xo = 2.963, yields a
relative error bound of 2.79 × 10−5. The approximation, according to Equation (56), is

f8(x) = x√
π
· u[xo − x] ·

⎡
⎢⎢⎢⎢⎣

1− 7x2

102 + x4

340 − x6

18,564 + x8

5,250,960+⎡
⎢⎣ 1 + 41x2

102 + 101x4

1020 + 1591x6

92,820 + 4793x8

2,162,160+
2017x10

9,189,180 + 38x12

2,297,295 + 31x14

34,459,425+
x16

34,459,425

⎤
⎥⎦e−x2

⎤
⎥⎥⎥⎥⎦+

[1− u[xo − u]]

(98)

A seventh-order approximation, with a transition point of xo = 2.65, yields a relative
error bound of 1.79 × 10−4.

A first-order spline approximation, based on four equal subintervals [0, x/4], [x/4, x/2],
[x/2, 3x/4] and [3x/4, x], is defined according to

39



Math. Comput. Appl. 2022, 27, 14

f1,4(x) =

⎡
⎣ x

4
√

π
·
[
1 + 2 exp

[
−x2

16

]
+ 2 exp

[
−x2

4

]
+ 2 exp

[
−9x2

16

]
+ exp

[
−x2]]+

x3

48
√

π
· exp

[
−x2]

⎤
⎦u[xo − x]+

[1− u[xo − u]]

(99)

and yields a relative error bound of 7.21 × 10−5 with the transition point xo = 3.292.
A dynamic constant plus a spline approximation of order 2, and based on a resolution

of Δ = 19/20, achieves a relative error bound of 8.33 × 10−5 (10,000 points in the interval
[0, 5]). The approximation is

f2,Δ(x) =
�20x/19


∑
k=0

ck +
1√
π

[
x− 19

20 ·
⌊ 20x

19
⌋][

exp
[
−361
400

⌊ 20x
19

⌋2
]
+ e−x2

]
−

2
5
√

π

[
x− 19

20 ·
⌊ 20x

19
⌋]2[ 19

20 ·
⌊ 20x

19
⌋

exp
[
−361
400

⌊ 20x
19

⌋2
]
− xe−x2

]
−

1
30
√

π

[
x− 19

20 ·
⌊ 20x

19
⌋]3
·
[[

1− 361
200 ·

⌊ 20x
19

⌋2
]

exp
[
−361
400

⌊ 20x
19

⌋2
]
+ (1− 2x2)e−x2

]
(100)

where
c0 = 0, ck = erf

[
19k
20

]
− erf

[
19(k−1)

20

]
, k ∈ {1, 2, . . .},

c1 = 0.82089081, c2 = 0.17189962,

c3 = 7.1539145× 10−3, c4 = 5.5579× 10−5, c5 = c6 = . . . = 0.

(101)

Here, the approximation of erf(x) ≈ 1, for x ≥ 57/20 (after three intervals) can be
utilized without impacting the relative error bound.

Utilizing a fourth-order spline approximation and iteration consistent with Theorem 7,
the approximation

f4(x) =
1√
π

√√√√√√
377
120 − 596e−x2

315

[
1− 17x2

298 + x4

1192

]
−

3149e−2x2

2520

[
1 + 1258x2

3149 + 278x4

3149 + 112x6

9447 + 8x8

9447

] (102)

yields a relative error bound of 1.82 × 10−5.
Details of approximations that are consistent with higher-order relative error bounds

are detailed in Table 9.

Table 9. Approximations that are consistent with a set relative error bound. The actual relative error
bound is specified by reB.

Relative Error Bound
Spline Approx:

Theorem 4
Variable Interval

Approx: Theorem 5

Dynamic Constant
Plus Spline Approx:

Theorem 6

Iterative Approx:
Theorem 7

10−6 order = 12
xo = 3.4625
reB = 9.78× 10−7

order = 5
3 subintervals
xo = 3.51
reB = 6.96× 10−7

order = 3
resolution = 3/4
reB = 5.53× 10−7

order = 6
reB = 9.20× 10−7

10−10 order = 23
xo = 4.581
reB = 9.31× 10−11

order = 8
4 subintervals
xo = 4.6616
reB = 4.34× 10−11

order = 4
resolution = 3/8
reB = 9.12× 10−11

order = 11
reB = 1.34× 10−10

order = 12
reB = 1.67× 10−11

10−16 order = 39
xo = 5.9017
reB = 7.21× 10−17

order = 11
6 subintervals
xo = 5.98
reB = 2.75× 10−17

order = 6
resolution = 1/4
reB = 1.01× 10−17

order = 19
reB = 1.18× 10−16

order = 20
reB = 1.73× 10−17
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7.2. Approximation for Exp(−x2)

A nth-order approximation to the Gaussian function exp(−x2) is detailed in the
following theorem:

Theorem 8. Approximation for Gaussian Function. A nth-order approximation, gn, to the Gaussian
function exp(−x2) is

gn(x) =

n
∑

k=0
cn,k(k + 1)xk p(k, 0)

1 +
n
∑

k=0
cn,k(−1)k+1xk

[
p(k, x)[k + 1− 2x2] + xp(1)(k, x)

] (103)

where cn,k is defined by Equation (21) and p(k, x) is defined by Equation (26).

Proof. The proof is detailed in Appendix E. �

7.2.1. Approximations

Approximations to exp(−x2), of orders zero to five, are:

g0(x) =
1

1 + 2x2 g1(x) =
1

1 + x2 + 2x4

3

g2(x) =
1− x2/10

1 + 9x2

10 + 2x4

5 + 2x6

15

(104)

g3(x) = 1−x2/7
1+ 6x2

7 + 5x4
14 + 2x6

21 + 2x8
105

g4(x) = 1−x2/6+x4/252
1+ 5x2

6 + 85x4
252 + 11x6

126 + x8
63 +

2x10
945

(105)

g5(x) =
1− 2x2/11 + x4/132

1 + 9x2

11 + 43x4

132 + x6

12 + x8

66 + x10

495 + 2x12

10,395

(106)

7.2.2. Results

The relative errors in the above defined approximations to exp(−x2) are detailed in
Figure 16 for approximations of order 0, 2, 4, 6, 8, 10, and 12, along with the relative error in
Taylor series for orders 1, 3, 5, . . . , 15. The clear superiority of the defined approximations
is evident.

Figure 16. Graph of the magnitude of the relative errors in approximations to exp(−x2), as defined
by Equation (103), of orders 0, 2, 4, 6, 8, 10 and 12. The dotted curves are the relative errors associated
with Taylor series of orders 1, 3, 5, 7, 9, 11, 13 and 15.
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7.2.3. Comparison

The following nth-order approximation for exp(−x2) has been proposed in Equation (77)
of [19]:

hn(x) =
1− cn,0x2 + cn,1x4 − cn,2x6 + . . . + cn,n(−1)n+1x2n+2

1 + cn,0x2 + cn,1x4 + cn,2x6 + . . . + cn,nx2n+2 (107)

where cn,k is defined by Equation (21). The relative error bounds over the interval
[
0, 3/

√
2
]

(the three sigma bound case for Gaussian probability distributions) for this approximation,
and the approximation defined by Equation (103), are detailed in Table 10. The tabulated
results clearly show that this approximation is more accurate than the approximation
detailed in Equation (103). The improvement is consistent with the higher-order Padé
approximant being used.

Table 10. Relative error bounds for approximations over the interval
[
0, 3/

√
2
]
.

Order of Approx.
Relative Error Bound:

Equation (103)
Relative Error Bound:
Equation (77) of [19]

0 8.00 35.6
1 3.74 6.98
2 0.957 0.767
3 1.25 × 10−1 5.25 × 10−2

4 8.04 × 10−3 2.42 × 10−3

5 7.71 × 10−3 7.98 × 10−5

6 2.09 × 10−3 1.97 × 10−6

7 3.72 × 10−4 3.75 × 10−8

8 5.02 × 10−5 5.69 × 10−10

10 4.54 × 10−7 7.22 × 10−14

12 1.09 × 10−9 4.62 × 10−18

The following approximations (seventh- and fifth-order) yield relative error bounds of
less than 0.001 over the interval

[
0, 3/

√
2
]
:

g7(x) =
1− x2

5 + x4

78 − x6

4290

1 + 4x2

5 + 61x4

195 + 34x6

429 + 83x8

5270 + x10

495 + 7x12

32,175 + 4x14

225,225 + 2x16

2,027,025

(108)

h5(x) =
1− x2

2 + 5x4

44 − x6

66 + x8

792 − x10

15,840 + x12

665,280

1 + x2

2 + 5x4

44 + x6

66 + x8

792 + x10

15,840 + x12

665,280

(109)

A twenty-seventh-order Taylor series approximation yields a relative bound of
1.03 × 10−3.

7.3. Upper and Lower Bounded Approximations to Error Function

Establishing bounds for erf(x) has received modest research interest, e.g., [31], and
published bounds for erf(x) for the case of x > 0 include Chu [32]:√

1− exp[−px2] ≤ erf(x) ≤
√

1− exp[−qx2], p ∈ (0, 1], q ∈ [4/π, ∞]. (110)

Corollary 4.2 of Neuman [33]:

2x√
π

exp
[−x2

3

]
≤ erf(x) ≤ 4x

3
√

π

[
1 +

exp(−x2)

2

]
(111)
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and refinements to the form proposed by Chu [32], e.g., Yang [34,35], Corollary 3.4 of [35]:√
1− 20

3π

[
1− π

4
]

exp
[
−8x2

5

]
− 8

3
[
1− 5

2π

]
exp(−x2) ≤ erf(x) ≤√

1− λ(p0) exp(−p0x2)− [1− λ(p0)] exp[−μ(p0)x2]

(112)

where
p0 =

21π−60+
√

3(147π2−920π+1440)
30(π−3) ,

λ(p) = 4[7π−20−5(π−3)p]
π(15p2−40p+28) , μ(p) = 4(5p−7)

5(3p−4) .
(113)

The relative error in these bounds is detailed in Figure 17.

Figure 17. Relative error in upper and lower bounds to erf(x) as, respectively, defined by
Equation (110)–(112). The parameters p = 1 and q = π/4 have been used for the bounds defined
by Equation (110).

Utilizing the results of Lemma 1, it follows that any of the approximations detailed
in Theorems 4, 5, 6, or 7 can be utilized to create upper and lower bounded functions for
erf(x), x > 0, of arbitrary accuracy and with an arbitrary relative error bound. For example,
the approximation f1,4 specified by Equation (99) yields the functional bounds:

f1,4(x)
1 + εB

≤ erf(x) ≤ f1,4(x)
1− εB

, εB = 7.21× 10−5, x > 0, (114)

with a relative error bound of 8.33 × 10−5 for the lower bounded function and 1.44 × 10−4

for the upper bounded function. Such accuracy is better than the bounds underpinning the
results shown in Figure 17. The sixteenth-order approximation, f4,16, based on four equal
subintervals, specified in Appendix C and when used with a transition point xo = 7.1544,
leads to the functional bounds

f4,16(x)
1 + εB

≤ erf(x) ≤ f4,16(x)
1− εB

, εB = 4.82× 10−16, x > 0, (115)

with a relative error bound of less than 9.64 × 10−16 for the lower bounded function and
9.32 × 10−16 for the upper bounded function.

7.4. New Series for Error Function

Consider the exact results

erf(x) = fn(x) + εn(x), n ∈ {0, 1, 2, . . .}, (116)
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where fn is specified by Equation (24) and ε
(1)
n (x) is specified by Equation (25). By utilizing a

Taylor series approximation for exp(−x2) in ε
(1)
n (x) and then integrating, an approximation

for εn(x) can be established. This leads to new series for the error function.

Theorem 9. New Series for Error Function. Based on zero-, first-, and second-order approximations,
the following series for the error function are valid:

erf(x) = x√
π
+ x√

π
· e−x2

+

x3√
π

[
1
3 − 3x2

2·5 + 5x4

6·7 − 7x6

24·9 + 9x8

120·11 − . . . + (−1)k(2k+1)x2k

(2k+3)·(k+1)! + . . .
] (117)

erf(x) = x√
π
+ x√

π

[
1 + x2

3

]
e−x2

+

x5

6
√

π

⎡
⎢⎣ 1

5 − 3x2

(3/2)·7 + 5x4

4·9 − 7x6

15·11 + 9x8

72·13 − . . . + (−1)k(2k+1)(k+1)!x2k

(2k+5)
k

∏
r=1

[
r
∑

i=1
2i+1

] + . . .

⎤
⎥⎦ (118)

erf(x) = x√
π

[
1− x2

30

]
+ x√

π

[
1 + 11x2

30 + x4

15

]
e−x2

+

1√
π
· x7

60

⎡
⎢⎣

1·3
1·3·7 − 3·5x2

2·3·9 + 5·7x4

4·5·11 − 7·9x6

9·10·13 + . . .+
(−1)k(2k+1)(2k+3)(k+1)!x2k

3(2k+7)
k+1
∏

r=2

[
2

r
∑

i=2
i
] + . . .

⎤
⎥⎦ (119)

Further series, based on higher-order approximations, can also be established.

Proof. The proof is detailed in Appendix F. �

Results

The relative errors associated with the zero- and second-order series are shown in
Figures 18 and 19. Clearly, the relative error improves as the number of terms used in the
series expansion increases. The significant improvement in the relative error, for small
values of x, is evident. A comparison with the relative errors associated with Taylor series
approximations, as shown in Figure 2, shows the improved performance.

Figure 18. Relative error in the approximations f0(x) and f0(x) + ε0(x) to erf(x) where the residual
function ε0(x) is approximated by the stated order.
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Figure 19. Relative error in the approximations f2(x) and f2(x) + ε2(x) to erf(x) where the residual
function ε2(x) is approximated by the stated order.

The second-order approximation arising from Equation (118), i.e.,

erf(x) =
x√
π

+
x√
π

[
1 +

x2

3

]
e−x2

+
x5

6
√

π

[
1
5
− 2x2

7

]
(120)

yields a relative error bound of less than 0.001 for the interval [0, 0.87] and less than 0.01 for
the interval [0, 1.1].

7.5. Complementary Demarcation Functions

Consider a complementary function eC which is such that

e2
C(x) + erf2(x) = 1, x ≥ 0. (121)

With the approximation detailed in Theorem 7 (and by noting that lim
n→∞

pn,0 = 1—see

Equation (96)), it is the case that

e2
C(x) = lim

n→∞

[
pn,1(x)e−x2

+ pn,2(x)e−2x2
]

(122)

and, thus, eC(x) can be defined independently of the error function. This function is shown
in Figure 20 along with erf(x)2. These two functions act as complementary demarcation
functions for the interval [0, ∞). The transition point is xo = 0.74373198514677 as

erf(x)|x=0.74373198514677 =
1√
2

. (123)

Figure 20. Graph of the signals e2
C(x) and erf(x)2.

7.6. Power and Harmonic Distortion: Erf Modeled Nonlinearity

The error function is often used to model nonlinearities and the harmonic distortion
created by such a nonlinearity is of interest. Examples include the harmonic distortion in
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magnetic recording, e.g., [2,36], and the harmonic distortion arising, in a communication
context, by a power amplifier, e.g., [7]. For these cases, the interest was in obtaining, with a
sinusoidal input signal defined by a sin(2π fot), the harmonic distortion created by an error
function nonlinearity over the input amplitude range of [−2, 2].

Consider the output signal of a nonlinearity modelled by the error function:

y(t) = erf[a sin(2π fot)]. (124)

For such a case, the output power is defined according to

P =
1
T

T∫
0

y2(t)dt =
1
T

T∫
0

erf2[a sin(2π fot)]dt, T = 1/ fo, (125)

and the output amplitude associated with the kth harmonic is

√
2√
T

T∫
0

erf[a sin(2π fot)] sin(2πk fot)dt. (126)

To determine an analytical approximation to the output power, the approximations
stated in Theorem 7 lead to relatively simple expressions. Consider the third-order approxi-
mation, as specified by Equation (93), which has a relative error bound of 2.03 × 10−4 for
the positive real line. For such a case, the output signal is approximated according to

y3(t) =
1√
π

⎡
⎢⎢⎢⎢⎢⎣

22
7 − 40e−[a sin(2π fo t)]2

21

[
1− [a sin(2π fot)]2

20

]
−

26e−2[a sin(2π fo t)]2

21

⎡
⎣ 1 + 10[a sin(2π fot)]2

26 + [a sin(2π fot)]4

13 +
[a sin(2π fot)]6

130

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎦

1/2

(127)

and is shown in Figure 21.

Figure 21. Graph of y3(t) for the case of fo = 1 and for amplitudes of a = 0.5, a = 1, a = 1.5 and a = 2.

The power in y3 can be readily determined (e.g., via Mathematica) and it then follows
that an approximation to the true power is

P(a) ≈ 22
7π − 40

21π I0

[
a2

2

][
1− a2

40

]
e−a2/2 − 26

21π I0
[
a2][1 + 5a2

26 + 41a4

1040 + a6

260

]
e−a2−

a2

21π I1

[
a2

2

]
e−a2/2 + 37a2

140π I1
[
a2][1 + 43a2

222 + 2a4

111

]
e−a2

(128)

where I0 and I1, respectively, are the zero- and first-order Bessel functions of the first kind.
The variation in output power is shown in Figure 22.
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Figure 22. Graph of the input power, output power and ratio of output power to input power as the
amplitude of the input signal varies.

Harmonic Distortion

To establish analytical approximations for the harmonic distortion, the functional
forms detailed in Theorem 7 are not suitable. However, the functional forms detailed in
Theorem 1 do lead to analytical approximations that are valid over a restricted domain.
Consider a fourth-order spline approximation, as specified by Equation (36), which approx-
imates the error function over the range [−2, 2] with a relative error bound that is better
than 0.001 and leads to the approximation

y4(t) =
a sin(2π fot)√

π

[
1− a2 sin (2π fot)2

18 + a4 sin (2π fot)4

1260

]
+

a sin(2π fot)√
π

⎡
⎣ 1 + 7a2 sin (2π fot)2

18 + 37a4 sin (2π fot)4

420 +
4a6 sin (2π fot)6

315 + a8 sin (2π fot)8

945

⎤
⎦e−a2 sin (2π fot)2

(129)

The amplitude of the kth harmonic in such a signal is given by

c4,k =

√
2√
T

T∫
0

y4[a sin(2π fot)] sin(2πk fot)dt =
√

2T
1∫

0

y4[a sin(2πλ)] sin(2πkλ)dλ (130)

where the change of variable λ = fot has been used. The first, third, fifth, and seventh
harmonic levels are:

c4,1√
T
=

√
2a

2
√

π

[
1− a2

24 + a4

2016

]
+
√

2a
2
√

π
· I0

[
a2

2

][
1 + 11a2

24 + 11a4

105 + a6

70 + a8

945

]
e−a2/2−

5
√

2a
6
√

π
· I1

[
a2

2

][
1 + 1481a2

4200 + 38a4

525 + 29a6

3150 + a8

1575

]
e−a2/2 (131)

c4,3√
T
=

√
2a3

144
√

π

[
1− a2

56

]
− 115

√
2a

84
√

π
· I0

[
a2

2

][
1 + 403a2

1380 + 6a4

115 + 31a6

5175 + 2a8

5175

]
e−a2/2+

115
√

2
21a
√

π
· I1

[
a2

2

][
1 + 8a2

23 + 163a4

1840 + 76a6

5175 + 11a8

6900 + a10

10,350

]
e−a2/2 (132)

c4,5√
T
=

√
2a5

40,320
√

π
+ 262

√
2

15a
√

π
· I0

[
a2

2

][
1 + 1943a2

7336 + 1485a4

29,344 + 73a6

11,004 + 13a8

22,008 + a10

33,012

]
e−a2/2−

1048
√

2
15a3√π

· I1

[
a2

2

][
1 + 1943a2

7336 + 1201a4

14,672 + 5125a6

352,128 + 5a8

2751 + 41a10

264,096 + a12

132,048

]
e−a2/2 (133)
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c4,7√
T
= −6784

√
2

21a3√π
· I0

[
a2

2

][
1 + 779a2

3392 + 631a4

13,568 + 2047a6

325,632 + 25a8

40,704 + 17a10

407,040 + a12

610,560

]
e−a2/2−

27,136
√

2
21a5√π

· I1

[
a2

2

]⎡⎣ 1 + 779a2

3392 + 1055a4

13,568 + 137a6

10,176 + 2269a8

1,302,528 + 67a10

407,040+

a12

92,160 + a14

2,442,240

⎤
⎦e−a2/2 (134)

The variation, with the input signal amplitude, of the harmonic distortion, as defined
by c2

4,k/c2
4,1, is shown in Figure 23.

Figure 23. Graph of the variation of harmonic distortion with amplitude.

7.7. Linear Filtering of an Error Function Step Signal

Consider the case of a practical step input signal that is modeled by the error function,
erf(t/γ) and the case where such a signal is input to a 2nd-order linear filter with a transfer
function defined by

H(s) =
1[

1 + s
2π fp

]2 ⇔ h(t) =
te−t/τ

τ2 · u(t), τ =
1

2π fp
. (135)

Theorem 10. Linear Filtering of an Error Function Signal. The output of a second-order linear
filter, defined by Equation (135), to an error function input signal, defined by erf(t/γ), is

y(t) = erf
[

t
γ

]
u(t) + πθ

e−t/τ

τ ·

⎡
⎢⎢⎣

[
γ2

2τ − (t + τ)
]

exp
[

γ2

4τ2

][
erf

[ γ
2τ

]
− erf

[
γ
2τ − t

γ

]]
−

γ√
π

exp
[

γ2

4τ2

]
exp

[
−
[

t
γ −

γ
2τ

]2
]
+ γ√

π

⎤
⎥⎥⎦u(t)

(136)

and can be approximated by the nth-order signal

yn(t) = fn

[
t
γ

]
u(t)+

e−t/τ

τ ·

⎡
⎢⎢⎣

[
γ2

2τ − (t + τ)
]

exp
[

γ2

4τ2

][
fn
[ γ

2τ

]
− fn

[
γ
2τ − t

γ

]]
−

γ√
π

exp
[

γ2

4τ2

]
exp

[
−
[

t
γ −

γ
2τ

]2
]
+ γ√

π

⎤
⎥⎥⎦u(t)

(137)

where fn is defined by one of the approximations detailed in Theorems 4, 5, 6, or 7. It is the case that

lim
n→∞

yn(t) = y(t), t ∈ (0, ∞). (138)

Proof. The proof is detailed in Appendix G. �
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Results

For an input signal erf(t/γ)u(t), γ = 1/2, input into a second-order linear filter with
fp = 1, the output signal is shown in Figure 24. The relative errors in the approximations
to the output signal are shown in Figure 25 for the case of approximations as specified by
Equation (56) and with the use of optimum transition points.

Figure 24. Graph of the input signal erf(t/γ), γ = 1/2 and the corresponding approximation to the
output of a second order linear filter with fp = 1, τ = 1/2π.

Figure 25. Graph of the relative errors associated with the output signal, shown in Figure 24, for
approximations to the error function (Equation (56)) of orders six to twelve which utilize optimum
transition points.

7.8. Extension to Complex Case

By definition, the error function, for the general complex case, is defined according to

erf(z) =
2√
π

∫
γ

e−λ2
dλ, z ∈ C, (139)

where the path γ is between the points zero and z and is arbitrary. For the case of z = x + jy,
and a path along the x axis to the point (x, 0) and then to the point z, the error function is
defined according to Equation (5) of [37]:

erf(x + jy) = 2√
π

x∫
0

e−λ2
dλ + 2j√

π

y∫
0

e−(x+jλ)2
dλ

= erf(x) + 2e−x2
√

π
·

y∫
0

eλ2
sin(2xλ)dλ + 2je−x2

√
π
·

y∫
0

eλ2
cos(2xλ)dλ

(140)

Explicit approximations for erf(x + jy) then arise when integrable approximations for
the two-dimensional surfaces exp(y2) sin(2xy) and exp(y2) cos(2xy) over [0, x]× [0, y] are
available. Naturally, significant existing research exists, e.g., [28,37].
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7.9. Approximation for the Inverse Error Function

There are many applications where the inverse error function is required and accurate
approximations for this function are of interest. From the research underpinning this paper,
the author’s view is that finding approximations to the inverse error function is best treated
directly and as a separate problem, rather than approaching it via finding the inverse of an
approximation to the error function.

8. Conclusions

This paper has detailed analytical approximations for the real case of the error function,
underpinned by a spline-based integral approximation, which have significantly better
convergence than the default Taylor series. The original approximations can be improved
by utilizing the approximation erf(x) ≈ 1 for x > xo, with xo being dependent on the
order of approximation. The fourth-order approximations arising from Theorems 1 and 3,
with respective transition points of xo = 2.3715 and xo = 2.6305, achieve relative error
bounds over the interval [0, ∞], respectively, of 1.03 × 10−3 and 2.28 × 10−4. The respective
sixteenth-order approximations, with xo = 3.9025 and xo = 4.101, have relative error
bounds of 3.44 × 10−8 and 6.66 × 10−9.

Further improvements were detailed via two generalizations. The first was based
on utilizing integral approximations for each of the m equally spaced subintervals in the
required interval of integration. The second was based on utilizing a fixed subinterval
within the interval of integration with a known tabulated area, and then utilizing an
integral approximation over the remainder of the interval. Both generalizations lead to
significantly improved accuracy. For example, a fourth-order approximation based on four
subintervals, with xo = 3.7208, achieves a relative error bound of 1.43 × 10−7 over the
interval [0, ∞]. A sixteenth-order approximation, with xo = 6.3726, has a relative error
bound of 2.01 × 10−19.

Finally, it was shown that a custom feedback system, with inputs defined by either the
original error function approximations or approximations based on the use of subintervals,
leads to analytical approximations with improved accuracy that are valid over the positive
real line without utilizing the approximation erf(x) ≈ 1 for suitably large values of x.
The original fourth-order error function approximation yields an approximation with a
relative error bound of 1.82 × 10−5 over the interval [0, ∞]. The original sixteenth-order
approximation yields an approximation with a relative error bound of 1.68 × 10−14.

Applications of the approximations include, first, approximations to achieve the
specified error bounds of 10−4, 10−6, 10−10, and 10−16 over the positive real line. Second,
the definitions of functions that are upper and lower bounds, of arbitrary accuracy, for
the error function. Third, new series for the error function. Fourth, new sequences of
approximations for exp(−x2) that have significantly higher convergence properties than
a Taylor series approximation. Fifth, a complementary demarcation function satisfying
the constraint e2

C(x) + er f 2(x) = 1 was defined. Sixth, arbitrarily accurate approximations
for the power and harmonic distortion for a sinusoidal signal subject to an error function
nonlinearity. Seventh, approximate expressions for the linear filtering of a step signal that
is modeled by the error function.
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Appendix A. Proof of Theorem 1

Consider f (x) = exp(−x2). Successive differentiation of this function leads to the
iterative formula

f (k)(x) = p(k, x) exp(−x2), (A1)

where
p(k, x) = p(1)(k− 1, x)− 2xp(k− 1, x), p(0, x) = 1. (A2)

It then follows from Equation (20) that

2√
π
·

x∫
α

exp(−λ2)dλ ≈ 2√
π
·

n
∑

k=0
cn,k(x− α)k+1

[
f (k)(α) + (−1)k f (k)(x)

]

= 2√
π
·

n
∑

k=0
cn,k(x− α)k+1

[
p(k, α) exp(−α2)+

(−1)k p(k, x) exp(−x2)

] (A3)

The result for the case of α = 0 then yields the nth-order approximation for the error
function:

fn(x) =
2√
π
·

n

∑
k=0

cn,kxk+1
[

p(k, 0) + (−1)k p(k, x)e−x2
]

(A4)

To determine ε(1)n (x) consider the equality erf(x) = fn(x) + εn(x). Differentiation yields

ε
(1)
n (x) = 2e−x2

√
π
− 2√

π
·

n
∑

k=0
cn,k(k + 1)xk

[
p(k, 0) + (−1)k p(k, x)e−x2

]
−

2e−x2
√

π
·

n
∑

k=0
cn,kxk+1(−1)k

[
p(1)(k, x)− 2xp(k, x)

] (A5)

and the required result:

ε
(1)
n (x) = 2e−x2

√
π
− 2√

π
·

n
∑

k=0
cn,k(k + 1)xk p(k, 0)−

2e−x2
√

π
·

n
∑

k=0
cn,kxk(−1)k

[
(k + 1− 2x2)p(k, x) + xp(1)(k, x)

] (A6)

Appendix B. Proof of Theorem 2

The use of a Taylor series expansion for exp(−x2) in the definitions of ε(1)0 (x) and

ε
(1)
1 (x), as defined by Equations (40) and (41), yields:

ε
(1)
0 (x) = x2√

π
·
[
1− 3x2

2 + 5x4

6 − 7x6

24 + 3x8

40 − 11x10

720 + 13x12

5040 − x14

2688 + . . .
]

= x2√
π
·
[
c0,0 − c0,1x2 + . . . + (−1)kc0,kx2k + . . .

]
, c0,k =

2
k! − 1

(k+1)! , k ≥ 0
(A7)

ε
(1)
1 (x) =

x4

6
√

π
·
[

1− 2x2 +
5x4

4
− 7x6

16
+

x8

8
− 11x10

420
. . .

]
(A8)

From a consideration of ε(1)0 (x) and ε
(1)
1 (x), as well as higher-order residual functions,

it can be readily seen that the polynomial terms of order zero to 2n + 1 in ε
(1)
1 (x) have

coefficients of zero. It then follows that ε(1)n (x) can be written as

ε
(1)
n (x) =

1√
π
· x2n+2

xn,0
· gn(x), n ∈ {0, 1, 2, . . .}, (A9)

where
gn(x) = 1− dn,1x2 + dn,2x4 − . . . + (−1)kdn,kx2k + . . . (A10)
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and where it can readily be shown that

xn,0 = 2n
n

∏
i=0

(2i + 1) ≥ 2nn!, n ∈ {0, 1, 2, . . .}. (A11)

Graphs of the magnitude of the residual functions, ε(1)n (x), for orders zero, two, four,
six, and eight, are shown in Figure A1. The magnitude of the functions defined by gn, for
the same orders, are shown in Figure A2 and it is evident that

|gn(x)| ≤ ko, x ≥ 0, n ∈ {0, 1, 2, . . .}, (A12)

for a fixed constant ko, which is of the order of unity. Hence:

∣∣∣ε(1)n (x)
∣∣∣ ≤ ko√

π
· x2n+2

xn,0
, x ≥ 0, n ∈ {0, 1, 2, . . .}. (A13)

Figure A1. Graphs of
∣∣∣ε(1)n (x)

∣∣∣ for orders zero, two, four, six and eight.

Figure A2. Graphs of |gn(x)| for orders zero, two, four, six and eight.

Further, as xn,0 ≥ 2nn!, it follows, for all fixed values of x, that

lim
n→∞

ε
(1)
n (x) = 0, x ≥ 0. (A14)

The convergence is not uniform.
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It then follows, for all fixed values of x, that there exists an order of approximation, n,
such that the error in the approximation ε

(1)
n (x) can be made arbitrarily small, i.e., ∀εo > 0

there exists a number N(x) such that∣∣∣ε(1)n (x)
∣∣∣ < εo, ∀n > N(x). (A15)

In general, N(x) increases with x. Thus, ∀εo > 0 there exists a number Nxo (xo) such
that ∣∣∣ε(1)n (x)

∣∣∣ < εo, x ∈ [0, xo], ∀n > Nxo (xo). (A16)

Finally, as ε(1)n (0) = 0, for all n, it then follows, for x fixed, that

|εn(x)| =

∣∣∣∣∣∣
x∫

0

ε
(1)
n (λ)dλ

∣∣∣∣∣∣ < εox, ∀n > Nx(x), (A17)

which proves convergence.

Appendix C. Fourth-Order Spline Approximation—The Sixteen-Subintervals Case

Consistent with Theorem 5, a fourth-order spline approximation, which utilizes 16
subintervals, is

f4,16(x) = x
16
√

π

[
1− 16x2

73,728 + 16x4

1,321,205,760

]
+

x
8
√

π
· exp

[
−x2

256

][
1− x2

4608 + 47x4

27,525,120 − x6

5,284,823,040 + x8

4,058,744,094,720

]
+

x
8
√

π
· exp

[
−x2

64

][
1− x2

4608 + 187x4

27,525,120 − x6

1,321,205,760 + x8

253,671,505,920

]
+

x
8
√

π
· exp

[
−9x2

256

][
1− x2

4608 + 1261x4

82,575,360 − x6

587,202,560 + 3x8

150,323,855,360

]
+

x
8
√

π
· exp

[
−x2

16

][
1− x2

4608 + 249x4

9,175,040 − x6

330,301,440 + x8

15,854,469,120

]
+

x
8
√

π
· exp

[
−25x2

256

][
1− x2

4608 + 389x4

9,175,040 − 5x6

1,056,964,608 + 125x8

811,748,818,944

]
+

x
8
√

π
· exp

[
−9x2

64

][
1− x2

4608 + 5041x4

82,575,360 − x6

146,800,640 + 3x8

9,395,240,960

]
+

x
8
√

π
· exp

[
−49x2

256

][
1− x2

4608 + 2287x4

27,525,120 − 7x6

754,974,720 + 343x8

579,820,584,960

]
+

x
8
√

π
· exp

[
−x2

4

][
1− x2

4608 + 2987x4

27,525,120 − x6

82,575,360 + x8

990,904,320

]
+

x
8
√

π
· exp

[
−81x2

256

][
1− x2

4608 + 11341x4

82,575,360 − 9x6

587,202,560 + 243x8

150,323,855,360

]
+

x
8
√

π
· exp

[
−25x2

64

][
1− x2

4608 + 4667x4

27,525,120 − 5x6

264,241,152 + 125x8

50,734,301,184

]
+

x
8
√

π
· exp

[
−121x2

256

][
1− x2

4608 + 5647x4

27,525,120 − 121x6

5,284,823,040 + 14641x8

4,058,744,094,720

]
+

x
8
√

π
· exp

[
−9x2

16

][
1− x2

4608 + 20161x4

82,575,360 − x6

36,700,160 + 3x8

587,202,560

]
+

x
8
√

π
· exp

[
−169x2

256

][
1− x2

4608 + 2629x4

9,175,040 − 169x6

5,284,823,040 + 28,561x8

4,058,744,094,720

]
+

x
8
√

π
· exp

[
−49x2

64

][
1− x2

4608 + 3049x4

9,175,040 − 7x6

188,743,680 + 343x8

36,238,786,560

]
+

x
8
√

π
· exp

[
−225x2

256

][
1− x2

4608 + 31501x4

82,575,360 − 5x6

117,440,512 + 375x8

30,064,771,072

]
+

x
16
√

π
· exp

(
−x2)[1 + 127x2

4608 + 3929x4

9,175,040 + 79x6

20,643,840 + x8

61,931,520

]

(A18)
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When this approximation is utilized with the transition point xo = 7.1544, the rela-
tive error bound in the approximation to the error function, over the interval (0, ∞), is
4.82 × 10−16.

Appendix D. Proof of Theorem 7

Consider the differential Equation

yn′(t) + gn(t)yn(t) = gn(t), yn(0) = 0, (A19)

for the case where gn is based on the nth-order approximation fn to the error function,
defined in Theorem 1, and is defined according to

gn(t) =
4√
π

e−t2
fn(t) =

8e−t2

π
·

n

∑
k=0

cn,ktk+1
[

p(k, 0) + (−1)k p(k, t)e−t2
]
, t ≥ 0. (A20)

To find a solution to the differential equation for such a driving signal, first note that
the solution to the differential equation for the case of gn(t) = 4√

π
e−t2

erf(t) is

yn(t) = 1− exp[−erf2(t)]. (A21)

Second, with gn defined by Equation (A20), the following signal form

yn(t) = 1− exp
[
−
[

pn,0 + pn,1(t)e−t2
+ pn,2(t)e−2t2

]]
, t ≥ 0, (A22)

has potential as a basis for finding solutions for the unknown polynomial functions pn,1 and
pn,2 and the unknown constant pn,0. With such a form, the initial condition of yn(0) = 0
implies

pn,0 = −[pn,1(0) + pn,2(0)]. (A23)

It is the case that

yn′(t) =
[

p(1)n,1(t)e
−t2 − 2tpn,1(t)e−t2

+ p(1)n,2(t)e
−2t2 − 4tpn,2(t)e−2t2

]
· [1− yn(t)]. (A24)

Substitution of yn(t) and yn′(t) into the differential equation yields

[
p(1)n,1(t)e

−t2 − 2tpn,1(t)e−t2
+ p(1)n,2(t)e

−2t2 − 4tpn,2(t)e−2t2
]
· exp

[
−
[

pn,0 + pn,1(t)e−t2
+ pn,2(t)e−2t2

]]
+

4√
π

e−t2
fn(t)·

[
1− exp

[
−
[

pn,0 + pn,1(t)e−t2
+ pn,2(t)e−2t2

]]]
= 4√

π
e−t2

fn(t)
(A25)

which implies

p(1)n,1(t)e
−t2 − 2tpn,1(t)e−t2

+ p(1)n,2(t)e
−2t2 − 4tpn,2(t)e−2t2 − 4√

π
e−t2

fn(t) = 0 (A26)

and
p(1)n,1(t)e

−t2 − 2tpn,1(t)e−t2
+ p(1)n,2(t)e

−2t2 − 4tpn,2(t)e−2t2
=

8
π e−t2 n

∑
k=0

cn,ktk+1
[

p(k, 0) + (−1)k p(k, t)e−t2
]
.

(A27)

Thus:
p(1)n,1(t)− 2tpn,1(t) = 8

π

n
∑

k=0
cn,k p(k, 0)tk+1

p(1)n,2(t)− 4tpn,2(t) = 8
π

n
∑

k=0
cn,k(−1)k p(k, t)tk+1

(A28)
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To solve for the polynomials pn,1 and pn,2, first note (see Equation (26)) that

p(k, t) = ak,0 + ak,1t + ak,2t2 + . . . + ak,ktk, k ∈ {0, 1, . . . , n}, (A29)

for appropriately defined coefficients ak,j, j ∈ {0, 1, . . . , k}.

Appendix D.1. Solving for Coefficients of First Polynomial

Substitution of p(k, 0) from Equation (A29) into the differential equation defining
pn,1 yields

p(1)n,1(t)− 2tpn,1(t) =
8
π

n

∑
k=0

cn,kak,0tk+1. (A30)

With an,0 = 0 for n odd, the maximum power for t on the right side of the differential
equation is tn+1, n even, and tn for n odd. Thus, the form required for pn,1 is

pn,1(t) =
{

α0 + α1t + . . . + αn−1tn−1 n odd
α0 + α1t + . . . + αntn n even

(A31)

Substitution then yields[
α1 + 2α2t + . . . + (n− 1)αn−1tn−2]− 2t

[
α0 + α1t + . . . + αn−1tn−1] =

8
π

n−1
∑

k=0
cn,kak,0tk+1 n odd[

α1 + 2α2t + . . . + nαntn−1]− 2t[α0 + α1t + . . . + αntn] =

8
π

n
∑

k=0
cn,kak,0tk+1 n even

(A32)

For the case of n even, equating coefficients associated with set powers of t, yields:

tn+1 : −2αn = 8
π · cn,nan,0 ⇒ αn = −4

π · cn,nan,0

tn : −2αn−1 = 8
π · cn,n−1an−1,0 ⇒ αn−1 = −4

π · cn,n−1an−1,0

tn−1 : nαn − 2αn−2 = 8
π · cn,n−2an−2,0 ⇒ αn−2 = n

2 · αn − 4
π · cn,n−2an−2,0

. . .

t2 : 3α3 − 2α1 = 8
π · cn,1a1,0 ⇒ α1 = 3α3

2 − 4
π · cn,1a1,0

t1 : 2α2 − 2α0 = 8
π · cn,0a0,0 ⇒ α0 = α2 − 4

π · cn,0a0,0

(A33)

With the odd coefficients a1,0, a3,0, ..., an−1,0 being zero, it follows that the corre-
sponding odd coefficients αn−1, αn−3, . . . , α1 are also zero. For the even coefficients, the
algorithm is:

αm = −4
π · cn,mam,0

αm−2i =
(m−2i+2)αm−2i+2

2 − 4
π · cn,m−2iam−2i,0, i ∈

{
1, . . . , m

2 − 1
}

α0 = α2 − 4
π · cn,0a0,0

(A34)

where m = n. For the case of n being odd, the odd coefficients αn, αn−2, . . . , α1 are again zero
and the algorithm is the same as that specified in Equation (A34) with m = n − 1.

Appendix D.2. Solving for Coefficients of Second Polynomial

Substitution of p(k, t) from Equation (A29) into the differential equation defining
pn,2 yields:

p(1)n,2(t)− 4tpn,2(t) =
8
π
·

n

∑
k=0

cn,k(−1)k

[
k

∑
i=0

ak,itk+i+1

]
. (A35)
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The coefficients ak,i that are associated with a given power of t are illustrated in
Figure A3. It then follows, for a fixed power of t, say tr, that the associated coefficients,
ak,i, are

k ∈
{⌊ r

2
⌋
,
⌊ r

2
⌋
+ 1, . . . , min{r− 1, n}

}
i = r− k− 1.

(A36)

Thus:

p(1)n,2(t)− 4tpn,2(t) =
8
π
·

2n+1

∑
r=1

⎡
⎣min{r−1,n}

∑
k=� r

2 

cn,k(−1)kak,r−k−1

⎤
⎦tr. (A37)

Figure A3. Illustration of the coefficients that potentially are non-zero for a set power of t. The
illustration is for the case of n = 8.

With
pn,2(t) = β0 + β1t + . . . + βmtm, (A38)

the differential equation implies[
β1 + 2β2t + . . . + mβmtm−1]− 4t[β0 + β1t + . . . + βmtm]

= 8
π ·

2n+1
∑

r=1

[
min{r−1,n}

∑
k=� r

2 

cn,k(−1)kak,r−k−1

]
tr.

(A39)

The requirement, thus, is for m = 2n. Equating coefficients (see Figure A3) yields:
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t2n+1 : −4β2n = 8
π · (−1)ncn,nan,n ⇒ β2n = −2

π · (−1)ncn,nan,n

t2n : −4β2n−1 = 8
π

[
(−1)ncn,nan,n−1

]
⇒ β2n−1 = −2

π · (−1)ncn,nan,n−1

t2n−1 : 2nβ2n − 4β2n−2 = 8
π

[
(−1)n−1cn,n−1an−1,n−1 + (−1)ncn,nan,n−2

]
⇒ β2n−2 = 2nβ2n

4 − 2
π

[
(−1)n−1cn,n−1an−1,n−1 + (−1)ncn,nan,n−2

]
. . .

t3 : 4β4 − 4β2 = 8
π [−cn,1a1,1 + cn,2a2,0] ⇒ β2 = β4 − 2

π [−cn,1a1,1 + cn,2a2,0]

t2 : 3β3 − 4β1 = −8
π · cn,1a1,0 ⇒ β1 = 3β3

4 + 2
π · cn,1a1,0

t1 : 2β2 − 4β0 = 8
π · cn,0a0,0 ⇒ β0 =

2β2
4 − 2

π · cn,0a0,0

(A40)

As the coefficients an,n−1, an,n−3, . . . , a1,0 are zero, the algorithm is:

β2n = −2
π · (−1)ncn,nan,n

β2n−2i =
[2n−2i+2]β2n−2i+2

4 − 2
π

min{2n−2i,n}
∑

k=n−i
(−1)kcn,kak,2(n−i)−k, i ∈ {1, . . . , n− 1}

β0 = β2
2 − 2

π · cn,0a0,0

(A41)

Appendix E. Proof of Theorem 8

Consider the results stated in Theorem 1:

erf(x) =
2√
π
·

x∫
0

e−λ2
dλ ≈ 2√

π
·

n

∑
k=0

cn,kxk+1
[

p(k, 0) + (−1)k p(k, x)e−x2
]
. (A42)

Differentiation then yields

e−x2 ≈
n
∑

k=0
cn,k(k + 1)xk

[
p(k, 0) + (−1)k p(k, x)e−x2

]
+

n
∑

k=0
cn,k(−1)kxk+1

[
p(1)(k, x)e−x2 − 2xp(k, x)e−x2

] (A43)

which leads to the required result:

e−x2 ≈

n
∑

k=0
cn,k(k + 1)xk p(k, 0)

1 +
n
∑

k=0
cn,k(−1)k+1xk

[
p(k, x)(k + 1− 2x2) + xp(1)(k, x)

] (A44)

Appendix F. Proof of Theorem 9

Consider the exact result

erf(x) = f0(x) + ε0(x) (A45)

where f0 is specified by Equation (32) and the derivative of the error term, ε(1)0 (x), is

specified by Equation (40). By utilizing a Taylor series approximation for exp
(
−x2), ε(1)0 (x)

can be written as

ε
(1)
0 (x) =

x2
√

π
·
[

1− 3x2

2
+

5x4

6
− 7x6

24
+

9x8

120
− . . . +

(−1)k(2k + 1)x2k

(k + 1)!
+ . . .

]
(A46)
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Integration yields

ε0(x) =
x3
√

π
·
[

1
3
− 3x2

2 · 5 +
5x4

6 · 7 −
7x6

24 · 9 +
9x8

120 · 11
− . . . +

(−1)k(2k + 1)x2k

(2k + 3)(k + 1)!
+ . . .

]
(A47)

and the following series for the error function then follows:

erf(x) = x√
π
+ x√

π
· e−x2

+

x3√
π
·
[

1
3 − 3x2

2·5 + 5x4

6·7 − 7x6

24·9 + 9x8

120·11 − . . . + (−1)k(2k+1)x2k

(2k+3)(k+1)! + . . .
] (A48)

The series associated with first- and second-order approximations follow in an analo-
gous manner.

Appendix G. Proof of Theorem 10

The filter output is given by the convolution integral:

y(t) =
t∫

0
erf

[
λ
γ

]
· (t−λ)e−[t−λ]/τ

τ2 dλ

= e−t/τ

τ2 ·
[

t
t∫

0
erf

[
λ
γ

]
eλ/τdλ−

t∫
0

erf
[

λ
γ

]
λeλ/τdλ

]
.

(49)

Using the integral results, e.g., Equations (4.2.1) and (4.2.5) of [38]:

t∫
0

erf(aλ)ebλdλ =
1
b

erf(at)ebt − 1
b

exp
[

b2

4a2

]
erf

[
at− b

2a

]
+

1
b

exp
[

b2

4a2

]
erf

[
− b

2a

]
(A50)

t∫
0

erf(aλ)λebλdλ = 1
b

[
t− 1

b

]
erf(at)ebt − 1

b exp
[

b2

4a2

]⎡⎢⎣
[

b
2a2 − 1

b

]
erf

[
at− b

2a

]
−

1
a
√

π
exp

[
−
[

at− b
2a

]2
]
⎤
⎥⎦+

1
b exp

[
b2

4a2

][[
b

2a2 − 1
b

]
erf

[
− b

2a

]
− 1

a
√

π
exp

[
−b2

4a2

]] (A51)

with a = 1/γ, b = 1/τ, b2/4a2 = γ2/4τ2, it then follows that

y(t) = te−t/τ

τ2

[
τer f

[
t
γ

]
et/τ − τ exp

[
γ2

4τ2

]
er f

[
t
γ −

γ
2τ

]
+ τ exp

[
γ2

4τ2

]
er f

[
−γ
2τ

]]
−

e−t/τ

τ2

⎡
⎢⎢⎢⎢⎣

τ(t− τ)er f
[

t
γ

]
et/τ − τ exp

[
γ2

4τ2

]⎡⎢⎣
[

γ2

2τ − τ
]
erf

[
t
γ −

γ
2τ

]
−

γ√
π

exp
[
−
[

t
γ −

γ
2τ

]2
]
⎤
⎥⎦+

τ exp
[

γ2

4τ2

][[
γ2

2τ − τ
]
erf

[
−γ
2τ

]
− γ√

π
exp

[
−γ2

4τ2

]]

⎤
⎥⎥⎥⎥⎦

(A52)

Simplifying, and using the fact that the error function is an odd function, yields the
required result:

y(t) = er f
[

t
γ

]
+

e−t/τ

τ ·

⎡
⎢⎢⎣

exp
[

γ2

4τ2

][
γ2

2τ − (t + τ)
][

erf
[ γ

2τ

]
− erf

[
γ
2τ − t

γ

]]
−

γ√
π

exp
[

γ2

4τ2

]
exp

[
−
[

t
γ −

γ
2τ

]2
]
+ γ√

π

⎤
⎥⎥⎦ (A53)
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To prove convergence, consider

lim
n→∞

yn(t) = lim
n→∞

t∫
0

fn

[
λ

γ

]
h(t− λ)dλ =

t∫
0

erf
[

λ

γ

]
h(t− λ)dλ (A54)

where lim
n→∞

fn(x) = erf(x) and h is the impulse response of the second-order filter. The

interchange of limit and integration is valid, consistent with Lemma 2, as the integrand
comprises differentiable bounded functions.
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Abstract: Our work targets automated analysis to quantify the growth dynamics of a population of
bacilliform bacteria. We propose an innovative approach to frame-sequence tracking of deformable-
cell motion by the automated minimization of a new, specific cost functional. This minimization is
implemented by dedicated Boltzmann machines (stochastic recurrent neural networks). Automated
detection of cell divisions is handled similarly by successive minimizations of two cost functions,
alternating the identification of children pairs and parent identification. We validate the proposed
automatic cell tracking algorithm using (i) recordings of simulated cell colonies that closely mimic
the growth dynamics of E. coli in microfluidic traps and (ii) real data. On a batch of 1100 simulated
image frames, cell registration accuracies per frame ranged from 94.5% to 100%, with a high average.
Our initial tests using experimental image sequences (i.e., real data) of E. coli colonies also yield
convincing results, with a registration accuracy ranging from 90% to 100%.

Keywords: stochastic neural networks; cell tracking; microscopy image analysis; detection-and-
association methods

MSC: 62H35; 62M45

1. Introduction

Technology advances have led to increasing magnitudes of data generation with
increasing levels of precision [1,2]. However, data generation presently far outpaces data
analysis and drives the requirement for analyzing such large-scale data sets with automated
tools [3–5]. The main goal of the present work is to develop computational methods for
an automated analysis of microscopy image sequences of colonies of E. coli growing in
a single layer. Such recordings can be obtained from colonies growing in microfluidic
devices, and they provide a detailed view of individual cell-growth dynamics as well as
population-level, inter-cellular mechanical and chemical interactions [6–8].

However, to understand both variability and lineage-based correlations in cellular
response to environmental factors and signals from other cells requires the tracking of large
numbers of individual cells across many generations. This can be challenging, as large
cell numbers tightly packed in microfluidic devices can compromise spatial resolution,
and toxicity effects can place limits on the temporal resolution of the recordings [9,10]. One
approach to better understand and control the behavior of these bacterial colonies is to
develop computational methods that capture the dynamics of gene networks within single
cells [6,11,12]. For these methods to have a practical impact, one ultimately has to fit the
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models to the data, which allows us to infer hidden parameters (i.e., characteristics of the
behavior of cells that cannot be measured directly). Image analysis and pattern recognition
techniques for biological imaging data [13–15], like the methods developed in the present
work, can be used to track lineages and thus automatically infer how gene expression varies
over time. These methods can serve as an indispensable tool to extract information to fit
and validate both coarse and detailed models of bacterial population, thus allowing us to
infer model parameters from recordings.

Here, we describe an algorithm that provides quantitative information about the pop-
ulation dynamics, including the life cycle and lineage of cells within a population from
recordings of cells growing in a mono-layer. A typical sequence of frames of cells growing
in a microfluidic trap is shown in Figure 1. We describe the design and validation of
algorithms for tracking individual cells in sequences of such images [11,16,17]. After seg-
mentation of individual image frames to identify each cell, tracking individual cells from
frame to frame is a combinatorial problem. To solve this problem we take into account
the unknown cell growth, cell motion, and cell divisions that occur between frames. Seg-
mentation and tracking are complicated by imaging noise and artifacts, overlap of bacteria,
similarity of important cell characteristics across the population (shape; length; and diame-
ter), tight packing of bacteria, and large interframe durations resulting in significant cell
motion, and up to a 30% increase in individual cell volume.

frame 1 frame 25 frame 50 frame 100 frame 150

Figure 1. Typical microscopy image sequence. We show five frames out of a total of 150 frames of an
image sequence showing the dynamics of E. coli in a microfluidic device [18] (real laboratory image
data). These cells are are about 1 μm in diameter and on average 3 μm in length, and they divide
about every 30 min. The original images exported from the microscope are 0.11 μm/pixel. We report
results for these real datasets in Section 4.

1.1. Related Work

The present work focuses on tracking E. coli in a time series of images. A comparison
of different cell-tracking algorithms can be found in [19,20]. Multi-object tracking in video
sequences and object recognition in time series of images is a challenging task that arises
in numerous applications in computer vision [21,22]. In (biomedical) image processing,
motion tracking is often referred to as “image registration” [19,23–26] or “optical flow” [27–30].
Typical solutions used in the defense industry, for instance, track small numbers of fast mov-
ing targets by image sequence analysis at pixel levels and use sophisticated reconstruction
of the optical flow, combined with real time segmentation, and quick combinatoric explo-
ration at each image frame. Initially, we did implement several well-known algorithms for
reconstruction of the optical flow, but the results we obtained were not satisfactory due to
long interframe times and high noise levels. Moreover, we are not interested in tracking
individual pixels but rather cells (i.e., rod-shaped, deformable shapes), while recognizing
events of cell division and recording cell lineage. Consequently, we decided to first segment
each image frame to isolate each cell, and then to match cells between successive frames.

As for the problem at hand, one approach proposed in prior work to simplify the
tracking task is to make the experimental setup more rigid by confining individual cell lin-
eages to small tubes; the associated microfluidic device is called a “mother machine” [31–36].
The microfluidic devices we consider here yield more complicated data as cells are allowed
to move and multiply freely in two dimensions (constrained to a mono-layer). We refer to
Figure 1 for a typical sequence of experimental images considered in the present work.
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Turning to methods that work on more complex biological cell imaging data, we can
distinguish different classes of tracking methods. “Model-based evolution methods” operate
on the image intensities directly. They rely on particle filters [37–39] or active contour
models [40–44]. These methods work well if the cells are not tightly packed. However, they
may lead to erroneous results if the cells are close together, the inter-cellular boundaries
are blurry, or the cells move significantly. Our work belongs to another class—the so
called “detection-and-association methods” [45–55], which first detect cells in each frame
and then solve the tracking problem/association task across successive frames. (We note
that the segmentation and tracking of cells does not necessarily need to be implemented
in two distinct steps. In many image sequence analyses, implementing these two steps
jointly can be beneficial [37,49,54,56–58]. However, for the clarity of exposition and easier
implementation of our new tracking technique, we present these steps separately.) Doing
so necessitates the segmentation of cells within individual frames. We refer to [59] for an
overview of cell segmentation approaches. Deep learning strategies have been widely used
for this task [5,50,54,58,60–65]. We consider a framework based on convolutional neural
networks (CNNs). Others have also used CNNs for cell segmentation [62,64,66–68]. We
omit a detailed discussion of our segmentation approach within the main body of this paper,
as we do not view it as our main contribution (see Section 1.2). However, the interested
reader is referred to Appendix D for some insights. To solve the tracking problem after the
cell detection, many of the methods cited above use hand-crafted association scores based
on the proximity of the cells and shape similarity measures [46,48,51,54]. We follow this
approach here. We note that we not only consider local association scores between cells but
also include measures for the integrity of a cell’s neighborhood (i.e., “context information”).

Our method is tailored for tracking cells in tightly packed colonies of rod-shaped
E. coli bacteria. This problem has been considered previously [5,45,49,52]. However, we
are not aware of any large-scale datasets that provide ground truth tracking data for these
types of recordings, but note that there are community efforts for providing a framework
for testing cell tracking algorithms [20,69] (see, e.g., [37,70]). (Cell tracking challenge: http:
//celltrackingchallenge.net (accessed on 15 December 2021).) Works that consider these
data are for example [37,54,57,58,62,67]. The cells in this dataset have significantly different
characteristics compared to those considered in the present work. As we describe below,
our approach is based on distinct characteristics of the bacteria cells and, consequently,
does not directly apply to these data. Therefore, we have developed our own validation
and calibration framework (see Section 2.1).

Standard graph matching algorithms (see, e.g., [71]) do not directly apply to our
problem. Indeed, a fundamental complication is that cells can divide between successive
images. Hence, each assignment from one frame to its successor is not a one-to-one
mapping but a one-to-many correspondence. More advanced graph matching strategies are
described in [72,73]. Graph-based matching strategies for cell-tracking that are somewhat
related to our approach are described in [70,74–77]. Like the methods mentioned above,
they consider various association scores for tracking. Individual cells are represented as
nodes, and neighbors are connected through edges. Our approach also introduces cost
terms for structural matching of local neighborhoods by specific scoring for single nodes,
pairs of nodes, and triplets of nodes, after a (modified) Delaunay triangulation. By using a
graph-like structure, cell divisions can be identified by detecting changes in the topology of
the graph [75,76]. We tested a similar strategy, but came to the conclusion that we cannot
reliably construct neighborhood networks between frames for which topology changes
only occur due to cell division; the main issue we observed is that the significant motion
of cells between frames can introduce additional topology changes in our neighborhood
structure. Consequently, we decided to relax these assumptions.

Refs. [71,78–80] implement multi-target tracking in videos by stochastic models based
on random finite set densities and variants thereof. The fit to the data are based on Gibbs
sampling to maximize the posterior likelihood. A key challenge of these approaches is the
estimation of an adequate finite number of Gibbs sampling iterations when one computes

63



Math. Comput. Appl. 2022, 27, 22

posterior distributions. Most Gibbs samplers are ergodic Markov chains on a finite but
huge state spaces, so that their natural exponential rate of convergence is not a practically
reassuring feature.

As mentioned above, some recent works jointly solve the tracking and segmentation
problem [37,49,54,56–58]. Contrary to observations we have made in our data, these
approaches rely (with the exception of [49]) on the fact that the tracking problem is inherent
to the segmentation problem (“tracking-by-detection methods” [54]; see also [5]). That is,
the key assumption made by many of these algorithms is that cells belonging to the same
lineage overlap across frames (see also [47]). In this case, cell-overlap can serve as a good
proxy for cell-tracking [54]. We note that in our data we cannot guarantee that the frame
rate is sufficiently high for this assumption to hold. Refs. [56,57,67] exploited machine
learning techniques for segmentation and motion tracking. One key challenge here is to
provide adequate training data for these methods to be successful. Here, we describe
simulation-based techniques that can be extended to produce training data, which we use
for parameter tuning [12,81].

The works that are most similar to ours are [45,49,52]. They perform a local search
to identify the best cell-tracking candidates across frames. One key difference across
these works are the matching criteria. Moreover, Refs. [45,49] employ a local greedy-
search, whereas we consider stochastic neural network dynamics for optimization. Ref. [52]
constructs score matrices within a score based neighborhood tracking method; an integer
programming method is used to generate frame-to-frame correspondences between cells
and the lineage map. Other approaches that consider linear programming to maximize an
association score function for cell tracking can be found in [47,54,82].

As we have mentioned in the abstract, we obtain a tracking accuracy that ranges from
90% to 100%, respectively. Overall, our method is competitive with existing approaches: For
example, Ref. [45] reports a tracking accuracy of up to 97% for data that are similar to ours,
while Ref. [74] reports a tracking accuracy (spatial, temporal, and cell division detection) at
the order of 95% (between about 93% and 98%, respectively). The second group also reports
results for their prior approach [75], with an accuracy at the order of 90% (ranging from
about 87% to 92%, respectively). Accuracies reported in [77] range from about 92% to 97%,
respectively. This work also includes a comparison to one of their earlier approaches [76]
with an accuracy of up to 85% and 89% if the datasets are pre-aligned. We note that the
data considered in [74–77] are quite different from ours. Refs. [37,54,57,58,70] consider the
data from the cell tracking challenge [20,69] to evaluate the performance of their methods.
As in the previously mentioned work, these data are again quite different from ours.
To evaluate the performance of the methodology, the so-called acyclic oriented graph matching
measure [83] is considered. We refer to the webpage of the cell tracking challenge for details
on the evaluation metrics (see http://celltrackingchallenge.net/evaluation-methodology,
accessed on 15 December 2021). Based on these, the reported tracking scores are between
0.873 and 0.902 [37], 0.901 and 1.00 [70], 0.950 and 0.987 [54], 0.788 and 0.982 [58] and
0.765 and 0.915 [57] depending on the considered data set, respectively.

1.2. Contributions

For image segmentation, we first apply two well-known, powerful variational segmen-
tation algorithms to generate a large training set of correctly delineated single cells. We can
then train a CNN dedicated to segmenting out each single cell. Using a CNN significantly
reduces the runtime of our computational framework for cell identification. The frame-
to-frame tracking of individual cells in tightly packed colonies is a significantly more
challenging task, and is hence the main topic discussed in the present work. We develop a
set of innovative automatic cell tracking algorithms based on the successive minimization
of three dedicated cost functionals. For each pair of successive image frames, minimizing
these cost functionals over all potential cell registration mappings poses significant compu-
tational and mathematical challenges. Standard gradient descent algorithms are inefficient
for these discrete and highly combinatorial minimization problems. Instead, we implement
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the stochastic neural network dynamics of BMs, with architectures and energy functions
tailored to effectively solve our combinatorial tracking problem. Our major contributions
are: (i) The design of a multi-stage cell tracking algorithm that starts with a parent–children
pairing step, followed by removal of identified parent–children triplets, and concludes with
a cell-to-cell registration step. (ii) The design of dedicated BM architectures, with several
energy functions, respectively, minimized by true parent–children pairing and by true
cell-to-cell registration. Energy minimizations are then implemented by simulation of BM
stochastic dynamics. (iii) The development of automatic algorithms for the estimation
of unknown weight parameters of our BM energy functions, using convex-concave pro-
gramming tools [84–86]. (iv) The evaluation of our methodology on synthetic and real
image sequences of cell colonies. The massive effort involved in human expert annotation
of cell colony recordings limits the availability of “ground truth tracking” data for dense
bacterial colonies. Therefore, we first validated the accuracy of our cell tracking algorithms
on recordings of simulated cell colonies, generated by the dedicated cell colony simulation
software [12,81]. This provided us with ground truth frame-by-frame registration for cell
lineages, enabling us to validate our methodology.

1.3. Outline

In Section 2, we describe the synthetic image sequence (see Section 2.1) and experi-
mental data (see Section 2.2) of cell colonies considered as benchmarks for our cell tracking
algorithms. In Section 2.3, we describe key cell characteristics considered in our tracking
methodology to define metrics that enter our cost functionals. Our tracking approach is
developed in greater detail in Section 3. We define valid cell registration mappings between
successive image frames in Section 3.1. We outline how to automatically calibrate the
weights of our various penalty terms in Section 3.2. Our algorithms for pairing parent cells
with their children and for cell-to-cell registration are developed in Sections 3.3–3.9. We
present our main validation results on long image sequences (time series of images) in
Section 4 and conclude with Section 5.

2. Datasets

Below, we introduce the datasets used to evaluate the performance of the proposed
methodology. The synthetic data are described in Section 2.1. The experimental data (real
imaging data) are described in Section 2.2.

2.1. Synthetic Videos of Simulated Cell Colonies

To validate our cell tracking algorithms, we consider simulated image sequences of
dense cell populations. We refer to [12,81] for a detailed description of this mathematical
model and its implementation. (The code for generating the synthetic data has been
released at https://github.com/jwinkle/eQ, accessed on 15 December 2021) The simulated
cell colony dynamics are driven by an agent based model [12,81], which emulates live
colonies of growing, moving, and dividing rod-like E. coli cells in a 2D microfluidic trap
environment. Between two successive frames J, J+, cells are allowed to move until they
nearly bump into each other, and to grow at multiplicative rate denoted g.rate with an
average value of 1.05 per minute.

The cells are modeled as 2D spherocylinders of constant 1 μm width. Each cell grew
exponentially in length with a doubling time of 20 min. To prevent division synchronization
across the population when a mother cell of length Ldiv divides, the two daughter cells
are assigned random birth lengths L0(b1) = L1 = δLdiv and L0(b2) =: L2 = (1− δ)Ldiv,
where δ > 0 is a random number sampled independently at each division from a uniform
distribution on [0.45, 0.55]. Consequently, a bacterial cell b of length Ldiv divides into two
cells b1 and b2, their lengths L1, L2 satisfy L1 + L2 = Ldiv and Li/Ldiv, i = 1, 2, is a random
number. The cells have a length of approximately 2 μm after division and 4 μm right
before division. We refer to [81] for additional details. The simulation keeps track of cell
lineage, cell size, and cell location (among other parameters). The main output of each
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such simulation considered here is a binary image sequence of the cell colony with a fixed
interframe duration. Each such synthetic image sequence is used as the sole input to our
cell tracking algorithm. The remaining meta-data generated by the simulations are only
used as ground truth to evaluate the performance of our tracking algorithms.

We consider several benchmark datasets of synthetic image sequences of simulated cell
colonies of different complexity. We refer to these benchmarks as BENCH1 (500 frames),
BENCH2 (300 frames), BENCH3 (300 frames), and BENCH6 (100 frames), with an inter-
frame duration of 1, 2, 3 and 6 min, respectively. Notice that there is no explicit noise
on the growth rate. However, due to the crowding of cells, the growth rate will vary
from cell-to-cell. The generated binary images are of size 600× 600 pixels. We summarize
these benchmarks in Table 1. The associated image sequences involve between 100 up to
500 frames, respectively. In Figure 2, we display an example of two simulated consecutive
frames separated by 1 min. To simplify our presentation and validation tests, we control
our simulations to make sure that cells will not exit the region of interest from one frame to
the next, and we exclude cells that are only partially visible in the current frames.

Table 1. Benchmark datasets. To test the tracking software, we consider simulated data. We have
generated data of varying complexity with different interframe durations. We note that we also
consider these data to train our algorithms for tracking cells. We report the label for each dataset,
the interframe duration, as well as the number of frames generated. We set the cell growth factor to
g.rate = 1.05 per min. We refer to the text for details about how these data have been generated.

Label Interframe Duration Number of Frames

BENCH1 1 min 500
BENCH2 2 min 300
BENCH3 3 min 300
BENCH6 6 min 100

N = 109 N+ = 124

image J at time t image J+ at time t + Δt

axis of cell A(b)

•

•

•

center of cell c(b)

endpoint of cell e(b)

endpoint of cell h(b)

Figure 2. Simulated data and cell characteristics considered in the proposed algorithm. (Left):
Two successive images generated by dynamic simulation for a colony of rod-shaped bacteria. The
left image J displays N = 109 cells at time t. At time t + Δt with Δt = 1 min, cells have moved and
grown, and some have divided. These cells are displayed in image J+, which contains N+ = 124 cells.
We highlight two cells that have undergone a division between the frames (red and green ellipses).
(Right): Geometry of a rod shaped bacterium. We consider different quantities of interest in the
proposed algorithm. These include the center c(b) of a cell, the two end points e(b) and h(b), and the
long axis A(b), respectively.

2.2. Laboratory Image Sequences (Real Biological Data)

We also verify the performance of our approach on real datasets of E. coli bacteria.
These bacteria are about 1 μm in diameter and on average 3 μm in length, and they divide
about every 30 min. The original images exported from the microscope are 0.11 μm/pixel.
The microscopy experimental data were obtained using JS006 [87] (BW25113 ΔaraC ΔlacI)
E. coli strains containing a plasmid constitutively expressing yellow or cyan fluorescent
protein (sfyfp or sfcfp) for identification. The plasmid also contains an ampicillin resistance
gene and p15A origin. These cells were grown overnight in LB medium with 100 μg/mL
ampicillin for 18 h. These cultures were diluted in the morning into 1/1000 into 50 mL fresh
LB with 100 μg/mL ampicillin and grown for 3 h until they reached an OD600 of about
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0.3. The cells were then concentrated by centrifuging 30 mL of culture at 2000× g for 5 min
and then resuspending in 10 mL of fresh LB. The concentrated culture was loaded into a
hallway microfluidic device prewarmed and flushed with 0.1% (v/v) Tween-20 [88]. In the
microfluidic device, the cells were provided with continuous fresh LB with 100 μg/mL
ampicillin and 0.075% (v/v) Tween-20. The microfluidic device was placed onto an 60× oil
objective and imaged every 6 min at phase contrast, YFP, and CFP filter settings using an
inverted fluorescence microscope. We show a representative dataset in Figure 1.

2.3. Cell Characteristics

Next, we discuss characteristics of the E. coli bacteria important for our tracking algorithm.
Cell Geometry. In accordance with the dynamics of bacterial colonies in microfluidic

traps, the dynamic simulation software generates colonies of rod-shaped bacteria. Cell
shapes can be approximated by long and thin ellipsoids, which are geometrically well
identified by their center, their long axis, and the two endpoints of this long axis. The center
c(b) is the centroid of all pixels belonging to cell b. The long axis A(b) of cell b is computed
by principal component analysis (PCA). The endpoints e(b) and h(b) of cell b are the first
and last cell pixels closest to A(b); see Figure 2 (right) for a schematic illustration.

Cell Neighbors. For each image frame J, denote B = B(J) as the set of fully visible
cells in J, and by N = N(J) = card(B) the number of these cells. Let V be the set of all cell
centers c(b) with b ∈ B. Denote delV the Delaunay triangulation [89] of the finite planar set
V with N vertices. We say that two cells b1, b2 in B are neighbors if they verify the following
three conditions: (i) (b1, b2) are connected by the edge edg of one triangle in delV. (ii) The
edge edg does not intersect any other cell in B. (iii) Their centers verify ‖c(b1)− c(b2)‖ ≤ ρ,
where ρ > 0 is a user defined parameter.

For the synthetic images of size 600× 600 that we considered (see Section 2.1), we take
ρ = 80 pixels. We write b1∼b2 for short, whenever b1, b2 are neighbors (i.e, satisfy the three
conditions identified above).

Cell Motion. Let J, J+ denote two successive images (i.e., frames). Denote B = B(J),
B+ = B(J+) as the associated sets of cells. Superpose temporarily the images J and J+
so that they then have the same center pixel. Any cell b ∈ B, which does not divide in
the interframe J → J+, becomes a cell b+ in image J+. The “motion vector” of cell b from
frame J to J+ is then defined by v(b) = c(b+)− c(b). If the cell b does divide between
J and J+, denote bdiv as the last position reached by cell b at the time of cell division,
and define similarly the motion v(b) = c(bdiv)− c(b). In our experimental recordings of
real bacterial colonies with interframe duration 6 min, there is a fixed number w > 0 such
that ‖v(b)‖ ≤ w/2 for all cells b ∈ B(J) for all pairs J, J+. In particular, we observed that,
for real image sequences, w = 100 pixels is an adequate choice. Consequently, we select
w = 100 pixels for all simulated image sequences of BENCH6. For BENCH1, we select
w = 45 pixels, again based on a comparison with real experimental recordings. Overall,
the meta-parameter w is assumed to be a fixed number and to be known, since w/2 is an
observable upper bound for the cell motion norm for a particular image sequence of a
lab experiment.

Target Window. Recall that J, J+ are temporarily superposed. Let U(b) ⊂ J+ be a
square window of width w, with the same center as cell b. The target window W(b) is the set
of all cells in B+ having their centers in U(b). Since ‖v(b)‖ ≤ w/2, the cell b+ must belong
to the target window W(b) ⊂ B+.

3. Methodology

3.1. Registration Mappings

Next, we discuss our assumptions on a valid registration mapping that establishes
cell-to-cell correspondences between two frames. Let J, J+ denote two successive images,
with cell sets B and B+, respectively. As above, we let N = card(B), and N+ = card(B+).
Our goal is to track each cell from J to J+. For each cell b ∈ B, there exist three possible
evolutions between J and J+:
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Case 1: Cell b ∈ B did not divide in the interframe J → J+, and has become a cell f (b) ∈ B+;
that is, f (b) has grown and moved during the interframe time interval.

Case 2: Cell b ∈ B divided between J and J+, and generated two children cells b1, b2 ∈ B+;
we then denote f (b) = (b1, b2) ∈ B+ × B+.

Case 3: Cell b ∈ B disappeared in the interframe J → J+, so that f (b) is not defined.

To simplify our exposition, we ignore Case 3. We discuss Case 3 in greater detail in
the conclusions in Section 5. Consequently, a valid (true) registration mapping f will take
values in the set {B+} ∪ {B+ × B+}.

3.2. Calibration of Cost Function Weights

With the notation we introduced, fix any two finite sets A, A+. Let G := {g : A →
A+} be the set of all mappings g: A → A+. Fix m penalty functions penk(g) ≥ 0,
k = 1, . . . , m. Let g∗ ∈ G be the ground truth mapping we want to discover through
minimization in g of some given cost function COST(g) defined by the linear combination
of the penalty functions penk(g), the contributions of which are controlled by the cost
function weights λk > 0. In this section, we present a generic weight calibration algorithm,
extending a technique introduced and applied in [90,91] for Markov random fields based
image analysis.

The cost function must perform well (with the same weights) for hundreds of pairs of
(synthetic) images J, J+. We consider one such synthetic pair for which the ground truth
registration mapping f ∈ G is known, and use it to compute an adequate set of weights,
which will then be used on all other synthetic pairs J, J+. Notice that, for experimental
recordings of real cell colonies, no ground truth registration mappings f are available.
In this case, f should be replaced by a set of user constructed, correct partial mappings
defined on small subsets of A. The proposed weight calibration algorithm will also work in
those situations.

We now show how knowing one ground truth mapping f can be used to derive
the best feasible weights ensuring that f should be a plausible minimizer of the cost
functional COST(g) over g ∈ G. Let PEN(g) = [pen1(g), . . . , penm(g)] be the vector of
m penalties for any mapping g ∈ G. Let Λ = [λ1, . . . , λm] be the weight vectors. Then,
COST(g) = 〈Λ, PEN(g)〉. Replacing g by another mapping h �= g induces the penalty
changes Δ PENg,h = PEN(h)− PEN(g) and the cost change Δ COST(g, h) = 〈Λ, Δ PENg,h〉.
Now, fix any known ground truth mapping f ∈ G. We want f to be a minimizer of COST,
so we should have Δ COST( f , f ′) ≥ 0 for all modifications f → f ′ ∈ G.

For each a ∈ A, select an arbitrary s(a) ∈ W(a) (where W(a) is the target window
for cell a; see Section 2.3), to define a new mapping f ′ = f ′a from A to A+ by f ′a(a) = s(a),
and f ′a(x) ≡ f (x) for all x �= a. Since f is a minimizer of COST, this single point modifica-
tion f → f ′a must generate the following cost increase

〈Λ, Δ PEN( f , f ′a)〉 = Δ COST( f , f ′a) ≥ 0.

Denote Va ∈ Rm the vector Va = Δ PEN( f , f ′a). Then, the positive vector Λ ∈ Rm,
Λ � 0, should verify the set of linear constraints 〈Λ, Va〉 ≥ 0 for all a ∈ A. There may be
too many such linear constraints. Consequently, we relax these constraints by introducing
a vector y = [y(a)] ∈ Rcard(A), y � 0, of slack variables y(a) ≥ 0 indexed by all the a ∈ A.
(In optimization, slack variables are introduced as additional unknowns to transform
inequality constraints to an equality constraint and a non-negativity constraint on the slack
variables.) We require the unknown positive vector Λ and the slack variables vector y to
verify the system of linear constraints:

〈Λ, Va〉+ y(a) = 0 for all a ∈ A

Λ � 0, y � 0

〈Λ, Z〉 ≤ 1000

(1)
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where Z = [1, . . . , 1] ∈ Rm. The normalizing constant 1000 can be arbitrarily changed
by rescaling. We seek high positive values for Δ COST( f , f ′a) and small L1-norm for the
slack variable vector y. Thus, we will seek two vectors Λ ∈ Rm and y ∈ Rcard(A) solving
the following convex-concave minimization problem, where γ > 0 is a user selected (large)
meta parameter:

minimize
Λ,y

γ‖y‖L1 − ∑
a∈A

[〈Λ, Va〉]+ (2)

subject to (1), where we denote [x]+ := max(x, 0) for arbitrary x. To numerically solve
the constrained minimization problem (2), we use the libraries CVXPY and DCCP (disci-
plined convex-concave programming) [84–86]. DCCP is a package for convex-concave
programming designed to solve non-convex problems. (DCCP can be downloaded at
https://github.com/cvxgrp/dccp (last accessed on 20 January 2022)) It can handle ob-
jective functions and constraints with any known curvature as defined by the rules of
disciplined convex programming [92]. We give examples of numerically computed weight
vectors Λ below. The computing time was less than 30 s for the data that we have prepared.
For simplicity, we just considered one step changes in our computations, which make the
overlap penalty weak. To increase the accuracy of the model, it is possible to consider a
larger number of samples (i.e., multi-step changes). Note that the solutions Λ of (2) are of
course not unique, even after normalization by rescaling.

3.3. Cell Divisions and Parent–Children Short Lineages

Next, we discuss how we tackle the assignment problem when cells divide.

3.3.1. Cell Divisions

We now outline a cost function based methodology to detect cell divisions. The first
step will be to seek the most likely parent for each potential pair of children cells. Fix two
successive synthetic image frames J, J+ with short interframe time equal to 1 minute. Their
cell sets B, B+ have cardinality N and N+, respectively. For our synthetic image sequences,
all cells b ∈ B still exist in B+—either as whole cells or after dividing into two children
cells, and no new cell enters the field of view during the interframe J → J+. This forces
N+ ≥ N, and implies that the number DIV of cell divisions occurring in this interframe
verifies DIV = N+ − N. Each children pair (b1, b2) ∈ B+ × B+ is born from a single parent
b ∈ B. Thus, the set trueCH of all such true children pairs must then verify

card(trueCH) = DIV = N+ − N. (3)

For our video recordings of actual cell populations, during any interframe, we may
have nout cells exiting the field of view and nin cells entering it, so that | card(trueCH)−
DIV|may be of the order of nin + nout. To take this into account, we relax the constraint in
(3) as follows:

| card(trueCH)−DIV| ≤ REL, (4)

where REL is a fixed bound estimated from our experiments. For simplicity, we have
restricted our methodology to the situation where nin and nout are always 0. However, even
in that case, there was a computational advantage to using the slightly relaxed constraint
(4) with REL = 1.

3.3.2. Most Likely Parent Cell for a Given Children Pair

For successive images J, J+ with 1 min interframe, define the set PCH of plausible
children pairs by

PCH = {(b1, b2) ∈ B+ × B+ with centers c1, c2 verifying ‖c1 − c2‖ < τ}, (5)

where the threshold τ > 0 is user selected and fixed for the whole benchmark set BENCH1
of synthetic image sequences.
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To evaluate if a pair of cells (b1, b2) ∈ PCH can qualify as a pair of children generated
by division of a parent cell b ∈ B, we now quantify the “geometric distortion” between b and
(b1, b2). Cell division of b into b1, b2 ∈ B+ occurs with small motions of b1, b2. During the
short interframe duration, the initial centers c1, c2 of b1, b2 in image J move by at most
w/2 pixels each (see Section 2.3), and their initial distance to the center c of b is roughly at
most ‖A(b)‖/4, where A(b) is the long axis of cell b. Hence, the centers c, c1, c2 of b, b1, b2
should verify the constraint

max{‖c1 − c‖, ‖c2 − c‖} ≤ w + ‖A‖/4. (6)

Define the set SHLIN of potential short lineages as the set all triplets (b, b1, b2) with
b ∈ B, (b1, b2) ∈ PCH, verifying the preceding constraint (6). For each potential lineage
(b, b1, b2) ∈ SHLIN, define three terms penalizing the geometric distortions between a
parent b ∈ B and a pair of children (b1, b2) ∈ PCH by the following formulas, where we
denote c, c1, c2, the centers of cells b, b1, b2 and A, A1, A2 their long axes, respectively:
(i) center distortion cen(b, b1, b2) = ‖c − (c1 + c2)/2‖, (ii) size distortion siz(b, b1, b2) =
|‖A‖ − (‖A1‖+ ‖A2‖)|, and (iii) angle distortion

ang(b, b1, b2) = angle(A, A1) + angle(A, A2) + angle(A, c2 − c1).

Here, angle denotes “angles between non-oriented straight lines,” with a range from 0 to
π/2. Introduce three positive weights λcen, λsiz, λang (to be estimated), and for every short
lineage (b, b1, b2) ∈ SHLIN define its distortion cost by

dist(b, b1, b2) = λcen cen(b, b1, b2) + λsiz siz(b, b1, b2) + λang ang(b, b1, b2). (7)

For each plausible pair of children (b1, b2) ∈ PCH, we will compute the most likely
parent cell b∗ = parent(b1, b2) as the cell b∗ ∈ B minimizing dist(b, b1, b2) in (7) over all
b ∈ B, as summarized by the formula

b∗ = parent(b1, b2) = argmin
{b∈B|(b,b1,b2)∈SHLIN}

dist(b, b1, b2). (8)

To force this minimization to yield a reliable estimate of b∗ = parent(b1, b2) for most
true pairs of children (b1, b2), we calibrate the weights λj, j ∈ {cen, siz, ang} by the al-
gorithm outlined in Section 3.2, using as “ground truth set” a fairly small set of visually
identified true short lineages (parent, children). For fixed (b1, b2), the set of potential parent
cells b ∈ B has very small size due to the constraint (6). Hence, brute force minimization
of the functional dist(b, b1, b2) in (7) over all b ∈ B such that (b, b1, b2) ∈ SHLIN, is a fast
computation for each (b1, b2) in PCH. The distortion minimizing b = b∗ yields the most
likely parent cell parent(b1, b2) = b∗. The brute force minimization in b of dist(b, b1, b2) is
still a greedy minimization in the sense that other soft constraints introduced further on are
not taken into consideration during this preliminary fast computation of b∗.

3.3.3. Penalties to Enforce Adequate Parent–Children Links

Any true pair of children cells pch = (b1, b2) should belong to PCH, but must also
verify lineage and geometric constraints which we now enforce via several penalties. Note
that the new penalties introduced here are fully distinct from the three penalties specified
above to define dist(b, b1, b2).

“Lineage” Penalty. Valid children pairs (b1, b2) ∈ PCH should be correctly matchable
with their most likely parent cell b∗ = parent(b1, b2) (see (8)). Thus, we define the “lineage”
penalty lin(b1, b2) = dist(b∗, b1, b2) by

lin(b1, b2) = argmin
{b∈b|(b,b1,b2)∈shlin}

dist(b, b1, b2) = dist(parent(b1, b2), b1, b2).
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Notice that the computation of lin(b1, b2) is quite fast.
“Gap” Penalty. Denote tips(b) as the set of two endpoints of any cell b. For any pair

pch = (b1, b2) ∈ PCH, define endpoints x1 ∈ tips(b1), x2 ∈ tips(b2) and the gap penalty
gap(b1, b2) by

gap(b1, b2) = ‖x1 − x2‖ = min{‖x− y‖ for (x, y)∈TIPS} (9)

with TIPS = tips(b1)× tips(b2).
“Dev” Penalty. For rod-shaped bacteria, a true pair (b1, b2) ∈ PCH of just born

children must have a small gap(b1, b2) = ‖x1 − x2‖ and roughly aligned cells b1 and b2.
For (b1, b2) ∈ PCH, we quantify the deviation from alignment dev(b1, b2) as follows. Let x1,
x2 be the closest endpoints of b1, b2 (see (9)). Let str12 be the straight line linking the centers
c1, c2 of b1, b2. Let d1, d2 be the distances from x1, x2 to the line str12. Then, set

dev(b1, b2) =
d1 + d2

‖c2 − c1‖
.

“Ratio” Penalty. True children pairs must have nearly equal lengths. Thus, for
(b1, b2) ∈ PCH with lengths L1, L2, we define the length ratio penalty by

ratio(b1, b2) = |(L1/L2) + (L2/L1)− 2|.

“Rank” Penalty. Let Lmin be the minimum cell length over all cells in B+. In B+,
children pairs (b1, b2) just born during interframe J → J+ must have lengths L1, L2 close to
Lmin. Thus, for (b1, b2) ∈ PCH, we define the rank penalty by

rank(b1, b2) = |(L1/Lmin)− 1|+ |(L2/Lmin)− 1|.

Given two successive images J, J+, we seek the set X = trueCH of true children pairs
in B+ × B+, which is an unknown subset of PCH. In Section 3.5 below, we replace X by its
indicator function z and we build a cost function E(z) which should be nearly minimized
when z is close to the indicator of trueCH. A key term of E(z) will be a weighted linear
combination of the penalty functions {lin, gap, dev, ratio, rank}. Since these penalties are
different from those introduced in Section 3.3.2, we estimate their weights in the cost
function E(z) by the algorithm outlined in Section 3.2. The minimization of E(z) will be
implemented by simulations of a BM with energy function E(z). We present these stochastic
neural networks in the next section.

3.4. Generic Boltzmann Machines (BMs)

Minimization of our main cost functionals is a heavily combinatorial task, since
the unknown variable is a mapping between two finite sets of sizes ranging from 80 to
120. To handle these minimizations, we use BMs originally introduced by Hinton et al.
(see [93,94]). Indeed, these recurrent stochastic neural networks can efficiently emulate
some forms of simulated annealing.

Each BM implemented here is a network BM = {U1, . . . , UN} of N stochastic neurons Uj.
In the BM context, the time t = 0, 1, 2, . . . is discretized and represents the number of steps in
a Markov chain, where the successive updates Z(t)→ Z(t+ 1) of the BM configuration Z(t)
are analogous to the steps of a Gibbs sampler. The configuration Z(t) = {Z1(t), . . . , ZN(t)}
of the whole network BM at time t is defined by the random states Zj(t) of all neuron Uj.
Each Zj(t) belongs to a fixed finite set W(j). Hence, Z(t) belongs to the configurations set
CONF = W(1)× · · · ×W(N).

Neuron interactivity is specified by a finite set CLQ of cliques. Each clique K is a subset
of S = {1, . . . , N}. During configuration updates Z(t) → Z(t + 1), neurons may interact
only if they are in the same clique. Here, all cliques K are of small sizes 1, or 2, or 3.
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For each clique K, one specifies an energy function JK(z) defined for all z ∈ CONF,
with JK(z) depending only on the zj such that j ∈ K. The full energy E(z) of configuration
z is then defined by

E(z) = ∑K∈CLQ JK(z).

The BM stochastic dynamics Z(t)→ Z(t + 1) is driven by the energy function E(z),
and by a fixed decreasing sequence of virtual temperatures Temp(t) > 0, tending slowly to
0 as t → ∞. Here, we use standard temperature schemes of the form Temp(t) ≡ cηt with
fixed c > 0 and slow decay rate 0.99 < η < 1.

We have implemented the classical “asynchronous” BM dynamics. At each time t,
only one random neuron Uj may modify its state, after reading the states of all neurons
belonging to cliques containing Uj. A much faster alternative, implementable on GPUs,
is the “synchronous” BM dynamics, where at each time t roughly 50% of all neurons may
simultaneously modify their states (see [95–97]). The detailed BM dynamics are presented
in the appendix (see Appendix A).

When the virtual temperatures Temp(t) decrease slowly enough to 0, the energy
E(Z(t)) converges in probability to a local minimum of the BM energy E(z) over all
configurations z ∈ CONF.

3.5. Optimized Set of Parent–Children Triplets

Next, we formulate the search for bona fide parent–children triplets as an optimiza-
tion problem. For brevity, this outline is restricted to situations where (3) holds, as is
the case for our synthetic image data. Simple modifications extend this approach to the
relaxed constraint (4), which we used for lab videos of live cell populations. Fix suc-
cessive images J, J+ with a positive number of cell divisions DIV = N+ − N. Denote
PCH = {pch1, pch2, . . . , pchm} the set of m plausible children pairs (b1, b2) in B+. The penal-
ties lin, gap, dev, ratio, and rank defined above for all pairs (b1, b2) ∈ PCH determine five
numerical vectors LIN, GAP, DEV, RAT, RANK in Rm with coordinates LINj = lin(pchj),
GAPj = gap(pchj), DEVj = dev(pchj), RATj = ratio(pchj), RANKj = rank(pchj).

We now define a binary BM constituted by m binary stochastic neurons Uj, j = 1 . . . m.
At time t = 0, 1, 2, . . ., each Uj has a random binary valued state Zj(t) = 1 or 0. The random
configuration Z(t) = [Z1(t), . . . , Zm(t)] of this BM belongs to the configuration space
CONF = {0, 1}m of all binary vectors z = [z1, . . . , zm]. Let SUB be the set of all subsets of
PCH. Each configuration z ∈ CONF is the indicator function of a subset sub(z) of PCH.
We view each sub(z) ∈ SUB as a possible estimate for the unknown set trueCH ⊂ B+ × B+

of true children pairs (b1, b2). For each potential estimate sub(z) of trueCH, the “lack of
quality” of the estimate sub(z) will be penalized by the energy function E(z) ≥ 0 of our
binary BM. We now specify the energy E(z) for all z ∈ CONF by combining the penalty
terms introduced above. Note that the penalty terms introduced in Section 3.3.2 are quite
different from those introduced in Section 3.3.3. No cell in B+ can be assigned to more than
one parent in b. To enforce this constraint, define the symmetric m×m binary matrix [Qj,k]
by (i) Qj,k = 1 if j �= k and the two pairs pchj, pchk have one cell in common, (ii) Qj,k = 0 if
j �= k and the two pairs pchj, pchk have no cell in common, (iii) Qj,j = 0 for all j.

The quadratic penalty z �→ 〈z, Qz〉 is non-negative for z ∈ CONF, and must be zero
if sub(z) = trueCH. Introduce six positive weight parameters to be selected further on λj,
j ∈ {lin, gap, dev, rat, rank, Q}. Define the vector V ∈ Rm as a weighted linear combination
of the penalty vectors LIN, GAP, DEV, RAT, RANK

V = λlinLIN + λgapGAP + λdevDEV + λratRAT + λrankRANK.

For any configuration z ∈ CONF, the BM energy E(z) is defined by the quadratic function

E(z) = 〈V, z〉+ λQ〈z, Qz〉. (10)
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We already know that the unknown set trueCH of true children pairs must have
cardinal DIV = N+ − N. Thus, we seek a configuration z∗ ∈ CONF minimizing the energy
E(z) under the rigid constraint card{sub(z)} = DIV. Let ONE ∈ Rm be the vector with
all its coordinates equal to 1. The constraint on z can be reformulated as 〈ONE, z〉 =
DIV. We want the unknown trueCH to be close to the solution z∗ of the constrained
minimization problem

z∗ = argmin
z∈CONF

E(z) subject to 〈ONE, z〉 = DIV.

To force this minimization to yield a reliable estimate of trueCH, we calibrate the
six weights

λj, j ∈ {lin, gap, dev, rat, rank, Q}
by the algorithm in Section 3.2. Denote CONF1 the set of all z ∈ CONF such that
〈ONE, z〉 = DIV. To minimize E(z) under the constraint z ∈ CONF1, fix a slowly de-
creasing temperature scheme Temp(t) as in Section 3.4. We need to force the BM stochastic
configurations Z(t) to remain in CONF1. Then, for large time step t, the Z(t) will converge
in probability to a configuration z∗ ∈ CONF1 approximately minimizing E(z) under the
constraint z ∈ CONF1.

Start with any Z(0) ∈ CONF1. Assume that, for 0 ≤ s ≤ t, one has already dy-
namically generated BM configurations Z(s) ∈ CONF1. Then, randomly select two sites
j, k such that Zj(t) = 1 and Zk(t) = 0. Compute a virtual configuration Y by setting
Yj = 0, Yk = 1, and Yi ≡ Zi for all sites i different from j and k. Compute the en-
ergy change ΔE = E(Y)− E(Z(t)), and the probability p(t) = exp(−D/Temp(t)), where
D = max{0, ΔE}. Then, randomly select Z(t + 1) = Y or Z(t + 1) = Z(t) with respective
probabilities p(t) and (1− p(t)). Clearly, this forces Z(t + 1) ∈ CONF1.

3.6. Performance of Automatic Children Pairing on Synthetic Videos

In the following subsections, we provide experimental results for pairing children and
parent cells.

3.6.1. Children Pairing: Fast BM Simulations

For m = card(PCH) ≤ 1000, one can reduce the computational cost for BM dynamics
simulations by pre-computing and storing the m×m symmetric binary matrix Q, as well
as the m-dimensional vectors LIN, GAP, DEV, RAT, RANK and their linear combination V.
A priori reduction of m significantly reduces the computing times, and can be implemented
by trimming away the pairs pchj ∈ PCH for which the penalties LINj, GAPj, DEVj, RATj,
and RANKj are all larger than predetermined empirical thresholds. We performed a study
on 100 successive (synthetic) images. We show scatter plots for the most informative penalty
terms in Figure 3. These plots allow us to determine adequate thresholds for the penalty
terms. We observed that, for the synthetic and real data, we considered the trimming of
DEV, GAP, and RANK reduced the percentage of invalid children pairs by 95%, therefore
drastically reducing the combinatorial complexity of the problem.
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• children • non-children

Figure 3. Scatter plots for tandems of the penalty terms DEV, GAP, and RANK. We mark in orange
the true children pairs and in blue invalid children pairs. These plots allow us to identify appropriate
empirical thresholds to trim the (considered synthetic) data in order to reduce the computational
complexity of the parent–children pairing.
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The quadratic energy function E(z) is the sum of clique energies JK(z) involving only
cliques of cardinality 1 and 2. For any clique K = {j} of cardinality 1, with 1 ≤ j ≤ m, one
has JK(z) = Vjzj. For any clique K = {j, k} of cardinality 2, with 1 ≤ j < k ≤ m, one has
JK(z) = 2Qj,kzjzk. A key computational step when generating Z(t + 1) is to evaluate the
energy change ΔE when one flips the binary values Zj(t) = 1 and Zk(t) = 0 by the new
value (1− zi) for a fixed single site i. This step is quite fast since it uses only the numbers
Vj, Vk, and 〈q(j), Z(t)〉, 〈q(k), Z(t)〉, where q(i) is the ith row of the matrix Q.

3.6.2. Children Pairing: Implementation on Synthetic Videos

We have implemented our children pairing algorithms on synthetic image sequences
having 100 to 500 image frames with 1 min interframe (benchmark set BENCH1; see
Section 2.1). The cell motion bound w/2 per interframe was defined by w = 20 pixels.
The parameter τ that defines the sets PCH of plausible children pairs (see (5)) was set at
τ = 45 pixels.

The known true cell registrations indicated that, in our typical BENCH1 image se-
quence, the successive sets PCH had average cardinalities of 120, while the number of
true children pairs per PCH roughly ranged from 2 to 6 with a median of 4. The size
of the reduced configuration space CONF1 per image frame thus ranged from 104 to
1206/6! = 4.2× 109 with a median of 9× 106.

Our weights estimation technique introduced in Section 3.2 yields the weights

[λcen, λsiz, λang] = [0.255, 0.05, 0.05]

and
[λgap, λdev, λrat, λrank] = [0.01, 1, 0.0001, 0.05]

for the penalties introduced in Section 4. To reduce the computing time for hundreds
of BM energy minimizations on the BENCH1 image sequences, we excluded obviously
invalid children pairs in each PCH set, by simultaneously thresholding of the penalty terms.
The BM temperature scheme was Temp(t) = 1000 (0.995)t, with the number of epochs
capped at 5000. The average CPU time for BM energy minimization dedicated to optimized
children pairing was about 30 seconds per frame. (We provide hardware specifications in
Appendix B).

3.6.3. Parent–Children Matching: Accuracy on Synthetic Videos

For each successive image pair J, J+, with cells B, B+ of cardinality N < N+, our
parent–children matching algorithm computes a set SHL of short lineages (b, b1, b2), where
the cell b ∈ B is expected to be the parent of cells b1, b2 ∈ B+. Recall that DIV = N+ − N
provides the number of cell divisions during the interframe J → J+. The number VAL of
correctly reconstructed short lineages (b, b1, b2) ∈ SHL is obtained by direct comparison to
the known ground truth registration J → J+. For each frame J, we define the pcp-accuracy
of our parent–children pairing algorithm as the ratio VAL/DIV.

We have tested our parent–children matching algorithm on three long synthetic image
sequences BENCH1 (500 frames), BENCH2 (300 frames), and BENCH3 (300 frames), with re-
spective interframes of 1, 2, and 3 min. For each frame Jk, we computed the pcp-accuracy
between Jk and Jk+1.

We report the accuracies of our parent–children pairing algorithms in Table 2. For
BENCH1, all 500 pcp-accuracies reached 100%. For BENCH2, pcp-accuracies reach 100%
for 298 frames out of 300, and for the remaining two frames, accuracies were still high at
93% and 96%. For BENCH3, where interframe duration was longest (3 min), the 300 pcp-
accuracies decreased slightly but still averaged 99%, and never fell below 90%.
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Table 2. Accuracies of parent–children pairing algorithm. We applied our parent–children pairing
algorithm to three long synthetic image sequences BENCH1 (500 frames), BENCH2 (300 frames),
and BENCH3 (300 frames), with interframe intervals of 1, 2, 3 min, respectively. The table summarizes
the resulting pcp-accuracies. Note that pcp-accuracies are practically always at 100%. For BENCH2,
pcp-accuracies are 100% for 298 frames out of 300, and for the remaining two frames, accuracies were
still high at 93% and 96%. For BENCH3, the average pcp-accuracy for the 3 min interframe is 99%.

Sequence Pcp-Accuracy Frames

BENCH1 acc = 100% 500 out of 500
BENCH2 acc = 100% 298 out of 300
BENCH2 99% ≥ acc ≥ 93% 2 out of 300
BENCH3 acc = 100% 271 out of 300
BENCH3 99% ≥ acc ≥ 95% 17 out of 300
BENCH3 94% ≥ acc ≥ 90% 12 out of 300

3.7. Reduction to Registrations with No Cell Division

Fix successive frames J, J+ and their cell sets B, B+. We seek the unknown registration
mapping f : B→ {B+ ∪ (B+ × B+)}, where f (b) ∈ B+ iff cell b did not divide during the
interframe J → J+ and f (b) = (b1, b2) ∈ B+ × B+ iff cell b divided into (b1, b2) during
the interframe.

If card(B) = N < N+ = card(B+), we know that the number of cell divisions during
the interframe J → J+ should be DIV = DIV(B, B+) = N+ − N > 0. We then apply the
parent–children matching algorithm outlined above to compute a set SHL = SHL(B, B+)
of short lineages (b, b1, b2) with b ∈ B, b1, b2 ∈ B+ and card(SHL) = DIV. For each
(b, b1, b2) ∈ SHL, the cell b is computed by b = parent(b1, b2) as the parent cell of the
two children cells b1, b2 ∈ B+.

For each (b, b1, b2) ∈ SHL, eliminate from B the parent cell, b, and eliminate from B+

the two children cells b1, b2. We are left with two residual sets, resB ⊂ B and resB+ ⊂ B+,
having the same cardinality, N −DIV = N+ − 2DIV. Assuming that our set SHC of short
lineages is correctly determined, the cells b ∈ redB should not divide in the interframe
J → J+, and hence have a single (still unknown) registration f (b) ∈ redB+. Thus, the still
unknown part of the registration f is a bijection from redB to redB+.

Let divB = B− redB and divB+ = B+ − redB+. For each b ∈ divB, the cell b divides
into the unique pair of cells, (b1, b2) ∈ divB+ × divB+, such that (b, b1, b2) ∈ SHL. Hence,
we can set f (b) = (b1, b2) for all b ∈ divB. Thus, the remaining problem to solve is to
compute the bijective registration f : redB → redB+. We have reduced the registration
discovery to a new problem, where no cell divisions occur in the interframe duration. In what
follows, we present our algorithm to solve this registration problem.

3.8. Automatic Cell Registration after Reduction to Cases with No Cell Division

As indicated above, we can explicitly reduce the generic cell tracking problem to a
problem where there is no cell division. We consider images J, J+ with associated cell sets B,
B+ such that N = card(B) = card(B+). Hence, there are no cell divisions in the interframe
J → J+ and the map f of this reduced problem is (in principle) a bijection f : B→ B+ with
card(B) = card(B+). In Figure 4, we show two typical successive images we use for testing
with no cell division generated by the simulation software [12,81] (see Section 2.1).

75



Math. Comput. Appl. 2022, 27, 22

image J image J+ difference |J − J+|difference |J − J+| motion vector field

Figure 4. Simulated cell dynamics. From left to right, two successive simulated images J and J+
with an interframe time of six minutes and no cell division, their image difference |J − J+|, and the
associated motion vectors. For the image J and J+ we color four pairs of cells in B × B+, which
should be matched by the true cell registration mapping. Notice that the motion for an interframe
time of six minutes is significant. We can observe that, even without considering cell division, we can
no longer assume that corresponding cells in frame J and J+ overlap.

3.8.1. The Set MAP of Many-to-One Cell Registrations

We have reduced the registration search to a situation where, during the interframe
J → J+, no cell has divided, no cell has disappeared, and no cell has suddenly emerged
in B+ without originating from B. The unknown registration f : B → B+ should then in
principle be injective and onto. However, for computational efficiency, we will temporarily
relax the bijectivity constraint on f . We will seek f in the set MAP of all many-to-one
mappings f : B → B+ such that for each b ∈ B, the cell f (b) is in the target window
W(b) ⊂ B+ (see Section 2.3).

3.8.2. Registration Cost Functional

To design a cost functional cost( f ), which should be roughly minimized when f ∈ MAP
is very close to the true registration from B to B+, we linearly combine penalties match( f ),
over( f ), stab( f ), flip( f ) weighted by unknown positive weights λmatch, λover, λstab, λflip,
to write, for all registrations f ∈ MAP,

cost( f ) = λmatch match( f ) + λover over( f ) + λstab stab( f ) + λflip flip( f ). (11)

We specify the individual terms that appear in (11) below. Ideally, the minimizer of
cost( f ) over all f ∈ MAP is close to the unknown true registration mapping f : B → B+.
To enforce a good approximation of this situation, we first estimate efficient positive weights
by applying our calibration algorithm (see Section 3.2). The actual minimization of cost( f )
over all f ∈ MAP is then implemented by a BM described in Section 3.9.

Cell Matching Likelihood: match( f ). Here, we extend a pseudo likelihood approach
used to estimate parameters in Markov random fields modeling by Gibbs distributions
(see [98]). Recall that g.rate is the known average cell growth rate. For any cells b ∈ B,
b+ ∈ B+, the geometric quality of the matching b �→ b+ relies on three main characteristics:
(i) motion c(b+)− c(b) of the cell center c(b), (ii) angle between the long axes A(b) and
A(b+), (iii) cell length ratio ‖A(b+)‖/‖A(b)‖. Thus, for all b ∈ B and b+ in the target
window W(b), define (i) Kinetic energy: kin(b, b+) = ‖c(b) − c(b+)‖2. (ii) Distortion
of cell length: dis(b, b+) = | log(‖A(b+)‖/‖A(b)‖) − log g.rate|2. (iii) Rotation angle:
0 ≤ rot(b, b+) ≤ π/2 is the geometric angle between the straight lines carrying A(b)
and A(b+).

Fix b ∈ B, and let b′ run through the whole target window W(b). The finite set of values
thus reached by the kinetic penalties kin(b, b′) has two smallest values kin1(b), kin2(b).
Define list.kin =

⋃
b∈B{kin1(b), kin2(b)}, which is a list of 2N “low” kinetic penalty values.

Repeat this procedure for the penalties dis(b, b′) and rot(b, b′) to similarly define a list.dis
of 2N “low” distortion penalty values, and a list.rot of 2N “low” rotation penalty values.

The three sets list.kin, list.dis, list.rot can be viewed as three random samples of size
2N, respectively, generated by three unknown probability distributions Pkin, Pdis, Prot. We
approximate these three probabilities by their empirical cumulative distribution functions
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CDFkin, CDFdis, CDFrot, which can be readily computed. We now use the right tails of
these three CDFs to compute separate probabilistic evaluations of how likely the match-
ing of cell b ∈ B with cell b+ ∈ W(b) is. For any fixed mapping f ∈ MAP, and any
b ∈ B, set b+ = f (b). Compute the three penalties vkin = kin(b, b+), vdis = dis(b, b+),
vrot = rot(b, b+), and define three associated “likelihoods” for the matching b→ b+ = f (b):

LIKkin(b, b+) = 1−CDFkin(vkin),

LIKdis(b, b+) = 1−CDFdis(vdis),

LIKrot(b, b+) = 1−CDFrot(vrot).

High values of the penalties vkin, vdis, vrot thus will yield three small likelihoods for
the matching b→ b+ = f (b). With this, we can define a “joint likelihood” 0 ≤ LIK(b, b+) ≤ 1
evaluating how likely is the matching b→ b+ = f (b):

LIK(b, b+) = ∏
j∈{kin,dis,rot}

LIKj(b, b+). (12)

Note that higher values of LIK(b, b+) correspond to a better geometric quality for
the matching of b with b+ = f (b). To avoid vanishingly small likelihoods, whenever
LIK(b, b+) < 10−6, we replace it by 10−6. Then, for any mapping f ∈ MAP, we define its
likelihood lik( f ) by the finite product

lik( f ) = ∏
b∈B

LIK(b, f (b)).

The product of these N likelihoods is typically very small, since N = card(B) can be
large. Thus, we evaluate the geometric matching quality match( f ) of the mapping f via
the averaged log-likelihood of f , namely,

match( f ) = − 1
N

log lik( f ) = − 1
N ∑

b∈B
log LIK(b, f (b)).

Good registrations f ∈ MAP should yield small values for the criterion match( f ).
Overlap: over( f ). We expect bona fide cell registrations f ∈ MAP to be bijections.

Consequently, we want to penalize mappings f which are many-to-one. We say that two
distinct cells (b, b′) ∈ B× B do overlap for the mapping f ∈ MAP if f (b) = f (b′). The total
number of overlapping pairs (b, b′) for f defines the overlap penalty:

over( f ) =
1

card(B) ∑
b∈B

∑
b′∈B

1 f (b)= f (b′).

Neighbor Stability: stab( f ). Let B = {b1, . . . , bN}. Denote Gi as the set of all neigh-
bors for cell bi in B (i.e., bj ∼ bi ⇐⇒ bj ∈ Gi; see Section 2.3). For bona fide registrations
f ∈ MAP, and for most pairs of neighbors bi ∼ bj in B, we expect f (bi) and f (bj) to remain
neighbors in B+. Consequently, we penalize the lack of “neighbors stability” for f by

stab( f ) = ∑
i

∑
j �=i

1
N|Gi||Gj|

1bi∼bj
1 f (bi) �∼ f (bj)

.

Neighbor Flip: flip( f ). Fix any mapping f ∈ MAP, any cell b ∈ B and any two
neighbors b′, b′′ of b in B. Let z = f (b), z′ = f (b′), z′′ = f (b′′). Let c, c′, c′′ and d, d′, d′′

be the centers of cells b, b′, b′′ and z, z′, z′′. Let α be the oriented angle between c′ − c and
c′′ − c, and let α f be the angle between d′ − d and d′′ − d, respectively. We say that the
mapping f has flipped cells b′, b′′ around b, and we set FLIP( f , b, b′, b′′) = 1 if z′, z′′ are
both neighbors of z, and the two angles α, α f have opposite signs. In all other cases, we set
FLIP( f , b, b′, b′′) = 0.
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For any registration f ∈ MAP, define the flip penalty for f by

flip( f )= ∑
b∈B

∑
b′∈B

∑
b′′∈B

1
N|G(b)|2 FLIP( f , b, b′, b′′),

where G(b) is the neighborhood of cell b in B. In Figure 5, we illustrate an example of an
unwanted cell flip.

f

J J+

•
•

•
•
•

•

c(b1)

c(b2)

c(b3)

c(f (b3))

c(f (b2))

c(f (b1))

Figure 5. Illustration of an undesirable flip for the mapping f . The cells b1 and b3 are neighbors of b2,
and mapped by f on neighbors z1 = f (b1), z3 = f (b3) of z2 = f (b2), as should be expected for bona
fide cell registrations. However, for this mapping f , we have z3 above z2 above z1, whereas, for the
original cells, we had b1 above b2 above b3. Our cost function penalizes flips of this nature.

3.9. BM Minimization of Registration Cost Function

In what follows, we define the optimization problem for the registration of cells
from one frame to another (i.e., cell tracking), as well as associated methodology and
parameter estimates.

3.9.1. BM Minimization of Cost( f ) over f ∈ MAP

Let B, B+ be two successive sets of cells. As outlined above, we have reduced the
problem to one in which we can assume that N = card(B) = card(B+), so that there
is no cell division during the interframe. Write B = {b1, . . . , bN}. For short, denote
W(j) ⊂ B+ instead of W(bj) the target window of cell bj. We seek to minimize cost( f )
over all registrations f ∈ MAP. Let BM be a BM with sites S = {1, . . . , N} and stochastic
neurons {U1, . . . , UN}. At time t, the random state Zj(t) of Uj will be some cell zj belonging
to the target window W(j) and the random configuration Z(t) = {Z1(t), . . . , ZN(t)} of the
whole BM belongs to the configurations set CONF = W(1)× . . .×W(N).

To any configuration z = {z1, . . . , zN} ∈ CONF, we associate a unique cell registration
f ∈ MAP defined by f (bj) = zj for all j, denoted by f = map(z). This determines a
bijection z �→ f = map(z) from CONF onto MAP. The inverse of map : CONF → MAP
will be called range : MAP→ CONF, and is defined by z = range( f ), when zj = f (bj) for
all j.

3.9.2. BM Energy Function E(z)

We now define the energy function E(z) ≥ 0 of our BM for all z ∈ CONF. Denote
E∗ = minimizez∈CONF E(z). Since f �→ z = range( f ) is a bijection from MAP to CONF, we
must have

E∗ = minimize
z∈CONF

E(z) = minimize
f∈MAP

E(range( f )).

Our goal is to minimize cost( f ), and we know that BM simulations should roughly
minimize E(z) over all z ∈ CONF. Thus, we define the BM energy function E(z) by forcing

cost( f ) = E(range( f )) (13)

for any registration mapping f ∈ MAP, which—due to the preceding subsection—is
equivalent to

E(z) = cost(map(z)) (14)
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for all configurations z ∈ CONF. The next subsection will explicitly express the energy E(z)
in terms of cliques of neurons. Due to (13) and (14), we have

E∗ = minimize
f∈MAP

cost( f ) = minimize
z∈CONF

E(z).

For large time t, the BM stochastic configuration Z(t) tends with high probability
to concentrate on configurations z ∈ CONF, which roughly minimize E(z). The random
registration Ft = map(Z(t)) will belong to MAP and verify Z(t) = range(Ft), so that
E(Z(t)) = E(range(Ft)) = cost(Ft). Consequently, for large t—with high probability—the
random mapping Ft = map(Z(t)) will have a value of the cost functional cost(Ft) close to
minimize f∈MAP cost( f ).

3.9.3. Cliques of Interactive Neurons

The BM energy function E(z) just defined turns out to involve only three sets of
small cliques: (i) CL1 is the set of all singletons K = {i}, with i = 1 . . . N. (ii) CL2 is the
set of all pairs K = {i, j} such that cells bi and bj are neighbors in B. (iii) CL3 is the set
of all triplets K = {i, j, k} such that cells bj and bk are both neighbors of bi in B. Denote
CLQ = CL1 ∪ CL2 ∪ CL3 as the set of all cliques for our BM.

Cliques in CL1. For each clique K = {i} in CL1, and each z ∈ CONF, define its energy
Jmatch,K(z) = Jmatch,K(zi) by

Jmatch,K(z) = −
1
N

log LIK(bi, zi) for all z ∈ ZW,

where LIK is given by (12). Set Jmatch,K ≡ 0 for K in CL2 ∪ CL3. For all z ∈ CONF, define
the energy Ematch(z) by

Ematch(z) = ∑
K∈CLQ

Jmatch,K(z) = ∑
K∈CL1

Jmatch,K(z),

which implies that the registration f = map(z) verifies match( f ) = Ematch(z).
Cliques in CL2. For all z ∈ CONF, all cliques K = {i, j} in CL2, define the clique

energies Jover,K(z) = Jover,K(zi, zj) and Jstab,K(z) = Jstab,K(zi, zj) by Jover,K(z) = 1zi=zj /N
and

Jstab,K(z) =
1

N|Gi||Gj|
1bj∼bi

1zj �∼zi ,

where |Gi| and |Gj| are the numbers of neighbors in B for cells zi and zj, respectively. Set
Jover,K = Jstab,K ≡ 0 for K in CL1 ∪ CL3. Define the two energy functions

Eover(z) = ∑
K∈CLQ

Jover,K(z) = ∑
K∈CL2

Jover,K(z),

Estab(z) = ∑
K∈CLQ

Jstab,K(z) = ∑
K∈CL2

Jstab,K(z),

which implies that f = map(z) verifies over( f ) = Eover(z) and stab( f ) = Estab(z).
Cliques in CL3. For each clique K = {i, j, k} in CL3, define the clique energy Jflip,K by

Jflip,K(z) = Ji,j,k
flip (z) =

1
N|Gi|2

FLIP( f i,j,k, bi, bj, bk),

where f i,j,k is any registration mapping bi, bj, bk onto zi, zj, zk. The indicator FLIP was
defined in Section 3.8.2. Set Jflip,K ≡ 0 for K in CL1 ∪ CL2. Define the energy

Eflip(z) = ∑
K∈CLQ

Jflip,K(z) = ∑
K∈CL3

Jflip,K(z),
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which implies that f = F(z) verifies flip( f ) = Eflip(z).
Finally, define the clique energy JK for all K ∈ CLQ by the linear combination

JK = λmatch Jmatch,K + λover Jover,K + λstab Jstab,K + λflip Jflip,K.

Summing this relation over all K ∈ CLQ yields

∑
K∈CLQ

JK = λmatchEmatch + λoverEover + λstabEstab + λflipEflip. (15)

Define then the final BM energy function z �→ E(z) by

E(z) = ∑
K∈CLQ

JK(z) for all z in CONF. (16)

For any z ∈ CONF, the associated registration f = map(z) verifies match( f ) =
Ematch(z), over( f ) = Eover(z), stab( f ) = Estab(z), flip( f ) = Eflip(z). By weighted linear
combination of these equalities, and, due to (15), we obtain for all configurations z ∈ CONF,
E(z) = cost( f ) when f = map(z) or, equivalently, when z = range( f ).

3.9.4. Test Set of 100 Synthetic Image Pairs

As shown above, the minimization of cost( f ) over all registrations f ∈ MAP is
equivalent to seeking BM configurations z ∈ CONF with minimal energy E(z). We have
implemented this minimization of E(z) by the long-term asynchronous dynamics of the BM
just defined. This algorithm was designed for the registration of image pairs exhibiting no
cell division, and was, therefore, implemented after the automatic reduction of the generic
registration problem, as indicated earlier. We have tested this specialized registration
algorithm on a set of 100 pairs of successive images of simulated cell colonies exhibiting no
cell divisions. These 100 image pairs were extracted from the benchmark set BENCH6 of
synthetic image sequence described in Section 2.1. The 100 pairs of cell sets B, B+ had sizes
N = card(B) = card(B+) ranging from 80 to 100 cells. For each test pair B, B+, each target
window W(j) typically contained 30 to 40 cells. The set CONF of configurations had huge
cardinality ranging from 10130 to 10160. However, the average number of neighbors of a
cell was around 4 to 5.

3.9.5. Implementation of BM Minimization for Cost( f )

The numbers clq1, clq2, clq3 of cliques in CL1, CL2, CL3 have the following rough
ranges 80 ≤ clq1 ≤ 100, 160 ≤ clq2 ≤ 250, and 450 ≤ clq3 ≤ 600. For k = 1, 2, 3,
denote val(k) the numbers of non-zero values for JK(z) when z runs through CONF and
K runs through all cliques of cardinality k. One easily checks the rough upper bounds
val(1) < 4000; val(2) < 200,000; val(3) < 300,000. Hence, to automatically register B
to B+, one could pre-compute and store all the possible values of JK(z) for all cliques
K ∈ CL1 ∪ CL2 ∪ CL3 and all the configurations z ∈ CONF. This accelerates the key
computing steps of the asynchronous BM dynamics, namely, for the evaluation of energy
change ΔE = E(z′) − E(z), when configurations z and z′ differ at only one site j ∈ S.
Indeed, the single site modification zj → z′j affects only the energy values JK(z) for the
very small number r(j) of cliques K, which contain the site j. In our benchmark sets of
synthetic images, one had r(j) < 24 for all j ∈ S. Hence, the computation of ΔE was fast
since it requires retrieving at most 24 pairs of pre-computed JK(z), JK(z′), and evaluating
the 24 differences JK(z′) − JK(z). Another practical acceleration step is to replace the
ubiquitous computations of probabilities p(t) = exp(−D/Temp(t)) by simply testing the
value −D/Temp(t) against 100 precomputed logarithmic thresholds.

In our implementation of ABM dynamics, we used virtual temperature schemes such
as Temp(t) = 50 · ρt with 0.995 ≤ ρ ≤ 0.999. The BM simulation was stopped when the
stochastic energy E(Z(t)) had remained roughly stable during the last N steps. Since all
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target windows W(j) had cardinality smaller 40, the initial configuration Z(0) = x was
computed via

xj = argmax
y∈W(j)

LIK(bj, y) for j = 1, . . . , N,

where the likelihoods LIK were defined by (12).

3.9.6. Weight Calibration

For the pair of successive synthetic images J, J+ displayed in Figure 4, we have
N = card(B) = card(B+) = 513 cells. The ground truth registration f is known by con-
struction; we used it to apply the weight calibration described in Section 3.2. We set the
meta-parameter γ to 1010 and obtained the vector of weights

Λ∗ = [λ∗match, λ∗over, λ∗stab, λ∗flip] = [110, 300, 300, 290]. (17)

These weights are kept fixed for all the 100 pairs of images taken from the set BENCH6.
The determined weights are used in the cost function cost( f ) defined above. This correctly
parametrized the BM energy function E(z). We then simulated the BM stochastic dynamics
to minimize the BM energy E(Z(t)).

3.9.7. BM Simulations

We launched 100 simulations of the asynchronous BM dynamics, one for each pair of
successive images in our test set of 100 images taken from BENCH6. For each such pair,
the ground truth mapping f : B→ B+ was known by construction and the stochastic mini-
mization of the BM energy generated an estimated cells registration f ′ : B→ B+. For each
pair B, B+ in the considered set of 100 images, the accuracy of this automatically computed
registration f ′ was evaluated by the percentage of cells b ∈ B such that f ′(b) = f (b). When
card(B) = N, our BM has N stochastic neurons, and the asynchronous BM dynamics
proceeds by successive epochs. Each epoch is a sequence of N single site updates of the
BM configuration. For each one of our 100 simulations of BM asynchronous dynamics,
the number of epochs ranged from 250 to 450.

The average computing time was about eight minutes per epoch, which entailed a
computing time ranging from 30 to 50 min for each one of our 100 automatic registrations
f ′ : B→ B+ reported here. (We specify the hardware used to carry out these computations
in Appendix B). Each image contains about 100 to 150 cells. Consequently, the runtime
for the algorithm is approximately 20 s per cell for our prototype implementation. We
note that this is only a rough estimate. The runtime depends on several factors, such
as the number of cells in an image; the number of mother and daughter cells (i.e., how
many cells divide); the size of the neighborhood of each individual cell (window size); the
weights used in the cost function (which affects the number of epochs), etc. We note that
the temperature scheme had not been optimized yet, so that these computing times are
upper bounds. Earlier SBM studies [99–102] indicate that the same energy minimizations
on GPUs could provide a computational speedup by a factor ranging between 30 and 50.
We report registration accuracies in Table 3. For each pair of images in the considered set
of 100 images, the accuracy of automatic registration was larger than 94.5%. The overall
average registration accuracy was quite high at 99%.
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Table 3. Registration accuracy for synthetic image sequence BENCH100. We consider 100 pairs of
consecutive synthetic images taken from the benchmark dataset BENCH6. Automatic registration
was implemented by BM minimization of the cost function cost( f ), which was parametrized by the
vector of optimized weights Λ∗ in (17). The average registration accuracy was 99%.

Registration Accuracy Number of Frames

acc = 100% 55 frames out of 100
99% ≥ acc > 97% 40 frames out of 100

96% ≥ acc > 94.5% 5 frames out of 100

4. Results

In this section, we report results for the registration for cell dynamics involving growth,
motion, and cell divisions.

4.1. Tests of Cell Registration Algorithms on Synthetic Data

We now consider more generic long synthetic image sequences of simulated cell
colonies, with a small interframe duration of one minute. We still impose the mild constraint
that no cell is lost between two successive images. The main difference with the earlier
benchmark of 100 images from BENCH6 is that cells are allowed to freely divide during
interframes, as well as to grow and to move. For the full implementation on 100 pairs of
successive images, we first execute the parent–children pairing, and remove the identified
parent–children triplets; we can then apply our cell registration algorithmic on the reduced
sets cells. Our image sequence contained 760 true parent–children triplets, which we
automatically identified with an accuracy of 100%. As outlined earlier, we removed all
these identified cell triplets and then applied our tracking algorithm. This left us with a total
of 12,631 cells (spread over 100 frames). Full automatic registration was then implemented
with an accuracy higher than 99.5%.

4.2. Tests of Cell Registration Algorithms on Laboratory Image Sequences

To test our cell tracking algorithm on pairs of consecutive images extracted from
recorded image sequences of bacterial colonies (real data), we had to automatically delineate
all individual cells in each image. Representative frames of these data are shown in Figure 1.
We describe these data in more detail in Section 2.2. We will only briefly outline the
overall segmentation approach to not distract from our main contribution—the cell tracking
algorithm. We use the watershed algorithm [103] (also used, e.g., in [76]) to segment each
frame into individual image segments containing one single cell each. Consequently, these
regions represent over segmentations of the individual cells; we only know that each region
will contain a bacteria cell b. To segment individual cells, an additional step is necessary.
We then apply ad hoc nonlinear filters to remove minor segmentation artifacts. In a second
step, we then identified the contour of each single cell b by applying the Mumford–Shah
algorithm [104] within the image segment containing a cell b. Since this procedure is quite
time-consuming for large images, we have implemented it to produce a training set of
delineated individual cells to train a CNN for image segmentation. After automatic training,
this CNN substantially reduces the runtime of the cell segmentation/delineation procedure.
We show the resulting segmentations in Figure 6. We provide additional information
regarding our approach for the segmentation of individual bacteria cells in the appendix
(see Appendix D).
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COL1

t0 t1

COL2

t0 t1 t2 t3

Figure 6. Segmentation results for experimental recordings of live cell colonies. We show two short
image sequences extracts COL1 (left) and COL2 (right). The interframe duration is six minutes.
The image sequence extract COL1 has only two successive image frames. The image sequence extract
COL2 has four successive image frames. We are going to automatically compute four cell registrations,
one for each pair of successive images in COL1 and COL2.

After each cell has been identified (i.e., segmented out) in each pair J, J+ of successive
images, we transform J, J+ into binary images, where cells appear in white on a black
background. For each resulting pair B, B+ of successive sets of cells, we apply the parent–
children pairing algorithm outlined in Section 3.3 to identify all the short lineages. For the
two successive images in COL1, the discovered short lineages are shown in Figure 7 (left
pair of images). Here, color designates the cell triplet algorithmically identified: parent cell
in image J and its two children in image J+. We then remove each identified “parent” from
B and its two children from B+. This yields the reduced cell sets redB and redB+. We can
then apply our tracking algorithm (see Section 3.7) dedicated to situations where cells do
not divide during the interframe.

parent-children pairing

J , B J+, B+

cell registration

redJ , redB redJ+, redB+

Figure 7. Cell tracking results for the pair COL1 of successive images J, J+ shown in Figure 6. The in-
terframe duration is six minutes. (Left): Results for parent–children pairing on COL1. Automatically
detected parent–children triplets are displayed in the same color. (Right): Computed registration.
The removal of the automatically detected parent–children triplets (see left column) generates the
reduced cell sets redB and redB+. Automatic registration of redB and redB+ is again displayed via
identical color for the registered cell pairs (b, b+). Mismatches are mostly due to previous errors in
parent–children pairing (see Figure 8 for a more detailed assessment).

For image sequences of live cell colonies, we had to re-calibrate most of our weight
parameters. The weight parameters used for these image sequences are summarized in
Table 4.

The BM temperature scheme was Temp(t) = 2000 (0.995)t, with the number of epochs
capped at 5000. We illustrate our COL1 automatic registration results in Figure 7 (right pair
of images). Here, if cell b ∈ redB has been automatically registered onto cell b+ ∈ redB+, b,
b+ share the same color. The cells colored in white in redB+ are cells which the registration
algorithm did not succeed in matching to some cell in redB. These errors can essentially
be attributed to errors in the parent–children pairing step. By visual inspection, we have
determined that there are 14 true parent–children triplets in the successive images of
COL1. Our parent–children pairing algorithm did correctly identify 11 of these 14 triplets.
To check further the performance of our registration algorithm on live images, we also
report automatic registration results for “manually prepared” true versions of redB and redB+,
obtained by removing “manually” the true parent–children triplets determined by visual
inspection. For the short image sequence COL2, results are displayed in Figure 8.
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our algorithm cell registration for manually
cleaned dataparent-children pairing

t 0
to

t 1

cell registration (reduced data)

t 1
to

t 2
t 2

to
t 3

J , B J+, B+ redJ , redB redJ+, redB+ redJ∗, redB∗ redJ∗+, redB∗+

Figure 8. Cell tracking results for the short image sequence COL2 in Figure 6. The interframe duration
for COL2 is six minutes. COL2 involves four successive images J(ti), i = 0, 1, 2, 3. In our figure, each
one of the three rows displays the automatic cell registration results between images J(ti) and J(ti+1)

for i = 0, 1, 2. We report the accuracies of parent–children pairing and of the registration in Table 5.
(Left column): Results for parent–children pairing. Each parent–children triplet is identified by the
same color for each parent cell and its two children. (Middle column): Display of the automatically
computed registration after removing the parent–children triplets already identified in order to
generate two reduced sets redB and redB+ of cells. Again, the same color is used for each pair of
automatically registered cells. The white cells in redB+ are cells which could not be registered to some
cell in redB. (Right column): To differentiate between errors induced during automatic identification
of and errors generated by automatic registration between redB and redB+, we manually removed all
“true” parent–children triplets and then applied our registration algorithm to this “cleaned” (reduced)
cell sets redB∗ and redB∗+.

Table 4. Cost function weights for parent–children pairing in the COL1 images displayed in Figure 6.

Weights λcen λsiz λang λgap λdev λrat λrank λover

Value 3 7 100 0.8 4 0.01 0.01 600

The display setup is the same: The left column shows the results of automatic parent–
children pairing. The middle column illustrates the computed registration after automatic
removal of the computer identified parent–children triplets. The third column displays
the computed registration after “manually” removing the true parent–children triplets
determined by visual inspection. Note that the overall matching accuracy can be improved
if we reduce errors in the parent–children pairing. We report quantitative accuracies in
Table 5. For parent–children pairing, accuracy ranges between 70% and 78%. For pure
registration after correct parent–children pairing, accuracy ranges between 90% and 100%.

Table 5. Cell tracking accuracy for the short image sequence COL2 in Figure 6 with an interframe
of six minutes. We report the ratio of correctly predicted cell matches over the total number of true
cell matches and the associated percentages. The accuracy results quantify four distinct percentages
of correct detections (i) for parent cells in image J, (ii) for children cells in image J+, (iii) for parent–
children triplets, and (iv) for registered pairs of cells (b, b+) ∈ redB× redB+.

Task Accuracy

{t0, t1} {t1, t2} {t2, t3}
correctly detected parents 15/19 79% 20/21 95% 7/10 70%
correctly detected children 35/38 92% 32/42 76% 14/20 70%
correct parent–children triplets 15/19 78% 16/21 76% 7/10 70%
correctly registered cell pairs 36/36 100% 44/49 90% 76/80 95%
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5. Conclusions and Future Work

We have developed a methodology for automatic cell tracking in recordings of dense
bacterial colonies growing in a mono-layer. We have also validated our approach using
synthetic data from agent based simulations, as well as experimental recordings of E. coli
colonies growing in microfluidic traps. Our next goal is to streamline our implementation
for systematic cell registration on experimentally acquired recordings of such cell colonies,
to enable automated quantitative analysis and modeling of cell population dynamics
and lineages.

There are a number of challenges for our cell tracking algorithm: Inherent imaging
artifacts such as noise or intensity drifts, cell overlaps, similarity of cell shape characteristics
across the population, tight packing of cells, somewhat large interframe times, cell growth
combined with cell motion, and cell divisions represent just a few of these challenges.
Overall, the cell tracking problem has combinatorial complexity, and for large frames is
beyond the concrete patience of human experts. We tackle these challenges by developing
a two-stage algorithm that first identifies parent–children triplets and subsequently com-
putes cell registration from one frame to the next, after reducing the two original cell sets
by automatic removal of the identified parent–children triplets. Our algorithms specify
innovative cost functions dedicated to these registration challenges. These cost functions
have combinatorial complexity. To discover good registrations, we minimize these cost
functions numerically by intensive stochastic simulations of specifically structured BMs.
We have validated the potential of our approach by reporting promising results obtained
on long synthetic image sequences of simulated cell colonies (which naturally provide a
ground truth for cell registration from one frame to the next). We have also successfully
tested our algorithms on experimental recordings of live bacterial colonies.

The choice of adequate cost functions to drive each major cost optimization step in
our multi-step cell tracking algorithms is essential for obtaining good tracking. Selecting
the proper formulation had a strong impact on actual tracking accuracy. Our cost functions
are fundamentally nonlinear, which entails additional complications. We introduced a set
of meta-parameters for each cost function, and proposed an original learning algorithm to
automatically identify good ranges for these meta-parameters.

Our BMs are focused on stochastic minimization of dedicated cost functions. An in-
teresting feature of BMs we will explore in future work is the simplicity of their natural
massive parallelization for fast stochastic minimization [90]. This allows us to mitigate the
slow convergence typically observed for Gibbs samplers on discrete state spaces with high
cardinality. Parallelized BMs implement a form of massively parallel simulated anneal-
ing. Sequential simulated annealing has been explored by physicists [105–108] seeking to
minimize spin–glasses energies. For these clique-based energies, reaching global minima
requires unfeasible CPU times, and much faster parallel simulated annealing yields only
good local minima, via a sophisticated but still greedy stochastic search. Parallel stochastic-
ity favors ending in rather stable local minima, which in turn enforces low sensitivity to
small changes in energy parameters. Robustness to small changes in the coefficients of our
cost functions is a desirable feature, since our algorithmic calibration of cost coefficients
focuses on computing good ranges for these meta-parameters. We do not aim to seek
global minima, generally a very elusive search because computing speed and scalability are
important features in our problem. Recall the established results of Huber [109] showing
that optimal estimators of the mean for a Gaussian distribution lose efficiency very quickly
when the Gaussian data are slightly perturbed.

In future work, we will further improve the stability and accuracy of our cell regis-
tration algorithms by exploring natural modifications of our cost functions. In the present
work, we have not yet explicitly considered the case of cells vanishing between successive
frames. This is a critical issue that can occur due to cells exiting or entering the field of
view as well as due to errors in cell segmentation. The problem is somewhat controlled
and/or mitigated in our experimental setup, where we expect cells to enter or vanish close
to a precisely positioned trap edge and/or near frame boundaries. Since we intend to
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track lineages, each frame-to-frame error of this type may be problematic, and it will be
instrumental for our future work to address these issues.

Linking parents to children involves an optimization distinct from the final optimiza-
tion of frame-to-frame registrations. This did reduce computing time without reducing the
quality for our benchmark results. However, in future work, one could attempt to iterate
this sequence of two optimizations in order to reach a better minimum.

We note that our algorithm does work for experimental setups in which the frame rate
of the video recordings is not fixed. This will require an adaptive parameter selection that
depends on the frame rate. This can be implemented based on a trivial rescaling procedure.
However, note that, for larger interframe times, more errors will impact tracking results.
Indeed, large interframe durations intensify fluctuations in key parameters of cell dynamics,
and increase the range of cell displacement, imposing searches in larger cell neighborhoods
for cell pairing, as well as increased combinatorial complexity.

We have considered synthetic data to evaluate the performance of our method. One
clear practical issue is that some of the parameters of our tracking algorithms may change
when applied to laboratory image sequences acquired from colonies of different cells,
with various image acquisition setups. One can design a computational framework to
automatically fit the parameters of the simulation model to the imaging data acquired on
specific live cell colonies, using specific camera hardware and setup. In future work, we
will attempt to implement this type of fitting for our simulation model, before launching
intensive model simulations to calibrate the parameters of our new tracking algorithms.
We have not yet removed physical scales in the implementation of our tracking algorithm.
Implementing such a non-dimensionalization will allow us to reduce the sensitivity of our
methodology with respect to new datasets.

Identification of full lineages is an interesting concrete goal for cell tracking. Evaluat-
ing the accuracy of lineage identification on real cell colonies is quite challenging since it
requires inheritable biological tagging of cells. This is probably feasible for populations
mixing two or three cell types, but not for individualized tagging in populations of moder-
ate size. However even partial tagging of sub-populations would provide some control on
lineage identification accuracies.
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Appendix A. Stochastic Dynamics of BMs

Notations and terminology refer to Section 3.4. Consider a BM network of N stochastic
neurons Uj, with finite configuration set CONF = W(1) × . . . ×W(N). At time t, let
Zj(t) ∈ W(j) be the random state of neuron Uj, and the BM configuration Z(t) ∈ CONF
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is then Z(t) = {Z1(t), . . . , ZN(t)}. Fix as in Section 3.4 a sequence Temp(t) of virtual
temperatures slowly decreasing to 0 for large t.

There are two main options to implement the Markov chain dynamics Z(t)→ Z(t+ 1)
(see [95]).

Appendix A.1. Asynchronous BM Dynamics

Generate a long random sequence of sites m(t) ∈ S = {1, . . . , N}, for instance by
concatenating successive random permutations of the set S. At time t, the only neuron
that may modify its current state is Um(t). For brevity, write M = m(t). The neuron
UM will compute its new random state ZM(t + 1) ∈ W(M) by the following updating
procedure: (i) For each y in W(M), define a new configuration Y ∈ CONF by YM(t) = y,
and Yj(t) = Zj(t) for all j �= M. Let Δ(y) = E(Y) − E(Z(t)) be the corresponding BM
energy change. (ii) In the finite set W(M), select any z such that Δ(z) = miny∈W(M) Δ(y),
and set D = max{0, Δ(z)}. (iii) Compute the probability p = exp(−D/Temp(t)). (iv) The
new random state ZM(t + 1) of neuron UM will be equal to z with probability p and equal
to the current state ZM(t) with probability 1− p. (v) For all j �= M, the new state Zj(t + 1)
of neuron Uj remains equal to its current state Uj(t).

Appendix A.2. Synchronous BM Dynamics

Fix a synchrony parameter 0 < α < 1, usually around 50%. At each time t, all neurons
Uj synchronously, but independently compute their own random binary tag tagj(t), equal to
1 with probability α, and to 0 with probability (1− α). Let SYN(t) be the set of all neurons.
All the neurons Uj such that tagj(t) = 1 then synchronously and independently compute
their new random states Zj(t + 1) ∈W(j) by applying the updating procedure given above.
In addition, for all j such that tagj(t) = 0, the new state Zj(t + 1) of Uj remains equal to
Zj(t).

Appendix A.3. Comparing Asynchronous and Synchronous BM Dynamics

As t becomes large, and for temperatures Temp(t) slowly decreasing to 0, both BM
dynamics generate with high probability configurations Z(t) which provide deep local
minima E(Z(t)) of the BM energy function. The asynchronous dynamics can be fairly slow.
However, the synchronous dynamics are much faster since they emulate efficient forms of
parallelel simulated annealing (see [90,110]) and are directly implementable on GPUs.

Appendix B. Computer Hardware

The computations were carried out on a dedicated server at the Department of Mathe-
matics of the University of Houston. The hardware specifications are 64 Intel(R) Xeon(R)
Gold 6142 CPU cores at 2.60 GHz with 128 GB of memory.

Appendix C. Parameters for Simulation Software

Our tracking module is a collection of python functions and has been released to
the public at https://github.com/scopagroup/BacTrak (accessed on 15 December 2021).
We refer to [12,81] for a detailed description of this mathematical model and its im-
plementation. The code for generating the synthetic data has been released at https:
//github.com/jwinkle/eQ (accessed on 15 December 2021). We note that detailed instal-
lation instructions for the software can be found on this page. The parameters for this
agent-based simulation software are as follows: Cells were modeled as 2D spherocylinders
of constant, 1 μm width. The computational framework takes into account mechanical con-
straints that can impact cell growth and influence other aspects of cell behavior. The growth
rate of the cells is exponential and is controlled by the doubling time. The time until
cells double is set to 20 min (default setting; resulting in a growth rate of g.rate = 1.05).
The cells have a length of approximately 2 μm after division and 4 μm right before division
(minimum division length of 4μm; subject to some random perturbation). In our data set
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of simulated videos, there is no “trap wall” (as opposed to the simulations carried out
in [12,81]). The “trap” encompassing all cells on a given frame has a size of 30 μm× 30 μm
subdivided into 400× 400 pixels of size 0.075μm× 0.075μm. The size of the resulting
binary image used in our tracking algorithm is 600× 600 pixels. (We add a boundary
of 100 pixels on each side). Bacteria are moving, growing and dividing within the trap.
However, at this stage of our study, we consider only video segments where no cell dis-
appears and where cells do not enter the trap from outside so that the trap is a confined
environment. Cells move only due to soft shocks’ interactions with other neighboring cells.
The time interval between any two successive image frames ranges from one minute to six
minutes (see Table 1). All other simulation parameters remain unchanged; i.e., we use the
default parameters specified in the simulation software.

Appendix D. Cell Segmentation

In the next couple of sections, we outline the framework we have developed to segment
individual cells from real world laboratory imaging data. In a first step, we consider
traditional segmentation algorithms—a watershed algorithm [103,111,112] in combination
with a variational contour based model—to generate a sufficiently large dataset to train
a neuronal network. The actual segmentations on real data can subsequently be carried
out efficiently using segmentation predictions generated by the trained neuronal network.
Note that the proposed segmentation algorithm is only included for completeness. We do
not view this as a major contribution of the present work.

Appendix D.1. Watershed Algorithm

We consider a watershed algorithm based on immersion that compares high intensity
values to local intensity minima for cell segmentation [103,111,112].

We consider Matlab’s implementation of the watershed algorithm in the present work.
This version of the watershed algorithm is unseeded and yields n regions R = {R1, R2, . . . , Rn}.
To identify these regions, we perform a statistical analysis of each image histogram to
compute adaptive rough thresholds for interiors and exterior of cells. This leads to wa-
tershed results which identify each cell by a segment slightly larger than the cell itself.
The very small percentage of oversegmented cells is automatically detected by cell length
and width computations through PCA analysis of each cell shape viewed as a cloud of
planar points. Since our segments are slightly too wide, we reduce each segment to the
exact outer cell contour by applying a Mumford–Shah algorithm to each segment computed
by the watershed algorithm. In an ideal case, after applying the watershed algorithm, each
individual bacteria cell bi, i = 1, . . . , n, will be located in a single region Ri ⊂ R2. However,
we observed several segmentation errors after applying the watershed algorithm to the
considered data. A common error is that a line segment that defines the boundary of a
region crosses through a cell. That is, two regions contain parts of one bacterium cell.
In what follows, we devise strategies to correct these errors. For this processing step, we
have normalized the intensities of the data to [0, 1].

Appendix D.2. Segmentation Errors: Correction Steps

We define the boundary segment Bi,j as a non-empty intersection of two region’s
boundaries, i.e., Bi,j = ∂Si ∩ ∂Sj. Moreover, we denote the area of a region Ri as area(Ri).
We know that the interior of a bacteria cell bi has a lower intensity than the exterior region
of a cell. More precisely, the interior of a cell tends to have intensity values of zero, whereas
the exterior of a cell (i.e., the background) tends to have an intensity that is close or equal
to one. For this reason, we define a function for the intensity of the boundary. To remove
outliers, we consider the average intensity value of the pixels located along a boundary
segment. We denote this mean intensity value along a boundary Bi,j by mint(Bi,j) and the
average intensity of a region Ri by mint(Ri). One difficulty is that we cannot assume that
the intensity of the pixels on the interior of each cell corresponds to the same value (i.e.,
there exist intensity and contrast drifts depending on location). We hypothesize that, if
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mint(Bi,j) of a boundary segment is close to the average intensity of the regions on both
sides of the boundary segment Bi,j, this boundary segment does not separate two bacteria
cells; it is erroneous. Conversely, if the difference between the mean intensity along a
boundary segment and the mean intensity of the interior regions it separates is high, we
consider that the boundary segment represents a good segmentation (i.e., represents a
segment that does separate two cells). To quantify this notion, we define the height of a
boundary segment as Hi,j = mint(Bi,j)− (mint(Ri) + mint(Rj))/2.

In Table A1, we report some statistics associated with the quantities of interest in-
troduced above. There are several key observations we can draw from this table which
confirm our qualitative (i.e., visual) assessment of the segmentation results. Most notably,
we can observe that there seem to exist outliers in terms of cell size. Moreover, we can
observe that, in some cases, we obtain a height of the boundary segment that is negative,
and by that nonsensical. These observations allow us to develop some heuristic rules to
remove erroneous segmentations.

Table A1. Statistics of some quantities of interest related to the intensity of boundary segments and
regions. These quantities allow us to define heuristics to identify erroneous segmentations computed
by the watershed algorithm. We state the characteristic and report the minimum, maximum 5%
quantile, mean, and standard deviation for the reported quantities of interest.

Characteristic 5% Quantile Min Max Mean

Watershed area 56.00 43.00 984.00 211.00 ± 138.00
Mean intensity of area 0.34 0.00 0.57 0.41 ± 0.06
Mean intensity of boundary segment 0.46 0.30 0.99 0.74 ± 0.14
Height of boundary segment 0.05 −0.09 0.62 0.33 ± 0.14

We introduce the following post-processing steps: (i) We connect small regions to their
neighbors (i.e., regions that are too small in area to realistically contain any cells). We select
the threshold for the area to be 65. This threshold is selected in accordance with the scale of
the image and the expected size of bacteria cells observed in the image data. We merge each
small region with one of its neighboring regions by removing the segment that separates the
two. To select an appropriate region for merging, we choose the region that gave the lowest
height Hi,j from all available candidate regions that share the same boundary segment.
(ii) We remove all boundary segments Bij with a height Hij that is below the 5% quantile
of all heights. (iii) We remove all incomplete regions from our segmentation. We define a
region as incomplete, if the region or the associated boundary segments touch an edge of
the image. This step is necessary since we cannot guarantee that the regions close to the
boundary contain an entire cell or only parts of a cell. Consequently, we decided to remove
them to prevent any issues with our post-analysis.

Appendix D.3. Cell Boundary Detection

The next step is to identify the boundaries of individual cells contained within a
subregion defined by the watershed algorithm. To identify the boundaries of the cells (and
by that segment the individual cells), we use the Mumford–Shah algorithm [104]. Notice
that we can execute the Mumford–Shah algorithm for each region Ri separately making
this an embarrassingly parallelizable problem. Denote the cell in each Ri region by bi. We
divide each of these regions into three different zones. The first zone is the interior of
the cell bi denoted by in(bi). The second zone is exterior of the cell (i.e., the background)
contained in the region and denoted by out(bi). The third zone is the boundary of the cell
bi, denoted by ∂bi. The Mumford–Shah algorithm represents a variational approach that
allows us to segment cartoon like images. Mathematically speaking, we model information
contained in each region Ri as piecewise-smooth functions. In our model, the associated
regions we seek to identify are given by the zones defined above—the interior and the
exterior of the cell bi. Let uint(bi) denote the mean intensity for the interior of the cell bi and
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uext(bi) denote the mean intensity for the exterior of the cell bi. With this definition, we
obtain the cost functional

costMS(int(bi), ext(bi)) = ∑
x∈ext(bi)

(u(x)− uext(bi))
2) + ∑

x∈int(bi)

(u(x)− uint(bi))
2 + ν bl(bi),

where the first two terms measure the discrepancy between the piecewise smooth function
uext and uint and the image intensities u and the third term is a penalty that measures
the length of the boundary of a particular cell bi with parameter ν > 0. Notice that our
formulation slightly deviates from the traditional definition of the Mumford–Shah cost
functional; we drop the penalty for the smoothness of the function u. The minimizer of the
cost function costMS defined above provides the sought after segmentation: the boundary,
interior, and exterior of a cell. We have implemented the minimization of the cost function
formula for each cell separately.

Appendix D.4. Convolutional Neural Networks (CNNs)

Next, we introduce our actual method for cell segmentation that can be efficiently
applied to a large dataset (as opposed to the prototype method described above to generate
the underlying training data). The biggest issue with the methodology outlined above is
that our prototype implementation is computationally costly. While we envision that an
improved implementation as well as the use of parallel computing can significantly reduce
the time to solution, we decided not to further pursue a reduction in runtime but extend
our methodology by taking advantage of existing machine learning algorithms. Replacing
the approach outlined above by CNNs allowed us to reduce the runtime by factor of 60 to
less than 3 min, without any significant loss in accuracy.

Training and Testing Data. In the absence of any ground truth data set for the
classification of rod-shape bacteria cells from movies of cell populations, we consider the
output of the Mumford–Shah algorithm introduced above as ground truth classification
for training and testing our machine learning methodology. Above, we introduced three
different zones: The interior in(bi), the exterior ext(bi), and the boundary ∂bi of a cell bi.
We reduce these three regions to two zones—the interior and exterior of a cell bi. We assign
pixels that belong to int(bi) the label 0 and pixels that belong to ext(bi) and ∂bi the label
of 1. For an image of size 200× 200, we obtain 40,000 binary labels. We limit the training
of the CNN to a subregion of size 200× 200 in the center of each preprocessed image to
avoid issues associated with mislabeled training data of cells located at the boundary of
our data. We consider X as the set of features and Y as the set of labels. We want to assign
to each pixel a label of either 0 or 1. For pixel p, we define Xp to be a 7× 7 square window
with center p located in the original image. The corresponding label Yp is denoted by C(p),
which corresponds to the class of the pixel p in the binarized image.

CNN Algorithm. The considered CNN algorithm consists of two parts, (i) the convo-
lutional auto-encoder and (ii) a fully connected multilayer perceptron (MLP). The input
for the auto-encoder is a window of 7× 7 pixels. In the first layer of the encoder, we have
a 5× 5× 4 convolution layer Conv1 with 3× 3 kernel. We feed Conv1 to a max-pooling
layer MPool2 with one stride and pooling window 2× 2. The output of MPool2 is the
input of a 3× 3× 8 convolution layer Conv3. For decoding, we have almost the same
structure in reverse order: We feed Conv3 to a 5× 5× 4 deconvolution with 3× 3 kernel.
Subsequently, we feed the output of this layer to a 7× 7× 1 deconvolution with 3× 3 kernel.
The decoder’s output is a window of 7× 7 pixels. We compare this output with the input
window (since it is an auto-encoder, features and labels are the same) by using the mean
square error as a cost function. We train the auto-encoder for all training sets using a
mini-batch gradient descent. When the training is finished, we freeze the weights for Conv1
and Conv3.

After training the auto-encoder and freezing the weights, we feed X as the input to
Conv1 and obtain the output of Conv3 denoted by X̂. In the next step, we train an MLP
with features X̂ and labels Y. We flatten X̂, which is a 3× 3× 8 matrix to a vector of size
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72× 1, called FCL4. FCL4 is fully connected to the hidden layer HID5 with 10 nodes. We
use ReLu as a nonlinear function for HID5. We connect HID5 to the output layer OUT6,
which possess two nodes for the two classes 0 and 1. We use a softmax function to find two
probabilistic outputs p0 and p1 = 1− p0 for related classes. We use maximum-entropy as a
cost function. We train the MLP for training set of (X̂, Y) with mini-batch gradient descent.

We have trained the model with two images of size 200× 200 pixels; the training set is
80,000 7× 7 images. We train the model for 100 epochs. The accuracy of the model for the
image is 93%. The confusion matrix is shown in Table A2. Based on this confusion matrix,
we can observe that the proposed methodology can predict the pixels located in the interior
of a cell quite well. However, we can also observe that there is a slightly lower accuracy for
the pixels outside the cells. This can be probably explained by the fact that the data sets are
tightly packed with cells so that we have available more observations of foreground pixels
(interior of cells) than pixels that belong to the background.

Table A2. Confusion matrix for the CNN.

0 1
0 0.97 0.03
1 0.11 0.89
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11. Kim, J.K.; Chen, Y.; Hirning, A.J.; Alnahhas, R.N.; Josić, K.; Bennett, M.R. Long-range spatio-temporal coordination of gene
expression in synthetic microbial consortia. Nat. Chem. Biol. 2019, 15, 1102–1109. [CrossRef]

12. Winkle, J.; Igoshin, O.A.; Bennett, M.R.; Josic, K.; Ott, W. Modeling mechanical interactions in growing populations of rod-shaped
bacteria. Phys. Biol. 2017, 14, 055001. [CrossRef] [PubMed]

13. Carpenter, A.E.; Jones, T.R.; Lamprecht, M.R.; Clarke, C.; Kang, I.H.; Friman, O.; Guertin, D.A.; Chang, J.H.; Lindquist, R.A.;
Moffat, J.; et al. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006, 7, R100.
[CrossRef] [PubMed]

14. Kamentsky, L.; Jones, T.R.; Fraser, A.; Bray, M.; Logan, D.; Madden, K.; Ljosa, V.; Rueden, C.; Harris, G.B.; Eliceiri, K.; et al.
Improved structure, function, and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics
2011, 27, 1179–1180. [CrossRef]

15. McQuin, C.; Goodman, A.; Chernyshev, V.; Kamentsky, L.; Cimini, B.A.; Karhohs, K.W.; Doan, M.; Ding, L.; Rafelski, S.M.;
Thirstrup, D.; et al. CellProfiler 3.0: Next,-generation image processing for biology. PLoS Biol. 2018, 16, e2005970. [CrossRef]

16. Alnahhas, R.N.; Sadeghpour, M.; Chen, Y.; Frey, A.A.; Ott, W.; Josić, K.; Bennett, M.R. Majority sensing in synthetic microbial
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Abstract: In this paper, we propose a method for semi-supervised image segmentation based
on geometric active contours. The main novelty of the proposed method is the initialization of
the segmentation process, which is performed with a polynomial approximation of a user defined
initialization (for instance, a set of points or a curve to be interpolated). This work is related to many
potential applications: the geometric conditions can be useful to improve the quality the segmentation
process in medicine and geophysics when it is required (weak contrast of the image, missing parts in
the image, non-continuous contour. . . ). We compare our method to other segmentation algorithms,
and we give experimental results related to several medical and geophysical applications.
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1. Introduction

The problem of segmenting an image into its significant components has been stud-
ied for over 30 years in computers science, applied mathematics and more generally in
computer vision.

Recently, from convolutional neural networks (see Fukushima [1], Waibel et al. [2], and
LeCun et al. [3], among others. . . ) to recurrent neural networks (Hochreiter and Schmidhu-
ber [4]), encoder–decoders (Badrinarayanan et al. [5]), or generative adversarial networks
(Goodfellow et al. [6]), deep learning based techniques have achieved huge successes in the
field of artificial intelligence and image segmentation (see [7] for a recent survey). These
approaches leads to excellent results, including in medical applications (see for example
Fantazzini et al. [8]). However, in general, the performance heavily depends on labeled data,
and this point is a main difficulty on several applications when lacking labeled data such
as in many medical and geophysical applications. The data augmentation is possible [9],
but it is often complicated, and requires more CPU/GPU time than other segmentation
techniques based on energy minimization or variational approaches (Kass et al. [10], Chand
and Vese [11], Mumford and Shah [12], Vese and Le Guyader [13]. . . ) or geometrical ones
(fast marching methods, see Sethian [14] or Forcadel et al. [15]).

In this work, we focus on a modeling based on a variational approach: it basically
consists of evolving an initial contour subject to constraints towards the boundary of the
object to be detected. This deformation is done by minimizing a functional depending on
the curve and defined so that a local minimum is obtained at the boundary of the object.
This energy-like functional minimization problem has led to many research works in the
last 25 years. Caselles, Kimmel and Sapiro [16] have shown that by setting one of the
regularization parameters to zero in the classical active contour model, one gets a problem
equivalent to finding a geodesic curve in a Riemann space whose metric depends on the
image contents. The issue was then no longer seen as an energy-like minimization problem
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but as a curve evolution one. Let us note that this approach is very suitable to our problems,
and it could be possible to use deep learning (DL) based algorithm (as used by Le Guyader
et al. [17]), but the a priori conditions are complicated to integrate in such DL models (and
such DL models require a lot of hardware, much more that our proposed algorithm).

An edge can be viewed as the locus of connected points for which the image gradient
varies abruptly. However, when data acquisition cannot be performed in an optimal manner
(e.g., liver in medical imaging), this criterion can no longer be applied. In many applications,
image data are missing or of poor quality, and occultation phenomena can often occur: two
objects that are adjacent to one another can own intrinsic homogeneous textures so that it is
hard to clearly identify the interface between them. It is then relevant to introduce geometric
constraints in the modeling to help the segmentation process. In [18–21], the authors
introduce the concept of a finite set of points to be interpolated during the segmentation
process (like in Gout and Le Guyader [20]) or a variational approach to integrate higher-
level shape priors into level set based segmentation method (see Cremers et al. [18]).
However, in some applications (in geophysics or in several medical applications), this is
not sufficient and adding new a priori conditions to be satisfied is required both to improve
the segmentation process and also to simplify the initial condition (in [20], the method
requires a priori conditions plus an initial guess to start the segmentation process, which
constitutes a drawback of their algorithm).

In this work, we propose to consider a curve (or a set of curves) belonging to the
searched contour of interest, integrated as an initial condition to be satisfied by the final
segmentation contour obtained at the end of the segmentation process. This is an added
value considering previous models (like [19]), where it was necessary to both give an initial
condition and geometric conditions. In order to define this curve, it is possible to use
Dm-spline functions (see Gout et al. [22]) obtained by minimizing an energy functional on
a suitable Hilbert space (and so a set of points given by the user is sufficient to create such
geometric conditions).

In this paper, we generalize and improve the approach of Gout and Le Guyader [20]:
we combine the curve evolution approach developed by Caselles, Kimmel and Sapiro [16],
with a geometrical approach consisting in a curve given by the user (a set of points can
also be considered like in Gout and Le Guyader [20]), and the initial condition is then
automatically generated (from the geometric conditions).

In Section 2, we give the modeling of our problem, based on a level set method
(LSM) approach (Osher and Sethian [23], see also [24]). Using Euler-Lagrange variational
principle, we obtain the PDE satisfied by the 3D LSM function Φ and the corresponding
evolution problem is then given. The existence and uniqueness of the viscosity solution of
the associated parabolic problem is also established: we give the main steps of the proof
(based on Caselles et al. [16] and Gout and Le Guyader [20]). The discretization of the
problem is tackled in Section 3, and is solved using an Additive Operator Splitting scheme
(Weickert and Kühne [25]). Comparisons and experimental results with the proposed
approach are given for several medical and geophysical imaging applications.

2. Mathematical Modelling

The well-known level set approach (see Osher and Sethian [23]) consists in considering
the evolving active contour Γ = Γ(t) as the zero level set of a function Φ, which is a Lipschitz
continuous function defined by:{

Φ : Ω× [0,+∞[ −→ IR,
(x, t) �−→ Φ(x, t),

(1)

such that:

Γ(t) = {x ∈ Ω | Φ(x, t) = 0}, (2)

and Φ(·, t) takes opposite signs on each side of Γ(t). This level set approach enables us to
re-write the energy in terms of Φ:
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E(Φ) =
∫

Ω
g(|∇I(x)|)|∇H(Φ(x))|dx, (3)

where H is the one-dimensional Heaviside function and where g(s) =
1

1 + s2 . We formulate

the shape optimization problem as follows: “Find a shape such that the energy E is
minimized”: {

Search for Φ such that:
E(Φ) = min

ξ
E(ξ). (4)

The functional E being not Gâteaux-differentiable, we regularize the problem by
considering slightly regularized versions (C1 or C2 regularization) of the functions H and δ
(the one dimensional Dirac measure) denoted, respectively, by Hε and δε, and considering
that δε = H′ε, the associated regularized functional Eε becomes:

Eε(Φ) =
∫

Ω
g(|∇I(x)|)δε(Φ(x))|∇Φ(x)|dx, (5)

where: ∫
Ω

δε(Φ(x))|∇Φ(x)|dx (6)

is an approximation of the length of the zero level set of Φ.

2.1. A Priori Conditions

We now propose to include a priori condition in the process. We consider the a priori
condition as a smooth arc curve C given by the user. The curve C is parametrised by
c ∈ C1([0, 1], Ω). By construction, we impose that the curve C belongs to the level set
{Φ0 = 0}. The first step consists in constructing the initial condition from the geometric
conditions given by the user. We have chosen this option, because it permits to avoid the
stage of giving an initial condition plus the a priori conditions.

The first step consists in closing the arc to get a closed curve. We introduce a point
a ∈ Ω and a vector v = (v1, v2) ∈ IR2. It is easy to construct two (unique) polynomials
curves C1 and C2 ⊂ Ω that are parameterized using c1 and c2 ∈ P3([0, 1], Ω) such that:

c(1) = c1(0), c1(1) = c2(0) = a, c2(1) = c(0),
−c′(1) = c′1(0), c′1(1) = −c′2(0) = v, c′2(1) = −c′(0).

(7)

We set Γ0 = C ∪ C1 ∪ C2, and we consider Φ0 as the signed distance to Γ0 :

Φ0(x) =
{

d(x, Γ0) if x ∈ Int (Γ0),
−d(x, Γ0) otherwise.

(8)

To define the energy EC, we also introduce the mask η: Ω→IR:

η(x) = exp
(
−d(x, C)2

σ

)
: ∀x ∈ Ω, (9)

where σ ∈IR+, is a positive parameter which controls the width of the mask. Then, we can
define the following energy functional:

EC(Φ) =
∫

Ω
η(x)(Φ(x)−Φ0(x))2dx. (10)

The goal is to minimize the L2 norm between Φ and Φ0: we impose the contour to be
close to Γ0. The mask permits to impose such influence in (and only in) a local neighborhood
of C.

2.2. Minimization Problem and Evolution Equation

The modeling of our problem consists in minimizing the energy:

99



Math. Comput. Appl. 2022, 27, 26

E(Φ) = Eε(Φ) +
α

2
EC(Φ) (11)

with α > 0.
We now give the evolution problem. We minimize Eε with respect to Φ and deduce

the associated Euler–Lagrange equation for Φ:

E′(Φ) = δε(Φ)div
(

g(|∇I|) ∇Φ
|∇Φ|

)
+ αη(Φ−Φ0) (12)

with the boundary conditions (homogeneous Neumann):

δε(Φ)

|∇Φ|
∂Φ
∂ν |∂Ω

= 0, (13)

ν denoting the exterior normal to the boundary of Ω.

When a local minimum is reached, then the quantity
∂Φ
∂t

tends to 0, which means that
the steady state is reached. A rescaling can be made so that the motion is applied to all
level sets by replacing δε by |∇Φ| (It makes the flow independent of the scaling of Φ).

Let us also note that the speed of convergence of the model can be increased by
adding the component βg(|∇I|)|∇Φ| in the evolution equation, β being a constant. This
component can be seen as an area constraint. An analogy with the Balloon model developed
by Cohen [26] can be made: this constant motion term prevents the curve from stopping on
a non-significative local minimum and is also of importance when initializing the process
with a curve inside the object to be detected.

Thus, the proposed parabolic problem with the associated boundary conditions
∂Φ
∂ν

= 0
can be written: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Φ(x, 0) = Φ0(x),
∂Φ
∂t

= |∇Φ|
[

div(g(|∇I|) ∇Φ
|∇Φ| )

]
+ αη(Φ−Φ0)

+βg(|∇I|)|∇Φ|,
∂Φ
∂ν

= 0 on ∂Ω.

(14)

2.3. Existence, Uniqueness of the Solution

This section is a theoretical part showing the existence and uniqueness of the solution
of our segmentation model. We can show the existence and uniqueness of a viscosity
solution to the evolution problem (14). We rewrite our problem as:{

ut + F̃(t, x, u, Du, D2u) = 0 in ]0, T[×Ω
B(x, Du) = 0 in ]0, T[×∂Ω,

(15)

where, for (t, x, u, p, X) ∈ [0, T]× Ω̄× IR2 × S2:

F̃(t, x, u, p, X) = F(t, x, p, X) + g(x, u), B(x, p) = p ·�n, (16)

and:

F(t, x, p, X) = −trace
(

g(|∇I(x)|)
(

I − p⊗p
|p|2

)
X
)

−〈∇(g(|∇I(x)|)), p〉

g(x, u) = αη(x)(u−Φ0(x)).

(17)

We assume that Ω is a bounded domain in IRn with a C1 boundary. Under the following
conditions, the Equation (15) has a unique viscosity solution.
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1. F̃ ∈ C([0, T] × Ω̄ × IR × (IRn − {0}) × Sn), where Sn denotes the space of n × n
symmetric matrices equipped with the usual ordering.

2. There exists a constant γ ∈ IR such that for each:

(t, x, p, X) ∈ [0, T]× Ω̄× (IRn − {0})× Sn,

the function:

u �→ F̃(t, x, u, p, X)− γu (18)

is non-decreasing on IR.
3. For each R > 0, there exists a continuous function wR : [0, ∞[−→ [0, ∞[ satisfying

wR(0) = 0 such that if X, Y ∈ Sn and μ1, μ2 ∈ [0, ∞[ satisfy:(
X 0
0 Y

)
≤ μ1

(
I −I
−I I

)
+ μ2

(
I 0
0 I

)
(19)

then:

F̃(t, x, u, p, X)− F̃(t, y, u, q,−Y)
≥ −wR(μ1(|x− y|2 + ρ(p, q)2)
+μ2 + |p− q|+ |x− y|(1 + max(|p|, |q|))),

(20)

for all t ∈ [0, T], x, y ∈ Ω, u ∈ IR with |u| ≤ R and p, q ∈ IRn\{0}.
4. B ∈ C(IRn × IRn)

⋂
C1,1(IRn × (IRn\{0})).

5. For each x ∈ IRn, the function p �→ B(x, p) is positively homogeneous of degree one
in p, i.e., B(x, λp) = λB(x, p), ∀λ ≥ 0, p ∈ IRn\{0}.

6. There exists a positive constant θ such that < ν(z), DpB(z, p) >≥ θ for all z ∈ ∂Ω and
p ∈ IRn − {0}. Here, ν(z) denotes the unit outer normal vector of Ω at z ∈ ∂Ω.

All those conditions are clearly satisfied for F̃ = F, and B (see for instance [20]). We
here have to extend the proof to F̃ = F + g.

1. Thanks to [20], we already know that F ∈ C([0, T]× Ω̄× (IRn \ {0})× Sn). Since,
η, Φ0 ∈ C(Ω̄), it is clear that g ∈ C(Ω̄× IR) and therefore F̃ ∈ C([0, T]× Ω̄× IR×
(IRn \ {0})× Sn.

2. Note that since F does not depend on u. It suffices to show that u→ g(x, u)− γu is
non-decreasing on IR. On can easily see that the condition is satisfied for all x ∈ Ω̄ as
soon as γ < 0.

3. Since g does not depend on X, it suffices to check the condition on F. We refer the
reader to Gout and Le Guyader [20] for the proof.

The proof for conditions 4–6 are basic, and can be found for instance in [20]. Therefore,
all the conditions are satisfied and the evolution problem (14) has a unique viscosity solution.

3. Experimental Results

For the discretization scheme, we use the additive operator splitting scheme (AOS)
proposed by Weickert and Kuhne ([25], see also [20]). This corresponding algorithm
requires a computational cost linear in M × N (size of the unknown vector Φ) at each
step. This scheme is well-suited to our problem that differs only in the introduction of the
function η(x).

We use the method proposed in this paper knowing that:

– Following the considered application, the initial condition can be a set of points, or
a curve (then can be constructed from a set points using a basic spline function (see
Gout et al. [22])).

– The stop criterion can be either a preset number of iterations or a check that the
solution is stationary.

– The distance is normalized in order to have the same weight between a priori informa-
tion of the image and geometrical constraints.
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– The discretization is made using finite differences as done in Chan and Vese [11].
– In the numerical examples, we take δt = 0.1, the regularization term is equal to 0.8.

To illustrate the interest of our approach, we start with a simple test case, using a three-
band image. Then, we run the method on blood vessel image. We obtain the following
results. Without a priori condition, the segmentation process will of course give the entire
white band as a result. This is the interest of adding such a priori condition to enforce the
contour to arbitrary stop following the choice of the user.

We can see that the final contour correctly takes into account the curve given by the
user imposing a constraint independent of the pixel values of the images, and correctly
segment the white zone.

Of course, our approach allows us (to help) the segmentation process on “complicated”
images, when ground truth informations are required like in Figure 1 or in many other
cases, especially in geophysical or medical imaging. In Section 3.1, we illustrate the added
value brought by our approach considering the initial guess choice improvement. Two
examples are given to show that, compared to Gout et al. method [19], the approach
given in this paper is much faster to get the same result since the initial guess is (strongly)
optimized.

In Section 3.2, we propose to compare our approach with well-known algorithms
(Chan-Vese [11], U-Net [27]).

In Sections 3.3 and 3.4, we give experimental results in medicine and geophysics.

Figure 1. Three-band image (top left), user-defined constraint (top right), initial contour automati-
cally defined by our approach (bottom left) and final contour (bottom right).

3.1. Impact of the Initial Guess on the Segmentation Process

In this part, we focus on the added value brought by the automatic initial guess we
propose, obtained from the geometrical condition given by the user. We compare our
approach to the one introduced by Gout, Le Guyader and Vese [19], we take the same
geometrical conditions, and then compare the number iteration to get the same final contour.
The comparison is relevant because the segmentation algorithm is analogous in the two
considered methods. In [19], note that we have to add a closed contour to the geometric
conditions to start the segmentation process, while our proposed approach leads to an
automatic initial guess (obtained from the geometric conditions given by the user). In
the following two numerical examples, we take exactly the same interpolation conditions
(3 points).

In Figures 2–4, we can see that our approach requires 5 times less iterations.
We repeat the same process in the following example (Figures 5–7). The initial contour

for Gout et al. [19] algorithm is here chosen outside the region of interest. Of course, we
take exactly the same interpolation conditions (3 points) in both cases.

In the example given on Figures 5–7, we can see that our approach requires 30 times
less iterations.
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In this subsection, we illustrate the gain of the automatic generated initial guess we
propose from the geometric conditions (see Table 1).

Figure 2. We use Gout et al. [19] algorithm. The initial guess is given inside the region of interest, it
is defined by Ψ = (X − 39)2 + (Y − 47)2 − 182, the time step is equal to 0.6, space step is equal to
0.1, distance is computed using the fast marching method (Sethian [14]) and the regularization term
is equal to 0.8. Top left: Interpolation condition and initial closed contour. Top right: iteration 120.
Bottom left: Iteration 240. Bottom right: Iteration 420.

Figure 3. Final result (iteration 420), with the interpolation conditions (3 points) using Gout et al.
algorithm [19].

Figure 4. Using our proposed approach, the process does not require an initial guess, the interpolation
conditions automatically initiate the process. Left: interpolation conditions. Right: final result after
80 iterations.

Table 1. Gain of the automatic generated initial guess.

Method Example 1 Example 2

Gout et al. [19] 420 iterations 260 iterations
Our method 80 iterations 8 iterations
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Figure 5. We use Gout et al. [19] algorithm. The initial guess is given outside the region of interest, it

is defined by Ψ =
(X− 30)2

152 +
(Y− 30.5)2

232 − 1, the time step is equal to 0.3, space step is equal to

0.1, distance is computed using the fast marching method (Sethian [14]) and the regularization term
is equal to 0.8. Top left: Interpolation condition and initial guess. Top right: iteration 80. Bottom left:
Iteration 100. Bottom right: Iteration 160.

Figure 6. Final result (iteration 260), with the interpolation conditions (3 points) using Gout et al.
algorithm [19].

Figure 7. Left: interpolation conditions. Right: final result after 8 iterations using our proposed
approach.

To get the same final contour, our method clearly requires much less iterations. This
result is analogous on all the tests we have done, especially when a closed contour is chosen
outside the region of interest (in [19]), in this case, the total number of iterations is reduced
by a factor of 5 to 60. If the initial contour in [19] is chosen inside the region of interest,
the total number of iterations is reduced by a factor of 4 to 20. The only cases where the
number of iterations is equivalent between the two different methods are when we choose
as initial guess in [19] a closed curve very close to the final result and interpolating at least
2 given interpolation conditions, this is of course a major constraint.

3.2. Quantitative Performance

We use the BraTS Dataset [28], which was collected and shared by the MICCAI Brain
Tumor Segmentation Challenge (see [28] for more details) several years ago. We use 270 MR
scans, each with four MIR sequences: T1-weighted (native image, sagittal or axial 2D acqui-
sitions with 1–6 mm slice thickness), T1-weighted with contrast-enhanced (Gadolinium)
image, T2-weighted image (axial 2D acquisition, with 2–6 mm slice thickness), and FLAIR
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(T2-weighted FLAIR image, axial, coronal, or sagittal 2D acquisitions, 2–6 mm slice thick-
ness) (see [28] for more details). The training data have the size 240× 240× 155 pixels,
and have the manual segmentation labels for many types of brain tumors. We trained the
network to generate segmentation masks corresponding to the center slice of the input. We
used the well-known Adam optimization method [29]. We trained the deep network using
238 training data, we set the initial learning rate as 10−4, and multiplied by 0.5 after every
20 epochs. Using a single GPU, we trained the models with batch size 4 for 40 epochs.

In order to evaluate the performance of our method, we give comparisons between
several algorithms. We here recall several metrics:

– The Jaccard index [30], or Intersection over Union (IoU), is a commonly used metric in
segmentation. It is defined as the area of intersection between the predicted segmenta-
tion map and the ground truth, divided by the area of union between the predicted
segmentation map and the ground truth:

IoU = J(G, P) =
|G ∩ P|
|G ∪ P| , (21)

where G is the ground truth and P denotes the predicted segmentation maps. It ranges
between 0 and 1. Mean-IoU (mIoU) is defined as the average IoU over all classes. It is
widely used in reporting the performance of segmentation algorithms.

– The Dice coefficient (Dice) is a popular metric for image segmentation, especially in
medical imaging. This coefficient can be defined as twice the overlap area of predicted
and ground-truth maps, divided by the total number of pixels in both images:

Dice =
2|G ∩ P|
|G|+ |P| (22)

When applied to binary segmentation maps, and referring to the foreground as a
positive class, the Dice coefficient is essentially identical to the F1 score:

Dice =
2TP

2TP + FP + FN
= F1, (23)

(The F1 score, which is defined as the harmonic mean of precision (Prec) and recall

(Rec): F1=
2Prec Rec
Prec + Rec

, where Prec =
TP

TP + FP
and Rec =

TP
TP + FN

.), where TP refers

to the true positive fraction, FP refers to the false positive fraction, and FN refers to
the false negative fraction.

– The Hausdorff distance (Hd) evaluates the quality of the segmentation boundaries by
computing the maximum distance between the prediction and its ground truth:

Hd = max

{
sup
p∈∂P

inf
z∈∂G
‖p− z‖2, sup

z∈∂G
inf

p∈∂P
‖p− z‖2

}
(24)

where ∂P and ∂G are the surface point sets of P (segmentation prediction) and G
(ground truth).

Of course, a large Dice coefficient or a small HD means an accurate segmentation
result. Figure 8 shows several numerical example (here, we ramdomly sampled 33% of
BRATS labeled dataset). In Figure 8, we give the dice score obtained for U-Net and our
proposed algorithm. We can see that our approach clearly gives better results.

We also compare with the U-net algorithm ([27], see also [31]), tables show the evalu-
ation results, please note that we have suppressed the best and worst 10% of the results,
and that for our proposed approach, we have considered only 2 to 4 points as geometric
conditions (the initial guess -curve- is automatically constructed from these points), all that
leads to make the global results quite homogeneous. We also compare with the Chan-Vese
algorithm [11]: in this case, the initial condition is a closed contour located inside the region
of interest.

If we use 100% of the BraTS dataset, we obtain the Table 2.
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Figure 8. Brain Tumor Segmentation (using BRATS dataset [28]). Several results from our method
using labeled data on the BRATS dataset [28]. The tumor is underlined in yellow. First row: center
slices of input. Second row: initial conditions for our algorithm. Third row: ground-truth labels.
Fourth row: results from the supervised U-Nets learning method introduced by Ronnenberger
et al. [27]. Fifth row: results from our proposed method. The scores in the bottom of each results
denote Dice score.
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Table 2. Accuracies of segmentations models on a third of labeled data from BraTS Dataset [28].
We use a Nvidia GeForce RTX 2080 Ti 11G Turbo Edition (Boost frequence: 1545 MHz, GPU memory:
11 GB).

Method mIoU Dice Hd GPU Time

U-Net [27] 78.3 87.7 43.5 4.45
Chan-Vese [11] 77.6 88.1 41.5 2.02
Our method 79.6 89.1 39.5 2.12

We see that the GPU time is clearly better with our algorithm (and the Chan-Vese
one too). The quality is globally equivalent: a little better with our algorithm when not
considering the entire database, and equivalent if not. This is an important point because it
validates our algorithm when we compare with MR scans segmented with deep learning
algorithms with few labeled data.

3.3. Applications to Medical Imaging

Here, we apply our method to 2D medical images, the goal being to outline the
cross-sectional area of a great thoracic vessel, namely the main pulmonary artery, in order
to non-invasively assess pulmonary arterial hypertension. Figure 9 refers to a slice set
perpendicularly to the MPA axis (arrow) of a 78 years old patient, who was suspected of
pulmonary arterial hypertension, suffering from breathlessness. The presented magnitude
image was acquired from a velocity encoded sequence (Venc = 1.5 m/s), during a 5 min
time duration, with a 30 ms temporal resolution (1T Magnetom Expert imager; Siemens;
Germany). The image quality is moderate, and in particular the vessel wall is irregular
around the arrow, that is, not anatomically possible, and therefore an interpolation in the
outlining by the physician is needed.

Figure 9. Example of an image sequence (courtesy of CHU Bordeaux, France). The arrow shows the
pulmonary artery to segment.
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Since the lack of annotated data is one of the most common limitations encountered in
many deep learning approaches like the ones we will study in this subsection, deep leaning
approaches are not suitable (at least for now!) for our considered applications.

An example of the segmentation of a pulmonary artery with a curve to interpolate is
given in Figure 10. A part of this artery is difficult to segment since its bottom left is always
located in a blurred zone.

Figure 10. Blood vessel image, user-defined constraint (top right), initial contour (bottom left)
and final (bottom right) contours. Let us note that we have successfully segmented the complete
image sequence.

Let us note that the MPA CSA variations versus time, throughout a cardiac cycle,
obtained from the present automatic segmentation method are in agreement with previ-
ous results obtained from a manual outlining (Hôpital of Bordeaux, France). Moreover,
the present method enables us to get a reliable assessment of the systolic-diastolic differ-
ence in the vessel CSA, which should lead to a further improvement in the accuracy of a
non-invasive blood pressure estimation (using well-known methods, see [32,33]). In sev-
eral medical applications, let us note that a registration process must be added to the
segmentation process (see [34–37] for more details).

3.4. Applications to Geophysical Imaging

We now apply our algorithm to the segmentation of a non-continuous layer on a
geophysical dataset (Figure 11 (right)) extracted from a 3D dataset (Figure 11 (left)). This is
a complicated image to segment since there is a vertical fault (see Figure 12). As a priori
condition, we here consider a set of point to interpolate (instead of a curve) in order to
help the segmentation process (Figure 12). The algorithm starts with a polygonal line
interpolating the set of points (to interpolate) as an initial condition, and then segment the
image until the edge(s) of the image. Here, the final contour is a segment and not a closed
curve, this is of great interest when one wants to track faults or cracks in segmentation
processes.

The obtained result (Figure 13) has been validated by geophysicians, but the next step
requires an algorithm for 3D applications in order to segment 3D geophysical datasets. We
are also in the process of creating a free labeled geophysical dataset, in order to test deep
learning techniques on these images.
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Figure 11. Left: 3D seismic dataset (courtesy of TotalEnergies, Pau, France). Two strong and
continuous reflectors (Horizon A and Horizon B) appear. Right: 2D image (extracted from the 3D
seismic dataset) with vertical faults and layers. Considering the complexity of such dataset, it is
impossible to segment it without a priori given conditions. The segmentation process consists in
finding layers and/or faults.

Figure 12. Left: The red zone underlines the vertical fault (with dotted segments). Right: As a
geometric conditions, we consider a set of points given by the user.

Figure 13. Final result: we can see that the searched layer is correctly segmented. On this specific
dataset, the final contour has to reach the edge of the image: the contour goes beyond the last point
to interpolate (right side) to join the edge of the image.

4. Conclusions

We have proposed a method to segment medical or geophysical images with a priori
conditions. The efficiency of the method has been shown on 2D images, knowing that such
images are difficult to segment with usual approaches since the searched contour is not
continuous (geophysical dataset) or when the zone to segment is blurred (medical images).

Compared to Gout et al. [19], the added value brought by our proposed method
(automatic initial guess) is materialized by a total number of iterations reduced by a factor
of 4 to 60.
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The GPU time is also a key point to underline about our algorithm, much lower
than deep learning based approaches. About the sensitivity of the model, especially for
geophysical data, it is not possible to segment correctly without a precise choice of the
interpolation conditions: the choice of such condition strongly impacts the final result,
this point is less obvious in medical applications where the choice of the initial condition
improves the result only on very noisy areas and/or with a blurred edge, otherwise,
the result (whatever the initial condition) is very close to classic algorithms (Chan Vese
algorithm for example). The implementation of a 3D code is a work in progress, the main
problem for a 3D segmentation process consists in choosing the initial (geometric) condition
(a surface, a curve and/or points), which is a complicated task on complex 3D images
(mainly because there are 3D data visualization difficulties “to see inside” the 3D dataset,
especially in geophysics to give the initial condition—see Figure 14)—the mathematical
results remain valid in 3D.

Figure 14. Top: Another 3D view of the 3D geological dataset of Figure 5. Bottom: From the
3D dataset, we use a set of points (well data given by geologists), and each surface/layer is then
constructed with a Dm-spline operator (see [22] for more details on Dm-spline surface approximation).
We here automatically construct 7 surfaces that will be considered as an initial condition. Next
step consists in the 3D segmentation process from these initial conditions—this last part is a work
in progress.
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Abstract: Many computer simulation models of the cardiovascular system, of varying complexity
and objectives, have been proposed in physiological science. Every model needs to be parameterized
and evaluated individually. We conducted a porcine animal model to parameterize and evaluate
a computer simulation model, recently proposed by our group. The results of an animal model,
on thirteen healthy pigs, were used to generate consistent parameterization data for the full heart
computer simulation model. To evaluate the simulation model, differences between the resulting
simulation output and original animal data were analysed. The input parameters of the animal model,
used to individualize the computer simulation, showed high interindividual variability (range of
coefficient of variation: 10.1–84.5%), which was well-reflected by the resulting haemodynamic output
parameters of the simulation (range of coefficient of variation: 12.6–45.7%). The overall bias between
the animal and simulation model was low (mean: −3.24%, range: from −26.5 to 20.1%). The simula-
tion model used in this study was able to adapt to the high physiological variability in the animal
model. Possible reasons for the remaining differences between the animal and simulation model
might be a static measurement error, unconsidered inaccuracies within the model, or unconsidered
physiological interactions.

Keywords: computer simulation; cardiovascular system; parameterization; validation; animal model

1. Introduction

Computer simulation models of the cardiovascular system are increasingly used in
the development and improvement of ventricular assist devices (VADs) and VAD control
algorithms [1–3], as well as in many other fields of cardiovascular research. With an in-
creasing accuracy of the computer simulation models, clinical use is also imaginable but
demands the possibility to highly individualize the used models. Examples of possible
areas of application are the planning of high-risk operations, such as the correction of
congenital heart defects or implantation of biomedical devices (e.g., valves or ventricular
assist devices), to predict the cardiovascular reserve of the patient or response to a certain
drug therapy. Since the 1960s, when computer simulation of the cardiovascular system
started [4,5], many different simulation models have been developed. In addition to the dif-
ferent strategies to implement basic physiological conditions, the various models also differ
in complexity and focus on specific physiological phenomena. Generally, three different
types of models are distinguishable: myocardial activity can be modelled by a time-varying
elastance curve [3,6–12], a sarcomere model [13–15], or isovolumetric contractions [16,17].
In the first case, emphasis is placed on the correct simulation of the starling curve; in
the second case, the interaction between sarcomere and ventricular cavity mechanics is
addressed; in the third case, the afterload dependency of the heart is stressed.
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The arterial system has also been simulated in many ways. Lumped parameter models
(“Windkessel models”) [3,18] can be distinguished from tube [14,19–21] and anatomically-
based distributed models [22–25]. Another important difference between the described
models is the integration of different physiological regulatory mechanisms. Some models
focus on the exact simulation of physiological autoregulatory mechanisms, e.g., the barore-
ceptor reflex [8]. In contrast, other models neglect this mechanism and emphasize further
mechanisms, such as left and right ventricular interaction [11,14], coronary blood flow [15],
the venous return curve [12], or cardiopulmonary interaction [26].

It is difficult to determine the most accurate and effective way to simulate specific
processes in the cardiovascular system. Every simulation model needs to be evaluated
individually, has its own advantages and disadvantages, and probably shows different
behaviour under different circumstances. Scientists working with these models need
to know the differences, possible flaws, and error susceptibility of the models they are
working with.

We wanted to assess a full heart computer simulation model, which was previously
described by our group [3,27], especially with regard to its ability to be adapted to indi-
vidual hemodynamic settings. We, therefore, conducted a porcine animal study and used
the data as the basis to parameterize the model. Then, we compared the results of the
animal study to the simulative results. In a third step, we varied the input parameters to
the simulation, in order to determine by which parameters the results were affected the
most and must, therefore, be especially critical to time-varying elastance simulation models
of the cardiovascular system.

2. Materials and Methods

2.1. Animal Model
2.1.1. Induction and Maintenance of Anaesthesia

All procedures described below are compliant with the Guide for the Care and Use of
Laboratory Animals [28] and reviewed and approved by the local animal care committee
and governmental animal care office (No. 84-02.04.2013. A476 and 8.87-50.10.45.08.257; Lan-
desamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Recklinghausen,
Germany). Thirteen healthy pigs (German landrace, 46.26 kg ± 4.46 kg bodyweight [BW])
received premedication by intramuscular injection of 4 mg/kg azaperone (Elanco Tierge-
sundheit AG, Basel, Switzerland) and were anaesthetized by intravenous injection of
3 mg/kg BW propofol (Hexal AG, Holzkirchen, Germany) for oral intubation. Anaesthesia
was maintained by the insufflation of 0.9–1.2 vol% isoflurane and continuous application
of 6–8 μg/kg BW/h fentanyl (Ratiopharm GmbH, Ulm, Germany). Normoventilation
was achieved by the application of a tidal volume of 8–10 mL/kg BW and monitored by
expiratory CO2 measurement (PaCO2 36–42 mmHg) and regular arterial blood gas analysis.
Electrolytes and blood glucose were similarly monitored by arterial blood gas analysis
and held in a physiological range. The haematocrit was stabilized by the infusion of
6–10 mL/kg BW/h of a balanced crystalloid solution (Sterofundin Iso Braun, B.Braun AG,
Melsungen, Germany) solution and application of 500 mL of a balanced colloid solution
(Gelafundin Iso Braun) after instrumentation. The body temperature was held constant
(38 ◦C) by the use of an airflow warming blanket.

2.1.2. Surgical Instrumentation

After dissecting the neck vessels on the right side, one central venous catheter was
introduced into the right internal jugular vein, and two 12 F sheaths were introduced into
the right carotid artery. A median thoracotomy was performed, and the pericardium was
opened longitudinally. The aorta and pulmonary arteries were separated, and a perivascu-
lar ultrasound transit time flow probe (MA 20 PAX; Transonic Systems Europa, Maastricht,
The Netherlands) was positioned centrally around each vessel and connected to a flow
meter (T402-PV, Transonic Systems Europa). To measure pulmonary and aortic pressure,
a solid-state pressure sensor (CA-61000-PL, CD Leycom, Zoetemeer, The Netherlands)
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was introduced through a stab wound in the right ventricular outflow tract, with another
equal sensor through the sheath in the right carotid artery. The pressure sensors were
positioned 3–4 cm distal to the respective valves (i.e., the pulmonary and aortic valves)
and connected to a pressure interface (Sentron, CD Leycom). A multi-segment dual-field
7F conductance catheter (SPR-570-7; Millar Instruments, Houston, TX, USA) was placed
through the apex of the right ventricle along the outflow track. A second equal catheter
was introduced through the second right carotid sheath and aortic valve, with the tip
placed in the left ventricular apex. Echocardiographic imaging was performed to verify the
correct positioning of the catheter. The volume segments of the catheters were connected
to two signal processors (Sigma-5 DF, CD Leycom). To avoid electrical interferences and
for simultaneous biventricular measurements, the excitation frequency of one processor
was modified from 20 to 15 kHz. The pressure sensors of the catheters were connected to a
pressure interface (PCU-2000; Millar Instruments). Through a sheath in the right femoral
vein, a 7F balloon catheter was placed in the inferior vena cava, in order to perform a
short-term preload reduction during apnoea and constant positive end expiratory pressure
(PEEP). A schematic of the instrumentation is shown in Figure 1. After the completion of
instrumentation, the animals recovered for 30 min, with continued isoflurane and fentanyl
narcosis, in order to achieve stable blood pressure, cardiac output (CO), and normothermia.

 
Figure 1. Instrumentation of the heart with left ventricular conductance catheter, aortal pressure
sensor, aortal flow probe, pulmonary artery flow probe, femoral vein balloon catheter, pulmonary
artery pressure sensor, and right ventricular conductance catheter. Figure is a modification of figure
“Heart normal” by Eric Pierce [29]. The original figure can freely be published under CC BY-SA
license (https://en.wikipedia.org/wiki/User:Wapcaplet, accessed on 16 March 2022).

2.2. Data Acquisition and Calculations

Signals were acquired continuously, at a sampling rate of 1000 Hz, using a data
acquisition device (Powerlab, AD Instruments, Dunedin, New Zealand) and software
(LabChart, AD Instruments).

The conductance volume values were calibrated prior to the measurement of each
animal. Therefore, the volume signal was corrected by stroke volume (SV), obtained from
the aortic flow probe (slope factor α) and parallel conductance, calculated from venous
hypertonic saline injections, as described previously [30–32]. The signals were finally
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analysed off-line with custom-made software (CIRCLAB 2020; Paul Steendijk, Leiden,
The Netherlands).

Global haemodynamics were described by heart rate (HR), mean arterial pressure
(MAP), CO, SV, and ejection fraction (EF). End-systolic pressure (P_ES), volume (V_ES),
end-diastolic pressure (P_ED), and volume (V_ED) were used to describe the ventricular
dimensions. These parameters were calculated as averages over 20 s. Systolic function was
characterized by the end-systolic pressure volume relationship (ESPVR) and preload re-
cruitable stroke work (PRSW), obtained from pressure-volume loops acquired during short
preload reduction by caval occlusion during apnoea. The ESPVR is the linear regression
of the end-systolic pressure volume points and characterized by the slope, end-systolic
elastance (E_ES), and x-axis intercept (V0_ES). The PRSW is the slope of the linear re-
gression between the ventricular stroke work (SW) and end-diastolic volume (EDV). The
passive (stiffness) components of ventricular relaxation were displayed by the exponential
regression of the end-diastolic pressure volume points (end-diastolic pressure volume
relationship: EDPVR), which was characterized by the indices P0, V0, and λ.

P_ED = P0_ES ∗ (exp(λ(V_ED−V0))− 1 (1)

as described by Wang et al. [32]. We iteratively calculated the single indices of the equation.
Values from three to five consecutive recordings were averaged.

The compliant characteristics (Cs) of the Windkessel vessels were calculated by di-
viding the SV by the difference in systolic and diastolic pressure (pulse pressure [PP]),
as previously described [33]. Fourier series expressions for pressure and flow signals of
20 s duration were used to calculate systemic vascular resistance and impedance. The
impedance modulus at each frequency was calculated as the ratio between pressure and
flow moduli (amplitudes). The total resistance (Z0) and characteristic impedance (Zc) were
derived from moduli at zero frequency and an average of moduli between 2 and 15 Hz [34].

2.3. Simulation Model

An electrical analogue of the circulation model is given in Figure 2.

Figure 2. Electrical analogue of the circulation model. The single components are denoted by the
following designation. Vascular and specific resistance: R, Z. Vascular compliances: C. Venous system:
v. systemic circulatory system: _s. Pulmonary circulatory system: _p. Valves: TV, PV, MV, and AV.
Elastance function of the atria and ventricles: E. A closer description of the single components is
given in Table S1 in the supplemental materials.

116



Math. Comput. Appl. 2022, 27, 28

A three-element Windkessel model was used to describe the systemic and pulmonary
vascular systems. Each arterial system consisted of two hydraulic resistances with

QResistance(t) =
ΔPResistance(t)

Ri
(2)

and an interconnected compliancy with

PCompliancy(t) =
VCompliancy(t)

Ci
(3)

The venous system consisted of one hydraulic resistance and one connected compli-
ance only.

The pulsation of the heart chambers and atria was modelled as a nonlinear time-
varying elastance, where the ventricle volume determined the corresponding time-varying
pressures P(t) = f(V(t)−V0), with unstressed volumes V0. The time varying-elastance
function used in our model was based on the work of Chung et al. [35], whereas concrete
values were obtained from previously published animal data [36]. The filling and ejection
phases were characterized by the exponential EDPVR

P_ED(V) = P0_ESλ(V−V0_ED) − 1 (4)

and linear ESPVR
P_ES(V) = E_ES·V + V0_ES (5)

where E_ES is the slope, and V0_ES is the x-axis offset of the specific relationship.
On this basis, the instantaneous pressure could be determined by

P(V, t) = ϕ(t)·P_ES(V) + (1−ϕ(t))·P_ED(V). (6)

The activation function, ϕ(t), triggered the systole and ran periodically between
0 and 1. One period of the activation function was defined as the sum of exponential
functions

Φ(t) = ∑5
i=1 = Ai·e−(

t−Bi
Ci

)
2

. (7)

The parameters Ai, Bi, and Ci were obtained using experimental data, as described by
Gesenhues et al. [17]. This function was used with a normalized time signal

tN = (t− kD)·HR/60− floor((t− kD)·HR/60) + kO (8)

to obtain the activation function signal ϕ(t)

ϕ(t) = Φ(t = tN(t)). (9)

The normalized time signal, tN, restarts after each beat was implemented, using a
shifted sawtooth wave with a frequency equal to the heart rate. The floor function mapped
a real number to the largest previous integer. The shape of the activation function and
consecutive left ventricular volume and pressure values for animal 4 are shown in Figure 3.

QValve,ideal(t) =

{
ΔPValve(t)

RValve
0

i f ΔPValve(t) > 0
i f ΔPValve(t) ≤ 0

(10)
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Figure 3. Activation function. Simulated activation function (φ(t)—black), consecutive left ventriular
volume (LVV—blue), and left ventricular pressure (LVP—red) in animal 4.

The heart valves acted as non-return valves, which meant that they allowed flow
at a given hydraulic resistance RValve in only one direction, depending on the pressure
differential ΔPValve across the valve. A detailed description of the single components is
given in Table S1 of the supplemental materials.

This simplified closed circuit model of the whole circulatory system was implemented
in the open (object-oriented) modelling language Modelica®. We ran this model in our
self-developed simulation tool ModeliChart, which was especially designed for clinical
users and allows for independently performing in silico studies in real time [37]. The
model was a full circulatory model, as previously described [3,27]. In contrast to our latter
study [3], we did not use a VAD in this study.

To parametrize the simulation according to the animal data, we used the general
configuration of settings described in [3], which is based on the data described in the
literature, and only individually adjusted ten input parameters. HR, E_ES, V0_ES, P0_ED,
V0_ED, λ, C, Z0, and Zc were calculated, as described above, and could be directly adopted
into the simulation. Each animal was simulated individually. The unstressed volume of the
systemic venous compliance (V0_sC) was used to adjust the ventricular preload until the
EDV between the simulation and animal matched. A short increase of V0_sC was used as
a virtual preload reduction to calculate the slope of the PRSW, as shown in Figure 4. The
respective values of P_ES, P_ED, V_ES, V_ED, SV, EF, SW, MAP, and PRSW were used to
compare individual values from animals and simulation.
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Figure 4. Pressure and volume data of a virtual and in-vivo preload reduction of the simulated and
real animal 3. LVP: left ventricular pressure; LVV: left ventricular volume.

2.4. Statistics

The results are displayed as the mean and standard deviation (SD) (PRISM 6.0, Graph-
Pad Software, San Diego, CA, USA). The coefficient of variation (CV) was used to describe
interindividual variability and Bland–Altman plots to describe the agreement (bias) and its
95% limits (PRISM 6.0, GraphPad Software).

3. Results

Three out of thirteen pigs could not be analysed: two pigs showed acute bleeding
during dissection and the other pig showed an atrial septal defect, which only came obvious
during the operation. The input parameters, which were necessary to individualize the
simulation model, demonstrated a large interindividual variability (CV = 10.1–84.5%)
for the systolic and diastolic function parameters of the left ventricle and parameters
characterizing the systemic circulation (Table 1).

The resulting haemodynamic output parameters from the simulation (Figure 4) sim-
ilarly showed a high interindividual variation (CV = 12.6–45.7%) and low overall bias
between the two datasets could be observed (mean: −3.24%; range: −26.5% to 20.1%). The
smallest bias between the animal model and simulation was reached for the EF and MAP,
with each 5% mean difference between all values. The largest bias, with a mean difference
of 27–28% between all values, was observed in the P_ED and PRSW (Table 2).

The best matches between the animal model and simulation (under 5% difference of
the values) were reached for SV in animals 9 and 10, in the V_ES in animals 2, 5, and 10, in
the EF in animals 9 and 10, in the MAP in animals 3, 5, 7, 9, and 10, and in the PRSW in
animal 1. The most pronounced differences between animal study and simulation (more
than 25% difference) were observed in the P_ED in animals 2, 8 and 10, the SW in animals
2, 7, 8, and 10, and the PRSW in animals 2, 3, 4, 7, 8, and 10 (Figure 5).
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Table 1. Parameters derived from the animal studies, which were used to parametrize the sim-
ulation model: HR: heartrate [bpm], E_ES: slope of the ESPVR [mmHg/mL], V0_ES: unstressed
volume of the ESPVR [mL], λ: coefficient of the exponential EDPVR, P0_ED: coefficient of the ex-
ponential EDPVR [mmHg], V0_ED: unstressed volume of the EDPVR [mL], Cs: systemic arterial
compliance [mmHg/mL], Z0: systemic arterial resistance [mmHg*s/mL], Zc: specific aortal resis-
tance [mmHg*s/mL], V0_sC: unstressed volume of the systemic venous compliance [mL], and CV:
coefficient of variation [%].

Input
Parameter

Animal HR E_ES V0_ES λ P0_ED V0_ED Cs Z0 Zc
V0_sC

(Simulation Only)

Simulation/Animal

1 101 1.33 −19.02 0.0365 0.2126 −19.36 1.7298 0.7341 0.0894 1100

2 91 1.14 −28.94 0.0478 0.0394 −50.48 0.9835 1.0017 0.1029 1865

3 100 1.41 −23.62 0.0263 0.3675 −63.38 1.7140 1.0959 0.1102 1700

4 75 1.01 −48.25 0.0253 0.7728 −55.30 1.5443 1.3407 0.0944 1680

5 79 1.13 −51.44 0.0236 0.2142 −64.57 2.2253 1.2959 0.0994 1382

6 84 1.60 −8.09 0.0254 0.3502 −67.20 1.9238 0.8044 0.0888 580

7 85 0.80 −48.74 0.0280 0.5369 −38.80 1.7860 0.7217 0.0840 1060

8 91 1.04 −30.67 0.0444 0.0110 −80.21 1.7580 0.8584 0.1142 1600

9 98 1.52 −24.77 0.0218 0.5375 −61.07 1.4927 1.1763 0.1074 1730

10 106 1.34 −14.98 0.0413 0.0053 −113.60 1.2890 0.7172 0.0951 1250

Mean 49.2 1.23 −29.85 0.0320 0.3047 −61.4 1.6446 0.9746 0.0986 1395

CV [%] 22.0 20.28 50.4 29.8 84.5 40.5 20.8 24.8 10.1 28.6

Table 2. Results of the Bland–Altman analysis. Shown are the mean of the difference between in vivo
data and simulation in percentage (BIAS [%]), 95% limits of agreement, and coefficient of variation for
the end-systolic and -diastolic pressure (P_ES, P_ED), stroke volume (SV), end-diastolic and -systolic
volume (V_ED, V_ES), ejection fraction (EF), stroke work (SW), mean arterial pressure (MAP), and
preload recruitable stroke work (PRSW).

P_ES P_ED SV V_ED V_ES EF SW MAP PRSW

BIAS [%] 13.1 28.0 −21.6 −0.1 9.8 −4.9 −21.3 −5.0 −27.2

95% Limits of Agreement

From −3.6 −8.9 −35.4 −1.7 −13.6 −27.4 −49.7 −19.0 −79.5

To 29.9 64.8 −7.7 1.5 33.3 17.6 7.0 8.9 25.1

Coefficient of variation 15.4 45.7 22.7 20.2 24.9 12.6 29.1 17.1 18.0

In animal 2, the percentage difference between the animal model and simulation for
P_ED, P_ES, and SW did not lie within an agreement interval of two standard deviations.
Similar results were obtained for the PRSW in animal 7 (Figure 6).
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Figure 5. Comparison of animals and simulation. Comparison between the results for the out-
put parameters of animal study (grey) and computer simulation (white) (mean ± SD) of selected
haemodynamic parameters: end-systolic pressure (a), end-diastolic pressure (b), stroke volume (c),
end-systolic volume (d), ejection fraction (e), stroke work (f), mean arterial pressure (g) and preload
recruitable stroke work (h).
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Figure 6. Bland–Altman plots for output parameters of selected haemodynamic parameters: end-
systolic pressure (a), end-diastolic pressure (b), stroke volume (c), end-systolic volume (d), ejection
fraction (e), stroke work (f), mean arterial pressure (g) and preload recruitable stroke work (h). The
mean difference between the in vivo and simulation data, in percentage, is shown as a detached line.
The 95% limits of agreement are indicated by dotted lines.
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4. Discussion

Our data show a high interindividual variability of parameters, characterizing cardiac
function and systemic circulation, among the single animals, and good agreement between
simulation and in vivo data. This high interindividual variability is also present in the
simulative results, which suggests that a relatively simple computer simulation, in the
form of our approach (time varying elastance, linear ESPVR, exponential EDPVR, and
three-element Windkessel model), can adapt to a high physiological variability.

The observed differences between simulation and animal might be a static mea-
surement failure, which might result from unknown inaccuracies within the model (e.g.,
determination of systemic compliance) or unconsidered physiological interactions. There
are two conditions that make our simulation prone to static measurement failure. First,
minimal changes in the exponential EDPVR have a substantial impact on the simulation
results; second, the parameterization of the three-element Windkessel model has inherent
problems in determining the compliance and resulting characteristic impedance.

The problem of determining systemic compliance has been an ongoing issue for
several decades. Several methods have been proposed and discussed in earlier publica-
tions [33,38–40]. We decided to apply the stroke volume-to-pulse pressure ratio method [38],
for reasons of substantive conviction and practicability. How this choice influences the
accuracy of our simulation model is difficult to estimate. Comparing an application of the
different methods within our simulation model lies beyond the scope of this paper.

Considering the Bland–Altman plot of the simulated EF (Figure 6), the distribution of
the observed differences between the animal and simulation models implies a linearity that
might be evidence for a systematic error: in the case of a high EF in the animal, the EF in
the simulation is systematically underrated and vice versa.

We decided to implement the ESPVR as the linear ratio of pressure and EDV. Consid-
ering the literature, it is not clarified whether this strategy is correct. Some authors describe
the ESPVR as linear [41–43], while others describe it as parabolic [44–46].

In our model, the contractility of the ventricle is simulated by a time-varying elastance
function. It could be discussed whether this strategy is the best approach. Modelling
the time-varying elastance as being load-independent might not apply, at least when the
cardiac load is changed by a VAD [47]. Due to a lack of other direct comparisons between
animal and simulated data, it is not clear whether other approaches to model cardiac
activity [13–16] are superior to our approach.

As mentioned above, there are also unconsidered physiological mechanisms not in-
cluded in this model, which might be underestimated in their importance. In the current
simulation model, we do not consider the ventricular interaction through the ventricular
septum, as it has been done by other groups [11,14,48]. Simulating the interventricular sep-
tum as a rigid ventricular wall might insufficiently mirror phenomena in certain situations,
e.g., when the simulation model is used to simulate integrated VAD pumps at a high pump
speed, where suction effects might occur. Additionally, we did not model the interaction
between the coronary perfusion and contractility of the ventricles [15], cardiopulmonary
pressure interaction [26], or venous return curve [12]. Autoregulation mechanisms, such as
the baroreceptor reflex [8] or Anrep effect [49], are also neglected. The disregard of these
mechanisms might seem careless but offers the advantage of a relatively simple computer
model, which seems favourable, regarding teaching purposes and clinical implementation.
Moreover, the simplicity of the simulation model enables the augmentation of the model by
certain features, according to the respective scientific question. For example, the interven-
tricular wall interaction presented in the model of Smith et al. [11] could also be introduced
in our model, as both models are based on the time varying elastance.

Another factor that has a high impact on the simulatory results is the modelling of
the vascular system. We chose the three-element Windkessel model [50], as this model has
been well-examined and established [9,12,13]. However, there are other approaches [14]
that might be favourable, considering certain problems, e.g., the difficult determination of
compliance and resulting characteristic impedance, as mentioned above.
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Our animal data vary significantly between the different healthy animals. If human
data show comparable variability, which can be assumed, especially in ill patients, then
simulation algorithms for clinical decision-making must be easily adaptable and simple to
parametrize, which will be easily achievable with simple models.

5. Conclusions

The direct clinical use of our model does yet not seem feasible, as the parameterization
values must be generated invasively. However, the presented data and approaches might
help to develop simple, reliable computer simulation models that might be transferred to
the clinic in the future.

Thus, the simulation of cardiovascular processes is a reliable tool, if existing limitations
are considered. To further improve the accuracy of cardiovascular computer simulation
models and transfer these tools to the clinic, further studies are needed.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/mca27020028/s1, Table S1: Non-individualized simulation parameters.
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Abstract: In recent years, the standard numerical methods for partial differential equations have
been extended with variants that address the issue of domain discretisation in complicated domains.
Sometimes similar requirements are induced by local parameter-dependent features of the solutions,
for instance, boundary or internal layers. The adaptive reference elements are one way with which
harmonic extension elements, an extension of the p-version of the finite element method, can be
implemented. In combination with simple replacement rule-based mesh generation, the performance
of the method is shown to be equivalent to that of the standard p-version in problems where the
boundary layers dominate the solution. The performance over a parameter range is demonstrated
in an application of computational asymptotic analysis, where known estimates are recovered via
computational means only.

Keywords: finite element method; p-version; harmonic extensions

1. Introduction

In many practical engineering applications, either the computational domains or in-
deed the solutions have features that ultimately lead to more expensive finite element
simulations than what at first would appear to be necessary. The numerical analysis com-
munity has responded to this challenge by introducing different ways for discretising the
underlying partial differential equations (PDEs). The methods can either be continuous
or discontinuous, even if the problem itself is continuous, or alternatively, the domain
discretisations can either be simplicial or polygonal and not necessarily conforming. No-
table examples of new developments are virtual elements [1] and the so-called hybrid
high-order method [2].

In this paper, the focus is on problems with boundary layers and their resolution with
the so-called adaptive reference elements, an hp-finite element method (FEM) (see, for
example, [3,4]) where a conforming formulation is constructed on a non-conforming mesh
by adapting the shape functions as harmonic extensions [5]. The theoretical foundations
for the method can be directly adopted from Weißer’s work on boundary element based
FEM [6,7]. The work by Ovall is another important reference [8,9].

Examples of solution profiles with boundary layers are shown in Figure 1. From the
mesh generation point of view, the issue with standard conforming triangulation is that
the effect which is essentially one-dimensional introduces a characteristic length scale to
the mesh, which leads to superfluous elements unless the mesh is properly aligned and,
simultaneously, the polynomial order is sufficiently high.

The process by which the discretisation is performed so that the parameter-dependent
features are properly captured is referred to as the boundary layer resolution. In certain
problems, such as shell structures, the solution can be interpreted as a linear combina-
tion of features, each with its own characteristic length scale. This includes the so-called
smooth component, which spans the entire domain. In order to avoid numerical lock-
ing, it is advantageous to use high-order methods for capturing the smooth component
accurately [10,11].

Math. Comput. Appl. 2022, 27, 57. https://doi.org/10.3390/mca27040057 https://www.mdpi.com/journal/mca
127



Math. Comput. Appl. 2022, 27, 57

(a) (b)

Figure 1. Solutions of model problems. In elasticity problems, the strongest boundary layers may
occur in other vector field components. (a) Reaction–diffusion. (b) Pitkäranta Cylinder. Detail of
transverse deflection (one quarter of the cylinder unfolded).

The novelty of this work is that the efficiency of the adaptive reference elements
compared with the standard p-version is demonstrated also in the solution of problems with
boundary layers. Furthermore, for problems with linear systems with identical parameter-
dependent structures, it is possible to perform computational asymptotic analysis, that
is, learn how the overall solution changes as the parameter, for instance, tends to zero.
It is known that for thin cylindrical shells depending on the loading and kinematical
constraints, it is possible to derive parameter-dependent asymptotic error amplification
factors, indicating whether the discretisation has to be adjusted as the parameter changes.
In the context of a thin cylindrical benchmark shell, two known error amplification factors
are recovered within the numerical experiments below via computation only. This shows
that the proposed method maintains its efficiency over the whole practical parameter range.

The rest of this paper is structured as follows: In Section 2, first the boundary layers
are introduced formally, and next the basic construction of the harmonic extension shape
functions is described before the model problems. The replacement rule-based mesh
generation is discussed in more detail in Section 3. Computational asymptotic analysis is
developed in Section 4, including the description of the framework for recovering quantities
of interest. Numerical examples followed by conclusions are in the next two sections.

2. Preliminaries

In this section, the background concepts, namely boundary layers, construction of the
2D adaptive reference elements, and the model problems, are introduced. Familiarity with
the basic concepts of the p- and hp-versions of the finite element method is assumed. The
hp-solver is implemented with Mathematica [12]—for its design principles, see [13].

2.1. Boundary Layers

The theory of one-dimensional hp-approximation of boundary layers is due to
Schwab [4]. Boundary layer functions are of the form

u(x) = exp(−a x/δ), 0 < x < L, (1)

where δ ∈ (0, 1] is a small parameter, a > 0 is a constant, and L is the characteristic length
scale of the problem under consideration. Even though the classical p-method, see, for
example, [3], is capable of asymptotic superexponential convergence, the judicious choice
of a minimal number of elements using a priori knowledge of the boundary layers leads
to far more efficient solution in the practical range of p. Moreover, in certain classes of
problems, it is possible to choose a robust strategy leading to convergence uniformity in δ.
However, the distribution of the mesh nodes depends on p, and over a range of polynomial
degrees p = 2, . . . , 8, say, the mesh is different for every p! In 1D, this is relatively simple,
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but in 2D, much more difficult since we must allow for the mesh topology to change over
the range of polynomial degrees. This is the topic of Section 3 below.

In the absence of exact analysis for all of the problem classes discussed below, the cen-
tral result is given in the form of a definition independent of the dimension of the problem.

Definition 1 (Layer Element Width). For every boundary layer in the problem, optimal conver-
gence can be guaranteed if an element of width O(p δ) is aligned in the direction of the decay of
the layer.

Notice, that with c constant, if c p δ→ L as p increases, the standard p-method can be
interpreted as the limiting method.

Boundary layers can also occur within the domains, i.e., be internal layers, or emanate
from a point. For the discussion here, it is useful to define the concept of boundary layer
generators (see [14]).

Definition 2 (Layer Generator). The subset of the domain from which the boundary layer decays
exponentially, is called the layer generator. Formally, the layer generator is of measure zero.

The layer generators are independent of the length scale of the problem under consideration.

2.2. Adaptive Reference Elements

As usual, in finite elements, every element is an instance of some reference element.
To fix terminology every adaptive element (AE) is said to be an instance of an adaptive
reference element (ARE). The adaptive reference element is defined with a set of points or
nodes as usual. What is different is that a subset of nodes is used to define the mapping of
the element.

Let us consider the example in Figure 2, where an adaptive reference element is shown.
The quadrilateral has five nodes, divided into four mapping nodes and one edge node.
This choice is not unique, however. For instance, the adaptive reference element (ARE)
corresponding to element A could be a triangle with mapping nodes {1,2,4} and two edge
(hanging) nodes 3 and 5, where the edge {1, 5, 4} would be curved and passing through 5.

1 2

3

45

Figure 2. Adaptive reference element A: Quadrilateral with five nodes. Minimal implementation
mesh with three triangles. The element mapping is defined using the four corner nodes only.

Definition 3. (Planar adaptive reference element (ARE))
Given a set of points K, |K| ≥ 3, any partition of K into mapping and edge nodes is admissible,
if the edge nodes lie on the boundary of some valid (univalent) mapping of the standard reference
element defined by the mapping points. This partition defines the adaptive reference element. If the
set of edge nodes is empty, the adaptive reference element is equivalent to a standard element.
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2.2.1. Shape Functions

The shape functions are computed as harmonic extensions of the restrictions of the
standard FEM nodal and edge functions on the element boundary. In other words, for any
standard nodal or edge shape function φ(x, y) we compute its harmonic extension ϕ(x, y):{

Δϕ(x, y) = 0, in K,
ϕ(x, y) = φ(x, y)|∂K, on ∂K,

(2)

where K is either a reference quadrilateral or triangle. Some examples of such shape
functions are given in Figures 3 and 4. This construction guarantees a continuous for-
mulation combining AEs and standard finite elements. Also notice that the nodal modes
automatically form a partition of unity.

For instance, in the case of Figure 2, the nodal shape function associated with the
node 3 is computed by setting the restriction φ(1, y)|∂K over the edge at x = 1 to be the
standard linear hat function with φ(1, 0)|∂K = 1.

The associated inner modes ϕ̂(x, y) are the functions satisfying{
Δϕ̂(x, y) = q(x, y), in K,
ϕ̂(x, y) = 0, on ∂K,

(3)

where q(x, y) is some polynomial. For instance, q(x, y) = 1 (constant) induces a standard
bubble function. The set of elemental inner modes ϕ̂(x, y)K is constructed with products of
Legendre polynomials, that is, all q(x, y) ∈ q(x, y)K, where q(x, y)K = {Pi(x)Pj(y), i = 0, . . . ,
p− 2, j = 0, . . . , p− 2}. With this choice the number of inner modes is the same as with the
standard p-version, although the approximation properties are not. There exists a family
of polynomials that could be used instead of the computed ones (see [9]).

The computation of the shape functions is done with finite elements (naturally).
Hence, the concept of the implementation mesh arises, or more precisely, implementation
discretisation. In order to simplify the evaluation of the inner products between the shape
functions, every shape function associated with a given element is computed using the
same implementation discretisation. One consequence of this is that the same extension
may be computed using many different implementation discretisations.

For quadrilaterals, the baseline implementation discretisation is a regular grid with
two elements per segment and uniform p = 20, and for triangles, a minimal triangulation
of the nodes with uniform p = 16.

(a) (b) (c)

Figure 3. Quadrilateral. (a) Nodal mode. (b) Edge mode with p = 2. (c) Edge mode with p = 3.
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(a) (b) (c)

Figure 4. Triangle. (a) Nodal mode. (b) Edge mode with p = 2. (c) Edge mode with p = 3.

2.2.2. Type of Reference Element

In order to minimise the computational work, it is necessary to introduce a way to
maintain bookkeeping for the evaluated shape functions and AREs. Since compatibility
with the standard p-version is required (or desired), on split edges, the shape functions
must have correct parities.

Legendre polynomials of degree n can be defined using a recursion formula

(n + 1)Pn+1(x)− (2n + 1)xPn(x) + nPn−1(x) = 0, P0(x) = 1. (4)

For our purposes, the central polynomials are the integrated Legendre polynomials
for ξ ∈ [−1, 1]

φn(ξ) =

√
2n− 1

2

∫ ξ

−1
Pn−1(t) dt, n = 2, 3, . . . (5)

which can be rewritten as linear combinations of Legendre polynomials

φn(ξ) =
1√

2(2n− 1)
(Pn(ξ)− Pn−2(ξ)), n = 2, 3, . . . (6)

The normalising coefficients are chosen so that

∫ 1

−1

dφi(ξ)

dξ

dφj(ξ)

dξ
dξ = δij, i, j ≥ 2. (7)

Therefore, the φn(ξ) inherit the property of the Legendre polynomials,

φn(ξ) = (−1)nφn(−ξ). (8)

This means that every edge has to be oriented in such a way that the shape function
has a consistent sign or parity on both elements sharing it.

For every element a type is assigned in the following way: first a mapping node with
the smallest identifier is chosen and the simplex is rotated so that the selected node is in a
fixed position (normalisation); next for each edge, the parameter range of its support on the
reference element is derived; finally each edge segment is assigned a parity by comparing
the identifiers of the end points. Thus, every edge, split or not, has its contribution to the
type of the ARE in form of a tuple (s, [a, b]), where s = ±1, and −1 ≤ a < b ≤ 1. For
instance, the ARE of Figure 2 has the type SQ— assuming that the nodes are identified as
in the picture—

SQ = ((1, [−1, 1]), ((1, [−1, 0]), (1, [0, 1])), (1, [−1, 1]), (−1, [−1, 1])). (9)
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The convention is that the positive direction is from the node with the smallest identi-
fier. For standard p-version quadrilaterals, there are four types, and for triangles, two types,
in both cases assuming that the inner modes need not have an orientation. The inner modes
are always assumed to be oriented in the same way, that is, they do not affect the type.

2.2.3. Mesh Generation and Refinement

Since the proposed method is an extension of the p-version, mesh generation is
identical to that of p-version. The power of the method lies in its ability to adapt to
(seemingly) non-conforming mesh refinements. In Figure 5, two examples of strategies for
refining the mesh to a corner singularity are illustrated.

1 2 3 4 5

87

11 12

1514

2019

6

10

13

1816 17

9A

B

C

(6)

(13)

(a)

Tag e1 e2 e3 e4 Type

A (1,2) (2,9,17) (17,16) (16,1) 1
B (2,3) (3,6,10) (10,9) (9,2) 1
C (9,10) (10,13,18) (18,17) (17,9) 1

(b)

Tag e1 e2 e3 e4 Type

A (1,2) (2,9,17) (17,16) (16,1) 1
B (2,3) (3,13,10) (10,9) (9,2) 2
C (9,10) (10,6,18) (18,17) (17,9) 3

(c)

Figure 5. Boundary layer mesh example. Four levels of elements toward the right hand boundary.
Normalised AEs are given as node lists, every split edge has the same parametrisation on the reference
element. Types are labelled in the order of occurrence. (a) Boundary layer mesh. (b) Uniform: List of
AEs and AREs (types). The node identifiers 6 and 13 have been swapped and hence all three labelled
elements have different types. (c) Non-uniform: (6)↔ (13): List of AE and ARE (types).

The nodes are given identifiers in the order of creation. Thus, in both instances there
are four AEs, but only two different types; hence, only two AREs have to be computed.
Moreover, if one wanted to solve some problem using both meshes one at the time, the rep-
resentative reference elements of each type would have to be computed only once. In
Figure 5a, the AEs are given using nodes on edges.

2.3. Model Problems

Two classes of model problems are considered: a standard reaction–diffusion problem,
and a thin cylindrical shell. Both of these problems are classical and have been discussed by
many authors. It is of particular interest that the resulting linear systems have an identical
parameter-dependent structure that can be exploited in the solution for multiple parameter
values with a given right-hand-side.

132



Math. Comput. Appl. 2022, 27, 57

2.3.1. Reaction-Diffusion Problem

The standard model problem is the reaction–diffusion problem. In the case of constant
diffusion, it has the form

−εΔu(x, y) + u(x, y) = f (x, y), in Ω,

u(x, y) = 0, on ∂Ω.
(10)

For the full 2D problem on a unit square, one can derive an exact solution by restricting
the diffusion to some specific direction, for instance, along the x-axis only. In the numerical
experiments, such a case is considered (see Figure 1a above). The expected characteristic
length scale of the solution is

√
ε.

2.3.2. Cylindrical Shells

Shells are thin three-dimensional structures that are very expensive to simulate, unless
one performs dimension reduction in the model, that is, the original problem is written as
lower-dimensional one, where the reduced dimension is represented by a parameter [15].
Here the resulting two-dimensional shell model has a vector field with five components
u = (u, v, w, θ, ψ), where the first three are the displacements and the latter two are the
rotations in the axial and angular directions, respectively. The convention is that the
computational domain D is given by the surface parametrisation and the axial/angular
coordinates are denoted by x and y.

The total energy is given by a quadratic functional

F (u) = 1
2

YA(u, u)−Q(u), (11)

where A represents strain energy and Q is the load potential. The constant factor Y =
E/(12(1− ν2)), where E is the Young modulus of the material, and ν is the Poisson ratio.

Deformation energy A(u, u) is divided into bending, membrane, and shear energies,
denoted by subscripts B, M, and S, respectively:

A(u, u) = t2AB(u, u) +AM(u, u) +AS(u, u), (12)

where t is the dimensionless thickness, t = d/L, where d is the actual thickness and L is
some characteristic length scale, for instance, the diameter of the domain.

Let us consider a cylindrical shell with a midsurface ω generated by a function f1(x) = R,
x ∈ [−x0, x0], x0 > 0. In this case, the product of the Lamé parameters (metric), A1(x)A2(x) = R,
and the reciprocal curvature radii are 1/R1(x) = 0 and 1/R2(x) = 1/R, since

A1(x) =
√

1 + [ f ′1(x)]2, A2(x) = f1(x), (13)

and

R1(x) = −A1(x)3

f ′′1 (x)
, R2(x) = A1(x)A2(x). (14)

Bending, membrane, and shear energies are given as

t2AB(u, u) = t2
∫

ω

[
ν(κ11(u) + κ22(u))

2

+(1− ν)
2

∑
i,j=1

κij(u)
2] A1(x, y)A2(x, y) dx dy, (15)
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AM(u, u) = 12
∫

ω

[
ν(β11(u) + β22(u))

2

+(1− ν)
2

∑
i,j=1

βij(u)
2] A1(x, y)A2(x, y) dx dy, (16)

AS(u, u) = 6(1− ν)
∫

ω

[
(ρ1(u)

2 + ρ2(u))
2]×

A1(x, y)A2(x, y) dx dy. (17)

We have omitted the scaling Y.
In the special case of constant radius, using the identities above, the bending, mem-

brane, and shear strains [16], κij, βij, and ρi, respectively, can be written as

κ11 =
∂θ

∂x
, κ22 =

1
R

∂ψ

∂y
, κ12 =

1
2

(
∂ψ

∂x
+

1
R

∂θ

∂y
− 1

R
∂v
∂x

)
,

β11 =
∂u
∂x

, β22 =
1
R

∂v
∂x

+
w
R

, β12 =
1
2

(
1
R

∂u
∂y

+
∂v
∂x

)
,

ρ1 =
∂w
∂x
− θ, ρ2 =

1
R

∂w
∂y
− v

R
− ψ.

(18)

By minimising the the total energy Equation (11) the variational problem becomes the
following: Find u ∈ U ⊂ [H1(ω)]5 such that

A(u, v) = Q(v) ∀v ∈ U . (19)

and the corresponding finite element problem: Find uh ∈ Uh such that

A(uh, v) = Q(v) ∀v ∈ Uh. (20)

The load potential has the form

Q(v) =
∫

ω
f(x, y) v dx dy. (21)

If the load acts in the transverse direction of the shell surface, it has the form f(x, y) =
[0, 0, fw(x, y), 0, 0]T . It can be shown that if for the load f ∈ [L2(ω)]5 holds, the problem
Equation (19) has a unique weak solution u ∈ [H1(ω)]5. The corresponding result holds in
the finite dimensional case, when the finite element method is employed.

3. Boundary Layer Resolution

What makes adaptive reference elements particularly appealing in boundary layer
dominated problems is the possibility to use replacement rules as the basic refinement
strategy. This basic idea has been discussed earlier (see [5]), but the fact that any predicate
can be used to select the elements or cells for refinement has not been addressed before.
In Figure 6a, a sequence of meshes generated by applying the same rule three times
is shown. The rule simply first verifies that the element has an edge on the boundary
before the three new elements are generated, one ARE and two ordinary. In this simple
case, the process is greedy in the sense that the elements not participating in the refinement
step are not affected. In a general case, the replacement rules could be specified on the
edge level with additional bookkeeping required to maintain the data structures for the
elements themselves.

134



Math. Comput. Appl. 2022, 27, 57

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c)

Figure 6. Sequence of refined meshes. Same replacement rule applied three times with a unit square
as the initial configuration. The underlying finite element discretisation is continuous, despite the
apparent hanging nodes. (a) Rule applied once. (b) Rule applied twice. (c) After three applications of
the rule.

In Figure 6, the rule is kept constant for illustration purposes. The refinement rule
first divides the selected elements along the x-axis, and then the elements touching the
boundaries aligned with the y-axis. The axial edge length ratio is 1:1. Of course, nothing
prevents one from modifying the rules from one application or layer to another. The crucial
requirement is that the set of rules at one step has to be consistent, that is, every topological
component has to be refined in the same way, regardless of the element containing it.
For example, in Figure 6a, there exists an edge connecting nodes (1/2, 1/2) and (1, 1/2).
In Figure 6b, that edge is split into two segments and node (3/4, 1/2) is added. During the
process, both elements touching the boundary at x = 1 have created the same node.
The final step of the refinement algorithm verifies that all destructive changes are consistent
and removes possible duplicates.

The shell problems have a rich boundary layer structure, including internal layers.
In the axial direction, the characteristic length scales are

√
t and t, where the latter is the

short scale often omitted from the models. In the angular direction, there exists a relatively
long layer of 4

√
t, which plays an important role in the free vibration of shells of revolution.

This is not an exhaustive list; for a detailed discussion on boundary layer structures of
cylindrical shells and their resolution in standard hp-FEM setting, see [17]. In Figure 7,
both a schematic of the axial layer dependencies and a sample sequence of meshes adapted
to a single layer generator represented by the entire boundary at x = 1. The axial edge
length ratio is approximately 6:1. Without any loss of generality in the numerical examples,
only problems with simple boundary segment layer generators are considered. It has to be
emphasised that, strictly speaking, the smooth component spanning the entire domain can
be interpreted as a boundary layer, and it is precisely this feature that necessitates the use
of higher order methods, i.e., the p-version, unless special so-called shell elements are used.
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Figure 7. Cylindrical shell: Layer structure. Examples of minimal meshes for a case with a generator
at x = 1 with t = 1/100. (a) Layer structure for the axial directions, there also exists a possible smooth
component spanning the entire domain. (b) Mesh adapted for

√
t. (c) Mesh adapted for

√
t and t.

4. Computational Asymptotic Analysis

Asymptotic analysis has been a standard tool for understanding the parameter-
dependence of, for instance, mechanical systems. The goal is to understand what happens
when the critical parameter tends to some limit, in the context of this paper, for instance,
when the dimensionless thickness of a shell tends to zero, i.e., t→ 0. Rather than utilising
some a priori understanding of the behaviour of the systems, computational asymptotic
analysis relies on accurate solution of individual realisations of the problem and the subse-
quent recovery of the quantities of interest from the computed solutions.

4.1. Solving Parameter-Dependent Sequences of Linear Systems

It is necessary to solve systems in terms of A and B (for shells bending, and membrane
and shear summed together, respectively)

S(σ)v = (B + σA) v = b, (22)

for every σ > 0. In order to avoid the factorisation of S(σ) at every σ, it would be natural
to consider iterative methods. Unfortunately, parameter-independent preconditioning of
singularly perturbed systems is an open problem. However, if one considers a sequence
of problems, it is possible to transform the problem as follows: Let B = LLT (Cholesky
decomposition); then,

L(I + σL−1AL−T)LT v = b, (23)

where the subspace defined by L−1AL−T is invariant over all parameters σ. The inner
systems (I + σL−1AL−T) v̂ = b̂, have their spectra bounded by 1 from below, making it
sufficient to collect the largest eigenvectors into a subspace W, say. Once the subspace W is
constructed, the deflated conjugate gradient method can be applied [18,19]. Here, collecting
Lanczos vectors is also sufficient since it is assumed that loading remains constant and
independent of σ.

Remark 1. Since the system can be singularly perturbed, i.e., B is not necessarily invertible, it is
possible to use the stabilised version

((B + εσA) + (σ− εσ)A) v = b, (24)

where εσ ∈ [0, σ]. The choice of optimal shift εσ is problem-dependent.

4.2. Recovering Quantities of Interest

Once a sequence of problems is solved, in particular, in the case of elasticity, it is
interesting to recover the parameter-dependence of the energy components, e.g., bending
and membrane energies for shells. In short, rather than trying to a priori analytically
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predict the behaviour, one simply derives the quantities of interest by numerical estimation
a posteriori.

For instance, in the context of shells, given a sequence of solutions, the procedure
is as follows: (i) first the displacements are normalised so that w ∼ 1, (ii) then strains
are evaluated with normalised displacements, (iii) rates of change for strains are derived
through regression, and (iv) energy dependence is discovered by evaluating the energy
expressions using the estimated rates for strains.

In the case of the cylindrical shell benchmark below, both known theoretical asymptotic
dependencies on the dimensionless thickness are recovered using this procedure.

5. Numerical Experiments

The numerical experiments were designed to cover two types of PDEs with boundary
layers. The goal here is to establish the convergence properties of the proposed method
in comparison with the standard p-version. The idea is to extend the p-version, but of
course with the approximative shape functions, there are non-standard sources of error
that are very difficult to analyse, except through computational studies, such as these.
The reference values of the quantities of interest are listed in Table 1 (see, for example, [20]).
All convergence graphs presented in this section are log–log plots.

Table 1. Reference values used in numerical experiments. Reaction–diffusion with ε = 1/100 and
Pitkäranta cylinder with t = 1/100.

Case Norm Value Used Exact

Reaction-Diffusion L2 0.83673056017854
√

1
10 (13+40e10+7e20)

1+e10

Cylinder (Clamped) Squared energy 2.6882879572571783 -
Cylinder (Free) Squared energy 7043.3120530934690 -

5.1. Reaction–Diffusion

The first example is the standard model problem for simple boundary layers, the
reaction–diffusion problem (10). The computational domain is the unit square and homo-
geneous Dirichlet boundary conditions are set on all boundaries. The typical shape of the
potential function is shown above in Figure 1a. Here, the diffusion is restricted to x variable
only with unit loading. The exact solution when setting ε = 1/100 is

u(x, y) =
−e10−10x − e10x + 1 + e10

1 + e10 . (25)

The mesh and the observed convergence in the L2-norm is given in Figure 8. The
results are very good indeed. In particular, the convergence pattern has staircasing, which
in fact is to be expected in the context of p-version since the exact solution is symmetric
(that is, even locally), and as p = 2, . . . , 8 one should not expected significant improvement
as p changes from even to odd.

No attempt to find an optimal distribution of degrees of freedom has been made. This
question is beyond the scope of this study. The mesh of Figure 8a has 36 nodes, 56 edges,
and 21 quadrilateral (15 regular, six AREs with five nodes). Therefore at p = 8 the number
of degrees of freedom is 36 + 56(p− 1) + 21(p− 1)(p− 1) = 1457.
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Figure 8. Reaction–diffusion with ε = 1/100. Convergence graph has a characteristic staircasing
behaviour, where the even nature of the exact solution over the domain results in no convergence as
the polynomial order changes from even to odd, p = 2, . . . , 8. (a) Symmetric mesh. (b) L2-convergence
(absolute error).

5.2. Pitkäranta Cylinder

Pitkäranta cylinder (see [20]) is a well-known and widely used benchmark problem.
The computational domain is reduced to one sixteenth, Ω = [0, 1]× [0, π/4], through clever
application of symmetry–antisymmetry boundary conditions for a given Fourier mode
type loading f (x, y) = cos(2y), which is constant in the axial direction. In the clamped case,
the boundary conditions are y = 0 : v = ψ = 0, x = 1 clamped, y = π/4 : u = w = θ = 0,
and x = 0 : u = θ = 0, and in the free case there are no conditions on x = 1. Sample
displacement fields are shown in Figure 9.

(a) (b)

Figure 9. Pitkäranta cylinder: clamped case. Detail of the domain with symmetry/antisymmetry
boundary conditions applied. The boundary layer in the rotation component with the characteristic
length scale of

√
t = 1/10 is clearly visible. (a) Transverse deflection. (b) Rotation θ.

5.2.1. On Numerical Locking

It has been already discussed above that the p-version can be used to alleviate problems
associated with numerical locking within the standard FEM framework. Of course, there
exist many special shell elements that try to resolve the issue by modifying the underlying
variational formulation [15].

In Figure 10, two sets of convergence data is presented. In the first set, the mesh is
fixed, but the polynomial order p varies, p = 1, 2, 3, 4. In the second set the polynomial
order is fixed at p = 2 over a set of g× g-grids, g = 20, 40, 60. The numerical locking is
evident. For both cases, clamped and free, there is a clear difference in performance as the
polynomial order is increased from p = 2 to p = 3. Figure 10f indicates that the standard
h-version converges very slowly indeed, even at p = 2.
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p N Energy Error

1 605 2.23 0.46
2 2,205 2.66 0.02
3 4,805 2.68 9× 10−4

4 8,405 2.68 6× 10−6

(c)

p N Energy Error

1 1,795 266.52 6776.79
2 6,755 7018.20 25.1
3 14,885 7043.28 0.03
4 26,185 7043.30 0.01

(d)

g N Energy Error

20 8,405 2.683 5× 10−3

40 32,805 2.687 5× 10−4

60 73,205 2.688 1× 10−4

(e)

g N Energy Error

20 8,405 7034.32 9.00
40 32,805 7042.57 0.74
60 73,205 7043.15 0.16

(f)

Figure 10. Pitkäranta cylinder, t = 1/100. (a) Clamped case on 10× 10-grid: Mesh. (b) Free boundary:
Mesh. (c) Clamped case on 10× 10-grid: Errors. Squared energy norm convergence (absolute error) in
p = 1, . . . , 4 using different discretisations. (d) Free case: Errors. Squared energy norm convergence
(absolute error) in p = 1, . . . , 4 using different discretisations. (e) Clamped case on g× g-grid: Errors.
Squared energy norm convergence (absolute error) at p = 2 over a series of uniform discretisations.
(f) Free case on g× g-grid: Errors. Squared energy norm convergence (absolute error) at p = 2 over a
series of uniform discretisations. N is the number of degrees of freedom.

5.2.2. Convergence Results

As in the reaction–diffusion problem, the convergence results are very good. In
Figure 11, the proposed method practically matches that of the comparable p-version
solution. As expected the number of degrees of freedom in the best observed case is
significantly smaller than those given in Figure 10. One word of caution though, since the
special form of loading actually allows for a 1D solution, for the p-version, there exists a
mesh with exactly two elements which does not have a corresponding ARE configuration,
and the proposed method degenerates to standard p-version. If one takes the number
of significant digits into consideration or uses relative error, the convergence rate in the
free case is in fact slightly better since the bulk of the energy is carried by the smooth
component, which is resolved using a high polynomial order.
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Figure 11. ARE convergence of Pitkäranta cylinder, t = 1/100. Squared energy norm convergence
(absolute error) in p = 2, . . . , 8 using different discretisations: ARE 1: one layer, ARE 2: two layers,
P: full tensor product grid with two layers, PF: full tensor product grid with one layer, PO: minimal
full tensor product grid conforming to ARE 1. The observed convergence of the proposed method
in both test cases agrees with the standard p-version. N is the number of degrees of freedom.
(a) Clamped case. (b) Free boundary.

5.2.3. Energy Dependence

The final and perhaps the most interesting experiment is the attempt to recover the
energy dependencies via computational asymptotic analysis. Two sets of results are shown
in Figures 12 and 13. Some of the strains diverge as t → 0. This in itself is not a cause of
worry if the overall energy remains constrained. However, it is possible that there remains
a parameter-dependent error amplification factor C(t), and indeed, for the free case, the
expected C(t) ∼ 1/t is recovered. This is the primary source of numerical locking, defined
as an unavoidable loss of convergence rate.

0.001 0.002 0.005 0.010
50

100

200

500

Thickness

11

(a)

0.001 0.002 0.005 0.010

1.90

1.91

1.92

1.93

Thickness

22

(b)

0.001 0.002 0.005 0.010

0.01

0.02

0.03

Thickness

1

(c)

Figure 12. Clamped case. Practically perfect agreement with the a priori predictions. Notice, that κ22

is essentially constant. Additionally, ρ1 → 0 indicates that the Kirchhoff–Love condition is satisfied
without imposing it within the model explicitly. (a) κ11 ∼ 1/t. (b) κ22 ∼ 1. (c) ρ1 ∼ t.
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Figure 13. Free boundary. Notice, that ρ1 is diverging, however, with a very small constant. This
indicates that the boundary layer resolution is not accurate enough to conform to Kirchhoff–Love
condition. The aggregate parameter-dependence is correct, the bending terms dominate the en-
ergy completely. (a) κ11(u) ∼ 1/t2. (b) κ22(u) ∼ 1/t2. (c) ρ1(u) ∼ 1/

√
t.

The strains are computed using the procedure outlined in Section 4.2 above. Notice
that in the clamped case ρ1 → 0, but not in the free case. This convergence implies the
so-called Kirchhoff–Love condition. In the free case, the divergence is mild and completely
dominated by the strongly increasing bending terms. Nevertheless, this is a point where the
traditional analysis would simply assume such convergence also in the free case. Of course,
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this is ultimately a question of validity of the chosen model and cannot be resolved here.
More pragmatically, one can interpret the result as an indication that the discretisation does
not capture the short t-layer in the free case.

Once the strains are recovered, the error amplification factor C(t) can be deduced by
inserting the rates into the energy formulation and finding the most significant power of t
in the resulting expression. More precisely, simply evaluating Equations (15) and (16), and
adding the resulting expressions, one gets an approximate dependence for the square of
the energy norm. For the clamped case, the recovered strains (ignoring the shear terms) are

β11(u) ∼ 1, β22(u) ∼ 1, β12(u) ∼ 1,

κ11(u) ∼ 1/t, κ22(u) ∼ 1, κ12(u) ∼ 1/
√

t,

C(t) ∼ 1,

(26)

and for the free case, equivalently

β11(u) ∼ 1/t, β22(u) ∼ 1/t, β12(u) ∼ 1
√

t,

κ11(u) ∼ 1/t2, κ22(u) ∼ 1/t2, κ12(u) ∼ 1/t3/2,

C(t) ∼ 1/t,

(27)

where the C(t) are square roots conforming to the definition of the energy norm (squared
energy is used in experiments). The C(t) ∼ 1/t is exactly the predicted worst-case error am-
plification factor. For more details, see [11]. The parameter-dependent error amplification
simply means that as the parameter changes, the discretisation may have to be adjusted in
order to maintain the same level of accuracy.

6. Conclusions

Harmonic extension finite elements provide an extension to the standard p-version.
Indeed, if the discretisation is such that no adapted shape functions are needed, the method
is the p-version. Adaptive reference elements are one way to implement the concept, and
currently, the names can be used interchangeably. Until now, the method has been shown
to perform well on problems with strong singularities. Here, the efficacy also on problems
with boundary layers in established. For cylindrical shells, the numerical experiments
indicate that the method converges in p as expected, and furthermore, the performance is
maintained, even over a range of parameters. Via computational asymptotic analysis, the
expected error amplification factors can be recovered also with the proposed method.

There are many open questions still when one considers implementation of the method.
All numerical experiments considered here had constant coefficients. This simplifies
numerical integration greatly and allows for the reuse of integrated reference elements.
Similarly, the implementation meshes for the computed or adapted shape functions is the
same for all shape functions in order to simplify the overall implementation and evaluation
of the inner products. There are many opportunities for optimisation in this regard. Finally,
even though adaptation of p-version specific error estimators should be straightforward,
this work has not even started yet.

Discretisation of problems on complicated domains is a challenge that will not disap-
pear any time soon. There are many options for non-standard approaches and many of them
show great promise. Harmonic extension finite elements are a conservative, non-intrusive
approach aimed for retaining as much as possible of the standard implementations and
investments in the existing solvers. They also fit in within the standard a posteriori error
analysis frameworks; however, rigorous proofs are still missing.
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Abstract: This study provides a least-squares-based numerical approach to estimate the boundary
value geodesic trajectory and associated parametric velocity on curved surfaces. The approach is
based on the Theory of Functional Connections, an analytical framework to perform functional
interpolation. Numerical examples are provided for a set of two-dimensional quadrics, including
ellipsoid, elliptic hyperboloid, elliptic paraboloid, hyperbolic paraboloid, torus, one-sheeted hyper-
boloid, Moëbius strips, as well as on a generic surface. The estimated geodesic solutions for the
tested surfaces are obtained with residuals at the machine-error level. In principle, the proposed
approach can be applied to solve boundary value problems in more complex scenarios, such as on
Riemannian manifolds.

Keywords: functional interpolation; ordinary differential equations; numerical methods

1. Introduction

Geodesic trajectories represent the paths on a curved surface, whose acceleration has
no component on the local tangent plane to the surface. In many common scenarios, a
geodesic represents the straightest path between two points. In particular, in a Riemannian
manifold, geodesics are characterized by the property of having no geodesic curvature [1,2].

Most of the general studies on geodesics’ trajectories are provided as initial value
problems, while most of the boundary value problems are related to the biaxial and triaxial
ellipsoid. In [3], the boundary value problem on an ellipsoid with boundary (Dirichlet)
conditions is replaced by an initial value problem with Dirichlet and Neumann conditions.
In particular, the Neumann condition is obtained iteratively by numerically integrating a
system of four first-order differential equations. Triaxial ellipsoids are considered in [4,5],
while [6] has provided an analytical approach to solve this boundary value problem with
symmetry. Reference [7] contains, because of its importance to terrestrial geodesy, a rich
literature survey on the geodesic equations for low eccentric ellipsoid in both Cartesian and
polar coordinates. Since the problem of fitting ellipsoid is important in geodesy (all geodetic
calculations are performed on a reference ellipsoid), Refs. [5,8] analyzes the computational
differences in the fitting ellipsoid using biaxial ellipsoid instead of triaxial ellipsoid and
by performing least-squares ellipsoid fitting. Noteworthy, Reference [7] has improved (in
terms of computational time) the existing solutions using differential equations in Cartesian
coordinates and Taylor series expansions by simplifying previous formulations.

In this study, the geodesic boundary value problem is numerically investigated for
any curved surface using the general geodesic equations from differential geometry. These
geodesic equations are then solved by nonlinear least-squares using the method that the
Theory of Functional Connections [9] (TFC) has introduced to solve differential equa-
tions [10,11]. The existence of a solution for the geodesic boundary value problem (bound-
ary value problems, in general, may have a unique solution, no solution, or infinite solu-
tions) is guaranteed by the Hopf–Rinow theorem [12,13]:

If a length-metric space (M, d) is complete and compact then any two points, (p1, p2 ∈
M), can be connected by a minimizing geodesic.
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143



Math. Comput. Appl. 2022, 27, 64

In this theorem, M indicates a manifold and d the metric distance. Roughly speaking,
complete indicates a space where there are no “points missing” from it (inside or at the
boundary), while compact indicates a space that is closed (space bounds included) and
bounded (distance between any two points limited).

Motivated by this theorem, this study proposes a general numerical and accurate
approach to solve boundary value geodesic problems in curved surfaces. First, this study
briefly provides the geodesic equations for the general Riemannian spaces, followed by
a short background on TFC. Then, it shows how to apply TFC to solve boundary value
geodesic problems by nonlinear least-squares. In particular, an ad hoc algorithm to avoid
local minima is presented.

The proposed approach is then numerically tested on various quadric surfaces, such
as triaxial ellipsoid, elliptic hyperboloid, elliptic paraboloid, hyperbolic paraboloid, torus,
one-sheeted hyperboloid, Moëbius strip, and on a generic surface. In all these tests, machine
error estimation of the geodesic trajectory is obtained along with the indirect numerical
proof that the associated parametric velocity is constant.

2. Background on Geodesics Equations on Riemannian Manifold

A Riemannian manifold is a smooth curved space in which the infinitesimal distance,
ds, satisfies

ds2 = gij dxi dxj (1)

where gij is the covariant metric tensor of the space and where Einstein’s notation has been
used in Equation (1).

The metric tensor is the fundamental tool used in differential geometry to study curved
spaces. Specifically, for Euclidean spaces, the metric tensor is diagonal (gij = 0 if i �= j) and,
in particular, is the identity, gij = δij, for the Cartesian metric tensor. The metric tensor, gij,
is the matrix composed by all inner products between all partials of the vector defining the
Riemannian surface, p(x1, x2, . . . , xn)

gij =

(
∂p
∂xi

)T ∂p
∂xj

In Riemannian geometry, geodesics are not the same as “shortest curves” between two
points, though the two concepts are closely related. The difference is that geodesics are
only locally the shortest distance between points. Going the “long way round” on a great
circle between two points on a sphere is a geodesic but not the shortest path between the
points. In addition, geodesic paths need not be unique.

On a curved surface, the length of a parametric trajectory, defined by the coordinates
xi = xi(t) and connecting the position vectors, p(t0) and p(t f ), respectively, is,

L =
∫ t f

t0

ds =
∫ t f

t0

√
gij

dxi

dt
dxj

dt
dt (2)

This parametric trajectory has no normal acceleration if it satisfies the following n differen-
tial equations [1,2,14],

d2xi

dt2 + Γi
jk

dxj

dt
dxk

dt
= 0. (3)

These n second-order ordinary differential equations are the geodesic equations. They define
the geodesic trajectories on a manifold with metric tensor, gij. In Equation (3), the Γi

jk terms
are the Christoffel symbols of second kind, defined as,

Γi
jk =

1
2

gmi
(

∂gkm

∂xj +
∂gmj

∂xk −
∂gjk

∂xm

)
(4)
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where gmi is the controvariant inverse of the covariant metric tensor (or conjugate or dual
metric),

gmi = (gmi)
−1

Note that the Christoffel symbols satisfy the relationship, Γi
jk = Γi

kj and are related to

the Christoffel symbols of the first kind, [m, jk], by the relationship, [m, jk] = gmi Γi
jk.

Geodetic (Parametric) Velocity

A curve on a surface is called geodesic if, at every point, the acceleration is either zero or parallel
to the normal. A geodesic trajectory, p(t), on a curved surface has constant parametric speed.
The proof is immediate,

dṗ2

dt
=

d(ṗT ṗ)
dt

= 2p̈T ṗ = 0.

The word “velocity,” here, is not the instantaneous ratio between distance and time, but the
instantaneous ratio between distance and the parameter t selected to describe the trajectory
(which can also be the time).

Let us consider a two-dimensional surface in a three-dimensional space. Let the
surface be described by the parametic equations,

x = fx(u, v), y = fy(u, v) and z = fz(u, v),

then, by computing,

ṗx =
∂ fx

∂u
u̇ +

∂ fx

∂v
v̇, ṗy =

∂ fy

∂u
u̇ +

∂ fy

∂v
v̇, and ṗz =

∂ fz

∂u
u̇ +

∂ fz

∂v
v̇,

the velocity in a trajectory defined by ṗ(u(t), v(t)), is provided by ṗ2 = ṗ2
x + ṗ2

y + ṗ2
z .

To give a trivial example, the parametric description of a unit-radius sphere is provided by,

pT =
{

sin u cos v, sin u sin v, cos u
}

where u ∈ [0, π] and v ∈ [0, 2π). The covariant metric tensor and the geodesic equations
for the sphere are,

gij =

[
1 0
0 sin2 u

]
and

{
Lu = ü− v̇2 sin u cos u = 0
Lv = v̈ + 2u̇ v̇ cot u = 0

,

respectively, and the geodetic parametric velocity on the sphere is,

ṗ2 = 2u̇2 cos2 u + v̇2 sin2 u.

Note that u = 0 and u = π make singular the gij matrix and, consequently, make singular
the geodesic equations. This singularity changes location if another set of polar coordinates
is selected to describe a sphere.

3. Background on the Theory of Functional Connections

The Theory of Functional Connections (TFC) is a mathematical framework to perform
functional interpolation [9,15]. This is performed by analytically deriving some functionals,
called constrained expressions, representing all functions satisfying a set of linear constraints
in n-dimensional space. This way, constrained optimization problems subject to linear
constraints, such as differential equations, are transformed into unconstrained problems.
The optimization problem consists then of deriving the expression of an unconstrained free
function, g(x) (Note that g(x) can be discontinuous, partially defined, and even the Dirac
delta function, as long as it is defined on where the constraints are defined.).

145



Math. Comput. Appl. 2022, 27, 64

In general, for a univariate function, y(x), subject to n linear constraints (e.g., points,
derivatives, integrals, and any linear combination of them), two equivalent definitions of
constrained expressions can be introduced [15–17],

y(x, g(x)) = g(x) +
n

∑
k=1

ηk(x, g(x)) sk(x) (5)

y(x, g(x)) = g(x) +
n

∑
k=1

ρk(x, g(x)) φk(x, s(x)) (6)

In the formal definition of Equation (5), the ηk(x, g(x)) are functional coefficients whose
expressions are derived by imposing the n constraints on (5), and the sk(x) are a set of n
user-defined linearly independent support functions. In Equation (6), the φk(x, s(x)) are
switching functions which imply changing between the constraints, and the ρk(x, g(x)) are
projection functionals, which project the free function g(x) to the kth constraint. See Ref. [9]
for a complete and detailed explanation of these terms.

For example, consider a function y(x) subject to the constraints

dy
dx

∣∣∣
x1

= ẏ1 and
dy
dx

∣∣∣
x2

= ẏ2. (7)

Using the form given in Equation (5) with s1(x) = x and s2(x) = x2, the constraints in
Equation (7) can be expressed as

y(x, g(x)) = g(x) + η1 s1(x) + η2 s2(x) = g(x) + η1 x + η2 x2 (8)

where the two constants η1 and η2 are computed from Equations (7) and (8) as follows:

{
ẏ1 − ġ1
ẏ2 − ġ2

}
=

[
ṡ1(x1) ṡ2(x1)
ṡ1(x2) ṡ2(x2)

]{
η1
η2

}
→

{
η1
η2

}
=

[
1 2x1
1 2x2

]−1{ẏ1 − ġ1
ẏ2 − ġ2

}

from which, {
η1
η2

}
=

1
x2 − x1

{
x2(ẏ1 − ġ1)− x1(ẏ2 − ġ2)
−(ẏ1 − ġ1) + (ẏ2 − ġ2)

}
.

Substituting the η1 and η2 expressions into Equation (8), the following constrained expression,

y(x, g(x)) = g(x) +
x (2x2 − x)
2(x2 − x1)︸ ︷︷ ︸

φ1(x,s(x))

(ẏ1 − ġ1)︸ ︷︷ ︸
ρ1(x,g(x))

+
x (x− 2x1)

2(x2 − x1)︸ ︷︷ ︸
φ2(x,s(x))

(ẏ2 − ġ2)︸ ︷︷ ︸
ρ2(x,g(x))

, (9)

is obtained for the constraints given in Equation (7). Equation (9) satisfies the constraints
(7), no matter what the free function g(x) is. Moreover, Equation (9) indicates the expressions
of the switching functions, φk(x, s(x)), and the projection functionals, ρk(x, g(x)). Here,
the meaning of the switching functions becomes more clear: when the first constraint,
ẏ(x1) = ẏ1, holds then φ̇1(x1) = 1 and φ̇2(x1) = 0; when the second constraint, ẏ(x2) = ẏ2,
holds then φ̇1(x2) = 0 and φ̇2(x2) = 1. The projection functionals are scalars in this
univariate case, but they become functionals in the multivariate case (see [9] for full
explanation).

The multivariate TFC [9,16] extends the original univariate theory [15] to n dimensions
and to any linear (boundary and/or internal) constraints. This extension can be summarized
by the expression,

y(x, g(x)) = h(c(x)) + g(x)− h(g(x)),

where x = (x1, x1, . . . , xn)T is the vector of n coordinates, c(x) is a function specifying the
linear constraints, h(c(x)) is any interpolating function satisfying the linear constraints, and
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g(x) is the free function. Several examples on how to derive constrained expressions can
be found in [9,17,18].

The Theory of Functional Connections has been developed for points, derivatives,
integrals, infinite, component constraints, and any linear combination of them for univariate
functions [15] as well as multivariate functions [16] in rectangular domains, while in generic
domains some initial results have been obtained via domain mapping [19]. The main
feature of these functionals (constrained expressions) is that they allow for restricting
the whole function space of a constrained optimization problems to just the space of its
feasible solutions, fully satisfying the constraints. This way, a large number of constrained
optimization problems can be transformed into unconstrained ones, which can be solved
by more simple, efficient, robust, reliable, fast, and accurate methods.

The first application of TFC was in solving linear [10] and nonlinear [11] ODEs. This
has been conducted by expanding the free function g(x) in terms of a set of basis functions
(e.g., orthogonal polynomials, Fourier, neural networks, etc.). Linear or nonlinear least-
squares method is then used to find the coefficients of the expansion. This TFC approach
for solving ODEs has many advantages over traditional methods: (1) it consists of a unified
framework to solve IVP, BVP, or multi-valued problems, (2) it provides an analytically
approximated solution that can be used for subsequent manipulation (derivatives, inte-
grals), (3) the solution is usually obtained in millisecond and at machine error accuracy,
(4) the procedure is numerically robust (small condition number), and (5) it can solve
differential equations subject to a variety of different constraint types. Additionally, TFC
has been also applied to solve other mathematical optimization problems [20] such as in:
homotopy continuation for control problems [21], epidemiological models [22], radiative
transfer problems [23], rarefied-gas dynamics [24], Timoshenko-Ehrenfest beam [25], hybrid
systems [26], machine learning [27–30], quadratic and nonlinear programming problems
subject to linear equality constraints [31], orbit transfer and propagation [18,32,33], optimal
control problems via indirect methods, relative motion [34], landing on small and large
planetary bodies [35], and intercept problems [30].

4. Solving the Geodesic Equations Using the Theory of Functional Connections

Any trajectory on a two-dimensional surface in three-dimensional space can always
be described by two coordinates, [u(t), v(t)], depending on a parameter t. Specifically,
let us consider a trajectory from an initial point [u0, v0] to a final point [u f , v f ], while the
parameter range is t ∈ [−1,+1].

All possible trajectories, [u(t), v(t)], connecting [u0, v0] to [u f , v f ], can be represented
by the following two functionals (constrained expressions) [9]⎧⎪⎨

⎪⎩
u(t, gu(t)) = gu(t) +

1− t
2

(
u0 − gu0

)
+

1 + t
2

(
u f − gu f

)
v(t, gv(t)) = gv(t) +

1− t
2

(
v0 − gv0

)
+

1 + t
2

(
v f − gv f

) (10)

where gu(t) and gv(t) are two free functions and where it has been set gu0 = gu(−1),
gv0 = gv(−1), gu f = gu(+1), and gv f = gv(+1). No matter what the functions, gu(t) and
gu(t) are, the Equation (10) always generate trajectories moving from [u0, v0] to [u f , v f ], as t
increases from t = −1 to t = +1.

The parametric derivatives of Equation (10) are,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇(t, gu(t)) = ġu(t)−
1
2
(
u0 − gu0

)
+

1
2
(
u f − gu f

)
ü(t, gu(t)) = g̈u(t)

v̇(t, gv(t)) = ġv(t)−
1
2
(
v0 − gv0

)
+

1
2
(
v f − gv f

)
v̈(t, gv(t)) = g̈v(t)

(11)
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Let us express the free functions, gu(t) and gv(t), as a linear combination of linearly
independent basis functions, h(t), (e.g., orthogonal polynomials). Then,

{
gu(t) = ξ T

u h(t)
gv(t) = ξ T

v h(t),

{
ġu(t) = ξ T

u ḣ(t)
ġv(t) = ξ T

v ḣ(t),
and

{
g̈u(t) = ξ T

u ḧ(t)
g̈v(t) = ξ T

v ḧ(t).
. (12)

The geodesic equations provided in Equation (3) can be solved using the expressions given
in Equations (10) and (11), with the free functions expanded as in Equation (12), and by
discretizing the parameter t from t = −1 to t = +1. (When expressing the free functions in
terms orthogonal polynomial, the best discretization of t for the least-squares problem is
obtained by the Chebyshev–Gauss–Lobatto points distribution.) The resulting equations
are two nonlinear algebraic equations in the unknown coefficient vectors, ξu and ξv, that
can be solved by nonlinear least-squares,

{
ξu
ξv

}
k+1

=

{
ξu
ξv

}
k
− (J T

k Jk)
−1J T

k

{Lu
Lv

}
k

where Jk =

⎡
⎢⎢⎣

∂Lu

∂ξu
,

∂Lu

∂ξv
∂Lv

∂ξu
,

∂Lv

∂ξv

⎤
⎥⎥⎦

k

(13)

is the Jacobian of the system.
Note that, the constrained expressions given in Equation (10) are derived using con-

stant and linear terms of support functions. This implies that the set of basis functions
adopted in the least-squares process for the free functions, gu(t) and gv(t), cannot include
both the constant and the linear terms. For instance, if Chebyshev orthogonal polynomials
are selected as support functions, then T0 = 1 and T1 = t must be excluded, otherwise
the matrix to invert in the least-squares process becomes singular. This is because a least-
squares process of a linear combination of functions is singular if not all the functions are
linearly independent.

Initial Guess and the Local Minima Problem

Since the constrained expressions provide trajectories always satisfying the constraints
(for any expression of the free functions), then the most natural (and simplest) initial guess
is to start the iterative least-squares solving Equation (13) by setting ξu = ξv = 0. This is
equivalent to initially select gu(t) = gv(t) = 0 and, consequently—see Equation (10)—,
selecting an initial linear variation of the parametric variables, u and v, from the initials
(u0, v0) to the final values (u f , v f ).

Nonlinear least-squares applied to find the geodesic trajectory is, unfortunately, a
process affected by local minima. Typically, when an iterative procedure enters into the
convergence phase, then each following step is smaller than the previous,

L2
(
Δξk+1

)
< L2

(
Δξk

)
where Δξk =

{
Δξu
Δξv

}
k

(14)

This convergence criteria has two interesting aspects: (1) it can be used to push the conver-
gence to the maximum accuracy and (2) no tolerance is needed to stop the iterations. In
fact, when the convergence reaches the maximum accuracy, the procedure cannot anymore
improve the estimation of Δξk and the inequality, L2

(
Δξk+1

)
> L2

(
Δξk

)
, happens because

of numerical errors (convergence saturation).
Figure 1 shows the flowchart of the algorithm adopted to avoid local minima. Starting

with ξ0 = 0, the least-squares iterations continue until Equation (14) is verified for N
consecutive times (initial convergence loop). During this sequence, if the least-squares
diverges, then the algorithm restarts with a new random initial guess. If Equation (14)
is verified for N consecutive times, then the algorithm enters into the convergence loop
and exits when L2

(
Δξk+1

)
> L2

(
Δξk

)
is experienced. Then, the L2 norm of the residuals
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is computed. The L2 norm of the residuals allows one to discriminate local minima and
global minima (associated with the geodesic trajectory) using a small tolerance, such as
ε = 10−15. If L2

(
rk
)
> ε then the algorithm restarts with a new random initial guess.

Figure 1. Local minima avoidance algorithm flowchart.

5. Numerical Validations

In this section, some boundary value geodesic problems are numerically solved to
validate the proposed methodology on 2-dimensional surfaces, for visualization purposes.
The proposed approach has been tested on eight different kind of surfaces: triaxial ellipsoid,
elliptic hyperboloid, elliptic paraboloid, hyperbolic paraboloid, one-sheeted hyperboloid,
torus, Moëbius strip, and a generic surface. Six of them are shown in Figure 2.

Figure 2. Examples of six tested surfaces.

5.1. Triaxial Ellipsoid

A (non-oriented) triaxial ellipsoid is described by,

pT =
{

a sin u cos v, b sin u sin v, c cos u
}
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where u ∈ [0, π] and v ∈ [0, 2π), and (a, b, c) are the three ellipsoid semi-major axes. The
covariant metric tensor for the ellipsoid is,

gij =

⎡
⎢⎣cos2 u(a2 cos2 v + b2 sin2 v) + c2 sin2 u − sin(2u) sin(2v)

4
(a2 − b2)

− sin(2u) sin(2v)
4

(a2 − b2) sin2 u
[

sin2 v(a2 − b2) + b2]
⎤
⎥⎦

Since the ellipsoid is an affine image of the unit sphere, it is affected by the same singularity
problem, occurring for u = 0 and u = π.

By setting a = 2, b = 3, and c = 1, the geodesic equations for this ellipsoid are [36],⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ü +
(5 cos2 v− 32) cos u sin u
sin2 u

(
5 cos2 v− 32

)
+ 36

u̇2 − 36 cos u sin u
sin2 u

(
5 cos2 v− 32

)
+ 36

v̇2 = 0

v̈− 5 cos v sin v
sin2 u

(
5 cos2 v− 32

)
+ 36

u̇2 +
2 cos u
sin u

u̇v̇− 5 sin2 u cos v sin v
sin2 u

(
5 cos2 v− 32

)
+ 36

v̇2 = 0

To solve these differential equations using nonlinear least-squares, the following partials
must be evaluated to compute the Jacobian of the system,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Lu

∂ξu
=

∂Lu

∂u
· du

dξu
+

∂Lu

∂u̇
· du̇

dξu
+

∂Lu

∂ü
· dü

dξu
∂Lu

∂ξv
=

∂Lu

∂v
· dv

dξv
+

∂Lu

∂v̇
· dv̇

dξv
∂Lv

∂ξu
=

∂Lv

∂u
· du

dξu
+

∂Lv

∂u̇
· du̇

dξu
∂Lv

∂ξv
=

∂Lv

∂v
· dv

dξv
+

∂Lv

∂v̇
· dv̇

dξv
+

∂Lv

∂v̈
· dv̈

dξv

(15)

Figure 3 shows the numerical results using 40 basis functions (Legendre orthogonal poly-
nomials) to describe the free functions and 200 discretization points. This test validates the
approach in terms of fast convergence (just six iterations using a noisy initial guess) and in
terms of finding constant the parametric velocity.

The geodetic velocity on a generic triaxial ellipsoid has components,

ṗ =

⎧⎨
⎩

a(u̇ cos u cos v− v̇ sin u sin v)
b(u̇ cos u sin v + v̇ sin u cos v)

−cu̇ sin u

⎫⎬
⎭

5.2. Elliptic Paraboloid

For the elliptic paraboloid, the geodesic equations and the TFC solution procedure are
provided. The parametric equations of the elliptic paraboloid, z = x2 + y2, can be described
by the vector,

pT =
{

u, v, u2 + v2}
where u ∈ [umin, umax] and v ∈ [vmin, vmax]. The partials of the generic point, p, are

∂p
∂u

= pu =

⎧⎨
⎩

1
0

2u

⎫⎬
⎭ and

∂p
∂v

= pv =

⎧⎨
⎩

0
1

2v

⎫⎬
⎭

from which the metric tensor,

gij =

[
pT

u pu pT
u pv

pT
v pu pT

v pv

]
=

[
1 + 4u2 4uv

4uv 1 + 4v2

]
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and its inverse,

gij =
(

gij
)−1

=
1

4(u2 + v2) + 1

[
1 + 4v2 −4uv
−4uv 1 + 4u2

]
are derived. The non-null Christoffel symbols are derived using Equation (4),

Γ1
11 =

4 u
4(u2 + v2) + 1

, Γ1
22 =

4 u
4(u2 + v2) + 1

,

Γ2
11 =

4 v
4(u2 + v2) + 1

, and Γ2
22 =

4 v
4(u2 + v2) + 1

.

The geodesic equations, given in Equation (3), become⎧⎨
⎩

ü + Γ1
11 u̇2 + Γ1

22 v̇2 = 0

v̈ + Γ2
11 u̇2 + Γ2

22 v̇2 = 0

After substituting the Christoffel symbols and rearranging the equations, the geodesic
equations for the elliptic paraboloid become,{

Lu = (4u2 + 4v2 + 1)ü + 4u u̇2 + 4u v̇2 = 0
Lv = (4u2 + 4v2 + 1)v̈ + 4v u̇2 + 4v v̇2 = 0

(16)

Figure 3. Numerical validation test on triaxial ellipsoid.
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To solve these differential equations using nonlinear least-squares, the same structure
of partials provided in Equation (15) must be evaluated to compute the Jacobian of the
system, where

∂Lu

∂u
= 8uü + 4(u̇2 + v̇2),

∂Lu

∂u̇
= 8uu̇,

∂Lu

∂ü
=

∂Lv

∂v̈
= 4(u2 + v2) + 1,

∂Lu

∂v̇
= 8uv̇,

∂Lv

∂u
= 8uv̈,

∂Lv

∂u̇
= 8vu̇,

∂Lv

∂v
= 8vv̈ + 4(u̇2 + v̇2),

∂Lv

∂v̇
= 8vv̇,

∂Lu

∂v
= 8vü,

Note that, the elliptic paraboloid can also be expressed by, p = {u sin v, u cos v, u2}T,
where u and v are angles. In this case, the geodesic equations provided in Equation (16)
can be rewritten as, {

Lu =
(
4u2 + 1

)
ü + 4u u̇2 − u v̇2 = 0

Lv = u v̈ + 2u̇ v̇ = 0

and the following partials must be computed to solve the boundary value problem,

∂Lu

∂ξu
=

∂Lu

∂u
· du

dξu
+

∂Lu

∂u̇
· du̇

dξu
+

∂Lu

∂ü
· dü

dξu

∂Lu

∂ξv
=

∂Lu

∂v̇
· dv̇

dξv

∂Lv

∂ξu
=

∂Lv

∂u
· du

dξu
+

∂Lv

∂u̇
· du̇

dξu

∂Lv

∂ξv
=

∂Lv

∂v̇
· dv̇

dξv
+

∂Lv

∂v̈
· dv̈

dξv

where,

∂Lu

∂u
= 8uü + 4u̇2 − v̇2,

∂Lu

∂u̇
= 8uu̇,

∂Lu

∂ü
= 4u2 + 1,

∂Lu

∂v̇
= −2uv̇,

∂Lv

∂u
= v̈,

∂Lv

∂u̇
= 2v̇,

∂Lv

∂v̇
= 2u̇,

∂Lv

∂v̈
= u,

and,

∂u
∂ξu

=
∂v
∂ξv

= h− 1− t
2

h0 −
t + 1

2
h f ,

∂u̇
∂ξu

=
∂v̇
∂ξv

= ḣ +
1
2

h0 −
1
2

h f ,

∂ü
∂ξu

=
∂v̈
∂ξv

= ḧ,

This second parametrization of the elliptic paraboloid is provided because a particular
attention must be given to the boundary value of angles to avoid discontinuous angle
evolution. For example, if the absolute difference between the two angles is |v0 − v f | > π,
then the value of the smallest of these two angles is increased by 2π. This avoids the
discontinuity at v = 0 while unchanging the problem. For instance, if v0 = 3π/2 and
v f = π/4, then the value of v f is set as v f = π/4 + 2π = 9π/4.

Geodesic (Parametric) Velocity on an Elliptic Paraboloid

The derivative of the position vector is,

ṗT =
{

ṗx, ṗy, ṗz
}
=

{
u̇, v̇, 2uu̇ + 2vv̇

}
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Therefore, the velocity is provided by,

ṗ(t) =
√

u̇2 + u2 + 4
(
uu̇ + vv̇

)2

Since the velocity on a geodesic is constant, then the (instantaneous) value ṗ(t) for a
geodesic is not a function of t and, therefore, the expression of ṗ(t) must coincide with the
average value of the velocity which, in turn, can be computed using Equation (2),

¯̇p =
L

t f − t0
=

1
t f − t0

∫ t f

t0

√(
v2 + 1

)
u̇2 + 2uvu̇v̇ +

(
u2 + 1

)
v̇2 dt

therefore, for a geodesic trajectory on the elliptic paraboloid, we have a closed form
expression for the integral,

∫ t f

t0

√(
v2 + 1

)
u̇2 + 2uvu̇v̇ +

(
u2 + 1

)
v̇2 dt =

(
t f − t0

)√
u̇2 + u2 + 4(uu̇ + vv̇)

5.3. Elliptic Hyperboloid

The parametric description of the elliptic hyperboloid is,

pT =
{

a sinh u cos v, b sinh u sin v, c cosh u
}

and his covariant metric tensor is,

gij =

⎡
⎢⎣cosh2 u(a2 cos2 v + b2 sin2 v) + c2 sinh2 u − sinh(2u) sin(2v)

a2 − b2

4

− sinh(2u) sin(2v)
a2 − b2

4
sinh2 u((a2 − b2) sin2 v + b2)

⎤
⎥⎦

By setting a = 1, b = 2, and c = 3, the geodesic equations are,

ü +
cosh u sinh u

(
13 + 27 cos2 v

)
27 cosh2 u cos2 v + 13 cosh2 u− 9− 27 cos2 v

u̇2+

+
4 cosh u sinh u

27 cosh2 u cos2 v + 13 cosh2 u− 9− 27 cos2 v
v̇2 = 0

v̈− 27 cos v sin v
27 cosh2 u cos2 v + 13 cosh2 u− 9− 27 cos2 v

u̇2+

+
2 cosh u
sinh u

u̇ v̇−
27 cos v sin v

(
cosh2 u− 1

)
27 cosh2 u cos2 v + 13 cosh2 u− 9− 27 cos2 v

v̇2 = 0

The geodesic velocity components on the elliptic hyperboloid are,⎧⎪⎨
⎪⎩

ṗx = a (u̇ cosh u cos v− v̇ sinh u sin v)
ṗy = b (u̇ cosh u sin v + v̇ sinh u cos v)
ṗz = cu̇ sinh u

Figure 4 provides detailed information of the test results using 40 basis functions (for
the free functions) and 300 points discretization. In this case, a very noisy initial guess
is selected (black trajectory on the left/top figure), instead of the simple, ξ0 = 0. The
right/top figure shows, for subsequent iterations, the L2 norm of the error. The procedure
entered into the convergence phase after about 35 iterations. The convergence loop pushed
the accuracy to the limit, when L2

(
Δξk+1

)
> L2

(
Δξk

)
occurred. The final solution residuals

are shown in the left/bottom figure, while the central/bottom figure shows the initial
and final solutions for u(t) and v(t). Finally, the right/bottom figure gives the parametric
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velocity of the initial guess (black) and of the final (red) solution (geodesic trajectory). This
validates the parametric velocity with a constant value. For this example, no local minima
were ever experienced (convex problem).

Figure 4. Elliptic paraboloid test results.

5.4. Hyperbolic Paraboloid

The parametric description of the hyperbolic paraboloid is,

pT =
{

u, v, u v
}

the covariant metric tensor for the hyperbolic paraboloid is

gij =

[
v2 + 1 uv

uv u2 + 1

]

and the Christoffel symbols are, Γ2
11 =

v
u2 + v2 + 1

, Γ1
12 =

v
u2 + v2 + 1

, Γ2
21 =

u
u2 + v2 + 1

,

and Γ1
22 =

u
u2 + v2 + 1

, while the geodesic equations are,

{
Lu =

(
1 + u2 + v2)ü + 2v u̇ v̇ = 0

Lv =
(
1 + u2 + v2)v̈ + 2 u u̇ v̇ = 0

The expression of the geodesic velocity on hyperbolic paraboloid is,

ṗ2 = u̇2 + v̇2 + (vu̇ + uv̇)2.

Figure 5 contains the results obtained on hyperbolic paraboloid (same meaning than
those provided for the elliptic paraboloid), while Table 1 shows the L2 norm of the error
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step, L2
(
Δξk

)
, and the associated L2 norm of the differential equations residuals, L2

(
rk
)
,

for the first 8 iterations.

Table 1. First eight iterations for the hyperbolic paraboloid.

Iteration k L2

(
Δξk

)
L2

(
rk
)

0 - 78,019.3597
1 0.014083 682.5215
2 0.13725 51.5259
3 0.10102 4.9834
4 0.029109 0.10211
5 0.00097301 7.6775× 10−5

6 9.8617× 10−7 7.4134× 10−11

7 1.0705× 10−12 7.3451× 10−17

8 2.3949× 10−19 8.1203× 10−17

Figure 5. Hyperbolic paraboloid test results.

5.5. Generic Surface

Let us consider the surface identified by,

pT =
{

u, v, u cos v− v sin u
}

in the range u, v ∈ [−5,+5]. By setting, α = sin u + u sin v and β = cos v− v cos u, the
metric tensor and its inverse for this surface are,

gij =

[
β2 + 1 −αβ
−αβ α2 + 1

]
and gij =

1
α2 + β2 + 1

[
α2 + 1 αβ

αβ β2 + 1

]

and the nonzero Christoffel symbols are,
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Γ1
11 =

v sin u
α2 + β2 + 1

β, Γ1
12 = Γ1

21 = −cos u + sin v
α2 + β2 + 1

β, Γ1
22 = − u cos v

α2 + β2 + 1
β,

Γ2
11 = − v sin u

α2 + β2 + 1
α, Γ2

12 = Γ2
21 =

cos u + sin v
α2 + β2 + 1

α, Γ2
22 =

u cos v
α2 + β2 + 1

α

The geodesic equations can be written in the compact form,{
Lu = p ü + β q = 0
Lv = p v̈− α q = 0

where,

p = α2 + β2 + 1 and q = (v sin u)u̇2 − 2(cos u + sin v)u̇v̇− (u cos v)v̇2

The partials forming the Jacobian matrix in the least-squares process are,

∂Lu

∂ξu
= ü

∂p
∂u
· ∂u

∂ξu
+ p

∂ü
∂ξu

+ β

(
∂q
∂u
· ∂u

∂ξu
+

∂q
∂u̇
· ∂u̇

∂ξx

)
+ q

∂β

∂u
· ∂u

∂ξu

∂Lu

∂ξv
= ü

∂p
∂v
· ∂v

∂ξv
+ β

(
∂q
∂v
· ∂v

∂ξv
+

∂q
∂v̇
· ∂v̇

∂ξv

)
+ q

∂β

∂v
· ∂v

∂ξv

∂Lv

∂ξu
= v̈

∂p
∂u
· ∂u

∂ξu
− α

(
∂q
∂u
· ∂u

∂ξu
+

∂q
∂u̇
· ∂u̇

∂ξu

)
− q

∂α

∂u
· ∂u

∂ξu

∂Lv

∂ξv
= v̈

∂p
∂v
· ∂v

∂ξv
+ p

∂v̈
∂ξv
− α

(
∂q
∂v
· ∂v

∂ξv
+

∂q
∂v̇
· ∂v̇

∂ξv

)
− q

∂α

∂v
· ∂v

∂ξv

where,

∂α

∂u
= cos u + sin v,

∂α

∂v
= u cos v,

∂β

∂u
= v sin u, and

∂β

∂v
= − sin v− cos u

and,
∂p
∂u

= 2α
∂α

∂u
+ 2β

∂β

∂u
and

∂p
∂v

= 2β
∂β

∂v
+ 2α

∂α

∂v
and,

∂q
∂u

= (v cos u)u̇2 + 2(sin u)u̇v̇− (cos v)v̇2

∂q
∂v

= (sin u)u̇2 − 2(cos v)u̇v̇ + (u sin v)v̇2

∂q
∂u̇

= 2(v sin u)u̇− 2(cos u + sin v)v̇

∂q
∂v̇

= −2(cos u + sin v)u̇− 2(u cos v)v̇

Figure 6 gives the results obtained for this specific generic surface. The convergence is
obtained in just 8 iterations, using 30 basis functions for the free functions and a 300 point
discretization. The constancy of the parametric velocity is an alternative way validating the
solution as a geodesic trajectory.
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Figure 6. Surface pT =
{

u, v, u cos v− v sin u
}

test results.

5.6. One-Sheeted Hyperboloid

This surface is described by the parametric vector,

pT(u, v) =
{√

1 + u2 cos v,
√

1 + u2 sin v, 2 u
}

The covariant and the contravariant associated metric tensors are,

gij =

⎡
⎣5 u2 + 4

u2 + 1
0

0 u2 + 1

⎤
⎦ and gij =

⎡
⎢⎣

u2 + 1
5 u2 + 4

0

0
1

u2 + 1

⎤
⎥⎦

and the nonzero Christoffel symbols are,

Γ1
11 =

u
(5u2 + 4)(u2 + 1)

, Γ1
22 = −u

(
u2 + 1

)
5 u2 + 4

, and Γ2
12 = Γ2

21 =
u

u2 + 1

This implies the geodesic equations for one-sheeted hyperboloid,⎧⎨
⎩Lu =

(
5u2 + 4

)
ü +

u
u2 + 1

u̇2 − u
(
u2 + 1

)
v̇2 = 0

Lv =
(
u2 + 1

)
v̈ + 2u u̇ v̇ = 0

To apply the nonlinear least-squares, the following partials must be computed,

∂Lu

∂ξu
=

∂Lu

∂ü
· ∂ü

∂ξu
+

∂Lu

∂u̇
· ∂u̇

∂ξu
+

∂Lu

∂u
· ∂u

∂ξu

∂Lu

∂ξv
=

∂Lu

∂v̇
· ∂v̇

∂ξv

∂Lv

∂ξu
=

∂Lv

∂u̇
· ∂u̇

∂ξu
+

∂Lv

∂u
· ∂u

∂ξu

∂Lv

∂ξv
=

∂Lv

∂v̈
· ∂v̈

∂ξv
+

∂Lv

∂v̇
· ∂v̇

∂ξv

The expressions of these partials are,
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∂Lu

∂ü
= 5u2 + 4

∂Lu

∂u̇
=

2u
u2 + 1

u̇

∂Lu

∂u
= 10u2ü +

1− u2

(u2 + 1)2 u̇2 −
(

3u2 + 1
)

v̇2 ∂Lu

∂v̇
= −2u

(
u2 + 1

)
v̇

∂Lv

∂v̈
= u2 + 1

∂Lv

∂v̇
= 2u u̇

∂Lv

∂u̇
= 2u v̇

∂Lv

∂u
= 2uv̈ + 2u̇ v̇

The parametric velocity is given by

ṗ2 =
u2u̇2

1 + u2 + 4u̇2 + (1 + u2)v̇.2

The results of the test conducted on the one-sheeted hyperboloid are reported in Figure 7
where the sub-figures provide full information of the least-squares process. The free
functions were expanded by 40 basis functions (Legendre orthogonal polynomials) and the
discretization was conducted by 300 points.

Figure 7. One-sheeted hyperboloid test results.

5.7. Torus

The implicit and parametric equation of the torus are,

pT =
{
(R + r cos u) cos v, (R + r cos u) sin v, r sin u

}
where R and r are the two torus radii. The covariant metric tensor for the torus is,

gij =

[
r2 0
0 (R + r cos u)2

]
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while the geodesic equations are,{
Lu = r ü + v̇2 (R + r cos u) sin u = 0

Lv = (R + r cos u)v̈− 2u̇v̇ r sin u = 0

The partials needed to populate the Jacobian are,

∂Lu

∂ξu
= r

∂ü
∂ξu

+ v̇2
[
(R + r cos u) cos u− r sin2 u

] ∂u
∂ξu

∂Lu

∂ξv
= 2v̇

∂v̇
∂ξv

(R + r cos u) sin u

∂Lv

∂ξu
= −

[
rv̈ sin u + 2u̇v̇ r cos u

] ∂u
∂ξu
− 2

∂u̇
∂ξu

v̇ r sin u

∂Lv

∂ξv
= (R + r cos u)

∂v̈
∂ξv
− 2u̇

∂v̇
∂ξv

r sin u

and the nonlinear least-squares can be performed using Equation (13). The geodetic
parametric velocity on the torus is,

ṗ2 = r2 u̇2 + (R + r cos u)2v̇2

The sub-figures given in Figure 8 show the details of the least-squares process to
estimate the geodesic trajectory on the torus surface. The number of basis functions were
40 and the number of discretization points were 300. The constancy of the velocity as well
as the machine-level L2 norm of the differential equations residuals validate the estimated
geodesic trajectory (in red).

Figure 8. Torus: test results.

5.8. Moëbius Strip

The last test of the proposed least-squares approach is performed on the Moëbius strip,
which can be described by,

pT =
{[

2− u sin
(v

2

)]
cos(v),

[
2− u sin

(v
2

)]
sin(v), u cos

(v
2

)}
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where u ∈ [−1,+1] and v ∈ [0, 2π). The metric tensor and its inverse for this surface can
be given in a compact form by setting, d(u, v) = 4u sin

(v
2

)[
u sin

(v
2

)
− 4

]
+ u2 + 16,

gij =

⎡
⎣1 0

0
d(u, v)

4

⎤
⎦ and gij =

⎡
⎣1 0

0
4

d(u, v)

⎤
⎦

while the nonzero Christoffel symbols are,

Γ1
22 = sin

(v
2

)[
2− u sin

(v
2

)]
− u

4

Γ2
21 = Γ2

12 =
u− 4 sin

(v
2

)[
2− u sin

(v
2

)]
d(u, v)

Γ2
22 = −

2u cos
(v

2

)[
2− u sin

(v
2

)]
d(u, v)

Hence, the geodesic equations of the Moëbius strip are,

ü + Γ1
22 v̇2 = 0 and v̈ + 2Γ2

21 u̇ v̇ + Γ2
22 v̇2 = 0

which can be written as,⎧⎨
⎩

ü + c1(u, v) v̇2 = 0

d(u, v) v̈ + c2(u, v) u̇ v̇ + c3(u, v) v̇2 = 0

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c1(u, v) = 2 sin
(v

2

)
− u sin2

(v
2

)
− u

4
c2(u, v) = 2u− 16 sin

(v
2

)
+ 8u sin2

(v
2

)
c3(u, v) = −4u cos

(v
2

)
+ 4u2 sin v

Figure 9 provide all information about this last test validation case. Table 2 details
the iterative results: the L2 norm of the accuracy gain and the L2 norm of the differential
equation at each iteration. The iterative process ended because L2

(
Δξ23

)
> L2

(
Δξ22

)
, due

to numerical convergence saturation.
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Figure 9. Moëbius strip test results.

Table 2. Moëbius strip: convergence L2 norms terms used in the least-squares approach.

Iteration k L2

(
Δξk

)
L2

(
rk
)

1 - 4.4143
2 2,590,717.6067 2.7918
3 125,575.9139 1.4362
4 324.6177 0.7541
5 27,398.8611 0.87001
6 2583.4652 0.60306
7 2142.7967 0.39897
8 2330.2236 1.2032
9 1485.2018 0.55737
10 1197.0006 0.61434
11 311.3524 0.14478
12 487.9178 0.012141
13 35.4515 0.0008965
14 1.1049 2.1828× 10−6

15 0.0088866 1.433× 10−7

16 0.00014298 3.7817× 10−9

17 7.4714× 10−6 1.5985× 10−10

18 1.5249× 10−7 6.5714× 10−12

19 3.3531× 10−10 2.6535× 10−13

20 5.5449× 10−13 1.0555× 10−14

21 4.0001× 10−15 4.1414× 10−16

22 2.8094× 10−15 4.9073× 10−17

23 5.1466× 10−15 3.4713× 10−17

5.9. Discussions

In this article, a new general method to numerical solve boundary value geodesic
problems in curved surfaces is presented. The approach takes advantage of the ability to
derive special functionals, called constrained expressions, which always satisfy assigned
boundary conditions. The proposed approach has been validated by performing numerical
tests on several two-dimensional surfaces. In theory, this approach can be extended to
manifolds in higher Riemannian spaces. This will require more computational capability
than that used for this article and, most likely, optimized and compiled code, instead of the
MATLAB interpreter adopted.
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The problem of finding the geodesic by least-squares introduces the risk of getting
stuck on some local minima. A simple algorithm has been developed to mitigate this
problem. Thanks to this algorithm, all boundary geodesic problems considered were
quickly solved with machine-error level accuracy, which is an acceptable definition of an
exact solution by engineers.

This article restricts the research on finding geodesic trajectories on surfaces that
are continuous and differentiable. The problem of finding geodesic-type trajectories on
discretized surfaces, which is solved by combinatorial/computational algorithms and
methods, is not taken here into consideration. The performed tests have the only purpose
to validate the least-squares approach. A complete analysis quantifying the responses of
this methodology to various surface shapes, boundary conditions (e.g., singular boundary
points for the Ellipsoid), as well as comparisons with competing approaches, will be the
subject of future studies.

As for future research directions, it should be natural to derive the real velocity
(instead of the parametric velocity) in geodesic problems of a mass particle, and to use the
constancy of the velocity—in addition to or instead of—the geodesic equations. Another
future research activity is to investigate what the optimal range of basis functions for the
free functions is and to investigate the optimal number of discretization points. These
two analyses will help the proposed least-squares solution approach to provide optimal
performances. Topics more interesting in physics, such as using the Schwarzschild metric
(uncharged, non-rotating black holes) or more general space metrics are welcome to be
investigated by researchers with good knowledge on general relativity.
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Abstract: Discarded plastic is subjected to weather effects from different ecosystems and becomes
microplastic particles. Due to their small size, they have spread across the planet. Their presence in
living organisms can have several harmful consequences, such as altering the interaction between
prey and predator. Huang et al. successfully modeled this system presenting numerical results of
ecological relevance. Here, we have rewritten their equations and solved a set of them analytically,
confirming that microplastic particles accumulate faster in predators than in prey and calculating
the time values from which it happens. Using these analytical solutions, we have retrieved the
Lotka–Volterra predator–prey model with time-varying intraspecific coefficients, allowing us to
interpret ecological quantities referring to microplastics dispersion. After validating our equations,
we solved analytically particular situations of ecological interest, characterized by extreme effects on
predatory performance, and proposed a second-order differential equation as a possible next step
to address this model. Our results open space for further refinement in the study of predator–prey
models under the effects of microplastic particles, either exploring the second-order equation that we
propose or modify the Huang et al. model to reduce the number of parameters, embedding in the
time-varying intraspecies coefficients all the adverse effects caused by microplastic particles.

Keywords: microplastics; Lotka–Volterra; predator; prey; predator–prey; pollution; bioaccumulation;
biomagnification; predation; two-species model

1. Introduction

The discovery of Bakelite in 1907 revolutionized modern life by introducing plastic
materials to the world. The popularization of these polymers began with their commercial
production around 1950 [1,2]. Plastic’s versatility, stability, low weight, and low production
cost leveraged its global market for this material [2]. The increase in plastic consumption
has had serious repercussions on nature. It is estimated that 9.5 million tons of plastic end
up in the oceans every year [3,4] and there are still no estimates for the amount of plastic
deposited on land [5].

All discarded plastic is subject to weather effects of different ecosystems. This material
can be slowly degraded by photo-oxidation, thermal pathways, mechanochemical interac-
tions or biodegradation [6]. The results of all these processes are small particles known as
microplastics, which have dimensions that vary between 1 μm and 5 mm [7] and the most
different compositions, colors, and shapes [8].
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Due to their small size, microplastics have spread across the planet. They have already
been detected in all parts of the ocean [9], in the poles [10], in drinking water [11], in arable
areas and pastures [12], in the habitat of terrestrial animals [13–15], and in various foods
consumed by people [16]. Many studies suggest that the near-ubiquity of microplastics
means that their transfer is not limited to food chain related dynamics, but also occurs
through bioaccumulation from one trophic level to another [17–19].

The presence of microplastics in living organisms can have several consequences. Stud-
ies indicate the possibility of gastrointestinal inflammation [20], decreased reproductive
capacity [21], reduced ability to feed [22], reduced growth rate [23], and even malformation
of embryos [24]. Early research suggests that microplastics can alter the interaction between
prey and predator [25], producing interesting study approaches that use Lotka–Volterra
prey–predator models modified to take into account the microplastics [26].

The Lotka–Volterra model (LVM) was originally developed from the logistic equation,
describing chemical reactions [27]. However, over the years, modifications of this model
have allowed new and specific applications, such as the study of the interaction between
prey and predators [28–30], the influence of harmful elements on population dynamics [31],
and, more specifically, the effect that microplastics has on trophic relationships [18,19,26].

This paper aims to go beyond the numerical solutions of a prey–predator model by
studying analytical solutions of the model proposed by Huang et al. [26], which takes into
account the impact of microplastics on the population dynamics. We rewrite the Huang et al.
four equations model, reducing it to two equations equivalent to one and including the time-
varying intraspecies coefficients. This approach clarifies the model parameters meanings
and allows us to solve analytically three special cases of ecological relationships. These
special cases are based on possible extreme effects of predatory performance reduction
caused by exposure to MP particles and are mathematically characterized by the decoupling
of the differential equations of the model, for which we also perform numerical simulations.
We also propose a second-order differential equation as a possible next step to address
this model.

We organized the presentation as follows: In Section 2, we introduce Huang et al.’s
work, including their model and main results. In addition, we justify our interest in their
research, presenting our motivations and intentions, and rewrite four original equations of
the predator–prey model, reducing them to only two ones, redefining/regrouping some
quantities, including time-varying intraspecies coefficients, giving them ecological mean-
ings analogous to the standard LVM. In Section 3, we analytically validate that microplastic
(MP) particles accumulate faster in predators than in preys and calculate the characteristics
times from which their concentration and changing rate of the total amount are greater
in predators than in preys. After validating our model, we explore analytically and nu-
merically three special ecological regimes characterized by extreme effects on predatory
performance, which can lead these two populations to become independent. In addition,
we introduce a second-order differential equation as a possible future study of our two
equations system. In Section 4, we compile our results and interpretations, presenting
their implications and research possibilities of refining LVM under effects of MP particles,
exploring our second-order equation or modifying the standard model to reduce its num-
ber of parameters, embedding in the time varying intraspecies coefficients all the adverse
effects caused by MP particles. In Section 5, we summarize our main results and point to
future studies.

2. Materials and Methods

In 2020, Huang et al. [26] published a study using the LVM where they theoretically
investigated predator–prey population dynamics in terms of toxicological response inten-
sity to microplastic (MP) parts and examined the negative effects on prey feeding ability
and predator performance due to MP particles. The study suggests that dynamic LVMs
can be an important tool to predict the ecological impacts of MP particles on predator–prey
population dynamics.
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Combining a single-species model with the LVM, Huang et al. obtained the follow-
ing model: ⎧⎪⎪⎨

⎪⎪⎩
ẋ1(t) = x1(t)[r10 − d1 − r11C1(t)− (a1 − d3)x2(t)]
ẋ2(t) = x2(t)[−r20 − r21C2(t) + (a2 − d2)x1(t)]
Ċ1(t) = S1CE − g1
Ċ2(t) = S2CE + kC1(t)− g2

, (1)

where x1(t), x2(t), C1(t), C2(t) ≥ 0. This model neglects the influence of the intraspecific
competition and shows the effect of the microplastics by its concentration. Considering
t ≥ 0 in those differential equations, x1 and x2 represent the population of prey and
predator, respectively. r10x1 and r20x2 are the intrinsic growth rate of prey and mortality
rate of predator without toxicity, respectively. a1x1x2 is the lost amount of prey eaten by
predators, and a2x1x2 is the increasing number of predators due to the feeding of prey, with
a1, a2 > 0. The parameters d1, d2, and d3 represent the decline in the prey feeding ability,
the adverse effect of reduced predatory performance, and the lost amount of prey eaten by
the predator, respectively. The response intensities of MP particles on prey and predator are
denoted by r11 and r21, respectively. The microplastics egestion rates of prey and predator,
g1, g2 ≥ 0 (g1 < 0 or g2 < 0 would imply a MP particles “negative egestion”, by prey or
predator), are independent of the microplastics concentration in the environment CE ≥ 0,
and the amount of microplastics concentration removed at each time step is independent of
the total amount of microplastics in the organisms, C1 and C2. The quantity kC1 represents
the accumulated toxicity of MP particles transferred from the prey. Finally, S1, S2 ≥ 0 are
related to the effects of plastic particle selection of prey and predator, respectively (S1 < 0
or S2 < 0, which would imply an environment MP particle “negative ingestion” rate by
prey or predator).

The authors estimated parameters and performed simulations that indicated that
predators are more vulnerable than prey under exposure to microplastics. The effect of
MP particles on both population growths can be negligible when toxicological response
intensities of prey and predator are small, the system is prey-dependent for predator
functional response, and the reduced feeding capacity of prey and predator induced by
microplastics does not significantly affect the population dynamics. The conclusions are
compatible with empirical evidence. This study indicates that this model is adequate
to approach the prediction of population dynamics of the predator–prey system under
toxicological effects of persistent organic pollutants.

Stimulated by the relevance of the study and the innovativeness of its approach,
we decided to explore the Huang et al. model, going beyond its numerical solutions by
obtaining analytical solutions that reproduce some of their results, using these solutions to
validate our equations, and going even further presenting and analyzing particular cases
of possible ecological interest.

After elaborating the model, Huang et al. estimated its parameters and performed
numerical simulations, implementing them using MATLAB programming and its Simulink
toolbox, based on differential equations such as those presented by the system (1). We have
realized that it is possible to rewrite only two equations, reducing them to the derivatives
ẋ1(t) and ẋ2(t). In addition, it is interesting to redefine/regroup some quantities of the
model, significantly reducing its number of parameters and clarifying its understanding
and ecological interpretation. Since some of the parameters in the system are related, we
can regroup them into effective (net) and variable rates of decline and growth.

Initially, we define the quantities: α = a1 − d3, which is the difference between the rate
of prey population decline and the rate of the lost amount of prey eaten by predators (that
we call effective rate of prey population decline), and α′ = d2 − a2, which is the difference
between the rate of reduced predatory performance and the rate of predator population
growth (that we call negative of the effective rate of predator population growth), and
rewrite the system (1):
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⎧⎪⎪⎨
⎪⎪⎩

ẋ1(t) = x1(t)[r10 − d1 − r11C1(t)− αx2(t)]
ẋ2(t) = x2(t)[−r20 − r21C2(t)− α′x1(t)]
Ċ1(t) = S1CE − g1
Ċ2(t) = S2CE + kC1(t)− g2

, (2)

where x1(t), x2(t), C1(t), C2(t) ≥ 0.
We see that the solution to C1(t) is a first degree polynomial:

C1(t) = C1(0) + C̃1t , (3)

with
C̃1 = S1CE − g1, (4)

which means that the total amount of microplastics in the prey population varies at a
constant rate C̃1. Note that the parameters S1, CE, and g1 combine to form a quantity with
units of [C1]/[t].

Using the solution of C1(t), we obtain the solution of C2(t), which is a second degree
polynomial:

C2(t) = C2(0) + C̃2t +
kC̃1

2
t2 , (5)

with
C̃2 = S2CE − g2 + kC1(0), (6)

meaning that the total amount of microplastics in the predator population, unlike the prey
population, varies at a rate that is directly proportional to time, and equal to C̃2 + kC̃1t.

Comparing the expressions for the total amount of MP particles in the prey, C1(t), and
predators, C2(t), we show that, over time, the concentration of microplastics inside the
predator population will eventually be larger than the concentration inside prey population,
which occurs at

tC2>C1 >

(
C̃1 − C̃2

)
+
√(

C̃1 − C̃2
)2 − 2kC̃1(C2(0)− C1(0))

kC̃1
. (7)

This result analytically confirms the already known fact [26] that MP particles tend to
accumulate faster in predators than in prey, which occurs when the rate of change of the
total amount of microplastics inside predators is greater than the rate of change of the total
amount of microplastics inside prey, more specifically at

tĊ2>Ċ1
>

C̃1 − C̃2

kC̃1
. (8)

Replacing C1(t) and C2(t) in the first two equations of the system (2), one needs only
two coupled differential equations to write the Huang et al. model:{

ẋ1(t) = x1(t){r10 − d1 − r11[C1(0) + C̃1t]− αx2(t)}
ẋ2(t) = x2(t)

{
−r20 − r21

[
C2(0) + C̃2t + kC̃1

2 t2
]
− α′x1(t)

} . (9)

Regrouping further this system of equations, one sees that it is possible to rearrange
some of its quantities, to obtain variable rates of growth/decline of prey/predators. Re-
grouping the quantities: c0 = r10 − d1 − r11C1(0), c′0 = −r20 − r21C2(0), c1 = r11C̃1,
c′1 = r21C̃2, and c′2 = r21kC̃1/2, we define β1(t) = c0 − c1t, which is the rate of prey popula-
tion growth, and β2(t) = c′0 − c′1t− c′2t2, which is the rate of predator population decline.
Note that the effect of the initial conditions appears only on the coefficients c0 and c′0.
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In this way, for ẋi(t), we have:{
ẋ1(t) = x1(t)[β1(t)− αx2(t)]
ẋ2(t) = x2(t)[β2(t)− α′x1(t)]

. (10)

This system is similar to the well-known standard Lotka–Volterra (predator–prey)
equations, except that its prey population growth and predator population decline rates are
now time-varying intraspecific coefficients, which have built-in the effects of microplastics
in the organisms.

A simple steady-state analysis ẋ1(t) = ẋ1(t) = 0, as t → ∞, leads to the observed
regimes. In one hand, if x1(∞) = 0, then x2(∞) ≥ 0 may have arbitrary values. On the other
hand, if x2(∞) = 0, then x1(∞) ≥ 0 may have arbitrary values. In case x1(∞) �= 0, then
x2(∞) = β2(∞)/α → ∞. Similarly, x2(∞) �= 0, then x1(∞) = β1(∞)/α → ∞. Particular
cases presented below show these asymptotic values.

Huang et al. investigate the toxicological effects of MP particles according to the value
of response intensity r11 and r12 implementing the model (1) using MATLAB programming
and its Simulink toolbox. The authors classified interactions into four different conditions
(response intensities of prey and predator to toxicological effects induced by MP particles):
(a) without the influence of MP particles (C1 = C2 = r11 = r21 = 0); (b) predator and
prey have the same response strength to MP particles (Δ = r11/r21 = 1.0); (c) predator
has much larger response strength than prey (Δ = r11/r21 = 0.1); (d) predator has much
smaller response strength than prey (Δ = r11/r21 = 10.0). Huang et al. constructed phase-
portraits and short-term population dynamics graphs of predator–prey for each of these
four conditions, with the following values: CE = 30, x1(0) = 100, x2(0) = 100, C1(0) = 0,
C2(0) = 0, r10 = 4.1, r20 = 4.0, d1 = 0.1, d2 = 0.002, d3 = 0.002, a1 = 0.052, a2 = 0.052,
g1 = 1.2, g2 = 1.3, S1 = 0.042, S2 = 0.039, a1 = 0.052, k = 2.0. In addition, they analyzed
the negative effects of PM particles on prey feeding ability and predatory performance
increasing the values of d1, d2, and d3 to d1 = 0.6, d2 = 0.012, and d3 = 0.012, and taking
three conditions of different response strength (r11 = r21 = 10.0; r11 = 1.0; and r21 = 10.0;
and r11 = 10.0 and r21 = 1.0).

3. Results

Implementing the model of Equation (10) using the SciPy Python library, with the
function odeint from Scipy.integrate package, and considering the five scenarios described in
the previous section, we successfully reproduced the phase-portraits and the population
dynamics graphs of Huang et al. The system we built consists of only two first-order cou-
pled equations, has a reduced and more comprehensible set of parameters, and reproduces
all the results of Huang et al. These equations are decoupled in three situations: α = α′ = 0,
α = 0, and α′ = 0, which address specific ecological regimes [32].

3.1. Maximum Reduction of Predatory Performance: α = 0 and α′ = 0

Exposure to MP particles can cause anomalous behaviors that impair the prey feeding
ability and predatory performance of organisms, which lead, for example, to a decrease in
the intrinsic growth rate of prey and a reduction in the number of predators. The Huang et
al. model considers some of these harmful effects. For example, it denotes d2 to the adverse
effect of reduced predatory performance, and d3 to the consequent lost amount of prey
eaten by the predator. In our study, we initially considered the extreme situation in which:
1—the presence of MP particles impairs the predatory performance to the point where
there is no further increase in the predators population due to their prey feeding or, in other
words, d2 is large enough to reduce to zero the effective rate of predator population growth
(−α′ = a2 − d2 = 0); and 2—as a consequence of the drastic reduction in the predatory
performance, no more prey is eaten by predators; in other words, d3 is large enough to
reduce to zero the effective rate of prey population decline (α = a1 − d3 = 0). This is a very
special scenario, where the harm caused by microplastics on predators makes these two
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populations independent, transforming a relationship of predation into a relationship of
neutralism, in a process described by the decoupling of the equations for ẋ1 and ẋ2.

Assuming α = α′ = 0, the system (10) becomes:{
ẋ1(t) = x1(t)β1(t)
ẋ2(t) = x2(t)β2(t)

, (11)

which describes the population dynamics of two independent groups, prey, and predators,
i.e., the variation in the number of individuals in one group does not affect the growth
dynamics of the other.

Solving the system above, we get independent solutions for x1 and x2, which will be
labeled (ind) for future reference:

x(ind)
1 (t) = x1(t) = x1(0)e

∫ t
0 dt′β1(t′) = x1(0)ec0t−c1t2/2 (12)

and
x(ind)

2 (t) = x2(t) = x2(0)e
∫ t

0 dt′β2(t′) = x2(0)ec′0t−c′1t2/2+c′2t3/3 . (13)

Analyzing the Equations (12) and (13), it is convenient to calculate X(ind)
1 (t) and

X(ind)
2 (t):

X(ind)
1 (t) =

∫ t

0
dt′x(ind)

1 (t′)

= x1(0)
√

π

2c1
e

c2
0

2c1

[
erf

(
c1t− c0√

2c1

)
− erf

( −c0√
2c1

)]
, (14)

X(ind)
2 (t) =

∫ t

0
dt′x(ind)

2 (t′)

= x2(0)
∫ t

0
dt′ ec′0t′−c′1t′2/2−c′2t′3/3 , (15)

where the error function is erf(x) = 2√
π

∫ x
0 dte−t2

.

To calculate X(ind)
1 (t), we used:

∫
dt eat−bt2

=
√

πe
a2
4b

2
√

b
erf

(
2bt−a
2
√

b

)
.

The model (11) was implemented using Python. We performed simulations taking
the same scenarios adopted by Huang et al. and described in Section 3. Figure 1 shows
the short-term population dynamics graphs of the predator–prey system—the number
of organisms (No./m3) versus time (months)—where we observe two patterns: 1—the
growth of the prey population at a rate β1(t) accompanied by the extinction of predators
and 2—the extinction of both species.

As an example of the first pattern observed when α = α′ = 0, we consider the case
where effects of MP particles on prey and predator are weak (r11 = r21 = 0.1). Since
prey and predator are independent species and, according to the result of Huang et al.,
predators are more vulnerable than prey to the effects of MP particles, we have the growth
of prey at a rate β1(t) accompanied by the expected extinction of predators (Figure 1a).
This behavior was observed in two other scenarios: without the influence of MP particles
(C1 = C2 = r11 = r21 = 0) and when predators have much larger response strength than
prey to MP particles (r11 = 0.01 and r21 = 0.1), in which the effects of microplastics are not
strong enough to stop the growth of the prey population. When the response intensities
of MP particles on prey and predator are both increased to r11 = r21 = 5.0, we have an
example of the second pattern, in which the effects of microplastics lead both species to
extinction (Figure 1b). Prey population growth is substantially affected by this increase of
r11, and the number of prey rises at t = 7.5, peaks at t = 13.7, and decreases to zero. All
other simulated scenarios depict this complete extinction. In these cases, the increase of the
adverse effect of reduced predatory performance (d2) and the consequent lost amount of
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prey eaten by the predator (d3) led to an increasingly early extinction of prey, characterized
by curves with increasingly less pronounced peaks.

(a) r11 = r21 = 0.1. (b) r11 = r21 = 5.0.

Figure 1. Short-term population dynamics of the predator–prey for α = α′ = 0. Predator and prey
have the same response strength to MP particles, i.e., Δ = r11/r21 = 1.0. Abscissa measures time in
months, and ordinate measures the number of organisms (No./m3). The populations of prey (x1) and
predator (x2) are represented by the blue dotted line and the orange continuous one, respectively.

3.2. Reduction of Predatory Performance with No Prey Eaten by Predator: α = 0

Setting α = 0 leads to the second case where the equations of the system (10) decouple.
In this way, we have {

ẋ1(t) = x1(t)β1(t)
ẋ2(t) = x2(t)[β2(t)− α′x1(t)]

. (16)

In the original system (1), since a1x1x2 refers to the lost amount of prey eaten by
predators and d3x1x2 refers to the decreasing of that amount, α = a1 − d3 = 0 describes
the regime where the prey population does not decline due to predator feeding (a “total
decreasing”).

For α = 0, the population dynamics of prey are not affected by the predator population
size. Nevertheless, the dynamics of predators are affected by the presence of prey. That
happens because the model assumes a specific effect that affects the lost amount of prey
eaten by predator (denoted by d3) and a distinct effect that affects the number of predators
due to their reduced predatory performance (denoted by d2). Thus, even if there is not a
lost amount of prey eaten by predators (α = a1 − d3 = 0), the adverse effect of reduced
predatory performance may not be strong enough that the number of predators does not
depend on the number of prey (α′ = d2 − a2). In this scenario, the effects of microplastics
make only the prey population independent.

In this scenario, since x1(t) = x(ind)
1 (t) = x1(0)exp

(
c0t− c1t2/2

)
, we have

x2(t) = x2(0)e
∫ t

0 dt′ [β2(t′)−α′x(ind)
1 (t′)]

= x(ind)
2 (t)e−α′X(ind)

1 (t) ,

where x(ind)
2 (t) = x2(0)exp

(
c′0t− c′1t2/2− c′2t3/3

)
.

The model (16) was implemented using Python. We performed simulations taking the
same scenarios adopted by Huang et al. and described in Section 3. Figure 2 shows the
short-term population dynamics graphs of the predator–prey—the number of organisms
(No./m3) versus time (months)—where we observe the same pattern, characterized by the
growth of the prey population at a rate β1(t) accompanied by the predator “population
explosion”.
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Figure 2. Short-term population dynamics of the predator–prey for α = 0. Predator and prey have the
same response strength to MP particles, r11 = r21 = 0.1, i.e., Δ = r11/r21 = 1.0. Abscissa measures
time in months and ordinate measures the number of organisms (No./m3). The populations of
prey (x1) and predator (x2) are represented by the blue dotted line and the orange continuous one,
respectively.

On one hand, the prey population behaves in these scenarios in the same way as in
each of the situations shown in Figure 1, since, in both cases, this population is independent
of the predator population and the harmful effects of MP particles are the only factor
limiting its growth. On the other hand, the predator population is substantially benefited
by its dependence on prey. Figure 2 shows that, in the simulation range allowed by the
Python compiler, the number of predators rises very quickly at around t = 0.4. This
“explosive growth” was also observed in all other cases where α = 0, in which it was noted
that it happens at around t = 0.5 when the values of d1, d2, and d3 are increased.

3.3. Reduction of Predatory Performance with No Increase in the Number of Predators Due to the
Feeding of Prey: α′ = 0

A third way to decouple the equations of the system (10) is to make α′ = 0:{
ẋ1(t) = x1(t)[β1(t)− αx2(t)]
ẋ2(t) = x2(t)β2(t)

. (17)

Since a2x1x2 is the increasing number of predators due to the feeding of prey, and
d2x1x2 is the decreasing number of predators due to the adverse effect of reduced predatory
performance, α′ = d2 − a2 = 0 defines a regime of reduction of predatory performance,
where there is no increase in the number of predators due to the feeding of prey. Here, the
exposure to MP particles makes only the predators population independent.

Since x2(t) = x(ind)
2 (t) = x2(0)exp

(
c′0t− c′1t2/2− c′2t3/3

)
, we have

x1(t) = x1(0)e
∫ t

0 dt′β1(t′)−α
∫ t

0 dt′x(ind)
2 (t′)

= x(ind)
1 (t)e−αX(ind)

2 (t) . (18)

The model (17) was implemented using Python. We performed simulations taking
the same scenarios adopted by Huang et al. and described in Section 3. Figure 3 shows
the short-term population dynamics graphs of the predator–prey-number of organisms
(No./m3) versus time (months)—where we observe the same two patterns of the Section 3.1,
where α = α′ = 0.
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(a) r11 = r21 = 0.1. (b) r11 = r21 = 5.0.

Figure 3. Short-term population dynamics of the predator–prey for α′ = 0. Predator and prey have
the same response strength to MP particles, i.e., Δ = r11/r21 = 1.0. Abscissa measures time in months
and ordinate measures the number of organisms (No./m3). The populations of prey (x1) and predator
(x2) are represented by the blue dotted line and the orange continuous one, respectively.

When α′ = 0, the prey population is the only one affected by the presence of the other
species, and predator extinction occurs early in every scenario, since there is no increase in
its number due to the feeding of the prey, besides being under the harmful effects of the
MP particles (Figure 3). Thus, the population dynamics of the system are similar to those
in Figure 1. However, it can be seen in each of these situations that the dependence on the
predator, even weak, led to an early extinction of the prey, which also presented curves
with less pronounced peaks.

A possible next step for a system of ODEs such as (10) is to combine the two first-order
differential equations into a single second-order one. To do so, we first write x2(t) as
a function of β1(t) and the ratio ẋ1/x1 and differentiate ẋ1(t) in Equation (10), leading
to: ẍ1(t) = ẋ1(t)[β1(t)− αx2(t)] + x1(t)[β̇1(t)− αẋ2(t)], and then to: ẍ1(t) = ẋ1(t)β1(t) +
x1(t)β̇1(t)− α{ẋ1(t) + x1(t)[β2(t)− α′x1(t)]}x2(t). Using the calculated x2(t), one obtains:

ẍ1(t) = β2 ẋ1(t) +
[
β̇1(t)− β1(t)β2(t)

]
x1(t) + α′β1(t)x2

1(t)−
[
− ẋ1(t)

x(t)
+ α′x1(t)

]
ẋ1(t) ,

which does not depend on α. Analogously, if one had written the second-order equation for
x2(t), it would be independent of α′. This issue stresses that possibly Huang et al. should
be reviewed.

4. Discussion

Rewriting the Huang et al. four equations model, reducing it to a two equations one
and including time-varying intraspecies coefficients, allowed us to obtain an equivalent
model with a format analogous to the standard LVM. This first step clarified the meanings
of the model parameters and led us to explore and solve analytically special, and simpler,
cases of ecological relationships. Bioaccumulation of microplastics through food web, and
its consequent accelerated accumulation and magnification on predator [17–19], is a known
effect that we analytically showed based on this model, calculating the time threshold from
which their concentration and changing rate of the total amount are greater in predators
than in prey.

The three situations that we studied are characterized by some possible behavioral
abnormalities caused by the exposure to MP particles. More specifically, we considered
effects of reduction of predatory performance [26], where prey is not affected by predator
population size (α = 0), and/or there is no increase in the number of predators due to the
feeding of prey (α′ = 0). In our study, theses effects are considered so strong that they can
make one of the species independent, or even make both independent of each other. In the
cases where α = α′ = 0 or only α′ = 0, results reveal basically two patterns, depending on
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the response strength to MP particles: 1—the growth of prey at a rate β1(t) accompanied
by the extinction of predators, where the effects of microplastics are not strong enough
to stop the growth of the prey population; and 2—the extinction of predator followed by
the eventual extinction of prey. The most interesting, and counterintuitive, result of these
three cases appears when α = 0, where there is predators “population explosion”, showing
the predator population is substantially benefited by its dependence on prey. We also
point out that the Huang et al. model is not able to address the Allee effect [33,34]. It is
important to emphasize that the underlying structure of the model is exponential, and
the three special situations that we studied are limit cases, which lead to very different
predictions from the original study and result in the extremely large numbers of organisms
shown in Figures 1–3.

5. Conclusions

We rewrite the Huang et al. model by reducing its number of equations and defining
new parameters, making it analogous to the standard LVM with time varying intraspecific
coefficients. The time threshold from which the MP particles concentration and changing
rate of its total amount are greater in predators than in prey was calculated. We solved
analytically specific and simpler ecological situations where the effect of MP particles cause
severe abnormal behavior on predator and prey, leading them to become independent of
each other. Our simulations reveal a counterintuitive result when toxicological effects of
MP particles cause a total interruption of prey feeding ability, which can produce a predator
“population explosion”.

Our advance in the analytical treatment of the Huang et al. model opens space for
further refinement in the study of predator–prey models under toxicological effects of MP
particles, either exploring the second-order equation that we propose or modifying the
original model to further reduce its number of parameters, embedding in the time-varying
intraspecies coefficients all the adverse effects caused by MP particles.
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Abstract: The so-called material distribution methods for topology optimization cast the governing
equation as an extended or fictitious domain problem, in which a coefficient field represents the
design. In practice, the finite element method is typically used to approximate that kind of governing
equations by using a large number of elements to discretize the design domain, and an element-
wise constant function approximates the coefficient field in that domain. This paper presents a
spectral analysis of the coefficient matrices associated with the linear systems stemming from the
finite element discretization of a linearly elastic problem for an arbitrary coefficient field in three
spatial dimensions. The given theoretical analysis is used for designing and studying an optimal
multigrid method in the sense that the (arithmetic) cost for solving the problem, up to a fixed desired
accuracy, is linear in the corresponding matrix size. Few selected numerical examples are presented
and discussed in connection with the theoretical findings.

Keywords: matrix sequences; spectral analysis; finite element approximations

1. Introduction

In our previous paper [1], we applied the theory of generalized locally Toeplitz (GLT)
sequences to compute and analyze the asymptotic spectral distribution of the sequence
of stiffness matrices {Kn}n, with Kn being the finite element (FE) approximation of the
considered one spatial dimension topology optimization problem, for a given fineness
parameter associated to n. In a later contribution [2], we extended the analysis to the
two-dimensional setting using so-called multilevel block GLT sequences. In this paper, we
further expand the theory to cover the three-dimensional case.

Since the first material distribution method for topology design was introduced in the
late 1980s [3], topology optimization [4,5], a well-known computational tool for finding the
optimal distribution of material within a given design domain, has been studied extensively.
The material distribution topology optimization has contributed to the development of sev-
eral areas, such as electromagnetic [6–8], fluid–structure interaction [9,10], acoustics [11,12],
additive manufacturing [13], and especially (non-)linear elasticity [14–16]. For problems in
linear elasticity, which motivates the study in this paper, the most common method to solve
this type of problem is the so-called density-based or material distribution approach. In this
approach, a so-called material indicator function α(x)—typically referred to as the density
or the physical design—models the presence/absence of material; α = 1 where material is
present, else α = 0. However, the binary design problem is computationally intractable. A
standard approach to make the problem computationally feasible is employing a combi-
nation of relaxation, penalization, and filtering, in which the physical density is defined
as ρ(x) = α + (1− α)g

(
F (α)(x)

)
by ρ ≥ 0, which is a constant, the penalization operator
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is g, and the filtering procedure is F . In this approach, the finite element method (FEM)
is the standard choice for generating numerical solutions of a linearly elastic boundary
value problem. In practice, the physical design is typically represented as an element-wise
constant function. Moreover, a combination of allowing intermediate values of the design,
filtering, and penalization has been crucial for the success of these methods. In this paper,
we limit our attention to studying the linear system that stems from the FE discretization of
the governing equation and its solution. From a high performance computing perspective,
this limitation is natural since the computational effort in solving topology optimization
problems is dominated by the cost of solving the discretized governing equations—a fact
that is particularly prominent when studying three-dimensional problems. Over the last
decades, there has been significant work in improving the efficiency of topology optimiza-
tion, aiming at solving large-scale design problems [17–21]. Although our study is directly
motivated by the material-distribution or density-based approach to topology optimization,
the work is relevant for other design descriptions, such as level sets [22,23] or moving
morphable components [24–27], provided that the physics description uses the so-called
ersatz material approach, which in some cases can be justified rigorously [4].

The theory of multilevel block GLT sequences [28,29] is a generalization of the GLT
sequences theory [30,31] that is typically used for computing/analyzing the spectral distri-
bution of matrix sequences arising from, for example, the numerical discretization, such
as the FE approximation of partial differential equations (PDEs) with proper boundary
conditions. In the considered matrix sequences, the size of the given linear systems dn
increases with n, in which dn tends to infinity as n→ ∞. In this paper, the entire sequence
of linear systems with increasing size arising from the three spatial dimension problems
is the primary consideration. Under mild conditions, essentially relying on regularity
assumptions on the meshes, we show that the sequence of discretization matrices has
an asymptotic spectral distribution. By leveraging the theory of multilevel block GLT
sequences, we now extend our previous works [1,2] further to perform a detailed spectral
analysis of the linear systems associated with the FE discretization of the governing equa-
tion in the three-dimensional setting. Similar to our previous work [2], we also make use of
the information obtained from the spectral symbol f to design a fast, multigrid solver in
three dimensions for optimizing the (arithmetic) cost to solve the related linear systems
up to a fixed desired accuracy, which is proportional to the matrix–vector cost, which is
linear in the corresponding matrix size. This solver is also verified and comes up with very
satisfying numerical results, in terms of the linear cost and number of iterations, which are
bounded independently of the matrix size and mildly depending on the desired accuracy.

In the following sections, we will go into detail on the problem description, spectral
analysis, multigrid method, and a brief conclusion. The description of the continuous prob-
lem and the resulting coefficient matrices arising from our FE approximation is delivered in
Sections 2 and 3 is devoted to the spectral analysis of the FE matrices from the perspective
of the GLT theory. In Section 4, a brief account of multigrid methods with special attention
to the block case encountered in the present context is given, and the spectral information is
a core component in the development of the multigrid proposal for our specific 3D setting
presented in Section 5. Eventually, the conclusions are reported in Section 6, and some
relevant model information is explained in Appendice A and B.

2. Problem Description

We consider a linearly elastic structure that occupies (part of) the hyper-rectangular
domain Ω ⊂ R3. In particular, we are interested in the setting used in material distribution
based topology optimization, where a function, typically denoted as the physical density,
ρ : Ω→ [0, 1], describes the layout of the unloaded structure. We assume that the structure
is clamped along the boundary portion ΓD ⊂ ∂Ω. Moreover, we let b ∈ L2(Ω)3 be a
given body load (a volume force) in Ω, t ∈ L2(ΓF)

3 be the surface traction acting on the
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non-clamped boundary ΓF ⊂ ∂Ω of the solid, and u denote the resulting equilibrium
displacement, which solves the following problem.

Find u ∈ U such that a(u, v; ρ) = �(v) ∀v ∈ U , (1)

where the set of all kinematically admissible displacements of the structure is

U =
{

u ∈ H1(Ω)3 | u|ΓD ≡ 0
}

.

The energy bilinear form a and the load linear form � are defined as

a(u, v; ρ) =
∫
Ω

ρ
(
Ecε(u)

)
: ε(v),

�(v) =
∫
ΓF

t · v +
∫
Ω

b · v,

where ε(u) =
(
∇u +∇uT )

/2 is the strain tensor of u. The colon “:” denotes the full
contraction between the two tensors; when using the standard basis, the full contraction of
the two matrices is their Frobenius scalar product. Ec is a constant fourth-order elasticity
tensor. In this paper, we study an FE discretization of problem (1), in which the physical
density is approximated by an element-wise constant function, which is typical in material
distribution based topology optimization. The domain Ω is discretized into n trilinear
hexahedral elements and then applying FE approximation, the variational problem (1) is
reduced to the linear system

Kn(ρ)u = f ,

where u and f are the nodal displacement and load vector, respectively, and Kn(ρ) is the
stiffness matrix of element-wise constant physical density function ρ—the entries of the
vector ρ = [ρ1, ρ2, . . . , ρn] are the element values of ρ; that is, ρi is the value of ρ in the ith
element in the FE mesh. The stiffness matrix Kn is typically assembled by looping over
each element so that

Kn(ρ) =
n

∑
i=1

ρiK
(i)
e ,

where K(i)
e is the element stiffness matrix. We emphasize that the formal expression of

the relevant matrices is a key ingredient for applying the multilevel block GLT theory
to produce a global spectral description of the matrix sequences under consideration.
More precisely, the non-zero blocks of three-dimensional element stiffness matrix can be
expressed as

Ke =
h
2

E0

1 + ν

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1 K2 K3 K4 K5 K6 K7 K8
K9 K10 K11 K12 K13 K14 K7

K15 K16 K17 K18 K13 K6
K19 K20 K17 K12 K5

K19 K16 K11 K4
sym. K15 K10 K3

K9 K2
K1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where each Ki block has size 3× 3 and is associated with one node on a so-called reference
element, E0 is Young’s modulus, and ν is Poisson’s ratio. More details are provided in
Appendix A for the explicit expressions for the element stiffness matrix and in Appendix B
for the stress–strain relation and various bounds. With regard to Equation (2), the lower
part of the matrix is not explicitly given because the matrix is globally real symmetric
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and so is every block Kl , l = 1, . . . , 20, whose expressions are reported in Appendix A,
Equation (A1).

3. Spectral Analysis

The current section is devoted to the spectral analysis of the FE coefficient matrices
derived in the previous section and is complemented by a selection of numerical tests that
confirm the theoretical analysis (more numerical experiments have been performed but here
we report only a selection for the sake of brevity). We limit our focus to isotropic materials;
for more information about various bounds, see the discussion in Appendix B. From a
mathematics perspective, this means that we limit our attention to when the Poisson’s ratio
ν is in the range [0, 0.5). In particular, Section 3.1 contains the minimal set of preliminary
concepts and tools, while Sections 3.2 and 3.3 are focused on the specific study in 3D in the
constant and variable coefficient cases, respectively.

3.1. Premises

The premises include the formal definition of the eigenvalue and singular value
distribution, the notion of multi-indexing, the concepts of multilevel block Toeplitz matrices,
multilevel block sampling matrices, and multilevel block GLT matrix sequences.

3.1.1. Singular Value/Eigenvalue Distributions

We first give the formal definitions, and then we briefly discuss their informal and
practical meaning.

Definition 1. Let r, t be two positive integers. Let {An}n be a sequence of matrices, with An of size
dn with eigenvalues λ1(An), . . . , λdn(An) and singular values σ1(An), . . . , σdn(An). Furthermore,
let f : D ⊂ Rt → Cr×r be a measurable function defined on a set D with 0 < μt(D) < ∞, and
with μt(·) denoting the Lebesgue measure on Ct.

• We say that {An}n has a (asymptotic) singular value distribution described by f , and we
write {An}n ∼σ f , if

lim
n→∞

1
dn

dn

∑
i=1

F(σi(An)) =
1

μt(D)

∫
D

∑r
i=1 F(σi( f (x)))

r
dx, ∀ F ∈ Cc(R), (3)

with σ1( f ), . . . , σr( f ) being the singular values of f , each of them being a measurable function
non-negative almost everywhere.

• We say that {An}n has a (asymptotic) spectral (or eigenvalue) distribution described by f ,
and we write {An}n ∼λ f , if

lim
n→∞

1
dn

dn

∑
i=1

F(λi(An)) =
1

μt(D)

∫
D

∑r
i=1 F(λi( f (x)))

r
dx, ∀ F ∈ Cc(C), (4)

with λ1( f ), . . . , λr( f ) being the eigenvalues of f , each of them being a complex-valued mea-
surable function.

If {An}n has both a singular value and an eigenvalue distribution described by f , we write
{An}n ∼σ,λ f . (In practice, in the Toeplitz setting and often in the GLT setting, the parameter r
can be read at a matrix level as the size of the elementary blocks which form the global matrix An, as
it will be clear both in our stiffness matrices in Sections 3.2 and 3.3, and in the block Toeplitz/block
diagonal sampling structures in Section 3.1.2.)

The symbol f contains spectral/singular value information briefly described infor-
mally as follows. With reference to relation (4), the eigenvalues of Kn are partitioned into r
subsets of the same cardinality, except possibly for a small number of outliers, such that
the ith subset is approximately formed by the samples of λi( f ) over a uniform grid in D,
i = 1, . . . , r. Thus, provided that n is large enough, the symbol f provides a ’compact’ and
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quite accurate description of the spectrum of the matrices Kn. Similarly, relation (3) has the
same meaning when talking of the singular values of Kn and by replacing λi( f ) with σi( f ),
i = 1, . . . , r.

3.1.2. Multilevel Block Toeplitz Matrices, Multilevel Block Diagonal Sampling Matrices,
and Multilevel Block GLT Sequences

The present section is specifically devoted to matrix-theoretic notations and definitions,
which are essential when dealing with multi-dimensional problems and with the related
sequences of matrices.

Definition 2. A multi-index i ∈ Zd, also called a d-index, is a (row) vector in Zd, whose compo-
nents are denoted by i1, . . . , id.

• 0, 1, 2, . . . are the vectors of all zeros, all ones, all twos, . . . (their size will be clear from the
context).

• For any d-index m ∈ Nd
+, we set N(m) = ∏d

j=1 mj and we write m → ∞ to indicate that
min(m)→ ∞.

• If h, k are d-indices, h ≤ k means that hr ≤ kr for all r = 1, . . . , d.
• If h, k are d-indices such that h ≤ k, the multi-index range [h, . . . , k] is the set {j ∈ Zd :

h ≤ j ≤ k}. The standard lexicographic ordering is assumed uniformly[
. . .

[
[ (j1, . . . , jd) ]jd=hd ,...,kd

]
jd−1=hd−1,...,kd−1

. . .
]

j1=h1,...,k1

.

With regard to the previous definition, in the case d = 2, the lexicographic ordering is
the following: (h1, h2), (h1, h2 + 1), . . . , (h1, k2), (h1 + 1, h2),(h1 + 1, h2 + 1), . . . (h1 + 1, k2),
. . . (k1, h1), (k1, h1 + 1), . . . , (k1, k2). Notice that, in general, a multi-index range [h, . . . , k],
h ≤ k is used with h = 0 or with h = 1.

Definition 3 ((Multilevel) Block Toeplitz Matrices). Given n ∈ Nd, a matrix of the form

[Ai−j]
n
i,j=e ∈ CN(n)r×N(n)r

with e vector of all ones, with blocks Ak ∈ Cr×r, k = −(n− e), . . . , n− e, is called a multilevel
block Toeplitz matrix, or, more precisely, a d-level r-block Toeplitz matrix. Let φ : [−π, π]d → Cr×r

be a matrix-valued function in which each entry belongs to L1([−π, π]d). We denote the Fourier
coefficients of the generating function φ as

f̂k =
1

(2π)d

∫
[−π,π]d

φ(θ)e−ı̂(k,θ)dθ ∈ Cr×r, k ∈ Zd,

where the integrals are computed componentwise, ı̂2 = −1, and (k, θ) = k1θ1 + . . . + kdθd. For
every n ∈ Nd, the nth Toeplitz matrix associated with φ is defined as

Tn(φ) := [ f̂i−j]
n
i,j=e

or, equivalently, as

Tn(φ) = ∑
|j1|<n1

. . . ∑
|jd |<nd

[J(j1)
n1 ⊗ . . . J(jd)

nd ]⊗ f̂(j1,...,jd),

where⊗ denotes the (Kronecker) tensor product of matrices, while J(l)m is the matrix of order m whose
(i, j) entry equals 1 if i− j = l and zero otherwise. We call {Tn(φ)}n∈Nd the family of (multilevel
block) Toeplitz matrices associated with φ, which, in turn, is called the generating function of
{Tn(φ)}n∈Nd .
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Definition 4 ((Multilevel) Block Diagonal Sampling Matrices). For n ∈ N and a : [0, 1] →
Cr×r, we define the block diagonal sampling matrix Dn(a) as the diagonal matrix

Dn(a) = diag
i=1,...,n

a
( i

n

)
=

⎡
⎢⎢⎢⎣

a( 1
n )

a( 2
n )

. . .
a(1)

⎤
⎥⎥⎥⎦ ∈ Crn×rn.

For n ∈ Nd and a : [0, 1]d → Cr×r, we define the multilevel block diagonal sampling matrix
Dn(a) as the block diagonal matrix

Dn(a) = diag
i=1,...,n

a
( i

n

)
∈ CrN(n)×rN(n),

with the lexicographical ordering discussed at the beginning of Section 3.1.2.

Definition 5 (Zero-Distributed Sequences of Matrices). According to Definition 1, a sequence
of matrices {Zn}n such that

{Zn}n ∼σ 0

is referred to as a zero-distributed sequence. Note that, for any r ≥ 1, {Zn}n ∼σ 0 is equivalent
to {Zn}n ∼σ Or (notice that Om and Im denote the m×m zero matrix and the m×m identity
matrix, respectively).

Proposition 1 provides an important characterization of zero-distributed sequences
together with a useful sufficient condition for detecting such sequences. Throughout this
paper, we use the natural convention 1/∞ = 0.

Proposition 1. [30] Let {Zn}n be a sequence of matrices, with Zn of size dn, and let ‖ · ‖ be the
standard spectral matrix norm (the one induced by the Euclidean vector norm).

• {Zn}n is zero distributed if and only if Zn = Rn + Nn with rank(Rn)/dn → 0 and
‖Nn‖ → 0 as n→ ∞.

• {Zn}n is zero distributed if there exists a p ∈ [1, ∞] such that ‖Zn‖p/(dn)1/p → 0 as
n→ ∞.

(Multilevel) Block GLT Matrix Sequences. Now, we give a very concise and operational
description of the multilevel block GLT sequences, from which it will be clear that the
multilevel block Toeplitz structures, the zero-distributed matrix sequences, and the multi-
level block diagonal sampling matrices represent the basic building components. All the
material is taken from the books [30,31] and from the papers [28,32].

Let d, r ≥ 1 be fixed positive integers. A multilevel r-block GLT sequence (or simply a
GLT sequence if d, r can be inferred from the context or we do not need/want to specify
them) is a special r-block matrix sequence {An}n equipped with a measurable function
κ : [0, 1]d × [−π, π]d → Cr×r, the so-called symbol. We use the notation {An}n ∼GLT κ to
indicate that {An}n is a GLT sequence with symbol κ. The symbol of a GLT sequence is
unique in the sense that if {An}n ∼GLT κ and {An}n ∼GLT ς then κ = ς a.e. in [0, 1]d ×
[−π, π]d. The main properties of r-block GLT sequences proved in [28] are listed below. If A
is a matrix, we denote by A† the Moore–Penrose pseudoinverse of A (recall that A† = A−1

whenever A is invertible).

GLT 1 If {An}n ∼GLT κ then {An}n ∼σ κ. If moreover each An is Hermitian, then
{An}n ∼λ κ.

GLT 2 We have the following:

• {Tn(φ)}n ∼GLT κ(x, θ) = φ(θ) if φ : [−π, π]d → Cr×r is in L1([−π, π]d);
• {Dn(a)}n ∼GLT κ(x, θ) = a(x) if a : [0, 1]d → Cr×r is Riemann integrable;

182



Math. Comput. Appl. 2022, 27, 78

• {Zn}n ∼GLT κ(x, θ) = Or if and only if {Zn}n ∼σ 0 (zero-distributed sequences
coincide exactly with the GLT sequences having GLT symbol equal to Or a.e.).

GLT 3 If {An}n ∼GLT κ and {Bn}n ∼GLT ς, then

• {A∗n}n ∼GLT κ∗;
• {αAn + βBn}n ∼GLT ακ + βς for all α, β ∈ C;
• {AnBn}n ∼GLT κς;
• {A†

n}n ∼GLT κ−1 provided that κ is invertible a.e.

3.2. Constant Coefficient Case ρ ≡ 1

In the current section, we report the derivation and the formal expression of the
symbol for the matrix sequences in the constant coefficient setting ρ ≡ 1, according to the
standard notion of generating function in the Toeplitz theory (see Section 3.1.2 and the
paper by Garoni et al. [29] for more details) and according to the notion of symbol reported
in Definition 1.

3.2.1. Symbol Definition

Recall that the computational domain Ω is a hyper-rectangular domain in 3D, and the
boundary of Ω comprises six sides. Let An(1, DN5) be the stiffness matrix obtained with a
Q1 FE approximation with proper boundary conditions, Dirichlet ‘D’ on one of Ω’s sides
and Neumann ‘N’ in the other five sides of Ω (and hence the formal notation An(1, DN5)),
where we have chosen a uniform meshing with n intervals in the x1 direction, n intervals in
the x2 direction, and n intervals in the x3 direction. According to the previously considered
ordering of the nodes, the matrix An(1, DN5) is a three-level block tridiagonal structure
of size n with two-level tridiagonal blocks of size n + 1, with tridiagonal blocks of size
n + 1, whose elements are small matrices of size 3. We notice that the size is dictated by all
the meshpoints, including those in the boundaries when considering Neumann boundary
conditions, while only the internal meshpoints are involved when the Dirichlet boundary
conditions are enforced.

In accordance with the 2D case [2], if all the boundary conditions are of the Dirichlet
type, then we obtain a matrix An(1, D6), which is a three-level block Toeplitz structure with
elementary blocks of size 3, having global dimension 3(n− 1)3, since all the nodes on the
boundaries are not unknowns. More precisely, we obtain

An(1, D6) =

⎡
⎢⎢⎢⎢⎢⎣

a0 a−1
a1 a0 a−1

. . . . . . . . .
a1 a0 a−1

a1 a0

⎤
⎥⎥⎥⎥⎥⎦ = tridiag (ai)i=−1,0,1,

and, for i = −1, 0, 1, we have

ai =

⎡
⎢⎢⎢⎢⎢⎣

ai0 ai−1
ai1 ai0 ai−1

. . . . . . . . .
ai1 ai0 ai−1

ai1 ai0

⎤
⎥⎥⎥⎥⎥⎦ = tridiag(aij)j=−1,0,1,

183



Math. Comput. Appl. 2022, 27, 78

while, for i, j = −1, 0, 1, the following block tridiagonal matrices are defined:

aij =

⎡
⎢⎢⎢⎢⎢⎣

aij0 aij−1
aij1 aij0 aij−1

. . . . . . . . .
aij1 aij0 aij−1

aij1 aij0

⎤
⎥⎥⎥⎥⎥⎦ = tridiag(aijk)k=−1,0,1.

By reading the entries of An(1, D6), analogously to the process in the 2D setting as
in [2], we can compute explicitly the related generating function, following the rules given
in Definition 3:

fQ1(θ1, θ2, θ3) = fa0(θ1, θ2) + fa−1(θ1, θ2)e−ı̂θ3 + fa1(θ1, θ2)eı̂θ3

=
(

fa00(θ1) + fa0−1(θ1)e−ı̂θ2 + fa01(θ1)eı̂θ2
)

+
(

fa−10(θ1) + fa−1−1(θ1)e−ı̂θ2 + fa−11(θ1)eı̂θ2
)

e−ı̂θ3

+
(

fa10(θ1) + fa1−1(θ1)e−ı̂θ2 + fa11(θ1)eı̂θ2
)

eı̂θ3

=
(

a000 + a00−1e−ı̂θ1 + a001eı̂θ1
)
+
(

a0−10 + a0−1−1e−ı̂θ1 + a0−11eı̂θ1
)

e−ı̂θ2

+
(

a010 + a01−1e−ı̂θ1 + a011eı̂θ1
)

eı̂θ2

+

[(
a−100 + a−10−1e−ı̂θ1 + a−101eı̂θ1

)
+
(

a−1−10 + a−1−1−1e−ı̂θ1 + a−1−11eı̂θ1
)

e−ı̂θ2

+
(

a−110 + a−11−1e−ı̂θ1 + a−111eı̂θ1
)

eı̂θ2

]
e−ı̂θ3

+

[(
a100 + a10−1e−ı̂θ1 + a101eı̂θ1

)
+
(

a1−10 + a1−1−1e−ı̂θ1 + a1−11eı̂θ1
)

e−ı̂θ2

+
(

a110 + a11−1e−ı̂θ1 + a111eı̂θ1
)

eı̂θ2

]
eı̂θ3 ,

where every arst, r, s, t ∈ {−1, 0, 1} is a 3× 3 matrix because three degrees of freedom
are associated to each node of the mesh. Each arst is a sum of the building blocks of the
elementary matrix (2). More precisely, in terms of the block matrices Ki, cf. definition (A1)
in Appendix A, we can write

a000 = 2
(

K1 + K9 + K15 + K19

)
, a001 = a00−1 = 2

(
K2 + K16

)
,

a010 = a0−10 = 2
(

K3 + K11

)
, a011 = a0−1−1 = 2K4,

a01−1 = a0−11 = 2K10, a100 = a−100 = 2
(

K5 + 2K13

)
,

a101 = a−10−1 = 2K6, a10−1 = a−101 = 2K12,

a110 = a−1−10 = 2K7, a1−10 = a−110 = 2K17,

a111 = a−1−1−1 = K8, a11−1 = a−1−11 = K14,

a1−11 = a−11−1 = K18, a−111 = a1−1−1 = K20.

184



Math. Comput. Appl. 2022, 27, 78

Thus, we have

fQ1(θ1, θ2, θ3) =

⎡
⎣ f11(θ1, θ2, θ3) f12(θ1, θ2, θ3) f13(θ1, θ2, θ3)

f12(θ1, θ2, θ3) f22(θ1, θ2, θ3) f23(θ1, θ2, θ3)
f13(θ1, θ2, θ3) f23(θ1, θ2, θ3) f33(θ1, θ2, θ3)

⎤
⎦, (5)

where

f11(θ1, θ2, θ3) = 8k1 + 8k3 cos(θ1) + 2 cos(θ2)
(
4k3 + 4k5 cos(x)

)
+ 2 cos(θ3)

(
4k6 + 2 cos(θ2)

(
2k7 + 2k9 cos(θ1)

)
+ 4k7 cos(θ1)

)
,

f12(θ1, θ2, θ3) = 4k2 + 4k8 + 4 cos(θ1)
(
k4 + k10)

+ 2e−iθ3
(

eiθ2
(
k2 + k4 cos(θ1)

)
+ e−iθ2

(
k8 + k10 cos(θ1)

))
+ 2eiθ3

(
eiθ2

(
k8 + k10 cos(θ1)

)
+ e−iθ2

(
k2 + k4 cos(θ1)

))
,

f13(θ1, θ2, θ3) = 4k2 + 4k8 + 8k0 cos(θ1) + 4 cos(θ2)
(
k4 + k10 + 2k0 cos(θ1)

)
+ 2e−iθ3

(
k2eiθ1 + k8e−iθ1 +

(
k4eiθ1 + k10e−iθ1

)
cos(θ2)

)
+ 2eiθ3

(
k2e−iθ1 + k8eiθ1 +

(
k4e−iθ1 + k10eiθ1

)
cos(θ2)

)
,

f22(θ1, θ2, θ3) = 8k1 + 8k3 cos(θ1) + 8 cos(θ2)
(
k6 + k7 cos(θ1)

)
+ 8 cos(θ3)

(
k3 + k5 cos(θ1) + cos(θ2)

(
k7 + k9 cos(θ1)

))
,

f23(θ1, θ2, θ3) = 4k2 + 4k8 + 2e−iθ2
(
k2eiθ1 + k8e−iθ1

)
+ 2eiθ2(k2e−iθ1 + k8eiθ1)

+ 2 cos(θ3)
(

2k4 + 2k10 + 4k0 cos(θ1) + 4k0 cos(θ2)

+ e−iθ2
(
k4eiθ1 + k10e−iθ1

)
+ eiθ2

(
k4e−iθ1 + k10eiθ1

))
,

f33(θ1, θ2, θ3) = 8k1 + 8k6 cos(θ1) + 8 cos(θ2)
(
k3 + k7 cos(θ1)

)
+ 8 cos(θ3)

(
k3 + k7 cos(θ1) + cos(θ2

)
(k5 + k9 cos(θ1)

))
.

Finally, by expanding the kis according to expressions (A2), we deduce the formal
expression of the generating functions

f11(θ1, θ2, θ3) = 2 cos(θ3)

[
cos(θ2)

(
2ν

3(2ν− 1)
+ 2 cos(θ1)

(
ν

3(2ν− 1)
− 1

9

)
− 4

9

)

+ cos(θ1)

(
2ν

3(2ν− 1
− 4

9

)
− 8

9

]

+
8
9

cos(θ1)−
16ν

3(2ν− 1)

+ cos(θ2)

(
2 cos(θ1)

(
2ν

3(2ν− 1)
+

2
9

)
+

8
9

)
+

16
9

,

f22(θ1, θ2, θ3) = 8 cos(θ3)

[
cos(θ2)

(
ν

6(2ν− 1)
+ cos(θ1)

(
ν

6(2ν− 1)
− 1

18

)
− 1

9

)

+ cos(θ1)

(
ν

6(2ν− 1)
+

1
18

)
+

1
9

]

+
8
9

cos(θ1)−
16ν

3(2ν− 1)

+ 8 cos(θ2)

(
cos(θ1)

(
ν

6(2ν− 1)
− 1

9

)
− 2

9

)
+

16
9

,
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f33(θ1, θ2, θ3) = 8 cos(θ3)

[
cos(θ2)

(
ν

6(2ν− 1)
+ cos(θ1)

(
ν

6(2ν− 1)
− 1

18

)
+

1
18

)

+ cos(θ1)

(
ν

6(2ν− 1)
− 1

9

)
+

1
9

]

− 16ν

3(2ν− 1)
− 16

9
cos(θ1) +

16
9

+ 8 cos(θ2)

(
cos(θ1)

(
ν

6(2ν− 1)
− 1

9

)
+

1
9

)
,

f12(θ1, θ2, θ3) = −
4

3(2ν− 1)

(
ν sin(θ2) sin(θ3)

(
cos(θ1

)
+ 2)

)
,

f13(θ1, θ2, θ3) = −
4

3(2ν− 1)

(
ν sin(θ1) sin(θ3)

(
cos(θ2) + 2

))
,

f23(θ1, θ2, θ3) = −
4

3(2ν− 1)

(
ν sin(θ1) sin(θ2)

(
cos(θ3) + 2

))
.

The following proposition links in a precise way the involved Toeplitz structures and
matrices An(1, D6) and An(1, DN5).

Proposition 2. Let fQ1(θ1, θ2, θ3) be the symbol defined in the previous lines; see (5). Let us
consider a uniform meshing in all the three directions with n subintervals. Then we have the
following relationships:

An(1, D6) = Tn( fQ1), n = (n1, n2, n3), n1 = n2 = n3 = n− 1,

An(1, DN5) = Tn( fQ1) + Rn, n = (n1, n2), n1 = n, n2 = n3 = n + 1,

where Rn has rank of order n2 = o(size(Rn)), with size(Rn) = size(An(1, DN5)) = n1n2n3.
If the more general setting is considered with n1 subintervals in the x1 direction, n2 subintervals

in the x2 direction, and n3 intervals in the x3 direction, then the analogous is true:

An(1, D6) = Tn( fQ1), n = (n1 − 1, n2 − 1, n3 − 1),

An(1, DN5) = Tn( fQ1) + Rn, n = (n1, n2 + 1, n3 + 1),

where Rn has a rank proportional to n1n2 + n1n3 + n2n3 = o(size(Rn)), with size(Rn) =
size(An(1, DN5)) = n1n2n3.

Proof. Since the grid points in a cube are n1n2n3, if we consider Dirichlet boundary condi-
tions in a facet orthogonal, for example, to the direction x1, then the number of points and
equations which are affected by the Neumann boundary conditions on the other 5 facets
are 2l3n1n2 + 2l2n1n3 + l1n2n3, where typically l3 = l2 = l1 = 2 if the standard linear FEs
are employed. Hence, the rank correction induced by the matrix Rn is proportional, as
claimed to n1n2 + n1n3 + n2n3 = o(size(Rn)).

In the following section, we prove that the function fQ1 is the eigenvalue symbol, in
the sense of Definition 1, of the matrix sequences {An(1, D6)}n and {An(1, DN5)}n.

3.2.2. Symbol Spectral Analysis in 3D: Distribution, Extremal Eigenvalues,
and Conditioning

We study the spectral distribution, extremal eigenvalues, and conditioning of our
matrix sequences in 3D. All the results are based on the symbol and on its analytical features.
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Proposition 3. Let fQ1(θ1, θ2, θ3) be the symbol defined in Section 3.2.1 According to the no-
tation in Proposition 2, all the matrix sequences {Tn( fQ1)}n, {An(1, D6)}n, {An(1, D6)}n,
{An(1, DN5)}n, {An(1, DN5)}n are spectrally distributed as fQ1 in the sense of Definition 1.

Proof. For the multilevel block Toeplitz sequences {Tn( fQ1)}n, {An(1,D6)}n, and {An(1,D6)}n
refer to Item GLT 2., part 1, and Item GLT 1., part 2 in Section 3.1.2. For the sequences
{An(1, DN5)}n, {An(1, DN5)}n first observe that the matrix sequence {Rn}n defined in Propo-
sition 2 is zero distributed, thanks to Proposition 1 and Proposition 2 since rank(Rn)/size(Rn)
→ 0, as n → ∞. Then the claim follows thanks to the ∗-algebra structure of the GLT
sequences and more specifically thanks to Item GLT 3., part 2, Item GLT 2., part 1, and Item
GLT 1., part 2.

Now, we identify a few key analytical features of the spectral symbol which are shared
by all the matrix sequences mentioned in Proposition 3. Theorem 1 is crucial for the study
of the extremal eigenvalues and of the conditioning of the same matrix sequences and, in
Section 5, it is the main ingredient for designing ad hoc multigrid solvers when dealing
with the associated large linear systems.

Theorem 1. Let fQ1(θ1, θ2, θ3) be the symbol defined in (5). The following statements hold true:

1. fQ1(0, 0, 0)e = 0, e = [1, 1, 1]T;
2. All three eigenvalues of fQ1 have a zero of order 2 at (0, 0, 0).

Proof. Claim 1. The function fQ1 evaluated at (0, 0, 0) equals

fQ1(0, 0, 0) =

⎡
⎣α β β

β α β
β β α

⎤
⎦

with α = 8(k1 + 2k3 + k5 + k6 + 2k7 + k9) and β = 8(4k0 + k2 + k4 + k8 + k10), whose
row-sum α + 2β = 0 according to (A2).

Claim 2. It is just a direct check. Indeed, it is enough to check that the quantities

tr( fQ1(θ1, θ2, θ3)) and det( fQ1(θ1, θ2, θ3))

have a zero of orders two and six, respectively, by considering the Taylor expansion centered
at (0, 0, 0).

In accordance to what was proven in the 2D setting, the minimal eigenvalue of the
symbol fQ1(θ1, θ2, θ3) has a unique zero of order two at (θ1, θ2, θ3) = (0, 0, 0). In fact, the
symbol fQ1 is positive semi-definite, and all the eigenvalues of the symbol fQ1(θ1, θ2, θ3)
have a unique zero of order two at (θ1, θ2, θ3) = (0, 0, 0), that is, there exist positive
constants c(j), C(j), j = 1, 2, 3 such that

c(j)‖(θ1, θ2, θ3)
T‖2 ≤ λj( fQ1(θ1, θ2, θ3)) ≤ C(j)‖(θ1, θ2, θ3)

T‖2

uniformly in a proper neighborhood of (0, 0, 0).
Therefore, we can infer important information on the extremal eigenvalues and on the

conditioning of the corresponding matrix sequences.
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Proposition 4. Let fQ1(θ1, θ2, θ3) be the symbol defined in (5). Let us consider a uniform meshing
in all the directions with n subintervals. Then we have the following relationships:

λmin(An(1, D6)) ∼ n−2,

max fQ1 − λmax(An(1, D6)) ∼ n−2,

μ(An(1, D6)) ∼ n2,

An(1, D6) = Tn( fQ1), n = (n1, n2, n3), n1 = n2 = n3 = n− 1

and

λmin(An(1, DN5)) ∼ n−2,

max fQ1 − λmax(An(1, DN5)) ∼ n−2,

μ(An(1, DN5)) ∼ n2,

An(1, DN5) = Tn( fQ1) + Rn, n = (n1, n2, n3), n1 = n, n2 = n3 = n + 1,

with Rn as in Proposition 2 and μ(·) denoting the condition number in spectral norm (the one
induced by the Euclidean vector norm).

If the more general setting is considered with n1 subintervals in the x1 direction, n2 subintervals
in the x2 direction, and n3 subintervals in the x3 direction, then analogous relations are true:

λmin(An(1, D6)) ∼ [min nj]
−2,

max fQ1 − λmax(An(1, D6)) ∼ [min nj]
−2,

μ(An(1, D6)) ∼ n2,

An(1, D6) = Tn( fQ1), n = (n1 − 1, n2 − 1, n3 − 1)

and

λmin(An(1, DN5)) ∼ [min nj]
−2,

max fQ1 − λmax(An(1, DN5)) ∼ [min nj]
−2,

μ(An(1, DN5)) ∼ [min nj]
2,

An(1, DN5) = Tn( fQ1) + Rn, n = (n1, n2 + 1, n3 + 1),

with Rn as in Proposition 2.

3.3. Non-Constant Coefficient ρ Case—3D

It should be observed that the natural extension of the previous analysis refers to the
case of a non-constant coefficient ρ. According to a standard assembling procedure in FEs,
given the triangulation T made by all the basic elements τ, we write the stiffness matrix as

An(ρ) = ∑
τ∈T

ρτ AEl
n,τ , (6)

where AEl
n,τ is the elementary matrix Kn in (2) (possibly properly cut when nodes on the

boundary are involved), but widened to size N(n) according to the chosen global ordering
of nodes. Here, n = (n− 1, n− 1, n− 1) in the case of the Dirichlet boundary conditions and
n subintervals in all the directions such that An(ρ) = An(ρ, D6), while n = (n, n + 1, n + 1)
in the case of Dirichlet boundary conditions on one-side Neumann boundary conditions in
the remaining ones with n subintervals in all the directions so that An(ρ) = An(ρ, DN5).
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Clearly, the elementary matrix Ke is positive semi-definite for 0 ≤ ν < 1/2. More
precisely, the not zero eigenvalues are

1 (double),
(1− ν)

3(1− 2ν)
(triple),

2ν

(1− 2ν)
(triple),

ν

3(1− 2ν)
(double),

4ν

3(1− 2ν)
(simple),

(ν + 1)
(1− 2ν)

(simple),
(ν + 1)

3(1− 2ν)
(triple),

(ν + 1)
9(1− 2ν)

(triple).

In addition, every elementary matrix, which has been cut due to nodes on the boundary,
is positive semi-definite as well since it is a principal submatrix of Ke in (2).

Thus, on the basis of (6) and by applying the Courant–Fisher theorem, we can
claim again

ρminλmin(An(1)) ≤ λmin(An(ρ)) ≤ ρmaxλmin(An(1)),

ρminλmax(An(1)) ≤ λmax(An(ρ)) ≤ ρmaxλmax(An(1)).

with ρmin and ρmax minimum and maximum of ρ, respectively (see Figure 1 for an upper-
bound of the maximal eigenvalues of An(1) as a function of ν).

Figure 1. Maxima of eigenvalue surfaces of the symbol fQ1 vs. ν.

By combining the above inequalities and Proposition 4, we infer that the extremal
eigenvalues and the conditioning have the same asymptotical behavior as in the constant
coefficient setting.

The whole eigenvalues distribution is sketched below by referring to the basics of
the GLT theory [29] reported in Section 3.1.2. Let Dn(ρ) be a multilevel block diagonal
sampling matrix according to the notions introduced in Section 3.1.2 and let An(1) be the
multilevel block Toeplitz matrix Tn( fQ1) if the Dirichlet boundary conditions are used or
Tn( fQ1) + Rn in the other case. Then the following facts hold:

Fact 1 {Dn(ρ)}n ∼GLT ρ according to Item GLT 2.

Fact 2 {Rn}n ∼GLT 0 according to Proposition 2, Proposition 1, and Item GLT 2.

Fact 3 {Tn( fQ1)}n ∼GLT fQ1 according to Item GLT 2.

Fact 4 {An(1)}n ∼GLT fQ1 according to Fact 2, Fact 3, and to the ∗-algebra structure of GLT
sequences that is Item GLT 3.

Fact 5 given Δn = An(ρ)− Dn(ρ)An(1) a simple check shows that {Δn}n ∼GLT 0, using
Proposition 1.

Fact 6 {An(ρ)}n ∼GLT ρ fQ1 as a consequence of Fact5, Fact 1, Fact 4, and of the ∗-
algebra structure of GLT sequences that is Item GLT 3.; moreover since the matrix
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sequence {An(ρ)}n is made up by Hermitian matrices, by Item GLT 1. it follows that
{An(ρ)}n ∼σ,λ ρ fQ1 .

We stress that a unique notation has been employed for the sake of notational com-
pactness. However, the main statement, Fact 6, holds for all the matrix sequences reported
in Proposition 3 in the case of a variable ρ.

Finally, it is worth noticing that non-square domains can be treated as well, using
the reduced GLT theory (see pages 398–399 in [33], Section 3.1.4 in [34], and the recent
analysis [35]): here, we do not go in the details and this will be the subject of future
investigations.

4. Two-Grid and Multigrid Methods

In this section, we concisely report few relevant results concerning the convergence
theory of algebraic multigrid methods with special attention of the case of multilevel block
Toeplitz structures generated by a matrix-valued symbol f .

We start by taking into consideration the generic linear system Amxm = bm with large
dimension m, where Am ∈ Cm×m is a Hermitian positive definite matrix and xm, bm ∈ Cm.
Let m0 = m > m1 > . . . > ms > . . . > msmin and let Ps+1

s ∈ Cms+1×ms be a full-rank matrix
for any s. At last, let us denote by Vs a class of stationary iterative methods for given linear
systems of dimension ms.

In accordance with [36], the algebraic two-grid method (TGM) can be easily seen as a
stationary iterative method whose generic steps are reported below.

xout
s = TGM(s, xin

s , bs)

xpre
s = Vνpre

s,pre(xin
s , bs) Pre-smoothing iterations

rs = Asxpre
s − bs

rs+1 = Pms+1
ms rs

As+1 = Pms+1
ms As(Pms+1

ms )H

Solve As+1ys+1 = rs+1
x̂s = xpre

s − (Pms+1
ms )Hys+1

Exact coarse grid correction (CGC)

xout
s = Vνpost

s,post(x̂s, bs) Post-smoothing iterations

Here, we refer to the dimension ms by means of its subscript s.
In the first and last steps, a pre-smoothing iteration and a post-smoothing iteration are

applied νpre times and νpost times, respectively, taking into account the considered stationary
iterative method in the class Vs. Furthermore, the intermediate steps define the exact coarse
grid correction operator, which is dependent on the considered projector operator Ps

s+1. The
resulting iteration matrix of the TGM is then defined as

TGMs = V
νpost
s,postCGCsV

νpre
s,pre,

CGCs = I(s) − (Pms+1
ms )H A−1

s+1Pms+1
ms As

As+1 = Pms+1
ms As(Pms+1

ms )H ,

where Vs,pre and Vs,post represent the pre-smoothing and post-smoothing iteration matrices,
respectively, and I(s) is the identity matrix at the sth level.

By employing a recursive procedure, the TGM leads to a multigrid method (MGM).
Indeed, the standard V-cycle can be expressed in the following way:
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xout
s = MGM(s, xin

s , bs)

if s ≤ smin then

Solve Asxout
s = bs Exact solution

else

xpre
s = Vνpre

s,pre(xin
s , bs) Pre-smoothing iterations

rs = Asxpre
s − bs

rs+1 = Pms+1
ms rs

ys+1 = MGM(s + 1, 0s+1, rs+1)
x̂s = xpre

s − (Pms+1
ms )Hys+1

Coarse grid correction

xout
s = Vνpost

s,post(x̂s, bs) Post-smoothing iterations

From a computational viewpoint, to reduce the related costs, it is more efficient that
the matrices As+1 = Ps+1

s As(Ps+1
s )H are computed in the so-called setup phase.

According to the previous setting, the global iteration matrix of the MGM is recursively
defined as

MGMsmin = O ∈ Csmin×smin ,

MGMs = V
νpost
s,post

[
I(s) − (Pms+1

ms )H
(

I(s+1) −MGMs+1

)
A−1

s+1Pms+1
ms As

]
V

νpre
s,pre,

s = smin − 1, . . . , 0.

Lastly, the W-cycle is just a variation of the previous V-cycle considering two recursive
calls in the coarse grid correction as follows:

xout
s = MGMW(s, xin

s , bs)

if s ≤ smin then

Solve Asxout
s = bs Exact solution

else

xpre
s = Vνpre

s,pre(xin
s , bs) Pre-smoothing iterations

rs = Asxpre
s − bs

rs+1 = Pms+1
ms rs

y(0)s+1 = 0s+1
for μ = 1 : 2

y(μ)s+1 = MGMW(s + 1, y(μ−1)
s+1 , rs+1)

x̂s = xpre
s − (Pms+1

ms )Hy(2)s+1

Coarse grid correction

xout
s = Vνpost

s,post(x̂s, bs) Post-smoothing iterations

In the following remark, we emphasize the relevant computational properties of the
considered methods.

Remark 1. The first part of the current remark concerns the computational cost. In the V-cycle,
there is just one recursive call, while in the W-cycle, there are two recursive calls, which in principle,
is more expensive. Let us analyze the related costs. Since our matrices are sparse and they remain
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sparse at the lower levels, the number of arithmetic operations in the V-cycle and W-cycle algorithms
is of the type

CV(m) ≤ CV(m/q) + αm, CW(m) ≤ 2CW(m/q) + αm,

where m = m0 and ms+1 = ms/q. Now in the one-dimensional setting q = 2 and CV(m) = O(m),
while CW(m) = O(m log m) and thus the W-cycle is asymptotically more expensive. Conversely,
in a d-dimensional setting with d ≥ 2, we have q = 2d and, as a consequence of the recursive
relations, both CV(m) and CW(m) are linear in the matrix-size m. To be precise, we have

CV(m) ≤ 2d

2d − 1
αm, CW(m) ≤ 2d−1

2d−1 − 1
αm,

so that, in the current three-dimensional setting, the bounds of the V-cycle and W-cycle complexity
are very close, i.e.,

CV(m) ≤ 8
7

αm, CW(m) ≤ 4
3

αm.

Another issue to be considered is the case where the discretization matrices appear in checker-
board fashion (see, for example, [37] and the references therein). We emphasize that our analysis,
which is based on the Toeplitz generating function, is not directly applicable since we lose the Toeplitz
character of the approximation matrices when a checkerboard (called also red–black) ordering is used.
However, this is just a matter of a similarity transformation by a permutation matrix. Hence, with a
careful work and without increasing the complexity analyzed in the previous lines, the algorithm
discussed here and the related theoretical analysis can be adapted to the checkerboard context.

Remark 2. In the relevant literature (see, for instance, [38]), the convergence analysis of the TGM
splits into checking two separate conditions: the smoothing property and the approximation property.
Regarding the latter and regarding scalar structured matrices [38,39], the TGM optimality is given
in terms of choosing the proper conditions that the symbol p of a family of projection operators has
to fulfill. Indeed, let Tn( f ) with n = (2t − 1), where f is a non-negative trigonometric polynomial.
Let θ0 be the unique zero of f . Then the TGM optimality applied to Tn( f ) is guaranteed if we choose
the symbol p of the family of projection operators such that

lim sup
θ→θ0

|p(η)|2
f (θ)

< ∞, η ∈ M(θ),

∑
η∈Ω(θ)

|p(η)|2 > 0,
(7)

where, for d = 1, the sets Ω(θ) andM(θ) are the following corner and mirror points

Ω(θ) = {η ∈ {θ, θ + π}}, M(θ) = Ω(θ) \ {θ},

respectively. In the general case of d > 1, we have

Ω(θ) = {η ∈ {θ+ πs}, s = (s1, . . . , sd), sj ∈ {0, 1}, j = 1, . . . , d}

withM(θ) = Ω(θ) \ {θ}, so that the cardinality of Ω(θ) andM(θ) is 2d and 2d− 1, respectively.

Informally, for d = 1, it means that the optimality of the two-grid method is ob-
tained by choosing the family of projection operators associated to a symbol p such that
|p|2(ϑ) + |p|2(ϑ + π) does not have zeros and |p|2(ϑ + π)/ f (ϑ) is bounded (if we require
the optimality of the V-cycle, then the second condition is a bit stronger); see [38]. For
approximation of an elliptic differential operator of order 2α by local methods (e.g., finite
differences, FEs, and isogeometric analysis), the previous conditions mean that p has a
unique zero of order at least α at ϑ = π whenever f has a unique zero at θ0 = 0 of order 2α.
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In our specific block setting, by interpreting the analysis given in [40], all the involved
symbols are matrix valued, and the conditions which generalize (7) and are sufficient for
the TGM convergence and optimality are the following:

(A) Zero of order 2 at all the mirror points of the eigenvalue functions of the symbol of the
projector for our matrix sequences having common symbol fQ1 (mirror point theory
[38,39]);

(B) Positive definiteness of ∑η∈Ω(θ) ppH(η);

(C) Commutativity of all p(η) for η varying in the corner points.

Even if the theoretical extension to the V-cycle and W-cycle convergence and optimality
is not given, in the subsequent section, we propose specific choices of the projection
operators numerically showing how this leads to two-grid, V-cycle, and W-cycle procedures
converging optimally or quasi-optimally with respect to all the relevant parameters (size,
dimensionality, and polynomial degree k).

Our choices are in agreement with the mathematical conditions set in items (A), (B),
and (C). We remark that the violation of condition C) is discussed by Donatelli et al. [40], in
their conclusion section.

5. Multigrid Proposals

Based on the theory in Section 4, we define the prolongation operator as

Ph
2h = P⊗ P⊗ P⊗ I3/

√
2

in the case of matrices An(1, D6), and

Ph
2h = Pc ⊗ Pt ⊗ Pt ⊗ I3/

√
2

in the case of matrices An(1, DN5). In the expressions above,

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
1
2

1
2

1

1
2

. . . 1
2

1
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Pt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2

1
2

1
1
2

1
2

1

1
2

. . . 1
2

1
1
2

1
2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and Pc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
1
2

1
2

1

1
2

. . . 1
2

1
1
2

1
2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that A2h = PT AhP equals the same FEM approximation on the coarse mesh in
both cases, independently of the boundary conditions.

Independently of the boundary conditions, we observe that the symbol of the prolon-
gation operator is a 3× 3 matrix-valued function as the symbol of the coefficient matrix
sequence of the linear systems to be solved: more precisely we define

p(θ1, θ2, θ3) =
√

2−1(1 + cos(θ1)(1 + cos(θ2)(1 + cos(θ3)I3.

Since the matrix-valued function p(θ1, θ2, θ3) is a scalar function times the identity,
it automatically follows that the difficult condition (C) is satisfied. Moreover, taking into
account Theorem 1, since the scalar function 1 + cos(θ) has a zero of order 2 at θ = π, also
condition (A) holds, while the positive definiteness of ∑η∈Ω(θ) ppH(η) is verified as well,
so that also condition (B) is met.
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Finally, we choose one iteration of Gauss–Seidel as the pre and post smoother. Given
the analysis reported in the previous section, we expect that our multigrid method is
convergent in an optimal way, that is, with a convergence speed independent of the matrix
size. In Table 1, we find a plain confirmation of our theoretical expectations, which holds not
only for a constant ρ, but also in the variable coefficient setting as long as ρ remains positive.

Table 1. Number of iteration for matrices An(1, D6) and An(1, DN5) of increasing dimension N(n),
with the numeric precision ε = 10−4, 10−6, 10−8, respectively.

An(1, D6) An(1, DN5)

ν = 0.1

N(n) Twogrid Vcycle Wcycle N(n) Twogrid Vcycle Wcycle

81 5 7 10 - - - - - - 300 7 13 18 - - - - - -
1029 7 10 15 7 10 15 7 10 15 1944 8 12 17 8 12 17 8 12 17
10125 8 13 18 8 13 18 8 13 18 13872 8 13 18 9 14 19 8 13 18

ν = 0.2

N(n) Twogrid Vcycle Wcycle N(n) Twogrid Vcycle Wcycle

81 4 5 7 - - - - - - 300 5 8 11 - - - - - -
1029 5 7 9 5 7 9 5 7 9 1944 6 8 11 6 8 11 6 8 11
10125 6 8 11 6 8 11 6 8 11 13872 8 10 12 8 10 12 8 10 12

ν = 0.4

N(n) Twogrid Vcycle Wcycle N(n) Twogrid Vcycle Wcycle

81 3 4 6 - - - - - - 300 6 10 14 - - - - - -
1029 4 7 9 4 7 9 4 7 9 1944 7 11 15 7 11 15 7 11 15
10125 4 7 11 5 8 12 4 7 11 13872 6 11 15 8 14 19 7 11 15

6. Conclusions

We provided a quite complete spectral analysis of the (large) coefficient matrices
associated with the linear systems stemming from the FE discretization of a linearly elastic
problem for an arbitrary element-wise constant coefficient field. Our interest in this problem
stems from the fact that in the material distribution method for topology optimization,
such a problem is solved at each iteration. The solution for these linear systems typically
dominates the computational effort required to solve the topology optimization problems.
Based on the spectral information, we proposed a specialized multigrid method, which
turned out to be optimal in the sense that the (arithmetic) cost for solving the related
linear systems, up to a fixed desired accuracy, is proportional to the computational cost
of matrix–vector products, which is linear in the corresponding matrix size and mildly
depending on the given accuracy. The method was tested, and the preliminary numerical
results are very satisfactory and promising, in terms of having a linear cost and a number
of iterations that is bounded by a constant independent of the matrix size and only lightly
influenced by the desired accuracy.

Finally, we mention future lines of research:

• The present analysis was performed also with variable coefficients, but with the
restriction that the domain is Cartesian: this limitation can be easily overcome, but the
computations are not trivial using the notion of reduced GLT sequences of matrices
(see [35] for a recent very complete work and [33,34] for examples of applications and
for the initial idea).

• The use of higher order FEs is another direction to explore: for more standard problems,
we refer to [41,42] whose analysis can be the starting point for adapting the techniques
to the present context.

• In the direction of more general approaches, we remind that the GLT machinery was
used also in connection with finite differences, finite volumes, isogeometric analysis
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of high order and intermediate regularity (see [30,31] and references therein). Hence,
we are convinced that such extensions can be formally obtained, also in the case of the
current topology optimization problem.
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Appendix A. Explicit Expressions for the Element Stiffness Matrix

Recall that for the studied problem, the three-dimensional element stiffness matrix is

Kn =
h
2

E0

1 + ν

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1 K2 K3 K4 K5 K6 K7 K8
K9 K10 K11 K12 K13 K14 K7

K15 K16 K17 K18 K13 K6
K19 K20 K17 K12 K5

K19 K16 K11 K4
K15 K10 K3

K9 K2
K1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

K1 =

⎡
⎣k1 k2 k2

k1 k2
k1

⎤
⎦, K2 =

⎡
⎣k3 k4 0

k3 0
k6

⎤
⎦, K3 =

⎡
⎣k3 0 k4

k6 0
k3

⎤
⎦, K4 =

⎡
⎣k5 0 0

k7 k8
k7

⎤
⎦,

K5 =

⎡
⎣k6 0 0

k3 k4
k3

⎤
⎦, K6 =

⎡
⎣k7 0 k8

k5 0
k7

⎤
⎦, K7 =

⎡
⎣k7 k8 0

k7 0
k5

⎤
⎦, K8 =

⎡
⎣k9 k10 k10

k9 k10
k9

⎤
⎦,

K9 =

⎡
⎣k1 k2 k8

k1 k8
k1

⎤
⎦, K10 =

⎡
⎣k5 0 0

k7 k2
k7

⎤
⎦, K11 =

⎡
⎣k3 0 k10

k6 0
k3

⎤
⎦, K12 =

⎡
⎣k7 0 k2

k5 0
k7

⎤
⎦,

K13 =

⎡
⎣k6 0 0

k3 k10
k3

⎤
⎦, K14 =

⎡
⎣k9 k10 k4

k9 k4
k9

⎤
⎦, K15 =

⎡
⎣k1 k8 k2

k1 k8
k1

⎤
⎦, K16 =

⎡
⎣k3 k10 0

k3 0
k6

⎤
⎦,

K17 =

⎡
⎣k7 k2 0

k7 0
k5

⎤
⎦, K18 =

⎡
⎣k9 k4 k10

k9 k4
k9

⎤
⎦, K19 =

⎡
⎣k1 k8 k8

k1 k2
k1

⎤
⎦, K20 =

⎡
⎣k9 k4 k4

k3 k10
k9

⎤
⎦.

(A1)

We stress that all the 3× 3 blocks mentioned before are real symmetric and hence
the lower part is defined accordingly; see Section 3.2.1 for the use of these blocks in the
definition of the GLT symbol. We observe that the quantity hE0/2(1 + ν) is a multiplicative
term that will be neglected in the spectral analysis since it will be simplified and included
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in the right-hand vector when solving the related large linear systems). An analytical
evaluation of the entries of the stiffness matrix is reported in the following lines:

k1 =
2λ̂

3
+

4μ̂

9
, k2 =

λ̂

3
, k3 =

2μ̂

9
, k4 =

λ̂

6
, k5 =

μ̂

9
− λ̂

6
,

k6 =
−4μ̂

9
, k7 =

−λ̂

6
− 2μ̂

9
, k8 = − λ̂

3
, k9 = − λ̂

6
− μ̂

9
, k10 = − λ̂

6
,

(A2)

where
λ̂ =

ν

(1− 2ν)
, μ̂ =

1
2

.

Note that λ̂ and μ̂ in (A2) do not represent the Lamé parameters because they have
been modified to facilitate the spectral analysis conducted in Section 3. In fact, in this article,
λ = λ̂ E0

1+ν and μ = μ̂ E0
1+ν are the actual Lamé parameters.

Appendix B. Stress–Strain Relation and Various Bounds

In the three-dimensional setting, there are six independent strain components in total
at a point in an element, and they are written as a vector

ε = [ε11 ε22 ε33 2ε12 2ε23 2ε31]
T .

Similarly, corresponding to the six strain components above, there are also six inde-
pendent stress components written in vector form as

σ = [σ11 σ22 σ33 σ12 σ23 σ31]
T .

By the generalized Hooke’s law, the most general linear relation among components
of the stress and strain tensor can then be written as

σ = Eε, (A3)

where E is a matrix that corresponds to the constant fourth-order elasticity tensor Ec. The
relationship between stresses and strains is

ε11 =
1

E0

(
σ11 − ν(σ22 + σ33)

)
, ε12 =

σ12

2G
, ε13 =

σ13

2G
,

ε22 =
1

E0

(
σ22 − ν(σ11 + σ33)

)
, ε23 =

σ23

2G
, ε33 =

1
E0

(
σ33 − ν(σ11 + σ22)

)
,

(A4)

where ν is Poisson’s ratio, E0 is Young’s modulus, and the shear modulus G is

G =
E0

2 + 2ν
. (A5)

The relationships above can be rewritten in matrix form as

ε =
1

E0

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)

⎤
⎥⎥⎥⎥⎥⎥⎦σ. (A6)
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Furthermore, the equation system (A6) can be inverted to obtain Hooke’s law (A3) with

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ + 2μ λ λ 0 0 0
λ λ + 2μ λ 0 0 0
λ λ λ + 2μ 0 0 0
0 0 0 λ 0 0
0 0 0 0 λ 0
0 0 0 0 0 λ

⎤
⎥⎥⎥⎥⎥⎥⎦ (A7)

where
λ =

E0ν

(1 + ν)(1− 2ν)
,

μ =
E0

2(1 + ν)
.

(A8)

In this case, the bulk modulus K can be expressed as

K =
(σ11 + σ22 + σ33)/3

ε11 + ε22 + ε33
=

E0

3(1− 2ν)
. (A9)

The Young’s (E0), shear (G), and bulk (K) moduli need to be positive. Thus, Equations (A5)
and (A9) imply that the Poisson’s ratio in three dimensions must satisfy−1 < ν < 0.5.

Remark A1. Physically, there are no known isotropic materials with a negative Poisson’s ratio.
Therefore, from a practical perspective [43], we can limit our study to ν, satisfying the inequalities
0 ≤ ν < 0.5. Furthermore, in some more delicate circumstances, the Poisson ratio lies in the interval
0.2 ≤ ν < 0.5, as proved experimentally in view of the elastic properties of real materials [44].
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Abstract: Here, our main aim is to examine the impacts of Dufour and Soret in a radiative Darcy–
Forchheimer flow. Ohmic heating and the dissipative features are outlined. The characteristics
of the thermo-diffusion and diffusion-thermo effects are addressed. A binary chemical reaction is
deliberated. To examine the thermodynamical system performance, we discuss entropy generation.
A non-linear differential system is computed by the finite difference technique. Variations in the
velocity, concentration, thermal field and entropy rate for the emerging parameters are scrutinized. A
decay in velocity is observed for the Forchheimer number. Higher estimation of the magnetic number
has the opposite influence for the velocity and temperature. The velocity, concentration and thermal
field have a similar effect on the suction variable. The temperature against the Dufour number is
augmented. A decay in the concentration is found against the Soret number. A similar trend holds
for the entropy rate through the radiation and diffusion variables. An augmentation in the entropy
rate is observed for the diffusion variable.

Keywords: Darcy–Forchheimer model; thermal radiation; finite difference technique; viscous
dissipation; Soret and Dufour impacts; chemical reaction; entropy generation

1. Introduction

Henry Darcy established the framework of homogeneous liquid flow through a per-
meable medium throughout his work on the progression of water over saturated sand [1].
At higher flow rates, when inertial and boundary impacts arise, then the Darcy law can-
not work appropriately. To overcome such an issue, Forchheimer gave the concept of
the non-Darcy model through the insertion of a quadratic velocity term in a momentum
expression [2]. Later on, the Forchheimer term was so named by Muskat [3]. The moment
of fluid flowing through a permeable surface is of keen interest due to its significance in
technical, biological and scientific fields such as artificial dialysis, gas turbines, atherosclero-
sis, catalytic converters, geo energy production and many others. Hayat et al. [4] explored
the 2-D Darcy–Forchheimer flow of non-Newtonian liquid with variable properties. Pal
and Mondal [5] addressed the convective flow of Darcy–Forchheimer liquid subject to a
variable heat sink or source and viscosity. Non-uniform heat conductivity analysis in the
reactive flow of Darcy–Forchheimer Carreau nanomaterial subject to a magnetic dipole
was presented by Mallawi and Ullah [6]. Alshomrani and Ullah [7] studied the convective
flow of Darcy–Forchheimer hybrid nanomaterial subject to a cubic autocatalysis chemical
reaction. Seth and Mandal [8] discussed the hydromagnetic effect in rotating the flow of
Darcy–Forchheimer Casson liquid toward a permeable space. Little analysis concerning a
porous medium is discussed in [9–17].

Thermal and solutal transportation in a permeable surface has been a significant
consideration of researchers during the last two decades. This is due to its usefulness in
geothermal systems, catalytic reactors, nuclear waste repositories, areas of geosciences,
chemical engineering, energy storage units, drying technology, heat insulation, heat ex-
changers for packed beds and many others. Initially, the Dufour effect in liquid was

Math. Comput. Appl. 2022, 27, 80. https://doi.org/10.3390/mca27050080 https://www.mdpi.com/journal/mca
199



Math. Comput. Appl. 2022, 27, 80

explored by Rastogi and Madan [18]. After that, the diffusion-thermo impact in a homo-
geneous mixture was investigated in [19,20]. Moorthy and Senthilvalivu [21] studied the
Dufour and Soret outcomes in the convective flow of liquid of a non-uniform viscosity
subject to a permeable medium. Non-uniform temperature in a convective fluid flow sub-
ject to thermal-diffusion and diffusion-thermo effects was illustrated by El-Arabawy [22].
Few reviews with reference to relevant titles have been discussed through certain stud-
ies [23–27]. The important reason for entropy production is the conversion of thermal
energy in the occurrence of numerous examples of processes, such as fluid friction, kinetic
energy, rotational moments, molecular resistance, the Joule Thomson effect, mass transport
rate, and molecular vibration. The concept of entropy optimization in liquid flow was
initially given by Bejan [28,29]. Entropy analysis in a water-based hybrid nanoliquid subject
to mixed convection was discussed by Buonomo [30]. Irreversibility exploration in the
dissipative flow of nanomaterial with melting and radiation over a stretching sheet was
addressed by Khan et al. [31]. Some investigations of the entropy rate are mentioned
in [32–39].

To our knowledge, no study has reported about entropy-optimized radiative
Darcy–Forchheimer flows with Soret and Dufour features yet. A porous medium through
a Darcy–Forchheimer relation is discussed. Dissipation, Ohmic heating and radiation are
scrutinized in energy equations. The physical characteristics for the Soret and Dufour
impacts are addressed. A first-order chemical reaction is deliberated. To examine the ther-
modynamical system performance, we discuss entropy optimization. Nonlinear differential
systems are obtained through appropriate transformations. Non-dimensional differential
systems are solved through the finite difference method. The performance of appropriate
variables concerning the velocity, entropy generation, concentration and thermal field have
been scrutinized.

2. Formulation

An unsteady radiative hydromagnetic Darcy–Forchheimer flow saturating a porous
medium is discussed. Joule heating, viscous dissipation and thermal radiation in energy
expression have been scrutinized. The Soret and Dufour effects are inspected. The impact of
the entropy rate is addressed. Additionally, the flow is subject to a chemical reaction of the
first order. A constant magnetic field with a strength (B0) is applied. Consider u = uw = ax
as the stretching velocity, with a > 0. The chosen magnetic Reynolds number is small.
Figure 1 shows a flow sketch [31].

Figure 1. Flow sketch.

By taking into account the infinite plate, the term ∂u
∂x becomes zero. Here, the continuity

equation becomes ∂v
∂y = 0.
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Under the above discussion, the related expression for constant suction becomes

v = −v0 = constant (1)

∂u
∂t
− v0

∂u
∂y

= ν
∂2u
∂y2 −

σB2
0

ρ
u− ν

kp
u− Fu2, (2)

∂T
∂t − v0

∂T
∂y = α ∂2T

∂y2 + 16
3

σ∗T3
∞

k∗(ρcp)
∂2T
∂y2 + μ

(ρcp)
( ∂u

∂y )
2

+
σB2

0
(ρcp)

u2 + DBKT
Cscp

∂2C
∂y2

⎫⎪⎬
⎪⎭, (3)

∂C
∂t
− v0

∂C
∂y

= DB
∂2C
∂y2 +

DBKT
Tm

∂2T
∂y2 − kr(C− C∞), (4)

with
u = 0, T = T∞, C = C∞, at t = 0

u = ax, T = Tw, C = Cw, at y = 0
u→ 0, T → T∞, C → C∞, as y→ ∞

⎫⎬
⎭. (5)

Consider the following formula:

τ = v
L2

1
t, ξ = x

L1
, η = y

L1
, U(τ, η) = L1

υ u,

θ(τ, η) = (T−T∞)
(Tw−T∞)

, φ(τ, η) = C−C∞
Cw−C∞

,

⎫⎬
⎭, (6)

Then, we have
∂U
∂τ
− S

∂U
∂η

=
∂2U
∂η2 −MU − λU − FrU2, (7)

∂θ

∂τ
− S

∂θ

∂η
=

1
Pr

(1 + Rd)
∂2θ

∂η2 + Ec(
∂U
∂η

)2 + MEcU2 + Du
∂2φ

∂η2 , (8)

∂φ

∂τ
− S

∂φ

∂η
=

1
Sc

∂2φ

∂η2 + Sr
∂2θ

∂η2 − γφ, (9)

with
U = 0, θ = 0, φ = 0, at τ = 0

U = ξ Re, θ = 1, φ = 1, at η = 0
U → 0, θ → 0, φ→ 0, as η → ∞

⎫⎬
⎭ (10)

Here the non-dimensional variables are S
(
= v0

ν L1
)
, M

(
=

σB2
o L2

1
νρ

)
, Re

(
=

aL2
1

ν

)
,

Sr
(
= DKT(Tw−T∞)

νTm(Cw−C∞)

)
, Fr

(
= Cb√

kp
L1

)
, Pr

(
= ν

α

)
, λ

(
=

L2
1

kp

)
, EC

(
= ν2

cp L2
1(Tw−T∞)

)
, γ

(
=

kr L2
1

ν

)
,

Du
(
= DBKT(Cw−C∞)

νCscp(Tw−T∞)

)
, Rd

(
= 16σ∗T3

∞
3k∗k

)
, Sc

(
= ν

DB

)
and Br(= Pr Ec).

3. Engineering Contents of Interest

3.1. Nusselt Number

Here, we have
Nux =

xqw

k(Tw − T∞)
, (11)

with the heat flux qw given by

qw = −
(

k +
16σ∗T3

∞
3k∗

)(
∂T
∂y

)∣∣∣∣
y=0

(12)
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We finally have

Nux = −ξ(1 + Rd)
(

∂θ

∂η

)
η=0

. (13)

3.2. Sherwood Number

This is given as

Shx =
xjw

DB(Cw − C∞)
, (14)

in which the mass flux jw is defined as

jw = −DB(
∂C
∂y

)

∣∣∣∣
y=0

, (15)

We can write
Shx = −ξ(

∂φ

∂η
)η=0. (16)

4. Entropy

The important reason for entropy production is the conversion of thermal energy
in the occurrence of numerous processes, such as fluid friction, kinetic energy, rotational
moment, molecular resistance, the Joule–Thomson effect, mass transport rate and molecular
vibration. We have the following [30–33]:

SG = k
T2

∞

(
1 + 16σ∗T3

∞
3k∗k

)(
∂T
∂y

)2
+

μ f
T∞

(
∂u
∂y

)2
+ μ

kpT∞
u2

+ σB2
o

T∞
u2 + RDB

T∞

(
∂T
∂y

∂C
∂y

)
+ RDB

C∞

(
∂C
∂y

)2

⎫⎪⎬
⎪⎭, (17)

The dimensionless expression is

NG(τ, η) = α1(1 + Rd)
(

∂θ
∂η

)2
+ Br

(
∂U
∂η

)2
+ BrλU2

+MBrU2 + L
(

∂θ
∂η

∂φ
∂η

)
+ L α2

α1

(
∂φ
∂η

)2

⎫⎪⎬
⎪⎭ (18)

In the above expression, the dimensionless parameters are α1

(
= (Tw−T∞)

T∞

)
,

NG

(
=

SGT∞ L2
1

k(Tw−T∞)

)
, L

(
= RDB(Cw−C∞)

k

)
and α2

(
= (Cw−C∞)

C∞

)
.

5. Solution Methodology

Using the finite difference method, we can solve the nonlinear differential system [40–43]
by writing

∂U
∂τ = Un+1

a −Un
a

Δτ , ∂U
∂η =

Un
a+1−Un

a
Δη

∂θ
∂τ = θn+1

a −θk
s

Δτ , ∂θ
∂η =

θn
a+1−θn

a
Δη

∂φ
∂τ = φn+1

a −φn
a

Δτ , ∂φ
∂η =

φn
a+1−φn

a
Δη

∂2U
∂η2 =

Un
a+1−2Un

a +Un
a−1

(Δη)2 , ∂2θ
∂η2 =

θn
a+1−2θn

a +θn
a−1

(Δη)2

∂2φ
∂η2 =

φn
a+1−2φn

a +φn
a−1

(Δη)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (19)

By employing Equation (23) in Equations (8)–(10), we obtain

Un+1
a −Un

a
Δτ

− S
Un

a+1 −Un
a

Δη
=

Un
a+1 − 2Un

a + Un
a−1

(Δη)2 −MUn
a − λUn

a − Fr(Un
a )

2, (20)
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θn+1
a −θn

a
Δτ − S

θn
a+1−θn

a
Δη = (1+Rd)

Pr

θn
a+1−2θn

a +θn
a−1

(Δη)2 + Ec
(

Un
a+1−Un

a
Δη

)2

+MEc(Un
a )

2 + Du
(

φn
a+1−2φn

a +φn
a−1

(Δη)2

)
⎫⎬
⎭ (21)

φn+1
a − φn

a
Δτ

− S
φn

a+1 − φn
a

Δη
=

1
Sc

φn
a+1 − 2φn

a + φn
a−1

(Δη)2 + Sr
θn

a+1 − 2θn
a + θn

a−1
(Δη)2 − γφn

a , (22)

with
U0

a = 0, θ0
a = 0, φ0

a = 0,
Un

0 = 1, θn
0 = 1, φn

0 = 1,
Un

∞ → 0, θn
∞ → 0, φn

∞ → 0

⎫⎬
⎭ (23)

The entropy generation expression yields

NG(τ, ξ, η) = α1(1 + Rd)(
θn

a+1−θn
a

Δη )2 + Br
(

Un
a+1−Un

a
Δη

)2
+ Brλ(Un

a )
2

+MBr(Un
a )

2 + L(
θn

a+1−θn
a

Δη .
φn

a+1−φn
a

Δη ) + L α2
α1
(

φn
a+1−φn

a
Δη )2

⎫⎬
⎭ (24)

6. Graphical Results and Review

The physical interpretation of the parameters of the concentration, entropy rate, veloc-
ity and temperature have been investigated. The present observations are compared with
previous published results in Table 1, and excellent agreement is noticed.

Table 1. Comparison of Nusselt numbers with [44].

Pr Bidin and Nazar [44] Recent Outcomes

1.0 0.9547 0.954710
2.0 1.4714 1.471409
3.0 1.8961 1.896115

6.1. Velocity

The influence of suction (S) upon the velocity (U(τ, η)) is sketched in Figure 2. Obvi-
ously, a higher estimation of the suction parameter (S) decays the velocity. As expected,
this is in accordance to the physical facts. Figure 3 displays the velocity against a magnetic
field. Actually, reduction occurs in the velocity for (M). A physically higher (M) value
corresponds to amplifying the Lorentz force which the flow opposes. Hence, velocity decay
is guaranteed. Figure 4 was developed in order to recognize the velocity (U(τ, η)) design
with variation in the Forchheimer number (Fr). A larger estimation for the Forchheimer
number decays the velocity (U(τ, η)). The influence of (λ) on (U(τ, η)) is illustrated in
Figure 5. Clearly, U(τ, η) decays against higher λ values.

Figure 2. U(τ, η) via S.
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Figure 3. U(τ, η) via M.

Figure 4. U(τ, η) via Fr.

Figure 5. U(τ, η) via λ.

6.2. Temperature

Figures 6 and 7 are for the thermal field against the suction and magnetic variables
(S and M). A similar scenario holds for the thermal field (θ(τ, η)) through the suction
and magnetic variables. Figure 8 portrays the performance of the radiation against the
temperature (θ(τ, η)). Larger radiation values lead to the temperature (θ(τ, η)) increasing.
Figure 9 displays the performance of the thermal field against the Prandtl number. A
larger approximation of (Pr) corresponds to the decay of the thermal diffusivity, and
consequently, the temperature (θ(τ, η)) decreases. Figure 10 displays the impact of the
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thermal field θ(τ, η) on the Eckert number (Ec). A higher estimation for (Ec) corresponds
to the temperature being higher.

Figure 6. θ(τ, η) via S.

Figure 7. θ(τ, η) via M.

Figure 8. θ(τ, η) via Rd.
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Figure 9. θ(τ, η) via Pr.

Figure 10. θ(τ, η) via Ec.

6.3. Concentration

Figure 11 exhibits the concentration performance against the suction variable (S).
Clearly, the concentration (φ(τ, η)) was reduced against larger (S) values. Figure 12 shows
the performance of the concentration (φ(τ, η)) versus (Sc). An increment (Sc) decayed the
mass diffusivity, and thus the concentration (φ(τ, η)) diminished. An amplification of the
Soret number (Sr) led to a decaying value for φ(τ, η) (see Figure 13). Figure 14 comprises
the impact of φ(τ, η) on γ. Here, φ(τ, η) decreased against γ.

Figure 11. φ(τ, η) via S.
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Figure 12. φ(τ, η) via Sc.

Figure 13. φ(τ, η) via Sr.

Figure 14. φ(τ, η) via γ.

6.4. Entropy Generation Rate

The influence of the entropy rate (NG(τ, η)) via the radiation variable is disclosed in
Figure 15. Clearly, a greater Rd value improved the radiation emission, which boosted the
collision between the fluid particles, and so NG(τ, η) was enhanced. Figure 16 discloses
the impact of L on NG(τ, η)). As predicted, the entropy generation (SG(η)) was greater
via the higher approximation of L. A larger approximation of the Brinkman (Br) number
enhanced the entropy generation (SG(η)) (see Figure 17). This is because of augmentation
through a higher Br value causing the viscous features to improve. As a result, the entropy
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rate rose. Figure 18 demonstrates the entropy rate for the magnetic parameter. A larger
approximation of the magnetic variable led to an increase in the entropy rate.

Figure 15. NG(τ, η) via Rd.

Figure 16. NG(τ, η) via L.

Figure 17. NG(τ, η) via Br.
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Figure 18. NG(τ, η) via M.

7. Closing Points

• The theermal field and velocity for the magnetic field had opposing trends.
• A decrease in velocity was noted for the Forchheimer number and suction variable.
• The velocity versus the porosity parameter was decreased.
• Similar behavior for the concentration and temperature against suction was noticed.
• The temperatures for the Eckert and Prandtl numbers were dissimilar.
• Radiation for the entropy and temperature had a similar role.
• The concentration decayed via larger approximation of the Soret number and reaction pa-

rameter.
• A decay in concentration against the Schmidt number held.
• Entropy generation enhancement against the Brinkman number and diffusion variable

was noticed.
• The entropy rate was boosted with variation in the diffusion variable.

Author Contributions: Conceptualization, S.A.K. and T.H.; Formal analysis, S.A.K. and T.H.; Investi-
gation, S.A.K. and T.H.; Methodology, S.A.K. and T.H.; Supervision, T.H.; Writing—original draft,
S.A.K.; Writing—review & editing, S.A.K. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

u, v Velocity components (ms−1) x, y Cartesian coordinates (m)
t Time (s) v0 > 0 Suction velocity (ms−1)
ρ Density (kgm−3) σ Electrical conductivity (Sm−1)
T Temperature (K) cp Specific heat (Jkg−1K−1)
kp Porous medium permeability (m2) Cb Drag coefficient
Tw Wall temperature (K) α Thermal diffusivity (m2 s−1)
k Thermal conductivity (Wm−1K−1) T∞ Ambient temperature (K)

σ∗
Stefan–Boltzman constant
(Wm−2K−4)

KT Thermal diffusion ratio

Cs Concentration susceptibility k∗ Mean absorption coefficient (cm−1)
C Concentration kr Reaction rate (s)
Cw Wall concentration DB Mass diffusivity (m2 s−1)
L1 Reference length (m) C∞ Ambient concentration
uw Stretching velocity (ms−1) a Stretching rate constant (s−1)
Nux Nusselt number qw Heat flux (Wm2)
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Shx Sherwood number jw Mass flux

R
Molar gas constant
(kgm2 s−2K−1mol−1)

M Magnetic variable

λ Porosity variable Fr Forchheimer number
S Suction parameter Pr Prandtl number
Rd Radiation variable Du Dufour number
Ec Eckert number γ Reaction variable
Sr Soret number Re Reynold number
Sc Schmidt number NG Entropy rate
α1 Temperature ratio variable Br Brinkman number
α2 Concentration ratio variable L Diffusion variable
Tm Mean fluid temperature (K) B0 Magnetic field strength
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Abstract: It is increasingly necessary to promote means of production that are less polluting and
less harmful to the environment following the UN 2030 agenda for sustainable development. Using
natural cellular materials in structural applications can be essential for enabling a future in this
direction. Cork is a natural cellular material with an excellent energy absorption capacity. Its use in
engineering applications and products has grown over time, so predicting its mechanical response
through numerical tools is crucial. Classical cork modeling uses a model developed for foam material,
including an adjustment function that does not have a clear physical interpretation. This work
presents a new material model for an agglomerated cork based solely on well-known hypotheses of
continuum mechanics using fewer parameters than the classical model and further a finite element
framework to validate the new model against experimental data.

Keywords: agglomerated cork; material modeling; successive linear approximation; finite element

1. Introduction

The use of cellular materials in engineering applications has been established world-
wide. This kind of material has excellent crashworthiness and insulation properties. Sty-
rofoam (expanded polystyrene), derived from oil, is widely present in packaging and
safety apparel, with excellent cost/performance ratios but with well-known recyclability
and biodegradability issues after usage. Cork, the outer bark of Quercus suber L. tree, is a
natural cellular material by excellence, allying crashworthiness and insulation properties.
Compared with its synthetic counterparts, it is a sustainable and eco-friendly solution.

Dart and Eugene [1] made one of the first attempts to characterize cork mechanical
behavior under compression loading. They found that each stress–time curve for various
compressions can be obtained from each other by scaling. Such scalability was justified by
the shape of the stress–strain compression curve. A highly non-linear stress–strain response
curve characterizes agglomerated cork under compression. This curve is divided into three
parts: a small elastic linear behavior at the beginning, followed by a plateau, and finished
with a highly non-linear densification part.

All types of cork, natural, agglomerated, and expanded, are characterized by this
compression behavior. The material properties vary with density, cellular dimensions,
and porosity, as seen in [2,3]. The Poisson effect in natural cork compression was studied
by [4]. They found that for compression in axial and tangential directions, the Poisson’s
ratio is almost null, while in the radial direction, cork presents a Poisson’s ratio of 0.3.
The cell geometry of the cork explained this effect.

Unlike natural cork, which presents the natural material anisotropy [5], cork agglom-
erates are obtained by compressing together randomly oriented cork grains [6]. This
manufacturing procedure promotes a fairly regular isotropic mechanical behavior in cork
agglomerates.

Math. Comput. Appl. 2022, 27, 92. https://doi.org/10.3390/mca27060092 https://www.mdpi.com/journal/mca
213



Math. Comput. Appl. 2022, 27, 92

The authors performed experimental tests to obtain the Young and shear modulus
in [7,8]. To determine the Young modulus, a tensile test was conducted, and, in the case
of the shear modulus, they performed a torsion test on a cork cylinder. Ref. [8] also
concluded that the amount of strain necessary to fracture in the radial direction is much
larger than in the other directions. More recently, agglomerated cork is being used as
an ideal core material for sandwich components of lightweight structures [9–14]. This
structure is interesting because cork is used as an energy dissipator.

Usually, a material characterized by a mechanical behavior similar to cork’s under
compression is numerically modeled as a foam material model [15]. The Ogden-Hill
hyperelastic model, [16,17], is a well-known numerical model for elastomeric polymer
foams and hence a good model for agglomerated cork. More recently, in [18], an investi-
gation was carried out to determine the influence of the variability related to the material
properties of natural cork based on a numerical homogenization approach to predict the
temperature-dependent equivalent elastic properties. These approaches consider only the
elastic behavior of the material since the plastic period is only reached through substantial
deformation and high strain energies.

This work focuses on the modeling of the mechanical response of cork. We present a
new material model for cork agglomerates based on an extension of the Mooney–Rivlin ma-
terial. The material parameterization will be made through an optimization problem using
uniaxial and equibiaxial experimental results and the analytical solutions for these com-
pression tests. To the authors’ best knowledge, it is also the first time that experimental data
from biaxial compressions of cork has been reported. After the parameterization, a finite
element framework is used to validate this new material model against experimental data.

Due to the non-linear nature of both the material model and the large deformation, we
use the successive linear approximation method for numerical simulation purposes to deal
with the problem. This method calculates the constitutive equations at each state, with the
reference configuration updated for each time step. The new reference configuration is the
current configuration of the body. Assuming that in each time step that occurs, a small
deformation is added, both the constitutive equations and the PDE system are linearized.

In Section 2, we briefly present the Successive Linear Approximation method used
in this work, and in Section 3, the hyperelastic material model is considered. Section 4
presents the parameter fitting for the cork agglomerates model, and finally, in Section 5, we
show the comparison between numerical results, obtained by a finite element code against
analytical and experimental results.

2. Successive Linear Approximation Method

The Successive Linear Approximation (SLA) Method [19], a relative Lagrangian for-
mulation based on the “small-on-large” idea, allows implementing the solution to large
deformation in a successive incremental manner. In other words, at each time step, the con-
stitutive function is calculated at the present state of deformation, which will be regarded
as the reference configuration for the next state. From this point of view, it is considered a
relative motion description; see, for example [20]. Assuming that the deformation to the
next state is small, the constitutive function and the partial differential equation can be
linearized. This procedure for large deformation problems was presented in [21].

This approach has significant fields of application, such as salt tectonics [22]. In [23],
the influence of temperature in salt domes, a thermoviscoelastic material, was studied.

2.1. Relative Motion Description

Let κ0 be the preferred reference configuration of an elastic body B, B0 = κ0(B),
and x = χ(X, t), with X ∈ B0 be the motion of the body, see Figure 1. The configuration
with specific material symmetries, such as isotropy, is usually chosen as the reference con-
figuration. Such material symmetries may be lost in the deformed configuration in general.
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X ∈ κ0(B)

x ∈ κt(B) ξ ∈ κτ(B)
I + Ht(τ)

F(t) F(τ)

ξ = x + ut(τ)
Figure 1. The deformation and deformation gradient diagram.

In this paper, we consider the time t as the present time. Thus, κt is the deformed
configuration at time t, Bt = κt(B). Now, we can calculate the deformation gradient with
respect to configuration κ0 as

F(X, t) = ∇Xχ(X, t). (1)

Now, let κτ be the deformed configuration at time τ. The deformation ξ = χ(X, τ)
from κ0 can be described in the current configuration at the present time t by

ξ = χ(X, τ) := χt(x, τ) for x = χ(X, t), (2)

where χt(·, τ) : Bt −→ Bτ is called relative deformation. With these in mind we can define
the relative displacement vector u as

u = ξ − x = ut(x, τ) = χt(x, τ)− x, x ∈ Bt. (3)

Taking the gradient relative to X and x, respectively, we have

Ht(x, τ)F(X, t) = ∇xut(x, τ)F(X, t) = F(X, τ)− F(X, t),

Ht(x, τ) = ∇xχt(x, τ)− I = Ft(x, τ)− I, (4)

where I, Ht(x, τ) and Ft(x, τ) are the identity tensor, relative displacement gradient and
relative deformation gradient, respectively. We can rewrite the above equations as

Ft(x, τ) = F(X, τ)F(X, t)−1, F(X, τ) = (I−Ht(x, τ))F(X, t). (5)

With all these equations, we can define the motions of a body, and it is called relative
description formulation.

2.2. Linearized Constitutive Equation

Consider τ = t + Δt. By taking Δt small enough, we can assume that the gradient of
the displacement is small, and for simplicity, we denote

H(τ) := Ht(x, τ)), with ‖ H(τ) ‖	 1, (6)

moreover, from (4), we have

F(τ)− F(t) = H(τ)F(t), Ft(τ) = I + H(τ). (7)

Without loss of generality, the Cauchy stress tensor of an elastic body in the preferred
reference configuration is given by

T(X, t) = −pI +Fκ0(F(X, t)), (8)

where, for compressible bodies, p = p(F). We shall assume that this dependence is only
through the determinant, or equivalently, from the mass balance, depending only on the
mass density, i.e., p = p(ρ) where ρ = ρ0

detF .
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For time τ = t + Δt, we have

ρ(τ)− ρ(t) = ρ0(detF(τ)−1 − detF(t)−1) = ρ(t)(det(F(t)F(τ)−1)− 1)

= ρ(t)(det(I + H(τ))−1 − 1) = −ρ(t)trH(τ) + o(2), (9)

where in the passages, (5) and (7) were used. Using Taylor series expansion in (8) and (9), it
follows that

T(τ) = T(t)−
(

∂p
∂ρ

)
t
(ρ(τ)− ρ(t))I +∇FF (F(t))(F(τ)− F(t))

= T(t)− β(trH(τ))I +∇FF (F(t))(H(τ)F(t), (10)

or

T(τ) = T(t) + L(F(t))[H(τ)], (11)

where β = ρ
∂p
∂ρ is a material parameter and

L(F(t))[H(τ)] := −β(trH(τ))I +∇FF (F(t))[H(τ)F(t)] (12)

defines the fourth-order elasticity tensor, relative to the current configuration κt. Further-
more, the first Piola–Kirchhoff stress tensor at time τ relative to the current configuration,
is given by

Tκt(τ) = detFt(τ)T(τ)Ft(τ)
−T = det(I + H)T(τ)(I + H)−T

= det(I + H)(T(t) + L(F)[H] + o(2))(I + H)−T

= (I + trH)(T(t) + L(F)[H])(I−HT) + o(2)

= T(t) + (trH)T(t)− T(t)HT + L(F)[H] + o(2), (13)

and we write the linearized first Piola–Kirchhoff as

Tκt(τ) = T(t) +K(F(t), T(t))[H(τ)], (14)

where

K(F, T)[H] := (trH)T(t)− T(t)HT + L(F)[H] (15)

is the fourth-order elasticity tensor for the first Piola–Kirchhoff stress tensor.
To define the fourth-order elasticity tensor we have to define the material model.

In Section 3 we will propose one based on Mooney–Rivlin hyperelastic material model.

3. Hyperelastic Material Model

To obtain a constitutive model for large strains of an isotropic elastic solid, we shall
start with the free energy function ψ = ψ(IB, IIB, IIIB), and the Cauchy stress given by

T = 2ρ
∂ψ

∂B
B, (16)

where B is the left Cauchy–Green strain tensor and IB, IIB, IIIB are the first, second and
third invariants of B. By Taylor series expansion, we can write

ψ(IB, IIB, IIIB) = ψ0(3, 3, IIIB) + ψ1(IB − 3) + ψ2(IIB − 3)

+
1
2

ψ3(IB − 3)2 + ψ4(IB − 3)(IIB − 3) +
1
2

ψ5(IIB − 3)2, (17)
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where ψk = ψk(IIIB) for k = 0, 1 . . . , 5, which stands for the expansion up to the second
order for moderate strains.

From (16), by the use of the relations

∂IB

∂B
= I,

∂IIB

∂B
= IBI− B,

∂IIIB

∂B
= IIIBB−1, (18)

we obtain

T + pI = 2ρ[ψ1 + ψ3(IB − 3) + ψ4(IIB − 3)]B

− 2ρ[ψ2 + ψ4(IB − 3) + ψ5(IIB − 3)](B2 − IBB), (19)

where terms with the identity tensor are lumped into the pressure p(IB, IIB, IIIB).
By the use of the Cayley–Hamilton theorem,

B2 − IBB = IIIBB−1 − IIBI, (20)

it becomes

T + pI = 2ρ[ψ1 + ψ3(IB − 3) + ψ4(IIB − 3)]B

− 2ρ[ψ2 + ψ4(IB − 3) + ψ5(IIB − 3)]IIIBB−1, (21)

in which the term IIBI is absorbed into the indeterminate pressure pI.
We can rewrite the above equation with the definition of the parameters,

s1 = 2ρ(ψ1 − 3ψ3 − 3ψ4),

s2 = 2ρIIIB(ψ2 − 3ψ4 − 3ψ5), (22)

s3 = 2ρψ3, s4 = 2ρIIIBψ4,

s5 = 2ρψ4, s6 = 2ρIIIBψ5,

and propose an isotropic elastic model as:

An extended Mooney–Rivlin material. The constitutive equation

T = −pI + (s1 + s3IB + s5IIB)(B− I)− (s2 + s4IB + s6IIB)(B
−1 − I), (23)

is an extended version of Mooney–Rivlin model for isotropic solids at large strain. We shall assume
that six parameters s1, ..., s6 are material constants, and the pressure is a function of mass density
only, p(ρ) so that

β = ρ
∂p
∂ρ

, (24)

is a material parameter.
With the proposed constitutive equation, from (12) we can derive the fourth-order

elastic tensor. Therefore, in Einstein notation, it follows that

Lijkl = β(δijδkl)

+ (s1 + s3IB + s5IIB)(Bljδki + Bilδkj)

+ (s2 + s4IB + s6IIB)(B−1
ik δjl + B−1

kj δil)

+ 2(s3Bkl + s5(IIBδkl − IIIBB−1
kl ))(Bij − δij)

− 2(s4Bkl + s6(IIBδkl − IIIBB−1
kl ))(B−1

ij − δij). (25)
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Remark on β value for cork: Since, in this paper, we are considering the cork agglomerated
as a material, from the definition of β and the compressibility of cork, it follows that β ≈ 0.

Remarks on linear model: Let B = I + 2E, hence B−1 = I− 2E and trH = trE, for small
linear strain E, then

IB = tr(I + 2E) = 3 + 2trE, (26)

IIB = (detB)IB−1 = (1 + trE)tr(I− 2E) (27)

= (1 + trE)(3− 2trE) = 3 + trE, (28)

and, using a Taylor expansion of p(ρ), the stress becomes

T = −(p0 − β0trE)I + 2[s1 + s3(3 + 2trE) + s5(3 + trE)]E (29)

− 2[s2 + s4(3 + 2trE) + s6(3 + trE)]E (30)

= −p0I + λ(trE)I + 2μE + o(2), (31)

where

λ = β0, (32)

μ = s1 − s2 + 3(s3 + s5 − s4 − s6) (33)

are the elastic Lamé constants. Note that we have the relation from linear elasticity,

β0 = λ =
2νμ

1− 2ν
, (34)

where ν is the Poisson ratio.

4. Parameter Fitting for Cork Agglomerates

Cork agglomerate can be modeled as a hyperelastic material. As any other hyperelastic
material, to parametrize an agglomerated cork we need at least two different deformation
modes to capture the correct material behavior [24].

In this paper, we will use the uniaxial and the equibiaxial compression tests, schemati-
cally represented in Figure 2, to parametrize the extended Mooney–Rivlin model proposed
before. For the parametrization procedure adopted we need the experimental data, the ana-
lytical solutions for both deformation modes and a good minimization function.

Figure 2. Uniaxial and equibiaxial compression tests schemes.

4.1. Uniaxial Compression

The uniaxial extension is given by

x = λX, y = Y, z = Z, (35)
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where λ is the stretch along the loading. For agglomerated cork, in uniaxial extension,
the transversal stretches have the same value and they are near 1, which is why we are not
considering them. Therefore, the gradient deformation, the left Cauchy–Green strain tensor
and its inverse are given, respectively, by

F =

⎡
⎣λ 0 0

0 1 0
0 0 1

⎤
⎦, B =

⎡
⎣λ2 0 0

0 1 0
0 0 1

⎤
⎦, B−1 =

⎡
⎣ 1

λ2 0 0
0 1 0
0 0 1

⎤
⎦,

and from that, the first, second and third invariants of B are

IB = 2 + λ2, IIB = 2λ2 + 1, IIIB = λ2. (36)

Consequently, the Cauchy stress tensor, T(λ), can be obtained by inserting (36) into (23):

T(λ) = −pI + [s1 + s3(2 + λ2) + s5(2λ2 + 1)](B− I)

− [s2 + s4(2 + λ2) + s6(2λ2 + 1)](B−1 − I). (37)

Since there is no stretch in the second and third direction we have TU2(λ) = TU3(λ) = 0.
Therefore, p = 0 and the principal stress in the first direction is defined by:

TU1(λ) = [s1 + s3(2 + λ2) + s5(2λ2 + 1)](λ2 − 1)

− [s2 + s4(2 + λ2) + s6(2λ2 + 1)](λ−2 − 1), (38)

4.2. Equibiaxial Compression

The equibiaxial extension is given by

x = λX, y = λY, z = Z, (39)

Therefore, the deformation gradient, the left Cauchy–Green strain tensor and its inverse
are given, respectively, by

F =

⎡
⎣λ 0 0

0 λ 0
0 0 1

⎤
⎦, B =

⎡
⎣λ2 0 0

0 λ2 0
0 0 1

⎤
⎦, B−1 =

⎡
⎢⎣

1
λ2 0 0
0 1

λ2 0
0 0 1

⎤
⎥⎦,

and from that, the first, second and third invariants of B are

IB = 1 + 2λ2, IIB = 2λ2 + λ4, IIIB = λ4. (40)

Consequently, the Cauchy stress tensor, T(λ), can be obtained by inserting (40) into (23):

T(λ) = −pI + [s1 + s3(1 + 2λ2) + s5(2λ2 + λ4)](B− I)

− [s2 + s4(1 + 2λ2) + s6(2λ2 + λ4)](B−1 − I). (41)

Since there is no stretch in the third direction, we have TB3(λ) = 0. Therefore, p = 0 and
the principal stress in the first and second directions are defined by:

TB1(λ) = TB2(λ) = [s1 + s3(1 + 2λ2) + s5(2λ2 + λ4)](λ2 − 1)

− [s2 + s4(1 + 2λ2) + s6(2λ2 + λ4)](λ−2 − 1). (42)

Equations (38) and (42) are the analytical solutions for the uniaxial and equibiaxial
compression problems, respectively.
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4.3. Experimental Tests

To parameterize our model, we have to collect some experimental data for both tests,
uniaxial, and equibiaxial compression. The quasi-static uniaxial compression tests were
performed in a universal testing machine, the Shimadzu AGS-X-10 kN. The equibiaxial
compression tests were performed in an in-house built biaxial machine developed and
properly validated in [25]. Both types of experiments were carried out at room temperature.

For uniaxial compression tests, 60 mm agglomerated cork cubes were manufactured,
as shown in Figure 3. For the equibiaxial tests, 30 mm thick octagon-shaped samples were
produced. The other dimensions are shown in Figure 4.

Figure 3. Agglomerated cork sample positioned for uniaxial compression testing at quasi-static
strain rates.

Figure 4. Dimensions of the octagon-shaped sample and the experimental setup for the equibiaxial
compression tests.

In the equibiaxial compression tests, we consider the values of stretch and stress at the
central part of sample, a square with a 70 mm side. The values for stress and stretch for
both tests are presented in Table 1.
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Table 1. Values of experimental tests of uniaxial and equibiaxial compression.

Uniaxial Compression Equibiaxial Compression

Stretch Stress [MPa] Stretch Stress [MPa]

0.99990 −0.00267 0.99983 −0.00154
0.98716 −0.08793 0.96683 −0.18431
0.97331 −0.15326 0.93350 −0.31465
0.91794 −0.25836 0.90016 −0.38643
0.86256 −0.32187 0.86683 −0.45608
0.80718 −0.38418 0.83350 −0.52095
0.77949 −0.41763 0.81683 −0.54994
0.72411 −0.48701 0.78350 −0.61324
0.69642 −0.52242 0.76683 −0.65323
0.64104 −0.59524 0.73350 −0.73154
0.61335 −0.63417 0.71683 −0.77041
0.55797 −0.72245 0.68350 −0.86132
0.53028 −0.77436 0.66683 −0.92065
0.47490 −0.90147 0.63350 −1.06085
0.44721 −0.98206 0.61683 −1.14073
0.39183 −1.19875 0.58350 −1.38921
0.36414 −1.34949 0.56683 −1.59243
0.33645 −1.54421
0.30876 −1.80366
0.25339 −2.65663

4.4. Curve Fitting

To parametrize the material we use the Wolfram Mathematica software through the
function Nminimize. This function implements four methods that don’t need derivatives
for minimization: Nelder–Mead, Simulated Annealing, Differential Evolution and Random
Search. The results presented by the four were very similar with a slight advantage for the
Nelder–Mead, used in this work.

This algorithm tries to find a maximum or minimum of an objective function by
doing a direct search. This search uses simplexes as input data for the objective function
and evaluates how close the minimum of this function is. One of its features is that the
derivatives of the function may not be known.

As we have to consider both, uni and equibiaxial tests, our objective function has to
take both experiments into account. Let us define TExp

U , ΛExp
U , TExp

B , ΛExp
B as stress and

stretch in uniaxial test and stress and stretch in equibiaxial test, respectively. Therefore, our
objective function is given by

Θ(s1, . . . , s6) = Q1(s1, . . . , s6) + Q2(s1, . . . , s6), (43)

with,

Q1(s1, . . . , s6) =
R

∑
r=1

[
TExp

Ur
− TU1(Λ

Exp
Ur

)

TExp
Ur

]2

,

Q2(s1, . . . , s6) =
S

∑
s=1

[
TExp

Bs
− TB1(Λ

Exp
Bs

)

TExp
Bs

]2

, (44)

where R, S are the number of experimental data for each case and TU1(Λ
Exp
Ur

) and TB1(Λ
Exp
Bs

)
are the uniaxial and biaxial stress calculated, respectively, by (38) and (42), considering
experimental deformations ΛExp

Ur
and ΛExp

Bs
. Q1 and Q2 are the normalized error function
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for each of the tests and both depend on the parameters s1, . . . , s6. This objective function
was based on that used in the [24].

In Table 2, we present the obtained values for each parameter. The experimental and
analytical curves, using the obtained parameters, are presented in Figure 5.

Table 2. Obtained material parameters.

Parameter Value

s1 −25.860100
s2 2.7356100
s3 19.317400
s4 0.0407647
s5 −8.3524100
s6 −2.5714300

Figure 5. Comparison between analytical and experimental results for uniaxial and equibiaxial tests,
respectively.
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5. Linearized Partial Differential Equations

Let Ω = {x ∈ κt(B)} ⊂ R3 be the region occupied by the body at the present
configuration κt, and let ∂Ω = Γ1 ∪ Γ2 be the disjoint unions of its boundary. Let n(x, t) be
the exterior unit normal to ∂Ω at the present time.

At time τ > t, we shall consider an initial boundary value problem in Lagrangian
formulation, with the present state at time t as the reference configuration, given by

ρ(t) üt(τ)− divx Tt(τ) = ρ(t)b(τ), in Ω, (45)

Tt(τ) n(t) = f (τ), on Γ1, (46)

ut(τ) = d(τ), on Γ2, (47)

ut(t) = 0, u̇t(t) = v(t), in Ω. (48)

The body is subjected to the surface traction f (x, τ), the boundary displacement d(x, τ)
on the respective parts of ∂Ω at time τ > t, and the initial velocity v(x, t) in Ω at the present
time t. Note that unlike the explicit time dependence in the above expressions, the spatial
dependence is implicitly understood and is not explicitly indicated for simplicity.

In these relations, for simplicity, divx stands for the divergence operator relative to the
coordinate x ∈ κt(B), which is the same as the operator divκt for the reference configuration
κt in this case.

Together with the constitutive Equation (23), the mechanical problem is to be solved
for the relative displacement vector ut(τ). Since the constitutive function T in (23) is
generally nonlinear for finite deformations, the partial differential equation of this problem
is genuinely nonlinear. However, in the relative Lagrangian formulation, for small enough
incremental time Δt = τ − t, we can easily linearize the constitutive equations relative to
the present state at time t, so that the boundary value problem becomes linear.

By regarding the present state as the reference state, it is assumed that the state
variables are all known functions at the present time t. Those include the deformation
gradient F(t) and the stress T(t).

By use of the linearization (14), the partial differential equation of the problem be-
come [26]

ρ(t) üt(τ)− divx

(
K(t)[∇xut(τ)]

)
= divx T(t) + ρ(t)b(τ), (49)

where the relevant material function K is defined in (15) and (25).
The Equation (49) is a linear partial differential equation for the relative displacement

vector ut(x, τ) to be solved with the corresponding initial boundary conditions in the
problems (45), for which the state variables of the body at time t are known and the external
supplies b(τ) is given so that the right-hand side of the Equation (49) is known quantity.

In this linearization, we do not assume the deformation is small, rather only the
relative displacement gradient with respect to the present state is assumed to be small.
This is the idea of “small-on-large”, the same as the well-known problem of small defor-
mations superposed on finite deformation in the literature [27]. Therefore, the overall
deformation may be of finite values, in contrast to the usual theory of linear elasticity which
linearizes the problem with respect to the fixed reference configuration assuming a small
deformation gradient.

6. Variational Formulation

Consider
V = {v ∈

(
H1(Ω)

)n
; v = 0, on Γ2}.
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Lets u, v ∈ V. By multiplying Equation (49) for v, integrating it by parts over Ω
and using the definition of the inner product of second-order tensors (if A and B are
second-order tensors, A.B = tr(ABT)), we have, ∀v ∈ V,∫

Ω
ρ(t) üt(τ) · vdΩ +

∫
Ω

tr
[(
K(t)[∇xut(τ)]

)
∇xvT

]
dΩ

−
∫

∂Ω=Γ1

v ·
(
K(t)[∇xut(τ)]

)
nκdΓ =

∫
Ω

divx Te(t) · vdΩ

+
∫

Ω
ρ(t) b(τ) · vdΩ.

(50)

By the boundary condition,

−
∫

Γ1

v ·
(
K(t)[∇xut(τ)]

)
nκdΓ = −

∫
Γ1

v · f (τ)dΓ

−
∫

Γ1

v · Te(t)dΓ, ∀v ∈ V.
(51)

Replacing (51) in (50) and using, again, integration by parts, we have the weak formu-
lation, ∫

Ω
ρ(t) üt(τ) · vdΩ +

∫
Ω

tr
[(
K(t)[∇xut(τ)]

)
∇xvT

]
dΩ =∫

Ω
ρ(t) b(τ) · vdΩ−

∫
Ω

Te(t) · ∇xvdΩ +
∫

Γ1

v · f (τ)dΓ, ∀v ∈ V,
(52)

or we can rewrite this in terms of the bilinear forms(
ρ(t) üt(τ), v

)
+ a

(
K(t)[∇xut(τ)], v

)
=

(
ρ(t) b(τ), v

)
−(

Te(t),∇xv
)
+
(

v, f (τ)
)

Γ1
, ∀v ∈ V.

(53)

Let us consider Vh a finite subspace of V. By restricting the formulation (53) to the
space Vh we have(

ρ(t) üh
t (τ), vh

)
+ a

(
K(t)[∇xuh

t (τ)], vh
)
=

(
ρ(t) b(τ), vh

)
−(

Te(t),∇xvh
)
+
(

vh, f (τ)
)

Γ1
, ∀vh ∈ Vh.

(54)

Now consider {ϕ1, ϕ2, · · · , ϕn} a basis of the subspace Vh, that is, all elements uh ∈ Vh

can be expressed as

uh =
n

∑
i=1

bi ϕi. (55)

Replacing in (54) uh by (55) and taking vh = ϕj, 1 ≤ j ≤ n, we have

Ab̈ + Lb = N , (56)

where, for 1 ≤ i, j ≤ n

Aij =
(

ρ(t) ϕi, ϕj

)
,

Lij = a
(
K(t)[∇x ϕi], ϕj

)
,

Nj =
(

ρ(t) b(τ), ϕj

)
−
(

Te(t),∇x ϕj

)
+
(

ϕj, f (τ)
)

Γ1
. (57)
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7. Numerical Validation

For the numerical simulation, as the two cases studied are examples of large defor-
mations, the SLA method that was presented in Section 2 was used. We consider the
material model developed in Section 3 with the parameters defined in Section 4, Table 2. In
both cases, we are interested in the deformation after each loading step. Thereby, we are
considering quasi-static, time-independent problems.

Regarding the implementation, all the finite element codes were developed by the
author. The solver of the linear algebra problem that naturally arises in the finite element
context was also implemented by the author. This decision was taken, principally, to solve
the linear system with a good algorithm that takes into account the finite element matrix.
The Gaussian quadrature was the integration method adopted. All the code is developed
in an object-oriented programming language, C++.

For uniaxial compression, we consider a mesh of 50 mm × 100 mm, with 10 elements
in the x-direction and 10 elements in the y-direction. The boundary condition applied
considered that a displacement was prescribed on the upper surface and the lateral sur-
face is free, while the base is free horizontally but not vertically. It applied a prescribed
displacement equal to 7 mm in each load step.

In the case of the equibiaxial test, we consider a mesh of 200 mm × 200 mm, with
10 elements in the x-direction and 10 elements in the y-direction. The symmetry of the
problem on the x and y axes was considered, and with only a quarter of the model was
modeled. Still considering the symmetry, equal displacements were prescribed on both x
and y surfaces on the top and the right side, while the left was free to move vertically and
the bottom was free to move horizontally. In this case, the prescribed displacement in each
load step is equal to 10 mm both in x and y directions.

For both tests, we use 100 steps of SLA and Q4 element, a bilinear quadrilateral element
which combines two sets of Lagrange polynomials, i.e., linear isoparametric quadrilateral
elements with four nodes. Figure 6 shows the finite element mesh and the boundary
conditions for both cases.

Figure 6. Finite element mesh and boundary condition for both tests, uniaxial (left) and equibiaxial
(right).

In Figure 7, we can see the results obtained for the two cases studied. From left
to right, we can see the comparison between the numerical and analytical results of the
equibiaxial and uniaxial tests. As expected, the equibiaxial test has a smaller plateau area
and densification occurs earlier than in the uniaxial test.
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Figure 7. Comparison between numerical, analytical and experimental solutions for uniaxial and
equibiaxial compression tests, respectively.

These two simulations show that the agglomerated cork model presented represents
with good accuracy the real behavior of the material, and therefore, it is a good option to be
studied from now on.

8. Conclusions and Future Work

In this paper, we present a new material model for agglomerated cork. This model
is based on the Mooney–Rivlin hyperelastic model and, as the cork agglomerate has a
Poisson ratio near zero, has six material parameters. Analytical solutions for uniaxial
and equibiaxial tests were developed and used for parameterization. To parameterize,
the Nelder–Mead algorithm was used.

We also describe and use the successive linear approximation method (SLA) for the
numerical simulation. The description of the SLA was quite general, and can be used for
any material.

Our results show that the presented model is a good model and was validated through
numerical simulation. One of the advantages of our model is the mathematical simplicity in
relation to the classical model [16,17], being a direct extension of a Mooney–Rivlin model.

For future work, it will be interesting to try to relate the parameters s1, s2, s3, s4, s5
and s6 with physical parameters of the material, as was performed directly with the β and
the Poisson ratio. Another interesting approach to test the efficiency of the SLA will be the
study of a contact-impact problem.
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