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Editorial

Dynamic Modelling and Simulation of Food Systems: Recent
Trends and Applications

Jose A. Egea 1, Míriam R. García 2 and Carlos Vilas 2,*

1 Fruit Breeding Group, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain
2 Biosystems and Bioprocess Engineering Group, IIM-CSIC, 36208 Vigo, Spain
* Correspondence: carlosvf@iim.csic.es; Tel.: +34-986-231-930

Several factors influence consumers’ choices of food products. While price remains the
main criterion, quality, pleasure, convenience, and health are also important driving factors
in food market evolution. Food enterprises are making significant efforts to manufacture
products that meet consumers’ demands without compromising on safety standards. Ad-
ditionally, the food industry also aims to improve the efficiency of transformation and
conservation processes by minimizing energy consumption, process duration, and waste
generation. However, foods are highly complex systems in which: (i) non-linear dynamics
and interactions among different temporal and spatial scales must be considered; (ii) a
wide range of physical phenomena (such as evaporation, mechanical changes, thawing,
energy/mass transport, and color changes) occur; (iii) different food matrices (such as meat,
vegetables, cereal, milk, and juices) with different microstructures and properties are in-
volved; and (iv) the number of quality and safety indicators (such as bacteria, total volatile
basic nitrogen, color, texture, odor, and sensory characteristics) is substantial. Mathematical
modeling and simulation are key elements that allow us to gain a deeper understanding of
food processes and enable the use of tools such as optimization and real-time control to
improve their efficiency. This special issue aims to gather research on the development of
dynamic mathematical models that describe the relevant factors in food processes from
the perspectives of food safety (chemical or microbiological), food quality (organoleptic
or nutritional), or resource consumption. Additionally, the development of model-based
tools to improve food processes is also considered. This includes decision-making and opti-
mization tools, the characterization of uncertainty/variability in model predictions, model
simulation techniques, software sensors, and software development. The contributions
published in this Special Issue can be grouped into two categories according to their main
research topic: the evolution of safety and quality indicators in unprocessed food systems,
and transformation and preservation processes.

1. Evolution of Safety and Quality Indicators in Unprocessed Food Systems

The evolution of quality in food products is mainly dependent on microbial content,
but also on other indicators such as nucleotide degradation; the formation of volatile
nitrogenous bases or biogenic amines; and texture. In this Special Issue, we present four
research articles on different aspects of bacterial growth or inactivation and a review
paper analyzing the mathematical models in the literature that describe and predict food
quality indicators.

1.1. Bacterial Dynamics

Microbial growth and inactivation rates are highly influenced by the food matrix.
Therefore, matrix microstructure is a main factor to consider when deriving mathematical
models that describe microbial dynamics in food systems. Verheyen and Van Impe [1]
provide a comprehensive review of the models developed during the last two decades that
study microstructure influence. Two types of model are identified: (i) macroscale secondary
models including food microstructural factors, and (ii) microscale semi-mechanistic models.

Foods 2023, 12, 557. https://doi.org/10.3390/foods12030557 https://www.mdpi.com/journal/foods1
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The selection of the best approach depends on the particular application, the accuracy
required, and the available computational power. The authors also identified current
research trends: (i) the study of the effect of intrinsic factors on microbial dynamics, and
(ii) the development of models considering the influence of food microstructure during
non-thermal processes.

Some bacteria, such as Carnobacterium maltaromaticum CNCM I-3298, can be used in
food biopreservation, flavor development processes, or in biological time–temperature
integrators to track temperature variations during transport and storage. Puentes et al. [2]
used the reaction scheme mechanism to derive an accurate mathematical model that
describes the growth of C. maltaromaticum and the production of formic acid, acetic acid,
lactic acid, and ethanol from trehalose. The surface response method was used to describe
the relationships between the operating conditions (temperature and pH) and the specific
growth and production rates. The authors also illustrated how the model can be used to
compute the optimal operating conditions of the process (T and pH). Finally, they also
proposed some interesting research directions such as incorporating the effects of other
culture parameters or understanding the inhibition mechanisms of metabolites.

The efficiency of treatments to inactivate bacteria can be assessed by detecting and
quantifying the sublethal injury of pathogenic microorganisms. However, existing methods
of modeling the evolution of sublethal injury (SI) present several disadvantages related to
the frequent occurrence of SI trends in these methods, which are, in part, artifacts. Akker-
mans et al. [3] proposed a new approach to modeling the evolution of SI during microbial
inactivation that avoids unrealistic calculations. The method, based on the description
of inactivation kinetics between subpopulations of healthy, sublethally injured, and dead
cells, was designed to be used in combination with any existing microbial inactivation
model. Log-linear inactivation, biphasic inactivation, and log-linear inactivation with tail-
ing were used to validate the approach. The advantages of this approach make it suitable
for describing SI during food processes.

Shewanella putrefaciens is one of the most important Specific Spoilage Organisms (SSOs)
in fish products. Yi and Xie [4] focused on designing a nondestructive method, based on
the use of an electronic nose, to describe the growth of S. putrefaciens during fish spoilage.
Bacterial concentration was described using two classical primary models—Gompertz
and logistic—whereas the dependence of growth rate and lag time on temperature was
modeled using the square root model. The authors also derived a regression model
based on the partial least squares method to correlate the electronic nose and electrical
conductivity measurements with the spoilage potential of S. putrefaciens. Finally, gas
chromatography/mass spectrometry was used to determine the characteristic volatile
organic compounds of tuna inoculated with S. putrefaciens.

1.2. Other Quality Indicators

The development of methods to describe the evolution of other quality indicators has
gained relevance in recent decades. García et al. [5] presented a comprehensive review of
the different indicators used in the literature to assess the quality of fresh fish; the stress
variables that affect the evolution of such indicators; and the mathematical models available
to describe such evolution. The work also presented the main challenges currently faced in
food quality modeling:

(i) There is a lack of mathematical models for some critical indicators, such as nutrients
and odor.

(ii) There are many different model structures but a lack of proper comparisons between
alternatives.

(iii) Uncertainty analysis of model parameters and bacterial load is usually missed.
(iv) Model validation is usually disregarded.
(v) The relationships between the shelf life and growth of SSOs are not well understood

and are usually not described in dynamic modeling.
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(vi) The potential of current models is not fully exploited towards their integration into
software systems for online quality prediction.

2. Preservation and Transformation Processes

Preservation and transformation processes are of paramount importance in food
systems. This Special Issue includes four articles focusing on different aspects of the
fermentation process and three manuscripts that consider thermal processes.

2.1. Fermentation Processes

Mathematical models are useful tools to understand food systems, and combined with
proper methodologies such as optimization, control, or scheduling, they enable the design
of food processes and their operating conditions. Ritonja et al. [6] derived a fourth-order
non-linear state-space model to explain the effect of temperature on the dynamics of CO2
produced during milk fermentation. The structure of the proposed model is compact and
simpler than other options in the literature, although it is able to represent experimental
behavior. The authors also suggest that a non-linear adaptive control approach would
be a reliable option to design a control law to force the process to follow the desired
reference trajectory.

Fermentation is also used to ensure the safety and quality of foods, and to increase
product shelf life. Predictive microbiology can be exploited to describe the growth and
inactivation of bacteria as a function of the fermentation conditions. Racioppo et al. [7]
used the Food Spoilage and Safety Predictor to model the effects of stress variables (such
as temperature, pH, and salt) on the growth of lactic acid bacteria in fermented smoked
fish. The maximal growth rate and the time taken to attain the critical threshold were
modeled through a multiple regression procedure. This model was used to optimize the
production of smoked fermented fish by combining the variables through a fractional
design of experiments. The authors showed that the most critical factor in the fermentation
process was liquid smoke, followed by temperature and salt.

Rapaport et al. [8] proposed a simple model that includes a maintenance term (giving
rise to a variable yield) to describe the growth of yeast on nitrogen during the fermentation
of wine. This maintenance term can explain a consumption of nitrogen that is not entirely
converted into biomass. Additionally, the variable yield, that can be estimated from data,
gives the approach the flexibility to suit different kinds of models or experimental data with
a single common structure. The maintenance term encodes the underlying mechanisms of
transporters and carbohydrate accumulation. The authors showed that this simple model
can reproduce the experimental data and results of more sophisticated models, bringing
new perspectives to the control of wine fermentation through the addition of nitrogen.

Dynamic models describing food processes must be accurate and reliable, but they
must also be compatible with measurable variables in real industrial processes. Zamudio-
Lara et al. [9] proposed two dynamic models of beer fermentation and performed parameter
estimation, structural identifiability analysis, observability analysis, and cross-validation to
assess the models’ predictive capabilities. The proposed models were based on biomass
dynamics and CO2. A set of variables that should be monitored for each model to achieve
complete observability was provided. The estimation procedure included some mathemati-
cal relationships to describe the thermal dependence of the kinetic parameters proposed,
leading to a good prediction of the experimental data for both models. These new models
enable measurement implementations in order to identify and quantify the process vari-
ables, thus improving process efficiency and controllability. These new models are good
candidates for model-based process control in beer fermentation.

2.2. Thermal Processes

The analysis of multiple objectives is crucial when designing dynamic food processes.
The different dynamics of the considered objectives may lead to counterintuitive conclu-
sions. Peñalver-Soto et al. [10], the authors analyzed the microbial inactivation of Geobacillus
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stearothermophilus and acrylamide production in the thermal processing of pureed potato
and prune juice, which may be present in infant formulations. The authors found that to
ensure proper microbial inactivation and reduce acrylamide formation, high-temperature
processes (with a short application time) are needed. This could be counterintuitive as
acrylamide formation increases along with temperature. However, the sensitivities of the
objectives to the process variables make the dynamics of acrylamide formation much slower
than those of microbial inactivation at high temperatures. These results may facilitate the
design of microbial inactivation thermal processes where acrylamide formation is an issue.

Quality parameters can be seriously affected when dynamic thermal processes are
applied to foods. In some cases, high temperatures can produce a decline in some quality
parameters while improving others. This is the case with fried potato chips, where higher
temperatures improve yellowness and crunchiness (important indicators for consumer
acceptance) but also accelerate the production of certain toxic compounds such as acry-
lamide. Peñalver-Soto et al. [11] presented a multi-objective optimization approach to
simultaneously maximize yellowness and minimize acrylamide production in the potato-
chip frying process. Their results showed that most of the solutions of the Pareto front
led to levels of acrylamide above the maximum recommended by the European Food
Safety Agency (EFSA). Low temperatures and high processing times should be used to
avoid excess acrylamide. They also found that under mild processing conditions, there
can be quasi-equivalent solutions (e.g., different processing conditions leading to the same
relationship between yellowness and acrylamide) due to the sensitivities of the objectives to
such conditions. Finally, parameter uncertainty and Pareto front uncertainties were higher
at higher temperatures.

Innovations in the field of rapid heating technologies require foods’ thermal prop-
erties to be determined accurately. Muniandy et al. [12] performed a study to determine
the thermal conductivity of a model food using rapid heating. Two-dimensional heat
transfer models based on finite differences were formulated, and experiments to monitor
temperature were designed based on scaled sensitivity coefficients. The authors proposed
three models for thermal conductivity—constant, linear, and re-parameterized linear—to
improve identifiability, and obtained better estimates from the linear ones. To estimate the
parameters with low errors, it was concluded that the constant temperature experiment
should be conducted for at least 20 min, while the rapid heating experiment required only
30 s. The estimated trend of conductivity with temperature was more consistent with fatty
foods in the rapid heating experiments. Additionally, the residual analysis for both types
of experiment revealed that the parameter estimation in the rapid heating experiment was
more reliable. Finally, prolonged exposure to temperature in the constant-temperature
experiments could negatively impact the reliability of the estimated thermal properties due
to changes in the food matrix.

In the face of climate change, it may advised that unused species of some crops
should be recovered to ensure resistance against increasing pests and resilience against
changing climate conditions. It is therefore important to determine their physicochemical
properties and understand how they are affected by processing treatments.Sridhar et al. [13]
determined the physicochemical properties of currant tomato (Solanum pimpinellifolium)
and studied the effects of cold- and hot-break heat treatments on it. Color-related parameter
values decreased significantly under all of the heat treatments. The apparent viscosity,
lycopene, and total titratable acidity differed significantly between heat treatments (mostly
at the highest temperatures). The change in the viscosity of tomato pulp and paste with
temperature was modeled using Arrhenius. The findings of this research may strengthen
the knowledge of process optimization designers, and thus, facilitate the development of
currant tomato-based products.
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Abstract: Predictive microbiology has steadily evolved into one of the most important tools to
assess and control the microbiological safety of food products. Predictive models were traditionally
developed based on experiments in liquid laboratory media, meaning that food microstructural
effects were not represented in these models. Since food microstructure is known to exert a significant
effect on microbial growth and inactivation dynamics, the applicability of predictive models is limited
if food microstructure is not taken into account. Over the last 10–20 years, researchers, therefore,
developed a variety of models that do include certain food microstructural influences. This review
provides an overview of the most notable microstructure-including models which were developed
over the years, both for microbial growth and inactivation.

Keywords: predictive microbiology; food microstructure; food safety; mathematical models

1. Introduction

Predictive microbiology encompasses the development of mathematical models to
evaluate and predict the effect of environmental conditions (e.g., temperature, pH, CO2
level, salt concentration, water activity) on the (growth, survival, and inactivation) be-
haviour of microorganisms in food (model) systems [1,2]. While some simple model types
have been developed over the years, most predictive models are continuous dynamical
models that consist of a set of ordinary differential equations (ODEs) [3]. The models are
useful tools to assess and design processing, distribution, and storage operations to assure
the microbiological safety and quality of food products [1,2]. To date, predictive models
have been widely accepted by food producers, governments, and scientists as a sound
scientific approach to accomplish legal food safety requirements [4]. The main advantages
of predictive microbiology over traditional challenge tests are (i) an increased efficiency
regarding financial costs, labour-intensiveness, and time, and (ii) the cumulative nature of
the developed models [5].

Food structure, from natural or process-generated origins, is defined as the spatial
arrangement of the structural elements of food products and their interactions [6,7]. Food
structural elements can be interpreted at different scales, i.e., the molecular level (e.g., sugar,
water, protein, and polysaccharide molecules), the nanoscale level (e.g., casein micelles),
the microscale level (fat and water droplets in emulsions, granules, gel networks), and
the macroscale level (e.g., air pockets, powders, foams) [7–9]. When investigating microbial
behaviour, it is mainly the microscale level (i.e., food microstructure) which is of interest,
with influencing aspects including physical constraints on the mobility of microorganisms,
variations in oxygen availability, and nutrient diffusion related to the nature of the food
matrix (i.e., viscous or gelled, rheological properties), and the presence of fat droplets inside
the food matrix [10,11]. An important aspect of the microstructural influence on microbial
dynamics is the effect on the growth morphology of microorganisms [12]. Depending on
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the specific microstructural complexity of foods, microorganisms can occur as single cells,
small aggregates (i.e., radius < 1.5 μm), microcolonies (i.e., radius < 200 μm), macrocolonies
(i.e., radius > 200 μm), and biofilms [13]. An example of this microstructural influence on
bacterial growth morphology is illustrated in Figure 1.

 

Figure 1. Confocal laser scanning microscopy images of growth of Listeria monocytogenes in food
model systems with varying microstructural complexity (adapted from [13], with permission from
American Society for Microbiology—Journals, 2021). Bacterial cells and fat droplets are shown in
green and orange, respectively. The liquid/gelled aqueous phase was not stained and is, hence, shown
by the absence of colour. The growth morphology of the bacteria clearly depends on the microstruc-
tural aspects of the food (model) system: (A) single cells, small aggregates and small microcolonies in
a simple low-viscosity liquid system; (B) a large number of small aggregates and small microcolonies
and some larger microcolonies in a liquid system with increased viscosity; (C) microcolonies of
different sizes in an aqueous gel model system; (D) small aggregates and microcolonies growing in
the spaces between fat droplets and around the fat droplets in an emulsion model system; (E) small
aggregates and microcolonies growing in the spaces between the fat droplets and around the fat
droplets in a gelled emulsion model system.

Traditionally, most predictive models are developed based on experiments in liquid
laboratory media, in which case the effect of the food microstructure on the microbial
behaviour, albeit a major influencing factor, is not taken into account [10,14]. The ap-
plicability of these models is, hence, limited to liquid foods with a relatively uniform
distribution of nutrients and microorganisms occurring in a planktonic form [15,16]. In/on
more structured foods (e.g., aqueous gels, emulsions, gelled emulsions), model predictions
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can be either fail-safe (i.e., predicting more growth or less inactivation than in reality) or
fail-dangerous (i.e., predicting less growth or more inactivation than in reality) from a food
safety point of view [10]. For microbial growth, most liquid-based models are considered
fail-safe in/on more structured foods, while for microbial inactivation, most models are
considered fail-dangerous [17–20]. Nevertheless, exceptions to the general trend have been
reported for both microbial growth and inactivation in structured foods, meaning that
including the food microstructural effect into predictive models would be beneficial for
the overall accuracy and safety of predictive models [17,18,21,22].

During the 1990s and early 2000s, a few review papers brought to attention the lack
of knowledge concerning the effect of the food microstructure on microbial dynamics in
the context of predictive microbiology, also proposing modelling frameworks to address
the issue in the future [10,23]. During the 20–30 years following on these pioneering
works, however, the number of developed predictive models that incorporated food mi-
crostructural effects remained scarce. While some useful models have been reported, most
of them mainly consisted of isolated efforts more focussed on specific applications (e.g.,
predicting the growth of microorganisms as a function of the gelatine concentration of
the food [24]) rather than systematic modelling frameworks. Nevertheless, a significant
amount of useful experimental and modelling-related approaches/concepts have been
developed during these last decades. No relevant review papers on this topic have, how-
ever, been published in recent years, except for the review of Skandamis and Jeanson [25],
focussing on the inclusion of the effect of the type of growth of the microorganisms (i.e.,
colonial vs. planktonic) into mathematical models for liquid, semi-liquid, and solid foods
and food surfaces. Therefore, in the current review, the aim is to provide an extensive
overview of the most promising food microstructure-including predictive models which
were developed over the years, both for microbial growth and inactivation. For consistency
and clarity purposes, the parameters and variables in the different presented models were
occasionally renamed to remain uniform among the different examples.

2. Historical Overview on the Inclusion of Food Microstructure in Predictive Models

2.1. The Absence of Food Microstructure in the Early Days of Predictive Microbiology

Figure 2 depicts the evolution of the inclusion of food microstructural factors in
predictive models over the years. In the early days of predictive microbiology, research
did not specifically focus on the influence of food microstructure on microbial behaviour.
One of the basic assumptions of predictive microbiology (which is still valid now) was that
the growth or inactivation behaviour of microorganisms can be described/predicted based
on a limited number of variables. Traditionally, researchers did not see food microstructure
as one of those variables and focussed on factors such as temperature, pH, water activity
(aw), nutrient concentration, and the presence of preservatives [26]. Because of this reason,
predictive models were mainly developed based on experiments in liquid laboratory media
due to their ease of use during microbiological experiments [27].

Figure 2. Timeline depicting the evolution on the inclusion of food microstructure into predictive
models over the years.

Predictive growth models, both kinetic and probabilistic, started to appear in the 1960s
and 1970s, describing the influence of factors such as storage temperature, salt concentra-
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tion, and pH [28–30]. A renewed interest in predictive models arose in the 1980s, mainly
due to a number of major food poisoning outbreaks and the consequent public (and po-
litical) awareness of the importance of food safety [1]. This renewed interest culminated
in the identification of effective primary models (e.g., modified Gompertz model [31,32],
Baranyi and Roberts model [33]), allowing the objective description of growth curves as
mathematical equations. From then on, the development of secondary models describing
the influence of important environmental factors on the parameters of the primary growth
models was possible [26]. Such secondary models were incorporated into primary models
to include the effect of those environmental factors on microbial growth into the predic-
tions [34–37]. Over the years, secondary models became more sophisticated, describing
the effect of different factors (e.g., temperature, pH, water activity, acid concentration)
and the interaction between them on the growth behaviour of microorganisms [38–40].
However, research in the 1990s and early 2000s more and more brought the insight that
such models could only adequately predict microbial growth in simple liquid food prod-
ucts. Microbial growth in/on more structured food products generally did not follow the
predictions, with both fail-safe and fail-dangerous discrepancies being reported [10,41–43].
Extensive research on the effects of food microstructure on microbial growth was conducted
in the following years, but models were only scarcely developed [17].

The most well-known early predictive model for the inactivation of microorganisms,
although originating from before the introduction of the term predictive microbiology, was
the botulinum cook of Esty and Meyer [44], describing a thermal process designed to kill
1012 spores of Clostridium botulinum type A [1]. This model was based on the Thermal Death
Time (TDT) concept of Bigelow [45], which involves the use of D-values (i.e., the decimal
reduction time, or the time necessary to accomplish a reduction in bacterial numbers
of one log unit under isothermal conditions) and z-values (i.e., increase in temperature
necessary to accomplish a 10-fold decrease in the D-value). Over the years, models based
on this concept of D and z-values, such as the botulinum cook, have been used extensively in
the food industry, with the canning industry being the most notable example [46]. However,
the success of this approach in the canning industry is mostly due to overprocessing rather
than due to modelling accuracy [47]. The models assume loglinear behaviour according to
Equation (1) [48].

log N = log N0 − t
DT

(1)

with N, the cell density at time t; N0, the initial cell density; DT, the thermal reduction time
(D-value). Similar to predictive growth models, secondary models describing the influence
of important factors on the D-value of the primary inactivation model (Equation (1)) were
developed. Arrhenius-type models represent one of the earliest methods to develop such
secondary inactivation models (e.g., [49,50]). D-values can be expressed by means of
the Arrhenius equation, as shown in Equation (2) [51].

kmax =
2.303
DT

= A·exp
( −E

R·T
)

(2)

with kmax, the maximum specific inactivation rate; A, the frequency factor; E, the activation
energy; R, the gas constant; T, the absolute temperature. This general Arrhenius equation
can be extended with extra terms to, in addition to the influence of temperature, also
include other factors such as pH and aw [51,52], as for example already applied in the late
1970s by Davey et al. [53] for the effect of temperature and pH during thermal inactiva-
tion. The generalised form of such Arrhenius-type secondary models is represented by
Equation (3) (based on [51]).

ln kmax = a0 + a1,1·V1 + · · ·+ a1,n·Vn
1 + a2,1·V2 + · · ·+ a2,n·Vn

2 + · · ·+ ax,1·Vx + · · ·+ ax,n·Vn
x (3)

with n, the order of the secondary model; a0–ax,n, constants; V1–Vx, environmental
factors such as 1/T, aw or pH. Theoretically, secondary models, be it Arrhenius-type models
or other model types, could include food microstructural factors, but this was not the case
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in the early days of predictive microbiology. Therefore, early models (i.e., including both
primary and secondary models) were accurate when describing the inactivation behaviour
of microorganisms in simple systems, but were inaccurate in complex food environments
because the influence of food microstructure was not taken into account [46]. Again,
model predictions could be fail-safe or fail-dangerous, depending on the specific situa-
tion [47,54,55]. In order to solve the possible inaccuracy of loglinear predictive inactivation
models, new models were developed to deal with common non-loglinear inactivation
trends, with the most notable models dating from after 1988 (e.g., [56–64]). Some of these
models are able to implicitly include the microstructural effect by representing accurate in-
activation dynamics in complexly structured food environments, e.g., via shoulder and/or
tailing effects. However, a direct modelling of the food microstructural effect on microbial
inactivation behaviour is not accomplished by the models if no food microstructural factors
are included in the secondary models.

2.2. More Attention to Food Microstructure in the Last Decades

Following on the increasing number of studies that showed the significant influence of
food microstructure on microbial dynamics, some concepts have been introduced to attempt
to develop predictive models which take the food microstructural influence into account.

A relatively straightforward method to include the influence of food microstructure
into predictive models is the development of models which are only valid for specific food
products. In this case, microbial growth or inactivation experiments are conducted in/on
the target food product. This methodology was occasionally already applied in the 1980s
and 1990s, but has been widely used in recent literature. An extensive list of example studies
exploiting this approach is provided in Table 1, both for microbial growth [65–86] and
thermal inactivation [55,87–97], with a focus on early and recent examples. Interestingly,
however, this predictive microbiology approach bears some similarities to the traditional
challenge testing approach, in which microbial growth/inactivation experiments were
also conducted directly in/on the food product of interest [5]. Hence, this approach could
result in a large amount of models only suitable for a specific set of conditions (i.e., food
product under certain environmental conditions), as also illustrated by the extensive (yet
incomplete) list in Table 1. To the opinion of the authors, this food-specific approach,
while certainly valuable, is not completely in line with the initial philosophy of predictive
microbiology, which aims for “the accumulation of knowledge on microbial behaviour in
foods” [1]. Additionally, and most relevant for this review, while those models inherently
take the influence of food microstructure on microbial dynamics into account, they do not
describe the influence of food microstructural factors on microbial behaviour [21].

Table 1. Examples of studies (ordered chronologically) in which predictive models only valid for specific food products
were developed.

Year Type Microorganism(s) Food Product Ref.

1981 Growth Clostridium botulinum Pork slurry [82]
1985 Growth Various background microflora Beef [86]
1990 Growth Clostridium botulinum Fish filets [66]
1992 Growth Salmonella Typhimurium Beef [70]
1996 Growth Various background microflora Cut endive [85]
1997 Inactivation Enterococcus faecium Bologna sausage [55]
1998 Growth Various background microflora Sausage [65]
1998 Growth Various background microflora Beef [71]
1999 Inactivation Salmonella enteritidis Tarama salad [93]
1999 Inactivation Enterobacter sakazakii Bovine whole milk [94]
1999 Growth Salmonella Typhimurium Cooked chicken breast [79]
1999 Growth Pseudomonas spp. and Shewanella putrefaciens Fresh bogue fish [83]
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Table 1. Cont.

Year Type Microorganism(s) Food Product Ref.

2003 Inactivation Staphylococcus aureus Surimi seafood sticks [89]
2013 Inactivation Salmonella Ground chicken [91]
2014 Inactivation Listeria monocytogenes Ground turkey [92]
2016 Inactivation Salmonella Tree nuts [96]
2018 Growth Bacillus cereus Cooked spinach [73]
2018 Growth Bacillus cereus (spores) Cooked beans [74]
2018 Growth Escherichia coli Mascarpone cheese [76]
2018 Growth Weissella viridescens Vacuum-packaged ham [78]
2018 Growth Escherichia coli Korean rice cake [80]
2018 Inactivation Escherichia coli Ground chicken [97]
2019 Growth Staphylococcus aureus Egg products [68]

2019 Growth Vibrio parahaemolyticus Korean raw crab marinated in
soy sauce [69]

2019 Inactivation Listeria monocytogenes Gilthead sea bream fillets [87]
2019 Growth Bacillus cereus Cooked rice [72]
2019 Growth/inactivation Listeria monocytogenes Fish balls [90]
2019 Growth Bacillus cereus (spores) Cooked pasta [75]

2019 Growth Clostridium perfringens Roasted chicken and braised
beef [77]

2019 Growth Aeromonas hydrophila Lettuce [81]
2019 Inactivation Salmonella Infant formula [95]

2020 Growth Brochothrix thermosphacta, Leuconostoc
gelidum and Pseudomonas spp. Minced pork [67]

2020 Inactivation Salmonella Thompson Iceberg lettuce [88]
2020 Growth Salmonella Reading and lactic acid bacteria Iceberg lettuce [84]

An alternative approach to include the effect of food microstructure into predictive
models is conducting experiments in artificial food model systems which simulate, to
a certain extent, the microstructure of the product. In general, artificial food model systems
are advantageous due to (i) their use being more simple and less labour-intensive than real
food products, (ii) the absence of background microflora, (iii) repeatability of experimen-
tal results, (vi) the possibility to alter factors independently, and (v) the straightforward
transferability of findings to other food products [15,21,98]. Wilson et al. [10] defined six
categories of food architectures which could all be represented by artificial food model
systems, i.e., liquids, oil-in-water emulsions, water-in-oil emulsions, aqueous gels, gelled
emulsions, and surfaces. The use of liquid food model systems (e.g., meat broth to simulate
meat products) was already a common practice in the early days of predictive microbiol-
ogy, mimicking mostly the composition, pH, and water activity of the food products of
interest [28,54,99–102]. In the early 2000s, a large number of research groups underwent
a paradigm shift towards the use of more structured model systems. Artificial model
systems of different structures are frequently used to study the effect of certain influencing
factors on microbial growth [11,15,103–108] or inactivation [109–111]. Seldomly, predictive
models are developed based on experiments in those more structure model systems. In
this regard, two approaches can generally be identified, i.e., (A) using one model system
to model (or include into the model) the effect of certain environmental or food intrinsic
factors (e.g., oxygen diffusion and heat transfer in structured foods) (e.g., [98,112–115])
and (B) using model systems varying in certain compositional or microstructural factors
to include the effect of those factors in relevant secondary models (e.g., [24,27,116,117]).
Both approaches A and B can be regarded as systematic approaches to develop predictive
models which take food microstructure into account, although not all models developed
according to these approaches would explicitly model the microstructural effect. For
instance, one could develop a model which describes the influence of the salt content
on microbial growth in structured products. This hypothetical model would be valid in
structured products, but would not directly express the influence of any microstructural
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factor. The following sections provide an overview of existing models which include food
microstructural effects, for microbial growth and inactivation, respectively.

3. Growth Models Incorporating Food Microstructure

To the best knowledge of the authors, all existing growth models which include
food microstructural effects can be divided into two categories. The first category en-
compasses the introduction of macroscale secondary models describing the influence of
food microstructural factors on microbial growth, while the second category encompasses
semi-mechanistic microscale models which take the local (structured) environment of
the bacterial cell(s) into account. Table 2 provides an overview of the most relevant models
of the two categories. A more detailed description of the respective models can be found in
the following sections.

Table 2. Overview of the most relevant growth models incorporating food microstructure.

Macroscale Secondary Models

Model Description Microstructural Factors Non-Microstructural Factors Ref.

Listeria innocua and Lactococcus lactis
growth (mono- and co-culture) in

a gelled system
Gelatine concentration

Undissociated lactic acid concentration,
pH, physiological state of the cells (for

lag phase)
[24]

Aspergillus carbonarius growth in broth Gelatine concentration
Temperature, water activity,

physiological state of the cells (for
lag phase)

[118]

Salmonella Typhimurium growth in broth Gelatine concentration Water activity, pH, physiological state of
the cells (for lag phase)

[27]

Semi-Mechanistic Microscale Models

Model Description Included Environmental Factors Ref.

Mixed population growth model for
homogeneous food products, with
2-dimensional space dependency

Food structure (via firmness of the food), biomass transport
(via diffusion) [119]

Listeria innocua growth in solid or paste
foods

Dissolved oxygen concentration (and diffusion), biomass transport
(via diffusion) [98,115]

Escherichia coli growth in a (3D)-structured
leafy product during handling and storage

Temperature/heat transfer, biomass transfer (via diffusion), leafy
structure (via inter-leaf contact points and entrapped air pockets) [120]

Listeria monocytogenes growth on the
surface of smear soft cheese and

vacuum-packed cold-smoked salmon

Local pH, local water activity, temperature, structural environment
(e.g., hollows, crests) [121,122]

3.1. Macroscale Secondary Models Including Food Microstructural Factors

The traditional approach which has been employed to model the effect of food mi-
crostructure on microbial growth dynamics is the development of secondary models based
on food microstructural factors of food products. This approach can be regarded as a macro-
scopic simplification of the real microbial behaviour. In essence, heterogeneity (i.e., both
concerning the bacterial distribution and the food environment) is ignored and an aver-
age macroscopic relation is assumed. Due to its relative straightforwardness and limited
required computing power, this secondary modelling approach has been dominant in pre-
dictive microbiology over the years. A remarkable observation is that, in all of the relevant
studies focussing on secondary models for the food microstructural influence on bacterial
growth, gelatine concentration was used as a variable to include the influence of product
rheology on the maximum specific growth rate μmax in the Baranyi and Roberts growth
model [24,27,118].

Antwi et al. [24] developed a predictive model for the growth of Listeria innocua and
Lactococcus lactis (mono- and coculture), quantifying the influence of a gelatine gel matrix.
For this purpose, the model of Vereecken et al. [123], describing bacterial growth in function
of undissociated lactic acid concentration and pH, was fit to growth data in model systems
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containing different gelatine concentrations. After their model optimisation procedure,
Antwi et al. [24] obtained the model represented by Equations (4) and (5).

dN
dt

=
Q

1 + Q
·μmax(Gc)·μLaH,H

(
[LaH],

[
H+

])·N (4)

μmax(Gc) = a0 + a1·exp(−a2·Gc) (5)

with Gc, the gelatine concentration; Q, the physiological state of the cells; μLaH,H([LaH], [H+]),
the factor bringing the inhibition of growth into the model via the undissociated lactic
acid concentration and the pH; a0, a1, and a2 constant factors. Compared to the traditional
Baranyi and Roberts [33] growth model, this model uses a more mechanistically inspired
coupled-ODE method to explain growth inhibition, i.e., via the effect of the undissoci-
ated lactic acid concentration, the pH, and the gel strength. The authors concluded that
the model satisfactorily predicted the effect of the gelatine concentration on the lactic acid
dissociation and pH evolution and, in turn, also on the growth of the target microorganisms
(in mono- and coculture). A moderate decrease in the growth rate was observed with
an increasing gelatine concentration for both Listeria innocua and Lactococcus lactis, possibly
explained by the increasing medium solidness imposing additional stresses on the cells.

Kapetanakou et al. [118] developed a model for the combined effect of water activity,
temperature, and gelatine concentration on the growth of the fungus Aspergillus carbonarius
in food model systems. A two-step procedure was employed during the model develop-
ment, as the authors first fitted the Baranyi and Roberts [33] model to the growth data, and
then fitted a polynomial secondary model (Equation (6)) to the square root of the maximum
specific growth rates μmax.√

μmax = a0 + a1·T + a2·Gc + a3·aw + a4·T·Gc + a5·T·aw + a6·Gc·aw + a7·T2 + a8·Gc
2 + a9·a2

w (6)

with a0, a1, a2, . . . , and a9 the constants to be estimated; T, the temperature; Gc, the gela-
tine concentration; aw, the water activity. The developed secondary model showed that
the addition of gelatine caused a large decrease in

√
μmax, but that the structural influence

was less pronounced at lower aw and T. The model was also validated in three commercial
products, i.e., custard, marmalade, and jelly. While the model predictions agreed well with
growth data on custard and marmalade, they agreed poorly with the observed data on jelly.

Theys et al. [27] developed a model for the growth of Salmonella Typhimurium in func-
tion of pH, aw, and gelatine concentration in a broth model system. Similar to the two pre-
vious studies, the authors incorporated a secondary model into the primary growth model
of Baranyi and Roberts [33]. This secondary model, based on the model of Ross et al. [124],
is presented by Equation (7).

√
μmax = a0·

√
aw − aw,min·

√
1 − 10(pHmin−pH)·

√
Gc·μliq + a1·μsol

(a1 + Gc)·μsol
(7)

with a0 and a1 constants; aw,min and pHmin, the theoretical minimal values of aw and pH
below which no growth occurs; μliq, the maximum specific growth rate in liquid media
(i.e., gelatine concentration equal to zero); μsol, the maximum specific growth rate in
the strongest possible solid medium (i.e., theoretical infinite gelatine concentration); Gc,
the gelatine concentration. In brief, the structural factor becomes equal to zero if Gc equals
zero, while the factor becomes equal to the ratio of μsol and μliq if Gc is infinitely high. Based
on the developed model, it was observed that the curves of the secondary model were much
flatter with respect to the effect of pH and aw for the 1% and 5% gelatine concentrations
than for 0% gelatine. Hence, the decrease in μmax at a higher gelatine concentration was
large at a mild pH and aw conditions, while the μmax decrease with an increasing gelatine
concentration was much smaller at a stressful pH and aw conditions.

In general, the three aforementioned gelatine concentration models, although ex-
hibiting different model structures, managed to accurately describe microbial growth in
the respective studied food model systems. However, those models are only valid for
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microbial growth in gelatine-containing food products, evidently limiting their general
applicability. In order to address this issue, Aspridou et al. [103] recommended the use
of a single uniform rheological parameter to describe the structure of food matrices in
predictive models. The most suitable rheological parameters to include in predictive mod-
els need to be determined in future research, but might also be specific to the different
food product categories. For example, the structure of more liquid food products could
be described by the viscosity parameters of the Power law model of Reiner [125], while
the structure of visco-elastic and solid products could be described by the storage modulus
G’, the loss modulus G”, or the loss tangent tan δ [11,103]. It should, however, also be taken
into account that rheological properties of food products can be time-dependent and that
the handling of the food product (e.g., stirring, shaking) could exert a more significant
influence on microbial growth than the rheological properties [27].

In addition to food product rheology, other food intrinsic factors related to food
microstructure could also be incorporated into secondary models (e.g., fat droplet size,
food matrix fat content), although more dedicated research towards the effect of those
factors on microbial growth should first be conducted [126]. An extra complexity for
these kinds of models, however, is related to the determination of the most suitable model
structure. One could raise the question whether the food microstructural influence should
be added to factors that describe the influence of other (traditional) factors on microbial
growth (e.g., temperature, pH), or, whether (an) additional food microstructural factor(s)
should be added to existing models. In the latter case, it would theoretically also be possible
that these additional food microstructural factors are dependent on other variables which
are already represented by their own factor in the traditional model (e.g., a pH-dependent
influence of the gelling agent concentration on microbial growth, while a pH factor is
already present in the model) [11,27]. Moreover, certain variables that are included in
the microstructural factor could be dependent on other variables (e.g., a temperature-
dependent rheology in a rheology-related factor). While none of these options can a priori
be defined as the sole correct choice, the resulting possible complexity should be taken
into account when selecting the macroscale secondary modelling approach for certain
complex applications.

3.2. Semi-Mechanistic Microscale Models

While the secondary modelling approach described in Section 3.1 “Macroscale Sec-
ondary Models including Food Microstructural Factors” can result in accurate microbial
growth predictions, it does not provide and/or require an extensive fundamental knowl-
edge of the food microstructural influence on microbial dynamics. When looking at
the rheology-based examples in the previous section, the microbial behaviour which is
not explained by the influence of traditional factors (e.g., temperature, pH, water activity)
is explained by a “black box” rheology-based factor which is not based on any physical
phenomena. In reality, the influence of food rheology on microbial behaviour consists of
different interacting effects, e.g., oxygen and metabolite diffusion, the mechanical distri-
bution of water, the chemical redistribution of organic acids, and physical constraints on
the mobility of microorganisms [6].

A more mechanistic modelling approach can be applied by modelling the interaction
of microorganisms with the local environment based on physical phenomena. In this regard,
the elementary model structure for microbial evolution is provided by Equation (8) [127].

∂N(x, y, z, t)
∂t

= μ(local environment)·N(x, y, z, t) (8)

with N(x,y,z,t), the local cell density and μ, the specific growth rate of the microor-
ganisms. As shown in the equation, the growth rate of the cells is dependent on the local
environment, which comprises a plethora of different factors, e.g., temperature, pH, sub-
strate concentration, metabolite concentration, and interactions with other microorganisms
(i.e., same or competing species) [127]. Accurate modelling of the microbial behaviour,
hence, requires an accurate modelling of the local environment of the cells. Hereby, it is

15



Foods 2021, 10, 2119

important to include all factors which exert a significant influence of the microorganisms,
e.g., oxygen and metabolite diffusion, the surrounding microorganisms (same species and
other species), the local temperature, and local physicochemical conditions such as pH and
aw. In this regard, partial differential equations (PDEs), describing changes in variables
as a function of space and time, are often introduced into the predictive models [3]. This
methodology also allows the inclusion of changes in environmental factors over time in
a straightforward way. This can be useful to include the time-dependent nature of food
structure into models; it is, for example, known that the rheological properties of food
products can change over time [27]. Taking the local conditions into account leads to the de-
velopment of microscale models, rather than the macroscale models (i.e., focussing on
total cell populations and macroscopic food properties) discussed in the previous section.
Since microscale models need to deal with a high level of detail (e.g., spatial and microbial
heterogeneity), they have a high complexity, possibly leading to significant computational
costs [128]. It should also be noted that no fully mechanistic models for microbial dynam-
ics exist to date, since (i) the current microbiological knowledge is too limited for fully
mechanistic relations and (ii) empiric relations are sometimes used to describe some envi-
ronmental conditions in order to save computational efforts. Consequently, most predictive
models are semi-mechanistic, meaning that they contain some mechanistic information in
their structure and physically measurable parameters [128].

Dens and Van Impe [119] proposed a general modelling approach to take spatial
heterogeneity in structured foods into account. While the model was solely based on model
simulations and, hence, not based on experiments in structured model systems, the study
was included in this review because of its importance for models developed in later studies.
In brief, the authors extended a previously developed mixed population growth model for
homogeneous food products, unifying the growth model of Baranyi and Roberts [33] and
the Lotka–Volterra model [129] for two-species competition (i.e., in this case, Escherichia
coli and Lactobacillus plantarum), and introducing a (two-dimensional) space-dependency
into the model. The general model structure is shown by Equations (9) and (10), with
the respective first terms representing bacterial growth via the combined Baranyi and
Roberts [33] and Lotka–Volterra [129] model, and the respective second terms representing
the biomass transport via diffusion.

∂N1(x, y, t)
∂t

= μ1(x, y, t)·N1(x, y, t) + D·∇2N1(x, y, t) (9)

∂N2(x, y, t)
∂t

= μ2(x, y, t)·N2(x, y, t) + D·∇2N2(x, y, t) (10)

The complete form of these model equations is represented by Equations (11) and (12).

∂N1(x, y, t)
∂t

= μmax,1· Q1(x, y, t)
1 + Q1(x, y, t)

· N1(x, y, t)
Nmax,1

·(Nmax,1 − N1(x, y, t)− α1,2·N2(x, y, t)) + D·
(

∂2N1(x, y, t)
∂x2 +

∂2N1(x, y, t)
∂y2

)
(11)

∂N2(x, y, t)
∂t

= μmax,2· Q2(x, y, t)
1 + Q2(x, y, t)

N2(x, y, t)
Nmax,2

·(Nmax,2 − N2(x, y, t)− α2,1·N1(x, y, t)) + D·
(

∂2N2(x, y, t)
∂x2 +

∂2N2(x, y, t)
∂y2

)
(12)

with N1 and N2, the cell densities of the two bacterial species; Q1 and Q2, the internal
physiological state of both species used to describe the lag phase; μmax,1 and μmax,2, the max-
imum specific growth rate of both species; Nmax,1 and Nmax,2, the maximum population
density of both species when grown in monoculture; α1,2 and α2,1, the interaction coef-
ficients measuring the effects of species one on species two and vice versa; D, the cell
diffusivity; ∇2, the diffusive operator. For their simulations, the authors assumed a 10
by 10 cm agar gel, 1 mm thick, to allow a two-dimensional model. Space was considered
as a grid of lattice sites, with each site being assumed homogeneous. The biomass mass
transfer was taken into account via the diffusion law, while the food structure was included
via factor D, a measure for the firmness of the food. Factor D was assumed infinite for
very fluid foods and zero for solid foods in which no movement of microorganisms is
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possible. In their concluding remarks, Dens and Van Impe [119] state that, while their
model simulations should not be regarded as accurate, the main message of their work is
that an extended model structure taking space into account is necessary to model microbial
growth in structured food environments. In later years, other authors have indeed used
this approach to model microbial growth in structured environments, as shown by the two
following examples of Noriega et al. [98,115] and De Bonis and Ruocco [120].

Noriega et al. [98,115] developed a predictive model for L. innocua growth in solid or
paste foods, taking into account oxygen diffusion limitations. Three different dissolved
oxygen concentrations were investigated in solidified broth systems, i.e., (i) aerobic con-
ditions (7.6–8.0 mg/L), (ii) hypoxic conditions (0.2–2.6 mg/L), and (iii) anoxic conditions
(<0.01 mg/L). In brief, the used modelling approach was a combination of the logistic
Riccati equation for microbial growth (Equation (13) [130]), on the one hand, and oxygen
(Equation (14)) and substrate (Equation (15)) mass balances, on the other.

dN
dt

= K·N·(1 − τ·N) (13)

∂N
∂t

= D·∂
2N

∂z2 +
dN
dt

(14)

∂CO2

∂t
= DO2 ·

∂2CO2

∂z2 +
dCO2

dt
(15)

with D, the cell diffusivity; DO2 , the oxygen diffusion rate; CO2 , the oxygen concentration;
K and τ, kinetic parameters obtained in liquid media, with τ being a function of the oxygen
concentration. The authors concluded that the used approach of combining kinetic parame-
ters as a function of oxygen concentration, obtained in liquid medium with the assumption
of oxygen as a limiting substrate for cell growth, resulted in accurate model predictions for
structured media.

De Bonis and Ruocco [120] developed a mathematical 3D model of a structured
leafy product to simulate Escherichia coli growth in fresh iceberg lettuce during handling
and storage. In brief, the model combined general first-law equations for heat transfer
(Equation (16)), biomass kinetics and transfer (Equation (17)), primary bacterial growth
kinetics (Equation (18) [131]), and secondary temperature-dependent bacterial growth
kinetics (Equation (19) [132]). Structural features of the food were taken into account
by a multiplicity of inter-leaf contact points and insulating air pockets, which influence
microbial growth.

ρ·cP·∂T
∂t

= kS·∇2T (16)

∂N
∂t

= D·∇2N +
dN
dt

(17)

dN
dt

=
Q

1 + Q
·μmax·

(
1 − N

Nmax

)
·N (18)

√
μmax = b·(T − Tmin) (19)

with ρ, the substrate density; cp, the substrate specific heat capacity; T, the temperature;
kS, the substrate conductivity; D, the cell diffusivity in the substrate; μmax, the maximum
specific growth rate; Q, the physiological state of the cells; Nmax, the maximum cell den-
sity; b, the kinetic parameter of the Ratkowsky equation; Tmin, the reference temperature.
The predicted thermal profiles were validated in real iceberg lettuce samples, showing that
the model predicted temperature evolution nicely at all considered depths. The microbial
behaviour was not experimentally validated, but depended on general data on microbial
generation and diffusion. A value for bacterial (constant temperature) diffusivity was
obtained from literature for this purpose. In general, the main advantage of the model of
De Bonis and Ruocco [120] is that it is a general engineering tool which stems from the in-
tegration of partial differential equations that describe heat and mass transfer. The model
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allows the prediction of local and volume-averaged bacterial cell growth with proper accu-
racy, and both in function of the initial contamination and the operating thermal regime of
the product.

The previously discussed approaches can be classified as grid-based or biomass-based
models (BbM), as the cell density in a small volume unit of the food product was used as
the basic unit to model microbial growth. A further step towards more accurate models
would be to include direct intercellular reactions by using individual cells as the basic model
units in individual-based models (IbMs) [128]. IbMs provide realistic bacterial dynamics
and can be designed to include accurate descriptions of complex micro-structures and
environments [133]. Over the last two decades, IbMs have shown increasing potential for
the modelling of microbial behaviour due to the development of specialised software [134].
Examples of IbM software tools for predictive microbiology include BacSim [135], IN-
DISIM [136], MICRODIMS [137,138], BSim [133], and iDynoMiCS [139]. The potential
of IbMs to predict microbial dynamics in complex systems (i.e., complex environment
and/or complex microflora), even including the complex behaviour in microbial biofilms,
is a major advantage for modelling applications in structured food products [140]. While
an in-depth explanation of IbMs lies outside the scope of this study, it is worth mentioning
the most relevant example of an IbM approach applied to microbial growth on (i.e., surface
growth) structured food products.

Ferrier et al. [121] and Augustin et al. [122] developed an IBM approach to describe
the behaviour of a small number of Listeria monocytogenes cells contaminating the surface of
smear soft cheese and vacuum-packed cold-smoked salmon. Microscale models describing
the local pH and aw over the food surface were constructed based on microelectrode mea-
surements. These models were combined with the IBM approach to simulate the stochastic
growth of the bacteria on the product; simulations were also validated on real cheese
and salmon samples. On the one hand, the authors concluded that, for no-growth or
poor-growth situations (i.e., a small number of cells), the accuracy of their coupled IBM
approach surpassed the classical macroscale approach. On the other hand, the results of
the two approaches were similar when assessing the impact of changes in control measures
influencing the growth of the bacteria. Therefore, the IbM approach was mainly useful to
predict single-cell growth probability of foodborne pathogens contaminating food with
a small number of cells. Nevertheless, more microenvironmental factors, as well as the in-
teraction of L. monocytogenes with background microflora, should be added to the model in
order to further increase its accuracy.

4. Inactivation Models Incorporating Food Microstructure

Due to the long history of thermal processing as a means of food preservation in
the food industry, most inactivation models that incorporate the food microstructural
influence are thermal inactivation models, which are, hence, the main focus of this section.
Although predictive inactivation models have been developed for novel non-thermal
technologies, these are in most cases solely based on experiments in liquid laboratory
media (e.g., for high pressure processing [141]).

Similar to the microbial growth models, all reported thermal inactivation models
which include food microstructure can be classified into two categories, i.e., (i) macroscale
secondary models including food microstructural factors and (ii) semi-mechanistic mi-
croscale models. Table 3 provides an overview of the most relevant models of the two
categories. A more detailed description of the respective models can be found in the fol-
lowing sections.
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Table 3. Overview of the most relevant thermal inactivation models incorporating food microstructure.

Macroscale Secondary Models

Model Description Microstructural Factors Non-Microstructural
Factors

Ref.

Listeria monocytogenes inactivation in
homogenised milk model systems Fat content Temperature, pH [142]

Salmonella inactivation in whey protein
powder model systems Water mobility Temperature, water activity [143]

Salmonella inactivation in whey
protein–peanut oil powders model systems Fat content Temperature, water activity [144]

Semi-Mechanistic Microscale Models

Model Description Included Environmental Factors Ref.

Escherichia coli K12 thermal inactivation
(microwave) in calcium alginate gels

Local temperature (via microwave dielectric heating and heat transfer,
taking thermophysical properties of the gels into account) [113]

Escherichia coli K12 thermal inactivation in
pre-packed ground beef in water baths

Fluid flow in water bath, local temperature (via heat transfer, taking
thermophysical properties of the ground beef into account) [145]

4.1. Macroscale Secondary Models Including Food Microstructural Factors

To the best knowledge of the authors, the only existing macroscopic thermal inacti-
vation models that incorporate food microstructural factors are based on fat content and
water mobility. Fat content is often categorised as a food compositional factor, but since
fat content also determines the microstructural characteristics of emulsion-type foods,
the classification of fat content as a food microstructural factor is justified in some cases.
While some models were developed specifically for certain food products types (e.g., for
poultry with different fat content [19]), this section is focussed on inactivation models
developed in artificial food model systems, because this approach fits more into the general
predictive microbiology mindset.

Chhabra et al. [142] were among the first to develop a fat content-based inactivation
model using food model systems, based on homogenised milk. They developed a model
for the inactivation of L. monocytogenes in function of the fat content, pH, and processing
temperature. The developed model was a modified Gompertz equation, as shown in
Equation (20), including parameters SL, kmax, and Nred, characterising the shoulder phase,
the maximum inactivation rate, and the overall change in the number of survivors, respec-
tively. These parameters depended on the fat content, pH, and processing temperature, as
indicated in Equations (21)–(23).

log N = Nred·e−e(SL+kmax· t) − Nred·e−e(SL) (20)

SL = a0 + a1·CF + a2·pH + a3·T + a1,2·CF·pH + a1,3·CF·T + a2,3·pH·T + a1,2,3·CF·pH·T (21)

kmax = b0 + b1·CF + b2·pH + b3·T + b1,2·CF·pH + b1,3·CF·T + b2,3·pH·T + b1,2,3·CF·pH·T (22)

Nred = c0 + c1·CF + c2·pH + c3·T + c1,2·CF·pH + c1,3·CF·T + c2,3·pH·T + c1,2,3·CF·pH·T (23)

with CF, the fat content parameter; a0−c1,2,3, constant factors. Theoretically, the model
could have also been extended to include terms of higher order. It should, however, be
noted that not all parameters were deemed significant. For instance, the shoulder region
of the inactivation was only affected by the pH, while the death rate was only affected by
the temperature and fat content. It was also shown that, as temperature increased, there was
a decrease in heat resistance due to the presence of milkfat. However, modified Gompertz
models for inactivation are, apart from some mathematical limitations, characterised by
two major modelling problems, i.e., (i) N(t = 0) is not equal to N(0) in the static version
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of the model and (ii) there is no explicit dependency on N(0) in the dynamic version of
the model, which should be avoided [61,146].

Santillana Farakos et al. [143] used whey protein powder model systems to develop a
predictive model for the thermal inactivation of Salmonella in low-moisture foods in function
of temperature, aw, and water mobility. The water mobility of the different model systems
was acquired by a pH adjustment and heat denaturation, and equilibrated to aw levels
between 0.19 ± 0.03 and 0.54 ± 0.02. The specific water mobility values were determined
by means of wide-line proton-NMR (Nuclear Magnetic Resonance). Four different models
were fitted to the inactivation data, but the Weibull model (Equation (24) [147]) was selected
for secondary modelling, because it best described the data over all temperatures.

log N = log N0 −
(

t
δ

)β

(24)

with N0, the initial cell population; δ, the scale parameter representing the treatment time
(in min) required to for the first decimal log reduction in the cell population; β, the shape
factor value. In order to develop secondary models, the significance of the temperature, aw,
and water mobility on log δ and log β was assessed. The temperature was deemed to be
a significant influencing factor on both Weibull parameters, while aw was only deemed to
be a significant influencing factor on log δ. The water mobility, however, being the only
investigated food microstructural factor, did not exert a significant influence on any of
the parameters. Hence, the developed model, as shown in Equations (25) and (26), did not
explicitly incorporate the influence of food microstructure.

log δ = −0.10T − 4.34aw + 9.91 (25)

log β = −0.006T (26)

Nevertheless, the model achieved acceptable predictions in different real food prod-
ucts, i.e., low-fat cocoa powder, low-fat peanut meal, non-fat dry milk, wheat flour, and
whey protein.

More recently, Trimble et al. [144] adapted the aforementioned model of Santillana
Farakos et al. [143] to include the influence of fat content on Salmonella inactivation in
low-water-activity foods, using whey protein–peanut oil powders as model systems. For
this purpose, they eliminated the correlation between δ and β by using a fixed value
of β = 0.3644. This resulted in a secondary model expressing a significant influence of
the temperature, fat content (CF), and water activity on log δ, as shown in Equation (27).

log δ = 22.90 − 0.167T + 0.051CF − 4.38aw (27)

The adapted model was validated in fat-containing low-aw foods, i.e., toasted oats,
animal crackers, chia seed powder, and natural peanut butter. A slight underestimation
of thermal inactivation by the model was reported, but the model was still deemed suc-
cessful for the prediction of Salmonella survival in low-aw foods. In their final remarks,
Trimble et al. [144] suggested that the model could still be expanded to include a wider
fat content and/or temperature range and a dependency on fat type. In general, it should,
however, be mentioned that the Weibull model is characterized by two disadvantages. First
of all, the frequency distribution of the viability of bacterial cells, the concept on which
the Weibull model is based, is difficult to interpret and to validate experimentally [148]. Sec-
ondly, the Weibull model lacks a suitable differential model form. Due to the frequent use
of ODEs and PDEs in predictive modelling frameworks that include food microstructure,
the developed model strategy may, hence, have limited applicability for more complex
microbial inactivation cases.
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4.2. Semi-Mechanistic Microscale Models

An approach which has been extensively used to implicitly incorporate food mi-
crostructure into predictive thermal inactivation models is linking the bacterial inactivation
model to (space- and time-dependent) heat and mass transfer models. This method-
ology is especially suitable for thermal inactivation because structural food properties
tend to change during thermal processing, e.g., the viscosity of liquid foods which de-
creases with an increasing temperature or certain foods which further solidify during
frying [149,150]. Zanoni et al. [55] were among the first to adopt this approach, although
for experiments carried out in a real food product (i.e., bologna sausage). They combined
the Whiting et al. [151] inactivation model with a heat and mass transfer model validated
for bologna sausage cooking. A similar approach was later on conducted in food model
systems by researchers from the School of Chemical Engineering (University of Birming-
ham) and Institute of Food Research (Reading Laboratory) (e.g., [112,114]). These authors
conducted thermal inactivation experiments in agar cylinders and modelled both the heat
transfer and thermal inactivation kinetics, the latter by means of experimentally obtained
D and z-values. These studies marked an important step in the thermal inactivation model
development because the used approach could be used with food products of different
geometry or thermal conductivity, and for different bacteria.

Over the last decade, computer modelling techniques for heat and mass transfer
have become more and more common when modelling treatments of different traditional
and novel thermal processing technologies, e.g., beverage pasteurization [152], agitated
retort heating [153], microwave heating [154], continuous deep frying [155], and radio
frequency heating [156]. In brief, such techniques involve solving the heat and mass
transfer equations with applied initial and boundary conditions using either (i) theoretical
numerical finite difference and finite elements solutions or (ii) a computational fluid
dynamics (CFD) approach [157]. While such models would be suitable to be coupled to
microbial thermal inactivation models, this approach has only been scarcely employed for
these industry-relevant processes [145].

Hamoud-Agha et al. [113] investigated the thermal inactivation of Escherichia coli
K12 in calcium alginate gels during microwave processing. The inactivation model of
Geeraerd et al. [61], including a Bigelow-type temperature dependency of the inactivation
rate, was coupled to heat transfer and Maxwell’s equations into a 3D finite elements
model under dynamic heating conditions. By providing space-dependent predictions,
the model was able to handle the thermal heterogeneity inherent to microwave treatments
and the resulting differences in inactivation efficiency between the different locations
within samples. Consequently, Hamoud-Agha et al. [113] demonstrated the reliability
of the coupled modelling approach which links microbial inactivation models to heat
transfer models.

A similar approach was used by Albuquerque et al. [145] for the thermal inactivation
of Escherichia coli K12 in pre-packed ground beef in water baths programmed to deliver
different heating rates to the product. The authors coupled a 3D-CFD and heat transfer
finite elements model to the inactivation model of Geeraerd et al. [61], including a Bigelow-
type temperature dependent inactivation rate. Even though the large heating rates caused
large temperature gradients and heterogeneous inactivation distributions over the samples,
there was still satisfactory agreement between model predictions and experimental data.
Moreover, and most relevant for this review, the model was able to handle the typical
microstructural complexity of the real food product under study.

The studies of Hamoud-Agha et al. [113] and Albuquerque et al. [145], hence, demon-
strate that coupling microbial thermal inactivation models to heat and mass transfer models
is a promising, and probably the most optimal, approach to develop microbial (thermal) in-
activation models which take the food microstructural influence on microbial inactivation
into account. The fact that the other possible method to include the food microstruc-
tural effect into predictive models (i.e., macroscale secondary models) has so far solely
relied on less optimal model types for inactivation, such as the modified Gompertz and

21



Foods 2021, 10, 2119

Weibull model, strengthens this conclusion. Similar to microbial growth, the accuracy
of the microscale methods could be further improved by including an IbM approach.
The inactivation of small cell populations is often characterised by a high variability in
inactivation behaviour, originating from individual cell heterogeneity [158,159]. However,
an appropriate theoretical IbM approach for modelling of the variability in individual cell
heterogeneity during the inactivation process has not been developed thus far [160].

5. Conclusions

While the influence of food microstructure on microbial dynamics was for the largest
part neglected in the early days of predictive microbiology, significant progress on the sub-
ject has been achieved during the last two decades. Both for microbial growth and thermal
inactivation, two general model types can be distinguished in the scientific literature, i.e.,
(i) macroscale secondary models including food microstructural factors and (ii) microscale
semi-mechanistic models. These model types have benefited from the introduction of
advanced mathematical modelling techniques and the increased usage of artificial food
model systems to collect experimental data (i.e., rather than real food products).

In general, both the macroscopic secondary models and the semi-mechanistic mi-
croscale models have shown their potential as predictive modelling tools/frameworks
when predicting microbial growth and inactivation in/on structured food products. The se-
lection of one approach over another, or a combination of the two approaches, should
ideally depend on the specific application, the required accuracy of the model, and the avail-
able computing power. Specifically for the macroscopic secondary models, other food
intrinsic factors related to food microstructure could also be taken into account in addition
to food product rheology (growth) and fat content (thermal inactivation), although more
dedicated research towards the effect of those additional factors on microbial dynamics
should first be conducted. Moreover, a lot of progress is still to be made for microbial
inactivation via non-thermal technologies, as models including the food microstructural
influence on microbial inactivation for those technologies are to date virtually non-existent.
Specifically for the microscale semi-mechanistic models, the development of models taking
more aspects of the complex microstructural and microbial environment into account forms
an interesting research opportunity.
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Abstract: Carnobacterium maltaromaticum is a species of lactic acid bacteria found in dairy, meat, and
fish, with technological properties useful in food biopreservation and flavor development. In more
recent years, it has also proven to be a key element of biological time–temperature integrators for
tracking temperature variations experienced by perishable foods along the cold-chain. A dynamic
model for the growth of C. maltaromaticum CNCM I-3298 and production of four metabolites (formic
acid, acetic acid, lactic acid, and ethanol) from trehalose in batch culture was developed using the
reaction scheme formalism. The dependence of the specific growth and production rates as well
as the product inhibition parameters on the operating conditions were described by the response
surface method. The parameters of the model were calibrated from eight experiments, covering a
broad spectrum of culture conditions (temperatures between 20 and 37 ◦C; pH between 6.0 and 9.5).
The model was validated against another set of eight independent experiments performed under
different conditions selected in the same range. The model correctly predicted the growth kinetics of
C. maltaromaticum CNCM I-3298 as well as the dynamics of the carbon source conversion, with a mean
relative error of 10% for biomass and 14% for trehalose and the metabolites. The paper illustrates that
the proposed model is a valuable tool for optimizing the culture of C. maltaromaticum CNCM I-3298
by determining operating conditions that favor the production of biomass or selected metabolites.
Model-based optimization may thus reduce the number of experiments and substantially speed up
the process development, with potential applications in food technology for producing starters and
improving the yield and productivity of the fermentation of sugars into metabolites of industrial
interest.

Keywords: Carnobacterium maltaromaticum; modeling; microbial growth; optimization; fermentation

1. Introduction

Carnobacterium maltaromaticum is a psychotropic species of lactic acid bacteria widely
found in food such as dairy products, fish, and meat. It is a Gram-positive, facultative
anaerobic bacterium, able to grow at alkaline pH (up to 9.6) [1,2].

In the food industry, C. maltaromaticum has potential applications related to health
protection and organoleptic properties. These include the biopreservation of food, by
inhibiting the growth of foodborne pathogens such as Listeria sp. in cold conditions, and
the development of flavor in ripened cheese varieties [2–4].

This lactic acid bacterium may also be used as a biological indicator in time–temperature
integrators (TTI): ‘smart-labels’ that monitor the time–temperature history of chilled prod-
ucts throughout the cold-chain [5,6]. Concentrates of the strain CNCM I-3298 have been
selected as inoculum for TopCryo® labels, the only biological TTI that has been taken to
market to date. A pH decline of the label medium, associated with bacterial growth and
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acid production, produces an irreversible color change from green to red as an indication
to the consumer about the spoilage of the food to which the TTI is attached [7].

In these applications, C. maltaromaticum concentrates produced by fermentation may
be used alone or in association with other microorganisms. Some experimental studies on
C. maltaromaticum fermentation under different culture conditions have been reported in
the literature [3,4,6–14]. The effect of temperature and pH on the acidifying activity was
evaluated and modelled by Girardeau et al. [7]. However, there is a lack of knowledge on
the characterization and optimization of Carnobacteria growth and production of various
metabolites such as acids or flavor compounds in a bioreactor.

Carnobacteria are considered to be homofermentative lactic acid bacteria that produce
lactic acid from glucose, with pyruvate as a central metabolic intermediate (via the Embden–
Meyerhof pathway) [15–17]. However, pyruvate may be alternatively converted to acetate,
ethanol, formate, and CO2 [16,18] under anaerobic conditions and substrate limitation [19],
arising for example at the end of fermentation [20]. The production of organic acids by
Carnobacteria is also strain-dependent [8,16,21]. A recent study reported that lactic, formic,
and acetic acids are key organic acids produced by C. maltaromaticum in a meat juice
medium [22], indicating that this microorganism has the enzymatic machinery to perform
mixed-acid fermentation (Figure 1).

Figure 1. Mixed-acid fermentation pathway likely used by C. maltaromaticum to ferment trehalose.
End products are shown in blue. ACK, acetate kinase; ADH, acetaldehyde dehydrogenase; LDH, lac-
tate dehydrogenase; PFL, pyruvate formate lyase; PTA, phosphate acetyltransferase; PYK, pyruvate
kinase; TreH, neutral trehalose. Adapted from [19–23].
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For optimization purposes, modeling has proven to be a powerful tool, enabling the
exploration of a wider range of operating conditions while minimizing cost, compared with
the experimental approach [24–29]. To our knowledge, the only dynamic model dealing
with C. maltaromaticum strains has been published by Ellouze et al. [6]. That research was
oriented towards a biological TTI setting associated with a sausage-like packaging instead
of a bioreactor and taking into account lactic acid as the single metabolite.

The aim of this study was thus to develop and validate a dynamic model predicting the
impact of fermentation conditions (temperature and pH) on the growth and bioconversion
fermentation dynamics of C. maltaromaticum CNCM I-3298 using trehalose as a carbon
source and considering the four main identified metabolites: formic acid, acetic acid, lactic
acid, and ethanol. This study was conducted as part of a research project on the production
and conservation of C. maltaromaticum concentrates. In that context, the growth of C.
maltaromaticum was tested in different sugars: glucose, maltose, mannitol, and trehalose,
with similar growth rates. Trehalose was chosen in this study because this molecule is
known for its ability to protect cells during bacterial stabilization processes (freeze-drying
in particular). Therefore, the residual trehalose (not consumed during fermentation) could
be used as cryoprotectant after production of bacterial concentrates.

The model development involved four major steps, presented in Section 3: derivation
of the main governing equations based on the known mixed-acid fermentation pathway,
mass balances, and kinetic rate expressions (Section 3.1); parameter identification for each
fermentation experiment (Section 3.2); construction of response surfaces of the calibrated
parameters as a function of temperature and pH (Section 3.3); and final validation of the
complete model. The resulting model is shown to be a useful tool in determining the
optimal conditions for producing bacterium concentrates in bioreactors and for assessing
the productivity of the bioconversion fermentation of sugars into metabolites of potential
industrial interest (Section 4.4).

2. Materials and Methods

Data used to calibrate and validate the model were partially reported in a previous
study, in which a modified central composite experimental design was carried out to study
the effect of operating conditions on the technological properties of C. maltaromaticum
CNCM I-3298 [7]. Sixteen lab-scale fermentations (hereafter named F01 to F16) were
performed using a wide range of regulated operating conditions (Figure 2): temperature
between 20 and 37 ◦C and pH between 6.0 and 9.5.

Figure 2. Operating conditions of C. maltaromaticum CNCM I-3298 fermentation experiments.
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Fermentation durations varied between 20 h and 45 h, and the initial conditions were:
for biomass (X0) 0.077 molC·L−1, trehalose (S0) between 0.091 mol·L−1 and 0.107 mol·L−1,
and medium volume (V0) 3.5 L.

The main fermentation settings and the kinetic measurements are reported below.

2.1. Fermentation
2.1.1. Culture Medium and Bacterial Strain

The fermentation medium was composed of the following ingredients for 1 kg of
final solution: 40 g of trehalose (Treha™; Tokyo Japan); 10 g of proteose peptone (Oxoid;
Waltham, MA, USA); 5 g of yeast extract (Humeau; La-Chapelle-sur-Erdre, France); 5 g
of Tween 80 (VWR; Leuven, Belgium); 0.41 g of MgSO4 (Merck; Darmstadt, Germany);
0.056 g MnSO4 (Merck; Darmstadt, Germany); and water to reach a total of 1 kg of solution.
All medium components were sterilized together at 121 ◦C for 20 min. Fermentations were
carried out on C. maltaromaticum CNCM I-3298 pre-cultures. Pre-cultures were prepared
by inoculating 10 mL of sterilized fermentation medium with 100 μL of C. maltaromaticum
CNCM I-3298 stock culture and were incubated for 13 to 16 h at 30 ◦C. An amount of 1 mL
of the resulting culture was transferred into 50 mL of fresh medium and then incubated
again for 11 h under the same conditions. The resulting culture was then used to inoculate
the bioreactor. Inoculation was performed at an initial concentration of approximately
107 CFU mL−1.

2.1.2. Bioreactor and Parameter Control

The bioreactor (Minifors, Infors HT, Bottmingen, Switzerland) had a total volume
of 5 L and was equipped with a heat mantle and a cryostat for temperature control. It
contained 3.5 L of fermentation medium, inoculated with an initial cell concentration of
approximately 107 CFU·mL−1. Initial pH was adjusted to the desired value with 5 M NaOH
or 0.01 M H2SO4 solutions. During fermentation, pH was controlled to the desired setpoint
for each investigated condition (Figure 2) by automatic addition of 5 M NaOH. Culture
homogenization was performed with an agitation device set at 150 rpm. Temperature was
set according to the investigated operating conditions mentioned above (Figure 2).

2.2. Kinetic Measurements
2.2.1. Cell Growth

Cell growth was monitored using an infrared probe (Excell210, CellD, Roquemaure,
France) continuously measuring absorbance at 880 nm and storing data every minute.
The absorbance data were calibrated in dry weight. Dry cell weight was determined by
filtering 10 mL of bacterial suspension (straight out of the bioreactor) through a 0.20 μm
polyethersulfone membrane (Supor®, PALL Biotech, Saint-Germain-en-Laye, France). The
filter was then dried for 24 h at 80 ◦C. Measurements were obtained in triplicate. Mass
concentrations were finally converted to molC L−1 (carbon-mol of biomass per liter),
assuming the simplified unit-carbon biomass formula CH1.8O0.5 [30].

2.2.2. Total Acid Production

Total acid production was determined according to the volume of NaOH solution
injected into the bioreactor to maintain a constant pH. The pH was regulated/controlled to
set values using the IRIS NT V5 software (Infors, AG, Bottmingen, Switzerland).

2.2.3. Substrate Consumption and Metabolite Production

Trehalose consumption and metabolite production were determined using high-
performance liquid chromatography (HPLC, Waters Associates, Millipore; Molsheim,
France). HPLC was performed on culture media samples of a few mL, aseptically retrieved
from the bioreactor at different times during fermentation and filtered through 0.22 μm
pores (Sartorius stedim, Biotech; Göttigen, Germany). Analyses were made using a cation
exchange column (Aminex Ion Exclusion HPX-87 300 × 7.8 mm, Bio-Rad, Richmond, VA,
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USA) at 35 ◦C. Mobile phase was 0.0005 M H2SO4, and flow rate was set at 0.6 mL·min−1

(LC-6A pump, Shimadzu, Courtaboeuf, France).
HPLC analysis showed that C. maltaromaticum CNCM I-3298 produced not only lactic

acid but also formic acid, acetic acid, and ethanol in variable proportions according to the
fermentation conditions.

3. Dynamic Model

The mathematical model was a set of ordinary differential equations implemented in
MATLAB R2018b (the MathWorks Inc. Natick, MA, USA). Model parameters and response
surface coefficients were identified by nonlinear regression analysis using the Statistic and
Machine Learning Toolbox of MATLAB.

3.1. Model Formulation

The dynamic model developed in this study combined biochemical knowledge about
the metabolism of the selected bacterium and mass balances of the main compounds: sub-
strate, biomass, and identified metabolites. Expressions of specific growth and metabolite
production rates included substrate limitation, product inhibition phenomena, and time
lags due to microbial metabolism adaptation [31]. The surface response method was used
to express the empiric dependence of some model parameters on operating conditions. The
model assumed the bioreactor was perfectly stirred and there were no differences between
individual cells. It was thus unsegregated and zero-dimensional, predicting average spatial
concentrations [32].

Seven state variables were considered: six volume concentrations (biomass [X], tre-
halose [S], formic acid [F], acetic acid [A], lactic acid [L], and ethanol [E], Figure 1) and the
culture medium volume (V). This latter variable varied continuously with the addition of
base (NaOH) for pH control but also changed in a discrete way due to periodic sampling
for biological and chemical analysis.

Mass balances for the considered metabolites resulted in the following set of differen-
tial equations:

d[X]
dt

= μX[X]−
Q
V
[X] (1)

d[F]
dt

= πF[X]− Q
V
[F] (2)

d[A]

dt
= πA[X]− Q

V
[A] (3)

d[L]
dt

= πL[X]− Q
V
[L] (4)

d[E]
dt

= πE[X]− Q
V
[E] (5)

d[AT]

dt
=

d[F]
dt

+
d[A]

dt
+

d[L]
dt

(6)

d[S]
dt

= −
(

μX
YX/S

+
πF

YF/S
+

πA

YA/S
+

πL

YL/S
+

πE

YE/S

)
[X]− Q

V
[S] (7)

dV
dt

= Q (8)

Here, μX is the specific growth rate (h−1); πF, πA, πL, and πE are the specific production
rates of four metabolites (h−1); and YX/S, YF/S, YA/S, YL/S, and YE/S are the yield of
biomass and metabolites with respect to the substrate (mol.mol−1). Q is the experimentally
measured rate of NaOH solution (L.h−1) added for pH control throughout fermentation.

In Equation (6), [AT] is the total acid concentration, defined as the sum of formic, acetic,
and lactic acid concentrations. These compounds are assumed to be mainly responsible for
the pH change of the liquid medium.
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Specific growth and production rates were defined using the Monod law to ac-
count for substrate limitation, modified with product inhibition and enzymatic activation
factors [33–35]:

μX = μmax,XIXEA
[S]

KSX + [S]
(9)

πm = πmax,mImEA
[S]

KSm + [S]
m = F, A, L, E (10)

In these equations, IX and Im are inhibition factors that depend on the inhibitor concen-
tration. They vary between 1 and 0. Inhibition increases with the inhibitor concentration,
and its effect on the specific rate is maximal when the corresponding factor is 0. In this
model, progressive inhibition factors of the following form were used [36,37]:

IX =
1

1 +
(

CI
KIX

)n (11)

Im =
1

1 +
(

CI
KIm

)p m = F, A, L, E (12)

KIX and KIm represent characteristic concentrations of the inhibitors (mol L−1) such
that the corresponding rates (μX and πm) are reduced by a factor of 2 compared with
the absence of inhibitor, n and p are shape factors, and CI is the concentration of the
inhibitor. Since all the metabolites were produced in similar proportions and no biochemical
knowledge about their relative inhibiting nature was available, CI was simply defined as
the sum of the four metabolite concentrations:

CI = [F] + [A] + [L] + [E] (13)

To illustrate the role of the shape factor n, Figure 3a depicts the evolution of IX with CI
for different n values and a lag-time of 5 h. A more or less sharp change in the inhibition
factor occurs around the characteristic inhibitor concentration, CI = KIX. The significance
of the shape factor p is similar.

(a)      (b) 

I X

CI

E
A

t

Figure 3. (a) Example of inhibition factor IX as a function of CI for different n values and KIX = 0.2 mol L−1. (b) Example of
enzymatic activation factor EA as a function of t for different r values, and tlag = 5 h.

34



Foods 2021, 10, 1922

The enzymatic adaptation factor EA is an empirical representation of the lag time, a
period of adaptation to the culture environment where the microorganism produces new
enzymatic machinery [38–40]. Based on the shape of experimental data, the following
equation was proposed:

EA =
1

1 + exp
(
−r
(

t − tlag

)) (14)

where tlag (h) is the lag time experimentally observed. Figure 3b shows that EA is an
increasing function of time, tending to 1 when t � tlag. In analogy with n, r is a shape
factor that describes the gradual transition from the lag phase to the active phase of growth.
A higher value of r implies a steeper change of EA around t = tlag.

To illustrate the features of the proposed model, a representation of the dimensionless
specific growth and production rates (μ/μmax and π/πmax) over time is depicted in Figure 4.
The dynamic behavior of both variables is similar given the similarity of Equations (1)–(5).
The specific rates achieve a maximum value in the active growth phase, and they are
zero when t � tlag and when the substrate is depleted. The shape of the curve is defined
by three factors: in the increasing region (0 to 10 h in Figure 4), the dominant effect is
enzyme activation EA (Equation (14)); in the slowly decreasing region (10 to 20 h), the rate
is controlled by inhibition (Equation (11) or (12)), whereas in the sharply decreasing region
(20 to 22 h) it is controlled by substrate limitation, corresponding to the Monod-like factor
in Equation (9) or (10).

Figure 4. Typical evolution of the relative production rate over time.

3.2. Model Parameter Identification

The system of kinetic equations for a single fermentation experiment included
24 parameters: five yield coefficients, five inhibition parameters, five growth/production
rates, five Monod-like saturation constants, three shape factors, and one lag time. Due
to a limited number of experimental data and to facilitate the identification procedure, a
single value was adopted for the inhibition parameter (KIm) and the Monod saturation
constant (KSm) of the four identified metabolites. Moreover, 10 parameters were fixed
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for all experiments: the shape factors, the yield coefficients, and the Monod saturation
constants (KSX and KSm). For each fermentation, lag time was determined by graphical
readout. This simplification of fixing parameters independent of operating conditions is
supported by two assumptions often used in the literature: (1) metabolite production yields
are constant and therefore independent of culture conditions [41] and (2) the saturation
constant of the Monod model depends only on the nature of the substrate [33,38], which
was the same in all experiments of this study.

The remaining group of seven parameters (μmax,X, πmax,F, πmax,A, πmax,L, πmax,E,
KIX, KIm) were identified for each fermentation of the experimental design by nonlin-
ear regression. Here, the Levenberg–Marquardt algorithm [42] was used to minimize
the sum of squares of the errors between experimental and predicted concentrations.
However, since the ranges and the number of measurements were slightly different
among the metabolites, the values compared in the least squares function were normal-
ized by dividing by their maximum value and were weighted by the relevant number of
experimental measurements.

The quality of the model representation was quantified with two error indicators,
defined as follows:

Root mean square error:

RMSE =

[
1
N

N

∑
i=1

(
Cmodel,i − Cexp,i

)2
]1/2

(15)

Relative mean error (as a percentage):

RME =
1
N

N

∑
i=1

∣∣Cmodel,i − Cexp,i
∣∣

Cexp,max − Cexp,min
·100% (16)

where N is the number of available measurements, Cmodel and Cexp are respectively the val-
ues of the concentration variables calculated with the model and measured experimentally.

3.3. Response Surface Model for Parameter Dependence on Fermentation Conditions

Nonlinear regression was performed to model the relationship between the seven
parameters of the dynamic model specific to each experiment and the fermentation oper-
ating conditions—namely, temperature (T) and pH. The regression model had a similar
form for all parameters, the logarithm of the parameter being expressed as a second-order
polynomial with interaction:

log10 Pari = β0i + β1iT + β2ipH + β3iT
2 + β4ipH2 + β5iTpH (17)

The regression coefficients (β) for all parameters depending on operating conditions
(μmax,X, πmax,F, πmax,A, πmax,L, πmax,E, KIX, KIm) were simultaneously computed by least-
squares optimization based on all available concentration measurements. In this way,
the accuracy and standard errors of the coefficients were statistically acceptable, due
to a large number of degrees of freedom: several hundreds of concentration data were
used to estimate 42 coefficients. Initial guesses for these coefficients were obtained using
Equation (17), and parameter values were determined separately for each experiment.

In this procedure, two sets of data from the experimental design were defined as indi-
cated in Figure 2: eight calibration experiments, located in extreme positions of the experi-
mental domain, used simultaneously for coefficients (β) estimation, and eight validation
experiments, only used a posteriori to verify the accuracy of the complete dynamic model.

4. Results and Discussion

4.1. Model Parameter Identification

The values of the parameters that are independent of operating conditions, summa-
rized in Table 1, were determined from the experimental data of experiment F10. This run
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was placed in a central position in the composite experimental design (T = 30 ◦C, pH = 8)
(Figure 2). Monod saturation constants are usually difficult to determine from batch ex-
periments because the number of measurements is typically very low in the substrate
limitation zone. Saturation constants were thus fixed to a common value with a typical
order of magnitude [43]. As for yields, they were found to differ from the theoretical ones
defined through standard stoichiometric reactions of anabolism and catabolism. These
differences can be due to other reactions involving the carbon substrate, whose products
were not analytically measured and were not considered in the model.

Table 1. Model parameters independent of operating conditions, determined from the experimental
data of experiment F10 (T = 30 ◦C, pH = 8) with tlag = 10 h.

Parameter Constant Value

YX/S (molC.mol−1) 6.9
YF/S (mol.mol−1) 5.6
YA/S (mol.mol−1) 3.8
YL/S (mol.mol−1) 7.0
YE/S (mol.mol−1) 4.7

KSX (mol L−1) 0.001
KSm (mol L−1) 0.001

n 3
p 1

r (h−1) 0.8

After fixing the parameters in Table 1 for the whole set of experiments, the group of
seven adjustable parameters of the model (μmax,X, πmax,F, πmax,A, πmax,L, πmax,E, KIX, KIm)
were identified for each run by nonlinear regression.

The parameters obtained by this procedure are summarized in Table 2. Standard
errors were computed from the variance–covariance matrix of the nonlinear optimization
algorithm. These errors represented between 5% and 13% of the value of the identified
parameters, a reasonable uncertainty level for a biological model.

Table 2. Model parameters determined for each experiment by nonlinear regression.

Fermentation
μmaxX

(h−1)
πmaxF

(h−1)
πmaxA

(h−1)
πmaxL

(h−1)
πmaxE

(h−1)
KIX

(Mol.L−1)
KIm

(Mol.L−1)

F01
Value 0.224 0.152 0.064 0.215 0.078 0.117 0.069

Standard error 0.003 0.003 0.003 0.005 0.001 0.004 0.003

F02
Value 0.096 0.122 0.064 0.053 0.064 0.143 0.142

Standard error 0.021 0.012 0.007 0.006 0.006 0.083 0.036

F03
Value 0.164 0.137 0.064 0.131 0.072 0.099 0.102

Standard error 0.012 0.009 0.004 0.009 0.005 0.006 0.013

F04
Value 0.078 0.063 0.031 0.072 0.034 0.144 0.092

Standard error 0.012 0.004 0.002 0.004 0.002 0.047 0.016

F05
Value 0.130 0.130 0.060 0.196 0.070 0.160 0.100

Standard error 0.005 0.002 0.002 0.004 0.001 0.004 0.004

F06
Value 0.094 0.129 0.063 0.159 0.063 0.163 0.092

Standard error 0.001 0.002 0.001 0.003 0.001 0.003 0.002

F07
Value 0.074 0.028 0.010 0.089 0.022 0.122 0.139

Standard error 0.002 0.001 0.001 0.004 0.002 0.005 0.004

F08
Value 0.060 0.055 0.024 0.126 0.048 0.149 0.060

Standard error 0.002 0.002 0.000 0.003 0.002 0.001 0.002

F09
Value 0.071 0.097 0.048 0.114 0.071 0.108 0.044

Standard error 0.009 0.007 0.004 0.010 0.006 0.021 0.007
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Table 2. Cont.

Fermentation
μmaxX

(h−1)
πmaxF

(h−1)
πmaxA

(h−1)
πmaxL

(h−1)
πmaxE

(h−1)
KIX

(Mol.L−1)
KIm

(Mol.L−1)

F10
Value 0.220 0.230 0.100 0.300 0.120 0.193 0.091

Standard error 0.051 0.013 0.007 0.022 0.007 0.044 0.015

F11
Value 0.121 0.127 0.060 0.116 0.066 0.179 0.133

Standard error 0.004 0.007 0.004 0.005 0.003 0.006 0.003

F12
Value 0.132 0.155 0.082 0.076 0.086 0.043 0.059

Standard error 0.010 0.026 0.003 0.002 0.006 0.002 0.007

F13
Value 0.147 0.162 0.077 0.219 0.092 0.164 0.106

Standard error 0.006 0.006 0.002 0.008 0.004 0.009 0.003

F14
Value 0.047 0.045 0.020 0.112 0.032 0.140 0.130

Standard error 0.005 0.004 0.001 0.006 0.003 0.016 0.007

F15
Value 0.160 0.180 0.080 0.330 0.110 0.260 0.170

Standard error 0.056 0.013 0.008 0.030 0.010 0.022 0.010

F16
Value 0.110 0.110 0.050 0.200 0.070 0.320 0.280

Standard error 0.003 0.004 0.002 0.007 0.003 0.051 0.104

For the whole set of experiments, the prediction errors are reported in Appendix A Table A1.
Except for some runs for variables S, F, and A, all RME were lower than 15%. Additionally,
the average RMSE and RME values for each concentration were of the same order of
magnitude as the experimental variability, here defined as the biological repeatability for
run F01, for which three independent replicates were performed. These results validate the
formulation and accuracy of the proposed model under the operating conditions included
in the experimental design.

In the specific case of reference run F10, a comparison between the model simulation
(using the corresponding parameters from Table 2) and experimental data is illustrated in
Figure 5.

 
Figure 5. Evolution of concentrations over time for experiment F10 (T = 30 ◦C, pH = 8). Comparison between model
(continuous line, using parameters from Tables 1 and 2) and experimental data (symbols). The error bars for data represent
the biological standard deviation, calculated from three independent repetitions of the run F01.
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Three growth phases are apparent in Figure 5: a lag phase (phase 1, between 0
and 10 h); a phase of active growth, substrate consumption, and metabolite production
(phase 2, between 10 h and 21 h); and a final phase where concentrations do not change
over time, owing to the depletion of the carbon source or growth inhibition by metabolites
(phase 3, after 21 h). Regarding culture volume evolution, as already mentioned, the
discrete variations at regular intervals were due to sampling for analysis of the culture
medium and the gradual increase was due to NaOH addition for pH control. One can
also observe that the four metabolites were produced simultaneously, with no gap for the
growth dynamics. The metabolites were thus primary end products generated during
a single trophophase [44]. This justifies the choice of a global inhibitor concentration
(Equation (13)), which included four correlated concentrations.

In consideration of the visual fit from Figure 5, the model representation is reasonably
satisfactory. The most pronounced discrepancy between the model and experimental
data appears for lactic acid, for which the model predicted a lower concentration before
substrate depletion. This is related to a slightly underestimated yield factor YL/S.

4.2. Response Surface Model for Parameter Dependence on Fermentation Conditions

Model parameters were expressed as a function of temperature and pH, according to
the surface model (Equation (17)). The values of the β regression coefficients were adjusted
globally using the whole set of calibration data.

The resulting response surfaces for the seven model parameters are plotted in Figure 6.
For the five kinetic parameters, (i.e., the maximum specific growth and production rates),
the response surfaces have the same convex shape, with a well-defined maximum value at
intermediate T and pH conditions. These maxima likely indicate the optimal temperatures
and pH for cellular growth, as well as the enzymatic activity catalyzing each of the reactions,
leading to the production of the different metabolites (Figure 1).

Concerning the inhibition concentrations, the response surface for KIm has a concave
shape with a local minimum, whereas that of KIX resembles a saddle surface. For this
latter case, the surface shape indicates that for every pH there is a T where KIX is minimal,
and for every T there is a pH where KIX is maximal. Both KIm and KIX represent the
combined effect of several inhibiting metabolites (Equations (11)–(13)) with potentially
different inhibition mechanisms.

 
Figure 6. Response surfaces for model parameters, calculated with globally adjusted β coefficients in Equation (17).

For completeness, the final values of the regression coefficients of Equation (17) for the
seven adjustable parameters of the dynamic model are reported in Appendix A Table A2.
All coefficients in Equation (17) for each model parameter were significantly different from
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zero at a 0.05 level. A comparison between the parameter values determined for each
experiment (Section 4.1) and the parameter values computed with Equation (17) (from
globally adjusted β coefficients) is depicted in Appendix A Figure A1. The goodness of
the fit was assessed through the coefficient of determination, R2. This coefficient is higher
than 0.89 for six out of seven model parameters, which is a high threshold for biological
data. In the case of KIm, only 66% of the variance of this parameter was explained by
variables T and pH. The remaining 34% could be associated with inherent experimental
variability and factors not included in the model, for instance transient variability of the
inhibition and kinetics parameters and actual dependence of the fixed parameters (Table 1)
with T and pH [45]. From a more general point of view, differences from experimental data
could be due to features that were not represented by the mathematical model, such as
population segregation, internal pH variability, and concentration gradients in the culture
medium [46,47].

4.3. Model Validation

The ability of the dynamic model including the parameters calculated from operating
conditions (Equation (17)) to predict data of independent experiments was assessed with a
set of validation experiments.

A comparison between the average RMSE values obtained in Section 4.1 (determined
for each experiment) and Section 4.2 (calculated from operating conditions) for calibration
and validation sets is depicted in Figure 7. In most cases, RMSE values were higher than
the corresponding experimental variabilities, indicating that more complex models could
capture additional phenomena not included in the present model, such as dependence of
yields, saturation constants, or lag time (Table 1) on operating conditions. As one might
expect, RMSE was generally lower for the calibration experiments than for the validation
experiments, not used for parameter determination. However, the relative difference
remained small (less than 30%), indicating a satisfactory ability of the developed model to
predict time evolution of the considered biomass, substrate, and metabolites under new
conditions within the explored experimental range.

Figure 7. Comparison between experimental variability and average RMSE values for concentrations computed using
parameters determined for each experiment (Table 2) and the response surface models (Table A2 and Equation (17)).

It also appears in Figure 7 that average RMSE values with parameters given by the
response surface model (Table A3) are about 50% higher than with parameters determined
separately for each experiment (Table A1), for both calibration and validation sets. This
result could be expected since in the global calibration step, data from eight independent
experiments were combined as a whole for the least squares estimation, with a detrimental
effect on the individual representation of each experiment. However, results with the pa-
rameters calculated from operating conditions are the most useful in engineering purposes
since they enable a quick prediction of growth and metabolites production dynamics, based
on the selected combination of temperature and pH.
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In light of this quantitative analysis, the prediction accuracy of the empirical dynamic
model coupled to the regression model may be considered satisfactory within the operating
domain covered in this study.

4.4. Model-Based Optimization of Fermentation Operating Conditions for Industrial Use

Optimal conditions for growth and metabolite production of C. maltaromaticum calcu-
lated using the developed model are summarized in Table 3. Two optimization criteria were
considered: final concentrations and final productivities calculated for a 99.9% substrate
consumption.

For a detailed representation of the evolution of final concentrations and productivities
for biomass and metabolites with temperature and pH, the reader is referred to Appendix A
Figures A2 and A3. As a general trend, the highest productivities were obtained around
35 ◦C and pH 7.5, although the exact optimal conditions depended on the considered
metabolite (Table 3). No general trend was readily apparent for the maximization of the
final concentrations.

Table 3. Optimal conditions for growth and production of metabolites according to the developed model. In bold: targeted
metabolite for each set of operating conditions. Final concentrations and productivities calculated with initial conditions:
[X]0 = 80 mmol L−1, [S]0 = 100 mmol L−1, [F, A, L, E]0 = 0.

A. Target T (◦C) pH
Final Concentrations (mmol L−1) Final Productivities (mmol L−1.h−1)

X F A L E AT X F A L E AT

Biomass Bconc.↑ 20.0 7.8 227 129 56 177 73 363 6.56 3.73 1.61 5.11 2.09 10.46
Formic acid Fconc.↑ 28.0 9.5 133 176 89 123 94 387 1.68 2.20 1.12 1.54 1.18 4.86
Acetic acid Aconc.↑ 28.0 9.5 133 176 89 123 94 387 1.68 2.20 1.12 1.54 1.18 4.86
Lactic acid Lconc.↑ 37.0 6.0 180 95 42 296 72 433 1.68 2.20 1.12 1.54 1.18 4.86

Ethanol Econc.↑ 37.0 9.5 118 147 77 128 139 352 2.35 2.90 1.54 2.54 2.76 6.98
Ethanol Econc.↓ 27.0 7.6 217 143 62 166 68 372 6.93 4.57 1.98 5.31 2.16 11.86

Total acids ATconc.↑ 37.0 6.0 180 95 42 296 72 433 3.33 1.76 0.77 5.48 1.33 8.01
Total acids ATconc.↓ 37.0 9.5 118 147 77 128 139 352 2.35 2.90 1.54 2.54 2.76 6.98

Biomass Bprod.↑ 33.5 7.5 199 139 64 178 73 382 7.49 5.25 2.41 6.71 2.77 14.38
Formic acid Fprod.↑ 34.5 8.0 178 148 71 163 82 381 6.77 5.61 2.70 6.18 3.12 14.48
Acetic acid Aprod.↑ 35.0 8.1 172 148 72 161 85 381 6.49 5.58 2.71 6.06 3.21 14.35
Lactic acid Lprod.↑ 37.0 7.1 188 123 58 215 78 395 6.60 4.31 2.04 7.54 2.73 13.89

Ethanol Eprod.↑ 37.0 8.3 158 144 73 162 97 378 5.57 5.08 2.56 5.70 3.43 13.34
Ethanol Eprod.↓ 28.0 6.0 175 108 41 278 78 427 2.14 1.32 0.50 3.38 0.95 5.20

Total acids ATprod.↑ 35.5 7.7 184 139 67 177 81 384 7.16 5.41 2.59 6.90 3.13 14.90

Total acids ATprod.↓ 25.0 9.5 146 173 88 126 87 386 1.71 2.03 1.03 1.48 1.02 4.53

↑ maximization, ↓ minimization, conc.: final concentration, prod.: batch-average productivity.

These data can be useful in optimizing industrial processes involving the growth
of C. maltaromaticum cells in a trehalose-based substrate. A first application consists
of producing C. maltaromaticum concentrates, regardless of metabolite production. In
this case two conditions of cultivation appear advisable: 20 ◦C and pH 7.8 to maximize
concentration (227 mmolC·L−1) or 33.5 ◦C and pH 7.5 in order to maximize productivity
(7.49 mmolC·L−1·h−1) and thus the biomass production per unit of time, at the expense of
a 12% reduction of the final biomass concentration (199 mmolC·L−1).
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A second application deals with the development and parametrization of time–
temperature integrators (TTI), labels in which a pH decline, associated with acids synthesis,
entails an irreversible color change from green to red. Modulating the acidifying activity
of C. maltaromaticum thus allows a reliable shelf-life estimation of different food products.
Long shelf-lives can be tracked using TTI composed of concentrates exhibiting low acidi-
fying activities (minimal production of total acids), while short shelf-lives can be tracked
using concentrates exhibiting high acidifying activities. In the scenario of maximizing
acidifying activity, the production of total acids must be favored, and thus fermentation
should be carried out under two possible conditions: 37.0 ◦C and pH 6.0 to maximize their
final concentration (433 mmol·L−1) or 35.5 ◦C and pH 7.7 to maximize their productivity
(14.90 mmol·L−1·h−1). Under these conditions, the biomass production decreases respec-
tively by 20% and 4% with respect to its optimal values. If the objective is, on the contrary,
to minimize acidifying activity, two conditions can be envisaged to favor the lowest pro-
duction of total acids: 37.0 ◦C and pH 9.5 for a final concentration of 352 mmol L−1 or
25.0 ◦C and pH 9.5 for a final productivity of 4.53 mmol·L−1·h−1. Under these conditions,
the mean biomass production would decrease respectively by 48% and 77% with respect to
the maximal values.

Data from Table 3 show that the conditions to minimize the total acids concentration
(37.0 ◦C and pH 9.5) coincide with those to maximize the ethanol concentration (the non-
acidifying metabolite, 139 mmol L−1) and lead to a lactic acid concentration close to its
minimal value (128 mmol L−1 versus the minimum around 120 mmol L−1). Conversely,
when the production of total acids is maximized, the lactic acid concentration is also
maximal (296 mmol L−1) and that of ethanol is close to its minimum (72 mmol L−1 versus
68 mmol L−1).

Furthermore, it should be noted that the condition 27 ◦C and pH 7.6 leads both to a
good biomass productivity (6.93 mmol·L−1·h−1 versus the maximum 7.49 mmol·L−1·h−1)
and a low total acids concentration (372 mmol L−1 versus the minimum 352 mmol L−1).
Cultivation under this condition turns out be advantageous to ally a high biomass produc-
tion and a relatively low total acidification.

5. Conclusions

The dynamic model developed in this study is able to predict with satisfactory ac-
curacy the growth of C. maltaromaticum CNCM I-3298 (average error of 10%) as well as
the conversion of trehalose into four primary metabolites (average error of 14%) under a
wide range of conditions of temperature and pH. The interpolation capability of the model
was verified with a set of eight independent validation experiments, for which the average
relative error was 13%.

This model constitutes a useful tool for optimizing C. maltaromaticum cultures. Based
on two easily controllable parameters, pH and temperature, it could be implemented
in industrial applications of food technology to define optimal growth and metabolite
production conditions with various objectives, such as the maximization of biomass for
production of bacterium concentrates or the maximization or minimization of the acidifying
activity. A typical operating condition for this bacterium could be, for instance, 30.0 ◦C
and pH 7.0. If the goal is to produce bacterium concentrates, to maximize final biomass
concentration, our results suggest that a quite different condition should be selected
(20.0 ◦C and pH 7.8), while for maximum biomass productivity, 33.5 ◦C and pH 7.5 is most
appropriate. Such results are quite difficult to anticipate from the qualitative knowledge
of the bacterium alone, and a large number of time-consuming experiments would be
required to locate these optimal conditions experimentally without constructing a dynamic
model of the process.

The effort of developing the model is especially cost effective when a variety of
scenarios are explored. If the goal is to develop time–temperature integrators (TTI) to track
the cold-chain of food products, a set of labels with specific shelf-lives has to be designed
for various target products. The range of desired shelf-lives can be as large as 1 to 30 days,
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requiring very different TTI designs. In a traditional approach, for each desired shelf-life
duration, a range of factors such as the initial bacterium concentration and the buffer
properties of the medium have to be explored in a series of relatively time-consuming
experiments. In such an environment, temperature varies in an arbitrary but known way,
and pH depends on the produced acids. The presented dynamic model can be extended
to predict the moment when a specific amount of acids is produced, corresponding to
the pH-induced color change of the TTI label and hence to the desired shelf-life. Model-
based design of the TTI labels is expected to be faster and more accurate than a trial and
error procedure.

On a more fundamental level, further work is required to incorporate the effect
of other culture parameters, such as aeration, nutrient concentrations, or the use of a
different carbon source, which may modify growth kinetics and metabolite production.
Additionally, it would be relevant to deepen the understanding of inhibition mechanisms
of the metabolites to give more biological significance to the associated parameters in
the model.
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Nomenclature

A Acetic acid
E Ethanol
F Formic acid
L Lactic acid
S Carbon substrate (trehalose)
X Biomass
EA Enzymatic activation factor
C (mol·L−1) Concentration (in the calculation of errors and the definition of the

inhibition factors)
[i] (mol·L−1) Concentration of species i (substrate, metabolite, biomass) in the culture

medium (in the system of differential equations)
Im Production inhibition factor of metabolite m
IX Biomass growth inhibition factor
KIm (mol·L−1) Concentration for 50% production rate inhibition of metabolite m
KIX (molC·L−1) Concentration for 50% growth rate inhibition of biomass
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KSm (mol·L−1) Concentration of production rate saturation of metabolite m
KSX (molC·L−1) Concentration of biomass growth rate saturation
molC Carbon-mol of biomass
n Shape factor of the growth inhibition function
p Shape factor of the production inhibition function
pH Potential of hydrogen
Q (L·h−1) Rate of base addition for pH control
R Shape factor of the enzymatic activation function
T (K) Temperature
TTI Time–temperature indicator
RMSE Root-mean square error
RME Relative mean error
SE Standard error
t (h) Time
tlag (h) Lag time
V (L) Culture medium volume
Yi/S (mol·mol−1) Yield of product i on substrate S
YX/S (molC·mol−1) Biomass yield on substrate S
μX (h−1) Specific growth rate
μmax,X (h−1) Maximal specific growth rate
πm (h−1) Specific production rate of metabolite m
πmax,m (h−1) Maximum specific production rate of metabolite m

Appendix A.

Appendix A.1. Model Parameter Identification

Table A1. Residual modelling error with model parameters determined for each experiment and summarized in Table 2.

RMSE (Mol L−1) RME (%)

X S F A L E
A

Total
X S F A L E A Total

F01 0.008 0.006 0.010 0.007 0.022 0.007 0.033 4 4 7 13 6 10 7
F02 0.005 0.007 0.006 0.003 0.004 0.003 0.005 4 16 8 8 8 7 3
F03 0.005 0.006 0.003 0.001 0.003 0.001 0.006 4 9 3 2 3 2 1
F04 0.006 0.006 0.003 0.001 0.005 0.002 0.005 7 13 5 5 6 6 3
F05 0.008 0.005 0.014 0.007 0.027 0.007 0.034 4 4 9 11 10 9 8
F06 0.006 0.004 0.012 0.005 0.024 0.006 0.012 5 2 7 7 8 8 3
F07 0.006 0.007 0.011 0.006 0.009 0.006 0.007 4 5 14 33 4 11 2
F08 0.006 0.007 0.011 0.005 0.030 0.004 0.003 4 5 17 23 8 7 1
F09 0.004 0.005 0.002 0.001 0.002 0.002 0.003 7 17 6 7 5 6 2
F10 0.005 0.009 0.006 0.004 0.028 0.004 0.026 3 7 4 7 9 5 6
F11 0.003 0.018 0.009 0.005 0.011 0.006 0.032 3 27 9 10 9 11 6
F12 0.005 0.013 0.002 0.001 0.003 0.001 0.004 13 61 3 4 8 2 2
F13 0.002 0.006 0.012 0.005 0.024 0.005 0.007 2 4 7 6 6 5 2
F14 0.003 0.003 0.009 0.005 0.012 0.006 0.015 4 3 16 20 5 12 4
F15 0.009 0.005 0.009 0.006 0.023 0.005 0.011 5 4 7 13 8 8 2
F16 0.003 0.001 0.001 0.001 0.008 0.001 0.014 2 1 2 4 6 2 3

Mean 0.005 0.007 0.008 0.004 0.015 0.004 0.014 5 11 8 11 7 7 4

Response surface model for parameter dependence on fermentation conditions.
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Table A2. Response surface coefficients fitted to experimental data by multiple regression.

Variable Coefficient μmaxX (h−1) πmaxF (h−1) πmaxA (h−1) πmaxL (h−1) πmaxE (h−1) KIX (Mol L−1) KIm (Mol L−1)

Constant
Value (β0) −1.38 × 101 −1.64 × 101 −1.74 × 101 −1.21 × 101 −1.12 × 101 −8.61 × 10−1 1.19 × 101

Standard error 0.05 × 101 0.07 × 101 0.09 × 101 0.09 × 101 0.07 × 101 0.05 × 10−1 0.03 × 101

T
Value (β1) 2.63 × 10−1 2.66 × 10−1 2.71 × 10−1 1.82 × 10−1 1.27 × 10−1 −1.87 × 10−1 −5.80 × 10−1

Standard error 0.13 × 10−1 0.26 × 10−1 0.28 × 10−1 0.23 × 10−1 0.14 × 10−1 0.05 × 10−1 0.17 × 10−1

pH Value (β2) 2.42 × 100 2.89 × 100 3.01 × 100 2.27 × 100 2.02 × 100 6.65 × 10−1 −1.27 × 100

Standard error 0.11 × 100 0.14 × 100 0.19 × 100 0.16 × 100 0.13 × 100 0.45 × 10−1 0.16 × 100

T2 Value (β3) −4.26 × 10−3 −3.45 × 10−3 −3.26 × 10−3 −2.05 × 10−3 −1.92 × 10−3 3.97 × 10−3 7.95 × 10−3

Standard error 0.13 × 10−3 0.32 × 10−3 0.33 × 10−3 0.81 × 10−3 0.22 × 10−3 0.09 × 10−3 0.32 × 10−3

pH2 Value (β4) −1.46 × 10−1 −1.63 × 10−1 −1.66 × 10−1 −1.34 × 10−1 −1.22 × 10−1 −4.03 × 10−2 4.35 × 10−2

Standard error 0.06 × 10−1 0.10 × 10−1 0.12 × 10−1 0.10 × 10−1 0.09 × 10−1 0.31 × 10−2 0.55 × 10−2

T·pH Value (β5) −3.53 × 10−3 −7.58 × 10−3 −9.17 × 10−3 −7.22 × 10−3 −4.68 × 10−3 −3.54 × 10−3 1.86 × 10−2

Standard error 0.11 × 10−3 0.97 × 10−3 1.17 × 10−3 0.91 × 10−3 0.05 × 10−3 0.06 × 10−3 0.01 × 10−2

Figure A1. Comparison between model parameters determined for each experiment (Table 2) and parameters computed
with the response surface models (Equation (17) using coefficients in Table A2).
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Appendix A.2. Model Validation

Error indicators RMSE and RME for calibration and validation sets are summarized in
Appendix A Table A3. The RME values varied from 1% to 53%, with an average of 15% for
calibration set and 13% for validation set. Likewise, the average RME was lower than 15%
for most of experiments, except for runs F12 (17%), F15 (18%), F09 (20%), and F16 (34%).
Considering both calibration and validation sets, the average RME was 10% for biomass
and 14% for substrate and metabolites.

Table A3. Quality of fit of the model with parameters computed with the response surface models.

Fermentation
RMSE (Mol L−1) RME (%)

X S F A L E At X S F A L E At

Calibration

F01 0.010 0.010 0.021 0.010 0.041 0.014 0.033 5 6 14 20 10 18 7
F03 0.021 0.009 0.008 0.005 0.008 0.003 0.012 15 14 7 9 7 5 4
F04 0.005 0.010 0.009 0.006 0.007 0.005 0.015 5 26 18 23 9 17 9
F07 0.012 0.009 0.010 0.006 0.015 0.006 0.009 9 8 13 31 5 10 3
F12 0.003 0.011 0.008 0.005 0.003 0.004 0.009 8 53 13 16 8 11 6
F13 0.010 0.007 0.006 0.003 0.036 0.003 0.011 7 5 4 4 8 4 2
F14 0.015 0.002 0.013 0.007 0.004 0.009 0.012 20 2 23 28 2 16 3
F16 0.011 0.023 0.033 0.014 0.064 0.018 0.085 9 33 50 45 48 38 18

Mean 0.011 0.010 0.014 0.007 0.022 0.008 0.023 10 18 18 22 12 15 7

Validation

F02 0.005 0.003 0.017 0.009 0.008 0.009 0.007 5 8 20 22 15 21 4
F05 0.011 0.008 0.007 0.006 0.045 0.005 0.016 7 7 4 8 13 8 4
F06 0.008 0.009 0.013 0.005 0.044 0.007 0.032 6 5 7 6 11 9 6
F08 0.009 0.010 0.012 0.006 0.026 0.008 0.003 7 8 19 25 8 14 1
F09 0.011 0.006 0.005 0.004 0.018 0.004 0.009 19 22 15 24 35 15 7
F10 0.021 0.014 0.025 0.011 0.063 0.014 0.044 11 10 17 18 20 20 10
F11 0.018 0.013 0.007 0.003 0.017 0.004 0.050 16 20 7 6 12 8 9
F15 0.028 0.023 0.026 0.010 0.047 0.014 0.036 15 20 22 21 17 21 7

Mean 0.014 0.011 0.014 0.007 0.033 0.008 0.025 11 13 14 16 16 15 6

Model-based optimization of fermentation conditions.
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Figure A2. Evolution of final concentrations (left) and batch-average productivities (right) with temperature and pH for
biomass, formic acid, and acetic acid.
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Figure A3. Evolution of final concentrations (left) and batch-average productivities (right) with temperature and pH for
lactic acid, ethanol, and total acids.
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Abstract: The detection and quantification of sublethal injury (SI) of pathogenic microorganisms
has become a common procedure when assessing the efficiency of microbial inactivation treatments.
However, while a plethora of studies investigates SI in function of time, no suitable modelling
procedure for SI data has been proposed thus far. In this study, a new SI model structure was
developed that relies on existing microbial inactivation models. This model is based on the description
of inactivation kinetics between the subpopulations of healthy, sublethally injured and dead cells.
The model was validated by means of case studies on previously published results, modelled by
different inactivation models, i.e., (i) log-linear inactivation; (ii) biphasic inactivation; and (iii) log-
linear inactivation with tailing. Results were compared to those obtained by the traditional method
that relies on calculating SI from independent inactivation models on non-selective and selective
media. The log-linear inactivation case study demonstrated that the SI model is equivalent to the
use of independent models when there can be no mistake in calculating SI. The biphasic inactivation
case study illustrated how the SI model avoids unrealistic calculations of SI that would otherwise
occur. The final case study on log-linear inactivation with tailing clarified that the SI model provides
a more mechanistic description than the independent models, in this case allowing the reduction of
the number of model parameters. As such, this paper provides a comprehensive overview of the
potential and applications for the newly presented SI model.

Keywords: food safety; predictive microbiology; mathematical models; microbial inactivation;
sublethal injury

1. Introduction

In predictive microbiology, the effects of intrinsic and/or extrinsic factors on the mi-
crobial behaviour (e.g., growth, inactivation) in foods are studied and quantified to predict
the effect of varying environmental conditions on the microbial response. Accumulated
knowledge on microbial behaviour is distilled into mathematical models, which can be
integrated into user-friendly software tools. These tools can be used by food producers,
governments and scientists to determine food safety and quality aspects [1,2].

Due to the health consequences related to the ingestion of pathogenic foodborne
microorganisms, food industries design processing treatments to inactivate microorganisms
that may be present in food products [3]. Exposing food products containing bacterial
populations to an inactivation treatment (e.g., heating, irradiation, antimicrobial agents)
leads to the formation of three bacterial subpopulations, i.e., (i) healthy cells that are
uninjured; (ii) sublethally injured cells that can potentially still recover from their injuries;
and (iii) dead cells that are completely inactivated/killed [4]. Sublethal injury (SI) is
generally defined as “a consequence of exposure to a chemical or physical process that
damages but does not kill a microorganism” [5–7]. The injury can involve a loss of the
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permeability barrier in the cell wall and/or membrane (i.e., structural damage), damage
to functional cell components, such as ribosomes and structural DNA (i.e., metabolic
damage), or a combination of both types [8]. Sublethally injured cells are sensitive to
selective components to which uninjured cells show resistance, making them unable to
grow on selective media commonly used for the detection of foodborne pathogens in the
food industry [9]. Consequently, the challenges related to the occurrence of sublethally
injured cells in foods are twofold. The first challenge relates to food diagnostics, as the
number of microorganisms is underestimated when solely enumerated by plating on
selective media. As a second challenge, sublethally injured microorganisms might recover
from their damage if exposed to optimal conditions for a sufficient amount of time, for
example during food storage [10–13].

The degree of SI of a microbial population is traditionally assessed by the difference in
plate counts on non-selective and selective media [7,8,14]. Non-selective media allow the
growth of the total population of all viable culturable cells (i.e., uninjured and sublethally
injured), while selective media only allow the growth of uninjured cells [15]. Hence, SI
can be quantified as a percentage of the entire population by means of formulas similar to
Equation (1), introduced by the likes of Busch et al. and Dykes [16,17].

SI =
(

1 − Counts on selective medium
Counts on nonselective medium

)
·100% (1)

Following the increased attention to SI in the last decades, the scientific literature expe-
rienced a rise in the number of predictive microbiology studies that include a representation
of the SI evolution of microorganisms during inactivation. In most studies, SI is calculated
at different time points, regardless of the inactivation behaviour of the cells [18–32]. To
investigate the SI of cells during inactivation treatments in more depth, some researchers
have calculated the SI evolution over time based on the modelled inactivation of the total
culturable population and the healthy subpopulation. Apart from visually illustrating
the SI evolution in a continuous manner, calculating the SI evolution as a function of the
inactivation treatment time allows a comparison of total amounts of SI among different
treatment conditions, e.g., using the time-averaged injured cells coefficient (TICC) [33].

SI cells should not be confused with so-called viable but non-culturable (VBNC) cells.
VBNC cells are not regarded as dead cells because their cell membrane and genetic material
is intact and they are metabolically active [34]. SI cells are not dead either. They have
sustained injuries that cause them not to be viable on stress-containing selective media,
but they are still viable on non-selective media. As such, the difference between VBNC
and SI cells is that the former cannot be cultured on any media, while the latter can still
be cultured on non-selective media [35]. The use of a combination of optimal rich media
and selective media therefore allows differentiating between SI cells, on the one hand, and
VBNC and dead cells on the other hand.

Thus far, different approaches for calculating the SI have been used with no consensus
on a standard method having been reached. In the most common method, the SI evolution is
calculated by using the non-log transformed model outputs corresponding to non-selective
and selective media as input data for the SI equation [36–43]. The major disadvantage
related to this methodology is the frequent occurrence of SI trends that are (in part) artefacts
of the methodology, rather than accurate representations of physical phenomena, e.g., (i)
extended periods with constant values of SI caused by consecutive differences in model
fits on the non-selective and selective medium, e.g., during tailing; (ii) strange SI trends
caused by differences in the model output behaviour on the non-selective and selective
medium; and (iii) negative values of SI caused by intersecting model fits on the non-
selective and selective media. Examples of these artefacts are illustrated in Figure 1. Given
these artefacts, the methodology requires the assumption of zero SI when the model output
on the selective medium is higher than on the non-selective medium. To avoid some of the
aforementioned artefacts, Noriega et al. used a slightly different methodology; they directly
used the log transformed model fit values on the non-selective and selective medium as
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input for the SI equation [12]. On the one hand, the adapted approach resulted in more
smooth SI evolutions characterised by less abruptly changing SI evolutions. On the other
hand, the subpopulation of sublethally injured cells was not represented as a percentage
of the total cell population, essentially not corresponding to the SI equation. Moreover,
SI evolutions not explained by physical phenomena still occurred due to the SI evolution
solely being based on the difference between model fits on non-selective and selective
media. Therefore, Verheyen et al. used the raw cell count data directly as an input for
the SI equation and fitted a third degree polynomial to the resulting SI data points [44,45].
Log transformed cell count data were used because fitting a model to the absolute values
of an exponential process would lead to a large variance in SI values over the course of
inactivation treatments. While this methodology was able to describe the SI-behaviour
of microbial inactivation fairly well, some artefacts of using the third-degree polynomial
as an SI model were observed, e.g., a sudden increase in SI at the end of inactivation
treatments. In addition, the subpopulation of sublethally injured cells was not represented
as a percentage of the total cell population due to the use of log transformed cell counts,
similar to what was the case for the methodology of Noriega et al. [12]. Moreover, this
method is a black box approach to describing the evolution of SI, ignoring any mechanistic
knowledge that is available on the process. As such, there is also no guarantee that the
selected polynomial is appropriate to represent the true underlying phenomena.

Figure 1. Examples of artefacts occurring due to calculating SI directly from non-log transformed model fit values. The
modelled evolution of the population density on non-selective (—) and selective (- - -) medium is presented in the top row
and the resulting SI in the bottom row. Both are presented as a function of unitless time. Left: long periods of constant SI
caused by consecutive differences in model fits on the non-selective and selective medium. Middle: strange SI evolution
caused by differences in model output shapes on non-selective and selective medium. Right: negative values in the SI
evolution caused by intersecting model fits on the non-selective and selective media. For each case, top figures represent the
model fits to non-selective and selective media, while bottom figures represent the SI calculated according to Equation (1).

The objective of this study was to develop a SI modelling method specifically tailored
to use in combination with existing microbial inactivation models, to avoid disadvantages
related to the approaches discussed above. In essence, all these disadvantages can be
avoided if a more mechanistic modelling approach is used that can guarantee an appropri-
ate relationship between the model fits to the non-selective and selective media. Therefore,
a method was proposed to model the evolution of experimental data both on non-selective
and selective media by a single model that describes the relationship between the corre-
sponding populations of all culturable and healthy culturable cells. This methodology
assumes that cells are first sublethally injured prior to inactivation; an assumption that can
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be incorporated directly into primary inactivation models. The newly developed modelling
concept was validated by means of three parameter estimation case studies from literature,
comparing integrated SI modelling results to the results obtained with the traditional
methodology that relies on independent models, as used in the respective papers.

2. Materials and Methods

2.1. Datasets

Three datasets from previous research by the authors’ research group were used
to evaluate the implementation of the novel sublethal injury (SI) model (presented in
Section 3.1). For each dataset, the SI model was compared with the classical method of
using independent models. The three datasets were selected specifically because they
display different inactivation kinetics and therefore require different inactivation models
as well. Dataset 1 was published by Smet et al. and displays simple log-linear inactivation
kinetics [42]. Specifically, this dataset was obtained by applying cold atmospheric plasma
treatments to Salmonella typhimurium that was grown as planktonic cells in an environment
at pH 5.5 with 60 g/L NaCl. The reported inactivation curves were the result of the storage
of samples at 8 ◦C after they had been treated with this plasma in a liquid carrier. Samples
were collected over a period of 770 h and there were 22 samples for both the non-selective
medium (TSA; Tryptic Soy Agar; Oxoid, Basingstoke, UK) and selective medium (XLD;
Xylose Lysine Deoxycholate agar; Merck & Co, Rahway, NJ, USA). Dataset 2 and Dataset
3 have been published by Noriega et al. in the context of studying the effect of cell
immobilization on SI during mild heat treatments (54 ◦C) [12]. Dataset 2 was from the
inactivation of low-density colonies of Listeria innocua and displays a biphasic log-linear
inactivation. There were 104 datapoints on non-selective medium and 87 on selective
medium. The non-selective medium was TSA supplemented with 6 g/L yeast extract
(Merck, Darmstadt, Germany) and the selective medium was the same supplemented with
an additional 65 g/L NaCl (VWR, Leuven, Belgium). It should be noted that L. innocua
was used as an innocuous surrogate organism for the food pathogen L. monocytogenes.
Although this is a commonly used surrogate, it is not as tolerant to stress factors as
L. monocytogenes. Dataset 3 was obtained from the inactivation of high-density colonies
of Salmonella Typhimurium and displays log-linear inactivation with a tail. This dataset
contained 130 datapoints on non-selective medium (TSA) and 89 datapoints on selective
medium (TSA supplemented with 50 g/L NaCl). In this work, all data were converted to
be expressed in the natural logarithm instead of the common logarithm of the cell density.

2.2. Parameter Estimation and Uncertainty

Model parameters were estimated using the function lsqnonlin of MATLAB R2019b
(The MathWorks). The parameter estimation was based on the minimization of the sum of
squared errors SSE:

SSE =
νm

∑
i=1

(
nm,i(ti)− np,i(ti, p)

)2 (2)

with νm the number of measurements in the dataset, nm,i the logarithm of the measured
cell concentration, np,i the logarithm of the predicted cell concentration, ti the time point
corresponding to a specific measurement and p the vector of model parameters. The
different models will be described in the results and discussion section when used. The
95% confidence bounds of the estimated parameters were estimated using Equation (3) [46]:[

pi ± t0.975, νm−νp · σpi

]
(3)

with t as the inverse Student’s t-distribution, νp the number of model parameters, and σpi
the standard deviation of a model parameter pi. This standard deviation was calculated
through Equations (4)–(7) [47]:

σpi
=
√

V(i, i) (4)
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V = F−1 (5)

F =
1

MSE
J′·J (6)

MSE =
SSE

νm − νp
(7)

where V is the variance-covariance matrix of the model parameters, F is the Fisher Infor-
mation Matrix, J is the Jacobian matrix and MSE is the mean sum of squared errors.

2.3. Sublethal Injury

Sublethal injury (SI) is defined here as the percentage of cells that cannot grow on
selective media, but are able to grow on non-selective media:

SI =
Nnon−selective − Nselective

Nnon−selective
· 100% (8)

with Nnon−selective and Nselective the quantity of cells as detected on non-selective and
selective media. It should be noted that the actual quantity of cells is used and not a
logarithmic transformation of this quantity. As such, SI can be expressed as a percentage.

3. Results and Discussion

The current study presents a new modelling concept to describe sublethal injury (SI)
as a function of time through sets of differential equations. A variety of inactivation models
is described in literature. Together, these models have the ability to produce a wide variety
of inactivation kinetics and they are selected based on the requirements of the specific
scenario that is under study. Consequently, the goal of this work is not to present a specific
model, but rather to present a method that allows the user to develop a new SI model based
on any existing inactivation model that is available as a (set of) differential equation(s).
The global concept of this modelling method is unveiled in Section 3.1. Then, this concept
is applied to three different scenarios based on different datasets that required different
inactivation models (Sections 3.2–3.4). For each scenario, the SI model is composed, the
model parameters to be estimated are identified, the resulting model is tested on an
available dataset and the results are compared with what would have been obtained if the
data would be treated independently as done in the conventional method.

3.1. The Sublethal Injury Model

The main lack of the conventional approach to describe the evolution of SI is that
the evolution of all culturable cells and of the healthy culturable cells as a function of
time are treated as independent phenomena. Therefore, the main requirement for the new
modelling concept is to link these inactivation kinetics. Composing this model concept is
done by defining different subpopulations within the model. The distinct subpopulations
are the healthy culturable cells NH, the sublethally injured (SI) culturable cells NSI and the
dead (and non-culturable) cells ND. Additionally, the healthy cells and injured cells can
be grouped together in the class of all culturable cells NC. This classification is presented
in the Venn diagram of Figure 2. Based on these subpopulations, the inactivation of the
microbial population can be described as the transition of cells from one subpopulation
to another. A healthy cell can become a SI cell due to the inactivation method or survival
conditions that it undergoes. It can be assumed that, under the studied conditions that
cause inactivation of the cells, injured cells will be unable to become healthy cells again.
Therefore, the rate of cells becoming injured is equal to the change in the quantity of
healthy cells. This is described mathematically by a differential equation for dNH/dt.
Experimentally, the evolution of the healthy population of cells is monitored through viable
plate counting on selective media. Consequently, if injured cells are harmed further, their
injuries become irreparable and they are thus converted to dead cells. If one assumes
that the healthy cells are always first injured before they can be killed, the rate of injured
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cells dying off is equal to the change in the population of all culturable cells. This is
mathematically expressed by a differential equation for dNL/dt and the process can be
monitored experimentally by using viable plate counts on non-selective medium. This
assumption has been confirmed, e.g., in the research of Perni et al. on the inactivation of
E. coli by pulsed electric fields [48]. If cells first have to become injured before being killed,
this also means that the size of dNC/dt is proportional to the quantity of sublethally injured
cells, not to the total quantity of culturable cells. The change of the population of injured
cells is then a combination of the transition of healthy cells to injured cells and of injured
cells to dead cells (dNSI/dt = −dNH/dt + dNC/dt). Within this modelling framework,
two differential equations are needed to describe the evolution of the three subpopulations:
(i) the change in the number of healthy cells dNH/dt and (ii) the change in the number of
culturable cells dNC/dt. These two populations are monitored experimentally by plating
respectively on selective and non-selective medium. As such, it is possible to identify the
model equations on the data that are available out of the same types of experiments that
are commonly being done to study SI. The data that are already being collected is sufficient,
but the model itself needs to link the subpopulations as described above. By linking these
subpopulations in a semi-empirical population balance model, there is a guarantee that the
model will deliver reasonable predictions of the phenomena where, e.g., the number of
healthy cells can never be higher than the total number of culturable cells. To make the
proposed modelling concept more tangible, the next three subsections will present how to
compose the model equations for the SI model based on three different inactivation models
that are taken from literature.

 

Figure 2. Overview of the microbial subpopulations that are considered in the sublethal injury model. All cells can be
divided in culturable and dead cells. The culturable cells can be subdivided in healthy and injured cells. The mathematical
notations and conversions are marked in blue and the experimental quantifications are written in green.

3.2. Case Study 1: Log-Linear Inactivation

The first SI model that is composed here is based on simple log-linear inactivation
for both the healthy and sublethally injured populations. As such, the model of Bigelow
and Esty can be used to describe the evolution of the healthy population as a function
of time [49]:

dNH(t)
dt

= −kH,max · NH(t) (9)

with kH,max the maximum specific inactivation rate of the healthy population, which is
expressed in an inverse time unit (e.g., 1/min, 1/s). For computational purposes, it is better
to work with the logarithmic transformation of the population size:

dnH(t)
dt

= −kH,max (10)
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with nH the logarithm of the size of the population of healthy cells. The next equation that
can be composed is that for the total population of culturable cells:

dNC(t)
dt

= −kSI,max · NSI(t) (11)

with kSI,max the maximum specific inactivation rate of the population of injured cells. This
equation demonstrates that the decrease of the total quantity of culturable cells is only
a function of the quantity of injured cells. This is a consequence of the assumption that
cells first have to become injured before they can be killed. The quantity of injured cells
can be calculated as the difference between the total population of culturable cells and
the population of healthy cells (NSI(t) = NC(t)− NH(t)). As such, on a logarithmic scale,
Equation (11) becomes:

dnC(t)
dt

= −kSI,max · (1 − exp(nH(t)− nC(t))) (12)

with nC the logarithm of the size of the population of culturable cells. The differential
equation for the evolution of the population of injured cells itself is a combination of the
increase due to the healthy cells becoming injured (Equation (9)) and a decrease due to the
injured cells dying off (Equation (11)). The Equation (14) for the evolution of the injured
population can therefore be composed as:

dNSI(t)
dt

= −dNH(t)
dt

+
dNC(t)

dt
(13)

dNSI(t)
dt

= kH1,max · NH(t)− kSI1,max · NSI(t) (14)

Converting Equation (14) to the logarithmic scale results in the following equation:

dnSI(t)
dt

= kH1,max · exp(nH(t))
exp(nSI(t))

− kSI,max (15)

Given (i) that the quantity of injured cells at any point in time can be calculated from the
difference between the amount of culturable and healthy cells and (ii) that the experimental
data of viable plate counts on non-selective and selective media provides direct information
about the quantity of culturable and healthy cells, it is not necessary to include Equation (15)
on the evolution of the injured population when solving the differential equations that describe
this SI model. Instead, the quantity of injured cells can be calculated from the results of the
culturable and healthy populations. As such, the SI model for log-linear inactivation can be
described by Equations (10) and (12). To solve this system of differential equations, the initial
conditions are required. These initial conditions are:

nH(t = 0) = nH,0 (16)

nC(t = 0) = nC,0 (17)

with nH,0 and nC,0 the logarithm of the population sizes at the initial time point. These
initial conditions cannot take any value as the initial quantity of all culturable cells should
of course be larger than its subpopulation of initial healthy cells. This constraint can be
added into the model by converting the first initial condition to:

nH(t = 0) = fH,0 · nC,0 with fH,0 ε [0; 1] (18)

with fH,0 the fraction of the total culturable population of cells that are healthy cells. The
full model can thus be summarised as:

dnH(t)
dt

= −kH,max with nH(t = 0) = fH,0 · nC,0 and fH,0 ε [0; 1] (19)
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dnC(t)
dt

= −kSI,max · (1 − exp(nH(t)− nC(t))) with nC(t = 0) = nL,0 (20)

with the following model parameters to be estimated: fH,0, nC,0, kH,max and kSI,max. In con-
trast, when considering the healthy and culturable populations as independent populations,
they would be described by the following independent models:

dnH(t)
dt

= −kH,max with nH(t = 0) = nH,0 (21)

dnC(t)
dt

= −kC,max with nC(t = 0) = nC,0 (22)

where kC,max is the maximum specific inactivation rate of the population of culturable cells.
The model parameters in these independent models are nH,0, nC,0, kH,max and kC,max.

The SI model of Equations (19) and (20) is compared with the independent model of
Equations (21) and (22) based on Dataset 1 (see Section 2.1). For this comparison, the model
parameters of each set of equations were estimated and the results are presented in Table 1.
The parameters nC,0 and kH,max, which appear in both models, have identical values and
confidence bounds. The parameters kSI,max and kC,max of respectively the SI model and the
independent models also have identical values and confidence bounds. These parameters
are essentially each other’s equivalent for the dataset that was used in this example. In
contrast, the initial number of cells in the independent models is described by the parameter
nH,0, whereas for the SI model the parameter fH,0 determines the fraction of the nC,0 that
are healthy cells. Relative to their sizes, the uncertainty on the parameter fH,0 appears to be
high compared to that of nH,0. However, the parameter fH,0 expresses the fraction of the
population size on a linear scale whereas the parameter nH,0 follows a logarithmic scale.
On the other hand, there is indeed additional uncertainty in the calculation of the initial
population of healthy cells in the SI model because its value depends on both fH,0 and nC,0,
which are both marked by uncertainty. The model predictions of the SI model and the
independent models are visually indistinguishable and are therefore both represented by
the graphs in Figure 3a. The sublethal injury (SI) is calculated as a function of time based
on the following equation:

SI(t) =
exp(nC(t))− exp(nH(t))

exp(nC(t))
(23)

Table 1. Parameter estimation results from fitting the independent models (Equations (21) and (22))
and sublethal injury model (Equations (19) and (20)) based on log-linear inactivation on Dataset 1.

Model Parameter Parameter Estimate 95% Confidence Bounds

Independent models

nH,0 11.0 [10.6; 11.4]
nC,0 11.9 [11.4; 12.3]

kH,max 7.15 × 10−3 [
6.19 × 10−3; 8.11 × 10−3]

kC,max 5.95 × 10−3 [
4.74 × 10−3; 7.15 × 10−3]

MSE 0.344

Sublethal injury model

fH,0 0.402 [0.143; 0.662]
nC,0 11.9 [11.4; 12.3]

kH,max 7.15 × 10−3 [
6.19 × 10−3; 8.11 × 10−3]

kSI,max 5.95 × 10−3 [
4.74 × 10−3; 7.15 × 10−3]

MSE 0.344
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Figure 3. (a) Log-linear inactivation of all culturable (—) and healthy culturable (-·-) cells as described
by the independent models or sublethal injury model that is constructed with the model of Bigelow
and Esty [49]. Based on these modelling results, the evolution of the data are sublethally injured
population (···) and (b) the percentage sublethal injury (—) is calculated. The based on counts of cul-
turable (x) and healthy (o) cells on non-selective and selective media as published in Smet et al. [42].
The dataset was constructed by monitoring the survival of Salmonella Typhimurium, which was
grown as planktonic cells in an environment at pH 5.5 with 60 g/L NaCl, after being treated in a
liquid carrier with cold atmospheric plasma and stored at 8 ◦C (Dataset 1).

The evolution of SI with time as calculated by both models is illustrated in Figure 3b.
This comparison of the model parameters and predictions of the SI model and inde-

pendent models based on Dataset 1 demonstrates that the SI model is in a way equivalent
to the independent models in cases where there can be no mistake in the calculation of
the SI. Even though the equations and the model parameter constraints of both models
are different, the model predictions are quasi-identical and the model parameters are
equivalent. As will be demonstrated in the next section, these models start to differ when
the independent model would yield wrongful predictions of the SI.

3.3. Case Study 2: Biphasic Inactivation

Dataset 2 portrays inactivation data that follows biphasic inactivation kinetics, as can
be seen from Figure 4. Biphasic microbial inactivation is typically modelled with the model
of Cerf [50]. Independent models for the healthy and culturable cells can be defined based
on the model of Cerf as follows:

dnH1(t)
dt

= −kH1,max with nH1(t = 0) = nH1,0 (24)

dnH2(t)
dt

= −kH2,max with nH2(t = 0) = nH2,0 (25)

dnC1(t)
dt

= −kC1,max with nC1(t = 0) = nC1,0 (26)

dnC2(t)
dt

= −kC2,max with nC2(t = 0) = nC2,0 (27)

with nH1 and nH2 the healthy cells and nC1 and nC2 the culturable cells of, respectively, the
first and second subpopulation. If one subpopulation has both a lower initial size and a
lower inactivation rate than the other, the typical biphasic inactivation is observed [51].
The parameters of the independent models that have to be estimated are nH1,0, nH2,0, nC1,0,
nC2,0, kH1,max, kH2,max, kC1,max, and kC2,max. When constructing the SI model based on
the model of Cerf, the only change in the equations for the evolution of healthy cells
in each subpopulation compared to Equations (24) and (25) is that the initial number of
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cells is defined as a fraction of the initial number of total culturable cells in the respective
subpopulation (fH1,0 and fH2,0):

dnH1(t)
dt

= −kH1,max with nH1(t = 0) = fH1,0 · nC1,0 and fH1,0 ε [0; 1] (28)

dnH2(t)
dt

= −kH2,max with nH2(t = 0) = fH2,0 · nC2,0 and fH2,0 ε [0; 1] (29)

 

 

Figure 4. Biphasic inactivation of all culturable (—) and healthy culturable (-·-) cells as described by (a) the independent
models and (c) the sublethal injury model that are constructed with the model of Cerf [50]. Based on these modelling
results, the evolution of the sublethally injured population (···) and the percentage sublethal injury (—, (b,d) are calculated.
The data are based on counts of culturable (x) and healthy (o) cells on non-selective and selective media as published by
Noriega et al. [12]. The data were obtained by heat-treating low-density colonies of Listeria innocua at 54 ◦C (Dataset 2).

The differential equations for the two subpopulations of culturable cells are analogous
to the differential equation for the culturable cells in the SI model for log-linear inactivation
(Equation (20)):

dnC1(t)
dt

= −kSI1,max · (1 − exp(nH1(t)− nC1(t))) with nC1(t = 0) = nC1,0 (30)

dnC2(t)
dt

= −kSI2,max · (1 − exp(nH2(t)− nC2(t))) with nC2(t = 0) = nLC,0 (31)

The model parameters of the SI model in Equations (28)–(31) are fH1,0, fH2,0, nC1,0, nC2,0,
kH1,max, kH2,max, kC1,max and kC2,max. When comparing the model structure and parame-
terization between the two models, the differences in the SI model (Equations (28)–(31))
compared to the independent model (Equations (23)–(27)) are (i) that the initial condition
of the healthy subpopulation is defined as a fraction of the initial culturable subpopulation
and (ii) that the inactivation rate of the culturable cells depends on the number of injured
cells instead of on the number of culturable cells.
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Both models were fitted on the Dataset 2. The resulting model outputs and the
calculated SI evolution are illustrated in Figure 4. In the results for the independent models,
the model output for the culturable cells decreases below the model output for the healthy
cells. In practice, it is of course not possible that the number of healthy cells would ever be
higher than the number of culturable cells since the former is a subpopulation of the latter.
However, due to this error, the number of injured cells that is calculated becomes negative
and its logarithm a complex number. This is all because the independent models do not
consider that the data are meant to describe the phenomenon of SI. The model output of
the SI model on the other hand provides a good approximation of the experimental data
and a reasonable calculation of the evolution of SI. The parameter estimation results for
the independent models in Table 2 do not reveal the problems that occur when calculating
the SI. Since the independent models fit the respective datasets for culturable and healthy
cells well, the model parameter uncertainty is relatively low and the model fit is decent
(as seen from the MSE). The problems in this approach only occurs when using the model
outputs for calculating the SI. When comparing the parameters of the independent models
and the SI model, the large difference in the initial populations catches the eye. These
values of the initial populations are part of predicting the biphasic behaviour. In the SI
model, the decrease of the culturable population is bound by the number of healthy cells.
As such, there is no need for the biphasic behaviour of the inactivation model to predict the
levelling off of the culturable cells towards the healthy cells. Consequently, when fitting
the model parameters of the SI, the flexibility of the biphasic model is used to predict
faster inactivation in the first 10 h compared to the time interval between 10 and 70 h
(see Figure 4c). This phenomenon can also be observed from comparing the inactivation
rate of the culturable population at time zero in the SI model (as determined by kSI2,max)
with that of the independent models (as determined by kC2,max). This comparison shows
that the initial inactivation rate in the SI model is much higher than in the independent
models. These differences in the model structure also resulted in a better model fit of the
SI model, as indicated from the MSE. Due to its constraints, the SI model will not always
provide a better approximation of experimental data than the independent models. On the
other hand, these constraints cause the SI model to be able to describe some phenomena
with less model complexity than the independent models. As an example, in the current
modelling results for the SI model, the tail in the culturable population of cells is a result
from the tail in the healthy population of cells. As such, this tailing is described by the
model without the need for it to be included separately in the differential equations of the
culturable population of cells. In this case, the additional model complexity of the two
phases is used to obtain a better approximation of the microbial inactivation in the initial
stage of the experiment. The next section will further demonstrate the possibility to work
with a decreased model complexity in the SI model.

Table 2. Parameter estimation results from fitting the independent models (Equations (24) to (27))
and sublethal injury model (Equations (28) to (31)) based on biphasic inactivation on Dataset 2.

Model Parameter Parameter Estimate 95% Confidence Bounds

Independent models

nH1,0 18.2 [17.7; 18.7]
nH2,0 6.96 [5.96; 7.96]
nC1,0 8.40 [6.64; 10.2]
nC2,0 19.0 [18.6; 19.4]

kH1,max 4.52 × 10−1 [
4.03 × 10−1; 5.02 × 10−1]

kH2,max 2.34 × 10−14 [−1.15 × 10−2; 1.15 × 10−2]
kC1,max 9.41 × 10−3 [−4.50 × 10−3; 2.33 × 10−2]
kC2,max 1.80 × 10−1 [

1.62 × 10−1; 1.99 × 10−1]
MSE 1.41
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Table 2. Cont.

Model Parameter Parameter Estimate 95% Confidence Bounds

Sublethal injury model

fH1,0 2.91 × 10−5 [
1.17 × 10−6; 5.71 × 10−5]

fH2,0 9.62 × 10−2 [
1.44 × 10−2; 1.78 × 10−1]

nC1,0 17.5 [16.8; 18.1]
nC2,0 20.6 [19.8; 21.3]

kH1,max 1.09 × 10−10 [−7.16 × 10−3; 7.16 × 10−3]
kH2,max 4.53 × 10−1 [

4.09 × 10−1; 4.97 × 10−1]
kSI1,max 1.34 × 10−1 [

1.15 × 10−1; 1.52 × 10−1]
kSI2,max 7.48 × 10−1 [

3.59 × 10−1; 1.14
]

MSE 1.14

This example demonstrates that the proposed SI model provides a guarantee for
reasonable predictions on the evolution of SI by incorporating basic knowledge on the
relationship of the different microbial subpopulation into the model structure.

3.4. Case Study 3: Log-Linear Inactivation with Tailing

Figure 5a illustrates the log-linear inactivation behaviour with tailing of both the
population of culturable cells and the subpopulation of healthy cells in Dataset 3. Based on
the inactivation model of Geeraerd et al., the following independent models are proposed
to describe the populations of culturable and healthy cells [52]:

dnH(t)

dt
= kH,max · (1 − exp(nH,res − nH(t))) with nH(t = 0) = nH,0 (32)

dnC(t)

dt
= kC,max · (1 − exp(nC,res − nC(t))) with nC(t = 0) = nC,0 (33)

with nH,res and nC,res the resistant subpopulations of the healthy and culturable cells.
Converting these models into a linked SI model, results in the following set of equations:

dnH(t)

dt
= kH,max · (1 − exp(nH,res − nH(t))) (34)

dnC(t)

dt
= kSI,max ·

(
1 − exp(nSI,res)

exp(nSI(t))

)
· exp(nSI(t))

exp(nC(t))
(35)

with nSI,res the resistant population of injured cells. To obtain a set of differential equations
that is only a function of the healthy and culturable cells, Equation (35) is rewritten to:

dnC(t)

dt
= kI,max ·

(
1 − exp(nC,res)− exp(nH,res)

exp(nC(t))− exp(nH(t))

)
· exp(nC(t))− exp(nC(t))

exp(nC(t))
(36)

If the model in Equation (36) is used, the resistant population of healthy cells needs to
be described as a fraction of the resistant population of culturable cells fH,res:

nH,res = fH,res · nC,res (37)

When assuming all cells that can become injured can also be killed, there would be no
residual population of injured cells. Consequently, the SI model for log-linear inactivation
with tailing could be written as:

dnH(t)

dt
= kH,max·(1 − exp(nH,res − nH(t))) with nH(t = 0) = nH0 (38)
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dnC(t)

dt
= kSI,max·(1 − exp(nH(t)− nC(t))) with nC(t = 0) = nC0 (39)

 

 

Figure 5. Log-linear inactivation with tailing of all culturable (—) and healthy culturable (-·-) cells as described by (a) the
independent models and (c) the sublethal injury model that are constructed with the model of Geeraerd et al. [52]. Based
on these modelling results, the evolution of the sublethally injured population (···) and the percentage sublethal injury
(—), (b,d) are calculated. The data are based on counts of culturable (x) and healthy (o) cells on non-selective and selective
media as published by Noriega et al. [12]. The data were obtained by heat-treating high-density colonies of Salmonella
Typhimurium at 54 ◦C (Dataset 3).

These two equations basically describe log-linear inactivation with tailing for the sub-
population of healthy culturable cells, while the decrease of the total culturable population
depends on the log-linear inactivation of the injured subpopulation. In this model, the
decrease of the population of culturable cells will asymptotically approach the resistant
population of healthy cells. The independent models of Equations (32) and (33) and the SI
model of Equations (38) and (39) are fitted to Dataset 3. The model outputs of both models
and the calculated SI are presented in Figure 5. For the independent models, the resistant
population of the culturable cells is slightly higher than that of the healthy cells, suggesting
that a fraction of the injured cells would be resistant as well. On the other hand, according
to the SI model, the total population of culturable cells approaches the resistant population
of healthy cells under the assumption that all injured cells are killed. Based on the current
data and modelling results, there is of course no way of telling which model predicts the
correct inactivation of each subpopulation. However, it would be perfectly possible to use
the extended SI model of Equations (34) and (36), which would give practically the same
model output as the simplified model of Equations (38) and (39). Because the estimation of
the resistant population often comes with quite some uncertainty, it often happens that the
resistant population of the culturable cells drops below that of the healthy cells, resulting in
a negative SI percentage (similar to Case study 2). This problem will in any case be avoided
when using the SI model that is presented here. The model parameters that are estimated
are listed in Table 3. For the main part, the parameters are again equivalent between
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both models, with the main difference that the SI model now has one parameter less than
the independent models. Even though the number of model parameters is reduced from
six to five, the model accuracy only reduces slightly as shown by the MSE that changes
from 1.59 to 1.63.

Table 3. Parameter estimation results from fitting the independent models (Equations (32) and (33))
and sublethal injury model (Equations (38) and (39)) based on log-linear inactivation with tailing
on Dataset 3.

Model Parameter Parameter Estimate 95% Confidence Bounds

Independent models

nH,0 20.0 [19.5; 20.5]
nC,0 20.7 [20.3; 21.1]

nH,res 8.21 [7.81; 8.61]
nC,res 9.06 [8.56; 9.56]

kH,max 3.19 × 10−1 [
2.79 × 10−1; 3.59 × 10−1]

kC,max 1.01 × 10−1 [
9.28 × 10−1; 1.08 × 10−1]

MSE 1.59

Sublethal injury model

fH,0 9.67 · 10−1 [
9.32 × 10−1; 1.00

]
nC,0 20.7 [20.3; 21.2]

nH,res 8.54 [8.22; 8.86]
kH,max 3.29 × 10−1 [

2.87 × 10−1; 3.72 × 10−1]
kSI,max 1.02 × 10−1 [

9.46 × 10−2; 1.09 × 10−1]
MSE 1.63

4. Conclusions

A new method was proposed to model the evolution of sublethal injury (SI) during
microbial inactivation. This method relies on defining the two subpopulations of healthy
and injured cells within the culturable cells and describing inactivation as a two-step
mechanism: (i) injuring healthy cells and (ii) killing injured cells. Based on three case
studies, it was illustrated that this model concept can be applied to any existing dynamic
inactivation model that is available in literature. Moreover, these case studies demonstrated,
respectively, three important properties of the SI model: (i) the model is equivalent to the
conventional method of using independent models when there is sufficient difference
between the total quantity of culturable cells and the subpopulation of healthy cells,
i.e., when there can be no mistake in the calculated SI; (ii) the new modelling method
avoids unrealistic calculations of the SI by using its mechanistic definition of this process;
and (iii) in some cases, it is possible to reduce the number of model parameters in the SI
model because there is no need for additional model parameters to describe phenomena
that are already hard coded into the more mechanistic description of the model. These
properties make the SI model suitable for describing SI as a function of time during food
processes. As such, this model can contribute to the optimization and control of the safety
of food processes by considering SI dynamics.
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Abstract: Shewanella putrefaciens have a faster growth rate and strong spoilage potential at low
temperatures for aquatic products. This study developed a nondestructive method for predicting
the kinetic growth and spoilage of S. putrefaciens in bigeye tuna during cold storage at 4, 7 and
10 ◦C by electronic nose. According to the responses of electronic nose sensor P30/2, the fitted
primary kinetic models (Gompertz and logistic models) and secondary model (square root function
model) were able to better simulate the dynamic growth of S. putrefaciens, with high R2 and low
RMSE values in the range of 0.96–0.99 and 0.021–0.061, respectively. A partial least squares (PLS)
regression model based on both electronic nose sensor response values and electrical conductivity
(EC) values predicted spoilage of S. putrefaciens in bigeye tuna more accurately than the PLS model
based on sensor signal values only. In addition, SPME/GC-MS analysis suggested that 1-octen-3-ol,
2-nonanone, 2-heptanone, dimethyl disulfide and methylamine, N, N-dimethyl- are the key VOCs of
tuna inoculated with S. putrefaciens.

Keywords: electronic nose; Shewanella putrefaciens; dynamic growth; spoilage prediction; GC-MS

1. Introduction

Bigeye tuna (Thunnus obesus) is a widely distributed and commercially important
fish, favored by consumers because of its good taste and abundant nutrition [1]. How-
ever, bigeye tuna is an extremely perishable fish because of microbial spoilage and certain
biochemical reactions during processing and storage. Its superior nutritional value and
delicious meat make it important to preserve bigeye tuna [2]. Some methods have been
used for the preservation of tuna, such as gas packaging, cool store, freezing processing,
cryopreservation, etc. Refrigeration is currently an effective storage method used to slow
down fish deterioration [3]. The main factor contributing to seafood spoilage during the
refrigeration process is the activity of microorganisms. Many studies have reported that the
specific spoilage organisms in refrigerated seafood were Shewanella spp., Pseudomonas spp.,
Aeromonas spp., and Acinetobacter spp. [3,4]. S. putrefaciens is the main spoilage microor-
ganism of seafood in low-temperature storage, which has the potential for decomposing
proteins and trimethyl-amine-N-oxide (TMAO) into ammonia, trimethylamine (TMA), and
H2S, producing a fishy odor [5]. Shewanella and Pseudomonas species isolated from spoiled
tuna were considered as potential main contributors to spoilage in tuna during refrigerated
storage [6]. Many studies have reported that the growth of S. putrefaciens may cause tuna
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to deteriorate during refrigeration [7,8]. Therefore, evaluating the spoilage potential of
S. putrefaciens is crucial in the spoilage control of tuna at low temperatures.

Spoilage influences shelf life, marketing options, and safety of the product; no one
buys spoiled foods nor should spoiled foods be on the market. Researchers usually use
many conventional methods to identify fish spoilage, including sensory evaluation tech-
niques, chemical methods [9], and microbiological methods [10]. Although conventional
microbiological techniques are economical and simple to perform, these methods are time-
consuming and cannot be continuously monitored in real time. The odor is an important
indicator to evaluate the freshness of fish. Odors such as amines, ammonia, trimethylamine,
and volatile sulfides are produced in marine fish during spoilage [11]. These volatile com-
pounds can be potential indicators of spoilage in marine fish. Gas chromatography/mass
spectrometry (GC-MS) has become a standard instrument for quantitative analysis of
volatile substances in laboratories [12]. However, it is expensive, time-consuming, and
unsuitable for large-scale detection. Moreover, the electronic nose (E-nose), a gas sensor
array technology, has become an effective tool for predicting fish spoilage [13]. It can mimic
the human olfactory system with sensitive sensors that interact with multiple odors to gen-
erate different electrical signals [14]. The E-nose has many advantages in predicting food
spoilage, such as portability, non-destructive samples, low cost, short time consumption,
and high sensitivity. For example, Semeano et al. [15] developed a system based on a gas
sensing gel material coupled with an optical E-nose to detect tilapia deterioration, and the
system predicted microbial growth well. In addition to the rapid detection of fish spoilage
by the E-nose, fish spoilage can also be predicted using a simple physical index—electrical
conductivity (EC). The decomposition of tissues and the outflow of electrolytes during the
fish spoilage because of the catabolic activity of microorganisms and the oxidation of the
fish body eventually lead to the rise of EC [16]. Heising et al. [17] found that EC values
of aqueous solutions of volatile compounds produced by cod were positively correlated
with freshness. Other researchers have also found a strong correlation between fish con-
ductivity or electrical impedance and fish spoilage, and EC may be a good predictor of fish
spoilage [18,19]. However, few studies have involved the use of electronic noses to predict
the dynamic growth of spoilage bacteria in seafood and to predict the spoilage of seafood
inoculated with spoilage organisms.

The dynamic growth of S. putrefaciens and the spoilage potential in aquatic products
are of great importance. It is necessary to find a quick and easy method to study the
spoilage of marine fish contaminated by S. putrefaciens. At present, there are few studies to
predict the spoilage as well as the dynamic growth of specific spoilage bacteria in marine
fish at different refrigeration temperatures. For this purpose, sterile tuna blocks were
inoculated with S. putrefaciens and the changes in the total number of S. putrefaciens (TNS),
total volatile basic nitrogen, EC, and volatiles at different refrigeration temperatures were
investigated. The sensor P30/2 of the E-nose was selected to simulate the primary and
secondary dynamic growth of S. putrefaciens in tuna. A partial least squares (PLS) regression
model based on both E-nose sensor response values and EC values was used to predict
the spoilage potential of S. putrefaciens in bigeye tuna. Finally, some key volatile organic
compounds (VOCs) of tuna inoculated with S. putrefaciens were identified by GC/MS, and
the correlation between VOCs and gas sensor signal values was analyzed.

2. Materials and Methods

2.1. Bacterial Strains and Cultural Conditions

S. putrefaciens was isolated and identified from spoiled bigeye tuna (Zhejiang Fenghui
Ocean Fishing Company Ltd., Zhoushan, Zhejiang, China) and was identified based on 16S
rRNA gene sequences, compared in GenBank using the BLAST function. Spoiled bigeye
tuna was evaluated by trained panelists from the College of Food Science and Technology,
Shanghai Ocean University, based on odor, color, and appearance. Bacteria were stored in
tryptone soya broth (TSB) containing 25% glycerin at −80 ◦C. Before use, S. putrefaciens
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was precultured in brain–heart perfusion infusion (BHI) at 30 ◦C for 18 h and then cultured
in TSB until the maximal concentration (108 CFU/mL).

2.2. Sample Preparation and Inoculation

The back muscle blocks of 20 kg tuna were purchased from Zhejiang Fenghui Ocean
Fishing Company Ltd., Zhoushan, Zhejiang, China, and divided into rectangular blocks
of about 30 g. Three replications were taken for TNS, pH, TVB-N, TMA, and VOC mea-
surements, with ten replications for EC and e-nose measurement. Then, the blocks were
sterilized by soaking in 0.5% (v/v) formalin solution for 40 s and washed in sterile water
2 times. Each sterile block was immersed in a bacterial suspension for 30 s of S. putrefaciens
inoculation to achieve an inoculum level of 3.0–4.0 log CFU/g. Non-inoculated blocks
immersed in sterile normal saline (0.85% NaCl) were used as the control check (CK) group.
All samples were packed in a clean tray in a sterile environment and stored at 4, 7, and
10 ◦C.

2.3. Physicochemical Analysis

The physicochemical analysis included the measurement of pH, EC, total volatile
basic nitrogen (TVB-N), and trimethylamine (TMA) values.

The EC of tuna blocks was measured using the method described by Yao et al. [19].
Briefly, tuna flesh (10 g) was homogenized and stirred for 30 min in 100 mL of distilled
water. The mixture was filtered, and the EC of the filtrate was measured using an EC meter
(Mettler Toledo FE20/EL20, Shanghai, China).

The pH value was determined by the method of [20]. The sample treatment was
consistent with EC measurement and the pH of the filtrate was measured using a digital
pH meter (Cyberscan Model 510; Eutech Instruments Pvt. Ltd., Singapore).

Total volatile basic nitrogen (TVB-N) was performed according to the method of [21].
Five grams of minced tuna flesh was accurately weighed. The TVB-N value was measured
by an Automatic Kjeldahl Apparatus (KjeltecTM8400; FOSS Quality Assurance Co., Ltd.,
Copenhagen, Denmark).

TMA content was determined by Colorimetric Picric Acid Method [22]. Briefly, fish
samples and trichloroacetic acid (TCA) were homogenized and mixed. After centrifugation,
the supernatant was mixed with formaldehyde, saturated potassium carbonate solution,
and toluene. The toluene layer solution and picric acid were mixed thoroughly, and
absorbance readings were taken at 410 nm.

Measurements of pH, EC, TVB-N, and TMA were taken every 2 days for 12 days for
samples stored at 4 ◦C, every 2 days for 10 days for samples stored at 7 ◦C, and every 1 day
for 6 days for samples stored at 10 ◦C.

2.4. Microbiological Analysis and Growth Curve Fitting

The total number of S. putrefaciens (TNS) was determined by a basic method as
described by Qian et al. [23] using iron agar. Briefly, 25 g of tuna flesh were put in 225 mL
of sterilized saline water (NaCl, 0.85%, w/v) and homogenized for 2 min. Then, 0.1 mL of
the dilution was spread on iron agar (IA) plates after serial dilution and incubated at 30 ◦C
for 48 h. Black colonies were enumerated in IA plates. Plate counting agar was used to
count the total viable count (TVC) in the CK group at 30 ◦C for 48 h. The measurement
cycle of TNS and TVC was the same as the above physicochemical indexes.

2.4.1. Primary Models

The primary models, namely, Gompertz and logistic models, were used to simulate the
growth curves of S. putrefaciens in tuna. They are represented by the following equations
according to Gibson et al. [24]:

N = N0 + (Nmax − N0)× exp
(
− exp

(
μmax × e

Nmax − N0
× (λ − t) + 1

))
, (1)
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N = N0 + (Nmax − N0)/(1 + exp(μmax×(λ − t)) (2)

where N is the cell concentration (log CFU/g) at time t, N0 and Nmax represent the initial
and maximum cell numbers (log CFU/g) of S. putrefaciens, respectively. λ is the lag time
(h), t is real time, and μmax represents the maximum growth rate (per h).

2.4.2. Secondary Models

To describe the temperature effect on μmax and λ, a second model (square root model)
was used as follows: √

1/λ = a1 × (T − Tmin1), (3)
√

μmax = a2 × (T − Tmin2) (4)

where a1 and a2 are regression coefficients; T is the real temperature in ◦C; Tmin1 and Tmin2
are the theoretical minimum growth limits in ◦C.

2.5. E-Nose Analysis

Detection of the volatile compounds of the tuna flesh was performed by an electronic
nose (E-nose, Fox 4000 Alpha-MOS, France). The 18 sensors are designed as follows:
LY2/LG “Chlorine, fluoride, nitrogen oxide”, LY2/G “Ammonia, amines, carbon oxides”,
LY2/AA “Alcohol”, LY2/gCTL “Hydrogen sulphide”, LY2/gCT “Propane and butane”,
T30/1 “Polar compounds, hydrogen chloride”, P10/1 “Hydrocarbon, ammonia, chlorine”,
P10/2 “Methane and ethane”, P40/1 “Fluoride and chlorine”, T70/2 “Toluene and xylene”,
PA/2 “Ethanol, ammonia, amines”, P30/1 “Hydrocarbon”, P40/2 “Chlorine and fluoride”,
P30/2 “Hydrogen sulfide and ketones” T40/2 “chlorine”, T40/1 “Fluoride”, TA/2 “Alco-
hol”. A total of 2.0 g of flesh was placed in a 10 mL vial for 10 min at 50 ◦C to generate
balanced headspace samples. The gas flow rate was 2.5 mL/min, and the sensor cleaning
time was 8 min. Then, the sensor response of the E-nose was determined as G/G0 (G0 and
G represent the conductivity of the sensor exposed to the zero gas and sample gas). The
measurement cycle of the E-nose of the sample was the same as above.

2.6. Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrometry
(SPME-GC/MS) Analysis

According to the method of Li et al. [25] with minor modifications, 2 g of the minced
sample was placed into a 20 mL glass vial and equilibrated at 40 ◦C for 20 min. The SPME
extraction fiber was exposed to headspace for 30 min. Gas chromatography coupled with
mass spectrometry (GC-MS) was used to measure the volatiles in bigeye tuna. The carrier
gas was helium (high purity 99.999%), with a constant flow rate of 1 mL/min. The oven
temperature program was as follows: initial temperature of 40 ◦C for 5 min, 5 ◦C/min to
120 ◦C, then 10 ◦C/min to 250 ◦C, and held for 5 min. Next, the volatiles were transferred
to the MS system, MS source and quadrupole: 230 and 150 ◦C, respectively. Mass spectra
were obtained within the mass range of 20–400 m/z at 70 eV. The VOCs of samples stored
at 4 and 10 ◦C were measured. The samples at 4 ◦C were measured on days 4, 8 and 12,
and the samples at 10 ◦C were measured on days 2, 4 and 6.

2.7. Statistical Analysis

The measurement experiments of pH, TVB-N, TMA, TNS, and SPME-GC/MS were
repeated three times, and the EC and E-nose experiments were repeated ten times. The
data of VOCs were expressed as the mean ± standard deviation. The growth kinetic
model of S. putrefaciens was fitted using MATLAB 2017b (Math Works Inc., Natick, MA,
USA). Pearson correlation analysis was used to evaluate the correlation between sensor
response values and TNS to select appropriate sensors for predicting the dynamic growth
of S. putrefaciens. Duncan’s test and Pearson correlation coefficient were performed using
SPSS 19.0 (SPSS Inc., Chicago, IL, USA). PLS regression was used to predict the spoilage
potential of S. putrefaciens in tuna including TVB-N, TMA, and TNS. It is well known
that the predictive performance of the calibration model cannot be determined merely by
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the internal validation but should also be externally validated based on predictions for
samples not included in the calibration test. Data measured by the E-nose and electric
conductivity meter were randomly divided into a training set (developing fitted models)
and a testing set (validating models) in the ratio of 7:3. The training set of response values
of the E-nose sensors was used as the data for building models, and the testing set was used
as independent data to verify the accuracy of models. The data of pH, TVB-N, TMA, TNS,
and SPME-GC/MS were not divided into training and validation sets. This was mainly
because the data obtained from the E-nose and EC meter were used as source data of rapid
detection to predict spoilage indicators (including TVB-N, TMA, TNS, and SPME-GC/MS)
in the samples. Therefore, the spoilage indicators were used as a predicted object without
being divided into training and validation sets (each indicator was considered as a whole).
In addition, TNS was also one of the predicted indicators and was not divided into training
and validation sets for the growth curve fitting. The model accuracy was evaluated by
determination coefficient (R2) and root-mean-square error (RMSE). RMSE was calculated
as follows:

RMSE =

√
1
n

n

∑
i=1

(
ym − yp

)2 (5)

where ym and yp are measured and predicted values.

3. Results and Discussion

3.1. TVB-N and TMA

Changes in the TVB-N content of bigeye tuna blocks are shown in Figure 1A. The TVB-
N values increased in inoculated tuna blocks throughout the storage period at different
temperatures. TVB-N values of all groups showed a slow increase followed by a rapid
increase. This result was consistent with Li et al. [26], who reported that when S. putrefaciens
was inoculated into blunt snout bream flesh stored at 4 ◦C for 14 days, TVB-N values of
samples were slow on the first 8 days, but increased rapidly on the last 4 days.

Figure 1. Changes in total volatile base nitrogen (TVB-N) (A), trimethylamine (TMA) (B), pH (C), Electrical conductivity
(EC) (D), and total number of S. putrefaciens (TNS) of inoculation groups and total viable count (TVC) of control check (CK)
groups (E) in bigeye tuna stored at different temperatures (each point is the mean value of three determinations). CK4, CK7,
and CK10 are CK groups stored at 4, 7, and 10 ◦C. a–g in the same column with different superscripts are significantly
different (p < 0.05). The arrow indicates that the viable count was below 2.0 log CFU/g.
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The TMA value increased gradually during storage at 4, 7, and 10 ◦C (Figure 1B).
Similar to the variation pattern of TVB-N values, the TMA values of inoculated tuna
samples stored at 10 ◦C for 6 days were higher than those stored at 4 and 7 ◦C. This result
indicated that temperature is a vital factor for microbial activity. The possible reason for
the significant difference between the results for the CK and inoculated group may be that
the production of TMA was promoted by S. putrefaciens in the inoculated samples, and the
type of bacteria determined the ability to produce TMA. The TMA of samples increased
exponentially with storage time, which was in agreement with [27], who reported that the
change in TMA of yellowfin tuna fitted an exponential growth during the refrigeration.

3.2. pH and EC

The changes in the pH of aquatic products were closely associated with a series of
chemical reactions caused by endogenous enzymes and microorganisms [28]. Changes in
pH values in tuna samples at different temperatures are presented in Figure 1C. The initial
pH value was 6.21 with a decreasing and then an increasing trend. A decrease in pH of the
samples was due to the generation of lactic acid and the release of inorganic phosphate
by decomposition of ATP [1], while the increase in the pH value was related to the release
of alkaline decomposition products, such as histamine and TMA produced by spoilage
microorganisms [29]. The pH of the sterile fish blocks (CK) stored at 4 ◦C fluctuated around
6.21, while those stored at 7 and 10 ◦C increased slowly. This may be due to the growth
and metabolism of residual microorganisms in the CK group, and a similar phenomenon
was observed in TVB-N and TMA.

EC can be used to detect meat quality from the efflux and excessive breakdown of
body fluids from fish tissue during storage. Variations in EC value during cold storage are
presented in Figure 1D. Initially, the EC in samples was 1057 μS/cm, and the EC of each
group of samples increased significantly during storage. The change rate of EC values was
higher for samples stored at higher temperatures. The significant increase in EC may be
due to the autolysis of tuna cells after death and the decomposition of various nutrients in
the cells into ions and small molecule metabolites with electrical conductivity under the
action of enzymes and microorganisms, which enhances the electrical conductivity of the
cell leachate [30]. Similar to the TVB-N and TMA curves, EC values increased slowly in the
CK groups stored at 4, 7, and 10 ◦C.

3.3. Results of the E-Nose Analysis

As shown in Figure 2, odor maps were obtained with the E-nose from samples
stored at 4, 7 and 10 ◦C. Response values from each sensor represent the average of
10 measurements. The E-nose responses of bigeye tuna samples stored at different storage
temperatures showed a similar trend. Furthermore, sensors T70/2, PA/2, P30/1, and
P30/2, which were sensitive to aromatic compounds, amines, hydrocarbons, and hydrogen
sulfide, increased significantly at all storage temperatures. However, the signal values of
sensors PA/2 and P30/2 increased more remarkably at 7 and 10 ◦C than those at 4 ◦C,
indicating that storage temperature was an essential factor affecting the production of
some compounds of tuna in storage. This finding was consistent with other studies that
found temperature to be an important factor influencing the production of metamorphic
substances in fish during refrigeration [31]. Changes in sensor signal values over time at
different temperatures may be due to an increase in volatile gas concentrations and the
production of new gas species [32], which may be related to the growth temperature and
the number of S. putrefaciens.
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Figure 2. Average responses of 18 sensors in tuna samples inoculated with S. Putrefaciens at different temperatures
during storage.

The corresponding values from the sensor arrays were explored to determine the
differences in volatilization patterns of tuna during different cold storage periods using
principal component analysis (PCA). To test whether the electronic nose could distinguish
samples with different storage times, PCA was employed to investigate the feasibility of
distinguishing tuna inoculated with S. putrefaciens sampled at different times and tem-
peratures based on E-nose signals. As shown in Figure 3, the differences in tuna with
different storage times can be represented using two main principal components (PCs),
which accounted for 88.95% (4 ◦C), 93.78% (7 ◦C), and 80.8% (10 ◦C) of the total variance
in PC1 and 5.22%, 4.71%, and 14.38% in PC2. Regarding the samples stored at 4 ◦C, the
data points of groups 0, 2 and 4 d were placed in the first cluster, whereas the other groups
were separated into another three clusters (6, 8 and 10–12 d). The data points of groups
at 0, 2, and 4 d were similar, indicating that the odor profiles of the early contaminated
samples were relatively similar. But the samples at 6, 8, 10, 12 d were clearly classified
by PCA. For the samples stored at 7 ◦C, groups at 0 and 2 d were mixed in a cluster, and
groups at 4 and 6 d had a clear right downshift along the ordinate (PC 1), located into the
second cluster. Groups at 8 h were separated into another cluster along the abscissa (PC2),
located away from other clusters. In 10 ◦C groups, the data of groups at 0–2 d located
into the first cluster, and another two clusters contained 3–5 d and 6 d, respectively. For
samples stored at 7 and 10 ◦C, PCA analysis indicated that the data points of the samples
at the beginning of storage (0 and 2 d for 7 ◦C, 0 and 1 d for 10 ◦C) overlapped and were
initially difficult to distinguish but could be distinguished at later time points. The samples
stored at 4, 7, and 10 ◦C showed that the E-nose based on PCA analysis poorly identified
very early contaminated samples but had good overall resolution for tuna inoculated with
S. putrefaciens. Therefore, E-nose could be employed as a promising approach to realize the
prediction of dynamics and spoilage of Shewanella putrefaciens.
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Figure 3. PCA score plots based on electronic nose measurements of tuna inoculated with S. Putrefa-
ciens with different incubation times.

3.4. Dynamic Growth of S. putrefaciens in Tuna

The changes in the viable count of bigeye tuna are shown in Figure 1E. Gompertz
and logistic models were fitted to the dynamic growth of S. putrefaciens. As shown in
Table 1, the high R2 and low RMSE values indicated a good fit of models, with ranges
of 0.985–0.999 and 0.0654–0.283, respectively. The lag time of the lag phase (λ) and the
maximum specific growth rate (μmax) were two vital parameters for predicting the growth
of microorganisms [33]. λ is especially vital to monitor food microorganisms and ensure
food safety [34]. In our work, it was clear that the value of λ for S. putrefaciens decreased
with increasing temperature, while μmaxe was the opposite (Table 1). We observed that
the storage temperature had a significant effect on the growth of S. putrefaciens, with slow
growth rates at 4 and 7 ◦C, while a significant growth was observed at 10 ◦C based on λe
and μmaxe values. The growth of S. putrefaciens in tuna was in agreement with previous
studies [35]. In addition, the initial colony count (N0) of S. putrefaciens in tuna ranged from
2.3 to 3.3 log CFU/g; the value of the maximum colony count (Nmax) peaked between 8.5
and 10.4 log CFU/g, according to two growth models.

Table 1. The primary growth models of S. putrefaciens in tuna at different temperatures based on modified Gompertz and
logistic equation by CFU.

Fitted
Models

T/◦C Equations λe (h) μmaxe (h−1) No Nmax R2 RMSE

Gompertz
4 f(x) = 2.276 + 6.222 × exp(−exp(0.07551/6.222 × (68.8 − x) + 1)) 68.8 0.02778 2.276 8.498 0.997 0.101
7 f(x) = 3.292 + 7.149 × exp(−exp(0.1375/7.149 × (42.67 − x) + 1)) 42.67 0.05059 3.292 10.441 0.994 0.1387

10 f(x) = 3.252 + 6.331 × exp(−exp(0.2/6.331 × (24.36 − x) + 1)) 24.36 0.07358 3.252 9.583 0.986 0.283

Logistic
4 f(x) = 3.053+5.783/(1 + exp(0.02028 × (166.6 − x))) 166.6 0.02028 3.053 8.836 0.998 0.0763
7 f(x) = 3.092 + 6.657/(1 + exp(0.03285 × (105.9 − x))) 105.9 0.03285 3.092 9.749 0.999 0.0654
10 f(x) = 2.83 + 6.48/(1 + exp(0.04478 × (63.6 − x))) 63.6 0.04478 2.83 9.31 0.985 0.167
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However, the primary models cannot estimate the effect of temperature on the growth
of S. putrefaciens in tuna, but the secondary model can evaluate it. Therefore, the square
root model was used to describe the relationship between the growth parameters (

√
μmaxe

and
√

λe−1) and the storage temperature for the microbe. As shown in Figure 4, the
results showed a strong linear correlation between the kinetic parameters and the storage
temperature, with R2 values higher than 0.98. Our study also predicted the minimum
growth temperature (Tmin) of S. putrefaciens in tuna in the range of −8.5 to −4.6 ◦C based
on a secondary model, which was slightly higher than −11.4 ◦C predicted by [36]. This
may be due to the difference in fish samples and handling.

Figure 4. The secondary growth models of S. putrefaciens based on modified Gompertz (A,C) and
logistic model (B,D).

3.5. Modeling the Kinetics of S. putrefaciens in Tuna with E-Nose Sensors

In this study, Pearson correlation analysis was used to determine the correlation
between the signal values of sensors and the number of S. putrefaciens colonies in tuna.
Finally, sensor P30/2 was selected (data not shown). In addition, the relatively high
response values of sensor P30/2 and the considerable variation with storage time indicated
its sensitivity to tuna samples during storage. Therefore, in the same way, an attempt was
made to simulate the growth of S. putrefaciens by fitting the response of the sensor with
Gompertz and logistic functions. Sensor P30/2 responses were fitted via Gompertz and
logistic models to simulate S. putrefaciens growth according to the training set, and the
validation set was used to verify the quality of the prediction models. The parameters of
the generated mathematical equations are shown in Table 2, and the λe and μmaxe of CFU
were derived from Table 1. The sensor fitted both models well, with high Rc

2 and low
RMSEc values, in a range of 0.971–0.994 and 0.0208–0.0472, respectively. Validated with the
testing set, the fitting models were credible, with similar high Rp

2 and low RMSEp values
of 0.963–0.987 and 0.0301–0.0613, respectively.
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Table 2. Parameters of dynamic growth models of S. putrefaciens in tuna stored at different temperatures based on P30/2 by
modified Gompertz and logistic equations.

Model T/◦C Equations
Training Set Testing Set Sensor CFU

r
Rc2 RMSEc Rp2 RMSEpc λs (h) μmaxs (h−1) λe (h) μmaxe (h−1)

Gompertz

4
f(x) = 0.280 + 0.401 ×

exp(−exp(0.0102/0.4023 ×
(90.05 − x) + 1))

0.978 0.0261 0.968 0.0307 90.05 0.003753 68.8 0.02778 0.986

7
f(x) = 0.282 + 0.6125 ×

exp(−exp(0.0229/0.6125 ×
(52.27 − x) + 1))

0.994 0.0208 0.985 0.0334 52.27 0.008425 42.67 0.05059 0.976

10
f(x) = 0.2872 + 0.509 ×

exp(−exp(0.03126/0.509 ×
(40.51 − x) + 1))

0.983 0.0341 0.987 0.0324 40.51 0.01150 24.36 0.07358 0.986

Logistic

4 f(x) = 0.2598 + 0.4307/(1 +
exp(0.03033 × (156.50 − x))) 0.971 0.0315 0.965 0.0329 156.50 0.03033 166.6 0.02028 0.996

7 f(x) = 0.2352 + 0.658/(1 +
exp(0.03812 × (95.24 − x))) 0.977 0.0472 0.963 0.0613 95.24 0.03812 105.9 0.03285 0.995

10 f(x) = 0.2629 + 0.5553/(1 +
exp(0.04864 × (60.36 − x))) 0.978 0.0391 0.987 0.0301 60.36 0.04864 63.6 0.04478 0.999

In addition, the P/30 λs and μmaxs values obtained by the sensor based on the logistic
model fit were closer to the results obtained from the actual growth model compared to
the Gompertz model (Table 2). It indicated that the logistic model was more suitable for
predicting of the growth of S. putrefaciens by the gas sensor in our study, which was different
from the result reported by Gu et al. [34]. This difference may be due to differences in the
gas sensors selected and strains. Kinetic parameters (λs and μmaxs) are of special interest
in predicting microbiology and are of high practical value in monitoring food quality and
safety [37]. A high correlation coefficient (r) was obtained by comparing the growth fit
models generated by sensor P/30 with the models in Table 1, which indicated that the
response changes of sensor P/30 to the sample were similar to the growth of S. putrefaction.
Microbial kinetic models according to microbial counting methods often have difficulty in
obtaining λs and μmaxs of microbial growth because of long training times [38]. Our study
showed that a microbial odor response sensor may be used to simulate the dynamics of
S. putrefaciens in tuna, but this requires more experimental verification.

A secondary model of the gas sensor P30/2 was also established and showed a good
fit with R2 in the range of 0.965–0.998, and the linear relationship based on logistic equation
was slightly stronger than that of the Gompertz equation for λs and μmaxs (Figure 5).
Most studies predicted the number of microorganisms based on the chemometric method
using multiple E-nose sensors [31,39,40], but rarely predicted the dynamic growth of
spoilage microorganisms in aquatic products by a single sensor. In our study, primary and
secondary kinetic models of S. putrefaciens in tuna were fitted by a single sensor, and the
kinetic parameters were obtained.

3.6. Prediction of the Spoilage of S. putrefaciens in Tuna

To predict the spoilage level of inoculated bigeye tuna, the PLS algorithm was used
to evaluate the correlation between the E-nose responses and spoilage indicators (TVB-N,
TMA, and TNS) of the tuna. In addition, the changes in tissues caused by fish spoilage
can be reflected by electrical conductivity [41,42], and the measurement method of EC is
relatively simple. Therefore, the sensor responding values of E-nose and EC values were
also combined to predict the spoilage of tuna. For PLS regression modeling, E-nose and
EC measurement values from each group were randomly separated into two sets: seven
samples used as the calibration set for and the remaining three samples as the prediction
set. The leave-one-out cross-validation method was used to improve the accuracy of the
PLS model.
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Figure 5. The secondary growth model of S. putrefaciens based on the response values of selected
sensors P30/2. (A,B): Square root model based on Gompertz model; (C,D): Square root model based
on logistic model.

Scatter graphs of the count of S. putrefaciens in tuna stored at 4 ◦C based on the PLS
with and without EC values are given in Figure 6. The R2 and RMSE values between the
predicted and experimental values are shown in Table 3. It is well known that the key to
evaluating the quality of a predictive model is not only internal validation (calibration)
but also external validation of samples not included in the calibration set [43]. In the two
sets, the predictions of the PLS models with and without EC values performed well, and
the PLS model with EC values was better than those without EC values, except for the
prediction of TMA values for tuna stored at 10 ◦C (but the difference was not significant).
The reason for this result was that the accuracy of the PLS prediction model improved by
adding the index (EC) that had a great correlation with the prediction object [44].

Table 3. Calibration and validation results in tuna stored at different temperatures based on the PLS model with and
without EC values.

Indicators Temperatures (◦C)

PLS without EC Values PLS with EC Values
Calibration Set Validation Set Calibration Set Validation Set

Rc
2 RMSEc Rv

2 RMSEv Rc
2 RMSEc Rv

2 RMSEv

TVB-N (mg/100 g)
4

0.9713 0.9327 0.9775 0.8673 0.9812 0.7519 0.9902 0.6448
TMA (mg/100 g) 0.99 0.1932 0.9862 0.2425 0.9905 0.189 0.988 0.2237

TNS (log10 CFU/mL) 0.9808 0.2679 0.9702 0.3589 0.9868 0.222 0.9843 0.2653

TVB-N (mg/100 g)
7

0.9874 0.6461 0.9863 0.6981 0.9925 0.4966 0.9919 0.5053
TMA (mg/100 g) 0.9956 0.1418 0.9851 0.322 0.9962 0.1326 0.9966 0.1292

TNS (log10 CFU/mL) 0.9956 0.1594 0.9923 0.225 0.9957 0.1565 0.995 0.1742

TVB-N (mg/100 g)
10

0.9932 0.5411 0.9896 0.6755 0.9958 0.4485 0.9963 0.4214
TMA (mg/100 g) 0.9897 0.276 0.9871 0.3478 0.9876 0.3020 0.9826 0.3837

TNS (log10 CFU/mL) 0.9857 0.2735 0.969 0.4185 0.9963 0.1396 0.9864 0.2705
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Figure 6. Reference measured data versus predicted data from the PLS models for prediction of
the total number of S. putrefaciens (TNS) in tuna stored at 4 ◦C. (A,B): PLS models for calibration
and validation set without EC values; (C,D): PLS models for calibration and validation set with
EC values.

3.7. Volatile Compounds in Tuna Samples According to HS-SPME/GC-MS

In this work, a total of 30 VOCs were detected in the control and inoculated groups
(Table 4). The changing trend of VOCs at 10 ◦C was greater than that at 4 ◦C, and various
VOCs in this study were previously reported to be products of protein or lipid oxidation
metabolism [45]. To exclude the effect of oxidation of the fish itself on VOCs, this study
also measured the VOCs produced by non-inoculated tuna blocks during storage.

The increasing tendency of 1-Penten-3-ol, 1-Octen-3-ol, and 2-Hexen-1-ol, (Z)- was
observed in tuna during storage, and their increase was associated with auto-oxidative
derivatization of polyunsaturated fatty acids [46]. Ethanol was present only in the early
stages of tuna storage (day 0, day 4–4, and day 2–10) and was not detected as the storage
period increased, which was similar to the results of Liu et al. [10]. This may be related
to the fact that the metabolic process of Shewanella does not produce ethanol but can use
it [4]. In addition, hexanal, heptanal, octanal, nonanal, and propanal were detected at
the early stage of storage, and the above substances were confirmed to be produced by
fat oxidation and had a fishy odor. The content of hexanal increased with storage time
and storage temperature, which may indicate that the fat in tuna was oxidized. The
changes of aldehydes reflect the degree of oxidation of polyunsaturated fatty acids such
as linoleic acid in bigeye tuna, which can be used as a basis for judging the freshness of
tuna. Ketones including 2-nonanone, 2-undecanone, and 2-heptanone were significantly
higher in inoculated tuna compared to the control group. These ketones may originate
from lipolysis and dehydrogenation by spoilage bacteria [47], which explains the low
ketone content of fresh fish samples (day 0). Some hydrocarbons were also detected in this
study, which were mainly derived from the decomposition of alkoxy radicals of fatty acids.
Various hydrocarbons were present in the volatiles of crustaceans and fish, but they had a
high threshold and made little contribution to the flavor of bigeye tuna [48]. Methylamine,
N, N-dimethyl-(so-called trimethylamine) were detected only after 8–12 days at 4 ◦C and
4–6 days at 10 ◦C, which may be because of higher concentrations of TMA in the inoculated
tuna during the late storage period. Dimethyl disulfide was detected in the inoculated tuna
at the late storage period. This compound derived from the methionine catabolism that
was produced by S. putrefaciens [49].
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3.8. Relationship between E-Nose Results and VOCs

In this work, characteristic VOCs, including alcohols, aldehydes, ketones, amines, and
sulfide compounds, played a significant role in distinguishing tuna samples infected with
S. putrefaciens by GC-MS at different temperatures. Sensor P30/2 was sensitive to hydrogen
sulfide and ketone. Comparing the VOCs with the sensor P30/2, the presence of alcohols,
ketones, amines, and sulfide compounds had a significant impact on the sensor response.
The significantly increased response values of the P30/2 were consistently correlated with
the increased concentrations of ketones and sulfides. In addition, the relationship between
sensor responses and VOCs was investigated by Pearson correlation coefficients (Figure 7).
Correlation coefficient results indicated that the sensor responses were positively correlated
with 1-octen-3-ol, 2-nonanone, 2-heptanone, dimethyl disulfide, and methylamine, N,
N-dimethyl-, which revealed that the P30/2 was sensitive to representative VOCs of tuna
inoculated with S. putrefaciens. In particular, dimethyl disulfide, and methylamine, N,
N-dimethyl-, as the characteristic volatile compounds of S. putrefaciens [10], contained
high content, which contributed significantly to the high signals of P30/2 to inoculated
tuna. Therefore, the selected sensor could be used to discriminate tuna infected with
S. putrefaciens through the specific response to characteristic VOCs.

Figure 7. Correlations between sensor responses and GC-MS data (A): 4 ◦C; (B): 10 ◦C.

4. Conclusions

This work demonstrated that the growth of S. putrefaciens in tuna samples stored at 4,
7, and 10 ◦C was consistent with two primary kinetic models (Gompertz and logistic), with
high R2 and low RMSE values in the range of 0.985–0.999 and 0.0654–0.283, respectively,
as well as a secondary kinetic model with high R2 values in the range of 0.9859–0.9958.
The selected sensor P30/2 accurately predicted the dynamic growth of S. putrefaction. In
addition, the secondary model was used to characterize the relationship between the
storage temperature of the samples and the growth kinetic parameters of S. putrefaciens.
The secondary model fitted with the sensor P30/2 accurately estimated the influence
of temperature on the kinetic parameters of S. putrefaciens and the minimum growth
temperature range of S. putrefaciens. The PLS model based on the E-nose response values
with the EC values was more accurate than the model without the EC values in predicting
the spoilage of tuna inoculated with S. putrefaciens. Based on the GC-MS analysis, several
alcohols, ketones, amines, and sulfide compounds, especially 1-octen-3-ol, 2-nonanone,
2-heptanone, dimethyl disulfide, and methylamine, N, N-dimethyl- were determined as
characteristic VOCs in tuna infected with S. putrefaciens stored at 4 and 10 ◦C. These results
revealed that the E-nose can have a wide range of applications for predicting the growth of
spoilage microorganisms and performing a quantitative analysis of spoilage in tuna.
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Abstract: Fish freshness can be considered as the combination of different nutritional and organolep-
tic attributes that rapidly deteriorate after fish capture, i.e., during processing (cutting, gutting,
packaging), storage, transport, distribution, and retail. The rate at which this degradation occurs is
affected by several stress variables such as temperature, water activity, or pH, among others. The
food industry is aware that fish freshness is a key feature influencing consumers’ willingness to
pay for the product. Therefore, tools that allow rapid and reliable assessment and prediction of the
attributes related to freshness are gaining relevance. The main objective of this work is to provide a
comprehensive review of the mathematical models used to describe and predict the changes in the
key quality indicators in fresh fish and shellfish during storage. The work also briefly describes such
indicators, discusses the most relevant stress factors affecting the quality of fresh fish, and presents a
bibliometric analysis of the results obtained from a systematic literature search on the subject.

Keywords: mathematical modelling; fish quality; fish freshness; bibliometric analysis; predictive
microbiology; stress variables; quality degradation

1. Introduction

The main causes of food discarding among consumers and retailers are the food
aspect, outdating, and safety uncertainty [1]. Damage and spoilage of foods lead to
around 15% of waste, which increases to 35% if food is subject to inadequate storage and
transport conditions [2,3]. Mathematical modelling describing the evolution of food quality
indicators, under given storage and transport conditions, is central to minimising food
waste [2]. Therefore, the prediction of fresh fish quality is a major challenge for the food
industry, distributors and retailers to adjust prices and minimise food waste.

Fresh fish and shellfish are highly perishable products due to their biological com-
position. Under normal handling chilled or refrigerated storage conditions, their shelf
life is limited by enzymatic, chemical and microbiological spoilage. Fresh fish is stored,
transported and distributed in boxes of high-density poly-ethylene filled with ice. Other
common conservation methods for fresh fish are the transport and storage in tubs with
water and ice or at superchilling temperatures [4,5]. From fish capture to consumer con-
sumption, there are several factors affecting fish quality, being temperature the most
relevant. The prediction of fish quality in all these cases is critical to determine the price of
the product and sell it before it is not of sufficient quality, or even safety, for the consumer.

Quality in fresh fish, and generally in food, is a broad concept that involves different
attributes (chemical, physical, microbiological, sensory) which can be measured either
directly or indirectly. In the last decades, several analytical techniques have arisen [6]
including biosensors to measure microbial pathogens or biogenic amines [7]; electronic
noses or electronic tongues for volatile compounds, K-value or TVB-N [8,9]; or hiperespec-
tral imaging to determine moisture content or texture [10,11]; among other. The selection
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of the analytical method depends on the selected indicator, but also on properties such
as accuracy, reliability, portability, rapidity, easiness to use and analyse the results, time
consumption and price. Ideally, the methods should be also non-destructive and non-
invasive [12]. Recent works [6,13,14] present exhaustive reviews regarding the different
analytical methods considered in the literature to measure the most commonly used quality
indicators for fish freshness assessment. Typically, assessment methods focus on fish quality
at the moment of measurement but are unable to predict quality changes in the following
days. Prediction requires the use of appropriate mathematical models. It is important to
mention that some authors, for instance, ref. [15–17], use the term predictive model to denote
models that correlate freshness indicators with experimental measurements (pH, TVB-N,
hyperspectral imaging, Electronic nose data, etc.). Typically, some type of regression is used
to obtain these models. Although these works are common and necessary, in this review,
we will use the term predictive for those models able to forecast the future evolution of the
freshness indicators. Otherwise, we will use the term assessment or estimation. Mathematical
models for the prediction of fresh fish quality are diverse and difficult to classify.

In this review, we propose the use of general features of the mathematical structure to
organise the different modelling alternatives, as illustrated in Figure 1. The final objective
of the model is either to estimate (using indirect online measurements) or to predict one
or more chemical, physical, microbiological or sensory attributes that are indicators of the
consumer’s perception. Such attributes (odour, texture, TVB-N, spoilage bacteria, etc.) are
the output of the model (blue part of the figure). The input of the model (red part of the
figure) can be any external factor (temperature, pH, fish feed, etc.) affecting the quality
indicators. The model (orange part of the figure) provides a quantitative relationship
between inputs and outputs either using empirical relationships or inspired by known
mechanisms of fish quality degradation.

Models Re-
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factors/attributes
(Section 4)
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Factors
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and slaughter
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Figure 1. Fish quality models are described attending to their Quality attributes (Section 2), Stress
factors (Section 3) and models, i.e., mathematical relationships between attributes and stress factors
(Section 4).

This review is organised following the structure presented in Figure 1. It begins by
summarising the results of the systematic literature review performed to investigate the
most typical quality attributes used to define fish quality, including a brief description
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of the procedure followed to perform such a review. Secondly, it introduces the relevant
stress factors affecting fish freshness. Such stress factors can be split into two groups:
Pre-slaughter/slaughter conditions, and handling, storage and distribution conditions.
In Section 4, we review the mathematical relationships or models that allow us to describe
and predict fish quality attributes (outputs) as a function of the stress factors (inputs).
As a final remark, we will discuss what we think are the main challenges for modelling
fish quality and possible alternative solutions to consider in the future. As a general
rule, we will denote by fish quality any positive attribute, either nutritional, organoleptic
or a combination, in fresh fish, and therefore related to fish freshness. In this regard,
issues not related to fresh fish were not considered in this review, such as processed fish
(cooked, sterilised, etc.) or social aspects such as food security or production of added-value
compounds.

2. Quality Attributes (Model Outputs)

Food quality in fresh fish and fresh fishery products is a broad and complex concept
defined by a set of attributes (quality attributes) that are either nutritional, organoleptic, or a
combination of both. The levels (concentrations) of some chemical compounds describe
nutritional quality attributes. Examples of nutrients include vitamins, bioactive forms
of oligo-elements, essential amino acids, digestible proteins or unsaturated fatty acids,
among others. On the other hand, colour, texture, flavours or aroma are attributes defining
the organoleptic quality of a particular food product. Organoleptic variations in fish are
caused by changes in chemical, microbiological and physical properties. Sometimes, quality
attributes are defined by the level of a particular biological, chemical or biochemical factor
(e.g., the concentration of a given vitamin, nucleotide, enzyme, or bacteria, among others),
although usually, it is the result of a combination of different factors. For example, colour
is the (observable) result of a certain combination of pigments on a given food matrix that
have been produced or consumed under the action of many biochemical transformations.
Other quality attributes, such as freshness, are defined by the combination of nutritional
and organoleptic properties which deteriorate with time. Freshness can quantitatively be
described using different sensory scores, such as the Quality Index Method (QIM), or other
simpler indicators, such as the shelf life dating of a given food product, either to specify
the last date when the product must be sold (“sell by date”), the “high-quality” period or
the date when the product must be removed from the store [18].

We have analysed this diversity of quality attributes studied in the literature, and their
interconnections, by conducting a systematic bibliographic review and bibliometric analysis
of the articles (in the Web of Science Core Collection database, Food Science and Technology
category). Figure 2 summarises the procedure we have followed to perform the systematic
literature search.

Terms related to 
fish quality

Terms related to
fish names

Terms related to 
off-topic issues

NEAR/5

NOT

Abstract, title and
keywords analysis

New terms

Terms related to
modelling

1636 works

33 works

Full paper analysis

25 works

Figure 2. General scheme of the procedure followed in this manuscript to perform the systematic
literature search.
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Inside the dashed rectangle, we represent the iterative part of the procedure. First,
we constructed two lists. One of the lists contained terms related to fish quality, such as
freshness, K-value, and lipid oxidation, among others. The other one contained general
terms such as seafood or shellfish and fish species names. In the search, words from both
lists must appear in a major field (abstract, title or author keywords). We have found
many works that included words from both lists, in which the quality terms were not
related to fish. To avoid these situations, we used a maximum separation of five words
(NEAR/5) between the terms in both lists. This separation was chosen by the trial and
error method with the objectives of avoiding the exclusion of manuscripts within the scope
of this work (shorter separations) and minimising the number of off-topic manuscripts
(larger separations). Since the focus of this review is on fresh fish, we have excluded from
the search (NOT) those words related to off-topic issues such as processing (sterilisation,
modified atmosphere, etc.), production of added-value compounds (essential oils, gelatin,
etc.), food security or other social aspects, among others. The initial search still included
works not related to fresh fish quality so we identified, new terms that should be avoided,
and repeated the search. The list of terms included and excluded in the systematic search is
presented in Appendix A. This iterative procedure resulted in 1636 works. Details about
such works and a bibliometric analysis are available online in the repository [19]. In this
material, the interested reader can access 2 types of reports: a PDF file that includes the
main results of the general search, and 12 interactive reports for sub-collections defined as
the group of works where one of the 12 selected quality attributes is mentioned in a major
field. Table 1 summarises the results of the systematic review for each of the 12 categories or
groups. The table presents, for each category, the number of works, total citations, average
citations per work, and the most cited works.

Table 1. Most employed quality attributes in the literature. The number of total citations per year is
used to obtain the most cited articles. The terminology used for each attribute was: Lipid oxidation
(fatty acid*, lipid oxidation, TBA, TBARS, thiobarbituric), Sensory analysis (QIM, QSM, sensory
analysis, sensory evaluation, sensory method, TVB-N/TMA-N (TVB-N/TMA-N), Spoilage bacteria
(SSO, spoilage bacteria, spoilage microorganism*), Texture properties (texture, hardness, firmness),
Biogenic amines (biogenic amine*), Odour (odour, odor), Colour (colour, color, chromatism), Nutrients
(nutrient*, vitamin), Water content/activity (water content, water activity) and Electrical properties
(electrical properties, conductance, conductivity).

Quality Attribute
Citation
Counts

No.
Works

Avg.
Citations per

Work
Most Cited Works

Lipid oxidation 10,875 474 22.9 Herrero [12], Richards and Hultin [20], Grigorakis et al. [21]
Sensory analysis 5295 209 25.3 Ólafsdóttir et al. [22], Al Bulushi et al. [23], Olafsdottir et al. [24]

TVB-N, TMA-N 4386 185 23.7 Pacquit et al. [25], Papadopoulos et al. [26], Ruiz-Capillas and
Moral [27]

Spoilage bacteria 3876 155 25.0 Al Bulushi et al. [23], Gram et al. [28], Dalgaard [29]
Texture 3587 176 20.4 Herrero [12], Olafsdottir et al. [24], Alasalvar et al. [30]

ATP degradation 3509 124 28.3 Ólafsdóttir et al. [22], Veciana-Nogués et al. [31], Jones et al. [32]
Biogenic amines 3282 112 29.3 Al Bulushi et al. [23], Veciana-Nogués et al. [31], Kim et al. [33]

Odour 3066 119 25.8 Papadopoulos et al. [26], Ramanathan and Das [34], Kawai [35]
Colour 2830 149 19.0 Pacquit et al. [25], Kuswandi et al. [36], Huang et al. [37]

Nutrients 704 62 11.3 Chakraborty and Raj [38], Moreda-Piñeiro et al. [39], Palaniappan
and Vijayasundaram [40]

Water
content/activity 573 32 17.9 Cakli et al. [41], Morzel et al. [42], Raju et al. [43]

Electrical properties 381 11 34.6 Olafsdottir et al. [24], Vaz-Pires et al. [44], Yao et al. [45]

Additionally, we have incorporated in the repository a PDF file that contains the
information included in the interactive reports. All the reports, iterative or not, include a
general analysis of the collection (including, for example, time span, collaboration index,
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authors per article, citations per year), and analysis of the countries, authors, articles and
journals. Networks of co-citations and keyword co-occurrences were also incorporated.
Moreover, the collections can be downloaded as an Excel file and the graphs and tables can
be manipulated to, for example, constrain the works to those where certain words, selected
by the user, are mentioned in the abstract.

Most of the manuscripts were research articles, dating back from 1949 and with
citations increasing homogeneously since then, except for two jumps in publications in
1977 and 2002. Around 100 works were published in 2021, the last year considered in
the review. The most cited works were written by Ólafsdóttir et al. [22] with a review on
methods to evaluate fish freshness and by Ryder [46] with a method to measure ATP and
its breakdown products to estimate the KI-value. The most productive countries have
been China, USA and Spain. These are also the countries where the documents with the
greatest impact (in terms of average article citations) were produced. Journal of Food
Science (145 documents), Food Chemistry (140 documents) and Journal of Agricultural and
Food Chemistry (72 documents) are the journals with the largest number of publications.
The most productive authors were from the northwest of Spain (S. P. Aubourg, Barros-
Velázquez), whereas the authors with the greatest impact were Ólafsdóttir and Dalgaard
from Iceland and Denmark, respectively.

After the iterative procedure was finished, we refined the search (see Figure 2) to find
those works related to mathematical modelling. We read the resulting 33 manuscripts and
kept those (25) that fitted within the scope of this review.

In the next sections, we define each of the attributes with references to the main works
in the area. For a deeper discussion about these quality attributes we recommend some
recent comprehensive reviews [6,13,14].

2.1. Lipid Oxidation

Lipid oxidation is the attribute gathering the greatest attention, both in terms of the
number of citation counts and of works, with a remarkable increase of publications during
the first decade of the current century remaining almost invariant during recent years.
The most cited researchers on this topic are M. P. Richards and Y. Ozogul. Although fatty
acids are also nutrients (described in Section 2.10), we have decided to consider them
separately because of the importance of lipid oxidation. Fish constitutes the main source of
polyunsaturated fatty acids (PUFA), up to 40% of long chain fatty acids [47], with quantity
and composition changing with the catching period and depending on whether the fish
is wild or cultured [21]. PUFA are easily oxidised into aldehydes, responsible for changes
in flavour, texture and odour, known as rancidity [6,12,20,22,48], and are highly affected
in most of the cases by previous fish bleeding [20]. In addition, the oxidation reaction
can decrease the nutritional quality of food and certain oxidative products are potentially
toxic [48]. Primary lipid peroxidation products (peroxide value being its most common
measure) include hydroperoxide that is unstable and decomposes to generate various
secondary products, such as aldehydes that contribute to fish rancidity [12]. The most com-
mon method to measure aldehydes is the thiobarbituric acid-reactive substance (TBARS)
test [22].

The main advantage of this indicator is that the oxidation of unsaturated lipids pro-
duces alterations in smell, taste, texture, colour, and nutritional value [22]. Therefore,
it provides us with a global measure of fish freshness. However, analysis of PUFA is a
destructive method so the fish sample analysed cannot be commercialised.

2.2. Sensory Analysis

Despite being the second most relevant quality attribute in terms of publications (with
G. Ólafsdóttir being to a large extent the most cited author), sensory analysis is the most
used method to assess freshness, probably because it depends on a combination of the other
quality attributes [22]. In this group, we include any form of measure or interpretation of
fish freshness perceived by the senses of sight, smell, taste, or touch. They can be assessed
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by a trained panel or by consumers’ subjective opinions about preferences. The most
common method in Europe is the Quality Sensory Method (QSM) based on the Council
Regulation (EC) No 2406/96 for marketing standards [49]. The output of this method is a
discrete value that classifies fish in four levels of freshness (Extra, A, B, and Not Admitted).
This method is based on shared characteristics in fresh fish and therefore is common to
different fish species. For specific tests, the most common method is the Quality Index
Method (QIM) [50]. The output of the QIM is also a discrete value (0, 1, 2, . . . , n), where
lower values correspond to fresher fish. The criteria to select the value and the number of
levels (n) depend on the fish species considered.

The main advantages of these methods are: (i) they are minimally invasive, and do
not involve the destruction of the sample, since the sense of taste is not included; (ii) they
can be used to estimate fish shelf life by agreeing from which level the food is not con-
sidered of sufficient quality to be sold to the consumer; (iii) instead of focusing on one
particular feature, they provide a global evaluation of fresh fish. However, sensory analysis
methods are highly subjective and depend, to a large extent, on the expertise of evaluators.
The cost associated with the use of a panel of evaluators is another disadvantage. These
disadvantages can be alleviated by using analytical techniques -colourimeters, electronic
noses, hardness testers- instead of a panel of experts .

Another alternative is the Global Stability Index (GSI), a score gathering the influence
of many attributes, sensory or not. The GSI is computed using the following general
expression [51]:

GSI = 1 −
n

∑
i=1

αi
Ai − Ai,0

Li − Ai,0
(1)

Ai and Ai,0 are, respectively, the values of a given attribute, for example, TVB-N or K-value,
at assessment time t and at initial time t = 0. αi is the weight given to each attribute, n is
the total number of attributes considered, and Li is the spoilage threshold for attribute Ai.

2.3. TVB-N/TMA-N

The formation of volatile nitrogen bases, such as trimethylamine (TMA-N), dimethy-
lamine (DMA), or ammonia, from the reduction of trimethylamine oxide (TMAO), is a
widely investigated cause of fish odour. There was a substantial increase in interest during
the 10 years after 1996, being Ruiz-Capillas the most cited author. The total amount of
volatile bases (TVB-N), as well as individual methylamines, have been extensively used as
indicators of quality degradation in postmortem fish [52,53]. The reduction reactions are
catalysed by bacteria such as Shewanella spp. or Pseusomonas spp., during fish spoilage [54].
Some authors [17,26,52] have argued that these volatile bases are poor freshness indicators
for some fish species because of the low content, or even absence, of TMAO. However,
the FAO specified a maximum allowable level in international trading of 10 mg of TMA-
nitrogen per 100 g fish muscle [55].

2.4. Spoilage Bacteria

Research works regarding this quality attribute have increased since 1994 without
any deceleration in the last years as previously described attributes. Dalgaard, Gram and
Bulushi, are, markedly, the most cited authors. Fish freshness deteriorates rapidly with
the growth of Gram negative psychrophilic or psychrotrophic bacteria, named spoilage
bacteria (SSO), due to their ability to reduce TMAO and to produce hydrogen sulphide [28].
Common spoilage bacteria of fish at chilled temperatures are: (1) Shewanella putrefaciens
for being H2S-producing bacteria and with acceptability limits around 107 CFU/g [56]
or even slightly higher 107.02 CFU/g [57], (2) Pseudomonas spp. with the same
acceptability limits [56–58], or larger when analysing for example Pseudomonas psychrofila
(108.5 CFU/g [59]), and (3) broad measurements such as Total Viable Counts (TVC) with a
limit of 106 CFU/g [16]. More information can be found in [28,60,61].
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Since microbial growth and metabolism is the major cause of food spoilage [62],
spoilage bacteria is a key indicator of fish freshness and shelf life. The main disadvantage
is that the procedure to determine bacterial concentration is tedious and time consuming.

2.5. Texture Properties

Bibliometric analysis for texture attributes reveals that many works mentioned this
attribute without being the focus of the work. Among the works considering texture
as a relevant focus, we would like to highlight the review on fish texture [63] and a
research article assessing texture, among other chemical and sensory characteristics, of sea
bream [30].

Texture can be evaluated using minimally invasive techniques. However, contrary
to other food matrices, such as beef, texture in fish is not usually regarded as a relevant
freshness indicator, particularly when considering fresh fish. As mentioned in [64], it
should be considered in combination with other indicators, such as colour and odour. Use
of texture as a fish quality indicator limits to either cooked or frozen fish stored for long
periods, where an increase in toughness and dryness of the tissues can be observed [63].
After cooking, the taste of fresh fish is associated with firm meat that goes to dry, crumbly
with short, tough fibres for deteriorated fish. However, raw fish maximum toughness
commonly occurs after 1–2 days of storage, corresponding to the minimum pH and rigor
mortis [63]. Texture properties are typically considered in the evaluation of the QIM [65].

2.6. ATP Degradation

Although the number of citations places this attribute in the sixth position, it is the
third one in average citations per work. Most of the works were published in the nineties
and during the past 10 years, with G. Ólafsdóttir being the most cited author .

After fish death, ATP transforms, within the first 24-48 h, into inosine 5′-monophosphate
(IMP) in three steps, producing adenosine diphosphate (ADP) and adenosine monophos-
phate (AMP) [66,67]. IMP degradation continues on a cascade of reactions that produces
Inosine 5′-monophosphate (Ino) and hypoxanthine (Hx), which is further decomposed in
other compounds such as xanthine and uric acid [52,67]. This cascade of reactions occurs
in the order of days to weeks, depending on the storage temperature and bacterial con-
centration [68]. IMP is related to the pleasant sweet and meaty flavors in fresh fish, umami
flavour [69,70], whereas Hx is responsible of unpleasant bitterness [71,72]. The K-value
and KI-value are two of the most widely employed indicators to evaluate freshness. They
are defined as the following function of the ATP degradation products [68,73–76]:

K-value =
Ino + Hx

ATP + ADP + AMP + IMP + Ino + Hx
· 100 (2)

KI-value =
Ino + Hx

IMP + Ino + Hx
· 100 (3)

The K-value has been also correlated with the freshness of different fish species [73].
The authors found that very high grade corresponded with K-value lower than 10%. High
grade individuals had K-values lower than 20% or 30%, depending on the fish species.
Fishes with K-value up to 50% correlated with medium grade. Finally, K-value larger than
50–70% was obtained for low grade samples.

The main advantages of indexes based on the degradation of ATP (K-value, KI-value)
are their reliability [66] and, as mentioned above, their direct connection with fish flavor.
The main disadvantages are that the evaluation of K-value or KI-value requires the destruction
of the sample and their usefulness depends on the fish species being examined [64].

2.7. Biogenic Amines

Works studying the correlation between spoilage and biogenic amines are homoge-
neously increasing since the nineties, being the most cited articles by Bulushi, Ruiz-Capillas
and Vecianogues. Biogenic amines here are non-volatile amines (histamine, cadaverine
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and putrescine) formed by decarboxylation of amino acids (histidine, lysine and ornithine,
respectively). Although TMA-N and TMAO are also biogenic amines, they are not consid-
ered in this group because TMA-N is volatile and it is a result of the degradation of TMAO,
therefore being one of the main contributors to the formation of TVB-N, as discussed in
Section 2.3. Within non-volatile biogenic amines, histamine is the most studied due to its
toxicity and allergic potential, but it is unable to correlate with the level of spoilage for
different fish and conditions [23]. Cadaverine is the biogenic amine that can be used as
a spoilage indicator (for example, for salmonid fish, values less than 10 mg/kg indicate
good quality [77]). Putrescine, however, is not a good spoilage index because its amine,
ornithine, is not present in all fish species (for example, it is missing in tuna). Alternatively,
there are amine indexes combining different biogenic amines such as the amine index (AI):

AI =
putrescine + cadaverine + histamine

Total amines
· 100

Total amines = putrescine + cadaverine + histamine + tyramine+

tryptamine + methylamine + spermidine + spermine

or the chemical index:

Chemical index =
putrescine + cadaverine + histamine

1 + spermidine + spermine

For relationships between amine content and spoilage level for different fish species,
the reader is referred to Table 2 in [23].

2.8. Odour

The number of citations, works, and average citations per work, regarding this at-
tribute, are similar to ATP degradation and Biogenic amines but with a homogeneous
distribution of the number of articles per year. X. Y. Huang and V. Papadopoulos are the
authors with the largest number of citations regarding this attribute. Same as texture and
colour, this quality attribute is usually studied in the literature together (or even correlated)
with other attributes. The major aromatic compounds identified related to spoilage levels
are fatty acids profiles, aldehydes, ketones, trimethyl amine (TMA), and volatile organic
compounds [78]. Typically, studies focus on assessing odour following one standard sen-
sory index (see, for example, ref. [26], for sea bass assessment). Commonly, freshness is
associated with iodine shellfish and seaweed smell, and spoiled fish with muddy, putrid,
faecal, pungent, smell to ammonia or ink smell in cephalopods and acidic in shrimps.
Odour can be evaluated using non-invasive methods. However, using a panel of evaluators
to assess this indicator is subjective and expensive. Analytical methods could be used to
analyse aromatic compounds. However, in most cases, this would involve the destruction
of the sample. Although, if electronic noses are properly calibrated and validated odour
can be a very interesting quality indicator .

2.9. Colour

Despite being an important indicator for consumers, it is one of the attributes with
the lowest number of citations and average citations per work. However, the interest of
the scientific community seems to increase during the last 15 years. The most cited author
in this field is A. Pacquit. Colour changes have been also used as an indicator for quality
degradation in combination with other attributes or as a part of sensory analysis. Colour
degradation kinetics are the result of changes in the pigments due to some biochemical
transformations. For example, the oxidation of myoglobin and haemoglobin turns the flesh
colour from red to brown. As pointed out by [6], some compounds present in fish, such as
amines or ammonia, may react with the oxidised liquid causing serious browning.

The main advantage of using this feature to assess quality is that, as mentioned above,
it is an important indicator for consumers. Besides, colour measurements can be obtained
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using non-invasive or minimally invasive techniques. However, fish skin is heterogeneous
in many species. Therefore, the results provided by devices to measure colour, such as
colourimeters, will vary depending on the regions of the skin being measured. A trained
panel of experts could be used to globally evaluate the colour of fish skin. However, this
alternative has the same disadvantages mentioned for sensory analysis and odour, i.e., it is
expensive and subjective.

2.10. Nutrients

Fish is highly appreciated as a healthy food product [16,79,80] mainly because it is rich
in nutrients such as high-quality proteins, fatty acids, and vitamins, among others. However,
despite its importance, nutrients are not usually considered as a factor for determining fish
freshness, except for the study of fatty acids, already considered in Section 2.1. This is the
attribute with lower average citations per work, being the most cited author K. Chakraborty
with 48 citations. Most of the highly cited manuscripts found in the systematic search regarding
nutrients focused on different aspects [38–40,81], such as the characterisation of vitamin
compounds; the use of fish oil; correlations between arsenic bioavailability and nutrient
content; among others, not directly related to fish freshness. This is probably because the
rate of degradation of most nutrients is slower than other indicators such as the QIM and
when changes are noticeable, fish is already spoiled. Another disadvantage is that the
assessment of nutrient content requires destructive methods.

2.11. Water Content/Activity

The number of citation counts and the average citations per work for this attribute are
the second lowest in the list, after nutrients. This is probably because it is usually considered
a stress factor and not a quality indicator itself. The most cited author is S. Cakli. Water
content is related and can be described from water activity using the moisture sorption
isotherm curve. Although this relationship is a non-linear function, water content increases
with water activity and vice versa, and therefore both are essential quality parameters
related to important textural attributes such as juiciness [12], mainly related to texture and
flavour. However, as in the case of other indicators, destructive methods are used for the
assessment of water content.

2.12. Electrical Properties

This attribute has gained the lowest attention in terms of the number of works. How-
ever, works focusing on this attribute are highly cited, with a review of different multi-
sensors gathering most of the citations [24]. In fact, the average number of citations per
work is the largest of all attributes considered in this review. Enzymatic and bacterial
decomposition of proteins and lipids after fish death results in the formation of charged
molecules which increase the electrical conductance (EC) of the muscle [6,82]. The loss
of this kind of nutrients can be, therefore, correlated with the increase of EC. Autolytic
spoilage is also responsible for cell membrane disruption, which allows the liquids to pour
out increasing the EC [24,45].

The main advantage of this indicator is that it can be measured using minimally inva-
sive techniques, avoiding the destruction of the sample. However, the correlation between
EC increase and freshness degradation must be performed for the different fish species.

3. Stress Factors and Their Usual Models (Additionally, Named Secondary Models)

Food quality attributes are conditioned by the food matrix microstructure and compo-
sition as well as by several stress or environmental variables [18]. Chronologically, those
factors modifying fish quality can be classified attending to the origin and slaughter condi-
tions of the fish (pre-slaughter and slaughter) and due to handling, storage and distribution.

Fish composition and matrix microstructure depend on many factors such as the
fish species, its size, age, and gender, whether it is lean or fat, fresh or saltwater fish,
the fish feed, catching period (seasonal variability), geographical area or temperature of
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the catching waters. For example, fat, and therefore lipid oxidation, highly depends on the
catching period and on whether the fish is wild or cultured [21]. Another example would
be the cadaverine level which is considered a good spoilage index for wild fish, but not
for aquaculture fish [23]. The slaughter procedure also affects fish quality. For example,
bleeding affects lipid oxidation, preventing this oxidation in minced trout whole muscle,
minced mackerel light muscle, and intact mackerel dark muscle [20]. Commonly, these
factors are not modelled and, therefore, they are not considered in this review.

During handling, storage and distribution there are many external factors (stress
factors) accelerating fish quality loss. Some attributes, like texture, can be affected by the
just after-slaughter conditions, such as the glycolysis and rigor mortis, leading to gaping [63].
However, in general, outside-of-fish variables during storage and distribution are the
parameters that can be manipulated to extend freshness and they are usually the focus of the
mathematical models. Temperature is undoubtedly the most important and studied factor,
although others such as pH [17] or CO2, when stored under a modified atmosphere [83],
have been also considered.

There are different ways of modelling the influence of temperature. Roughly, the mod-
elling approaches can be classified into two groups: (i) models considering a direct influence
of the temperature on shelf life, and (ii) models describing the effect of temperature on
the degradation of biochemical compounds or on bacterial growth, which are then related
to freshness. The first type consists of pure empirical input/output relationships. These
models are discussed in Section 4.1. The second type consists of mechanistic-based relation-
ships. These models do not provide a direct input/output expression, but a function of the
relationship of temperature with a kinetic parameter with a major role in any of the quality
attributes or outputs.

Certainly, the most common model to describe the effect of temperature, at least when
the output of the model is a product of one or more biochemical reactions, is the Arrhenius
model [84]:

K(T) = A exp
(−Ea

RT

)
Arrhenius model

where K(T) is a degradation rate that depends on the Temperature (T) through an exponen-
tial expression. A is the pre-exponential factor, Ea is the reaction activation energy, and R is
the universal gas constant.

The influence of temperature on bacterial spoilage (output) is more complex, with many
models available in the literature [60], including the Arrhenius equation. Nevertheless,
the most common one is the Ratkowsky or square root model to describe the change in
maximum growth rate (μmax) [85]:

μmax(T) = [b(T − Tmin)]
2 Ratkowsky model

being Tmin the temperature at which growth is zero, and b the factor shaping the curvature
of the function. The same functionality can be used to model the effect of temperature on
the lag phase of spoilage bacteria [57].

Although the temperature is the major factor affecting fish freshness, there are other
relevant stress variables such as pH (a major factor in texture [63]), water activity, salt
concentration or concentration of CO2 in packed fresh fish. The models in those cases are
not so common and are of many different forms [60]. The reader is referred, for example,
to the gamma concept to model the joint effect of several stress variables [86,87].

4. Models (Relationship between Model Inputs and Outputs)

The diversity of mathematical models for fish quality assessment emerges
mainly from the diversity of the fish quality attributes previously described and from
the complexity of the fish freshness concept. In the systematic review, we found 25 records
where mathematical modelling of one or more attributes is included. These
records [16,17,45,51,52,56–60,67,68,80,88–99] were revised and their main modelling in-
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formation was included in the tables presented in this section. The objective of this section
is to provide an overview of the most common approaches found regarding the mathemati-
cal modelling of fish quality/freshness.

In general, screened models are deterministic, lacking uncertainty analysis, and most
of them are semi-empirical and described in the so-called closed-form expression, i.e., they
are described by algebraic equations with a finite number of terms without derivatives or
integrals. Fish quality usually depends on macroscopic variables that can be described using
deterministic models, i.e., models without considering any random effect, thus providing
the same solution for different simulations performed under the same conditions. Stochastic
models, on the contrary, assume some random behaviour intrinsic in the dynamics resulting
in stochastic differential equations. In that case, any realisation of the model provides a
different solution. They are usually required when modelling food safety, but not for quality,
where low numbers of certain variables (such as a low number of pathogenic bacteria)
are decisive to assess the risk of foodborne illness [100,101]. Probabilistic models, on the
other hand, lack dynamical equations or include the probabilistic part in the parameters of
the dynamic. They are relevant when considering uncertainty (due to lack of information,
measurement error or noise [102]) and/or variability (due to differences in the model
parameters caused by, for example, changes in food matrix or spoilage bacteria strains [95]).

Attending to the type of mathematical equations, fish quality models are usually
presented in their closed-form and they are based on empirical expressions used to represent
certain behaviours, such as exponential growth [45,91]. When models are inspired by first
principles with mechanistic or semi-mechanistic formulations, a closed-form expression
may not exist, be unknown, or be too complex for practical use. In these cases, the model is
directly described by differential Equations [68,96], requiring proper numerical methods
for their resolution and calibration [103,104]. Models expressed in their differential form are
also required when the stress variables or other model parameters (growth or degradation
rates, diffusivity of a given compound, etc.) vary during storage and transportation.

When attending to the specific features of fish quality modelling, we found four
different types of modelling approaches attending to their objective:

• Shelf life soft sensors are models that consider a direct input/output relationship.
They consist of empirical functions, denoted by soft (from software) or virtual sensors.
Typically, the input and the output are, respectively, temperature and shelf life.

• Quality soft multi-sensors are models considering a general mathematical expression
that can be applied to describe more than one attribute.

• Quality ad hoc models are mechanistic-based models with equations specifically
derived for one particular quality attribute.

• Sensory or shelf life models are models providing as their output a sensory score or
shelf life date. However, they also require the intrinsic modelling of one or several
quality indicators (such as spoilage bacterial content). To this purpose, they typically
consider a quality ad hoc model. These sensors are also named smart when they are
used not only for assessment purposes but for prediction of different degrees of fish
quality as well [97].

This classification will be used to structure this section.

4.1. Shelf Life Soft Sensors (Input/Output)

In the literature, there are two common expressions to model the dependence of shelf
life (SL) with temperature (T). Such expressions coincide with the ones used to model
degradation rates or bacterial growth as a function of the temperature. On the one hand,
sensors assume an exponential dependence of shelf life with the temperature (Shelf life
decreases exponentially when increasing temperature [90]) of the form:

SL(T) = SL0 exp (−b T) Exponential empirical shelf life model
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with SL0 being the shelf life at T = 0 °C and b a parameter that represents the degree of
influence of the temperature on the shelf life. If shelf life is highly affected by temper-
ature, parameter b will be large, otherwise, it will be close to zero. On the other hand,
the Arrhenius empirical shelf life model [56] has been also considered in the literature:

SL(T) = SLre f exp

[
Ea
R

(
1

Te f f
− 1

Tre f

)]
Arrhenius empirical shelf life model

where now shelf life at an effective temperature Te f f is calculated from a reference shelf life
SLre f at temperature Tre f . Ea is the activation energy and R the universal gas constant.

There are many variations of these equations such as the school-field [98], the Expo-
nential RRS (Relative rate of spoilage) model [105] or the square-root RRS model [85,98]
that were inspired by limiting the levels of spoilage microorganisms. Shelf life can also
be estimated from different quality attributes, such as the level of the spoilage bacteria.
However, these are more sophisticated expressions that require modelling these attributes
as described in Section 4.4.

Although shelf life is an important issue, the main disadvantage of these models is
that they do not provide a measurement of the current freshness state of the fish.

As shown in Table 2, only three references considering shelf life soft sensors models
were found in the systematic search. Each of these references focused on one particular fish
species and the authors use one or two modelling alternatives. Therefore, there is a need
for works focusing on different species. A comparative study of the different modelling
approaches would be also required.

Table 2. Summary of the shelf life soft sensors models found in the literature search.

Output Matrix Model References

Shelf life Bogue SL(T) Arrhenius emp. Taoukis et al. [56]
Shelf life European sea bass SL(T) Exponential emp. Limbo et al. [90]
Shelf life Large yellow croaker SL(T) Exponential emp. & school-field Quanyou et al. [98]

4.2. Soft Multi-Sensors

There are general mathematical formulations that may describe major trends in
growth/increase or degradation/decay of a group of attributes. The direct advantage
of this approach is that the same model structure is used for different quality indicators
by adjusting the parameter values to fit the experimental behaviour of each indicator.
However, the mechanisms of degradation are not considered. This results in too generic
expressions that are mainly based on empirical correlations. Therefore, they cannot be ap-
plied to understanding attributes with complex dynamics (such as when the property does
not increase or decrease monotonically). Besides, since the mechanisms are not considered,
the predictive capabilities of these models are limited to the experimental conditions used
to adjust the model parameters. The results provided by this approach are less reliable than
the results obtained with the ad hoc models presented in the following section.

Let us denote by Ai (i = 1, 2, . . . m) a given quality attribute that depends on time (t),
and usually on temperature (T). m is the total number of attributes considered.

The simplest multi-sensor is based on the Weighted regression coefficients model [17].
This model relates one or several outputs (Ai) with several inputs or stress variables (Sj)
using a linear expression of the form:

Ai =
w

∑
j=1

ai,jSj + ai,w+1 i = 1, . . . , m Weighted regression coefficients model

Sj typically includes temperature, but other stress variables, such as pH, can be considered.
ai,j are coefficients to be estimated for each attribute and each input. ai,w+1 is the indepen-
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dent coefficient. Although this model is a direct input/output relationship and can be used
to calculate shelf life (as in Section 4.1), the model is very general and therefore can be used
to calculate many different attributes, such as the sensory freshness index [17].

Other type of multi-sensors assume that the quality attribute (Ai) behaves as a nth-
order reaction as follows [51]:

dAi
dt

= K An
i i = 1, ..., m nth-order reaction model (4)

where K is the reaction rate, which typically is considered to depend on temperature accord-
ing to the Arrhenius expression. Usually, n is considered a natural number, although it can
be any positive rational number in the so-called power law models used in other contexts.
nth-order reaction models are tested in some works [51], however, the usual approach is to
select n so that it provides the best compromise between simplicity and performance of the
model (Occam’s razor principle).

Among the different expressions derived from the nth-order model, the most com-
monly used in the literature is the exponential model, which corresponds with a first-order
reaction (n = 1). Considering that the reaction rate (K) remains constant during the process,
the expression of the closed-form is:

Ai = Ai,0 exp (Kt) i = 1, . . . , m Exponential model or first-order reaction model
(5)

with Ai,0 being the initial condition (initial value for attribute Ai at t = 0).
Another expression, sufficiently general to represent the attribute dynamics, is the

zeroth-order reaction (n = 0) model. For constant reaction rates (K), it results in a linear
dependency of the attribute with time:

Ai = Ai,0Kt i = 1, . . . , m Linear model or zeroth-order reaction model (6)

The main advantage of using the differential form, Equation (4), instead of the closed-
form, Equations (5) and (6), is that it allows to consider situations where the storage or
transport temperature changes.

Table 3 shows the attributes (outputs) modelled with this approach and the selected
models for each case. In most cases, the growth/degradation rates depend on the tem-
perature following the Arrhenius expression. Positive or negative values of K are used to
represent, respectively, the increasing or decreasing evolution of the attributes. In general,
the closed-form of the equations is used in these works so, as mentioned above, the temper-
ature must be constant during storage and transport to obtain reliable results. K-value and
TVB-N are the most typical indicators considered in this approach. As in the case of Shelf
life soft sensors, only a few fish species were considered in these studies. More research is
required to include other species.

We have also found, outside the systematic search, the use of linear models of the
form of Equation (6) to describe the evolution of TAC, EC, K-value, and Sensory Analysis
indicators in rainbow trout (Oncorhynchus mykiss) [106]. The authors in this work also
compared the solutions obtained using either Arrhenius expression or Artificial Neural
Networks (ANN) as a secondary model. Their results show that ANNs provide a better fit
to experimental data than the Arrhenius expression, in particular for K-value and Sensory
Analysis indicators.
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Table 3. Virtual multi-sensors (same model structure for modelling different attributes). In the
table TVB-N = total volatile base nitrogen, TAC = total aerobic counts, EC = electrical conductivity,
GSI = global stability, SL = Shelf life, SFI = Sensory Freshness Index index, TM = Torrymeter reading,
IT = Internal Temperature, ST = Superficial Temperature.

Output Matrix Secondary Model Primary Model References

TVB-N, TAC, K-value Grass carp K(T) Arrhenius Exponential model Zhang et al. [91]
TVB-N, TAC, K-value, EC Crucian carp K(T) Arrhenius Exponential model Yao et al. [45]
GSI (Sensory Score, TAC,

TVB-N, K-value) Bighead carp K(T) Arrhenius Linear model Hong et al. [51]

GSI (sensory score, K-value,
TAC and TVB-N), EC Crucian carp K(T) Arrhenius Linear model Zhu et al. [94]

SL, SFI Gilt-head seabream Ai(pH, TM, IT, ST,
TVB-N)

Weighted regression
coefficients. Calanche et al. [17]

4.3. Quality ad hoc Models

In the systematic search, ad hoc models were found for some quality attributes,
but not for texture properties, lipid oxidation/fatty acids, non-volatile biogenic amines,
other nutrients, electrical conductivity, odour, colour or water activity. Lipid oxidation,
despite being the most studied quality attribute in fish, was only modelled using the
generic exponential model for TBA in grass carp [91]. Non-volatile biogenic amines, in
particular histamine, were commonly used to model food safety [107]. However, they were
not studied for describing food quality. No models for nutrient (proteins, vitamins, etc.)
degradation or water activity were found, although water activity is a factor influencing
texture or bacterial growth, and included as an input in those models. Regarding colour,
models are mainly proposed for processed fish [108–110] but no model for colour changes
in fresh fish was found in the literature. Despite odour being a relevant quality indicator
by itself, it is typically used in combination with other attributes, for instance, to obtain the
QIM. Electronic noses could be used to obtain reliable data that could be used to calibrate
and validate models describing the evolution of odour. However, in the context of fish
freshness, electronic noses are used to evaluate freshness or storage time [16]. As in the
case of colour, no models were found to describe the evolution of odour.

There are, however, specific models for some of the quality attributes that are explained
in detail in the next subsections. These models usually consider the mechanisms of quality
degradation so the results are more reliable than those obtained with the other models
described in previous sections. The main disadvantage is that such mechanisms involve,
in most cases, complex phenomena. Therefore, the derivation of a mathematical model
in these cases is a time consuming and complex task. Models describing the evolution of
spoilage bacteria are the most commonly used ad hoc models.

4.3.1. Spoilage Bacteria Models Using Predictive Microbiology

Predictive microbiology is a field that focuses on modelling the behaviour of microor-
ganisms, including spoilage bacteria, in different food matrices such as fresh fish. It is
a broad area with established terms and community [60,88], and where three different
models are usually considered: modelling microorganisms growth or inactivation dynam-
ics (primary model), how these dynamics change with environmental stress or inputs
variables (secondary models), and the implementation of these models in friendly software
(tertiary models). The terminology of primary and secondary models can be useful to
outline the different modelling approaches and will be used also in this review, even for
models outside the predictive microbiology scope.

Primary models are diverse [111] and they focus on the dynamics of bacterial numbers
(N). The most used primary models in fish spoilage bacteria are [29,112,113]:
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N = N0 exp (μmaxt) Exponential model (7)

N = N0 +
Nmax − N0

1 + exp [−μmax(t − ti)]
Modified Logistic Model

N = N0 exp

⎛
⎝ log (Nmax/N0)

1 + exp
[

4μ
log (Nmax/N0)

(λ − t) + 2
]
⎞
⎠ Reparametrised Gompertz Model

dN
dt

=
a0

a0 + (1 − a0) exp(−μmaxt)
μmax N

(
1 − N

Nmax

)
Reparametrised Baranyi’s Model

with N0 being the number of initial bacteria, Nmax the maximum number (in the stationary
phase), μmax the maximum growth rate and λ the time of the lag phase. In the modified
logistic model, λ is a function of the point of inflexion (ti):

λ = ti − 1
μmax

ln
(

Nmax + Nmax exp(μmaxti)

Nmax + N0 exp(μmaxti)
− 1

)

and for simplicity in the provided equation we assume that the minimum cell number
Nmin is the initial cell number N0. The derivative form of Baranyi’s Model (closed-form
solution is long and complex [114]) is presented with modifications to make lag phase zero,
for a0 = 1, and maximum lag (no dynamics), for a0 = 0.

Works in the systematic search including modelling of spoilage bacteria are outlined
in Table 4. Secondary models are only included when there is a clear description within the
work. The variety of fish species considered in this case is larger than in the cases of Shelf
life sensors and Soft multi-sensors. There is also a large variety of bacterial strains studied.
However, most of the works found in the search consider deterministic models whereas
bacterial population growth is a stochastic process. In this regard, although the mathe-
matical structure of the model developed in [95] is deterministic, the authors estimate the
variability of the model parameters using different experimental conditions and different
fish samples. This variability is used to generate different combinations of parameters and
each combination is used to obtain different simulation results. This approach allows us to
approximate the stochastic behaviour.

4.3.2. TVB-N and TMA-N Models

Volatile nitrogenous bases (TVB-N), and its major contributor TMA-N, are widely
modelled quality outputs with specific modelling approaches (in addition to the gen-
eral modelling [45,91]). They are easy to measure indexes that adequately correlate to
fish freshness.

Firstly, Howgate [52] pointed out that the exponential model (used in general mod-
elling approaches [45,91]) was not descriptive of TMA-N changes since TMA-N reaches
a limit, instead of increasing exponentially, because they are the sub-product of TMAO.
The author suggested a logistic growth of the form:

TMA-N =
TMA-Nmax − TMA-N0

1 + exp (−K(t − ti))
Modified Logistic Model

where TMA-N0 and TMA-Nmax are, respectively, the initial and maximum allowed concen-
trations of TMA-N, K is the maximum growth and ti the point of inflexion .

On the other hand, TVB was modelled by García [97] by assuming a delay and a later
production by psychrotrophic bacteria (N) with following equations:

dTVB
dt

=

(
a0

a0 + (1 − a0) exp (−Kt)

)
K N Exponential Model with delay
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where a0 represents the parameter determining the duration of the delay (mathematically
equivalent to the expression used by [113] for lag phase in bacterial growth, a0 = 1 indicates
no delay), K is the growth rate due to psychrotrophic bacteria (N). Interestingly, years after
this work, a simpler exponential model was used to model TVB in rohu fish stored at 0
and 5 °C [80], claiming that TVB formation was a primary function of microbial action and
suggesting the necessity to model TVB as a function of the microbial population as already
carried out in the literature [97].

Table 4. Works in the systematic search, including modelling of spoilage bacteria. The following
acronyms are used: TVA for total viable counts, TMAB for total mesophilic aerobic bacteria, TPAB for
total psychrophilic aerobic bacteria and LAB for lactic bacteria.

Output Matrix Secondary Model Primary Model References

Pseudomonas &
Shewanella Bogue μmax(T) Arrhenius &

Ratkowsky Baranyi’s model Taoukis et al. [56]

Pseudomonas &
Shewanella Gilt-head seabream

μmax(T)&λ(T)
Arrhenius &
Ratkowsky

Mod. logistic model Koutsoumanis and
Nychas [57]

Sulphide producers &
non-producers Gilt-head seabream μmax(T) (not clearly

defined) Baranyi’s model Giuffrida et al. [92]

Pseudomonas &
Carnobacterium Tropical shrimp μmax(T) Arrhenius &

Ratkowsky
Baranyi’s model Rep.

Gompertz Model Dabadé et al. [59]

Pseudomonas &
Shewanella Hake μmax(T) Ratkowsky Baranyi’s model García et al. [95]

TVC Grass carp – Rep. Gompertz Model Ying et al. [16]

Psychrotrophic counts Cod – Baranyi’s Model García et al. [97]

Pseudomonas,
Enterobacteriaceae,

TMAB, TPAB & LAB
Rainbox trout μmax(T) Ratkowsky Mod. Logistic Model Genç and Diler [99]

Pseudomonas Gilt-head seabream – Mod. Logistic Model Correia Peres Costa
et al. [58]

Biomass Rohu fish – Mod. Logistic Model
Gompertz Model Prabhakar et al. [80]

4.3.3. Texture Properties

As mentioned above, no predictive models were found in the systematic search for
texture properties. It must be highlighted that the works [89,93] describe the models
they develop as predictive. However, as mentioned in the introduction, we use the term
predictive to indicate the ability of the model to forecast the evolution of the quality indi-
cators. The models developed in [89,93] are built using partial least squares regression or
least-squares support vector machines to assess texture indicators using nuclear magnetic
resonance (NMR) or hyperspectral imaging (HSI) measurements. In other words, these
models provide a non-invasive estimation of the texture properties at the NMR or HSI
measurement time, but they do not predict the future evolution of such indicators.

A predictive model to describe the viscoelastic behaviour of rohu fish (Labeo rohita)
was developed in [115], although this work was not present in the systematic search.
The authors used the modified Maxwell model to relate skin hardness and compression
time for iced fish:

F(t) = C0 + C exp
(

t
trel

)

102



Foods 2022, 11, 2312

where F(t) is the force at any time, C0 corresponds with the force at equilibrium, C is the
decay force, and trel is the relaxation time. Experimental data was used to fit coefficients
C0, C and trel .

Further research is required regarding the mathematical description of the evolution
of texture in fresh fish.

4.3.4. ATP Degradation

As mentioned in Section 2.6, ATP degradation occurs in a series of steps represented as:

ATP → ADP → AMP → IMP → Ino → Hx → Xa → Uric acid

The first three steps occur relatively fast after slaughter so, when fish samples are
analysed they contain low (or zero) concentrations of ATP, ADP and AMP. On the other
hand, the degradation from Hx to Xa and uric acid is usually slow and when such products
are formed, the fish is already spoiled. Therefore, in general, ad hoc models only consider
the part of the scheme involving IMP, Ino and Hx. The KI-value, Equation (3), can be
obtained from these compounds.

Table 5 summarises the main features of the models derived in the different works of
the systematic search. In particular, ref. [52,67] considered the reaction scheme:

IMP
K1

Ino
K2

Kbac
Hx

where K1 and K2 are, respectively, the reaction rates for the conversion of IMP into Ino,
and Ino into Hx. Bacterial conversion of Ino into Hx (Kbac) was also taken into account.
In these works, first-order kinetics are considered. Arrhenius expressions were used to
account for the dependency of reaction rates on the temperature. Bacterial growth was
modelled using an exponential model of the form of Equation (7). In [52], the possibility of
a loss of nucleotides by leaching (diffusion through muscle and skin) was also considered.
Another interesting issue about this work is that the author presented and discussed the
results obtained from data of forty-five different fish species. Reliable results were obtained
for most of the considered species. In [68,96], the authors found, by fitting the models to
experimental data, that alternative nucleotide degradation paths might occur in European
hake (Merluccius merluccius). In particular, the direct conversion of IMP to Hx and other
products should be considered. Leaching of nucleotides and the effect of bacteria, namely
Pseudomonas spp. and Shewanella spp., on the conversion of IMP to Ino and Ino to Hx, were
also considered. The standard square-root model [85] was used to represent the bacterial
growth rates.

Table 5. Ad-hoc models found in the systematic search to describe the degradation of IMP, Ino and
Hx. The KI-value is obtained from the concentration of these components. All these models consider
a cascade of first-order reactions.

Output Matrix Secondary Model Primary Model References

IMP, Ino, Hx Rainbow trout Ki(T) Arrhenius Exponential model, Bacterial
catalysis Howgate [67]

IMP, Ino, Hx Forty-five species Ki(T) Arrhenius Exponential model, Bacterial
catalysis, leaching Howgate [52]

IMP, Ino, Hx Hake Ki(T) Arrhenius First-order reaction model Vilas et al. [96]

IMP, Ino, Hx Hake Ki(T) Arrhenius First-order reaction model, Bacterial
catalysis, leaching Vilas et al. [68]

4.4. Sensory or Shelf Life Models

Quality ad hoc models are usually a tool, more than the final aim, to assess or predict
shelf life or different grades of fish quality. For example, modelling of spoilage bacteria in
Table 4 is commonly used to estimate shelf life by specifying a concentration of bacterial
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counts at which the quality is considered not sufficient. Shelf life date, for example, is
estimated using spoilage bacteria in bogue fish (Boops boops) and gilt-head seabream (Sparus
aurata) for numbers greater than 7 logs (N > 107 CFU/g) [56,57] or even N > 108.5 CFU/g
for Pseudomonas psychrofila in tropical shrimp [59].

There are models in the literature that are used to estimate different grades of freshness,
not only shelf life or a given quality indicator. These models are summarised in Table 6.
As shown in the Table, works following this approach and the number of species considered
are scarce. The main challenge is to find a mathematical relationship between the outputs
of the ad hoc models and different quality levels. The first attempt consisted of dividing the
QIM into three indexes (QIMS for skin, QIMG for gills, and QIMF for flesh), and finding
their relationship with non-producers (Nw) and producers (Nb) of sulphide, present in
those specific parts for the fish [92]. However, for an estimation of a final QIM index, not
only models of spoilage bacteria but also of TVB-N are required [97]. In this work, a simple
ANN was developed to obtain the relationship between QIM and the model variables

(TVB-N and bacterial count). A logistic model was used to describe the bacterial
evolution. Other works focused on using models of spoilage bacteria to find ranges of
standard sensory methods. Such methods considered fewer freshness grades than the
QIM. That is the case in [16], where cod freshness, in terms of a three-level standard (SC/T
3108-1986), was correlated with the TVC value. The work by [95] used a nonlinear function
of Pseudomonas and Shewanella counts to determine a four-level QSM value in European
hake. This work is the only one that considers a secondary model, and therefore, it is the
only one that provides the final relationship between the effect of temperature changes in
the four levels of quality in QSM.

Table 6. Modelling of sensory scores using ad hoc models. QIM stands for Quality index specific for
gilt-head seabream [65] or cod [50] method. S,G and F for Skin, Gills, Flesh, Nw, Nb, Np, Ns, Npsy for
sulphide and non-sulphide produces, Pseudomonas, Shewanella and psychrotrophic counts.

Output Matrix Secondary Model Primary Model References

QIMS, QIMG, QIMF (15 levels) Gilt-head seabream Not clearly defined QIM(Nw, Nb) Giuffrida et al. [92]
Council Regulation(EC) No 2406/96
(1996) Standard method (4 levels) Hake μmax(T) Ratkowsky SM(Np, Ns) García et al. [95]

SC/T 3108-1986 Standard method
(3 levels) Cod – SM(NTVC) Ying et al. [16]

QIM (23 levels) Cod – QIM(TVBN, Npsy) García et al. [97]

5. Modelling Challenges and New Directions

In this review, we have described, classified and established connections for the
different types of mathematical models to describe and predict fish quality. We have
mainly focused on those works within the systematic search described in Appendix A,
although other relevant contributions, not included in such search, were considered in this
review. First of all, we should stress that the literature is larger, particularly in the case of
spoilage bacteria using predictive microbiology. However, there are many comprehensive
reviews regarding predictive microbiology [60,116,117], and the focus of this review was,
instead, on providing connections between models that describe different fish quality
attributes, and on identifying those topics that require more research attention. For example,
there are still relevant quality attributes for which it was not possible to find mathematical
models. The most illustrative example is lipid oxidation, the most studied attribute in
the literature from the experimental point of view. Other attributes lacking modelling
approaches are non-volatile biogenic amines, nutrients, odour and water activity (although
this is considered as an input in several models in the literature). Other attributes, such as
colour, have been modelled only for processed fish.
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We need to stress that, in addition to the lack of modelling for certain quality attributes,
there are major limitations in some of the models we found. Generic models, named in this
review software sensors or multi-sensors, are particularly advantageous to compare results
from different studies but, in this comparison, it is clearly observed that there are many
inconsistencies between works. For example, both linear and exponential functions have
been used to model the same attribute (see Table 3). However, whereas linear functions
may approximate a short time window of an exponential model, differences between both
approaches are considerable for wide prediction windows. There is a need to compare
those modelling structures and detect which ones are more appropriate for the different
quality outputs.

Ad-hoc predictive microbiology models, that have been studied in detail, still present
limitations, mainly due to the uncertainty of the estimated parameters and the initial
bacterial fish load (or model initial conditions). Microbial models require a known starting
state, but measuring bacterial load takes time and involves the destruction of the sample.
Some partial solutions have been considered such as (1) using the worst-case scenario [116],
(2) estimating the initial conditions variability [95], or (3) estimating the numbers using
indirect measurements of other variables (such as conductance measurements) that are
non-invasive and fast to obtain [118]. However, taking into account that bacteria grow
exponentially between lag and stationary phase, model prediction is highly affected (very
sensitive) by its initial conditions. More research on this topic is required to find confidence
models of spoilage bacteria.

Another challenge, still only partially addressed in the literature, is the derivation of
expressions that allow the inference of sensory attributes or shelf life from the growth of
spoilage bacteria. In this regard, some works derived models describing two or several
attributes, for instance, shelf life and growth of Pseudomonas, but such attributes were only
connected through the stress variables, typically temperature (see examples in Table 4).
Ideally, the model should provide a final quality index, as a function of different quality
attributes that depend on the stress variables, as the examples provided in Table 6.

In addition, only a few works validate the predictive capability of the models proposed,
i.e., the ability of the model to describe data outside of the set used for model develop-
ment and parameter estimation. Most of them use constant temperature or temperature
oscillating at a high frequency, as compared with the model dynamics time-scale (using
such oscillating temperature would be equivalent to using a mean constant temperature).
For example, in the work by [56] two non-isothermal profiles are used for the validation.
In one profile, temperature oscillates at high frequency and the change in the output signal
was smaller than the experimental error of the measurement. On the other hand, the model
was validated using a temperature profile with wider oscillations, that provided a change
in data trend and model dynamics. Only a few works consider dynamic temperature
profiles, computed using an optimal experimental design, to reduce the uncertainty of the
predictive model [95].

To advance in this area, reproducibility of published works is a key aspect, particularly
for ad hoc models, usually more complex and with many different mathematical structures.
Currently, comparison among works is extremely difficult, not only because of the vari-
ability between fish species and conditions before and after the capture (for example in
food structure [119]) but also because the proposed measure of fish quality is sometimes
specifically developed for the study [118,120]. We think that for the advance of modelling
of fresh fish quality, research should be focused on reproducing and predicting established
sensory indexes, such as QIM [95,97,121], allowing comparison between approaches.

Finally, the community should invest in better exploitation of the available models
and towards their integration into software systems for online quality prediction, as is
already the case in food safety [122], or even for optimisation-based determination of the
best conditions to maximise shelf life in different processes. In this regard, an ambitious
objective would be the derivation of a digital twin [123] for fresh fish degradation. Let us
here use an illustrative example of the potential of these models in a study developed in
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our group, namely [124]. In this work, existing models were used to find the best active
package configuration (including the type of packaging and concentration of antimicrobial)
that maximises food quality while ensuring food safety. In addition, the model was used to
predict, at any moment, the expected food quality for the expected stress variables along
the food chain.
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Appendix A. Systematic Literature Search

Table A1. Terms of the search performed on the web of science. The search was limited to the Web of
Science Core Collection database and to the Food Science and Technology category. All years until end
2021 are considered.

Set Search Records

#1

(TI OR AB OR AK) = ( (“quality” OR “freshness” OR “shelf life” OR “shelf-life” OR “K-value” OR “KI-value” OR
“ATP” OR “adenosine triphosphate” OR “IMP” OR “inosine monophosphate” OR “hypoxanthine” OR “colour” OR
“color” OR “chromatism” OR “fatty acid*” OR “lipid oxidation” OR “tba” OR “electrical properties” OR “electrical
conductance” OR “electrical conductivity” OR “texture” OR “hardness” OR “firmness” OR “odour” OR “odor” OR

“nutrient*” OR “vitamin” OR “biogenic amine*” OR “water content” OR “water activity” OR “tvb-n” OR “tma-n” OR
“qim” OR “qsm” OR “sensory analysis” OR “sensory evaluation” OR “sensory method” OR “sso” OR “spoilage

bacteria” OR “spoilage microorganism*") NEAR/5 ("fish” OR “fishes” OR “shellfish” OR “seafood*” OR “albacore”
OR “amberjack” OR “anchovy” OR “angler” OR “barbel” OR “barracuda*” OR “sea bass” OR “beluga” OR “bigeye”
OR “blackfish” OR “bluefish” OR “blue runner” OR “blue shark” OR “branzino” OR “seabream” OR “sea bream” OR
“butterfish” OR “carp” OR “catfish” OR “catshark” OR “comber” OR “conger” OR “cutlassfish” OR “danubian wels”

OR “dogfish” OR “eel” OR “eels” OR “flounder” OR “flying fish” OR “forkbeard” OR “garfish” OR “garrick” OR
“guitarfish” OR “gunard” OR “haddock” OR “hake” OR “halibut” OR “hammerhead” OR “herring” OR “icefish” OR

“John dory” OR “lamprey” OR “lanternfish” OR “leerfish” OR “little tunny” OR “mackerel” OR “mahi mahi” OR
“marlin” OR “megrim” OR “melva” OR “monkfish” OR “moonfish” OR “needlefish” OR “pandoras” OR “panga” OR
“pangasius” OR “parrotfish” OR “parrot fish” OR “perch” OR “pike fish” OR “pilchard” OR “pilotfish” OR “pilot fish”
OR “plaice” OR “pollack” OR “pollock” OR “ponyfish” OR “porbeagle” OR “rainbow trout” OR “cownose ray” OR
“devilray” OR “butterfly ray” OR “softnose skate” OR “legskate” OR “sawfish” OR “ribbonfish” OR “rockfish” OR

“rosefish” OR “sablefish” OR “sailfish” OR “salmon” OR “sardine” OR “sardinella” OR “scabbardfish” OR
“scorpionfish” OR “sheatfish” OR “shi drum” OR “sillago” OR “skipjack” OR “smooth hound” OR “smooth-hound”
OR “spearfish” OR “St Peter’s fish” OR “stargazer” OR “stingray” OR “sturgeon” OR “surgeon fish” OR “swordfish”

OR “tilapia” OR “threadfin” OR “triggerfish” OR “trout” OR “tubefish” OR “tuna” OR “turbot” OR “walleye” OR
“whitebait” OR “whiting” OR “yellowtail” OR “octopus” OR “squid*” OR “crab” OR “lobster*” OR “prawn*” OR

“shrimp*” OR “cuttlefish*” OR “crayfish*” OR “langoustine*” OR “scampi*” OR “urchin”) )

6429
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Table A1. Cont.

Set Search Records

#2

(TI OR AB OR AK) = ("high pressure” OR “atmospheric cold plasma” OR “modified atmosphere*” OR “sterilization”
OR “sterilisation” OR “frozen” OR “thawed” OR “pH-shift processing” OR “cross-processing” OR “fillet*” OR “slice*”
OR “fish oil*” OR “quality of water” OR “water quality” OR “frying” OR “garlic” OR “canned fish*” OR “surimi” OR

“fish sauce” OR “nugget” OR “chitosan” OR “x-ray*” OR “farming” OR “farm-level” OR “antibacterial” OR
“antimicrobial” OR “electronarcosis” OR “immun*” OR “Fluorescence in situ hybridization” OR “cooking” OR

“microplastic*” OR “embryo*” OR “rice” OR “drying” OR “dried” OR “nursery” OR “fishmeal” OR “plastic” OR
“irradiation” OR “larva*” OR “feed*” OR “coating” OR “diet” OR “dietary” OR “reproductive” OR “ibuprofen” OR

“fertilizer*” OR “valorization” OR “catch damage” OR “thermal process*” OR “non-thermal process*” OR “non
thermal process*” OR “children” OR “gear design” OR “additive” OR “mimicry” OR “seed quality” OR “sodium

alginate” OR “edible film*” OR “TYRP1 gene*” OR “transgene” OR “antioxida* peptide*” OR “antioxida* capacity”
OR “antioxida* solution” OR “antioxida* effect*” OR “anti-oxida* activity” OR “antioxida* activity” OR “rearing” OR
“algae” OR “collagen expression” OR “genomic*” OR “proteomic*” OR “s-potential*” OR “fish meal” OR “synthesis”
OR “egg quality” OR “carotenogenesis” OR “nutrient requirement*” OR “maternal” OR “oily fish” OR “gelatin” OR

“polychlorinated” OR “nutrition of salmonoid” OR “fish retina” OR “color picture*” OR “elderly” OR “inheritance of
color” OR “short read mapping program” OR “tea polyphenol” OR “fish consumption” OR “inter-specific hybrids”

OR “extracellular lipase” OR “pathology” OR “metabolic polymorphisms” OR “transgenic” OR “eco-label” OR
“lethality” OR “micro-squid” OR “emulsion*” OR “vegetable production” OR “source of nutrient*” OR “hydrolyzate*”
OR “epiphitic” OR “bilirubin” OR “essential oil*” OR “histology” OR “egg-yolk” OR “chd” OR “silver toxicity” OR

“biomanipulation” OR “hormonal-control” OR “protein crosslinking” OR “food security” OR “high hydrostatic
pressure” OR “red tide*” OR “intake” OR “digestibility” OR “nutrient absorption” OR “nutrition” OR “docking” OR
“egg” OR “diet” OR “nutrient recycling” OR “farm effluents” OR “fish behavior” OR “smoked” OR “chromatophore*”
OR “hydroponic” OR “recovery of fish” OR “fish recovery” OR “fish-odor syndrome” OR “fish-odour syndrome” OR

“water chemistry” OR “natural preservatives” OR “mince” OR “epiphytic” OR “phosphorus” OR “omega3” OR
“hemolysate” OR “hemolysis” OR “availability of nutrients” OR “biosynthesis” OR “health” OR “globalization” OR
“inhibition of polyphenoloxidase” OR “species identification” OR “virus” OR “norovirus” OR “ferment*” OR “bread”
OR “plant extract*” OR “nanoencapsulate*” OR “starch” OR “edible compound*” OR “edible natural compound*” OR

“fish burger*” OR “wafer*” OR “bromelain” OR “fish ball*” OR “fish cake*” OR “dehydrat*” OR “grill*” OR
“4-hexylresorcinol” OR “freezing” OR “freezing-point” OR “restructure*” OR “squid oil” OR “molecular distilation”)

332,851

#3 #1 NOT #2 1636

#4 (TI OR AB OR AK) = (“mathematical model*” OR “predictive model*” OR “dynamic model*” OR “growth model*”
OR “predictive microbiology” OR “model”) 922,980

#5 #3 AND #4 33

The use of the term ID (keywords plus) in our search caused the selection of many
spurious publications. Therefore, we only considered title (TI), abstract (AB), and author
keywords (AK) in the search. In the set search #1, we have considered two blocks. The first
one contains terms related to quality indicators (for example, quality, freshness, K-value,
etc.). The second one was used to limit the search to fish products. On the other hand, set
search #2 was included to avoid those works that were not related to fresh fish, which is
the focus of this review.
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Pečar, D.; Petek, T.; Polajžer, B.

Dynamic Modeling of the Impact of

Temperature Changes on CO2

Production during Milk Fermentation

in Batch Bioreactors. Foods 2021, 10,

1809. https://doi.org/10.3390/

foods10081809

Academic Editors: Carlos Vilas,

Míriam R. García and Jose A. Egea

Received: 18 June 2021

Accepted: 2 August 2021

Published: 5 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46,
2000 Maribor, Slovenia; tatjana.petek@um.si (T.P.); bostjan.polajzer@um.si (B.P.)

2 Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17,
2000 Maribor, Slovenia; andreja.gorsek@um.si (A.G.); darja.pecar@um.si (D.P.)

* Correspondence: jozef.ritonja@um.si; Tel.: +386-2-220-7074

Abstract: Knowledge of the mathematical models of the fermentation processes is indispensable
for their simulation and optimization and for the design and synthesis of the applicable control
systems. The paper focuses on determining a dynamic mathematical model of the milk fermentation
process taking place in a batch bioreactor. Models in the literature describe milk fermentation in batch
bioreactors as an autonomous system. They do not enable the analysis of the effect of temperature
changes on the metabolism during fermentation. In the presented extensive multidisciplinary study,
we have developed a new mathematical model that considers the impact of temperature changes on
the dynamics of the CO2 produced during fermentation in the batch bioreactor. Based on laboratory
tests and theoretical analysis, the appropriate structure of the temperature-considered dynamic model
was first determined. Next, the model parameters of the fermentation process in the laboratory
bioreactor were identified by means of particle swarm optimization. Finally, the experiments with the
laboratory batch bioreactor were compared with the simulations to verify the derived mathematical
model. The developed model proved to be very suitable for simulations, and, above all, it enables
the design and synthesis of a control system for batch bioreactors.

Keywords: bioprocess engineering; fermentation process; batch bioreactors; dynamical non-linear
mathematical model; model identification; particle swarm optimization; simulation

1. Introduction

1.1. Basic Terms and Topic Relevance

Biotechnology is an engineering and science discipline with enormous importance
and potential [1]. The world biotechnology market was estimated at USD 369.62 billion
in 2016 [2] and USD 414.50 billion in 2017 [3]. For comparison, it was four times larger
than the worldwide production of electric motors (USD 96.97 billion in 2017) [4]. The
global biotechnology market is projected to reach USD 727.1 billion by 2025 (the global
electric motor market is estimated to reach USD 136.5 billion by 2025). Additionally, in
many cases, waste from agriculture or renewable raw material is used as source material in
the industrial applications of biotechnology. This is the reason that biotechnology is also
essential—to lower dependence on fossil fuels and to reduce greenhouse gas emissions.
It is expected that the usage of biotechnology for industrial systems can reduce energy
consumption by 20%, water consumption by 75%, and carbon dioxide pollution by 50% [5].

Bioprocess engineering is a biotechnology sub-discipline that is responsible for trans-
ferring the discoveries of science results into practical processes, systems, or products
that can serve the needs of society [6]. Although the production of biopharmaceuticals
is the most visible, bioprocess engineering also has a dominant position in the existing
fermentation industries responsible for ethanol production (used for beverages, fuel), lactic
acid (for milk products), carbon dioxide, hydrogen gas, butanediol (in pharmaceuticals
and cosmetics applications), propanediol (for production of biopolymers), succinic acid
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(in the chemical, pharmaceutical, food and agricultural industries), and aspartic acid (for
production of polymers) [7].

Industrial fermentation is the primary bioengineering process. It represents a planned
use of microorganisms (bacteria, yeasts, molds, or algae) or cells (animal or plant cells) to
make products advantageous to humans [8].

Industrial fermentation is executed in bioreactors. Bioreactors are classified based on
their construction and, consequently, their mode of operation. There are three types of
bioreactor: batch bioreactors, fed-batch bioreactors, and continuous bioreactors [9]. The
characteristic of batch bioreactors is that, during the implemented biological process, the
bioreactor’s content has no contact with external substances or organisms. That means it is
closed during the operation, and no inlet or outlet from the bioreactor is possible. Such an
operation mode allows non-complicated construction of batch bioreactors, which is seen
in low production costs and simple maintenance. This is the reason for the prevalence
of batch bioreactors. In fed-batch bioreactors, it is possible to add substances during the
execution of the fermentation process. All products wait in the bioreactor till the conclusion
of the biological process. Continuous bioreactors (or flow bioreactors) enable the inlet and
outlet of substances or organisms into/from the reactor as a flow.

1.2. Problem Identification and Aim of the Study

A simple mode of operation and an associated undemanding and inexpensive con-
struction and maintenance represent the great advantage of batch bioreactors. However,
their great disadvantage is that we cannot add or remove external substances during the
operation, and consequently, we cannot control the dynamics of the metabolism. The
microorganism, substrate, and fermentation product concentrations change during the
fermentation and, in the current batch bioreactors, depend only on the initial concen-
trations. Although it is not possible to add or remove individual substances during the
operation of batch bioreactors, we can change the temperature during the execution of the
fermentation in the modern batch bioreactor. This fact led us to the assumption that we
could influence the metabolism during the fermentation process in batch bioreactors by
changing the inner temperature. To analyze the influence of the changing temperature
and to develop a control system that would ensure that the metabolism will follow the
reference, we need an appropriate mathematical model. The development of the dynamic
mathematical model of milk fermentation in a batch bioreactor, which would describe the
influence of the temperature changes on CO2 production, was the main goal of our study.

1.3. Related Works and Literature Review

Over recent decades, enormous development has occurred in the fields of Design,
Synthesis, and Implementation of Automatic Control for Bioprocess Engineering. A thor-
ough review of the relevant literature in the field of Control of Fermentation Processes
in Bioreactors is performed in [10]. Interestingly, however, in most studies in the field of
Control of Fermentation Processes, a fundamental kinetic mathematical model [11] is still
used, both for theoretical and numerical analysis [12–14]. The derivation of a parametric
mathematical model of the fermentation process, which also describes the influence of
temperature changes on the time course of concentrations of microorganisms, substrate,
and fermentation product, is a relatively new field. Although there are many studies
showing the influence of temperature on the fermentation processes of different species,
these are limited mainly to the observation and numerical evaluation of the influence of
different (constant) temperatures on the course of the fermentation process and do not
result in deriving a parametric mathematical model [15–17].

Mathematical modeling of the fermentation process in bioreactors is highly current,
as shown by numerous new publications. Reference [18] shows the implementation of the
computational fluid dynamics model of a bioreactor. In [19], the stability analysis of a fun-
damental kinetic mathematical model of a continuous bioreactor is shown. Reference [20]
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shows how mathematical modeling can be usefully applied in designing and optimizing
bioreactors.

The authors of this paper started working on a parametric dynamical mathematical
model that describes the impact of temperature variation on the fermentation dynamics
in the year 2018. The influence of temperature change on fermentation dynamics was
experimentally observed and described first in [21]. In [22], the authors introduce a new
supplementary transfer function that considers the impact of temperature variation on
a bioprocess. A conventional control system was developed, and a tuning method was
proposed on the basis of this model. In [23], the derived mathematical model was used for
the optimization of the control system. In all cases, a mathematical model was derived for
probiotic beverages’ fermentation.

The mathematical model presented in [21–23] is a “hybrid” mathematical model con-
sisting of an autonomous non-linear model and a non-autonomous linear model connected
in parallel. The non-linear model describes the influence of initial conditions on the course
of fermentation variables, and the linear model is used to model the impact of temperature
changes on their responses. The derived model proved to be a very accurate description of
what happened during the fermentation process. This model allows efficient analysis of
the fermentation process, but it is demanding to design and synthesize control systems
due to its complicated structure. In order to increase the compactness of the model and,
thus, increase the suitability of the model for the needs of design and synthesis of control
systems, we developed a temperature-considered dynamic mathematical model of the milk
fermentation process, which is uniform and does not consist of two parallel sub-models.
The derived model is presented in this article.

1.4. Paper Contributions

The premise that the control of the metabolism during the fermentation is possible
by changing the temperature in the bioreactor leads to the conclusion that, also for batch
bioreactors, we can develop a control system, which will control the fermentation process
during the operation. The paper’s first contribution is the confirmation of this premise
by experiments on a laboratory batch bioreactor. The logical continuation of this finding
is the intention to determine the mathematical model that will allow the design and
synthesis of the control system. The paper’s second contribution is the derivation of the
appropriate mathematical model. The developed model is required to accurately describe
the phenomenon during the fermentation process, and, at the same time, the model must
be structurally suitable for the development of the control system.

2. Materials and Methods

In our study, we focused on the dynamic modeling of the fermentation process in batch
bioreactors. Therefore, the subsequent chapters describe in more detail the considered
fermentation process and the batch bioreactor, along with the necessary equipment for
measurements.

2.1. Fermentation Process

The presented study considers milk fermentation with kefir grains. Traditionally,
kefir is produced by inoculating kefir grains, which are a mixture of proteins, polysac-
charides, mesophilic, homofermentative, and heterofermentative lactic acid streptococci,
thermophilic and mesophilic lactobacilli, acetic acid bacteria, and yeast. Fermentation of
the milk by the inoculum proceeds for ca. 24 h, during which time homofermentative
lactic acid streptococci grow rapidly, initially causing a drop in pH. This low pH favors the
growth of lactobacilli but causes the streptococci number to decline. The presence of yeasts
in the mixture, together with fermentation temperature (21–23 ◦C), encourages the growth
of aroma-producing heterofermentative streptococci. As fermentation proceeds, the growth
of lactic acid bacteria is favored over the growth of yeasts and acetic acid bacteria.
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Before the fermentation, kefir grains (40 g) were activated for 5 successive days,
washed daily with cold water and put into 500 mL of fresh pasteurized whole fat milk
at room temperature. To start the fermentation, 500 mL of fresh pasteurized whole fat
milk was preheated in the fermenter to the desired temperature and then inoculated with
40 g of active kefir grains. For the presented fermentation, the full activated (5 days
activation) kefir grains were used. Different fermentation processes were obtained by
means of differently activated kefir grains.

During the fermentation, carbon dioxide, acetic acid, diacetyl, acetaldehyde, ethyl
alcohol, and several other substances are formed, and these give the products their charac-
teristic fresh taste and aroma.

Milk fermentation with kefir grains propagation is an inherently very complex process
because of the specific nature of the microbial metabolism, as well as the non-linearity of
its kinetics. Therefore, monitoring and control are extremely important to develop models
that are able to provide an accurate description of the progress of the process.

2.2. Laboratory Equipment

We needed an appropriate laboratory system to determine how the temperature
changes affect the time responses of the substance concentrations of the fermentation
process. For this purpose, a laboratory system was built, which enabled controlled temper-
ature changes in the bioreactor and dynamic measurement of concentrations of substances
during the fermentation process. The laboratory system consists of a batch bioreactor with
a heating/cooling thermal system, a measurement system, and a data acquisition system.
All parts are described below.

2.2.1. Batch Bioreactor

The fermentation process was primarily analyzed in the computer-controlled labora-
tory batch bioreactor RC1e from Mettler Toledo (Greifensee, Switzerland). The laboratory
bioreactor has additional equipment for the identification of model parameters. The studied
batch bioreactor is described in detail in [10,22,23].

2.2.2. Heating/Cooling System

For the identification of the parameters of the mathematical model, an integrated
heating/cooling system was used, which controls the temperature of the bioreactor’s
mixture. Silicone oil represents the heat transfer agent. The oil is circulated through the
bioreactor’s double jacket in a closed circulation system. The temperature control system
keeps the temperature of the bioreactor’s contents at the reference value [23]. Compared
to the dynamics of the fermentation process, the response of the heating/cooling system
is very fast. The identified time constant of the heating/cooling system is approximately
6 min.

2.2.3. Dissolved Carbon Dioxide Measurement System

In the studied fermentation process, the carbon dioxide (CO2) dissolved in the biore-
actor’s medium is the fermentation product. CO2 is a product of the cellular metabolism of
microorganisms. Assuming a growth medium with a sufficient carbon source, the mea-
sured CO2 concentration profile could also be the indicator of the fermentation progress.
Thus, dissolved CO2 was chosen as the output and identified as an observable variable.
The distribution of the CO2 in the bioreactor medium is very homogeneous. The sensors
for the measurement of CO2 concentration are reliable and accurate. The multi-parameter
measuring device SevenMulti from Mettler Toledo with modular expansion possibilities
was used as a basic unit. For the monitoring of dissolved CO2 concentration in liquid media,
the SevenMulti apparatus was connected to the ISE51B ion-selective electrode. Electrode
potential response to CO2 concentration is, in a semilogarithmic scale, a straight line over
two decades of the concentration (5·10−4 g/L to 2·10−2 g/L). A change in temperature
causes the electrode response to shift and change slope (temperature variation 5 ◦C change,
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slope approx. 1.7%). The detailed principles of the measurement system are described
in [10].

2.2.4. Data Acquisition Equipment

For the connection of the SevenMulti basic device and the ion-selective electrode
sensor, an expansion module was added to the basic unit. The analog 1st order low pass
filter for the elimination of sensor noise is integrated into the expansion module. For
the transfer of measured signals from the SevenMulti basic unit to PC, the basic device
was equipped with a USB communication module. For the transfer of the measured
temperature signal and the reference temperature signal from the heating/cooling system
to PC, a dSpace 1103 PPC controller board was utilized. The controller is equipped with
16 bit A/D and D/A converters as well as serial and CAN interfaces [10].

For the comprehensive measurement of several quantities over a long time period and
for the necessary signal processing, software LabX direct pH 2.3, Mettler Toledo (Greifensee,
Switzerland) was installed on PC. This is professional equipment used for data logging
and data analysis. The selected sampling time was 10 min. This was sufficient due to the
slow dynamics of the fermentation process. During the performing the experiments, the
sampling time was changed and adjusted to the dynamics of the measured signal. Mea-
sured data was saved into Excel, Microsoft Office 365 (USA) documents, transferred into
MATLAB R2021a, MathWorks (USA), and processed using MATLAB with its Optimization
toolbox functions [10]. A block diagram of the batch bioreactor with measurement system
is displayed in Figure 1.

 
Figure 1. Laboratory system for experiments and identification of the mathematical model.

2.3. Fundamental Mathematical Model of the Fermentation Process in Batch Bioreactor

Fermentation is a process whereby microorganisms induce a substrate to break down
into a fermentation product. Microorganisms, substrates, and fermentation products are
present in all fermentation.

The fermentation process is a complex non-linear system with mainly unknown struc-
tures and unknown time-varying parameters. In the fermentation process, a multitude of
biochemical reactions occurs, representing the kinetics inside a microorganism, in addition
to physical transfer rates [9]. The adaptation of the microorganisms to the environment
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through mutations represents an additional challenge. These are the reasons for the ab-
sence of mathematical models, useful from an engineering viewpoint, which would take
into account the numerous factors which influence the growth of microorganisms and the
execution of the fermentation process.

However, we can find in the literature various mathematical models of different
complexity describing the dynamics of fermentation processes in batch bioreactors. These
models are mostly based on the mass balances of substances that occur in fermentation. A
fundamental kinetic model is written in the state-space form of 3rd order (1)–(3) [10,23],
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where the state space variables and the model parameters are:

x1(t)—the microorganisms’ concentration (g/L),
x2(t)—the substrate’s concentration (g/L),
x3(t)—the fermentation product’s concentration (g/L)
μm—the maximum microorganisms’ growth rate (h−1),
Pi—the product inhibition constant (g/L),
Sm—the substrate saturation constant (g/L),
Si—the substrate inhibition constant (g/L),
A—the parameter that describes the relation between product yield and microorganism
growth, and
β—the growth independent constant (h−1).

The mathematical model presented in (1)–(3) is autonomous. The model has no input
variable. This corresponds to the actual realization of batch bioreactors because they do
not have an input quantity to be used for control of the fermentation process. All three
substances of the bioprocess are placed in the bioreactor at the start of the fermentation.
During the fermentation, it is not possible to add to or remove any of them. The dynamics
of the fermentation process depend only on the quantity and quality of substances used
and the type of batch bioreactor. Accordingly, the transients of the model are obtained as
the response to the initial values of the model variables and depend on the parameters of
the mathematical model.

During the fermentation process, the quantity of the microorganisms and product
increase, and the amount of substrate decreases. The quantities of substances are measured
and applied in the model as concentrations.

In the case of an autonomous fermentation process (the fermentation process that
depends only on initial concentrations, where the temperature is constant during the whole
fermentation process), all parameters of the fundamental kinetic mathematical model are
constant throughout the entire duration of the fermentation process.

The presented fundamental kinetic mathematical model of the fermentation process en-
ables simple and efficient simulation and analysis of the time courses of the concentrations
of microorganisms, substrate, and product in the case of different initial concentrations.
The main disadvantage of this model is its inability to consider the effect of temperature
change on the fermentation process, which is necessary for control system purposes.
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This model does not allow the evaluation of the impact of temperature changes on the
time courses of concentrations of individual substances during the fermentation process,
which is necessary for the design and synthesis of suitable control systems. Therefore, it is
necessary to derive a new mathematical model of the fermentation process in the batch
bioreactor, which will evaluate the influence of temperature change.

3. Results

3.1. Experimental Analysis of the Fermentation Process
3.1.1. Responses of the Autonomous Process

First, an analysis was carried out of how the diverse constant temperatures affect
the time course of the CO2 production. The same initial values for all substances of
the fermentation process were used in all experiments. The bioreactor has a constant
temperature during the whole fermentation process. The obtained results were expected,
meaning that a more responsive fermentation course and a greater end amount of the
CO2 concentration were achieved at a higher constant temperature. The equal findings
were obtained in experiments with different fermentation processes. Figure 2 shows the
measured time courses of the CO2 for the various constant temperatures of the studied
bioreactor.

Figure 2. Measured time courses of the CO2 concentration during the fermentation processes with
different bioreactor temperatures.

3.1.2. Responses of the Non-Autonomous Process

In the second phase, the impact of the temperature changes during the fermentation
was studied. In this phase, many tests were also carried out (different amplitudes, slopes,
signs, and different moments of temperature change). It was visible from all experiments
that an increase in the temperature speeds up the fermentation, and a temperature decrease
decelerates it. The influence of the step change of the temperature on the time course of
the CO2 concentration is presented in Figure 3. The figure shows the transient response of
the CO2 concentration when temperature changes from 22 ◦C to 27 ◦C. The time course of
the CO2 for the constant temperature (T = 22 ◦C) during the entire fermentation was also
added to this graph.
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Figure 3. Measured time courses of the CO2 concentration during the fermentation processes with
constant and changeable bioreactor temperatures.

3.2. Analysis of Correlation between Parameters and Responses of Mathematical Model

The aim of the paper was to find a non-autonomous mathematical model whose
input variable would be the desired temperature of the heating/cooling system, and the
model’s state variables would be the concentrations of microorganisms, substrate, and
fermentation product. The starting point for the development of such a model was the idea
that the temperature in the bioreactor affects the parameters of the associated mathematical
model. As a basis for the development of a new mathematical model, the presented
fundamental kinetic mathematical model (1–3) was used. The correlation between the
fermentation process and the parameters of the fundamental kinetic mathematical model
(1–3) was determined using systematic and extensive simulations. It has been shown that
it is significant to analyze the impact of the model’s parameters on the time course of the
CO2 concentration of the fermentation product (variable x3(t) in (1)–(3)). Figures 4–9 show
the influence of all mathematical model parameters (1)–(3) on the time course of the CO2
concentration, separately. To obtain these results, modified values of the parameters of
the mathematical model were presumed. Constant values of the model’s parameters were
used during the particular simulation of the fermentation process. Results are shown in
the following Figures:

• the impact of the maximum microorganisms’ growth rate μm on the CO2 concentration
x3(t) is shown in Figure 4,

• the impact of the product inhibition constant Pi on the CO2 concentration x3(t) is
shown in Figure 5,

• the impact of the substrate saturation constant Sm on the CO2 concentration x3(t) is
shown in Figure 6,

• the impact of the substrate inhibition constant Si on the CO2 concentration x3(t) is
shown in Figure 7,

• the impact of the parameter of the product yield in consequence of microorganism
growth α on the CO2 concentration x3(t) is shown in Figure 8,

• the impact of the independent product yield β on the CO2 concentration x3(t) is shown
in Figure 9.
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Figure 4. The impact of the maximum microorganisms’ growth rate μm on the time course of the
CO2 concentration.

Figure 5. The impact of the product inhibition constant Pi on the time course of the CO2 concentration.

Figure 6. The impact of the substrate saturation constant Sm on the time course of the CO2 concentra-
tion.
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Figure 7. The impact of the substrate inhibition constant Si on the time course of the CO2 concentra-
tion.

Figure 8. The impact of the parameter α on the time course of the CO2 concentration.

Figure 9. The impact of the parameter β on the time course of the CO2 concentration.
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The goal of the present work was to find the connection between the parameters of
the mathematical model and the dynamics of the fermentation process. We were interested
in discovering which parameter of the mathematical model had a high impact on the
fermentation process dynamics. Based on mathematical models of different fermentation
processes in different batch bioreactors, we carried out an extensive systematic numerical
analysis. The analyzed fermentation processes have similar impacts of parameter changes
on fermentation process dynamics. The main conclusions of all simulations were:

• the impact of the product inhibition constant Pi and the substrate inhibition constant
Si on the fermentation process transient and steady-state is very small,

• the substrate saturation constant Sm has a very small impact on the fermentation
process steady-state and a small impact on the fermentation process transient,

• the parameter that describes the product yield that is independent of the microorgan-
isms’ growth β has a very small impact on the fermentation process transient and a
small impact on the fermentation process steady state,

• the maximum microorganisms’ growth rate μm has a significant impact on the fermen-
tation process transient and very small impact on the fermentation process steady-
state,

• the parameter that describes the relation between product yield and microorganisms’
growth α has a significant impact on the fermentation process steady-state and very
small impact on the fermentation process transient.

Determination of parameters that have an impact on the dynamics and statics of
the fermentation process is also possible using sensitivity analysis [24–26]. Sensitivity
analysis allocates model uncertainty to the various sources of uncertainty, facilitating the
targeted reduction of output uncertainty. Sensitivity analysis methods have provided
numerous interesting results in a wide variety of different applications. Its advantage is
visible especially in systems with a large number of parameters.

3.3. Temperature-Considered Model of the Fermentation Process in Batch Bioreactor

From the comparison of the experimental and simulation results, we can see that the
temperature changes have a similar effect on the experimentally obtained courses of the
fermentation product (Figure 2) as changing the parameters μm and α on the numerically
calculated courses (Figures 4 and 8). Based on the results in Sections 3.1 and 3.2, we can
conclude that the temperature change significantly affects parameters μm and α, while
it does not have a large effect on other parameters. It can be seen from Figure 4 that the
maximum microorganisms’ growth rate μm affects the fermentation speed but does not
affect the steady-state value of the fermentation product achieved at the end of fermentation.
In contrast, the parameter α affects the steady-state value of the fermentation product and
does not significantly affect the transient phenomenon, as shown in Figure 8.

This means that in the case of variable temperature in the bioreactor, the parameters
μm and α will no longer be constant, but their values will change according to the tem-
perature in the bioreactor. Therefore, we added a differential equation to the fundamental
mathematical model of the fermentation process, with which we calculate the temperature
in the batch bioreactor. The temperature in the bioreactor is described by a new variable
x4(t). Instead of constant parameters μm and α, we introduce temperature-dependent pa-
rameters μmϑ(t) and αϑ(t). In [27], it was shown that there is a static relationship between
temperature and the parameters of the mathematical model. Since the temperature during
the fermentation varies in a relatively small range (too high or too low temperatures can
damage the microorganisms), we used a linear dependence between temperature deviation
and model parameters deviation. Consequently, we expressed temperature-dependent
parameters μmϑ(t) and α ϑ(t) with following static functions:

μmϑ(t) = μm
(
1 + kμm(x4(t)− ϑ0)

)
(4)

αϑ(t) = α (1 + kα(x4(t)− ϑ0)) (5)
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where the new parameters in the linear static equations are:

x4(t)—the temperature in the bioreactor (◦C),
ϑ0—the temperature of the bioreactor’s contents at the beginning of the fermentation
process (◦C), where normally ϑ0 is equal to the outside temperature,
kμm—the coefficient that outlined the effect of the temperature changing on the maxi-
mum microorganisms’ growth rate μm (◦C)−1,
kα—the coefficient that describes the impact of the temperature change on the parameter
that describes the relation between product yield and microorganism growth (◦C)−1,
μmϑ(t)—the temperature-dependent maximum microorganisms’ growth rate (h−1), and
αϑ(t)—the temperature-dependent parameter which expresses the connection between
product yield and microorganism growth (h−1).

The new temperature-considered model was obtained by supplementing the fun-
damental model with an additional differential equation for calculating the temperature
in the bioreactor and by replacing the constant parameters μm and α with temperature-
dependent ones, as described by the Equations (4) and (5). The derived mathematical
model is expressed with the following equations:
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where additionally to the symbols in (1)–(5):

u(t)—indicates the reference temperature of the bioreactor’s temperature control system
(◦C), and
Tϑcs—is the time constant of the simple 1st order model of the controlled heating
system (h).

The newly developed model considers the influence of temperature on the transient
and steady-state of the fermentation process, which is why we named this model the
temperature-considered model. The developed enhanced model (6–9) represents the
transition between different models (1–3).

When developing and testing the temperature-considered model, instead of linear
expressions (4) and (5), we tried different non-linear analytical expressions to describe the
dependence of the model parameters on the temperature in the bioreactor. Tested functions
were identified in such a way that they enable good fitting of the mathematical model’s
responses to the measured trajectories [21]. The selected linear functions represent a good
compromise—they are easy to identify and, at the same time, allow a good description of
the progress during the fermentation process.

The significant advantage of the temperature-considered model (6–9) is its ability
to allow an analysis of the impact of temperature changes on the fermentation process
dynamics and steady-state characteristics. The derived mathematical model (6–9) is in
structure partially similar to the basic fundamental model (1–3), but in its functionality
the newly derived model (6–9) is incomparable to the fundamental model (1–3). The
fundamental model (1–3) is an autonomous model and allows only simulations of responses
of the concentrations to the initial values of fermentation substances. On the contrary,
the model (6–9) represents a non-autonomous model of non-linear differential equations,
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which additionally enables the calculation of the courses of concentrations of bioreactor
substances in the case of temperature variations in a bioreactor. Therefore, model (6–9) is
suitable for the design of fermentation control systems based on temperature changes in
the bioreactor, which is not possible with model (1–3).

3.4. Parameters Identification of the Temperature-Considered Model

The parameters of the mathematical model μm, Pi, Sm, Si, α, β, kμm, kα, and Tϑcs (all in
Equations (1)–(9)) depend on the quality and quantity of the substances, and of the external
operating parameters. In the case of unchanged external conditions, the parameters remain
more or less constant during the fermentation process [21]. The parameters of the mathe-
matical models for the fermentation processes in the laboratory or industrial bioreactors
can be calculated by different optimization methods from the measured trajectories of the
bioreactors’ substances. In our study, the particle swarm algorithm was used to obtain the
parameters of the mathematical model.

Particle swarm is a population-based algorithm [28]. Particle swarm optimization
(PSO) is originally attributed to [29]. During the optimization the swarm of particles
varies throughout the selected area. The optimization algorithm calculates the objective
function at each step. After their calculation, the algorithm sets the new particles’ velocities.
The algorithm moves each particle to the best-founded location. PSO is a metaheuristic
procedure that may provide a sufficiently good solution to an optimization problem, in
case of few, incomplete, imperfect, or no assumptions about the problem being optimized.
PSO can search very large spaces of candidate solutions. PSO does not use the gradient of
the problem being optimized, which means that it does not require that the optimization
problem be differentiable. However, PSO does not guarantee that an optimal solution is
ever found.

Functions from MathWorks MATLAB/Optimization Toolbox library were used for
faster realization of the PSO for the calculation of the model’s parameters. Matlab function
particleswarm.m is based on the algorithm described in [29], using modifications suggested
in [30,31]. Details of the PSO algorithm in the particleswarm.m function are written in [32].

The optimization was accomplished from the measured time course of the CO2 concen-
tration. For the objective function requires, the error between the measured and calculated
response was computed. The integral absolute error (IAE) objective function was im-
plemented to calculate the fitting of the mathematical model with the laboratory batch
bioreactor [10].

Because we approximately estimated the range of values of the model’s parameters,
we constrained the area where the algorithm was searching for optimal solutions. The
optimization algorithm changed the parameters of the mathematical model (6–9) for so
long in order to reach the minimum of the IAE function. Optimization was finished when
the relative change of the objective function reached the stopping criterion suggested in
the default defined value.

For the determination of the temperature-considered model, it was necessary to
identify nine parameters of the mathematical model. PSO can be used to identify all
parameters simultaneously, but we can also identify the model’s parameters in several
stages. With the help of a systematic trial procedure, we found that the best results are
obtained by separating the parameters identification into two phases. In the first phase,
the parameters μm, Pi, Sm, Si, α, and β were identified. In the second phase, the remaining
parameters kμm, kα, and Tϑcs were calculated.

3.4.1. Identification of the Parameters μm, Pi, Sm, Si, α, and β

In the first stage of the optimization procedure, the parameters μm, Pi, Sm, Si, α,
and β were identified. These represent the fundamental part of the mathematical model,
which coincides with the constant temperature environmental conditions. This models
the fermentation process’s transient and steady-state behavior resulting from the initial
concentrations of the substances in the bioreactor.

125



Foods 2021, 10, 1809

First, the initial values of the microorganisms, substrate, and fermentation product for
the fermentation process in the studied batch bioreactor were measured. The measured
values are written in Table 1.

Table 1. Initial values of the fermentation process in the studied bioreactor.

Variable Value

the initial value of the microorganisms’ concentration x1(0) = 2.6 mg/L
the initial value of the substrate’s concentration x2(0) = 9.0 mg/L
the initial value of the product’s concentration x3(0) = 0.1 mg/L

the initial temperature of the bioreactor’s contents x4(0) = 22 ◦C

After that, the fermentation process was carried out. Only the dissolved CO2 concen-
tration needed to be measured. The dissolved CO2 concentration represents the fermenta-
tion product and is the most important substance in the bioreactor. During the fermentation
process, all external conditions (temperature, stirrer’s speed) were constant. The measured
time course of the dissolved CO2 concentration for constant temperature 22 ◦C is shown in
Figure 2. The PSO with IAE objective function was applied to calculate the parameters of
the fundamental part of the model, valid for the constant bioreactor’s temperature. The
IAE function was calculated as the integral of the absolute error between the measured
course of the dissolved CO2 concentration (Figure 2) and the calculated state-space variable
x3(t) of the non-linear mathematical model (1–3). The PSO algorithm changed the values of
the identified model μm, Pi, Sm, Si, α, and β for so long that the objective function reached
a minimum. The time course of the objective function during the PSO procedure is shown
in Figure 10.

Figure 10. The time course of the IAE objective function during the PSO with the parameters μm, Pi,
Sm, Si, α and β.

As can be seen from Figure 10, less than 60 iterations were required to calculate the
parameters μm, Pi, Sm, Si, α, and β of the fundamental part of the mathematical model. All
identified parameters are presented in Table 2.
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Table 2. Parameters of the Mathematical Model for the Fermentation Process in the Studied Bioreactor.

Parameter Value

the maximum microorganisms’ growth rate μm = 2.1 h−1

the product inhibition constant Pi = 0.75 g/L
the substrate saturation constant Sm = 0.03 g/L
the substrate inhibition constant Si = 1.0 g/L

the parameter of the product yield related to microorganisms’ growth α = 0.38 g/L
g/L

the parameter of the product yield independent of the
microorganisms’ growth β = 0.002 h−1

the temperature of the bioreactor’s contents during the
fermentation process ϑ0 = 22 ◦C

3.4.2. Identification of the Parameters kμm, kα, and Tϑcs

In the second stage of the optimization, the parameters kμm, kα, and Tϑcs were identified.
These parameters are important for the supplementary part of the mathematical model,
which describes the influence of the variable temperature on the fermentation process
transient and steady-state behavior. The parameters kμm and kα characterize the impact
of the variable temperature on the modifying of the parameters μmϑ(t) and αϑ(t). The
parameter Tϑcs specifies the temperature time constant that describes the alternating of the
temperature in the bioreactor as a result of the reference temperature of the bioreactor’s
temperature control system.

To identify these parameters, a fermentation process was carried out again. This time,
we changed the reference temperature during the fermentation process. The step change of
the temperature from 22 ◦C to 27 ◦C arises at t = 3 h. The time course of the dissolved CO2
during the fermentation with changeable temperature is shown in Figure 3. Again, the
PSO with IAE objective function was used for the identification of the model parameters.
The IAE objective function was calculated as the integral of the absolute error between
the measured course of the dissolved CO2 concentration (Figure 3) and the calculated
state-space variable x3(t) of the non-linear mathematical model (3–6). The PSO algorithm
changed the values of the identified model kμm, kα, and Tϑcs for so long that the objective
function reached a minimum. During the optimization, the parameters μm, Pi, Sm, Si, α,
and β have values that were identified in the first stage of the identification procedure
(Table 2). The time course of the objective function during the PSO procedure is shown in
Figure 11.

Figure 11. The time course of the IAE objective function during the PSO with the parameters kμm, kα,
and Tϑcs.
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Figure 11 shows that less than 25 iterations were required for the calculation of the
parameters kμm, kα, and Tϑcs of the supplemental part of the mathematical model. The
identified parameters are presented in Table 3.

Table 3. Additional parameters of the augmented mathematical model for the fermentation process
in the studied bioreactor.

Parameter Value

the coefficient of the impact of the temperature changing on the
maximum growth rate μm

kμm = 0.14 (◦C)−1

the coefficient of the impact of the temperature changing on the
parameter α kα = 0.03 (◦C)−1

the time constant of the 1st order model of the controlled heating
system Tϑcs = 0.1 h

the temperature of the bioreactor’s contents at the beginning of the
fermentation process ϑ0 = 22 ◦C

To estimate the temperature-considered mathematical model parameters, we can
also use the computationally less demanding sensitivity method [24–26]. Its advantage is
especially evident in models with a large number of parameters.

3.5. Simulation Results of the Temperature-Considered Model

The simulation results of the identified temperature-considered model of the fermen-
tation in the laboratory bioreactor are shown in Figure 12. Presented are the time responses
of the microorganisms, substrate, and product in the case of constant temperature (solid
lines) T = 22 ◦C, and the same variables in the case of the bioreactor’s reference temperature
step change from 22 ◦C to 27 ◦C in t = 3 h (drawn with dashed lines). It is evident that
temperature changes generate substantial variations in the dynamics of all quantities of the
fermentation process. The time course of the actual temperature in the bioreactor follows
the reference temperature step change. The delay in the actual temperature is small—it
corresponds to the short time constant of the controlled heating system Tϑcs = 0.1 h.

Figure 12. Time courses of the concentrations of the microorganisms, substrate, and product during
the fermentation processes with constant and changeable bioreactor temperatures.

3.6. Comparison of Simulations and Experimental Results

The matching of the response of the measured CO2 concentration in the laboratory
bioreactor with the response of the CO2 concentration calculated with the identified tem-
perature considered model is displayed in Figures 13–15.

128



Foods 2021, 10, 1809

The results of the fermentation process with a constant temperature 22 ◦C are pre-
sented in Figure 13. It can be seen that in the case of a constant temperature, the time course
of the produced CO2 is continuous. The response of the identified mathematical model
matches very well with the measured response of the laboratory bioreactor. Matching is
seen in all three phases of the fermentation process: in the starting induction phase, in the
successive exponential growth phase and in the subsequent stationary phase and the end
dying phase.

Figure 13. Measured and simulated time courses of the CO2 concentration during the fermentation
process with constant bioreactor temperature 22 ◦C.

Figure 14 shows the results of the fermentation with the changeable bioreactor’s
temperature. Note, in the experiment and in the simulations, the step increase of the
reference temperature from 22 ◦C for 5 ◦C occurred at t = 3 h. The consequence of the step
change in temperature in the bioreactor is visible in the different slope of the time course at
the time of the change. In this case, the matching of the responses of the identified model
and the laboratory measurements is also very good.

Figure 14. Measured and simulated time courses of the CO2 concentration during the fermentation
process with changeable bioreactor temperature (step change of temperature from 22 ◦C to 27 ◦C
occurred at time t = 3 h).
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Figure 14 shows a comparison of simulations and measurements for the input signal,
which was previously used to identify model parameters. It makes sense to test the accuracy
of the identified mathematical model for a new signal dataset. This is the case where the
test input signal is different from the input signal used for identification. Figure 15 shows
the results of the fermentation where the step increase of the reference temperature from
22 ◦C for 5 ◦C occurred at t = 6 h. Simulation and experimental results are presented. As
in the previous cases, both responses match very well. The non-continuity in time course,
smaller as in the previous case, is seen at t = 6 h. Figures 14 and 15 confirm the empirical
findings that the effect of temperature change on CO2 production is bigger at the beginning
of the fermentation (high growing rate) and smaller in the second part of the fermentation
process (low growing rate).

Figure 15. Measured and simulated time courses of the CO2 concentration during the fermentation
process with changeable bioreactor temperature (step change of temperature from 22 ◦C to 27 ◦C
occurred at time t = 6 h).

The simulation results show that the derived model can justifiably be used for bio-
process analysis, simulations, and control system development. The identification (with
optimization techniques) of the parameters of the presented model is not complicated
but can take a lot of time. For identification purposes, a fermentation experiment with a
constant temperature must first be performed. After that, the fermentation process must be
carried out again. This time the temperature must change during fermentation.

4. Discussion and Conclusions

The study’s main contribution is the development of a new dynamic model that
considers the impact of temperature changes on the fermentation process dynamics and
steady-state characteristics. The most important features of the presented temperature-
considered model are:

• The derived model is a fourth order non-linear state-space model,
• The model’s input is the reference variable of the heating/cooling system, the model’s

state-space variables are the concentrations of microorganisms, substrate and product,
and the temperature in the bioreactor,

• The derived model is compact and suitable for the analysis of the fermentation process,
for simulations, and for the implementation of the control system.

• The derived model represents a further development of the models presented in
the authors’ previous publications [10,21,22]. The advantage of the new model is
in its simpler structure—previous models were based on a combination of a non-
linear model for calculating the response to initial conditions and a linear model for
calculating the response to temperature change.
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• The derived model has nine parameters that depend on the biochemical substances
and the determination of parameters for a specific bioreactor is possible by identifi-
cation. For parameters’ identification, it is necessary to carry out the fermentation
process at least twice: once with a constant temperature and once with a change
in temperature during the fermentation. The paper does not discuss the theoretical
possibility of determining the model parameters from the biochemical data. Particle
swarm optimization was used for the identification of the mathematical model.

• An important finding obtained from the derived model analysis is that the application
of adaptive control theory for non-linear systems is reasonable for developing a
control system that will control the fermentation process along the prescribed reference
trajectory [33].

• Identification and analysis of the mathematical model were made on different fermen-
tation processes on two different batch bioreactors. The obtained results of a multitude
of experiments and calculations confirmed the presented findings.

• The article shows the use of scientific methods for the needs of engineering research.
Our expectations are that academics and engineers will use the developed mathemati-
cal model for the design and synthesis of advanced control systems.
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Abstract: Fermentation is one of the oldest methods to assure the safety and quality of foods, and to
prolong their shelf life. However, a successful fermentation relies on the correct kinetics depending
on some factors (i.e., ingredients, preservatives, temperature, inoculum of starter cultures). Predictive
microbiology is a precious tool in modern food safety and quality management; based on the product
characteristics and the conditions occurring in food processing, the inactivation of or increase in
microbial populations could be accurately predicted as a function of the relevant intrinsic or extrinsic
variables. The main aim of this study was the optimization of the formula of a smoked fermented
fish product using predictive modeling tools (tertiary and secondary models) in order to define the
role of each factor involved in the formulation and assure a correct course of fermentation. Product
optimization was conducted through the software Food Spoilage and Safety Predictor (FSSP), by
modeling the growth of lactic acid bacteria (LAB) as a function of some key parameters such as
temperature, pH, salt, liquid smoke, carbon dioxide, and nitrites. The variables were combined
through a fractional design of experiments (DoE) (3k-p), and the outputs of the software, i.e., the
maximal growth rate (μmax) and the time to attain the critical threshold (tcrit), were modeled through
a multiple regression procedure. The simulation, through FSSP and DoE, showed that liquid smoke
is the most critical factor affecting fermentation, followed by temperature and salt. Concerning
temperature, fermentation at 20–25 ◦C is advisable, although a low fermentation temperature is also
possible. Other parameters are not significant.

Keywords: predictive microbiology; FSSP; DoE; smoke; fermentation; fish

1. Introduction

The application of fermentation to fish goes back many thousands of years with
evidence of fermented fish products in ancient Greece (aimeteon) and in the Roman era
(garum). However, although the fermentation process was once only used as a preservation
method, today, it is also used for health purposes. In fact, a recent trend in the design of
innovative fish products is the individuation of fish formulas fermented with appropriate
starter cultures (sometimes with probiotic or other functional traits) to produce foods with
improved sensory attributes, high nutritive value, and health benefits [1,2].

Fermented fish products usually have unique characteristics, especially in terms of
aroma, flavor, and texture: this is the result of the transformation of organic materials into
simpler compounds by the activity of microorganisms or enzymes during the fermentation
process. The fermented products are more digestible, at the same time preserving their
nutritional properties, even better than unfermented raw fish. These foods are a source not
only of proteins, amino acids, and polypeptides, but also of minerals (calcium and iron),
some B group vitamins, and, above all, polyunsaturated fatty acids [3].
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Unfortunately, most fermented fish products are still local and not so easily found
nationwide, with Asia and Africa being the main producers; only some fish sauces and
shrimp pastes are widely known in Europe [4]. Each country has its own types of fermented
fish products characterized by different production processes and formulations.

Recently, these products have been gaining increasing interest among consumers
due to their healthy characteristics supported by several studies in the literature [3,5–15].
Apart from the well-known health effects of fish meat, correct fermentation, led by pro-
technological microorganisms, could result in the biofortification of amino acids and
peptides with some physiological and beneficial functions (antioxidant, antihypertensive,
antiproliferative, hypoglycemic, immune-stimulating, and anticoagulant effects) [1]. In
addition, a correct and predictable process piloted by starter cultures, either autochthonous
or commercial, can limit the production of undesired metabolites and produce a good
product; the choice to rely the quality of fermented products on spontaneous fermentation
(natural microbiota) is no longer advisable, because of the very high risk of incurring
arrested fermentation and health problems. This is why recent research is increasingly
focused on the selection of microorganisms able to guarantee the best performances [16–18].
The most promising microorganisms selected as starters are generally those that are isolated
from the native microbiota of traditional products since they are well adapted to the
environmental conditions of the considered food [19–21].

Regardless of the type of starter, the correct course of fermentation is essential to
produce a safe and high-quality product. It is also crucial to define the effects of each
factor involved in the formulation (ingredients, preservatives, temperature, inoculum
of starter cultures) on the process of evolution. In this context, predictive microbiology
stands up as a precious tool in modern food safety and quality management. Based on the
product characteristics and the conditions occurring in food processing, the inactivation
of or increase in microbial populations in foods, as a function of the relevant intrinsic or
extrinsic variables, could be accurately predicted [22]. A new frontier goal in predictive
microbiology is the use of models and databases for product optimization, as also shown
by the authors of some seafood applications [23,24].

Generally, the optimization of new formulas relies on different steps and phases and
could start with an “a priori” modeling as a step prior to actual challenge tests at the
laboratory level, followed by scaling up and optimization. However, before planning
and executing some experiments, it is advisable to understand the role of most variables
involved, and to perform a screening to exclude less significant or non-significant factors.
The reduction in the number of variables is important from a mathematical point of view,
because the experience of authors suggests that the use of many variables could lead to
confounding phenomena; in addition, a priori modeling could help researchers minimize
the number of experiments required to be performed in the lab, as well as helping them to
better define the conditions of assays.

Therefore, the main aim of this study was an “a priori” optimization of the formula
of a smoked fermented fish product using predictive modeling tools to define the role
of each factor involved in the formulation (temperature, pH, salt, liquid smoke, carbon
dioxide, and nitrites) for a correct course of fermentation. The variables were combined
through a fractional design of experiments (DoE) (3k-p), and the outputs of the software,
i.e., the maximal growth rate (μmax) and the time to attain the critical threshold (tcrit), were
modeled through a multiple regression procedure.

2. Materials and Methods

2.1. Software and Design

Product optimization was conducted through Food Spoilage and Safety Predictor
(FSSP), a free software package available as an additional tool in ComBase or on the website
of the developers (http://fssp.food.dtu.dk/, accessed on 6 September 2021).

The focus was the modeling of lactic acid bacteria (LAB) growth as a function of
some key parameters for a fermented fish product including intrinsic factors or extrinsic
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factors (temperature and pH), processing parameters (salt, liquid smoke, nitrites, or car-
bon dioxide), and parameters connected to LAB growth (relative lag time). The choice of
liquid smoke relies on the fact that the consumer appeal towards smoked fish products
is increasing and the use of liquid smoke instead of the traditional method is advisable
because it is more eco-friendly, while carbon dioxide is crucial to simulate fermentation
and storage under anoxic conditions. Finally, nitrites are the preservatives generally used
in fermented meat products to counteract Clostridium botulinum growth. The variables were
combined through a fractional design (3k-p), and each factor had three levels (minimum or
“−1”, mean value or “0”, and maximum or “+1”), as shown in Table 1. The combination of
these variables resulted in a design consisting of 243 runs, as shown in the Supplementary
Materials File S1. The input conditions for modeling were as follows: initial concentra-
tion of LAB, 5 log CFU/g; maximal population density, 9 log CFU/g; critical threshold,
8.9 log CFU/g; weak acids at 0 ppm. For modeling purposes, weak acids were excluded to
reduce the number of variables to 7; in a mixed design, the randomization of 7 variables
set at 3 levels produces a total of 243 combinations and makes the estimation of both the
individual effects of each variable and their two-way interactions possible.

Table 1. Coded levels of the variables.

−1 0 +1

RTL (days) 0 2 4

Temperature (◦C) 10 17.5 25

NaCl (%) 0 3 6

pH 5 6 7

Smoke (ppm) 0 20 40

CO2 (%) 0 15 30

Nitrite (ppm) 0 75 150

An increase in the number of variables causes an increase in the number of the
combinations of the design (up to 729 combinations with 9 variables); a secondary effect
of increasing the number of variables is the possibility of a statistical artifact due to the
high number of individual and interactive terms. Thus, weak acids were not used for this
design, because they are added at the end, and not throughout fermentation, to prolong
the shelf life of the product.

The tool works on psychrotolerant LAB (Latilactobacillus sakei; Latilactobacillus curvatus;
Lactobacillus spp.; and other related genera from autochthonous microbiota of fish) [25].

2.2. Modeling

All 243 combinations built by the randomization of the variables were used as inputs
for the software, and for each combination, the maximal growth rate (μmax) and the time to
attain the critical threshold (tcrit), as an indirect measure of the time required to attain the
steady state, were evaluated; the values are presented in Supplementary Materials File S1.
Then, μmax and tcrit were modeled through a multiple regression procedure, using the
option DoE (design of experiments) of the software Statistica for Windows (Version 7, Tulsa,
OK, USA), to obtain a second-order model as follows:

y = B0 + ∑ Bixi + ∑ Biixi
2 + ∑ Bijxixj (1)

where “y” is the modeled dependent variable (μmax and tcrit); Bi, Bii, and Bij are the
coefficients of the model, associated with independent variables; the term “xi” highlights
the individual effect of the predictor; the symbols “xi

2” and “xixj” indicate the quadratic
and interactive effects. Variables showing a significance <95% (p > 0.05) were not included
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in the equation by the software; moreover, due to the high number of variables, interactive
terms were excluded.

The effect of each independent variable on the outputs was also evaluated through
the individual desirability functions, estimated as follows:

d =

⎛
⎜⎝

0, y ≤ yun f av
y−yun f av

y f av−yun f av
yun f av ≤ y ≤ y f av

1, y ≥ y f av

⎞
⎟⎠ (2)

where yunfav and yfav are the most unfavorable (high value of tcrit and low value of μmax)
and the most favorable (low value of tcrit and high value of μmax) values of the dependent
variables.

3. Results and Discussion

The use of tertiary models to predict safety and food shelf life has also been regarded
by the European Union as a tool for quality assurance. The tertiary model used in this work
was originally designed for seafood products [26,27], but it has been recently updated for
other foods (for example, cheese), and the name has been changed to FSSP. In the latest
version, it contains a collection of several options/models, including RRS models (relative
rate of spoilage), and models to predict spoilers (Photobacterium phosphoreum, Morganella
psychrotolerans, Morganella morganii, Shewanella putrefaciens) and biogenic amine formation,
pathogens (Listeria monocytogenes), and lactic acid bacteria. As observed in the study of
Mejlholm et al. [28], predictions performed through the FSSP software have good precision
when the complexity of the growth model matches the complexity of the foods of interest;
this was also confirmed by the study of Bolívar et al. [29] during the modeling of the growth
of L. monocytogenes in Mediterranean fish species, where the software was used to estimate
μmax based on the values of pH, aw, storage temperature, and atmospheric conditions of the
studied fish species. The goodness of fit of FSSP was regarded as acceptable for Lactobacillus
spp. (now Lactobacillus and related genera); in addition, the tool is flexible and focuses on
a high number of parameters, and for some of them (weak acids and preservatives), it is
reliable a substitution of some compounds with other ones chosen by users [25].

LAB, mainly psychrotolerant strains, grow at high concentrations during the storage
of seafood, resulting in the production of off-odors, gas, slime, and undesired metabo-
lites [25,30]. However, there are various positive and pro-technological species and strains
able to contribute to shelf life and healthy characteristics, because of their metabolism and
health properties [21,23,30,31]. Apart from strain characterization and validation in some
matrices, to the best of the authors’ knowledge, there are no models able to predict the
performances of LAB during fish fermentation. These models, hereby labeled as a priori
functions, could be extremely useful in the first phase of product design, because they
could help researchers to choose only some variables for laboratory confirmation.

It is important to include in such models both the matrix’s variables and processing
factors (pH, temperature, carbon dioxide), including preservatives used in the process (salt
and nitrites). Another variable hereby tested was the relative lag time (RLT). This parameter
is different from the classical lag time and relies on the physiological state of cells introduced
into a new environment (for a starter culture from a bioreactor to food) and should be
read as the “amount of work done by cells to adapt to the new environment” [32]. From
a theoretical and practical point of view, RLT is at its minimum when the microorganism
has a very low lag phase and grows at its optimal growth rate, and could be 0, when the
microorganism has no lag phase.

The inclusion of RLT as a main variable of the model relies on the fact that, in a guided
fermentation, it is crucial to inoculate well-adapted microorganisms in the matrix (low
RLT), or to use them in an environment with the same characteristics of the media used to
produce their biomass. This factor was described in the past as the physiological function
of the Baranyi and Roberts model and was shown to strongly affect the growth curve [33].

136



Foods 2022, 11, 946

The steps taken in this research are similar to those used when a second-level model
of predictive microbiology is developed: the first step was the evaluation of the growth
curves in some conditions; then, the fitting parameters of the growth curves were modeled
as a function of pH, temperature, composition, etc. In this research, FSSP substitutes for the
first step.

Figure 1 shows an example of the growth curves (combinations S34 and S41) predicted
for LAB using FSSP. For each combination studied (S1), the outputs of the software (μmax,
maximal growth rate, and tcrit, time to attain the critical threshold of 8.9 log CFU/g) were
recorded and subsequently used as input data for a multiple regression procedure.

Figure 1. Example of growth curves (combinations S34 and S41) predicted for LAB using FSSP.

The growth rate is the classical parameter for secondary models, but tcrit was added
in this research. To the authors’ knowledge, this is the first time tcrit has been added in a
modeling study of LAB cultures. In a simple way, tcrit could be defined as the time to attain
the steady state; thus, it is an indirect measure of the performances of starter cultures and
of their acidification kinetics. Moreover, the time to attain the steady state could have other
implications related to the Jameson effect: a dominant group (a starter culture) could stop
the growth of the other subpopulations (spoiling microorganisms) and induce a stationary
phase, thus reducing the maximum level they could attain [34]. For a starter culture, the
Jameson effect, and thus the time to attain the steady state, could have a strong effect on
the inhibition of undesirable microorganisms and on bioprotective effects.

The first output of the statistical approach used was the table of standardized effects
(Table 2), which shows the statistical weight of each studied factor; in particular, it sum-
marizes the effects of the linear (L), quadratic (Q), and interactive terms of RLT (relative
lag time), temperature, concentration of NaCl, liquid smoke, and the amount of nitrite and
CO2 at equilibrium in the headspace on the maximal growth rate (μmax) and on tcrit of LAB
in fish products. The standardized effect was evaluated as the ratio of the mathematical
coefficient of each factor (from multiple regression) vs. its standard error.

Table 2. Standardized effects of linear (L), quadratic (Q), and interactive terms of RLT (relative
lag time), temperature, concentration of NaCl, liquid smoke, and the amount of nitrite and CO2 at
equilibrium in the headspace on the maximal growth rate (μmax) and time to attain the steady state
(tcrit) of lactic acid bacteria in fish products. The standardized effect was evaluated as the ratio of the
mathematical coefficient of each factor (from multiple regression) vs. its standard error. The degrees
of freedom for the t-test were 204; R2

ad, regression coefficient corrected for multiple regression.
* Not significant.

μmax tcrit

(1) RTL (L) - * 5.030

RTL (Q) - -
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Table 2. Cont.

μmax tcrit

(2) T (L) 29.729 −7.516

T (Q) - −3.191

(3) NaCl (L) −17.806 -

NaCl (Q) - -

(4) pH (L) 3.109 -

pH (Q) 2.455 -

(5) Smoke (L) −48.844 8.146

smoke (Q) - −5.215

(6) CO2 (L) −2.502 -

CO2 (Q) - -

(7) nit (L) −2.943 -

nit (Q) - -

1L by 2L - −4.980

1L by 3L - -

1L by 4L - -

1L by 5L - 5.023

1L by 6L - -

1L by 7L - -

2L by 3L −10.036 -

2L by 4L - -

2L by 5L −24.746 −8.288

2L by 6L - -

2L by 7L - -

3L by 4L −2.843 -

3L by 5L 14.087 -

μmax tcrit

3L by 6L - -

3L by 7L - -

4L by 5L −4.546 -

4L by 6L - -

4L by 7L - -

5L by 6L - -

5L by 7L 2.378 -

6L by 7L - -

R2
ad 0.947 0.551

For the maximal growth rate, the most significant factor was liquid smoke, followed
by temperature and salt; pH, nitrites, RLT, and CO2 did not play a significant role. For the
time to attain the critical threshold (tcrit), the data point out the significance of liquid smoke,
temperature, RLT, and salt. Although only for qualitative purposes, the main benefit of
this model, compared to the boundary approach used for LAB in FSSP [25], is that it does
not offer a negative overview (combinations of parameters causing growth inhibition); the
ratio behind this approach is a positive method (from a mathematical point of view), that
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is, some of the factors and interactions are related to growth and are the parameters able to
cause an increase in the dependent variables (rate and tcrit).

A quantitative estimation of the role of the significant variables could be gained
through the use of surface response plots. Concerning the interactions of liquid smoke ×
temperature (Figure 2a) and liquid smoke × salt (Figure 2b), the growth rate was at its
maximum at the highest value of temperature (coded level “+1”, 25 ◦C) and with the lowest
value of salt and liquid smoke; however, the model predicted the complete inhibition
of LAB growth only for a few combinations of temperature and smoke (level “−1” for
temperature and “0.8–1” for liquid smoke, corresponding to actual values of 10 ◦C and
35–40 ppm of liquid smoke). The surface response plot for the interaction of nitrite ×
liquid smoke (Figure 2c) underlines the non-significant effects of nitrites. The effect of
liquid smoke on the growth of LAB was also confirmed by the results obtained for tcrit,
as the highest values of this parameter were predicted for amounts of liquid smoke over
20–25 ppm (data not shown).

Surface plots are a good tool for treating data from a multiple regression, and for
highlighting the individual and quadratic terms of each factor, as well as for showing the
interactive effects amongst the different independent variables. However, despite these
benefits, it is not possible to see the effect of each variable excluding the others, i.e., the
effect of each factor is linked to the effects of other variables. Thus, to this scope, other
approaches could be used, such as desirability which is a dimensionless parameter able to
provide an answer to the following issue: how much is an output desired? [35] In addition,
through mathematical extrapolation, desirability is an important tool to highlight critical
values for each factor.

Figure 2. Cont.
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Figure 2. Surface response plots for the interactions liquid smoke × temperature (a), liquid
smoke × salt (b), and nitrite × liquid smoke (c).

Figures 3 and 4 show the desirability profile for μmax and tcrit, respectively; the profile
highlights the different quantitative weights of each studied variable. Focusing on the
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results obtained for μmax (Figure 3), only temperature, salt, and liquid smoke are able
to affect fermentation, whereas other parameters such as pH, use of anoxic conditions,
and nitrites are not significant. Concerning temperature, fermentation at 20–25 ◦C is
advisable, although a low fermentation temperature is also possible (10–15 ◦C). This result
is corroborated in numerous other studies using mathematical models to predict the growth
of different microorganisms in foods at various storage temperatures [36–38], where a strong
dependency was found between microbial growth and the storage temperature assayed.

Figure 3. Desirability profile for the maximal growth rate (μmax) of lactic acid bacteria in fish products.

Although a temperature of 25 ◦C is generally not the optimal temperature of LAB, and
a further increase in desirability for higher temperatures could be hypothesized, the choice
of the range was due to two main reasons: (i) higher temperatures could have masked the
effect of other variables because of the strongest effect of temperatures for starter culture
kinetics [39]; (ii) fish fermentation is advisable at a lower temperature to avoid massive
production of undesirable compounds, such as biogenic amines [40]. Finally, 25 ◦C is the
maximum level of temperature for LAB in FSSP.

As expected, the effect of salt was less significant than temperature (at least in the
range tested in this study, 0–6%): lactic acid bacteria, in fact, are able to tolerate high salt
concentrations, and this tolerance gives them an advantage over other less tolerant species,
allowing a rapid start of fermentation [21]. The results (see box of NaCl in Figure 3) show
that the decrease in μmax begins to be significant beyond a salt concentration of 3%; however,
3–3.5% (w/w) is the salt concentration recommended by the Codex Alimentarius [41] in
smoked-flavored fish products to avoid the proliferation of spoilage bacteria. Both Figures 3
and 4 point out that a smoke concentration >20 ppm (coded level 0) is not advisable because
it could result in a significant delay of starter growth. This inhibitory effect is probably
attributable to the bactericidal effects of smoke components (phenols, polycarboxylic acids)
on most types of bacteria and/or fungi, including LAB [42]. Many other recent studies
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were focused on the use of liquid smoke on fish products [43–45], since consumer appeal
towards these foods has been increasing recently. The traditional smoking method is under
investigation since it can cause the production of harmful compounds, such as polycyclic
aromatic hydrocarbons, mainly benzo(α)pyrene [46]. Consequently, the use of liquid smoke
is advisable because it is more eco-friendly, requires a shorter smoking time, and ensures a
longer product durability [44].

Figure 4. Desirability profile for the time to attain the steady state (tcrit) of lactic acid bacteria in
fish products.

In this study, model building was based on a completely randomized design, which
was able to estimate possible interactive and quadratic effects. This type of design is useful
for screening purposes, and to reduce the number of variables; however, for robust predic-
tive equations, other designs (for example, central composite design) are advisable, because
a higher number of levels allows for good precision in the prediction, at least in the ranges
tested. Thus, further investigations are required in this field, in order to assess the signifi-
cance of other factors not considered in FSSP (food structure, food components, effects of
natural microbiota, etc.) which could strongly and significantly affect the growth/survival
of lactic acid bacteria.

4. Conclusions

The design of a fermented product is a complex process, and the definition of the
formulation is a critical step above all for the performances of the starter cultures. The use
of LAB is a promising way to valorize seafood products and to design safe, stable, and
consumer-appealing products; however, some variables should be considered.

The use of liquid smoke and the amount of phenols are critical, because the simulation
through FSSP suggested that there is a critical amount (20 ppm) after which the fermentation
could experience a delay.

142



Foods 2022, 11, 946

Concerning temperature, fermentation at 20–25 ◦C is advisable because of higher
growth rate values, although a low fermentation temperature is also possible. The model,
in fact, also predicted growth at 10–15 ◦C.

RLT could strongly affect the performances of a starter culture, thus suggesting that
the physiological state of cells could affect their performances during fish fermentation.

Other parameters are not significant (at least those tested in this case study: pH, use of
anoxic conditions, nitrites), and if they are included in the formulation, their amount should
be determined through other considerations (chemistry, costs, safety for consumers, etc.).

This model could be the background for future studies devoted to the optimization
of fish fermentation, as it offers some details on the effect of many factors, although it is
important to consider that each a priori modeling should be followed by validation, to
check if the mathematical effects have the same weight in real systems, or if other factors
could play a role.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11070946/s1, Supplementary Material File S1: Coded levels
and combinations used for the simulation of FSSP.
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Abstract: We show that a simple model with a maintenance term can satisfactorily reproduce
the simulations of several existing models of wine fermentation from the literature, as well as
experimental data. The maintenance describes a consumption of the nitrogen that is not entirely
converted into biomass. We show also that considering a maintenance term in the model is equivalent
to writing a model with a variable yield that can be estimated from data.

Keywords: wine fermentation; nitrogen; mathematical modeling; population model; maintenance;
variable yield

1. Introduction

The overall principle of wine fermentation consists of the conversion of sugar into
ethanol by yeast. It has been observed for a long time that nitrogen consumed during the
yeast growth also plays an important role. The fermentation can be indeed modeled by a
two-step process in which the yeast first grows on nitrogen as a limiting resource and then
degrades the non-limiting sugar into ethanol and carbon dioxide. However, experimental
observations have shown that the consumed nitrogen was not entirely converted into
biomass. Several mathematical models were proposed to take these characteristics into con-
sideration. For instance, in [1,2], the biomass growth follows a logistic law whose carrying
capacity depends on the initial quantity of nitrogen. In [3], a model that distinguishes part
of nitrogen used for yeast growth from another part responsible of the synthesis of proteins
(hexose transporters [4]) was developed. Both models were calibrated with different sets of
experimental data and provide satisfactory fitting. However, both models present some
drawbacks. The dependency of the dynamics on the initial condition of the first model
makes it sensitive to the precise knowledge of the initial quantity of nitrogen (that needs to
be “memorized” in the dynamical equations of the model). Moreover, it does not allow
consideration of non-batch operations or continuous addition of nitrogen, such as in [5] for
instance. The second model relies on the knowledge of the time-varying concentration of
transporters, which is in general not easily accessible for experimental measurements, and
several assumptions were necessary to estimate it from biomass measurements.

The objective of the present work is to propose a new model that reconciles both
approaches in a single one.

The observation of the ratio of produced biomass over nitrogen consumption along
the whole fermentation, determined on experimental database or numerical simulations
of models [1,3], shows that this ratio is non-constant and depends on the initial quantities.
This highlights that the conversion of nitrogen into biomass can be viewed as a variable
yield process. The experimental evidence that nitrogen is not entirely converted into
biomass therefore advocates for the consideration of a maintenance term in the modeling
(see, for instance, [6]), without necessarily requiring a detailed representation of the internal
mechanism or cells.
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Indeed, different mechanisms in the internal functioning of the cells have been investi-
gated in the literature, particularly the role of carbohydrate accumulation [7–9], which could
explain that the growth dynamics of yeast in wine fermentation does not follow the classical
mass-balanced models [10,11]. However, the measurements of these biochemical compounds
is experimentally very difficult and is almost impossible in an industrial framework.

The rationale of the results presented here is to test if the introduction of a maintenance
term (see [12–14] or [15–17]) can improve wine fermentation modeling. One of the original
features of the proposed approach is to view nitrogen consumption as a global consumption
for growth by considering a variable yield. This allows us to avoid to consider a specific
structure to model the maintenance. Thus, the purpose of the present work is to investigate
the ability of a simpler model with a maintenance term to reproduce and predict wine
fermentation kinetics.

Here, we propose a new modeling approach based on a maintenance term (which gives
rise to a variable yield), a feature that has not been yet considered in the wine fermentation
literature, to the best of our knowledge.

It focuses mainly on the new modeling of the growth of yeast on nitrogen.
This new model was validated using both data generated by existing models (Section 4)

and experimental data (Section 5).

2. The Proposed Model

We denote by N, S, E, CO2 and X the concentrations of (total) nitrogen, sugar, ethanol,
dioxide carbon and biomass, respectively. For simplicity, we derive a model under isother-
mal conditions.

For the first step N → X (yeast growth on nitrogen), we propose the following equations

dX
dt

=μN(N, X)X (1)

dN
dt

=− μN(N, X)X
Y

− m(N, X)X (2)

where Y is the growth yield, μ the Contois growth function

μN(N, X) =
μmax

N N
N + KN X

and m a maintenance function, which is positive for N > 0 and X > 0. We choose here
a ratio-dependent kinetics function μN to reproduce the observation that the growth
is slowing down under an excess of yeast, with a Contois expression as in [3]. In the
literature, the maintenance m is often considered as constant [12,13], which was validated
in continuous culture (chemostat). In general, continuous cultures are intended to be
operated at a stationary phase, very differently to batch-operating mode. However, as
already investigated in [17], maintenance terms have to depend on the level of available
resources; say, R (N here). In particular, constant maintenance in a batch model would
imply dR

dt < 0 when the resource is exhausted, i.e., R = 0, and thus R could take unrealistic
negative values, as underlined in [14]. In [15,16], the maintenance is directly related to
the microbial activity, which is stopped in absence of nutrients. This is why we consider a
maintenance function proportional to the growth activity, with a factor that might depend
on the nitrogen concentration (one may expect that it decreases when the substrate N
becomes rare)

m(N, X) = α(N)μN(N, X)

where α is a positive function equal to zero for N = 0. Then, one can consider the function
y defined as follows

y(N) :=
Y

1 + α(N)Y
, N ≥ 0
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Formally, model (1) and (2) can be rewritten equivalently as

dX
dt

=μN(N, X)X (3)

dN
dt

=− μN(N, X)X
y(N)

(4)

where the function y is playing the role of a variable yield. Identifying the function m or
the function y is thus formally equivalent. However, we shall see in the next section that
identifying the function y instead of m presents some practical advantages.

For the second step S → E + CO2, we follow the model proposed in the literature [3]

dE
dt

=
dCO2

dt
=
[
μN(N, X) + βνE(E)

]
μS(S)X (5)

dS
dt

=− k
dE
dt

(6)

where μS is a Monod function and νE a function inhibited by the ethanol

μS(S) =
μmax

S S
KS + S

, νE(E) =
1

1 + KEE
(7)

Inhibition by the consumption of sugar S by ethanol E has been reported many times
in the literature [18–22]. The constant yield of production k of CO2 and consumption of S
follows a mass balance assumption, verified experimentally [23], that can be determined
using thermodynamics considerations [24].

Note that this model can be extended to anisothermal conditions, considering that the
maximal specific rate parameters μmax

N , μmax
S and affinity constants KS, KE are temperature

dependent, as in [3].

3. Calibration of the Model

From model Equation (1), the parameters of the function μN can be identified indepen-
dently of the yield and maintenance terms. To validate the hypothesis of ratio dependency
of the function μN , one can first use experimental data to plot the slope of the logarithm of
X versus the ratio r = N/X and check if it qualitatively follows a function of the form

μ(r) =
μmax

N r
KN + r

A classical least-square method can be applied to fit parameters μmax
N , KN on the data.

Alternatively, one can plot the inverse of the slope of the logarithm of X versus the inverse
of the ratio r to check if it qualitatively follows a linear dependency, as obtained from
Equation (1) (

d log X
dt

)−1
=

1
μmax

N
+

KN
μmax

N

(
N
X

)−1
(8)

However, for the accurate identification of the parameters μmax
N , KN , a linear regression

on Equation (8) is expected to be less reliable than a non-linear least-square optimization

of the solution X(·) of (3), because
((

d
dt log X

)−1
,
(

N
X

)−1
)

data might be too far to be

uniformly distributed.
Note from Equations (1) and (2) that one has

lim
t→+∞

N(t) = 0
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(because the derivative of N cannot vanish when N is not exhausted). In absence of the
maintenance term m, one gets dX

dt + Y dN
dt = 0 which implies that one should have

Y =
X(+∞)− X(0)
N(0)− N(+∞)

=
X(+∞)− X(0)

N(0)

To test the validity of the model with maintenance, one can plot from experimental data
the ratio X(+∞)−X(0)

N(0) for different values of N(0) to check that it is not constant. If this is
the case, one can then look at identifying a non-constant function y. For this purpose, we
write from Equations (3) and (4)

X(+∞)− X(0) = −
∫ +∞

0
y(N(t))

dN
dt

(t) dt

and as t → N(t) is a monotone-decreasing function, one can make the change of variable
n = N(t) in this last integral to obtain

X(+∞)− X(0) =
∫ N(0)

0
y(n) dn

Therefore, if one fits a differential function f such that f (0) = 0 that satisfies

X(+∞)− X(0) = f (N(0))

for experimental data with different values of N(0), then one simply gets y = f ′.
Let us underline that identifying the function y in this way can be achieved indepen-

dently of the knowledge of the kinetics μN , differently to the function m, which clearly
presents some robustness advantages. Once the function μN is identified, the maintenance
function can then be determined as

m(N, X) =

(
1

y(N)
− 1

Y

)
μN(N, X)

where Y = y(0) (to fulfill α(0) = 0).
For model Equations (5) and (6), the coefficient k is kept from the literature, and the

parameters β, μmax
S , KS, KE are identified (with a least-square method) from experimental

data of CO2 production rate.

4. Validation of the Model on Synthetic Data

We have used synthetic data generated by models of the literature that were previously
validated on experimental data [1,3] for a range of initial conditions and operating conditions.

Fitting comparisons of the proposed model with the different data sets are reported in
Section 6.

4.1. Validation on Simulations of a Model with Transporter

We have considered the model with transporters developed in [3], which is more
complex with two additional state variables: the concentrations of hexose transporters and
the nitrogen dedicated to these transporters. Data were generated by simulating this model
with the parameters given in [3] and operating conditions given in Table 1.
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Table 1. Operating conditions for the simulation of the model with transporters.

X(0) 0.02 g·L−1

N(0) 0.071–0.57 g·L−1

S(0) 200 g·L−1

time horizon 350 h
temperature constant equal to 24◦
others no initial transporter

no nitrogen addition

This model explicitly distinguishes two forms of nitrogen, one available for the yeast
NX and the other one Ntr for the transporters. To compare with the variable N of our model,
we have considered the total nitrogen N = NX + Ntr.

4.1.1. Estimation of the Contois Function

We have used a non-linear least-square method based on a Newton algorithm with
a finite difference approximation of the Jacobian matrix (function leastsq of scilab).

Figure 1 shows a good fitting of the Contois function μN on data
(

N
X ,

dX
dt
X

)
of the transporter

model, with parameters given in Table 2.

Figure 1. Result of the fitting of the Contois function on data from the model with transporters.

Table 2. Parameters of the Contois function μN .

μmax
N 0.103 h−1

KN 0.0381 g·L−1

4.1.2. Estimation of the Variable Yield Function

On Figure 2, data X(T)− X(0) versus N(0) from the model with transporters were
plotted for T = 350 h (we have checked that N is quasi-null at T and that X no longer
increases after T). One can see that the points are aligned. However, the line that passes
through these points does not touch 0, which is not possible for a constant yield (for a
constant yield, the points have to be aligned on a line that passes through 0, because when
N(0) = 0, there is no biomass production).

Then, we fitted a C2 function f such that f (0) = 0 with the following expression
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f (N) =

⎧⎨
⎩aN + b

(
1 −

(
N†−N

N†

)3
)

, N < N†

aN + b, N ≥ N†

whose parameters are given in Table 3.

Figure 2. Result of the fitting of the function f on data from the model with transporters.

The calibration of the parameters a, b of the function f was performed with a linear
regression (function reglin of scilab).

Table 3. Parameters of the variable yield function y.

a 7.55
b 0.808 g·L−1

N† 0.176 g·L−1

Then, we obtain the variable yield function y as the C1 function

y(N) = f ′(N) =

⎧⎨
⎩a + b 3(N†−N)2

N†
3 , N < N†

a, N ≥ N†

and the function α, which describes the maintenance as

α(N) =
1

y(N)
− 1

y(0)
=

⎧⎨
⎩

N3
†

aN3
†+3b(N†−N)3 − N†

3b+aN†
, N < N†

3b
a(3b+aN†)

, N ≥ N†

which are both depicted on Figure 3.
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Figure 3. Graphs of the obtained variable yield function y and of the function α.

Note that the model with transporters was validated only for N(0) in the interval
[0.071, 0.57] g·L−1, and that we have no a priori information about the behavior of the
yield for values of N(0) smaller than 0.071 g·L−1. The threshold parameter N† was simply
chosen so that the simulations of the variables X and N of the model (3) and (4) were the
closest to the ones of the transporter model.

4.1.3. Estimation of the Other Parameters and Comparison of the Models

For the model of the second step S → E + CO2, the stoichiometric parameter k was
taken from the literature, while the other parameters β, μmax

S , KS, KE were estimated with
a least-square optimization on the CO2 chronicles only (the CO2 production rate being a
variable that is usually measured in experiments), starting from values in [3]. Values are
given in Table 4.

Table 4. Parameters for the second step S → E + CO2 model.

k 2.17
β 2.41
μmax

S 0.197 h−1

KS 21.1 g·L−1

KE 72.7 g·L−1

Here, we also used a non-linear least-square method based on a Newton algorithm
with a finite difference approximation of the Jacobian matrix (function leastsq of scilab).
All data were re-normalized to 1 (i.e., for each variable, the figures were divided by the
largest one).

Finally, we present on Figures 4–6 simulations of the new model for three largely differ-
ent initial values of nitrogen from 0.170 g·L−1 to 0.567 g·L−1. The evolution of the ethanol
concentration E has not been reproduced as it is proportional to the CO2 concentration.

These simulations show the ability of the new model to reproduce, with a single set
of parameters, close simulations to the model with transporters, in terms of production
of biomass and dioxide carbon, estimation of the peak of the CO2 production rate and
depletion of (total) nitrogen and sugar.
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Figure 4. Comparison with the model with transporters (in dashed) for N(0) = 0.170 g·L−1 (constant
temperature of 24 ◦C).

Figure 5. Comparison with the model with transporters (in dashed) for N(0) = 0.283 g·L−1 (constant
temperature of 24 ◦C).
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Figure 6. Comparison with the model with transporters (in dashed) for N(0) = 0.567 g·L−1 (constant
temperature of 24 ◦C).

4.2. Validation on the SOFA Model

The model proposed in [1] does not explicitly consider transporters with an additional
state variable as the previous model, and instead presents a more sophisticated expression
of the dynamics that depend on the initial condition, with an additional latency term at the
beginning of the simulations.

Differently to the previous model, which is built as a “mass-balanced” model, this
one relies on an empirical dynamics of logistic shape for the biomass growth, with some
parameters that depend on the initial concentration of nitrogen N(0), instead of the two-
dimensional model (3) and (4).

Therefore, this is not a Markovian model. It has been validated on different operating
conditions, and has been encoded into the SOFA software exploited for decision-making [2].
We launched simulations of this model for the same operating conditions than for the
previous model (Table 1). Although simulations look qualitatively similar, they do not
overlap, especially for the biomass chronicle. This could be explained by the fact that
this model is intended to predict a number of cells and not a precise biomass (an average
number of 4.15 × 109 cells for one g of biomass was used to have X expressed in g·L−1 as
for the previous model). We proceeded to a new validation of our model on these data.

4.2.1. Estimation of the Contois Function

Figure 7 shows that the data
(

N
X ,

dX
dt
X

)
do not precisely follow the graph of a function

(this is most probably due to the fact that the model is not Markovian). Indeed, this happens
mainly for the large value N0 of the initial nitrogen. We believe that this could be explained
by the dynamics of the biomass X of this model, which is a logistic law with a carrying
capacity given by an heuristic expression that depends on N0, and not dynamics coupled
with the dynamics of N (indeed the interval of tested values of N0 might be larger than the
validity of this model). However, we have fitted the graph of a Contois function to these
data with the parameters given in Table 5, which was able to satisfactorily reproduce the
trajectories of the model for a large amplitude of values of N0, as we shall see later on.
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As for the previous model, we used a non-linear least-square method based on a
Newton algorithm with a finite difference approximation of the Jacobian matrix (function
leastsq of scilab). As one can see in Table 5, the values of μmax

N and KN are significantly
larger and smaller, respectively, than in Table 2, which is consistent with the observation
that this model predicts a faster convergence of the biomass to its maximal value, despite
the latency term (compare Figures 4–6 with Figures 8–10).

Figure 7. Result of the fitting of the Contois function on data from the SOFA model.

Table 5. Parameters of the Contois function μN .

μmax
N 0.270 h−1

KN 0.00952 g·L−1

Figure 8. Comparison with the SOFA model (in dashed) for N(0) = 0.170 g·L−1 (constant tempera-
ture of 24 ◦C).
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Figure 9. Comparison with the SOFA model (in dashed) for N(0) = 0.283 g·L−1 (constant tempera-
ture of 24 ◦C).

Figure 10. Comparison with the SOFA model (in dashed) for N(0) = 0.567 g·L−1 (constant tempera-
ture of 24 ◦C).

4.2.2. Estimation of the Variable Yield Function

Data X(T)− X(0) from the simulation of the SOFA model were plotted on Figure 11
at T = 350 h, for different values of N(0) in the interval [0.071, 0.57] g·L−1 (here, we also
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checked that the fermentation was quasi-ended at T). One can see that the points follow an
increasing concave curve and further increase very slowly, quite differently to the model
with transporters (see Figure 2).

Figure 11. Result of the fitting of the function f on data from the SOFA model.

We have then fitted a C2 function f with f (0) = 0 for the expression

f (N) =

{
bN − aN2, N < N†

bN − aN2 + bN + A
B
(
e−BN† − e−BN) N < N†

with
A = (b − 2aN†)eBN† , B =

2a
b − 2aN†

and parameters a, b, N† given in Table 6.
Parameters a and b were determined with a linear regression (function reglin

of scilab).

Table 6. Parameters of the variable yield function y.

a 15.1 g·L−1

b 15.2
N† 0.465 g·L−1

Then, we obtain the expression of the variable yield function

y(N) = f ′(N) =

{
b − 2aN, N < N†

Ae−BN , N ≥ N†

as well as the function α

α(N) =
1

y(N)
− 1

y(0)
=

⎧⎨
⎩

1
b−2aN − 1

b , N < N†

eb(N−N†)

b−2aN†
− 1

b , N ≥ N†

whose graphs are drawn on Figure 12.
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Figure 12. Graphs of the obtained variable yield function y and of the function α.

4.2.3. Estimation of the Other Parameters and Comparison of the Models

For the second step, the same stochiometric parameter k was taken for the literature,
and the other parameters β, μmax

S , KS, KE were estimated with a least-square optimization
on the CO2 chronicles only, as for data generated by the model with transporters (see
Table 7).

Table 7. Parameters for the second step S → E + CO2 model.

k 2.17
β 3.22
μmax

S 0.197 h−1

KS 17.6 g·L−1

KE 36.4 g·L−1

Figures 8–10 show the comparison between the SOFA model and our calibrated
model for the same initial condition than for the former comparison with the model with
transporters. Here also, we see that the proposed model reproduces quite faithfully the
simulations of the SOFA model, with the advantage of being a simpler Markovian model.
Indeed, the difference between the model with transporters and the SOFA model can be
translated into different maintenance terms (see Figures 3 and 12): for large values of nitro-
gen, the model with transporters behaves like a model with a maintenance proportional to
the growth, while the SOFA model amounts to have a strongly increasing maintenance. Re-
call that the simulations for the largest value of N(0) showed the most differences between
these two models (for N(0) = 0.567 g·L−1, the model with transporters predicts a biomass
production of 5.11 g·L−1, while the SOFA model predicts 3.88 g·L−1; see Figures 6 and 10).
While the model with transporters was validated experimentally for N(0) in the interval
[0.170, 0.567] g·L−1, we believe the validation of the SOFA model for initial concentrations
of nitrogen larger than 0.4 g·L−1 might need to be revisited (although our model once
calibrated is able to reproduce the SOFA simulations).

5. Calibration of the Model on Real Data

We considered data from experiments conducted at SPO Lab (INRAE, Montpellier,
France) in 2004, that were used to calibrate the model with transporters and the SOFA
model (see [1,3]). The data consisted of a set of three experiments with the same operating
conditions given in Table 1 and different initial concentrations N(0) of nitrogen, exactly the
same as for the simulations of Sections 4.1 and 4.2. For each experiment, one had

- Height measurement points for X.
- No measurement point for N, S or E.
- About 400 measurement points for CO2 and dCO2/dt.
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We first calibrated a function f (·) to the data (N(0), X(T) − X(0)), with the same
expression as in Section 4.2, to determine a yield function y(·) (see Figure 13), using a linear
regression to estimate parameters a and b.

Figure 13. Results of the fitting of the function f on the experimental data (left) and of the corre-
sponding variable yield function y (right).

As we do not have measurements of N over the time, we cannot estimate the Contois
parameters independently of the CO2 measurements, as we did with the synthetic data. All
the parameters of the model were fitted simultaneously with a least-square method (values
are given in Table 8), except for the sugar-conversion yield, for which we have used the
value of the literature k = 2.17, as before.

The non-linear least-square method uses a Newton algorithm with a finite difference
approximation of the Jacobian matrix (function leastsq of scilab), and the data set was
re-normalized to the maximal value of 1.

Table 8. Parameters fitted on the experimental data.

μmax
N 0.175 h−1

KN 0.0133 g·L−1

β 1.622
μmax

S 0.393 h−1

KS 19.2 g·L−1

KE 71.9 g·L−1

Figures 14–16 show the results of the fitting for the three experiments. One can
appreciate the goodness of fit for a unique set of parameters. In particular, the production
of biomass and CO2, as well as the height and date of the peak of dCO2/dt, are well
predicted with this model.
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Figure 14. Simulation for N(0) = 0.170 g·L−1 (experimental data in blue).

Figure 15. Simulation for N(0) = 0.283 g·L−1 (experimental data in blue).
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Figure 16. Simulation for N(0) = 0.567 g·L−1 (experimental data in blue).

6. Fitting Comparisons

For the calibration of the variable yield function on both synthetic and experimental
data (Sections 4 and 5), we have used a linear regression (function reglin of scilab) for
the determination of parameters a, b of the function f (for the model with transporter) and
f ′ (for the SOFA model and experimental data). The residual error is given in Table 9.

Table 9. Residual standard error (RSE) for the determination of a and b.

Data Tr Model SOFA Model Exp.

RSE 2.21 × 10−10 0.199 0.225

This shows that the model with transporters behave very closely to a variable yield
model. The fitting performances for the SOFA model and experimental data are more
difficult to interpret, because the validity of the SOFA model for the large range of initial
concentrations of nitrogen we considered is questionable, and the quantity of experimental
data is quite poor compared to the synthetic data.

For the synthetic data, the calibration of the growth characteristics (parameters μmax
N ,

KN of the Contois function) was performed first, independently of the CO2 data. Then,
parameters for the second step (parameters k, β, μmax

S , KS, KE for the CO2 production) were
calibrated. In both cases, a non-linear least-square method based on a Newton algorithm
with a finite difference approximation of the Jacobian matrix (function leastsq of scilab)
was used. Table 10 shows a good fitting quality.

Table 10. Root Mean Square Error (RMSE) for the calibration of the growth function μ and the
CO2 chronicles.

Data Tr Model SOFA Model Exp.

RMSE (μ) 0.0414 0.292 -
RMSE (CO2) 0.0543 0.0895 0.0519
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We recall that for experimental data, we do not have measurement of N over time, so it
was not possible to estimate the growth function independently of the CO2 measurements.
The estimation of all the parameters was made on the CO2 measurements only. We have
used the same non-linear least-square method, with data re-normalized to 1 (i.e., the figures
were divided by the largest one), so that all points have equal weight in the criterion. The
errors shows a good fitting of the CO2 curves with the model with maintenance.

7. Conclusions

In this work, we demonstrated that the consideration of a maintenance term, or
equivalently, a variable yield, in wine fermenting modeling can satisfactorily replace
more sophisticated models with a simpler structure. Indeed, the effects of the underlying
mechanisms of transporters or carbohydrate accumulation, which are difficult to capture
experimentally, are somehow encoded into a maintenance term, and are translated into
a variable yield between biomass and nitrogen. We showed that this variable yield, as
a function of the nitrogen concentration, can be estimated from experimental data of
biomass growth and nitrogen depletion, without the need to measure internal compounds.
This consideration brings a flexibility to suit different kind of models or experimental
data (once calibrated) with a single common structure, that could correspond to different
operating conditions or hypotheses in wine fermentation. This new approach provides
new perspectives of control of fermentation with nitrogen addition, based on a simple
Markovian model, as well as model extensions with aromatic compounds [25] or multi-
strains [26].
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Abstract: In this study, two dynamic models of beer fermentation are proposed, and their parameters
are estimated using experimental data collected during several batch experiments initiated with
different sugar concentrations. Biomass, sugar, ethanol, and vicinal diketone concentrations are
measured off-line with an analytical system while two on-line immersed probes deliver temperature,
ethanol concentration, and carbon dioxide exhaust rate measurements. Before proceeding to the
estimation of the unknown model parameters, a structural identifiability analysis is carried out to
investigate the measurement configuration and the kinetic model structure. The model predictive
capability is investigated in cross-validation, in view of opening up new perspectives for monitoring
and control purposes. For instance, the dynamic model could be used as a predictor in receding-
horizon observers and controllers.

Keywords: parameter estimation; mathematical modeling; beer fermentation; food industry

1. Introduction

Beer is the most consumed alcoholic beverage worldwide and is produced by the
fermentation of sugars in the wort by yeasts [1]. The production of beer in 2019 was 1912
million hectoliters (hl), while in 2020, the production reduced to 1820 million hl due to
the COVID-19 pandemic [2]. Beer production is a complex biochemical process in which
the main ingredients are water, malt (sugar source), yeast, and hops [3]; however, other
products can be added, such as fruits, chocolate, and coffee grains, among others.

The fermentation stage is crucial to guarantee good quality beer since it is when all
the nutrients, flavor, and odor components are produced, in addition to ethanol. At this
stage, yeast is introduced in the wort (broth that is rich in sugars) from the boiling stage
at the desired temperature. The main chemical reaction is the conversion of these sugars
into ethanol and carbon dioxide, along with biomass growth and heat generation. At the
same time, several secondary reactions occur, generating several components at lower
concentrations that contribute to the flavor and aroma characteristics.

To enhance the fermentation, several factors, such as yeast pitching rate, dissolved
oxygen, batch pressure, and temperature, must be taken care of by the brewers [4]. Among
these factors, temperature is important as it helps accelerate the fermentation but needs
to remain within controlled bonds to avoid yeast death (above 30 °C), the production of
undesirable byproducts, and the growth of bacteria, damaging the final product. Therefore,
rigorous control of the temperature inside the fermenter must be exercised to ensure
product quality and alleviate variations between batches.

In the brewing industry, time-varying temperature profiles are established along the
fermentation process in order to alleviate the above-mentioned potential issues [5]. Looking
for the appropriate temperature profile is, however, not an easy task, and experimental
determination can be time-consuming. Model-based optimization is, therefore, an ap-
pealing alternative. Dynamic models can be useful not only to optimize the operating
conditions, but also to design state estimators reconstructing online non-measured variables
or designing controllers to ensure close setpoint tracking [6].
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To this end, Gee and Ramirez [7] proposed a detailed model of beer fermentation
describing biomass growth and the production of flavor compounds through macroscopic
reactions inferred from biological pathways. This model segregates the sugars into glucose,
maltose, and maltotriose. The derivation of the corresponding sugar uptake kinetics is,
therefore, the center of interest, and the related parameters are assumed to be temperature-
dependent. However, this model is unlikely to be applicable for control purposes since
it involves variables that require specific monitoring equipment beyond the standards
of most fermenters. Andrés-Toro et al. [8], conversely, proposed to segregate the yeast
(biomass) into three types: lag, active, and death, while the sugars are considered as a
whole. Sugar monitoring, therefore, appears simpler, and the model also takes account
of industrial operational characteristics as well as the undesired beer flavor caused by
ethanol and byproduct (diacetyl and ethyl acetate) formation. The main drawback of this
model is the difficulty in obtaining accurate biomass data. Trelea et al. [9] developed
what can be considered as, so far, the most practical model, where only three states are
considered: the dissolved carbon dioxide concentration used as an image of the growing
biomass, the ethanol concentration, and the sugar concentration. The main advantage of
this latter model lies in its practical control-oriented description of the fermentation process,
considering variables that can be easily measured and tracked.

The objective of this work is to revisit these classical models, propose a few adap-
tations, and develop a thorough study of the parameter estimation problem based on
a popular fermentation device, e.g., a 30-L stainless-steel Grainfather® fermenter. Two
alternative mathematical models are considered, one based on yeast (biomass) and the
other on carbon dioxide. The difference between these models is discussed in terms of
biological interpretation, bioreactor instrumentation, and data collection (i.e., parameter
estimation, model validation, and process control perspectives). As a result, models with
good predictive capability are proposed together with their experimental validation.

This paper is organized as follows. The next section describes the experimental setup,
while Section 3 presents a review of dynamic models of beer fermentation, together with
possible model adaptations required to represent the considered case study. Section 4
develops a structural identifiability analysis based on the software tool Strike Goldd [10].
Section 5 introduces a parameter identification procedure, including parametric sensitivity
analysis and model validation. The last section draws the main conclusions of this work
and discusses the monitoring and control perspectives.

2. Beer Fermentation Experimental Set-Up

The pilot plant consists of a stainless-steel conical fermenter (30 L, Grainfather®), which
has a built-in sensor to measure the temperature of the liquid content. This sensor is paired
to a control system connected to a glycol chiller (Grainfather®) to keep the temperature
regulated. Ethanol and carbon dioxide concentrations are measured online, respectively,
with a tilt® hydrometer and a Plaato® airlock.

The hydrometer is introduced in the wort and keeps floating in a tilted position, mea-
suring the specific gravity which also allows, based on some predetermined correlations,
for assessing the percentage of alcohol. The sensor also has an integrated temperature
sensor. The airlock consists of four components: a lid, a bubbler, a Tritan, and a smart part
(containing the temperature and infrared sensors). This device measures the evenly-sized
bubbles of carbon dioxide released by the wort and converts them into liters of CO2. The
data are stored and displayed in the Brewblox® interface.

Besides the two online probes, a CDR BeerLab® analyzer is used to obtain offline
measurements of sugar, ethanol, and vicinal diketone (VDK) concentrations. The scheme
of the full experimental setup is displayed in Figure 1.
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Figure 1. Stainless-steel fermenter pilot plant monitoring set-up.

In this study, ale beer fermentation was considered and carried out at a temperature
ranging from 17 to 26 °C. To obtain the wort, the malt is crushed using a mill. Indeed, the
grain must only be broken, but not grounded. The next step is mashing, where sugars
are obtained from starch. The crushed grain is added to a boiler tank (35 L, Grainfather®)
containing 19 L of water at 48 °C. The mashing step consists of four stages at different
temperatures and times described in Table 1. Once mashing is finished, the grain is rinsed
with water at 75 °C until 24 L of wort is obtained. Usually, the quantity of added water is
8 L. Then, the wort is boiled to sterilize the liquid. The latter step is carried out for 80 min
at 100 °C. Hop is added at 40 min and 65 min. Eventually, the wort is cooled down as fast
as possible to the desired fermentation temperature with the help of a counter-flow wort
cooler. The cold wort is transferred in the fermentation tank, filled up to 17 L.

A set of four isothermal batch fermentations without agitation are carried out using
different operating conditions described in Table 2. Each experiment is carried out once,
but two replicates are taken and analyzed for each sample. The total sampling volume
represents less than 10% of the initial wort volume (17 L), a condition to neglect the volume
changes. Samples are taken every 2 to 3 h during the first 36 h. After this period, the
process enters a stationary phase and the sampling time is therefore adapted at irregular,
longer, time intervals. To analyze the samples with the CDR BeerLab®, it is necessary to
achieve preprocessing, including degasification and centrifugation to eliminate everything
that could interfere during the measurement.

Table 1. Operating conditions of the scheduled mash steps: temperatures and times.

Step Temperature (°C) Time (min)

1 48 10
2 62 30
3 71 20
4 78 5
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Table 2. Operating conditions of each fermentation batch: duration, temperature, and initial sugar
and biomass concentrations.

Experiment Time (h)
Temperature

(°C)
S0 (g/L) X0 (g/L)

1 72 19 88 7.05 × 10−1

2 54 19 72 5.29 × 10−1

3 96 21 75 7.05 × 10−1

4 72 28 81 7.05 × 10−1

3. Mathematical Models of Beer Fermentation

Beer fermentation has been studied extensively, providing various mathematical
models, and this section proposes a brief description of three of them, considered as
milestones in the research field and used as a reference in the upcoming model development.
These mathematical models can provide precious support to design the fermentation
operating conditions.

3.1. The Model of Gee and Ramirez

This model published in 1994 includes the main components of fermentation, e.g., sug-
ars, biomass, and ethanol, as well as amino acids, fusel alcohols, VDKs, and acetaldehydes,
which impact the flavor, often in an undesirable way [7]. Esters also have an important role
in the aroma and may add some pleasant character in moderate ranges, but undesired hard
fruity tastes at higher levels.

The sugar uptake model reads as follows:

dG
dt

= −μGX, (1a)

dM
dt

= −μMX, (1b)

dN
dt

= −μN X, (1c)

where G, M, and N, respectively, stand for glucose, maltose, and maltotriose. The specific
growth rates are built upon classical kinetic activation (Monod law) and inhibition factors
and are given by:

μG =
μGG

KG + G
, (2a)

μM =
μM M

KM + M
K′

G
K′

G + G
, (2b)

μN =
μN N

KN + N
K′

G
K′

G + G
K′

M
K′

M + M
, (2c)

where μi are maximum rate constants (i = G, M, N), while Ki and K′
j (j = G, M) are,

respectively, the half-saturation and inhibition constants, all assumed to depend on the
temperature following an Arrhenius law of the form:

r = Aexp
(

B
RT

)
, (3)

where A and B are, respectively, the Arrhenius frequency factor and the activation energy.
R is the ideal gas constant.

Biomass production is represented by the mass-balance ODE:

dX
dt

= μXX, (4)
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where
μx = YXGμ1 + YXMμ2 + YXNμ3 (5)

is the biomass growth rate, a function of the several sugar intake rates. YXi (i = G, M, N)
are the yield coefficients of biomass with respect to the specific sugars.

The ethanol concentration is assumed to evolve proportionally to the variations of the
sugar concentrations, resulting in an algebraic equation of the form:

E = E0 + YEG(G0 − G) + YEM(M0 − M) + YEN(N0 − N), (6)

where YEi (i = G, M, N) are the yield coefficients of ethanol with respect to the con-
sumed sugars.

Three main amino acids are considered, which are responsible for the formation of
flavor compounds in the beer like the fusel alcohols. The amino acids are described by the
following differential equations:

dξ

dt
= −Yξ

ξ

Kξ + ξ

dX
dt

= −Yξ μX
ξ

Kξ + ξ
X, (7)

where Yξ and Kξ are, respectively, the yield coefficients and inhibition constants with
species ξ = leucine (L), isoleucine (I), and valine (V).

The impact of fusel alcohols is a plastic, solvent-like flavor. Moreover, some exper-
iments achieved in [11] have also linked higher alcohol levels with physiological effects
associated with hangovers. The four fusel alcohols represented in the model are isobutyl
alcohol (IB), isoamyl alcohol (IA), 2-methyl-1-butanol (MB), and n-propanol (P).

dIB
dt

= YIBμV X, (8a)

dIA
dt

= YIAμLX, (8b)

dMB
dt

= YMBμI X, (8c)

dP
dt

= YP(μV + μI)X, (8d)

where Yζ (ζ = IB, IA, MB, P) are yield coefficients, and μξ are specific rates expressed as
μξ = − 1

X
dξ
dt = Yξ μX

ξ
Kξ+ξ (ξ = L, I, V).

Esters contribute mainly to the aroma of the beer due to their high volatility. In
moderate concentrations, they can confer a pleasant character to the beer. However, once in
excess, the aroma becomes overly fruity, which is undesired by most consumers. Principal
esters are ethyl acetate (EA), ethyl caproate (EC), and isoamyl acetate (IAc).

dEA
dt

= YEA(μG + μM + μN)X, (9a)

dEC
dt

= YECμXX, (9b)

dIAc
dt

= YIAcμIAcX, (9c)

where Yγ are the yield coefficients (γ = EA, EC, IAc) and μIAC is the maximum isoamyl
acetate formation rate.

The common practice recommends completely removing vicinal diketones (VDKs)
since they add some undesired buttery flavor notes. VDK production is assumed to be
proportional to the growth rate, while their possible re-assimilation by yeast to form other
by-products is proportional to their concentration. It must be noticed that acetaldehyde
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(AAl) is another compound showing similar behavior to the VDKs. The mass-balance
equations read:

dVDK
dt

= YVDKμXX − rVDKVDKX, (10a)

dAAl
dt

= YAAl(μG + μM + μN)X − rAAl AAlX, (10b)

where Yω defines the yield coefficients and rω defines first-order rate constants (ω = VDK, AAl).
μX is the biomass growth rate and μG, μM, μN are the sugar consumption rates.

This model therefore proposes a detailed description of the flavor and aroma of
the beer but also presents the drawback of being difficult to apply in a realistic context
since it requires numerous and often expensive advanced on-line monitoring devices.
Indeed, in practice, biomass concentration is only measured at the beginning of a batch
without further monitoring. Moreover, most of the parameters are temperature-dependent,
either imposing rigorous operating conditions (i.e., only one constant temperature level)
or parameter estimation of the temperature-dependent functions (which requires data
collection at various temperatures).

3.2. Model of De Andrés-Toro et al.

This model, published in 1998, is more concise than the previous one as it only consid-
ers five state variables: sugars, biomass, ethanol, ethyl acetate, and diacetyl (i.e., vicinal
diketones) [8]. Ethyl acetate and diacetyl are assumed to be the most influencing com-
pounds regarding aroma and flavor. In the following, the model dynamics are described
state-by-state. Biomass is segregated into three types: lagged, active, and dead. It is indeed
assumed that part of the biomass goes through several states during the process, first in a
lag phase when the fermentation starts, then in an active (growing) state, and eventually in
an inactive (dead) state.

Lagged biomass
dXL
dt

= −μLXL, (11a)

Active biomass
dXA

dt
= μXXA + μLXL − μDTXA, (11b)

Dead biomass
dXD

dt
= μDTXA − μSDXD, (11c)

where the lagged biomass becomes active at the specific rate μL, the active biomass grows
at the specific rate μX and dies at the rate μDT , while the dead biomass settles in the bottom
of the reactor at the rate μSD. μX and μSD are further defined as

μX =
μX0 S

0.5S0 + E
, (12)

μSD =
μSD00.5S0

0.5S0 + E
. (13)

μX represents an activation by the substrate S and an inhibition by ethanol E. The inhibition
constant is assumed to be inversely proportional to half the initial substrate concentration
S0 (indeed two units of S give one unit of E in the stoichiometry of the reaction). μSD
describes an inhibition by ethanol, which is directly related to CO2, which is not a variable
in this model, but whose bubbles impair the settling phenomenon. The inhibition constant
is again related to half the initial substrate concentration (i.e., maximal quantity of ethanol
that can be produced).
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Sugar consumption follows a Monod law according to:

dS
dt

= −μSXA, (14)

with
μS =

μs0 S
KS + S

, (15)

in which μS0 is the maximum specific consumption rate and KS is the half-saturation
constant.

Ethanol production is described by

dE
dt

= μEXA, (16)

where the specific rate includes a Monod factor with respect to the substrate S and an
inhibition factor related to the ethanol concentration. This factor vanishes when the ethanol
reaches the maximum value 0.5S0:

μE =
μE0 S

kE + S

(
1 − E

0.5S0

)
. (17)

Ethyl acetate is produced as a byproduct of active biomass growth:

dEA
dt

= YEAμXXA, (18)

where YEA is the yield coefficient.
Diacetyl is a component belonging to the vicinal diketones (VDKs), which is produced

as the biomass grows by consuming the sugars. Afterward, diacetyl is reduced into acetoin
with a reduction rate rVDK activated in the presence of ethanol:

dVDK
dt

= kVDKSXA − rVDKVDKE. (19)

All the parameters are assumed to be affected by temperature according to the Arrhe-
nius law (Equation (3)).

The biomass segregation model provides an accurate and consistent description of the
process but, as a drawback, requires the corresponding monitoring equipment. In the study
of [8], total biomass was measured online by absorbance change detection in a photocell,
while the biomass state classification was made based on pre-established assumptions.

3.3. Model of Trelea et al.

The originality of the model of Trelea et al. [9], with respect to the previous ones, is that
it considers the carbon dioxide dynamics instead of the biomass dynamics. Carbon dioxide
sensors are indeed easily implemented and calibrated on-line, reliable, and significantly
cheaper than biomass measurement devices.

The evolution of carbon dioxide is related to yeast growth, sugar consumption, and
ethanol production. CO2 dynamics are assumed to be driven by a Monod law describing
sugar activation and saturation effects, an inhibition factor taking account of the decreasing
cell respiratory capacity following ethanol accumulation. The influence of the initial
biomass concentration on the initial CO2 production rate is also taken into account:

dCO2

dt
= μmax

S
KS + S

1
1 + KI E2 (CO2 + C0X0), (20)

where KS is the half-saturation coefficient, KI is the inhibition constant, and C0 is a conver-
sion factor.
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Algebraic equations describe the evolution of the sugar and ethanol concentrations in
relation to CO2 as suggested in [12]:

S = S0 − YSCO2, (21)

E = YECO2, (22)

where YS and YE are the corresponding yield coefficients. The main advantage of this
model lies in its practical and control-oriented description of the fermentation process,
considering a variable that can be easily measured, such as carbon dioxide. The maximum
specific growth rate, μmax, is however, assumed to depend on several operating parameters,
such as pressure, temperature, and initial yeast concentration, as follows:

μmax = aTTn + aPPn + aXX0,n + aTPTnPn + aTXPnX0,n + a0, (23)

where ai are parameters to be estimated.

3.4. Proposed Mathematical Models

In this study, two mathematical models of beer fermentation are proposed, one based
on biomass dynamics and the other on CO2 dynamics. These models take inspiration
from the mathematical developments of the previous sections and attempt to describe
experiments performed with the beer fermenter described in Section 2.

Figure 2 shows some data collected in a batch experiment at 19 °C. It is apparent
that sugar was not completely consumed at the end of the fermentation, with a residual
concentration of about 12 g/L (this behavior was confirmed in repeated experiments in
the same and different conditions). Two possible causes of this sluggish fermentation in
the end of batch were explored in additional experiments, including biomass settling and
water quality. However, gentle agitation and tests with different water sources did not
influence the initial observation. Other causes such as the depletion of some components
required for yeast proliferation and maintenance (such as nitrogen, sterols, fatty acids)
could not be assessed. The models were, therefore, adapted to describe the experimental
observations. As the published models only consider the total consumption of sugars,
structural modifications were made to cope with this type of behaviour. The changes mostly
impact the definition of the specific growth rate, as explained in the following sections.

3.4.1. Dynamic Model Based on Biomass

An overall alcoholic fermentation reaction can be written as follows:

kSS
r1−→ kEE + kVVDK + kCO2 CO2 + X (24)

where sugars S are consumed and converted by yeasts X into ethanol E, vicinal diketones
VDK, and carbon dioxide CO2. kS, kE, kV , and kCO2 represent the yield coefficients of sugar,
ethanol, vicinal diketones, and carbon dioxide, respectively.
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Figure 2. Direct validation of the biomass model with the data from experiment 2. Stars: experimental
data. Error bars: 95% confidence intervals. Continuous blue line: model prediction.

Vicinal diketones are later reduced by yeasts, producing 2-3-butanodiol P in the
following second reaction:

VDK
r2−→ P (25)

From Equations (24) and (25), a set of mass-balance ODEs can be derived:

dX
dt

= μXX − δXX, (26a)

dS
dt

= −kSμXX, (26b)

dE
dt

= kEμXX (26c)

dCO2

dt
= −kCO2 μXX, (26d)

dVDK
dt

= kVμXX − rVDKVDK. (26e)

The specific growth rate is defined as:

μX = μmax

(
1 − Smin

S

)
, f or S ≥ Smin, (27a)

= 0, f or S ≤ Smin. (27b)

The specific growth rate usually represented by a Monod law is replaced by a Droop-
like factor [13], commonly used to describe microalgae growth. This kinetic structure
expresses that a minimum level of sugar Smin is necessary to trigger growth. Above this
threshold, the Monod factor has an activation/saturation effect similar to a Monod factor.
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Furthermore, a decrease in biomass is observed due to settling and is represented by the
coefficient δX in Equation (26a).

In classical batch fermentation, the temperature is the only variable that can be ma-
nipulated during the batch to control the evolution of the fermentation. Based on the
previously discussed modeling studies [7–9] and experimental observation, a temperature-
dependency of the maximum specific growth rate μmax is expected that can be described
following several structural laws [14]. Moreover, the reduction speed of the VDKs, rVDK,
is also affected by temperature. In Table A1, the definitions and units of each parameter
are listed.

3.4.2. Dynamic Model Based on Carbon Dioxide

The yeast concentration is difficult to monitor during the batch and, most of the
time, this variable is either indirectly measured by the turbidity of the wort, or simply
by sampling and cell counting using a cytometer or a dry-weight method. Hence, there
is a strong motivation to monitor other, more accessible, process variables and develop
dynamic models describing their evolution. Carbon dioxide may be such an indicator
since it is a product of the biochemical reactions related to sugar oxidation, which provides
the necessary energy to the yeast cells to grow and leads to ethanol production if sugar is
in excess, activating the overflow metabolism [15,16]. In this study, the model of [9] was
adapted in the following way:

dCO2

dt
= μXCO2, (28a)

S = S0 − kSCO2, (28b)

E = E0 + kECO2, (28c)
dVDK

dt
= kVμXCO2 − rVDKVDK, (28d)

where the specific growth rate is given by:

μx = μmax
S

KS + S

(
1 − CO2

CpmaxS0

)
. (29)

The kinetic description contains a Monod law for the sugar activation and saturation
effects, and a logistic factor to mimic the observed sigmoidal evolution of carbon dioxide.
The data sets also reveal that the maximum production of carbon dioxide is correlated with
the initial sugar concentration S0, which therefore defines the maximum CO2 level (i.e.,
the carrying capacity of the logistic model). The initial biomass concentration, which is
assumed to be known (measured) and directly correlated to the CO2 dynamics in [9], was
not used in the current study since the initial condition of CO2 was available. The rates
μmax and rVDK are assumed to depend on temperature and Table A2 lists the definitions
and units of some parameters.

4. Structural Identifiability and Observability of the Models

Identifiability globally refers to the possibility of identifying the model parameters
from the available data. A model is structurally identifiable if all the parameters can be
uniquely determined from ideal measurements of its outputs, i.e., collected in continuous
time without errors or noise, and the knowledge of the dynamic equations [17]. If this
property is not met, any further effort to estimate the non-identifiable parameters will be
vain. However, the identifiability analysis is often omitted due to the assumed complexity
of the mathematical developments required to achieve the analysis. Recently, several
methodologies and toolboxes have been developed to significantly ease the task, as reviewed
in [18]. Some of these software tools are DAISY [19], GENSSI [20], STRIKE-GOLDD [10],
and SIAN [21].
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On the other hand, practical identifiability deals with the possibility of assessing
all or some of the model parameters under realistic conditions, e.g., sampled data and
measurement noise. The Fisher Information Matrix (FIM) is useful to assess practical
identifiability through a rank test condition. An ill-conditioned FIM can indicate poor
practical parameter identifiability even if structural identifiability is met.

In this work, STRIKE-GOLDD (STRuctural Identifiability taken as Extended-Generalized
Observability with Lie Derivatives and Decomposition) was used to investigate the struc-
tural identifiability of the proposed beer fermentation models. This software tool has been
developed in MATLAB® and addresses identifiability based on the concept of observ-
ability. To this end, the model is extended by considering its model parameters as state
variables with zero dynamics. The results obtained for both models indicate that structural
identifiability is ensured only when all the state variables are measured.

Another property of interest is observability, which is a prerequisite to the design of
a state observer to reconstruct nonmeasured state variables. The results of the analysis
are provided in Tables 3 and 4 for the two dynamic models. For the model based on
biomass, the analysis reveals that the set of three measurements [CO2, E, VDK] is necessary
to guarantee observability. The set [CO2, E, S] shows partial observability as VDK cannot
be reconstructed but biomass X could. The carbon dioxide model requires the measurement
of VDK together with another variable (CO2 or E or S) to fulfill the observability condition.
An observer could, therefore, be designed to estimate the sugar concentration online, which
is the most expensive measurement using an online or at-line hardware probe.

Table 3. Observability analysis of the biomass model for several measurement configurations.

Measured Outputs Observable

[CO2, S] No
[CO2, E] No

[S, E] No
[CO2, S, X] No

[CO2, E, VDK] Yes
[CO2, E, S] VDK: No X: Yes

[CO2, S, X, VDK] No

Table 4. Observability analysis of the carbon dioxide model for several measurement configurations.

Measured Outputs Observable

[CO2, S] No
[CO2, E] No

[S, E] No
[S, VDK] Yes
[E, VDK] Yes

[CO2, VDK] Yes

5. Parameter Identification Problem

Parameter identification is achieved using classical nonlinear parameter estimation
techniques [22]. The procedure considers a Weighted Least-Square (WLS) criterion, i.e.,
a weighted sum of squared differences between model predictions and experimental
measurements:

J(θ) =
M

∑
i=1

(
y(ti)− ymodel(ti, θ))TW−1(y(ti)− ymodel(ti, θ))

)
(30)

where J is the value of the cost function, y(ti) is the vector of N measured variables at the
measurement instant ti (i = 1, . . . , M), ymodel(ti, θ) is the model prediction that depends
on the set of P parameters θ to be identified, and W is a normalization matrix where the
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diagonal elements are chosen as the squares of the maximum measurements values of each
component concentration. This choice allows normalization of the prediction errors, and
is particularly well-suited to a relative error model where it is assumed that the error is
proportional to the maximum values of the observed variables:

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

max
ti

(y2
1) 0 . . . 0

0 max
ti

(y2)
2 . . . 0

...
...

. . .
...

0 0 . . . max
ti

(yN)
2

⎤
⎥⎥⎥⎥⎥⎥⎦

(31)

The estimated parameter set is obtained by minimizing a cost function J(θ) as follows:

θ̂ = arg min
θ

J(θ) (32)

To achieve the minimization of (32), a two-step procedure is implemented: (a) a multi-
start strategy defines random sets of initial parameter values to cover as much as possible
of the search field. The minimization of (32) is first performed using the Matlab® optimizer
fminsearch (Nelder-Mead algorithm); (b) the Matlab lsqnonlin optimizer is subsequently
used from the identified global minimum (i.e., the smallest local minimum identified in
the search space by fminsearch) to refine the minimization and compute the Jacobian
matrix containing the model parameter sensitivities, denoted yθ . These sensitivities can be
exploited to compute the Fisher Information Matrix (FIM) defined as:

FIM =
M

∑
i=1

yT
θ (ti)Ω̂−1yθ(ti) (33)

where Ω̂ = ε̂2W is the a posteriori covariance matrix of the measurement errors, which can
be evaluated using the weighting matrix W (Equation (31)) and an a posteriori estimator of
the relative measurement error:

ε̂2 =
J∗

MN − P
(34)

where J∗ is the value of the cost function at the optimum, MN represents the total number
of data, and P is the number of estimated parameters θ. An estimate of the parameter
estimation error covariance matrix can then be inferred from the Cramer–Rao bound
as follows:

Σ̂ = FIM−1 (35)

From the diagonal of the covariance matrix Σ̂, the standard deviations for each param-
eter can be extracted and the corresponding coefficients of variations can be calculated as:

CV =
σ

θ̂i
(36)

To achieve the estimation of the parameters of the beer fermentation models, a total
of 4 batch experiments are considered as shown in Table 2. Out of these 4 experiments,
3 are used for parameter estimation and model direct validation (experiments 2 to 4),
while experiment 1 is used for cross-validation. An important point of the current work
is the use of all the samples of experiments 2, 3, 4 to achieve the identification, including
two temperature-varying parameters, i.e., the specific growth rate μmax and the VDK
reduction rate rVDK. Previous studies have indeed demonstrated that the other parameters
do not change significantly with temperature. In addition to the stoichiometric and kinetic
parameters, the initial conditions are also considered unknown (and are therefore estimated)
since possibly corrupted by measurement noise.
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5.1. Biomass Model

This model counts 8 parameters (kS, kE, Smin, gx, kV , kCO2 , μmax, ra) to be estimated.
The dependence on temperature of the parameters μmax and rVDK, is formulated as follows:

μmax = aln(T) + b; rVDK = cln(T) + d; (37)

introducing the additional parameters a, b, c, d. Several nonlinear model structures have
been considered to correlate the parameters with the temperature. It turned out that the
selected logarithmic structure provides the best results.

In practice, the identification proceeds in three steps: (a) a first parameter estimation
without explicit temperature dependence (i.e., μmax and rVDK are considered constant),
(b) an estimation of the four parameters linked to the temperature dependence (the others
being fixed at their previously estimated values), and (c) a global identification of all the
parameters starting from the previous estimates.

Good practice recommends partitioning the data using a ratio of approximately 75/25
for parameter estimation (and subsequent direct validation), and cross-validation, respec-
tively. Accordingly, three experimental data sets are used in direct validation and the
remaining one in cross-validation. Since the parameter estimation procedure aims at cap-
turing information on the process in a wide range of operations, it is legitimate to include
experiments with different initial sugar and biomass concentrations and temperature levels.
Particularly, it is important to collect informative data regarding the evolution of μmax and
rVDK with respect to temperature in (37). Among the several possible data partitions, one
possible combination appears to be: experiments 2, 3, 4 for parameter estimation (and
direct validation) and experiment 1 for cross-validation. Indeed, experiments 1 and 2 are
carried out at the same temperature, but experiment 2 also includes different sugar and
biomass initial conditions. Table 5 reports the values of the estimated parameters and their
coefficients of variations.

Table 5. Parameter estimate values and coefficients of variation (CV) for the biomass model.

Parameter Units Value CV (%)

kS gS/gX 15.3 7
kE gE/gX 6.31 6

Smin g/L 13.1 11
gx h−1 1.67 × 10−2 7
kV gVDK/gX 6.51 × 10−1 10

kCO2 L 37.1 5
a h−1 4.00 × 10−1 3
b h−1 −1.1 5
c h−1 2.50 × 10−2 10
d h−1 −5.60 × 10−2 9

Figures 2 and 3 show some direct validation results, i.e., the fitting of the model to the
experimental data collected in experiments 2 and 4 together with the a posteriori error bars
on the experimental data. The model reproduces quite well the dynamics of the several
variables, even if the biomass predictions sometimes deviate from the confidence intervals
of the data, and some deviations in the VDK production are also observed in the early
hours. The coefficients of variations confirm the good estimation results, as the maximum
relative CV is 11% for the minimum substrate quota Smin.

In order to assess the model predictive capacity, cross-validation is achieved using
the dataset from experiment 1. In this case, only the initial conditions are estimated while
the parameters are kept fixed. As shown in Figure 4, the model predicts satisfactorily the
experimental data. The biomass data again has some uncertainty, which can probably be
linked to several factors such as cell counting errors, biomass mixing (to counteract biomass
settling and collect representative samples) and nitrogen limitation [23].
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Figure 3. Direct validation of the biomass model with the data from experiment 4. Stars: experimental
data. Error bars: 95% confidence intervals. Continuous blue line: model prediction.

Figure 4. Cross-validation of the biomass model with the data from experiment 1. Stars: experimental
data. Error bars: 95% confidence intervals. Continuous blue line: model prediction.
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Vicinal diketone dynamics present a varying latency phase followed by produc-
tion/consumption, both driven by biomass dynamics. The uncertainty on the latency
period compromises the resulting fitting since biomass does not exhibit the same behavior
in the early phase of fermentation.

5.2. Carbon Dioxide Model

A similar procedure was applied to estimate the values of the carbon dioxide model
parameters. In this case, the dependence on temperature of μmax and rV DK is best repre-
sented by:

μmax = aln(T) + b; rVDK = cT2 + dT + e; (38)

Hence, the resulting model counts 10 parameters (kS, kE, KS, Cpmax, kV , a, b, c, d, e),
and Table 6 reports the estimated values with their respective coefficients of variations. As
can be noticed, the latter are smaller than the ones of the previous model, mainly due to
the absence of biomass measurement and the associated uncertainty.

The identification is again decomposed into distinctive steps: (a) estimation of the
parameters without temperature dependence and with an arbitrary value for KS whose
practical identifiability is poor, (b) estimation of KS with all the other parameters fixed at
their previously estimated values, (c) estimation of the parameter linked to the temperature
dependence (a to e) with all the others fixed to their previous values, and (d) final re-
estimation of all the parameters.

Figures 5 and 6 show the direct validation with experiments 2 and 4, as well as the a
posteriori error bars on the experimental data.

Figure 5. Direct validation of the carbon dioxide model with the data from experiment 2. Stars:
experimental data. Error bars: 95% confidence intervals. Continuous blue line: model prediction.
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Figure 6. Direct validation of the carbon dioxide model with the data from experiment 4. Stars:
experimental data. Error bars: 95% confidence intervals. Continuous blue line: model prediction.

Table 6. Parameter estimate values and coefficients of variations (CV) for the carbon dioxide model.

Parameter Units Value CV (%)

kS gS/lCO2 3.72 × 10−1 4
kE gE/lCO2 1.62 × 10−1 3
KS g/L, 12.0 9

Cpmax L/g 2.18 3
kV ppm 1.74 × 10−2 4
a h−1 1.41 6
b h−1 − 3.89 8
c °C−2 h−1 − 3 × 10−4 12
d °C−1 h−1 1.6 × 10−2 6
e h−1 − 1.75 × 10−1 5

Model cross-validation using experiment 1 is shown in Figure 7 and confirms the
satisfactory predictive capacity of the model, except for some minor deviations in the
evolution of the VDKs due to the presence of a time-varying latency phase.

In Table 7, the root means square errors (RMSEs) are provided for each experiment
and each variable separately. The cost function residuals of the direct validations are also
provided. It can be observed that, overall, the RMSE values are small for both models.
Regarding the biomass model, X and VDK present larger RMSEs than the other variables,
due to the observed deviations between the model prediction and the experimental data in
Figures 2 and 3. Regarding the carbon dioxide model, RMSEs indicate a better fit with the
experimental data. This statement is confirmed by Figures 5 and 6. Cross-validation results
also support this analysis since the RMSEs of the biomass and carbon dioxide models are,
respectively, 1.997 and 0.846.
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Table 7. Cost function residuals and relative RMSEs for each state variable of the two models,
resulting from direct validation.

Model
Cost Function

Residual
Variable Exp 2 RMSE Exp 3 RMSE Exp 4 RMSE Global RMSE

CO2 4.86 × 10−2 5.40 × 10−2 6.40 × 10−2 5.32 × 10−2

S 3.37 × 10−2 8.12 × 10−2 5.43 × 10−2 5.80 × 10−2

Biomass 1.76 E 4.78 × 10−2 6.67 × 10−2 5.15 × 10−2 5.30 × 10−2

X 9.96 × 10−2 9.63 × 10−2 1.62 × 10−1 1.09 × 10−1

VDK 1.12 × 10−1 1.16 × 10−1 1.51 × 10−1 1.12 × 10−1

CO2 3.45 × 10−2 2.99 × 10−2 4.74 × 10−2 3.56 × 10−2

S 2.23 × 10−2 7.40 × 10−2 4.63 × 10−2 5.36 × 10−2

Carbon dioxide 0.72 E 5.47 × 10−2 9.91 × 10−2 4.11 × 10−2 6.23 × 10−2

VDK 6.26 × 10−2 8.59 × 10−2 1.12 × 10−1 7.50 × 10−2

Discriminating among the proposed models is difficult since they target different
variables. However, taking into account the cost function residuals, the carbon dioxide
model fit better to the current operating conditions and monitoring set-up (J = 0.72) than
the biomass model (J = 1.76). Furthermore, from a practical point of view, the identification
of the dioxide carbon model requires a sensor configuration that is easier to set up, limiting
offline analytical analysis. Conversely, the identification of the biomass model requires
offline cell counting to measure yeast concentration. Moreover, considering process con-
trol, carbon dioxide online sensors are affordable, whereas biomass sensors are expensive
(alternatively a biomass software sensor could be developed based on the measurements
of CO2, E, VDK). The main advantage of the biomass model lies in the provided informa-
tion about the biomass metabolic state during the fermentation process, allowing a more
straightforward detection of possible contamination.

Figure 7. Cross-validation of the carbon dioxide model with the data from experiment 1. Stars:
experimental data. Error bars: 95% confidence intervals. Continuous blue line: model prediction.
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6. Conclusions

The demand for processes with more rigorous quality standards, as is the case in
the pharmaceutical industry, has led to the development of approaches such as process
analytical technologies (PAT), now being extended to the agro-food sector and, more
specifically, to the brewing industry. This work is motivated by the growing importance
of mathematical modeling, in the context of PAT, to design process digital twins that can
support lab-scale operations. Model-based advanced monitoring and control techniques
can indeed be developed in view of optimizing and improving the process. In this study,
two alternative models, initially proposed in seminal works, are adapted and identified
under realistic experimental conditions. One of the models is based on the description of
the biomass evolution, while the other, more pragmatic, considers carbon dioxide, a more
accessible variable that can be measured with cheap sensors. These models take account
of the temperature influence in a simple way. A systematic identification procedure is
described. Cross-validation highlights the good predictive capability of both models, which
are good candidates for model-based control.
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Appendix A

Table A1. Parameter nomenclature list for biomass model.

Parameter Definition Units

kS Sugar yield coefficient gS/gX
kE Ethanol yield coefficient gE/gX

Smin Minimum sugar quota g/L
δX Settling constant h−1

kV VDK yield coefficient gVDK/gX
kCO2 CO2 yield coefficient L

a Temperature-dependency
coefficient h−1

b Temperature-dependency
coefficient h−1

c Temperature-dependency
coefficient h−1

d Temperature-dependency
coefficient h−1
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Table A2. Parameter nomenclature list for carbon dioxide model.

Parameter Definition Units

kS Sugar yield coefficient gS/lCO2
kE Ethanol yield coefficient gE/lCO2
KS Substrate limitation coefficient g/L

Cpmax Carrying capacity L/g
kV VDK yield coefficient ppm

kCO2 CO2 yield coefficient L

a Temperature-dependency
coefficient h−1

b Temperature-dependency
coefficient h−1

c Temperature-dependency
coefficient °C−2 h−1

d Temperature-dependency
coefficient °C−1 h−1

e Temperature-dependency
coefficient h−1
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Abstract: In food processes, optimizing processing parameters is crucial to ensure food safety, maxi-
mize food quality, and minimize the formation of potentially toxigenic compounds. This research
focuses on the simultaneous impacts that severe heat treatments applied to food may have on the
formation of harmful chemicals and on microbiological safety. The case studies analysed consider
the appearance/synthesis of acrylamide after a sterilization heat treatment for two different foods:
pureed potato and prune juice, using Geobacillus stearothermophilus as an indicator. It presents two con-
tradictory situations: on the one hand, the application of a high-temperature treatment to a low acid
food with G. stearothermophilus spores causes their inactivation, reaching food safety and stability
from a microbiological point of view. On the other hand, high temperatures favour the appearance of
acrylamide. In this way, the two objectives (microbiological safety and acrylamide production) are
opposed. In this work, we analyse the effects of high-temperature thermal treatments (isothermal
conditions between 120 and 135 ◦C) in food from two perspectives: microbiological safety/stability
and acrylamide production. After analysing both objectives simultaneously, it is concluded that,
contrary to what is expected, heat treatments at higher temperatures result in lower acrylamide
production for the same level of microbial inactivation. This is due to the different dynamics and sen-
sitivities of the processes at high temperatures. These results, as well as the presented methodology,
can be a basis of analysis for decision makers to design heat treatments that ensure food safety while
minimizing the amount of acrylamide (or other harmful substances) produced.

Keywords: food safety; acrylamide formation; thermal resistance; dynamic models; simulation

1. Introduction

Different conflicting objectives often arise in many food processes (e.g., quality vs.
economical cost). Finding the optimal solutions which balance among all the existing
objectives is not an easy task due to the complexity of the mathematical models describing
such processes [1–4]. This optimization step is crucial to produce an efficient decision-
making process [5]. Recent research has been devoted to optimizing food processes where
two or more conflicting objectives appear. The most common are usually related to prod-
uct quality and process economy [6–8], different quality parameters [9–11], economic
and environmental parameters [12,13], or, as in the present study, product quality and
safety [14].

One of the most important methods of food preservation in the food industry is
thermal processing. Historically, the focus was on optimizing heat treatments to improve
the processes related to microbial destruction, nutrients retention, cooking values and loss
of quality [15]. The main function of heat treatments is to inactivate microorganisms and
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enzymes to achieve safe, long shelf-life food. The associated disadvantages are related to
food quality (e.g., nutrients or texture preservation) due to the effect of high temperatures.
Therefore, the design of thermal processes in the food safety sector must face different
objectives, such as food quality or energy consumption vs. microbial inactivation. The use
of high temperatures implies food degradation but also the formation of substances that
can be harmful to humans [16]. One example is acrylamide, a chemical that is produced
during high-temperature processes in foods that contain reducing sugars (such as fructose
and glucose) and asparagine [17]. Acrylamide was found to be carcinogenic in rodents,
and the International Agency for Research on Cancer has classified it as a probable carcino-
gen [18,19]. This has motivated food authorities to propose methodologies to minimize
acrylamide content in commercial and homemade foods. The European Food Safety Au-
thority (EFSA) has set recommendation levels for some foods [20]. The influence of high
temperature on the formation of acrylamide has been previously demonstrated [21]. The
higher the processing temperature, the more acrylamide is formed, thus heat treatments
need to be optimized to decrease the amount of produced acrylamide. The formation
of acrylamide in a process that involves the heating of food is explained by the Maillard
reaction [22]. Since its formulation, this reaction has been studied from different points
of view. Traditionally, the focus was put on components that affected colour, flavour,
and taste, whereas more recently the focus has moved to the analysis of the formation of
mutagens and carcinogens. Acrylamide is one of these chemicals in the spotlight due to
its potential formation in highly consumed foods such as potato chips [23] or Asian noo-
dles [24]. French fries, coffee, and bread have also presented high levels of acrylamide [21].
In fact, a wide range of different food products containing fructose and asparagine can
contain acrylamide.

In the case of baby food, the recommendations for acrylamide levels are more restric-
tive than in other types of food, and a maximum allowed amount of 30 μg/kg is set [20].
Different studies [25,26] have shown that various foods exceed these limits. Specifically,
potato-based products are highly susceptible to containing high levels of acrylamide. On
the other hand, although the EFSA has not yet established recommendations for foods
based on vegetables or fruits [27], it has been shown that products such as prune juice
can contain high concentrations of acrylamide, reaching much higher values even than in
potato-based foods. [28]. Therefore, this study focuses on foods such as potato puree and
prune juice, which can be catalogued as baby food and may not meet EFSA’s recommenda-
tion for those products.

From a quality vs. microbiological point of view, heat stability of heat-labile quality
factors presents a higher z-value than those typical of bacteria. Then, high-temperature
short-time (HTST) processes are less deleterious to food quality while ensuring microbial
food safety and stability [29], although the impact of acrylamide formation has not been
considered. In this regard, the two proposed objectives (i.e., microbial inactivation and
acrylamide formation) are opposed and the problem must be analysed.

The microorganism considered here is Geobacillus stearothermophilus, a Gram-positive,
thermophilic, and spore-forming bacterium with an optimal growth temperature around
55 ◦C. The spores are very heat-resistant and usually survive canning and sterilization
operations. Furthermore, it has been detected in different foods such as canned vegetables,
ready-to-eat meals containing meat, fruit preparations, or dehydrated ingredients [30].
Other relevant pathogenic spore formers of interest in the food industry, such as Clostridium
botulinum or Bacillus cereus, have not been considered here, as their inactivation is generally
not a problem within the range of temperatures considered in this study which give rise to
significant amounts of formed acrylamide.

As Geobacillus stearothermophilus spores are used to validate heat sterilization pro-
cesses [31–34], this study evaluates the inactivation of this microorganism in a heat treat-
ment within the typical temperatures applied to the studied products (120–135 ◦C).

In this work, we have simulated and analysed the dynamics of the two objectives in a
thermal inactivation operation. The aim is to use mathematical models to determine the
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conditions where the amount of formed acrylamide is minimum while ensuring microbial
inactivation. To the authors’ knowledge, no previous work was published facing the
inactivation of microorganisms and acrylamide production.

2. Materials and Methods

2.1. Case Study

This study analyses the dynamics of two processes associated with the application of
severe heat treatments in some foods: microbial inactivation and acrylamide production.
In principle, higher temperatures ensure a safer operation from the microbiological point
of view, but can also induce a higher acrylamide production. We have applied this analysis
to two practical cases of the food industry (potato puree and prune juice) where different
time/temperature treatments are simulated to assess the inactivation of a thermo-resistant
microorganism and the acrylamide formation. The microorganism is first characterized
(see Section 2.2) and then heat treatments scenarios are simulated for each of the considered
foods to assess the dynamics of microbial inactivation and acrylamide formation and
their balance.

2.2. Microbial Inactivation Model and Parameter Estimation

To characterize the behaviour of the microorganism, the Bigelow model [35] was
chosen. This choice is motivated by the use of this model to characterize the microbial
inactivation of Geobacillus stearothermophilus within the literature (e.g., [36–38]). In any
case, the use of other models would not invalidate the methodology presented here, and
the whole procedure would be similar. It considers a log-linear relationship between the
fraction of survivors (S) and treatment time, (t), as shown in Equation (1).

log10S =
−t

D(T)
(1)

log10D(T) = log10D(Tre f )−
T − Tre f

z
(2)

The influence of treatment temperature (T) in the microorganism is reflected as the
D-value, which is log dependent on the temperature, as shown in Equation (2). The D-
value represents the time required to reduce the microbial population by 90% at a constant
temperature, and the z-value quantifies the sensitivity of the D-value to temperature
changes. The reference temperature, Tre f , is a parameter without biological meaning but
can improve parameter identifiability [39,40].

To estimate the model parameters, several D-values (n = 113) for thermal inactiva-
tion of Geobacillus stearothermophilus were collected from the literature (Web of Science
database) as described in [41]. A temperature range between 97.5 ◦C and 137.5 ◦C was
considered, and only food matrixes (especially vegetable-based) were included [38,42–50].
Non-linear regression was applied to obtain mean log10D(Tre f )-values and z-values with
their respective standard errors.

The estimated model parameters are log10D(Tre f ) = −0.0468± 0.03789, z = 8.66 ± 0.283
(◦C). The experimental data, as well as the fitted model, are presented in Figure S1, that shows
a good model fitting, which confirms the suitability of the Bigelow model to characterize the
microorganism in the conditions considered. The reference temperature was set to a value near
the middle of the temperature range (Tre f = 125 ◦C) as recommended by [40]. Monte Carlo
simulations were used to calculate the probability that a heat treatment (time, temperature)
produces at least 6 logarithmic reductions in the microbial load (symbolized as P(log10S ≥ 6)
within the text), which is considered to be sufficient for many inactivation processes. In any case,
changing this value would not change the proposed methodological approach. For this, we se-
lect 1000 pairs of values of the model parameters (log10D(Tre f ), z) obtained by simulation from
two independent normal distributions, where log10D(Tre f ) ∼ N(μ = −0.0468, σ = 0.03789)
and z ∼ N(μ = 8.66, σ = 0.283). Next, the expected log reduction was calculated with Equa-
tions (1) and (2) from the heat treatment conditions (time, temperature) for each of the 1000 pairs
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of parameter values. Finally, the probability of achieving the target inactivation was calculated
by dividing the number of cases that comply with log10S ≥ 6 by 1000. This procedure was
used to address the first objective: maximize P(log10S ≥ 6).

2.3. Acrylamide Production Objective

To quantify the acrylamide formation, the multi-response kinetics in a glucose-asparagine
reaction at high temperatures (120–200 ◦C) proposed by [51] were used. The model is based
on the reaction network shown in Figure S2.

Glucose and asparagine react to form a Schiff base. Fructose is formed by glucose
isomerization, and it also reacts with asparagine to form the Schiff base. At the same
time, the Schiff base is degraded into melanoidins and acrylamide, whereas acrylamide is
degraded into unknown species (named Product X). Study [51] calculated the equilibrium
constants for the temperature range (120–200 ◦C), which showed a logarithmic relationship
with temperature. Using this observed relationship, a temperature-dependent function was
fitted for each constant (Ki(T) ∀i = 1, 2 . . . , 6). Although the range of temperatures used by
Knol et al. does not coincide with the range considered for tlog10D(T) vs. T values in this
study (e.g., from 97.5 to 137.5), we consider that the same logarithmic relationship applies
in our case. The estimated kinetic constant values were used in the system of ordinary
differential equations that quantifies the amount of acrylamide formed for a specific time
and temperature, shown in Equation (3).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[Glucose]
dt = −K1(T)·[Glucose]·[Asparagine]− K2(T)·[Glucose]

d[Fructose]
dt = −K3(T)·[Fructose]·[Asparagine] + K2(T)·[Glucose]

d[Asparagine]
dt = −K1(T)·[Glucose]·[Asparagine]− K3(T)·[Fructose]·[Asparagine]

d[Schi f f base]
dt = K1(T)·[Glucose]·[Asparagine] + K3(T)·[Fructose]·[Asparagine]

−K4(T)·[Schi f f base]− K5(T)·[Schi f f base]
d[Acrylamide]

dt = K4(T)·[Schi f f base]− K6(T)·[Acrylamide]

(3)

One of the solutions to the system of differential equations is the acrylamide concentra-
tion formed for a certain heat treatment (time, temperature), which is the second objective
in our formulation. In this second objective, apart from the heat treatment conditions, that
is, the time and temperature variables, it is necessary to set the initial amounts of glucose,
fructose, and asparagine. Two foods were selected: potato puree (typical pH of 5.1–6.0) and
prune juice (typical pH of 4.0–5.0). For each of the two selected foods, initial concentrations
are shown in Table 1. Details on these calculations are provided in Supplementary Material.
From the existing potato varieties, the red potato was chosen, as it produces the highest
amount of acrylamide [52].

Table 1. Initial concentrations of glucose, fructose, and asparagine in pureed potato and prune juice.

Concentration (mM) Pureed Potato Prune Juice

Glucose 10.740 213.426

Fructose 7.190 8.731

Asparagine 36.551 213.421

3. Results and Discussion

This section analyses the results of the simulation of isothermal heat treatments with
temperatures between 120 and 135 ◦C for two food matrices, pureed potatoes and prune
juice. On the one hand, to quantify inactivation, a Monte Carlo simulation approach is
used, as explained in Section 2.2, which provides the probability that the heat treatment
(time, temperature) produces at least six logarithmic reductions (P(log10S ≥ 6)). Therefore,
all results for inactivation in both foods are related to that probability.
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On the other hand, acrylamide production is reported in the units of measurement(
μg
kg

)
recommended by EFSA to make comparisons [20].

3.1. Single-Objective Analysis

Regarding the first objective (i.e., microbial inactivation), P(log10S ≥ 6) as a function
of temperature and time of heat treatment is presented in Figure 1. As expected, the areas
with the highest probability of having more than six log-reductions in the microbial count
are those related to higher temperatures and longer treatment times. It is notable that, in
the ranges of time and temperature considered (Figure 1), P(log10S ≥ 6) is very sensitive
to small changes in temperature or in processing time. This sensitivity is higher as the
temperature increases.

Figure 1. Probability of six or more logarithmic reductions P(log10S ≥ 6) for Geobacillus stearother-
mophilus as a function of heat treatment (time, temperature).

On the other hand, the impact of the heat treatment on acrylamide formation is repre-
sented in Figure 2A for pureed potato and Figure 2B for prune juice. The area showing the
highest acrylamide formation is defined by the highest treatment temperature. As expected,
higher temperature and/or longer duration of the heat treatment had a positive correlation
with acrylamide formation, although significant differences were found between the foods
tested. The main difference was the amount of acrylamide that could be produced, which
was higher for prune juice at all the time/temperature combinations. For example, for the
most severe treatments (upper right corner of Figure 2A,B) the concentration was around
two times higher in the case of prune juice. Comparing the isolines of both objectives,
larger changes in temperature or processing time are needed to produce significant changes
in acrylamide production (Figure 2) than in P(log10S ≥ 6) (Figure 1). In other words,
acrylamide formation is less sensitive to temperature and time than inactivation.

In any case, this mono-objective analysis confirms that both objectives counter each
other, thus a balance in the operating parameters must be achieved. As an expected
conclusion of this analysis, the increase in temperature or processing time in thermal
treatments favours the inactivation of the microorganism and disfavours (i.e., increases)
acrylamide formation. However, the sensitivity of both responses to changes in temperature
or time is significantly different.
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Figure 2. Amount of acrylamide formed as a function of heat treatment (time, temperature) for the potato puree (A) and
prune juice (B).

3.2. Dynamics of Geobacillus Inactivation and Acrylamide Formation

As previously discussed, both objectives conflict. Therefore, to analyse the influence
of the temperature on both objectives simultaneously, the inactivation rates and the amount
of formed acrylamide for different treatment temperatures are evaluated. Simulated
inactivation curves for the ranges of temperature and time considered are represented
in Figure 3 following the Bigelow model (i.e., Equations (1) and (2)). The increase in
temperature produces an increase in the slope of the inactivation curve and therefore a
faster inactivation. On the other hand, acrylamide formation is explained by the Maillard
reaction (Equation (3)) and its dynamics are represented in Figure 4. Figure 4A shows
the formation rates for pureed potato. It is observed that the higher the temperature, the
higher the formation. This is confirmed by Figure 4B, which corresponds to the amount of
acrylamide formed in prunes juice.

Figure 3. Geobacillus stearothermophilus inactivation dynamics according to the Bigelow model.
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Figure 4. Acrylamide formation dynamics according to the Maillard reaction: potato puree (A) and prune juice (B).

Figure 5A,B represent the inactivation curves for five different temperatures between
120 and 135 ◦C and the acrylamide formed for each temperature when P(log10S ≥ 6) = 0.95
for pureed potato and prune juice, respectively. Inactivation curves are represented as
coloured lines and the left y-axis measures the number of logarithmic reductions. As
discussed before, higher temperatures result in a higher slope of the inactivation rate. Bars
placed at the times required for each treatment temperature show that processes at higher
temperatures need less treatment time to achieve at least six log-reductions with a 95%
probability. On the other hand, the height of each bar represents the acrylamide formed for
each treatment (time–temperature).

Figure 5. Inactivation rates represented as lines and acrylamide formed represented as bars for different temperatures when
P(log10S ≥ 6) = 0.95, potato puree (A) and prune juice (B).

It is observed that both for the potato puree (Figure 5A) and the prune juice (Figure 5B),
the lower the temperature, the greater the amount of acrylamide is formed due to the higher
treatment time needed to achieve (log10S ≥ 6) = 0.95. As the temperature increases, the
treatment time required to inactivate the spores decreases, and therefore the amount
of acrylamide formed is also lower. We must recall that both objectives (i.e., microbial
inactivation and acrylamide formation) are determined by the combination of temperature
and time. The processing time for each temperature is determined by the defined level
of inactivation (i.e., (log10S ≥ 6) = 0.95). This time is different for each temperature
and the balance between dynamics explains the unexpected differences in the calculated
acrylamide amount.
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Table 2 quantifies the time and acrylamide formed for each temperature and three
values of P(log10S ≥ 6). For a probability of inactivation of 95%, if the temperature is
increased by 12.5% (from 120 to 135 ◦C), the treatment time is reduced by 98% (from 23.92
to 0.46 min). Higher acrylamide amounts were observed for prune juice, as the amount
of reducing sugars is higher than in pureed potato, although the qualitative appearance
of the dynamics of the objectives is the same for both foods. The previously mentioned
12.5% increase in temperature (that would imply a 98% reduction in the treatment time)
would result in a 99.5% and 99.3% reduction in acrylamide for pureed potato and prune
juice, respectively. Therefore, as kinetics behave differently for temperature changes, an
additional analysis to find the optimal trade-off between both objectives was performed,
based on a multi-objective approach.

Table 2. Acrylamide formed and duration for different heat treatments and inactivation probabilities.

Temperature (◦C)

90% 95% 99%

Time (min)

Acrylamide (μg/kg)

Time (min)

Acrylamide (μg/kg)

Time (min)

Acrylamide (μg/kg)

Pureed
Potato

Prune
Juice

Pureed
Potato

Prune
Juice

Pureed
Potato

Prune
Juice

120.00 23.15 226.52 789.23 23.92 241.29 829.20 25.66 275.45 913.46

123.75 8.43 64.94 257.49 8.71 68.14 269.85 9.28 77.56 300.61

127.50 3.11 17.43 73.78 3.22 18.15 78.79 3.47 21.06 87.71

131.25 1.16 4.50 19.70 1.21 4.74 21.38 1.31 5.55 23.79

135.00 0.44 1.14 5.18 0.46 1.21 5.61 0.49 1.40 6.23

3.3. Multi-Objective Approach

The dependence of both objectives on time and temperature calls for a multi-objective
optimization approach where the aim would be to find the pairs (temperature, time) that
provide the Pareto front of optimal solutions (e.g., set of temperature/time solutions for
which no objective can be improved without sacrificing the other one). However, the
application of such an approach led to a set of Pareto solutions which consisted of the
maximum temperature tested (135 ◦C) and different processing times (data not shown).
This behaviour can be explained by the different dynamics of the objectives analysed above:
an increase in temperature drastically reduces the processing time needed to achieve
P(log10S ≥ 6) = 0.95, which at the same time reduces the amount of acrylamide formed
due to the slower dynamics of that process. For that reason, the non-dominated solutions
consist of pairs of the maximum temperature tested and different processing times.

While this is a perfectly valid mathematical result, it is not so useful from the engineer-
ing point of view if we want to check the effects of other temperatures over the objectives,
which can be critical in the case of considering additional objectives. For this reason, we
eliminated the temperature as a decision variable and fixed it to some discrete values
within the tested range, analysing the evolution of both objectives for each of the discrete
temperatures over time. Figure 6 shows the acrylamide formed (y-axis) in a heat treatment
that inactivates the microorganism for different values of P(log10S ≥ 6), represented in
the x-axis.

The highest temperature tested (135 ◦C, orange dots) caused the lowest amount of
formed acrylamide at any level of probability as treatment time was short. On the other
hand, for the lowest temperature (associated with long treatment times, 120 ◦C, purple
dots) the highest amount of acrylamide is formed. This reaffirms the results obtained in
the previous section and also allows us to broaden the perspective of the problem, as it can
be observed that increasing the probability of reaching the target microbial inactivation
promotes the acrylamide formation, although with a very low sensitivity, except in the area
of probability close to 100%, where the acrylamide formation tends to rise more significantly.
The differences between foods (Figure 6A,B) are only manifested in the acrylamide levels,
but the qualitative behaviour is similar.
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Figure 6. Acrylamide formed in a heat treatment that inactivates the microorganism for different values of P(log10S ≥ 6):
potato puree (A) and prune juice (B).

For the lowest temperature (120 ◦C) the duration of the treatment exceeds 23 min for
P(log10S ≥ 6) = 90% (Table 2). On the other hand, increasing the temperature from 120 ◦C
to 135 ◦C (+12.5%), the time needed for a 90% probability is around half a minute and
acrylamide could be decreased by up to 99.5% and 99.3% for pureed potato and prune
juice, respectively.

To increase P(log10S ≥ 6) from 90% to 99%, the processing time must increase between
approximately 10 and 13% depending on the temperature considered. Due to this variation,
the amount of acrylamide increases by about 15–23% depending on the chosen temperature,
considering both products again.

To assist the decision-making process, Figure 7A,B collect the necessary information to
design a heat treatment that seeks to maximize food safety by inactivating a microorganism
and minimizing acrylamide formation. These figures show the amount of acrylamide
formed (y-axis) as a function of the temperature of the heat treatment (x-axis), as well as
P(log10S ≥ 6) (colour of the lines). The treatment time is determined by both the chosen
temperature and the probability level, as explained below. The horizontal black line
represents the maximum amount recommended in baby food 30 (μg/kg) [20], that was
considered as a worst-case scenario. Figure 7A refers to pureed potato, whereas Figure 7B
refers to prune juice. These figures provide a global vision of how the heat treatment directly
determines the amount of formed acrylamide. The area that is above the horizontal line is
an undesirable area, as the amount of acrylamide exceeds the recommendation. Ideally, we
should remain in the lower region to ensure that the product has a low level of acrylamide
while ensuring the inactivation of the microorganism given a defined probability value
for P(log10S ≥ 6). In both cases, it is observed that, when the temperature increases,
acrylamide falls for this temperature range, as discussed above.

In Figure 7A, for pureed potato, the horizontal line divides the desirable region at
around 126–127 ◦C for all the considered probabilities. Therefore, the heat treatments
should be above that temperature. At 126–127 ◦C we would lie within the recommended
limit of acrylamide (25–30 μg/kg) whereas an increase of 8–9 ◦C would produce around
1 μg/kg (Table 2). For the case of prune juice, Figure 7B, the same behaviour is observed.
However, the amount of acrylamide formed is higher, as the initial concentrations of fruc-
tose and asparagine are also higher. In this case, the recommended limit for all the consid-
ered probabilities would lie within 129–130 ◦C. This information can be useful to consider
the use of these foods in, e.g., baby-food products, to avoid exceeding the recommendation.
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Figure 7. Acrylamide formed as a function of time for each temperature and P(log10S ≥ 6): potato puree (A) and prune
juice (B).

Decision makers can use plots such as Figure 7 to decide which levels of acrylamide
are likely to be present in the final product depending on P(log10S ≥ 6) and temperature,
which could affect other properties of the food not considered here. Another approach
would be to select the desired acrylamide level and P(log10S ≥ 6). In this way, the treat-
ment temperature is determined. Figure 7 shows that, for high temperatures, as the
duration of the treatments are very short regardless of the inactivation probability chosen,
the acrylamide formation is low in every case. However, for lower temperatures the sensi-
tivity is higher: small changes in temperature (linked to higher exposure times) result in
significant changes in acrylamide production.

To complement these design steps, the duration of treatment should be calculated.
For that purpose, Figure 8 shows the time (x-axis) for each temperature (y-axis) for three
selected probability values of P(log10S ≥ 6). Therefore, in the example, if the required
temperature is 130 ◦C for a level of 85%, in the middle plot a treatment duration of 2.5 min
is obtained. This value can be more easily retrieved by simulating both models (acrylamide
production and microbial inactivation).

Figure 8. Treatment time required for each temperature and probability.
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4. Conclusions

We have analysed the balance between microbial inactivation and acrylamide forma-
tion in the case where a thermoresistant microorganism can be present in food in which
acrylamide can be formed due to high temperature thermal treatments. As a case study, we
have chosen the inactivation of Geobacillus stearothermophilus in two particular foods (i.e.,
pureed potato and prune juice) that we have characterized with the Bigelow model. The
acrylamide formation has been modelled with the Maillard equation. The analysis of the
dynamics of both processes reveals that, to ensure a certain level of microbial inactivation,
heat treatments at higher temperatures lead to decreased acrylamide formation, similar to
the behaviour of quality components. This is due to the processes’ different sensitivities to
temperature. While microbial inactivation is very sensitive (i.e., the times to produce a level
of inactivation with a certain probability dramatically decreases with temperature), acry-
lamide formation is not. The methodology presented here can be used by decision makers
to design heat treatments when food safety objectives are faced, maximizing inactivation
and minimizing the amount of acrylamide (or other target substances). As the selected
foods can be used as ingredients in baby foods, the obtained outcomes were compared with
the EFSA’s recommendations about maximum acrylamide concentrations in baby food.
Even at the highest temperatures, where the least amount of acrylamide is formed due to
the short processing times to ensure the microbial inactivation, the expected acrylamide
amounts are very close to the maximum EFSA’s recommendation, therefore it should be
taken into account when using them in infant formulations.

The methodology presented here can be a basis to re-design processes where food
safety and acrylamide formation are important issues. It can be used to make decisions
when there are unexpected process variables deviations (e.g., lower treatment temperatures
than expected). It can also be extended to other processes and microorganisms, and in
future work we plan to include other conflicting objectives depending on temperature and
time, such as quality or cost. This future work will also be addressed to experimentally
validate the conclusions obtained here to refine the model fitting to other conditions and to
check the effects of different food matrixes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods10112535/s1, Figure S1: Experimental data and fitted model for the considered log10D/T
values, Figure S2: Kinetic model for acrylamide formation from glucose, fructose and asparagine
proposed by Knol et al. 2005. Supp_file1: Calculation of initial concentrations of glucose, fructose
and asparagine for pureed potato and prune juice.
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Abstract: In this study, we performed multi-objective model-based optimization of a potato-frying
process balancing between acrylamide production and a quality parameter (yellowness). Solution
analysis revealed that, for most of the Pareto solutions, acrylamide levels exceeded the EFSA recom-
mendation. Almost equivalent optimal solutions were found for moderate processing conditions
(low temperatures and/or processing times) and the propagation of the uncertainty of the acrylamide
production model parameters led to Pareto fronts with notable differences from the one obtained
using the nominal parameters, especially in the ranges of high values of acrylamide production
and yellowness. These results can help to identify processing conditions to achieve the desired
acrylamide/yellowness balance and design more robust processes allowing for the enhancement of
flexibility when equivalent optimal solutions can be retrieved.

Keywords: multi-objective optimization; model-based optimization; equivalent solutions; uncertainty;
Monte Carlo; frying operation; acrylamide; quality

1. Introduction

1.1. Optimization in Food Engineering

Food engineering has become an increasingly important field, as evidenced by the
growth of mathematical models devoted to understanding and improving food-processing
operations [1]. One important application of mathematical modelling in food engineering
is the optimization of food-processing operations.

Optimization is the process of finding the best possible solution to a problem. This
usually involves finding the best compromise among several conflicting demands. To
optimize a process, one must find the set of decision variables which, for example, maximize
profitability while meeting a set of constraints. Several model-based optimization methods
can be used to improve food processing. These methods are more rigorous than other
empirical approaches and are thus more likely to find the best possible solution [2].

In general, optimization can be applied effectively to food processing if the changes
during the process can be predicted mathematically. Heat, mass, and momentum transfers
(as well as kinetics) are major mechanisms in food processing, and mathematical models
describing these phenomena are essential for further mathematical-based optimization
procedures [3].

Optimal operating conditions in the food industry are usually sought to ensure maxi-
mum profits and product quality, subject to constraints arising from food-safety issues and
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often environmental regulations. However, the dynamic, nonlinear and highly constrained
nature of food-processing models can make the optimization of these processes a daunting
task [4].

Achieving optimization in food processing requires some way of describing the po-
tential alternatives and of choosing the best alternative. In the design, construction and
maintenance of any engineering system, different technological and managerial decisions
are required to be given at different stages of the process to either minimize the effort
required or maximize the benefit desired. The formal description of any optimization
problem has three parts [3]:

1. A set of variables that the optimization method can control and use to specify the
alternatives (e.g., applying different process-temperature profiles during thermal
processing to achieve better processing for a given objective function).

2. A set of requirements (e.g., the differential equations, boundary conditions, and
integral equations specifying the constraints that the system and the variables are
subjected to) that the optimization method must achieve or satisfy.

3. A measure of performance to compare one alternative to another (the objective func-
tion). The objective function, which may be continuous or in some cases discrete,
is the function to be optimized (maximized or minimized). This can be accom-
plished by using either a mathematical model or by fitting an equation through
the experimental data.

1.2. Applications of Multi-Objective Optimization in Food Engineering

For most industrial processes in food, simultaneous optimization of multiple objec-
tives (e.g., product quality, operating costs, and safety) is the more realistic and desirable
approach, but since these criteria are often opposing, the optimal solution is not unique.
The multi-objective optimization (MOO) approach is used to find the best set of solutions
for a problem with multiple objectives. In food engineering, MOO is used to optimize
processes where conflicting objectives such as e.g., process economy, quality parameters
or environmental indexes appear. These solutions are known as nondominated or Pareto
optimal solutions [5]. Each of these solutions has no prior advantage over other Pareto
optimal solutions so the objective of multi-objective optimization is to generate as many
solutions as possible to evaluate and prioritize optimal trade-offs among the different
objectives [6].

Multi-objective approaches have been used to solve optimization problems in the food
engineering industry. For instance, Vilas et al. sought to maximize food quality and safety
by developing smart active packaging systems that optimize food-packaging design and
prediction of the expected shelf life along the food chain [7]. Abakarov used this technique
with experimental data obtained on osmotic dehydration of carrot cubes in a sodium
chloride solution to improve the assessment of criteria weights and produce fairer and
more consistent products [6]. Holdsworth and Simpson obtained a set of Pareto-optimal
solutions for processing time, quality retention, and texture loss under specific criteria of
the processing temperature [8]. Krüger et al. proposed a multi-objective optimization to
choose a pot and a growth substrate mixture such that environmental emissions and costs
are simultaneously minimized [9] and Gergely et al. used this approach to improve wine
filtration [10]. Sendín et al. used it to maximize the retention of several nutrients and quality
factors and minimize the total process time [11]. Kiranoudis and Markatos considered the
multi-objective approach to design the process of a conveyor-belt dryer using not only
structural and operational process variables but the quality of treated potatoes [12]. In the
same line, Olmos et al. used this approach to optimize the drying time maximizing the
product quality [13] and Winiczenko et al. studied the effect of drying temperature and
air velocity on apple quality parameters, such as color difference, volume ratio and water
absorption capacity in convective drying [14]. In the field of sustainable distribution of
foods, Bortolini et al. optimized the cost, delivery time and carbon footprint with a multi-
objective approach [15]. However, no work was found where acrylamide production and
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food quality parameters were considered simultaneously in a multi-objective optimization
approach. Peñalver-Soto et al. analysed the dynamics of acrylamide production and
microbiological inactivation in certain foods by performing simulations instead of a formal
optimization formulation [16].

1.3. Uncertainty in MOO

Uncertainty propagation has been extensively studied in the fields of physics and
mathematics [17–21] and in particular, in the field of food intake, where it has been analyzed
from different approaches [22–27]. In general, the propagation of uncertainty refers to
the estimation of the variability in a given quantity. This variability can be due to several
factors, such as measurement error, sampling variability, or natural variability [22]. In food
engineering, the variability of a particular property or characteristic of a food product can
have a significant impact on the quality and safety of the product.

In this study, the propagation of uncertainty to the MOO approach was assessed by
propagating the uncertainty of model parameters to the solutions shown in the Pareto front.
Parameter uncertainty can affect the shape of the Pareto optimal front in multi-objective
optimization, and this can have important implications for decision-making [17].

Different methods can be used to propagate uncertainty in food engineering. Each
method has its strengths and weaknesses, and the choice often depends on the type of data
being studied. Some of the most common methods of uncertainty propagation include
Monte-Carlo simulation [28], linear approximation [29], the sigma point method [30], and
polynomial chaos expansion [31].

Specifically, this article applies the Monte-Carlo method which is a powerful tool for
studying the propagation of uncertainty [32]. The method is used to calculate the proba-
bility of different outcomes by randomly selecting values from a probability distribution.
This approach can be used to calculate the expected value of a function or to estimate
the uncertainty in a measurement. The Monte-Carlo method can be used to study the
propagation of uncertainty in food engineering. Garre et al. used this methodology in
microbial inactivation of foods to select optimal experiment designs [33]. In this work,
we analyzed the effects of parameter uncertainty in mathematical models describing food
processes over the robustness of the Pareto set of solutions in multi-objective optimization
using as a case study a frying process of potato chips where a quality parameter (yellow-
ness) and the production of acrylamide, a potential carcinogen [34,35] were defined as
opposed objectives.

2. Materials and Methods

2.1. Case Study

This study analyzed the potato-frying process to optimize food safety and culinary
quality. Specifically, the impact of the heat treatment on the amount of acrylamide produced
and the yellowness and moisture content were studied. The whole study was based on
mathematical model simulations. We used the Maillard model (Equations (1)–(5)) to
simulate the acrylamide formation using the fitted model provided by Knol et al. [36]
and the models proposed by Krokida et al. [37,38] (Equations (6)–(11)) to simulate the
yellowness and the moisture content. All models (see Section 2.2) were previously calibrated
and validated by their original authors as reported in the respective bibliographic references
The outputs of such models, which depend upon temperature and time, were used to
simulate the experiments and perform the multi-objective optimization as well as the
uncertainty propagation analysis. The simulated heat treatments considered were all in
the range of values for which the mathematical models were validated according to their
authors [36–38].

The selected potato corresponded to the Agria variety, which is used in products sold
in supermarket chains and has been one of the most studied varieties in frying conditions
in the literature [39–41]. The high temperatures of the considered heat treatment (frying
process) brought the two considered objectives into conflict since an increase in yellowness
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implies an increase in acrylamide production, thus a multi-objective approach was used.
Slices of 15 mm thickness were considered in this work. Likewise, no air drying or osmotic
pre-treatment were considered [42]. The experiments carried out by Krokida et al. to
calibrate the yellowness model used a commercial deep fat fryer with temperature control
of ±1 ◦C that was filled with 2 l of oil and the potatoes-to-oil ratio was kept at 1:50 w/v. The
concentration of hydrogenated cotton seed oil in total (refined plus hydrogenated) oil was
considered as 50% [37]. Nevertheless, these authors stated that the type of oil did not have
any influence over color parameters. They used a Hunterlab SAV colorimeter and reported
the results in the CIE Lab color scale (non-dimensional) in their experiments [37,38]. Food
safety was determined by low levels of acrylamide. EFSA [43] determines 50 μg/kg as the
maximum level. On the other hand, culinary quality was determined by the maximization
of yellowness and the setting of moisture content between 2 and 4% as recommended by
Segnini et al. [44], as an indicator or predictor of texture.

If any of the described parameters took different values, a different potato variety
was considered or additional quality variables (e.g., textural ones) were incorporated, and
the methodology remained the same. Here we intend to illustrate how to design a frying
process using modelling tools and, particularly, multi-objective optimization, as well as
providing a global picture of the balances between objectives in the whole design variables
domain, as shown in the visual scheme in Figure 1.

Figure 1. Outline of the case study.

2.2. Mathematical Models
2.2.1. Acrylamide Production

Because of its different applications in industry as a reactive molecule to synthesize
polyacrylamide, acrylamide has been a focus of great interest [45,46]. Safe levels of exposure
to acrylamide in human beings have been analyzed and studied. For a detailed review
see [45] in which, among others, data on toxicology are included. EFSA in its latest report
on the assessment of the genotoxicity of acrylamide [47], considered the possible modes of
action of acrylamide carcinogenicity, including genotoxic and non-genotoxic effects. The
paper concludes that there is substantial evidence for acrylamide genotoxicity mediated
by metabolite formation, in addition to a possible contribution of non-genotoxic effects to
acrylamide carcinogenicity. This is particularly interesting in food processes in which the
heat treatment produces levels of acrylamide so large that they need to be controlled.

In this framework, different models have been considered. To quantify the acrylamide
formation we used multi-response kinetics in a fructose–asparagine reaction at high tem-
peratures (120–200 ◦C) proposed by Knol et al. [36]. The model is based on the reaction
network shown in Equations (1) to (5).
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Fructose and asparagine are degraded into glucose, acid acetic, Schiff base and un-
known species (X1). At the same time, the Schiff base is degraded into melanoidins
and acrylamide. Knol et al. fitted the equilibrium constants for the temperature range
(120–200 ◦C) and showed a logarithmic relationship with temperature [36]. Therefore, the
equilibrium constants for each temperature are calculated (Ki(T) for each i = 1, 2, . . . , 6).
The system of ordinary differential equations (ODEs) that relates the amount of acrylamide
formed for a specific time t (minutes) and temperature T(◦C) is defined in Equation (5).

d[Glucose]
dt

= −K1(T)·[Glucose]·[Asparagine]− K2(T)·[Glucose] (1)

d[Fructose]
dt

= −K3(T)·[Fructose]·[Asparagine] + K2(T)·[Glucose] (2)

d[Asparagine]
dt

= −K1(T)·[Glucose]·[Asparagine]− K3(T)·[Fructose]·[Asparagine] (3)

d[Schi f f base]
dt = K1(T)·[Glucose]·[Asparagine] + K3(T)·[Fructose]·[Asparagine]

−K4(T)·[Schi f f base]− K5(T)·[Schi f f base]
(4)

d[Acrylamide]
dt

= K4(T)·[Schi f f base]− K6(T)·[Acrylamide] (5)

One of the outputs of the ODEs is the acrylamide concentration formed for a heat
treatment (time, temperature), which was the first optimization objective in our formulation.
To solve this set of ODEs, apart from the heat treatment conditions, that is, the time and
temperature variables, it is necessary to set the initial amounts of fructose, glucose, and
asparagine. For the “Agria” potato, which was the variety studied, the compositions were
11.77 mmol/L of asparagine, 2.95 mmol/L of fructose and 4.12 mmol/L of glucose. Details
on these calculations are provided in the Supplementary Materials [48,49].

2.2.2. Yellowness

The second considered objective was a quality parameter related to the color of fried
potato: yellowness. Pedreschi considered it as one of the quality parameters of interest for
fried potatoes [50]. Color-related parameters are of great importance for the product to
be attractive to the consumer [37–46,50,51]. In particular, different studies revealed that
high values of yellowness are preferred by consumers [52]. The problem is that at the
same time, an increase in temperature also implies an increase in another color-related
parameter, redness, which is not a desirable quality in the final product [37]. Roughly
speaking a good level of yellowness is “the goal” but, at the same time, redness must be
minimized. Nevertheless, Knol et al. [36] and Pedreschi et al. [53] indicated that acrylamide
concentration shows a good linear correlation with the redness of potato chips. Therefore
redness can be indirectly controlled by the level of acrylamide (recall that the first objective
considered in this work was to minimize the concentration of acrylamide). Here we used
the model for the yellowness, namely b, proposed by Krokida et al. [37], described in
Equation (6)–(8), where d is the thickness of the slice (mm) and T is the temperature (◦C).

Kb = 0.12
(

T
170

)2.49( d
10

)−0.44
(6)

be = 36.2
(

T
170

)1.012( d
10

)−0.2
(7)

b(t, T) = be + (b0 − be)e−Kbt (8)
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Here we set the values of d = 15 mm and b0 = 22.6 (corresponding to no pretreatment
processes [37]). As observed in Equations (6)–(8), b, like our first-considered objective
(acrylamide production), depends on both the time and temperature.

2.2.3. Moisture Content

The moisture content of the fried product is an important quality parameter. Its
control is necessary to achieve the desired taste, texture, and color of the product. The
moisture content indicates the water loss from the potato strips during frying. It decreases
significantly when the potato is fried. The temperature of the oil has a negative effect on
the moisture content of fried potatoes. The higher the temperature of the frying oil, the
lower the moisture content for the same frying time. Moisture content is also related to one
of the quality aspects most valued by consumers, the degree of crispiness of fried potatoes.
There is a direct relationship between these variables: the higher the moisture content, the
lower the crispness. Therefore, it is of utmost importance that the moisture content value
is maintained between 2% and 4% as recommended by Segnini et al. [44]. Following the
model proposed by Krokida et al. [38], Equations (9)–(11) define the moisture content as a
function of treatment time and temperature.

Xe(T) = 0.54
(

T
170

)−3.63( d
10

)0.89
(9)

KX(T) = 0.78
(

T
170

)1.61( d
10

)−2.27
(10)

X(t, T) = Xe + (X0 − Xe(T))e−KX(T)t (11)

where X0 = 3.9 and d = 15 mm, corresponding to no pretreatment, as indicated by
Krokida et al. [38].

In our multi-objective optimization problem, we formulated the moisture content as a
constraint whose value at the end of the frying process must lie between 2% and 4%, as
recommended by Segnini et al. [44].

2.3. Multi-Objective Problem (MOP)

Multi-objective optimization aims at finding the best possible solutions to a set of
conflicting objectives, Equations (12)–(16) define the mathematical formulation applied to
our case study.

min
u(t)

F(x(t), u(t)) (12)

subject to :

dx
dt

= Ψ(x(t), u(t), t) (13)

x(t0) = x0 (14)

g(x(t), u(t)) ≤ 0 (15)

uL ≤ u(t) ≤ uS (16)

where the vector of objective functions, Equation (12), contains all the objectives consid-
ered in the problem. In our case, the objectives were already defined as f1 = acrylamide
production (Equation (5)) and f2 =−yellowness (Equation (8)), (note that the negative sign
indicates that this objective is maximized). x is the vector of state variables (e.g., chemical
species concentrations) and u is the vector of control variables (temperature and processing
time in our case). Equation (13) represents the system dynamics (dynamic mathematical
models that define acrylamide production and yellowness). Equation (14) represents the
values of the stated variables at the beginning of the process (t = 0). Equation (15) represents
inequality constraints, which can be considered at the end of the process or at intermediate
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times (moisture content in our MOP). Finally, Equation (16) corresponds to the lower and
upper boundaries for the control variables (e.g., the minimum and maximum temperature
and processing time). In our problem, those boundaries were defined as [0.1, 10] min for
time and [120, 200] ◦C for temperature.

There are several methods for solving the problem. In the first approach, we used a
systematic complete search using the nominal values for the model’s parameters to obtain
not only the Pareto front but also the whole feasible region. The procedure is described
as follows: A set D is defined as D := {(t, T) ∈ [0.1, 10]× [120, 200] : 2 ≤ X(t, T) ≤ 4},
where t is the processing time, T is the temperature, and X is the moisture content. For every
value b* of yellowness within the interval [22.6, 26.9], which corresponds to the minimum
and maximum yellowness values in the ranges of times and temperatures considered, we
calculate the level curve Sb∗ : = {(t, T) ∈ [0.1, 10]× [120, 200] : b(t, T) = b∗} ∩ D. The
numerical calculation of Sb∗ provides the feasible region and the values that minimize the
acrylamide for every Sbi

provide the Pareto front.
The described complete search procedure is computationally intensive since it eval-

uates all the solutions in the feasible regions. As stated above, this was only applied
using the nominal parameter values. For assessing the uncertainty propagation, where
1000 Pareto fronts were calculated by simulating different values for the model parameters
(see Section 2.4), the heuristic algorithm NSGA-II [54] was applied. Given the characteris-
tics of the models considered in this study (nonlinear and dynamic), this type of algorithm
is a suitable option to achieve good solutions (normally the optimal ones) in relatively short
computational times [2]. Further, we checked that, for the nominal parameter values, the
obtained Pareto front by NSGA-II coincided with that obtained with the complete search
procedure. This study used the R package “nsga2” to perform the optimization of the
proposed problem.

2.4. Uncertainty Propagation

Uncertainty propagation was applied to the estimation of the equilibrium constants of
the differential equations describing acrylamide production (Equations (1)–(5)). The model
considers up to six equilibrium constants for which confidence intervals are given in [36].
The Monte-Carlo method was used to simulate 1000 sets of positive parameter values
following a normal distribution for each equilibrium constant The MOP was solved and a
Pareto front for each combination of the simulated kinetic constants was obtained. Thus,
1000 Pareto fronts were obtained. These provide an idea of the uncertainty propagation of
the equilibrium constants and their impact on the Pareto front.

3. Results

3.1. Multi-Objective Solutions

The multi-objective approach using the nominal values for the kinetic parameters
provided in [36] led to a set of optimal (non-dominated) solutions (Pareto front) shown
in Figure 2 together with the feasible space. The vertical axis represents the amount of
acrylamide produced and the horizontal axis represents the yellowness. The Pareto front is
represented as a thick red line. On the other hand, the colors of the feasible region represent
the moisture content and the blue horizontal line represents the recommended limit for
acrylamide [43].

The first relationship was, as expected, that the higher the yellowness, the lower the
moisture content and the higher the amount of acrylamide. All of this was positively
correlated with the treatment severity (i.e., higher temperatures and/or treatment times
led to an increase in the above-mentioned variables). On the other hand, given the prob-
lem boundaries and constraints, the yellowness was limited to values between 22 and
27, while the acrylamide did not exceed 1300 μg/kg which is 26 times higher than the
EFSA recommendation.
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Figure 2. Feasible set of solutions and Pareto front.

A temperature–time representation of the Pareto front is shown in Figure 3. The points
in red represent operational points that do not comply with the EFSA recommendation
in terms of acrylamide amount, and they correspond to the highest temperatures. It can
be seen that from approximately 155 ◦C, the dots form a curve that tends to be vertically
asymptotic. This curve coincides with the conditions that keep the moisture content
constraint active with a value of 2%.

Figure 3. Pareto front temperature–time solutions.

As shown in Figures 2 and 3, most of the solutions from the Pareto front led to high
levels of acrylamide, exceeding the recommended levels by up to 26 times in some cases.
Working points around 200 ◦C with a duration of approximately 2 min generated between
1200 and 1300 μg/kg of acrylamide when the recommended upper limit is 50 μg/kg.

During the optimization process, the existence of multiple quasi-equivalent solutions
in the Pareto front was found for the ranges of low acrylamide production and low yel-
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lowness (e.g., low temperatures and/or processing times). The existence of these multiple
solutions was caused by the flatness of the objective functions in areas of low temperatures
and processing times (Figures S1 and S2). Table 1 illustrates some of these Pareto equivalent
solutions. Equivalent solutions were defined as having the same values of acrylamide
and yellowness with a tolerance of 0.01 but differences in temperature and time of at least
1 ◦C and 0.2 min, respectively. Figure 4 shows, in the temperature–time domain, the sets
of equivalent solutions found for selected points of the Pareto front. Quasi-equivalent
solutions are represented with the same color in Figure 4.

Table 1. Selection of Pareto fronts and quasi-equivalent solutions.

Solutions
Time
(min)

Temperature
(◦C)

Acrylamide
(μg/kg)

Yellowness
Moisture

Content (%)

#1 1.97 120.48 0.028 22.67 3.540
#1′ 0.16 150.00 0.034 22.68 3.796
#2 1.99 124.74 0.069 22.76 3.425
#2′ 0.61 138.00 0.076 22.76 3.614
#3 2.19 127.88 0.154 22.85 3.297
#3′ 1.28 134.00 0.163 22.85 3.411
#4 2.05 132.91 0.345 22.96 3.199
#4′ 3.61 127.00 0.348 22.96 3.060
#5 4.63 130.42 1.086 23.23 2.759
#5′ 4.01 132.00 1.094 23.23 2.796
#6 5.03 132.39 1.821 23.39 2.617
#6′ 6.29 130.00 1.823 23.39 2.571
#7 8.89 134.28 7.60 24.04 2.13
#7′ 10.00 133.00 7.59 24.04 2.14

Figure 4. Selected sets of quasi-equivalent solutions.

Table 1 and Figure 4 show that the lower the time and temperature, the higher num-
ber of equivalent solutions. As time or temperature increases, the number of equivalent
solutions decreases and the curve defined by them becomes more horizontal (i.e., tem-
perature differences are relatively lower than the difference in processing time in these
cases). It is of note that, mathematically speaking, no equivalent solutions for the Pareto
front can be found in this problem but, due to the flatness of the objective functions in
certain temperature–time ranges, a set of very similar (called equivalent here) solutions
can be found, allowing processes to be flexible to achieve certain results. No equivalent
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solutions according to the definition above were found for temperature-time conditions
where acrylamide values were above 9 μg/kg.

3.2. Uncertainty Propagation

In this section, we analyze the uncertainty propagation from the kinetic parameters
of the Maillard equation characterized by Knol et al. [36] to the Pareto front of the multi-
objective optimization problem. The result of the uncertainty propagation of the k’s of the
Maillard model, Equations (1)–(5), with the Monte-Carlo method yields the set of Pareto
fronts shown in Figure 5.

Figure 5. Set of 1000 Pareto fronts resulting from Monte-Carlo simulation of the kinetic parameters
for the Maillard reaction.

Figure 5 shows, on the vertical axis, the amount of acrylamide produced and on the
horizontal axis, the yellowness. The black dots are the Pareto fronts of the 1000 simulations
where the red line represents the Pareto front with the mean values of the Maillard’s kinetic
parameters (shown in Figure 2) and the blue line represents the quantity of recommended
acrylamide. The Pareto front resulting from the average kinetic values is located approxi-
mately in the middle zone of the solutions, so the assumed normal distributions for the
kinetic parameters translate into a symmetric distribution of the Pareto solutions for each
yellowness value. On the other hand, the uncertainty increases as the yellowness (i.e.,
temperature and/or time) increases. The combination of these two means that around
95% of the points considering all the 1000 Pareto fronts are outside the recommendation in
terms of acrylamide production.

4. Discussion

This paper addresses the problem of food safety combined with product quality. It
uses a multi-objective approach, which has been widely used in the literature [6–15]. Other
studies such as that of Mestdagh [55] have studied balances between acrylamide and color
but not from the quantitative and multi-objective optimization point of view addressed in
this paper.

The MOP’s solutions (Figure 2) show that most frying processes (considering the
conditions established in Section 2.2) do not comply with EFSA recommendations. The
maximum acrylamide amount recommended by EFSA could be formulated as an additional
constraint (which would lead to a different Pareto front) or, alternatively, we could try to
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select those points corresponding to temperatures not higher than 155 ◦C, approximately
(blue points in Figure 3). Therefore, to ensure lower acrylamide values than the maximum
ones recommended by EFSA, it is recommended to use frying temperatures below 160 ◦C
with frying times not exceeding 4 min. The next implication is that, under these conditions,
the yellowness only reaches values of 22–25, so the recommended amount of acrylamide
greatly limits the visual quality of the final product regarding yellowness.

These results are influenced by all the premises taken such as the potato variety and
the type of thermal process, among others. Therefore, any change in these assumptions
may influence the results, although the procedure and analysis is useful for studying this
type of problem. For example, Johnson determined that, given their composition, not only
can the potato variety modify the balance between the variables, but the way they are
grown can also have an influence [56].

On the other hand, these solutions are not unique since at the practical level equivalent
solutions appear. Therefore, two frying processes with different conditions (time or temper-
ature) can produce the same amount of acrylamide while maintaining equivalent quality
(yellowness and moisture content). This existence of equivalent solutions in the Pareto
front was recently observed by Ortiz-Martínez et al. [57] in the multi-objective optimization
of a wastewater process. In any case, an a priori analysis of the objective functions and
their dynamics can help to anticipate whether multiple solutions for the Pareto front can
appear [16].

The study of the propagation of the uncertainty associated with the parameters comple-
ments a study that provides an additional tool to take into account other possible scenarios.
The presented analysis shows that, when performing multi-objective optimization for
design purposes, the model parameters variability and their propagation must be taken
into account to find sets of design options (i.e., Pareto fronts) that account for every possible
scenario. In this particular application, it was also shown that the propagated variabil-
ity is not the same in every part of the objectives space, being lower with soft operating
conditions (low values of yellowness and acrylamide production in Figure 2 than with
severe operating conditions (high values of the objectives and higher process-temperature
or time).

For a proper analysis of the optimal solutions, it must be taken into account that this
modelling exercise considered that the cooking temperature is uniform throughout the
potato and that the temperature of the oil is equal to the temperature of the potato. Obvi-
ously, this does not actually happen [58,59], so these theoretical times could be increased
without affecting the limit of acrylamide produced. However, we would still conclude that
most operating conditions within the ranges of temperatures and times usually consid-
ered in real processes exceed the recommended acrylamide amount. Finally, recall that
this analysis used the mean values of the estimated kinetic parameters of the acrylamide
production [36] but, considering the uncertainty of such parameters, other scenarios may
occur. To account for this, we used uncertainty propagation tools to take into account other
possible scenarios.

5. Conclusions

The multi-objective optimization of a potato-frying process balancing between acry-
lamide formation and a quality parameter (yellowness) was addressed in this study. The
results show that most of the optimal solutions (the Pareto front) considering the usual
temperature and processing time ranges provide higher acrylamide amounts than the limit
recommended by EFSA (50 μg/kg). In addition, multiple solutions for some areas of the
Pareto front (namely, those providing low values of acrylamide) have been identified. The
existence of these multiple solutions can be anticipated by a previous analysis of the objec-
tive function and their sensitivities to changes in the decision variables (temperature and
processing time) in different areas of the search space. In our case, both objective functions
showed flat areas in the ranges of low temperatures and processing times, which allows
the existence of multiple optimal solutions. These multiple solutions are not equivalent
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from a mathematical point of view but they are from a practical point of view, allowing
us to slightly change the processing conditions to obtain the same results for the objective
function within a given tolerance.

The uncertainty of the kinetic parameters for acrylamide production has been prop-
agated to the Pareto front using a Monte-Carlo simulation, showing that the uncertainty
with respect to the Pareto front using the nominal values increases as the values of the
objective functions do. This uncertainty must be taken into account when designing the
frying process to make the design more robust and avoid undesirable solutions (e.g., too
high acrylamide values).

We recommend, if possible, performing these analyses when performing model-based
multi-objective optimization to design food processes. This type of methodology is of
course not specific to food processes but, given their nature, where multiple objectives
must be optimized simultaneously, it should be applied to them. Other objectives could
be included (e.g., other quality parameters or economic or environmental factors) or other
types of food/processes where acrylamide production may be an issue can be considered
by applying the methodologies presented here. These methodologies can help in making
optimal decisions where there are unexpected conditions deviations or in re-designing
the processes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/foods11223689/s1. Figure S1: Surface plot of the acrylamide production
(Objective function 1) with respect to processing time and temperature; Figure S2: Surface plot of the
yellowness (Objective function 2) with respect to processing time and temperature.
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Abstract: Thermal conductivity determination of food at temperatures > 100 ◦C still remains a chal-
lenge. The objective of this study was to determine the temperature-dependent thermal conductivity
of food using rapid heating (TPCell). The experiments were designed based on scaled sensitivity
coefficient (SSC), and the estimated thermal conductivity of potato puree was compared between the
constant temperature heating at 121.10 ◦C (R12B10T1) and the rapid heating (R22B10T1). Temperature-
dependent thermal conductivity models along with a constant conductivity were used for estimation.
R22B10T1 experiment using the k model provided reliable measurements as compared to R12B10T1
with thermal conductivity values from 0.463 ± 0.011 W m−1 K−1 to 0.450 ± 0.016 W m−1 K−1 for
25–140 ◦C and root mean squares error (RMSE) of 1.441. In the R12B10T1 experiment, the analysis
showed the correlation of residuals, which made the estimation less reliable. The thermal conductivity
values were in the range of 0.444 ± 0.012 W m−1 K−1 to 0.510 ± 0.034 W m−1 K−1 for 20–120 ◦C
estimated using the k model. Temperature-dependent models (linear and k models) provided a better
estimate than the single parameter thermal conductivity determination with low RMSE for both types
of experiments. SSC can provide insight in designing dynamic experiments for the determination of
thermal conductivity coefficient.

Keywords: temperature-dependent thermal properties; scaled sensitivity coefficient; TPCell; param-
eter estimation; inverse problems

1. Introduction

In food processing, experiments designed under dynamic heating conditions for es-
timation of thermal conductivity at elevated temperatures have received much attention
recently due to the development and implementation of novel and innovative technologies.
Given this, innovative product and process development in a very competitive market
demands the development of challenging products, which will require the determination
of their thermal properties under realistic processing conditions. The inverse problems
technique is an effective tool which can be used to solve emerging challenges in food
manufacturing [1–5]. Due to the lack of rapid methods, estimation of thermal properties is
usually performed from experiments in a constant temperature environment [1]. The pa-
rameter estimation technique has been widely used in estimating the thermal properties of
various food products [3,5–15]. It has also been used to estimate the fluid-to-particle heat
transfer coefficient during aseptic processing of particulate foods [16] and heat flux during
baking [17]. Constant temperature boundary condition can lead to prolonged exposure of
heat to the sample. This can potentially degrade the product and then reliable estimates
of thermal properties may not be obtained. Studies in the literature have used linear and
non-linear models for the estimation of the thermal conductivity from the experimental
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temperature profile [1,2,18]. However, most of those studies worked on the slow heating
experiments.

The objective of this study was to determine temperature-dependent thermal con-
ductivity utilizing an experimental design based on scaled sensitivity coefficients (SSC).
Parameter estimation was used to estimate constant and temperature-dependent thermal
conductivity using experimental temperature profiles. The parameter SSC were studied to
determine if the parameter can be estimated with relative accuracy associated with it [19,20].
A comparison of thermal conductivity estimation was presented using constant temper-
ature boundary condition (R12B10T1, represents the traditional approach) vs. heat flux
boundary condition (R22B10T1, represents the rapid heating method). The numbering
systems (R12B10T1 and R22B10T1) used to describe the experiments were adopted from
transient heat conduction solutions [21]. A high fat containing product to simulate soups
that are high in fat content was chosen as a model food to compare the thermal properties
between R12B10T1 and R22B10T1.

2. Materials and Methods

2.1. Sample Preparation

Potato puree, containing 22% (w/w) fat, was prepared with chicken broth, heavy cream,
potato flakes, and butter. The ingredients in a vessel were heated on a hot plate at medium
heat until reaching the temperature of 95 ± 2 ◦C and then the vessel was removed from
the hot plate to cool down to room temperature before further analysis. The apparent
viscosity of the sample was 16,735 cP measured by Brookfield AMETEK DVE Viscometer
(Middleboro, MA, USA) at 6.27 s−1 with LV s64 spindle.

2.2. Mathematical Model for Transient Heat Conduction in Cylindrical Coordinate for Constant
Temperature Boundary Condition (R12B10T1) Experiment

The predicted temperature profile for the R12B10T1 experiment was obtained based on
the finite element numerical solution of 2D axisymmetric heat transfer equation in COMSOL
(Burlington, MA, USA), as shown in Equation (1). The domain of the heat transfer included
the thermocouple, sample, and stainless–steel cup. A predefined mesh size calibrated for
heat transfer was used for the entire geometry with a total of 2734 elements. The minimum
element size was 0.516 mm with an average of 0.915 mm. The total mesh area and element
area ratio were 1783 mm2 and 1.423 × 104, respectively.

1
r

∂

∂r

[
k fk(T, k)r

∂T
∂r

]
+

∂

∂z

[
k fk(T, k)

∂T
∂z

]
= C fc(T, k)

∂T
∂t

f or RA < r ≤ RB, 0 < z ≤ ZA, t > 0 (1)

The boundary conditions were,

∂T
∂r

(RA, z, t) = T(t),
∂T
∂z

(r, 0, t) = T(t),
∂T
∂z

(r, ZA, t) = T(t) (2)

The initial temperature was,

T(r, z, 0) = To (3)

For the R12B10T1 experiment, the sample was placed in a cylindrical stainless-steel
316L sample holder, which contained a thermocouple probe at the geometric center
(Figure 1). Another thermocouple was placed on the external surface of the sample holder
and secured with Kapton® polyimide tape (DuPont, Wilmington, DE, USA). The initial tem-
perature (To) of the sample was ~20 ◦C. Prior to starting the experiment, the temperatures
of the sample and sample holder were equilibrated for 10 min. The sample holder was
pressurized to 30 psig and placed in a silicone oil bath that was set at 121.10 ◦C. The center
and surface thermocouples were used to monitor temperature at the center and at the
surface, respectively, using LabView (National Instruments, Austin, TX, USA) as the data
acquisition software. Once the sample was placed in the oil bath, the experiment was
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performed until the center thermocouple reached 120 ◦C. To terminate the experiment,
the sample holder was removed from the oil bath and cooled to room temperature before
releasing the pressure. Triplicate analyses were executed for statistically verifiable data.

 

Figure 1. Simulation of R12B10T1 case using numerical solution. The solution shown was obtained at 40 min.

2.3. Mathematical Model for Transient Heat Conduction in a Hollow Cylinder with Heat Flux on
the Inside for Rapid Heating Condition (R22B10T1) Experiment

Measurement of thermal conductivity by the TPCell device is based on R22B10T1 in a
hollow cylinder with a heater located at the center [2]. The equations are shown below,

1
r

∂

∂r

[
khr

∂T
∂r

]
+

∂

∂z

[
kh

∂T
∂z

]
+ g0 f (t) = Ch

∂T
∂t

f or R0 < r ≤ R1,, 0 < z ≤ Z1, t > 0 (4)

1
r

∂

∂r

[
k fk(T, k)r

∂T
∂r

]
+

∂

∂z

[
k1 fk(T, k)

∂T
∂z

]
= C fC(T, k)

∂T
∂t

f or R1 < r ≤ R2, 0 < z ≤ Z1, t > 0 (5)

The insulation boundary conditions were used due to the short duration of experiment [2],

∂T
∂r

(R2, z, t) = 0,
∂T
∂z

(r, 0, t) = 0,
∂T
∂z

(r, Z1, t) = 0 (6)

The initial condition was,
T(r, z, 0) = T0 (7)

The thermal conductivity of the samples was measured using the TPCell by loading
275 mL of the sample into the cylindrical sample holder (Figure 2). The To of the sample was
~20 ◦C. The sample holder was sealed and pressurized up to 60 psig using air to achieve
an elevated temperature of the sample. The heater was supplied with 20 W power for the
duration of the experiment. Once the temperature of the heater reached 137.55 ± 0.42 ◦C,
the power supply was cut off to stop the experiment. The resistance (R) of the heater was
converted to temperature using a calibration equation, T= 25.381R – 12,295. Triplicate
analyses were performed for statistical accuracy.
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Figure 2. Schematic of R22B10T1 case: TPCell instrument with the center heater (left), and simulation of the center heater
with product (right).

2.4. Parameter Estimation

Thermal conductivity was estimated using a sequential estimation method from the
temperature profiles of R12B10T1 and R22B10T1 experiments. The functions used for
thermal conductivity estimation for both experiments were single parameter, linear, and k
model as shown below. The k model was a reparameterization of the linear model to
improve the parameter identifiability.

(A) Single parameter model,
k = kC (8)

(B) Linear model with two parameters,

k(T) = a + b(T) (9)

(C) k model with two parameters,

k(T) = k1

(
T2 − T
T2 − T1

)
+ k2

(
T − T1

T2 − T1

)
(10)

2.5. Scaled Sensitivity Coefficient and Sequential Estimation

Parameter identifiability was assessed by plotting the SSC to determine whether
all the parameters in a model can be estimated uniquely and simultaneously with their
relative errors. The SSC is also used in the optimal experimental design criteria where it
maximizes the determinant of the sensitivity matrix. However, in this study, SSC was used
to gain further understanding with regards to parameter correlation and identifiability.
The sensitivity coefficient of thermal conductivity was derived by taking the first derivative
of the temperature with respect to thermal conductivity. To perform a direct comparison,
the sensitivity coefficient was scaled by multiplying with the parameter to obtain the SSC
as shown in Equation (11).

X′
i = ki

∂T
∂ki

(11)
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The sum of SSC was calculated using Equation (12). All parameters in the model
cannot be estimated uniquely and simultaneously if the sum of SSC is equal to zero [19,22].

k1
∂T
∂k1

∣∣∣∣
k2

+ k2
∂T
∂k2

∣∣∣∣
k1

= −(T − T0)−
[

C1
∂T
∂C1

∣∣∣∣
C2

+ C2
∂T
∂C2

∣∣∣∣
C1

]
(12)

Based on the experimental temperature profile, the thermal conductivity was deter-
mined using sequential estimation. The sequential estimation procedure was developed in
MATLAB® [19] based on the Gauss minimization method and required prior information
of parameters. In this estimation procedure, the parameter estimates initially would have
large fluctuations, but the estimates eventually attain a constant value once enough data
have been added.

The mathematical form of non-linear sequential estimation is derived from maximum
a posteriori (MAP) estimation. The minimization function in the Gauss method can be
expressed as;

S =

[
Y −

∧
Y(β)

]′
W
[

Y −
∧
Y(β)

]
+ [μ − β]′U[μ − β] (13)

where Y is the experimental response variable and Ŷ is the predicted response, μ is the
prior information of parameter vector β, W is the inverse of covariance matrix of errors,
and U is the inverse covariance matrix of parameters. β was solved and reported as the
estimated thermal conductivity. The parameter estimates were reported along with its root
mean square error (RMSE) and 95% confidence interval. The RMSE for the estimate was
calculated based on Equation (14). The 95% confidence interval of parameter were calcu-
lated using MATLAB® built-in function nlparci (parameter, residual, sensitivity coefficient).
Residuals were calculated by taking the difference between the experimental and predicted
temperature at each time point. Standard statistical assumptions of uncorrelated errors,
which are normally distributed with zero mean and constant variance, were verified for the
residuals. Additional assumptions specific to the use of sequential estimation, which needs
to be satisfied, are known as covariance matrix errors, no errors in independent variables,
and the known prior of information of parameters.

RMSE =

√√√√√ n
∑

i=1

(
Ŷi − Yi

)2

n
(14)

3. Results and Discussion

Parameters of Equations (8–10) showed large SSC as illustrated in Figure 3. The plots
were used to determine if the simultaneous estimation of parameters was possible. All pa-
rameters in the model can be estimated with a low error when the magnitude of the SSC is
large and without linear dependency or correlation between the parameters [19]. To con-
sider SSC to be large, it should be at least 10% of the temperature rise [1]. When SSC is
small, the estimation may result in larger errors and hence larger confidence intervals of the
parameter. Parameters are considered not correlated if their ratio was not constant [20]. Vi-
sually, the SSC curves would have the same pattern with the same or different magnitudes
if the parameters are correlated.
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AAA

BBB

Figure 3. Scaled Sensitivity Coefficient (SSC) of thermal conductivity for single parameter model, linear model, and k model
for R12B10T1 (A) and R22B10T1 (B) experiments. Legends: (o) kc, (–) a, (–.) b, (– –) k1, and ( . . . ) k2.

For the R12B10T1 experiment, the SSC plots of the parameters for estimation of
thermal conductivity were large and uncorrelated, as shown in Figure 3A. Based on the
result from the single parameter, SSC was 41.68%, which is considered large. The SSCs of
two parameters for estimation of thermal conductivity using the linear model were 39.65%
and 3.17%, as compared to 15.78% and 22.18% for the k model and the sums of SSC for those
models were not zero. The two parameters estimated using the linear and k models were
not correlated as a result. This means both equations can be used to estimate the thermal
conductivity with two parameters using the inverse problems methods. However, the SSC
of parameter b in linear model was very small (3.17%) as compared to the parameter a
(~39.65%), suggesting that it would be difficult to estimate b and probably would have
large standard error. The magnitude SSC of both parameters k1 and k2 in the k model
are evenly distributed as compared to the temperature rise. The SSC plots for the two
parameters were quite identical to the plots reported previously [1]. This can be attributed
to the identical nature of the R12B10T1 experiment and measurement of temperature at the
geometric center of a cylindrical container.

Figure 3B shows the SSC plots of the parameters for estimation of thermal conductivity
from the R22B10T1 experiment. The SSC for a single parameter was 44.6%. The values
of SSCs for the two parameters estimated using the linear model were 53.90% and 2.40%,
as compared to 21.25% and 22.08% for the k model. The parameter b in the linear model
had the lowest SSC and hence it would be harder to estimate. The SSC of parameters
estimated from this experiment also exhibited a large magnitude with no correlation
between parameters. The sum of SSC for all parameters was not zero, which means
the parameters can be estimated uniquely and simultaneously. In both experiments,
the magnitude of the SSC was reduced in the linear and the k model when an additional
parameter was added (Figure 3). This is because the magnitude of SSC with one parameter
is now being shared by two parameters non-proportionally.
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In order to estimate the parameters with low errors, the R12B10T1 experiment must be
conducted for at least 20 min while the R22B10T1 experiment required only 30 s (Figure 3).
The experimental time is optimal when the parameter SSC attains a maximum value.
The optimal experimental time is further confirmed when a constant value is achieved by
the sequential estimation (Figure 4). Further data acquisition beyond this optimal time may
not add any substantial improvement to the estimated parameter [20]. The large difference
in the experiment duration was due to the boundary conditions used in these experiments.
The R12B10T1 experiment had constant temperature boundary on the walls of the sample
holder, hence the temperature rise at the geometric center was relatively slow which led
to longer experiment duration. In contrast, the R22B10T1 experiment utilizes a heat flux
boundary at the center of the sample resulting in rapid temperature rise. The SSC indicates
the magnitude of change in the temperature due to perturbation in the parameter [19].
Due to the different boundary condition used, the duration to reach the highest magnitude
of SSC was different between these two experiments.

The sequential estimation of parameters based on the temperature profile obtained
from the R12B10T1 experiment is shown in Figure 4. The predicted data from all three
models showed a good fit with the experimental data. This estimation process requires ap-
propriate prior information as the initial guess. During sequential estimation, the estimated
parameter values keep changing as each datum is being added, with the goal of minimizing
the sum of squares of the errors as illustrated in Figure 4A–C (center). The estimation
was complete and reliable when parameter values attained a constant value and remained
constant for the rest of the experimental time. When the parameter values do not attain
a constant value toward the end of the experiment, it indicates that there might be some
error in the model or in the experiment [2]. The final estimated values were reported along
with their standard error and 95% confidence interval (Table 1).

Table 1. Estimation of the thermal conductivity in the single parameter model, linear model, and k model for R12B10T1 and
R22B10T1 experiments.

Model
R12B10T1 R22B10T1

Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

Single
parameter

model

kc 0.457 0.490 0.504 0.464 0.459 0.458
RMSE 0.582 0.663 0.838 1.400 1.540 1.485
LCIkC 0.456 0.490 0.503 0.462 0.458 0.457
UCIkC 0.457 0.491 0.505 0.465 0.460 0.459

Linear model

a 0.421 0.435 0.435 0.505 0.478 0.485
b × 10−3 0.438 0.685 0.873 −0.515 −0.239 −0.224

RMSE 0.485 0.436 0.525 1.285 1.538 2.275
REa % 0.174 0.165 0.157 1.179 0.915 0.783
REb % 2.008 1.292 0.985 −14.331 −22.417 −21.015
LCIa 0.419 0.433 0.433 0.491 0.467 0.471
UCIa 0.423 0.437 0.437 0.519 0.489 0.499

LCIb × 10−3 0.415 0.663 0.847 −0.692 −0.379 −0.394
UCIb × 10−3 0.463 0.706 0.898 −0.338 −0.099 −0.053

k model

k1 0.430 0.449 0.452 0.484 0.469 0.450
k2 0.474 0.517 0.540 0.437 0.445 0.468

RMSE 0.485 0.436 0.525 1.285 1.538 1.499
REk1 % 0.129 0.122 0.114 0.616 0.508 0.495
REk2 % 0.075 0.073 0.071 0.889 0.679 0.603
LCIk1

0.428 0.447 0.451 0.477 0.463 0.444
UCIk1

0.431 0.450 0.454 0.491 0.475 0.456
LCIk2 0.473 0.516 0.538 0.427 0.437 0.461
UCIk2 0.475 0.518 0.541 0.446 0.453 0.475
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Figure 4. Experimental vs. predicted temperature profile over time (left), sequential estimation of parameters (center),
and corresponding residual plot of experimental (Texp) and predicted (Tpred) temperature (right) for R12B10T1 experiment:
(A) single parameter model, (B) linear model, and (C) k model. Legends: (*) Texp, (–) Tpred, (o) kc, (+) a, (–.) b, (– –) k1, ( . . . )
k2, and (♦) residuals.

The residuals from all models in Figure 4 show a pattern, which is not desirable,
and the mean value of the residuals was 0.27 for the constant model and 0.17 for both
the linear and k model. These residuals were most likely due to a potential change in the
sample during prolonged heating. A similar result was also reported from retort processing
of cherry pomace [1]. Prolonged exposure of heat to a food product at a high temperature
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can lead to undesirable reactions within the food matrix including oxidation, separation of
lipid and moisture, the formation of unwanted off-aroma/off-flavor compounds, browning,
and degradation of nutrient and sensory quality attributes.

Overall, the estimation from R12B10T1 experiment had relatively low RMSE as shown
in Table 1. The highest RMSE was observed for the single parameter model in all three
replicates while the lowest RMSE was found for the linear and k model. Due to the
parameter uncertainty with large relative error and large confidence interval of b in the
linear model, the k model was chosen as the best thermal conductivity model.

For the single parameter model of R12B10T1, the thermal conductivity value of potato
puree was constant at 0.484 ± 0.024 W m−1 K−1 as shown in Figure 5. An increase in thermal
conductivity was observed in both the linear and k models. The k model showed the thermal
conductivity values from 0.444 ± 0.012 W m−1 K−1 to 0.510 ± 0.034 W m−1 K−1 while those
from the linear model were 0.447 ± 0.013 W m−1 K−1 to 0.523 ± 0.038 W m−1 K−1. Thermal
conductivity value of mashed potato in literature has been reported as 0.59 W m−1 K−1 [23]
and blanched potato as 0.55 W m−1 K−1 at 20 ◦C [24]. Values reported in this study were
slightly lower due to presence of high fat content which is known to decrease the thermal
conductivity of foods [25,26]. The thermal conductivity value calculated from Choi-Okos
model [27] based on the composition of the potato puree was 0.462 W m−1 K−1 at 25 ◦C
which is well within the range reported in Figure 5.

Figure 5. Thermal conductivity of potato puree estimated using the single parameter model, linear model, and k model for
R12B10T1 and R22B10T1 experiments. Legends: (–) single parameter model, (–.) linear model, (– –) k model.

The sequential estimation of parameters based on the temperature profile obtained
from the R22B10T1 experiment is shown in Figure 6. Based on the result, the model pre-
dicted temperature fits well with the experimental data. The sequential estimation from
this experiment showed that parameter values remain unchanged toward the end of the
experiment. The residuals for all models did not violate any standard statistical assumption.
The average of residuals for linear and k model was −0.05. The mean value of the residuals
from the R22B10T1 experiment were much smaller compared to the residuals in R12B10T1.
This confirms that the parameter estimation from the R22B10T1 experiment was reliable.
In this case, the R22B10T1 experiment was only 30 s as compared to 47 min for the R12B10T1
experiment. The parameter covariance matrix and correlation matrix for the linear and k
model are presented in Table 2. The correlation coefficient of parameters in the linear model
was quite high (0.99), which is not desirable when estimating multiple parameters. This was
expected based on the SSC of parameters a and b.
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Figure 6. Experimental vs. predicted temperature profile over time (left), sequential estimation of parameters k1 and k2

(center) and corresponding residual plot (right) for R22B10T1 experiment: (A) single parameter model, (B) linear model,
and (C) k model. Legends: (*) Texp, (–) Tpred, (o) kc, (+) a, (–.) b, (– –) k1, ( . . . ) k2, and (♦) residuals.
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Table 2. Covariance and correlation matrices for the linear and k model for R12B10T1 and R22B10T1 experiments.

Rep 1 Rep 2 Rep 3

R12B10T2 a b a b a b

Linear model

Covariance × 10−7 a 10.258 −0.122 8.014 −0.097 10.512 −0.130
b −0.122 0.002 −0.097 0.001 −0.130 0.002

Correlation a 1.000 −0.988 1.000 −0.985 1.000 −0.983
b −0.988 1.000 −0.985 1.000 −0.983 1.000

k1 k2 k1 k2 k1 k2

k model

Covariance × 10−7 k1 5.964 −3.288 4.612 −2.686 5.979 −3.698
k2 −3.288 2.412 −2.686 2.189 −3.698 3.279

Correlation k1 1.000 −0.867 1.000 −0.845 1.000 −0.835
k2 −0.867 1.000 −0.845 1.000 −0.835 1.000

R22B10T2 a b a b a b

Linear model

Covariance × 10−5 a 4.782 −0.059 3.697 −0.045 6.105 −0.075
b −0.059 0.001 −0.045 0.001 −0.075 0.001

Correlation a 1.000 −0.996 1.000 −0.996 1.000 −0.996
b −0.996 1.000 −0.996 1.000 −0.996 1.000

k1 k2 k1 k2 k1 k2

k model

Covariance × 10−5 k1 1.200 −1.493 1.096 −1.329 0.911 −1.102
k2 −1.493 2.037 −1.329 1.769 −1.102 1.464

Correlation k1 1.000 −0.955 1.000 −0.955 1.000 −0.955
k2 −0.955 1.000 −0.955 1.000 −0.955 1.000

The RMSEs from R22B10T1 were higher than those from R12B10T1 due to the differ-
ences in accuracy of the temperature sensing elements. Based on the results from Table 1,
the least RMSE values from the R22B10T1 were observed for the linear and k models.
The RMSE from R22B10T1 of the linear and k models were close, which was not seen
in the R12B10T1 experiment. Since the parameter b for the linear model exhibited large
relative error and confidence interval (Table 1), it is not considered as the right model for the
conductivity. Generally, thermal conductivity changes with temperature. Thus, the single
parameter model is an average value over the temperature range [27]. Although it can be
used for initial assessment, the k model would be appropriate and realistic.

Based on the results in Figure 5, the thermal conductivity result of potato puree using
R22B10T1 showed that the values of the single parameter model remained constant over
the temperatures at 0.460 ± 0.003 W m−1 K−1 while the average values of the linear model
and k model decreased from 0.481 ± 0.010 W m−1 K−1 to 0.444 ± 0.010 W m−1 K−1 and
0.463 ± 0.011 W m−1 K−1 to 0.450 ± 0.016 W m−1 K−1, respectively. The major difference
using the R22B10T1 and R12B10T1 experiments was the variation of thermal conductivity
with the increase in temperatures. The thermal conductivity values obtained from R22B10T1
showed a decrease in values with increasing temperature while an increasing trend was
observed from the R12B10T1 experiment. While the thermal conductivity is known to
increase with temperature, a slight decrease is evident in foods with high fat content [27].
Up to 20.4% decrease in thermal conductivity can occur in pure fat at temperatures between
25 ◦C to 140 ◦C [28]. In the current study, the decrease in thermal conductivity over the
same temperature range was 8.3% and 2.8% for the linear and k model, respectively.

The temperature abuse during the experiment could negatively impact the reliability
of estimated thermal properties. The separation of potato puree and potential changes in its
matrix could occur due to prolonged exposure to the high temperature. This degradation
phenomenon was observed from the R12B10T1 experiment. The increasing trend in the
thermal conductivity values obtained from the R12B10T1 experiment might have an error
due to the changes in the food matrix.

Even though the inverse problems were able to estimate the parameters of the linear
model, the relative error and the confidence intervals were large for the parameter b.
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In addition, the correlation coefficient of parameters of the linear model was higher (~0.99)
as compared to the k model (~0.95). A study by da Silva et al. (2020) reported that
simultaneous estimation of two parameters for determination of thermal diffusivity of
coconut pulp was not possible due to the high correlation between the parameters, this is
similar to what was observed in the current study with the linear model. The k model
can be seen as a reparameterization of the linear model and had the same RMSE (Table 1).
Reparameterization of the linear model to the k model improved the relative error, tightened
the band width of the confidence intervals, and decreased the correlation between the
parameters (Tables 1 and 2). Based on the SSC, sequential estimation, residual analysis,
correlation coefficient, and RMSE values, the k function could be an appropriate model of
temperature-dependent thermal conductivity for high fat-containing purees.

4. Conclusions

Innovations in the food industry toward rapid heating technologies such as ohmic and
microwave heating requires thermal properties that are determined in realistic experimental
conditions. Thermal property determination using rapid heating is suitable for novel
applications in the food industry. The thermal conductivity of food was determined for both
R12B10T1 (constant temperature boundary conditions) and R22B10T1 (heat flux boundary
conditions) dynamic experiments using SSC and sequential estimation. The k model was
sufficient in describing the dependence of thermal conductivity with temperature for both
experiments. The linear model showed a large confidence interval of estimated parameters
and high correlation between parameters. The thermal abuse created by the R12B10T1
experiment might have caused the higher conductivity measurements in both the single
parameter model and temperature-dependent models due to the prolonged exposure at
elevated temperatures. The new approach of rapid heating with TPCell, therefore, provides
a quick and realistic measurement of the thermal conductivity in the food processing
temperature range of 20–140 ◦C. This study will be beneficial to the food industry as a
user-friendly tool for measuring thermal properties at elevated temperatures.
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Nomenclature

R12B10T1
transient heat conduction in cylindrical coordinate for constant temperature
boundary condition

R22B10T1
transient heat conduction in a hollow cylinder with heat flux on the inside and
insulated on the outside for rapid heating condition

RMSE root meat square error
a, b parameters in linear model
β parameter
X′

i scaled sensitivity coefficient, ◦C
μ prior information of parameter vector, β, W m−1 K−1

Ch volumetric capacity of heater, J m−3 K−1

CTC volumetric capacity of thermocouple, J m−3 K−1

C1 volumetric heat capacity of sample, J m−3 K−1 at T1
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C2 volumetric heat capacity of sample, J m−3 K−1 at T2
fk dimensionless thermal conductivity as a function of temperature
fC dimensionless heat capacity as a function of temperature
g0 power, W m−3

k thermal conductivity of sample, W m−1 K−1

kh thermal conductivity of heater, W m−1 K−1

kTC thermal conductivity of thermocouple, W m−1 K−1

kC thermal conductivity in single parameter model, W m−1 K−1

k1, k2 parameters used in k model
LCI 95% lower confidence interval of parameters
i index
n number of responses
r radial position, m
R resistance of the heater, Ω
R0 centerline of the cylinder, R0 = 0
R1 interface of heater and sample, m
R2 wall of the cup, m
RA interface of thermocouple and sample, m
RB wall of the cup, m
RE Relative error of parameter
T temperature, ◦C
T(t) temperature at t, ◦C
T0 initial temperature of sample, ◦C
T1 initial temperature for thermal properties, ◦C
T2 final temperature for thermal properties, ◦C
t time, s
U inverse covariance matrix of parameters
UCI 95% upper confidence interval of parameters
W inverse of covariance matrix of errors
Y experimental response variable
Ŷ predicted response variable
ZA total height of cylinder for (R12B10T1) experiment, mm
Z1 total height of cylinder for (R22B10T1) experiment, mm
z axial position, m
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Abstract: Currant tomato (Solanum pimpinellifolium), an underutilized wild species of modern tomato,
was investigated to determine the physicochemical properties and understand the effect of cold- and
hot-break heat treatments on physicochemical characteristics. Moreover, a new Arrhenius-type equation
was used to model the temperature-dependent viscosity of currant tomato pulp and paste. The currant
tomato’s porosity, surface area, and lycopene content were 40.96 ± 0.84%, 663.86 ± 65.09 mm2, and
9.79 ± 1.88 mg/100 g, respectively. Cold- and hot-break heat treatments had a significant (p < 0.05)
effect on tomato pulp and paste color change (0.09 to 0.26; 0.19 to 1.96), viscosity (0.06 to 0.02 Pa.s;
0.85 to 0.37 Pa.s), and lycopene content (9.70 to 9.07 mg/100 g; 9.60 to 9.37 mg/100 g), respectively.
An Arrhenius-type equation described the temperature-dependent viscosity of currant tomato pulp
and paste with activation energy (Ea) ranging from 7.54 to 11.72 kJ/mol and 8.62 to 8.97 kJ/mol,
respectively. Principal component analysis (PCA) revealed a total of variance 99.93% in tomato pulp
and paste as affected by the cold- and hot-break heat treatments. Overall, the findings may provide
knowledge for design graders and process optimization to develop currant tomato-based products.

Keywords: underutilized wild species; mathematical modeling; lycopene; viscosity; thermal
processing; color

1. Introduction

Diets rich in fruits and vegetables have received much consumer attention due to
their health-promoting properties and therefore play a vital role in human nutrition and
food security. The domestication of major plant species, such as rice, wheat, and maize,
provides almost 60% of total energy intake [1]. However, over the years, this approach
has been dramatically narrowed, and other wild, semi-wild, and domesticated fruits and
vegetable species are entirely neglected and underutilized. Underutilized crops represent
a critical source of improved food production and a stable food supply for the projected
human population. Moreover, many underutilized crops are considered sources of disease
resistance, early maturation, resistance to drought, and soil erosion tolerance [2].

Currant tomato (Solanum pimpinellifolium), an underutilized wild species of mod-
ern tomato, is native to Western South America and grown (0.50 to 1 m in height) in
well-drained and moist soils, with quite large bunches [3]. A study identified many
disease-resistant genes in currant tomato varieties and good sources of lycopene with high
antioxidant traits compared to commercial Solanum lycopersicon L. cultivars [4,5]. Currant
tomato is an underutilized or undervalued fruit or vegetable crop but an important source
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of nutrient and bioactive compounds with beneficial properties [6]. A study by Delgadillo-
Díaz et al. [7] investigated the physicochemical characteristics and biological activity of
S. lycopersicum L. and S. pimpinellifolium L. in different cropping systems. Similarly, Bo-
jarska et al. [8] investigated the physicochemical properties of different tomato cultivars,
including small-sized tomatoes and concluded that the lower hardness and high biological
activity of small-fruited tomatoes compared to commercial tomatoes. This indicates that
small-sized tomatoes are an attractive source of health-promoting properties. One way to
increase the utilization of currant tomatoes is by conducting extensive research regarding
the physicochemical properties and its utilization as a raw material for industrial process-
ing and manufacturing of currant tomato-based products. This signifies an additional
option for producing lycopene-rich products and further increases food production by
value addition and food sustainability. Generally, the physical properties of fruit are an
important parameter for designing and modelling processing operations to create a specific
model to obtain a high-standardized raw material for stabilizing commercial tomato-based
products in the consumer market [9].

Generally, fresh tomato has a short storage life under ambient storage conditions, and
thus tomato is processed in the form of pulp, paste, sauce, soup, and puree. Therefore,
tomato processing industries consider tomato pulp or paste as the primary quality parame-
ter of the final food product [10]. For example, tomato pulp or paste quality depends on
processing conditions, such as temperature, which further influence the physicochemical
characteristics [11]. Another study showed the inactivation of pectin-degrading enzymes
(i.e., pectin methylesterase and polygalacturonase) in tomatoes through cold- and hot-break
heat treatments improves the quality of the end product [12]. However, although these
studies have demonstrated the effectiveness of industrial processes on the quality attributes
of commercial/modern tomatoes, too little scientific attention has been devoted to the
utilization of currant tomatoes and their high-quality end products. We hypothesize that a
better understanding of physicochemical and processing methods could provide the basis
to develop high-quality currant tomato-derived commercial products at an industrial scale.

Therefore, this study was aimed to determine the physicochemical properties (i.e.,
linear dimensions, seed and skin weights, juice yield, bulk and true densities, porosity, geo-
metric mean diameter, surface area, sphericity, moisture, pH, total soluble solids, lycopene,
and ascorbic acid) of currant tomato and to understand the effect of cold- and hot-break
heat treatments on the physicochemical characteristics of currant tomato pulp and paste.
Moreover, the change in viscosity of tomato pulp and paste the temperature was modelled
by a new Arrhenius approach. This study contributes to the design and handling of currant
tomato processing equipment. The findings from modelling and heat treatment can be
used to standardize process parameters to maintain the high yield and quality of currant
tomato-based processed products.

2. Materials and Methods

2.1. Sample Collection

Currant tomatoes (4 kg) were purchased from the Solmara local market (26◦ 41′ 25.10′′ N
and 92◦ 48′ 2.10′′ E), Napaam, Assam, India during January, 2015. Unblemished and mature
fresh samples were selected based on visual observation of degree of maturity, size, and color
without any mechanical and/or pathological injuries (Figure 1). All the samples were transferred
into low-density polyethylene (LDPE) food-grade sampling bags (250 × 200 mm) and then
transported to the Department of Food Engineering & Technology, Tezpur University, Assam,
India, for further experimental analysis (no longer than two days).
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Figure 1. Pictorial representation of currant tomato fruits. Fresh unripe tomato fruits along with
twiggy bushes (A) and fully ripened fresh currant tomato fruits (B).

2.2. Physicochemical Properties

Fresh fruit samples were thoroughly washed with tap water followed by rinsing with
double-distilled water to remove all soil residues. Then, the fruit surface was blotted to dry
with a bibulous paper and immediately analyzed to determine physicochemical properties.

The linear dimensions, such as major diameter (length), intermediate diameter (width),
and minor diameter (thickness), were measured using a Vernier caliper with a sensitivity
of ±0.02 mm. Skin, seed, and juice weights were measured using an electronic balance
with an accuracy of ±0.01 g. The water displacement method was used to determine the
volume of samples (n = 10) [13]. Briefly, randomly selected fruit samples were placed in a
measuring cylinder containing a known water volume. The weight of water displaced by
the sample was recorded, and the volume was calculated according to Equation (1).

Volume
(

cm3
)
=

[
Weight of displaced water (W)

Weight density of water (ρ)

]
(1)

Bulk density (ρb) was measured using the mass to volume relationship according to Li
et al. [14], as shown in Equation (2). In contrast, true density (ρt) was calculated according
to the liquid displacement method [15]. The porosity (ε) of the samples was determined
from bulk and true densities using the relationship according to Equation (3).

Bulk density
(

g/cm3
)
=

[
Weight of sample

Total volume of sample

]
(2)

Porosity (ε) =

[(
ρt − ρb

ρt

)
× 100

]
(3)

where ρb = bulk density and ρt = true density.
Geometric mean diameter (GMD), surface area (S), and sphericity (ϕ) were calculated

according to Equations (4)–(6):

Geometric mean diameter (mm) =
[

3
√

A × B × C
]

(4)

Surface area
(

mm2
)
=
[
π (GMD)2

]
(5)

Sphericity (%) =

[(
GMD

A

)
× 100

]
(6)
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where A = major diameter (length), B = intermediate diameter (width), and C = minor
diameter (thickness).

Moisture content was analyzed according to the Association of Official Analytical
Chemists [16], and the results were expressed as %. The pH was determined by a digital
pH-meter (pH 510, Eutech Instruments Pte Ltd., Singapore) using 5 mL of sample and
calibrated with acidic and neutral buffer solutions (pH 4.0 and 7.0). Total soluble solids
of the samples were analyzed by a traditional hand-held refractometer (Erma Inc., Tokyo,
Japan), and the results were expressed as ◦Brix.

Lycopene content was determined by the method proposed by Fish et al. [17]. Briefly,
samples (5 g) were thoroughly mixed with an acetonic solution of butylated hydroxytoluene
(0.05%, 5 mL), ethanol (95%, 5 mL), and hexane (10 mL) over a shaker (Orbitek® LT, Chennai,
India) for 15 min at 180 rpm and 4 ◦C. After shaking, distilled water (3 mL) was added to
the reaction mixture and then it was kept for shaking at 180 rpm and 4 ◦C for 5 min. The
sample was allowed to separate into phases at ambient temperature, and the absorbance
of the hexane organic phase was measured at 503 nm using a UV/Vis spectrophotometer
(Shimadzu 1700, Tokyo, Japan). Lycopene content of the sample was calculated using
a molar extinction coefficient and a specific multiplication factor (31.20) according to
Equation (7) and expressed as mg/100 g.

Lycopene content (mg/100 g) =
[(

31.20 × absorbance
Weight of sample

)]
(7)

Ascorbic acid content was measured according to the method described by Makroo
et al. [10]. Briefly, a crushed sample (5 g) was diluted with distilled water to make the
total volume 100 mL, and then metaphosphoric acid (20%, 25 μL) was added. The aliquot
(10 mL) was titrated against 2, 6 dichloroindophenols (0.05%, w/v) until it turned to faint
pink color for 20 s. Ascorbic acid standardization was carried out using the AOAC method
and was calculated as shown in Equation (8). Ascorbic acid content was expressed as
mg/100 g.

Ascorbic acid
(

mg
100 g

)
=
[(

Titer value × Dye factor ×Volume made up ×100
Amount of aliquot ×sample weight

)]
(8)

2.3. Cold- and Hot-Break Heat Treatments

Fresh fruit samples were longitudinally cut into four non-identical pieces and then
blended in a laboratory-scale mini-blender (Orpat® HHB-107E, Gujarat, India) over 5 min to
make smooth pulp (5.50 ± 0.70 ◦Brix at 24 ± 2 ◦C). The pulp was preheated to a temperature
of 55 and 65 ◦C for cold-break processing over 2 min and to 75, 85, and 95 ◦C for hot-break
processing over 2 min, respectively [18]. The pulp mixture was sieved through a cheesecloth
to remove the skin, seeds, and other solid residues. For tomato paste, freshly prepared pulp
samples were concentrated to a viscous paste (25 ± 1 ◦Brix at 24 ± 2 ◦C) in a rotary vacuum
evaporator (Eyela, NCB-1200, Tokyo, Japan) at 45 ◦C under controlled pressure. All the
samples were cooled to room temperature and stored in sterilized food-grade reclosable
pouches (100 × 150 mm) at 4 ◦C. Samples without cold- and hot-break heat treatments
were treated as a control. The samples were coded as T55 and T65 (cold-break) and T75,
T85, and T95 (hot-break). All the experiments were conducted in triplicate.

2.4. The Physicochemical Characteristics of Currant Tomato Pulp and Paste
2.4.1. Color Analysis

The color of samples was determined by a colorimeter (UltraScan VIS, Hunter Asso-
ciates Laboratory, Inc., Reston, VA, USA) in terms of CIELAB color parameters, L (light to
dark), a (green to red), and b (blue to yellow). The colorimeter was standardized using a
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black glossy ceramic plate as a reference to the measurements. The total color difference
(ΔE) was calculated according to Equation (9).

Color difference (ΔE) =
[
ΔL2 + Δa2 + Δb2

] 1
2 (9)

where ΔL = difference in lightness, Δa = difference in intensity of red color, and Δb = difference
in intensity of yellow color.

2.4.2. Apparent Viscosity

Apparent viscosity measurements were determined using a Rapid Visco Analyser
(Newport Scientific Pty. Ltd., Warriewood NSW, Australia). Studies by Makroo et al. [12]
and Kapoor and Metzger [19] reported the determination of apparent viscosity by a Rapid
Visco Analyser. Briefly, samples (25 mL) were subjected to holding temperatures of 30, 45,
60, 75, and 90 ◦C and a stirring speed of 100 rpm for 3 min after attaining the required
temperature. The apparent viscosity of samples was expressed as Pa.s. Lycopene and
total soluble solids for pulp and paste were determined according to the above-mentioned
methods [12,17]. Total titratable acidity was determined by titration of samples against
NaOH (0.10 N) containing phenolphthalein (0.50%) indicator to an endpoint of faint pink
color for 1 min. The results were reported based on % citric acid [12].

2.5. Modeling of the Temperature-Dependent Apparent Viscosity of Currant Tomato Pulp and Paste

The effect of temperature on the apparent viscosity of pulp and paste is usually
expressed by the linear Arrhenius relationship [20], as shown in Equation (10).

ln (η) = ln(As) +
Ea

R

(
1
T

)
(10)

where η = apparent viscosity (mPa.s), R (gas constant) = 8.314 J/mol K, Ea = activation
energy of flow (J/mol), As = the pre-exponential (entropic) factor of the Arrhenius equation
for the liquid system, and T = absolute temperature (K).

The plot of the logarithm of apparent shear viscosity (ln (η)) vs. reciprocal of absolute
temperature (1/T) over different studied temperature ranges was plotted to construct a
straight line (R2 ≥ 0.98) and intercept [20] as shown in Figure 2. The slope of the straight
line is equal to Ea/R and the intercept on the ordinate is equal to ln As. In addition to Ea/R
and ln As, we determined the Arrhenius temperature (TA, K), which was deduced from the
intercept according to Messaâdi et al. [20] as shown in Equation (11).

TA =

[ −Ea

R ln (As)

]
(11)

The viscosity-temperature dependence can be simplified based on Equations (10) and (11),
as shown in Equation (12).

ln (η) =

[
Ea

R

(
1
T
− 1

TA

)]
(12)

For homogenous dimensions, the Arrhenius activation temperature (T*, K) was deter-
mined based on Equation (13), as shown in Figure 2.

T∗ =
[

Ea

R

]
(13)
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Figure 2. Graphical representation for determination of the Arrhenius parameters: activation energy (Ea/R),
the logarithm of pre-exponential factor (ln As), and Arrhenius activation temperature (T*, K). R = universal
gas constant [20]. Figure 2 was reconstructed using experimental data of the present study, which
was based on Messaâdi et al. [20] and is available under the Creative Commons Attribution License.

2.6. Principal Component Analysis (PCA)

PCA, an unsupervised multivariate analysis, is used to provide an exploratory group-
ing of the samples by transferring a set of correlated variables into a new set of linearly
uncorrelated variables (i.e., principal components) based on Eigenvalue > 1. We performed
the PCA (a Kaiser–Meyer–Olkin value of 0.80, p < 0.05) to visualize the differences and
similarities between the samples as affected by cold- and hot-break heat treatments using
Origin® 2019b version 9.65 (OriginLab Corporation, Northampton, MA, USA). The findings
were illustrated by a loading plot containing first two principal components.

2.7. Statistical Analysis

The experimental data were reported as the mean ± standard deviation (SD) of ≥three
independent determinations. The difference in experimental data was statistically assessed
by one-way analysis of variance (ANOVA) using IBM® SPSS® version 16.0 (IBM Ltd.,
Chicago, IL, USA), and the differences were considered significant at p < 0.05 by Duncan’s
multiple range test. All graphs were constructed using Microsoft Excel® version 2021
(Microsoft Co., Ltd., Redmond, WA, USA). Bivariate correlation analysis was performed
among the defined Arrhenius parameters using IBM® SPSS® version 16.0.

3. Results and Discussion

3.1. Physicochemical Properties

The physicochemical properties of the currant tomato are presented in Table 1. The
average major and minor diameters ranged from 13 to 16.01 mm and 14.02 to 18.03 mm,
respectively, with an average intermediate diameter of 14.14 mm at a mean moisture content
of 90.86%. The presence of high moisture indicated that the preservation technologies might
be required to extend the shelf-life over storage. The fruit contained 40% juice, while 60%
contributed to the presence of seeds (34%) and skin (23.30%). The bulk and true density
of fruit varied from 0.48 to 0.97 (g/cm3) with a porosity of 40.10 to 42.15%. The density
of fruits is a fundamental material property and a function of moisture content, which
could be used to design materials handling equipment for drying and storage [15]. The
high porosity indicated that the drying of currant tomato could be faster with low power
requirements. The geometric mean diameter derived from major, minor, and intermediate
diameters ranged from 13.67 to 15.93 mm, with a mean value of 14.12 mm.
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Table 1. Descriptive statistics for the physicochemical characteristics of currant tomato 1.

Parameter Minimum Maximum Mean SD

Major diameter (mm) 13 16.01 14.31 0.82
Intermediate diameter (mm) 13.01 17.01 14.14 1.08
Minor diameter (mm) 14.02 18.03 14.92 1.22
Skin weight (%) 22.05 25.42 23.30 0.02
Seed weight (%) 32.00 35.25 34.00 0.01
Juice (%) 38.96 42.78 40.00 0.01
Bulk density (g/cm3) 0.48 0.59 0.54 0.04
True density (g/cm3) 0.88 0.97 0.92 0.03
Porosity (%) 40.10 42.15 40.96 0.84
Geometric mean diameter (mm) 13.67 15.93 14.12 0.70
Surface area (mm2) 585.91 797.12 663.86 65.09
Sphericity (%) 0.98 1.04 1.01 0.08
Moisture (%) 88.1 93.63 90.86 1.81
pH 4.30 4.60 4.32 0.12
Total soluble solids (◦Brix) 5 7 5.50 0.70
Lycopene (mg/100 g) 8.21 11.45 9.79 1.88
Ascorbic acid (mg/100 g) 38.15 43.06 39.93 1.88

1 The results were expressed as the mean ± standard deviation (n ≥ 3). SD = standard deviation of the mean
determined from ≥3 independent determinations.

The surface area and sphericity values varied from 585.91 to 797.12 mm2 and 0.98 to
1.04%, respectively. The surface area could determine the wax and packaging material
to be applied to the fruit. At the same time, sphericity may be related to the diameter of
the fruit and useful for hopper design and pricking machines to handle the fruit [21]. The
pH of the fruit was found to be acidic (4.32), with a total soluble solids content ranging
from 5 to 7 ◦Brix. These results agreed with the earlier findings on the pH (4.29) and total
soluble solids (5 to 8 ◦Brix) content of commercial S. lycopersicon L. [10,22]. The lower pH
was probably due to the presence of organic acids, including citric and maleic acids, that
contributed to the tomato’s acidic nature. Lycopene and ascorbic acid contents ranged from
8.21 to 11.45 mg/100 g and 38.15 to 43.06 mg/100 g, respectively, which indicated that the
currant tomato is a good source of lycopene and ascorbic acid contents. Similar results were
reported for lycopene content in tomato-based products [23]. In brief, the information on
the physicochemical properties of any food material may provide knowledge on designing
and optimizing process equipment and predicting the behavior of food material. Thus,
these findings can assist in developing handling equipment for currant tomatoes.

3.2. Effect of Cold- and Hot-Break Heat Treatments on the Physicochemical Characteristics of
Currant Tomato Pulp
3.2.1. Color

The color parameters of currant tomato pulp as a function of heat treatments indicated
a significant difference (p < 0.05), as shown in Table 2. The values of the lightness (L),
green/red (a), and blue/yellow (b) decreased significantly (p < 0.05) at all heat treatments.
The variations in L, a, and b values might be due to the consequences of heat treatments
that altered the color parameters of tomato pulp [24]. An earlier study by Ganje et al. [25]
concluded the variations in color parameters of tomato pulp as affected by thermal process-
ing, which could be related to the degradation of pigments during heat treatments. For
example, lycopene in tomatoes may be degraded to cis form during heat treatments, result-
ing in a color change [10]. No significant (p > 0.01) change was observed in the a/b value,
ranging from 0.99 to 1.04. Application of statistical analysis revealed that heat treatments
had a significant (p < 0.05) effect on the ΔE of tomato pulp, which further supported the
visual appearance of tomato pulp after heat treatments (Figure 3A). Therefore, the findings
from this study recommended considering the optimization of heat treatments of tomato
juice to maximize the retention of the color attributes of the currant tomato pulp for the
consumer’s acceptance.
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Table 2. Effect of heat treatments on the color parameters of currant tomato pulp and paste 1.

Treatment L a b a/b ΔE

Pulp

Control 29.45 ± 0.54 d 7.61 ± 1.08 e 7.32 ± 0.62 c 1.04 ± 0.01 a 0.00 ± 0.00 a

T55 29.40 ± 0.97 d 7.53 ± 2.28 d 7.31 ± 0.83 c 1.03 ± 0.05 a 0.09 ± 0.01 b

T65 29.33 ± 1.04 d 7.47 ± 2.11 c 7.34 ± 0.14 c 1.02 ± 0.01 a 0.09 ± 0.01 b

T75 29.11 ± 2.01 c 7.40 ± 0.08 c 7.21 ± 0.22 b 1.03 ± 0.07 a 0.26 ± 0.04 c

T85 28.92 ± 3.33 b 7.27 ± 1.29 b 7.25 ± 0.28 b 1.01 ± 0.02 a 0.23 ± 0.04 c

T95 28.78 ± 0.07 a 7.13 ± 1.58 a 7.17 ± 0.09 a 0.99 ± 0.08 a 0.21 ± 0.05 c

Paste

Control 25.54 ± 0.71 a 9.88 ± 0.05 c 6.54 ± 0.08 e 1.51 ± 0.01 a 0.00 ± 0.00 a

T55 27.15 ± 0.85 c 8.91 ± 0.03 a 5.97 ± 0.01 b 1.49 ± 0.09 a 1.96 ± 0.09 f

T65 26.94 ± 0.34 b 9.12 ± 0.06 a 6.12 ± 0.09 c 1.49 ± 0.08 a 0.33 ± 0.01 d

T75 26.99 ± 0.68 b 9.27 ± 0.01 b 6.24 ± 0.01 d 1.48 ± 0.05 a 0.19 ± 0.01 b

T85 27.26 ± 0.55 c 9.21 ± 0.04 b 6.19 ± 0.05 c 1.48 ± 0.01 a 0.28 ± 0.01 c

T95 27.58 ± 0.26 d 8.99 ± 0.05 a 5.89 ± 0.06 a 1.52 ± 0.09 a 0.49 ± 0.01 e

1 The results were expressed as the mean ± standard deviation (n = 3). Mean values within a column with
different lowercase superscripts (a–f) were significantly different (p < 0.05, Duncan’s multiple range test). T55 and
T95 represent coded temperature values for cold- and hot-break heat treatments.

 

Figure 3. Effect of heat treatments on currant tomato. Pulp (A) and paste (B). In Figure 3 (A,B), T55
to T95 represent coded temperature values for cold- and hot-break heat treatments, respectively.

3.2.2. Apparent Viscosity, Lycopene Content, Total Soluble Solids, and Total
Titratable Acidity

Figure 4 shows the apparent viscosity, lycopene content, total soluble solids, and total
titratable acidity of tomato pulp as a function of heat treatments. The apparent viscosity
of tomato pulp differed significantly (p < 0.05) among the heat treatments and followed
no definite trend. However, T85 and T95 showed a decreased apparent viscosity (average
of 0.03 Pa.s) compared to control (0.05 Pa.s), indicating the effect of heat treatments on
currant tomato pulp. The variations in apparent viscosity could be associated with the
alignment of the heterogeneous suspended particles that contributed to a strong particle
aggregation [18]. Another study by Augusto et al. [26] explained the contribution of
particle size in tomato pulp and suggested the homogenization of tomato products to
maintain consistency. Heating treatment had a significant impact on the pectin integrity
and viscosity of tomato pulp [27]. The heating treatment further showed the conformational
changes in pectin solubility, which may change the viscosity of tomato pulp [28]. Another
study by Verlent et al. [29] showed the variations in tomato viscosity as affected by heat
treatments due to the action of polygalacturonase on pectin, which may be partially active
to depolymerization of pectin. Based on the studies mentioned above, we assume that the
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complexity and heterogeneity of the dispersions may contribute to the variations in the
rheological properties of the tomato pulp.

 

  

Figure 4. Effect of heat treatments on the quality characteristics of currant tomato pulp. Apparent
viscosity (A), lycopene (B), total soluble solids (C), and total titratable acidity (D). The error bar
represents the standard deviation from the mean of independent triplicate results. Different lowercase
letters (a–e) within the treatment indicate a significant difference (p < 0.05) based on Duncan’s multiple
range test. In Figure 4A, different uppercase letters (A–F) among the holding temperatures indicate a
significant difference (p < 0.05) based on Duncan’s multiple range test. T55 and T95 represent coded
temperature values for cold- and hot-break heat treatments.

On the other hand, viscosity holding temperatures (30, 45, 60, 75, and 90 ◦C) showed a
significant (p < 0.05) effect on the apparent viscosity of tomato pulp (Figure 4A). At 45 ◦C,
heat-treated samples collectively showed a 0.90-fold lower apparent viscosity than the
control sample at 30 ◦C. Moreover, a similar decreased trend was observed for viscosity at
different holding temperatures, which was the lowest at 90 ◦C. At 90 ◦C, all treated samples
demonstrated a 0.95-fold lower apparent viscosity than the control sample (0.04 Pa.s). These
findings were likely related to the rise in temperature and heat treatments [18].

A significant difference (p < 0.05) in lycopene content and total titratable acidity was
observed based on the heat treatments except for the TSS content, where heat treatments
showed (Figure 4B–D) insignificant change (p > 0.05). Similarly, Boubidi and Boutebba [30]
reported the insignificant change in TSS content of tomato products as affected by the
change in temperature, which may relate to the short time treatments. For lycopene content,
no significant change was observed in T55, T65, and T75 compared to control. However, a
slight but significant decrease in lycopene content was observed in T85 (9.36 mg/100 g) and
T95 (9.07 mg/100 g). At a higher temperature (130 ◦C), Miki and Akatsu [31] reported the
loss of lycopene content (0.17 mg/100 g), which could be related to the higher degradation
of trans lycopene to cis form [25]. High loss of lycopene at high holding temperature
has also been reported due to dissolved air in the pulp that may destroy lycopene [32].
Therefore, the degradation of tomato pulp during thermal processing can be reduced by
de-aerating the pulp before thermal treatment and reducing the duration of treatment.
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The total titratable acidity was decreased significantly from 6.50 (control) to 6.10% (T95),
which was found to be 0.40% lower than control. We propose that reducing total titratable
acidity could be the consequences of inactivated pectin enzyme activity and solubilization
of acids in an aqueous medium. A study by Boubidi and Boutebba [30] highlighted the
interdependence of natural acids by heat treatments. Compared to the natural acids, heat
treatments significantly affected the parameters like apparent viscosity, lycopene content,
and total titratable acidity.

3.3. Effect of Cold- and Hot-Break Heat Treatments on the Physicochemical Characteristics of
Currant Tomato Paste
3.3.1. Color

The color characteristics of the currant tomato paste are summarized in Table 2. The L
value significantly (p < 0.05) ranged from 25.54 to 27.58, while the ‘a’ value varied from
8.99 to 9.88 in all heat treatments. Similarly, there was a significant change (p < 0.05) in
color ‘b’ value after heat treatments, ranging from 5.89 to 6.24. Moreover, the a/b value
had an insignificant effect (p > 0.05) that ranged from 1.48 to 1.52. As shown in Table 2,
heat treatments had a significant decrease in ΔE of currant tomato paste, which varied
from 0.19 to 1.96. According to the findings from the color characteristics of currant tomato
paste, it can be concluded that the tomato paste followed a similar trend as the color
characteristics of the currant tomato pulp. This indicated that the heat treatments had
a similar influence on currant tomato pulp and paste color characteristics. Our visual
scoring of currant tomato pastes also evidenced the change of color attributes (Figure 3B).
Similar findings were documented by Shatta et al. [10] that showed significant changes in
color parameters (L, a, b, a/b, and ΔE) of tomato paste after thermal processing. Another
study by Ganje et al. [25] highlighted the change in the color characteristics of tomato paste
overheat processing, which could be the consequences of lycopene thermal degradation
from trans to cis form and isomerization. Considering the color change characteristics
of currant tomato paste, application of heat treatments on tomato products should be
carefully monitored to receive high consumer perception on thermally processed currant
tomato-based products.

3.3.2. Apparent Viscosity, Lycopene Content, Total Soluble Solids, and Total
Titratable Acidity

The apparent viscosity, lycopene, total soluble solids, and total titratable acidity of
currant tomato paste as a function of heat treatments are depicted in Figure 5A–D. The
findings reported that the apparent viscosity, lycopene, and total titratable acidity of currant
tomato paste differed significantly (p < 0.05), but an insignificant (p > 0.05) change was
observed in the total soluble solids content of currant tomato paste (Figure 5). The apparent
viscosity values (0.47 to 0.85 Pa.s) of currant tomato paste demonstrated an increased
trend for heat treatments (T55 to T85) and then decreased to 0.75 Pa.s (T95). Higher
apparent viscosity for currant tomato paste could be ascribed to the solid concentration of
the samples, indicating that solids content plays a vital role in the consistency of tomato
paste [22]. For heat treatments, the highest apparent viscosity was observed for T85 at
a holding temperature of 30 ◦C (0.85 Pa.s), whereas the lowest was recorded for control
(0.26 Pa.s) at a holding temperature of 90 ◦C (Figure 5A). This indicated that the heat
treatments influenced the viscosity of currant tomato paste. For example, T85 reported the
maximum apparent viscosity at all holding temperatures (30 to 90 ◦C) compared to control,
T55, T65, and T75. This could be related to the action of pectin enzymes due to their strong
intra- and inter-molecular bonding of pectin. At a higher temperature (T95), significantly
lower apparent viscosity was observed than at T75 and T85. A possible explanation for
this might be related to the breakdown of pectin structural units of the sample. Other
researchers have suggested the low viscosity of tomato paste during heat treatment [22].
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Figure 5. Effect of heat treatments on the quality characteristics of currant tomato paste. Apparent
viscosity (A), lycopene (B), total soluble solids (C), and total titratable acidity (D). The error bar
represents the standard deviation from the mean of independent triplicate results. Different lowercase
letters (a–e) within the treatment indicate a significant difference (p < 0.05) based on Duncan’s multiple
range test. In Figure 5A, different uppercase letters (A–F) among the holding temperatures indicate a
significant difference (p < 0.05) based on Duncan’s multiple range test. T55 and T95 represent coded
temperature values for cold- and hot-break heat treatments.

On the other hand, we compared the influence of holding temperature on apparent
viscosity of currant tomato paste (Figure 5A). The apparent viscosity of currant tomato
paste significantly decreased (p < 0.05) in control and heat-treated samples over the rise
in holding temperature from 30 to 90 ◦C. The heat-treated samples showed a 1.62-fold
higher apparent viscosity than the control sample at a holding temperature of 30 ◦C, which
followed a similar tendency at all holding temperatures (45 to 90 ◦C). These differences can
be partially elucidated by the proximity of holding temperature and heat treatments.

Lycopene content and total titratable acidity significantly varied and ranged from
9.75 to 9.07 mg/100 g and 6.5 to 6.10%, respectively, for all treatments. Still, no significant
change (p > 0.05) was observed in total soluble solids (5.20 ◦Brix). Similar findings were
reported by Kaur et al. [33] that showed a slight variation in lycopene content during
different processing methods. At higher heat treatments (T75 to T95), lycopene content
was found to be lower (~9.36 mg/100 g) than in control (9.75 mg/100 g), indicating that
the lycopene was stable at a lower temperature (T55 and T65) and then degraded at higher
temperature (T75 to T95). This was similar to the lycopene degradation findings of Shi
et al. [34], where lycopene was stable at lower temperatures. Then, a significant decrease
was observed over a temperature rise. The maximum decrease in total titratable acidity of
the currant tomato paste was obtained at T95, which was 0.82-fold lower than the control
(6.50%). This may be due to the precipitation of salts existing in the paste [35]. Based on
our findings, it can be concluded that the heat treatments may influence the viscosity and
quality attributes of currant tomato paste. Hence, based on requirements, heat treatments
and holding temperature may be altered for a subsequent application in the development
of currant tomato products.
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3.4. Modeling of the Temperature-Dependent Apparent Viscosity of Currant Tomato Pulp and Paste
In general, the effect of temperature on the apparent viscosity of currant tomato pulp

and paste is explained according to the Arrhenius equation (Equation (10)). The Arrhenius
model constants were evaluated in terms of natural log (ln) of viscosity vs. inverse of
absolute temperature (1/T, K−1) for pulp and paste (Figure 6). The activation energy
values for pulp and paste were observed in the range of 7.54 to 11.72 kJ/mol and 8.62 to
8.97 kJ/mol, respectively. The coefficient of determination (R2) for pulp and paste was >0.98,
which explained the strong linear relationship between inverse of temperature (1/T) and
apparent viscosity of pulp and paste. These findings agreed with earlier findings, which
reported activation energy values from 8.60 to 14.08 kJ/mol for tomato concentrates [36].

  

Figure 6. Arrhenius plot for the viscosity of currant tomato pulp (A) and paste (B). Control ( ),
T55 (  ), T65 (  ), T75 (  ), T85 (  ), and T95 (  ). T55 and T95 represent coded temperature values for
cold- and hot-break heat treatments.

The Arrhenius temperature (TA, K) and the Arrhenius activation temperature (T*, K)
for pulp and paste are shown in Table 3. The TA and T* showed interdependence and
ranged from 313.49 to 6106 K and 907.77 to 1410.75 K for both pulp and paste, respectively.
We further performed the correlation analysis among the defined Arrhenius parameters
(TA, ln As, and Ea) for currant tomato pulp and paste (Table 4). ln As and Ea exhibited a
negative correlation with TA, while ln As showed a positively weak correlation with Ea
for tomato pulp. The similar correlation trend was reported for paste, where TA showed a
strong negative correlation (−0.90) with ln As; however, TA for paste demonstrated a strong
positive correlation (0.79) with Ea compared to pulp. This indicated the interdependence
of Arrhenius parameters, which may highly influence the determination of Ea for food
products. A study by Messaâdi et al. [20] reported the linear and non-linear correlations
among the Arrhenius parameters. Thus, these results concluded that the currant tomato
pulp and paste obey the linear Arrhenius behavior. An Arrhenius equation could describe
the temperature dependence of viscosity of currant tomato pulp and paste. Hence, we
recommend using a new Arrhenius-type equation with two and/or three parameters and
thus useful for determining the nature of fluids.
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Table 3. Arrhenius parameters for temperature-dependent apparent viscosity of currant tomato pulp
and paste 1.

Treatment T* (K) ln As Ea (kJ/mol) TA (K)

Pulp

Control 907.77 1.12 7.54 810
T55 1071.83 0.57 8.91 1877
T65 1410.75 0.62 11.72 2264
T75 1242.12 0.01 10.32 1035
T85 1117.59 0.07 9.29 1490
T95 1092.95 0.18 9.08 6106

Paste

Control 1076.27 2.58 8.94 417.18
T55 1040.19 3.05 8.64 340.61
T65 1079.61 3.03 8.97 355.46
T75 1028.20 3.28 8.54 313.49
T85 1080.03 3.19 8.97 338.53
T95 1030.50 3.20 8.62 324.11

1 T* = Arrhenius activation temperature, As = the pre-exponential (entropic) factor of the Arrhenius equation for
the liquid system, Ea = activation energy of flow, and TA = Arrhenius temperature. T55 and T95 represent coded
temperature values for cold- and hot-break heat treatments.

Table 4. Correlation among the defined Arrhenius parameters of currant tomato pulp and paste 1.

Sample
Arrhenius
Parameters

TA ln As Ea

Pulp
TA 1 −0.01 −0.29
ln As 1 0.32
Ea 1

Paste
TA 1 −0.90 * 0.79
ln As 1 −0.46
Ea 1

1 TA = Arrhenius temperature, As = the pre-exponential (entropic) factor of the Arrhenius equation for the liquid
system, and Ea = activation energy of the flow. * Correlation is significant at the 0.05 level (2-tailed). T55 and T95
represent coded temperature values for cold- and hot-break heat treatments.

3.5. Principal Component Analysis (PCA)

The PCA of tomato samples as affected by cold- and hot-break heat treatments resulted
a total variance of 99.93%, in which first two principal components (PCs 1 and 2) represented
a major variance of 98.88% and 1.05%, respectively with an Eigenvalue >1, indicating close
interdependence of the samples. Figure 7 illustrates the clear separation of samples within
the quadrants 1 and 4 (Q1 and Q4), indicating the effect of cold- and hot-break heat
treatments that had different influences on tomato pulp and paste. Moreover, both pulp
and paste samples formed well-separated groups as a function of cold- and hot-break heat
treatments. For example, pulp samples treated with T55, T65, and T75 formed a group
1, while group 2 was formed by the pulp samples treated with T85 and T95. However,
paste samples treated with cold- and hot-break heat treatments (T55, T65, T75, T85, and
T95) collectively formed group 4 (Figure 7). Likewise, untreated samples (control pulp
and paste) were clearly separated as group 3. The formation of different groups could be
related to the similarities (due to less angle) among the samples treated with cold- and
hot-break heat treatments. Thus, samples with less angle showed a high similarity and
were close to each other among the samples. Based on these observations, the findings
concluded that the tomato pulp and paste characteristics might have been influenced by the
cold- and hot-break heat treatments and could be considered while preparing heat-treated
tomato-based processed products.
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Figure 7. Loading plot of the first two principal components of tomato samples as affected by
cold- and hot-break heat treatments. T55 and T95 represent coded temperature values for cold- and
hot-break heat treatments.

4. Conclusions

The results showed the physicochemical properties of currant tomato pulp and paste.
Currant tomato pulp and paste were significantly affected by the heat treatments. Color,
lycopene content, and viscosity of tomato pulp and paste were significantly influenced by
the cold- and hot-break heat treatments. However, total soluble solids, and total titratable
acidity showed no significant differences after the cold- and hot-break heat treatments.
The activation energy values ranged from 7.54 to 11.72 kJ/mol and 8.62 to 8.97 kJ/mol,
respectively, for pulp and paste. The results further indicated that the linear Arrhenius-
type equation successfully described the temperature-dependent apparent viscosity of
currant tomato pulp and paste. PCA analysis revealed the differences in tomato pulp and
paste characteristics (a total variance of 99.93%) as affected by the cold- and hot-break
heat treatments. This is one of the first attempts to provide the basic physicochemical
information on currant tomatoes that could be used in the design of currant tomatoes
cleaning, handling, and separation machines. Data from heat treatments and modeling can
be used to control and optimize process parameters in developing high-quality currant
tomato-based food products.
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