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Abstract: Remote sensing is currently showing high potential to provide valuable information at
various spatial and temporal scales concerning natural hazards and their associated risks. Recent
advances in technology and processing methods have strongly contributed to the development of
disaster risk reduction research. In this Special Issue titled “Remote Sensing for Natural Hazards
Assessment and Control”, we propose state-of-the-art research that specifically addresses multiple
aspects of the use of remote sensing for natural hazards. The aim was to collect innovative methodolo-
gies, expertise, and capabilities to detect, assess monitor, and model natural hazards. In this regard,
18 open-access papers showcase scientific studies based on the exploitation of a broad range of remote
sensing data and techniques, as well as focusing on a well-assorted sample of natural hazard types.

Keywords: remote sensing; natural hazards; hazard; vulnerability; risk assessment

1. Overview of the Special Issue

Each year, natural hazards, such as earthquakes, landslides, avalanches, tsunamis,
floods, wildfires, severe storms, and drought, globally affect humans through deaths,
suffering, and economic losses. According to the insurance broker Aon, 2010–2019 was the
worst decade on record for economic losses due to disasters triggered by natural hazards,
amounting to $3 trillion: a $ trillion more than the 2000–2009 decade. In 2019, economic
losses from disasters caused by natural hazards were estimated to be over $200 billion
(UNDRR Annual Report, 2019).

In this context, remote sensing demonstrates a high potential to provide valuable
information, at various spatial and temporal scales, concerning natural processes and their
associated risks. Recent advances in remote sensing technologies and analysis, in terms
of sensors, platforms, and techniques, have strongly contributed to the development of
natural hazards research.

In this Special Issue titled “Remote Sensing for Natural Hazards Assessment and
Control”, we propose state-of-the-art research that specifically addresses multiple aspects
of the use of remote sensing (RS) for natural hazards (NH). The aim was to collect in-
novative methodologies, expertise, and capabilities to detect, assess monitor, and model
natural hazards.

The present Special Issue of the Remote Sensing journal encompasses 18 open-access
papers that present scientific studies based on the exploitation of a broad range of RS
data and techniques, as well as a well-assorted sample of NH types (Figure 1). Table 1
summarizes the RS data, the processing techniques used in each paper, and the general
purpose of the presented works.

Remote Sens. 2023, 15, 1048. https://doi.org/10.3390/rs15041048 https://www.mdpi.com/journal/remotesensing1
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Figure 1. Pie charts of general purpose, natural hazard types, data, and RS technique of published papers.

Table 1. Overview of RS data, techniques, purposes, and NH types that are presented in the papers
comprising the SI. Access links to each paper are also provided together with DOI numbers.

Paper Reference and
DOI with Access Link

RS Data
Processing
Technique

General Purpose Natural Hazard Types

Chen et al. [1]
https://doi.org/10.339
0/rs14195059 (accessed

on 6 February 2023)

optical, radar InSAR assessment landslide

Wang et al. [2]
https://doi.org/10.339
0/rs14184562 (accessed

on 6 February 2023)

radar InSAR new processing method subsidence

Ma et al. [3]
https://doi.org/10.339
0/rs14174257 (accessed

on 6 February 2023)

optical, radar InSAR,
TRIGRS model mapping landslide

Wang et al. [4]
https://doi.org/10.339
0/rs14153832 (accessed

on 6 February 2023)

radar InSAR new processing method subsidence

Xiong et al. [5]
https://doi.org/10.339
0/rs14133081 (accessed

on 6 February 2023)

radar InSAR,
exponential model new processing method settlements

Wangcai et al. [6]
https://doi.org/10.339
0/rs14092131 (accessed

on 6 February 2023)

radar InSAR,
random forest assessment landslide

Hermle et al. [7]
https://doi.org/10.339
0/rs14030455 (accessed

on 6 February 2023)

optical Imaging (CD, DIC) monitoring landslide
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Table 1. Cont.

Paper Reference and
DOI with Access Link

RS Data
Processing
Technique

General Purpose Natural Hazard Types

Li et al. [8]
https://doi.org/10.339
0/rs14010030 (accessed

on 6 February 2023)

local dataset Machine learning prediction model earthquake

Seydi et al. [9]
https://doi.org/10.339
0/rs13245138 (accessed

on 6 February 2023)

multispectral and
hyperspectral Deep Learning mapping wildfires

Nolde et al. [10]
https://doi.org/10.339
0/rs13244975 (accessed

on 6 February 2023)

optical
(red and NIR) Imaging (NDVI) assessment wildfires

Kos et al. [11]
https://doi.org/10.339
0/rs13142694 (accessed

on 6 February 2023)

optical, radar SAR offset tracking monitoring glacier

Ding et al. [12]
https://doi.org/10.339
0/rs13091818 (accessed

on 6 February 2023)

review of the literature flash floods

Cheng et al. [13]
https://doi.org/10.339
0/rs13091775 (accessed

on 6 February 2023)

optical Imaging (NDWI, SI) assessment
hazard chain

(dam failure, mud and
hyperc. flow)

Pacheco et al. [14]
https://doi.org/10.339
0/rs13071345 (accessed

on 6 February 2023)

multispectral k-Nearest neighbor,
random forest assessment wildfires

Ranjgar et al. [15]
https://doi.org/10.339
0/rs13071326 (accessed

on 6 February 2023)

radar InSAR,
Machine Learning mapping subsidence

Wang et al. [16]
https://doi.org/10.339
0/rs13050938 (accessed

on 6 February 2023)

optical Geostatistics assessment rockfall

Yang et al. [17]
https://doi.org/10.339
0/rs12223805 (accessed

on 6 February 2023)

multispectral Geostatistics, RUSLE,
NBR new processing method hillslope erosion

Piersanti et al. [18]
https://doi.org/10.339
0/rs13142839 (accessed

on 6 February 2023)

geomagnetic Geostatistics assessment earthquake

1.1. Overview of the Presented Papers

The 18 papers published in the current Special Issue belong to the section “Environ-
mental Remote Sensing” and cover a wide range of applications in terms of the RS data
exploited, processing techniques used, and NH addressed.
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Chen et al. [1] applied multi-source remote sensing (InSAR from ALOS PALSAR-1 and
-2) and field investigation to study the activity and kinematics of two adjacent landslides
along the Datong River in the Qilian Mountains of the Qinghai-Tibet Plateau (China).

Wang et al. [2] proposed a data partition strategy to solve typical limitations due to
traditional multi-temporal interferometric synthetic aperture radar (MT-InSAR) methods
which require a large computer memory and time when processing full-resolution data.
They validated such a strategy in Changzhou City and in Chongqing City (China).

Ma et al. [3] adopted a new open-source tool named MAT.TRIGRS(V1.0) to establish the
landslide susceptibility map in landslide abundance areas and to back-analyze the response
of the rainfall process to the change in landslide stability. The prediction results were
roughly consistent with the actual landslide distributions in Longchuan County (China).

Wang et al. [4] proposed a wide-area InSAR variable-scale deformation detection
strategy that combined stacking technology for fast ground-deformation rate calculations
and advanced TS–InSAR technology to obtain a fine deformation time series. This new
strategy was tested in the Turpan–Hami basin (China).

Xiong et al. [5] presented a new strategy based on the Multitemporal Interferometric
Synthetic Aperture Radar (MT-InSAR) method to overcome limitations due to an inaccu-
rate settlement prediction using traditional methods. The Xiamen Xiang’an International
Airport (China) was chosen as the test site.

Wangcai et al. [6] assessed landslide susceptibility, hazard, and risk in Yan’an City
(China) using a random forest machine learning classifier and eight environmental factors
influencing landslides. Additionally, Differential Synthetic Aperture Radar Interferometry
(DInSAR) was used for a hazard assessment.

Hermle et al. [7], with the aim of reducing noise from decorrelation in ground motion
detection by imaging, applied, for the first time, the optical flow-time series for fast land-
slides. The debris flows from the Sattelkar area (Austria) was selected as a benchmark site.

Li et al. [8], in order to obtain a precise casualty prediction method that could be
applied globally, a spatial division method based on regional differences and a zoning
casualty prediction method based on support vector regression (SVR) were proposed in
their paper. A selection of 30 historical earthquakes that occurred in China’s mainland
was chosen.

Seydi et al. [9] presented a novel framework for burned area mapping based on the
deep Siamese morphological neural network (DSMNN-Net) and heterogeneous datasets.
Two case study areas in Australian forests were selected.

Nolde et al. [10] exploited the possibilities of a recent EO dataset published by the
German Aerospace Center (DLR) by exemplarily analyzing fire severity trends on the
Australian East coast for the past 20 years.

Kos et al. [11] used SAR offset tracking to reconstruct a unique record of ice surface
velocities for a 3.2-year period for the Palcaraju glacier located above Laguna Palcacocha,
Cordillera Blanca (Peru).

Ding et al. [12] carried out a review of the literature related to the application of RS
and GIS in the study of flash floods. They analyzed more than 200 articles published in the
last 20 years, performing keyword co-occurrence, time zone chart, keyword burst, and the
literature co-citation analysis.

Cheng et al. [13] presented a detailed analysis to investigate the disaster conditions
of the Brumadinho dam failure (Brasil) using satellite images. Their in-depth analysis
revealed a hazard chain containing three stages, namely dam failure, mud-, and hyper-
concentrated flow.

Pacheco et al. [14] used RS to detect, map, and monitor areas that were affected by
forest fires in central Portugal. For this purpose, the study analyzed the performance of the
k-nearest neighbor (kNN) and random forest (RF) classifiers.

4
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Ranjgar et al. [15] assessed land subsidence susceptibility for Shahryar County (Iran)
using the adaptive neuro-fuzzy inference system (ANFIS) machine learning algorithm.
Additionally, they assessed if ensembles of ANFIS with two meta-heuristic algorithms
could yield a better prediction performance.

Wang et al. [16] proposed a new approach using the relief–slope angle relationship
to identify rockfall source areas controlled by rock mass strength. By using data from
helicopter-based RS imagery, a 10m-DEM, and fieldwork, historical rockfalls in the Wolong
study area of Tibet (China) were identified.

Yang et al. [17] developed a rapid and innovative approach to estimate post-fire
hillslope erosion using weather radar, RS, Google Earth Engine (GEE), GIS, and the revised
universal soil loss equation (RUSLE). They assessed the Sydney drinking water catchment
area and the Warragamba Dam (Australia).

Lastly, Piersanti et al. [18] presented the first evidence, via observation and model-
ing, of changes in magnetospheric field line resonance (FLR) eigenfrequency, which was
associated with the earthquake occurrence, and demonstrated a causal connection between
seismic phenomena and space-based observables.

The Editors expect that these studies will lead to fruitful discussions and scientific
progress, which should ultimately help to improve the overall quality and reliability of
remote sensing as a now indispensable tool for approaching natural hazards.

1.2. Statistics

The total number of researchers and technologists who contributed to the papers was
104, with an average of 5.8 contributors per article. As shown in Figure 2, most of them
worked in China, at least in terms of affiliation, followed by Germany, Italy, Australia, and
Iran. Overall, Universities and Institutions from 16 different countries were involved in the
present Special Issue. Most of the papers described work with practical applications tested
around the world.

Figure 2. Overview of the authors’ affiliation by country together with the location of case studies
discussed in the present Special Issue.

The most recurring words among the keywords chosen by the authors are shown in
the word cloud in Figure 3. Among them, “InSAR” was selected six times, followed by
“landslide” (4 times), “burned area”, “sentinel”, and “wildfires” with three occurrences.

5



Remote Sens. 2023, 15, 1048

Figure 3. Word clouds (also known as text clouds or tag clouds) generated from the keywords of all
contributions to the present Special Issue. The more a word appears as a keyword, the bigger and
bolder it appears in the word cloud.

1.3. Bibliometrics and Impact

The 18 papers were published in the current Special Issue, over 2 years, between
November 2020 and October 2022. Each manuscript was assessed via rigorous peer-
reviewing from two or more esteemed experts in their respective fields. Based on MDPI’s
article metrics, this Special Issue has received, up to now (2 February 2023), more than
34,000 total views. A worldwide geographic distribution of readers was also noted. Overall,
the published papers already received 95 citations in the indexed literature indicating the
high scientific quality of the Special Issue. In detail, the work from Ranjgar et al. [15]
reached 22 citations and 3299 online views, followed by the papers from Pacheco et al. [14]
and Ding et al. [12] with 16 and 12 citations, respectively.

2. Further Reading

Readers who are interested in the use of remote sensing data and methods for
the assessment and control of natural hazards, in addition to this Special Issue, can
also refer to manuscripts published in other recent Special Issues of the Remote Sensing
journal, such as the “Remote Sensing of Natural Hazards” issued in 2019–2020 (https:
//www.mdpi.com/si/32980 (accessed on 2 February 2023)), “Remote Sensing in Engi-
neering Geology” published in 2020–2021 (https://www.mdpi.com/si/28775 (accessed
on 2 February 2023)), and “Natural Hazard Assessment and Disaster Management Using
Remote Sensing” available from 2021 (https://www.mdpi.com/si/64420 (accessed on
2 February 2023)). In these Issues, several applications are offered, ranging from GIS-based
hazard assessment to the use of multi-sensor data for hazard detection and mapping.
Even in these examples, a wide range of natural hazards is covered, including wildfires,
earthquakes, landslides, and floods.

Author Contributions: The authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.
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Abstract: The increase in temperatures and changing precipitation patterns resulting from climate
change are accelerating the occurrence and development of landslides in cold regions, especially
in permafrost environments. Although the boundary regions between permafrost and seasonally
frozen ground are very sensitive to climate warming, slope failures and their kinematics remain
barely characterized or understood in these regions. Here, we apply multisource remote sensing and
field investigation to study the activity and kinematics of two adjacent landslides (hereafter referred
to as “twin landslides”) along the Datong River in the Qilian Mountains of the Qinghai-Tibet Plateau.
After failure, there is no obvious change in the area corresponding to the twin landslides. Based on
InSAR measurements derived from ALOS PALSAR-1 and -2, we observe significant downslope
movements of up to 15 mm/day within the twin landslides and up to 5 mm/day in their surrounding
slopes. We show that the downslope movements exhibit distinct seasonality; during the late thaw
and early freeze season, a mean velocity of about 4 mm/day is observed, while during the late freeze
and early thaw season the downslope velocity is nearly inactive. The pronounced seasonality of
downslope movements during both pre- and post-failure stages suggest that the occurrence and
development of the twin landslide are strongly influenced by freeze–thaw processes. Based on mete-
orological data, we infer that the occurrence of twin landslides are related to extensive precipitation
and warm winters. Based on risk assessment, InSAR measurements, and field investigation, we infer
that new slope failure or collapse may occur in the near future, which will probably block the Datong
River and cause catastrophic disasters. Our study provides new insight into the failure mechanisms
of slopes at the boundaries of permafrost and seasonally frozen ground.

Keywords: landslides; Gaofen-2; Interferometric synthetic aperture radar (InSAR); freeze–thaw
processes; permafrost; Qilian Mountains

1. Introduction

A landslide is the downslope movement of soil, rock, and debris under the action of
gravity and the landform that results from such movement [1]. The factors triggering slope
failure mainly include rainfall, earthquakes, fluvial erosion, excavation, and construction
activities [1]. Slope failure occurs frequently in rainy and mountainous areas, often resulting
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in casualties and property damage [1,2]. Slope failure at high latitudes and high altitudes
in cold regions has attracted significant attention for decades. Climate warming and the
consequent varied freeze–thaw states in cold regions may accelerate the occurrence and
development of landslides [3,4]. Thaw-related landslide activities (such as retrogressive
thaw slumps and active layer detachment) are increasing extensively in the permafrost
regions of both the Arctic [5–8] and the Qinghai-Tibet Plateau (QTP) [9–11], a phenomenon
that is mainly related to extremely warm summers and extensive summer precipitation.
Even in very cold permafrost regions, extreme warming events can cause slope failure due
to the thawing of ice-rich permafrost [12]. However, slope failures on the boundaries of
permafrost and seasonally frozen ground remain little characterized or understood.

Optical and radar remote sensing techniques are becoming one of the most impor-
tant tools for investigating the activity and kinematics of landslides, especially in rural
and mountainous regions [13,14]. The occurrence and development of landslides can be
obtained from optical remotely sensed images [15–19]. Rapid and abrupt slope movements
can be quantified according to the differences in DEM from two successive orthorectified
images [20–22] or from single-pass InSAR observations [23,24]. However, optical images
are prone to the effects of atmospheric conditions and revisit time, which impede the quan-
tification of landslide activities. In addition, optical-based slope movement is insensitive
to gradual slope movement or creep, which is often a sign of slope stability. Interfero-
metric synthetic aperture radar (InSAR) has been increasingly explored and successfully
applied to identify and monitor gradual slope deformation with centimeter-to-millimeter
accuracy [13,25–28]. The advantage of InSAR is that it is less affected by cloudy weather
and works regardless of whether day or night conditions. Recently, the development of
unmanned aerial vehicle (UAV) cameras allows the generation of very-high-resolution
optical images and digital surface models (DSMs). The combination of InSAR and UAV
data has advanced the understanding of crack development, landslide evolution, and sus-
ceptibility [29–34].

In this study, we combine multisource optical and radar remote sensing images to
investigate the activity and kinematics of two adjacent landslides (hereafter referred to as
“twin landslides”) located in the boundary regions of permafrost and seasonally frozen
ground on Qilian Mountain in the QTP. High-resolution optical satellite and UAV-based
images are used to investigate the activity of the twin landslides. InSAR measurements are
used to map and quantify the gradual slope movement before and after the failure of the
twin landslides. The triggering mechanisms of the twin landslides and their potential risks
are analyzed.

2. Study Area

In this study, we investigate two adjacent landslides occurring on the slope of the
middle and lower reaches of Datong River on the southeast slope of Qilian Mountain.
For convenience, we named the two adjacent landslides as twin landslides and refer to
them as “QLDT01” and “QLDT02” throughout the paper (Figure 1C). The study area is
located between Tuolai Mountain in the north and Datong Mountain in the south, both of
which belong to branches of the Qilian Mountains. The Wari Gaqu River rises from the
Tuolai Mountains and ultimately joins the Datong River. A number of brooks from the
Datong Mountains = discharge into the Datong River (Figure 1A). Therefore, the study
area is a place where many rivers converge. The Tuolaishan and Datongshan faults are
distributed in the northwest and southwest of the study area, respectively. The altitude
in the study area ranges from 3400 to 3600, which is in the lower boundary of permafrost
and seasonal frozen ground on the QTP. The permafrost distribution map is shown in
Figure 1B [35].

Qilian Mountain is dominated by a continental alpine semi-humid mountain climate,
which is characterized by long, cold, and dry winters and short, cool, and moist summers.
Annual average air and ground surface temperatures are approximately −2.4 and 2.9 ◦C,
respectively [36]. The coldest January averages below −11 ◦C, and the warmest July
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averages below 25 ◦C; most of the Qilian Mountains are below 0 ◦C from December
to March, and the highest temperatures range from 4 to 15 ◦C from April to October.
Precipitation ranges from 300 to 500 mm annually and is mainly concentrated during May
to September in the form of rainfall [37,38].

Figure 1. Study area and field photos. (A) The locations of the twin landslides (QLDT01 and QLDT02)
are marked by yellow dots within the black rectangle. The background map is the hill-shaded
DEM. The mountains, rivers, and roads in our study area are marked. (B) The distribution map of
permafrost and seasonal frozen ground in the QTP [35]. The black rectangle presents the location
of our study area. The inner map in the bottom right-hand corner shows the location of the QTP
in China. (C) An unmanned aerial vehicle (UAV) photograph of the twin landslides taken in April
2021. The white arrow denotes the direction of the landslide movement. The yellow polygons are the
boundaries of the twin landslides.

3. Data and Methods

3.1. Data Sources

To investigate the activity and kinematics of the twin landslides, multisource high-
resolution optical and radar data were acquired during 2009–2020. Google images with a
spatial resolution of 0.65 m were acquired using Map Tile Downloader (version number:
release 2.3, developed by Centmap Co., LTD., located in Hefei, Anhui Province, China).
The details of the remotely sensed images are listed in Table 1. Gaofen-2 is a Chinese
high-resolution optical satellite that was launched in August 2014 and carries two panchro-
matic and multispectral charge-coupled device camera sensors. We used panchromatic
images with a spatial resolution of 0.8–1 m, which were obtained from the China Centre
for Resources Satellite Data and Application (http://www.cresda.com/CN/, accessed
on 10 October 2021). Based on the selection of images free of cloud and snow cover, four
Google and three Gaofen-2 images obtained during 2019–2020 were used.
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The L-band Phased Array type L-band Synthetic Aperture Radar (PALSAR) sensor
is mounted on the Advanced Land Observation Satellite (ALOS)-1/2. Six ALOS-1 (Path:
477, Frame: 750, incidence angle: 38.7◦, heading angle: −10.1◦, range resolution: 4.66 m,
azimuth resolution: 3.16 m) and thirteen ALOS-2 (Path: 147, Frame: 750, incidence angle:
36.3◦, heading angle: −10.4◦, range resolution: 4.29 m, azimuth resolution: 3.77 m) SAR
images were chosen to map and quantify the ground movements of the twin landslides.
We expected better performance from the L-band PALSAR data with a wavelength of about
24 cm. This is because L-band electromagnetic waves can penetrate deeper into snow and
vegetated surfaces [39], leading to higher interferometric coherence [40].

To investigate potential unstable zones, we conducted a UAV survey and used
structure-from-motion/multiview stereo photogrammetry to map the twin landslides
and their surroundings on 29 April 2021. We used the DJI Phantom 4 RTK flying platform
with an altitude of 100 m above the ground surface. The heading and lateral overlap of
flying were 85% and 60%, respectively. We obtained the very-high-resolution (VHR) images
and a DEM with a resolution of around 5 cm/pixel using Agisoft PhotoScan software.
The uncertainty of the relative positions was estimated to be around 2–3 cm.

The temperature and precipitation data in the Qilian Mountains from 2000 to 2019
obtained by the National Meteorological Station of China were used to describe the climatic
conditions (http://www.cma.gov.cn/, accessed on 10 November 2021).

Table 1. Summary of the remotely sensed dataset used in this study. The acquisition dates of ALOS
PALSAR-1/2 can be found in Table 2.

Data Resolution (m) Date (YYYYMM) Number of Scenes

Google 0.65 200910, 201006, 201712, 202007 4
Gaofen-2 0.8 201512, 201811, 202008 3

ALOS PALSAR-1 7 2008–2010 6
ALOS PALSAR-2 7 2015–2020 13

UAV 0.05 202104 1

3.2. Mapping of Twin Landslides from Optical Remote Sensing

Google, Gaofen-2, and PALSAR-1/2 satellite images were used to determine the oc-
currence and development of the twin landslides. The Gaofen-2 images were geometrically
corrected using ENVI5.3 software. Then, the one arc-second Shuttle Radar Topography
Mission (SRTM) DEM product was used for image orthorectification. Due to destruction of
the integrity of the original stratum, landslide features such as changed vegetation and soil
collapse can be identified from high-resolution optical images [16,41]. The boundaries of
the twin landslides and adjacent shorelines were outlined based on visual inspection by
three experienced researchers. To further evaluate the change characteristics, we estimated
the rate of landslide areal growth ΔAarea [6]:

ΔArate =
A2 − A1

t2 − t1
(1)

where A1 and A2 are the total area (m2) of landslide in different timeframes and t1 and t2
(year) are the corresponding time points.

VHR optical images have proven useful in identifying landslide features such as small
cracks or ground discontinuities [42,43]. In this study, to map the potential unstable zones
surrounding the twin landslides, we identified cracks through visual inspection of the VHR
UAV optical images. As the spatial resolution of UAV images is 5 cm, cracks with width
larger than 5 cm were very likely to be identified.

3.3. InSAR for Ground Deformation Monitoring

The InSAR technique detects ground movements by comparing the phase differences
between SAR images acquired from slightly different positions at different times [44]. Differ-
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ential InSAR (DInSAR) and multi-temporal InSAR (MTInSAR) have frequently been used
to measure slope movements in both permafrost and nonpermafrost regions [27,28,45–47].
As there are very limited descending PALSAR-1/2 images, all the archived ascending
PALSAR-1/2 images available that covered our study area were examined for ground
deformation monitoring. The interferometric coherence decreases rapidly in the thaw
season (May–October) and is slower in the freeze season (November–next April). To miti-
gate the decorrelation impact, we selected image pairs with temporal spans of less than
150 days and perpendicular baselines shorter than 500 m. Considering the accuracy of
SRTM DEM and the maximum perpendicular baseline (591 m in our case), we estimated
that the residual topographic phase would be about 0.8 radians, corresponding to 1.5 cm in
the InSAR measurements. Relying on the interferometric coherence and phase quality, only
six ALOS PALSAR-1 images and thirteen ALOS PALSAR-2 images, taken during 2009–2010
and 2015–2020, respectively, were selected. This causes severe disconnection between SAR
images and does not allow the use of MTInSAR approaches such as small-baseline subset
InSAR [48].

We calculated ground movement using the DInSAR technique, which was conducted
using the commercial GAMMA software [49]. We constructed three and nine interferograms
for PALSAR-1 and -2, respectively. The range and azimuth look numbers were 2 and 5
for PALSAR-1 and 2 and 4 for PALSAR-2, generating ground pixels of approximately
15 m × 15 m. The one arc-second SRTM DEM product was used to remove the topographic
phase of each interferogram. The temporal and perpendicular baselines are presented
in Table 2. We applied a power spectrum adaptive filter to mitigate the phase noise and
mask out decorrelation areas with a coherence threshold of 0.6 [50]. We unwrapped all the
interferograms using the minimum cost flow approach [51]. To compare the deformation
between PALSAR-1 and -2, a local reference point with high coherence nearby the twin
landslides was selected for calibration of the unwrapped phase. Tropospheric artifacts
may contaminate the ground deformation in mountainous regions. As our study area
was very small, we mitigated tropospheric artifacts by fitting the topographic-related
components [52]. Residual atmospheric and orbital errors were mitigated using a linear
deramping approach.

Table 2. The interferogram pairs from ALOS PALSAR-1/2 and their temporal and perpendicular
spatial baselines.

ALOS PALSAR-1 ALOS PALSAR-2

ID
Master–Slave

(YYYYMMDD)
Time Span

(Days)
B⊥ (m) ID

Master–Slave
(YYYYMMDD)

Time Span
(Days)

B⊥ (m)

1 20090630–20090815 46 −32 1 20151009–20151218 70 200
2 20091231–20100215 46 491 2 20171201–20180209 70 −98
3 20100703–20100818 46 116 3 20180209–20180601 112 −44

4 20180601–20180727 56 −6
5 20181116–20190125 70 15
6 20190125–20190531 126 −60
7 20190531–20190726 56 78
8 20190726–20190906 42 −10
9 20200306–20200529 84 169

We calculated the light-of-sight (LOS) movement from each interferogram. By dividing
the time interval between the interferogram pairs, we calculated the deformation velocities
along the LOS direction. Assuming the slopes move purely along the downslope direction,
the InSAR-estimated LOS velocities (Vlos) can be projected into the downslope velocities
(Vds) with the following equation [47,53]:
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Vds =
Vlos

sin(αaspect − β) sin θinc cos αslope + cos θinc sin αslope
(2)

where αaspect and αslope are the aspect and slope angles, respectively, which can be calculated
using the SRTM DEM data; β is the flight direction of the SAR satellite; and θinc is the
local incidence angle, which can be calculated using the SAR geometry and SRTM DEM
data. To reduce the noise in the calculation of slope, aspect, and local incidence angles, we
applied a Gaussian filter with a 7 × 7 window (around 200 m) to the SRTM DEM.

3.4. Climatic Factors

Air temperature and precipitation data from 2000 to 2019 were used to analyze their
impacts on the evolution of the twin landslides. We calculated four temperature indica-
tors: mean annual air temperature (MAAT), thawing index, warming days, and average
temperature in the coldest month of the year. To account for warming days, we calculated
the number of days with a daily temperature higher than 10 ◦C. The thawing index TI is
the cumulative number of degree days above 0 ◦C for a given thaw season, which can be
calculated by [54]:

TI =
NT

∑
i=1

Ti, Ti > 0 (3)

where Ti is the daily temperature on day i and NT is the number of days in a year with a
temperature greater than 0 ◦C.

We calculated the annual total precipitation, precipitation intensity, extreme precipi-
tation, and the number of consecutive drought days in a year. The precipitation intensity
is the ratio between the total precipitation and the duration of precipitation days, and
represents the average amount of precipitation in a certain duration. Daily precipita-
tion of between 10 and 25 mm is defined as moderate rainfall by the World Meteoro-
logical Organization. However, because the annual precipitation is about 450 mm, we
consider a daily precipitation of higher than 15 mm to be extreme precipitation in our study.
The consecutive drought days is the number of days without precipitation.

3.5. Risk Assessment

We evaluated the potential risks related to the twin landslides and their surroundings
in the same slopes. A landslide dam forms when a landslide reaches the bottom of a valley
and causes partial or complete blockage of a river [55]. The sudden collapse of landslide
dams and the rapid release of water storage poses a great risk of flooding downstream [56].
The dimensionless blockage index (DBI) has been developed for the prediction of potential
risks of a landslide dam by linking the stability of a landslide dam to three geomorphic
parameters [57]. The dam volume Vd controls the dam height Hd, and is considered as
the main stabilizing factor. The watershed area Ab indirectly controls the channel flow
and flow power, and is the main factor influencing dam instability. The dam height is an
important variable for evaluating the stability of landslide dams against overtopping and
pipeline failure. Thus, the DBI can be expressed as [57]:

DBI = log(
Ab × Hd

Vd
) (4)

As only QLDT01 has caused the formation of a landslide dam, we calculated the DBI
only for QLDT01. The dam height was obtained from UAV-based DEM data. The volume of
the landslide dam was calculated from high-resolution UAV-based DEM using the cut-and-
fill volume tool in the Global Mapper software. The hydrological analysis tool was used to
calculate the catchment area from UAV-based DEM in ArcGIS (version number: release 10.7,
developed by Environmental Systems Research Institute, Inc., located in RedLands, CA, USA).
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4. Results

4.1. Spatiotemporal Variations of the Twin Landslides

The occurrence and development of the twin landslides are shown below (QLDT01 in
Figure 2 and QLDT02 in Figure 3). Based on visual interpretation of optical and PALSAR-
1/2 SAR backscatter images, we infer that QLDT01 occurred between October and De-
cember of 2009, whereas QLDT02 occurred sometime between October and November of
2015. The failure of QLDT01 caused the mud and rubble to slide into the river channel and
almost blocked the Datong River (Figure 2B). Crack features can be found in the headwall
regions for both QLDT01 and QLDT02 as far back as 2009 (Figures 2A and 3A). As there
are no high-resolution images in our study before 2009, we cannot precisely determine
the exact initialization time of these cracks. Compared to 2009, the cracks in QLDT02 had
significantly enlarged during 2009–2015 before its failure. The development of QLDT01 is
slow, and its slide into the Datong River almost stopped during 2010–2018. Contrary to
QLDT01, the headwall of QLDT02 continued to slowly retreat during 2009–2015. The mass
of QLDT02 slid along the northwest side of the headwall region and caused the formation
of a dammed lake at the foot of the slope.

Figure 2. Temporal variations of landslide QLDT01: (A,B) Google satellite images of landslide
boundary changes in 2009 and 2010 and (C) landslide evolution in 2010, 2017, and 2020.

The total area of the QLDT01 slide is about 76.5 × 103 m2 following the slope failure
in 2009. The landslide body slid into and dammed the Datong River. QLDT01 slowly ex-
panded at an areal growth rate of 0.5 × 103 m2 during 2011–2018 (Figure 2C). The total area
for slope failure of QLDT02 is about 131 × 103 m2, which is about double that of QLDT01
(Figure 3C). A small dammed lake has formed at the toe of QLDT02. The areal growth
rate of QLDT01 is 10.7 × 103 m2 during 2016–2018, which has slowed to 5.5 × 103 m2

during 2018–2020.
The slope failure of QLDT01 completely dammed the Datong River and rerouted its

flow (Figure 4). The width of the Datong River beneath QLDT01 was 66 m before the slope
failure in 2009. The landslide body slid into the river and reached to about 4 m beyond the
northern bank when the slope collapsed. The river quickly expanded towards the northern
bank, whereas the river’s width changed to 16 m in 2010. Under continuous fluvial erosion,
the northern bank expanded northward by about 30 m during 2010–2017, whereas the
river’s width changed to 48 m in 2017. In other words, the average bank erosion rate was
about 4 m/year during 2010–2017.
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Figure 3. Temporal variations of landslide QLDT02: (A,B) landslide in Google satellite and Gaofen-2
satellite images from 2009 and 2015; the yellow arrow is the direction of movement of the landslide.
(C) Landslide characteristics recorded by Gaofen-2 satellite images in 2015, 2018, and 2020. A dammed
lake is formed at the toe of the slope, as shown in (D).

Figure 4. River bank changes of Datong River beneath the twin landslides in 2009, 2010, and 2017.
In 2009, the thinnest section of the Datong River was about 66 m. In 2010, the southern river bank
expanded northward due to the collapse of Landslide QLDT01, and the width was about 16 m.
In 2017, the north bank continued to expand northward, and the thinnest section of the Datong River
was 48 m.

4.2. InSAR-Derived Downslope Movement of the Twin Landslides

We derive the downslope movement of twin landslides before and after their fail-
ure from PALSAR-1/2 InSAR measurements during 2009–2010 and 2015–2020 (Figure 5).
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Significant downslope movement is observed within the twin landslides, whereas the
maximum displacement rate reaches up to 15 mm/day. We observe strong displacement of
up to 5 mm/day outside the twin landslides. To evaluate the potential risks related to the
twin landslides and their surroundings, we outline one polygon adjacent to the QLDT02
based on the phenomenological features from UAV images (potential risk zone (PRZ) in
Figure 5L).

During the summer before the failure of QLDT01, significant downslope velocities
up to 15 mm/day are observed in the boundary and central regions of the landslide body,
whereas the mean value is about 4 mm/day (Figure 5A). Five years later, after the failure of
the slope, the mean downslope velocities are smaller than 0.5 mm/day in both the summer
and winter seasons during 2015–2020 (Figure 5D–F).

We observe that for QLDT02 the mean downslope velocities are about 1.6 mm/day
with a maximum value of 5 mm/day from July 2009 to August 2010, i.e., the periods just
before and after the failure of QLTD01 (Figure 5A–C). A distinct scarp can be observed
in the high-resolution optical image at the head of the landslide body (Figure 3A), which
may cause severe InSAR decorrelation and result in no measurements in these regions.
The failure of QLDT02 occurred during October and December of 2015; however, there are
no valid InSAR measurements due to this severe decorrelation. We observe that significant
downslope velocities with mean values of about 2.3 mm/day are pronounced in QLDT02
during July–February of 2016–2020 after slope failure (Figure 5E,H,K). On the contrary,
QLDT02 is inactive during March–June (Figure 5F,G,I,J,L).

Figure 5. The downslope velocity is derived from line-of-sight (LOS) deformation using Equation (2).
The background map is the shaded relief map derived from UAV DEM. The twin landslides (QLDT01
and QLDT02) and the potential risk zone (PRZ) are marked by red polygons in the bottom right-hand
corner of the subfigures. The positive values refer to the movement in the downslope direction.
The red triangle denotes the location of the reference point.
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5. Discussion

5.1. Triggering Mechanisms
5.1.1. Precipitation

In general, changing precipitation patterns increase subsurface saturation and pore
pressure, which increase the likelihood of slope failure [58]. Extensive or extreme precipita-
tion and rapid snow/ice melt are therefore likely to increase the frequency and magnitude
of landslides [59,60]. The precipitation data near the twin landslides show fluctuating
upward trends during 2000–2019 (Figure 6A). The annual precipitation is 451 mm in 2009
and 448 mm in 2015, which is significantly higher than the mean annual precipitation
since 2000. The annual precipitation in the preceding year is higher than in the year of
slope failure.

Figure 6. Variations of precipitation during 2000–2019: (A) variations in annual precipitation, (B) pre-
cipitation intensity, (C) number of consecutive drought days in a year.

To evaluate the impacts of precipitation events on the occurrence of the twin landslides,
we graphed the daily precipitation before slope failure (Figure 7). An extreme precipitation
event of 35.8 mm is recorded in August 2009. The accumulated precipitation was about
193 mm during August–September 2019 (Figure 7). The number of consecutive drought
days is among the lowest during 2000–2009 (Figure 6C). Extensive rainwater may increase
the pore water pressure and reduce the shear strength in weak soil layers. Thus, we infer
that the occurrence of QLDT01 may have been primarily triggered by extensive precipi-
tation. In 2015, there was no extreme precipitation event such as that in 2009, however,
the annual precipitation was higher than the 20-year average (Figure 6A). The number of
consecutive drought days was below the average (Figure 6C). Therefore, we presume that
increased precipitation is likely one of the triggering factors of landslide QLDT02.
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Figure 7. Daily and cumulative precipitation during August–December, 2019. A maximum daily
precipitation of 35.8 mm was recorded in August 2009.

5.1.2. Freeze–Thaw Processes

Climate warming and disturbance may have strong impacts on slope stability in cold
environments [3,4]. In permafrost areas, rocks are glued together by ice filling their cracks
and crevices. Freeze–thaw processes are characterized by variability in subsurface tem-
perature and moisture content, which results in substantial fluctuations of shear strength
(cohesion and friction angle) and drives landslide initiation [61]. The transition from
perennially frozen to seasonally frozen ground accelerates the effect of freeze–thaw pro-
cesses on both bedrock and unconsolidated material [62]. As the air temperature increases,
the warming and thawing of permafrost may weaken rock faces and the inherent stability of
permafrost, leading to slope failure [63]. In mountain permafrost regions, e.g., the European
Alps, Canada, and the Tibetan plateau, researchers have recorded an increasing tendency
of landslide activities due to the warming climate [9,64,65].

The MAAT shows an obvious warming trend during 2000–2019 (Figure 8A). The MAAT
in 2009 and 2015 is 2.32 and 2.36 ◦C, respectively, which is about 0.3 ◦C above the 20-year
average (Figure 8A). The MAAT values in the preceding years (2008 and 2014) are about
0.7 ◦C lower than in the failure years. The strong fluctuations in air temperature may
amplify freeze–thaw processes and thus affect slope stability. In 2009, the warming days
(the number of days with air temperature above 10 ◦C), the thawing index, and the average
temperature in the coldest month were all above their 20-year averages (Figure 8B–D). This
suggests that the warming events in 2009 might have been one of the triggers of QLDT01
failure. On the contrary, the warming days and thawing index in 2015 are lower than their
averages. However, the mean temperature of the coldest month in 2015 is about 0.7 ◦C)
above the 20-year average, which suggests a warm winter. Warm winters may slow down
freezing processes, allow the soil water to remain in an unfrozen state for a longer time,
thereby increasing the risk of slope failure.
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Figure 8. Variations in air temperature during 2000–2019: (A) mean annual air temperature (MAAT),
(B) warming days with an annual average temperature greater than 10 ◦C, (C) thawing index, (D)
average temperature of the coldest month.

The activities and kinematic patterns in the twin landslides and their surroundings
have been derived from InSAR measurements. We observe that the average downslope
velocities in QLDT01 and QLDT02 exhibit distinct seasonality (Figure 9). During the
early thawing periods from May to early July, the slopes are in an inactive state. In this
stage, soil thawing is shallow and does not reach the sliding surface, resulting in limited
downslope movement. During the late thawing and early freezing periods from late July
to the next January the slopes are in an active state, with average downslope velocities up
to 4 mm/day. In the late thawing stage, the sliding surface is thawed, which results in
significant downslope movement. Despite the shallow soil being frozen during the early
freezing season, downslope movement remains significant, as the sliding surface is in a
thawed state. During the early freezing period from February to April the slopes become
inactive, as the sliding surface is in a frozen state.
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Figure 9. Temporal variations for 2000–2019 in mean daily air temperature (MDAT), mean daily
precipitation (MDP), and average downslope velocities of QLDT01, QLDT02, and potential risk zone
(PRZ) (Figure 5L). The squares present the average downslope velocities, whereas the corresponding
lines show the start and end date of the SAR image pair. The error bars denote the standard deviation
of downslope velocities within the red polygons. The bottom panel plots the MDAT and MDP.

The seasonality of significant downslope movement during both the pre- and post-
failure stages suggest that the occurrence and development of the twin landslides were
strongly influenced by freeze–thaw processes. The seasonal pattern is different from the
seasonal deformation corresponding to freeze uplift and thaw subsidence due to ice–water
phase change constraints in the active layer [66,67]. To put this work in a spatial context,
we compare our study with several freeze–thaw-related slope instability studies on the
QTP. Meng et al. and Hao et al. [34,45] observed deformation velocity up to 100 mm/year
with a linear trend assumption using the multi-temporal InSAR technique on an earthflow
in Yushu, QTP. Dini et al. [68] characterized different magnitudes of LOS deformation over
different types of slope instability in the eastern Himalayas. Hu et al. [53] found similar
seasonal patterns of downslope velocity up to about 3 mm/day during the active stage
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in several rock glaciers in the East Kunlun Mountains. The less pronounced downslope
velocity may be primarily related to the kinematic behaviors of rock glaciers.

5.1.3. Other Triggering Factors

The slope failure of QLDT01 may be partially attributed to fluvial erosion at the slope
toe and its geomorphological characteristics. QLDT01 is situated at the confluence of
several rivers. The north bank of the Datong River facing landslide QLDT01 is the Wari
Gaqu River, which flows into the Datong River. This results in high runoff flow of the
Datong River, which is usually accompanied by transverse expansion when it is scoured
downward along the river. Under continuous erosion by river flow or streams, the slope
toe becomes too steep to hold itself, consequently resulting in slope failure [69]. Moreover,
QLDT01 has a slope of about 17.5 degrees on average, with a slope height of about 66 m,
which make it prone to slope failure.

Shaking from earthquakes may be a direct triggering factor of the QLDTL02 failure.
According to data from the China Earthquake Networks Center (http://www.ceic.ac.cn,
accessed on 10 November 2021), a Mw 5.2 earthquake occurred on 23 November 2015,
with a focal depth of 10 km and a direct distance of 24 km from QLDT02 (Figure 1A).
The Tuolaishan fault is the seismogenic fault of this earthquake according to the Qinghai
Earthquake Administration, China (www.qhdzj.gov.cn, accessed on 10 November 2021).
Earthquakes increase the occurrence of landslides due to ground shaking, liquefaction
of susceptible sediments, and swelling of soil materials caused by shaking, which allows
water to seep in rapidly. In addition, earthquakes can alter friction at the base of landslides,
thus accelerating their movement over several days or weeks [70,71].

5.2. Hazard Analysis

We evaluate the stability of the landslide dam of QLDT01 based on the DBI calcu-
lation. According to the DBI criterion proposed by Ermini and Casagli [57], the state of
landslide dam can be categorized as a stable domain (DBI < 2.75), an uncertain domain
(2.75 < DBI < 3.08), and an unstable domain (DBI > 3.08). The height of the landslide dam
ranges from 0 m at the toe of the landslide to about 40 m at the south bank of the Datong
River. The landslide dam volume and catchment area are 69 × 103 m3 and 4.4 × 103 m2,
respectively. Relying on different dam heights, the calculated DBI ranges from 2.55 to 2.97,
with an average of 2.78 (Figure 10). We find that the toe (Hd < 3.5 m) and top (Hd > 29 m) of
the slope in QLDTL01 can be considered as a stable domain, as their DBI is lower than 2.75.
The landslide dam is in the uncertain domain in the middle of the slope (3.5 m < Hd < 29 m),
which accounts for 70% of the entire slope. Thus, we infer that the QLDT01 is at risk of
further slope collapse.

While only a portion of the slope (QLDT02) has collapsed, we evaluate the stability
of the noncollapsed regions of the slope and the potential risks. Two long cracks (about
300–400 m) could be observed as of 2009. While one crack (QLDT01) collapsed in 2009,
only a small portion of another crack developed into a landslide (QLDT02) in 2015. Based
on the high-resolution UAV DEM (Figure 11B), we find that the slope height varies signifi-
cantly and the slope gradient is large, providing geomorphological conditions for slope
creep. In addition, many new cracks are found in the noncollapsed regions of the slope
(Figure 11A), suggesting the occurrence of strong internal movement. Moreover, continu-
ous InSAR-derived downslope movements are observed, further confirming the instability
of the noncollapsed slope (PRZ in Figures 5 and 9). The volume of the PRZ region is about
12 × 105 m3, which is 1.6 times larger than that of landslide QLDT01. In addition, there
are temporary houses in the area for locals to graze animals. A potential slope failure may
completely block the Datong River and cause a catastrophic disaster.
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Figure 10. The dimensionless blockage index (DBI) diagram of landslide QLDT01. When the landslide
dam is at the height of 3.5 to 29 m, the mean value of DBI is 2.87, which is in the uncertain domain
(UD). When the height of landslide dam is lower than 3.5 m and higher than 29 m, the average DBI is
2.66, which is in the stable domain (SD).

Figure 11. (A) The orthophoto map acquired by UAV in April 2021; the red lines denote the cracks.
(B) The UAV-derived DEM map.

6. Conclusions

We have documented the spatiotemporal evolution of two adjacent landslides on
the southeast slope of Qilian Mountain during their pre-failure and post-failure stages
from 2008 to 2020 by integrating multisource optical and radar remote sensing techniques.
The main conclusions are as follows:

1. The occurrence and development of the twin landslides and the adjacent river bank
have been determined using high-resolution optical and radar images.

2. Significant downslope movements are observed within the twin landslides (up to
15 mm/day) and their surrounding slopes (up to 5 mm/day). The downslope move-
ment exhibits distinct seasonality. During February-early July, the downslope velocity
is nearly inactive; during late July-next January, mean velocity of about 4 mm/day is
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observed. The seasonality of downslope movement during both pre- and post-failure
stages suggests that the occurrence and development of the twin landslide are strongly
influenced by freeze–thaw processes.

3. Combining data on precipitation, air temperature, and InSAR-based deformation his-
tory, we infer that the occurrence of the twin landslides is mainly related to extensive
precipitation, warm winters, and freeze–thaw processes.

4. From the UAV-based geomorphological features, InSAR-derived downslope move-
ments, and dimensionless blockage index, we infer that new collapse and slope failure
events may occur within the twin landslides and their surroundings, which may
completely block the Datong River and cause a catastrophic disaster.

Our study demonstrates the capability of multisource high-resolution remote sensing
techniques to monitor landslide activities in cold regions. As the impacts of climate warm-
ing becoming more extensive, freeze–thaw-related slope instability in climate-sensitive
regions (the boundary regions of permafrost and seasonally frozen ground, in this case)
should be afforded greater attention.
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Abstract: The Sentinel-1A/B satellite launched by European Space Agency (ESA) in 2014 provides
a huge amount of free Terrain Observation by Progressive Scans (TOPS) data with global coverage
to the public. The TOPS data have a frame width of 250 km and have been widely used in surface
deformation monitoring. However, traditional Multi-Temporal Interferometric Synthetic Aperture
Radar (MT-InSAR) methods require large computer memory and time when processing full resolution
data with large width and long strips. In addition, they hardly correct atmospheric delays and orbital
errors accurately over a large area. In order to solve these problems, this study proposes a data
partition strategy based on MT-InSAR methods. We first process the partitioned images over a
large area by traditional MT-InSAR method, then stitch the deformation results into a complete
deformation result by correcting the offsets of adjacent partitioned images. This strategy is validated
in a flat urban area (Changzhou City in Jiangsu province, China), and a mountainous region (Qijiang
in Chongqing City, China). Compared with traditional MT-InSAR methods, the precision of the
results obtained by the new strategy is improved by about 5% for Changzhou city and about 15%
for Qijiang because of its advantage in atmospheric delay correction. Furthermore, the proposed
strategy needs much less memory and time than traditional methods. The total time needed by the
traditional method is about 20 h, and by the proposed method, is about 8.7 h, when the number
of parallel processing is 5 in the Changzhou city case. The time will be further reduced when the
number of parallel processes increases.

Keywords: MT-InSAR; ground deformation monitoring; Sentinel-1A/B; image partition; block
adjustment

1. Introduction

Due to large coverage and high-precision, Interferometric Synthetic Aperture Radar
(InSAR) has been widely used for mapping surface deformation, such as urban surface
deformation [1,2], seismic deformation [3,4], landslide displacement [5–9], and mining
subsidence [10]. With the fast development of SAR satellite technology [11], the observation
range and frequency are both improved [12–14], providing cycle monitoring for a large-scale
or national wide area. However, the traditional processing strategies for Multi-Temporal
Interferometric Synthetic Aperture Radar (MT-InSAR) cannot efficiently process the huge
number of images with large spatial and temporal coverage. Furthermore, the possible
atmospheric phase screen and orbital errors exist in the SAR images with wide spatial
coverage are difficult to be corrected. Therefore, optimizing the InSAR processing strategy
and parameters is crucial for the application of wide-area InSAR data.

Using supercomputers or distributed computing systems, such as CASearth Cloud
Infrastructure Platform [15], and ESA’s G-POD environment [16], is a way to improve the
data processing efficiency, but it is too expensive to be popularized. Another way is to
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segment a large image into small blocks, which can significantly reduce the computation
burden and complexity in one block and improve the efficiency of data processing. Cur-
rently, data partition strategies are applied in some steps of SAR data processing, such
as phase unwrapping [17–20], orbital error correction [21], atmospheric correction [22,23],
and PS point decomposition [24,25], but not the whole data process. GAMMA software
provides a well-known patch-based point target analysis method, Interferometric Point
Target Analysis (IPTA) [26]. However, the method of using local reference points between
neighboring patches to extend the results to adjacent blocks is highly affected by unstable
connections, resulting in errors propagating in the result easily [27]. StaMPS method and
software [28] also provide a block strategy to select permanent scatterers, but it is time-
consuming for large-scale areas [29]. Data block processing often introduces systematic
errors, such as reference basis errors [29–31]. To remove these errors, external data (GNSS
and leveling) and modeling [32,33] are needed. Furthermore, the correction efficacy and
precision strongly depend on the precision and spatial distribution of external data.

To address the above problems, we propose a strategy to divide the original data
into small blocks by GAMMA software and process these blocks independently by the
traditional MT-InSAR method. Then, we use the least square method to estimate the basis
between each block and mosaic the corrected block results to obtain the overall results. To
validate our strategy, we selected the Sentinel-1 Terrain Observation by Progressive Scans
(TOPS) data of a city in the plain area (Changzhou City, Jiangsu Province) and a city in
the mountainous area (Qijiang, Chongqing City) in China for the experiment. The results
obtained by the traditional and the proposed methods are compared in terms of precision,
memory consumption, and time consumption. We also discuss the optimal overlap ratio of
blocks and the application of the proposed method.

This study is organized as follows: Section 2 describes the proposed method in detail.
The study area and the datasets are introduced in Section 3. In Section 4, we compare the
precision and time consumption of the proposed method and traditional method. The
block approach and the applicability scenarios of our method is also discussed in Section 5.
Finally, some conclusions are drawn in Section 6.

2. The Block MT-InSAR Data Processing Strategy

In order to solve the great calculation burden caused by Sentinel-1A/B TOPS data of
large spatial and temporal coverage, this paper proposes a data partition strategy based on
the MT-InSAR data method, referred to as the block MT-InSAR algorithm. First, the TOPS
data are co-registered in the study area to obtain registered single look complex (RSLC), and
then the RSLC data are partitioned and processed separately by the traditional MT-InSAR
algorithm. Then, the results are corrected by the adjustment model based on the spatial
consistency of homonymy points (the same ground deformation points located in different
blocks within the overlap areas.). Finally, the results are spliced to obtain the continuous
overall deformation results. The general flow of the method is shown in Figures 1 and A1.

Figure 1. Flowchart of the block MT-InSAR algorithm.
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2.1. Data Partition and Block Processing

Even partition [29], quadtree partition [22], and clustering algorithm partition [19,34]
have been used in some parts of data processing, such as atmospheric delay removal, PS
network construction, and phase unwrapping. In order to facilitate the splicing process,
this paper uses even partition to divide the original data into small blocks, in which the
block size and the overlap ratio should be considered.

Block size affects the precision and the processing efficiency of the phase unwrapping,
atmospheric delay, and orbit error partition. If the block interferograms are highly coherent
and easy to unwrap, the block size has little effect on phase unwrapping precision, but a
small block size would lead to high unwrapping efficiency [17]. Additionally, the atmo-
spheric delay in the MT-InSAR consists of a short-scale (few kilometers) and a long-scale
(tens of kilometers) component [35], so the block size smaller than these scales is conducive
to removing atmospheric delay. However, the too-small block size may remove the long-
wavelength deformation signal. The block width and height should be larger than 1/3
ALOS-2 data in range and azimuth for ALOS-2 (70 km) datasets [21]. Therefore, we set the
initial block size as ~30 km in length and width for S1A/B TOPS data.

The overlap ratio between blocks also affects the reliability of results and data pro-
cessing efficiency. The larger the overlap ratio the higher the reliability. For example, if a
block area is overlapped with the surrounding blocks in four directions by 10%, 36% of the
small block is overlapped with the surrounding blocks, and the overlap area will become
96% when the overlap ratio is 40% in width and height directions. (Figure 2a) However,
increasing the overlap ratio will lead to a lot of repeated calculations and reduce the data
processing efficiency. In order to improve the result reliability (>50% overlap area), we take
off the balance between the reliability of results and choose the overlap ratio of 20~40% for
further experiments.

 
 

 

(a) (b) (c) 

Figure 2. (a) Diagram of overlap ratio and overlap area. w and h are the width and height of the
overlap region, respectively, and W and H are the width and height of the image, respectively. So,
the overlap ratio is w/W or h/H. The shadow area is the overlap area in the block (red line) with the
surrounding blocks, and the overlap area is 1 − (1 − 2 × w/W) × (1 − 2 × h/H). (b) Diagram of the
coordinates acquirement of corner points in the overlap region. (c) Diagram of the adjustment model.
The circles represent the deformation points. The thicker the circles, the more times the regions are
overlapped. v represents the deformation rate of each point.

2.2. Results Correction Based on Least Square Estimation

After data partition, we process each block of data to obtain the deformation results
using the improved IPTA-InSAR method [36,37]. The obtained deformation results of all
the blocks are preprocessed through three steps. (1) Co-registration. Due to the location
errors caused by orbital errors and low resolution of DEM; the location of deformation
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results may have a systematic deviation of about 1–2 pixels after geocoding. Such deviation
can be solved by an overall offset correction using some feature points on the ground.
(2) Automatic extraction of overlapping regions. The deformation rates of the homonymy
points in the overlapping region determine the correction precision, so it is necessary
to identify the overlapping regions between the deformation results first. We use the
topological relationship between image overlays (quadrangles) to find the coordinates
of corner points in the overlap region (Figure 2b). (3) High-quality homonymy point
selection. We select homonymy points with high coherence and small uncertainty. After
these operations, the deformation results can be corrected by adjustment.

Errors can be removed during data processing. However, data partition makes each
block have a local reference point, and the benchmarks of these reference points may be
different, resulting in discrepancies between the results of adjacent blocks and affecting the
precision of the overall results. The difference in the deformation rates of the homonymy
points in the overlapping area is described as

veli,k − velj,k = δi,k − δj,k (1)

where veli,k and velj,k denote the deformation rate at deformation point k in image i and j,
respectively, and δi,k, and δj,k denote the error of the corresponding points. Since the error
contains mainly the difference in benchmarks, this value can be assumed as a constant.

The matrix form of Equation (1) is:

V = BX̂ − L (2)

where V =
[
δv1 δv2 · · · δvi · · · δvM

]T is the residual of the calculated values and

the observations, X̂ = [x̂1 x̂2 · · · x̂M ]
T is the difference between the reference points

of adjacent images estimated by the least square method. B is the coefficient matrix.
L = [vel1,k − vel2,k veli,k − velj,k · · ·]T .

To solve Equation (2), we have to determine the weights of the blocks according to the
quality of the data involved in the adjustment.

D(L) = σ2
0 P−1 (3)

σ2
0 denotes the variance of unit weight and P is the weight matrix. Assume that the

uncertainty of point i is given by δ. Then, the weight of the point is

pi =
C
δi

(4)

In this study, the data are partitioned into small blocks, which are processed indepen-
dently. The Helmert variance component estimation for multiple data classes is applied to
optimize the solution weights of each data set.

Sθ̂ = Wθ (5)

where θ̂ =
[
σ̂2

01 σ̂2
02 · · · σ̂2

0M
]T is the estimated variance of unit weight. Wθ is the

square sum of the corrected values, Wθ =
[
VT

1 PV1 VT
2 PV2 · · · VT

MPVM
]T . S is the

coefficient matrix. After obtaining θ̂, X̂ is solved using the least square method. Repeat the
above process until θ̂ satisfies the given threshold T = 3δ0, and the corresponding solution
is the optimal X̂ for each SAR image block. The corrected deformation rate is obtained by
Equation (6).

ˆveli,k = veli,k − x̂i (6)
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The posteriori variance of unit weight and the covariance array are used to evaluate
the adjustment observation. They can be obtained by

σ̂2
0 =

VT PV
r

(7)

Qx̂i = BT
i PBi (8)

In Equation (7), r is the number of redundant observations, and it can be referred to as
the number of degrees of freedom, r = N − M, with N denoting the number of observations,
and M denoting the row number of X̂. According to the error propagation, the covariance of
the estimate of the homonymy points in the overlap region can be obtained by Equation (9).

QL̂L̂ =
(

BQ−1
x̂ BT P

)
Q(BQ−1

x̂ BT P)
T
= BQ−1

x̂ BT (9)

To verify the precision of the adjustment results, the deformation difference of the
homonymy points before and after correction are compared. The block processing results
are verified by comparing with that of the traditional processing method (the result without
partitioning processing).

2.3. Result Mosaicking

The final step is to mosaic the corrected deformation results of all blocks. After geocod-
ing, the block results are horizontally mosaicked. After correction, the deformation of the
homonymy points in the overlapping area may still have differences, due to the different
errors distribution. We adopt the weighted average method to merge the deformation of
the homonymy points.

After correcting the deformation rate, we correct the deformation sequence. Assuming
that the deformation is linear, T(T1, T2 · · · Ta · · · Tt) is a deformation sequence, and the
corrected deformation sequence at time Ta can be obtained by

Ŝa =
∫ Ta

T1

(va + x̂a)dT = Sa + x̂a(Ta − T1) (10)

where Ŝa is the accumulated deformation after correction, va is the deformation rate. x̂a
is the correction of deformation rate, but cannot be calculated, Sa is the accumulated
deformation before correction. If the deformation is linear, x̂a is equal to the correction of
average deformation rate in the deformation sequences T. Variant x̂ can be calculated by
Equation (2), so the equation can be instead of Equation (11). Figure 3 is the diagram of
deformation sequence correction.

Ŝa = Sa + x̂(Ta − T1) (11)

Figure 3. Deformation sequence correction diagram.
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3. Experiment and Data Processing

3.1. Study Area and Datasets

Two study areas are selected to validate the proposed method. One is in Changzhou
City (31◦09′–32◦04′N, 119◦08′–120◦12′E), a coastal city in eastern China. This area is a
plain with an elevation of about 10 m [38]. It has a highly developed economy and urban
industry. The continuous expansion of urban and engineering projects has changed the
geological environment and led to frequent geological hazards. So, surface subsidence
monitoring in the area is necessary.

The other study area is Qijiang (28◦27′–29◦11′N, 106◦23′–107◦03′E), in western China.
It is in the transition zone from the southeastern edge of the Sichuan basin to the Yunnan-
Guizhou plateau. The topography is undulating. The mountainous area accounts for
67.6% of the total area and the hills account for 32.4%. The average elevation of this area is
254.8 m [39].

These two regions are used to test the applicability of the proposed method under
different error conditions.

We collected 110 Sentinel-1A/B TOPS images covering Changzhou City from path T69
and frame 99, between 5 January 2018 and 31 December 2020, and acquired 115 Sentinel-1
images over Qijiang from path T55 and frame 92, between 9 January 2018 and 31 December
2021. Specific image parameters and image acquisition time are shown in Tables 1 and A1
in Appendix A.

Table 1. The image parameters of the study areas.

Study Area Direction Path Heading Incidence
Pixel Spacing

(Rg × Az)
Num of
Images

Changzhou Ascending T69 −12.79◦ 36.65◦ 2.33 × 13.98 m 110
Qijiang T55 −12.65◦ 43.64◦ 2.33 × 13.96 m 115

3.2. Data Processing

Using the method described in Section 2, we partitioned the acquired single look
complex (SLC) images after co-registration and obtained 30 small blocks with overlapping
regions (Figure 4). The block size in Changzhou City is about 7000 × 1400 (pixels), and the
overlap rate is about 30%; the block size in Qijiang is about 6400 × 1600 (pixels), and the
overlap rate is about 25%.

The spatial baselines of Sentinel-1 images are short, so we connected each image
with two (temporally) adjacent images to form a network, only considering the tempo-
ral baselines. A multi-look operation (range: azimuth = 5:1) was applied to reduce the
noise. After the multi-look operation, the image size of Changzhou city was reduced to
1600 × 1400 (pixels) and that of Qijiang was reduced to 1500 × 1600 (pixels). The data were
processed by minimum cost flow (MCF) for phase unwrapping, and Goldstein filtering for
noise mitigation. The PS points were selected considering the phase coherence threshold
and the amplitude dispersion threshold of the amplitude map. Orbital error phases were
removed by polynomial fitting. Most atmospheric phases were removed by differenc-
ing between neighboring PS points, and the remaining was removed by spatial-temporal
filtering. The topographic residual phases were then removed using linear regression.
Finally, the deformation sequence was solved from the remaining phases using Singular
Value Decomposition (SVD). The obtained time series of deformation was corrected by the
method introduced in Section 2.2. The average deformation of the high-quality homonymy
points in the overlapping areas was used for correction. Finally, the result of traditional
processing and block processing were obtained. Figure 5 shows the deformation results of
Changzhou and Qijiang.
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Figure 4. Data coverage for (a) Changzhou City and (b) Qijiang City. The red line is the administrative
division boundary. The blue frame is the image coverage after partition and the shaded part is the
overlapping area. The gray blocks are not in the study area.

Figure 5. Deformation results of the study areas. The results of Changzhou found by (a) partition
method and (b) traditional method. The results of Qijiang found by (c) partition method and (d)
traditional method. (e–j) Are time series results of the selected points. The red “+” is the reference
point. The reference points in (a,c) are virtual reference points after free net adjustment because of
there are reference points in each small block before adjustment, and they are the center of gravity of
the image coverage. The reference points of (b,d) are the real reference points in data processing.

4. Result Analysis

When dealing with the deformation time series of a large area, most conventional al-
gorithms use one reference point for phase unwrapping and solve for PS point deformation
rates. If the distance between the PS point and the reference point is large, the precision
of the results is low. Reducing the size of image coverage by partition can improve the
precision of PS points. However, partition leads to different reference points for different
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blocks, so the deformation results should be corrected to follow one benchmark. In this
section, the partition and the traditional methods are compared in terms of precision and
time consumption.

4.1. Precision of the Deformation Rate

We compare the deformation results in Changzhou found by the partition method
and the traditional method in Figure 5. The two results show a similar distribution of
deformation, but a slight difference in details. We manually selected three regions A, B,
and C for analysis. The size of these regions is 1000 × 1000 (pixels) These three regions
are stable and outside the deformation region, so we assumed the deformation as 0. The
statistical analysis shows that the standard deviation (STD) of the partition results and
the traditional results in region A is 3.4 mm/yr and 3.7 mm/yr, respectively, in region B
is 4.1 mm/yr and 4.2 mm/yr, respectively, and in region C is 4.6 mm/yr and 4.6 mm/yr,
respectively. On the whole, the precision of the results obtained by the partition strategy is
slightly higher than that of the traditional processing results.

Figure 5c,d show the deformation results of Qijiang found by the two methods, which
generally agreed with each other but some local areas have some slight differences, espe-
cially in the circled areas D, E, F (the selection criteria is the same as A, B, C). The traditional
results contain a large number of uplift signals, which are not deformation signals but
residual errors. These errors are significantly less in the partition results. The STD of
the partition results in regions D, E, and F are 3.2 mm/yr, 3.1 mm/yr, and 3.6 mm/yr,
respectively, and the correspondence of the traditional results are 3.8 mm/yr, 3.9 mm/yr,
and 4.0 mm/yr, respectively. Therefore, the partition method outperforms the traditional
method in error removal.

The comparison results in Table 2 show that the partition method has higher precision
than the traditional method. In the Changzhou experiment, the former obtained a precision
of about 5% higher than the traditional method, and in the Qijiang experiment, the precision
improvement is about 15%.

Table 2. Precision of the deformation velocity in Changzhou and Qijiang found by the two methods.

Study Area Strategy Area
Number of

Points
Std

/(mm/yr)
Mean

/(mm/yr)
Difference
/(mm/yr)

Precision
Improvement

Changzhou

Partition

A 564,867 3.4

4.0

0.2 5%

B 589,430 4.1

C 593,479 4.6

Traditional

A 561,071 3.7

4.2B 582,648 4.2

C 591,199 4.6

Qijiang

Partition
D 992,679 3.2

3.3

0.6 15%

E 916,098 3.1

F 922,811 3.6

Traditional

D 986,163 3.8

3.9E 897,871 3.9

F 923,017 4.0

4.2. Precision of the Deformation Sequence

After correcting the deformation rates, we corrected the corresponding deformation
sequences. We selected the deformation time series of 3 points in each of Changzhou city
(P1, P2, P3) and Qijiang (P4, P5, P6) to test the result precision. These points are in the
overlapping regions, and they have different deformation magnitudes. P1 and P4 have
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large deformation rate, P2 and P5 have medium deformation rate, and P3 and P6 have small
deformation rate. The results are shown in Figure 5. In Changzhou City, the difference
between the deformation sequences obtained by our method and that obtained by the
traditional method is not significant. At P2, the deformation sequences obtained by the
two methods almost coincide (Figure 5f), and the deformation rate difference at the three
selected points is less than 1 mm/yr. The RMSE between the two results is 5.3 mm for P1,
3.2 mm for P2, and 4.0 mm for P3. We also selected the time series deformation of the three
points in Qijiang. The overall deformation trend and deformation magnitude obtained by
the two methods are basically the same. The RMSEs between the two results at P4, P5, and
P6 are 6.2 mm, 5.0 mm, and 3.0 mm, respectively.

In Figure 5e,h, the annual average deformation rates of these two points are more than
30 mm/yr, the difference between the deformation rates of these two points was about
1.5 mm/yr, and the deformation monitoring precision of InSAR was also basically in this
range. A simple proportional function model is used for correcting the time series. If the
deformation is nonlinear, the correction of this model might not be appropriate.

4.3. Time and Memory Consumption

The partition and parallel processing strategy can reduce the memory consumption of
every single process. Additionally, increasing the number of parallel processing can reduce
the time consumed by the whole data processing. The partition strategy can be roughly
divided into three stages: image partition, MT-InSAR processing, and correction. The total
time consumed by partition depends mainly on the processing times of image blocks, that
is, the total number of blocks divided by the number of blocks processed in a single parallel
session. The traditional processing spends all its time on MT-InSAR processing.

The program running time and memory consumption of the two strategies are listed
in Table 3. The traditional method costs about 20 h. The total time required for block
processing is 46.6 h when the number of parallel processing is 1. However, when the
number of parallel processing is greater than 2, the block processing needs less time than
the traditional processing. Additionally, it only needs 8.7 h when the number of parallel
processing is 5. In addition, the computer memory occupied by block processing is much
lower than that of traditional processing. In this experiment, the single memory occupied
by partitioning is only 1/20 of that occupied by the traditional processing. When the image
coverage is large or the computer memory is small, the traditional processing may cause
memory overflows and the data cannot be processed successfully, but this problem will not
happen to our data partition processing.

Table 3. Time and memory consumption of traditional processing and block processing with the
number of parallel processing 5.

Changzhou Qijiang
Traditional Partition Traditional Partition

Original size (pixels) 29,739 × 6892 29,739 × 6892 28,104 × 7648 28,104 × 7648

Partition strategy \ 6 × 5
~30% overlap \ 6 × 5

~25% overlap
Size of block (pixels) \ 7147 × 1373 \ 6374 × 1574

Platform CPU: AMD Ryzen 9 5900X 12-Core/RAM:64 G
Multi-look 5:1

Average number of points in a block \ 2,941,200 \ 2,493,200
Total number of points 50,941,512 51,178,814 51,620,120 51,883,633

Memory Usage 27.2 G 1.3 G 27.9 G 1.3 G
Time of partition \ ~1 h \ ~1 h

Time of InSAR processing ~20 h ~1.2 h ~20 h ~1.2 h
Time of correction \ ~0.1 h \ ~0.1 h

Total time ~20 h ~8.7 h ~20 h ~8.7 h
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5. Discussion

5.1. Space Consistency Correction

The precision of the deformation in each block can be calculated by Formula (9). In
the results of Changzhou, the unit weight mean error after adjustment is 0.13 mm/yr,
the precision of the block with the highest adjustment precision is 0.27 mm/yr, and the
precision of the block with the lowest adjustment precision is 0.59 mm/yr. In the results of
Qijiang, the unit weight mean error after adjustment is 0.28 mm/yr, the precision of the
block with the highest adjustment precision is 0.40 mm/yr, and the precision of the block
with the lowest adjustment precision is 0.81 mm/yr. The adjustment precision is plotted in
Figures 6 and 7, which show that the precision of the center blocks is higher than that of
the edge blocks.

 

Figure 6. (a) Deformation precision of each block after adjustment in Changzhou. (b) The histogram
of the adjustment precision of each block after adjustment, (c) the histogram of the difference of the
mean value of the overlapping area before and after adjustment of each block.

 

Figure 7. The same as Figure 6, but for Qijiang.

In theory, after adjustment, the deformation rates of the homonymy points in the
overlapping region should be the same. As Figure 6c shows, before the adjustment, the
difference between homonymy points in Changzhou is more than 5 mm/yr, with an STD
of 5.1 mm/yr, and after the adjustment, the difference almost converges to 0, with an STD
of 0.5 mm/yr. In Qijiang, the difference between homonymy points is more than 7 mm
before adjustment, with an STD of 3.9 mm/yr, and it is reduced to 0.6 mm/yr after the
adjustment. The precision of the block processing results in the two study areas was greatly
improved by adjustment, indicating that adjustment can improve the consistency of the
block deformation results.
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We selected 4 deformation areas (A, B, C, D) in the overlapping area in Changzhou
(Figure A2), and compared their deformation results before and after adjustment in Figure 8.
The results of the two image blocks in region A have little difference, so the improvement
of the result is not significant after the adjustment (Figure 8b,f). However, the results of
regions B, C and D are improved obviously after adjustment. The mean values of the
differences of deformation in these three regions change from 4.1 mm/yr, −5.6 mm/yr,
and 5.6 mm/yr to 0.3 mm/yr, 0.1 mm/yr, and 0.2 mm/yr after correction, and the spatial
consistency of the results improves more significantly.

 

Figure 8. The difference in the homonymy points before and after adjustment in regions A, B, C,
and D of Changzhou. (a) shows the location of the four regions. (b–e) Are the difference of the
overlapping areas before adjustment in regions A, B, C, and D, and (f–i) are the difference after
adjustment. (j–m) Shows the statistical histograms of the four regions.

5.2. Effects of Overlap Rate on Result Precision and Time Consumption

In the proposed partition strategy, partitioning the image is the first and most critical
step. Different partition strategies provide different precision results, and different data
processing efficiency. Because we adopt the even partition strategy, the size and overlap
ratio of the blocks have a great impact on the results. To analyze the effects of the overlap
ratio on the partition results, we set one block size and obtained the temporal deformation
results of Changzhou using the overlap ratios of 10%, 20%, 30%, and 40%, separately. The
results are shown in Figure A2. We evaluated the result precision (Table 4).

The precision of the deformation rates obtained by different overlap ratios is similar
because the mean values of the high-quality homonymy points in the overlap region are
used in adjustment, which is slightly influenced by the overlap region. As long as the block
size is the same, the precision of the results obtained by different overlap ratios are similar.
However, the time consumed by different overlap ratios is different. The larger the overlap
ratio, the larger the number of blocks and the longer the processing. When the number of
parallel processing is 5, the total time consumed by the four overlap ratios are 6.6 h, 7.6 h,
9.5 h, and 10.7 h, indicating that the consuming time increases with the increase of overlap
ratio. The increase in the overlapping area brings larger double-counted areas and raises
the reliability of the results. Considering the precision, reliability, and time consumption,
we choose 20% as the best overlap ratio. The experiments show that overlap ratio 20% has
similar result precision and time consumption with that of overlap ratio 10%, but it leads to
more than 64% overlap area, which contributes to a significantly higher reliability.
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Table 4. Results of using different block overlap ratios.

Overlap Ratio Total Overlap Block Size (Amount) Precision /(mm/yr) Time of Each Block Total Time

Traditional 0% 29,739 × 6892 (1)
A 3.7

20 h 20 hB 4.2
C 4.6

10% 36%
7000 × 1500 (20)
4539 × 1500 (5)

A1 3.5
1.2 h
0.8 h

6.7 hB1 4.2
C1 4.6

20% 64%
7000 × 1500 (25)
7000 × 892 (5)

A2 3.5
1.2 h
0.7 h

7.8 hB2 4.1
C2 4.6

30% 84%
7000 × 1500 (30)
5239 × 1500 (6)

A3 3.4
1.2 h
0.9 h

10.1 hB3 4.1
C3 4.6

40% 96%
7000 × 1500 (42)
4539 × 1500 (7)

A4 3.3
1.2 h
0.8 h 12.7 hB4 4.0

C4 4.5

5.3. Implications of Data Partition Strategy for MT-InSAR

The administrative boundary of a city is usually an irregular polygon, but the image
coverage is a regular quadrangle. Thus, the image coverage contains many data unrelated to
the study area. The traditional method will also process these data. If such data accounts for
a large proportion of the image, the data processing will waste a lot of time. The proposed
method only processes the block data inside the study area, which can improve the data
processing efficiency. In Figure 4, the gray blocks do not need processing. Furthermore,
the proposed method can refine the data processing for only the blocks with deformation,
which further improves the efficiency of data processing.

The difference in the image coverage will definitely lead to the difference in the results.
In this paper, we divide data into blocks, and process, correct, and splice the results of
all blocks. The atmospheric delay in small range data is easier to remove than that in
the data with large range. Studies have shown that the atmospheric phase in InSAR
data measurements has a close correlation with spatial scale [35]. The atmospheric phase
difference between two PS points with a distance less than 1 km is less than 0.1 rad2 [40],
so the smaller the area, the better the atmospheric error removal according to the error
propagation law. However, for large deformation areas, long-wavelength deformation
may be removed as orbital errors, due to the polynomial fitting [21]. Thus, the proposed
method is not fully applicable to the study area with long-wavelength deformation, such
as interseismic deformation.

The correction of the partition results is based on the assumption that the deformation
rates of the homonymy points are the same. However, the deformation acquired by InSAR
is the line-of-sight (LOS) deformation, and the deformation direction at each point is related
to the incidence angle. When the deformation of the homonymy point is obtained from
the same orbit and has the same incidence angles, the deformation rates should be the
same. If the partitioned data are acquired under different imaging geometries, there will be
inconsistency in the incidence angles, resulting in different LOS deformation. Therefore,
the incidence angle variation of the results should be considered when the partition data
are acquired from different orbits.

Finally, the method does not use control points for the adjustment. Although the
benchmarks between image blocks are unified, there may be a deviation between the unified
benchmark and the real deformation result datum. We only make a simple correction to
the result but using external data as control points may improve the correction.

6. Conclusions

In this paper, we propose to partition the data into blocks before obtaining the defor-
mation, to save memory and time for large-scale data processing. To validate this method,
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we used the Sentinel-1 TOPS data covering Changzhou, a plain area, and Qijiang, a moun-
tainous area in China. The time series deformation results were obtained in these two
regions using the traditional processing method (the improved IPTA) and the partition
processing method. The latter outperforms the former in precision, time consumption, and
memory occupation. Taking Changzhou City as an example, the memory occupation of the
traditional processing method is about 27.2 G, and the total time consumed by processing
is about 20 h. During partition processing, the memory occupation of each block is only
1.3 G, and the consumed time is 8.7 h when the parallel number is 5. We also compared the
precision of the results obtained by the two methods. The results obtained by the partition
processing in Changzhou is as about 4.0 mm/yr, while the precision of the traditional
processing is about 4.2 mm/yr. The correspondence in Qijiang is about 3.3 mm/yr and
3.9 mm/yr, respectively. The precision of the results obtained by the proposed method is
higher than that obtained by traditional processing.

In general, the proposed method can significantly reduce the memory occupation
and time consumption of data processing under the condition of sufficient parallelism,
and the precision of the results is higher than that obtained by traditional processing.
This method is suitable for monitoring the short-wavelength deformation in a large area,
such as large-scale urban deformation monitoring and large-scale landslide deformation
detection. However, further research is needed for the result splicing and its application to
long-wavelength deformation.
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Appendix A

Table A1. Parameters of the images used in this study.

Study Area Parameters Acquisition Date (YYYY/MM/DD)

Changzhou

Direction Ascending 2018/01/10 2018/01/22 2018/02/03 2018/02/15
Path T69 2018/02/27 2018/03/11 2018/03/23 2018/04/04

Heading −12.79◦ 2018/04/16 2018/04/28 2018/05/10 2018/05/22
Incidence 36.65◦ 2018/06/03 2018/06/15 2018/06/27 2018/07/09

Pixel Spacing
(Rg × Az) 2.33 × 13.98

2018/07/21 2018/08/02 2018/08/14 2018/09/07
2018/09/19 2018/10/01 2018/10/13 2018/10/25

Number of
images 110

2018/11/06 2018/11/18 2018/12/12 2018/12/24
2019/01/05 2019/01/17 2019/02/10 2019/02/16
2019/02/22 2019/03/06 2019/03/18 2019/03/30
2019/04/05 2019/04/11 2019/04/23 2019/04/29
2019/05/05 2019/05/11 2019/05/17 2019/05/23
2019/05/29 2019/06/04 2019/06/10 2019/06/16
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Table A1. Cont.

Study Area Parameters Acquisition Date (YYYY/MM/DD)

2019/06/22 2019/06/28 2019/07/04 2019/07/10
2019/07/16 2019/07/22 2019/07/28 2019/08/03
2019/08/09 2019/08/15 2019/08/21 2019/08/27
2019/09/02 2019/09/08 2019/09/20 2019/09/26
2019/10/02 2019/10/08 2019/10/14 2019/10/20
2019/10/26 2019/11/01 2019/11/07 2019/11/19
2019/11/25 2019/12/01 2019/12/07 2019/12/13
2019/12/19 2019/12/25 2019/12/31 2020/01/12
2020/01/24 2020/02/05 2020/02/17 2020/02/29
2020/03/12 2020/03/24 2020/04/05 2020/04/17
2020/04/29 2020/05/11 2020/05/23 2020/06/04
2020/06/16 2020/06/28 2020/07/10 2020/07/22
2020/07/28 2020/08/03 2020/08/15 2020/08/27
2020/09/08 2020/09/20 2020/10/02 2020/10/14
2020/10/26 2020/11/07 2020/11/19 2020/12/01
2020/12/13 2020/12/25

Qijiang

Direction Ascending 2018/01/09 2018/01/21 2018/02/02 2018/02/14
Path T55 2018/02/26 2018/03/10 2018/03/22 2018/04/03

Heading −12.65◦ 2018/04/15 2018/04/27 2018/05/09 2018/05/21
Incidence 43.64◦ 2018/06/02 2018/06/14 2018/06/26 2018/07/08

Pixel Spacing
(Rg × Az) 2.33 × 13.96

2018/07/20 2018/08/01 2018/08/25 2018/09/06
2018/09/18 2018/09/30 2018/10/12 2018/10/24

Number of
images 114

2018/11/05 2018/11/29 2018/12/11 2018/12/23
2019/01/04 2019/01/16 2019/01/28 2019/02/09
2019/02/21 2019/03/05 2019/03/17 2019/03/29
2019/04/10 2019/04/22 2019/05/04 2019/05/16
2019/05/28 2019/06/09 2019/07/03 2019/07/15
2019/07/27 2019/08/08 2019/08/20 2019/09/01
2019/09/13 2019/09/25 2019/10/07 2019/10/19
2019/10/31 2019/11/12 2019/11/24 2019/12/06
2019/12/18 2019/12/30 2020/01/11 2020/01/23
2020/02/04 2020/02/16 2020/02/28 2020/03/11
2020/03/23 2020/04/04 2020/04/16 2020/04/28
2020/05/22 2020/06/03 2020/06/15 2020/06/27
2020/07/09 2020/07/21 2020/08/02 2020/08/14
2020/09/07 2020/09/19 2020/10/01 2020/10/13
2020/10/25 2020/11/06 2020/11/18 2020/11/30
2020/12/12 2020/12/24 2021/01/05 2021/01/17
2021/01/29 2021/02/10 2021/02/22 2021/03/06
2021/03/18 2021/03/30 2021/04/11 2021/04/23
2021/05/29 2021/06/10 2021/06/22 2021/07/16
2021/07/28 2021/08/09 2021/08/21 2021/09/02
2021/09/14 2021/09/26 2021/10/08 2021/10/20
2021/11/01 2021/11/13 2021/11/25 2021/12/07
2021/12/19 2021/12/31
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Figure A1. The detailed flowchart of the proposed method.
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Figure A2. The deformation results in Changzhou obtained using the overlap ratio of (a) 10%, (b) 20%,
(c) 30%, and (d) 40%. A1-C4 are the same areas as A–C described in Section 4.1.
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Abstract: Rainfall-induced landslides pose a significant threat to the lives and property of residents in
the southeast mountainous and hilly area; hence, characterizing the distribution pattern and effective
susceptibility mapping for rainfall-induced landslides are regarded as important and necessary
measures to remediate the damage and loss resulting from landslides. From 10 June 2019 to 13 June
2019, continuous heavy rainfall occurred in Longchuan County, Guangdong Province; this event
triggered extensive landslide disasters in the villages of Longchuan County. Based on high-resolution
satellite images, a landslide inventory of the affected area was compiled, comprising a total of
667 rainfall-induced landslides over an area of 108 km2. These landslides consisted of a large number
of shallow landslides with a few flowslides, rockfalls, and debris flows, and the majority of them
occurred in Mibei and Yanhua villages. The inventory was used to analyze the distribution pattern of
the landslides and their relationship with topographical, geological, and hydrological factors. The
results showed that landslide abundance was closely related to slope angle, TWI, and road density.
The landslide area density (LAD) increased with the increase in the above three influencing factors
and was described by an exponential or linear relationship. In addition, southeast and south aspect
hillslopes were more prone to collapse than the northwest –north aspect ones because of the influence
of the summer southeast monsoon. A new open-source tool named MAT.TRIGRS(V1.0) was adopted
to establish the landslide susceptibility map in landslide abundance areas and to back-analyze the
response of the rainfall process to the change in landslide stability. The prediction results were
roughly consistent with the actual landslide distribution, and most areas with high susceptibility
were located on both sides of the river valley; that is, the areas with relatively steep slopes. The slope
stability changes in different periods revealed that the onset of heavy rain on 10 June 2019 was the
main triggering factor of these group-occurring landslides, and the subsequent rainfall with low
intensity had little impact on slope stability.

Keywords: heavy rainfall; shallow landslides; TRIGRS model; spatial distribution; susceptibility
assessment; Longchuan County; Guangdong Province

1. Introduction

In recent years, an increasing number of intense rainfall events have occurred in moun-
tainous areas due to the impact of global climate change, which has dramatically increased
the frequency of global rainfall-induced landslides [1,2]. Rainfall-induced landslides are
not only widely distributed in the world but also occur frequently and cause significant
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damage to humanity [3–6]. Therefore, a good understanding of the fundamentals of rainfall-
induced landslide occurrence, distribution patterns, and susceptibility assessments can
provide useful guidance for regional disaster prevention and mitigation, and landscape
evolution [7–9].

A new landslide inventory that is generated after a major triggering event (e.g., an
earthquake, volcanic eruptions, or heavy rainfall) is referred to as an event-based landslide
inventory. Owing to the advancements in earth observation technology, such as multi-
temporal high-resolution optical satellite remote sensing, more high-quality earthquake-
induced landslide inventories have been developed. In particular, since the 2008 Wenchuan
earthquake, the establishment of coseisimic landslide inventories has made great progress.
At present, there are roughly 46 detailed coseismic landslide databases mapped as poly-
gons [10–13]. However, unlike earthquake events, the construction speed of landslide
inventories triggered by heavy rainfall events is still relatively slow, and currently there
are only a few heavy rainfall-induced landslide inventories [14–16]. The main reason is
that clouds are often a major obstacle in the affected areas, which may limit the visibility of
satellite images and thus affect the visual interpretation of rainfall-induced landslides [15].
At present, there are 16 public landslide inventories triggered by heavy rainfall events
around the world, with the majority of these landslide databases being on a small scale.
The southeast coastal region in China is economically developed and densely populated.
Influenced by monsoon rainfall, this area is also considered a landslide-prone zone [17,18].
Once landslides occur, the social and economic losses in this area will be huge. A compre-
hensive rainfall-induced landslide database not only contributes to a deeper understanding
of the event occurrence but also provides data support for the subsequent in-depth analysis
of the formation and evolution of the geological disaster chain[15,19]. However, there are
few rainfall-induced landslide inventories for a single event in the southeast coastal region,
and thus more analyses are needed for rainfall-induced landslide inventories in this area.

Rainfall-induced landslide susceptibility can provide valuable information for land-
slide risk assessment. Currently, there are two quantitative methods for assessing the
susceptibility for rainfall-induced landslides, which include the data-driven methods based
on mathematical methods and physical-based methods that couple the hydrological models
and infinite slope stability models. For the data-driven method, the relationship between
the influencing factors and the landslide occurrence are analyzed by mathematical mod-
els [20–22]. Currently, many models have been widely used in landslide susceptibility
mapping, particularly with the development of machine learning technology, such as logis-
tic regression [23,24], random forest [25], artificial neural network [26], convolutional neural
network (CNN) [27], support vector machine (SVM) [28], and decision tree [29]. However,
the outcomes of landslide susceptibility mapping based on the data-driven method could
be subject to considerable uncertainties due to errors and variability in model choice, data
selection, system understanding of weighting factors, and human judgment [30,31]. Mean-
while, the data-driven model does not possess the timeliness of emergency assessment for
a single triggering event, because it requires sufficient landslide data to establish the sus-
ceptibility assessment model. As a consequence, assessment results frequently lag behind
practical application and cannot serve the emergency assessment in a short time [32,33].
Otherwise, due to the fact that the majority of these models are trained by regional landslide
data and are thus limited by regional geological and geomorphic characteristics [14,34,35],
the data-driven model’s applicability in different areas is greatly diminished. However, the
physically based landslide susceptibility assessment can better solve the above problems.

Unlike the data-driven method, the physically based method does not take into
account actual landslide data, but rather simulates the physical process of rainfall-induced
landslide occurrence by coupling the hydrological and infinite slope models [36]. The
physically based method has been pervasively used because of its high predictive capability
and the most acknowledged feasibility for a quantitative assessment of the effects of the
individual parameters that contribute to landslide initiation [37] and it is a useful tool
for determining the susceptibility zonation of rainfall-induced shallow landslides [38].
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In addition, the wide application of GIS technology facilitates the wide application of
physical models in large areas [39,40]. Due to its preferable practicability and wide regional
applicability, physically based models are popular in the spatial prediction of regional
rainfall-induced landslides [41–45]. In recent years, some physically based models for
rainfall-induced landslide susceptibility mapping have been developed, such as the TRIGRS
model [40], the Slip model [46–48], the GIS-TiVaSS model [45,49], the GIS-TISSA model [50],
the CRESTSLIDE model [51,52], and the HIRESSS model [53–55]. Among them, the TRIGRS
model, which accounts for transient pore water pressure, can predict the impact of heavy
rainfall on groundwater changes in a short period. At present, it is the most widely used
physically-based model of slope instability [41,56–58], and has been used in many countries
around the world, including Italy, the United States, China, South Korea, and Southeast
Asia [59–64]. However, the application of the TRIGRS model in China’s southeast area is
limited so it is necessary to investigate the applicability of the model in the spatio-temporal
prediction of rainfall-induced landslides in the southeast mountainous area.

Longchuan County experienced continuous heavy rainfall from 10 June 2019 to
13 June 2019. Extensive landslides, collapses, and debris flows occurred in the villages
of Longchuan county. A total of 352 villages of Longchuan County were devastated to
varied degrees, of which Mibei village in Beiling town was the most severely hit with
1571 individuals affected, 120 buildings fully collapsed, and more than 100 houses dam-
aged. The direct economic loss of this event reached CNY 110 million, exerting a significant
impact on the normal productivity and lives of local residents. Thus, the objectives of this
study are: (1) establishing a landslide inventory including landslides induced by the 2019
Longchuan heavy rainfall event and analyzing the spatial distribution of landslides with
topographical, geological, and hydrological factors; (2) conducting the physically based
susceptibility assessment based on a new open-source tool named MAT.TRIGRS(V1.0)
for predicting the spatiotemporal distribution of rainfall-induced landslides and back-
analyzing the response of the rainfall process on the change of landslide stability.

2. Study Area

Longchuan County is situated in the northeast of Guangdong Province, spanning from
23.8◦N to 24.7◦N of latitude and from 115.0◦ to 115.6◦E of longitude, and covers an area of
approximately 3089 km2 on the surface. The study area is Beiling Town, which is located
in the north of Longchuan County and the upper reaches of Dongjiang River. The climate
in the region is subtropical monsoon with abundant rainfall and sunshine. The annual
rainfall is 1500 mm, and the average temperature is about 22 ◦C. The study area experiences
the most rainfall in May, June, and July. The geomorphic unit of the study area is a hilly
landform with an elevation range from 100 m to 1100 m (Figure 1). The mountains are steep,
and the peaks are conical due to the relatively developed hydrographic nets and strong
topographic cutting in this area. As a result, numerous “V” shaped valleys developed in
this area, with slope angles ranging from 20 to 50 degrees. The main lithology of the study
area is acid intrusive rock of Ordovician and Silurian, mainly monzogranite (O3-S1), which
accounts for more than 70% of the rock in the whole study area (Figure 2a). In addition, tuff
of Yousheng formation of Middle Cretaceous (K2ys) and quartz mica schist of Daganshan
formation of Sinian(Z2djs) also developed in this area (Figure 2a). The main land use type is
forest, which accounts for 80% of the whole study area, followed by cropland, accounting
for more than 10% (Figure 2b).
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Figure 1. Mapping shows the location and elevation of the study area; (a) Guangdong Province;
(b) location of Longchuan county; (c) the elevation and water net distribution of the study area.

Due to the unique geographical and climatic conditions, Longchuan area experiences
several large or small rainstorms every year, making it one of most vulnerable zones to
geological disasters. From 10 June 2019 to 13 June 2019, Longchuan County suffered
continuous heavy rainfall; this rainfall event triggered a large number of landslides. As
far as local people can recollect, since the evening of the 10 June 2019, transportation has
been disrupted, communication has been lost, and electricity has been cut off. Meanwhile,
the settlement below the mountain was engulfed in mist, and the sound of collapses and
landslides was constant.
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Figure 2. (a) Geological map of the study area obtained from 1:200,000 geological maps published by
China Geological Survey (http://dcc.cgs.gov.cn/, accessed on 1 July 2022); (b) the land use type map
of the study area derived from the 10-m resolution global land cover results [65].

3. Data and Method

3.1. Landslide Mapping

The availability of high-resolution satellite images on the Google Earth (GE) platform
allowed us to conduct a detailed visual interpretation of landslides [66,67]. The remote
sensing images used for landslide interpretation in this study are based on the GE platform.
It was important that the high-resolution satellite image covered the entire study area, and
the dates of images before and after the rainfall event were mainly in January 2019 and
January 2021. Meanwhile, given the relatively long interval between the images before
and after the rainfall event, we obtained the Sentinel-2 images with 10 m resolution as a
supplementary (the pre- and post-events images were 17 April 2019 and 24 September
2019, respectively) (Figure 3). The landslide inventory was checked by Sentinel-2 images to
ensure that the interpreted landslides were caused by the 2019 rainfall event. The reason
for selecting these two images was that they had the closest interval between rainfall events
without cloud cover in the study area. Landslides were identified by visual interpretation
and mapped as polygons. Since the study area has high vegetation coverage, landslides
can be better delineated by satellite images before and after this event. Figure 3 depicts the
Sentinel-2 satellite images before and after the rainfall. According to remote sensing images,
most landslides triggered by this event were small and medium-scale shallow landslides,
and a majority of them were located near Mibei village, showing obvious group-occurring
characteristics (Figure 4).
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Figure 3. Mapping shows the Sentinel-2 images before and after the rainfall event; (a) satellite
image before rainfall event taken on 17 April 2019; (b) satellite image before rainfall event taken on
24 September 2019.

 

Figure 4. (a) Aerial photograph of Mibei village after the rainfall event, houses are damaged by
rainfall-induced landslides; (b) group-occurring shallow landslides; (c) the landslide damaged the
hillside residences, and the floors on the second floor crashed on the first floor; (d) road damage
caused by landslides (Picture source: http://www.gdlctv.com/Pc/index/new_detalis.html?id=3320,
accessed on 25 June 2022).
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3.2. Rainfall Data

We collected the precipitation data over the past two decades from 2000 to 2020 in
Longchuan County (Figure 5). The results show that the average rainfall remained between
1200 and 2400 mm, with periodic fluctuations. The annual rainfall in 2006 and 2017 was
unusually high, reaching almost 2300 mm or more. In comparison, the annual rainfall in 2019
was low with 1500 mm, which was roughly the same as the recent 20-year average (Figure 5a).
Comparing the monthly rainfall in 2019 with the average value over the past two decades
(Figure 5b), we also found that the rainfall from March to June in 2019 was higher than the
monthly average rainfall in the last 20 years. The precipitation in June of 2019 was 300 mm,
slightly higher than the monthly average rainfall of 250 mm in previous years.

 
Figure 5. Monthly rainfall data of Longchuan County in the past 20 years from 2000 to 2020;
(a) monthly and annual average rainfall data over the last 20 years; (b) comparing the monthly
rainfall in 2019 with the average value over the last two decades.

We obtained the data for the rainfall every 12 h based on the rainfall stations of China
Meteorological Administration. Eight national rainfall stations within 50 km of the study
area were utilized for interpolation, and the most popular Kriging interpolation algorithm
was used to obtain the spatial distribution of rainfall (Figure 6). The results show that
this rainfall event occurred primarily from 10 June 2019 to 13 June 2019 (Figure 7). The
cumulative rainfall was basically the same, remaining at 210 to 220 mm, with rainfall in the
west slightly higher than that in the east (Figure 6). Figure 8 shows the distribution of daily
rainfall from 10th to 13th of June during this rainfall event. The rainfall on 10 June 2019 was
the heaviest, peaking at around 120 mm, accounting for more than half of this rainfall event.
The rainfall for the next three days was expected to be around 20–40 mm. Otherwise, the
spatial change of daily rainfall in the study area from June 10 to 13 was relatively small, and
the difference of daily rainfall of the study area was essentially maintained within 10 mm.
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Figure 6. Mapping shows the spatial distribution of total rainfall from 10 June 2019 to 13 June 2019.

 

Figure 7. Data of the rainfall every 12 h from the national rainfall stations in the study area from
1 May to 30 June.
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Figure 8. Mapping shows the distribution of daily rainfall from the 10th to 13th of June during this
rainfall event; (a) 10 June 2019; (b) 11 June 2019; (c) 12 June 2019; (d) 13 June 2019.

3.3. Data Related to Other Influencing Factors

To assess the role of topographic, geologic, and hydrologic factors on the distribution
of rainfall-induced landslides, we obtained several terrain metrics (i.e., elevation, hillslope
gradient, and topographic relief) and lithologic and hydrological data. The elevation data
were derived from ALOS PALSAR DEM with 12.5 m resolution, which were then resampled
into a 5 m resolution based on the bilinear algorithm. The hillslope gradient and slope aspect
were derived from the DEM data. In addition, we estimated the topographic relief from the
elevation range within a 1.0 km radius. TWI was computed using GRASS GIS and the DEM
data. Drainages were also derived from DEM by AcrGIS. The road data were downloaded
from the OpenStreetMap Data (https://master.apis.dev.openstreetmap.org/export#map=
11/35.2510/103.4308, accessed on 5 June 2022). The lithology data are obtained from
1:200,000 geological maps published by China Geological Survey (http://dcc.cgs.gov.cn/,
accessed on 1 July 2022). The land use type data were derived from the 10 m resolution
global land cover results [65]. The spatial distribution of the above influencing factors was
converted into a raster format with a grid cell size of 5 m. Finally, seven influencing factors
were considered for the statistical analysis, including the elevation, hillslope gradient, relief,
slope aspect, land use type, road density, and distance to river (Figure 9). Meanwhile, the
relationship between different influencing factors and the occurrence of landslides were
analyzed by the polygon feature.
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Figure 9. Mapping showing the distribution of the influencing factors in the study area; (a) slope
angle; (b) topographic relief; (c) topographic wetness index; (d) aspect; (e) road density; (f) distance
to river.
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3.4. TRIGRS Model

The TRIGRS model (Transient rainfall infiltration and grid-based regional slope-
stability model) is a widely used and effective evaluation model of rainfall-induced shallow
landslide susceptibility [68,69]; the model was developed by the United States Geological
Survey (USGS) [40,70] and written by Baum et al in FORTRAN [40], and it needs specific
input parameters, mainly including rainfall parameters, soil mechanics parameters, and
hydrological parameters of the study area. Following the determination of the parameters,
the grid stability caused by the change of transient pore water pressure of each grid during
the rainfall period is calculated based on the GIS platform for the purpose of evaluating the
slope stability of all grids in a certain rainfall period.

Iverson [36] linearized the solution of the Richards equation and this serves as the
foundation for the infiltration models for wet initial conditions. It consists of a steady
component and a transient component of seepage. The steady seepage is determined by
the initial depth of the water table and steady infiltration rate. Under steady infiltration,
the slope is stable. Transient infiltration is the short-term change in pore water pressure
caused by rainfall. The infinite slope model is then applied using the computed transient
pore water pressure. The generalized solution in TRIGRS is:
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where ψ is the groundwater pressure head; t is time; N is the total number of time in-
tervals; Z is depth below the ground surface in the vertical coordinate direction; d is the
depth of steady-state water table; dLZ is the depth of the impermeable basal boundary;
β = cos2 δ − (IZLT/Ks), δ is the slope angle; IZLT is the steady surface flux; Ks is the sat-
urated hydraulic conductivity; InZ is the the surface flux or rainfall intensity for the nth
time interval; D1 = D0/ cos2 δ, D0 is the saturated hydraulic diffusivity; and H(t − tn) is
the Heaviside step function in which tn is the time at the nth time interval in the rainfall
infiltration sequence.

ier f c(η) =
1√
π

exp
(
−η2

)
− ηer f c(η) (2)

where er f c(η) is the complementary error function.
The model calculates infiltration (I) at each cell as the sum of precipitation (P) and any

runoff from upslope cells (Ru), with the caveat that infiltration cannot exceed the saturated
hydraulic conductivity (Ks):

I = P + Ru, i f P + Ru ≤ Ks (3)

I = Ks, i f P + Ru > Ks (4)

When P + Ru exceeds Ks in a cell, the excess is considered runoff (Rd) and is diverted
to nearby downslope cells.

Rd = P + Ru − Ks, i f P + Ru − Ks ≥ 0 (5)

Rd = 0, i f P + Ru − Ks < 0 (6)

The TRIGRS model calculates the slope stability using an infinite-slope stability analy-
sis (Equation (7)), as described in Iverson [36]. The ratio of resistant basal coulomb friction
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to gravitationally induced downslope basal driving stress characterizes the instability of an
infinite slope in the failure analysis [71]. This ratio Fs, is computed at depth Z by

Fs(Z, t) =
tan ϕ′

tan δ
+

c′ − ψ(Z, t)γw tan ϕ′

γsZ sin δ cos δ
(7)

where c′ is the cohesion of the soil, ϕ′ is the friction angle, γs is the unit weight, and
γw is unit weight of groundwater.

The flow chart of this study is shown in Figure 10.

 

Figure 10. Flow chart of this study.

4. Rainfall-Induced Landslide Inventory

4.1. Basic Characteristics

This rainfall event triggered 667 landslides over an area of 108 km2, and the majority
of them (552 landslides) occurred in the Mibei and Yanhua villages (Figure 11a,b). The
types of landslides were various, including shallow landslides combined with a small
number of flowslides, rockfalls, and debris flows with a total landslide area of 0.75 km2.
The largest landslide area was approximately 20,000 m2, the smallest area was 50 m2,
and the average landslide area was about 1100 m2. According to the statistics, there
were 288 landslides with an area of less than 500 m2, accounting for approximately 43%
of all landslides. There were 291 landslides with an area of 500~2000 m2, accounting
for approximately 44%. The number of landslides with an area of 2000~5000 m2 and
> 5000 m2 was 71 and 17, respectively (Figure 10).
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Figure 11. (a) Rainfall-induced landslide inventory of the 2019 heavy rainfall event in Longchuan
County, the landslide abundance area of this event; (b) map showing the zooming of the landslide
abundance area.

We calculated the landslide number density (LND) and landslide area density (LAD)
within a 1.5 km-radius moving window using a Gaussian density kernel function. The
LND and LAD maps indicated that the maximum LAD and LND of the study area were
9.5% and 78/km2, respectively (Figure 11). Landslides had obvious cluster distribution
characteristics, and a large number of landslides were concentrated within 2 km of the
Mibei Village (Figure 12).

4.2. Factor Analysis

In order to analyze the relationship between different influencing factors and the oc-
currence of landslides, we calculated the frequency distribution of landslides and landscape
(i.e., non-landslide area) and the LAD of different influencing factors. Figure 13 shows
the frequency density distribution of landslide and non-landslide areas, and Figure 14
shows the LAD in different intervals of six influencing factors (the higher the LAD, the
more likely the landsliding will occur). For elevation, the frequency density distribution
of landslide area and non-landslide area was basically the same (Figure 13a), the peak
LAD was situated at elevations from 300 to 450 m, indicating that landslides were more
likely to occur within this elevation range (Figure 14a). For the slope angle, the landscape
area was clustered between 5 and 20◦, while most of the landslides occurred on slopes
with the inclination of 15–35◦ (Figure 13b). Overall, the LAD increased with the increase
in the slope angle and was described by an exponential relationship of y = e(0.21+0.08x),
(where x is the slope angle and y is the LAD, Figure 14b), suggesting that with the increase
in the slope angle, the landslide occurrence possibility also increased. In terms of topo-
graphic relief, the relief of non-landslide area was primarily concentrated in the 200~250
m range, whereas the landslide area was primarily clustered in the range of 250~350 m
(Figure 13c). Overall, there was a negative logarithmic relationship between the LAD and
relief, indicating that the LAD decreased with the increase in relief (Figure 14c). On the
part of TWI, landslides were most commonly seen in the range with TWI values between
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4 and 6, and there was a positive exponential relationship between the LAD and TWI of
y = e(−12.16+1.18x) (where x is the TWI and y is the LAD), and the LAD increased as the
TWI increased (Figure 14d). For road density, landslides were primarily distributed in
the road density interval between 2 and 4 (Figure 13d). In general, LAD and road density
had a linear relationship of y = 0.14x + 0.45 (where x is the road density and y is the
LAD), which shows that landslides were more likely to occur in areas with a high road
density (Figure 14e). For the distance to river, landslides were more likely to occur in the
range of 100~400 m, and there was no obvious correlation between the LAD and the river
distance (Figure 14f).

Figure 12. Map showing spatial density of landslides triggered by this rainfall event. (a) landslide
number density (LND); (b); landslide areal density (LAD).

 

Figure 13. Frequency density estimates of landslides and landscape area for different influencing
factors; (a) slope angle; (b) elevation; (c) relief; (d) road density; (e) distance to rivers; (f) TWI.
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Figure 14. Map showing the relationship between the six influencing factors and the landslide
areal density (LAD); (a) elevation; (b) slope angle; (c) topographic relief; (d) TWI; (e) road density;
(f) distance to rivers.

Figure 15 shows the statistical results of the landslides and the slope aspect. Figure 15a
shows the frequency density of the landslides and landscape (i.e., non-landslide area) on
different slope aspects. The result demonstrates that the non-landslide area was evenly
distributed in all aspects, but most of the landslide area was concentrated in the aspect of
110◦~180◦ (SE to S). The statistical results of LAD show that the peak LAD of 1.4% was
present at the aspects from SE to S for the landslides.

Figure 16 shows the distribution of the landslide and non-landslide area, and the
average landslide area in each land use unit. The result shows that the predominant land
type was forest, which accounts for 80% of the study area, followed by cropland land,
which accounts for more than 10%. The area of urban area and bare land was less than
1%. Among all land types, shrubland was the most prone to landslides, with roughly 10%
of landslides occurring in the 5% area. Landslides were the least developed in cropland,
maybe due to the relatively gentle slope of this unit. Furthermore, statistics on the average
landslide area of different units suggest that bare land had the largest average landslide
area, with more than 1600 m2, followed by forest land, which had an average landslide
area of 1200 m2, and cropland had a relatively small average landslide area, only 600 m2.
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Figure 15. (a) The distribution of aspect within landslides and landscape; (b) correlations between
aspect and landslide area density (LAD).

 
Figure 16. Areal coverage (%) of different land use types for both landslide and landscape overlaid
by average landslide area calculated per each unit.

5. Physically Based Landslide Susceptibility Assessment

5.1. Brief Description of MAT.TRIGRS(V1.0)

To address the issues of the manual modification of plentiful model parameters and
complex data processing in the traditional TRIGRS model, Ma, et al. [72] proposed a new
TRIGRS model using Matlab®programming. It can directly read the grid data of TIF
format as the input, and then directly exports the prediction results of grid files, which
greatly simplifies data preparation and parameter setting. It includes the script files INPUT
DATA.m and TRIGRS.m. The INPUT DATA.m file is used to read the TIF input files, and
TRIGRS.m is the executable program that can be used to calculate the pressure head and
Fs. The minimum Fs and the corresponding pressure head are generated in the TIF format
by calculating the pressure head and Fs at various soil depths. More description can be
obtained in [72].

In the physically based model, in order to obtain accurate landslide prediction results,
sufficient and accurate input data are required [68,73–75]. For the soil thickness distribution,
the Z-model developed by Saulnier, et al. [76] was used to evaluate the soil thickness.
We assumed that the maximum thickness of the soil in the study area was 5 m and the
minimum thickness was 0.5 m based on previous studies [17,77]. Soil thickness can be
estimated and calculated by Equation (8). The bedrock in the study area is monzogranite
(O3-S1), and the landslide occurred primarily in the weathered soil layer on the bedrock’s
surface. The soil type of the weathered soil layer is sandy clay loam. Therefore, combined
with previous studies [17,52,78], we assigned the corresponding values to mechanical and
hydrological parameters including cohesion, internal friction angle, and soil weight of this
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soil type (Figure 17 and Table 1). Based on previous experience [57,79], saturated hydraulic
diffusivity D0 was set to D0 = 200Ks and the initial surface flux (IZLT) was generally less
than the Ks to one power or more and was set to IZLT = 0.01Ks.

hi = hmax −
(

Zi − Zmin
Zmax − Zmin

)
(hmax − hmin) (8)

 

Figure 17. Maps showing the distribution of slope angle (a), soil thickness (b) and flow direction (c).

Table 1. Mechanical properties of the soil.

Input
Parameters

Cohesion
(Kpa)

Friction Angle
(◦)

Unit Weight
(kN/m3)

Saturated
Hydraulic

Conductivity (m/s)

29 20 15 6.59 × 10−6

Simultaneously, in order to account for the uncertainties in the physical process that
lead to slope failure, the Monte Carlo simulation, which is a robust and well-known
approach in applications concerning probability analyses and reliability studies, was used
in this study [56,80]. We considered the uncertainties of two main parameters (cohesion
and internal friction angle) that primarily influence the slope failure. To characterize the
probability density function (PDF) of the two random variables, the normal PDF was
adopted. We assumed that the average and standard deviation of the cohesion were 29 kPa

63



Remote Sens. 2022, 14, 4257

and 9 kPa and those of the internal friction angle were 20◦ and 6◦. Based on the Monte Carlo
simulation, the input data were calculated by the TRIGRS model, yielding 1000 predicted
pictures of potential landslides in the study area. Finally, the slope failure probability (Pf)
of the study area was obtained.

5.2. Landslide Susceptibility Assessment

Figure 18 shows the distribution of the average value of 1000 predicted pictures
calculated by rainfall data over different time periods. From the calculation results, we
can observe that the Fs of all raster cells were greater than that before the rainfall event,
indicating that all slopes were stable (Figure 17a). In addition, after 12 h of the rainfall
(at 8:00 on 10 June 2019) 12-h rainfall reached 86 mm), the Fs of some grid cells in the
study area decreased. Particularly, some grid cells with a large slope angle began to fail
(Figure 17b). Then, although continuous rainfall occurred in the subsequent stage (after
11 June 2019), the change of Fs in the study area was relatively small, and few new grid
units became unstable.

 

Figure 18. Slope stability conditions, expressed in terms of Safety of Factor (FS) in different time
periods of this rainfall event; (a) 20:00 on 9 June 2019 (UTC + 8, before rainfall event); (b) 8:00 on
10 June 2019 (UTC + 8); (c) 20:00 on 11 June 2019(UTC + 8); (d) 8:00 on 13 June 2019(UTC + 8).
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We calculated the Fs results in the various slope interval over different time periods
(Figure 19). The result shows that the Fs of the grids with slope angles between 30 and 40◦
was mostly distributed between 1.3 and 2.5, with an average value of around 1.6. After
the onset of heavy rain on 10 June 2019, the Fs of raster cells rapidly decreased, and the Fs
of most grids ranged between 0.9 and 1.7, with an average value of about 1.2. From 8:00
on 10 June 2019, although there was rainfall every day at a subsequent stage, the average
rainfall was less than 2 mm/h. The low rainfall intensity had a little impact on the slope
stability. Rainfall increased to some extent on 12 June 2019, reaching 45 mm in 12 h, and the
Fs decreased slightly. For grids with a slope larger than 40◦, we also found the same trend
that the Fs of most grid units decreased rapidly after heavy rainfall, and then basically
remained unchanged. Overall, the Fs of grids with a slope greater than 40 degrees was
much smaller than grids with a slope between 30 and 40 degrees.

Figure 19. The statistical results of Factor of safety (Fs) in the various slope interval at different
rainfall times; (a) slope angle: 30~40◦; (b) slope angle: >40◦.

Figure 20 shows the probability distribution of slope failure in different time periods.
Obviously, the prediction results of Pf were roughly consistent with the actual landslide
distribution. Most areas with a high probability (blue areas) were located on both sides of
the river valley, that is, the areas with relatively steep slopes. Before rainfall, almost all the
grids in the study area were less than 0.1, indicating that the slope before rainfall was stable.
After 12 h of rainfall (at 8:00 on 10 June 2019), the area with steep slopes began to show the
instability phenomenon, and the Pf of some grids reached more than 0.6. In the following
continuous rainfall, with the decrease in rainfall intensity, there was a slight increase in the
area with a high probability of failure.
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Figure 20. Probability of slope failure (Pf) in different time periods of this rainfall event; (a) before
rainfall event; (b) 8:00 on 10 June 2019; (c) 20:00 on 11 June 2019; (d) 8:00 on 13 June 2019.

To quantitatively analyze the susceptibility results, we counted the class area, landslide
area, and the corresponding LAD of different susceptibility classes before and after rainfall
(Figure 21). Based on the natural breaks, the susceptibility level was divided into four
classes (i.e., very low, low, moderate, and high). The result shows that before the occurrence
of rainfall, most areas belonged to the low susceptibility area, and the majority of landslides
were concentrated in very low and low susceptibility areas. With the occurrence of rainfall,
the area of low susceptibility areas decreased, while the area of high susceptibility areas
increased. The statistical result reveals that 12.1% of the total landslides occurred in the
25.0% of the area which were classified as moderate and high. Meanwhile, the LAD
increased with the increase in the susceptibility level, which also shows that the model can
effectively predict the potential landslide-prone zone.
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Figure 21. Susceptibility class distribution and the occurrence of landslides within the study area;
(a) before rainfall; (b) after rainfall.

6. Discussion

China’s southeast area is situated in a subtropical monsoon climate zone with frequent
typhoons and rainstorms. The most common types of geological hazards in this area
are landslides and debris flows caused by rainfall, which have the characteristics of a
small scale of individual hazard point, a large number of groups, and a wide distribution
range [18,19]. In mountainous areas, the effect of the orographic amplification of rainfall and
the projection of rainfall-vector on hillslopes [81,82] might result in the windward hill-slope
receiving more rainfall, leading to more landslides on the hillslope scale [83]. Due to the
influence of the monsoon depression and tropical cyclone, the southeast monsoon prevails
in the Longchuan area during the summer (June and July). The landslide distribution
of this rainfall event indicates that the southeast and south aspect hillslopes are more
prone to collapse than the northwest-north aspect ones (Figure 14). The main reason for
this phenomenon is that the south slope is mostly windward, which causes more rainfall
and splash erosion in the area. Otherwise, the bedrock weathering degree of the south
slope will also be high due to the influence of environmental factors such as soil moisture
content, surface temperature, light time, and so forth, leading to relatively weak mechanical
parameters of rock and soil mass. Therefore, under the condition of heavy rainfall, the
south slope is more prone to landsliding.

Slope angle is an important topographic factor affecting the occurrence of landslides.
From the spatial distribution of the landslides, we can observe that the landslides were
mainly distributed in low mountainous areas, with the sections at elevations within
300~450 m and slopes ranging from 15 to 35◦ (Figure 12). The LAD increased with the
increase in slope angle and was described by an exponential relationship, indicating that
the landslides of this event more easily occurred in areas with steep slopes (Figure 13b).
TWI reflects how surface morphology affects soil groundwater level and moisture content,
which is represented by a theoretical measure of the accumulation of flow [84,85]. Accord-
ing to the statistical results, there was an exponential relationship between the LAD and
TWI, and the LAD increased as the TWI value increased. Especially when the TWI was
greater than 10, the LAD increased rapidly (Figure 14f). Higher soil moisture causes higher
pore water pressure and reduces the strength of rock and soil mass. As a result, when it
rains, the pore water pressure in these areas rises rapidly, resulting in slope failure.

Anthropogenic factors (such as land-use change, deforestation, hill cutting, etc.) play
a significant role in the initiation of landslides in active mountain ranges [86–88]. The
construction of roads has significantly altered the slope stability of mountainous areas,
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making them prone to landslides. When a road is built, the toe of the slope is excavated or
the weight of the slope is increased, and the overall stability above the slope is reduced,
resulting in the occurrence of new landslides or the reactivation of old landslides[89]. From
Figure 13d, we can observe that the landslides of this event were more likely to occur in
areas with high road density, illustrating that anthropogenic factors have accelerated the
instability of the slope in this area. Furthermore, in the Longchuan area, the majority of local
residents have excavated mountains to build houses, leading to a number of nearly vertical
artificial slopes. Meanwhile, human activities will fragment surrounding natural slopes
and increase the degree of rock weathering, which will also exacerbate slope instability in
mountain areas.

The formation lithology of the slope is the material basis of landslides. Granite
layers are one of the most common strata in China’s southeast coastal regions. Long-term
weathering of granite results in widely distributed residual soil layers. For the Longchuan
area, the bedrock is monzogranite (O3-S1), and the landslides occurred primarily in the
weathered soil layer on the bedrock surface [17,77]. The major influence depth of heavy
rainfall was limited to the superficial zone of slopes due to the difference in rainfall intensity
and permeability of granite residual soil. This is why the shallow surface zone was severely
affected by landslides [17]. A saturated seepage field was formed in the shallow surface
zone of slopes as a result of prolonged heavy rainfall. The mechanical strength of saturated
soil diminished, and slide failure occurred at the shallow surface saturation zone.

7. Conclusions

In this work, we established a landslide inventory including all the landslides induced
by the 2019 Longchuan heavy rainfall event in Guangdong Province, China. We described
the topographical, geological, and hydrological control of landslide hazards. Furthermore,
we conducted the physically based susceptibility assessment of shallow landslides based
on the MAT.TRIGRS (V1.0) tool. The following conclusions can be drawn: (1) This rainfall
event triggered about 670 landslides with a total area of 0.75 km2; the landslides had obvious
cluster distribution characteristics, and a large number of landslides were concentrated
within 2 km of the Mibei village. (2) The landslide abundance was closely related to slope
angle, TWI, and road density but had a low correlation with elevation and distance to rivers.
Among them, the LAD increased with the increase in the slope angle and TWI and was
described by an exponential relationship. Otherwise, the statistical results of the landslides
and the slope aspect showed that most of the landslide area was concentrated in the aspect
of 110◦~180◦ (SE to S). (3) The physically based susceptibility assessment results indicated
that the prediction results were roughly consistent with the actual landslide distribution,
and most areas with a high susceptibility were located on both sides of the river valley. The
onset of heavy rain on 10 June 2019 was the main triggering factor of this group-occurring
landslides. Our study will be beneficial for understanding the distribution pattern and
cause of rainfall-induced shallow landslides in the Longchuan area, and it can provide
data and technical support for the prevention of rainfall-induced geological disasters in the
southeast mountainous area of China.

Author Contributions: Conceptualization, C.X. and S.M.; methodology, S.M.; software, S.M. and
X.S.; validation, S.M. and X.S.; formal analysis, S.M. and X.S.; data curation, S.M. and X.S.; writing—
original draft preparation, S.M.; writing—review and editing, C.X. and S.M.; supervision, C.X.; project
administration, C.X.; funding acquisition, C.X. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was supported by the National Institute of Natural Hazards, Ministry of
Emergency Management of China (ZDJ2020-10 and ZDJ2021-12).

Acknowledgments: We thank Google Earth and Sentinel-2 satellite images for the free access satellite
images used in this study. We also express our appreciation of the constructive comments provided
by the anonymous reviewers, which is beneficial for the quality of the manuscript a lot.

68



Remote Sens. 2022, 14, 4257

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence he work reported in this paper.

References

1. Kirschbaum, D.; Kapnick, S.B.; Stanley, T.; Pascale, S. Changes in Extreme Precipitation and Landslides Over High Mountain Asia.
Geophys. Res. Lett. 2020, 47, e2019GL085347. [CrossRef]

2. Emberson, R.; Kirschbaum, D.; Stanley, T. Global connections between El Nino and landslide impacts. Nat. Commun. 2021, 12, 2262.
[CrossRef]

3. Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [CrossRef]
4. Lin, Q.; Wang, Y. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016. Landslides 2018, 15,

2357–2372. [CrossRef]
5. Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 2016, 162, 227–252. [CrossRef]
6. Huang, Y.; Xu, C.; Zhang, X.; Li, L. Bibliometric analysis of landslide research based on the WOS database. Nat. Hazards Res. 2022,

2, 49–61. [CrossRef]
7. Dai, L.; Scaringi, G.; Fan, X.; Yunus, A.P.; Liu-Zeng, J.; Xu, Q.; Huang, R. Coseismic Debris Remains in the Orogen Despite a

Decade of Enhanced Landsliding. Geophys. Res. Lett. 2021, 48, e2021GL095850. [CrossRef]
8. Fan, X.; Yunus, A.P.; Scaringi, G.; Catani, F.; Siva Subramanian, S.; Huang, R. Rapidly Evolving Controls of Landslides After a

Strong Earthquake and Implications for Hazard Assessments. Geophys. Res. Lett. 2020, 48, e2020GL090509. [CrossRef]
9. Fan, X.; Scaringi, G.; Korup, O.; West, A.J.; van Westen, C.J.; Tanyas, H.; Hovius, N.; Hales, T.C.; Jibson, R.W.; Allstadt, K.E.; et al.

Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts. Rev. Geophys. 2019, 57, 421–503. [CrossRef]
10. Schmitt, R.; Tanyas, H.; Jessee, A.; Zhu, J.; Biegel, K.; Allstadt, K.; Jibson, R.; Thompson, E.; Westen, C.J.; Sato, H.; et al. An Open

Repository of Earthquake-Triggered Ground-Failure Inventories; U.S. Geological Survey: Reston, VA, USA, 2017. [CrossRef]
11. Tian, Y.; Xu, C.; Yuan, R.-M. Earthquake-Triggered Landslides. Treatise Geomorphol. 2021, 2, 583–614. [CrossRef]
12. Xu, C.; Xu, X.; Zhou, B.; Shen, L. Probability of coseimic landslides: A new generation of earthquake-triggered landslide hazard

model. J. Eng. Geol. 2019, 27, 1122. [CrossRef]
13. Shao, X.; Xu, C. Earthquake-induced landslides susceptibility assessment: A review of the state-of-the-art. Nat. Hazards Res. 2022,

in press. [CrossRef]
14. Kirschbaum, D.; Stanley, T. Satellite-Based Assessment of Rainfall-Triggered Landslide Hazard for Situational Awareness. Earths

Future 2018, 6, 505–523. [CrossRef] [PubMed]
15. Emberson, R.; Kirschbaum, D.; Amatya, P.M.; Tanyas, H.; Marc, O. Insights from the topographic characteristics of a large global

catalog of rainfall-induced landslide event inventories. Nat. Hazards Earth Syst. Sci. 2022, 22, 1129–1149. [CrossRef]
16. Marc, O.; Stumpf, A.; Malet, J.P.; Gosset, M.; Uchida, T.; Chiang, S.-H. Initial insights from a global database of rainfall-induced

landslide inventories: The weak influence of slope and strong influence of total storm rainfall. Earth Surf. Dyn. 2018, 6, 903–922.
[CrossRef]

17. Feng, W.; Bai, H.; Lan, B.; Wu, Y.; Wu, Z.; Yan, L.; Ma, X. Spatial–temporal distribution and failure mechanism of group-occurring
landslides in Mibei village, Longchuan County, Guangdong, China. Landslides 2022, 19, 1957–1970. [CrossRef]

18. Ma, T.; Li, C.; Lu, Z.; Bao, Q. Rainfall intensity–duration thresholds for the initiation of landslides in Zhejiang Province, China.
Geomorphology 2015, 245, 193–206. [CrossRef]

19. Chen, H.; Dadson, S.; Chi, Y.-G. Recent rainfall-induced landslides and debris flow in northern Taiwan. Geomorphology 2006, 77,
112–125. [CrossRef]

20. Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for
landslide susceptibility studies: A comparative overview of algorithm performance. Earth Sci. Rev. 2020, 207, 103225. [CrossRef]

21. Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models.
Earth Sci. Rev. 2018, 180, 60–91. [CrossRef]

22. Hong, H.; Pradhan, B.; Xu, C.; Tien Bui, D. Spatial prediction of landslide hazard at the Yihuang area (China) using two-class
kernel logistic regression, alternating decision tree and support vector machines. Catena 2015, 133, 266–281. [CrossRef]

23. Shao, X.; Ma, S.; Xu, C.; Zhang, P.; Wen, B.; Tian, Y.; Zhou, Q.; Cui, Y. Planet Image-Based Inventorying and Machine Learning-
Based Susceptibility Mapping for the Landslides Triggered by the 2018 Mw6.6 Tomakomai, Japan Earthquake. Remote Sens. 2019,
11, 978. [CrossRef]

24. Shao, X.; Ma, S.; Xu, C.; Zhou, Q. Effects of sampling intensity and non-slide/slide sample ratio on the occurrence probability of
coseismic landslides. Geomorphology 2020, 363, 107222. [CrossRef]

25. Tanyu, B.F.; Abbaspour, A.; Alimohammadlou, Y.; Tecuci, G. Landslide susceptibility analyses using Random Forest, C4.5, and
C5.0 with balanced and unbalanced datasets. CATENA 2021, 203, 105355. [CrossRef]

26. Kavzoglu, T.; Sahin, E.K.; Colkesen, I. An assessment of multivariate and bivariate approaches in landslide susceptibility mapping:
A case study of Duzkoy district. Nat. Hazards 2015, 76, 471–496. [CrossRef]

27. Wang, Y.; Fang, Z.; Hong, H. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan
County, China. Sci. Total Environ. 2019, 666, 975–993. [CrossRef]

28. Xu, C.; Xu, X.; Dai, F.; Saraf, A.K. Comparison of different models for susceptibility mapping of earthquake triggered landslides
related with the 2008 Wenchuan earthquake in China. Comput. Geosci. 2012, 46, 317–329. [CrossRef]

69



Remote Sens. 2022, 14, 4257

29. Arabameri, A.; Chandra Pal, S.; Rezaie, F.; Chakrabortty, R.; Saha, A.; Blaschke, T.; Di Napoli, M.; Ghorbanzadeh, O.; Thi Ngo, P.T.
Decision tree based ensemble machine learning approaches for landslide susceptibility mapping. Geocarto Int. 2021, 37, 1–35.
[CrossRef]

30. Adnan, M.S.G.; Rahman, M.S.; Ahmed, N.; Ahmed, B.; Rabbi, M.F.; Rahman, R.M. Improving Spatial Agreement in Machine
Learning-Based Landslide Susceptibility Mapping. Remote Sens. 2020, 12, 3347. [CrossRef]

31. Rossi, M.; Guzzetti, F.; Reichenbach, P.; Mondini, A.C.; Peruccacci, S. Optimal landslide susceptibility zonation based on multiple
forecasts. Geomorphology 2010, 114, 129–142. [CrossRef]

32. Ma, S.; Xu, C.; Shao, X. Spatial prediction strategy for landslides triggered by large earthquakes oriented to emergency response,
mid-term resettlement and later reconstruction. Int. J. Disaster Risk Reduct. 2020, 43, 101362. [CrossRef]

33. Gutiérrez-Martín, A. A GIS-physically-based emergency methodology for predicting rainfall-induced shallow landslide zonation.
Geomorphology 2020, 359, 107121. [CrossRef]

34. Hong, Y.; Adler, R.; Huffman, G. Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide
hazard assessment. Geophys. Res. Lett. 2006, 33, L22402. [CrossRef]

35. Lin, Q.; Lima, P.; Steger, S.; Glade, T.; Jiang, T.; Zhang, J.; Liu, T.; Wang, Y. National-scale data-driven rainfall induced landslide
susceptibility mapping for China by accounting for incomplete landslide data. Geosci. Front. 2021, 12, 101248. [CrossRef]

36. Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [CrossRef]
37. Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; van Den Eeckhaut, M.; Mavrouli, O.;

Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263.
[CrossRef]

38. Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W. Guidelines for landslide susceptibility, hazard and risk
zoning for land use planning. Eng. Geol. 2008, 102. [CrossRef]

39. Sorbino, G.; Sica, C.; Cascini, L. Susceptibility analysis of shallow landslides source areas using physically based models. Nat.
Hazards 2010, 53, 313–332. [CrossRef]

40. Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS-A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-
Stability Analysis, Version 2.0; US Geological Survey: Reston, VA, USA, 2008; pp. 1159–2008.

41. Baum, R.L.; Godt, J.W.; Savage, W.Z. Estimating the timing and location of shallow rainfall-induced landslides using a model for
transient, unsaturated infiltration. J. Geophys. Res. F Earth Surf. 2010, 115, F03013. [CrossRef]

42. Domènech, G.; Alvioli, M.; Corominas, J. Preparing first-time slope failures hazard maps: From pixel-based to slope unit-based.
Landslides 2019, 17, 249–265. [CrossRef]

43. Schiliro, L.; Montrasio, L.; Scarascia Mugnozza, G. Prediction of shallow landslide occurrence: Validation of a physically-based
approach through a real case study. Sci. Total Environ. 2016, 569-570, 134–144. [CrossRef] [PubMed]

44. Sarkar, S.; Roy, A.K.; Raha, P. Deterministic approach for susceptibility assessment of shallow debris slide in the Darjeeling
Himalayas, India. Catena 2016, 142, 36–46. [CrossRef]

45. An, H.; Viet, T.T.; Lee, G.; Kim, Y.; Kim, M.; Noh, S.; Noh, J. Development of time-variant landslide-prediction software considering
three-dimensional subsurface unsaturated flow. Environ. Model. Softw. 2016, 85, 172–183. [CrossRef]

46. Montrasio, L.; Valentino, R.; Losi, G.L. Rainfall-induced shallow landslides: A model for the triggering mechanism of some case
studies in Northern Italy. Landslides 2009, 6, 241–251. [CrossRef]

47. Montrasio, L.; Valentino, R.; Corina, A.; Rossi, L.; Rudari, R. A prototype system for space–time assessment of rainfall-induced
shallow landslides in Italy. Nat. Hazards 2014, 74, 1263–1290. [CrossRef]

48. Montrasio, L.; Valentino, R.; Meisina, C. Soil Saturation and Stability Analysis of a Test Site Slope Using the Shallow Landslide
Instability Prediction (SLIP) Model. Geotech. Geol. Eng. 2018, 36, 2331–2342. [CrossRef]

49. Tran, T.V.; Lee, G.; An, H.; Kim, M. Comparing the performance of TRIGRS and TiVaSS in spatial and temporal prediction of
rainfall-induced shallow landslides. Environ. Earth Sci. 2017, 76, 315. [CrossRef]

50. Escobar-Wolf, R.; Sanders, J.D.; Vishnu, C.L.; Oommen, T.; Sajinkumar, K.S. A GIS Tool for Infinite Slope Stability Analysis
(GIS-TISSA). Geosci. Front. 2021, 12, 756–768. [CrossRef]

51. He, X.; Hong, Y.; Vergara, H.; Zhang, K.; Kirstetter, P.-E.; Gourley, J.J.; Zhang, Y.; Qiao, G.; Liu, C. Development of a coupled
hydrological-geotechnical framework for rainfall-induced landslides prediction. J. Hydrol. 2016, 543, 395–405. [CrossRef]

52. Zhang, K.; Xue, X.; Hong, Y.; Gourley, J.J.; Lu, N.; Wan, Z.; Hong, Z.; Wooten, R. iCRESTRIGRS: A coupled modeling system for
cascading flood–landslide disaster forecasting. Hydrol. Earth Syst. Sci. 2016, 20, 5035–5048. [CrossRef]

53. Rossi, G.; Catani, F.; Leoni, L.; Segoni, S.; Tofani, V. HIRESSS: A physically based slope stability simulator for HPC applications.
Nat. Hazards Earth Syst. Sci. 2013, 13, 151–166. [CrossRef]

54. Tofani, V.; Bicocchi, G.; Rossi, G.; Segoni, S.; D’Ambrosio, M.; Casagli, N.; Catani, F. Soil characterization for shallow landslides
modeling: A case study in the Northern Apennines (Central Italy). Landslides 2017, 14, 755–770. [CrossRef]

55. Salvatici, T.; Tofani, V.; Rossi, G.; D’Ambrosio, M.; Tacconi Stefanelli, C.; Masi, E.B.; Rosi, A.; Pazzi, V.; Vannocci, P.; Petrolo, M.; et al.
Application of a physically based model to forecast shallow landslides at a regional scale. Nat. Hazards Earth Syst. Sci. 2018, 18,
1919–1935. [CrossRef]

56. Salciarini, D.; Fanelli, G.; Tamagnini, C. A probabilistic model for rainfall—induced shallow landslide prediction at the regional
scale. Landslides 2017, 14, 1731–1746. [CrossRef]

70



Remote Sens. 2022, 14, 4257

57. Park, D.W.; Nikhil, N.V.; Lee, S.R. Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide
event. Nat. Hazards Earth Syst. Sci. 2013, 13, 2833–2849. [CrossRef]

58. Liao, Z.; Hong, Y.; Kirschbaum, D.; Adler, R.F.; Gourley, J.J.; Wooten, R. Evaluation of TRIGRS (transient rainfall infiltration and
grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: A case study in Macon County,
North Carolina. Natural Hazards 2011, 58, 325–339. [CrossRef]

59. Lee, J.H.; Park, H.J. Assessment of shallow landslide susceptibility using the transient infiltration flow model and GIS-based
probabilistic approach. Landslides 2015, 13, 885–903. [CrossRef]

60. Li, H.-C.; Wu, T.; Wei, H.-P.; Shih, H.-J.; Chao, Y.-C. Basinwide disaster loss assessments under extreme climate scenarios: A case
study of the Kaoping River basin. Nat. Hazards 2016, 86, 1039–1058. [CrossRef]

61. Zhuang, J.; Peng, J.; Wang, G.; Iqbal, J.; Wang, Y.; Li, W.; Zhu, X. Prediction of rainfall-induced shallow landslides in the Loess
Plateau, Yan’an, China, using the TRIGRS model. Earth Surf. Processes Landf. 2016, 42, 915–927. [CrossRef]

62. An, K.; Kim, S.; Chae, T.; Park, D. Developing an Accessible Landslide Susceptibility Model Using Open-Source Resources.
Sustainability 2018, 10, 293. [CrossRef]

63. Hsu, Y.-C.; Liu, K.-F. Combining TRIGRS and DEBRIS-2D Models for the Simulation of a Rainfall Infiltration Induced Shallow
Landslide and Subsequent Debris Flow. Water 2019, 11, 890. [CrossRef]

64. Saadatkhah, N.; Mansor, S.; Kassim, A.; Lee, L.M.; Saadatkhah, R.; Sobhanmanesh, A. Regional modeling of rainfall-induced
landslides using TRIGRS model by incorporating plant cover effects: Case study in Hulu Kelang, Malaysia. Environ. Earth Sci.
2016, 75, 445. [CrossRef]

65. Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited
sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci.
Bull. 2019, 64, 370–373. [CrossRef]

66. Sato, H.; Harp, E. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in
the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth. Landslides 2009, 6, 153–159. [CrossRef]

67. Tian, Y.; Owen, L.A.; Xu, C.; Ma, S.; Li, K.; Xu, X.; Figueiredo, P.M.; Kang, W.; Guo, P.; Wang, S.; et al. Landslide development
within 3 years after the 2015 Mw 7.8 Gorkha earthquake, Nepal. Landslides 2020, 17, 1251–1267. [CrossRef]

68. Weidner, L.; Oommen, T.; Escobar-Wolf, R.; Sajinkumar, K.S.; Samuel, R.A. Regional-scale back-analysis using TRIGRS: An
approach to advance landslide hazard modeling and prediction in sparse data regions. Landslides 2018, 15, 2343–2356. [CrossRef]

69. Tran, T.V.; Alvioli, M.; Lee, G.; An, H.U. Three-dimensional, time-dependent modeling of rainfall-induced landslides over a
digital landscape: A case study. Landslides 2018, 15, 1071–1084. [CrossRef]

70. Alvioli, M.; Baum, R.L. Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface.
Environ. Model. Softw. 2016, 81, 122–135. [CrossRef]

71. Godt, J.; Baum, R.L.; Savage, W.Z.; Salciarini, D.; Schulz, W.; Harp, E.L. Transient deterministic shallow landslide modeling:
Requirements for susceptibility and hazard assessments in a GIS framework. Eng. Geol. 2008, 102, 214–226. [CrossRef]

72. Ma, S.; Shao, X.; Xu, C.; He, X.; Zhang, P. MAT.TRIGRS (V1.0): A new open-source tool for predicting spatiotemporal distribution
of rainfall-induced landslides. Nat. Hazards Res. 2021, 1, 161–170. [CrossRef]

73. Harp, E.; Michael, J.; Laprade, W. Shallow landslide hazard map of Seattle, Washington. Rev. Eng. Geol. 2008, 20, 67–82. [CrossRef]
74. Baumann, V.; Bonadonna, C.; Cuomo, S.; Moscariello, M.; Biass, S.; Pistolesi, M.; Gattuso, A. Mapping the susceptibility of

rain-triggered lahars at Vulcano island (Italy) combining field characterization, geotechnical analysis, and numerical modelling.
Nat. Hazards Earth Syst. Sci. 2019, 19, 2421–2449. [CrossRef]

75. Vieira, B.C.; Fernandes, N.F.; Augusto Filho, O.; Martins, T.D.; Montgomery, D.R. Assessing shallow landslide hazards using the
TRIGRS and SHALSTAB models, Serra do Mar, Brazil. Environ. Earth Sci. 2018, 77, 260. [CrossRef]

76. Saulnier, G.-M.; Beven, K.; Obled, C. Including spatially variable soil depths in TOPMODEL. J. Hydrol. 1997, 202, 158–172.
[CrossRef]

77. Bai, H.; Feng, W.; Yi, X.; Fang, H.; Wu, Y.; Deng, P.; Dai, H.; Hu, R. Group-occurring landslides and debris flows caused by the
continuous heavy rainfall in June 2019 in Mibei Village, Longchuan County, Guangdong Province, China. Nat. Hazards 2021, 108,
3181–3201. [CrossRef]

78. Das, B. Advanced Soil Mechanics; Taylor & Francis: London, UK; New York, NY, USA, 2008.
79. He, J.; Qiu, H.; Qu, F.; Hu, S.; Yang, D.; Shen, Y.; Zhang, Y.; Sun, H.; Cao, M. Prediction of spatiotemporal stability and rainfall

threshold of shallow landslides using the TRIGRS and Scoops3D models. Catena 2021, 197, 104999. [CrossRef]
80. Medina, V.; Hürlimann, M.; Guo, Z.; Lloret, A.; Vaunat, J. Fast physically-based model for rainfall-induced landslide susceptibility

assessment at regional scale. Catena 2021, 201, 105213. [CrossRef]
81. Yu, C.-K.; Cheng, L.-W. Distribution and Mechanisms of Orographic Precipitation Associated with Typhoon Morakot (2009). J.

Atmos. Sci. 2013, 70, 2894–2915. [CrossRef]
82. Liu, J.-K.; Shih, P.T.-Y. Topographic Correction of Wind-Driven Rainfall for Landslide Analysis in Central Taiwan with Validation

from Aerial and Satellite Optical Images. Remote Sens. 2013, 5, 2571–2589. [CrossRef]
83. Chen, Y.-C.; Chang, K.-T.; Wang, S.F.; Huang, J.-C.; Yu, C.-K.; Tu, J.-Y.; Chu, H.-J.; Liu, C.-C. Controls of preferential orientation of

earthquake- and rainfall-triggered landslides in Taiwan’s orogenic mountain belt. Earth Surf. Processes Landf. 2019, 44, 1661–1674.
[CrossRef]

71



Remote Sens. 2022, 14, 4257

84. Vorpahl, P.; Elsenbeer, H.; Märker, M.; Schröder, B. How can statistical models help to determine driving factors of landslides?
Ecol. Model. 2012, 239, 27–39. [CrossRef]

85. Kavzoglu, T.; Sahin, E.K.; Colkesen, I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support
vector machines, and logistic regression. Landslides 2014, 11, 425–439. [CrossRef]

86. Laimer, H.J. Anthropogenically induced landslides–A challenge for railway infrastructure in mountainous regions. Eng. Geol.
2017, 222, 92–101. [CrossRef]

87. Vuillez, C.; Tonini, M.; Sudmeier-Rieux, K.; Devkota, S.; Derron, M.-H.; Jaboyedoff, M. Land use changes, landslides and roads in
the Phewa Watershed, Western Nepal from 1979 to 2016. Appl. Geogr. 2018, 94, 30–40. [CrossRef]

88. Li, Y.; Wang, X.; Mao, H. Influence of human activity on landslide susceptibility development in the Three Gorges area. Nat.
Hazards 2020, 104, 2115–2151. [CrossRef]
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Abstract: In recent years, increasing available synthetic aperture radar (SAR) satellite data and
gradually developing interferometric SAR (InSAR) technology have provided the possibility for wide-
scale ground-deformation monitoring using InSAR. Traditionally, the InSAR data are processed by the
existing time-series InSAR (TS–InSAR) technology, which has inefficient calculation and redundant
results. In this study, we propose a wide-area InSAR variable-scale deformation detection strategy
(hereafter referred to as the WAVS–InSAR strategy). The strategy combines stacking technology
for fast ground-deformation rate calculation and advanced TS–InSAR technology for obtaining
fine deformation time series. It adopts an adaptive recognition algorithm to identify the spatial
distribution and area of deformation regions (regions of interest, ROI) in the wide study area and uses
a novel wide-area deformation product organization structure to generate variable-scale deformation
products. The Turpan–Hami basin in western China is selected as the wide study area (277,000 km2)
to verify the proposed WAVS–InSAR strategy. The results are as follows: (1) There are 32 deformation
regions with an area of ≥1 km2 and a deformation magnitude of greater than ±2 cm/year in the
Turpan–Hami basin. The deformation area accounts for 2.4‰ of the total monitoring area. (2) A
large area of ground subsidence has occurred in the farmland areas of the ROI, which is caused
by groundwater overexploitation. The popularization and application of facility agriculture in the
ROI have increased the demand for irrigation water. Due to the influence of the tectonic fault, the
water supply of the ROI is mainly dependent on groundwater. Huge water demand has led to a
continuous net deficit in aquifers, leading to land subsidence. The WAVS–InSAR strategy will be
helpful for InSAR deformation monitoring at a national/regional scale and promoting the engineering
application of InSAR technology.

Keywords: wide-area deformation; deformation detection; time-series InSAR; stacking; Turpan–Hami basin

1. Introduction

Advanced microwave remote sensing technology can precisely monitor deformation
over wide areas, which helps geohazard surveys of phenomena such as underground fluid
development, mineral mining, and landslide. In recent years, fast-developing interferomet-
ric synthetic aperture radar (InSAR) technology and abundant available synthetic aperture
radar (SAR) data [1–4] has laid the foundation for high-precision and wide-scale InSAR
ground-deformation monitoring. InSAR technology has been successfully used to monitor
ground deformation at a regional [5–9] and national scale [10–13]. Large-scale geodetic tech-
nology, such as InSAR, usually describes the spatial characteristics of ground deformation
by deformation rate, and shows deformation development over time using a time series of
deformation. The deformation region usually accounts for a small part of the monitoring
area [11], so the ground deformation we are interested in only accounts for a small part of
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the wide-area monitoring results. At present, the engineering projects to obtain ground
deformation in a wide study area (WSA) usually calculate the deformation time series using
InSAR datasets covering the whole WSA, using time-series InSAR (TS–InSAR) technology.
Even with multiple spatial resolutions, such schemes require a lot of computing resources
and storage space, and even then require repeated calculations and provide redundant
results, especially in the non-deformation region [14]. Therefore, it is necessary to develop
a set of efficient monitoring methods and procedures for wide-area InSAR deformation
and a more feasible multi-scale deformation product organization structure in the WSA.

One way to improve the computational efficiency of the TS–InSAR method is to
introduce a parallel processing method, which can be realized using high-performance
computers (HPC) [12,15–19]. However, the high cost of HPC equipment hinders the pop-
ularization of this strategy. Another way is to improve the TS–InSAR method itself, by
introducing sequential adjustment theory for real-time InSAR data processing [20–22],
introducing a geological model or time-series filtering algorithm for high-dimensional
deformation calculation [23–26], or realizing a high-precision TS–InSAR deformation cal-
culation using block solutions [27,28]. These strategies can improve the efficiency of the
TS–InSAR solution to a certain extent. However, for wide-area InSAR deformation monitor-
ing, high-precision independent calculation of all InSAR datasets in the WSA will provide
many useless time-series results, especially in the non-deformation area. Therefore, it is
necessary to develop a demand-oriented multiple spatio-temporal-scale deformation moni-
toring method, considering the universality of monitoring strategies, computing resources,
measurement accuracy, and the efficiency of deformation calculation and interpretation.

The averaging of multiple interferograms (stacking) method was proposed by the
authors in [29], which can obtain the ground-deformation rate by averaging the phase of
the multitemporal differential InSAR (DInSAR) dataset. Compared with conventional TS–
InSAR technologies, such as persistent scatterer (PS) [30], small-baseline subset (SBAS) [31],
and interferometric point target analysis (IPTA) [32], stacking only obtains the deformation
rate with lower technical requirements and higher computational efficiency. Stacking
has been widely used for deformation identification [33–37]. A wide-area deformation
monitoring project usually identifies deformation regions based on the ground-deformation
rate [38]. For the deformation region, the corresponding deformation time series is extracted
to analyze the spatio-temporal evolution of deformation. The deformation time series in
stable zones has less information. Therefore, combining stacking and TS–InSAR may
contribute to efficient variable-scale deformation monitoring.

In this study, we propose a wide-area InSAR variable-scale deformation detection
strategy (WAVS–InSAR). WAVS–InSAR uses stacking technology to quickly calculate the
low-spatial-resolution ground-deformation rate over the WSA. Then, an adaptive intelligent
recognition algorithm is used to identify the location and area of the deformation regions
and determine the regions of interest (ROI). Advanced TS–InSAR technologies are then
used to obtain the high-spatio-temporal-resolution deformation time series in the ROI.
Finally, the variable-scale InSAR deformation product in the WSA is obtained by a novel
variable-scale deformation product organization structure. To verify the proposed WAVS–
InSAR strategy, we applied it to the Turpan–Hami basin (about 277,000 km2) in Xinjiang,
China. The Turpan–Hami basin is the driest place in China, and has the least rainfall in
China. Many tectonic faults, as well as agricultural and mining areas, are scattered across
the basin. It is of great significance to obtain the spatio-temporal distribution characteristics
of ground subsidence and to investigate the surface deformation related to the active
agricultural economy and mineral exploitation in the basin.

The remainder of the paper is organized as follows. We introduce the WAVS–InSAR
strategy in Section 2. In Section 3, the general situation of the Turpan–Hami basin, InSAR
data, and the data-processing details are briefly described. The variable-scale deformation
product in the Turpan–Hami basin is shown in Section 4, followed by the discussion in
Section 5. Section 6 presents the conclusions.
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2. Methodology

We first collect all available InSAR datasets covering the WSA, and preprocess all
datasets through registration and DInSAR, to generate the multitemporal DInSAR datasets
with the same spatial reference data. Then, we apply the WAVS–InSAR strategy to process
the multitemporal DInSAR data to obtain variable-scale deformation products in a wide
area. The WAVS–InSAR includes the following four modules (Figure 1).

(1) We obtain the wide-area deformation rate using the stacking method [29]. First, we
calculate the deformation rate of each frame using stacking. Then, we mosaic the
results of all frames to obtain the wide-area deformation rates.

(2) We detect ROI from the deformation rates. Setting the threshold for the deformation
rate, the extension radius, and the minimum clustering area, we calculate the spatial
distribution and area of the ROI in the WSA using an adaptive deformation detection
method [39].

(3) We obtain the high-spatio-temporal-resolution deformation result of ROI. The high-
spatio-temporal-resolution time-series and/or multidimensional deformation of the
ROI are calculated using advanced TS–InSAR technologies, such as PS, SBAS, IPTA,
and the multidimensional small-baseline subset (MSBAS) [40–42].

(4) We generate the variable-scale deformation product, combining the high-spatio-
temporal-resolution results of ROI and wide-area deformation rate to generate the
variable-scale deformation product, which can describe deformation in stable areas
only with low-spatial-resolution deformation rate, and in the ROI with the high-
spatio-temporal-resolution deformation rate and time series.

Figure 1. Flowchart of the method for the variable-scale monitoring of deformation in a wide area.

2.1. Wide-Area Deformation Monitoring Using Stacking

The stacking technology can calculate the deformation rate based on weight and
average the unwrapped phases of the multitemporal DInSAR dataset. The stacking tech-
nology assumes linear ground-deformation changes, and temporal randomly distributed
phase noise, such as atmospheric delay phase. Assuming N + 1 SAR images of one frame
covering the WSA constitute M InSAR pairs, the displacement phase can be separated as

φ =
M

∑
i=1

φi · Δti/
M

∑
i=1

Δt2
i (1)

in which φ is the rate of deformation phase change. φi and Δti are the interference phase
and the time interval of the i-th InSAR pair, respectively.
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The rate of the deformation phase change would be converted to the deformation rate
(Vde f ) as,

Vde f = λ · φ/4π (2)

where λ is the wavelength of the SAR sensor. The multitemporal DInSAR data in each frame
is processed using stacking technology to obtain the ground deformation of the WSA.

2.2. ROI Detection Based on Wide-Area Deformation Rate

Luo et al. [39] proposed an improved method to automatically identify and evaluate
geological hazards using TS–InSAR results. By judging and analyzing the deformation
rate and time series in the monitoring area, the method can automatically identify the
deformation region and evaluate its hazard grade. In this study, we improve this method
to accurately delineate the ROI.

To improve the accuracy of ROI detection, we first apply spatial domain filtering to the
wide-area monitoring results to obtain deformation results with good spatial consistency.
Then, we set the thresholds for deformation rate, extension radius, and minimum clustering
area. When the absolute value of the deformation rate is greater than the deformation rate
threshold, it is considered to be an active point. Otherwise, it is a stable point. Buffer zones
are established around the active points according to the extension radius. The active points
are clustered following the principle of spatial proximity relationship [43]. The clustering
regions are smoothed to refine the boundary. The robust deformation regions and their
area are obtained by removing regions smaller than the minimum clustering area. The ROI
can be finally located based on spatial clustering and the area of deformation.

A detailed description of the intelligent recognition part of the method can be found
in [39]. It should be noted that InSAR can only obtain one-dimensional (1D) deformation
along the line-of-sight (LOS) direction of the SAR sensor, so the InSAR data of one geometry
is insensitive to the deformation of some regions, especially landslides [44]. To obtain more
reliable deformation detection results, we need to use the above method and InSAR data
from different observational geometry. The detection results of multitrack InSAR data are
taken together as the final deformation regions. Then, we can adaptively determine the
ROI and perform fine monitoring.

2.3. ROI Deformation Refinement Using Advanced TS–InSAR

When calculating the wide-area deformation rate, we select the InSAR data with the
same acquisition time from different frames to facilitate the splicing of the results from
different frames and to maintain the consistency of the wide-area deformation rate. To
accurately monitor the deformation in the ROI, we first crop the registered InSAR datasets.
The cropped datasets are used to obtain the time-series and multidimensional ground
deformation of the ROI. Detailed steps are as follows.

(1) Deformation time-series calculation. We process the collected InSAR datasets using TS–
InSAR technology, with a smaller multi-looking number (a higher spatial resolution).
In this study, we use an improved IPTA method to calculate the deformation time
series of the ROI [45,46].

(2) Multidimensional deformation rate/time-series calculation. If the ROI has InSAR
data with different observation geometry during the same acquisition time, we can
obtain the vertical and horizontal displacements using the MSBAS method.

If multi-sensor and multitemporal InSAR data covering the ROI are available, we
can collect all data to analyze the long-term deformation and understand the deforma-
tion spatio-temporal evolution features based on the data-overlapping and deformation
model [47,48].

2.4. Variable-Scale Deformation Product Generation

The low-spatial-resolution deformation rate can be used to detect a stable surface in
the WSA, which greatly reduces the task and data volume of wide-area InSAR deformation
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monitoring. In addition, we obtain the fine results of the deformation time series with
a high spatial resolution of ROI using advanced TS–InSAR technology. A variable-scale
deformation product organization structure includes low-spatial-resolution deformation
rates in stable areas of the WSA and the high-spatio-temporal-resolution deformation in
the ROI. Hence, we superimpose the high-spatio-temporal-resolution deformation at the
corresponding regions of the ROI on the wide-area deformation rate results to improve the
spatial and temporal dimensions of the deformation in the ROI. At this stage, we can obtain
variable-scale deformation products in the WSA, which only contain low-spatial-resolution
deformation rates in stable regions, and fine monitoring results in the ROI.

3. Study Area and Data Processing

3.1. The Turpan–Hami Basin

The Turpan–Hami basin, consisting of the Turpan and the Hami depressions, is an
intermountain basin located in northwest China (Figure 2). Since the end of the Early
Permian period, the Turpan–Hami basin has developed following the model of “fault-
depression foreland”. It is a typical faulted basin, with limited sedimentary range, great
lateral variation of sedimentary thickness, and multiple depositions and subsidence centers.
The geological conditions and active tectonic motion contribute to oil and gas accumulation
and make the Turpan–Hami basin the largest coal-derived petroleum-producing basin
in China [49]. Moreover, there are many mineral resources in this basin, e.g., coal, iron,
and potassium (sodium) saltpeter. It is the world’s largest potassium (sodium) saltpeter
resource. Aydingkol Lake, located in the middle of the Turpan depression, is the lowest
depression in China, 154.31 m below sea level [50]. Centering on Aydingkol Lake, the
Turpan depression presents a roughly three-ring shape. The outermost ring has high
snow-capped mountains. The middle ring is the Gobi gravel belt. The inner ring is an oasis
plain belt, most of which belongs to a piedmont sloping plain, and accumulates a large
area of fine soil alluvium. The water in the basin mainly comes from rainfall and meltwater
from the surrounding mountains. The Tianshan mountains, e.g., Bogurda Mountain and
Harlick Mountain, are in the north of the Turpan depression. The Flaming Mountains fault
zone lies nearly east–west in the Turpan depression, between Turpan city and Shanshan
county (Figure 2). Weathered material is transported from the Tianshan mountains to the
center of the basin by water flow, but is blocked by the Flaming Mountains fault line and
accumulates in the northern part of the mountains. The surface water and groundwater
from the Tianshan mountains are also blocked by the Flaming Mountains fault line. The
head height of the shallow aquifers is raised on both sides of the Flaming Mountains,
creating overflow zones and an oasis in these areas.

The Turpan–Hami basin has a typical continental warm temperate desert climate,
with abundant heat and extremely little precipitation. It has 3200 h of sunshine in a year.
The hydrogeology, climate, and lighting conditions make it an ideal place for growing
cantaloupe, grapes, cotton, and off-season vegetables. Groundwater is the main source of
agricultural water in the arid area. Previously, karezes were the predominant underground
water conservancy project in this region. A karez uses the principle of water potential
artware to divert water from shallow aquifers to the surface for irrigation. There are more
than 2000 karezes in the Turpan–Hami basin, accounting for more than 70% of the total
number of karezes in Xinjiang [51,52]. However, many electromechanical wells have been
built in the Turpan–Hami basin since the 1960s. Groundwater exploitation has increased
yearly, with the annual overexploitation reaching 2.48 × 1010 m3, leading to the continuous
decline of groundwater level. Advanced water conservancy facilities have reduced people’s
dependence on karezes. Meanwhile, the water supply source of karezes is shallow aquifers.
The continuous reduction of groundwater level directly leads to the decrease or even
drying-up of karezes [53]. The number of water-filled karezes in the Turpan depression
decreased from 1237 in 1957 to 214 in 2014 [51]. In addition, the increased demand and
excess consumption of water resources in upstream areas have seriously threatened the
water supply of Aydingkol Lake, resulting in water area shrinkage. The exploitation
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of groundwater and mineral resources will make the surface of the Turpan–Hami basin
unstable and threatened by potential geohazards.

Figure 2. The Turpan–Hami basin and SAR data coverage.

3.2. InSAR Datasets

To monitor wide-area deformation in the Turpan–Hami basin, we collected eight
frames of InSAR data covering the whole Turpan–Hami basin from the Sentinel-1 satellite.
The Sentinel-1 satellite began operation in April 2014, and has different observation periods
in different regions, resulting in inconsistent periods of SAR data in different regions. To
ensure the consistency of deformation rates from multiple frames, we selected the images
(628 images in total) from the eight frames acquired from October 2017 to May 2020 (Table 1).
The spatial coverage of each dataset is shown in Figure 2.

Table 1. Acquisition periods of the datasets.

Sensor Frame Time Number Frame Time Number

Se
nt

in
el

-1

AT172F1317
13/10/2017–30/05/2020

77 AT143F131
11/10/2007–28/05/2020

81
AT172F1322 77 AT143F136 81

AT70F1316
18/10/2017–30/05/2020

78 AT41F130
16/10/2017–21/05/2020

78
AT70F1321 78 AT41F135 78

DT121F449 19/03/2015–27/04/2020 107 AT41F135 25/03/2015–21/05/2020 123

ALOS-1
AT496F840

22/01/2007–14/09/2009
11 AT497F840

08/02/2007–04/10/2010
11

AT496F850 11 AT497F850 11

Wide-area InSAR deformation shows that many subsidence funnels are concentrated
in the south part of the Flaming Mountains fault zone in the Turpan depression (hereafter
referred to as the SFM–def region). The SFM–def region (the yellow box in Figure 2) was
selected as an application demonstration area of ROI to carry out the fine monitoring of
the deformation time series. Four frames from the ALOS-1/PALSAR dataset spanning
from 2007 to 2010 (green rectangles in Figure 2) and a descending track from the Sentinel-1
dataset (red rectangle in Figure 2) covering the SFM–def region were collected. The common
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monitoring time of the Sentinel-1 ascending (AT41F135) and descending (DT121F449) tracks
data is from 2015 to 2020 (Table 1). These data were used to precisely monitor the long-term
and fine deformation in the SFM–def region.

3.3. Data Processing

We preprocessed all InSAR datasets covering the WSA. In each frame, one image
was selected as the master image to register and resample the rest images. Multitemporal
InSAR pairs were generated from SAR data in the same frame, based on the appropriate
spatio-temporal baseline thresholds. All multitemporal DInSAR pairs were processed using
GAMMA software [54] and two-pass DInSAR technology [55] to obtain multitemporal
deformation signals. The shuttle radar topography mission (SRTM) digital elevation model
(DEM) with a resolution of 30 m [56] was employed to remove the topographic phases. The
point targets with a coherence lower than 0.3 were eliminated [57]. Least-squares-based
filtering and the minimum cost flow method [58] were then applied to further suppress
phase noise [59] and unwrap the differential interferogram, respectively.

The eight frames of the Sentinel-1 data were preprocessed with a spatial baseline (per-
pendicular) and temporal baseline of 100 m and 48 days, respectively, and a multi-looking
operation of 20:4. Then, stacking was used to process all the multitemporal deformation
signals in each frame, to obtain a wide-area deformation rate of the Turpan–Hami basin.
The adaptive deformation detection method proposed in Section 2.2 was used to delineate
the deformation regions. The thresholds of the deformation rate, extension radius, and
minimum clustering area were set as ±2 cm/year, 250 m, and 1 km2, respectively.

For the SFM–def region, we set the multi-looking parameters of ALOS-1/PALSAR and
Sentinel-1 data as 3:8 and 8:2, respectively. The improved IPTA method was used to com-
pute the four frames of the ALOS-1/PALSAR data and the ascending/descending tracks
from the Sentinel-1 datasets to obtain long-term and high-resolution displacements. More-
over, MSBAS technology was used to obtain multidimensional deformation from the as-
cending/descending tracks of the Sentinel-1 datasets. Then, we obtained the variable-scale
deformation product of the Turpan–Hami basin, which consists of low-spatial-resolution
deformation rates in the stable areas and high-spatio-temporal-resolution deformation in
the SFM–def region.

4. Results

4.1. Monitoring and Detecting the Wide-Area Deformation in the Turpan–Hami Basin

The wide-area ground subsidence in the Turpan–Hami basin (Figure 3) shows that the
surface of the Turpan–Hami basin is generally stable. The regions with deformation account
for a small proportion of the whole. The main deformation type is subsidence. Based on
the deformation detection threshold set in Section 3.3, we identified 32 deformation areas
(the funnel) in the Turpan–Hami basin (the blue lines in Figure 3). The area of each funnel
is shown in Table 2. The detected deformation area accounts for about 2.4‰ of the total
monitoring area.

Analyzing the hydrogeology and land cover of the deformation areas, we divided the
ground deformation in the Turpan–Hami basin into three types:

(1) Ground subsidence in agricultural areas caused by groundwater overexploitation.
This kind of subsidence has the largest area and is concentrated in the oasis plain
south of the Flaming Mountains fault zone (Figure 3a).

(2) Ground subsidence associated with mineral mining. This kind of deformation is
sporadically distributed over the Turpan–Hami basin. Such deformation regions have
a small area but large deformation magnitude, e.g., Figure 3b.

(3) Ground uplift associated with the lake water withdrawal, resulting in saline–alkali
lands. This kind of deformation is mainly distributed around Aydingkol Lake, charac-
terized by small magnitude and mainly horizontal movement (Figure 4e,f).
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Figure 3. Wide-area subsidence rate map and the detected deformation regions. The numbers identify
the location of the top 10 deformation regions. (a) The SFM–def region in Figure 4. (b) One of the
major mining areas. Background image: Google Maps satellite image.

Figure 4. Deformation rate along LOS directions from (a) ALOS-1/PALSAR, (b) ascending track
Sentinel-1, and (c) descending track Sentinel-1 data. Negative values indicate the direction away
from the SAR satellite, while positive values indicate the opposite. (d) The hydrogeology of this
area. (e,f) The deformation rate along the up–down and east–west directions calculated from as-
cending/descending tracks Sentinel-1 data. The red dotted line delineates the central area of the
subsidence funnels from 2007 to 2010. The magenta dotted line delineates the central area of the
subsidence funnels from 2015 to 2020.
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Table 2. The area of the deformation funnels.

Num. Area (km2) Num. Area (km2) Num. Area (km2) Num. Area (km2)

1 437.6 9 5.5 17 2.3 25 1.6
2 61.2 10 5.1 18 2.3 26 1.5
3 42.6 11 4.8 19 2.2 27 1.5
4 26.1 12 4.1 20 2.2 28 1.5
5 16.1 13 3.4 21 2.1 29 1.4
6 11.1 14 3.1 22 2.1 30 1.2
7 9.1 15 2.6 23 2.0 31 1.1
8 6.8 16 2.5 24 1.9 32 1.0

Total area (km2) 669.6

The largest deformation funnel is distributed in the SFM–def region, with an area
of 437.6 km2, surrounded by small funnels (Figure 3a). The optical images show that
the subsidence funnels in the SFM–def region are highly correlated with the location of
agricultural areas. Aydingkol Lake is in the south of the SFM–def region (Figure 3a). In
recent years, the area of the lake has continuously shrunk, and a large area of saline–alkali
land has appeared. There is obvious ground uplift in these saline–alkali regions. In addition,
multiple subsidence funnels are observed close to some mines, e.g., the funnel cluster in
Figure 3b. The wide-area deformation results are discussed in detail in Section 5.

4.2. Deformation Time Series of the SFM–Def Region from 2007 to 2020
4.2.1. Long-Term Deformation in the Spatial Dimension

The long-term (2007–2010 and 2015–2020), multidimensional (along with up–down
and east–west directions), and high-spatial-resolution displacements are obtained from the
four frames of the ALOS-1/PALSAR data and the ascending/descending tracks from the
Sentinel-1 data, using advanced IPTA and MSBAS technologies (Figure 4). The ground
deformation is mainly distributed in a plain area south of the Flaming Mountains fault
line (Figure 4d). There are large areas of farmland in this region (Figure 3a), and the
irrigation relies heavily on groundwater. The ground deformation is mainly vertical, with
small horizontal movement (Figure 4e,f), which is typical for displacements caused by
groundwater extraction [60–62]. The red and magenta dotted lines in Figure 4 delineate
the settlement funnel centers in 2007–2010 and 2015–2020, respectively. The area and
magnitude of the subsidence in the northwest of the SFM–def region gradually decrease,
but the subsidence area in the southeast gradually expands and becomes connected. The
center of the funnel shifts from the northwest to the southeast, and form a giant funnel
with a larger subsidence rate and area in the southeast region. See Section 5 for detailed
analysis and discussion.

4.2.2. Long-Term Deformation in the Time Dimension

The long-term deformation rate can reflect the spatial distribution and evolution char-
acteristics of ground deformation. We select two profiles (AA′ and BB′) and two points
(P1 and P2) in the SFM–def region (Figure 4) to investigate the variation characteristics
of deformation in the time domain. The long-term time-series displacements at the corre-
sponding position in the two monitoring periods, i.e., 2007–2010 and 2015–2020, are shown
in Figures 5 and 6. The time-series cumulative deformation at AA′ and P1, BB′ and P2 can
represent the deformation characteristics of the central region of the subsidence funnels
during the two monitoring periods.
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Figure 5. The long-term cumulative deformation at the profiles (a,c) A-A′ and (b,d) B-B′ in Figure 4.

Figure 6. The time-series cumulative deformation at P1 and P2 in Figure 4. The blue dots represent
the InSAR observations. The magenta lines are the linear fitting results of the corresponding InSAR
observations.

The long-term deformation at AA′ and P1 shows that the subsidence of the area
with the most significant subsidence in the first monitoring period tends to be stable, and
slows down in the second period. In the first period, the subsidence rate of the section
northwest of AA′ is higher than that of the southeast section. However, in the second
period, this phenomenon is reversed. The subsidence center moves from northwest to
southeast, which is consistent with the spatial evolution of the global subsidence funnel. In
the first period, the subsidence rate of BB′ is small, and presents two separate funnels. In
the latter period, the two funnels merge into a giant funnel. The subsidence area and rate
increases significantly.

Both ALOS-1/PALSAR and Sentinel-1 data can reflect the overall change characteris-
tics of the subsidence in time and space well (Figures 4 and 5). However, compared with
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the ALOS-1/PALSAR data, which have a revisit period of ≥46 days, the Sentinel-1 data
can capture more detailed changes to the deformation signals with obvious periodicities
in the time dimension due to its higher temporal resolution (≥12 days) (Figure 6). The
subsidence mainly occurs in summer. The ground tends to be stable or slightly uplifted in
winter. See Section 5 for detailed analysis and discussion.

4.2.3. Reliability Assessment

As can be seen from Figure 4, the deformation results of the SFM–def region from
the ALOS-1 data of different frames have good consistency. The deformation obtained
by the Sentinel-1 data of ascending and descending tracks also has good consistency in
spatial distribution and magnitude. This indicates that the TS–InSAR results have a good
consistency. To quantitatively assess the reliability of the TS–InSAR results, we compare
the average subsidence rates extracted from the overlapped areas of two adjacent InSAR
frames acquired at the same period, e.g., ALOS-1/PALSAR datasets from AT496F840 and
AT496F850, and Sentinel-1 datasets from AT143F136 and DT121F449 (Figure 2). Due to the
different observation geometry of each monitoring point in different frames, we convert
the LOS deformation to the vertical direction for comparison. The correlation between the
results at AT496F840 and AT496F850, and Sentinel-1 results at AT143F136 and DT121F449,
are 0.98 and 0.99, respectively. The root-mean-square errors (RMSEs) between them are 0.02
and 0.01 mm/year, respectively. These results show good consistency, and the differences
at most points are smaller than three times the RMSE (between the red dotted lines in
Figure 7).

Figure 7. Comparison between the results obtained by (a) ALOS-1/PALSAR AT496F840 and
AT496F850 data, and (b) the Sentinel-1 AT143F136 and DT121F449 data. The red dotted lines
denote the value three times the root-mean-square error.

5. Discussion

5.1. Anthropogenic Factors of Ground Deformation in the Turpan–Hami Basin

We obtained variable-scale deformation products in the Turpan–Hami basin using the
proposed WAVS–InSAR method. The distribution of most detected deformation funnels
(Section 4.1) is highly consistent with human activity, such as agriculture cultivation and
mineral mining. The agricultural area in the SFM–def region has a funnel cluster with
the largest deformation area and magnitude in the Turpan–Hami basin. We obtained the
long-term and multidimensional ground deformation in the SFM–def region in Section 4.2.
The subsidence center of the first period (2007–2010) shifted from the northwest to the
southeast in the second period (2015–2020).

We collect optical images of the SFM–def region in 2007 and 2018 (Figure 8a,b), cor-
responding to the two monitoring periods. The green lines mark the locations of the
greenhouses that appeared in the latter period. As the optical images show, the majority of
farmland in the SFM–def region in 2007 was open-air farmland. However, in 2018, there
was a large area of greenhouses, especially in the farmland far from the Flaming Mountains
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fault line. Many open-air farmlands in 2007 had been changed to greenhouses (Figure 8). In
traditional open-air farmland, the crops are mainly grain and cotton, which are planted in
spring, managed in summer, and harvested in autumn. However, in greenhouse farmland,
the expected proportion of fruit and vegetable cultivation is more than 70% [63]. After 2009,
many greenhouses were built in Turpan, especially in the agricultural areas far from the
southern margin of the Flaming Mountains fault line (Figure 8b). Advanced agricultural
planting technologies have brought huge economic benefits to Turpan, but also increased
the environmental burden, especially the demand for water [53]. Irrigation water in the
SFM–def region is mainly groundwater. Hence, ground subsidence caused by ground-
water overexploitation is more significant in the greenhouse areas of the SFM–def region,
resulting in aquifers carrying net deficit and the subsidence center shifting to the southeast
(Figure 8a,b).

Figure 8. (a,b) Optical images of the SFM–def region in 2007 and 2018. Green lines delineate
greenhouse planting areas. (c,d) Zoom-ins of the blue rectangular area in (a,b) in 2007 and 2018.
Background image: Google Maps satellite image.

Karezes are an important water supply in arid agricultural areas, known as “the
fountains of life”. In China, karezes are mainly distributed in the Turpan–Hami basin
(Section 3.1). A karez is composed of vertical shafts, culverts, water outlets, open channels,
and waterlogging dams, with length ranging from several to dozens of kilometers [51]. The
number and distribution of karezes can reflect the changes to the ecological environment
in the Turpan–Hami basin. It is important to evaluate the health of the aquifer. We
compared two high-resolution (0.44 m) optical images covering the blue rectangular region
of Figure 8a,b in July 2003 and May 2013 (Figure 9), where ground subsidence funnels in the
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second period (Figure 9a,b) were developed. In July 2003, lots of small mounds—the shaft
part of a karez—are linearly distributed in this area (Figure 9c). However, a lot of small
mounds have disappeared in the optical image taken in May 2013, indicating the karezes
in the area were severely damaged (Figure 9d). Some areas that karezes passed through
were turned into farmland (Figure 9e,f). The water supply of karezes was destroyed. The
water supply in this area will depend mainly on the extraction of groundwater using
electromechanical wells. The karezes may have ceased to function, and dried up.

Figure 9. Deformation rate in the blue rectangular area of Figure 8 from (a) ALOS-1/PALSAR,
(b) ascending track Sentinel-1 data. (c,d) Optical images of this area in July 2003 and May 2013,
respectively. (e,f) Zoom-ins of the yellow rectangular area in (c,d). Background image: Google Maps
satellite image.

In addition, we collected land cover data of the SFM–def region in 2000, 2010, and 2020
(Figure 10) (data from global Land Cover Data Product and Service website of National Basic
Geographic Information Center of China (http://www.globallandcover.com/, accessed on
10 July 2022)), and the corresponding area of land cover type in each period (Table 3). The
agricultural area has continuously expanded in the past two decades. Artificial areas have
expanded rapidly in the past decade, more than 10 times the rate of the previous decade.
Water and wetland areas have decreased in the last decade. In 2000 and 2010, the lake area
and the surrounding wetland area of Aydingkol Lake was stable, indicating that surface
runoff and groundwater are still effective for supply of the lake. These water sources can
also partially alleviate the overexploitation of groundwater for agricultural use. However,
in 2020, land cover data showed that the waters and wetland of Aydingkol Lake had almost
disappeared. Farmland area is in the inner ring of Aydingkol Lake (Section 3.1). The
excessive use of surface and underground water in farmland areas has seriously reduced
the water supply of the lake, resulting in the shrinkage of water and wetland, which will
seriously endanger the ecological environment. The transformation of local agriculture
and the economy has upset the ecological balance in the SFM–def region and the balance
of aquifers. Conflicts between the development of the local agricultural economy and
ecological environment should arouse the attention of local governments.
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Figure 10. Spatio-temporal evolution of the land covers in the SFM–def region in 2000, 2010, and
2020. The red and magenta dotted lines delineate the central area of the subsidence funnels during
the periods 2007–2010 and 2015–2020, respectively.

Table 3. The area of different land covers in the SFM–def region in 2000, 2010, and 2020, obtained
from Globeland 30.

Time

Sort
Farmland Grassland Wetland Waters Artificial Nudation

2000 574.33 652.74 99.90 13.68 43.81 2288.24

2010 657.46 669.62 99.90 14.09 48.50 2181.47

2020 705.65 658.64 0.16 1.53 110.14 2194.59

Percentage 1 a 14.5% 2.6% 0 3.0% 10.7% −4.7%

Percentage 2 b 7.3% −1.6% −99.8% −89.1% 127.1% 0.6%

Percentage 3 c 22.9% 0.9% −99.8% −88.8% 151.4% −4.1%

Unit: km2. a: Percentage of numerical growth in 2010 compared with 2000. b: Percentage of numerical growth in
2020 over 2010. c: Percentage of numerical growth in 2020 compared with 2000.

5.2. Geological Explanation of Ground Deformation in the Turpan–Hami Basin

There are many farmlands in both the Turpan and Hami depressions. Facility agri-
culture planting areas are also developed in other agricultural areas, e.g., the oasis areas
in Hami and the western part of Turpan. However, why is there a large area of ground
subsidence funnels in only the agricultural areas of the SFM–def region?

We plotted the deformation results and the corresponding optical images and faults of
the oasis areas in the Turpan depression and the Hami depression (Figure 11). Rainfall is
scarce in the Turpan–Hami basin. Irrigation water in the oasis agricultural areas depends
on rainfall and meltwater from the surrounding mountains (Section 3.1). The Flaming
Mountains fault line lies east–west in the Turpan depression, blocking water flowing
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from the Tianshan mountain to the south. The other areas, e.g., the northern part of the
Flaming Mountains fault line and Hami, can directly obtain abundant mountain water.
The surplus water in the Hami oasis can even form a river to supply the downstream area
in the southwest (Figure 11d). However, the SFM–def region is short of surface water
and groundwater, and the only river channel has almost dried up. As the distance from
the southern margin of the fault increases, the water supply gradually decreases. The
limited surface water cannot meet the continuously increasing demand for irrigation water,
resulting in the continuous overexploitation of aquifers, causing the development of many
subsidence funnels in this area.

Figure 11. Comparison of ground deformation and optical images in (a,b) Turpan and (c,d) Hami
oases. Background image: Google Maps satellite image.

The climate in the Turpan–Hami basin is dry and sunny, so evaporation is serious,
especially in late spring and summer, when 75% of the year’s evaporation occurs. Summer
is also the main period of crop growth, which demands more water for irrigation. The
agriculture in the SFM–def region relies heavily on groundwater exploitation, which directly
leads to the short-term sharp loss of aquifers, and accelerates surface subsidence. From late
autumn to early spring, groundwater exploitation intensity in farmland decreases. The
aquifers are replenished by surface runoff and groundwater reflux. This explains why the
subsidence of the funnels in farmland accelerates in summer and autumn, and slows down
or turns to slight uplift in winter and spring (Figure 6).

5.3. Development of InSAR Deformation Monitoring in a Wide Area

At present, most wide-area InSAR deformation monitoring projects use the TS–InSAR
algorithm to resolve the deformation time series of all highly coherent monitoring points
in each frame [10,11,13,17]. Even though different multi-looking ratios for the WSA and
the ROI were used to improve the efficiency of data processing by controlling the spatial
resolution of the results [14], these methods are still not out of the scope of time-series defor-
mation calculation. Moreover, if the strategy of reducing spatial resolution is not optimized,
it will cause repeated calculations and reduce monitoring efficiency. The deformation rate is
usually used to detect potential geohazards in a wide area [38]. Therefore, the deformation
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time series of some points is unnecessary, especially for stable areas. Hence, calculating
the deformation time series at all monitoring points wastes computing resources and labor
costs, and produces lots of redundant results. For example, deformation areas account for
about 2.4‰ of the total monitoring area in the Turpan–Hami basin. WAVS–InSAR only
calculates the deformation rate at each monitoring point in the WSA. Reducing the time
dimension of the wide-area deformation results can greatly improve the efficiency of the
multitemporal InSAR solution, especially for a lot of InSAR frames in the WSA. Spatial
distribution and area of deformation are detected by an adaptive deformation detection
method combined with the obtained wide-area deformation rate. After that, high-precision
time-series monitoring is only done in the ROI to obtain effective fine deformation results.

For variable-scale deformation results, the WAVS–InSAR strategy proposes a novel
variable-scale deformation product organization structure, i.e., it shows the deformation
information at the stable surface with low-spatial-resolution deformation rate, while the
ROI has a high-spatio-temporal-resolution deformation time series. This structure reduces
the amount of deformation results in the stable regions of the WSA, locates the ROI
efficiently, and improves the spatial and temporal dimensions of the deformation in the
ROI, which is convenient for the calculation, storage, display, and interpretation of the
deformation results.

As the SAR satellites and InSAR data increase, InSAR deformation monitoring projects
will produce many monitoring results. In the future, wide-area InSAR deformation mon-
itoring projects should be object-oriented, integrating different deformation monitoring
to obtain deformation results of multidimensional and high spatio-temporal resolution,
and ultimately form a set of universal deformation products. The data-processing strategy
and deformation product organization structure proposed in WAVS–InSAR will greatly
improve deformation monitoring efficiency and reduce the storage space of massive In-
SAR monitoring data, which may become a standardized data-processing procedure and
data-storage format for future wide-area InSAR deformation products.

6. Conclusions

In this study, we proposed a variable-scale InSAR ground-deformation detection strat-
egy and a deformation product organization structure for wide-area monitoring, namely
WAVS–InSAR. This strategy efficiently obtains the deformation rate in the WSA, and uses
an adaptive deformation detection method to process the wide-area deformation rate and
obtain the spatial distribution and area of the deformation areas (ROI). High-precision
time-series monitoring is then only done in the ROI, to obtain effective fine deformation
results. Therefore, we can produce variable-scale deformation products in the WSA that
consist of low-spatial-resolution deformation rates in stable regions, and fine monitoring
results in the ROI.

The proposed WAVS–InSAR was used to monitor wide-area deformation in the
Turpan–Hami basin, which has an area of 277,000 km2. The results show that there are
32 deformation regions with an area of more than 1 km2 and a deformation magnitude
of more than 2 cm/year. The detected deformation areas account for about 2.4‰ of the
total monitoring area. The SFM–def region is selected as an application demonstration
area of the ROI to carry out fine monitoring of the deformation time series. We obtain the
long-term and multidimensional deformation of this area from 2007 to 2010 and from 2015
to 2020 using improved IPTA and MSBAS technologies.

The subsidence funnel center in the SFM–def region moved from northwest to south-
east during 2007 to 2020. Based on the variable-scale deformation products and the infor-
mation regarding hydrogeology, land cover and human activities, we analyze the causes of
ground subsidence. Tectonic faults have blocked the water supply in the SFM–def region.
The rapid development of facility agriculture has increased the water demand for irrigation.
To solve this problem, groundwater has been overexploited. The aquifers in the oasis
plain in the SFM–def region are in a state of net deficit. Increased demand for water in the
upper reaches of Aydingkol Lake has reduced the lake’s water supply. Aydingkol Lake has
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shrunk dramatically. In addition, there are several deformation areas related to mining in
the Turpan–Hami basin.
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Abstract: Many coastal cities reclaim land from the sea to meet the rapidly growing demand for land
caused by population growth and economic development. Settlement in reclaimed land may delay
construction and even damage infrastructures, so accurately predicting the settlement over reclaimed
areas is important. However, the limited settlement observation and ambiguous final settlement
estimation affect accurate settlement prediction in traditional methods. This study proposes a new
strategy to solve these problems by using the Multitemporal Interferometric Synthetic Aperture Radar
(MT-InSAR) method and takes the Xiamen Xiang’an International Airport, built on reclaimed land,
as an example. The MT-InSAR is adopted to process the Sentinel-1 images to obtain the settlement
history of the study area. The results show that settlement mainly occurs in the reclaimed areas, with
the maximum average settlement rate exceeding 40 mm/y. We use the statistical properties of curve
fitting to choose the best curve model from several candidate curve models to predict the settlement
time series. The Asaoka method is used to identify the critical state between settlement and stability.
We predict the consolidation time of the whole study area and reveal that the deformation rate is
positively correlated with the consolidation time. The maximum remaining settlement time is over
ten years since 24 December 2019. Therefore, manual compaction operations can be carried out to
speed up settlement in the areas that need a long time to consolidate. The proposed method can be
used to predict the settlement of similar reclaimed areas, and the predicted results can provide a
reference for engineering construction.

Keywords: settlement prediction; reclaimed land; InSAR; exponential model; Asaoka method

1. Introduction

Land reclamation from the sea has become an important strategy to promote economic
growth and alleviate the population density in coastal areas [1–3]. However, the compaction
of the underlying soft soil layers in reclaimed areas often leads to land subsidence, which
may cause damage to undergoing construction and infrastructures [4,5]. Settlement moni-
toring and prediction are important in engineering geology [6], especially for reclaimed
areas, where the underlying layers are highly compressible and require a long time for
consolidation. Moreover, post-construction settlement prediction based on the foundation
displacements can provide a reference for engineering construction, deformation early
warning, and future land reclamation.

The methods used to predict the settlement include theoretical estimations based on the
soil consolidation theory [7] and curve-fitting or prediction models based on deformation
measurements [8]. The application of the former is limited by the few samples used and
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theoretical deviations due to different soil compositions. The latter relies on deformation
observations, which are easy to obtain. Therefore, the second group of methods, such
as hyperbolic curve [4,9,10], exponential function [11–13], and grey model [14–16], are
well-applied in engineering settlement monitoring and prediction.

Land settlement is often monitored via in situ measurements and remote sensing
technology. However, in situ measurements, such as Global Navigation Satellite System
(GNSS), leveling, and extensometers, usually have low spatial resolutions due to labor
intensity and high cost [17]. Therefore, with in situ measurements, it is difficult to obtain
the detailed spatial distribution of deformation, which may lead to misunderstanding
settlement behaviors. Interferometric Synthetic Aperture Radar (InSAR) has the ability to
obtain the spatial–temporal distribution of deformation with promising accuracy. More
importantly, it works in a non-contact style, so the acquisition of those data does not affect
engineering construction. Consequently, InSAR has been widely used in measuring ground
deformation, such as landslides [18–20], tectonic movements [21–23], volcano dynamics [24,25],
and land subsidence [26–29], as well as oil and gas fields [30,31]. Moreover, the ability of
long-term deformation time series retrieval of multitemporal InSAR (MT-InSAR) enables
InSAR to predict the settlement of the reclaimed areas.

For settlement prediction, most studies have chosen prior functional models (e.g., hy-
perbolic function, Poisson function, exponential function) to predict the total amount and
termination time of settlement. Kim et al. [9] introduced the hyperbolic model and persis-
tent scatterer InSAR (PS-InSAR) to monitor the land subsidence in Mokpo City, South Korea.
They showed that the prior hyperbolic model has better performance than the linear model.
Hu et al. [11] used multisource remote sensing imagery to characterize landscape changes
in Yan’an, China. They chose the exponential curve model to predict the consolidation
time of the subsiding area. Deng et al. [15] combined PS-InSAR with Grey system theory
to monitor and predict land subsidence in the Beijing Plain. The results indicated that
this method can be an alternative to conventional numerical and empirical models for
short-term prediction in cases in which there is a lack of detailed geological or hydraulic
information. The method of combining InSAR with curve models to monitor and predict
land subsidence has also been used in different scenarios [4,12,13,32]. Most studies chose
curve models based on experience for settlement monitoring and prediction. The selected
prior models, however, are likely not suitable to describe the deformation of the studied
areas. Shi et al. [17] reported that different models lead to large variations in settlement
predictions. They used exponential curve, hyperbolic curve, and quadratic curve to model
the settlement time series. However, the quadratic curve failed to predict the settlement.
The maximum difference in the final settlement amount predicted by the two curves can
reach 0.2 m. In addition, it is not easy to identify the critical state between deformation and
stability by the curve-fitting method, resulting in biased predictions of the total amount
and the termination time of settlement.

To solve the abovementioned problems, this study proposes a two-step settlement
prediction method. In step one, sufficient deformation points provided via MT-InSAR are
used to choose the best curve to model the settlement pattern. In step two, the predicted
settlement time series and the Asaoka method [33] are used to predict the final settlement
amount and consolidation time. The method is validated using the Xiamen Xiang’an
International Airport (referred to as XXIA hereafter), China, a reclaimed airport under
construction, as a case study.

This study is organized as follows: The study area and datasets are introduced in
Section 2. Section 3 describes the processing flow of MT-InSAR and the deformation results
of the XXIA. Section 4 describes the procedure of settlement prediction. In Section 5, we
discuss the total settlement and the consolidation time of the study area. Some conclusions
are drawn in Section 6.
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2. Study Area and Datasets

Sentinel-1 images over the XXIA acquired between July 2015 and December 2019 were
processed via MT-InSAR to obtain the deformation of the whole study area. Then, we chose
the best curve function to model and predicted the deformation time series of the study
area. The study area and datasets are described in subsequent sections.

2.1. Study Area

The XXIA, a planned 4F-class international airport, is located in the southeast of
Dadeng Island, Xiamen City, China (Figures 1 and 2). The construction of the XXIA started
on 4 January 2022, and about 26 km2 of the XXIA will be built on reclaimed land. The
land reclamation project of the XXIA has three phases (Figure 2); the first two phases have
been completed, after which the reclaimed land experienced settlement [2,34]. Settlement
monitoring and prediction of the reclaimed land are crucial to the safe construction of the
XXIA. However, predictions of the total settlement amount and consolidation time of the
XXIA have not yet been reported.

Figure 1. The Xiamen Xiang’an International Airport (XXIA): (a) coverage of Sentinel-1 images and
the location of the XXIA; (b) optical image of Dadeng Island; (c) location of the XXIA in Fujian
Province, China.

2.2. Datasets

A total of 128 ascending Sentinel-1 images acquired between 6 July 2015 and 24 December
2019 were collected to obtain the deformation time series of the reclaimed land (Table A1).
Coverage of the Sentinel-1 data is shown in Figure 1. The main parameters of the Sentinel-1
images are summarized in Table 1. The images were acquired after the first and second recla-
mation phases were completed. In addition, the SRTM DEM with a resolution of 30 m was
collected to simulate and remove the topographic phase in the differential interferograms.
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Figure 2. Optical images of the XXIA, Dadeng Island, and Xiaodeng Island: (a) illustration of the
three phases of land reclamation. The yellow, white, and red lines are the boundaries of the reclaimed
land in the first, second, and third phases, respectively. The blue line represents the dry land of
Dadeng Island; (b–d) optical images of the study area acquired in December 2011, December 2015,
and December 2019, respectively. The green lines delineate the boundaries of Dadeng Island and
Xiaodeng Island.

Table 1. Acquisition dates and parameters of the collected Sentinel-1 images.

Sensors Direction Incidence Angle Path-Frame Number of Images
Temporal
Coverage

Sentinel-1 Ascending 33.91◦ 142-75 128 6 July 2015–24 December 2019

3. MT-InSAR Processing and Deformation Results

3.1. MT-InSAR Processing

Sentinel-1 SAR images have small perpendicular baselines, so only the temporal
baselines were considered selecting interferometric pairs. The maximum temporal baseline
was set as 36 days. The interferometric pairs were processed via a multi-look operation
(range × azimuth = 5 × 1) to form the interferograms. The SRTM DEM was used to
remove the phase contribution of topography in the interferograms. After interferogram
filtering and phase unwrapping, the first-order polynomial function model was used to
remove the phase ramps. Some areas in the study area were reclaimed from the sea, so
they have no external DEM data. We assumed the elevation of the reclaimed land to be 1
and selected high-quality interferograms to perform linear regression between topographic
errors and perpendicular baselines to estimate and remove topographic errors. We used
the amplitude dispersion of pixels [35], intensity, and coherence to remove poor-quality
pixels. The singular value decomposition (SVD) [36] was used to calculate the phase time
series of each pixel. We estimated the linear deformation using the least square method and
then subtracted the phase contributions of linear deformation from the phase time series.
The residual components in the phase time series mainly include nonlinear deformation,
atmospheric artifacts, and noise. The atmospheric phases are highly correlated in space,
while lowly correlated in time. Noise is lowly correlated in both space and time domains.
Therefore, we used temporal and spatial filtering to extract nonlinear deformations from
the residual phases. The final deformation time series of each pixel is the sum of linear
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deformation and nonlinear deformation. The least-square method was performed in the
final deformation time series to estimate the average deformation rate of each pixel.

3.2. Deformation Results

Figure 3 shows the average deformation rate in the line-of-sight (LOS) direction of
the study area. The selected pixels were sufficient to show the spatial distribution of the
settlement, and the deformation areas obtained in this study are generally consistent with
the previous studies [2,34], although the monitoring periods were different. Four areas,
areas—A, B, C, and D—suffered severe settlement, and the maximum settlement rate
exceeded 40 mm/y. The settlement mainly occurred in the reclaimed areas, including the
area reclaimed in the first phase (Figure 3d), the second phase (Figure 3e), and the reclaimed
areas in the northwest (Figure 3a) and southwest (Figure 3b) of Dadeng Island. The
settlement was particularly severe in the northeast of the area reclaimed in the second phase.

Figure 3. Average deformation rate map of the study area. Positive values denote the deformation
toward the satellite. Negative values denote the deformation away from the satellite: (a) average
deformation rate map of the whole study area; (b–e) enlarged view of areas outlined by dotted lines
in (a).

The first reclamation phase was completed before July 2015, earlier than the monitoring
time of InSAR. According to the soil consolidation theory [7], some points (see Section 4)
in area C have finished the primary consolidation and entered the second compression
stage. The settlement rate in the area reclaimed in the first stage was around 15 mm/y,
with a maximum settlement rate of 20 mm/y. For area C, the maximum settlement rate
was observed in the southern part, but some points in this area had become stable after
the reclamation. Among the four areas, area C was first reclaimed, so it had the minimum
deformation rate, due to the longer time of consolidation. It is possible that areas A, B, and
D will have a settlement pattern similar to area C in the time domain, as they had similar
strategies of reclamation. Area D had the maximum average settlement rate, as it was
reclaimed in the second phase, which was accomplished in March 2018 and has just entered
the primary consolidation stage. Inside each area, the settlement rates were different.
Specifically, in area D, the southern part was stable, but the northern part experienced
serious settlement. One explanation is that this area underwent several reclamations at
different times (see Section 5).
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4. Methods of Settlement Prediction

The considerable number of measured points obtained from MT-InSAR provided a
good opportunity for the settlement prediction of the XXIA. In this section, we discuss
our methodology, according to which we chose the best model to describe the settlement
pattern of the XXIA and then used the Asaoka method to estimate the termination time of
settlement for predicting the total amount of settlement. The flowchart is shown in Figure 4.

Figure 4. Flowchart of the settlement prediction.

4.1. Function Model Selection

To describe the settlement patterns of the reclaimed areas, we selected the best one
from three traditional curve functions—namely, the hyperbolic model, Poisson curve model,
and the exponential function model—according to the deformation time series of the XXIA
obtained. The three utilized models are introduced below.

4.1.1. Hyperbolic Model

The hyperbolic model [4,9,10] is an empirical curve fitting method, suitable for fitting
a large amount of measured data. The amount of settlement St at time t can be expressed as

St = S0 +
t − t0

α + β(t − t0)
(1)

where S0 is the initial amount of settlement, t0 is the initial time of settlement, and α and β
are two unknown parameters. Formula (1) can be rewritten as

t − t0

St − S0
= α + β(t − t0) (2)

As Formula (2) shows, (t − t0)/(St − S0) and (t − t0) are linearly related. α and β can
be estimated by linear regression in t/St versus t, and then the hyperbolic model of the
settlement can be determined.

4.1.2. Poisson Curve Model

The Poisson curve model [32] can be written as

St = c/(1 + ae(−bt)) (3)

where St represents the amount of settlement at time t. a, b, and c are three unknown
parameters, which can be determined by the three-stage calculation method.

Assume the total number of SAR images is n, and the time interval of each two images
is equal. The settlement time series are y1, y2, y3, . . . , yn. The settlement time series is
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divided into three groups. Each group has r = n/3 items. Let d1, d2, and d3 be the reciprocal
sum of the settlement in the following three groups:

d1 = ∑r
i=1

1
yi

; d2 = ∑2r
i=r+1

1
yi

; d3 = ∑n
i=2r+1

1
yi

(4)

a, b, and c can be determined by the following formulas:

b = ln
(d1 − d2)

d2 − d3
/r (5)

c = r/[d1 − (d1 − d2)
2

(d1 − d2)− (d2 − d3)
] (6)

a =
(d1 − d2)

2
(

1 − e−b
)

c

[(d1 − d2)− (d2 − d3)]e−b
(
1 − e−rb

) (7)

In this study, the SAR images used to retrieve the settlement time series were not
acquired at equal intervals, so the settlement time series should be interpolated before
applying the Poisson curve model.

4.1.3. Exponential Function Model

The exponential function model [11–13] assumes that the settlement rate decreases
along the exponential curve with time. The model is expressed as follows:

St = S∞ − (S∞ − S0)e(t0−t)/η (8)

where St represents the settlement amount at time t, t0 is the initial time of settlement, η is
the unknown parameter, and S0 and S∞ represent the initial settlement amount and the final
settlement amount, respectively. Nonlinear regression can be used to apply Formula (8).

4.1.4. Optimal Model Selection

Most studies used a few points to evaluate the prediction ability of models. However,
these previously selected points may not be able to describe the settlement characteristics of
the whole study area. Moreover, settlement prediction based on a small number of points is
not very useful in practical engineering. The optimal prediction model based on sufficient
measurements can help monitor the whole study area, guide the construction process, and
provide a reference for the prediction of settlement in similar cases. The application of
MT-InSAR greatly contributes to the optimal model selection.

As mentioned in Section 3.2, the area reclaimed in the first phase has been subsiding
for a long time. The settlement pattern can be well-represented by the long-term settlement
time series of the monitored points, which helps the prediction model selection. Therefore,
the settlement time series of the monitored points (4217 points) in the area reclaimed in the
first phase was used to choose the optimal model from the above three models to predict
the settlement. Points P1–P6 (Figure A1) were chosen to display the settlement time series
and the three fitted curves (Figures 5–7). As shown in Figures 5–7, the three fitted curves
were consistent with the settlement time series. In terms of the determination coefficient R2

and root-mean-square error (RMSE) of points P1–P6 in the curve-fitted models, the Poisson
curve had the worst performance among the three models. Thus, the hyperbolic curve and
exponential curve were used to predict the settlement.
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Figure 5. Hyperbolic curve fitting of (a) P1, (b) P2, (c) P3, (d) P4, (e) P5 and (f) P6. Locations of points
P1−P6 are shown in Figure A1.

Figure 6. Poisson curve fitting of (a) P1, (b) P2, (c) P3, (d) P4, (e) P5 and (f) P6. Locations of points
P1−P6 are shown in Figure A1.

We calculated the R2 and RMSE values of the 4217 monitored points to qualitatively
choose the optimal curve model. Figure 8 shows the distribution of R2 of the three fitted
curves. R2 of the Poisson curve was mainly concentrated around 0.984, whereas that of the
hyperbolic curve was concentrated around 0.992, and the exponential curve had the highest
frequency when the correlation coefficient reached 0.996. The statistical histograms of RMSE
(Figure 9) showed that the maximum RMSE of the fitted exponential curves was about
7 mm, far less than that of the fitted Poisson and hyperbolic curves. The fitted exponential
curves also had the minimum mean RMSE. Therefore, the exponential curve model had
the best performance among the three curve models and, therefore, was determined as the
optimal settlement prediction model in the study area.
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Figure 7. Exponential curve fitting of (a) P1, (b) P2, (c) P3, (d) P4, (e) P5 and (f) P6. Locations of
points P1−P6 are shown in Figure A1.

Figure 8. R2 of (a) Hyperbolic curve fitting, (b) Poisson curve fitting and (c) Exponential curve fitting.

Figure 9. RMSE of (a) Hyperbolic curve fitting, (b) Poisson curve fitting and (c) Exponential curve
fitting.
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4.2. Method of Total Settlement Prediction

Although curve functions are applicable in settlement prediction, they can hardly
determine when the foundation becomes stable. We used the Asaoka method [33] to
identify when the settlement ends, which can obtain a reliable final settlement estimation
using a large amount of measured data. Then, the total settlement was determined by
combing the exponential curve model and the Asaoka method.

The Asaoka method is derived based on the Mikasa one-dimensional consolidation
equation [33]. This method approximates the consolidation differential equation by the
following equation:

S + λ1
dS
dt

+ λ2
d2s
dt2 + . . . + λn

dns
dtn = μ (9)

where S is the total final settlement, and λ1, λ2, . . . λn, μ are constants.
The first-order differential of Formula (9) provides high accuracy for practical engi-

neering applications, so Formula (9) can be rewritten as

S + λ1
dS
dt

= μ (10)

The time is divided into j (j = 1, 2, 3, . . . ) equal parts. For time tj, the settlement is Stj,
and we thus obtain

Stj+Δt = γ0 + γ1Stj (11)

where γ0 is the settlement value, and γ1 is a constant. Linear fitting is performed on a series
of scattered points (Stj , Stj+Δt ) to obtain the parameters γ0 and γ1, and the final settlement
of the foundation is expressed as St→∞ = γ0/(1 − γ1).

5. Discussion

5.1. Settlement Time Series Prediction

The consolidation rate of the foundation is affected by many factors, such as foundation
treatment ways, the reclamation materials, and the thickness of the underlying alluvial
layers, so it varies over regions [7]. It may take years or even more than ten years for
some regions to reach stability under natural conditions. The prediction of the settlement
time series helps locate the areas that need a long time to stabilize, so as to apply manual
intervention, such as tamping and strengthening, to unstable areas and ensure that the
construction is carried out on schedule. In addition, understanding the settlement behaviors
can provide prior information for the planning of engineering projects.

Using the exponential curve model and the Asaoka method, we predicted the set-
tlement time series in the XXIA. Figure 10 shows the predicted settlement curves and
the settlement termination time for points P7–P12 (locations of points P7–P12 are shown
in Figure A2). Their final settlement amount and the settlement termination time were
different. As Figure 10 shows, under the current loads, the final settlement amount of
P8 will reach about 11 cm in late 2027, and P9 will become stable within one year after
December 2019. However, P7, P8, P10, and P11 need a long time for consolidation, which
may be longer than ten years, exceeding the planned time of construction. Therefore, an
artificial compaction process should be performed to speed up consolidation.
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Figure 10. Predicted settlement curves of (a) P7, (b) P8, (c) P9, (d) P10, (e) P11 and (f) P12. Locations
of points P7−P12 are shown in Figure A2. t is the consolidation time, and d is the final settlement.

5.2. Consolidation Time Prediction of the Whole Study Area

The areas reclaimed in the first and second phases have the same geological structure
and foundation treatment methods, so the settlement patterns should be similar. Therefore,
we extended the optimal prediction model and the final settlement calculation method
determined in Section 4 to the whole study area to analyze consolidation. We show the
time required for each point to reach stabilization intuitively in Figure 11.

Figure 11. (a) The time needed for stabilization since the acquisition date (24 December 2019) of Dadeng
Island and its reclamation areas: (b) optical image of area A acquired on 13 April 2015; (c) optical
image of area B acquired on 13 April 2015; (d) optical image of area C acquired on 6 February 2015;
(e) optical image of area D acquired on 16 October 2014; (f) optical image of area E acquired on
1 June 2016.

As Figure 11 shows, a large number of points that require more than ten years to
stabilize were observed in the southern part of the area reclaimed in the first phase, the
northeast part of the area reclaimed in the second phase, the northwest of Dadeng Island,
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and the southwest of Dadeng Island. In the interior of Dadeng Island, almost all points
reached stability. Combining with the deformation rate map of the study area (Figure 3), we
found that the locations of the areas with large deformation rates were coincident with that
of the areas needing long settlement duration. The points with long consolidation times
were mostly distributed in the reclaimed area. The type and thickness of the reclamation
materials, the completion time of reclamation, and the effect of foundation treatments
all affect the settlement duration. In this study, Dadeng Island and its reclamation areas
were divided into five parts—namely A, B, C, D, and E. In what follows, we discuss
their remaining consolidation time separately and analyze the main reasons that affect
consolidation in each area.

Area A is the original land of Dadeng Island. As can be seen from Figures 11b and 12,
most of this area is covered by buildings, farmland, planting, and fishery farming areas,
which had no changes during the InSAR monitoring period, except for a few scattered
areas (Figure 3). The deformation results acquired by Liu et al. [2] and Zhuo et al. [34]
also showed that there was no large-scale heavy subsidence in area A. By analyzing the
optical images (Figure 12), we found that the subsidence in a few scattered areas was
caused by city road construction (white dotted rectangle and Figure A3) and farmland. City
road construction started between 29 April 2017 and 10 July 2017. It is reasonable that the
construction activity may cause land subsidence. Therefore, the prediction results are in
line with the actual condition, which further proves the reliability of the proposed method.

Figure 12. Optical images of the study area acquired on (a) 16 June 2015, (b) 24 June 2016, (c) 29 April
2017, (d) 10 July 2017, (e) 2 June 2018, (f) 26 July 2019, and (g) 7 December 2019.
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Area B was reclaimed in the second phase. Most of this region, except for the northeast
part, needs two to ten years to consolidate. The northeast part was reclaimed before
13 April 2015, when the reclamation of the rest part of area B had not yet started (Figure 12).
Therefore, when settlement in the northeast part ends, the remaining part of area B may
still be in the primary consolidation stage or secondary compression stage. Similarly, areas
C and E have varying consolidation times over different parts.

Area D was reclaimed in the first phase, but its northern and southern parts had
different deformation rates (Figure 3). The southern part needs 4 to 10 years for consolida-
tion. The northern part needs a shorter time to consolidate, and some parts have stopped
subsiding. The first phase of the reclamation project was from March 2014 to 16 June
2015. As shown in Figure 11e, during the foundation treatment, different types of landfill
materials were used in the north and south. The different landfill materials led to the
different remaining settlement times.

In foundation treatment and engineering construction, special attention should be paid
to the areas that need long consolidation times. However, it is worth noting that the predic-
tion method used in this study may not be appropriate to predict the settlement in some
parts of area A. Similar to the abovementioned description, farmland and some construction
activity exist in area A (dry land of Dadeng Island). The subsidence patterns of farmland
and some construction activity may be different from that of reclaimed areas. Therefore,
the interpretation of the predicted settlement should rely on actual deformation patterns.

6. Conclusions

In this study, we focused on settlement time series, final settlement amount, and con-
solidation time prediction over reclaimed areas using the dense deformation measurements
obtained from InSAR. The proposed method consists of two steps: (1) optimal curve model
selection; (2) final settlement prediction using the Asaoka method. The Xiamen Xiang’an
International Airport, a planned reclaimed area, was chosen as the study site to validate
our method. A total of 128 Sentinel-1 images were used to obtain the deformation history
of the study area. We analyzed the InSAR-derived deformation results and discussed the
predicted settlement. The following main conclusions were drawn from this research:

(1) Settlement mainly occurred in the reclaimed areas, with the maximum average settle-
ment rate exceeding 40 mm/y between 6 July 2015 and 24 December 2019. Different
parts in one reclaimed area had different settlement rates, due to the uneven construc-
tion progress;

(2) The exponential curve model showed the best performance in fitting the settlement
time series obtained from MT-InSAR over the area reclaimed in the first phase. The
Asaoka method was effective in the determination of deformation and stability;

(3) The settlement time series and the final settlement of the reclaimed land could be pre-
dicted by combining the exponential curve model and the Asaoka method. Predicted
consolidation time indicated that some areas need more than ten years to stabilize
(since 24 December 2019). Manual consolidation should be applied to those regions to
ensure construction speed.

We provided an alternative method to predict the settlement over reclaimed areas
that have no in situ measurements and subsurface information. In this study, no in situ
measurements or geotechnical models were used to predict the settlement, which may lead
to deviation from the actual final settlement. In the future, InSAR, in situ measurements,
geotechnical models, and subsurface information can be integrated to conduct precise and
wide-coverage settlement predictions.
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Appendix A

Table A1. Acquisition dates of Sentinel-1 images.

Satellite Pixel Spacing (Ran × Azi) Acquisition Dates (Year/Month/Day)

Sentinel-1 2.3 m × 13.9 m

2015/07/06, 2015/07/18, 2015/08/11, 2015/08/23, 2015/09/04,
2015/09/16, 2015/09/28, 2015/10/10, 2015/10/22, 2015/11/03,
2015/11/15, 2015/11/27,2015/12/09, 2015/12/21, 2016/01/14,
2016/01/26, 2016/02/07, 2016/02/19, 2016/03/02, 2016/03/14,
2016/03/26, 2016/04/07, 2016/04/19, 2016/05/01, 2016/05/13,
2016/05/25, 2016/06/06, 2016/06/30, 2016/07/24, 2016/08/05,
2016/08/17, 2016/08/29,2016/09/10, 2016/09/22, 2016/10/04,
2016/10/16, 2016/10/28, 2016/11/09, 2016/11/21, 2016/12/03,
2016/12/15, 2016/12/27, 2017/01/08, 2017/01/20, 2017/02/01,
2017/02/13, 2017/02/25, 2017/03/09, 2017/03/21, 2017/04/02,
2017/04/14, 2017/04/26, 2017/05/08, 2017/05/20, 2017/06/01,
2017/06/13, 2017/06/25, 2017/07/19, 2017/07/31, 2017/08/12,
2017/08/24, 2017/09/05, 2017/09/17, 2017/10/11, 2017/10/23,
2017/11/04, 2017/11/16, 2017/11/28, 2017/12/10, 2017/12/22,
2018/01/03, 2018/01/15, 2018/01/27, 2018/02/08, 2018/02/20,
2018/03/04, 2018/03/28, 2018/04/09, 2018/04/21, 2018/05/03,
2018/05/15, 2018/05/27, 2018/06/08, 2018/06/20, 2018/07/02,
2018/07/14, 2018/07/26, 2018/08/07, 2018/08/19, 2018/08/31,
2018/09/12, 2018/09/24, 2018/10/06, 2018/10/18, 2018/11/11,
2018/11/23, 2018/12/05, 2018/12/17, 2018/12/29, 2019/01/10,
2019/01/22, 2019/02/03, 2019/02/27, 2019/03/11, 2019/03/23,
2019/04/04, 2019/04/16, 2019/04/28, 2019/05/10, 2019/05/22,
2019/06/03, 2019/06/15, 2019/06/27, 2019/07/09, 2019/07/21,
2019/08/02, 2019/08/14, 2019/08/26, 2019/09/07, 2019/09/19,
2019/10/01, 2019/10/13, 2019/10/25, 2019/11/06, 2019/11/18,

2019/11/30, 2019/12/12, 2019/12/24
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Figure A1. Locations of points P1–P6.

Figure A2. Locations of points P7–P12.
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Figure A3. Optical images of the white dotted rectangle area in Figure 12. Optical image ac-
quired on (a) 16 June 2015, (b) 24 June 2016, (c) 10 July 2017, (d) 2 June 2018, (e) 26 July 2019, and
(f) 7 December 2019.
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Abstract: Landslide risk assessment is important for risk management and loss–damage reduction.
Herein, we assessed landslide susceptibility, hazard, and risk in the urban area of Yan’an City, which is
located on the Loess Plateau of China and affected by many loess landslides. Based on 1841 slope units
mapped in the study area, a random forest machine learning classifier and eight environmental factors
influencing landslides were used for a landslide susceptibility assessment. In addition, differential
synthetic aperture radar interferometry (DInSAR) technology was used for a hazard assessment. The
accuracy of the random forest is 0.903 and the area under the receiver operating characteristics (ROC)
curve is 0.96. The results show that 16% and 22% of the slope units were classified as being at very
high and high-susceptibility levels for landslides, respectively, whereas 16% and 24% of the slope
units were at very high and high-hazard levels for landslides, respectively. The landslide risk was
obtained based on the susceptibility map and hazard map of landslides. The results show that only
26% of the slope units were located at very high and high-risk levels for landslides and these are
mainly concentrated in urban centers. Such risk zones should be taken seriously and their dynamics
must be monitored. Our landslide risk map is expected to provide information for planners to help
them choose appropriate locations for development schemes and improve integrated geohazard
mitigation in Yan’an City.

Keywords: landslides; risk assessment; random forest; DInSAR; Yan’an city

1. Introduction

Landslides are common natural phenomena on mountains and slopes that can change
the geomorphology of the landscape. Thus, the massive destruction caused by landslides
is of great concern [1,2]. With global climate change and increasingly intense human
engineering, landslides tend to occur more frequently, resulting in huge economic losses
and many casualties [3,4]. Therefore, risk assessment is often the focus of research [5–8],
especially in populated areas that are prone to landslides. This should help provide
the necessary information to governments and decision makers [6,9]. Risk assessment
is the basis for risk management. It refers to the possibility and severity of landslides
impacting life, health, property, and the environment. In practice, the risk of landslides is
computed as the product of landslide hazard and the vulnerability to potential value loss [5].
Quantitative and accurate risk assessment can be effective information for government
departments in land and resources planning, engineering construction, the prevention and
early warning of landslides, and sustainable development.
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It is crucial to select an optimal model and methodology for landslide risk assessment
because different assessments may have different results and accuracies for the same areas.
In recent decades, numerous landslide susceptibility, hazard, and risk assessment methods
have been applied. However, there has been no study showing that a certain model has the
optimal solution for all risk assessments [10,11]. Models for landslide susceptibility assess-
ment can be classified as physically deterministic, heuristic based on experts’ knowledge,
and data-driven quantitative [12]. Physically deterministic models are commonly based on
hydrological characterizations combined with infinite-slope stability analyses to estimate
the relative stability of slopes [13]. Some research has pointed out that these models are
used only for particular hydrological conditions and high model preconditions [14], such as
detailed and homogeneous soil mechanical parameters, hydro environmental factors, and
simple landslide types. For this reason, they could be effective only for mapping small areas
in detail [15,16]. Heuristic models based on experts’ knowledge, including the analytical hi-
erarchy process (AHP) [17], expert knowledge systems [18], and gray relational modes [18],
mainly rely on constructing a relatively simple ranking method determined by experts’
knowledge [16]. Although heuristic models have the advantages of easy application, the
assessment results have low accuracy with a certain level of subjectivity [19]. Previous stud-
ies show that data-driven quantitative models are preferred and applied more frequently
than qualitative evaluation models, such as heuristic or geomorphological mapping [20,21].
Logistic regression (LR) [22,23], frequency ratio (FR) [24,25] and weights of evidence [26]
are the most frequently used statistical models. They are based on considered classical
statistics; index-based, machine learning; neural networks; and multi-criteria decision
analysis. In particular, the use of machine learning for landslide assessment is rapidly in-
creasing [20]. It is a modeling methodology that builds complex relationships between data
and target variables through iterative training and learning without assuming additional
structural constraints [27,28]. Machine learning is often used to solve nonlinear geological
environment problems, such as landslide susceptibility assessment and prediction. For
example, Chen et al. [29] introduced a new bivariate statistical-based kernel logistic regres-
sion to obtain landslide susceptibility maps by optimizing different kernel functions and
two-component statistical correlation analyses. Behnia et al. [30] produced susceptibility
maps for debris flows and other geohazards along the Yukon Alaska Highway Corridor,
in Canada. Hong et al. [31] built a higher-precision susceptibility map of the Guangchang
area in China based on a decision tree model. Furthermore, many studies have compared
the accuracy of machine learning with classical statistical models in landslide susceptibility
assessment [32–34]. They showed that machine learning models provide more accurate
assessments and predictions [35].

Apart from models and methods, selecting appropriate mapping units associated with
the research purpose is a key issue for reasonable and accurate assessment maps. Generally,
the mapping units fall into several groups: grid cells, terrain units, unique conditional
units, topographic units, slope units, complementary geohydrological units and political
or administrative units [20,36]. Each type of unit has certain analytical advantages and
disadvantages. For this reason, the type of unit needs to be determined at the beginning of
a study according to the purpose and scale of the research [36,37]. Landslides tend to show
a clear shape and boundary soon after their occurrence so the slope unit is often preferred
for representing the form of landslides or unstable slopes. In some studies, the slope unit
also performed better than the pixel unit in landslide assessment [38–40].

Yan’an, which is located in the north of Shaanxi Province, on the Loess Plateau, is a
typical valley city. Its particular geography and geological environment background, as
well as increasing human engineering activities, appear to be the causes of more frequent
landslides, collapses, and other geohazards [41]. Several studies have evaluated the suscep-
tibility and stability of landslides in Yan’an City and Baota District based on qualitative
methods and physical models [42–44]. However, the evaluation factors in those studies
are limited to geological or topographic conditions, and few studies have focused on the
deformations which can reflect the activity of slopes through SAR data in the risk assess-
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ment of the study area. Interferometric synthetic aperture radar (InSAR) technology can be
used to optimize the landslide susceptibility assessment and reduce landslide classification
errors [45]. Additionally, a smaller range and larger scale of quantitative assessments are
necessary for future urban development in Yan’an City if we want to mitigate the geohaz-
ards occurring in current urban constructions. Therefore, this study aims at constructing
a detailed landslide risk assessment in Yan’an City using high-resolution aerial images
and a digital elevation model (DEM). A detailed investigation and understanding of the
characteristics of the geological hazards in the urban area of Yan’an City is considered a
critical part of risk assessment. In the process, it becomes necessary to combine ground
deformation using InSAR technology with conventional topographic and geomorphic
factors for risk analysis. Advanced random forest machine learning classifiers and InSAR
technology are used in our study to assess landslide susceptibility, landslide hazards, and
the identification of areas exposed to a higher landslide risk in the urban parts of Yan’an
City. It is expected that the assessments of urban hazards and risks in urban areas based on
the slope units can provide more accurate information for government departments and
decision makers in urban planning, construction, and disaster prevention as well as control.

2. Study Area

The present study area is the central urban area of Yan’an City, which is located in
the northern part of Shaanxi Province, China, on the Loess Plateau between the latitudes
of 36◦27′N and 36◦41′N and the longitudes of 109◦22′E and 109◦33′E, covering an area of
185 km2 (Figure 1). Its landform features typical and complex loess beams, mounds, and
gullies. The highest elevation in the study area is 1300 m and the lowest elevation is 927 m,
which is in the river valley, so the elevation difference is about 370 m. The climate in the
area is semi-humid and semi-arid, with a continental monsoon climate. In the past, the
average annual precipitation in Baota District was 537 mm, which occurred mainly from
June to September [46].

Figure 1. The location, boundary, and geomorphology of the present study area in Yan’an City and
Shaanxi Province. YAND—Yan’an New District; HZP—Hezhuangping Town; QG—Qiaogou Street;
CK—Chuankou Town; BTS—Baotashan Street; FHS—Fenghuangshan Street; ZY—Zaoyuan Town;
NS—Nanshi Street; WHS—Wanhuashan Town; LL—Liulin Town.
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From the perspective of regional geology and geotectonics, the study area is located
in the middle-eastern part of the Ordos Block in the North China Block. The tectonic
movement is slight without strong structural deformation and maintains the characteristics
of a stable sedimentary basin. The strata are mainly Mesozoic and Cenozoic, including
Triassic, Jurassic, and Quaternary; however, the Quaternary loess is the most widely dis-
tributed [47]. Triassic and Jurassic strata are mostly seen along both sides of the valley.
Although there is no strong tectonic movement and fault, many landslides have occurred
and developed in the area due to the unique physical and mechanical properties of loess.
Loess is characterized by high porosity, low bulk density, weak cementation, water sen-
sitivity, collapsibility, structural joints, vertical joints, unloading cracks, and a soft layer
structural plane. Under the area’s special landform conditions, landslide hazards could be
induced by summer rainstorms and human engineering activities, which seriously affect
the sustainable development of the local economy and society.

3. Data and Methods

The methodology applied for landslide susceptibility, hazard, and risk assessment
is shown as a flowchart in Figure 2. A detailed explanation is provided in the following
subsections.

 
Figure 2. The flowchart of landslide risk assessment in the present study.

3.1. Landslide Inventory

A landslide inventory map is the first step to assess susceptibility. It shows information
on all historical and active landslides. Combined with field surveys, relevant literature
records and news reports of landslide records were used in this study to verify the spatial
distribution of landslides using Google Earth high-resolution images and an unmanned
aerial vehicle’s digital orthophoto map (DOM) (0.1 m) provided by the Xi’an Center of
China Geological Survey for visual interpretation.
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Generally, slope units are defined by topographic characteristic lines (such as ridgelines
and gully lines) and waterway paths, which are closely related to the DEM of the mountain
area [36]. Therefore, these topographic characteristic lines and waterway paths are also
the basic means to determine slope units in this study. Additionally, to better reflect the
terrain of landslides or unstable slopes, we divided slope units according to topographic
and geomorphic characteristics in the detailed field surveys. The basic requirement in
a field survey is that every gully and slope must be investigated and the results are
presented in the form of slope units. In this study, a total of 1841 slope units covering
the whole study area were surveyed and the location and boundary of discernible slope
units were obtained by the geographic information system (GIS) (Figure 3a). According
to the current morphological characteristics and active state of the slopes in the field
investigation, the slope units were divided into loess landslides, unstable slopes, and
slopes to be evaluated. Loess landslides are the main historical landslides in the study
area; unstable slopes show some deformation signs, such as creep slip, collapse, toppling,
etc., and are developing toward becoming potential landslides. Finally, the landslide
inventory map of the study area was aggregated and shown in Figure 3b, including 344
loess landslides and 411 unstable slopes, detailed in Section 4.1.

Figure 3. The inventory map of the present study. (a) Slope unit mapping and road elements based on
topography and field surveys. (b) The distribution of landslides and unstable slopes in the study area.

3.2. Factors Influencing Landslides

Selecting appropriate environmental factors and inducing factors is the basis of risk
assessment, which depends on data availability, scale, and study area, and affects future
predictions [21,48]. Based on the field survey and previous work on landslides in the study
area, we considered eight factors: slope, profile curvature, relief, the normalized difference
vegetation index (NDVI), landslide density, building density, the thickness of loess, and the
thickness of exposed bedrock. They are described below.

• Slope and profile curvature: A slope gradient is the measurement of the steepness of a
surface. If the slope is too low, the gravitational potential energy is insufficient, and
if the slope is too high, the material accumulation cannot provide the material basis
for landslides. A profile curvature is used to describe the complexity of the terrain,
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which is divided into convex, straight, and concave profiles, and reflects convergent
and divergent drainages in addition to variations in erosion rate [49]. In the study, the
slope and profile curvature were calculated using ArcGIS and a DEM with a spatial
resolution of 2 m (Figure 4a,b).

 

Figure 4. The conditioning factors used in this study: (a) slope; (b) profile curvature; (c) relief;
(d) NDVI; (e) landslide density; (f) building density; (g) loess thickness; (h) thickness of exposed
bedrock; and (i) deformation. The above parameters have been normalized.

• Relief: A relief represents the elevation difference within a certain range of the slope
and determines the gravitational potential energy. Only enough gravitational potential
energy can cause landslides (Figure 4c).

• NDVI: The NDVI reflects the vegetation cover in the study area. High vegetation
coverage is needed to stabilize the slope by the root system and reduce the devel-
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opment of landslides [50]. The NDVI value was calculated using the expression
NDVI = (NIR − R)/(NIR + R) from Landsat-8 images, where NIR is the reflectivity of
the near-infrared portion of the electromagnetic spectrum and R is the reflectivity of
the red portion of the electromagnetic spectrum (Figure 4d).

• Landslide density and building density: The landslide density directly reflects the de-
velopment quantity of disasters in an area. In urban areas, construction activity is one
of the most dominant human activities that cause slope instability. Settlement along
slopes in urban areas is an important factor in slope failure. Therefore, we used build-
ing density to reflect the effect of human activities on slope stability. Landslide density
and building density were calculated for the slope units by vectorizing landslides and
building contours and then interpolating them into grid data (Figures 3 and 4e,f).

The thicknesses of the loess and the exposed bedrock were measured during field
investigations (Figure 4g,h). The loess thickness on a hillslope, which coincides with
the failure depth, is a critical parameter in performing the slope stability analysis. The
overlying loess thickness plays an important role in hydrological effects, such as the ratio of
the saturated depth to the losses [51]. The thickness of the exposed bedrock of the slope has
a great impact on the landslide scale, landslide type, and slope deformation [52]. Due to
the undeveloped tectonic activity in the study area, the effect of earthquakes and faults has
not been considered in this study. In addition, because precipitation within the relatively
small study area is mostly unvarying, precipitation data were excluded from the analysis
processes.

A statistical description of the influencing factors is shown in Table 1. To eliminate the
dimensional influence of factors, the minimax normalization method was applied [53]. The
continuous factor values of each factor were normalized, so all the values fall in the (0, 1)
interval, where the normalized data were calculated following the equation below:

Xi
′ = xi − xmin

xmax − xmin
(1)

where Xi
′ is the normalized input and xi, xmin, and xmax are the actual, minimum, and

maximum input data, respectively. The results of normalized factors are shown in Figure 4.

Table 1. Statistical description of the influencing factors.

Factors Min Max Standard Deviation

Slope (◦) 0 86.8 15.5
Profile curvature −497.4 499.0 33.6

Relief (m) 8 166.6 29.4
NDVI −0.23 0.98 0.18

Landslide density 0 0.27 0.06
Build density 0 0.22 0.04

Loess thickness (m) 8.0 160.2 29.3
Bedrock thickness (m) 0 24.5 3.4

Deformation (m) 0.11 −0.09 0.014

3.3. DInSAR

In general, the displacement of a pixel is calculated using the interference phase
difference between two SAR images by using the pixel product of a reference image and
slave image—this is the basic principle of InSAR [54]. DInSAR is applied to the removal
of the topographic phase contribution from the interferogram deformation phase using
a two-pass, three-pass, or four-pass technique; however, it is worth noting that the two-
pass technique, which imports an external DEM, yields a more reliable and operational
outcome [54,55]. Furthermore, several limitations of InSAR technology must be considered
at the beginning of use. One limitation is geometric distortion caused by topography,
especially in mountainous areas with high elevations, which is affected by the look side of
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radar observation modes [56]. Another limitation is the poor coherence, even incoherence of
interferograms caused by diffuse vegetation, which is very obvious in the C-band Sentinel-1
images of the study area [57].

In this research, two ascending SAR images acquired from ALOS-2 on 5 Novem-
ber 2018 and 20 May 2019 were selected for interference calculations (Figure 5a and Table 2).
Due to the relatively flat terrain of the study area, the SAR images from a single orbit can
be used to detect and monitor the deformation of most of the slopes. The sensor of ALOS-2
can transmit and receive the L-band with strong penetrating ability and can capture the
ground deformation under the dense vegetation. The external DEM for removing the
topographic phase and geocoding is the 1-arc-second (~30 m) Shuttle Radar Topography
Mission (SRTM) data from NASA. Ground deformation along the LOS (light-of-sight) of the
Yan’an City area was obtained after registration and resampling, differential interference,
coherence calculation, filtering and phase unwrapping, orbit refining, and reflattening in
addition to geocoding. All of these were processed with the DInSAR tool of the SARScape
software (Figure 5b). The normalized deformation factor image is shown in Figure 4i.

Figure 5. Area covered by two ascending SAR images from ALOS-2 (blue rectangle) in (a), and image
of the LOS displacement of the study area (red polygon) using DInSAR technology in (b).
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Table 2. Details of two SAR images and displacement from ALOS-2.

Sensor PALSAR-2

Wavelength 23 cm
Band L

Acquired time 5 November 2018
20 May 2019

Orbit direction Ascending
Angle of incidence 32.5◦

Polarization HH
Observation mode Fine

Resolution 10 m
Normal baseline 140.798 m

Absolute time baseline 196 days
Max displacement 0.150 m
Min displacement −0.172 m
Standard deviation 0.018 m

3.4. Random Forest

Random forest has been widely used in data classification and management and has
excellent performance in landslide susceptibility mapping. Random forest is an ensemble
machine learning algorithm based on a decision tree. The classifier is a recursive process
from root nodes to child nodes, which is similar to the combination of a decision tree and the
flowchart of a tree structure [58]. The bootstrap method is used to extract multiple samples
from the original samples. Starting from the nodes of a tree, the optimal features among
different internal nodes are selected, and the corresponding branches are determined based
on the test output. Finally, the results are obtained from the leaf nodes of the decision tree.

Random forest has strong generalization ability and can deal with multi-dimensional
and large learning sets. Compared with other statistical learning models, random forest
does not easily generate overfitting. It improves prediction accuracy without significantly
increasing the amount of calculation. It has a higher tolerance for outliers and noise,
resulting in data loss and imbalance. In this study, a random forest module was built based
on the R language. Before running the random forest module to perform the landslide
susceptibility assessment, the training and validation datasets must be selected. In the
study, landslide inventories including stable slopes, unstable slopes, stable landslides, and
unstable landslides were selected as training sites. Using ArcGIS, these slope units were
converted into 109,981 vector points, where 3000 points were selected randomly at each
of the landslide sites and non-landslide sites to train and test the classifier. Finally, its
performance was evaluated with the ROC curve and confusion matrix.

4. Results

4.1. Characteristics of Landslides

Based on the field survey, the geohazards of Yan’an City were counted as 334 land-
slides, 411 unstable slopes, and land subsidence locations. Their depths of the sliding
surface are mainly shallow (less than 30 m) [47]. The landslides can be classified as loess
landslides and loess-bedrock interface landslides because most landslides occur in the
loess layer or on the top of the bedrock (Figure 6a,b). The geometric morphology and
characteristics of the loess landslides and the unstable slopes including the types, lengths,
widths, height, slope angles, and others, such as the longitudinal shape and depth of slide
surfaces, were mapped using the GIS and field investigations with high-resolution DEM
(~2 m) (Table 3). The length and width of landslides are mainly in the range of 50 to 200 m.
The height and slope angle are also condition factors of loess landslides. A higher or steeper
slope has a higher degree of stress concentration and tensile stress range so it is more prone
to failure and sliding. The study area is located in the loess hilly gully region with dense
gullies, and the relative height differences of 60 to 150 m leads to the height of landslides
usually being less than 120 m. Since the late Cenozoic era, the Loess Plateau has been in a
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state of intermittent uplift, with rivers cutting sharply and ravines crisscrossing, creating
topographic conditions for loess landslides. The longitudinal shape can control the values
and positions of the stress inside the slope body and plays a key role in the stability. For
example, flat and convex slopes tend to be more easily destroyed under stress, suggesting
an unstable evolutionary trend, whereas sunken and stepped slopes tend to be more stable
with less stress concentration. Therefore, the longitudinal shapes of landslides in this study
are mainly flat and convex slopes.

 

Figure 6. Examples of geohazard types mapped in the study area: (a) loess–bedrock interface
landslide; (b) loess landslide; (c) soil–bedrock unstable slope; (d) soil unstable slope; and (e,f) cracks
and damages in the ground and buildings due to land subsidence. Arrows indicate the direction of
the slide and the location of the cracks.

Table 3. Types and characteristics of landslides and unstable slopes. L and U represent landslides
and unstable slopes, respectively.

Type Length (m) Width (m) Height (m) Slope (◦) Area (103m2)

Loess 243
<50 26 <50 25 ≤30 7 ≤20 10 ≤5 73

50–100 108 50–100 107 30–60 113 20–30 95 5–10 73
L 100–150 104 100–150 99 60–90 118 30–40 174 10–15 59

Loess-bedrock 91
150–200 50 150–200 41 90–120 69 40–50 55 15–20 46
200–250 22 200–250 31 120–150 24 >50 0 20–25 17

>250 24 >250 31 >150 3 25 66

Loess 285
≤50 76 ≤50 35 ≤30 19 ≤20 12 ≤5 145

50–100 218 50–100 160 30–60 184 20–30 59 5–10 143
U

Bedrock 5
100–150 82 100–150 138 60–90 161 30–40 231 10–15 61
150–200 19 150–200 39 90–120 40 40–50 108 15–20 28

Loess-bedrock 121
200–250 10 200–250 18 120–150 6 >50 1 20–25 12

>250 6 >250 21 >150 1 >25 22
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Unstable slopes refer to a slope with creep slip, collapse, toppling, lateral tensile
fracture, and other deformation characteristics or trends, and that is regarded as a potential
geohazard. The 411 unstable slopes from the field survey were divided into three types
according to their material composition: (i) soil unstable slope, (ii) rock unstable slope, and
(iii) soil–bedrock unstable slope. There were about 285 soil unstable slopes in the study
area, accounting for 69% of the total number of unstable slopes. Soil–bedrock unstable
slopes and rock unstable slopes are fewer, numbering 125 and five, respectively, accounting
for 31% of the total number of unstable slopes and mainly occurring in the Quaternary
loess and the Jurassic sandstone strata. The unstable slopes have similar characteristics to
landslides in their ranges of length, width, height, and area but the slope angles of unstable
slopes are relatively larger. The characteristics of landslides and unstable slopes in the
present study are summarized in Table 3.

In addition, under the pressure of population growth and development as well as the
preservation of historical and cultural sites, in 2012 the government built a new district
called Yan’an New District by cutting mountains and filling ditches. However, because of
the special microstructure and complex engineering-geological conditions of the loess, land
subsidence in Yan’an New District has become one of the geohazards that requires much
attention. The surface deformation along the radar LOS calculated by the DInSAR technique
was very similar to that of the small baseline subsets InSAR (SBAS-InSAR) approach from
Sentinel-1 images (see [59,60] for more details). DInSAR and field surveys show that
the land subsidence area is the ribbon (Figure 7), mainly concentrated in the filling area
manifested as wall cracking or collapse, ground subsidence, and cracks (Figure 6e,f).

Figure 7. Surface deformation image of Yan’an New District from 2018 to 2019 calculated using
DInSAR. Positive values indicate that the ground object deformation is close to the radar along the
radar LOS, and negative values indicate that the ground object deformation is far away from the
radar along the radar LOS.

4.2. Landslide Susceptibility Mapping

The normalized factors were used as the input, and the landslide susceptibility index
was the output data. The mean decrease accuracy and mean decrease Gini coefficient of the
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random forest are used to order the eight variables (Figure 8). The vertical axis represents
the eight variables, with the mean decrease accuracy and mean decrease Gini coefficient
decreasing from top to bottom. It shows that the importance of the hazard density is the
highest and that the build density, thickness of exposed bedrock, loess thickness, relief,
and the NDVI are the next most-important. The ROC curve is widely used to evaluate
the classification results of the random forest classifier through the area under the ROC
curve (AUC) [35]. The vertical axis and horizontal axis represent the true positive rate
(TPR) and false-positive rate (FPR) using the random forest classifier, respectively. TPR
and FPR, also called the sensitivity and specificity, are the ratio of the landslide sample
points correctly detected by the classifier and the ratio of the non-landslide sample points
incorrectly classified as landslide sample points, respectively [61]. The larger the AUC, that
is, the closer the vertex of the curve is to the upper left corner, the better the classifier’s test
capability. In this research, the AUC is 0.96, which indicates excellent classification results
of the random forest classifier (Figure 9). In addition, the confusion matrix shows that the
overall accuracy of the random forest classifier is 0.903 and that the predicted precision
of non-landslides and landslides is 0.927 and 0.881, respectively, which is a good method
to analyze the prediction accuracy (Table 4). Four levels of susceptibility, i.e., very high
(>0.711), high (0.711–0.458), moderate (0.458–0.231), and low (<0.231), were categorized
based on the natural breaks classification conducted using the ArcGIS software (Figure 10).
The natural breaks classification was determined based on natural groupings inherent in
the data. Then, the classification interval was identified to provide an optimum grouping
of similar values and maximize the differences between classes [62,63]. Additionally, the
distribution of the landslide susceptibility index using the natural breaks is shown in
Figure 10b.

Figure 8. Mean decrease accuracy and mean decrease Gini of variables assigned by the random forest
classifier. The vertical axis is the inducing factor variable. hazard—hazard density; build—build
density; lithe—thickness of exposed bedrock; loess—loess thickness; height—relief; ndvi—NDVI;
curv—profile curvature.

The results show that the distribution of landslides and unstable slopes in the study
area is closely related to the susceptibility partitioning (Table 5). Over one-third of the slope
units in the study area are in the high- and very high-susceptibility areas, accounting for
21% and 16% of the total, respectively, with a total area of 10.1 km2; the remaining slope
units are in the moderate- and low-susceptibility areas. Moreover, 35% of the landslides
and the unstable slopes are located in the very high-susceptibility area, accounting for 16%
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of the total number of the slope units; 33% of the landslides and the unstable slopes are
located in the high-susceptibility areas, accounting for 21% of the total number of the slopes;
21% of the landslides and the unstable slopes are located in the moderate-susceptibility
area, accounting for 27% of the total number of the slopes; and 11% of the landslides and
the unstable slopes are located in the low-susceptibility areas, which account for 36% of the
total number of slopes.

Figure 9. ROC curves and AUC value for evaluating the classification results of landslide susceptibil-
ity using the random forest classifier.

Table 4. Confusion matrix of the random forest classifier.

RF
Predicted

Recall
Non-Landslide Landslide

Actual
Non-landslide 543 73 0.881

Landslide 43 541 0.926

Precision 0.927 0.881 0.903

The results of the landslide susceptibility assessments show that two regions are highly
prone to landslides, one being the urban center of Baota District, and the other Nanniwan
Airport (Nnwa) and its surrounding areas. In the urban center of Baota District, including
Yangjialing Village (Yjl), Nanshi Street (Ns), Baiping Village (Bp), Hutoumao Village (Htm),
Zezigou Village (Zzg), Nanzhaibian Village (Nzb), Majiawan Village (Mjw), Huanghaowa
Village (Hhw), Mata Village (Mt), Erzhuangke Village (Ezk), and Shanlangcha Village
(Slc), where landslides occur frequently, the landslide susceptibility is high and very high
because of the very high-density population and frequent human activities (Figure 10).
Due to the effects of road construction, domestic water discharge, crop planting, slope toe
excavation, and other activities, landslides, including rock falls, slope failures, unstable
slopes, and creep, occur frequently, which poses a great threat to the lives and properties of
the local residents. The other highly landslide-prone areas are Nanniwan Airport (Nnwa)
and its surrounding areas, including Yangjiawan Village (Yjw), Maozegou Village (Mzg),
Sanshipu Village (Ssp), and Yejiagou Village (Yjg). Nnwa is the area of mountain excavation
and valley infilling on the Loess Plateau and its construction destroys the stability of the
surrounding slopes, resulting in the development of landslides and unstable slopes in the
surrounding areas.
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Figure 10. Landslide susceptibility map of the study area in (a), and the distribution of the landslide
susceptibility index using the natural breaks in (b).

Table 5. Slope unit statistics based on landslide susceptibility, hazard, and risk zone.

Slope Units VH H M L

Susceptibility
zone

Number 291 401 495 654
Total areas 5.8 4.3 4.6 6.9

Proportion (N) 16% 22% 27% 36%
Landslides 122 96 62 54

Unstable slopes 138 147 96 30

Hazard zone

Number 293 439 583 526
Total areas 6.4 4.7 6 4.5

Proportion (N) 16% 24% 32% 29%
Landslides 123 89 77 45

Unstable slopes 131 149 93 38

Risk zone

Number 116 377 560 788
Total areas 2.0 4.4 6.0 9.2

Proportion (N) 6% 20% 30% 43%
Landslides 55 78 99 102

Unstable slopes 41 132 133 105
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4.3. Landslide Hazard Mapping

Reliable landslide hazard mapping is crucial for hazard mitigation and risk manage-
ment. In this study, InSAR technology was used to obtain the landslide hazard assessment,
aiming for an ongoing and quantitative practice [63]. The fieldwork showed that the
landslide type in the study area was relatively single, mainly loess landslides, and that the
geological environment and inducing conditions, such as rainfall, are similar in the small
study area, leading to the relatively simple mechanism of loess landslide activity. Therefore,
DInSAR was used as a comprehensive indicator to reflect slope displacement, whether
caused by rainfall or human activities, in landslide hazard assessment. The spatial probabil-
ity of landslides (landslide susceptibility) and the intensity of ground surface deformation
were used in the weighted overlay model parameters to calculate landslide hazard [64].
The weighted overlay technique is defined to develop a map using the overlays of several
raster layers by giving weight to each raster layer according to expert opinions [65]. The
weighted overlay analysis was applied to obtain the landslide hazard assessment using the
following equation:

WX i =
m

∑
j=1

R(j ) × X(i, j) (2)

where m is the total number of factors to assess, WXi is the hazard index of the assessment
units, R(j) is the weight value of each factor, and X(i,j) is the value of the assessment factors.
In this study, X(i,j) is the landslide susceptibility index obtained from the random forest
and the ground–surface deformation intensity that was defined using the normalized
ground deformation data obtained from DInSAR during the monitored time; the weight
values of both were set at 0.5 after analyzing the geological environment and inducing
conditions of landslides in the study area, respectively. Finally, the hazard indexes of slope
units were calculated by summing the product of assessment factors and corresponding
weight values. Four levels of hazard, i.e., very high (>0.594), high (0.594–0.416), moderate
(0.416–0.269), and low (<0.269), were categorized based on the natural breaks classification,
and the LOS displacement in different hazard levels were counted, which are illustrated in
Figures 11 and 12, respectively.

The number and LOS displacement values of slope units in different hazard levels
are illustrated in Figure 11. The distribution histogram shows the maximum and mean
displacement values, as well as the number of slope units in different hazard levels. It
shows that the displacement values of slope units are distributed in a normal curve and
that the higher hazard of slope units presents a higher displacement value than the lower
hazard on the whole. The results show that 40% (732) of the slope units in the study area
are in the high- and very high-hazard areas for landslides, accounting for 24% and 16% of
the total, respectively, with a total area of 11.1 km2 (Figure 12). There was a small increase
in the number and distribution of the hazard zones in the urban areas compared with the
susceptibility map. About 34% (254) of the landslides and the unstable slopes are located in
the very high-hazard areas, accounting for 14% of the total number of slopes; 32% (234)
of the landslides and the unstable slopes are located in the high-hazard areas, accounting
for 13% of the total number of slopes; 23% (170) of the landslides and the unstable slopes
are located in the moderate-hazard areas, accounting for 9% of the total number of slopes;
and 11% (83) of the landslides and the unstable slopes are located in the low-hazard areas,
which are 5% of the total number of slopes. The results show that the spatial distribution of
landslide hazard areas was consistent with the field investigations.
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Figure 11. Distribution histogram of the number and LOS displacement values of slope units in
different hazard levels: (a) low hazard; (b) moderate hazard; (c) high hazard; and (d) very high
hazard. The red lines represent the average displacement values in different hazard levels.

4.4. Landslide Risk Mapping

The JTC-1 Joint Technical Committee on Landslides and Engineered Slopes noted that
landslide risk is a measure of the probability and severity of the adverse effects of landslides
on health or property, which must consider the hazard mapping and vulnerability of land-
slides [5]. Vulnerability assessment is a fundamental element in the evaluation of landslide
risks [66]. Vulnerability to landslides is expressed in economic (monetary, quantitative)
and heuristic (qualitative) scales. When using economic measurements, vulnerability is
commonly expressed in the element values, such as monetary, intrinsic, and utilitarian
values [67]. Due to a lack of information about properties and population distribution data,
the Kriging interpolation of building distribution and building density was used for the
vulnerability assessment in this study. The location and spatial distribution of buildings
reflect the distance between buildings and slope units, which indirectly indicates the extent
to which buildings and populations are threatened by landslides. Additionally, the building
density can also indicate the properties and populations. Of course, this assumes that the
sizes and values of the buildings are similar and that the differences in the populations
attached to the different buildings are slight. The equation for landslide risk calculation is
expressed as follows:

R = HL × VL (3)

where HL and VL represent the landslide hazard and vulnerability, respectively. The
landslide risk index obtained from Equation (3) is divided into four levels according to
the natural breaks method after normalization, namely, very high-risk (>0.406), high-risk
(0.406–0.223), middle-risk (0.223–0.101), and low-risk (<0.101). The results of the risk
assessment zones and statistics are shown in Figure 13 and Table 5.
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Figure 12. Landslide hazard map of the study area in (a), and the distribution of landslide hazard
index using the natural breaks in (b).

The landslide risk assessment map shows that the risk in the urban center is higher
than that in the suburban areas, where the risk decreases with increasing distance from
the urban center (Figure 13). Additionally, a total of 20 and 167 extra slopes are in very
high and high-hazard zones besides landslides and unstable slopes (Table 5). About 6%
(116) of the slope units are located in very high-risk zones with a total area of about
2 km2; 20% (377) of the slope units are located in high-risk zones with a total area of
about 4.4 km2, which are mainly distributed in concentrated areas (i.e., Yjl-Sy-Slc-Hhw)
(Figure 13 and Table 5). The building and population densities in these areas are high,
which may lead to significant economic losses and casualties, so it is necessary to pay more
attention and conduct landslide risk management to mitigate the landslide risks. Compared
with the landslide susceptibility and hazard maps, Nnwa and its surrounding areas are
classified into moderate- and low-risk areas because of the low population density in the
areas. In addition, many engineering solutions, including slope geometry modification,
underground drainage systems, gravity retaining walls, and anti-slide piles, have been
applied to stabilize the slopes. Therefore, the slopes, which are originally very highly prone
to landslides, are classified as low-risk zones for landslides.
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Figure 13. Landslide risk map of the study area in (a), and the distribution of the landslide risk index
using the natural breaks in (b).

5. Discussion

Landslide risk assessment has been attracting the attention of researchers and gov-
ernments in order to effectively deal with landslides in the study area. For this purpose,
machine learning and DInSAR technology were used to evaluate the landslide susceptibility
in the main urban parts of Yan’an City. Currently, the susceptibility, hazard, and risk of
landslides in the whole of Yan’an City have been determined in existing studies. In terms
of the methodology, they can be divided into the heuristic model and generalized objective
functions based on experts’ knowledge scoring [44,68,69], a quantitative model of evidence
weight [42], and a physically deterministic model [43]. In terms of map units and scopes,
they can be divided into grid cells (25 m or 30 m), catchment basin units [42–44,68,69],
administrative boundaries [42–44], and watershed boundaries [68,69]. However, those
results are not only subjective but also can only meet the needs of a wide range of risk
management options and cannot truly reflect the geomorphic characteristics of the slope in
the study area, which can be useful for risk management in a large administrative area. The
research reviewed that an inventory including detailed landslide information and a rea-
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sonable mapping unit as well as model type is a prerequisite for obtaining highly accurate
assessment results [20]. Firstly, a landslide inventory with more detailed information can
provide more input data to the model to analyze the relationship between landslides and
geological environment factors to obtain a comprehensive landslide susceptibility map [70].
Some previous studies in the study area may not have shown this. Therefore, a complete
landslide inventory, mapping all landslides in the study area, was determined through
the interpretation of UAV images and site-by-site investigations. Secondly, field surveys
and risk assessment of slope units on a large scale in small areas can provide planners
with an adequate and applicable landslide risk map, especially in areas of critical concern
such as urban centers. Research shows that grid cells or pixels are still the most commonly
used map units in current papers on landslide assessment, and only a few papers have
used slope units [20,21]. To reflect the geomorphic characteristics of slopes, slope units
were used as map units in this study. Thirdly, the selection of a model is also an important
factor affecting the accuracy of landslide susceptibility assessment. There are more and
more models and methods developed for landslide susceptibility assessment, among which
machine learning with good performance can be used to solve the nonlinear relationship
between landslides and geological environment factors [16,34]. For this reason, random
forest was selected to predict landslide susceptibility in the study area, with good proven
performance [34,71]. Therefore, the accuracy of the landslide susceptibility assessment in
this study was improved by using a machine learning model and slope units.

In addition, DInSAR technology was introduced in the process of hazard assessment
to calculate slope deformation, and the hazard was calculated by giving the same weight
coefficient of susceptibility and slope deformation. InSAR technology was used to perform
a time-effective analysis, and the results can present the active state of slopes directly
to predict the failure time and assess the hazard class of landslides [72,73]. At present,
combining the ground deformation products from the InSAR technology with a landslide
risk assessment map has become a concern in the relevant research [63,74]. However, many
existing studies focus on the early identification and long-term monitoring of temporal and
spatial evolution using InSAR technology [75,76] but there is still insufficient attention paid
to risk assessment. The application of InSAR data in landslide risk assessment can improve
the reliability of landslide predictions and make a reliable landslide risk map [45].

Finally, landslide risk was calculated by multiplying the hazard with the vulnerability
composed of the spatial distribution and density of the buildings. The susceptibility, hazard,
and risk assessment in this paper have a similar trend to the previous paper on Yan’an
City in the area of different levels and spatial distributions [42–44], such as the area and
percentage of low-susceptibility or hazard zones being greater than that of the higher-
susceptibility or hazard zones, and the high-risk zones in the spatial distribution patterns
are similar, which can also imply the accuracy of this work to a certain extent. Moreover,
the risk assessment in this study can provide more specific guidance for risk management
and prevention in practice.

There are some limitations that need to be considered in future research. Firstly, due
to the lack of detailed population and property data, only the spatial location information
of buildings was used for the vulnerability. The precondition for this question is to assume
that the values of the buildings in the study area are the same, which would lead to certain
information loss for vulnerability. Secondly, influenced by the observation mode of the
radar satellites, the deformations obtained by the SAR images are ultimately along the LOS.
However, the deformation rate along the slope (Vslope) can more intuitively reflect the real
motion of the slopes, which can be transformed through the spatial geometric relationship
between the radar LOS and slope. Due to the limitations of the image numbers in the
SAR dataset from the study area, we have to use the ascending SAR images for InSAR
processing, with which it is difficult to form an effective complement for the descending
data. Therefore, we will also try to transform the LOS displacement into the slope direction
displacement in future research. PSI or SBAS algorithms can be selected to obtain long-term
ground deformation products if the SAR datasets have sufficient and long-term images,
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which can reflect the long-term movement status and trend of slopes [63,74]. It is expected
that more accurate risk assessment maps for the study or elsewhere could be produced by
improving the above limitations.

6. Conclusions

Quantitative risk assessment is very effective for landslide risk management and urban
areas need more detailed investigations and assessments. In this study, the quantitative
landslide risk assessment was based on susceptibility and hazard assessments. The random
forest classifier and eight environmental factors influencing landslides, including slope,
profile curvature, relief, NDVI, landslides density, building density, the thickness of loess
and the thickness of exposed bedrock were used to examine landslide susceptibility in
Baota District, Yan’an City. Combined with DInSAR technology, landslide hazard mapping
was developed to reflect the hazards quantitatively. Surface deformation, which can be
caused by many factors (e.g., precipitation, slope groundwater, and engineering), can be
detected by DInSAR technology with centimeter precision. Finally, the landslide risk map
was obtained by being combined with the landslide susceptibility and hazard assessment
and divided into very high-risk, high-risk, middle-risk, and low-risk areas according to the
natural breaks method.

In this study, a total of 1841 slope units were mapped in the study area, including
334 landslides and 411 unstable slopes determined by field investigations, in which the
main material of landslides and unstable slopes is loess and only a few of them contain
bedrock. The length and width of landslides and unstable slopes are mainly between
50 m and 150 m, the slope angles are mainly between 20◦ and 50◦, and the heights are
predominantly between 30 and 90 m, where the slope angles and heights of most of the
unstable slopes are larger than those of the landslides. The areas are usually less than
20 × 103 m2. Reliable risk assessment was achieved using 1841 slope units, which were
divided based on the terrain, optical images, and DEM. Remote sensing InSAR technology
was applied to determine the quantitative landslide hazard zones. The classification results
of the random forest classifier were evaluated with the receiver operating characteristics
(ROC) curve and confusion matrix. The confusion matrix shows that the overall accuracy
of the random forest classifier is 0.903 and that the AUC value is 0.96, with good prediction
accuracy and classified ability of landslide susceptibility. The results of the landslide risk
assessment indicate the risk level and the corresponding quantity of the slope units and
total areas. Approximately 6% of the slope units located in the very high-risk zones and
20% of the slope units located in the high-risk zones must receive more attention to monitor
the dynamics.

The present research has significant implications for landslide risk mitigation in Baota
District, Yan’an City. Our scientific landslide risk map is expected to promote landslide
prevention based on a zoning strategy and provide a valuable decision to support the local
and regional government for disaster prevention, mitigation, and management, which
eventually can effectively reduce the impacts of geohazards.
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Abstract: Accurate remote analyses of high-alpine landslides are a key requirement for future alpine
safety. In critical stages of alpine landslide evolution, UAS (unmanned aerial system) data can
be employed using image registration to derive ground motion with high temporal and spatial
resolution. However, classical area-based algorithms suffer from dynamic surface alterations and
their limited velocity range restricts detection, resulting in noise from decorrelation and hindering
their application to fast landslides. Here, to reduce these limitations we apply for the first time the
optical flow-time series to landslides for the analysis of one of the fastest and most critical debris
flow source zones in Austria. The benchmark site Sattelkar (2130–2730 m asl), a steep, high-alpine
cirque in Austria, is highly sensitive to rainfall and melt-water events, which led to a 70,000 m3 debris
slide event after two days of heavy precipitation in summer 2014. We use a UAS data set of five
acquisitions (2018–2020) over a temporal range of three years with 0.16 m spatial resolution. Our new
methodology is to employ optical flow for landslide monitoring, which, along with phase correlation,
is incorporated into the software IRIS. For performance testing, we compared the two algorithms
by applying them to the UAS image stacks to calculate time-series displacement curves and ground
motion maps. These maps allow the exact identification of compartments of the complex landslide
body and reveal different displacement patterns, with displacement curves reflecting an increased
acceleration. Visually traceable boulders in the UAS orthophotos provide independent validation of
the methodology applied. Here, we demonstrate that UAS optical flow time series analysis generates
a better signal extraction, and thus less noise and a wider observable velocity range—highlighting its
applicability for the acceleration of a fast, high-alpine landslide.

Keywords: digital image correlation; phase correlation; optical flow; time series image stack; land-
slides; ground motion identification; displacement mapping; UAS

1. Introduction

Landslides have a causal link to climate change, thus pose an increasing risk in mag-
nitude and frequency for people and their livestock [1]. In particular, investigations of
high-alpine landslide areas are often difficult and dangerous; hence, remote sensing tech-
niques have to be employed to generate sufficient spatial and temporal coverage. Here,
optical space and airborne remote sensing offers two key advantages: (i) Optical images
with their close-to-nadir viewing geometry, with the image plane orthogonal to the sensor’s
line-of-sight (LOS), allow scientists to directly monitor and interpret geomorphic processes
of steep slopes [2] without using derived products. (ii) Optical remote sensing for the calcu-
lation of ground motion by image registration is often the only feasible way to quantify
horizontal surface displacements of both shallow and complex slope instabilities [3], where
geomorphic processes are moving at rates too high for radar remote sensing techniques [4].
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Motion analysis, applied to optical satellite and UAS imagery—including (terrestrial) Li-
DAR data [5–7]—to measure horizontal surface displacement is a well-established method.
Image registration, also known as image matching and image correlation, geometrically
aligns images and allows tracking for accurate 2D change measurements in optical images.
It has been used on a local to regional scale to assess motion fields for glaciological [8–10],
earthquake [11–13], dune migration [14,15], rock glacier [16] and landslide studies [5,17–25].

Image registration is among the most widely utilised techniques in computer vision.
It is used to overlay two or more images of the same scene acquired at different times, from
various viewpoints, by the same or different sensors [26]. Another application is stereo
matching, using an image pair from the same scene taken at the same time from multiple
opposing view angles [27]. Several approaches exist to estimate the relative translative
offset, such as digital image correlation, optical flow and feature matching, which are often
applied to measure displacement and strains. Two major approaches exist to estimate
displacements to sub-pixel precision. The first is the area-based approach (also known
as the correlation-like method), which recognises uniform amplitude patterns in both the
reference and secondary image (Figure 1). Various algorithms calculate the correlation
of these patterns in order to quantify the final displacement. The second is the feature-
based method, less sensitive to illumination changes and image distortions; it depends on
the existence of well-spread, salient features—detectable in both images—which are then
extracted to estimate displacement vectors. This feature recognition approach is suitable
for multisensor analyses and is computationally less expensive. However, its success is
conditioned on surface structures, which therefore restrict its general application [28].

 
Figure 1. Displacement detection of an object in the reference (I1) and secondary (I2) image for t and
t + Δt.

Classical area-based algorithms are cross-correlation, normalised cross-correlation
(NCC) and minimum distance criteria [29], utilising the intensity without any structural
analysis information to match areas or regions [26]. The Fourier shift theorem was proposed
as a method for registering translated images [30] and was used to modify the original
phase correlation (PC) algorithm (using the phase information) [31]. Thus, by introducing
the theorem, the PC works within the frequency domain, utilising rotational and transla-
tional properties to calculate the relative transformation parameters based on a translational
or similarity model [32,33]. Working with sub-pixel accuracy, PC is highly computationally
efficient, and thus can handle large matching templates. Furthermore, it overcomes inten-
sity contrasts, which are frequency-dependent noise, as well as non-uniform, temporal
variations such as disturbing illumination influences [26,31]. Nonetheless, the constraints
to applying Fast Fourier Transform (FFT) for measurements include both the picket-fence
effect and spectral leakage [32]. Computational efficiency can be further enhanced, as
can matching if an (inverse) pyramid approach (i.e., hierarchical cross-correlation) is ap-
plied [34]. Starting with a coarser image resolution on a high pyramid level, matched
patches, i.e., measured displacement, and areas with few matching errors are propagated
to a finer resolution and can be used to guide matching on finer levels down to the original
resolution [35].
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Several area-based applications for motion studies exist in the geoscience community.
One of the first tools was IMCORR (NCC), implemented in SAGA GIS, and thus freely
available [36,37]; another well-known and often-used tool is COSI-Corr (PC and NCC-
based matching) [11,12]. The add-on is free but implemented within the commercial ENVI
Classic. Other open source options are the library MicMac, which employs hierarchical
image correlation, a combination of NCC-based matching and spatial regularisation [38],
and the DIC-FFT (FFT), whose code runs in MATLAB [20]. Two other freely available tools
are CIAS, performing an NCC procedure [9,39], and EMT [40], combining cross correlation
and least square matching.

Several limitations nevertheless still exist for the abovementioned area-based methods.
Geometrical inaccuracies arise from co-registration, with additional problems resulting
from vegetation changes and dynamically significant surface processes, leading to mis-
matches [11,18]. While less sensitive to illumination differences, which are particularly
important and challenging for high-alpine environments (arising from low contrast, moving
cast shadows and cloud shadows), these factors can still result in erroneous displacement
results [11,18,25]. The most important problems for their application to fast landslides are
velocities exceeding the search window-related matching limit, which causes decorrelation
and ambiguous signals [5,41,42]. Finally, external problems influence the calculation results
from orthorectification and sensor model errors [11].

In contrast, the intensity-based approach analyses motions using the differential
matching technique of optical flow, i.e., the determination of the dense deformation field of
two dynamic images by computing motion vectors at every pixel (Figure S1). For more than
40 years, optical flow, also known as motion analysis, has been one of the classic research
problems in computer vision [43]. Following Horn’s taxonomy, a motion field is the 2D
representation of a 3D surface based on the brightness patterns of an apparent motion.
Thus, it is the dense information of a dynamic motion field between two consecutive images.
Based on the assumption of a globally smooth motion field [44], or if the dynamic motion
field is constant within a certain interrogation window [34], the brightness constancy term
is valid, so changes in illumination are resolved in motion [43,45]. As a function of space
(x, y) and time (t), the first image I1 (x, y, t) moved by Δx, Δy will correspond to the intensity
of the second image, with an offset I2 (x + Δx, y + Δy, t + Δt), which can be expressed as the
optical flow problem: (u, v) =

(
Δx
Δt , Δy

Δt

)
.

Fundamental works by Horn and Schunck [44], as well as Lucas and Kanade, [34] accel-
erated computation times, e.g., with the coarse-to-fine search strategy for an inverse image
pyramid approach, which decreases computational costs. Today, due to this computational
effectiveness while handling large displacements at sub-pixel resolutions, this strategy
is widely employed in medical image registration, automotive driver assistance, human
motion analysis, and has been applied in geosciences to determine glacier flow [46,47].

Nevertheless, based on the brightness consistency assumption, limitations arise due
to considerable changes in illumination induced by shadows, seasonal effects such as
non-uniform glacial crevasse patterns, surface feature changes of tumbling rocks, and large
textureless regions due to snow cover and shade [43,46]. Accordingly, optical flow was
suggested for images of low noise and brightness variance to estimate small displacements
only [42]. A recent work by Kroeger et al. [45,48] utilises the fast and noise-robust inverse
compositional image alignment approach [49,50] and proposes a fast dense inverse search
method to capture matches quickly in order to deal with large displacements, deformations,
appearance alterations such as illumination, chromaticity and blur, as well as motion
discontinuities or outliers [45,51].

In general, the application of optical image registration methods can encompass a
large velocity range as these methods are less sensitive to large displacements and long
measurement intervals, leading to decorrelation when using Differential Interferometric
Synthetic Aperture Radar (DInSAR). Its application is restricted to relatively slow motions
(≤1 m/yr), i.e., remaining below a quarter of the SAR sensors’ wavelength λ (≥λ/4), with
some exceptions of λ/2 [4]. Although active radar sensors are relatively independent
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of atmospheric constraints and of shadows, further limiting high-alpine factors include
snow cover, slope exposition, layover effects and foreshadowing [52,53]. Nevertheless,
using optical remote sensing for research on high-alpine sites is often difficult due to
meteorological constraints such as snow cover, clouds or cloud shadows and mountain
ridge topographic shadowing effects for certain seasons and times of day. Even though
satellite revisit rates have significantly increased (e.g., Sentinel-2, five days, PlanetScope,
daily), their actual net revisit rate for high-alpine sites is restricted to a few images per
month [25,54]. Therefore, UAS campaigns offer the highest temporal flexibility to overcome
these obstacles [17], but good quality data depends on GCPs (ground control points)
with reproducible flight plans [55], which requires significantly more time, and hence,
higher costs.

While experience for landslide displacement calculations on area-based image match-
ing exists [14,56], no previous research has applied intensity-based optical flow to derive
ground motion for landslide behaviour assessment. In this study, we test the performance
of the intensity-based fast optical flow method using dense inverse search and compare
the results with the widely known area-based phase correlation algorithm, both of which
are implemented into the commercial software IRIS. We employed these algorithms to
compute the deformation fields for the Sattelkar, a complex landslide in a steep high-alpine
cirque (2130–2739 m asl) exhibiting varying displacement rates from slow (few meters)
to moderate velocities (<30 m/yr) [57]. We conduct a single interval analysis, together
with a time-series approach, on five UAS orthophotos acquired during a three-year pe-
riod (2018–2020) of both high spatial accuracy and resolution (0.08 m) [58]. We evaluate
the results based on trajectories of large boulder blocks (<10 m) which are traceable in
the UAS orthophotos and stable bedrock. Accordingly, we seek to answer the following
research questions:

1. Is the dense inverse search (DIS) method applicable to the large displacements of
landslides with complex behaviours?

2. Can the method investigate both slow and moderate velocities between repeated
observation intervals?

3. Is the DIS method robust enough to cope with the changing and unfavourable illumi-
nation of a high-alpine steep study site?

4. How does the DIS method perform in comparison to the well-established phase
correlation algorithm?

2. A Complex Landslide

The Sattelkar is a ~30◦ steep high-alpine deglaciated cirque in the Obersulzbach valley,
Großvenedigergruppe, Austria (Figure 2). It is located at an altitude between 2130–2730 m
asl and is west-oriented. The cirque is surrounded by a headwall of central granitic gneiss
and is filled with an abundant volume of deposits from past and current rockfalls, glacial
and periglacial debris, moraine walls and relicts of a dissolving rock glacier [59,60]. The
cirque infill is characterised by a wide grain size distribution, with boulders up to 10 m.

Since 2003, surface alterations have taken place: the vegetation cover has degraded,
and been replaced with loose mobile rock material [59]. The deep-seated, retrogressive
movement is sensitive to rainfall and meltwater, causing high water (over)saturation and
leading to a spreading and sliding behaviour on the glacially smoothed bedrock, developing
into a flow-like behaviour while huge blocks tumble and turn—all of which can be classified
as a complex landslide [57]. These characteristics make this a challenging benchmark object
and suitable site for landslide displacement analyses using optical remote sensing.

Based on aerial orthophotos, damage documentation, and witness reports, during
the last decade a continuous intensification of mass wasting and debris flow activities
has taken place. Heavy precipitation on 30 and 31 July 2014 led to a debris flow of about
70,000 m3 from the catchment area above the cirque threshold (at ~2000 m asl), and a
further 100,000 m3 of mobilized material was entrained from within the channel [59].
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Initial investigations estimated an unstable area of 130,000 m2 where 1 mio. m3 of
debris showed high activity; displacement rates up to 10 m a−1 between 2003–2015 were
obtained from aerial orthophotos and repeated field measurements [59,60]. As the debris
consisted of boulders up to 10 m, continuous visual block tracking could be employed to
estimate the displacement within the active area based on aerial orthophotos. Recent studies
conducted with COSI–Corr confirmed this ongoing increase of mass wasting processes,
with variable displacement rates ranging from 1–14 m in only 42 days [25].

Today long-term monitoring is conducted with high-accuracy UAS; nine differen-
tial GPS-measured GCPs provide continuous stable and precise conditions. Additional
monitoring instruments provide geomorphologic insights into rockfall behaviour via one
autarkic seismograph. Thirteen near-surface temperature loggers at a 0.1 m depth also
record mean annual ground surface temperatures, indicating potential, sporadic permafrost
conditions [61]. Recent empirical statistical permafrost modelling in the Hohe Tauern Range
supports permafrost occurrence at our study site [62].

 

Figure 2. (a) Sattelkar, 30 June 2019, with the debris cone of the 2014 debris flow event; overview map
of Austria in the top right corner (white) (Österreichischer Bundesverlag Schulbuch GmbH & Co. KG
and Freytag–Berndt & Artaria KG, Wien, Austria), (b) UAS orthophoto (4 September 2019) with the
landslide in transparent red and the entire cirque indicated with a dashed grey outline, (c) boulder
size of 5–10 m used for manual motion tracking and (d) view on the front of the cirque threshold.

3. Materials and Methods

There are several reasons to utilise UAS orthoimages for our study. We have a stable
set-up for the study site which guarantees a high quality, reliable data set. Due to their
time flexibility, UAS flights are conducted under best illumination conditions, with similar
time periods. Additionally, we have full control of the image acquisition format (same UAS
and flight plan, management over spatial resolution, extent, acquisition altitude and snow
coverage) [55] and the subsequent manual post-processing (georeferencing and spatial
accuracy, orthorectification) [58].

We applied two image matching algorithms to optical multi-temporal UAS orthopho-
tos to identify and quantify horizontal displacements. The first is phase correlation [33],
and the second is optical flow, where we make use of a dense inverse search method
(DIS) [48] which applies the inverse search approach [49,50] based on the fundamental
work of the coarse-to-fine Lucas–Kanade algorithm [34]. The DIS code is freely avail-
able online (OpenCV, https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html,
last access 11 October 2021; the script is based on Kroeger et al. [48]). Both algorithms
are incorporated into the commercial software IRIS, developed by NHAZCA S.r.l., in
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which the displacements were calculated (https://www.photomonitoring.com/iris, last
access 12 January 2022). Furthermore, we used ArcGIS (calculations, statistics and map
creation), ArcGIS Pro (multihillshade calculations), open source QGIS (data handling and
management) and SAGA (displacement vector calculations).

3.1. UAS Image Acquisition and Processing

Five UAS (unmanned aerial system) acquisition campaigns took place between 2018
and 2020 (Table 1). All UAS flights were conducted at approximately the same time of day
in order to have best similarity of illumination conditions regarding shadows. Additionally,
the flight campaigns were set up around the same dates to have generally equal time
intervals. Thus, for our study approach, the four time intervals of our data set allowed
us—with a sufficient number and an adequate approach—to interpret the processes of both
two one-year-long as well as two summer season intervals, with flights in mid-July and
the beginning of September (Table 1). The flights were planned with UgCS (identical flight
plans with four flights at different elevations of high overlap for front: 80% and side: 70%)
and carried out with a DJI Phantom 4. The ground sampling distance was 7 cm for the area
of ~3.4 km2 and with a flight speed of ~8 m/s, with a total flight time of ~3.5 h (Table 2).
Images were taken in RAW format, improved for contrast, highlights, shadows and clarity
using Adobe Exposer, then exported as JPGs (95% compression), and finally processed
with Pix4Dmapper to 0.08 m resolution. Based on nine permanent ground control points
on bare rock (GCPs, 30 × 30 cm), the pictures were georeferenced and orthorectified. GCPs
were repeatedly registered (1000 measurements/position) with the TRIMBLE R5 dGPS
(differential GPS). We post-processed the data using the baseline data of the Austrian
Positioning Service (APOS) provided by the Bundesamt für Eich und Vermessungswesen
(BEV). The horizontal RMSE was ~0.05 m and the vertical RMSE was ~0.10 m, and they
were used to rectify all UAS campaigns. Lastly, the data (orthophotos and DEMs) was
clipped to a consistent area of interest (AOI), projected to UTM 33N (EPSG 32633) and
downsampled to 0.16 m (bilinear interpolation) with GDAL to enhance processing time. In
addition, to better understand surface processes, hillshades (ArcGIS) and multi-hillshades
(ArcGIS Pro) were calculated and visualised as GIFs and combined with total displacement
results from PC and DIS (see online supplementary material, OSM).

Table 1. UAS acquisition dates and time interval overview for single (I–IV) and multimaster analysis
(1.-3.-2.-5., 001–004) (see Section 3.2).

Acquisition Dates
Intervals Single

Analysis
Intervals Multimaster Analysis

13 July 2018 (I): 376 (I): 376 (1.-3.):
418 (1.-4.):

727 (1.-5.):
791

(0001):
376 (0002):

418 (0003):
727 (0004):

791

24 July 2019 (II): 42 (2.-4.):
351 (2.-5.):

415
4 September 2019 (III): 3099 July 2020 (IV): 6411 September 2020

Table 2. UAS flight plans.

Flight Plan
Parts

Length of
Flightpath [km]

Flight
Time [min]

Passes
No. of
Images

GSD
Altitude

Startpoint [m]
Highest Flight

Position [m]
Lowest Terrain

Point [m]

Top 6.8 17 6 121 7 2630 3120 2365
Middle 7.5 19 6 135 7 2200 2682 1820
Low 1 7.3 17 6 130 7 1768 2115 1620
Low 2 5.6 14 6 81 7 1768 2110 1620

Total 27.2 67 24 467 7 3120 1620
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3.2. Displacement Calculation and Derivation of Displacement Curves

We systematically tested parameter sensitivities in order to determine the best settings
for both algorithms, PC and DIS. To do so, we conducted horizontal displacement analyses
for all possible time interval combinations on both single analyses (i.e., tn − tn+1) as well
as multimaster analyses (Table 1). Multispectral (rgb) UAS orthophotos were used as the
input, which were transformed into grayscale images.

The parameter settings of the phase correlation in IRIS are (i) step size, which is the
pixel size in x, y between the two sliding windows. This defines the final output resolution,
and thus, the final information density (the smaller the step, the denser the coverage), and
significantly affects computation time. Similarly, the size of the moving window is a critical
parameter, as it defines the physical resolution of the result and represents a compromise
between noisy or homogeneous data, hence producing stable output results. Enlarging
the window size, the correlation can be increased and homogeneity enhanced; however,
computation time will increase. For our input data, we achieved the best results (ii) using
a matching window size of 256 pixels. We set (iii) the subpixel resolution to 0.25, which
resulted in an upsampled cross-correlation by a factor of 4 and a final subpixel resolution
of 0.04 m. Although we had (iv) the option to use the coarse-to-fine pyramid approach,
working with one pyramid level was sufficient, and thus the original resolution was kept.
In the post-processing the results were (v) resampled using nearest neighbour. In order to
identify the matching limitations, i.e., decorrelations, we did (vi) not apply a correlation
coefficient threshold, thus keeping the results raw. For final total displacement visualisation,
a minimum threshold for values below 0.5 m was applied to eliminate noise.

Thereafter, a multitemporal analysis was performed and the same image matching
parameter settings (i–vi) were applied as used for the single analysis. For each reference
image we calculated every secondary image, i.e., retaining all possible image combinations
(Figure 3). Prior to each single displacement analysis, image pairs were co-registered
using the stable area around the landslide. Then, a weighted average using the correlation
coefficient was applied to all single analysis results in order to calculate the final multimaster
outcome. Each single analysis resultant map was saved to facilitate the final analysis.

Figure 3. Multimaster approach. For each co-registered image of the single analysis (green arrow),
and thus each secondary image pair, the average was weighted with the correlation coefficient of the
first to the last image result (blue arrow).

Using the OpenCV [63] algorithm, which implemented a dense inverse search optical
flow [48], we analysed the UAS data set and tested different parameter combinations for
each single time interval in order to find the most suitable one (Table A1). The matching
patch sizes employed 8 × 8 or 16 × 16 pixels. A mean normalisation for the patches was
applied, which improves the robustness of illumination changes as it calculates every
band’s mean.

Once we determined the best single-interval combinations, we used these results for
the final multimaster analysis of DIS. We used the same multimaster settings as those
applied for the PC multimaster calculation.

In order to calculate the time series (TS) displacement curves based on the multimaster
analysis, in QGIS we created six large rectangles (TS AOI 1–6; see Figure 8). On the basis
of preliminary results during sensitivity tests for both PC and DIS, the AOIs were placed
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beginning in the centre of the landslide process and moving uphill towards the rear (Table 3)
to prevent the AOIs from being disturbed by any noise. Afterwards, they were imported
into IRIS as *.kml. For both TS results (PC and DIS), we then derived for each TS AOI (1–6)
a displacement curve (Figure 8).

Table 3. Areas of rectangles for TS calculation of displacement curves (TS AOI 1–6) and bedrock
identification number (1–5) for the assessment of modelled bedrock displacement.

TS AOI No./Bedrock No. 1 2 3 4 5 6

Time Series AOI [m2] 337.94 457.09 988.15 974.03 969.85 893.25
Bedrock [m2] 162.095 50.31 23.95 13.79 167.50 -

3.3. Accuracy Assessment and Result Validation

We demonstrated the validity of our algorithms in two ways: by (a) checking the
displacement for stable bedrock areas and (b) using the trajectories of manually measured
boulders detectable in the orthophotos. In QGIS we selected five different stable bedrock
areas of sufficient spatial extent outside the landslide process area (Table 3). These areas
were unaffected by cast shadow and remnants of debris from past rainfall events. The
exported *.kml were used in IRIS to derive displacement curves for north–south (NS) and
east–west (EW) displacements.

As image registration is based on the matching of pixel patches, we assumed that
adjacent pixels represented a similar displacement magnitude. To estimate the accuracy of
fit resulting from the total displacement calculations (PC and DIS), we calculated a spatial
mean total displacement of the boulder trajectories with a buffer of 0.1 m to plot against
the manually measured travel distances of the boulder trajectories (Figure 4). We ran a
regression model to see if boulder motion significantly predicted data distance with and
without outliers. In order to detect outliers, we used Mahalanobis distance, a reliable outlier
detection measure, as it focuses on multivariate distributions of more than one variable, and
hence is suitable for our data [64]. Accordingly, we show regression lines without outliers.

After exporting the *.raw results of the total, NS and EW displacement into ArcGIS,
we used the former to visualise the ground motion above 0.5 m displacement for the known
process area, with no further filter applied. This threshold was selected due to the NS
and EW components of the bedrock times series calculations indicating the accuracy of
our calculations (see Section 4.1). With the SAGA tool “Gradient vectors from Directional
Components”, displacement arrows (*.raw NS and EW displacement results, mean value
with a step of 100 and range of 50–250) were calculated. As some arrows were slightly
outside the total displacement results, we filtered and cleaned up the vectors (extent of
total displacement) to avoid ambiguity (see left column, Figure 5).

3.4. Atmospheric and Hydrological Conditions

In order to interpret the calculated displacement results of this hydrologically sensitive
complex landslide, we considered precipitation data. An automatic weather station at
the Kürsinger cabin in close vicinity to the Sattelkar measures rainfall during the opening
season of the cabin (spring to autumn; Tables 4 and 5).
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Table 4. Number of days with daily amount of precipitation greater than 20, 30, 40 and 50 mm
(meteorological station Kürsinger cabin).

>20 [mm] >30 [mm] >40 [mm] >50 [mm]

2009 12 5 3 2
2010 8 4 2 1
2011 10 3 1 0
2012 16 5 2 1
2013 6 1 0 0
2014 9 5 3 2
2015 18 6 1 0
2016 10 5 0 0
2017 10 4 0 0
2018 10 5 2 1
2019 11 1 1 1
2020 16 8 6 2

Table 5. Ten highest days of total precipitation for the observation period 2009–2020 (meteorological
station Kürsinger cabin, descending order).

Date Precipitation [mm]

29 August 2020 82.9
30 July 2014 76.1

27 April 2009 70.1
3 October 2020 62.8

11 June 2014 60.4
19 August 2017 57.2

6 June 2009 52.5
17 July 2010 52.3
28 July 2019 51.2

3 August 2020 50.0

4. Results

This section outlines the results of the studies of the total displacement for the single
and the multimaster analysis; for the latter only we present displacement curves. We further
evaluate the findings based on manually measured boulder tracks and stable bedrock areas.

4.1. Accuracy Assessment: Stable Areas and Ground Truth Comparison

In order to estimate the quality of the algorithms, displacement curves of the stable
bedrock areas 1–5 (Table 3) for all intervals are presented in Figure 4. The maximum
displacement for DIS NS (c) and EW components (d) was the only outlier of −0.5 m for the
last interval IV, Bedrock 2 (Figure 8b). Apart from that, the displacements for the stable
bedrock ranged by ±0.3 m. By contrast, PC returned a smaller distribution around zero,
with lower values of ±0.2 m for NS components (a) and ±0.3 m for EW components (b).
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Figure 4. TS calculated for stable bedrock areas ‘Bedrock 1 to 5′ for NS and EW components for DIS
(a,b) and Phase Correlation (c,d). Locations of bedrock areas are displayed in the orthophoto map of
Figure 8.

We assessed the accuracy of the total displacement calculations for both algorithms by
comparing them to a mean buffer around the manually measured boulder paths for the
corresponding time interval. The Mahalanobis outlier detection [64] yielded two outliers
for both DIS and PC (marked in red Figure 5). We found a significant positional relationship
between boulder motion and the modelled DIS mean (b = 0.49, t = 2.72, p < 0.01) and PC
mean (b = 0.55, t = 2.89, p < 0.01), and determined that boulder motion accounts for 16%
and 17% of variance in the data distance, respectively. After outlier removal, the variance
in the data distance yielded 56% for DIS (R2 = 0.5564) and 65% for PC (R2 = 0.6471). The
plots present results for time interval II for PC (a) and DIS (b) with the regression line after
outlier removal (Figure 5). Figure 6 shows boulder trajectories for PC and DIS.

Displacement vectors indicate a smooth downslope flow direction. There are minor
patches of chaotic directions for a heterogeneous displacement patch in the PC results
(central north and towards the northern end) and for displacements between 0 and 0.5 m at
the landslide head flowing downslope. For the same area, DIS vectors point in different
directions as well as towards the northern rim of the landslide.
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Figure 5. The left top row represents the results from the PC (a), the left bottom row the results from
DIS (b)—both for time interval II: 24 July 2019–4 September 2019, 42 d. Arrows in black represent
a realistic downslope range between 205–285◦, while putting unrealistic directions (285–205◦) in
grey. Background: hillshade of UAS DEM, 0.16 m resolution. On the right column, displacements
of manually traced boulder trajectories (x-axis) are plotted against the mean total displacement for
the corresponding trajectory with a buffer of 0.1 m (y-axis) for PC (top right) and DIS (bottom right).
Outliers are marked in red (with block ID), and the regression line in blue after outlier detection
(Mahalanobis distance) and removal. Boulder trajectories are displayed in Figure 6.

4.2. Total Displacement for Single Analysis

This section outlines the results based on single intervals, i.e., tn − tn+1, twice covering
an approximately one-year period (I, III) and a summer season (II, IV; see Table 1).

The total displacement from PC results, for all intervals I–IV (Figure 6a–d), yielded
a clearly demarcated landslide body for values above 0.5 m, limited to values of about
20 m. Homogeneous areas (landslide’s rear body in the east to the centre) are replaced by
a patchy, inhomogeneous area for I, III and IV. The homogeneous displacement is lowest
(0.5–2 m) in II (42 d), slightly higher for I (376 d), and returns highest values (12–14 m)
for both the longer and shorter intervals III (308 d) and IV (62 d). By contrast, for I, III
and IV, the landslide head is less noise-affected for II, with more homogeneous patches.
Comparing displacements to boulder trajectories, the values are consistent apart from the
landslide’s head, with ambiguous signals as well as some 1 m trajectories not reflected in
the landslide’s rear area (Figure 6b,c).
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Total displacements (I–IV) derived from DIS (Figure 6e–g) lie within the process area,
with patches of particularly high motion (>32 m and 22–25 m) in the northern frontal half (I)
and centre (IV), respectively. Interval II reveals the lowest overall displacement, increasing
towards the front. Displacements in the rear are higher for III and IV (1–8 m) than I and II.
Boulder trajectories match well from the centre to the rear (I–IV), except for the foremost
front of the landslide’s head (I–IV).

 

Figure 6. Results of single total displacement calculations of UAS orthoimages at 0.16 m resolution
for (a–d) using PC for the left column and (e–h) using DIS for the right column. The time intervals
I–IV (I: 13 July 2018–24 July 2019, 376 d; II: 24 July 2019–4 September 2019, 42 d; III: 4 September
2019–8 July 2020, 308 d; IV: 8 July 2020–8 September 2020, 62 d) follow from top to bottom and are to
be read in rows to compare the two algorithms. The arrows represent manually measured boulder
trajectories for the corresponding time interval, with displacements in meters indicated on top (ref.
Section Material and Methods). Background: hillshade of UAS DEM, 0.16 m resolution.
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Comparing the two algorithms on the basis of boulder trajectories, ambiguous areas for
PC return significantly lower displacements for DIS, as indicated by trajectories (23–54 m)
in the centre for I, III and IV (a, c, d and e, f, h) and at the front, where DIS returns
particularly low motion (3–4 m)—although boulder trajectories appeared to indicate higher
displacements (6–70 m). For I, in the south of the frontal half, some minor heterogeneous
patches exist for PC (a), with similar values for DIS (b), which are confirmed by boulder
trajectories (15, 16 and 17 m). Except for the landslide’s head, both algorithms indicate
consistent displacement values for II, with larger homogeneous areas by PC (b).

4.3. Total Displacement for Multimaster Analysis and Displacement Curves

Here, the results of the multimaster approach focus on interval 002 as well as the
longest final time interval 004 for algorithms PC and DIS (Figure 7). In the previous section,
the first master interval 001 was described, as it is identical to the single analysis interval I.
An overview of the individual image combinations for the multimaster analysis is provided
in Tables 1 and A1.

The PC multimaster displacement for 002 (a) is characterised by a large ambiguous
and heterogeneous area at the landslide’s head, transitioning into a homogeneous area for
the last two-thirds. Here, values increase from 0.5 in the rear to 10 m. The accumulated
displacement for 004 returns values up to 23 m from the centre decreasing towards the
rear. The results derived for DIS 002 reveal values up to 7 m at the landslide’s head and
increase to the highest values (15–32 m) in the centre. There, for 004, both algorithms show
a similar boundary, with displacements decreasing rearwards (PC, 9–2 m, DIS 12–22 m),
with the highest values towards the front (>32 m) for DIS; similar to DIS single analysis
results, values at the foremost landslide’s head do not exceed 10 m.

 

Figure 7. Results of multimaster TS analysis for total accumulated displacement calculations of UAS
orthoimages at 0.16 m resolution for top row 002 (13 July 2018–4 September 2019, 418 d) and bottom
row 004 (13 July 2018–11 September 2020, 791 d). Left column with PC algorithm (a,b) and right
column DIS (c,d). Background: hillshade of UAS DEM, 0.16 m resolution.
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Our calculations of TS displacement curves (Figure 8) for PC (a) and DIS (b) indicate a
continuous increase in displacement. PC exhibited a smooth, linear increase with similar
rates for all five AOIs, apart from AOI 6, and a clear limit at approximately 20 m. For
DIS, by contrast, the maximum accumulated displacement exceeds 42 m for the foremost
AOI 1, followed by AOI 2 with ~40 m—both of which show the strongest increase for an
additional 17–20 m (IV), with higher accumulated displacement values than PC. Generally,
all AOIs increase steadily, similar to PC for I and II, with the rear AOIs (AOI 3–6) more or
less identical for both algorithms (8–20 m).

Figure 8. Top row represents the accumulated total displacement resulting from the multimaster
analysis for the TS AOI 1–6 from 13 July 2018–8 September 2020 for PC (a) and DIS (b). The orthophoto
map (8 September 2020, UAS 0.16 m resolution) in the middle (c) represents the locations of the TS
AOI 1–6 within the landslide and the stable bedrock areas ‘Bedrock 1 to 5′.
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4.4. Meteorological Data

Precipitation measurements during the UAS observation period 2018–2020 indicate
that 2020 had the highest number of days with a daily amount of precipitation greater than
20, 30, 40 and 50 mm (Table 4). The comparison for the highest days of total precipitation
shows the highest and 10th-highest amount in 2020 at 82.0 and 50.0 mm, respectively,
although the number of days at 50.0 mm are lower than the highest records (Table 5). The
year 2020, with highest amount of total precipitation, is followed by the second-highest,
which was the 2014 debris flow event-year of 76.1 mm.

5. Discussion

We have calculated time series displacements for complementary image-matching
algorithms PC and DIS for a three-year long set of UAS orthophotos. We derived dis-
placements for single time intervals (Figure 6) as well as a combined reference-secondary
image approach (Figure 7), aka multimaster analysis, in order to investigate the complex
behaviour of the Sattelkar, with its heterogeneous motion fields with low to medium veloci-
ties [57,59,60]. In so doing, we were able to derive displacement curves (Figure 8), interpret
our observations in relation to meteorological data (Tables 4 and 5) and confirm the results
in our accuracy assessment on the basis of traceable boulder trajectories (Figures 5 and 6),
as well as stable bedrock displacement curves (Tables 4 and 5).

In answer to research question (1) we determined that, for the most part, the displace-
ment results show that DIS is an applicable method to capture large displacements—even
for a landslide with complex behaviour.

For research question (2), given a very heterogeneous landslide behaviour, the method
allows us to investigate both slow and moderate velocities, which we can in large part
support by manually measuring boulder trajectories and statistical observations (Figure 6).
For a single interval II, apart from two outliers, DIS returns valid ground motion values
(Figure 5). Though derived displacements for the process area from the centre to the
rear are well represented and confirmed by the boulder trajectories, the foremost area
of the landslide’s head is significantly underestimated by a factor of four (I, 18–24 m
boulder trajectories) and a factor of five to ten (III, IV). This area leads directly over the
cirque threshold into the steep channel, and from field observations we know that surface
processes are particularly dynamic and complex, including tumbling boulders changing
their surface appearance by turning. Nevertheless, DIS shows its capability to reveal the
ongoing process of the dissolving rock glacier, visible in IV (Figure 6h), and less pronounced
in III (g) due to the sharp difference in ground motion. For optical flow to work reliably,
the brightness consistency has to be valid, with illumination changes resulting in motion.
Until now, the use of optical flow has been restricted to ground motion observations of
small displacements, little noise and difference in illumination [47].

However, our results confirm research question (3) that optical flow, using the im-
proved approach of DIS [48] is robust enough for the orthophoto dataset of our high-alpine
steep study site to cope with changing and unfavourable illumination conditions. This is
supported by displacement vectors calculated from NS and EW displacements, which to a
large degree reveal a correct flow direction.

With regards to research question (4), comparing the results of DIS to those of PC,
DIS has been shown to overcome the correlation limits of the PC algorithm. Ambiguous
signals of PC results come from noise resulting from decorrelation as the detection limit;
hence, the maximum possible correlation for the amount of displacement and/or number
of surface changes is reached. The results show that for our high resolution in the UAS
dataset of 0.16 m with temporal baselines the limitation is reached (I, III, IV) [14,16]. In
essence, matching failed due to massive changes in pixel values. Our field observations
provide evidence of the deformation of rock masses with strong surface alterations due to
rotational block behaviour and the high mobility of rock material, which are thus likely to
be responsible for this decorrelation. Similar observations on the matching limitations and
other reasons leading to decorrelation have been confirmed by others [14,42,52]. We decided
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to keep these noise-affected areas to be able to differentiate the results. Consequently,
while towards the front PC decorrelates and DIS seems to be underrepresented, from the
distinctive boundary in the landslide’s centre towards the rear, both algorithms return
similar displacement values, as confirmed by the boulder paths (I, III and IV).

These boulder trajectories are reliable and support the correctly derived high dis-
placement values for interval III (308 d), and in particular, the higher ones for interval
IV—although shorter in duration covering the summer period (62 d). This displacement
increase can be explained as a sensitive reaction of the debris due to the heavy precipitation
events in 2020. The year 2020 had by far the highest number of days with daily precip-
itation, followed by the 2014 debris flow event-year. In the summer interval IV (8 July
2020–8 September 2020), the two highest days of total precipitation were measured (see
Tables 4 and 5: highest, 82.9 mm, 29 August 2020; 10th, 50.0 mm, 3 August 2020). We
assume that this heavy rainfall event at the end of August indicates how the debris reacts
to hydrological influences with a massive acceleration [65,66]. It seems unlikely that the
50.0 mm event significantly contributed to this acceleration, as in the previous year the
ninth-highest measure was recorded and showed no signs of acceleration.

Apart from single interval calculations, we further performed a multimaster approach
and compared the results of both PC and DIS algorithms for intervals 002 and 004 (Figure 7).
The previously discussed total displacement distribution for the single intervals is more
pronounced due to the summing up of all possible image interval combinations. While
002 reveals a very similar pattern for the rear of the landslide mass, the front is again
partitioned beginning at the centre, leading to decorrelation for PC (Figure 7a) and high
displacements between 20 and 32 m for DIS. However, these values becomes unrealistically
low towards the landslide’s head (Figure 7). Displacement values reach their maximum
for PC of 20 m (c), whereas DIS exceeds 32 m (d), in these areas. Single analysis interval
I (Figure 6b) and multimaster interval 002 (Figure 7b) reveal an area of particularly high
motion at the northern rim towards the landslide’s head. This high motion can be confirmed
by field observations of severe, high dynamic surface changes—a behaviour visible in the
GIFs (Figures S2–S4).

The limitations of ground motion are confirmed by calculated displacement curves
for PC and DIS (Figure 8). Where PC has a definite limit of 20 m for total displacement
detection (a), there is no upper limit for DIS. Generally, displacement curves for both PC
and DIS indicate a clear acceleration behaviour—in particular for the heavy rainfall season
2020. The explanatory power of DIS to derive ground motion and displacement curves
is high.

We applied the approach of displacement curve calculations to areas outside of the
landslide process in order to estimate the quality of the algorithm, as there should be zero
to limited displacement. The NS and EW components for PC show values very close to
zero (±0.2 and ±0.3 m), and DIS never exceeds ± 0.5 m, indicating the high accuracy and
reliability of our results.

Our results demonstrated the possibilities and limitations of the optical flow dense
inverse search algorithm. Backed by the comparison to the well-known and robust phase
correlation algorithm, we find that DIS is a more sensitive, less rigid and more flexible
algorithm. While computationally very efficient, both small and large displacements
can be detected without upper limitations. We can confirm the results from the DIS
algorithm and for the first time, image registration methods reflect motions we know
through our field observations (area of high motion at the northern rim towards the front,
see Figures 6e, 7c and S3; and at the front of the dissolving rock glacier, see Figure 6g,h).

However, the results must be interpreted with caution as there is a clear underrepresen-
tation for the landslide’s head. Areas of too-high surface dynamics and/or displacements
lead to a drastic change in pixel values. Therefore, PC with an upper detection limit of 20 m
fails, returning areas of decorrelated noise, whereas DIS still returns some displacement
values, but they are too low. These returned values imply a correct signal, but based on
the comparison to PC we know that DIS could lead to underrepresented displacements,
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which is why the results have to be carefully interpreted. Thus, areas of decorrelation can
be interpreted as a valid limit of PC with no over- or underestimation, as with DIS, and a
higher robustness towards illumination changes.

6. Conclusions

This study evaluated the potential of the dense inverse search (DIS) algorithm to
derive ground motions to assess a high-alpine, complex landslide. Our research has made
a substantial contribution, as for the first-time, optical flow was applied to study landslide
behaviour. We tested the algorithm on time interval combinations of single intervals as
well as multimaster pairs of reference-secondary images based on five high accuracy UAS
orthophotos of 0.16 m acquired between 2018 and 2020.

We compared total displacement results of DIS to those of the well-known phase
correlation algorithm (PC), both of which are implemented in the software IRIS, with
regard to trajectories of traceable boulders. These results were contrasted to trajectories
and confirm a high goodness of fit. In an accuracy assessment we evaluated our results
by deriving NS and EW displacements for five stable bedrock areas, ranging between
±0.2 and ±0.3 m. Our findings show that DIS is applicable to determine ground motions
of both slow and moderate velocities, as it detected displacements from 0.5 to 42 m for
our observation intervals. This was supported by boulder trajectories and correlated,
heterogeneous displacements derived from PC. DIS further overcame the correlation limits
of PC, which occurred at about 20 m, and we obtained decorrelation even with a larger
template. It is likely that for both severe surface changes and very high displacements,
DIS underestimated values at the landslide’s head, while PC decorrelated due to excessive
surface changes. The findings are based on our experiments and are confirmed by our own
field observations, as well as published descriptions of geomorphological processes [59–61].
In addition, we calculated displacement curves, which indicated acceleration and high
ground motions—thus confirming the displacement increase in summer 2020, which can
be explained by a high rainfall event.

Apart from the complex, high-alpine study site investigated here, DIS could be prof-
itably employed for landslide types from pre-alpine to alpine sites. DIS could also be
of high value for earthquake and glacier studies, as it is able capture displacement rates
exceeding the detection capability of DInSAR. Nevertheless, future studies should focus on
the applicability of complementary optical data from other sensors, improving the accuracy
as well as the robustness for real world illumination conditions to confirm the detection
capability of DIS for landslide displacement. Further research is also needed to exploit
the potential of image-matching techniques for an improved understanding of landslide
kinematics ranging from single block sliding to complex flow-like behaviour, as well as
early warnings for landslides.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14030455/s1, Figure S1: An example of optical flow for estimating
mouth motion. Two consecutive images show regions of a mouth in motion (a,b) and the estimated
flow field using dense optical flow method (c) adapted from reference [67]. Figure S2: GIF showing
UAS multi-hillshades [0.16 m] of 13 July 2018; 24 July 2019; 4 September 2019; 8 July 2020; 8 September
2020. Figure S3: GIF showing DIS derived total displacement (transparent) superimposed on UAS
multi-hillshades [0.16 m] for the corresponding time interval (I: 13 July 2018–24 July 2019, 376 d;
II: 24 July 2019–4 September 2019, 42 d; III: 4 September 2019–8 July 2020, 308 d; IV: 8 July 2020–
8 September 2020, 62 d). Figure S4: GIF showing PC derived total displacement (transparent)
superimposed on UAS multi-hillshades [0.16 m] for the corresponding time interval (I: 13 July 2018–
24 July 2019, 376 d; II: 24 July 2019–4 September 2019, 42 d; III: 4 September 2019–8 July 2020, 308 d;
IV: 8 July 2020–8 September 2020, 62 d).
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Appendix A

In order to test IRIS, please visit https://www.photomonitoring.com/iris/ to request
a free trial of the software via the contact form. Last access 12 January 2022.

Table A1. Settings for DIS single analysis.

Finest
Scale

Patch
Size

Patch
Stride

Gradient
Descending

Iterations

Use Mean
Normalisa-

tion

Use Spatial
Propaga-

tion

Var. Re-
finement

Alpha

Var. Re-
finement

Delta

Var. Re-
finement
Gamma

Var. Re-
finement
Iterations

Interval I 0 8 3 25 x x 20 5 10 5
Interval II 0 8 3 25 x x 20 5 10 5
Interval III 0 16 2 30 x x 15 5 10 10
Interval IV 0 8 3 25 x x 15 5 10 10
Interval 1–3 0 8 3 25 x x 15 5 10 10
Interval 1–4 0 8 3 25 x x 20 5 10 5
Interval 2–4 0 8 3 25 x x 20 5 10 5
Interval 2–5 0 8 3 25 x x 20 5 10 5
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Abstract: The evaluation of mortality in earthquake-stricken areas is vital for the emergency response
during rescue operations. Hence, an effective and universal approach for accurately predicting the
number of casualties due to an earthquake is needed. To obtain a precise casualty prediction method
that can be applied to regions with different geographical environments, a spatial division method
based on regional differences and a zoning casualty prediction method based on support vector
regression (SVR) are proposed in this study. This study comprises three parts: (1) evaluating the
importance of influential features on seismic fatality based on random forest to select indicators for
the prediction model; (2) dividing the study area into different grades of risk zones with a strata
fault line dataset and WorldPop population dataset; and (3) developing a zoning support vector
regression model (Z-SVR) with optimal parameters that is suitable for different risk areas. We
selected 30 historical earthquakes that occurred in China’s mainland from 1950 to 2017 to examine
the prediction performance of Z-SVR and compared its performance with those of other widely used
machine learning methods. The results show that Z-SVR outperformed the other machine learning
methods and can further enhance the accuracy of casualty prediction.

Keywords: earthquake; casualty prediction; importance assessment; spatial division; support vec-
tor regression

1. Introduction

Earthquakes are among the most unpredictable and destructive natural hazards
around the world and have caused extremely heavy damage to human life and posses-
sions [1–4]. China is located at the intersection of the Alpine-Himalayan and Circum-Pacific
seismic zones, and is subjected to the collision and compression of the Eurasian Plate,
Philippine Plate and Indian Plate [5,6]; hence, it has always been prone to earthquakes [7,8].
To date, there have been nine catastrophic earthquakes with more than 200,000 casualties
in the world, of which three occurred in China. Since 1949, more than 100 destructive
earthquakes have occurred in 22 provinces of China, which have caused 270,000 casualties
in total, thereby accounting for 54% of all deaths from natural disasters in this country [5].
Considering the heavy destruction of earthquakes in China’s mainland, this study selected
it as the study area.

After an earthquake, it is necessary to promptly and efficiently conduct emergency
rescue to reduce damage and prevent further increases in the damage degree. An early
prediction of the death toll that is caused by the earthquake is an essential reference for the
government to determine which grade of emergency response [9] to be launched and what
amount of relief supplies to be mobilized to the affected areas [10]. Therefore, rapid and
accurate prediction of the number of earthquake casualties is a focus of disaster assessment
research.
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Related studies on seismic casualty prediction focus mainly on two aspects. One aspect
is the relationships between relevant factors and the number of earthquake casualties; these
studies can be broadly classified into three categories. The studies in the first category
explore the impact of seismic parameters on earthquake fatality. Xiao [11] analyzed the
relationship of seismic intensity and population density with the mean mortality rate,
and proposed an empirical formula for rapidly assessing the death toll, which has been
recommended as an effective method for evaluating the mortality rate by Assessment of
Earthquake Disaster Situation in Emergency Period (a China’s national standard). Jaiswal
and Wald [12] analyzed the mortality rates of earthquakes with various shaking intensity
levels all around the world and proposed a country/region-specific empirical model by
using an optimization method to evaluate seismic mortality. The studies in the second
category seek to identify the relationship between building vulnerability and earthquake
fatality. In the 1980s, commissioned by the Federal Emergency Management Agency
(FEMA), the Applied Technology Council (ATC) [13] surveyed and classified buildings in
California and proposed the ATC-13 earthquake damage matrix for systematically studying
and forecasting possible earthquake losses in this region. Ceferino et al. [14] proposed a
probabilistic model for evaluating the number and spatial distribution of casualties due to
earthquakes, which improved methods that focused only on a single-building by taking
multiple buildings into consideration. The studies in the third category consider the impact
of other factors, such as secondary disasters or demographic characteristics, on human loss.
Bai et al. [15] scientifically assessed the possible casualties that were caused by secondary
disasters and developed a logical regression model for predicting the death toll caused by
landslides in the 2014 Yunnan Ludian MS 6.5 earthquake. Shapira et al. [16] integrated risk
factors that are related to population characteristics (age, gender, physical disability and
socioeconomic status) and proposed a model on the basis of the widely used loss estimation
model HAZUS.

Other studies focus on enhancing the accuracy of prediction models by improving
models or proposing new methods [17,18]. Karimzadeh et al. [19] presented a GIS-oriented
procedure in combination with geo-related parameters for identifying the destruction
in earthquake-stricken areas and evaluated the seismic loss based on damage functions
and relational analyses. Feng et al. [20] regarded building damage as a major cause of
earthquake deaths, and used high-resolution satellite imagery to detect building damage
in disaster areas. They developed a model for estimating the mortality rate due to an
earthquake based on remote sensing and a geographical information system. To solve
the problems in the evaluation systems (low precision, long time consumption and poor
stability), Zhang [21] proposed a seismic disaster casualty assessment system based on
mobile communication big data. Considering that seismic data has the characteristics of
small scale, nonlinearity and high dimensionality, many scholars have applied machine
learning methods, such as support vector machine (SVM), artificial neural network (ANN),
and random forest (RF), to earthquake casualty prediction models in recent years. Xing
et al. [22] improved SVM with a robust loss function and used it to construct a robust
wavelet earthquake casualty prediction model. Gul and Guneri [23] used earthquake
magnitude, occurrence time, and population density as input parameters and built a model
for earthquake casualty prediction based on the theory of ANN. Jia et al. [24] used the RF
model to compare the importance of features affecting the number of earthquake casualties
and proposed a deep learning model for casualty prediction.

According to the literature review above, relatively complete earthquake casualty
prediction methodologies have been presented by researchers from various aspects, which
provide references for feature selection and model construction in our study. However, an
analysis of the previous studies on earthquake casualty prediction reveals the following
shortcomings: (1) many prediction methods, especially those that utilize empirical func-
tions, can only be implemented with abundant historical seismic data, which makes it
difficult to obtain reliable prediction results when a limited quantity of data are available;
(2) some scholars simply considered one earthquake as the case and used a small number of
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samples to predict the death toll, whose achievements may be difficult to apply and deploy
due to the under-representativeness of predictors and methods; and (3) most studies simply
focused on the statistical relations between influential features and earthquake casualties,
which led to inadequate representativeness and lack of a theoretical basis for the generality
of such prediction models.

Based on the above observations, this study aimed to (1) evaluate the importance of
influential features on seismic fatality, study the regional variations in natural and human
geographical environments, and propose a spatial division approach for dividing the study
area into three degrees of risk zones; (2) improve the support vector regression (SVR) model
with reasonable input factors and the best model parameters for all risk zones; and (3)
evaluate the performance of the proposed zoning model through experiments.

The remainder of this paper is structured as follows. Section 2 introduces the geograph-
ical and seismic background of the study area and describes the data and methodology that
are used in this study. Section 3 presents the process and result of importance assessment
and proposes the approach of spatial division. Section 4 derives the SVR algorithm in detail
and presents the flow of the data processing and model construction. Section 5 presents the
experimental results of the proposed method. Section 6 discusses the results and compares
them with those of other models. The conclusions of this study are contained in Section 7.

2. Materials and Methods

2.1. Study Area

China’s mainland is located at the intersection of the Alpine-Himalayan and Circum-
Pacific seismic zones, where destructive earthquakes occur frequently [25]. Seismicity in
China’s mainland is characterized by high frequency, wide distribution, great intensity,
shallow seismic focus, and clear regional differences. Most earthquakes in this area are
shallow focus earthquakes that occurred within the continental crust, whose principal type
are strike-slip type [26]. Based on statistical data from the Earthquake Science Knowledge
Service System (http://earthquake.ckcest.cn/earthquake_n/dzml/ch5.html, accessed on
15 July 2021), we developed a chart of the spatial distribution of historical earthquakes
in China’s mainland. Figure 1 shows the positions of plates and all earthquakes over MS
4.0 that have occurred in China’s mainland since 1950. These earthquakes are widely
distributed in China’s mainland and the spatial pattern of seismic activities in this area is
featured by strong activities in the west and weak activities in the east.

With an area of 9.6 million square kilometers (including Taiwan Province), China has
diverse natural and human geographical environments that differ in terms of climates,
landforms and geological conditions in China; hence, it is difficult to build a single seismic
casualty prediction model that is suitable for the whole area. Seismic destructive effects in
this vast area are obviously regional. Figure 2 shows the distribution of population and
historical earthquakes in China’s mainland. The frequency of earthquakes and life losses
caused by these disasters are roughly bounded by a population dividing line called the Hu
Line [27]. To the east of the Hu Line, earthquakes have caused lager death tolls than those
to the west of this boundary, although high seismicity has been observed in the west. Since
1949, 19 provinces in China’s mainland suffered deaths due to earthquakes, among which
Hebei, Sichuan, and Yunnan Provinces suffered the most life loss events, accounting for
more than 90% of all casualties [28].
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Figure 1. Historical earthquakes and plate distribution in China’s mainland; nine-dotted line is the
boundary of China’s territory in the South China sea.

Figure 2. Historical earthquakes and population distribution in China’s mainland.

2.2. Materials

The data that were used in this study included a geological fault dataset, a population
dataset and an earthquake case dataset. This study trained and verified the proposed
prediction model using the earthquake case dataset, which was also used to evaluate the
importance of factors affecting seismic fatality. Geological fault and population datasets
were used to divide the study area into defined risk zones based on regional differences.

2.2.1. Earthquake Case Dataset

The majority of the earthquake cases were collected from the Earthquake Science
Knowledge Service System (http://earthquake.ckcest.cn/featured_resources/disaster_
show.html, accessed on 20 July 2021), which includes 479 records of earthquakes over MS
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4.0 that have occurred in China’s mainland since 1950. We deleted cases without deaths,
corrected and supplemented the dataset with relevant literature and reports [29–32], and
finally selected a total of 152 seismic cases with death registers in China’s mainland. The
original earthquake case dataset only had attributes such as location, occurrence date,
magnitude, focal depth and death toll. Because information about historical earthquakes is
very limited and difficult to acquire, a large part of the data mining process was devoted
to collecting and supplementing relevant attributes. We complemented the attributes
of earthquakes, including epicenter intensity, aftershock, landform, climatic condition,
secondary disaster, collapsed buildings and rescue capability, from their disaster situation
evaluation reports and relevant literature [24]. The attributes of occurrence time and day
were converted from the occurrence date. We calculated the linear density of strata faults in
ArcGIS software, and used the statistical analysis tool in ArcGIS to acquire the earthquake
attribute of geological fault density. The attributes of population density and the Gross
domestic product (GDP) were collected from statistical yearbooks of provinces where
earthquakes occurred. GDP is a monetary measure of the market value of all the final
goods and services produced in a specific time period. The data we collected is per capital
GDP, which is the ratio of GDP to the total population of the earth-quake-stricken region.
Detailed information about each attribute in the earthquake case dataset is provided in
Table 1.

Table 1. Specification of attributes in the earthquake case dataset.

No. Attribute Description & Qualification

1 Occurrence day There are 7 categories where 1~7 correspond to Monday to
Sunday, respectively.

2 Occurrence time The time when the earthquake occurred, which is defined
as the minutes after 0:00 on the day.

3 Location The province and city where the earthquake occurred,
including longitude and latitude.

4 Magnitude Defined as the surface wave magnitude.

5 Focal depth The vertical distance from the hypocenter to the surface of
the earth (km).

6 Epicenter intensity Measured according to The China Seismic Intensity Scale
(China’s national standard).

7 Aftershock The number of shocks of magnitude greater than MS 5.0
after the occurrence of the main shock.

8 Geological fault density The average density of strata faults in the
earthquake-stricken area.

9 Landform
There are five categories, which are labelled 1 to 5, and

represent plain, basin, hill, mountain and plateau,
respectively.

10 Climatic condition There are two levels where 0 indicates normal and 1
indicates abnormal.

11 Secondary disaster
There are two categories, where 0 indicates no secondary

disaster and 1 indicates the occurrence of a secondary
disaster.

12 Population density The number of people who live in the earthquake-stricken
area per square kilometer.

13 Collapsed buildings The number of collapsed houses.

14 Rescue capability
There are three levels where 1 indicates lacking assignment,
2 indicates general assignment and 3 indicates improved

assignment.

15 GDP The ratio of GDP to the total population of the
earthquake-stricken region.

16 Death toll The number of casualties due to the earthquake.
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To describe the data distribution characteristics of earthquake cases, we divided their
numbers of casualties into 6 categories: 0–9, 10–99, 100–999, 1000–9999, 10,000–99,999, and
≥100,000. Then, we calculated the piecewise frequency statistics for each category and
plotted a statistical chart, which is shown in Figure 3. As shown in this graph, the death
tolls of most earthquakes in the dataset were within the ranges of less than 10, 10–99 and
100–999. Strong earthquakes with many casualties occurred with lower frequency; hence,
this study focuses on accurately predicting the death toll for earthquakes with less than
1000 casualties.

 

Figure 3. Piecewise frequency statistics of earthquake casualties.

In the construction process of the machine learning model, earthquake samples with
many casualties will exert a significant impact on the performance of the prediction model.
To evaluate the influence of samples with great values, we conducted an experiment to
compare the prediction performance between two data groups: Group A and Group B.
Group A was the dataset including all the 152 seismic cases with 1000 casualties or more.
Group B was the dataset excluding samples whose numbers of casualties were more than
1000. We took Group A as the training dataset and input it into SVR model, and used the
10-fold cross-validation method to evaluate its prediction performance. The evaluation
indicators employed in this experiment were root mean square error (RMSE) and mean
absolute error (MeaAE), which are described in detail in Section 6.1. The same experiment
was also conducted in Group B. We calculated the average RMSE and MeaAE values for
the two groups. The result showed that the RMSE and MeaAE of Group A were 6579.29
and 2346.96, respectively. By contrast, the RMSE and MeaAE of Group B were 48.27 and
40.41 respectively, which means Group B shows significantly better prediction performance
due to the exclusion of extreme value samples.

Considering that the devastating earthquakes with more than 1000 casualties occur
extremely unfrequently, and their disaster mechanisms are much more complicated, the
study focuses on accurately predicting the death toll for earthquakes with less than 1000 ca-
sualties. Therefore, we removed cases with more than 1000 casualties in order to avoid
the influence of great values. A total of 143 seismic cases with death registers were finally
selected. The procedure of dataset division is as follows. (1) In Section 3, we proposes a
spatial division method and divides the study area into three groups: high, moderate and
low risk zones. Based on the result of spatial division, those selected cases were divided
into three parts, including 49 cases in low risk areas, 13 in moderate risk areas, and 81 in
high risk areas. (2) To evaluate the prediction accuracy of the Z-SVR model for three degrees
of risk zones, we divided the dataset into training and testing datasets. For earthquake
cases in each degree of risk zones, we randomly extracted 1/5 of them as the testing dataset,
and the remainder was divided into the training dataset. We finally extracted 10 cases in
low risk zones, 3 in moderate risk zones, and 17 in high risk zones as the testing dataset
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to evaluate the performance of the seismic casualty prediction model. The remainder was
used as training dataset for building Z-SVR model. Table 2 presents the division of sample
dataset. Figure 4 shows the spatial distributions of historical cases.

Table 2. Numbers of training and testing samples in the defined risk zones.

Zone Training Sample (Cases) Testing Sample (Cases) Total (Cases)

Low risk 39 10 49
Moderate risk 10 3 13

High risk 64 17 81
Total 113 30 143

(a) 

(b) 

Figure 4. Spatial distributions of the earthquake case dataset: (a) Training samples; (b) testing
samples.
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2.2.2. Geological Fault Dataset

We collected the geological fault dataset from the China Earthquake Data Center
(http://datashare.igl.earthquake.cn/map/ActiveFault/introFault.html, accessed on 24
July 2021). It provides the spatial distribution of strata faults in China; the data are in vector
format and can be used for spatial analysis in ArcGIS software. This dataset includes 1966
fault segments. For 456 of these segments, detailed parameters such as age, orientation
and sliding rate are provided; for 664, only the name and number are specified; for 846,
only graphical features are provided, without any attributes. Since the coordinate system
of the dataset is the Krassovsky ellipsoid with the Albers projection, we used the projection
raster tool in ArcGIS to convert it into the WGS 1984 to ensure the consistency of the spatial
reference.

2.2.3. Population Dataset

The population dataset was collected from WorldPop (https://www.worldpop.org/,
accessed on 28 July 2021). It details the spatial distribution of the population with a
spatial resolution of 100 m. Its units are number of people per pixel with country totals
adjusted to match United Nations national population estimates. The format of this dataset
is raster, where the digital value of every pixel reflects the total population within this
grid. Considering that the samples in the earthquake case dataset have a long time series
while population data of a single year have difficulty reflecting demographic changes, we
collected population records in China’s mainland every five years from 2000 to 2020 (2000,
2005, 2010, 2015 and 2020) to explore the change in population in a long time series.

2.3. Methods

A methodological flowchart of the investigation is shown in Figure 5.

 

Figure 5. Framework of the Z-SVR model.

Seismic fatality is a comprehensive result that is influenced by diverse factors, and
whether a factor has a decisive impact on earthquake casualties is an essential question
for feature selection of prediction models [33]. Therefore, before constructing a prediction
model for earthquake casualties, it is crucial to establish a reasonable index system and
analyze the importance of relevant indicators, which will serve as a reference for the
prediction model to select more important features. Based on regional disaster system
theory, this study established an evaluation index system for 14 major features that affect
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earthquake fatality. We used the earthquake case dataset and the random forest model to
assess the importance weights of features, of which the ranking served as an important
reference for feature selection of the prediction model.

Because of the variations among regions, there will be different numbers of casualties
due to earthquakes with the same ground motion parameter. Therefore, in earthquake cases
with the same seismicity, the diversity of disaster-formative environments and disaster-
affected bodies reflects the difference among regions [34]. Due to the vast area of China’s
mainland, it is difficult to build a universal prediction model that is suitable for all regions.
To enhance the accuracy of earthquake disaster assessment in emergency periods, it is
effective to divide the study area into risk zones based on regional differences and construct
a model that performs well for each risk zone. Based on the results of the importance
assessment and feature selection, geological fault density and population density are the
most important features of disaster-formative environments and disaster-affected bodies,
respectively. Therefore, we chose these two features with relatively high importance
weights as representative factors for developing a partition standard and dividing the
study area into the defined grades of risk zones. The accuracy and applicability of the
earthquake casualty prediction approach can be improved by building different submodels
for areas with different regional characteristics.

As an extension of support vector machine (SVM) for solving regression problems
support vector regression (SVR) has attracted much attention in the field of machine
learning and displayed strong predictive ability in mortality evaluation. Compared with
other machine learning algorithms, SVR can achieve the optimal solution with a small
number of samples and avoid problems such as overfitting and local extremum as much as
possible, which makes its generalization ability and performance stand out [35]. However,
as a machine learning method that is based on historical statistics, it may be difficult for
the SVR model to accurately predict casualties due to earthquakes occurring in different
regions of the study area, especially those with vast acreage and diverse environments.
Therefore, based on the characteristics of SVR and regional differences in the study area, we
constructed a zoning SVR model (Z-SVR) for various regions in the study area; for which
the optimal model parameters for all risk zones were identified using training samples
from the earthquake case dataset.

3. Spatial Division

3.1. Importance Assessment

According to regional disaster system theory, a seismic disaster is a complex mech-
anism that is a comprehensive result of interactions between disaster-inducing factors,
disaster-affected bodies and disaster-formative environments [36]. Among them, disaster-
inducing factors, such as seismic magnitude and focal depth, are the sufficient condi-
tions for disaster occurrence; disaster-affected bodies, such as population distribution
and building destruction, represent the necessary conditions for disaster resilience; and
disaster-formative environments, such as climatic condition and secondary disaster, pro-
vide a natural and human geological background that affects disaster-inducing factors and
disaster-affected bodies [17]. The loss due to a disaster is attributed to the combined effects
of these three factors; therefore, for screening the prediction indicators, we constructed an
evaluation index system on the basis of regional disaster system theory, which is presented
in Table 3.
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Table 3. Evaluation index system of features that influence earthquake fatality.

Target Level Rule Level Index Level

Seismic fatality

Disaster-inducing factors

Magnitude
Epicenter intensity

Focal depth
Geological fault density

Occurrence time
Occurrence day

Aftershock

Disaster-affected bodies

Collapsed buildings
Rescue capability

Population density
GDP

Disaster-formative
environments

Climatic condition
Landform

Secondary disaster

Determining the importance weights of all features in the evaluation index system is
a quantitative task in importance assessment. Although traditional linear models show
good performance in the importance assessment of factors that affect earthquake fatality,
the result can be easily disturbed by the uncertainty and fuzziness of input data [37]. An
integrated ensemble model is an effective approach for mitigating the above problem and
improving the accuracy and generalization performance of the evaluation method [38],
which was demonstrated by previous studies [39]. Random forest (RF) is an effective
integrated ensemble model with random binary decision trees for classification or regres-
sion [39]. As an expansion of the bagging method, this algorithm constructs multiple
independent estimators that determine the output result by average or majority voting.
This approach enhances the precision and stability of the prediction model, reduces the
sensitivity of the model to noise and outliers, and avoids problems such as overfitting [40].
In contrast to other machine learning methods, the RF model can provide the quantified
importance of prediction indicators by calculating their increases in predictive error by
randomly permuting the values of a variable through out-of-bag observations of each tree.

We chose 7 indicators of disaster-inducing factors, 4 of disaster-affected bodies and 3
of disaster-formative environments as the input parameters of the RF model to evaluate
their importance to earthquake fatality. The values of the input parameters were extracted
from the earthquake case dataset. We utilized the machine learning package scikit-learn of
the Python programming language to construct the RF model. The “feature_importances_”
is an attribute of the RF model in the scikit-learn package. The importance of a feature is
computed as the normalized total reduction of the criterion brought by that feature. The
procedure is summarized as follows:

• Inputs: Disaster-inducing factors (7 variables), disaster-affected bodies (4 variables)
and disaster-formative environments (3 variables).

• Parameters: Number of estimators = 150, criterion = ‘squared_error’, max depth =
6, min samples split = 2, min samples leaf = 1, min weight fraction leaf = 0.0, max
features = ‘auto’, max leaf nodes = None, min impurity decrease = 0.0, bootstrap =
Frue, oob score = False, number of jobs = None, random state = None, verbose = 0,
warm start = False, ccp_alpha = 0.0, max samples = None.

• Step 1: Use bootstrap sampling to extract subtraining sets from the training set.
• Step 2: Generate the feature subsets by randomly selecting features before node

splitting.
• Step 3: Establish decision trees.
• Step 4: Obtain the results for the sample to be tested.
• Step 5: Calculate the importance of the input parameters.
• Output: Importance weight of the prediction indicators.
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The ranking of all factors according to the importance weights from low to high is
shown in Figure 6.

 

Figure 6. Importance weights of indicators on the index levels.

Based on the results of the importance assessment of influential features, magnitude,
collapsed buildings, epicenter intensity, population density, geological fault density and
GDP are major factors that affect seismic fatality. Magnitude and epicenter intensity are the
two most important parameters to depict the severity of an earthquake and exert substantial
influence on the seismic fatality; however, there is a strong correlation between these two
features. To avoid information redundancy, we selected magnitude, which has greater
importance weight, as the input parameter of the Z-SVR model. Building destruction is
the direct cause of earthquake injuries and deaths [41], and the primary task of emergency
rescue is to search for people who are buried in collapsed constructions. However, the
aim of the proposed model in this study is to rapidly predict the possible casualties of an
instantly occurring earthquake, which requires an extremely fast response speed. It will
take some time to identify the situation of building destruction and count the number of
collapsed buildings. Population density is the most important feature among the disaster-
affecting bodies; since human beings are the major victims of earthquakes, it is significant to
choose this feature as one of the prediction indicators. Geological fault is the most important
factor under the level of disaster-formative environments, where the density of strata fault
lines can be used to quantitively analyze regional differentiation and merits consideration.
GDP is a comprehensive indicator that is mutually restricted with population density in
terms of earthquake casualties; therefore, it is significant to introduce this factor as an input
parameter and consider its comprehensive effect with population density to ensure the
stability and accuracy of the prediction results. In conclusion, based on the result of the
importance assessment and the principles of rapid evaluation and avoiding information
redundancy, we finally selected magnitude, population density, geological fault density
and GDP as the input parameters for the construction of the Z-SVR model, among which
geological fault line density and population density were also applied to divide the study
area into risk zones.

3.2. Population Density

Disaster-affected bodies reflect the necessary conditions for disaster resilience, of which
population density has a major influence on the number of earthquake casualties and the
degree of destruction. High population density provides a vital motivation for the increase
in earthquake casualties [42]. In this study, the population dataset that was collected
from WorldPop includes raster data on the population distribution of China’s mainland
every five years from 2000 to 2020 (2000, 2005, 2010, 2015 and 2020). For those five raster
datasets, we converted the population count value to population density and calculated the
average density, which was implemented using the raster calculator tool in ArcGIS software.
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The general classification standard of population density was used to divide different
population densities into four categroies: extremely sparsely (less than 1 people/km2),
sparsely (from 1 to 25 people/km2), moderately (from 25 to 100 people/km2), and densely
populated (greater than 100). Through this standard, we divided China’s population
distribution dataset into four parts, as shown in Figure 7.

Figure 7. Distribution of classified population density in China’s mainland.

3.3. Geological Fault Density

Disaster-formative environments refer to the natural and human geological back-
ground that affects disaster-inducing factors and disaster-affected bodies [17], among
which geological faults are the zone blocks that bump into each other and generate shakes.
Previous work [28] has demonstrated that the distance from a geological fault is correlated
with the number of casualties that are caused by an earthquake. Therefore, we calculated
the linear densities of strata faults in China using ArcGIS software. The linear densities
were divided into three grades (high, moderate and low) by natural breaks. Figure 8 shows
the spatial distribution of the classified geological fault densities in the study area.

Figure 8. Distribution of the classified strata fault densities in China’s mainland.
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3.4. Overlay Analysis

Overlay analysis is a frequently used geographic computing operation and a signif-
icant spatial analysis tool in GIS software, which is widely used in applications that are
related to spatial computing [43]. This operation integrates different data layers and their
corresponding attributes in the study area, which connects multiple spatial objects from
multiple data sources and quantitatively analyzes the spatial range and characteristics of
the interactions among different forms of spatial objects. Based on the feature selection
results, geological faults are the birthplace of an earthquake, and humans are the victims
of seismic disasters. In earthquakes with similar seismicity, denser strata fault lines and
higher population density will lead to a greater risk to personnel safety [28]. For the
above reasons, this study divided the study area into parts according to the variations
in population density and strata fault density and established a corresponding partition
standard. We developed a comprehensive partition standard that was used to overlay the
classification results. Then, we divided the study area into risk areas of three grades: low
risk, moderate risk, and high risk zones. The theory and procedure of the proposed spatial
division method are illustrated in Figure 9.

Figure 9. Spatial division process.

4. Prediction Model

4.1. Algorithm

Support vector machine (SVM) is a kind of machine learning method that is based
on statistical learning theory and is a supervised learning model [44]. SVM implements
the structural risk minimization principle rather than the empirical risk minimization
principle [45], which gives it unique advantages in solving small-sample, nonlinear and
high-dimensional pattern recognition problems. Although SVM was initially applied to
classification problems, it has been gradually used to solve regression problems due to its
good performance in function fitting [46]. SVR is an extension of SVM for solving regression
problems. Compared with other machine learning algorithms, SVR can obtain the optimal
solution with a small number of samples and avoid problems such as overfitting and partial
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extreme values as much as possible [28], and its generalization ability and performance
have been well demonstrated.

The SVR algorithm is explained as follows. Consider a given training sample set
D = {(x1, y1), (x2, y2), . . . . . . , (xm, ym)}, where xi = (xi1, xi2, . . . , xid)

T ∈ R
d, yi ∈ R, i =

1, 2, . . . , m, xi is the ith sample and has feature dimensionality d, xij is the value of the jth
feature, yi ∈ R is the corresponding target value of the ith sample, and m is the number
of samples. The goal of SVR is to find a regression model f (x) = ωTx + b such that f (x)
is close to its corresponding target value y, where ω and are parameters to be calculated.
In the traditional regression model, the function loss is calculated based on the difference
between f (x) and y, which is too strict and will eventually lead to overfitting [47]. To
overcome this disadvantage, SVR sets a maximum deviation ε between f (x) and y, and the
function loss is counted only when the difference between f (xi) and yi is greater than ε
(Figure 10). This is equivalent to constructing a spacer band of width 2ε with f (x) as the
center; when the training sample is within the spacer band, the prediction result will be
designated as correct [48]. Therefore, the SVR problem can be formulated as

min
ω,b

1
2
||ω||2 + C

m

∑
i=1

�ε( f (xi)− yi) (1)

where C > 0 is a regularization constant and �ε is an ε-insensitive loss function (Figure 11),
which is expressed as

�ε(𝓏) =
{

0, i f |𝓏| ≤ ε;
|𝓏| − ε, otherwise.

(2)

Figure 10. Sketch diagram for SVR.

Figure 11. Sketch diagram for the ε-insensitive loss function.
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The first term of Equation (1) represents the flatness of the function, which is also called

the structural risk, and the second term of the equation, namely,
m
∑

i=1
�ε( f (xi)− yi), represents

the fitness between f (x) and its corresponding target values, which is also called the em-
pirical risk [48]. The regularization constant C is a compromise between the structural risk
and empirical risk. The constant C > 0 determines the trade-off between the flatness of
f (x) and the amount up to which deviations larger than ε are tolerated [49]. To describe
the real deviation, two slack variables, namely, ξi and ξ̂i, are introduced, and Equation (1)
can be reformulated as

min
ω,b,ξ,ξ∗

1
2
||ω||2 + C

m

∑
i=1

(ξi + ξ̂i); s.t.

⎧⎨
⎩

f (xi)− yi ≤ ε + ξi;
yi − f (xi) ≤ ε + ξ̂i;
ξi, ξ̂i ≥ 0, i = 1, 2, . . . , m.

(3)

To efficiently solve the above optimization problem with inequality constraints, multi-
pliers μi ≥ 0, μ̂i ≥ 0, αi ≥ 0, and α̂i ≥ 0 are introduced. Based on the Lagrange multiplier
method, the following function can be deduced from Equation (3):

L
(
ω, b, α, α̂, ξ, ξ̂, μ, μ̂

)
= 1

2 ||ω||2 + C
n
∑

i=1
(ξi + ξ̂i)−

m
∑

i=1
μiξi −

m
∑

i=1
μ̂i ξ̂i

+
m
∑

i=1
αi( f (xi)− yi − ε − ξi) +

m
∑

i=1
α̂i
(
yi − f (xi)− ε − ξ̂i

)
.

(4)

f (x) = ωTx + b is substituted into Equation (4), the partial derivatives of
L
(
ω, b, α, α̂, ξ, ξ̂, μ, μ̂

)
with respect to ω, b ξi and ξ̂i are calculated, and these partial deriva-

tives are set equal to 0. The following system of equations is obtained:

ω =
m

∑
i=1

(α̂i − αi)xi, (5)

0 =
m

∑
i=1

(α̂i − αi), (6)

C = αi + μi, (7)

C = α̂i + μ̂i. (8)

After solving the above system of equations, the dual problem of SVR can be formu-
lated as

max
α,α̂

m
∑

i=1
(yi(α̂i − αi)− ε(α̂i + αi))− 1

2

m
∑

i=1

m
∑

j=1

(
α̂i − αi)(α̂j − αj

)
xT

i xj;

s.t.
m
∑

i=1
(α̂i − αi) = 0, 0 ≤ αi, α̂i ≤ C.

(9)

To solve the above quadratic programming problem, the Karush-Kuhn–Tucker (KKT)
conditions [50] are used:

⎧⎪⎪⎨
⎪⎪⎩

αi( f (xi)− yi − ε − ξi) = 0,
α̂i
(
yi − f (xi)− ε − ξ̂i

)
= 0,

αiα̂i = 0, ξi ξ̂i = 0,
(C − αi) ξi = 0, (C − α̂i)ξ̂i = 0.

(10)

Substituting Equation (5) into f (x) = ωTx + b yields the following solution of the
SVR:

f (x) =
m

∑
i=1

(α̂i − αi)xT
i x + b. (11)
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If the term (α̂i − αi) of Equation (11) is not equal to 0, the corresponding sample
is a support vector of SVR that is located outside the spacer band. Based on the KKT
conditions, it is found that in Equation (10), every sample (xi, yi) satisfies the conditions
(C − αi) ξi = 0 and αi( f (xi)− yi − ε − ξi) = 0; therefore, ξi is equal to 0 when 0 < αi < C.
Then, the value of b can be deduced from Equation (11) as

b = yi + ε −
m

∑
i=1

(α̂i − αi)xT
i x. (12)

However, Equation (11) is merely a solution for linear SVR. For real-world problems
with high feature dimensionality, it is impossible to find a hyperplane that satisfies both
fitness and flatness simultaneously [47]. An efficient approach is to map samples from
the original space to a higher-dimensional feature space where the samples are linearly
separable [48], and Equation (5) can be reformulated as

ω =
m

∑
i=1

(α̂i − αi)φ(xi) (13)

where φ(xi) is the feature vector after mapping to a higher-dimensional feature space.
With the utilization of the kernel function method, the following solution for nonlinear

SVR is obtained:

f (x) =
m

∑
i=1

(α̂i − αi)κ(x, xi) + b (14)

where κ(x, xi) = φ(x)Tφ(xi) is the kernel function. Table 4 presents various widely used
kernel functions.

Table 4. Specification of kernel functions.

Type Expression 1

Linear kernel K(u, v) = uTv
Gaussian kernel K(u, v) = e−γ||u−v||2 , γ > 0

Polynomial kernel K(u, v) =
(
γuTv + r

)d

Sigmoid kernel K(u, v) = tan h
(
γuTv + r

)
1 u and v are multivariate vectors, and d ≥ 1 is the degree of the polynomial.

4.2. Model Construction

Based on the results of the importance assessment and feature selection, we selected
the magnitude, population density, geological fault density and GDP as the input variables
and selected the number of earthquake casualties as the output variable. Considering
that different prediction indicators have different units of measurements, it is necessary
to normalize the sample dataset to enhance the convergence speed in finding the optimal
solution and to improve the accuracy of the Z-SVR model. The normalization method that
was used in this study was z-score normalization, which can be formulated as

zi =
xi − x√

1
n ∑n

i=1(xi − x)2
(15)

where n is the number of samples in the dataset, xi. is the initial value of the i th sample,

z is its corresponding normalized value, and x =
n
∑

i=1
xi is the average initial value of all

samples.
Previous studies [51,52] have shown that the type of kernel function and corresponding

parameters have substantial impacts on the prediction performance of the SVR model. To
construct a fine-tuned Z-SVR model, parameter C for the linear kernel, parameters (C,
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gamma) for the Gaussian kernel and sigmoid kernel, and parameters (C, gamma, degree)
for the polynomial kernel should be selected [47]. C is the regularization parameter; gamma
and degree are equivalent to γ and d. in Table 4, respectively. Grid search is a general
and effective method for parameter optimization, which is usually combined with cross-
validation [17]. To find the best SVR model for each risk zone, this study invoked the
GridSearchCV module in the scikit-learn package to search for optimal kernel functions
and their corresponding model parameters in a specified range based on grid search. The
selected parameters of the Z-SVR model are presented in Table 5.

Table 5. Model parameters of Z-SVR.

Zone Kernel Function Parameters

Lowisk Gaussian kernel C = 100, gamma = 0.1
Moderate risk Gaussian kernel C = 100, gamma = 1

High risk Gaussian kernel C = 1000, gamma = 0.1

This study obtained the Z-SVR model using the Python programming language
and machine learning package scikit-learn. The procedure of model establishment is
summarized as follows: (1) Select suitable features as input parameters. (2) Preprocess
the sample dataset by normalizing and dividing samples into training data and testing
data. (3) Establishing a scoring rule for comparing the predicted results with the actual
number of death casualties; if these two values are of the same order of magnitude, the
prediction will be considered correct. (4) Invoke the SVR module in the scikit-learn package
to build a model for each risk zone. (5) Invoke the GridSearchCV module in the scikit-learn
package, and obtain parameters and search ranges; then, use the 10-fold cross-validation
method to test the robustness of the model. (6) Input the training dataset into the SVR
model for each risk zone to obtain optimal kernel functions and their corresponding model
parameters for the Z-SVR model. (7) Input the testing dataset into Z-SVR model and predict
the earthquake death tolls. (8) Since the number of earthquake casualties should not be
negative, revise negative prediction results by setting them to 0. (9) Assess the performance
of the Z-SVR model on the testing dataset.

5. Results

5.1. Spatial Division of the Study Area

Considering the vast area and diverse environments of China’s mainland, to build an
earthquake casualty prediction model with better applicability, it is helpful to propose a
machine learning approach with submodels that are applied to different regions. Using the
strata fault dataset and population dataset, we divided the study area into risk zones using
the raster calculator tool in ArcGIS software according to the proposed partition standard.
We plotted the spatial division results and overlaid historical earthquakes with various
magnitudes and numbers of casualties onto it, as shown in Figure 12.
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Figure 12. Distribution of risk zones and historical earthquake in China’s mainland.

As shown in Figure 12, low risk zones were the most extensive, which accounted for
51.94% of China’s mainland, followed by high risk zones, which accounted for 25.59%. The
area of moderate risk zones was the smallest, which accounted for 22.47% of the study
area. According to the distribution of historical earthquakes, the majority of destructive
earthquakes occurred in high risk areas, which indicates the validity of the proposed
spatial division method. Fewer destructive earthquakes occurred in some provinces of
Northern China (Heilongjiang, Jilin, Beijing and Shanxi), Southern China (Hubei, Hunan
and Guizhou) and Eastern China (Zhejiang and Fujian), while these regions were divided
into high or moderate risk zones. This can be explained by the presence of dense strata fault
lines or high population density in these provinces. Considering that regions with fewer
earthquakes usually encounter more casualties due to failure to take necessary precautions
for disasters, it is significant for people in high and moderate risk zones to be trained with
anti-seismic knowledge and to engage in evacuation practices. Interestingly, although
earthquakes occurred in Xizang, Qinghai and Xinjiang Provinces of Western China, most
parts of these regions were divided into low risk zones. This inconsistency is due to the
low population densities of these provinces, which contain vast depopulated zones; this is
supported by the observation that most earthquakes with high seismicity caused minor
casualties in low risk zones.

5.2. Prediction Result of Z-SVR Model

This study improved the SVR model and proposed the Z-SVR model with optimal
parameters for different risk areas. We randomly selected 10 samples in low risk zones
(L1~L10), 3 in moderate risk zones (M1~M3) and 17 in high risk zones (H1~H17) to predict
the numbers of casualties and compare them with corresponding true values, which are
presented in Figure 13 and Table 6. Although the number of casualties varied over a large
range in the risk zones, the differences between the majority of the predicted values by
Z-SVR and the true values were acceptable. However, there were three samples with
noticeable error. Among these three earthquake cases, 2 occurred in Puer (H7 and H14),
and 1 occurred in Lijiang (H17); both cities are located in Yunnan Province. Considering
that Yunnan is a region with significant variation of the geological environment and a huge
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economic gap between cities and villages, further research should be conducted to develop
a specific approach for predicting earthquakes in this region.

 

Figure 13. Prediction result of Z-SVR compared with the corresponding true values.

Table 6. Representative earthquakes in testing samples.

Sample No. Time Place True Value Predicted Value

L1 1989/9/22 Xiaojin 1 4.6
L3 1986/8/7 Litang 2 1.2
L7 2017/8/8 Jiuzhaigou 25 15.8
M1 1991/3/26 Datong-Yanggao 1 1.1
M2 2005/11/26 Jiujiang-Ruichang 13 17.8
H8 1953/5/4 Mile 3 3

H13 1965/1/13 Yuanqu 11 17.9
H16 2008/8/30 Renhe-Huili 41 39.6

6. Discussion

6.1. Comparison between Z-SVR and Other Models

To evaluate the effectiveness of the proposed model, this study selected training
samples and used a cross-validation method to evaluate the robustness of the Z-SVR model.
The regression and classification performances of the proposed model were also assessed
by predicting the numbers of casualties in testing samples and comparing the results in
terms of numerical difference and order of magnitude. Similar experiments were also
implemented on other widely used machine learning methods, including random forest
(RF), back propagation neural network (BP) and logistic regression (LR). This was followed
by a series of experiments and detailed analyses.

Several commonly used regression model evaluation indicators were employed in this
study, including root mean square error (RMSE) and mean absolute error (MeaAE), which
are defined as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (16)

MeaAE =
1
n

n

∑
i=1

|yi − ŷi| (17)

where ŷi is the predicted death toll of the ith sample, yi is the corresponding true death toll,
and n is the number of samples.
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The classification model evaluation indicators that were applied in this study were
Precision, Recall and F1, which are defined as follows:

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

1
F1

=
1
2

(
1

Precision
+

1
Recall

)
(20)

where TP is the number of true-positive samples, FP is the number of false-positive samples,
TN is the number of true-negative samples, and FN is the number of false-negative samples.

6.1.1. Cross-Validation

The robustness of each model was evaluated using the cross-validation method. As
discussed in Section 2.2.1, 113 seismic cases were selected as the training dataset, among
which 49 cases were in low risk areas, 13 in moderate risk areas, and 81 in high risk areas.
We randomly divided the cases in low and high risk zones into ten groups, respectively;
considering the limited number of samples, we randomly divided the cases in moderate
risk zones into five groups. The sample data in each group were not repeated. We used
RMSE and MeaAE to compare the regression precision between the Z-SVR model and
other machine learning models using the spatial division method. RMSE and MeaAE were
calculated for three degrees of risk zones (L, M and H) and the average values (RMSE(A)
and MeaAE(A)) were also given. The comparison result of all models is shown in Figure 14.

 
Figure 14. Model performance evaluated by the cross-validation method.

Judging from the stability of the prediction results on the training samples, all models
performed relatively better in low and moderate risk zones than in high risk zones. A
possible explanation is that there are 64 training samples in high risk zones, much more
than in low and moderate risk zones. In addition, the true numbers of casualties in these
64 samples vary from 1 to 748, which is a huge range and increases the difficulty for
machine learning models to achieve accurate prediction. Among all prediction models,
Z-LR performed the worst, as its RMSE and MeaAE were 83.37 and 52.72, respectively,
which ranked last in the two evaluation indicators. Z-BP and Z-RF outperformed the
Z-LR model, with RMSEs of 67.30 and 74.27, respectively, and MeaAEs of 42.80 and 49.17,
respectively. In contrast to the above prediction methods, Z-SVR showed higher overall
accuracy in cross-validation experiments for all risk zones. Its RMSE was 59.15, and its
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MeaAE was 36.16, which were significantly lower than those of the compared models;
this indicates that the proposed Z-SVR model had the smallest dispersion and the highest
stability.

6.1.2. Regression Accuracy Evaluation

For samples in low, moderate and high risk zones, this study used Z-SVR and other
models to predict their death tolls. Evaluation indicators of RMSE (L, M and H) and MeaAE
(L, M and H) were calculated for the risk zones, and the overall regression performances
(RMSE(A) and MeaAE(A)) of all models were also calculated, which are plotted in Figure 15.
For samples in low and moderate risk zones, the majority of models showed relatively
high regression accuracy, while for those in high risk zones, the Z-SVR and Z-BP models
showed good regression performance. Among all prediction models, in terms of overall
MeaAE, the Z-BP model showed the best regression accuracy with the lowest value of
16.73, and the Z-SVR model also performed well with MeaAE(A) of 17.39. In terms of
the overall RMSE, the average value of Z-SVR was 35.61, which was the lowest value,
followed by 35.89 for Z-BP. The precision evaluation results from Figure 15 further prove
that the proposed spatial division method has the advantages of enhancing prediction
accuracy and stability. For example, the RMSE of the Z-SVR model was the lowest, namely,
nearly half that of the SVR model; a similar result was obtained between the Z-BP and BP
models. In addition, the best fitting results were obtained by the Z-SVR and Z-BP models,
while the worst results were obtained by the RF, SVR and LR models, among which the
SVR and BP algorithms showed obviously improved performance with the utilization
of the spatial division method. The above analysis demonstrates that spatial division is
an effective method for improving the performance of machine learning algorithms in
predicting earthquake casualties and that the proposed Z-SVR model showed good and
stable performance in casualty prediction.

 

Figure 15. Regression performances of Z-SVR and other models.

6.1.3. Classification Accuracy Evaluation

The prediction results of Z-SVR, Z-RF, Z-BP, Z-LR and their initial models were also
compared with the corresponding true values in terms of classification performance, where
pairs of prediction and true values with the same order of magnitude were considered
correct. Based on this criterion, we calculated the evaluation indicators of Precision, Recall,
and F1 for all prediction models for the risk zones, which are presented in Table 7. In
low and moderate risk zones, although the Precision of the LR model was 1, its Recall
performance was unsatisfactory, which led to a low F1 value; compared with LR and other
models, Z-SVR showed better classification performance in low and moderate risk areas
with relatively high Precision values and the highest Recall and F1 values. With regard
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to samples in high risk zones, Z-BP was the model with the best prediction performance,
with an F1 value of 0.87. However, the classification result of Z-SVR in high risk zones was
also excellent, with the highest Recall, the second-highestPrecision and the third-highest F1
values. In general, the Z-SVR model showed significant stability in classification prediction,
with the highest values of Recall and F1 and a relatively high value of Precision. The F1
order of Z-SVR in all risk areas from high to low is moderate, low, and high risk zones.
However, only a few earthquakes with casualties occurred in moderate risk areas; hence, we
obtained a limited number of historical cases for training prediction models and verifying
their performances, which made it difficult to evaluate the difference in classification
performance order between the two models.

Table 7. Comparison of classification performance between Z-SVR and other models for three degrees
of risk zones.

Indicator Model
Low Risk

Zones
Moderate

Risk Zones
High Risk

Zones
Total

Precision

Z-SVR 0.92 1 0.87 0.87
SVR 0.92 0.5 0.47 0.63
Z-RF 0.85 1 0.52 0.64
RF 0.77 1 0.5 0.51

Z-BP 0.72 0.83 1 0.94
BP 0.87 0.83 0.71 0.67

Z-LR 0.87 0.83 1 0.93
LR 1 1 0.86 0.91

Recall

Z-SVR 0.9 1 0.82 0.87
SVR 0.9 0.67 0.47 0.63
Z-RF 0.7 0.33 0.53 0.57
RF 0.6 0.33 0.47 0.5

Z-BP 0.5 0.67 0.76 0.67
BP 0.6 0.67 0.65 0.63

Z-LR 0.6 0.67 0.71 0.67
LR 0.4 0.33 0.65 0.53

F1

Z-SVR 0.9 1 0.81 0.87
SVR 0.9 0.56 0.46 0.63
Z-RF 0.71 0.5 0.52 0.59
RF 0.61 0.5 0.45 0.5

Z-BP 0.54 0.67 0.87 0.74
BP 0.63 0.67 0.64 0.65

Z-LR 0.63 0.67 0.83 0.74
LR 0.57 0.5 0.74 0.67

We also divided the testing samples into three groups according to the number of
casualties, where the division criterion was order of magnitude (1 to 9, 10 to 99, 100 and
greater). We compared the classification performances of Z-SVR and other models in
the groups and calculated the evaluation indicators of Precision, Recall, and F1 for all
prediction models. Figure 16 presents the comparison results of classification performance
between Z-SVR and other models on samples with various numbers of casualties. Z-SVR
provided the most balanced and accurate classification into the three groups. Although
models such as Z-BP and Z-LR showed better classification performance in terms of
Precision or Recall in some groups, the Precision and Recall values of the Z-SVR model in
the three groups were high, balanced and stable; thus, Z-SVR had the highest F1 values in
each group. In general, the Z-SVR model was the most precise and stable model, which
provided accurate classification results for earthquakes with various numbers of casualties.
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(a) 

 
(b) 

 
(c) 

Figure 16. Classification results of Z-SVR and other models for earthquakes with casualties of different
orders of magnitude: (a) Comparison of Precision; (b) comparison of Recall; and (c) comparison
of F1.

177



Remote Sens. 2022, 14, 30

6.2. Future Work

Further extensive studies are needed, and recommendations for future research are
discussed as follows. First, this study analyzes the importance of features that affect seismic
mortality, which simply collects 14 features and classifies them into disaster-inducing
factors, disaster-affected bodies and disaster-formative environments. Future studies can
extend the research by refining the classification standard and increasing the number of
factors. Second, this study divides the study area into risk zones of three grades based on
regional differences, where the partition standard exerts a potential influence on the accu-
racy and applicability of the proposed model. Future studies can explore more reasonable
criteria for different study areas. Third, the proposed prediction approach is a regression
model that is based on SVR, which is essentially a data-driven model. Future studies can
build models based on deeper seismic mechanisms to predict deaths that are caused by
earthquakes.

7. Conclusions

This study evaluated the importance of 14 features that affect seismic fatality based on
the RF model. On the basis of the importance assessment, we selected magnitude, popula-
tion density, geological fault density and GDP as the input parameters of the prediction
model, among which the densities of population and geological faults were also integrated
for spatial division. This study also proposed a spatial division method based on the theory
of regional difference. We studied the regional diversity of geological fault density and
population in China’s mainland using the WorldPop population dataset (100 m resolution)
every five years from 2000 to 2020 and the strata fault line dataset and, finally, divided the
study area into zones of various risk grades by overlay analysis. Based on the results of
feature selection and spatial division, this study proposed a zoning prediction model based
on SVR. Using 113 samples in the earthquake case dataset, we implemented model training
and obtained the optimal model parameters for each risk zone to enhance the prediction
accuracy of earthquake death tolls. The following conclusions were drawn from the results
that were obtained in this study:

1. Among all selected features from the evaluation index system, the order of importance
from high to low is as follows: magnitude, collapsed buildings, epicenter intensity,
population density, geological fault density, GDP, occurrence time, focal depth, occur-
rence day, aftershock, secondary disaster, rescue capability, landform, and climatic
condition.

2. The proposed method of spatial division based on regional diversity could be used as
an effective tool to refine complex study areas. Using this method, we divided China’s
mainland into high, moderate, and low risk zones, which laid the foundation for the
construction of a prediction model with submodels that are suitable for different risk
zones. The verification results demonstrated that the proposed division method is
feasible for classifying study regions, especially those with vast area and complex
environments.

3. The proposed Z-SVR model realizes accurate prediction and good generalization
performance. We collected 143 historical earthquake cases, of which 113 cases were
selected as the training dataset and 30 for examining the prediction performance of
the model. The best model parameters were selected for each risk zone, which led
to precise prediction results in risk zones of various grades. The proposed model
also showed accurate regression and classification accuracy in the various risk zones
compared with other machine learning models, including RF, BP and LR. Moreover,
the proposed Z-SVR model was compared to the initial SVR model using the same
database. Similar experiments were also implemented on comparative machine
learning models, and we found that the prediction performances of all models with
spatial division significantly improved. The above results prove the advantages and
significance of the proposed model and spatial division method.
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Abstract: Wildfires are one of the most destructive natural disasters that can affect our environment,
with significant effects also on wildlife. Recently, climate change and human activities have resulted
in higher frequencies of wildfires throughout the world. Timely and accurate detection of the burned
areas can help to make decisions for their management. Remote sensing satellite imagery can have a
key role in mapping burned areas due to its wide coverage, high-resolution data collection, and low
capture times. However, although many studies have reported on burned area mapping based on
remote sensing imagery in recent decades, accurate burned area mapping remains a major challenge
due to the complexity of the background and the diversity of the burned areas. This paper presents
a novel framework for burned area mapping based on Deep Siamese Morphological Neural Net-
work (DSMNN-Net) and heterogeneous datasets. The DSMNN-Net framework is based on change
detection through proposing a pre/post-fire method that is compatible with heterogeneous remote
sensing datasets. The proposed network combines multiscale convolution layers and morphological
layers (erosion and dilation) to generate deep features. To evaluate the performance of the method
proposed here, two case study areas in Australian forests were selected. The framework used can
better detect burned areas compared to other state-of-the-art burned area mapping procedures, with
a performance of >98% for overall accuracy index, and a kappa coefficient of >0.9, using multispectral
Sentinel-2 and hyperspectral PRISMA image datasets. The analyses of the two datasets illustrate
that the DSMNN-Net is sufficiently valid and robust for burned area mapping, and especially for
complex areas.

Keywords: deep learning; PRISMA; burned area; Sentinel-2; morphological operator; convolutional
neural network

1. Introduction

As a natural hazard, wildfires represent one of the most important reasons for the
evolution of ecosystems in the Earth’s system on a global scale [1–3]. Recently, the frequency
of occurrence of wildfires has increased significantly due to climate change and human
activities around the world [4,5]. Wildfires can be influenced by the environment from
different aspects, such as soil erosion, increasing flood risk, and habitat degradation
for wildlife [6,7]. Furthermore, wildfires generate a wide range of pollutants, including
greenhouse gases (i.e., methane and carbon dioxide) [8].

Burned area mapping (BAM) can be useful to predict the behavior of a fire, to define
the burning biomass, for compensation from insurance companies, and for estimation of
greenhouse gases emitted [9,10]. As result, the generation of reliable and accurate burned
area maps is necessary for their management and planning in the support of decision

Remote Sens. 2021, 13, 5138. https://doi.org/10.3390/rs13245138 https://www.mdpi.com/journal/remotesensing183



Remote Sens. 2021, 13, 5138

making. BAM by traditional methods (e.g., field surveys) is a major challenge, and these
methods have some limitations, such as the wide areas to be covered and the lack of direct
access to the region of interest, which leads to large time and financial costs [10].

The Earth observation satellite fleet has steadily grown over the last few decades [11].
The diversity of Earth observation datasets means that remote sensing (RS) is now known
as a key tool in the provision of valuable information about the Earth that is available
at low cost and time needs on a global scale [12]. Currently, the upcoming new series of
RS sensors (e.g., Landsat-9, PRecursore IperSpettrale della Missione Applicativa (PRISMA),
Sentinel-5) provides improvements in terms of spatial, temporal, and spectral detail, with
RS now becoming a routine tool with an extensive range of applications [13,14]. The most
common applications of RS include classification [15,16] and detection of targets [17,18]
and changes [19,20].

The diversity of RS Earth observation imagery and its free availability has meant that
monitoring of changes following disasters has turned into a hot topic for research [21–28].
Indeed, we are witnessing many BAM products on a global scale that differ in terms of
spatial resolution and reliability of the burned areas mapped. Based on spatial resolution,
the recent BAM methods can be categorized into two main groups: (1) coarse spatial
resolution satellite sensors and (2) fine spatial resolution sensors.

Burned area mapping based on the low and medium resolution of satellite imagery
is common in the RS community. In recent years, many studies have used BAM based
on Moderate Resolution Imaging Spectroradiometer (MODIS), Sentinel-3, Medium Res-
olution Imaging Spectrometer (MERIS), and Visible/Infrared Imager Radiometer Suite
(VIIRS) [29–31]. However, while these sensors have a high temporal resolution, they suffer
from low spatial resolution. Accurate BAM for small areas is a major challenge due to the
mixing of pixels. Furthermore, the complex diversity of scenes can result in spectrum gains
in one burned pixel to be mixed with some other material. Furthermore, these are based
on ruleset classification and manual feature extraction such that the extraction of suitable
features and the finding of optimum threshold values are time consuming.

Recently, with the arrival of a new series of cloud computing platforms (e.g., Google
Earth Engine, Microsoft Azure), BAM using fine-resolution datasets has been considered by
researchers. The capacity of cloud computing platforms has created a great opportunity for
BAM based on high-resolution datasets and advanced machine-learning-based methods
for accurate mapping. Based on the structure of the algorithm, we can categorize these
methods into two main categories: (1) BAM by conventional machine-learning methods
and (2) BAM via deep-learning-based frameworks.

Burned area mapping based on conventional machine-learning-based methods can be
used to extract spectral and spatial features, and then to define the burned areas according
to a classifier [10]. For instance, Donezar, et al. [32] designed a BAM framework based
on the multitemporal change-detection method and time series synthetic aperture radar
(SAR) imagery. They used an object-based image analysis method for classification of the
SAR imagery. They also used the Shuttle Radar Topography Mission (SRTM) for digital
elevation models to enhance their BAM results. Additionally, Xulu, et al. [33] considered
a BAM method based on differenced normalized burned ratios and Sentinel-2 imagery
in the cloud-based Google Earth engine. A random forest classifier method was used for
the BAM. They reported an overall accuracy close to 97% for detection of burned areas.
Moreover, Seydi, Akhoondzadeh, Amani and Mahdavi [10] evaluated the performance
of a statistical machine-learning method for BAM using the Google Earth Engine and
pre/post-fire Sentinel-2 imagery. Furthermore, they evaluated the potential spectral and
spatial texture features using a Harris hawks optimization algorithm for the BAM. They
reported an accuracy of 92% by the random forest classifier on the validation dataset.
Liu, et al. [34] proposed a new index for BAM for bi-temporal Landsat-8 imagery and an
automatic thresholding method. They evaluated the efficiency of their proposed method in
different areas. Their BAM results showed that their presented method had high efficiency.
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Recently, deep-learning-based approaches have been applied increasingly for map-
ping RS imagery, with promising results obtained. These methods can extract high-level
features from the raw data automatically, by convolution layers. This advantage of deep-
learning-based methods has resulted in their use for BAM. BAM based on deep-learning-
based methods has become a hot topic of research, with many methods being proposed.
For instance, Nolde, et al. [35] designed large-scale burned area monitoring in near-real-
time based on the morphological active contour approach. This framework was applied
through several steps: (1) generation of a normalized difference vegetation index (NDVI) for
pre/post-fire; (2) determination of the region of interest based on active fires, anomaly de-
tection, and region-growing methodologies; (3) accurate shape of the burned area perimeter
extraction based on morphological snakes; (4) confidence evaluation based on a burn area
index; and (5) tracking. The result was accuracy of 76% by evaluation with reference data.
Knopp, et al. [36] carried out BAM by deep-learning-based semantic segmentation based
on mono-temporal Sentinel-2 imagery. They used the U-Net architecture for their BAM. A
binary change map was obtained based on the thresholding of the U-Net probability map.
They reported the difficulty of the segmentation model in some areas, such as agriculture
fields, rocky coastlines, and lake shores. de Bem, et al. [37] investigated the effects of
patch sizes on the result of burned area classification with deep-learning methods using
Landsat-8 OLI. Here, three different deep-learning methods were investigated: simple
convolutional neural network (CNN), U-Net, and Res-U-Net. Their results showed that
Res-U-Net had high efficiency, with a patch-size of 256 × 266. Hu, Ban and Nascetti [26]
evaluated the potential of deep learning methods for BAM based on the unitemporal
multispectral Sentinel-2 and Landsat-8 datasets. Their study showed that deep-learning
methods have a high potential for BAM in comparison to machine-learning methods.
Ban, et al. [38] experimented with the capacity of time series SAR imagery for BAM by a
deep-learning method. To this end, their deep-learning framework was based on CNN and
was developed to automatically detect burned areas by investigating backscatter variations
in the time series of Sentinel-1 SAR imagery. They reported accuracy of <95% for BAM.
Zhang, et al. [39] proposed a deep-learning framework for mapping burned areas based on
fusion Sentinel-1 and Sentinel-2 imagery. Furthermore, they investigated two scenarios for
training the deep-learning method: (1) continuous joint training with all historical data
and (2) learning-without-forgetting based on new incoming data alone. They reported that
the second scenario for BAM showed accuracy close to 90%, in terms of overall accuracy.
Zhang, Ban and Nascetti [39] presented a deep-learning-based BAM framework by fusion
of optical and radar datasets. They proposed a deep-learning framework based on CNN,
with two convolution layers, max-pooling, and two fully connected layers. They showed
an increase in the complexity of the network that resulted in rising computing needs, while
the results for the burned area detection were not enhanced. Farasin, et al. [40] presented
an automatic framework for evaluation of the damage severity level based on a supervised
deep-learning method and post-fire Sentinel-2 satellite imagery. They used double-step
U-Net architecture for two tasks (classification and regression). The classification generated
binary damage maps and the regression was used to generate damage severity levels.
Lestari, et al. [41] increased the efficiency of statistical machine-learning methods and a
CNN classifier for BAM using optical and SAR imagery. Their BAM results showed that
the CNN method has high efficiency in comparison with other machine-learning methods
with texture features. Furthermore, the fusion of optical and SAR imagery can enhance
the results of BAM. Belenguer-Plomer, et al. [42] developed a CNN-based BAM method by
combining active and passive datasets. Sentinel-1 and Sentinel-2 were used by the CNN
algorithm to generate burned areas. Their proposed CNN architecture included two con-
volution layers, a max-pooling layer, and two fully connected layers. The results of BAM
have shown that combining Sentinel-1 and Sentinel-2 imagery can provide improvements.

Although many research efforts have proposed several algorithms for BAM and
applied them to fine-resolution optical and SAR RS imagery, many limitations remain:
(1) Semantic segmentation based methods (e.g., U-Net DeeplabV3+ and Seg-Net) have
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provided promising results, but they need large numbers of labeled datasets, and finding
large amounts of sample data with specific sizes (i.e., 512 × 512 or 1024 × 1024) for small
areas is a major challenge. (2) The performance of statistical classification methods such
as random forest or support vector machine classifiers depend on the setting of the input
features, while the selection and extraction of the informative manual features can be
a time-consuming process. (3) Some studies have focused on only spectral features for
BAM, while the efficiency of spatial features in BAM has been shown in many studies;
furthermore, an unsupervised thresholding manner on the spectral index is not always
effective due to the complexity of the background and ecosystem characteristics, and to the
topographic effects on the surface reflectance [43,44]. (4) Shallow feature representation
methods have been shown not to be applicable in complex areas, especially for BAM tasks.
(5) More methods have focused on time series Sentinel-1 imagery; however, preprocessing
and processing of SAR imagery is very difficult due to noise conditions.

To overcome these problems, the present study presents a novel framework for BAM
with heterogeneous datasets that has many advantages compared to other state-of-the-
art methods. The method proposed here is applied in an end-to-end manner without
additional processes, based on a deep morphological network. This method is based on
change detection that uses pre/post-fire datasets based on deep Siamese morphological
operators. Additionally, the efficiency of the hyperspectral dataset in comparison with the
multispectral dataset shows that this study takes advantage of the hyperspectral dataset.
The proposed framework is additive with the type of datasets, whereby the pre-event
dataset is Sentinel-2 imagery while the post-event dataset can be either Sentinel-2 or
hyperspectral PRISMA datasets.

The main contributions of this study follow: (1) BAM is based on deep morphological
layers for the first time; (2) it takes advantage of the hyperspectral PRISMA sensor dataset
for accurate BAM for the first time; and (3) it includes evaluation of the performance of
the multispectral and hyperspectral dataset in BAM and comparison of the results with
state-of-the-art methods.

This paper is outlined as follows: Section 2 provides the details of the DSMNN-Net
for BAM. Section 3 introduces the study areas and the datasets. The evaluation results of
this study area are provided in Section 4, and the experimentation results are discussed
in Section 5.

2. Methodology

The proposed framework is conducted in three steps, according to the flowchart in
Figure 1. The first step is image preparation, and in this step, some preprocessing (i.e.,
registration) is applied. The second step is the training of the proposed network to tune the
network parameters based on reference sample data. The training and validation datasets
are exploited in the training process to optimize the model parameters, while the testing
dataset is used to evaluate model hyperparameters. The third step is burned area map
generation and accuracy assessment of the result of the BAM.

2.1. Proposed Deep Learning Architecture

The proposed DSMNN-Net architecture for the detection of burned areas is illustrated
in Figure 2. Accordingly, the framework has two parts: (1) two streams of deep-feature-
extraction models and (2) classification. The deep-feature-extraction task is conducted
in a double-stream manner, such that these streams are for post-event and pre-event
datasets, respectively. Then, the deep features are transformed to the next task, which is
the classification. The classification task included two fully connected layers and a soft-
max layer for making a decision. More details of the DSMNN-Net are explained in the
next subsection.
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2.2. Deep-Feature Extraction

Feature extraction can be defined as an image processing technique to determine
the identity of the mutual importance of imaged areas. There are many procedures for
feature extraction in the field of image processing and RS, such as the texture Haralick
feature [45,46], spectral features (e.g., the NDVI) [10], and transformation-based (e.g.,
principal component analysis) and deep-feature [15,47,48] extraction. Among the types
of feature-extraction methods, the deep-feature-extraction methods have found a specific
place in RS communication because they have great potential for the extraction of complex
features from an image [49]. Deep-learning methods can automatically extract high-level
spatial and spectral features simultaneously [50]. This advantage of deep-learning methods
means that they have been used for many applications in RS, such as change detection [51],
classification [52], anomaly detection [53], and damage mapping [54].

Figure 1. Overview of the general framework for the burned area mapping.
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Figure 2. Overview of the proposed DSMNN-Net architecture for burned area mapping.

The deep features are extracted by convolution layers, and the arrangement of the
convolution layers and their diversity has caused many deep-learning-based methods to be
proposed [55–57]. Presenting the informative structure of convolution layers can be a major
challenge. In this regard, the present study presents a novel framework based on standard
3D, 2D, and depthwise convolution layers, with their combination with morphological
layers. As illustrated in Figure 2, the method proposed here has two deep-feature extractor
streams. The first stream investigates the pre-fire dataset, and the second stream explores
the deep features from the post-event dataset. Each stream includes 2D-depthwise, 3D/2D
standard convolution layers, and morphological layers based on erosion and dilation
operators. Initially, the deep-features extraction is based on 3D multiscale convolution
layers, and then the extracted features are fed into the 3D convolution layer. The main
advantage of 3D convolution layers is to take the full content of the spectral information of
the input dataset by considering the relation among all of the spectral bands. Furthermore,
the multiscale block enhances the robustness of the DSMNN-Net against variations in the
object size [12]. The multiscale block uses a type kernel size of convolution layers that
increase the efficiency of the network. The expected features are reshaped and converted to
2D feature maps, and then the 2D-depthwise convolution layers are used. Next, the hybrid
morphological layers based on 2D dilation and erosion combine with 2D convolution layers
to explore more high-level features. For this, first, we use two erosion layers, and then the
2D convolution layer and dilation layers are used (see Figure 2). Finally, the 2D convolution,
erosion, and dilation layers have been used in the last part of the morphological deep-
feature extractor. The extracted deep features are concatenated for two streams and then
they are flattened and transferred to two fully connected layers, and finally, the soft-max
layer is entitled to decide the input data. The main differences between the proposed
architecture and other CNN frameworks are:

(1) We take advantage of multiscale convolution layers that increase the robustness of
the network against the scale of variations.

(2) We use the trainable morphological layers, which can increase the efficiency of the
network for the extraction of nonlinear features.
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(3) We use 3D convolution layers to make use of the full content of the spectral informa-
tion in the hyperspectral and multispectral datasets.

(4) We use depthwise convolution layers that are computationally cheaper and can help
to reduce the number of parameters and to prevent overfitting.

2.3. Convolution Layer

The convolution layers are the core building block of deep-learning methods that can
learn feature representations of input data. A convolution layer builds several convolution
kernels to extract the type of meaningful features. This study used 3D/2D convolution
layers for deep-feature extraction [58–60]. Mathematically, the feature value (Ψ) in the lth
layer is expressed according to Equation (1) [61]:

νl = g
(

wl xl−1
)
+ bl , (1)

where x is the input data, g is the activation function, b is the bias vector for the current
layer, and w is the weighted vector. The value (ν) at position (x,y,z) on the jth feature ith
layer for the 3D convolution layer is given by Equation (2) [62]:

ν
xyz
i,j = g(bi,j + ∑χ ∑Ωi−1

ω=0 ∑Φi−1
ϕ=0 ∑Λi−1

λ=0 Wω,ϕ,λ
i,j,χ v(x+ω)(y+ϕ)(z+λ)

i−1,χ ) (2)

where χ is the feature cube connected to the current feature cube in the (i − 1)th layer, and
Ω, Φ, and Λ are the length, width, and depth of the convolution kernel size, respectively.
In 2D convolution, the output of the jth feature map in the ith layer at the spatial location
of (x,y) can be computed using Equation (3):

ν
xy
i,j = g

(
bi,j + ∑χ ∑Ωi−1

ω=0 ∑Φi−1
ϕ=0 Wω,ϕ

i,j,χ v(x+ω)(y+ϕ)
i−1,χ

)
(3)

2.4. Morphological Operation Layers

Topological operators are applied to images by morphological operators to recover
or filter out specific structures [63,64]. Mathematical morphology operators are nonlinear
image operators that are based on the image spatial structure [65–67]. Dilation and Erosion
are shape-sensitive operations that can be relatively helpful to extract discriminative spatial-
contextual information during the training stage [67–69]. Erosion(
) and Dilation(⊕) are
two basic operations in morphology operators that can be defined for a grayscale image X
with size M × N and W structuring elements, as follows in Equation (4) [65,66]:

(X ⊕ W)(x, y) = max
(i,m)∈S(X(x − l, y − m) + Wd(l, m))

S = {(l, m)|l ∈ {1, 2, 3, . . . , a}; m ∈ {1, 2, 3, . . . , b}; } (4)

where Wd is the structuring element of dilation that can be defined on domain S. Ac-
cordingly, the erosion operator with structuring element Wd can be defined as follows in
Equation (5):

(X 
 W)(x, y) = min
(i,m)∈S(X(x + l, y + m)− We(l, m)) (5)

The structure element is initialized based on random values in the training process.
The back-propagation algorithm is used to update the structure elements in the morpho-
logical layers. The propagation of the gradient through the network is very similar to that
of a neural network.

2.5. Classification

After deep-feature extraction by convolution and morphological layers, the deep
features are transformed for the flattening layer to reshape as 1D vectors. Then, these
vectors are fed to the first fully connected layer and the second fully connected layer. The
latest layer is soft-max, which assigns probabilities to each class for input pixels. Figure 1
presents the classification procedure for this framework.
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2.6. Training Process

The network parameters are initialized based on the initial values and then are tuned
iteratively based on optimizers, such as stochastic gradient descent. The DSMNN-Net is
trained based on the training data, and the error of the network is obtained based on the
calculation of the loss value on the validation dataset. The error of the training model is
fed to the optimizer and is used to update the parameters. Due to back-propagation, the
parameters are updated at each step to decrease the error of comparing the results obtained
from the network with the validation dataset. The Tversky loss function is used to calculate
the network error in the training process, which is a generalization of the dice score [70].
The Tversky index (TI) between Ψ̂ (predicted value) and Ψ (truth value) is defined as in
Equation (6):

TI
(
Ψ̂, Ψ, α, β

)
=

∣∣ Ψ̂Ψ
∣∣∣∣ Ψ̂Ψ

∣∣+ α| Ψ̂/Ψ|+ β|Ψ/ Ψ̂| (6)

where α and β control the magnitude of penalties for false positive and false negative pixels,
respectively. These parameters are often chosen based on trial and error.

2.7. Accuracy Assessment

We assessed the results of the BAM based on visual and numerical analysis. The
numerical analysis was applied as the standard measurement indices. To this end, the five
most common quantitative assessment metrics were selected to evaluate the results. These
indices are the overall accuracy (OA), the kappa coefficient (KC), and the F1-score, Recall,
and intersection over union (IOU).

To compare the performance of the method proposed here, two state-of-the-art deep-
learning methods were selected for this study. The first method was the deep Siamese
network, which has been proposed in many studies for change detection purposes [71–73].
This method has three convolution layers in each stream, and then fully connected was
used for classification. Then, the second method was CNN, based on a framework designed
by Belenguer-Plomer, Tanase, Chuvieco and Bovolo [42] for mapping of burned areas. This
method has two convolution layers and a max-pooling layer, then two fully connected
layers were used. More details of this method can be found in [42].

3. Case Study and Satellite Images

This section investigates the case study area and the satellite data in more detail.

3.1. Study Area

Both study areas in this research were located in the Australian continent. The main
reason for choosing the areas was the availability of the PRISMA hyperspectral datasets
for these areas. Reference is the most important factor in the evaluation of BAM results.
Thus, the reference data were obtained based on visual analysis and the interpretation of
the results of BAM in previous papers. Figure 3 presents the locations of two study areas,
in the southern Australian continent.
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Figure 3. The locations of the two study areas for burned area mapping.

Figure 4 shows the incorporated burned area datasets for the first study area. Figure 5
illustrates the original incorporated dataset for the BAM for the second study area. The
details for the incorporated datasets for both of the study areas are given in Table 1.

  
(a) (b) 

Figure 4. Cont.
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(c) (d) 

Figure 4. The dataset used for the burned area mapping for the first study area. (a) Pre-event Sentinel-2 imagery. (b) Post-
event Sentinel-2 dataset. (c) Post-event PRISMA hyperspectral imagery. (d) Ground truth.

  
(a) (b) 

Figure 5. Cont.
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(c) (d) 

Figure 5. Illustration of the various incorporated datasets for the burned area mapping for the second study area. (a) Pre-
event Sentinel-2 imagery. (b) Post-event Sentinel-2 dataset. (c) Post-event PRISMA hyperspectral imagery. (d) Ground truth.

Table 1. The main characteristics of the incorporated datasets for both case studies.

Sensor Properties First Study Area Second Study Area

Se
nt

in
el

-2

Spectral bands 13 13
Spatial resolution (m) 10 10

Resampled spatial resolution (m) 30 30
Data size (pixel) 1168 × 1168 1159 × 1853

Pre-event acquired date December 2019 October 2019
Post-event acquired date November 2020 January 2020

PR
IS

M
A Spectral bands 169 169

Spatial resolution (m) 30 30
Data size (pixel) 1168 × 1168 1159 × 1853

Post-event acquired date December 2019 January 2020

3.2. Sentinel-2 Images

Sentinel-2 is a European Space Agency Earth observation project that provides con-
tinuity to services dependent on multispectral high-spatial-resolution observations over
the whole land surface of the Earth. This mission consists of two satellites, Sentinel-2-A
and Sentinel-2-B, which have completed the existing Landsat and Spot missions and have
enhanced data availability for RS communications. One satellite has a temporal resolution
of 10 days, while the two satellites have a temporal resolution of 5 days [10]. The Sentinel-2
main sensor, the multispectral instrument, is based on the push-broom principle. Sentinel-2
has 13 spectral bands and broad spectral coverage.

This study used the Level-2A product as input data for BAM, which are surface
reflectance data. Furthermore, it was necessary to convert the spatial resolution of the
Sentinel-2 dataset into the spatial resolution of the hyperspectral dataset (30 m).
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3.3. PRISMA Images

PRISMA is a medium-resolution hyperspectral imaging mission of the Italian Space
Agency that was launched in March 2019 [74]. The PRISMA sensor is a spaceborne system
that acquires hyperspectral datasets continuously, with a repeat orbital cycle of approxi-
mately 29 days [75]. PRISMA images the Earth surface in 240 contiguous spectral bands
(66 visible to near-infrared, plus 174 short-wave infrared) with a push-broom scanning
mode, covering the wavelengths between 400 and 2500 nm, at a spatial resolution of 30 m.
The high dimensional spectral bands provide the possibility to analyze complex land-cover
objects [14]. We chose the level-2-D product for the BAM, which was preprocessed (i.e., at-
mospheric correction and geolocation, orthorectification) [14]. The PRISMA hyperspectral
dataset is freely available on this website: http://prisma.asi.it/missionselect/, accessed on
16 November 2021. After removing the noisy and no-data bands, 169 spectral bands were
chosen for the next analysis.

4. Experiments and Results

Gathering of sample data is required to estimate the burned area due to using a
supervised learning method. The quality and quantity of the sample data have a key role
in BAM. In this study, the numbers of the sample data were kept at a sufficient level for the
two classes (i.e., burned areas, unburned areas). Figure 6 shows the spatial distribution of
the sample data.

 
(a) 

Figure 6. Cont.
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(b) 

Figure 6. The spatial distributions of the two study areas for the burned area mapping. (a) Sample
data for the first study area. (b) Sample data for the second study area.

In addition, Table 2 shows the sizes of sample data for two classes in the study areas.

Table 2. The number of samples used for mapping of burned area in the two study areas.

Case Study
Number of Pixels in

the Study Area
Class

Number of
Samples

Training Validation Testing

First study area 989,764
Unburned 15,318 9803 2450 3065

Burned 21,387 13,687 3421 4459

Second study
area

1,955,898
Unburned 6590 4217 1054 1318

Burned 3206 2051 513 642

4.1. Parameter Setting

The DSMNN-Net has hyperparameters that need to be set. These hyperparameters
were set manually based on trial and error. The optimum values of these parameters were
set as follows: the input patch-size for Sentinel-2 and PRISMA sensors were 11 × 11 × 13
and 11 × 11 × 169, respectively, with 500 epochs; the weight initializer was set as He-
normal-Initializer [76] for convolution layers; the random value for initializing of the
morphological layers, number of neurons at the fully-connected layer was 900; the initial
learning rate was 10−4; and the minibatch size was 550. It is worth noting that all of the
hyperparameters were constant during the process for all of the CNN methods. Similarly,
the two other methods set such values. Additionally, the selection of some of these
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parameters was related to hardware (e.g., increasing minibatch size quickly filled the RAM
of the system). Moreover, the weight initializer by the He-normal-initializer increased the
speed of network convergence compared to the random initializer.

4.2. Results

The results for the BAM for the two study areas are considered in this section. For the
two main scenarios, these were investigated according to Table 3.

Table 3. Different scenarios for mapping of burned areas in two case-study areas.

Scenario Pre-Event Dataset Post-Event Dataset

S#1 Sentinel-2 Sentinel-2
S#2 Sentinel-2 PRISMA

4.2.1. First Study Area

Figure 7 shows the results of the BAM based on the post/pre-event Sentinel-2 imagery.
Based on these results, the DSMNN-Net differed from the BAM. Most methods detected
the burned areas, with differences seen in the detail. For example, there are some missed
detection areas in the results of the two CNN-based methods (center of scene) while the
method proposed here detected these well.

Figure 8 shows the mapping results for the heterogeneous dataset provided by var-
ious methods. As shown in Figure 8, all of the methods provided better performance in
comparison with the first scenario (S#1) as a result of the small missed detection area
that was significantly decreased. The results of the DSMNN-Net fit better with ground
truth while results of other methods have many false pixels; in particular, for the Siamese
network (Figure 8a). The main differences among these results are obvious at the edges of
the burned areas.

  
(a) (b) 

Figure 7. Cont.

196



Remote Sens. 2021, 13, 5138

  
(c) (d) 

Figure 7. Visual comparisons of the results for the burned area mapping based on the post/pre-event Sentinel-2 imagery for
the first study area. (a) Deep Siamese network. (b) Using the CNN method proposed in [42]. (c) Using the method proposed
in the present study. (d) Ground truth map.

The numerical results for the BAM for the first study area are given in Table 4. Based
on these data, the accuracies of all of the methods in both scenarios were >87% in all
terms. The accuracy of the algorithms in combining the hyperspectral datasets with the
multispectral dataset was significantly better than only the multispectral datasets. The
accuracy of the BAM results based on the fusion of the PRISMA imagery and Sentinel-2
imagery was >94% by OA index. However, the results of BAM based on only the Sentinel-2
imagery were very close together, but these were considerably different in the second
scenario (S#2). The method proposed here provided an accuracy of >97% in terms of the
OA, Recall, and F1-score indices. Furthermore, this provided the highest score by KC index
for the second scenario.

  
(a) (b) 

Figure 8. Cont.
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(c) (d) 

Figure 8. Visual comparisons of the results for the burned area mapping based on pre-event Sentinel-2 and post-event
PRISMA imagery for the first study area. (a) Deep Siamese network. (b) Using the CNN method proposed in [42]. (c) Using
the DSMNN-Net. (d) Ground truth map.

Table 4. Accuracy assessment for the burned area mapping for the first study area. S#1, pre/post-event Sentinel-2 imagery;
S#2, pre-event Sentinel-2 imagery and post-event PRISMA imagery.

Method Scenario OA (%) Recall (%) F1-Score (%) IOU KC

Siamese network
S#1 87.94 87.10 91.34 0.740 0.716
S#2 94.79 96.19 96.43 0.786 0.868

CNN method proposed
by [42]

S#1 89.35 89.40 92.46 0.842 0.744
S#2 94.35 97.13 96.17 0.851 0.853

DSMNN-Net
S#1 90.24 92.51 93.26 0.864 0.755
S#2 97.46 97.99 98.25 0.901 0.936

OA, overall accuracy; IOU, intersection over union; KC, kappa coefficient.

4.2.2. Second Study Area

Figure 9 illustrates the results of the BAM based on the bi-temporal multispec-
tral/hyperspectral datasets for the second study area. Based on these results, there are some
differences among the algorithms seen for the details. Figure 9a shows the performance of
the deep Siamese network, in that it has low false pixels, although many missed detection
pixels can be seen in the result. However, the lowest missed pixels can be seen in the BAM
for the method proposed by [42] in Figure 9b, although it shows high false pixels in the
results presented. The result of BAM by the DSMNN-Net can be seen in Figure 9c, which
shows the lowest false pixels and missed pixels in the mapping.

The results of the BAM based on the Sentinel-2 and PRISMA sensors for the second
area are presented in Figure 10. Based on the comparisons of the results presented with the
multispectral dataset, there are some improvements in the details of the mapping. These
improvements are more evident in the results of the DSMNN-Net, as some false pixels
were classified correctly.
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(a) (b) 

  
(c) (d) 

Figure 9. Visual comparisons of the results for the burned area mapping based on the post/pre-event Sentinel-2 imagery
for the second study area. (a) Deep Siamese network. (b) Using the CNN method proposed in [42]. (c) Using the method
proposed in the present study. (d) Ground truth map.
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Figure 10. Visual comparisons of the results for the burned area mapping based on the pre-event Sentinel-2 and post-event
PRISMA imagery for the second study area. (a) Deep Siamese network. (b) Using the CNN method proposed in [42].
(c) Using the DSMNN-Net. (d) Ground truth map.

Table 5 presents the quantitative performance comparison of the methods for the
second study area for the BAM. Based on these data, there are some enhancements in the
results of the BAM in all terms for the case study area. The enhancement of the methods is
more evident for the Recall, F1-Score, IOU, and KC indices. For example, the difference
between Recall of the Siamese network in the first and second scenarios is >20%; moreover,
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in other terms, this improvement is >3%. The improvement of the BAM in the CNN
method proposed by [42] was slight. The DSMNN-Net has some improvements that are
more evident by terms KC, IOU, F1-Score, and Recall. For example, these terms show
greater improvement for the method proposed here in the detection of burned pixels, while
there is some improvement in the detection of nonburned pixels.

Table 5. Accuracy assessment for the burned area mapping for the second study area. S#1, pre/post-event Sentinel-2
imagery; S#2, pre-event Sentinel-2 imagery and post-event PRISMA imagery.

Method Scenario OA (%) Recall (%) F1-Score (%) IOU KC

Siamese network
S#1 97.32 78.90 85.03 0.739 0.835
S#2 97.41 98.79 88.05 0.786 0.866

CNN method proposed
by [42]

S#1 98.21 98.94 91.44 0.842 0.904
S#2 98.35 97.75 91.94 0.851 0.910

DSMNN-Net
S#1 98.56 95.13 92.75 0.864 0.919
S#2 98.95 98.90 94.80 0.901 0.942

OA, overall accuracy; IOU, intersection over union; KC, kappa coefficient.

5. Discussion

This study focused on BAM based on deep-learning methods based on bi-temporal
multispectral and hyperspectral imagery. BAM has mainly been applied based on low-
resolution satellite imagery (e.g., MODIS, VIIRS, and Sentinel-3). However, BAM based on
these sensors has provided promising results, although mapping of small burned areas is
the most important challenge. These methods support the high coverage areas but do not
provide suitable results for small areas. Furthermore, there are some burned area products
on a global scale based on the MODIS satellite imagery. Many studies have evaluated the
accuracy obtained by BAM based on the MODIS collection, where this has been reported
as <80%, while for the BAM for both study areas, the DSMNN-Net provided an accuracy
of >98% by the OA index (Tables 4 and 5).

Most BAM is mainly based on high-resolution imagery (e.g., Landsat-8, Sentinel-2)
for the normalized burned ratio index. Although this index has provided some promising
results for BAM, due to the dependency of burned areas on the environmental features
and the behavior of the fire, it is hard to discriminate burned areas from the background.
This issue has reduced the efficiency of the BAM methods by the need to threshold the
normalized burned ratio indices. Furthermore, some high-resolution burned area products
on a global scale have been obtained based on this. Thus, these products do not support
accurate BAM in practical real-world burned area estimation. Similarly, some unsupervised
thresholding methods have been used, but due to the complexity of the background and
noise conditions, the selection of suitable thresholds is another limitation of these methods.

Many BAM methods have been proposed based on machine-learning methods, such
as random forest, K-nearest neighbor, and support machine vector. While these methods
have provided acceptable results for BAM, they use handcrafted feature extraction. Manual
feature extraction and then selection of suitable features is a time-consuming process. This
issue needs to be considered when the study area is very large scale and the number
of features is high. Additionally, these methods mainly focus on spectral features and
ignore the potential of spatial features. The potential of spatial features has been shown
in many studies on BAM based on machine-learning methods. The deep-learning-based
methods can automatically extract deep features that are a combination of spectral and
spatial features. This study has used the deep-feature extraction manner for BAM based on
convolution and morphological layers.

To show further the effectiveness of the DSMNN-Net process, we visualized the
feature maps in the different layers to look inside their internal operation and behavior.
Figure 11 illustrates the visualization of the feature maps extracted from some layers in
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the proposed DSMNN-Net for random pixels. The first layers show the shallow features,
while the middle layers focus on the general structure around the central pixel.

Figure 11. Visualization of feature maps in the DSMNN-Net for a random pixel.

The efficiency of deep features and handcrafted features can be seen in Table 6. Based
on these data, the DSMNN-Net provided greater accuracy compared to other state-of-the-
art methods for BAM using the Sentinel-2 imagery.
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Table 6. Comparison of performance of the DSMNN-Net with other burned area mapping methods.

Reference Accuracy Method Dataset

Grivei, et al. [77] (F1-Score: 0.873)
Support vector machine

algorithm and spectral indices,
factor analysis

Sentinel-2

Barboza Castillo, et al. [78] 94.4 Thresholding on the
spectral index Sentinel-2

Syifa, et al. [79] 92 Support vector machine and
imperialist competitive algorithm Sentinel-2

Quintano, et al. [80] 84 Spectral index and thresholding Combination of Landsat-8
and Sentinel-2

Ngadze, et al. [81] 92 Random forest Sentinel-2

Roy, et al. [82] 92 Random forest change regression,
and a region growing manner

Combination of Landsat-8
and Sentinel-2

Lima, et al. [83] 96 Thresholding on the
spectral index Sentinel-2

Seydi, Akhoondzadeh, Amani
and Mahdavi [10] 91 Spectral and spatial features and

random forest Sentinel-2

DSMNN-Net 98 Deep-learning based Sentinel-2

OA, overall accuracy.

Hyperspectral imagery has a high content of spectral information in comparison with
multispectral imagery. This advantage of hyperspectral imagery helps to detect burned
areas with a highly complex background. Thus, the main reason behind the robust results
provided by the method proposed here is the use of the hyperspectral dataset for the
BAM. The burned pixels have a high similarity to some unburned pixels, and to clarify
this subject, we presented some spectral signatures of burned and unburned pixels in the
different areas. Figure 12 illustrates the similarities of the spectral signatures for the two
main classes. Based on these data, the burned and unburned pixels have similar behaviors
in the 0.45 to 0.8 μm range, while for other areas there are some differences in the reflectance.
Therefore, hyperspectral imagery and combining pre-event datasets can be useful for BAM.

Additionally, the proposed suitable deep-feature extraction framework is very impor-
tant in deep-learning-based methods. Among these three deep-learning-based methods,
the method proposed here provided the best performance in all of the scenarios and for
both study areas. This issue originated from the architecture of the deep-learning methods
in the extraction of deep features. The DSMNN-Net extracts the deep features based on
the type of kernel convolution and morphological layers. Initially, the DSMNN-Net uses
multiscale 3D kernel convolution that investigates the relation among the spectral bands in
deep-feature extraction. Based on Figure 12, there are some differences among the spectral
signatures for the same classes, and these differences are greater for some spectral bands.
Furthermore, there is some overlap between the two classes in the spectral bands. Therefore,
using 3D convolution can enhance the efficiency of the network, because this can consider
the relations between the spectral bands and the relations between the central pixel and the
neighboring pixels. This advantage is the most important factor in taking the full content
of spectral information for the BAM. Then, the morphological layers are used to explore
nonlinear characterizers of the input dataset in the mapping. Thus, the DSMNN-Net can
extract high-level and informative deep features based on proposed architectures; as a
result, accurate BAM is possible using this proposed method. Additionally, the diversity
of objects and the complexity of unburned areas mean that the BAM changes, which is
a challenge. Solving this challenge mainly requires increasing the depth of the network,
which results in an increasing number of parameters, and the need for greater training data
and time. Here, the DSMNN-Net uses morphological operation cases to investigate the
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complexity of the background. The morphological operators use nonlinear operations that
increase the efficiency of the network for the BAM.

 

Figure 12. Spectral signatures among the burned and unburned pixels.

Recently, some semantic-segmentation-based (U-Net architecture) methods have been
proposed. While these methods can provide considerably improved results for BAM,
it needs to be noted that they require large amounts of labeled data of a specific size
(i.e., 512 × 512 or 256 × 256). Obtaining a large amount of labeled datasets for such an
application is very difficult and time consuming. Furthermore, these models are more
complex due to the higher number of parameters and the need for more time for training
the network. The DSMNN-Net used close to 45,000 pixels for the BAM, and obtaining this
amount of sample data is easy according to the extent of the study areas.

One of the most common challenges for BAM based on changes in detection meth-
ods is the detection of nontarget changes. For example, the second study area has some
nontarget change areas where their changes originated from changes in the water level
of the lakes. This issue meant that the methods considered these as burned areas, while
they are nonburned areas. This challenge is more evident in the BAM by the CNN method
proposed in [42]. The sample data should cover more areas in the background, although
the method proposed here controlled this issue in the BAM.

The method proposed here uses adaptive heterogeneous datasets in the mapping
of burned areas. However, pixel-based change detection methods can be applied for bi-
temporal multispectral/hyperspectral datasets easily, while they are difficult to apply for a
heterogeneous dataset. In other words, some methods (i.e., image differencing algorithm)
compare the pixel-to-pixel of the first and second time of bi-temporal dataset for BAM,
while for heterogeneous datasets this is very difficult due to difference in a number of
spectral bands, and content of datasets. The proposed DSMNN-Net can be applied to
heterogeneous datasets without any additional processing (e.g., dimensional reduction).
These advantages will also help in BAM when applied in a near real-time manner. It is
worth noting that the proposed DSMNN-Net applied based on pre-event multispectral
and post-event hyperspectral datasets while the bi-temporal pre-event and post-event
hyperspectral datasets can improve the result of the BAM.
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6. Conclusions

Accurate and timely BAM is the most important factor in wildfire damage assessment
and management. In this study, a novel framework based on a deep-learning method
(DSMNN-Net) and the use of bi-temporal multispectral and hyperspectral datasets was
proposed. We evaluated the performance of the DSMNN-Net for two study areas in two
scenarios: (1) BAM based on bi-temporal Sentinel-2 datasets and (2) BAM based on pre-
event Sentinel-2 and post-event PRISMA datasets. Furthermore, the results for the BAM are
compared with other state-of-the-art methods, both visually and numerically. The results
of the BAM show that the method proposed here has high efficiency in comparison with
the other methods for BAM. Additionally, the use of hyperspectral datasets can improve
the performance of BAM based on deep-learning-based methods. The experimental results
of this study illustrate that the DSMNN-Net has some advantages: (1) it provides high
accuracy for BAM; (2) it has a high sensitivity for BAM for complex background areas; (3) it
is adaptive, with heterogeneous datasets for BAM (multispectral and hyperspectral); and
(4) it can be applied in an end-to-end framework without any additional processing.
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Abstract: Increased fire activity across the Amazon, Australia, and even the Arctic regions has
received wide recognition in the global media in recent years. Large-scale, long-term analyses are
required to postulate if these incidents are merely peaks within the natural oscillation, or rather
the consequence of a linearly rising trend. While extensive datasets are available to facilitate the
investigation of the extent and frequency of wildfires, no means has been available to also study
the severity of the burnings on a comparable scale. This is now possible through a dataset recently
published by the German Aerospace Center (DLR). This study exploits the possibilities of this
new dataset by exemplarily analyzing fire severity trends on the Australian East coast for the past
20 years. The analyzed data is based on 3503 tiles of the ESA Sentinel-3 OLCI instrument, extended
by 9612 granules of the NASA MODIS MOD09/MYD09 product. Rising trends in fire severity
could be found for the states of New South Wales and Victoria, which could be attributed mainly
to developments in the temperate climate zone featuring hot summers without a dry season (Cfa).
Within this climate zone, the ecological units featuring needleleaf and evergreen forest are found to
be mainly responsible for the increasing trend development. The results show a general, statistically
significant shift of fire activity towards the affection of more woody, ecologically valuable vegetation.

Keywords: burnt area monitoring; Australia; Sydney; wildfire; earth observation; mid-resolution
sensors; time series analysis; burn severity; climate zones

1. Introduction

Wildfires have always played a significant role in the evolution of various ecosystems
and are the predominant natural disturbance factor in many parts of the world. They
significantly influence ecological patterns and processes on a global scale. This includes
vegetation distribution and structure, as well as the carbon cycle [1]. While humans and
wildfires have always coexisted, changes in wildfire patterns represent an increasing threat
to human lives and property. Apart from the direct implications, wildfires have also
been found to contribute to the greenhouse effect through CO2 emissions, thus fostering
atmospheric changes on a global level [2,3]. Research has shown that forest loss has
increased substantially over the past two decades in many parts of the world, and that the
underlying dynamics are strongly linked to fire activity [4]. Several studies have discovered
changes in the frequency and size of wildfires and also in the length of the fire season,
for example, regarding the Canadian boreal forest [5] and the Western United States [6].

In recent years, large wildfires have occurred in regions formerly unaffected by fire,
such as the Arctic regions. Some regions regularly affected by fire have experienced
unprecedented large-scale fire events, such as the Australian East coast, the Brazilian
Amazonas region, or the state of California in the United States. Investigating the question
if these recent events are part of a natural oscillation, or must instead be regarded as a result
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of a long-term trend, is a crucial task in fire science. Studies usually analyze parameters
such as the frequency of occurrence, spatial extent, and burn severity of fire incidents to
derive meaningful trends [7].

To obtain insights regarding shifts in global fire activity, studies have to incorporate
multi-decadal time spans and continental-scale study areas. Global, long-term burnt area
datasets are readily available for analyses, the most widely used ones being the National
Aeronautics and Space Administration (NASA) MCD64A1 dataset [8] and the European
Space Agency (ESA) Fire_cci BA 5.1 dataset [9,10]. A third global burnt area product from
the Global Fire Emissions Database, version 4 (GFED4, [11]) is meanwhile discontinued
and is only available until 2015 [12]. A semi-automatically generated product is also
provided by the Joint Research Center of the European Commission (JRC) in the frame of
the European Forest Fire Information System (EFFIS) [13]. However, these data are only
available for Europe, Northern Africa, and the Middle East [14].

While the listed datasets all include the fire perimeter as well as the burning detection
date, they do not feature information regarding the fire severity, and thus do not allow
the derivation of trends in this regard. Yet, fire severity is a critical aspect of fire regimes,
determining fire impacts on ecosystem attributes and associated post-fire recovery [15].

The German Aerospace Center (DLR) recently published a global, long-term burnt
area dataset, which includes information regarding the burn severity, together with fire
perimeter and the burning date. This dataset is closely linked to the burnt area monitoring
service operated by DLR. It is maintained by the Department of Geo-Risks and Civil
Security (GZS) of the German Remote Sensing Data Center (DFD). The service is based
on mid-resolution Sentinel-3 Ocean and Land Color Instrument (OLCI) satellite imagery
and provides burnt area information for the region of Europe twice a day in near-realtime.
The service is fully automated and targeted at supporting rapid mapping activities and
timely post fire damage assessment throughout Europe. A quality-optimized version called
fusion product is generated after a time delay of 10 days, when additional post-event data
is available.

The recently published, global dataset is build upon this fusion product. In addition
to the data available for Europe, equivalent products are generated using the same method-
ology for North and South America, Africa, Oceania, and Asia. The methodology is briefly
described consecutively, the complete description can be found in Nolde et al. [16]. As the
dataset is based on Sentinel-3 data, it is only available since 2016, which is the year the first
Sentinel 3 satellite was launched. For this study, the data was extended using data from
the NASA MODIS MOD09/MYD09 product [17] in order to allow the derivation of trends
on a longer time scale.

The complete input dataset comprises 9612 granules of the MODIS MOD09/MYD09
product in conjunction with 3503 tiles of the OLCI instrument onboard the Sentinel-3
satellite. The area of Eastern Australia has been selected as a study region, covering the
states and territories of Queensland, New South Wales, the Australian Capital Territory
(ACT), and Victoria, respectively.

This study region is chosen because it experienced destructive burnings in the 2019/2020
fire season, and because it also was regularly affected by wildfires in recent decades.

The year 2019 was Australia’s warmest year on record so far, with significant heat
waves occurring in January and December [18]. The national, average maximum tempera-
ture was as high as 43.6 ◦C, which is more than 1.8 ◦C above the long-term average [19].
In addition, 2019 has also been the driest year on record in Australia, caused by an extraor-
dinary strong positive Indian Ocean Dipole [20]. The nationally-averaged rainfall was 40%
below average, amounting to only 278 mm. As a consequence, the annual, cumulative
Forest Fire Danger Index reached the highest values since the beginning of the national
records in 1950 [18]. Three of the four investigated states and territories, namely, New South
Wales, the ACT, and Victoria, reside in a temperate climate zone, with dryness conditions
usually reaching moderate levels at most [21]. However, in 2019, these states experienced
severe drought conditions, with New South Wales suffering the most severe conditions
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throughout Australia. These preconditions contributed significantly to the unprecedented
fire activity in December 2019 and January 2020 [19].

This study analyses the existence of stable, wildfire related trends in this region,
focusing on fire severity.

2. Materials and Methods

2.1. Area of Interest

The chosen study region comprises the states of Queensland, Victoria, and New
South Wales together with the Australian Capital Territory (ACT). This region is vastly
heterogeneous regarding climate and vegetation cover, with a pronounced inter-annual
variability. Both Queensland and New South Wales include tropical, temperate, and arid
climate zones. Figure 1 shows the area of interest, together with the respective climate
zones and the burnt area from the 2019/2020 wildfire season. The highlighted climate zones
are the ones found to feature increasing trends regarding fire severity in this study. The
full names corresponding to the climate zone abbreviations can be found in the respective
tables in the result section. This study is prepared in a hierarchical manner. Trends are
analyzed on a state level, as well as regarding climate zones, and finally ecological units.
These are consecutively set in relation to each other.

Figure 1. The area of interest, comprising Queensland, Victoria, and New South Wales together with
the Australian Capital Territory (ACT). The climate zones are shown additionally, as well as the burnt
area for the 2019/2020 fire season. The climate zones found to feature a significant increasing trend
in this study are highlighted.

The utilized climate zone map, prepared by Beck et al. [22] following the method-
ology of Peel et al. [23], is derived using a long-term time series of weather station data
regarding monthly precipitation and air temperature. The system classifies climatic regions
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into five main classes and 30 subtypes. The discrimination between classes is based on
fixed thresholds addressing the seasonality of precipitation and temperature. Climate is
recognized as the major driver of global vegetation. The classification is therefore regarded
as an empirical mapping of biome distributions around the world. Although developed in
the 19th century, it is widely used today, for example, in ecological modelling [22].

The Australian Forest Fire Danger Index [24] relies on four meteorological param-
eters, which have proven their reliability with regard to wildfire activity: temperature,
wind speed, relative humidity, and the Drought Factor, a component representing fuel
availability [25].

The latter parameter, which is strongly influenced by seasonal variations in rainfall,
has been found to be pivotal for fire occurrence, together with the vegetation structure [26].
As described by Russel-Smith et al., fire frequency as well as fire extent throughout Australia
are strongly influenced by rainfall seasonality. Fire occurrence is therefore most pronounced
in the tropics of Northern Australia, which are intensely seasonal. Rainfall positively
influences the dynamics of biomass growth, which provides the fuel for wildfire activity.
Precipitation amounts above average could be attributed to large burnings in arid, central
Australia [27].

Dryness, on the other hand, strongly increases the availability of the vegetation to
burn [28]. It could be shown that drought conditions are associated with major fires in the
forested areas of Southern Australia [29,30]. These ecosystems usually feature sufficient
litter for propagation of fire at most times. The most influential factor for fire propagation
is the availability of vegetation to burn, controlled by drought conditions and the weather
at the time of ignition [28].

2.2. Utilized Data Sources

The study utilizes the DLR-GZS burnt area dataset, which is based on mid-resolution
optical satellite data from two different sensors. First, the OLCI instrument onboard the
Sentinel-3 A and B satellites of the European Copernicus Programme [31], and second,
the MODIS instrument onboard the NASA Aqua/Terra satellites. Band information from
the red and near-infrared (NIR) domain are utilized for the retrieval of burnt area perime-
ters and burn severity estimation. Imagery of the Sentinel-3 OLCI instrument can be
retrieved via the Copernicus Open Access Hub [32] and the Copernicus online data access
website [33]. However, the available time span for OLCI data is considerably shorter than
the one regarding MODIS. Sentinel-3A was launched in 2016, with Sentinel-3B following in
2018. Therefore, the OLCI dataset is extended by imagery from the MODIS sensor for this
study. This data is available for an extended time range of more than two decades, starting
in late 1999 with the launch of the NASA Terra satellite. The sensor is designed to observe
the ocean, atmosphere, land, and ice on the Earth’s surface [34]. It features 36 discrete
spectral bands with differing spatial resolutions from 250 m to 1 km. Terra’s twin satellite,
Aqua, was launched in 2002, carrying a second MODIS instrument. This study makes use
of MODIS information provided through the MOD09A1/MYD09A1 surface reflectance
product [17], which represents a cloud-free 8-day composite of bands in the visible spec-
trum. The data are freely available from the NASA Land Processes Distributed Active
Archive Center (LP DAAC) [35]. Furthermore, thermal anomaly information derived from
the MODIS MOD14A2/MYD14A2 [36] product is used as auxiliary data. Equivalent data
is utilized from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard
the Suomi National Polar-orbiting Partnership (SUOMI-NPP) satellite [37]. Both products
are available for download on the NASA Fire Information for Resource Management
System (FIRMS) website [38].

In order to reduce the total data volume to a significant selection, only the Australian
summer months from November to February have been analyzed in this study.

Subsequent to the derivation of burnt area perimeters and the burn severity, the results
are combined with land use and land cover (LULC) data to gain insights regarding affected
vegetation classes. For this purpose, the CCI-LC (Climate Change Initiative-Land Cover)
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product from ESA is used. It provides mid-resolution land cover information on a global
scale. Moreover, land cover maps are available for each individual year, starting in 1992 [39].
To investigate the relationship between fire activity and climatic conditions, a climate zone
map based on the Köppen-Geiger classification system is utilized, published by Beck et al.,
2018 [22]. Furthermore, ecological units provided by the United States Geological Survey
(USGS) are used [40].

Two further burnt area datasets have been incorporated within this study to validate
the presented results. First, the NASA MCD64A1 dataset, featuring global burnt area
information derived from MODIS imagery, with a spatial resolution of 500 m [8]. These
data are made available by the University of Maryland [41] and has been widely utilized
in academic research, for example, for the Brazilian Savannas [42,43]. Second, a high
resolution burnt area map for the state of New South Wales is utilized, which was prepared
by the Department of Planning, Industry and Environment of New South Wales/Australia.
This dataset, named Google Earth Engine burnt area map (GEEBAM) [44], is based on
Sentinel-2 data and makes use of manually derived thresholds from aerial photography [45].
The National Indicative Aggregated Fire Extent Datasets [46], which are published by the
Australian Government, have also been taken into consideration as a reference data source.
However, the GEEBAM dataset has been found to feature a higher thematic accuracy, and is
therefore chosen as reference in this study.

Table 1 lists the complete set of available MOD09/MYD09 composites and Sentinel-3-
OLCI scenes used for generating the DLR-GZS burnt area dataset, which this study is build
upon. Besides the number of available scenes for each time range and state, the average
number of cloud free observations per pixels is given, representing a measure of the
interpretability of the data. As the MOD09/MYD09 data are available as an eight-day
composite, the number of cloud-free observations is considerably lower when compared to
Sentinel-3. In total, 9612 MODIS MOD09/MYD09 granules from both Terra and Aqua have
been analyzed, together with 3503 OLCI scenes from Sentinel-3 A and B. This amounts to
an entirety of 13,115 scenes for the complete study time span.

Table 1. Analyzed data sources, listed separately for Queensland (QLD), New South Wales (NSW),
Australian Capital Territory (ACT), and Victoria (VIC).

Time Span Sensor Scenes
Avg. Cloud-Free Overpasses per Pixel

QLD NSW ACT VIC

2000/11–2001/02 MODIS 240 10 13 13 14
2001/11–2002/02 MODIS 240 15 15 14 15
2002/11–2003/02 MODIS 480 30 30 27 30
2003/11–2004/02 MODIS 480 30 30 27 30
2004/11–2005/02 MODIS 480 28 29 26 28
2005/11–2006/02 MODIS 484 30 30 27 30
2006/11–2007/02 MODIS 480 30 30 27 30
2007/11–2008/02 MODIS 480 30 30 27 30
2008/11–2009/02 MODIS 480 28 29 26 28
2009/11–2010/02 MODIS 480 30 30 27 30
2010/11–2011/02 MODIS 480 30 30 27 30
2011/11–2012/02 MODIS 480 30 30 27 30
2012/11–2013/02 MODIS 480 28 29 26 28
2013/11–2014/02 MODIS 480 30 30 27 30
2014/11–2015/02 MODIS 488 30 30 27 30
2015/11–2016/02 MODIS 480 30 30 27 30
2016/11–2017/02 MODIS 480 28 29 26 28

OLCI 620 33 45 36 34
2017/11–2018/02 MODIS 480 30 30 27 30

OLCI 616 35 41 30 35
2018/11–2019/02 MODIS 480 30 30 27 30

OLCI 1019 58 75 61 61
2019/11–2020/02 MODIS 480 28 29 26 28

OLCI 1248 76 91 68 71
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2.3. Burnt Area Derivation Methodology

The accurate, automatic monitoring of burnt area evolution from satellite imagery
represents a demanding task for the scientific community. This is mostly due to the spatial-
temporal variability of the state of the Earth’s surface. Inaccuracies are also introduced by
the utilized sensor and related geometrical resolution [47]. Furthermore, the presence of
clouds disturbs the derivation of meaningful surface features at reflective wavelengths [48].
Adding to the complexity inherent in optical sensor data, burnt areas are highly heteroge-
neous regarding size, shape, and spectral reflectance on the ground surface, and can thus
be difficult to differentiate from shadows cast by clouds and mountains. These circum-
stances significantly limit the possibilities for an automated approach, especially on a large
geographical scale. Many recent research activities have assessed these challenges using
Machine Learning technologies. Methodologies such as Random Forests [49], Support
Vector Machines [50], and Deep Learning classifiers [51,52] have been applied in this regard.
However, research has mainly been focused on feature detection using high resolution
satellite imagery on a small geographic scale. Due to the spatial resolution however, these
satellites inherently feature a low temporal frequency, and are thus unsuited for daily
monitoring purposes. Approaches utilizing mid-resolution satellite data, thus allowing
a high temporal coverage for an extended geographical region, usually use a time series
approach in combination with a burn-sensitive vegetation index. Thermal anomaly de-
tections are often used as auxiliary data (see [53]). However, these approaches feature a
significant amount of uncertainty. Humber et al. analyzed four global burnt area products,
and concluded that the estimates of burned area vary greatly between products in terms
of total area affected, the location of burning, and the timing of the burning [54]. In a
similar study, Padilla et al. found that the commission error ratio was above 40% and
omission error ratio was above 65% for the analyzed products [55]. Oliva et al. conducted
a study investigating if thermal anomaly data could be used as a replacement for burnt
area datasets, but found high omission and commission errors especially for grasslands,
savannas, and agricultural areas [56].

The methodology utilized here is based on an approach developed at DLR [16]. It is pri-
marily designed for monitoring continental-scale regions in near-real time, but can also be
invoked to perform retrospective time series analysis. The derived information comprises
burnt area perimeters, the date of detection, and the burn severity by means of the differ-
ential Normalized Difference Vegetation Index (NDVIdi f f [57], see Equations (1) and (2).
As auxiliary information, the number of detections for each burnt area pixel is available,
as well as the number of cloud-free satellite overpasses for each pixel.

NDVI =
NIR − Red
NIR + Red

(1)

NDVIdi f f = NDVIpre − NDVIpost (2)

At its core, the method exploits the synergetic effects of data from the red/NIR and
the thermal wavelengths in order to derive burnt area information. Substantial work in
this regard has been performed by Fraser et al. and Li et al. for the boreal forest of Canada
as early as the year of 2000 [58,59].

As a basis for the processing, mosaics of pre- and post-NDVI information are gen-
erated. Consecutively, the concept of Morphological Active Contours without Edges
(MorphACWE [60,61]) is used to derive accurate burnt area perimeters. The method is
closely related to Geodesic Active Contour Level Sets [62], which have been used for burnt
area derivation [63] as well as other domains, such as crop field size estimation [64].

The term Active Contour refers to a dynamical curve, which grows starting from a
set of seed pixels and converges when an optimal segmentation result is reached. For the
generation of the burnt area dataset, Active Fire locations are used as seed information. This
proceeding was shown to yield results of high geometric accuracy when inter-compared
with the JRC/EFFIS dataset [13] as well as the NASA MCD64A1 dataset [8]. The accuracy
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validation, together with the detailed description of the methodology, can be found in
Nolde et al. (2020) [16]. The methodology is schematically visualized in Figure 2.

Figure 2. Scheme of the methodology for burnt area perimeter derivation, from Nolde et al.
(2020) [16].

Figure 3 shows exemplary visualizations of the data used for the preparation of this
study. Sub-figure (a) visualizes the maximally detected burn severity regarding the mega
fire in the greater area of Sydney/New South Wales, which was active during November
and December, 2019. Sub-figure (b) shows the temporal evolution of the burn activity,
by means of detection date.
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a
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Figure 3. (a) NDVIdi f f values regarding the mega fire in the greater area of Sydney/New South
Wales, 2019/2020. (b) Temporal evolution of the fire activity.

2.4. Validation of Burnt Area Data

The presented results are compared against the two reference datasets, NASA MCD64A1
and GEEBAM, regarding three criteria:

• True positives (TP): The total burnt area contained in the presented results as well as
the reference data, in relation to the total burnt area of the reference data.

• False negatives (FN): The total burnt area not contained in the presented results,
but contained in the reference, in relation to the total burnt area of the reference data.

• False positives (FP): The total burnt area contained in the presented results, but not
contained in the reference area, in relation to the total burnt area of the reference data.

The fourth criterion, which represents the true negatives (TN), refers to the percentage
of area neither contained in the presented results, nor in the reference data. However, as
the total size of unburnt area greatly predominates the total size of burnt area, this true
negative percentage is implicitly very close to 100 percent. This is, however, mostly due to
the size of the study region, so this measure does not represent a meaningful value for this
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kind of study. The same applies to the overall accuracy [65]. These measures have therefore
been omitted in Table 2, which shows the results of the evaluation. A more suited means of
measure is to calculate the average of the true positive percentage and the inverted false
positive percentage (false positives subtracted from 100%, named FPinv in Table 2).

The inter-comparison of the burnt area of the presented results with the burnt area of
the high resolution GEEBAM 2019/2020 data for New South Wales reveals a percentage of
overlapping area of 77%, with an error of 9%. The Jaccard index, also known as Intersection
over Union, yields a similarity of 70.8% [66]. To enable an evaluation of these numbers,
the NASA MCD64A1 dataset is equivalently checked against the same reference, yielding
71% overlap and an error of 7%. The combination of true positives and inverted false
negatives account for 84% for the presented results, and 82% for the MCD64A1 data.
The results obtained in this study regarding the 2019/2020 fire season are in accordance
with burnt area extent information published by Boer [67]. The data basis is therefore
considered to be of satisfactory accuracy.

Table 2. Inter-comparison of burnt area extent with NASA MCD64A1 and GEEBAM reference
datasets.

Presented Results MCD64A1 GEEBAM
4,577,850 ha 4,176,018 ha 5,306,688 ha

presented results TP x 83.8% 77.1%
FN x 16.2% 22.9%
FP x 25.8% 9.2%
TP/FPinv x 79.0% 84.0%

MCD64A1 TP 76.4% x 71.1%
FN 23.6% x 28.9%
FP 14.8% x 7.6%
TP/FPinv 80.8% x 81.7%

GEEBAM TP 89.4% 90.3% x
FN 10.6% 9.7% x
FP 26.5% 36.8% x
TP/FPinv 81.4% 81.4% x

2.5. Trend Derivation Methodology

The trend derivation in this study is based on linear regression, whereby the slope of
the regression line represents the actual trend. The input values for the burnt area extent
analysis are the accumulated burnt area amounts per unit of investigation (state, climate
zone, or ecological unit) for each year of the analyzed time span. Regarding the burn
severity analysis, the input values are derived by averaging all values within the unit of
investigation for each respective year. The correlation coefficient indicates to what extent
the actual values are in concordance with the calculated trend line, while the RMSE (Root
Mean Square Error) illustrates the error.

Finally, the 5- and 95-percentiles (named “Perc 5” and “Perc 95” in the result tables)
represent the error margins, indicating how robust the result actually is. They are derived
through repeatedly and randomly altering the input values within the range of the RMSE,
so that the results reflect the average of a set of possible outcomes. To eliminate outliers,
the 5 and 95-percentiles are used as upper and lower limits of the yielded results.

3. Results

The consecutive sub-sections show the results of the analysis on a state-wide level,
as well regarding climatic zones and finally ecological units. These results are then set in
relation to each other. Each subsection contains a visualization of the burnt area extent for
each year within the analyzed time span, followed by the actual burn severity analysis.
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3.1. Fire Trends Regarding the States in the Study Area

Figure 4 shows the total, annual extent of burnt area for the four Australian states,
and territories of interest, regarding the time period of 2000 to 2020. The results derived
from Sentinel-3 OLCI data are depicted as a green line, while results regarding MODIS
MOD09A1/MYD09A1 data are shown in blue. As the first one of the Sentinel-3 satellites
was only launched in 2016, the analysis could only be carried out for this limited times-
pan. The red, dotted line represents the NASA MCD64A1 [8] burnt area dataset. The
latter is included as a reference, to allow an estimation of the accuracy of the presented
results. Finally, the black, dotted line is the regression line, corresponding to the MODIS
MOD09/MYD09 based results.

Figure 4. Total yearly burnt area amount in million hectares for New South Wales, Victoria, Queens-
land, and the Australian Capital Territory (ACT). MCD64A1 reference data is additionally visualized
as dotted, red line. The black, dotted line in the subplot for Queensland represents the linear
regression line.

It can be seen that the results show a high correlation of burnt area extent between
the utilized DLR-GZS burnt area dataset and the MCD64A1 reference, regarding three of
the four analyzed states. For Queensland, however, this is not the case. The discrepancies
are due to differences in the methodologies: Unlike in the NASA dataset, burn sites where
the vegetation has quickly recovered are excluded in the presented data. As stated before,
wildfire is a natural phenomenon, and in many parts of Australia the regular burning
of huge areas of bush and grassland vegetation is part of the natural cycle. The affected
vegetation recovers quickly, some species do so even within a period of a few weeks. In the
case of Queensland, these areas account for the majority of the overall burnt area. In order
to confine the results to potentially harmful wildfire events, it was decided to consider
burnt area in this study only when distinctive traces of burning activity could still be
detected after a period of three weeks. This filtering is not performed for the generation of
the MCD64A1 dataset, and as a consequence, the overall burnt area for Queensland differs
considerably between the two products.
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Furthermore, the figure shows that there is no linear trend in fire extent regarding
New South Wales, Victoria, and the ACT. This is also reflected by Table 3, which lists the
respective statistics for Figure 4. The p-value, symbolizing the statistical significance, illus-
trates that there is no linear development regarding the derived trends. Complying with
the common standard, a p-value below 0.05 is regarded to represent statistical significance.
Such a low value is found in the case of Queensland, which features a robust, increasing
trend regarding the extent of wildfires over the last two decades.

Table 3. Trend statistics regarding the extent of burnt area from 2000 to 2020. Only Queensland
shows a statistically significant upward trend (highlighted in dark gray).

State Slope Corr. Coef. p-Value RMSE

New South Wales 0.054 0.31 0.18 0.962
Queensland 0.04 0.495 0.026 0.402
Victoria 0.002 0.028 0.91 0.421
ACT 0.0 −0.072 0.764 0.032

A reason for the extraordinary extent of burnt area, which is especially pronounced
for the state of New South Wales, is shown in Figure A1 in the Appendix A. The burnt area
extent is depicted for the past 20 years, sub-divided by month of the fire season. It can be
seen that the fire activity in New South Wales reached a significant level at the beginning of
November, while the main activity usually only occurs towards the end of the year. The fire
activity started several weeks earlier than usual in the 2019/2020 season.

While the figures above provide a general impression by showing the fire extents over
the past 20 years, this study focuses on fire severity, which is analyzed consecutively. The
term is defined as a measure of the degree of environmental change caused by fire [68]. It
represents a critical aspect of fire regimes, indicating the impacts on ecosystems and associ-
ated post-fire recovery [15]. The respective impact ranges from the partial consumption of
litter to the complete dieback of canopy trees [69].

Figure 5 shows the yearly trend of average burn severity for the four analyzed states
and territories. The green line depicts the severity results regarding Sentinel-3 OLCI, while
the results for the MODIS data are depicted in blue. For the latter data source, not only the
burnt areas have been investigated, but also the complete complementary area, which has
not been affected by fire. This represents a cross check, showing that the developments
in severity are not actually caused by unrelated factors such as climate, soil or moisture
related conditions. It can be seen that the states of New South Wales and Victoria feature a
general upward trend, while the development is stable or even decreasing for the ACT and
Queensland.

Table 4 shows that, even if the severity trend for New South Wales and Victoria is
increasing, the p-values are too heterogeneous for these trends to be statistically significant.
Only the slightly negative trend for Queensland can be considered robust. The results
of the cross check are listed in Table 5. The mentioned heterogeneity is addressed in the
Discussion section.

Table 4. Trend statistics regarding the mean severity of burnt area from 2000 to 2020. Queensland
features a statistically significant trend (highlighted in dark gray), while Victoria shows a trend close
to statistical significance (depicted in light gray).

State Slope Corr. Coef. p-Value RMSE

New South Wales 0.001 0.208 0.378 0.038
Queensland −0.002 −0.664 0.001 0.010
Victoria 0.003 0.423 0.06 0.037
ACT −0.002 −0.247 0.29 0.035
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Table 5. Cross check trend statistics regarding the mean decline in vegetation fitness of area unaffected
by fire, from 2000 to 2020.

State Slope Corr. Coef. p-Value RMSE

New South Wales 0.0 −0.148 0.53 0.018
Queensland 0.0 −0.044 0.85 0.038
Victoria 0.0 0.05 0.84 0.019
ACT −0.002 −0.304 0.19 0.044

Figure 5. Yearly average burn severity for the period of 2000 to 2020. The line depicted in light blue
represents the mean severity values for the burnt areas derived from MODIS MOD09/MYD09 data.
The dashed, dark blue line shows the equivalent results for areas not affected by fire. Green color is
used for Sentinel-3 OLCI burnt area results (available only since 2016). The black, dotted line is the
regression line, with respect to the MODIS burnt area results.

In order to discriminate regions which account for the rising trend in New South Wales
and Victoria, the study region is subdivided into regions which share similarities regarding
available fuel and species composition. These are consecutively analyzed equivalent to the
states. As a reasonable classification, climate zone mapping information is used. Parks et al.
could show that climatic conditions, next to fuel and weather, represent a major driver of
fire intensity [70]. As a next step, the climate zones featuring statistically relevant trends
are further subdivided into ecological units, which are provided by the United States
Geological Survey (USGS) [40]. This allows the fine-granular attribution of state-wide
trends to small scale vegetation types.

The following section analyzes the climate zones contained in the study area re-
garding their burn severity trends. For the zones featuring developments with statistical
significance, it is shown to which extent they overlap with the area of New South Wales
and Victoria.
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3.2. Fire Trends Regarding Climate Zones

Figure 6 shows, first and foremost, the exceptionality of the 2019/2020 wildfire events,
regarding the total extent of the burnings. The calculated size reaches 6.5 million hectares,
which is more than twice as high as in every other year in the analyzed time span. In
addition to the total extent, a subdivision regarding the affected climate zones is shown. For
this division, the Köppen–Geiger classification system published by Beck et al. (2018) [22]
is used. The color scheme follows the one proposed by the authors.

Figure 6. Total yearly burnt area amount in million hectares, subdivided by climate zones.

Table 6 represents a listing of all climate zones in the area of interest together with
their p-value as a measure of statistical significance. A threshold of p ≤ 0.05 is applied to
indicate the significance, the respective table row is marked in dark gray. Climate zones
featuring a p-value close to statistical significance (0.05 < p ≤ 0.1) are highlighted with
light gray color.

Table 6. Trends regarding the size of affected area for each climate zone in the area of interest. The
climate zone featuring a statistically significant trend is marked in dark gray. The one showing a
trend close to statistical significance is depicted in light gray.

Class Slope (%) Perc 5 Perc 95 Corr. Coef. p-Value RMSE Label
Csa 0.070 0.057 0.080 0.385 0.09 0.009 Temperate, dry summer, hot summer
BSk −0.053 −0.358 0.175 −0.051 0.83 0.060 Arid, steppe, cold
Cfb 3.519 0.443 7.165 0.206 0.38 0.962 Temperate, no dry season, warm summer
Am 0.004 −0.000 0.011 0.234 0.32 0.001 Tropical, monsoon

BWk 0.020 0.000 0.045 0.223 0.34 0.005 Arid, desert, cold
Csb 0.360 0.064 0.499 0.322 0.17 0.061 Temperate, dry summer, warm summer
Aw 0.883 0.675 1.449 0.307 0.19 0.158 Tropical, savannah
Cfa 3.422 3.006 4.467 0.519 0.019 0.325 Temperate, no dry season, hot summer
Dfb −0.061 −0.117 0.066 −0.142 0.55 0.024 Cold, no dry season, warm summer
Dfc −0.078 −0.123 −0.047 −0.295 0.21 0.014 Cold, no dry season, cold summer
BSh 1.494 0.741 2.058 0.325 0.16 0.250 Arid, steppe, hot

Af −0.000 −0.001 0.001 −0.022 0.93 0.000 Tropical, rainforest
BWh 0.014 −0.024 0.038 0.108 0.65 0.007 Arid, desert, hot
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Note that, apart from the temperate zones featuring dry winters and warm to hot
summers (Cwa/Cwb), all climate zones existing in the Eastern part of Australia are affected
by wildfire.

The table shows that only one climate zone satisfies the p-value condition for statistical
significance (Cfa: Temperate, no dry season, hot summer). The respective correlation
coefficient lies in the moderate range, even if the RMSE (Root Mean Square Error) shows
a considerable oscillation around the regression line. The column “Slope (%)” shows the
actual inclination of this line, given in percent. This value represents the actual trend.
For this climate zone, the yearly rate is 3.4%, indicating a considerable increment in fire
size over recent years.

As can be seen in Figure 7, robust trends regarding fire severity can be derived
for two climate zones. First, the temperate zone featuring dry and hot summers (Csa),
and second, the arid desert zone featuring cold conditions throughout the year (BWk).
The first one shows an inclination of 0.42% per year on average, the second one features a
value of 0.11%. The zone of arid steppe with year-round cold conditions (BSk) shows the
second largest positive trend inclination, but features a p-value just above the threshold for
statistical significance.

Figure 7. Trends regarding fire severity for each climate zone. The lengths of the bars visualize the
strength of the trend. The bars for climate zones featuring a statistically significant trend are drawn
with a thick, black border. A gray border is used to identify trends close to statistical significance.
The horizontal, black lines represent the error margins.

Table 7 lists the severity trend for each climate zone.
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Table 7. Trends regarding fire severity for each climate zone, given in percent of increase/decrease.
Climate zones featuring a statistically significant trend are marked in dark gray. The one showing a
trend close to statistical significance is depicted in light gray.

Class Slope (%) Perc 5 Perc 95 Corr. Coef. p-Value RMSE Label
Csa 0.415 0.251 0.631 0.457 0.043 0.046 Temperate, dry summer, hot summer
BSk 0.188 0.169 0.229 0.418 0.07 0.023 Arid, steppe, cold
Cfb 0.187 0.147 0.325 0.317 0.17 0.032 Temperate, no dry season, warm summer
Am 0.113 0.018 0.219 0.209 0.38 0.030 Tropical, monsoon

BWk 0.111 0.080 0.135 0.566 0.009 0.009 Arid, desert, cold
Csb 0.108 −0.033 0.209 0.123 0.61 0.050 Temperate, dry summer, warm summer
Aw 0.066 −0.022 0.188 0.126 0.6 0.030 Tropical, savannah
Cfa 0.064 −0.039 0.157 0.108 0.65 0.034 Temperate, no dry season, hot summer
Dfb 0.040 −0.059 0.160 0.07 0.77 0.033 Cold, no dry season, warm summer
Dfc −0.040 −0.107 −0.009 −0.117 0.62 0.020 Cold, no dry season, cold summer
BSh −0.053 −0.116 0.016 −0.17 0.47 0.017 Arid, steppe, hot

Af −0.059 −0.093 −0.041 −0.285 0.22 0.011 Tropical, rainforest
BWh −0.069 −0.198 0.055 −0.109 0.65 0.036 Arid, desert, hot

In order to verify that the trends depicted in the above figures and tables are actually
connected to fire occurrence, instead of being a general phenomenon or an effect by a cause
not investigated, a cross-check has to be performed. Figure A2, which is located in the
Appendix A, shows severity trends for each climate zone, where only areas are considered
that have not been affected by fire. As can be expected, no general trend of increased
fire severity is observable. In fact there is a generally negative development, indicating
a general increase in vegetation fitness. The p-values and the correlation coefficients are
generally low, meaning that there is no connection between vegetation fitness and the
progression of years in these unaffected areas.

Table A1, which can be found in the Appendix A, shows the statistical information
regarding the cross-check.

3.3. Fire Trends Regarding Ecological Units

In order to draw conclusions regarding the vegetation types causing the increasing
severity trends in some of the climate zones, the analysis is also carried out on the basis of
ecological units. These units feature a higher spatial and thematic resolution, and are thus
better suited for analyses on a smaller scale.

For the incorporation of ecological units, the Global Ecological Land Units global
dataset provided by the United States Geological Survey (USGS) [40] is used. The ecological
units are a combination of bioclimate region, landform type, surficial lithology, and land
cover information [71], and allow for a very high thematic resolution. This results in more
than 3600 different units covering the area of interest. In order to reduce the number of
units to be analyzed to an appropriate level, a subset is generated from the original data
in a preceding step. This subset contains all ecological units which were affected by the
2019/2020 burnings and covered more than 1% of the burnt area. Furthermore, it comprises
all ecological units covering more than 1% of the area of interest.

Figure 8 shows the analysis results of the total burnt area extent development, regard-
ing the ecological units. It can be seen that the three most prominent units (1750, 1529,
and 1664) feature either needleleaf or evergreen forest, which has not been the case in for-
mer years. Statistically significant results can, however, only be derived for the class of “Hot
Wet Mountains on Non-Carbonate Sedimentary Rock with Mostly Needleleaf/Evergreen
Forest” (2268). The statistical results are found in Table A2 in the Appendix A.
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Figure 8. Total yearly burnt area amount in million hectares, subdivided by ecological units.

Figure 9 shows the severity trends regarding ecological units, equivalent to the climate
zone analysis above. Similar to the burnt area extent analysis, stable trends can be derived
for two classes featuring either needleleaf or evergreen forest. These classes are “Hot
Wet Mountains on Non-Carbonate Sedimentary Rock with Mostly Needleleaf/Evergreen
Forest (2268)” and “Warm Wet Mountains on Metamorphic Rock with Mostly Needle-
leaf/Evergreen Forest (1652)”. Two further units feature p-values close to statistical signifi-
cance, and are thus worth being considered: “Warm Semi-Dry Plains on Unconsolidated
Sediment with Mostly Cropland (1712)” and “Hot Moist Plains on Unconsolidated Sed-
iment with Grassland, Scrub, or Shrub (2529)”. All respective statistical information is
found in Table A3 in the Appendix A.
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Figure 9. Trends regarding fire severity for the most affected ecological units. The lengths of the bars
visualize the strength of the trend. The bars for ecological units featuring a statistically significant
trend are drawn with a thick, black border. A gray border is used to identify trends close to statistical
significance. The horizontal, black lines represent the error margins.

The increasing burn severity for some classes can be linked to a higher degree of
combustion. Other reasons include the higher amount of combustible biomass, the concern
of younger, healthier vegetation, or the exposure of different vegetation types.

The cross-check, conducted for areas which have not been affected by fire, shows
the expected, generally negative trend. The derived fire severity trends presented above
are therefore demonstrably caused by wildfire activity. Figure A3 shows the trend for
each ecological unit. All respective statistical information is found in Table A4 in the
Appendix A.

Figure 10 shows a section of the two ecological units with a statistically significant
increase in fire severity during the analyzed time span. The figure represents a detailed
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view of the North-Eastern part of New South Wales, where these two ecological units
overlap with the area affected by the 2019/2020 wildfires.

Figure 10. Ecological units featuring a statistically significant severity trend, overlapping 2019/2020
wildfire locations in northern New South Wales.

3.4. Combination of Results from Different Levels

Table 8 lists how much area of New South Wales and Victoria is covered by the relevant
climate zones. Features are considered relevant if they show a trend matching or being
close to statistical significance regarding burn extent or severity. Two of these zones—BSk
and Cfa—cover significant portions of the two states.
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Table 8. Percentage of area covered by relevant climate zones, regarding New South Wales
and Victoria.

Climate Zone
Area Portion (%)

Label
NSW VIC

BWk 3.8 3.3 Arid, desert, cold
BSk 17.9 36.7 Arid, steppe, cold
Csa 0.16 1.6 Temperate, dry summer, hot summer
Cfa 19.1 1.9 Temperate, no dry season, hot summer

Table 9 lists, equivalent to Table 8, how much of the area of the relevant climate
zones is covered by relevant ecological units. It can be seen that unit 1712 covers 36.3%
of the area of the BSk climate zone in New South Wales, and even 52.3% of this zone in
Victoria. However, this unit contains mostly cropland, and thus the fire activity has to be
attributed in large part to agricultural burnings. While it is interesting to note that the burn
severity rises on agricultural areas, this study targets the activity of potentially harmful
wildfires, and is thus not concerned with controlled, anthropogenic fires. Ecological unit
1712, and with it the BSk climate zone, is therefore considered largely irrelevant for this
study. The remaining zone is Cfa, which features a temperate climate with hot summers,
and without a dry season. Unit 2268, “Hot Wet Mountains on Non-Carbonate Sedimentary
Rock with Mostly Needleleaf/Evergreen Forest”, shows the highest trends of all analyzed
ecological units, both regarding fire extent and fire severity. The unit features an increasing
trend of 0.26% on annual average regarding extent, and 0.39% regarding burn severity.
Both trends are shown to be robust, indicated by their statistical significance. A similar
trend can also be seen for unit 1652, “Warm Wet Mountains on Metamorphic Rock with
Mostly Needleleaf/Evergreen Forest”, which shows an increasing burn severity of 0.2% on
annual average.

Table 9. Percentage of area covered by relevant ecological units, regarding New South Wales
and Victoria.

Ecological Zone

Area Portion (%)

LabelNSW VIC

BSk Cfa BSk Cfa

1372 - 0.1 - -
Warm Wet Hills on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

1652 - 0.9 - -
Warm Wet Mountains on Metamorphic Rock
with Mostly Needleleaf/Evergreen Forest

1712 36.3 1.4 52.3 3.7
Warm Semi-Dry Plains on Unconsolidated Sediment
with Mostly Cropland

2268 - 2.9 - -
Hot Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2373 - 2.4 - -
Cool Dry Mountains on Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2529 - - - -
Hot Moist Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

2902 - - - -
Hot Semi-Dry Plains on Non-Carbonate Sedimentary Rock
with Grassland, Scrub, or Shrub

Apart from the agricultural area, all units located within this climate zone featuring
increasing severity trends contain needleleaf or evergreen forest.

This development is also discernible in Figure 11, which shows the affected vegetation
types and the respective size in hectares for each of the four exposed states and territories,
regarding the period of 2000 to 2020. Yearly land cover information of the ESA CCI-LC
(Climate Change Initiative—Land Cover) dataset ([39]) has been used in order to derive the
present vegetation types for each respective year. For New South Wales and Victoria, it can
be seen that forests represent the predominantly affected vegetation type of the burnings in
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2019/2020. The presented figures and statistics indicate that ecologically valuable, woody
vegetation is increasingly affected in the study area.

Figure 11. Total yearly burnt area amount in million hectares for each state, subdivided by land
cover type.

4. Discussion

While the inter-annual variability in fire activity complicates and in some cases pro-
hibits the derivation of statistically significant trends, several expressive conclusions could
be drawn for some of the investigated climate zones and ecological units.

Steady increases regarding burn severity could be found for the climate zones BSk and
Cfa, which cover significant parts of New South Wales and Victoria. These development
could be traced back to several ecological units, residing inside these climate zones. One of
those, number 1712, is mostly characterized by agricultural activities and thus considered
less relevant. The other ones, located within the Cfa climate zone, indicate pronounced
increases in burn severity regarding needleleaf/evergreen forest. This is supported by a
time series study of land use/land cover information. In general, the results show that
woody vegetation is increasingly affected in New South Wales and Victoria.

Equivalent conclusions have been drawn by Tran et al., who analyzed fire severity
for Victoria [15] regarding the period of 1987 to 2017. The authors furthermore stated that
the consequences for ecosystem dynamics might be critical, as temperate forests usually
adapted to fire could be damaged irreversibly through higher severity burnings.

Several points need to be taken into account regarding the methodology of this study:
First, note that the inter-comparison of the analyzed classes is only possible in a limited

manner. The measure of fire severity has a very different expressiveness between arid,
tropical and savannah land cover classes, for example. Hammill et al. also found that
determining fire severity from satellite imagery for sedge-swamp or heath surface cover is
only possible with lower accuracy compared to forests and woodlands [72]. Results are
therefore distorted when study areas cover different ecosystem types, meaning that the
robustness of the results increases with rising homogeneity of the study area. While the
effect of mixed signals cannot be fully eliminated in a large-scale study, it can be mitigated
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by analyzing regions of homogeneous climatic conditions or fine-scale ecological regions,
as it is done here.

Second, the derivation of burnt area perimeters as well as the assessment of burn
severity rely heavily upon the NDVIdi f f . This index has been utilized in numerous inves-
tigations, and was validated in a variety of studies, for example [73–75]. The index has
been used for decades to assess fire severity, and is also actively used today. For instance, it
was recently utilized by Mathews et al. as well as Storey et al. to analyze the burn severity
of the wildfires in California in 2020 [76,77]. Tran et al., 2020 investigated indices which
are commonly used to assess fire severity, regarding the study area of Victoria/Australia.
They identified the NDVI as one of the optimal spectral indices for mapping fire severity,
regarding the forest types of this study area [15,75].

Another index frequently utilized is the Normalized Burn Ratio (NBR), which is
similar the NDVI but relies on the NIR and Short Wave Infrared (SWIR) band combination
instead of red and NIR in case of the NDVI. This index could be shown to perform similar
to the NDVI regarding high severity fires, but was superior regarding fire events featuring
rather low severity [78]. The reason that the DLR burnt area dataset does not utilize the
NBR is that this dataset is primarily based on the Sentinel-3 OLCI instrument, which does
not feature a band in the SWIR domain. The MODIS instrument does have a SWIR band,
however. This one is only available at at a reduced resolution of 500 m, though, opposed to
250 m regarding the red and NIR band. For the conduction of the study, it was decided to
utilize the MODIS bands equivalent to the ones available in Sentinel-3 OLCI. This allows a
homogeneous methodology at the best available spatial resolution.

Apart from rule-based approaches based on spectral indices, methodologies from
the domain of Machine Learning are increasingly used in wildfire science. Collins et al.
(2018) [79] used a Random Forest classifier for the determination of burn severity classes,
and found a higher detection accuracy compared to index-based approaches. This pro-
ceeding, however, requires preceding steps of careful selection and preparation of training
data, as well as the actual training of a Neural Network regarding the area of interest
and input data to be used. A comprehensive overview of the requirements is given by
Collins et al. (2020) [80]. The methodology invoked for the DLR dataset has been designed
to be applicable with a variety of optical sensors, and to be operational globally without a
preceding training step.

Third, the analyzed time period covers only the months from November to February
for each analyzed year, which is the time span the majority of the disastrous burnings
happened in the 2019/2020 fire season. The confinement to a subsection of the available
input data became necessary because of the massiveness of the complete dataset, which
could not have been processed within a reasonable time frame. However, this time range
was found to be representative for the fire season regarding the state of Victoria by Tran et al.
(2020) [15]. Still, this confinement represents a sub-optimal precondition, as important
differences in the seasonality of fire across the study area might be ignored.

Fourth, developments regarding burn severity are dependent on different input factors,
and can easily be misinterpreted. These developments can be caused by shifts in the affected
vegetation coverage. Woody vegetation features a higher biomass amount compared to
shrubland, which will result in a higher severity value when burnt. Furthermore, the spatial
extent regarding affected land cover types plays a crucial role, since it proportionally
influences the resulting average value. An increase in area of affected woody vegetation can
be overcompensated by an even higher increase in area of affected shrubland vegetation.

Finally, it has to be stated that the analyzed time span of 20 years is rather short,
with respect to gaining sufficient insight into climate related, long-term developments.
This limitation is due to the availability of suitable satellite imagery of the MODIS and
OLCI sensors. The available data time range does not allow conclusions regarding the
question whether dramatic fire events occur more frequently than in earlier decades. For
future studies, it is therefore planned to also incorporate data of the Advanced Very High
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Resolution Radiometer (AVHRR) optical satellite sensor [81], which would allow to perform
analysis based on a time series covering more than 40 years.

5. Conclusions

The pronounced, inter-annual variability in fire activity together with the spatial
dynamics of wildfires often prohibits the derivation of statistically significant trends. The
majority of the dramatic burnings occurring mostly in New South Wales and Victoria in
the 2019/2020 fire season must be regarded as an exception. However, several meaningful,
robust trends regarding fire severity and extent could be derived for some of the affected
area, mostly located in the coastal area of northern New South Wales.

Two different climate zones have been found to be responsible for the rising burn
severity trends in New South Wales and Victoria. The trends within the BSk zone, which is
defined by cold, arid steppe conditions, is mostly due to fire activity in the ecological unit
1712, which contains mostly cropland. The fire activity in this zone is therefore attributed
mainly to agricultural burnings, which are not examined in this study. The coastal Cfa
climate zone, featuring temperate conditions with hot summers and without a dry season,
however, was shown to be increasingly affected by potentially harmful wildfires. The rising
trends of fire extent and severity could be traced back to several ecological units. All these
units, except for one which is used agriculturally, share the characteristic of being covered
by needleleaf/evergreen forest. While the extensive burnings of the 2019/2020 fire season
clearly are exceptional, some of the fire activity took place in these forested areas, and is
thus regarded to be in parts connected to a steady, long-term upward trend in fire extent
and severity.

It is concluded that the forested regions of the Australian East coast residing within the
Cfa climate zone (temperate, no dry season, hot summer) will most likely be increasingly
affected by wildfire activity in the future. Specifically, this refers to the area covered by,
first, ecological unit 2268 (Hot Wet Mountains on Non-Carbonate Sedimentary Rock with
Mostly Needleleaf/Evergreen Forest), which features a mean annual increase of 0.26% in
fire extent and 0.39% in fire severity. Secondly, this addresses the area covered by ecological
unit 1652 (Warm Wet Mountains on Metamorphic Rock with Mostly Needleleaf/Evergreen
Forest), which shows a mean annual increase of 0.25% in fire extent and 0.22% regarding
fire severity.

The DLR-GZS burnt area dataset, on which this study is based, could be shown to be a
valuable asset for wildfire related studies, such as burn severity time series analysis. To the
knowledge of the authors, it is the only large-scale, decadal burnt area dataset including
detailed burn severity information to this point.

Author Contributions: Conceptualization, M.N., G.S. and T.R.; methodology, M.N.; software, M.N.;
validation, M.N. and N.M.; formal analysis, M.N.; investigation, M.N.; resources, M.N.; data curation,
M.N.; writing—original draft preparation, M.N.; writing—review and editing, M.N., N.M., G.S. and
T.R.; visualization, M.N.; supervision, G.S. and T.R.; project administration, M.N., G.S. and T.R.;
funding acquisition, G.S. and T.R. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The MODIS MOD09/MYD09 product is available from the NASA
Land Processes Distributed Active Archive Center (LP DAAC), accessed on 8 April 2020 http:
//e4ftl01.cr.usgs.gov. Sentinel 3A/B OLCI data can be obtained from the Copernicus Open Access
Hub, accessed on 10 June 2020 https://scihub.copernicus.eu. Finally, Active Fire data used as
auxiliary information in the described methodology can be acquired from the NASA Fire Information
for Resource Management System (FIRMS), accessed on 17 May 2020 https://firms.modaps.eosdis.
nasa.gov.

230



Remote Sens. 2021, 13, 4975

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. Burnt area extent in million hectares for the investigated states over the past two decades,
sub-divided by month of the fire season. The figure illustrates the usual distribution of fire activity
throughout the fire season.

Figure A2. Cross-check regarding fire severity for each climate zone, given in percent of in-
crease/decrease. The length of the bars visualizes the strength of the trend. The horizontal, black
lines represent the error margins.
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Table A1. Cross-check regarding fire severity for each climate zone.

Class Slope (%) Perc 5 Perc 95 Corr. Coef. p-Value RMSE Label

Csa −0.038 −0.093 −0.010 −0.141 0.55 0.015 Temperate, dry summer, hot summer
BSk 0.028 −0.030 0.047 0.158 0.51 0.010 Arid, steppe, cold
Cfb −0.077 −0.148 0.022 −0.135 0.57 0.032 Temperate, no dry season, warm summer
Am −0.218 −0.447 −0.018 −0.142 0.55 0.087 Tropical, monsoon

BWk 0.008 −0.052 0.053 0.048 0.84 0.010 Arid, desert, cold
Csb 0.116 0.061 0.152 0.292 0.21 0.022 Temperate, dry summer, warm summer
Aw −0.037 −0.216 0.156 −0.029 0.9 0.072 Tropical, savannah
Cfa 0.012 −0.051 0.061 0.028 0.91 0.025 Temperate, no dry season, hot summer
Dfb −0.079 −0.167 −0.009 −0.109 0.65 0.041 Cold, no dry season, warm summer
Dfc −0.096 −0.235 0.201 −0.111 0.64 0.050 Cold, no dry season, cold summer
BSh −0.038 −0.102 0.057 −0.072 0.76 0.030 Arid, steppe, hot

Af −0.129 −0.395 0.030 −0.079 0.74 0.094 Tropical, rainforest
BWh −0.035 −0.085 0.027 −0.125 0.6 0.016 Arid, desert, hot

Figure A3. Cross-check regarding fire severity for each ecological unit. The lengths of the bars
visualize the strength of the trend. The horizontal, black lines represent the error margins.
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Table A2. Trends regarding the burnt area size for each ecological unit in the area of interest. The
ecological unit featuring a statistically significant trend is marked in dark gray. Ecological units
showing trends close to statistical significance are depicted in light gray.

Class Slope (%) Perc 5 Perc 95 Corr. Coef. p-Value RMSE Label

2268 0.263 0.150 0.373 0.456 0.04 0.029
Hot Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

1712 0.058 0.028 0.089 0.418 0.07 0.007
Warm Semi-Dry Plains on Unconsolidated Sediment
with Mostly Cropland

2529 0.108 0.029 0.229 0.17 0.47 0.036
Hot Moist Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

1705 −0.064 −0.132 0.050 −0.1 0.68 0.037
Warm Semi-Dry Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

1664 0.652 0.265 0.998 0.357 0.12 0.098
Warm Wet Mountains on Acidic Plutonics
with Mostly Needleleaf/Evergreen Forest

1628 0.184 0.063 0.294 0.329 0.15 0.030
Warm Wet Mountains on Acidic Volcanics
with Mostly Needleleaf/Evergreen Forest

1606 0.072 −0.015 0.160 0.189 0.42 0.021
Warm Wet Mountains on Acidic Plutonics
with Grassland, Scrub, or Shrub

1734 0.095 0.038 0.150 0.371 0.10 0.013
Warm Wet Mountains on Non-Acidic Volcanics
with Mostly Needleleaf/Evergreen Forest

1652 0.253 0.116 0.394 0.38 0.09 0.035
Warm Wet Mountains on Metamorphic Rock
with Mostly Needleleaf/Evergreen Forest

1750 1.581 0.567 2.503 0.336 0.14 0.255
Warm Wet Mountains on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

730 0.108 −0.103 0.321 0.109 0.64 0.056
Cool Wet Mountains on Acidic Plutonics
with Mostly Needleleaf/Evergreen Forest

712 −0.161 −0.417 0.095 −0.136 0.56 0.068
Cool Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

1529 1.097 0.275 1.968 0.264 0.26 0.231
Warm Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

752 −0.023 −0.311 0.274 −0.017 0.94 0.079
Cool Wet Mountains on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2601 0.759 0.132 1.083 0.248 0.29 0.171
Hot Semi-Dry Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

2480 0.105 0.058 0.153 0.279 0.23 0.020
Hot Semi-Dry Hills on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

2373 0.231 0.111 0.355 0.38 0.09 0.032
Cool Dry Mountains on Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2902 0.068 0.015 0.083 0.405 0.08 0.008
Hot Semi-Dry Plains on Non-Carbonate Sedimentary Rock
with Grassland, Scrub, or Shrub

2621 0.050 0.030 0.093 0.273 0.24 0.010
Hot Semi-Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2711 4.196 −0.001 0.002 0.259 0.27 0.000
Hot Dry Plains on Unconsolidated Sediment
with Bare area

2586 0.106 0.043 0.165 0.313 0.18 0.018
Hot Semi-Dry Hills on Mixed Sedimentary Rock
with Grassland, Scrub, or Shrub

2606 0.003 −0.006 0.018 0.072 0.76 0.002
Hot Semi-Dry Plains on Mixed Sedimentary Rock
with Sparse Vegetation

1845 0.222 0.074 0.359 0.3 0.19 0.040
Warm Moist Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2614 0.019 0.012 0.031 0.337 0.15 0.003
Hot Semi-Dry Plains on Mixed Sedimentary Rock
with Grassland, Scrub, or Shrub

1372 0.151 0.066 0.232 0.378 0.10 0.021
Warm Wet Hills on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2822 4.034 −0.003 0.001 0.061 0.8 0.000
Hot Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2784 −0.000 −0.007 0.004 −0.06 0.8 0.000
Hot Semi-Dry Plains on Non-Carbonate Sedimentary Rock
with Sparse Vegetation

1849 −0.019 −0.028 −0.007 −0.307 0.19 0.003
Warm Semi-Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2727 0.146 0.092 0.277 0.255 0.28 0.032
Hot Semi-Dry Hills on Non-Carbonate Sedimentary Rock
with Grassland, Scrub, or Shrub

2791 0.008 0.007 0.033 0.085 0.72 0.005
Hot Dry Plains on Unconsolidated Sediment
with Swampy or Often Flooded Vegetation

1394 0.024 −0.103 0.140 0.045 0.84 0.031
Warm Wet Hills on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest
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Table A3. Trends regarding the fire severity for each ecological unit in the area of interest. Ecological
units featuring statistically significant trends are marked in dark gray. The ones showing trends close
to statistical significance are depicted in light gray.

Class Slope (%) Perc 5 Perc 95 Corr. Coef. p-Value RMSE Label

2268 0.385 0.269 0.499 0.589 0.006 0.030
Hot Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

1712 0.326 0.177 0.453 0.385 0.09 0.045
Warm Semi-Dry Plains on Unconsolidated Sediment
with Mostly Cropland

2529 0.314 0.251 0.360 0.519 0.019 0.029
Hot Moist Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

1705 0.283 0.232 0.413 0.341 0.14 0.044
Warm Semi-Dry Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

1664 0.271 0.063 0.480 0.277 0.236 0.054
Warm Wet Mountains on Acidic Plutonics
with Mostly Needleleaf/Evergreen Forest

1628 0.262 0.100 0.429 0.318 0.171 0.045
Warm Wet Mountains on Acidic Volcanics
with Mostly Needleleaf/Evergreen Forest

1606 0.234 0.056 0.404 0.269 0.251 0.048
Warm Wet Mountains on Acidic Plutonics
with Grassland, Scrub, or Shrub

1734 0.224 0.052 0.407 0.259 0.269 0.048
Warm Wet Mountains on Non-Acidic Volcanics
with Mostly Needleleaf/Evergreen Forest

1652 0.224 0.120 0.326 0.45 0.046 0.025
Warm Wet Mountains on Metamorphic Rock
with Mostly Needleleaf/Evergreen Forest

1750 0.179 −0.038 0.418 0.161 0.498 0.063
Warm Wet Mountains on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

730 0.173 −0.012 0.378 0.179 0.450 0.055
Cool Wet Mountains on Acidic Plutonics
with Mostly Needleleaf/Evergreen Forest

712 0.163 −0.069 0.393 0.148 0.533 0.062
Cool Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

1529 0.158 −0.053 0.374 0.158 0.504 0.057
Warm Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

752 0.142 −0.076 0.344 0.145 0.543 0.056
Cool Wet Mountains on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2601 0.127 0.113 0.265 0.212 0.37 0.034
Hot Semi-Dry Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

2480 0.114 −0.029 0.298 0.176 0.46 0.037
Hot Semi-Dry Hills on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

2373 0.107 −0.004 0.213 0.217 0.357 0.027
Cool Dry Mountains on Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2902 0.061 −0.004 0.225 0.089 0.71 0.039
Hot Semi-Dry Plains on Non-Carbonate Sedimentary Rock
with Grassland, Scrub, or Shrub

2621 0.056 −0.060 0.138 0.113 0.64 0.028
Hot Semi-Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2711 0.035 0.005 0.062 0.259 0.27 0.007
Hot Dry Plains on Unconsolidated Sediment
with Bare area

2586 0.031 −0.106 0.057 0.05 0.83 0.036
Hot Semi-Dry Hills on Mixed Sedimentary Rock
with Grassland, Scrub, or Shrub

2606 0.022 −0.022 0.128 0.054 0.82 0.024
Hot Semi-Dry Plains on Mixed Sedimentary Rock
with Sparse Vegetation

1845 0.017 −0.152 0.199 0.023 0.924 0.045
Warm Moist Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2614 0.010 −0.121 0.066 0.019 0.94 0.033
Hot Semi-Dry Plains on Mixed Sedimentary Rock
with Grassland, Scrub, or Shrub

1372 0.005 −0.174 0.194 0.007 0.977 0.046
Warm Wet Hills on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2822 −0.018 −0.019 0.006 −0.094 0.69 0.011
Hot Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2784 −0.028 −0.122 0.074 −0.066 0.78 0.025
Hot Semi-Dry Plains on Non-Carbonate Sedimentary Rock
with Sparse Vegetation

1849 −0.078 −0.140 0.047 −0.15 0.53 0.029
Warm Semi-Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2727 −0.118 −0.185 0.037 −0.211 0.37 0.031
Hot Semi-Dry Hills on Non-Carbonate Sedimentary Rock
with Grassland, Scrub, or Shrub

2791 −0.123 −0.298 −0.087 −0.22 0.35 0.031
Hot Dry Plains on Unconsolidated Sediment
with Swampy or Often Flooded Vegetation

1394 −0.231 −0.457 −0.009 −0.218 0.355 0.059
Warm Wet Hills on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest
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Table A4. Cross-check regarding fire severity for each ecological unit in the area of interest.

Class Slope (%) Perc 5 Perc 95 Corr. Coef. p-Value RMSE Label

2268 −0.052 −0.259 0.163 −0.053 0.824 0.057
Hot Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

1712 0.012 −0.006 0.039 0.081 0.73 0.008
Warm Semi-Dry Plains on Unconsolidated Sediment
with Mostly Cropland

2529 −0.004 −0.267 0.124 −0.003 0.99 0.070
Hot Moist Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

1705 −0.007 −0.055 0.062 −0.034 0.89 0.012
Warm Semi-Dry Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

1664 −0.040 −0.204 0.118 −0.055 0.818 0.042
Warm Wet Mountains on Acidic Plutonics
with Mostly Needleleaf/Evergreen Forest

1628 −0.060 −0.190 0.073 −0.099 0.679 0.034
Warm Wet Mountains on Acidic Volcanics
with Mostly Needleleaf/Evergreen Forest

1606 −0.066 −0.154 0.022 −0.166 0.484 0.022
Warm Wet Mountains on Acidic Plutonics
with Grassland, Scrub, or Shrub

1734 −0.110 −0.257 0.030 −0.159 0.501 0.039
Warm Wet Mountains on Non-Acidic Volcanics
with Mostly Needleleaf/Evergreen Forest

1652 −0.126 −0.328 0.099 −0.125 0.600 0.057
Warm Wet Mountains on Metamorphic Rock
with Mostly Needleleaf/Evergreen Forest

1750 −0.113 −0.303 0.075 −0.13 0.586 0.050
Warm Wet Mountains on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

730 −0.136 −0.309 0.032 −0.171 0.469 0.045
Cool Wet Mountains on Acidic Plutonics
with Mostly Needleleaf/Evergreen Forest

712 −0.182 −0.383 0.002 −0.2 0.397 0.051
Cool Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

1529 −0.119 −0.317 0.073 −0.134 0.573 0.050
Warm Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

752 −0.100 −0.248 0.048 −0.148 0.533 0.038
Cool Wet Mountains on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2601 −0.044 −0.109 0.055 −0.089 0.71 0.028
Hot Semi-Dry Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

2480 0.000 −0.137 0.102 0.001 1.0 0.033
Hot Semi-Dry Hills on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

2373 −0.058 −0.262 0.134 −0.061 0.799 0.055
Cool Dry Mountains on Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2902 −0.047 −0.121 −0.049 −0.112 0.64 0.024
Hot Semi-Dry Plains on Non-Carbonate Sedimentary Rock
with Grassland, Scrub, or Shrub

2621 −0.054 −0.193 0.092 −0.093 0.7 0.033
Hot Semi-Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2711 −0.013 −0.051 0.036 −0.062 0.8 0.012
Hot Dry Plains on Unconsolidated Sediment
with Bare area

2586 0.021 −0.087 0.141 0.042 0.86 0.029
Hot Semi-Dry Hills on Mixed Sedimentary Rock
with Grassland, Scrub, or Shrub

2606 −0.090 −0.250 0.047 −0.109 0.65 0.047
Hot Semi-Dry Plains on Mixed Sedimentary Rock
with Sparse Vegetation

1845 −0.088 −0.237 0.059 −0.123 0.605 0.041
Warm Moist Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2614 −0.050 −0.147 0.094 −0.086 0.72 0.033
Hot Semi-Dry Plains on Mixed Sedimentary Rock
with Grassland, Scrub, or Shrub

1372 0.011 −0.173 0.195 0.014 0.954 0.048
Warm Wet Hills on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2822 −0.025 −0.071 0.037 −0.096 0.69 0.015
Hot Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2784 −0.096 −0.196 0.024 −0.167 0.48 0.032
Hot Semi-Dry Plains on Non-Carbonate Sedimentary Rock
with Sparse Vegetation

1849 −0.012 −0.035 0.008 −0.093 0.7 0.007
Warm Semi-Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2727 0.001 −0.040 0.054 0.002 0.99 0.031
Hot Semi-Dry Hills on Non-Carbonate Sedimentary Rock
with Grassland, Scrub, or Shrub

2791 −0.261 −0.350 −0.164 −0.319 0.17 0.044
Hot Dry Plains on Unconsolidated Sediment
with Swampy or Often Flooded Vegetation

1394 −0.167 −0.346 0.013 −0.194 0.413 0.049
Warm Wet Hills on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest
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Abstract: We used synthetic aperture radar offset tracking to reconstruct a unique record of ice
surface velocities for a 3.2 year period (15 January 2017–6 April 2020), for the Palcaraju glacier
located above Laguna Palcacocha, Cordillera Blanca, Peru. Correlation and spatial cluster analysis of
residuals of linear fits through cumulative velocity time series, revealed that velocity variations were
controlled by the intra-annual outer tropical seasonality and inter-annual variation in Sea Surface
Temperature Anomalies (SSTA), related to the El Niño Southern Oscillation (ENSO). The seasonal
signal was dominant, where it was sensitive to altitude, aspect, and slope. The measured velocity
variations are related to the spatial and temporal variability of the glacier’s surface energy and mass
balance, meltwater production, and subglacial water pressures. Evaluation of potential ice avalanche
initiation areas, using deviations from linear long-term velocity trends, which were not related to
intra- or inter-annual velocities, showed no evidence of imminent avalanching ice instabilities for the
observation period.

Keywords: SAR offset tracking; glacier surface velocity; glacier instability; glacier hazards; ice
avalanches; ENSO; glacier mass balance; glacier surface energy

1. Introduction

The Cordillera Blanca (CB) is the most extensively glaciated mountain range in Peru [1]
where the present-day climate is characterized by a distinct seasonality, with a dry season
from May to September and a wet season from October to April. The seasonality is con-
trolled by the oscillation of the inner-tropic convergence zone [2]. Seasonal temperature
variations are small but vary significantly on a daily basis [2]. Wet season snow accumu-
lation at high elevation and meltwater from glaciers are the main source of water [3] for
the arid west coast of Peru during the dry seasons. Over the course of the 20th century,
glacier mass has significantly contracted (e.g., [1,4–6]). Glacier volume loss may influence
the stability state and dynamics of a glacier, as a result of a change of the thermal regime,
stress state at the bed-ice interface, and associated changes in geometry. Numerous studies
suggest that variations in glacier velocities are related to subglacial water pressures, which
are controlled by seasonal meltwaters or infiltration following heavy rainstorms [7–14]. The
supply of subglacial water is regulated by the extent of Firn coverage [15], as well as the
characteristics of the subglacial drainage system. Pressurized subglacial water reduces the
effective normal stress at the bed-ice interface, leading to reduced frictional resistance, and
thus sliding rates are enhanced [11,15–17]. Detailed observational changes in a glacier’s
dynamics as well as its geometry, provide insights into whether a potentially hazardous
glacier may develop a critical stability state, or conversely remain harmless [8].
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2. Materials and Methods

2.1. SAR Offset Tracking

The calculation of displacement fields using Synthetic Aperture Radar (SAR) data
is possible using offset tracking methods. Offset tracking is normally used for analyzing
rapidly moving objects, such as glaciers, because it overcomes the loss of signal, due to
decorrelation, when using InSAR techniques over long time intervals [18–21]. As the
glaciers in the Cordillera Blanca of Peru are relatively small, offset tracking is only feasible
using high-resolution SAR images with a resolution of ~2–3 m. Using a unique, continuous
time series of archived TerraSAR-X (TSX) radar imagery for the period 15 January 2017–6
April 2020 (3.2 years) we reconstructed ice surface velocities for the Palcaraju glacier. The
dataset consists of 51 TSX radar images that were acquired on a descending orbit with a
ground resolution of 3 m (Table 1). The radar images were acquired at 10.53 GMT and
the distribution of re-visit intervals for the 50 image pairs was 11 days (2 pairs), 22 days
(43 pairs), 33 days (1 pair), and 44 days (4 pairs).

Table 1. TSX SAR offset tracking displacement maps time intervals, perpendicular baseline, and
resolution.

Scene Image Pair Date Days Perpendicular Baseline Resolution

1 6 April 2020 3 m
2 1 15 March 2020 22 74.4 3 m
3 2 31 January 2020 44 1.5 3 m
4 3 9 January 2020 22 −146.8 3 m
5 4 18 December 2019 22 104.7 3 m
6 5 26 November 2019 22 −112.4 3 m
7 6 24 October 2019 33 −44.6 3 m
8 7 02 October 2019 22 136.4 3 m
9 8 10 September 2019 22 −137.0 3 m

10 9 19 August 2019 22 203.5 3 m
11 10 28 July 2019 22 −125.7 3 m
12 11 14 June 2019 44 46.0 3 m
13 12 23 May 2019 22 −14.1 3 m
14 13 1 May 2019 22 29.9 3 m
15 14 9 April 2019 22 −4.2 3 m
16 15 29 March 2019 11 −103.0 3 m
17 16 07 March 2019 22 6.1 3 m
18 17 13 February 2019 22 −78.5 3 m
19 18 22 January 2019 22 174.7 3 m
20 19 31 December 2018 22 −88.2 3 m
21 20 09 December 2018 22 84.8 3 m
22 21 17 November 2018 22 −25.8 3 m
23 22 26 October 2018 22 71.4 3 m
24 23 4 October 2018 22 −222.0 3 m
25 24 12 September 2018 22 280.1 3 m
26 25 21 August 2018 22 −164.2 3 m
27 26 30 July 2018 22 148.7617 3 m
28 27 8 July 2018 22 26.9 3 m
29 28 16 June 2018 22 −17.8 3 m
30 29 25 May 2018 22 4.0 3 m
31 30 3 May 2018 22 −66.2 3 m
32 31 11 April 2018 22 106.8 3 m
33 32 20 March 2018 22 −220.7 3 m
34 33 26 February 2018 22 −65.0 3 m
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Table 1. Cont.

Scene Image Pair Date Days Perpendicular Baseline Resolution

35 34 13 January 2018 44 133.6 3 m
36 35 2 January 2018 11 −149.4 3 m
37 36 11 December 2017 22 30.0 3 m
38 37 19 November 2017 22 −74.9 3 m
39 38 28 October 2017 22 169.1 3 m
40 39 14 September 2017 44 −5.5 3 m
41 40 23 August 2017 22 246.2 3 m
42 41 1 August 2017 22 133.1 3 m
43 42 10 July 2017 22 −206.8 3 m
44 43 18 June 2017 22 182.6 3 m
45 44 27 May 2017 22 −90.0 3 m
46 45 5 May 2017 22 −87.2 3 m
47 46 13 April 2017 22 107.1 3 m
48 47 22 March 2017 22 139.4 3 m
49 48 28 February 2017 22 −111.8 3 m
50 49 6 February 2017 22 −297.0 3 m
51 50 15 January 2017 22 291.0 3 m

Utilizing a normalized cross-correlation of the amplitude component of the SAR
images, offsets were measured with rectangular windows at a set of positions uniformly
distributed over the scene. To obtain an accurate estimate of subpixel precision of the
correlation peak, correlation function values were fitted using a biquadratic polynomial
surface. The time interval of the image pairs can be adjusted according to the expected
maximum displacement over the glaciers from 11 days to several months. Mismatches
or errors were filtered by applying a threshold to the correlation coefficient [22], by (1)
iteratively discarding spurious matches based on the angle and size of displacement vectors
in the surrounding areas, (2) applying a low-pass filter on the resultant displacement fields,
and (3) applying a 2–98% cumulative cutoff to remove potentially uncertain velocity values
and outliers. Such values cannot be realistically validated and are likely to be artifacts of
the radar data processing method. Hence they have no physical meaning.

Slant range and azimuth offset displacement fields were geocoded and transformed to
3D displacements along the terrain surface using the Advanced Land Observing Satellite
(ALOS) World 3D (AW3D30), Digital Elevation Model (DEM) [23]. TSX images were
processed in series with offset-tracking procedures [18–21] to 3D ice surface displacement
maps. This involved combining slant-range and azimuth offsets by assuming that flow
occurs parallel to the ice surface, as estimated from the DEM. Matching window sizes
of 128 × 96 pixels (e.g., 202 m × 192 m) were applied with steps of 16 × 12 pixels (e.g.,
25 m × 24 m). The displacement maps in m/a were geocoded to a posting of ca. 60 m. For
an estimation of the uncertainties in the ice displacement maps, a precision of 1/10th of a
pixel in the offset estimation can be assumed [24,25]. The displacement error of TSX data
with pixel sizes in ground-range and azimuth direction of 0.9 m × 2.0 m respectively, and
a time interval of 11 days, are thus on the order of 10 m/year. For longer time intervals,
the noise level increases, hence, a similar displacement error of about 10 m/year can be
assumed for other image pairs. The displacement values were extracted from individual
pixels from the spatial displacement maps.

2.2. Satellite Image Analysis

Surface features and glacier extent were mapped in a geographic information software
system [26] using high-resolution satellite Pléiades imagery (Table 2). In addition, we visu-
ally inspected Google Earth and ESRI World Atlas imagery (Table 2) captured between 1999
and 2020. Aspect and slope were calculated using the AW3D30 DEM, and, together with
velocity and elevation data, exported with one data point per pixel for further statistical
analyses.
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Table 2. Satellite imagery analyzed in this study.

Image Capture Date Image Source Resolution (m) Accuracy (m)

3 July 2020 Google Earth
24 February 2020 Pleiades

22 June 2019 Google earth
08 June 2019 Pleiades
24 June 2018 Maxar/DigitalGlobe (WV02) * 0.5 8.47
18 June 2017 Google Earth
30 May 2016 Google Earth
30 May 2016 Pleiades
01 June 2016 DigitalGlobe (WV02) * 0.5 10.2
28 April 2013 Google Earth
28 July 2013 Google Earth
5 May 2012 Google Earth

15 January 1999 Earthstar Geographic (Terracolor) * 15 50
31 December 1985 Google Earth

1 January 1970 Google Earth
* as published on https:\livingatlas.argis.com/wayback, accesed on 8 July 2021.

2.3. Statistical Analysis of Time Series

The residuals from a linear fit of the glacier surface velocities over the 3.2 year obser-
vation period were used to conduct various correlation analyses. The analyses were based
on about 1300 measurement points. Data time series with less than 50% completeness were
removed from the statistical analysis. For the remaining data, where gaps were evident,
a linear interpolation was applied to ensure consistent time intervals. The filtered and
interpolated data allowed us to perform spatial and temporal correlation analysis between
the residuals, precipitation, and SST. The Pearson correlation coefficient was determined
for all correlation analyses.

As an independent test, the processed time series were also subjected to a time series
analysis, without a prior assumption of correlations with climate or weather data. The
entire data processing workflow was performed in Python using standard packages for
transformation and optimization. The dominant wavelength was extracted for each time
series using a Fourier transformation. From this dominant signal, a fit to the time series
was performed with a Levenberg-Marquardt or dogleg algorithm, resulting in a single
fitted trigonometric function with an estimate of best-fitting values for amplitude, phase,
offset, and period, as well as the covariance matrix. Physically unreasonable outliers were
removed based on the following criteria:

• Period > 2000 days (beyond the observation time; no periods below Nyquist frequency)
• Amplitude <–20 and >20 (beyond the data range)
• Phase: no obvious outliers
• Offset <–4 and >4 (beyond the data range)

In total, 28 data points were excluded based on the above criteria.

2.4. Cluster Analysis of the Time Series

We employed a Bayesian unsupervised machine learning approach [27], to extract
clusters of similar behavior from our surface displacement variations (i.e., residuals). The
primary aim of the employed method was to extract clusters from the data based on
feature similarity, with consideration of the spatial configuration in the physical space. This
combination is enabled through a combination of a Gaussian Mixture Model (GMM) in
feature space with a Hidden Markov Random Field (HMRF) model in physical space. Both
models are integrated into a Bayesian model, and MCMC sampling is performed to obtain
the posterior distribution of the GMM parameters.
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The GMM was applied to samples of N data points (image pixels) in M-dimensional
feature space to determine a set of multivariate Gaussian distributions (L classes). The
distributions were parametrized by their mean, μ, and covariance, Σ for each cluster. As
features originate from spatial data sets, the HMRF was then used to consider spatial
dependencies of sampling points, with a smoothing coefficient, which parameterized the
strength of spatial correlation, independently for each class.

The model parameters (μ, Σ, β), as well as the latent field values, were obtained
through a Bayesian optimization, iterative sampling process using a Markov Chain Monte
Carlo (MCMC) approach, following an initial Expectation-Maximization (EM) step. The
final association of sampling points to clusters were obtained from the Maximum a posteri-
ori (MAP) distribution. In addition, cluster assignment probabilities were obtained from
the MCMC chain and combined using information entropy, to obtain a spatial estimate of
uncertainty [28], for the assigned cluster values.

The segmentation procedure is described in Wang et al. [27] and has previously been
applied to geophysical [29] and arctic sea ice [30] data sets. It is implemented in the open-
source Python package bayseg, available on https://github.com/cgre-aachen/bayseg,
accessed on 10 June 2021. The clustering workflow is presented in an exemplary form in
the supplementary information section (Figure S1a–d).

3. Results

3.1. Spatio-Temporal Distribution of Glacier Velocities

We calculated the spatial distribution of average daily surface velocities of the Pal-
caraju glacier over 50 measurement intervals (i.e., velocity maps with 1300 pixels per
interval), for the 3.2 year observation period. As the spatial distribution of individual
velocity maps were similar for all 50 intervals, the velocity distribution shown in Figure 1 is
an appropriate representation for the observation period. Daily surface velocities averaged
over 3.2 years ranged between 0.01 and 0.47 m/day, where both their spatial distribution
and magnitude are consistent with results obtained from Sentinel-2 data [31]. The dis-
placement time series, representing the residuals of the linear fit and cumulative surface
displacements, for selected points shown in Figure 1, are available in the supplementary
materials (Figures S2–S10).

The resulting surface velocities are a combination of basal sliding as well as creep
and ablation of the glacier, which cannot be individually quantified without independent
measurements. Such measurements are outside the scope of this study. Values from the
literature [13] and field measurements [7,9,32] suggest that the contribution of basal sliding
to the total surface velocities varies between 50–90%, and is spatially variable across the
glacier bed [32].

Higher mean annual surface velocities are observed in areas with a high frequency
of crevassing and or steep glacier topography (>30–40◦) (see zones S2, S4a, S4b, E1, E2,
and E3 Figures 1a and 2). Based on the occurrence of ridgelines and terrain steps in the
30 m DEM, we infer that steep glacier sections directly reflect the underlying topography
of the glacier bed. Although the slope gradient in Zone S4a (Figures 1a and 2) is compara-
tively flat (20–35◦), such higher velocity rates can be related to larger ice thickness at this
location [9,33].

West exposed slopes (Figure 3) typically showed the highest mean annual surface
velocities, followed by south and east exposed slopes over the 3.2 year observation period.
Surface velocities of south exposed slopes tend to decrease with altitude, while surface
velocities of East exposed slopes increase with altitude. West exposed slopes also showed
a general increase with altitude, however, the trend is reversed at an elevation range of
approximately 5400–5700 m.a.s.l.
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Figure 1. (a) Spatial distribution of mean daily surface velocities with respect to elevation, showing
the zones and point selections used in this study (for location see insert map), (b) Spatial distribution
of contoured mean daily surface velocities on the Palcaraju glacier. Elevation range of zone E1 is
5′400–6050 m a.s.l, and 5′900–6150 m a.s.l for zone S1.
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Figure 2. Glacier slope map.

 

Figure 3. Glacier aspect map.
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Zones with higher surface velocities for all slope aspects were only found below
5700 m a.s.l., suggesting that the steep hanging glacier in E1 and S1 (Figures 1 and 3) are
cold glaciers [34], likely to be frozen to the glacier bed. This is supported by estimates of the
cold-temperate transition line at approximately 5500 m a.s.l., elevation in the region [35].
Hence, in these areas, the surface velocity field mainly represents creep deformation within
the ice body. Below 5700 m a.s.l., the glacier is likely to be polythermal to temperate
(i.e., subglacial liquid water is temporarily present), and therefore the measured surface
velocities are likely controlled by creep processes, basal sliding along the ice-bed interface,
and an indeterminable error due to ablation (e.g., a shift in the slant range geometry
between image acquisitions and consequent projection into DEM predating the radar
image acquisition, resulting in an over-estimation of surface velocities).

3.2. Velocity Variations

Linear regression analysis (see methods section) reveals a coefficient of determination
R2 > 0.90–0.99 for all cumulative time series (Figure 4), indicating steady surface movements
with no obvious acceleration phases within the observation period. Approximately 2.6% of
the analyzed time series showed an R2 ranging between 0.90–0.96, however, this is primarily
due to under-sampling of the time series where data points were missing (Figure 5).

 
Figure 4. Spatial distribution of coefficient of determination (R2) from the linear correlation analysis.
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Figure 5. Spatial distribution of sampling completeness.

Extracted residuals of the time series from linear fitting revealed that the residuals of
the glacier surface velocities fluctuate around the long-term (3.2 years) linear trend. Spatial
correlation and cluster analysis of the residuals shows that these variations in surface
velocity have a spatial and temporal variability with respect to zones in the central, eastern,
and western parts of the glacier, as well as zones above 5900 m a.s.l. (Figure 6).

Surface energy and glacier mass balance models (SEMB) across the glaciated An-
des [1,36,37] collectively show that the glacier response has a strong spatial variability due
to its sensitivity to regional and local meteorological and topographic factors [2,37,38]. In
this connection, the observed spatio-temporal variation in our glacier velocity residuals may
be interpreted as being closely linked to meteorological and topographical variables, which
in turn influence the variability of the glacier’s surface energy, mass balance, meltwater
production, and effective stress states at the glacier bed.

3.3. Spatial Correlation and Cluster Analysis

A spatial correlation and cluster analysis following the procedure described in Sec-
tions 2.3 and 2.4 were applied to elucidate details of the factors influencing the spatio-
temporal velocity patterns in different parts of the glacier (Figure 7). It is important to
note that this analysis is performed independently of the previous correlation evaluations
and is performed directly on the fitted time series as an additional investigation using
an unsupervised machine learning algorithm. From these analyses, three clusters, each
with a distinct behavior, were identified from the residuals (Figure 6b). These clusters
may be considered as two end-members; an intra-annual and inter-annual cluster, with a
transition cluster between the two (Figure 7c), revealing a behavior similar to the results of
the correlation analysis (Figure 7a,b).
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Figure 6. (a) Cumulative surface velocities from six representative points, (b) Residuals of the linear fit displaying an
intra-annual (seasonal) pattern, from three representative points above 5500 m a.s.l. (No. 143), in the East (No. 2442), and
West (No. 752) of the glacier, (c) Residuals of the linear fit displaying an inter-annual pattern, from three representative
points for the glacier response in the central, south-exposed part of the glacier (Nos. 702, 1522, 1574), (d) meteorological data;
Temperature T, Humidity H, Precipitation P (Palcacocha weather station, altitude 4607 m.a.s.l., latitude 09◦24′09.3211”S,
77◦23′07.0258”, Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña INAIGEM), and (e) Sea Surface
Temperature Anomalies (SSTA) shifted by 3 months (see main text) for the NOAA Niño 3.4 region.
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Figure 7. (a) Map of correlation coefficients between residuals of the long-term linear fit through
the velocity time series and precipitation, measured from the Palcacocha weather station, altitude
4607 m.a.s.l., latitude 09◦24′09.3211”S, 77◦23′07.0258”, INAIGEM, (b) Map of correlation coefficients
between residuals of the long-term linear fit through the velocity time series and SST, (c) Results of
the cluster analysis show the distribution of intra, inter and transitional clusters.
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4. Discussion

4.1. Intra-Annual Dominant Cluster

The velocities belonging to the intra-annual cluster are found below 5900 m.a.s.l.,
on slopes with flat to medium steepness (<35◦). The slopes are typically south-southeast
and steeply southwest exposed. On relatively flat southwest and steep southeast exposed
glacier slopes, at altitudes above 5900 m.a.s.l., the intra-annual signal weakens and becomes
dominated by a pattern characteristic of the inter-annual cluster.

This cluster is characterized by glacier surface velocities that are in phase with the outer
tropical seasons. The velocities generally peak in the dry season and subsequently reach a
minimum in the following wet season (Figure 6b). Meteorological data from the region
provided by INAIGEM (Palcacocha weather station 4607 m.a.s.l.) show relatively constant
mean monthly temperatures and a distinct seasonal fluctuation in monthly precipitation
(Figure 6d). Statistical analysis of the residuals from this cluster shows an anti-correlation
with monthly precipitation. Higher precipitation during the wet season corresponds to
lower surface velocities and vice versa. Palcaraju glacier is predominantly located above
the Equilibrium Line Altitude (ELA) (i.e., 4850–4950 m.a.s.l.) where precipitation during the
wet season falls as snow [38], and a temperature-sensitive increase of the snowline occurs
towards the dry season. For a slightly different aspect (e.g., ~20◦), but similar altitude at the
Shallap glacier, (i.e., a glacier about 10 km south of the Palcaraju glacier), Gurgiser et al. [38]
found surface Albedo up to 80% during the wet season and a significantly reduced Albedo
during the dry season. Annual differences in the gross glacier mass balance were solely
related to ablation below the ELA, which were driven by net shortwave radiation in both
seasons (with stronger surface energy fluxes during the dry season), the temperature-
affected altitude of the snow line, and snow quantity in the wet season (i.e., reduced
albedo).

Above the ELA, the mass balance was primarily sensitive to annual cumulative
precipitation. Gurgiser et al. [38] suggested that above 5000 m a.s.l. seasonal fluctuations
of surface and subsurface melting may change gradually with time and altitude between
the seasons. They associate this with gradual changes in the snow line, precipitation
sum and type, snow cover, snow age, albedo conditions, and the net shortwave radiation
budget. High ablation rates during the dry season coincide with the shortwave budget and
surface/subsurface melting peaks. Thus, our surface velocity variations in the intra-annual
cluster correspond with seasonal variations in ice-melt water production, which in turn
modifies subglacial pressure conditions and basal motion.

4.2. Inter-Annual Dominant Cluster

The inter-annual cluster is characterized by glacier surface velocity variations that are
most likely influenced by factors controlling subglacial water pressure conditions over a
longer temporal scale. We compared the Sea Surface Temperature (SST) curve for the Niño
3.4 region (National Oceanic and Atmospheric Administration, NOAA) to the residuals of
our surface velocity time series. Similar to Maussion et al. [39] and Francou et al. [40], we
shifted the SST time series by three months to account for the time lag in the glacier mass
balance response, and only consider 0.4 K ≤ SST ≤ –0.4 K, with duration > 6 months [36].
Figure 6e shows the SST curve for the observation period. From January to December
2017 the SST intensity and duration do not qualify as either a La Niña or El Niño event.
Between December 2017 and July 2018, the SST intensity and duration qualify this period
as a La Niña event, which is followed by an El Niño event commencing in December 2019,
extending through to September 2020. The duration of SST > 0.4 K from 20 January, to
15 June 2020, does not qualify as an El Niño event. We note that prior to our observation
period, SST was 1.5 K for more than 6 months indicating a strong El Niño event in 2016
(not shown in Figure 6e).
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We find that the observed Sea Surface Temperature Anomalies (SSTA) show a strong
correlation (r > 0.5, p < 0.05) with the residuals obtained from surface velocity time series
in the inter-annual cluster (Figure 6c,e). The general decrease in surface velocities at the
beginning of the time series corresponds to insignificant SST variations verging into a La
Niña event starting in December 2017. From March 2017, SST increases gradually. This is
associated with a gradual increase in surface velocities and corresponds to the subsequent
El Niño (December 2019–September 2020). Maussion et al. [39] used an SEB/SMB model
calibrated against a 4-year temperature time series obtained on the Shallap glacier. Reanal-
ysis of downscaled atmospheric variables were used to estimate the monthly SEB/SMB
for the period 1980–2013. Correlation analysis revealed a strong anti-correlation (r < −0.5,
p < 0.05) between SSTA and individual fluxes of the SEB/SMB. During an El Niño event,
the correlation was attributed to increased air temperatures, leading to an elevated snow-
fall line, an increase in short-wave radiation, and reduced precipitation [39]. At higher
altitudes, the ENSO correlation was found to be weaker and mostly related to changes in
total precipitation. Therefore, during an El Niño event, meltwater production is strongly
enhanced, where subglacial water pressure conditions influence glacier surface velocities,
concomitant to the approximate duration of the El Niño event.

Our results also show that steep slopes with both East and West orientations, as well
as relatively flat areas (regardless of altitude), are prone to inter-annual glacier surface
velocity changes as a result of ENSO. This is supported by the findings of Kaser and
Georges [2], where regional-scale differences in the ELA between E- and W-facing glaciers
were observed in the CB. They found a zonal asymmetry caused by convective cloud
development in the afternoon, which influences the radiation balance and ablation. In the
morning, east exposed slopes received a high amount of shortwave solar radiation, whilst
during the day, clouds develop, and west exposed glaciers receive a significantly lower
amount of shortwave solar radiation. Further, Gurgiser et al. [38] found a topographic
signature in surface energy and mass balance above 5000 m a.s.l at the Shallap glacier,
where the combination of aspect and increased slope steepness results in a smaller incidence
for solar radiation and a slower decrease in Albedo.

4.3. Implications for Avalanching Glacier Instabilities

Based on our continuous time series of surface velocities, and high-resolution satel-
lite imagery we evaluated whether avalanching glacier instabilities were evident on the
Palcaraju glacier for our period of observation. Various authors have suggested a high
glacier lake outburst flood (GLOF) susceptibility at Laguna Palcacocha due to the potential
of avalanching glaciers, that could induce an impulse wave and result in moraine over-
topping [41–43]. A GLOF susceptibility approach, such as those of Wang et al. [44] and
Bolch et al. [45] were applied by Emmer and Vilimek [46] for Laguna Palcacocha. Those
first-order assessments may only be used as a basis for prioritizing more comprehensive
hazard assessments at the local scale [44,45], and require region-specific adjustments to the
criteria used [46]. Somos-Valenzuela et al. [42], and Frey et al. [41] defined hazard scenarios
for modelling the expected hazard cascade at Laguna Palcacocha. The characteristics of
the ice avalanche scenarios, for example, volume and area of initiation, were arbitrarily
selected, and lack the detailed analysis concerning the glacier state and dynamics, which
are required to understand ice avalanche potential. The scenario definition, in terms of
volume for the nearby Laguna 513 can be traced back to those reported by Schneider
et al. [47]. The ice avalanche scenarios, selected for the Palcacocha GLOF modeling are
therefore poorly constrained, and may ultimately lead to a misrepresentation of the GLOF
risk (i.e., particularly when considering pessimistic or worst case hazard scenarios).
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We focus our evaluation of potential areas of ice avalanche initiation by identify-
ing deviations from the linear long-term velocity trends that are not related to intra or
inter-annual velocities (e.g., indications for an imminent glacier instability), as well as
qualitative features of the glacier from high-resolution satellite imagery. The evaluation of
ice avalanching potential is primarily concerned with the characteristics of the (thermal)
contact between a glacier and the bedrock [48–50] as well as the type of starting zones rec-
ognized as being important for their initiation [49]. Type I starting zones have a relatively
large area of bedrock with an almost constant slope, where glacier stability depends upon
altitude [48,49], and the proportion of the glacier frozen to the bedrock [50]. Failure of
cold glaciers (Type IA), which are those that are frozen to the glacier bed, are primarily
controlled by intra-glacial rupture processes, and typically occur on bedrock inclinations
> 45◦ [8,50,51]. Detachment in steep, cold glaciers is associated with crevasse formation
and accelerating surface velocities. For polythermal or temperate glaciers (Type IB), the
bedrock inclination for starting zones are >25◦, where several factors, such as adhesion
to the glacier bed, proportion of glacier frozen to the bed, lateral support, and subglacial
water pressure influence glacier stability [8,49,50]. Type II starting zones are associated
with abrupt changes in bedrock inclination [49], where glaciers may develop a steep cliff,
and unstable ice slabs form parallel to the cliff.

At the Palcaraju glacier, Type IA starting zones are expected to occur at altitudes above
~5500 m a.s.l. with a slope angle > 45◦. On the Palcaraju glacier, those areas include: (1)
the South face of the Palcaraju summit, which is a hanging glacier suggested as a potential
ice avalanche scenario by Vilimek et al. [43] (Figure 1, zone S1), (2) the upper part of the
steep glaciated ridge in zone S2 (Figure 1), and (3) the hanging glaciers on the SW-slope of
the Pucaranra West face (Figure 1, zone E1). At these locations, satellite imagery indicates
evidence for relatively small snow avalanches and/or ice falls, some of which reach the
relatively flat glacier area above ~5200 m a.s.l. The time series of surface velocities from
these locations all show a linear trend (R2 > 0.97), and the scale of acceleration/deceleration
phases of the glacier correspond to seasonal dominated oscillations in S2 and inter-annual
dominated oscillations in zone S1 and E2.

The steep (up to 50◦) glaciated ridge between 5200 and 5750 m a.s.l. in zones S2, show
mean daily surface velocities of >0.3 m/d. Mean surface velocities of 0.2–0.3 m/d are
solely found above 5500 m (Figure 1). Below 5′500 m a.s.l., where the glacier is likely to be
polythermal to temperate, daily surface velocities decrease to >0.2 m/d. All velocity time
series in this region exhibit a linear trend (R2 > 0.98), and acceleration/deceleration phases
are associated with seasonal-scale dominated oscillations.

The potential ice avalanche release area suggested by Frey et al. [41], is located
200–300 m east of the steep ridge, on a 25–30◦ inclined terrace, at approximately 5430
to 5525 m a.s.l. (Figure 1, zone S3). Satellite imagery shows that the ice thickness and
area located on this terrace reduced significantly between 2013 and 2020 (Figure 8). The
remaining glacier ice at this location shows mean surface velocities < 0.1 m/d with seasonal
dominated oscillation in the West and inter-annual dominated oscillation in the East
(Figure S1).

Below ~5400 m a.s.l., the slope of the glacier surface ranges between 1◦–35◦ with some
steeper sections in the Northwest and Southeast. For zone S4a (Figure 1), where higher
surface velocities are observed (i.e., >0.3 m/d), the slope parallel to the glacier flow lines
range between 20–35◦ (<30◦ on average). As mentioned earlier, this zone is characterized
by an elevated ice thickness and hence elevated velocities [9,33]. The surface velocity
trends over the observation period are linear (R2 > 0.99), and acceleration/deceleration
phases correspond to inter-annual scale-dominated oscillations (Figure S2). The two zones
showing higher velocities in the eastern part of the glacier (E2 and lower part of zone E1 in
Figure 1) are likely associated with terrain steps in the glacier bed and multiple crevasses
perpendicular to the glacier flow line. The maximum average velocity is 0.2–0.4 m/d.
Below the higher velocity zones, the average daily velocity decreases to < 0.2 m/d. Linear
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regression analysis shows a linear velocity trend (E1 R2 > 0.97, E2 R2 > 0.98), again,
characterized by a strong seasonal-scale oscillation (Figures S3 and S4).

 

Figure 8. Satellite image of Zone S3 on (a) 20 August 2013 and (b) 3 July 2020 (Google Earth).

Somos-Valenzuela et al. [42] suggested a potential ice avalanche starting zone at 5′202
m.a.s.l. in zone S5 (Figure 1), located at the toe of a steep glaciated flank. Within the
area delineated by Somos-Valenzuela et al. [42], the slope of the glacier varies between
10–30◦. Satellite imagery shows that the lower end of this zone is in close contact with the
surrounding glacier without any visible terrain step, which renders any locally enhanced
process kinematically unlikely. Further, the surface velocities are between 0.1–0.2 m/d,
exhibiting a linear trend (R2 > 0.97) with acceleration/deceleration phases corresponding
to distinct seasonal dominated oscillations (Figure S5).

Despite all accumulated surface velocity time series exhibiting linear trends (e.g.,
R2 > 0.95), potential instabilities may form at the glacier terminus, which are characterized
by glacier flow directions perpendicular to steep terrain steps (Type IB or Type II ice
avalanche starting zones). The velocity-time series for the glacier terminus did not suggest
the development of significant ice instabilities within the observation period. However,
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as our surface velocity field has a 60 m spatial resolution, instabilities smaller than the
resolution may not be clearly detectable. Satellite images obtained from 2012 and 2020
show that two distinct zones at the terminus exhibit frequent ice falls or snow avalanches.
One zone is located at the terminus of zone S4a and on the terminus of E3 (Figure 1). Due to
the dynamics of the glacier, small icefall events at these locations are expected. Those types
of events may occasionally reach the Laguna, causing small-scale disturbances, an example
of which was captured by cameras operated by INAIGEM (e.g., small icefall on 5 February
2019 and a snow avalanche on 17 January 2021). However, based on available data it is not
possible to ascertain whether they are single or multiple icefall events. Evaluation of ice
avalanche potential for the Palcaraju glacier, based on our velocity time series indicates
that an imminent failure of a glacier instability was not evident during the observation
period. However, continuous observations, for which our study provides an important
baseline, would be necessary to assess whether the behavior of the glacier changes over
time, and to detect indications for an imminent ice avalanche.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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Abstract: Flash floods are among the most dangerous natural disasters. As climate change and
urbanization advance, an increasing number of people are at risk of flash floods. The application of
remote sensing and geographic information system (GIS) technologies in the study of flash floods has
increased significantly over the last 20 years. In this paper, more than 200 articles published in the last
20 years are summarized and analyzed. First, a visualization analysis of the literature is performed,
including a keyword co-occurrence analysis, time zone chart analysis, keyword burst analysis,
and literature co-citation analysis. Then, the application of remote sensing and GIS technologies
to flash flood disasters is analyzed in terms of aspects such as flash flood forecasting, flash flood
disaster impact assessments, flash flood susceptibility analyses, flash flood risk assessments, and the
identification of flash flood disaster risk areas. Finally, the current research status is summarized, and
the orientation of future research is also discussed.

Keywords: remote sensing; geographic information system; flash floods; visual analysis

1. Introduction

A flash flood is a rapid response to a severe thunderstorm that occurs in a short
period of time (usually only a few minutes) [1]. Rapid snowmelt and sudden releases of
impounded water may also cause flash floods [2]. In recent years, increasingly severe flash
floods have occurred due to increased rainfall caused by climate change [3–5]. Moreover,
the risk of flash floods increases with an increase in the impervious area in a given catch-
ment area. Urbanization and reductions in rural land areas have led to declines in drainage
capacity and increased numbers of flash floods [6]. As population structures change and
the degree of urbanization increases, more people will be exposed to flash floods [7–9].
Many countries have carried out research on flash floods, such as China [10], the United
States [11], Saudi Arabia [1], Egypt [12], and Italy [13].

The current research on flash floods mainly involves flash flood forecasting [14–21],
flash flood disaster impact assessments [22–25], identifications of flash flood hazard ar-
eas [26–35], flash flood susceptibility assessments [36–39], and flash flood risk assess-
ments [40–45]. Therefore, the motivation for our study is to comprehensively review the
major areas related to the application of remote sensing and GIS technologies to flash
flood disasters. Based on the analysis, the literature is classified, the study trends and hot
spots of the current study on the application of remote sensing and GIS to flash floods in
the last 20 years are summarized, and the main scientific progress in the literature is also
summarized. Finally, the whole paper is summarized, commented on, and prospected.
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2. Data and Methods

2.1. Retrieval Strategy

Articles with flash floods and remote sensing as research topics that were published
from 2000 to October 2020 were retrieved, these articles were included in the Web of Science
(WOS) Core Collection. A total of 248 articles were retrieved.

2.2. Literature Visual Analysis

CiteSpace is software developed by Chaomei Chen with an information visualization
function based on the Java environment. Through keywords, authors, institutions, etc., one
can perform visual analysis and generate various knowledge graphs, which can be used
to show current research hotspots and trends to help people better understand research
in a certain field. To date, many people have used CiteSpace for data mining and visual
analysis [46–48]. In this paper, a total of 248 articles were included to generate citation
analysis reports (such as node size, keyword co-occurrence, time zone view, etc.) by
CiteSpace 5.6. R4(64-bit).

(1) First, we conducted a keyword co-occurrence analysis as follows: using the remove
duplicates (WOS) function of CiteSpace to remove duplicates, we merged words
with similar meanings and deleted meaningless words to generate a word cloud
image (keyword co-occurrence network map). The size of the word indicates the
frequency of the keyword, the larger the size of the keyword is, the more frequently
the keyword appears.

(2) Second, we generated a time zone map of keywords appearing in 248 articles, reveal-
ing the dynamic evolution of research hotspots.

(3) Third, we conducted a co-citation analysis of references so that we could obtain
landmark articles in the 248 articles, and could analyze the changes in research trends.
If two articles (A and B) appear in the reference list of the third cited article (C) at the
same time, the two documents constitute a cited relationship. If two articles (A and B)
refer to the same article (C), there is a coupling relationship between the two articles
(A and B).

(4) Fourth, we generated a keyword burst map to find hot words that, in the field of
flash flood research, use remote sensing. We define a keyword with sudden changes
in frequency within a certain period of time as a burst word, which represents the
hotspot of research in that stage.

2.3. Explanation of Visual Map Icons in Maps

(1) Tree ring history: this represents the citation history of an article, and the overall size
of the annual ring reflects the number of times the paper has been cited. The color of
the citation ring indicates the corresponding citation time. The thickness of an annual
ring is proportional to the number of citations in the corresponding time zone.

(2) Node circles: in the author’s coauthored network and the institutional coauthored
network, the size of the node circle represents the number of publications.

(3) In the keyword co-occurrence network, the size of the node circle represents the
frequency of keywords.

(4) Connections between nodes: the connection between nodes indicates that they have a
common copyright or have appeared at the same time, and the color of the connection
indicates the time of the first cooperation or the first common appearance.

(5) Node colors: in the keyword co-occurrence network, the colors of nodes indicate
different years, the color in the center of the node represents the time when the
keyword first appeared, and the thickness of the circle represents the frequency of
the keyword in the corresponding year. The higher the frequency, the more often
it appears.

(6) Cluster#: in this paper, the clusters are based on the generated map, the keywords in
the toolbar are clicked to cluster, and the clusters are marked by the keywords. The
names of the clusters are #0, #1, #2...
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3. Results

3.1. Citation Frequency of Remote Sensing and GIS Applied to Flash Flood

From 2000 to 2020, the citation frequency of articles on remote sensing used in flash
floods increased year by year. Therefore, interest in research hotspots related to flash floods
using remote sensing is increasing year by year (Figure 1).

 
Figure 1. Trends in the citation frequency of the 248 included articles from 2000 to 2020.

Representative examples of highly cited articles: the 5 most cited articles from 248 arti-
cles are selected, listed in Table 1. These articles mainly involve rainfall estimation, methods
of determining flood occurrence, and estimating the risk of flash floods.

The first three of these five highly cited articles are review articles. They are about
radar rainfall estimation, flash flood warning systems, and flash flood forecasting modeling
technology, which are all around the key issues of flash floods. The last two articles both
researched a specific watershed in Egypt and used models to predict locations that are
vulnerable to flash floods. The difference lies in the different models used by the two. The
research of Youssef et al. [49] was conducted in a GIS environment. The amount of data is
greater, the research scope is wider, and the parameters used are greater. The research of
Foody et al. [50] has less data and fewer parameters, so the results obtained are less and
simpler compared to Youssef’s research.

The most cited articles are usually landmarks, they are groundbreaking or forward-
looking. The study performed by Krajewski et al. [51] proposed some suggestions, includ-
ing the establishment of long-term monitoring and verification stations to provide detailed
information about precipitation, and believed that radar rain products have great develop-
ment potential in flash flood forecasting. In recent years, radar has been widely used in
precipitation estimation [7,51,52], confirming the prediction of Krajewski et al. [51] One of
the scientific advances proposed by Borga et al. [53] is integrating multiple early warning
methods, which has not been achieved until now. Whether the flash flood forecasting
methods proposed in each research area can be realized in other areas still needs further
discussion and verification [54]. For areas with similar topography, climate, soil, geology,
land use, land cover, etc., it seems possible to use the same method for risk assessment [41].
Since cities have large impervious areas and a large population, once flash floods occur,
they will cause many economic losses and casualties. Therefore, special attention should
be given to flash flood forecasts in urban areas by Hapuarachchi et al. [7].
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Table 1. Hot spot analysis of highly cited articles, classified from 248 articles using remote sensing to study flash floods.

Author Cite Frequency Title Research Contents

Youssef, AM et al. [49] 177

Flash flood risk estimation
along the St. Katherine road,
southern Sinai, Egypt using

GIS based morphometry and
satellite imagery

The biggest influencing factors of flash
flood disasters and key sensitive zones was
discussed, and a detailed map of the most

dangerous sub-basin was drawn.

Giles M. Foody et al. [50] 89
Predicting locations sensitive

to flash flooding in an arid
environment

The hydrological model was used to
predict the location of sites that are

particularly vulnerable to the threat of
flooding, and peak flow was proven.

W.F. Krajewski et al. [51] 344 Radar hydrology: rainfall
estimation

The problems of radar rainfall product
development and the framework of rainfall

estimation based on reflectivity were
discussed, and the theoretical and practical

requirements of radar rainfall maps and
new radar technology were verified.

Marco Borga et al. [53] 192

Hydrogeomorphic response to
extreme rainfall in headwater

systems: flash floods and
debris flows

The latest research on flash floods and
debris flows was comprehensively

summarized, and the progress in three
areas that will produce important results

were proposed.

H. A. P.
Hapuarachchi et al. [7] 178 A review of advances in flash

flood forecasting

The new modeling techniques and data
used in flash flood forecasting from 2000 to

2010 were introduced.

In Youssef’s research [49], GIS software was used to process remote sensing data, as
well as to address terrain and field data to assess the risk of flash floods. Morphometrics
were used to estimate the risk level of flash floods in the research basin. In subsequent
research, there were a large number of articles that referred to the method in this article for
the evaluation of flash flood hazards [1,41,55,56].

The research of Foody was published in 2004 [50]. The study used hydrological
models to predict locations that are particularly vulnerable to flash floods under limited
data conditions. This result has promoted the development of related fields and has guiding
significance for subsequent research on the use of hydrological models to forecast flash
floods [25,57–60].

3.2. Keyword Co-Occurrence

CiteSpace software was used to analyze the 248 selected articles, the software’s own
remove duplicates (WOS) function was used to remove duplicates; one was selected for
time slicing, the keyword node type was used, and pathfinder and pruning sliced were
selected for the pruning option to improve the network readability networks. After merging
words with the same meaning and deleting meaningless words, keywords with a frequency
of more than five times are retained, and a keyword co-occurrence map was generated, as
shown in Figure 2. The list of the frequency of keywords that appear more than 10 times is
shown in Figure 3.

In Figure 2, the larger the word, the more frequently it appears. In Figure 2, it can be
seen that, in addition to remote sensing and flash floods, the size of GIS, model, rainfall,
risk, and other words is larger. The GIS is a method discovered by Correia et al. [61] that
can be used to integrate and investigate information about flood disasters and is widely
used to reproduce the research results of different cases. This is not surprising. As the
tool most frequently used in the research of flash floods using remote sensing data is
GIS, GIS can provide powerful tools for risk assessment and can integrate a variety of
remote sensing data in the GIS environment. To forecast flash floods and evaluate the risk
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value of flash flood disasters, a variety of models are generated and frequently used. It is
worth noting that, because the digital elevation model (DEM) can be used for hydrological
analysis such as rainfall analysis, inundation analysis, and water system network analysis,
the DEM is the most important factor in the hydrological model used to draw the flash
flood disaster index of the study area [62]. The susceptibility of hydraulic modeling results
was influenced by DEM accuracy [63]. DEM is often used in the study of flash floods [64].

Figure 2. The keyword co-occurrence map.

 

Figure 3. Keywords with more than 10 occurrences in 248 articles.

The most commonly used remote sensing data are Sentinel-1 and radar. People are
paying more attention to flash floods in Egypt. Risk appears more frequently, indicating
that there are more articles on the evaluation of the risk value of flash floods, indicating that
more people are concerned about where flash floods may occur in order to take preventive
measures in advance.

3.3. A Time Zone Map of Keywords

To further explore the dynamic evolution of flash flood research hotspots using remote
sensing from 2000 to 2020, and to understand the key points of international research in
different periods based on the generated keyword co-occurrence map, we use CiteSpace
software and select “Time Zone View” in “Layout” to generate a keyword time zone map,
as shown in Figure 4. (Selected keywords that appear more than five times are displayed
in the figure).

261



Remote Sens. 2021, 13, 1818

The abscissa corresponding to the keyword in the figure indicates the year when it
first appeared. The node colors of red, orange, yellow, green, blue, and purple are 2000 to
2020. The color of the line between the nodes indicates the year when the two keywords
first appeared at the same time. Similar to the color of the node, the line colors of red,
orange, yellow, green, blue, and purple correspond to the years 2000 to 2020.

From Figure 4, we can see that, in the study of flash floods using remote sensing, radar
data have been used in the study of flash floods in 2000 or even before 2000, and since
2018, Sentinel-1 has been frequently used in research, the cumulative number of Sentinel-1
appearing in the article has reached six times in just three years. The images collected by
Sentinel-1 can be used to obtain high-resolution images, regardless of weather conditions,
so that they can be used to monitor floods. The synthetic aperture radar (SAR) data were
collected from the Sentinel-1 sensor. Using SAR images, it can be used to distinguish water
from other objects. Therefore, Sentinel-1 has often been used in the research of flash floods
in recent years [65–68].

 
Figure 4. A time zone map of keywords.

The appearance of keywords in the picture can be roughly divided into five stages.
The first stage was from 2000 to 2005. Keywords such as GIS, model, rainfall, runoff, etc.
that appeared in this stage are still hotspots of current research. GIS as a research tool
is effective and reliable. Research using models is also a common method. Among the
factors that cause flash floods, rainfall is the most common cause of flash floods and has
been studied the most. Soil erosion caused by flash floods has always been a concern. The
second stage is from 2006 to 2009. During this stage, few new research hotspots appeared,
and the research hotspots were mainly focused on the previous stage. The third stage is
from 2010 to 2013. In this stage, climate change, risk, catchment, Egypt, etc. have become
new research hotspots. People are beginning to pay attention to the increasing frequency
of flash floods due to the frequent occurrence of extreme weather such as climate change
and heavy rains [69,70]. Egypt is a typical area suffering from severe flash floods [71–74],
this result is the same as Figure 2, but since 2010, the use of remote sensing to study flash
floods has become popular. The fourth stage is from 2014 to 2015. There are few hot words
in this stage, and the research hotspots are still based on previous research hotspots. In the
fifth stage, from 2016 to 2019, research on basins increased, and the use of morphometric
analysis and Sentinel-1 greatly promoted research on flash floods [65–68,75–77].
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3.4. A Map of Burst Keywords from 248 Articles

Figure 5 lists the five keywords with the highest emergence intensity. From the figure,
we can see that there was no keyword emergence before 2011, which means that before
2011, there were no issues that received more attention in the research on flash floods
using remote sensing data. Egypt has the longest burst time. The increase in research on
Egypt from 2011 to 2015 shows that there were more flash flood disasters in Egypt, and
many places were affected by flash floods. The keyword with the strongest burst intensity
is basin. The emergence time is 2017, and the stop time is 2020. This shows that since
2017, people’s attention to the basin has increased. The burst time closest to the current
burst keyword is uncertainty. The existing hydrological forecast chain is affected by many
uncertain factors [78]. In recent years, with the continuous development of remote sensing
technology, the pursuit of nearly real-time accurate simulation is about to become a global
standard to ensure improved flash flood forecast and warning systems and ensure that
models can be used in more areas and reduce the uncertainty of the model’s output value.
N. S. Bartsotas, Rouya Hdeib, and Hossein Mojaddadi Rizeei reduced the error of satellite
precipitation estimation by optimizing algorithms and calibrating models [79–81].

Figure 5. Keywords with the strongest citation bursts in 248 articles.

3.5. Co-cited Results of Cited References

Clustering analysis of the cited references of 248 articles published from 2000 to 2020,
the results can be divided into 8 clusters, using A (Abstract) to extract nominal terms to
name the clusters. The results are shown in Figure 6: #0 eastern desert, #1 debris flow,
#2 Najran area, #5 flood susceptibility map, #6 flash-flood predictor, #8 ground radar, and
#9 flood susceptibility map.

The color of each cluster block represents the year when the co-citation relationship
first appeared in each cluster. The colors of cluster blocks range from gray to purple, blue,
green, yellow, and red, representing the years from 2000 to 2020. The color of each cluster
block indicates the year when the co-citation relationship first appeared in each cluster.
The connecting line between the nodes indicates the path of the reference. The connecting
lines between the nodes indicate the path being cited, and the color of each line indicates
the time when it was first cited. A few references are highly co-cited, so here, we set a
threshold to show them.

The timeline map reveals changes in reference co-citations over time. According to the
generated cluster diagram (Figure 6), a timeline map of cited references can be generated
by the layout function. The Y-axis is defined as the cluster name defined by A (Abstract),
and the X-axis is defined as the year of publication. The timeline chart shows the time span
and research progress of the development and evolution of the eight clusters, as shown
in Figure 7.
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Figure 6. Reference co-citation network for the 248 included articles (clustered according to in-
dex terms).

Figure 7. Timeline view of the citation trends identified in the 248 included articles.

In the timeline view, the references of the same cluster are placed on the same horizon-
tal line. In the timeline view, the number of references in each cluster can be clearly seen.
More references in the cluster representing the cluster are more important. The cluster
labelling on the right shows the research hotspot category associated with each reference.

The circle in the figure represents the circle of the citation directory tree, the color at the
center of the circle represents the year of the reference publication (the color corresponds
to the year at the top of the view in the figure), and the size of the circle represents the
frequency of citations. The cluster label name on the right indicates the research hotspot
category related to the references in the cluster. Gray represents the earlier publication
year, and red represents the most recent publication year. The longer color line segment
indicates that the citation has a large time span, and its research hotspot is the subject that
people have paid attention to for a long time. The red color at the outermost layer of the
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node’s annual ring indicates that the citation frequency has increased rapidly or continues
to increase rapidly.

Figure 7 shows four highly cited landmark articles, which are authoritative studies in
the corresponding clusters. Research on the eastern desert took a long time, and a landmark
article appeared in this cluster: Youssef et al. [49], which has been introduced before.

Elkhrachy et al. [1] were co-cited 14 times (Figure 8a,b), which is the most co-cited
article among 248 articles. Tehrany et al. [80] were co-cited 10 times (Figure 8c,d), which
is the second most co-cited article among 248 articles. Masoud Bakhtyari Kia et al. were
co-cited six times (Figure 8e,f), and they are very representative articles in the field of flood
susceptibility maps. Elkhrachy et al. [1] provided an accurate assessment by using SPOT
and SRTM DEMs data. The analytical hierarchical process (AHP) was used to determine
the relative impact weight of flash flood causative factors to obtain the composite flood
hazard index (FHI). Finally, all the used data were integrated into ArcMap to generate
the final flood disaster map of the study area. In previous studies, researchers have
proposed many methods to perform flood susceptibility mapping, but these methods have
certain shortcomings. To find a more accurate method, Tehrany et al. [80] proposed a
new integration method that combines weights-of-evidence (WoE) and the support vector
machine (SVM) model, not only solving the shortcomings of WoE but also enhancing the
performance of SVM. The results are compared with the results obtained by using WoE
and SVM alone, and the results obtained through integration are more ideal. Kia et al. [64]
used artificial neural network (ANN) technology, which is one of the machine learning
methods, to develop a flood model using various flood causative factors (including slope,
flow accumulation, rainfall, soil, elevation, geology, and land use) to model and simulate
flood-prone areas in the southern part of peninsular Malaysia. The ANN is more robust
than other statistical and deterministic methods and has high computational efficiency.
However, when using ANN modeling, there may be disadvantages such as errors caused
by the length of the dataset.

Figure 8a,c,e are the pennant diagrams of Elkhrachy et al. [1], Tehrany et al. [80], and
Kia et al. [64], respectively, which can be used to view the information for the references
directly connected to a node. These figures show the distribution of articles that have a
citation relationship with these articles. The closer the position of the reference article
is to the bottom, the more times it has been cited. Figure 8b,d,f show the time trends,
respectively, and show the number of times that Elkhrachy et al. [1], Tehrany et al. [80],
and Kia et al. [64] were co-cited.

Combining Figures 7 and 8, we can see that Elkhrachy et al. [1], Tehrany et al. [80],
and Kia et al. [64] were cited twice in 2016, and then, in 2019–2020, the number of citations
increased suddenly, indicating that in 2016 and from 2019 to 2020, the research on flood
susceptibility maps was relatively concentrated.
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Figure 8. Co-citation status of four representative articles in the #6 flood susceptibility map in
the timeline view. (a,c,e) are the pennant diagrams of Elkhrachy et al. [1], Tehrany et al. [80], and
Kia et al. [64], respectively, which can be used to view the information for the refer-ences directly
connected to a node. (b,d,f) show the time trends, respectively, and show the num-ber of times that
Elkhrachy et al. [1], Tehrany et al. [80], and Kia et al. [64] were co-cited.

4. Main Subfields of Remote Sensing and Geographic Information Systems for
Flash Floods

In the past two decades, due to the continuous development of science and technology,
there have been many subfields in the application of remote sensing and GIS to flash floods.
This article introduces five main subfields of the application of remote sensing and GIS to
flash floods.
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4.1. Flash Flood Forecasting

Since a flash flood may occur suddenly and the time to reach the peak is short,
the accuracy of any early warning of flash floods depends largely on the accuracy of
precipitation monitoring and prediction [14,64].

Accurate and timely measurement of the temporal and spatial distribution of rainfall
is the starting point for flash flood forecasting [64]. Due to the wide coverage of satellites,
satellite data are regarded as an important data source for areas with sparse and uneven
distributions of measurement stations. Satellite data have been widely used in meteorolog-
ical research, and the ability to estimate rainfall directly affects the ability to observe flash
flood time. Table 2 lists six representative studies on the evaluation of satellite precipitation
products in recent years. These studies combined multiple precipitation products and
evaluated them with multiple statistical indicators, abundant precipitation products, and
relatively rich types of research areas covered.

Table 2. For evaluating satellite precipitation products.

Study Product Name Study Area

Haonan Chen et al. [17]

Quantitative precipitation estimation (QPE),
National Weather Service (NWS) single-polarization rainfall

product,
NWS dual-polarization rainfall products

America

N. S. Bartsotas et al. [79] GSMaP (v.7), Climate Prediction Center morphing method
(CMORPH) Ethiopia and Italy

Mohamed Salem Nashwan et al.
[81]

Global Satellite Mapping of Precipitation (GSMaP (v. 6)),
Tropical applications of meteorology using satellite data and

ground-based observations (TAMSAT (v. 3)), Precipitation
estimation from remotely sensed information using artificial neural

networks-cloud classification system (PERSIANN-CCS)

Egypt

Mengye Chen et al. [82]
Multi-radar multi-sensor system (MRMS),

Global Precipitation Measurement Mission (GPM),
National Centers for Environmental Prediction (NCEP)

America

Vincenzo Levizzani et al. [83]

Advanced microwave humidity sounder-unit B (AMSU-B) onboard
the National Oceanic Microwave Humidity Sounder (MHS) on

board the EUMETSAT Metop-A satellite and Atmospheric
Administration (NOAA) polar satellites

The Island of Madeira

Ali Behrangi et al. [84]
Rain estimation using forward adjusted-advection of

microwave estimates (REFAME), REFAMEgeo, PERSIANN,
PERSIANN-CCS

America

The performance of precipitation products was evaluated for arid areas, mountain
areas, and urban areas [17,79,81]. Satellite precipitation products can accurately detect and
estimate extreme precipitation events. There are some uncertainties in the results obtained
by using satellite precipitation products [82,83]. On the one hand, the algorithm can be
optimized, and the inherent deviations in the precipitation calculation can be corrected
to reduce the uncertainty. On the other hand, the integration of high-resolution and
multisource precipitation analysis can be considered to compensate for the deficiency of a
single precipitation product [85].

4.2. Impact of Flash Flood Assessment

The analysis of the disaster area after the occurrence of flash floods can better provide
suggestions for regional development, flood prevention, and disaster reduction [33,86].
Table 3 lists four representative studies about the impact of flash flood assessment, which
describe the impact of flash floods in terms of vegetation, agricultural products, topographic
changes, and land cover.
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Table 3. For impact of flash floods.

Study Analytical Method Factors

Mohammed Sadek et al. [22]

Sentinel-1 and Sentinel-2 satellite data, geolocated
terrestrial photos and GIS technology, and

hydrologic and hydraulic modeling were integrated
to evaluate the impact of flash floods.

Catchment slope, relief ratio, drainage
density, basin ruggedness number, land

cover types

Bilal Ahmad Munir et al. [23]

The hydrological engineering center river analysis
system (HEC-RAS) 2D hydraulic modeling was used
to analyses the impact of flash floods in downstream

Piedmont plains.
Personal computer storm water management model

PCSWMM (hydrologic) and HEC-RAS 5.x
(hydraulic) models were integrated to monitor the

flash flood.

Rainfall, peak events discharge, land use,
land cover, soil, curve number, runoff,

water surface elevation, sub-catchment
width, slope, water depth, dry time, lag

time, storm duration

Takahiro Sayama et al. [24]
The backpack-mounted mobile mapping system

(MMS) was used to investigate and estimate
landform changes.

Ground elevation, inundation depths,
ground height, inundation level, latitude,

sediment, rainfall

Joan Estrany et al. [33]

The meteorological, hydrological, geomorphological,
damage, and risk data analyses were integrated to
damage assessment based on field-based remote

sensing and modeling.

Rainfall, runoff, slope, land use/cover,
soil type

It can be concluded from Table 3 that hydrologic and hydraulic modeling are com-
monly used methods to study the effects of flash floods. Modern remote sensing technology
can already use spaceborne imageries, airborne imageries, and unmanned aerial vehicle
(UAV) systems to quickly and accurately map during or after a flood event. Free satellite
data (Sentinel-2 images) were used to determine the impact of flash floods on Ras Ghareb
city and the Wadi EI-Natryn region in Egypt [22,40]. Landsat-8 and MODIS data were used
to describe the impact of flash floods on rice [87,88], Landsat TM data were used to map
the extent of coastal floodplain flooding [89], and multispectral lkonos data were applied to
a land use/land cover classification [90], all of which are useful for assessing the impact of
flash floods. The combination of UAV data and field surveys can be used as observational
data in conjunction with hydraulic models, which greatly promotes the understanding of
the mechanism of flash floods [91]. Different from other studies, the backpack type MMS
has been proven to be used for post-flood surveys and can ideally reproduce the flooding
situation in mountainous areas [24].

4.3. Identification of Flash Flood Hazard Areas

Typically, due to the remote location of the flash flood area and the harsh weather,
it is difficult to arrive at the scene to analyze the behavior of mountain torrents. In GIS
environments, the most commonly used method involves drawing hazard maps of flash
floods using hydrological and hydrodynamic models [30–33]. Table 4 lists five articles that
use hydrological models or hydraulic models to map flash flood hazards.
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Table 4. For identification of flash flood hazard areas.

Study Analytical Method Factors

Aneesha Satya Bandi et al.
[30]

The multiple-criteria decision-making tools were used to
generate the composite flood hazard index (FHI).

Runoff, type of soil, slope percentage,
surface roughness, flow accumulation,
distance to main channel in the stream

network, land use

Jehan Mashaly et al. [34]
The hydrological model and the fused ASTER

multispectral and ALOS-PALSAR synthetic aperture radar
(SAR) data were combined to predict flash flood hazard.

Surface topology variables, land use,
land cover data, soil texture properties,

curve number, lithology, ground
surface type

Hossein Mojaddadi Rizeei
et al. [35]

A 2D high-resolution sub-grid model was performed to
simulate FF probability and hazard. GIS and

physics-based random forest (RF) models optimized by
particle swarm optimization algorithm (PSO-RF) were

used to model pluvial flash flood (PFF) hazard.

Curvature, SPI, TRI, TWI, DSM, surface
slope, surface runoff, maximum

precipitation intensity, LULC

Mohamed Saber et al. [58] A physics-based distributed hydrological model for flash
floods simulation was proposed.

Rainfall, land use, soil types,
topography, storage amount, inflow,

outflow, curve number, depth of
rainfall, depth of runoff, excess rainfall

Eman Ghoneim et al. [92]
The hydrological response of the study basin to a rainfall
event was explored, and the hydrological model approach
was used to predict flash flood hazard in the research area.

Soil texture, curve number, channel
slope, longest flow path, lag time for

each sub-watershed, rainfall

Hydrological models can be used to predict the spatial ranges, depths, and speeds
of flash flood disasters to determine the areas with high flash flood risks [34]. Two-
dimensional hydrodynamic models are considered to be the most promising model for
accurate flash flood mapping [35], but such models usually require large amounts of
input data. The AHP and soil conservation service curve number (CN) methods are
commonly used methods for drawing flash flood hazard maps. The AHP is used to
assign grades and weights and is usually used to assign weights to the causes of mountain
torrents in the study of flash flood hazards [1,53,93]. The SCS model is commonly used
in distributed hydrological models and research in arid and semiarid regions, which is a
method developed by the U.S. Department of Agriculture (USDA) to estimate runoff and
peak discharge [94]. According to specific circumstances, the hazard factors of flash floods
selected by researchers are not exactly the same, but many hazard factors are recognized as
necessary.

4.4. Flash Flood Susceptibility Assessment

Identifying areas susceptible to flash floods is one of the most effective measures to
reduce losses caused by floods and achieve flood management [95,96]. For large-scale
flash flood susceptibility analysis, machine learning methods, bivariate statistics, and
multicriteria decision-making methods are mainly used [97]. The machine learning method
is considered to be the most advanced and first considered method [36]. Table 5 lists
four representative studies that use machine learning methods, bivariate statistics, and
multicriteria decision-making methods to map susceptibility to flash floods.
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Table 5. For susceptibility mapping of flash flood.

Study Analytical Method Factors

Romulus Costache et al.
[36]

The K-nearest neighbor (kNN) and K-star (KS)
stand-alone models and kNN–AHP and KS–AHP

ensemble models were used to define and calculate FFPI
(flash flood potential index) in flash flood susceptibility

mapping.

Slope, angle, TPI, TWI, curve number,
lithology, profile curvature, plan

curvature, convergence index, modified
Fourier index

Viet-Nghia Nguyen et al.
[37]

The chi-square automatic interaction detector (CHAID)
random subspace, optimized by biogeography-based

optimization (the CHAID-RS-BBO model) was proposed
for the spatial prediction of flash floods.

Land use, land cover, soil type,
lithology, river density, rainfall,

topographic wetness index (TWI),
elevation, slope, curvature, aspect

Khosravi, Khabat et al.
[39].

Three multi-standard decision analysis techniques (vlse
kriterijuska optamizacija I komoromisno resenje (VIKOR),

technique for order preference by similarity to ideal
solution (TOPSIS), and simple additive weighting (SAW)),

and two machine learning methods (naïve Bayes trees
(NBT) and naïve Bayes (NB) were tested for their ability to

model flash flood susceptibility.

NDVI, lithology, land use, distance
from river, curvature, altitude, stream

transport index (STI),
(TWI), SPI, soil type, slope, rainfall

Quang-Thanh Bui et al.
[98]

A hybrid model for susceptibility mapping that combines
swarm intelligence algorithms and deep learning neural

networks was proposed.

Aspect, slope, curvature, TWI, stream
power index (SPI), distance to river,
river density, NDVI, NDBI, rainfall

From Table 5, the conclusion that the flash flood susceptibility mapping technologies
rely on various adjustment factors representing the physical characteristics of the study area
can be obtained. The choice of conditional factors depends on the scale of the studied area
because it is more difficult to obtain data of the same scale or the same resolution. Therefore,
if the study area is larger, the number of factors selected may be smaller, which seems
reasonable. Researchers should select factors for research based on actual conditions. Of
course, using more extensive data and impact factors can more accurately define the flash
flood susceptibility of the study area [99,100]. Land use, slope, rainfall, TWI, and distance to
the river are the most commonly considered factors. Logistic regression, bivariate statistical
analysis, and AHP are the most commonly used methods to calculate factor weights. The
combination of AHP and GIS can also define the flash flood susceptibility zones. The
machine learning method is considered to be the most advanced and first considered
method [101]. The effect of the mixed model is better than that of the single model, as
proven by a large number of examples. The K-nearest neighbor (kNN) and K-star (KS)
stand-alone models and kNN–AHP and KS–AHP ensemble models were used to define
and calculate the FFPI (flash flood potential index) in flash flood susceptibility mapping.
The Bayesian belief network (BBN) model was combined with an extreme learning machine
(ELM) and back propagation (BP) structure to develop a new ensemble learning model
for predicting flash flood susceptibility [102]. This fact has also been emphasized by
Wang et al. [3].

4.5. Flash Flood Risk Assessment

The risk proposed by the United Nations refers to the expected loss of people’s lives,
property, and economic activities caused by a specific natural disaster in a certain area and
a given time period [103]. Therefore, the flash flood risk analysis is obtained by combining
hazard analysis and vulnerability analysis. Different from flash flood susceptibility analysis
and flash flood disaster analysis, some flash flood risk analyses considered the factors
of city and climate change [41–43]. The different geomorphic processes and hydraulic
behaviors of the watershed are controlled by its morphometric characteristics [49]. There-
fore, morphometric analyses are frequently used in flash flood risk analysis [31,44,45].
Table 6 summarizes the representative literature on flash flood risk assessment in terms of
analytical methods and factors.
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Table 6. For flash flood risk assessment.

Study Analytical Method Factors

Ahmed M. Youssef et al.
[43]

The flash flood risk map was generated using GIS based
morphometry and satellite data.

Area, total stream number, total stream
length, elongation ratio, circulation

ratio, shape factor, slope degree, length
of over land flow, ruggedness degree,
relief ratio, drainage density, drainage

frequency, total drainage number

Shuvasish Karmokar et al.
[41]

The flash flood risk map was achieved by the
susceptibility map obtained by analyzing three satellite
images in a GIS environment and using morphometric
parameters to assign the relative susceptibility of flash

floods.

Topography, climatological, soil,
geological, hydrology, land use and

land cover, digitized drainage network,
rainfall, geomorphological map

Ram Nagesh Prasad et al.
[104]

The flash flood risk map was generated by using the
weighted sum analysis (WSA) model results and Snyder

synthetic hydrological parameters.

Basin perimeter, basin length, stream
order, stream length, area, drainage

density, stream frequency, elongation
ratio, circularity ratio, form factor,

shape, basin relief, relief ratio

Sara Abuzied et al. [45]

The Soil Conservation Service (SCS) rainfall-runoff model
was used to estimate the hydrological response of the

catchments, and all risk factors were spatially integrated;
the morphometric and SCS analyses were integrated to

create the risk map.

Basin dimensions, basin shape, basin
surface, drainage network

5. Discussion

In the past 20 years, the application of remote sensing and GIS technology in flash
flood research has made great progress, mainly reflected in the increasingly abundant
multisource remote sensing data sources, GIS strong spatial analysis ability, and coupling
ability with hydrological and hydrodynamic models. However, the uncertainty of the
data and model is still a huge challenge for future research. How to obtain real-time or
quasi-real-time accurate simulations and reduce the uncertainty of data input (such as
precipitation, land use, evaluation unit division, etc.) and model output is the goal of
future research. To date, in many areas, through remote sensing data sources, GIS, and
hydrological coupling models, a large number of studies and analyses have been carried
out on flash flood susceptibility analysis, flash flood disaster impact assessment, and flash
flood hazard identification. Most of the experimental results show that the established or
improved model is effective for the experimental area, but as to whether the model can be
applied in other areas, the universality of the model needs further verification.

For flash flood forecasting, with the development of meteorological satellite technology
and radar-based rainfall forecast technology, more accurate and real-time precipitation data
can be used in flash flood forecasting, and after precipitation data from multiple sources
are acquired, the precipitation data can be corrected via the correction model.

For the impact of flash flood disaster assessment, with the development of data
association analysis and multimodel coupling technology, the impact of flash floods on the
regional ecology and environment can be rapidly and quantitatively assessed.

For flash flood susceptibility assessment, at present, most of the susceptibility zoning
maps belong to static mapping and cannot show the inundation depth and advance
speed. Future studies should combine machine learning with the hydrodynamic model to
complete the dynamic susceptibility mapping of flash flood disasters. Then, a 2D model
will be researched and developed to obtain the inundation depth and advance speed.

For flash flood risk assessment and hazard area identification, mapping flash flood
disaster maps and flash flood risk maps relies on various adjustment factors that represent
the physical characteristics of the study area. Due to the influence of data precision,
data volume, size of the study area, and the authors’ subjective choices, there are some
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differences among the adjustment factors selected in these papers, and the weights of
the adjustment factors are not always the same. Even in regions with similar geological
conditions, whether the adjustment factors selected in other areas can be used and their
weights need to be further discussed and verified. It is hoped that there will be a set of
systematic rules in the future so that adjustment factors and corresponding weights can be
selected for regions with different sizes and different physical characteristics, according to
their conditions, to obtain better results.

6. Conclusions

In this study, the related literature on remote sensing and GIS applied in the field
of flash flood disasters was systematically analyzed. Then, a visualization analysis of
the literature was adopted to perform keyword co-occurrence analysis, time zone chart
analysis, keyword burst analysis, and literature co-citation analysis. Finally, several main
subfields of the application of remote sensing and GIS in flash floods were summarized,
including flash flood forecasting, the impact of flash flood assessment, flash flood suscepti-
bility assessment, flash flood risk assessment, and the identification of flash flood hazard
areas, which makes our study different from the previous review of remote sensing and
geographical information application to natural disasters. The main conclusions are as
follows: (1) through the analysis of the time zone map, the appearance of keywords can be
roughly divided into five stages. (2) Analyzing the burst of keywords in 248 articles, we
found that current research focuses on reducing uncertainty, and reducing the uncertainty
of flash flood forecasting is the basis for real-time accurate simulation. (3) Through the
co-cited analysis of 248 articles, 7 clusters were obtained. Among them, there were three
highly co-cited articles from 2012 to 2015, which are landmark studies. Therefore, from
this review, various applications of remote sensing and GIS in the field of flash floods and
specific opportunities and challenges in different fields can be found.
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Abstract: A catastrophic tailings dam failure disaster occurred in Brumadinho, Brazil on 25 January
2019, which resulted in over 270 casualties, 24,000 residents evacuated, and a huge economic loss.
Environmental concerns were raised for the potential pollution of water due to tailings waste entering
the Paraopeba River. In this paper, a detailed analysis has been carried out to investigate the disaster
conditions of the Brumadinho dam failure using satellite images with different spatial resolutions.
Our in-depth analysis reveals that the hazard chain caused by this failure contained three stages,
namely dam failure, mudflow, and the hyperconcentrated flow in the Paraopeba River. The variation
characteristics of turbidity of the Rio Paraopeba River after the disaster have also been investigated
using high-resolution remote sensing images, followed by a qualitative analysis of the impacts
on the downstream reservoir of the Retiro Baixo Plant that was over 300 km away from the dam
failure origin. It is believed that, on the one hand, the lack of dam stability management at the
maintenance stage was the main cause of this disaster. On the other hand, the abundant antecedent
precipitation caused by extreme weather events should be a critical triggering factor. Furthermore,
the spatiotemporal pattern mining of global tailings dam failures revealed that the Brumadinho dam
disaster belonged to a Consecutive Hot Spot area, suggesting that the regular drainage inspection,
risk assessment, monitoring, and early warning of tailings dam in Consecutive Hot Spot areas still
need to be strengthened for disaster mitigation.

Keywords: hazard chain; turbidity; suspended sediment detection; extreme climate events; tailing
dam risk management; spatiotemporal pattern mining; El Niño

1. Introduction

Tailings are the material left after the valuable parts have been separated from the
uneconomic or low-economic ore. A tailings dam is typically an earth-fill embankment
dam which is usually designed for permanent containment by intercepting valleys or
enclosing lands in order to form a tailings pond used to store metal or non-metal ore-
separation and discharging tailings or other industrial waste residues. Consequently, the
tailings dam is a dangerous source of man-made mudflow with high potential energy. The
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failure of the tailings dam is one of the most dangerous disasters causing serious accidents.
Tailings dams are considered more vulnerable than hydraulic dams due to the lack of
regulations on specific design criteria, stability requirements regarding monitoring during
the construction and maintenance process, and high potential of pollution due to its filled
material (solid waste) [1].

The mining byproducts collected in tailings dams may damage the environment by re-
leasing toxic metals and poisoning the aquatic wildlife that relies on clear water [2]. In past
decades, many researchers have investigated tailings dam failures using different research
methods, e.g., site investigation, numerical simulation, and remote sensing technology. A
field investigation has been proven to be a good method to obtain first-hand data when ac-
cessibility is possible to the disaster site. For example, Macklin et al. [3] collected sediment
samples affected by tailings dam failures to assess the long-term fate and environmental
significance of contaminant metals. Porsani et al. [4] used Ground-Penetrating Radar (GPR)
on an iron mining area after the collapse of the tailings dam I at the Córrego do Feijão Mine
in Brumadinho-MG, Brazil to map bodies, structural buildings, and equipment buried in
the mud. A numerical simulation is another effective means, which can help us understand
the tailing flow characteristics and assess the possible extents of the affected areas [5,6].
With the advance in remote sensing technology, remote sensing has been becoming a more
and more important means of information acquisition in disaster investigation [7–10].
Many scholars have applied remote sensing technology to the study of tailings dam failure
disasters. For example, Silveira et al. [11] used semivariogram indices derived from NDVI
images to obtain an object-based change detection caused by the Mariana dam disaster.
Grenerczy and Wegmüller [12] performed a Persistent Scatterer InSAR (PSI) analysis to
examine the embankment failure of a red mud reservoir. The tailings dam failure is a kind
of disaster which could affect wide areas, especially those along rivers, and different dis-
aster characteristics often appear in different regions. Therefore, different remote sensing
techniques are usually requested to be employed to analyze a series of remote sensing
images to reflect the whole disaster process. In this study, we attempt to make full use of
the available remote sensing images to examine the Brumadinho tailings failure disaster in
order to make people realize the great harm of tailings dam failures. In addition, this paper
demonstrates how RS techniques can be used to characterize and monitor the evolution of
such complex processes, which provides a reference for disaster prevention and mitigation.

2. Background of the Brumadinho Tailings Dam Failure Disaster

Brumadinho is a Brazilian municipality, located near the Paraopeba River at an altitude
of 880 m. It belongs to the microregion of Belo Horizonte, Metropolitana de Belo Horizonte,
Minas Gerais, Brazil (Figure 1). Just after noon on 25 January 2019, the Brumadinho dam
disaster occurred when Dam I (Figures 2 and 3), a tailings dam at the Córrego do Feijão
iron ore mine owned by Vale, 9 km (5.6 mi) east of Brumadinho (Figure 1b), suffered a
catastrophic failure [13].
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Figure 1. Location of Brumadinho dam disaster. (a) Location of the disaster in Brazil; (b) relative
relationship between the disaster location and two reservoirs. Note that in Figure 1b, the position of
two reservoirs were marked using a red box whose extent corresponds to Figure 9a.

 

Figure 2. Video screenshots of the Brumadinho tailings dam failure [14]; (a) 25 January 2019, 12:28:21;
(b) 25 January 2019, 12:28:36; (c) 25 January 2019, 12:28:43; (d) 25 January 2019, 12:28:52 (local time).

In this disaster, at least 248 people were confirmed dead, and 22 missing. Most of
the victims were Vale’s employees. At a railroad branch, in the Córrego do Feijão region,
three locomotives and 132 wagons were buried, and four railway men were missing. Two
sections of the railway bridge (Figure 3) and about 100 m of railway track were also struck
and destroyed by the mud [15]. Due to the potential hazards, about 24,000 residents from
several districts of Brumadinho were evacuated [16]. Many agricultural areas were affected
or totally destroyed, and the local livestock industry suffered damages due to the loss of
animals such as cattle and poultry [17]. In addition, the tailings dam failure spilt about
12 million cubic meters of mud and sludge [18] and some came into and ran along the
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Paraopeba River. The metals in the tailings may be adsorbed by the river sediments or may
pollute the soil in the floodplain, and would end up affecting the region’s ecosystem.

 

Figure 3. Disaster pictures. (a) Aerial view of Brumadinho dam disaster taken at 11:46 on 27 January
2019 [19]; (b) video screenshot of the destroyed railway bridge, 3 km downstream from the collapsed
dam, on 26 January 2019 from YouTube [20]; (c) picture of iron ore railway bridge destroyed by
mudflow taken on 26 January 2019 [21]. Note that the yellow line represents the extents of the areas
affected by the mudflow, the red line represents the railway bridge which was damaged, and the
brown arrow indicates the movement direction of the mudflow.

3. Materials and Methods

3.1. Materials
3.1.1. High-Resolution Remote Sensing Images

Freely available remote sensing (RS) imagery can be used to investigate natural
hazards such as landslides [9,22], debris flows [8,9] and mountain fires [23]. Google Earth is
an important open source of high-resolution remote sensing imagery, and more importantly,
it can provide multi-temporal remote sensing datasets [24–26]. In this study, seven high-
resolution remote sensing images from Google Earth were used to track the movement of
sediment in the channel after the tailings entered the Paraopeba River: Three images at the
confluence of the debris flow gully and the Paraopeba River (collected at different times),
one image at the stage of sediment transport in the river, and three others covering the area
where the river enters the Retiro Baixo reservoir (different times).

3.1.2. Medium-Resolution Remote Sensing Images

Landsat satellite images of National Aeronautics and Space Administration (NASA)
are important medium-resolution image datasets that can be used to investigate natural
hazards. Landsat 8, as an American Earth observation satellite, is the eighth satellite
launched on 11 February 2013 in the Landsat program. It has two sensors including the
Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI consists
of 8 bands with a spatial resolution of 30 m, and a 15-m panchromatic band. The TIRS can
provide 100-m thermal infrared images.

In this study, Landsat 8 images were used to investigate the hazard chain. They were
true color synthesized images of the pre- and post-disaster and released by the researchers
of NASA without copyright protection [27,28]. Landsat 8 images were also used to examine
the sediment concentration of pre- and post-disaster in the reservoirs. Three Landsat 8
images of the pre- and post-disaster (Table 1) were downloaded from the USGS Global
Visualization Viewer (GloVis) website [29], and used to examine the diffusion of waste in
the reservoirs of two hydroelectric plants.
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Table 1. Landsat 8 remote sensing images used for the examination of sediment concentration [29].

Type File Name Resolution Date

Pre-disaster LC08_L1TP_219073_20181220_20181227_01_T1 15/30/100 m (panchro-
matic/multispectral/thermal) 20 December 2018

Post-disaster
LC08_L1TP_219073_20190222_20190222_01_RT 15/30/100 m (panchro-

matic/multispectral/thermal) 22 February 2019

LC08_L1TP_219073_20190427_20190508_01_T1 15/30/100 m (panchro-
matic/multispectral/thermal) 27 April 2019

3.1.3. Global Tailings Dam Failures Database

There are about 3500 active tailings ponds in the world, among which 2000 experience
about two to five known “major” failures, and 35 “minor” failures annually [30]. During
the period from 2007 to 2017, there were at least 10 very serious mine tailings dam failures
involving multiple loss of life, with approximately 20 lives per incident, a release of at least
1 million cubic meters of waste each time, and a travel of 20 km or longer every waste
movement [31]. Based on the world mine tailings failure data with more than 300 records
during the period from 1915 to 2019 [14], a global spatial geographic database of tailings
dam failure was made using ArcGIS. Using the “Natural Break” classification method, the
tailings dam failure records could be divided into five categories (Figure 4).

Figure 4. Tailings dam failures (1915–2019) with their occurrence times.

3.2. Methods
3.2.1. FLAASH Atmospheric Correction and Remote Sensing Image Fusion

Solar radiation needs to pass through the atmosphere before it is collected by satel-
lites [32]. Due to this, remote sensing images include complex information derived from
the atmosphere and the Earth’s surface. As this research is focused on the quantitative
analysis of surface reflectance, we need to mitigate the influence from the atmosphere.
Using the Atmospheric Correction Module, we can compensate for atmospheric effects.

Atmospheric correction can be realized using many available software tools. For
example, the Atmospheric Correction Module in the ENVI software [33] provides two
atmospheric correction modeling tools for retrieving spectral reflectance from multispectral
and hyperspectral radiance images: Quick Atmospheric Correction (QUAC) and Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH). The accuracy of
FLAASH model is higher than that of QUAC model. The application of QUAC model
is simpler than that of FLAASH, and it has less dependence on input parameters and
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calibration accuracy of instruments [34,35]. FLAASH is a first-principle atmospheric
correction tool that corrects wavelengths in the visible through near-infrared and shortwave
infrared regions. In this study, the atmospheric correction of Landsat images was carried
out using the FLAASH tool within the ENVI software [36].

Image fusion in remote sensing has several application domains. An important do-
main is multi-resolution image fusion [37]. Many different multi-resolution image fusion
methods are available with different characteristics [38], including Gram–Schmidt Pan
Sharpening [39], HSV Transformation [40], and Brovey Transformation [41]. Using these im-
age fusion methods, important information from multiple images can be gathered together
to form a new image with both high spatial resolution and multispectral characteristics.
The OLI has two types of images including panchromatic images and multispectral images.
On the basis of comparing different methods, we selected the Gram–Schmidt Pan Sharpen-
ing method to fuse images due to its superiority to maintain spatial texture information,
especially to keep spectral features with high fidelity [42].

3.2.2. Waterbody Extraction

In order to carry out the research of suspended sediment information in the reservoirs,
it is necessary to obtain an accurate extent of the reservoirs. Due to the water spectral
characteristics of the near-infrared band absorbing strongly, but reflecting highly in the
green band (Figure 5), the Normalized Difference Water Index (NDWI) was proposed by
Mcfeeters [43] as follows:

NDWI = (Green − NIR)/(Green + NIR) (1)

where Green and NIR are reflectance factors in green and near-infrared bands, correspond-
ing to Bands 3 and 5 of Landsat 8 imagery. After calculating the NDWI, we used 0 as the
segmentation threshold to extract the water body, and the water body boundaries were
manually extracted in the ArcGIS software.

 
Figure 5. Remote sensing reflectance (Rrs) of clear water (blue), water with chlorophyll content
(green), and water with sediments (orange). The green, red, and NIR bands of Landsat 8 images are
drawn in the above figure. Note that the figure is modified from Sherry’s research [44].

3.2.3. Suspended Sediment Detection

Remote sensing techniques have been widely used to measure qualitative parameters
of water bodies [45], including turbidity [46], chlorophyll-a [47], Colored Dissolved Organic
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matters (CDOM) [48], Secchi disk depth [49], and water temperature [50]. Here, the
concentration of suspended sediment is chosen to examine the degree of waste pollution of
Paraopeba River after the Brumadinho dam disaster. The suspended sediment is one of the
most important water quality parameters, which directly affects the optical properties of
water, such as transparency, turbidity, watercolor, and aquatic ecological conditions [51].
In particular, the level of water turbidity is dependent on the concentration of suspended
sediment in the water body. With the increase of suspended particles, it is more difficult
for light to travel through the water, and as a result the turbidity of the water increases
accordingly. To date, many remote sensing quantitative models have been developed to
monitor suspended sediments in water bodies, and several researchers used both the single
and double band algorithms to calculate the concentration of suspended sediment of the
water body [52–54]. The reflectivity of suspended sediment water is higher in the green
and red bands (Figure 5). According to the above band reflectance characteristics, Wang
et al. [55] proposed the concept of sediment index as follows:

SI = (Green + Red)/(Green/Red) (2)

where SI is the sediment parameter, Green and Red are the reflectance in green and red
bands, corresponding to 30 m resolution bands 3 and 4 of the Landsat 8 OLI image.
Compared with the field-measured data, the correlation coefficient between the measured
data and SI value is 0.89 [55], which shows that this method can directly and quantitatively
reflect the relative concentration distribution of suspended sediments. The following
indicators (Table 2) were used as the criteria to divide different suspended sediment water
bodies (M represents the average, D represents the standard deviation, and MIN represents
the minimum value):

Table 2. Level of sediment concentration in water bodies.

Indicator Criteria Level of Sediment Concentration

SI > M + D High suspended sediments
M < SI ≤ M + D Medium suspended sediments
M − D < SI ≤ M Low suspended sediments

MIN < SI ≤ M − D Clean water

3.2.4. Spatiotemporal Pattern Mining

Spatiotemporal pattern mining is often used to analyze data distribution and patterns
in space and time. The emerging spatiotemporal hot spot analysis regards data cubes as
input and identifies statistically significant hot and cold point trends over time. Using this
method, the spatiotemporal hot spots of tailings dam failure database were analyzed. In
this study, five main hot spots including New Hot Spot, Consecutive Hot Spot, Sporadic
Hot Spot, Oscillating Hot Spot, and No Pattern were detected. Their definitions are listed
in Table 3.

3.3. Technical Route

In order to make the structure of the article clearer, the technical route is shown
in Figure 6. In this study, we made full use of the available remote sensing images to
examine the Brumadinho tailings dam failure disaster. Firstly, we collected different remote
sensing data from different data sources. Secondly, we used the true color remote sensing
images from NASA to investigate the hazard chain along the gully where the dam failure
occurred. Thirdly, considering that the river width is narrow and the medium resolution
remote sensing image cannot meet the needs, we used the multi-temporal high-resolution
remote sensing images from Google Earth to interpret the transport process of waste along
the Paraopeba River. Fourthly, we used the original Landsat 8 images to carry out the
analysis of waste diffusion in the reservoirs. Through the above procedure, the whole
disaster process was clearly recovered using RS techniques. Last but not least, we used
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the global tailings dam failures database to examine tailings-dam-failure trends based on
spatiotemporal pattern mining, and found that this area where the Brumadinho tailings
dam failure occurred belonged to the Consecutive Hot Spot area with a relatively high risk.

Table 3. Definitions of different hot spots [56].

Name Meaning

New Hot Spot
A location that is a statistically significant hot spot for the final
time step, and has never been a statistically significant hot spot

before.

Consecutive Hot Spot A location that is a single uninterrupted run of statistically
significant hot spot in the final time-step intervals.

Sporadic Hot Spot A location that is an on-again then off-again hot spot.

Oscillating Hot Spot
A location that is a statistically significant hot spot for the final

time-step interval with a history of also being a statistically
significant cold spot during a prior time step.

No Pattern Detected A location that does not fall into any of the hot or cold spot
patterns defined above.

 

Figure 6. Technical route.

4. Results

4.1. Hazard Chain Caused by This Event

Hazard chains are the hot topic in the broader realm of natural hazards [57] (e.g.,
earthquake-induced chains [58], glacial-outburst-induced chains [59], and volcano-eruption-
induced chains [60]). In this disaster, the dam released a mudflow of tailings after the
dam failure (Figure 7b-A). The high-speed mudflow struck the mine’s administrative area
(Figure 7b-C) [61], destroyed the railway bridge (Figure 3b,c and Figure 7b-D), and contin-
ued to move downstream. At about 3:50 pm on 25 January 2019, the mud reached and
came into the Paraopeba River (Figure 7b-E). On 27 January 2019, around 5:30 am, sirens
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were sounded for the stability of the mine’s adjacent Dam VI [16] (Figure 7b-B), where
increased water levels were observed.

This hazard chain contained three stages including dam failure, mudflow, and hyper-
concentrated flow with tailings waste (Figure 7b). The occurrence of this hazard chain is
the result of a combination of many factors. Since the tailings contained a certain amount
of water, it created conditions for the mudflow after the tailings dam failure. The tailings
waste entered the river following the original branch channel, which in turn enlarged
the impact of this disaster with extremely high turbidity and metal concentrations, lower
dissolved oxygen, and change of microbial communities which would impact the growth
and reproduction of aquatic creatures [62,63].

Figure 7. Comparison of pre- and post-disaster Landsat 8 images [64]. (a) Pre-disaster remote
sensing image (14 January 2019) [27]; (b) post-disaster remote sensing image (30 January 2019) [28].
A = location of the destroyed tailings dam and the tailings pond “Barragem I” on 25 January 2019.
B = location of tailings pond “Barragem VI” which appeared as an early warning of stability on 27
January 2019. C = location of the destroyed cantina and office buildings. D = location of the destroyed
railway bridge (Figure 3b,c). E = location of the entry point of the mudflow into the Paraopeba River.

4.2. Transport Process of Waste in the Rio Paraopeba River

Through the examination of multi-temporal Google Earth images, the transport pro-
cess of waste in the Paraopeba River can be observed (Figure 8). Comparing Figure 8A-1
with 8A-2, a large amount of waste entered the river several days after the failure, which
might block the river for a certain period. Figure 8A-3 shows that due to the increase
of precipitation in the later period (Figure 13), the water level of the river increased and
eroded a new channel.

Figure 8B-1 shows the location of the waste as of 2 February 2019. It can be observed
that the color of the right river section is vermeil, compared with the left section (red circle).
The length of AB reach is 131.48 km with a height difference of about 60 m. It took less
than a week for the waste to transport from A to B. After the waste entered the Paraopeba
River, the transport speed of waste in the water was affected by many factors, such as
concentration and stream gradients [65,66]. In addition, according to remote sensing images
of Google Earth, it appears that the barrier of some small river dams in the Paraopeba
River might also slow down the movement of the waste. Figure 8B-1 is a true-color image
of tailings in rivers, and the change of water color in the circle position can be observed. In
order to make the watercolor contrast more obvious, considering that the green and red
bands are sensitive to the sediment [67], the ratio between these bands were calculated. As
can be seen in Figure 8B-2, there is an obvious change in water color at the red circle.

285



Remote Sens. 2021, 13, 1775

Figure 8. Transport process of waste in the Paraopeba River. A—1, 2, 3 = images of the entry point of
the mudflow into the Paraopeba River, the yellow lines are used to mark the river boundary; B—1,
2 = images on 2 February 2019 around point B in the Paraopeba River, the watercolor change can be
seen; C—1, 2, 3 = images of the entry point into the Retiro Baixo.

Comparing Figure 8C-1 with 8C-2, the influence of waste on the water body was
obvious after it entered the reservoir of hydropower station—Retiro Baixo. A few months
later, the watercolor recovered due to the deposition of sediments. Based on the analysis of
Figure 8 and multi-temporal Google Earth images, a table of sediment transport time node
was generated (Table 4) in order to make the interpretation of sediment transport clear.

Table 4. Sediment transport time nodes.

Locations
Dates

25 January 29 January 2 February 9 March 15 March 20 June

A A-1 A-2 A-3 Unknown

B B-1 and
B-2

C C-1 C-2 C-3
Note: The brown color indicates that the location exhibits sediments on that specific date, while the blue color
implies that there was no sediment transported to this location or sediments had settled down.
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4.3. Diffusion of Waste in the Reservoirs of Two Hydroelectric Plants

(1) Determination of reservoir boundaries

Using the Atmospheric Correction Module, it can be accurately compensated for atmo-
spheric effects. In this study, the atmospheric correction using the FLAASH model [34,35,68]
was performed and Landsat 8 images were fused using the Gram—Schmidt Pan Sharpening
method [69–72]. After calculating the NDWI using the images after atmospheric correction
and image fusion, zero was used as the segmentation threshold to extract the water body, and
the manual editing was used to complete the extracted water body boundaries in the ArcGIS
software. Figure 9 shows the boundaries of two reservoirs, Retiro Baixo and Três Marias.

Figure 9. (a) Retiro Baixo and Três Marias reservoirs. The larger reservoir on the left is Três Marias,
and the smaller one in the lower right corner is Retiro Baixo (b).

(2) Sediment index used to estimate the level of sediment concentration

The sediment index was obtained using the SI calculating method. Figure 10 shows
the pre- and post-disaster sediment concentrations. Contrasting the area of high sediment
concentration where the river enters into the Retiro Baixo reservoir (Figure 10a–c), it had
a larger area of 3.66 km2 compared with 1.89 km2 on 20 December 2018 and 2.49 km2 on
27 April 2019 with a 2-month interval spanning this disaster. It can be observed that the
sediment plume had a great impact on the reservoir of the Retiro Baixo Plant, over 300 km
from the failure location, while less impact on the reservoir of the Retiro Baixo Plant. This
result is consistent with Vale’s evaluation [73]. It appeared that small river gradients and
obstruction of the reservoir barriers played an important role in slowing down the tailings
waste moving into the São Francisco River. It is not hard to find out that this disaster event
had little impact on the Três Marias reservoir (Figure 10d–f).
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Figure 10. Level of sediment concentration of Retiro Baixo and Três Marias. (a) Level of sediment
concentration of Retiro Baixo on 20 December 2018; (b) level of sediment concentration of Retiro Baixo
on 22 February 2019; (c) level of sediment concentration of Retiro Baixo on 27 April 2019; (d) level of
sediment concentration of Três Marias on 20 December 2018; (e) level of sediment concentration of
Três Marias on 22 February 2019; (f) level of sediment concentration of Três Marias on 27 April 2019.

4.4. Tailings-Dam-Failure Trend Analysis Based on Spatiotemporal Pattern Mining

Using the emerging spatiotemporal hot spot analysis method, it can be found that the
Brumadinho dam disaster in Brazil belongs to the Consecutive Hot Spot area (Figure 11).
This disaster happened 3 years and 2 months after the Mariana dam disaster (5 November
2015), which was considered the worst environmental disaster in Brazil [74,75]. The
Brumadinho and Mariana dam disasters both occurred in Minas Gerais, Brazil, and the two
dams were both owned by Vale, a Brazilian multinational corporation engaged in metals
and mining. Furthermore, based on the world mine tailings failure records [14], tailings
dam failures have been recorded several times in this area. As a result, this area belongs to
the Consecutive Hot Spot area, and the risk of tailings dam failure in this area would be
relatively high if the necessary pond’s management and the engineering safety measures
were not carried out.
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Figure 11. Spatiotemporal hot spot analysis of tailings dam failures. The location of Brumadinho dam disaster is marked
with red circles.

According to Figure 11, New Hot Spots appear in Africa and South America which
belong to developing regions, where the mining industry has been an important economic
pillar in recent years [76,77]. Consecutive Hot Spots mainly lie in Eastern South America
and Western Pacific islands where there are a lot of tailings left by mining, but due to
poor management, tailings failure is easy to occur. The Sporadic Hot Spot is in Southwest
South America and Oscillating Hot Spots mainly lie in Asia and America. China has
many Oscillating Hot Spots and there have been some particularly serious tailings failure
disasters, such as the 8 September 2008 dam break accident in Shanxi [78]. Different hot
spots have different characteristics of disaster occurrences. These characteristics can be
influenced by the mining history, mining features (e.g., man-made or natural), etc. [79–81].
The recommendation is that different hot spots should be treated differently. The areas of
New Hot Spots and Consecutive Hot Spots are the ones that deserve the most attention.
Local governments should adopt appropriate risk management strategies to monitor and
change the trend. The risk assessment and monitoring of tailings reservoirs should be
adopted and implemented. In this regard, some risk assessment and monitoring methods
of mountain disasters can be used as references [82–85].

5. Discussion

5.1. Cause Analysis of This Disaster
5.1.1. Lack of Stability Management during the Maintenance Stage

Some experts believed that Brazil’s weak regulatory structures and regulatory gaps
allowed the dam’s failure [86]. This dam was built in 1976 using the “upstream” method, in
which coarse rubble, compacted soil, and dried tailings were used to build the dam (Figure
12). This is similar to the Fundão dam which failed in November 2015, killing 19 people
and causing an environmental catastrophe, compared with a more expensive and strong
method using solid rocks to contain the waste. The water leak was first observed near its
base in July 2018, and then repairs were carried out [87]. José de Gouveia, the worker of
Vale, said that the dam exhibited a small leak soon after the rainy season, and leaking water
was observed in several places at the bottom [87]. The possible pore pressure build-up
would have resulted in a decrease in effective stress and initiated a failure.
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Figure 12. Cross section of Brumadinho dam “Barragem I” from the west to the east [88,89].

5.1.2. Extreme Weather Effects

In this section, weather effects are examined. Daily precipitation data in Brumadinho
were obtained from the World Weather Online website [90]. It appeared that precipitation
increased the water content of the tailings pond before the dam failure event, increased the
pore pressure, and thus induced failure initiation, which could be an important triggering
factor for the tailings dam collapse (Figure 13). Although there was less rainfall in January
than in February and March 2019, the rainfall in January 2019 sometimes reached the peak
of monthly rainfall in some years from the perspective of multi-year rainfalls (Figure 14).

 

Figure 13. Daily precipitation in Brumadinho during the period from January to March 2019 [90].

Figure 14. Monthly precipitation in Brumadinho during the period from 2009 to 2019 [90].

El Niño and La Niña events are complex weather patterns resulting from variations in
ocean temperatures in the Equatorial Pacific [91]. Their circulation is a global scale climate
oscillation. Generally, the impacts of most El Niño events include above-average rainfalls
in southeastern South America, eastern equatorial Africa, and the southern USA [92].
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Extreme weathers in Brumadinho are linked to El Niño conditions from September to
January typically [93]. A major El Niño event has been recorded since October 2018, and
there were unusual rainfalls before the disaster (Figure 14) [94]. The increase of soil water
content created conditions for the dam instability.

5.2. Lessons Learned and Perceptions about Safety Management of Tailings Ponds

The catastrophic tailings dam failure disaster that occurred in Brumadinho, Brazil
is worthy of reviewing the safety management of tailings ponds in order to reduce the
occurrence of such incidents. Tailings pond management has the characteristics of a heavy
task and wide involvement, and requires the cooperation of different departments and joint
law enforcement. The participation of multiple departments also illustrates that tailings
pond management is a comprehensive and complex task involving disaster, development,
industry, finance and taxation, resources, ecology, water conservancy, meteorology, and
other fields [95–97]. At the same time, the successful completion of this task requires
interdisciplinary integration and close cooperation of the related fields. Based on the above
considerations, the following recommendations are made as a reference:

(1) Set up a joint working group for tailings pond management, and build a unified

management platform, in order to guide tailings pond management. The com-
prehensive management work of tailings ponds involves many departments and
disciplines. Relevant personnel should be selected from each department for the
docking of the management work, and a joint working group should be established
to actively and steadily promote the management work of tailings ponds. In addition,
according to the needs of governance work, researchers from relevant disciplines
of scientific research institutes and universities should be invited to join the joint
working group as consulting experts to carry out academic exchanges. Through
multidisciplinary exchanges and interdisciplinary integration, theoretical support
and technical support could be provided for tailings pond management [98].

(2) Build the basic geographic information database of tailings ponds, and obtain

the basic data of tailings ponds. The geographic database is an effective way to
scientifically organize and manage geographic data. To find out the stock and spatial
distribution of tailings ponds is the premise to realize the comprehensive and efficient
management of tailings ponds in the later period. During the treatment period of
tailings ponds, the number of tailings ponds fluctuates greatly, and some of the
abandoned tailings ponds with a long history and a small size may cause statistical
omissions. Therefore, it is urgent to find out the basic data of tailings ponds through
a detailed investigation and real-time dynamic update and adjustment. Based on
the above problems, remote sensing image interpretation [99], literatures and field
investigation [100], telephone polls, etc. could be used to obtain the location of the
tailings pond, year of construction, condition of use, storage of the pond, height
of the tailings dam, type of tailings, and the geographic database could be used
for the unified organization and management of the above date [101]. Later, a new
investigation information could be used to dynamically update the database.

(3) The sites selection of new tailings ponds should take into consideration many

factors such as safety, ecology, sustainability, and land planning, so as to realize

“whole-chain” planning and guide the whole life cycle of tailings ponds with a

system engineering theory [102,103]. A complete life cycle of the tailings pond
should start from site selection, go through the process of construction, operation
and management, and finally take “reduction” as the end of the mission of a tailings
pond. Therefore, the problems needed to be considered in the planning stage of the
new tailings ponds include: First, whether geological, geomorphic, environmental,
and other factors are suitable for the construction of tailings ponds [104]; second,
whether the tailing dams could meet the relevant standards and requirements [105];
third, how to monitor and simulate the stability in the running stage of the tailings
pond [106,107]; fourth, how to carry out the comprehensive treatment after the tailings
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pond is stopped, the follow-up treatment of tailings, the ecological restoration, and
land use planning of the mining area after the tailings treatment [108,109]. The
above plans finally form a “whole chain” plan, and the system engineering theory
would be introduced into it. On the basis of interdisciplinary integration, the overall
optimal operation of the tailings pond system could guide the entire life cycle of the
tailings pond. During the management of tailings ponds, the problem of tailing pond
failures is the most important part. Such failures are mainly related to geotechnical
engineering. Engineering measures should be taken to evaluate and control the water
content in the reservoir and pore water pressure. To evaluate the slope stability a
range of geotechnical datasets are necessary, including tailing granulometry, hydraulic
conductivity, effective porosity, water level in the pond, and pore pressure under
meteorological stresses. Based on these datasets, hydraulic simulations, followed by
slope stability simulations will lead to the establishment of design requirements.

(4) Integrate multi-discipline to carry out the comprehensive safety assessment of the

built tailings ponds, make clear the management sequence of tailings ponds. The
safety of the tailings pond and its impact on the ecological environment are the
two most concerned issues of the built tailings pond. Therefore, it is necessary to
organize engineering researchers to evaluate the stability of the built tailings pond and
complete the safety risk and ecological risk assessment of the tailings pond together
with ecological researchers [110,111]. Comprehensively considering safety risks and
ecological risks, priority treatment objects for the tailings pond treatment could be
selected in order to improve the utilization efficiency of governance funds [112]. Some
engineering measures to improve the stability of the tailing ponds are necessary, such
as gentle slopes, norms regarding the maximum height of dams, drainage systems
and simulation of their influence on the slope stability, mathematical simulations to
evaluate the slope stability under different meteorological conditions, projects for
closing the ponds, etc.

(5) The study on efficient utilization of tailings ponds should be carried out in order

to clarify the concept that “tailings are the resource in the wrong place”. The defi-
nition of tailing indicates that tailing is the part with a too low content of the target
component to be used in production. With the progress of science and technology
and the improvement of the efficient utilization ability of mineral resources, on the
one hand, the target components in the tailings pond have the possibility of being
re-extracted and utilized. On the other hand, other components in the tailings may
become effective components in other industries and could be utilized. Nowadays,
tailings reuse has made great progress in many aspects, such as heavy separation
of useful materials, production of building materials, production of fertilizers, and
filling of mine goaf [113–115]. The efficient utilization of tailings ponds in the later
stage needs further research and new technology support, but the cognition of tailings
from “waste” to “resource” also needs to be changed.

(6) Mine tailings reservoir potential tourism value, broaden the tourism resources of

industrial heritage. Tailings ponds are the product of the industrial age, but also
the unique brand of the industrial age, with obvious characteristics. Tailings ponds
and their surrounding mining industry remains constitute an organism of history,
technology, society, architecture, and industrial heritage with a scientific value. The
organism becomes a witness of history, and has become one of the important tourism
contents today [116,117]. After transforming, industrial sites can be transformed into
beneficial scenic spots with the function of education. There is a long way for the
transformation of industrial heritages into successful tourism products, but there have
been many successful cases to learn from, such as Ruhr area in Germany [118] and
Beijing 798 Art Zone [119]. The development of industrial heritage tourism resources
of tailings ponds needs the full cooperation of scholars such as planning, tourism, and
heritage protection, and also needs the strong support of government departments.
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6. Conclusions

Tailings reservoir materials are easy to cause harm to the environment, and dam-
failure disasters often occur in production mining areas where there are population and
production equipment. Therefore, the damages caused by such disasters are often more
serious than others, and more attention should be paid. In this study, we carried out a
disaster investigation of the Brumadinho tailings failure event. A detailed analysis of the
Brumadinho tailing dam failure disaster was carried out using medium to high-resolution
satellite images covering the entire affected areas of the event, including the place where
the disaster occurred to the transport of tailings in the river and its impact on downstream
reservoirs. Especially, the research of the diffusion of sediment in the reservoir was done
in order to assess the impact of tailing waste, and discuss whether the waste reached the
dams of two hydroelectric plants: Retiro Baixo and Três Marias or even the São Francisco
River. Different from those caused by common landslides and debris flows, the disasters
caused by the tailings dam failure are more serious and could affect larger areas due to
the tailing waste pollution, and they should be paid more attention. On the other hand,
the impacts of climatic factors on this event were also discussed in order to make people
pay attention to the relationship between extreme weather events and nature disasters.
Most importantly, the temporal and spatial characteristics of tailings dam failure were
analyzed and summarized by building a global tailings dam failure database. The following
conclusions are drawn:

1. The analysis of disaster characteristics revealed that the Brumadinho disaster could be
identified as a hazard chain caused by dam failure, mudflow, and hyperconcentrated
flow. Especially, the tailings made a great impact on the reservoir of the Retiro Baixo
Plant.

2. The Brumadinho disaster is the result of weak regulatory structures and regulatory
gaps. However, the influence of weather factors cannot be ignored.

3. The in-depth analysis and interpretation of rainfall data over 11 years revealed that
the El Niño event which started in 2018 increased the rainfall, and in turn played an
important role and affected the stability of tailings soil.

4. Based on the spatiotemporal analysis of the global tailings dam failure disaster events,
different types of hot spots were found. Different hot spots should be dealt with
different coping strategies.

5. This disaster also shows that the risk assessment, monitoring, and early warning of
tailings ponds in mining areas are necessary for disaster prevention and mitigation.
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Abstract: Forest fires threaten the population’s health, biomass, and biodiversity, intensifying the
desertification processes and causing temporary damage to conservation areas. Remote sensing
has been used to detect, map, and monitor areas that are affected by forest fires due to the fact that
the different areas burned by a fire have similar spectral characteristics. This study analyzes the
performance of the k-Nearest Neighbor (kNN) and Random Forest (RF) classifiers for the classification
of an area that is affected by fires in central Portugal. For that, image data from Landsat-8, Sentinel-2,
and Terra satellites and the peculiarities of each of these platforms with the support of Jeffries–
Matusita (JM) separability statistics were analyzed. The event under study was a 93.40 km2 fire that
occurred on 20 July 2019 and was located in the districts of Santarém and Castelo Branco. The results
showed that the problems of spectral mixing, registration date, and those associated with the spatial
resolution of the sensors were the main factors that led to commission errors with variation between
1% and 15.7% and omission errors between 8.8% and 20%. The classifiers, which performed well,
were assessed using the receiver operating characteristic (ROC) curve method, generating maps that
were compared based on the areas under the curves (AUC). All of the AUC were greater than 0.88
and the Overall Accuracy (OA) ranged from 89 to 93%. The classification methods that were based
on the kNN and RF algorithms showed satisfactory results.

Keywords: k-Nearest Neighbor; Random Forest; fires; Landsat 8; Sentinel 2; Terra; ASTER; MODIS;
burned; mapping

1. Introduction

Forests are subject to a variety of disturbances, which are strongly influenced by
climate change and human activities [1]. Forest disturbance due to fires is a major challenge
for forest management in various ecosystems due to the loss of life and infrastructure,
emissions of greenhouse gases, degradation, soil erosion, and the destruction of species,
biomass, and biodiversity [1–30]. According to the Intergovernmental Panel on Climate
Change (IPCC), climate change tends to increase the risks of major fires on Earth.

Accurate information that is related to the impact of fire on the environment is a key
factor in quantifying the consequences of fires on the landscape, planning and monitoring
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restoration and recovery activities, and providing relevant data for understanding the
dynamics of fire, serving as a basis for future monitoring [31]. After a fire, detailed and
rapid knowledge of the level of damage and its spatial distribution are the first desirable
information. Accurate and complete data on fire sites and burned areas are important for
a variety of applications, including quantifying trends and patterns of occurrences in a
variety of natural and social systems [32–41].

The understanding of fire regimes and forest recovery patterns in different environ-
mental and climatic conditions improves the management of sustainable forests, facilitating
the process of forest resilience, according to Chu and Guo [42].

In the last decades, the use of remote sensing has allowed unprecedented advances
in mapping fire dynamics, mainly to locate the occurrence of fire in time and space, and
to quantify the total extent of the burned area. Several remote sensing studies have been
carried out to map burned areas on a global and regional scale [10,12,38,39,43–56]. In
particular, some authors have studied burned areas in Portugal using remote sensing
techniques by [12,47,49,51–53,57–59].

The availability of well-calibrated global remote sensing data since the late 1990s has
enabled the production of a variety of global and multi-annual products for burned areas,
which are now freely available [60]. Several of these products are based on data from or-
bital sensor systems with different spatial resolutions (coarse, medium, and high), such as:
Operational Land Imager (OLI)/Landsat-8, MultiSpectral Instrument (MSI)/Sentinel-2, Ad-
vanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)/Terra, or Mod-
erate Resolution Image Spectroradiometer (MODIS)/Terra. According to Libonati et al. [61],
the development of a precise algorithm to detect changes in surfaces that are caused by
fires on a global scale is hampered by the complexity, diversity, and high number of
biomes involved. The limitations of estimating burned areas, on a global scale, can be re-
duced with the development of algorithms that consider characteristics, such as vegetation
type, soil, and climate, and where validation and calibration exercises are less complex to
implement [61].

Mapping burned areas using remote sensing techniques is based on post-fire changes
due to the burns [57]. The approaches include supervised and unsupervised classification
techniques at the pixel level. The quality of the classification of the natural environment
is associated with the precision and reliability derived from satellite data, which are
determined by the classification algorithm. This involves the image resolution (pixel,
window, or segment size) that is used in the classification process. To evaluate the classifiers
and obtain thematic precision, it is necessary to take the different classes of forest identified
into account [62]. In the last decades, non-parametric methods, algorithms that are based on
machine learning (MLAs), have gained great attention from applications based on remote
sensing [63,64], although some of them, such as the k-Nearest Neighbor (kNN), have been
used since the 1950’s [65–71]. MLAs have become widely accepted as evidenced by their
use in mapping burned areas [44,46,72]. They perform well in situations that involve
category prediction of spatially dispersed training data and are especially useful when the
process under investigation is complex and/or represented by a high-dimensional input
space [73].

In recent years, Landsat, Sentinel-2, and Terra data have been used in conjunction with
MLAs to distinguish and map fires in different types of biomes, anthropogenic types of land
use (including plantations), and degraded forests ([61,74,75]). Many of the classification
algorithms have been compared with standard products from burned areas and active
fires derived from satellite data, such as MCD64A1 [76], MCD14DL [75], Landsat Burn
Area [77], or Fire_cci [78].

MLAs have also been implemented in satellite data to map fires, examine spectral
properties, accurately delineate the area affected by the fire [79], analyze fire severity [72],
and carry out precision analysis of the product [43,61]. Some of the most common MLAs
for classifying and mapping burned areas include support vector machines (SVM), kNN,
and Random Forest (RF) [80,81]. RF, for example, allows for integrating data from different
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scales and sources, which explains its wide use in many mapping applications based on
satellite images [72]. In particular, several studies show the RF potential that is applied to
satellite images for the detection of forest fires [82–88].

The ability of MLAs to distinguish and map different forest types, which have suffered
varying levels of fire severity and their consequences across the planet, needs to be further
assessed by different orbital sensors. This will support conservation management, being
able to serve in places of different territorial extension. However, it should be noted, that
there are few published studies on the performance of kNN and RF using different orbital
platforms in areas burned by fire at the local scale, especially in Portugal [81,89–92].

In this work, the feasibility of kNN and RF classification algorithms to map areas
that are burned by forest fires in a region of native pine vegetation in the municipalities of
Santarém and Castelo Branco (central Portugal) is evaluated using Landsat-8, Sentinel-2,
and Terra satellite data. The main aims are: (i) to examine the effectiveness of different
remote sensing data sources for delineating the area affected by the fire; (ii) to compare,
while considering the advantages and limitations of the sensors used, the performance
of two MLAs (kNN and RF) that are commonly used to delineate and map forests that
suffered fires; and, (iii) to evaluate the structural and spectral properties of the burned area
and its influence on the classification.

We found that no significant differences in the burned area are obtained with each
algorithm for each image sensor. The classifications carried out using both kNN and
RF algorithms mapped the burned areas with high accuracy for the different sensors,
regardless of the spatial resolutions and the spectral characteristics of each source data.

2. Materials and Methods

2.1. Study Area

Portugal is characterized by a mild Mediterranean climate with climatic variability, in-
volving droughts and desertification in the southern sector, according to Miranda et al. [93].
The majority of burned areas in Portugal (80%) are due to fires, which occur in a small
number of summer days (10%) when the atmospheric circulation forms a prominent ridge
over the Iberian Peninsula with a strong flow to the south [94].

The study area (Figure 1) covers a 93.4 km2 fire that occurred on 20 July 2019 in the
districts of Santarém and Castelo Branco (central Portugal). In this area, the vegetation
of maritime pine and microclimate predominate with prolonged summers, having very
limited rainfall. High temperatures reduce the moisture content of forest fuels, often
resulting in large fires when combined with strong winds [95].

According to Nunes et al. [96], who analyzed a set of 506 fires that occurred in Portugal
in 1991, large fires (greater than 1500 ha) mainly occur in posts of Pinus pinaster, Eucalyptus
globulus Labill., and Eucalyptus/Pine trees mixture, and later by bush. On the other hand,
as these types of vegetation are sowers, which respond to fire through the rapid dispersion
of seeds, post-fire regeneration in the central region of Portugal will crucially depend on
the destruction of seeds that are present on the soil surface during the fire episode [97].
Therefore, it can be predicted that the magnitude of fire damage will play an important
role in the dynamics of vegetation in this region.
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Figure 1. Location of the study area at the Santarém and Castelo Branco discricts of Portugal. The analyzed burned
area is represented on the right map with a brown pattern. At the bottom are two satellite images from Sentinel 2, corre-
sponding to the RGB mosaics of 29 June 2019 (L1C_T29SND_A012075_20190629T112256), before the fire, and 24 July 2019
(L1C_T29SND_A021341_20190724T112448), after the fire.

2.2. Data and Image Processing

In this work, the following multisensor satellite images fully covering the study area,
including Landsat-8, Sentinel-2, and Terra, as well as their spectral bands, were selected
and used to discriminate the area that is affected by the fire in the pixel distribution format
on the digital number (DN) scale:
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(i) A Landsat-8 scene acquired on 1 August 2019 by the OLI sensor (LC08_L1TP_203033_
20190801_20190801, orbit/point: 203/033) with a spatial resolution of 30 m obtained
from the Earth Resources Observation and Science Center of the US Geological Survey
(USGS) [98]. This is a product of level 1T (corrected terrain) and adjusted with the solar
angle with the processing steps described in [99].

(ii) A Sentinel-2 scene acquired on 3 August 2019 through the cloudless MSI sen-
sor (S2A_MSIL1C_20190803T112121_N0208_R037_T29SND_20190803T132806) with 20 m
spatial resolution obtained from the European Space Agency (Copernicus Open Access
Hub). It is a Level 1C Top of Atmosphere (TOA) Reflectance product, which includes
radiometric and geometric corrections (UTM projection with Geodetic Reference System
WGS84), together with orthorectification [100].

(iii) For Terra satellite, one scene acquired on 25 July 2019 by the ASTER sensor. It
is a cloud-free 1T level product with 15 m spatial resolution obtained from the USGS
EROS Center [98]. For ASTER, unfortunately, shortwave infrared (SWIR) bands were not
available for the study region, as they are no longer usable since 2008.

(iv) Additionally, for Terra satellite, one scene was acquired on 28 July 2019 by the
MODIS sensor using the surface reflectance product (product MOD09A1). We also used
the MODIS Terra MOD09A1 (Version 6) product from the Oak Ridge National Laboratory’s
Distributed Active Archive Center (ORNL DAAC) (Global Subset Tool: MODIS/VIIRS
Land Products: https://modis.ornl.gov/cgi-bin/MODIS/global/subset.pl (accessed on
14 February 2021)). This product, with 500 m spatial resolution, provides spectral surface
reflectance of the MODIS 1–7 Terra bands corrected for atmospheric conditions (for example,
gases, aerosols, and Rayleigh scattering) at eight-days interval. For each pixel, a value is
selected from all acquisitions within the eight-day compounding period. The criteria for
choosing the pixel include cloud and solar zenith. When several acquisitions meet the
criteria, the pixel with the minimum value of channel 3 (blue) is used [101].

Table 1 summarizes the bands that were used in this study for the different sensors.
In the case of MSI, an image composition with all bands (10 and 20 m) was performed,
resulting in a product of 20 m of Ground Sampling Distance (GSD).

Table 1. Landsat-8/Operational Land Imager (OLI), Sentinel-2/MultiSpectral Instrument (MSI), Terra/Advanced Space-
borne Thermal Emission and Reflection Radiometer (ASTER), and Terra/Moderate Resolution Image Spectroradiometer
(MODIS) spectral band numbers, wavelength ranges (λ), and spatial resolutions used in this study.

Band
OLI MSI ASTER MODIS

λ (μm) Res. (m) λ (μm) Res. (m) λ (μm) Res. (m) λ (μm) Res. (m)

B1 – – 0.52–0.60 Green 15 –
B2 0.45–0.51 Blue 30 0.45–0.52 Blue 10 0.63–0.69 Red 15 –
B3 0.53–0.59 Green 30 0.54–0.57 Green 10 0.78–0.86 NIR 15 0.45–0.47 Blue 500
B4 0.64–0.67 Red 30 0.65–0.68 Red 10 – 0.54–0.56 Green 500
B5 0.85–0.88 NIR 30 0.69–0.71 Red edge 20 – 1.23–1.25 NIR2 500
B6 1.57–1.65 SWIR1 30 0.73–0.74 Red edge 20 – 1.62–1.65 SWIR1 500
B7 2.11–2.29 SWIR2 30 0.77–0.79 Red edge 20 – 2.10–2.15 SWIR2 500
B8 – 0.78–0.89 NIR 10 – –

B11 – 1.56–1.65 SWIR 20 – –
B12 – 2.10–2.28 SWIR 20 – –

2.2.1. Flowchart

Figure 2 summarizes the classification scheme and analysis followed in this work. Fire
area classification methods using kNN and RF algorithms were used to explain the effects
of different satellite images on both classifiers.
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Figure 2. The flowchart of the methodology used in this study.

The workflow for the supervised classification of burned vegetation using kNN
and RF algorithms was implemented with multispectral images from Landsat 8/OLI,
Sentinel-2/MSI, and Terra (ASTER/MODIS) through training samples using photointer-
pretation features. The classification accuracy was determined making use of validation
data and the results obtained from the analysis of the classification parameters using the
generated confusion matrices. After image composition, the procedure includes the follow-
ing steps: training samples, spectral separability analysis, classification with kNN and RF
algorithms, validation, and accuracy analysis.

2.2.2. Training Samples

The initialization of a supervised classification process requires composite images and
training samples (polygons). The sample polygons selected in the composite images are
used to obtain the burned and unburned areas class descriptors. The training areas were
randomly collected, with 30 polygons with an area of 65 km2 for each class, respecting the
separation limits that are based on the ICNF burned area product.

2.2.3. Separability Analysis

The purpose of the separability analysis was to evaluate the spectral separability in all
of the bands used in the classification of burned and unburned areas and contribute, for
instance, to the decision of which bands have greater classification properties in supervised
classification algorithms. The separability of each pair between classes can be quantitatively
measured by the average distance between the class density distributions of the pairs or
histograms of the values of each band [75]. The Jeffries–Matusita (JM) distance is one of the
most widely criterion used in remote sensing in the field of pattern recognition and feature
selection. In comparison with other separability indices, JM distance has been suggested as
more reliable in separability measures, and also more suitable for less homogeneous main
classes [102]. Therefore, we chose the JM distance to indicate the separability between the
burned and unburned vegetation. It is calculated according to Equation (1), as [103]:

JMij =
√

2(1 − e−B) (1)

where B is the Bhattacharyya distance given by Equation (2), as:

Bij =
1
8
(
μj − μi

)T
[Σi + Σj

2

]−1(
μj − μi

)
+

1
2

ln
|Σi+Σj|

2√
|Σi|

∣∣Σj
∣∣ (2)

For classes i and j, μ is the mean vector of the reflectance values and Σ is the variance-
covariance matrix. Previous research has shown that the JM distance can provide a more
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accurate classification than other distance measures, such as the Euclidean distance or diver-
gence [104]. It ranges between 0 (completely inseparable) and 2 (completely separable) [102].

2.2.4. kNN Classifier

The kNN algorithm proposed by Aha et al. [105] is an instance-based learning method
that classifies elements based on the closest k training samples in the resource space. These
data play important roles in spatial forecasting, in addition to being the main adjustment
parameter of the kNN algorithm. kNN is a common classification tool used in remote
sensing data mining applications [63,105], and it is widely used for mapping burned
areas [106,107]. kNN is a non-parametric MLA, which makes no assumptions regarding
the main data set. This is important when classifying processes of change in territory, such
as floods and fires, for which there is little or no prior knowledge of data distribution. In
kNN, the pixel whose class is unknown is a member of a class, as described by its spectrally
closest neighbors whose class identities are recognized. Figure 3 shows the scheme of the
kNN algorithm.

Figure 3. k-Nearest Neighbor (kNN) classification scheme (a–c).

Initially, the parameter k, which represents the number of closest neighbors, must
be selected. This parameter will direct the number of neighbors. In the case of k = 5 in
a binary group, the five closest points are identified by the Euclidean distance. In this
way, through the shortest distance between the existing k neighbors, which is, the point
to be classified and all points in the data set, it is possible to know which class is most
similar to. Thus, the classification is completed, and the unknown point is classified. The
parameter k plays an important role in the performance of the kNN, being the main kNN
adjustment parameter. In this study, we tested different k values (5 to 20) to select the ideal
parameter for the kNN classifier based on the lowest estimate of the Root Mean Square
Error (RMSE), using different subsets of data. However, in previous studies, as in Cariou
et al. [108] and Noi and Kappas [63], it was revealed that this is not the only criterion for
selecting an appropriate k value because a small or large k value has characteristics that
are suitable for each case. We used SNAP (Sentinel Application Software, ESA) software
for this classification.

2.2.5. RF Classifier

The RF algorithm is based on the creation of several decision trees, combining them to
obtain a more accurate and stable forecast. According to Rodríguez-Galiano et al. [109], the
RF algorithm has advantages in remote sensing area, as it generates an internal unbiased
estimate of the generalization that is represented by the Out of Bag (OOB) error, which is a
way of validating the RF model. Therefore, it is relatively robust for outliers and noise, in
addition to being computationally lighter than other tree set methods. The RF is trained
using bootstrap aggregation, where each new tree is adjusted based on a bootstrap sample
from the training observations. OOB is the average error for each calculated tree using
predictions from trees that do not contain it in their respective bootstrap sample. This
allows for the RF classifier to be adjusted and validated while being trained [110].

The Information Gain Rate criterion [111] and the Gini Index [112] are the attribute
selection measures most frequently used to induce the decision tree. We chose the Gini
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Index, which measures the impurity of an attribute in relation to the classes. For a given T
training set, it randomly selects a case (pixel) and determines the class that it belongs to.

In this work, the RF classification was tested for 10 to 400 trees for the set of images
composed for each sensor. One-third of the training number of trees was used to test the
error that is associated with the predictions, the above-mentioned OOB error. In RF, the
parameter MTRY, the optimal trees at each node, controls the number of variables available
to split at each node of a tree [113]. In this study, a default value was used as provided by
the SNAP software.

2.2.6. Validation and Accuracy Analysis

The validation of remote sensing data is generally based on measurements that were
obtained in field campaigns, which are seen as a reference on site. In many cases, the
validation process is carried out by remote sensing products provided by official institutions
or by sensors with high spectral or spatial resolutions. In this work, the validation product
that was used as a reference was the 2019 annual burned area of the atlas provided by the
National Institute for Conservation of Nature and Forests (ICNF) of Portugal.

The data were made available on the website http://www.icnf.pt/ (accessed on
14 February 2021) in an ESRI shapefile format covering the entire national territory through
the representation of polygons from areas that are affected by fires, coupled with infor-
mation such as area, date, duration, and the cause that started the fire. The elaboration
of the national mapping of the burned areas through the compilation of all geospatial
files comes from semiautomatic classification processes using Landsat, Sentinel, or other
satellite images [114].

The quality of a given thematic map that is derived from remote sensing data is
generally assessed by systematic comparison with other maps also derived from remote
sensing [6]. Quality assessment is generally carried out based on verification measures
derived from confusion matrices [115]. The choice of validation methods and objectives
must be guided by the end use of the products. The cross-tabulation approach is the most
common way to assess thematic accuracy. In this context, the comparison and analysis of
the quality of the burned area maps that were obtained by the kNN and RF classifications
in the different tested sensors were carried out.

The burned area polygon that was obtained by the ICNF map was used as a spatial
reference in this study. The pixel-based analysis was based on a confusion matrix (Table 2).
Following the terminology that was presented by Fawcett [116], the reference data (true
class) will be referred to as positive or negative (burned or unburned). If the instance is
positive (burned) and classified as positive (burned), it will be counted as a true positive
(TP); if it is classified as negative (unburned), it will be counted as false positive (FP).
On the other hand, if the instance is negative (unburned) and it is classified as negative
(unburned), it will be counted as true negative (TN); if it is classified as positive (burned),
it will be counted as false negative (FN) (Table 2).

Table 2. Confusion matrix between the reference product and the burned/unburned classified areas.

Reference Map (True Class)

Burned Unburned Total

Classified Product
Burned TP FN TP + FN

Unburned FP TN FP + TN

Total TP + FP FN + TN TP + FN + FP + TN

The confusion matrices aim to determine the probability of detection of burned areas
in the different sizes of fractions of this area at the study site. This explains the error
inherent in the burned areas due to the difference between the reference product and
the resolutions between the sensor images. According to Cohen [117], the classification
methods are evaluated while using statistical parameters, such as the Omission Error (OE),
Commission Error (CE), Overall Accuracy (OA), and Dice Coefficient (DC).
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OE is related to the producer’s accuracy, which is, when a pixel is classified as un-
burned area being really burned area. CE is related to the user’s accuracy, which is, when a
pixel is attributed to a class of burned area to which it does not really belong. OA is defined
as the fraction of pixels correctly classified as burned or unburned [61]. Finally, DC is a
measure of similarity between the classifier and reference map in terms of the number of
common burned pixels.

OE and CE vary on a reverse scale of (0–100%), where the lowest values indicate the
best estimates. For OA and DC, on the contrary, the largest values indicate the best estimates.

2.2.7. ROC Curve and AUC

The ROC curve has been used in studies of burned areas analysis to verify the general
performance of classifiers and models. The ROC curve and a useful statistic calculated from
it, the area under the curve (AUC), are mainly used to compare diagnostic tests and act
as a performance measure for classifying binary data. The AUC value, as in Equation (3),
shows the success rate of the model through the analysis of the training data set and its
forecast rate for the tested data set.

AUC =
∑ TP + ∑ TN

M + N
(3)

where M and N are the total number of pixels in the burned and unburned areas. An
AUC value that is close to 1 indicates a better performance. An AUC value of 1 indicates
a perfect model, while an AUC value of 0 indicates a poor performance model. Between
these values, the model performance is classified as excellent (0.9–1), very good (0.8–0.9),
good (0.7–0.8), medium (0.6–0.7), and poor (0–0.6).

3. Results

3.1. Spectral Separability Analysis

Table 3 summarizes the JM separability values at the study site, where the burned and
unburned pixels were analyzed for each spectral band used between the OLI, MSI, ASTER,
and MODIS sensors.

Table 3. Jeffries–Matusita (JM) separability values and band for the OLI, MSI, ASTER, and MODIS
sensor bands used in the classification.

Band
JM Separability

OLI MSI ASTER MODIS

B1 – – 0.02 Green –
B2 0.31 Blue 0.39 Blue 0.07 Red –
B3 0.18 Green 0.19 Green 1.84 NIR 0.15 Blue
B4 0.26 Red 0.36 Red – 0.53 Green
B5 1.91 NIR 0.45 Red edge – 1.65 NIR2
B6 0.24 SWIR1 1.82 Red edge – 0.50 SWIR1
B7 0.70 SWIR2 1.83 Red edge – 0.75 SWIR2
B8 – 1.75 NIR – –
B11 – 0.14 SWIR – –
B12 – 0.81 SWIR – –

In general, less separability is observed for the visible bands in all sensors, mainly
for the bands B1 and B2 for ASTER, and especially in the green range for OLI, MSI, and
ASTER, where the bands presented low separability values, with the exception of MODIS,
which presented slightly greater separability in this range.

The near infrared (NIR) is the spectral region where the sign of recent fire scars is the
strongest, being generally considered to be the best spectral region for detection and map-
ping burned areas [118] and, therefore, of crucial contribution to image digital classification
processes. This is seen in the results of Table 3 with the high values of separability in all
sensors, even with some existing spectral and spatial resolution disparities. In addition,
the results corroborate the spectral resolution of the sensors, where the thinner infrared
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range of MODIS and OLI (Table 1) ensured greater separability, very different from the
sparse range of MSI and ASTER, even with a slight difference in the spatial resolution and
methods of pre-processing.

In the visible–NIR transition bands, there was high separability, as shown in bands
B6 = 1.82 and B7 = 1.83 for MSI sensor, except in band B5 = 0.45. However, the band B5
presented low separability, because it is closer to the red band in relation to bands B6
and B7.

The short-wavelength infrared SWIR bands showed low JM separability values.

3.2. kNN Training

In this study, we tested different k values (5 to 20) to select the ideal kNN classifier
parameter for each set of images. The lowest RMSE value was used as a criterion to select
the best k parameter. Thus, despite the low RMSE, from Figure 4 we can see that, after
tests, the k parameter was set to 5. It shows that, the lower the value of k, the higher the
accuracy of the classification.

Figure 4. Evaluation of the performance of the kNN classifier with RMSE in relation to k value.

3.3. RF Training

Figure 5 shows the distribution of OOB errors for a different number of trees from
10 to 400. It is observed that the classification error between the sensors in the same tree
does not change significantly. However, with the increase in the number of trees, the error
decreases considerably. In this study, we used the number of trees that had the lowest OOB
error. It can be seen that 400 is the best value for trees. One of the advantages of using the
RF classifier is its versatility with the processing time, and this can be verified in this work.
The classification performed with 10 trees took 10 s, while for 400 trees it took two minutes,
a moderately acceptable time interval.

Figure 5. Evaluation of the performance of the RF classifier with the Out of Bag (OOB) error in
relation to the number of trees (ntree).
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3.4. Burned Area Analysis

Figure 6 and Table 4 show the pixel distribution and size of the burned area for the
classification provided by the different sensors with both kNN and RF algorithms. The
finer spatial resolution of OLI, MSI, and ASTER showed a burned area with greater spatial
detail, but with less density of features. In turn, the map that was generated by MODIS
presented, as expected, a burned area with less detail at the edges and a high distribution of
overestimated features within the burned area. When comparing the classifiers, the maps
visually showed no significant differences with variations in the burned areas ranging
between 0.36 and 1.43 km2, with the lowest differences being for MODIS (0.36 km2) and the
largest for MSI (1.43 km2). However, they presented important errors in the total burned
area when compared to the ICNF reference map. The errors in the total burned area are not
constant, ranging between 4.3% and 51.1% (Table 4), and being the difference sensitive to
the technical specifications of the images.

Figure 6. Spatial distribution of the burned area for the Random Forest (RF) and kNN classifiers in the OLI, MSI, ASTER,
and MODIS classifications.

Table 4. Size of the burned area obtained with each classifier for each sensor as well as the size of the
burned area in the reference map (INCF), differences between the areas obtained with each classifier,
and errors when compared with the reference map together to the percentage that they represent
with respect to the reference area.

Classifiers

Area (km2)

OLI MSI ASTER MODIS
ICNF

(Reference
Map)

kNN 75.39 76.95 88.02 45.99
93.40RF 76.36 78.38 89.37 45.63

|kNN − RF| 0.97 1.43 1.35 0.36
kNN − ICNF –18.01 (19.3%) –16.45 (17.6%) –5.38 (5.8%) –47.41 (50.8%)
RF − ICNF –17.04 (18.2%) –15.02 (16.1%) –4.03 (4.3%) –47.77 (51.1%)

3.5. Classification Errors

Figure 7 shows the spatial distribution of the OE and CE for the classification of
burned and unburned areas from OLI, MSI, ASTER, and MODIS sensors using the kNN
and RF algorithms.
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Figure 7. Spatial distributions of Omission Error (OE) and Commission Error (CE) for each classification. (a) OLI with kNN,
(b) OLI with RF, (c) MSI with kNN, (d) MSI with RF, (e) ASTER with kNN, (f) ASTER with RF, (g) MODIS with kNN, and
(h) MODIS with RF.

It is observed that, in general, all of the classifications have low CE more frequently
within the perimeter that is affected by the fire, although, for ASTER, there is a significant
presence of missing mixing pixels and CE outside the burned area (Figure 7e,f).

For ASTER images, the classifications present the smallest OE, with a spatial distri-
bution of 8.73 km2 of areas with missing pixels for kNN and 8.19 km2 for RF. In contrast,
despite the lower spatial resolution of MODIS, there was a moderate frequency of missing
pixels within the burned area when compared to the other sensors, which decreased the
sensors OE reaching ~13–14 km2. It is more evident in the upper border, as shown in
Figure 7g,h, the place of transition between burned and unburned areas, which, in turn, is
more susceptible to errors that are caused by low spatial resolution.

3.6. Overall Accuracy (OA)

The differences in areas that were classified as burned in our classifications and the
reference map were the lowest for ASTER (4 km2) and the highest for MODIS (47 km2).

This result is consistent for the images with better spatial resolution and greater
proximity to the date of the reference product, such as OLI, MSI, and ASTER, resulting in a
stable thematic quality. When the time interval between the data is too long, it is difficult
to know exactly what period the pixel finally extracted from the image refers to. This
statement is disconnected from the results that were obtained by the MODIS sensor, which,
despite the proximity of the day of the burning occurrence, its spatial resolution, and its
eight-days compaction form, was an important factor as mentioned above.
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In terms of algorithms, RF was the classification method that presented the smallest
error in the total burned area in relation to the ICFN reference area with values of the order
of 4 to 17 km2 for the finer spatial resolution sensors (Table 4) and good estimates of OA
and DC, as can be seen in Table 5.

Table 5. Values of OA and Dice Coefficient (DC) for the products generated by kNN and RF classifiers
in the different sensors used.

Classifiers Parameters OLI MSI ASTER MODIS

kNN
OA (%) 92.95 93.09 93.62 89.83

DC 0.88 0.88 0.93 0.85

RF
OA (%) 93.24 93.35 93.52 89.45

DC 0.89 0.89 0.93 0.84

The results show that the classification based on kNN and RF for the different sensors
mapped the burned area with a very high accuracy (OA > 89% and DC > 0.8) and without
significant variations in the computed OA and DC values for all of the sensors.

3.7. Algorithms Errors

A ROC curve analysis was performed to graphically assess the sensitivity and speci-
ficity of the classifications carried out. From the analysis of Figure 8, it can be seen that,
as the score point increases, the discriminating power also increases, which is, the curve
is closer to the upper left corner and, consequently, a greater area is obtained below the
ROC curve. In both classifiers, the largest value was recorded for ASTER and the lowest
for MODIS, corroborating the results obtained by the OE and CE.

Figure 8. Receiver operating characteristic (ROC) curve graphs for (a) kNN and (b) RF.

4. Discussion

This study assesses the application of an automatic methodology for mapping burned
areas in Portugal through the supervised classification algorithms kNN and RF using
multispectral satellite images of different technical specifications. The integration of the
use of these images increases the temporal accuracy of imaging a target that is susceptible
to extreme events, which often require intense monitoring.

In this study we show, in detail, the quality, errors, and incompatibilities in the classi-
fication of a burned area at a local scale, which, in turn, can be used to explain phenomena
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of non-resistance (edge effects, unexpected artifacts, or underestimation related to low
intensity fires) that are often propagated or masked when applied on a continental or global
scale. This is widely discussed in Randerson et al. [99] who observed an underestimation
of 4–15% of the burned area missing in global products, slightly below the 30% that is
normally assumed. This underestimation occurs due to the absence or small overlap in the
detection of small fires (<270 ha) derived from different global burned area products. Such
problems are also found in Nogueira et al. [119], Chuvieco et al. [120], and Roteta et al. [56]).
Therefore, our analysis demonstrates the importance of accurate mapping of a burned area
at a local scale, which still remains the most accurate base of reference data in protocols for
validations of global burned area, after evaluation by photointerpretation [121,122] or in
the field [61].

4.1. Separability Analysis

The errors that were found in the classification of burned areas were caused by several
factors, one of which was the spectral similarity of burned areas with other surface elements,
mainly darker bodies, in addition to the technical disparities of the kNN and RF classifiers.
However, the spatial accuracy of the images was the most important agent in reducing the
performance of the products. This behavior can be seen in the maps that are generated by
MODIS sensor, due to its coarse spatial resolution.

The assessment of the ability to detect burned areas was performed using the JM
separability index in the different bands (Equations (1) and (2) and Table 3) and the results
of the confusion matrices represented by OE, CE, OA, DC, and AUC (Figures 7 and 8 and
Table 5).

In agreement with previous studies [123–125], less separability is observed for the
visible bands in all sensors in our results, mainly for the bands B1 and B2 for ASTER [126]
and especially in the green range. This occurred because forest fires affect the leaf structure
and photosynthetic capacity. They also decrease the green pigment of the leaf (chlorophyll)
and increase the brown-yellow pigment (carotenoids, pheophytin, and xanthophyll) [124].
In the visible-NIR transition bands, there was high separability corroborating the studies
conducted by Fernández-Manso et al. [127]. The authors proved that recent fires in healthy
vegetation show a characteristic increase in the reflectance from red to NIR, associated with
variations in chlorophyll content.

The analysis was able to show good discrimination of the burned areas. This ap-
proach improved the spatial homogeneity of the affected areas (even if random) of the
classification thresholds, as shown by the high values of AUC (>0.88), reducing the de-
pendence on having information on land cover, usually used in automatic burned area
algorithms. Although it is important to emphasize that the lack of information on land
use for adapting the algorithms behavior can imply the recurrence of systematic errors,
increasing the uncertainty of the final burned area classification, as shown in Figure 9. As
already mentioned, we note the presence of features that presented spectral behavior that
was similar to the burned area (for example, low reflectance values in the NIR), which can
be caused by topography shadows and changes in land cover not associated with fires,
such as very humid soils. Therefore, it is recommended to take special care in regions
where these characteristics and events occur close to the area that is affected by the fire,
in addition to controlling the photointerpretation with the size of the samples of interest,
especially in applications with sensors of different spatial and spectral resolutions [128].
Thus, as a future study in the study area, assessing the separability for different classes of
land use and the influence of sample size may be a good alternative.
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Figure 9. Visual analysis of the errors presented in the different land cover in the study area: highways (a,b,k,l), pasture
and agriculture (g,h), soil degradation (i,j), and water bodies (c–f).

4.2. Validation Product

The reference mapping that is generated by ICNF proves to be quite efficient in the
generation of geospatial data, providing a database that is rich in accurate information of
the burned areas throughout the national territory and of open access. However, here we
list some advantages and limitations of the product, based on a visual comparison after
the classification process. Initially, we emphasize the thoroughness of the delimitation at
the edges of the burned area that is generated by the ICNF product, in front of a complex
landscape, where the study area is inserted. This could be proven in both product classifiers
that are generated by the MODIS sensor, as expected, with a high frequency of omission
and commission pixels at the edges of the burned area and in urban areas, as shown in
Figure 7. However, according to Mouillot et al. [45], OE and CE found at the edges of
burned areas cannot be strictly seen as false or omitted alarms. For a given level of CE
and OE, it is acceptable as long as both are similar. We can also see that the influence of
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the spatial validation product provided by ICNF was crucial for the errors that are shown
in Figure 7, since this product is based on the 10 m resolution bands of MSI [129], thus
causing the lowest error estimates for the ASTER sensor (15 m) due to its greater proximity
to spatial detail.

Even with the absence of the blue and SWIR bands in the ASTER images, this sensor
showed the highest accuracy parameters in both of the classifiers, although the good results
found in OLI and MSI can be attributed to the use of these bands. Therefore, the 15 m GSD
of ASTER was responsible for this good performance, although its proximity to the date of
the reference mapping must also be taken into account.

4.3. kNN and RF Classifiers

The RF algorithm presented the highest quality values of the classification among all of
the sensors and a greater stability in relation to the data change in the attribution of burned
and unburned classes. This result corroborates the low complexity of its application, low
cost of time, and memory. Despite the variations found in the OOB error with the number of
trees, this parameter may not be very relevant in binary classifications, since the use of two
classes reduces the voting options of each set of trees in the data set. In general, empirically,
the error in the classification with this algorithm depends on the strength of the individual
tree and the correlation between two trees in the forest. Strength can be interpreted as a
performance measure for each tree. Increasing the correlation increases the error rate of
the forest, and increasing the strength of an individual tree decreases the error rate of the
forest, since a tree with a low error rate is a strong classifier. On the other side, reducing
the number of selected random attributes reduces correlation and strength [85,130]. In
our study, we selected 400 trees. In several studies of buried areas by the RF classifier, the
largest number of trees commonly used ranges from 100 to 1500 [83,84,131].

However, kNN, even with accuracy values very close to the RF, mainly in the AUC
parameter, has a direct relationship with the k parameter, time, and memory. Once a k
value is given, more training samples are needed to improve the performance, but more
time and storage memory were needed. In this study, the k value that was based on the
RMSE was used. Therefore, the disparities found in the quality of the mapping of this
classifier can be attributed to other parameters not tested here. The values are consistent
with the studies conducted by Meng et al. [132]. The value of k may not present significant
differences in relation to the final result of the mapping; however, this value directly
influences the processing time. It is worth mentioning that, for k = 5, the processing time
was 0.56 min, while, for k = 20, the time was approximately 70 min. This time interval
depends significantly on the resources of the computer used and are common for kNN
classifications, depending on the size and composition of the data set [133]. Blanzieri and
Melgani [134] show that the best values of k were found empirically below k = 5 using SAR
data, which could be explained by the image filtering applied to the true soil homogeneity.
This indicates that the decrease in k is associated with the registration of optically active
elements in the images. This statement is also related to the location of the pixels to be
classified in relation to the training samples. When the k neighboring pixels are close
enough, the precision will naturally tend to the value very close to the sample pixel set,
consisting of a decrease in time and error.

4.4. Accuracy Analysis

It is observed that, in general, all of the classifications have low CE more frequently
within the perimeter that is affected by the fire, although, for ASTER, there is a significant
presence of missing mixing pixels and CE outside the burned area. This behavior may
be related to the confusion of the classifiers in distinguishing between burned areas and
dark soils with little vegetation. As said, this was quite evident in the classification with
ASTER images, since, for this sensor, only three bands (green, red, and NIR) were used
in the classification, which is, less resources for feature detection, which also favored
the increase of false alarms pixels in relation to the other sensors for both classification
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algorithms, as also found in [59]. This is spectrally true while taking the results found
with OLI and MSI sensors into account because of NIR and SWIR bands used in the
classification probably influenced the presence of low CE. These channels strongly reflect
the spectral signal of change detection in the vegetation state in addition to having high
separability between burned and unburned areas, as shown in Table 3 and in several
works [46,135–137], who also used this region of the spectrum for the separation of burned
areas obtaining satisfactory results. According to Lambin et al. [138], reflectance generally
decreases in the NIR range after the fire event due to the removal of vegetation retained by
water due to the fire. The decrease in brightness is more substantive than in the visible,
which makes the NIR range more suitable for discriminating burned areas. The low CE for
OLI, MSI, and ASTER can be attributed to the higher spatial resolution, since this condition
improves the performance of classifying algorithms mainly in places with homogeneous
and more compact distribution of the burned area [31,139]. For the classifications that were
performed with MODIS, the largest CE of the data series were observed with pixels well
distributed throughout the affected perimeter. In this case, the low spatial resolution of
this sensor was the main cause of the errors, causing a high frequency of underestimated
pixels inside and outside the burned area.

OE, being represented by pixels mistakenly classified as unburned areas, presented
significant and well distributed values on the maps, with emphasis on the east sector of
the burned area in both classifiers. These errors are related to the high frequency of pixels
referring to small urban centers that are inserted in the burned area, which, in turn, were
correctly classified as unburned areas, but, due to problems of pixels spectrally mixed at
the edges of these features, there was a high presence of pixels of burned areas omitted
from their assignment in the classification. This problem was also found in [46,140], who
showed moderate performance in mapping burned areas in optically complex locations,
caused by ambiguity problems in the classification and spectral mixing.

In the western sector, the same problem occurred, but, more frequently, because, in
addition to the housing polygons, agricultural areas also caused confusion in the classifiers.
This directly influenced the results of the spatial distribution of the missing pixels in burned
areas, where both of the sensors presented area variations between 17 and 18 km2 for kNN
classifier and between 16 and 17 km2 for RF, which is, a high frequency of pixels incorrectly
classified as unburned areas.

It is observed that for ASTER images, the classifications presented the smallest OE,
with a spatial distribution of 8.73 km2 of areas with missing pixels for kNN and 8.19 km2

for RF. These values were already expected, since this sensor has the best spatial resolution
of the set of images and, consequently, reduced spectral mixing problems, even using only
visible bands. In addition, the use of ASTER images limited the overestimation of the
burned areas due to the pixel size, most suitable for classifying unburned areas that are
inserted in the investigated fire polygon [141].

In contrast, despite the lower spatial resolution of MODIS, there was a moderate
frequency of missing pixels within the burned area when compared to the other sensors,
which decreased the sensors OE reaching ~13–14 km2. It is more evident in the upper
border, as shown in Figure 9g,h, the place of transition between burned and unburned
areas, which, in turn, is more susceptible to errors that are caused by low spatial resolution.
Another influencing factor can be explained by the process of creating the image composi-
tion of the MODIS sensor with the acquisition of the best pixel within the eight-day period.
The result generates an image with moderate quality once some information is lost.

For the classifications that are generated by the best spatial resolution sensors (OLI,
MSI, and ASTER), errors were found in the different elements of land use in the study
area, for example, in the products generated by the OLI and MSI scenes. We detected a
high frequency of OE on the main highways that cut the area that is affected by the fire,
especially the highways N2 and N244 (Figure 9a,b,k,l), thus showing the limitation of the
ICNF product in the detection of burned areas in these characteristics. In addition, these
errors were also found in the ASTER images, but more frequently in the areas of pasture
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and agriculture with approximately ~0.06–0.1 km2 (Figure 9g,h). However, the reference
product proved to be advantageous in the classification of areas of soil degradation in
kNN and RF classifiers, erroneously classifying these areas as burned areas, as shown in
Figure 9i,j.

Finally, kNN and RF classifiers were not efficient in differentiating water bodies and
burned areas in all sensors, causing several CE pixels, as shown in Figure 9c–f. This result is
in accordance with Roy et al. [74], Palomino-Ángel et al. [142], and Shimabukuro et al. [143],
who reported classification errors in burned areas caused by the spectral similarity with
water bodies.

4.5. OA and Algorithms Errors

Overall, the classifications present good estimates of OA and DC. These OA values are
also related to the correct classification of unburned areas and, for this reason, particular
attention needs to be paid to this parameter, not using it as the only thematic quality
parameter [61]. The high DC values, as summarized in Table 5, show a good performance
in continuous adherence with the reference data for the class of presence of burned area,
even when considering the sensitivity of this parameter to false alarms and missing pixels
shown in the maps of Figure 7.

Although Tanase et al. [144], in studies of burned areas in Tropical Africa, suggested
that temporarily short sample units may underestimate the accuracy of the detection of
burned areas, Schroeder et al. [145] showed, in their studies in the Brazilian Amazon, that
the date of the imaging must be as close as possible with respect to the spatial reference
data, which may have intensified the OE or increased areas with different time on the hour
scale. The methods of detecting changes based on the application of temporal metrics to
assess sudden variations in the pixel signature of moderate and coarse resolution sensors
are gaining importance as better-quality satellite data sets become available [146,147].

In general, ASTER presented the highest values of OA and DC in relation to the values
of the other sensors, because its spatial resolution may have a greater influence in detecting
the details of fire scars. MODIS sensor showed the lowest values of OA and DC of all the
sensors, being, however, large values. These data are important, as they show that even
the low spatial accuracy of MODIS in relation to the reference map as well as OE and CE
greater than 10% did not drastically decrease the estimates of OA and DC, because, with
both classifiers and sensors, the maps were considered to be excellent according to Cohen’s
classification [117]. The same behavior was seen in Lanorte et al. [141], who showed, in
applications of ASTER and MODIS sensors in burned areas in southern Italy, that these
data were efficient in allowing the detection of burned areas and discriminating the severity
of the fire.

The OLI and MSI sensors did not show significant variations in OA and DC, dis-
playing MSI the best results, which is attributed to the low OE that was made in the
classification. An identical result was found in [71,148], who reiterated that the reason why
the classification provided by Sentinel-2 is more accurate than by Landsat 8 is due to the
higher spatial resolution of Sentinel-2 images. Because of this, the burned areas obtained
with the classification process on Landsat-8 may have been overestimated. Other studies
following this approach also found similar OA values, for example, 90% in Axel [149],
79.2% in Liu et al. [75], 95% in Libonati et al. [61], 94.7% in Zhang et al. [150], 99% in
Alonso-Cañas and Chuvieco [46], and 96% in Roy et al. [74].

It is worth noting that both of the classifiers require that choices be made by the
modeler concerning numerous parameters under different performances. In general, the
classifiers based on kNN and RF brought high quality in the classification of burned areas
with AUC values above 0.88, DC above 76%, and OA above 89%, in addition to the ability
to process data efficiently and enable parallel training of the same samples in different
orbital data sets.

Therefore, the results show a statistically significant ROC curve with an AUC varying
between 0.88 and 0.94 for both algorithms, showing that, even in the case of supervised clas-

316



Remote Sens. 2021, 13, 1345

sifications, approximately 90% of the burned areas were well classified by the algorithms
in the different sensors. This result agrees with the initial study by Chou et al. [151], where
the classification improvement was significant when accounting for spatial autocorrelation
in logistic fire probability models in Southern California. Likewise, Siljander [152] found
values of AUC in the order of 0.86–0.94, indicating that the fire classification models that
were responsible for the spatial distribution of the affected areas showed themselves to be
superior in the estimate of burned area on a regional scale when compared with products
of global scale burning. In addition, Dlamini [153] found high precision with AUCs of 0.94
and 0.97 in models of Bayesian networks for data of active fire and burned area in ASTER
images, respectively. The author also stressed the validity of the Bayesian networks and
that the probability estimation based on the data from the burned area can estimate the fire
risk a little better than from the active fire data.

5. Conclusions

Based on kNN and RF classifiers and using Landsat-8, Sentinel-2, and Terra imagery,
a methodology for assessing their performance in the classification of burned areas in a
forest fire occurred in central Portugal is proposed. The main conclusions are as follows:

(i) Less separability is observed for the visible and SWIR bands in all sensors, particu-
larly in the green range, and high separability for NIR region.

(ii) For kNN classification algorithm, k = 5 was found as the best parameter. In the
same line, for RF, 400 trees were selected as an optimal value.

(iii) No significant differences in the burned areas that were obtained with each
classifier for each sensor were found.

(iv) When compared with ICNF validation data, the lower errors in the total burned
area were found in the classifications that were performed with ASTER and the largest
errors with MODIS.

(v) Contrary to expectation, the classification that was performed by OLI had greater
precision but lower accuracy when compared to MSI. In general, high precision and
accuracy were found in the classifications.

(vi) The lowest CE (<5%) were found in the classifications carried out with kNN
and RF in OLI, MSI, and ASTER, and large CE, of the order of 15%, with MODIS, with a
significant presence in ASTER outside the burned areas. Related to OE, significant and
well distributed values were found in all sensors (8–20%), with emphasis on the eastern
sector of the burned area, being the low values for ASTER.

(vii) The classification that was based on kNN and RF for the different sensors mapped
the burned area with a very high accuracy (OA > 89% and DC > 0.8). The results show a
statistically significant ROC curve with an AUC varying between 0.88 and 0.94 for both
classifiers, showing that, even in the case of supervised classifications, approximately 90%
of the burned areas were well classified by the algorithms in the different sensors.

It is possible to observe that the visible, intermediate, and SWIR bands showed low val-
ues of separability, which corresponds to the results that were found by Pereira et al. [118],
who stated that the spectral changes induced by fire in the SWIR are similar to those in the
visible range, since the burned areas are generally more reflective than green vegetation, but
darker than vegetation predominantly in savannas during the dry season. It is important
to note that the SWIR band has the advantage of having low interference with atmospheric
scattering during the scene recording process. Following this premise, there may be no
significant reduction in the spectral contrast of the surface in the images, consequently
resulting in increased separability indices. However, this behavior was not observed in our
experiments.

This methodology can be useful for mapping the burned areas in regions of native
vegetation and the improvement of methods for monitoring the burned areas in Portugal, in
addition to assisting in the management of fire in the region and estimating the impacts that
are generated by it. The availability of detailed information on the spatial and temporal
distributions of the burned areas is currently crucial. Therefore, the applied method
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makes it possible to survey the scars of fires while using geospatial data with the greatest
possible accuracy, assisting in the maintenance of an information bank, serving not only
the management of the territory, but also the comparison with related future events.

In general, the errors that were found in both kNN and RF classifiers can also be
related to the creation of very heterogeneous objects, even in a region with a predominance
of sparse vegetation. Despite the similar results of OE and CE and the differences in the
processing of each algorithm, it was shown that the spectral resolution and, especially the
spatial resolution, is a more important factor in the process of classification of burned areas.
OE and CE are directly linked to the burned areas used as reference mapping, as product
incompatibility can generate low generalization capacity and, consequently, OE and CE
close to 100% as found in Lizundia-Laiola et al. [154].

Finally, this study opens up the possibility of using multiple Earth Observation data to
assess environmental disturbances, increasing the range of possibilities for implementing
these data when, for example, there is no scene or a specific band for a given period or
problems with cloud cover.

Author Contributions: Conceptualization, A.d.P.P., J.A.d.S.J., A.M.R.-A. and R.F.F.H.; Data curation,
A.d.P.P., J.A.d.S.J., A.M.R.-A. and R.F.F.H.; Formal analysis, A.d.P.P., J.A.d.S.J., A.M.R.-A. and R.F.F.H.;
Investigation, A.d.P.P., J.A.d.S.J., A.M.R.-A. and R.F.F.H.; Methodology, A.d.P.P., J.A.d.S.J., A.M.R.-A.
and R.F.F.H.; Supervision, A.d.P.P., J.A.d.S.J., A.M.R.-A. and R.F.F.H.; Validation, A.d.P.P., J.A.d.S.J.,
A.M.R.-A. and R.F.F.H.; Writing—original draft, A.d.P.P., J.A.d.S.J., A.M.R.-A. and R.F.F.H.; Writing—
review & editing, A.d.P.P., J.A.d.S.J., A.M.R.-A. and R.F.F.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Research was supported by PAIUJA-2019/2020 and CEACTEMA from Uni-
versity of Jaén (Spain), and RNM-282 research group from the Junta de Andalucía (Spain). Special
thanks to the four anonymous reviewers for their insightful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Food and Agriculture Organization (FAO). Global Forest Resources Assessment 2010—Main Report; FAO Forestry Paper 163; FAO:
Rome, Italy, 2010. Available online: http://www.fao.org/3/i1757e/i1757e.pdf (accessed on 24 January 2021).

2. Carmenta, R.; Parry, L.; Blackburn, A.; Vermeylen, S.; Barlow, J. Understanding human-fire interactions in tropical forest regions:
A case for interdisciplinary research across the natural and social sciences. Ecol. Soc. 2011, 16, 53–75. [CrossRef]

3. Mabuhay, J.; Nakagoshi, N.; Horikoshi, T. Microbial biomass and abundance after forest fire in pine forests in Japan. Ecol. Res.
2003, 18, 431–441. [CrossRef]

4. Lauk, C.; Erb, K.-H. Biomass consumed in anthropongenic vegetation fires: Global patterns and processes. Ecol. Econ. 2009, 69,
301–309. [CrossRef]

5. Chandra, K.; Bhardwaj, A.K. Incidence of Forest Fire in India and Its Effect on Terrestrial Ecosystem Dynamics, Nutrient and
Microbial Status of Soil. Int. J. Agric. For. 2015, 5, 69–78. [CrossRef]

6. Vicente, F.; Cesari, M.; Serrano, A.; Bertolani, R. The impact of fire on terrestrial tardigrade biodiversity: A first case-study from
Portugal. J. Limnol. 2013, 72, 152–159. [CrossRef]

7. Vandermeer, J.; Perfecto, I. Breakfast of Biodiversity. The Political Ecology of Rain Forest Destruction, 2nd ed.; Food First Books:
New York, NY, USA, 2013.

8. Fearnside, P.M. Biodiveristy as an Environmental Service in Brazil’s Amazonian Forests: Risks, Value and Conservation. Environ.
Conserv. 1999, 26, 305–321. [CrossRef]

9. Griffith, D.M. Agroforestry: A refuge for tropical biodiversity after fire. Conserv. Biol. 2000, 14, 325–326. [CrossRef]
10. Alkhatib, A.A.A. A review of forest fire detection techniques. Int. J. Distrib. Sens. Netw. 2014, 597368. [CrossRef]
11. Bonazountas, M.; Kallidromitou, D.; Kassomenos, P.A.; Passas, N. Forest fire risk analysis. Hum. Ecol. Risk Assess. 2004, 11,

617–626. [CrossRef]
12. Miranda, A.I.; Coutinho, M.; Borrego, C. Forest fire emissions in Portugal: A contribution to global warming? Environ. Pollut.

1994, 83, 121–123. [CrossRef]
13. Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; et al.

The impact of Boreal forest fire on climate warming. Science 2006, 314, 1130–1132. [CrossRef]
14. Dixon, R.K.; Krankina, O.N. Forest fires in Russia: Carbon dioxide emissions to the atmosphere. Can. J. For. Res. 1993, 23.

[CrossRef]

318



Remote Sens. 2021, 13, 1345

15. Gillett, N.A.; Weaver, A.J.; Zwiers, F.W.; Fiannigan, M.D. Detecting the effect of climate change on Canadian forest fires. Geophys.
Res. Lett. 2004, 31, L18211. [CrossRef]

16. Pribadi, A.; Kurata, G. Greenhouse gas and air pollutant emissions from land and forest fire in Indonesia during 2015 based on
satellite data. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 012060. [CrossRef]

17. Matricardi, E.A.T.; Skole, D.L.; Pediowski, M.A.; Chomentowski, W.; Fernandes, L.C. Assessment of tropical forest degradation
by selective logging and fire using Landsat imagery. Remote Sens. Environ. 2020, 114, 1117–1129. [CrossRef]

18. Dahn, C.N.; Candelaria-Ley, R.I.; Reale, C.S.; Reale, J.K.; Van Horn, D.J. Extreme water quality degradation following a
catastrophic forest fire. Freshwater Biol. 2015, 60, 2584–2599. [CrossRef]

19. Pearson, T.R.H.; Brown, S.; Murray, L.; Sidman, G. Greenhouse gas emissions from tropical forest degradation: An underestimated
source. Carbon Balance Manag. 2017, 3. [CrossRef] [PubMed]

20. Morris, S.E.; Moses, T.A. Forest fire and the natural soil erosion regime in the Colorado front range. Ann. Am. Assoc. Geogr. 1987,
77, 245–254. [CrossRef]

21. Kutiel, P.; Inbar, M. Fires impacts on soil nutrients and soil erosion in a Mediterranean pine forest plantation. Catena 1993, 20,
129–139. [CrossRef]

22. Salesa, D.; Minervino Amodio, A.; Rosskopf, C.M.; Garfi, V.; Terol, E.; Cerdà, A. Three topographical approaches to survey soil
erosion on a mountain trail affected by a forest fire. Barranc de la Manesa, Llutxent, Eastern Iberian Peninsula. J. Environ. Manag.
2020, 264, 110491. [CrossRef]

23. Fernández, C.; Vega, J.A.; Jiménez, E.; Fonturbel, T. Effectiveness of three post-fire treatments at reducing soil erosion in Galicia
(NW Spain). Int. J. Wildland Fire 2011, 20, 104–114. [CrossRef]

24. Myronidis, D.I.; Emmanouloudis, E.A.; Mitsopoulos, I.A.; Riggos, E.E. Soil erosion potential after fire and rehabilitation treatments
in Greece. Environ. Model. Assess. 2010, 15, 239–250. [CrossRef]

25. Kozlowski, T.T. Fires and Ecosystems; Academic Press, Inc.: Cambridge, MA, USA, 1974.
26. Cochrane, M.A.; Schulze, M.D. Fire as a recurrent event in tropical forests of the eastern Amazon: Effects on forest structure,

biomass, and species composition. Biotropica 1999, 31, 2–16. [CrossRef]
27. Wallenius, T.; Niskanen, L.; Virtanen, T.; Hottola, J.; Brumelis, G.; Angervouri, A.; Julkumen, J.; Pihiström, M. Loss of hábitats,

naturalness and species diversity in Eurasian forest landscapes. Ecol. Indic. 2010, 10, 1093–1101. [CrossRef]
28. Bowman, D.M.J.S.; Murphy, B.P.; Boer, M.M.; Bradstock, R.A.; Cary, G.J.; Cochrane, M.A.; Fensham, R.J.; Krawchck, M.A.; Price,

O.F.; Williams, R.J. Forest fire management, climate change, and the risk of catastrophic carbon losses. Front. Ecol. Environ. 2013.
[CrossRef]

29. Bonazountas, M.; Kalidromitou, D.; Kassomenos, P.; Passas, N. A decision support system for managing forest fires casualties. J.
Environ. Manag. 2007, 84, 412–418. [CrossRef]

30. Diakakis, A.; Xanthopoulos, G.; Gregos, L. Analysis of forest fire fatalities in Greece: 1977–2013. Int. J. Wildland Fire 2016, 25,
797–809. [CrossRef]

31. Polychronaki, A.; Gitas, I.Z. Burned Area Mapping in Greece Using SPOT-4 HRVIR Images and Object-Based Image Analysis.
Remote Sens. 2012, 4, 424–438. [CrossRef]

32. Chuvieco, E.; Yue, C.; Heil, A.; Mouillot, F.; Alonso-Canas, I.; Padilla, M.; Pereira, J.M.; Oom, D.; Tansey, K. A new global burned
area product for climate assessment of fire impacts. Glob. Ecol. Biogeogr. 2016, 25, 619–629. [CrossRef]

33. Domenikiotis, C.; Loukas, A.; Dalezios, N.R. The use of NOAA/AVHRR satellite data for monitoring and assessment of forest
fires and floods. Nat. Hazards Earth Syst. Sci. 2003, 3, 115–128. [CrossRef]

34. San Miguel Ayanz, J.; Barbosa, P.; Schmuck, G.; Liberta, G.; Schulte, E. Towards a coherent forest fire information system in
Europe: The European Forest Fire Information System (EFFIS). In Environmental Monitoring in the South-Eastern Mediterranean
Region Using RS/GIS Techniques; Gitas, I.Z., San Miguel Ayanz, J., Eds.; CIHEAM Options Méditerranéennes: Série B; Etudes et
Recherches: Chania, Greece, 2003; Volume 46, pp. 5–16.

35. Gutiérrez, E.; Lozano, S. Avoidable damage assessment of forest fires in European countries: An efficient frontier approach. Eur. J.
For. Res. 2013, 132, 9–21. [CrossRef]

36. Souza, C.M.; Roberts, D.A.; Cochrane, M.A. Combining spectral and spatial information to map canopy damage from selective
logging and forest fires. Remote Sens. Environ. 2005, 98, 329–343. [CrossRef]

37. Plank, S. Rapid damage assessment by means of multi-temporal SAR—A comprehensive review and outlook to Sentinel-1.
Remote Sens. 2014, 6, 4870–4906. [CrossRef]

38. Sunar, F.; Özkan, C. Forest Fire Analysis with Remote Sensing Data. Int. J. Remote Sens. 2001, 22, 2265–2277. [CrossRef]
39. Novo, A.; Fariñas-Álvarez, N.; Martínez-Sánchez, J.; González-Jorge, H.; Fernández-Alonso, J.M.; Lorenzo, H. Mapping forest fire

risk—A case study in Galicia (Spain). Remote Sens. 2020, 12, 3705. [CrossRef]
40. Adaktylou, N.; Stratoulias, D.; Landenberger, R. Wildfire risk assessment based on geospatial open data: Application on Chios,

Greece. ISPRS Int. J. Geo-Inf. 2020, 9, 516. [CrossRef]
41. Chuvieco, E.; Congalton, R.G. Mapping and inventory of forest fires from digital processing of tm data. Geocarto Int. 2008, 3,

41–53. [CrossRef]
42. Chu, T.; Guo, X. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest

Regions: A Review. Remote Sens. 2014, 6, 470–520. [CrossRef]

319



Remote Sens. 2021, 13, 1345

43. Pereira, A.A.; Pereira, J.M.C.; Libonati, R.; Oom, D.; Setzer, A.W.; Morelli, F.; Machado-Silva, F.; De Carvalho, L.M.T. Burned Area
Mapping in the Brazilian Savanna Using a One-Class Support Vector Machine Trained by Active Fires. Remote Sens. 2017, 9, 1161.
[CrossRef]

44. Loboda, T.V.; Hoy, E.E.; Giglio, L.; Kasischke, E.S. Mapping burned area in Alaska using MODIS data: A data limitations-driven
modification to the regional burned area algorithm. Int. J. Wildland Fire 2011, 20, 487–496. [CrossRef]

45. Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten years of global burned area products from
spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. Int. J. Appl. Earth
Obs. Geoinf. 2014, 26, 64–79. [CrossRef]

46. Alonso-Canas, I.; Chuvieco, E. Global Burned Area Mapping from ENVISAT-MERIS data. Remote Sens. Environ. 2015, 163,
140–152. [CrossRef]

47. Llorens, R.; Sobrino, J.A.; Cristina Fernández, C.; Fernández-Alonso, J.M.; José, J.V. A methodology to estimate forest fires burned
areas and burn severity degrees using Sentinel-2 data. Application to the October 2017 fires in the Iberian Peninsula. Int. J. Appl.
Earth Obs. Geoinf. 2021, 95, 102243. [CrossRef]

48. Arellano, S.; Vega, J.A.; Rodríguez y Silva, F.; Fernández, C.; Vega-Nieva, D.; Álvarez-González, J.G.; Ruiz-González, A.D.
Validación de los índices de teledetección dNBR y RdNBR para determinar la severidad del fuego en el incendio forestal de
Oia-O Rosal (Pontevedra) en 2013. Rev. Teledetección 2017, 49, 49–61. [CrossRef]

49. Teodoro, A.; Amaral, A. A Statistical and Spatial Analysis of Portuguese Forest Fires in Summer 2016 Considering Landsat 8 and
Sentinel 2A Data. Environments 2019, 6, 36. [CrossRef]

50. Huesca, M.; de Miguel, S.M.; Alonso, F.G.; García, C.V. An intercomparison of satellite burned area maps derived from MODIS,
MERIS, SPOT-VEGETATION and ARST images. An application to the August 2006 Galicia (Spain) forest fires. For. Syst. 2013, 22,
222–231. [CrossRef]

51. Brown, A.R.; Petropoulos, G.P.; Ferentinos, K.P. Appraisal of the Sentinel-1 & 2 use in a large-scale wildfire assessment: A case
study from Portugal’s fires of 2017. Appl. Geogr. 2018, 100, 78–89. [CrossRef]

52. Navarro, G.; Caballero, I.; Silva, G.; Parra, P.C.; Vázquez, A.; Caldeira, R. Evaluation of forest fire on Madeira Island using
Sentinel-2A MSI imagery. J. Appl. Earth Obs. Geoinf. 2017, 58, 97–106. [CrossRef]

53. Oliveira, S.L.; Pereira, J.M.; Carreiras, J.M. Fire frequency analysis in Portugal (1975–2005), using Landsat-based burnt area maps.
Int. J. Wildland Fire 2012, 21, 48–60. [CrossRef]

54. Vallejo-Villalta, I.; Rodríguez-Navas, E.; Márquez-Pérez, J. Mapping forest fire risk at a local scale—A case study in Andalusia
(Spain). Environments 2019, 6, 30. [CrossRef]

55. Fernández, A.; Illera, P.; Casanova, J.L. Automatic mapping of surfaces affected by forest fires in Spain using AVHRR NDVI
composite image data. Remote Sens. Environ. 1997, 60, 153–162. [CrossRef]

56. Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a Sentinel-2 burned area algorithm: Generation of a
small fire database for sub-Saharan Africa. Remote Sens. Environ. 2019, 222, 1–17. [CrossRef]

57. Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; Miguel, J.; Tanasse, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.;
et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens.
Environ. 2019, 225, 45–64. [CrossRef]

58. Teodoro, A.C.; Amaral, A. Evaluation of forest fires in Portugal mainland during 2016 summer considering different satellite
datasets. In Proceedings of the SPIE 10421, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIX, Warsaw, Poland, 2
November 2017; 104211R. [CrossRef]

59. Panisset, J.; Dacamara, C.C.; Libonati, R.; Peres, L.F.; Calado, T.J.; Barrios, A. Assigning dates and identifying areas affected by
fires in Portugal based on MODIS data. An. Acad. Bras. Ciênc. 2017, 89. [CrossRef]

60. Humber, M.L.; Boschetti, L.G.; Giglio, L.; Justice, C.O. Spatial and temporal intercomparison of four global burned area products.
Int. J. Digit. Earth 2019, 12, 460–484. [CrossRef]

61. Libonati, R.; Dacamara, C.C.; Setzer, A.W.; Morelli, F.; Melchiori, A.E. An Algorithm for Burned Area Detection in the Brazilian
Cerrado Using 4 μm MODIS Imagery. Remote Sens. 2015, 7, 15782–15803. [CrossRef]

62. Kleinn, C.; Corrales, L.; Morales, D. Forest area in Costa Rica: A comparative study of tropical forest cover estimates over time.
Environ. Monit. Assess. 2002, 73, 17–40. [CrossRef]

63. Noi Thanh, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land
Cover Classification Using Sentinel-2 Imagery. Sensors 2018, 18, 18. [CrossRef]

64. Tomppo, E.; Haakana, M.; Katila, M.; Perasaari, J. Multi-Source National Forest Inventory. Methods and Applications; Springer: Berlin,
Germany, 2008; Volume 18. [CrossRef]

65. Fix, D.; Hodges, J.L. Discriminatory Analysis, Nonparametric Discrimination: Consistency Properties; Technical Report 4; USAF School
of Aviation Medicine: Randolph Field, TX, USA, 1951.

66. Moeur, M.; Stage, A.R. Most similar neighbor: An improved sampling inference procedure for natural resource planning. For. Sci.
1995, 41, 337–359.

67. Franco-Lopez, H.; Ek, A.R.; Bauer, M.E. Estimation and mapping of forest stand density, volumen, and cover type using the
k-nearest neighbors method. Remote Sens. Environ. 2001, 77, 251–274. [CrossRef]

68. McRoberts, R.E.; Tomppo, E.O. Remote sensing support for national forest inventories. Remote Sens. Environ. 2007, 110, 412–419.
[CrossRef]

320



Remote Sens. 2021, 13, 1345

69. Ohmann, J.L.; Gregory, M.J. Predictive mapping of forest composition and structure with direct gradient analysis and nearest-
neighbor imputation in coastal Oregon, U.S.A. Can. J. For. Res. 2002, 32, 725–741. [CrossRef]

70. Wulder, M.A.; Franklin, S.E.; White, J.C.; Linke, J.; Magnussen, S. An accuracy assessment framework for large-area land cover
classification products derived from medium-resolution satellite data. Int. J. Remote Sens. 2006, 27, 663–683. [CrossRef]

71. Halperin, J.; LeMay, V.; Coops, N.; Verchot, L.; Marshall, P.; Lochhead, K. Canopy cover estimation in miombo woodlands of
Zambia: Comparison of Landsat 8 OLI versus RapidEye imagery using parametric, nonparametric, and semiparametric methods.
Remote Sens. Environ. 2016, 179, 170–182. [CrossRef]

72. Ramo, R.; García, M.; Rodríguez, D.; Chuvieco, E. A data mining approach for global burned area mapping. Int. J. Appl. Earth
Obs. Geoinf. 2018, 73, 39–51. [CrossRef]

73. Kanevski, M.A.; Pozdnoukhov, V. Machine Learning for Spatial Environmental Data: Theory Applications and Software; CRC Press:
Boca Raton, FL, USA, 2009; 368p.

74. Roy, D.P.; Huang, H.; Boschetti, L.; Giglio, L.; Yan, L.; Zhang, H.H.; Li, Z. Landsat-8 and Sentinel-2 burned area mapping—A
combined sensor multi-temporal change detection approach. Remote Sens. Environ. 2019, 231, 111254. [CrossRef]

75. Liu, J.; Heiskanen, J.; Maeda, E.E.; Pellikka, P.K.E. Burned area detection based on Landsat time series in savannas of southern
Burkina Faso. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 210–220. [CrossRef]

76. Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and
product. Remote Sens. Environ. 2018, 217, 72–85. [CrossRef]

77. Stroppiana, D.; Bordogna, G.; Carrara, P.; Boschetti, M.; Boschetti, L.; Brivio, P. A method for extracting burned areas from
Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and a region growing algorithm. ISPRS J. Photogramm.
Remote Sens. 2012, 69, 88–102. [CrossRef]

78. Fornacca, D.; Ren, G.; Xiao, W. Performance of Three MODIS Fire Products (MCD45A1, MCD64A1, MCD14ML), and ESA
Fire_CCI in a Mountainous Area of Northwest Yunnan, China, Characterized by Frequent Small Fires. Remote Sens. 2017, 9, 1131.
[CrossRef]

79. Smiraglia, D.; Filipponi, F.; Mandrone, S.; Tornato, A.; Taramelli, A. Agreement Index for Burned Area Mapping: Integration of
Multiple Spectral Indices Using Sentinel-2 Satellite Images. Remote Sens. 2020, 12, 1862. [CrossRef]

80. Singh, M.; Evans, D.; Chevance, J.; Tan, B.S.; Wiggins, N.; Kong, L.; Sakhoeun, S. Evaluating remote sensing datasets and machine
learning algorithms for mapping plantations and successional forests in Phnom Kulen National Park of Cambodia. PeerJ 2019,
7, e7841. [CrossRef]

81. Rishickesh, R.; Shahina, A.; Khan, A.N. Predicting forest fires using supervised and ensemble machine learning algorithms. Int. J.
Recent Technol. Eng. 2019, 8, 3697–3705. [CrossRef]

82. Yao, J.; Raffuse, S.M.; Brauer, M.; Williamson, J.; Bowman, D.M.J.S.; Johnston, H.; Henderson, S.B. Predicting the minimum height
of forest fire smoke within the atmosphere using machine learning and data from the CALIPSO satellite. Remote Sens. Environ.
2018, 206, 98–106. [CrossRef]

83. Ramo, R.; Chuvieco, E. Developing a Random Forest Algorithm for MODIS Global Burned Area Classification. Remote Sens. 2017,
9, 1193. [CrossRef]

84. Collins, L.; Griffioen, P.; Newell, G.; Mellor, A. The utility of Random Forests for wildfire severity mapping. Remote Sens. Environ.
2018, 216, 374–384. [CrossRef]

85. Leshem, G. Improvement of Adaboost Algorithm by Using Random Forests as Weak Learner and Using This Algorithm as
Statistics Machine Learning for Traffic Flow Prediction. Ph.D. Thesis, Hebrew University, Jerusalem, Israel, 2005.

86. Dos Santos, E.E.; Cruz Sena, N.; Balestrin, D.; Fernandes Filho, E.I.; Marciano da Costa, L.; Bozzi Zeferino, L. Prediction of burned
areas using the random forest classifier in the Minas Gerais state. Floreta e Ambiente 2020, 27, e20180115. [CrossRef]

87. Gibson, R.; Danaher, T.; Hehir, W.; Collins, S. A remote sensing approach to mapping fire severity in south-eastern Australia
using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111702. [CrossRef]

88. Collins, L.; McCarthy, G.; Mellor, A.; Newell, G.; Smith, L. Training data requirements for fire severity mapping using Landsat
imagery and random forest. Remote Sens. Environ. 2020, 111839. [CrossRef]

89. Wood, D.A. Prediction and data mining of burned areas of forest fires: Optimized data matching and mining algorithm provides
valuable insight. Artif. Intell. Agric. 2021, 5, 24–42. [CrossRef]

90. Castelli, M.; Vanneschi, L.; Popovic, A. Predicting burned areas of forest fires: An artificial intelligence approach. Fire Ecol. 2015,
11, 106–118. [CrossRef]

91. Naganathan, H.; Seshaseyee, S.P.; Kim, J.; Chong, W.K.; Chou, J.S. Wildfire predictions: Determining reliable models using fused
dataset. Glob. J. Comput. Sci. Technol. 2016, 16, 29–40.

92. Cortez, P.; Morais, A.A. A data mining approach to predict forest fires using meteorological data. In New Trends in Artificial
Intelligence, Proceedings of the 13th Portuguese Conference on Artificial Intelligence; Springer: Berlin, Germany, 2007; pp. 512–523.

93. Miranda, P.; Coelho, F.; Tomé, A.R.; Valente, M.A.; Carvalho, A.; Pires, C.; Pires, H.O.; Pires, V.C.; Ramalho, C. 20th century
Portuguese climate and climate scenarios. In Climate Change in Portugal: Scenarios, Impacts and Adaptation Measures (SIAM Project);
Santos, F.D.K., Ed.; Gradiva: Lisbon, Portugal, 2002; pp. 23–83.

94. Lourenço, L. Tipos de tempo correspondentes aos grandes incêndios florestais ocorridos em 1986 no Centro de Portugal. Finisterra
1988, 23, 251–270. [CrossRef]

321



Remote Sens. 2021, 13, 1345

95. Vilar, L.; Camia, A.; San-Miguel-Ayanz, J. A comparison of remote sensing products and forest fire statistics for improving fire
information in Mediterranean Europe. Eur. J. Remote Sens. 2015, 48, 345–364. [CrossRef]

96. Nunes, M.C.S.; Vasconcelos, M.J.; Pereira, J.M.C.; Dasgupta, N.; Alldredge, R.J.; Rego, F.C. Land cover type and fire in Portugal:
Do fires burn land cover selectively? Landsc. Ecol. 2005, 20, 661–673. [CrossRef]

97. Calvo, L.; Santalla, S.; Valbuena, L.; Marcos, E.; Tarrega, R.; Luis-Calabuig, E. Post-fire natural regeneration of a Pinus pinaster
forest in NW Spain. Plant Ecol. 2008, 197, 81–90. [CrossRef]

98. USGS EROS Center. 2019. Available online: https://earthexplorer.usgs.gov/ (accessed on 24 January 2021).
99. Randerson, J.T.; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C. Global burned area and biomass burning emissions

from small fires. J. Geophys. Res. 2012, 117, G04012. [CrossRef]
100. Pieschke, R.L. US Geological Survey Distribution of European Space Agency’s Sentinel-2 Data; No. 2017-3026; US Geological Survey:

Reston, VA, USA, 2017.
101. Vermote, E. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500 m SIN Grid V006 [Data Set]. NASA EOSDIS Land

Processes DAAC 2015. Available online: https://lpdaac.usgs.gov/products/mod09a1v006/ (accessed on 22 November 2020).
102. Thomas, I.L.; Ching, N.P.; Benning, V.M.; D’Aguanno, J.A. A review of multi-channel indices of class separability. Int. J. Remote

Sens. 1987, 8, 331–350. [CrossRef]
103. Richards, J.A.; Jia, X. Feature Reduction. In Remote Sensing Digital Image Analysis: An Introduction, 4th ed.; Springer:

Berlin/Heidelberg, Germany, 2006; pp. 267–294.
104. Van Niel, T.G.; McVicar, T.R.; Datt, B. On the relationship between training sample size and data dimensionality: Monte Carlo

analysis of broadband multi-temporal classification. Remote Sens. Environ. 2005, 98, 468–480. [CrossRef]
105. Aha, D.W. Artificial Intelligence Review. Lazy Learn. 1997, 11, 1–6. [CrossRef]
106. McRoberts, R.E. A two-step nearest neighbors algorithm using satellite imagery for predicting forest structure within species

composition classes. Remote Sens. Environ. 2009, 113, 532–545. [CrossRef]
107. Stojanova, D.; Kobler, A.; Ogrinc, P.; Zenko, B.; Dzeroski, S. Estimating the risk of fire outbreaks in the natural environment. Data

Min. Knowl. Discov. 2012, 24, 411–442. [CrossRef]
108. Cariou, C.; Le Moan, S.; Chehdi, K. Improving K-Nearest Neighbor Approaches for Density-Based Pixel Clustering in Hyperspec-

tral Remote Sensing Images. Remote Sens. 2020, 12, 3745. [CrossRef]
109. Rodríguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sánchez, J.P. An assessment of the effectiveness of a

random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [CrossRef]
110. Hastie, R.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning. Data Mining, Inference, and Prediction, 2nd ed.; Springer:

Berlin, Germany, 2009.
111. Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann: San Mateo, CA, USA, 1993.
112. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees. Statistics/Probability Series; Wadsworth &

Brooks/Cole Advanced Books & Software: Monterey, CA, USA, 1984.
113. Cutler, D.; Edwards, T.; Beard, K.; Cutler, A.; Hess, K.; Gibson, J.; Lawler, J. Random Forests for Classification in Ecology. Ecology

2007, 88, 2783–2792. [CrossRef]
114. ICNF 2019. Defesa da Floresta Contra Incêndios; Instituto da Conservação da Natureza e das Florestas: Lisboa, Portugal, 2019.
115. Story, M.; Congalton, R.G. Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399.
116. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
117. Cohen, J.A. Coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
118. Pereira, J.M.C.; Sá, A.C.L.; Sousa, A.M.O.; Silva, J.M.N.; Santos, T.N.; Carreiras, J.M.B. Spectral characterisation and discrimination

of burned áreas. In Remote Sensing of Large Wildfires in the European Mediterranean Basin; Chuvieco, E., Ed.; Springer: Berlin,
Germany, 1999; pp. 123–138.

119. Nogueira, J.M.P.; Ruffault, J.; Chuvieco, E.; Mouillot, F. Can We Go Beyond Burned Area in the Assessment of Global Remote
Sensing Products with Fire Patch Metrics? Remote Sens. 2017, 9, 7. [CrossRef]

120. Chuvieco, E.; Lizundia-Loiola, J.; Pettinari, M.L.; Ramo, P.M.; Tansey, K.; Mouillot, F.; Laurent, P.; Storm, T.; Heil, A.; Plummer, S.
Generation and analysis of a new global burned area product based on MODIS 250m reflectance bands and thermal anomalies.
Earth Syst. Sci. Data 2018, 10, 2015–2031. [CrossRef]

121. Padilla, M.; Stehman, S.V.; Litago, J.; Chuvieco, E. Assessing the temporal stability of the accuracy of a time series of burned area
products. Remote Sens. 2014, 6, 2050–2068. [CrossRef]

122. Roy, D.P.; Boschetti, L. Southern Africa validation of the MODIS, L3JRC and GlobCarbon burned-area products. IEEE Trans.
Geosci. Remote Sens. 2009, 47, 1032–1044. [CrossRef]

123. Ngadze., F.; Mpakairi, K.S.; Kavhu, B.; Ndaimani, H.; Maremba, M.S. Exploring the utility of Sentinel-2 MSI and Landsat 8 OLI in
burned area mapping for a heterogenous savannah landscape. PLoS ONE 2020, 15, e0232962. [CrossRef]

124. Soler, M.; Úbeda, X. Evaluation of fire severity via analysis of photosynthetic pigments: Oak, eucalyptus and cork oak leaves in a
mediterranean forest. J. Environ. Manag. 2018, 206, 65–68. [CrossRef]

125. Sever, L.; Leach, J.; Bren, L. Remote sensing of post-fire vegetation recovery; a study using Landsat 5 tm imagery and NDVI in
north-east Victoria. J. Spat. Sci. 2012, 57, 175–191. [CrossRef]

126. Falkowski, M.J.; Gessler, P.E.; Morgan, P.; Hudak, A.T.; Smith, A.M.S. Characterizing and mapping forest fire fuels using aster
imagery and gradient modeling. For. Ecol. Manag. 2005, 217, 129–146. [CrossRef]

322



Remote Sens. 2021, 13, 1345

127. Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating
burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [CrossRef]

128. Silva Junior, J.A.; Pacheco, A.P. Análise do Modelo Linear de Mistura Espectral na Avaliação de Incêndios Florestais no Parque
Nacional do Araguaia, Tocantins, Brasil: Imagens EO-1/Hyperion e Landsat-7/ETM+. Anuário do Instituto de Geociências 2020, 43,
4. [CrossRef]

129. ICNF—Sistema de Gestão de Informação de Incêndios Florestais. 7.º Relatório Provisório de Incêndios Rurais Departamento
de Gestão de Fogos Rurais/Divisão de Apoio à Gestão de Fogos Rurais. 2019. Available online: http://www2.icnf.pt/portal/
florestas/dfci/Resource/doc/rel/2019/2019-10-10-RPIR-07-01jan-30set.pdf (accessed on 24 January 2021).

130. Oshiro, T.; Pérez, P.; Baranauskas, J. How Many Trees in a Random Forest? Lect. Notes Comput. Sci. 2012, 7376. [CrossRef]
131. Çömert, R.; Matci, D.; Avdan, U. Object based burned area mapping with random forest algorithm. Int. J. Eng. Geosci. 2019, 4,

78–87. [CrossRef]
132. Meng, Q.; Cieszewski, C.; Madden, M.; Borders, B.K. Nearest Neighbor Method for Forest Inventory Using Remote Sensing Data.

GISci. Remote Sens. 2007, 44, 149–165. [CrossRef]
133. Zhao, M.; Chen, J. Improvement and comparison of weighted k Nearest Neighbors classifiers for model selection. J. Softw. Eng.

2016, 10, 109–118. [CrossRef]
134. Blanzieri, E.; Melgani, F. Nearest Neighbor Classification of Remote Sensing Images with the Maximal Margin Principle. IEEE

Trans. Geosci. Remote Sens. 2008, 46, 1804–1811. [CrossRef]
135. Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.; Goossens, R. A time-integrated MODIS burn severity assessment using the

multi-temporal differenced normalized burn ratio (dNBRMT). Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 52–58. [CrossRef]
136. Pleniou, M.; Koutsias, N. Sensitivity of spectral reflectance values to different burn and vegetation ratios: A multi-scale approach

applied in a fire affected area. ISPRS J. Photogramm. Remote Sens. 2013, 79, 199–210. [CrossRef]
137. Santana, N.A.; Morales, C.A.S.; da Silva, D.A.A.; Antoniolli, Z.I.; Jacques, R.J.S. Soil Biological, Chemical, and Physical Properties

After a Wildfire Event in a Eucalyptus Forest in the Pampa Biome. Rev. Braileira Ciênc. Solo 2018, 42. [CrossRef]
138. Lambin, E.; Goyvaerts, K.; Petit, C. Remotely-sensed indicators of burning efficiency of savannah and forest fires. Int. J. Remote

Sens. 2003, 24, 3105–3118. [CrossRef]
139. Bastarrika, A.; Chuvieco, E.; Martín, M.P. Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm:

Balancing omission and commission errors. Remote Sens. Environ. 2011, 115, 1003–1012. [CrossRef]
140. Sertel, E.; Ugur, A. Comparison of pixel and object-based classification for burned area mapping using SPOT-6 images. Geomat.

Nat. Hazards Risk 2016, 7, 1198–1206. [CrossRef]
141. Lanorte, A.; Danese, M.; Lasaponara, R.; Murgante, B. Multiscale mapping of burn area and severity using multisensor satellite

data and spatial autocorrelation analysis. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 42–51. [CrossRef]
142. Palomino-Ángel, S.; Anaya-Acevedo, J.A. Evaluation of the causes of error in the MCD45 burned-area product for the savannas

of northern South America. Dyna 2012, 79, 35–44.
143. Shimabukuro, Y.E.; Dutra, A.C.; Arai, E.; Duarte, V.; Cassol, H.L.G.; Pereira, G.; Cardozo, F.D.S. Mapping burned areas of Mato

Grosso state brazilian amazon using multisensor datasets. Remote Sens. 2020, 12, 3827. [CrossRef]
144. Tanase, M.A.; Belenguer-Plomer, M.A.; Roteta, E.; Bastarrika, A.; Wheeler, J.; Fernández-Carrillo, Á.; Tansey, K.; Wiedemann,

W.; Navratil, P.; Lohberger, S.; et al. Burned Area Detection and Mapping: Intercomparison of Sentinel-1 and Sentinel-2 Based
Algorithms over Tropical Africa. Remote Sens. 2020, 12, 334. [CrossRef]

145. Schroeder, W.; Ruminski, M.; Csiszar, I.; Giglio, L.; Prins, E.; Schmidt, C.; Morisette, J. Validation analyses of an operational fire
monitoring product: The hazard mapping system. Int. J. Remote Sens. 2008, 6059–6066. [CrossRef]

146. Calle, A.; Casanova, J.L.; Romo, A. Fire detection and monitoring using MSG Spinning Enhanced Visible and Infrared Imager
(SEVIRI) data. J. Geophys. Res. 2006, 111, G04S06. [CrossRef]

147. Koltunov, A.; Ustin, S.L. Early fire detection using non-linear multitemporal prediction of thermal imagery. Remote Sens. Environ.
2007, 110, 18–28. [CrossRef]

148. Amos, C.; Petropoulos, G.P.; Ferentinos, K.P. Determining the use of Sentinel-2A MSI for wildfire burning & severity detection.
Int. J. Remote Sens. 2019, 40, 905–930. [CrossRef]

149. Axel, A.C. Burned Area Mapping of an Escaped Fire into Tropical Dry Forest in Western Madagascar Using Multi-Season Landsat
OLI Data. Remote Sens. 2018, 10, 371. [CrossRef]

150. Zhang, P.; Nascetti, A.; Ban, Y.; Gong, M. An implicit radar convolutional burn index for burned area mapping with Sentinel-1
C-band SAR data. ISPRS J. Photogramm. Remote Sens. 2019, 158, 50–62. [CrossRef]

151. Chou, Y.H.; Minnich, R.A.; Chase, R.A. Mapping probability of fire occurrence in San Jacinto Mountains, California, USA. Environ.
Manag. 1993, 17, 129–140. [CrossRef]

152. Siljander, M. Predictive fire occurrence modelling to improve burned area estimation at a regional scale: A case study in East
Caprivi, Namibia. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 380–393. [CrossRef]

153. Dlamini, W.M. Application of Bayesian networks for fire risk mapping using GIS and remote sensing data. GeoJournal 2011, 76,
283–296. [CrossRef]

154. Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area
mapping at 250 m from MODIS data. Remote Sens. Environ. 2020, 236, 111493. [CrossRef]

323





remote sensing 

Article

Land Subsidence Susceptibility Mapping Using Persistent
Scatterer SAR Interferometry Technique and Optimized Hybrid
Machine Learning Algorithms

Babak Ranjgar 1, Seyed Vahid Razavi-Termeh 1, Fatemeh Foroughnia 2,*, Abolghasem Sadeghi-Niaraki 1,3

and Daniele Perissin 4

Citation: Ranjgar, B.; Razavi-Termeh,

S.V.; Foroughnia, F.; Sadeghi-Niaraki,

A.; Perissin, D. Land Subsidence

Susceptibility Mapping Using

Persistent Scatterer SAR

Interferometry Technique and

Optimized Hybrid Machine Learning

Algorithms. Remote Sens. 2021, 13,

1326. https://doi.org/10.3390/

rs13071326

Academic Editors: Cristiano Tolomei,

Paolo Mazzanti and Saverio Romeo

Received: 26 February 2021

Accepted: 29 March 2021

Published: 31 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Geoinformation Tech. Center of Excellence, Faculty of Geodesy and Geomatics Engineering, K.N. Toosi
University of Technology, Tehran 19697, Iran; babakranjgar@email.kntu.ac.ir (B.R.);
vrazavi@mail.kntu.ac.ir (S.V.R.-T.); a.sadeghi@sejong.ac.kr (A.S.-N.)

2 Department of Geoscience and Remote Sensing, Civil Engineering and Geosciences Faculty, Delft University
of Technology, 2628 CN Delft, Stevinweg, The Netherlands

3 Department of Computer Science and Engineering, Sejong University, Seoul 143-747, Korea
4 RASER Limited, Radar and Software Engineering Research Company, Hong Kong;

daniele.perissin@sarproz.com
* Correspondence: f.foroughnia@tudelft.nl; Tel.: +31-1527-8354-6

Abstract: In this paper, land subsidence susceptibility was assessed for Shahryar County in Iran
using the adaptive neuro-fuzzy inference system (ANFIS) machine learning algorithm. Another
aim of the present paper was to assess if ensembles of ANFIS with two meta-heuristic algorithms
(imperialist competitive algorithm (ICA) and gray wolf optimization (GWO)) would yield a better
prediction performance. A remote sensing synthetic aperture radar (SAR) dataset from 2019 to 2020
and the persistent-scatterer SAR interferometry (PS-InSAR) technique were used to obtain a land
subsidence inventory of the study area and use it for training and testing models. Resulting PS points
were divided into two parts of 70% and 30% for training and testing the models, respectively. For
susceptibility analysis, eleven conditioning factors were taken into account: the altitude, slope, aspect,
plan curvature, profile curvature, topographic wetness index (TWI), distance to stream, distance to
road, stream density, groundwater drawdown, and land use/land cover (LULC). A frequency ratio
(FR) was applied to assess the correlation of factors to subsidence occurrence. The prediction power
of the models and their generated land subsidence susceptibility maps (LSSMs) were validated using
the root mean square error (RMSE) value and area under curve of receiver operating characteristic
(AUC-ROC) analysis. The ROC results showed that ANFIS-ICA had the best accuracy (0.932) among
the models (ANFIS-GWO (0.926), ANFIS (0.908)). The results of this work showed that optimizing
ANFIS with meta-heuristics considerably improves LSSM accuracy although ANFIS alone had an
acceptable result.

Keywords: land subsidence; Geographic Information System (GIS); InSAR; machine learning algo-
rithm; meta-heuristics; Iran

1. Introduction

Land subsidence (LS) is one of the most challenging catastrophic geohazards due to its
potential consequences, including damage to infrastructures, power lines, and buildings,
causing sinkholes, floods in coastal areas, and soil degradation [1–3]. Land subsidence is a
gradual and slow deformation or sudden collapse of the Earth’s surface, which is caused by
numerous natural and human-induced factors [4–7]. The ground subsiding movement can
be the result of natural causes such as floods, ground lithology, dissolution of carbonated
rocks (e.g., limestone), sediment compaction, and tectonic motions of faults [8–11]. Further,
anthropogenic activities that alleviate these geological factors, including underground
excavations (e.g., mining and tunneling), underground resource withdrawal (gas or oil),
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overloading of the land surface through road construction and extending the built environ-
ment [12–14], and most importantly, over-exploitation of underground aquifers [15–17].

In the last few decades, the land subsidence phenomenon has widely increased in
Iran [18–20], and therefore, growing research interest has focused on studying this ge-
ological problem [2,13,17,21–23]. One of the most important causes of the LS in Iran
with an arid and semi-arid environment is the excessive groundwater extraction for agri-
cultural usage [13,24]. Therefore, modeling factors affecting land subsidence and land
subsidence susceptibility mapping (LSSM) is vital for the environment, safety, economy,
and human well-being.

Remote sensing (RS) and geographic information system (GIS) data and tools have
been helpful in land subsidence susceptibility studies in terms of acquiring fine resolution
data and analyzing various factors affecting this phenomenon [10,11,25]. Many statistical
and probabilistic approaches have been applied in the literature to provide susceptibility
maps and monitor subsidence. These methods include the frequency ratio (FR) [26],
weight of evidence (WOE) [27], logistic regression (LR) [28], evidential belief function
(EBF) models [11], artificial neural networks (ANNs) [29,30], analytical hierarchy processes
(AHP) [31,32], multi-criteria decision making (MCDM) models [22], as well as fuzzy logic
(FL) [27,30] and adaptive neuro-fuzzy inference systems (ANFIS) [33].

However, these methods are mainly based on human assumptions and need expert
knowledge. Recently, GIS-based machine learning algorithms (MLAs) have become a
favorite in modeling and analyzing environmental hazards, especially LS. They can cope
with data peculiarities, reveal complex relationships between data, and produce high
accuracy and close-to-real world results [10,23]. Lee and Park [12] conducted a comparative
investigation between the decision tree (DT) algorithm and FR model in estimation of LS
and its causing factors. Abdollahi et al. [34] applied a support vector machine (SVM) to
predict LSS using water table drawdown and other influential factors. Taravatrooy et al. [35]
used a hybrid clustering method based on k-means, genetic optimization, and several
soft computing algorithms to examine subsided zones. Tien Bui et al. [10] compared four
MLAs (Bayesian logistic regression (BLR), SVM, logistic model tree (LMT), and alternate
decision tree (ADT)) in assessing LSS near abandoned mining areas in South Korea. In
a study in Kerman, Iran, the random forest (RF) algorithm showed superior capability
in LSS mapping [36]. Ebrahimy et al. [23] performed a comparative study using three
tree-based MLAs, a boosted regression tree (BRT), RF, and classification and regression tree
(CART), for studying land susceptibility in Tasuj plane, Iran. Evaluation results revealed
that BRT had the best performance. In another study by Rahmati et al. [37], four tree-based
MLAs, a rule-based decision tree (RDT), RF, CART, and BRT, were compared for generating
LS hazard maps in Hamedan Province, Iran. The results indicated that RF had the best
accuracy amongst the employed methods.

Despite the better performance and accuracy of MLAs, all the above-mentioned
approaches are dependent on the availability and precision of the subsidence inventory
data, which is a serious challenge in developing countries [2,11,37]. On the other hand,
interferometric synthetic aperture radar (InSAR) has been utilized in land displacement
measurement and demonstrated promising results with millimetric precision [38,39]. SAR
is satellite data so there is no need for time-consuming field survey data acquisition;
therefore, it is superior to other approaches such as leveling data and is denser than ground
positioning system (GPS) station data. Furthermore, radar data are functional in all-time
all-weather conditions, making this a cost-efficient method to obtain land subsidence
measurements. Recently, InSAR methods were employed in LSS studies as reliable input
data along with other data to achieve finer accuracies [6,40]. In this paper, we used the
PS-InSAR method to obtain land subsidence inventory data and utilize them among other
subsidence triggering factors for land subsidence susceptibility mapping in the study area.
As a novel methodology in LSSM, we used ANFIS optimized with two meta-heuristic
algorithms: (1) imperialist competitive algorithm (ICA) and (2) gray wolf optimization
(GWO). ANFIS uses hybrid learning of ANN in adjusting its membership functions (MF)
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with output data [41,42]. Further, by taking advantage of meta-heuristic algorithms, the
weight parameters of MFs were optimized. The results of the method were compared using
the statistical approach of the root mean square error (RMSE) value. Furthermore, the
accuracy of LSSMs was evaluated by the area under the receiver operating characteristic
(ROC) curve.

2. Materials and Methods

The methodology applied in this research (summarized in Figure 1) is to generate
an updated land subsidence inventory through the PSInSAR technique using a Sentinel-1
SAR dataset spanning the period from 2019 to 2020. Moreover, the aim of this paper is
to develop and use an ensemble of ANFIS and meta-heuristic algorithms in modeling
land subsidence susceptibility. The main steps of the study are as follows. First, a spatial
database was created using generated land subsidence inventory and the layers of the
conditioning factors. In the second step, PS-InSAR-derived subsidence inventory data were
divided into training (70%) and testing (30%) data. Next, MF parameters were optimized
in ANFIS using ICA and GWO meta-heuristic algorithms, and then LSSMs were produced
using ANFIS, ANFIS-ICA, and ANFIS-GWO individually. Finally, the produced land
susceptibility maps were compared and evaluated using the area under the ROC curves.

 

Figure 1. Flowchart of the overall methodology.

2.1. Study Area

The region of interest in this paper is Shahryar, the central city of Shahryar County
within 35◦35′ to 35◦42′ latitudes and 50◦59′ to 51◦6′ longitudes (Figure 2), with the elevation
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ranging from 1081 to 1222 m. This county is located west of Tehran, the capital of Iran.
In recent years, there has been an increase in population migration to cities near Tehran,
including Shahryar, for better jobs and income. According to Iran census data in 2016, the
county is the 12th largest in the country with a population of more than 700,000 people. This
has become a serious problem in urban environment management and food production.
Shahryar County is known for its green and beautiful landscape and the major income of
the people in the area originates from gardening and agriculture. Owing to population
increase, the demand for food has grown dramatically. Therefore, more illegal wells are
dug. As a result, the county has suffered from severe land subsidence (250 to 310 mm/year)
due to exhaustion of underground water aquifers and water table dropdown.

 

 

Figure 2. The location of the study area along with the extracted land subsidence inventory.

2.2. Date Used

As outlined earlier, the methodology has two main parts. One is the procedure of
generating a land subsidence inventory using the PS-InSAR technique, which needs a
satellite SAR dataset. The other is the conditioning factors that are taken into consideration
for hazard modeling. In the following section, the process of acquiring and preparing these
datasets is discussed.

2.2.1. SAR Data

To generate a land subsidence inventory in order to acquire the training and testing
data necessary for LSSM, sentinel-1A single look complex (SLC) SAR data provided by
European Space Agency (ESA) were used. In total, 31 SAR images were obtained from
January 2019 to January 2020 in ascending track with dual polarization (vertical–vertical
and vertical–horizontal) (Table 1).
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Table 1. The details of the SAR data used.

Satellite Acquisition Period Incidence Angle Total No. Polarization

Sentinel-1A 2019/01/02–2020/01/21 ~39◦ 31 VV-VH

2.2.2. Factors Affecting Land Subsidence

To date, there is no single guideline unanimously applied for selecting subsidence-
affecting factors. However, based on the literature of LSSM studies carried out in
Iran [13,23,33,37], data that were directly and indirectly related to the subsidence-inducing

factors are gathered and used for mapping LSS in the study area. These input data include
the altitude, slope, aspect, plan curvature, profile curvature, topographic wetness index
(TWI), distance to stream, distance to road, stream density, groundwater drawdown, and
land use/land cover (LULC) (Table 2). Altitude (Figure 3a) and its derivative factors such
as slope (Figure 3b), aspect (Figure 3c), TWI (Figure 3d), plan (Figure 3e), and profile
(Figure 3f) are among crucial topo-hydrological criteria of ground subsidence [2]. An ad-
vanced space borne thermal emission and reflection radiometer (ASTER) digital elevation
model (DEM) was obtained (1 arc second or approximately 30 m resolution) and processed
in the GIS environment to produce topography-related factor layers. Land subsidence can
cause deformations in the Earth’s surface slope and topography [43]. Therefore, altitude
and its derivatives were considered because they can directly affect LS. The slope can have
a potential impact on runoff infiltration since steep slopes bring about less recharge due to
limited infiltration of rainfall [2,37]. As mentioned above, the main cause of land subsidence
in Iran is excessive underground water extraction. Undue groundwater extraction results
in pore water pressure (PWP) decrease and aquifer compaction increase [44]. Therefore,
the well inventory of the study area was acquired from the Iranian department of water
resource management (IDWRM) to generate groundwater drawdown (Figure 3k). Further,
distance to stream (Figure 3i) and stream density (Figure 3j) were used, as these factors
can impact the groundwater level by recharging the groundwater tables [45]. The network
of streams was extracted from the ASTER DEM. Another geomorphological influential
factor is the ground lithology of the area. However, we could not take the lithological layer
into account since this factor did not have substantial variation in the region of interest.
Road data were obtained from the open street map (OSM) at the scale of 1:100,000, and
distance to a road was calculated in the GIS environment (Figure 3h). Google Earth Engine
(GEE) cloud computing, gathering massive volumes of various satellite imagery alongside
popular machine learning algorithms, is a suitable platform for analyzing geo big data and
monitoring the environment [46,47]. The available 10-m Iran-wide LULC map was used.
The map was generated in the GEE platform using Sentinel-1 and Sentinel-2 images and
object-based random forest classifier with 95% overall accuracy [48]. All the data were
generated or resampled to a 30 m pixel size.

Table 2. The details of the input conditioning factors.

Factors Source Scale (Resolution) Classification Method

Altitude Natural breaks
Slope angle Natural breaks
Slope aspect Manual

Plan curvature ASTER DEM 30 × 30 Manual
Profile curvature Natural breaks

TWI Natural breaks
Distance to river Manual
Stream density Natural breaks

Land cover Sentinel-1 and Sentinel-2 30 × 30 Land cover units
Distance to road Open street map (OSM) 1:100,000 Manual

Groundwater drawdown Well inventory of the study area 30 × 30 Natural breaks
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Figure 3. Cont.
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Figure 3. Land subsidence conditioning factors: (a) altitude; (b) slope; (c) slope aspect; (d) topographic wetness index (TWI);
(e) plan curvature; (f) profile curvature; (g) land cover; (h) distance to road; (i) distance to stream; (j) stream density and (k)
groundwater drawdown.

3. Methodology

In this section, the methods and models used in different parts of the approach are
presented in detail. First, the PS-InSAR technique used for generating land subsidence
map of the study area and the LS inventory are discussed. Then, the ANFIS model
and evolutionary algorithms, GWO and ICA, are stated. Moreover, FR analysis and the
approach to optimize ANFIS using meta-heuristics are presented. Finally, the validation
methodology of this paper is outlined.

3.1. PS-InSAR Technique

SAR Interferometry (InSAR) is a well-established technique for measuring and moni-
toring ground deformation with millimetric accuracy. This is mainly based on the phase
difference between SAR images acquired at different times and slightly different sensor
positions. Time-series InSAR analysis aims to identify coherent image pixels (persistent
scatterers (PSs)), which have high phase stability and reflect strong backscatter to the
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satellite over a long time period. A baseline configuration can determine the set of in-
terferometric image pairs, which is used in the time series analysis. The baseline shows
the distance between two images, in terms of antenna position (spatial baseline), acquisi-
tion time (temporal baseline), or Doppler centroid (Doppler baseline). The single-master
configuration, where each image is co-registered to a unique master image, is the most
common one for PSI analysis [49,50]. The master image is chosen in the middle of the
2D spatio-temporal space so that the high coherence of all formed interferometric pairs
(interferograms) is guaranteed. The interferogram contains the ground deformation phase
component as well as some other distinct contributions, such as atmospheric disturbance,
topographic, and flat-Earth terms. These components are removed in the next step from
the interferometric phase using an external DEM.

A spatial network is formed using a primary set of points as PS candidates (PSCs) to
estimate the Atmospheric Phase Screen (APS) and further densification of PS points. Since
the original interferometric phase is wrapped (i.e., phase observations in the [−π,+π)),
and it is composed of a large number of phase contributions, the PSCs cannot be selected
based on the phase. Thus, the amplitude dispersion index (ADI) based on Equation (1) is
used as an approximation of phase stability. A point can be selected as a PSC if it always
has a higher amplitude value than a suitable threshold. It was proved that assuming
sufficient data images, the phase behavior with the standard deviation (σv) lower than a
threshold of 0.25 is similar to the trend of ADI. Hence, this index, which represents the
phase stability of points, can be used for PSCs selection.

DA =
σA
mA

� σv ≤ 0.25 (1)

where σA is the standard deviation and mA is the average amplitude value of each pixel
over time. Next, the spatial network is used to estimate the unknown parameters, DEM
error (residual topographic phase component), and the deformation rate, along with
each connection between two adjacent PSCs through the maximization of a periodogram
(Equation (2)) [51]. All PSI methods are based on assumptions regarding the spatial and
temporal smoothness of the deformation signal, expressed by a model. Here, the model is
considered as a linear deformation trend in time.

ξ
[
Δv

(
pij

)
.Δh

(
pij

)]
=

1
N

N

∑
s=1

ej[Δϕs.k(ρij)− 4π
λ Δv(pij)Bt.s− 4π

λR sin θ Δh(pij)Bn.s ] (2)

where pij demonstrates the connection between adjacent PSCs pi and pj. N is the number
of interferograms. The term Δϕs.k is the double difference interferometric phase in image
pairs s and k, while Bt.s and Bn.s are the temporal and interferometric normal baselines,
respectively. θ refers to the incidence angle of the SAR signal.

For each PSC, the average residual phase after correction for the modeled parameters
is taken to obtain an estimate for the atmospheric signal in the master image. Then, the
atmospheric signal of the slave images as well as phase noise is separated from un-modeled
deformation based on high-pass filtering. After APS removal, to increase point density,
the second set of PSs is selected using a higher threshold for the ADI criterion. The
unknown parameters are re-estimated for all pixels based on another maximization of the
periodogram [49]. Eventually, temporal coherence, which is a function of residual phase
noise, is used to determine the final PSs which build the land deformation map.

3.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Fuzzy inference systems (FIS) are capable of depicting multifaceted processes using
the concepts and if-then rules. However, they are incapable of learning [52]. Furthermore,
if the number of input variables is too large, then selecting the membership functions and
setting the fuzzy rules will become challenging [53]. On the other hand, learning algorithms
automatically choose the suitable set of parameters for fuzzy membership functions despite

332



Remote Sens. 2021, 13, 1326

their inability to explain the system under study. Thus, the ANFIS model [54] is a mixture of
ANN and FL benefiting from both ANN’s computation capability and FL’s decision making.
The structure of the ANFIS model contains five layers, called adaptive and fixed [55]. The
ANFIS model employs the Takagi–Sugeno–Kang fuzzy algorithm in two rules of ‘if-then’
with two inputs, x and y, and one output f for both as follows [56]:

Rule 1 : i f x is A1 and y is B1,
then f1 = p1x + q1y + r1

(3)

Rule 2 : i f x is A2 and y is B2,
then f2 = p2x + q2y + r2

(4)

Each node contains adaptive nodes, and input variables are fuzzified in first layer
(Equations (5) and (6)):

O1,i = μAi(x) (5)

O1,i = μBi(y) (6)

where, x and y are the input nodes, A and B are the linguistic variables, and μAi(x) and
μBi(y) are membership functions for that node. The second layer contains fixed nodes
denoted as  to compute the strength of the rules. The output of each node is the product
of all input signals to that node (Equation (7)):

O2,i = Wi = μAi(x)μBi(y), i = 1, 2 (7)

where Wi is the output for each node.
The third layer encompasses fixed nodes denoted as N. The nodes in this layer are

the normalized outputs of the second layer, which are referred to as the normal firepower
(Equation (8)):

O3,i = wi =
wi

∑2
j=1 wj

, i = 1, 2 (8)

All nodes in the fourth layer are adaptive and associated with a node function de-
scribed by the following equation:

O4,i = wi fi = wi(pix + qix + ri) (9)

where wi is the normalized firepower of third layer and pi, qi, and ri are node parameters.
The parameters of this layer are can be interpreted as the result parameters.

The final layer has only one node denoted as Σ, which represents the summation of
all the input signals:

O5,i = ∑ wi fi =
∑ wi fi

∑ wi
(10)

3.3. Imperialist Competitive Algorithm

The imperialist competitive algorithm (ICA) is a novel evolutionary algorithm based
on human social evolution, developed by Atashpaz-Gargari and Lucas [57]. The ICA be-
longs to the group of swarm intelligence, which provides a powerful algorithm for solving
NP-hard problems through its capability of dealing with continuous optimization. In this
algorithm, the primary population is composed of several countries, and they interact with
each other to form empires. Assuming the value of the objective function, colonialist and
colonial groups are formed based on the existing countries. After ascertaining a colonialist,
other countries are randomly allocated to one of the colonizers [57,58]. Every colonialist
and its associated colony is called an empire. The algorithm then simulates the competition
among imperialists in order to acquire more colonies. The best colonialist typically has
more chance to occupy more colonies.
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Another way of allocating the colonies to each colonialist is based on their normalized
cost, which is calculated via Equation (11):

N.T.Cn = maxi{T.ci} − T.cn, (11)

where T.cn is the empire’s total cost n, and N.T.Cn is the total normalized cost value of that
empire. Possession eventuality of the colonization competition by each empire is calculated
by Equation (12):

Ppn =

∣∣∣∣∣∣
N.T.Cn

∑
Nimp
i=1 N.T.Ci

∣∣∣∣∣∣ (12)

The next phase is to attempt to approach a colonial country to analyze the colonies’
cultural and social structures in different political and social layers. The colonies then
move to the colonialist country. The colonialist and colony will change their positions; the
new colonialist position will continue with the algorithm. The new colonialist country will
start applying adjustment to its colonies this time. To calculate the cost function, the total
empire cost is given by Equation (13) as follows:

T.cn = f (imp) + mean( f (colony)) (13)

where f (imp) is the value of the cost function for the colonialist, f (colony) represents the
mean values of the cost function for the colonies, and the constant is considered a value
between 0 and 1.

Finally, the cost of each empire is calculated, and the colonies of weak empires are
abolished and join to stronger empires. This process of recruitment or competition between
colonialists is continued. In the next stage, empires that have lost all their colonies will be
eliminated and will join other colonies. The process is repeated until a single universal
empire in the globe is built that is very close to the empire with colonial nations [59].

3.4. Grey Wolf Optimization

The novel grey wolf optimization (GWO) algorithm, presented by Mirjalili et al. [60],
is an inspiration from the hunting behavior of grey wolves and the social hierarchy in
nature. Wolves are social animals that live in packs, and they have a hierarchy consisting
of four groups. The leader of each group, the alpha wolf (α), makes decisions about
hunting, sleeping, and walking time, and all the other group members must follow its
directives. In terms of hierarchy, the other wolves fall into three levels, called beta (β),
delta (δ), and omega (ω). The beta wolves at the second level assist the alpha in making
decisions and devise them. They are the best candidates for alpha replacement. Another
notable characteristic is their group hunting, which can be summarized in four stages:
(1) encircling prey, (2) hunting, (3) attacking prey (exploitation), and (4) searching for prey
(exploring) [61]. The hunting process (optimization) is led by α, β, and δ wolves, and ω

wolves have to abide by these three groups.

1. Encircling prey

In the first stage, the grey wolves encircle and surround the prey during hunting. To
define this phase mathematically, the following Equations (14) and (15) are proposed. The

parameter D measures the distance between the grey wolf and the prey, and
→
X represents

the location of the prey:

D =

∣∣∣∣→C .
→
Xp(t)−

→
X(t)

∣∣∣∣ (14)

→
X(t + 1) =

→
Xp(t)−

→
A.

→
D (15)

334



Remote Sens. 2021, 13, 1326

where t denotes the current iteration, and
→
Xp and

→
X denote the position vectors of the prey

and the grey wolves, respectively. The
→
A and

→
C coefficient vectors are defined as follows:

→
A = 2a.r2 − a (16)

→
C = 2.

→
r 1 (17)

where components of a are linearly decreased from 2 to 0 over the course of iterations, and
r1 and r2 are random vectors between [0,1].

2. Hunting

After the encircling of the prey, the hunting phase is guided by α, β, and δ since
they are supposed to have compressive knowledge about the prey’s position. This can be
computed using following formulas:

→
Da =

∣∣∣∣→C1.
→
Xa −

→
X
∣∣∣∣, →

Dβ =

∣∣∣∣→C2.
→
Xβ −

→
X
∣∣∣∣, →

Dδ =

∣∣∣∣→C3.
→
Xδ −

→
X
∣∣∣∣ (18)

→
X1 =

→
Xa −

→
A1.

→
D,

→
X2 =

→
Xβ −

→
A2.

→
D,

→
X3 =

→
Xδ −

→
A3.

→
D (19)

where
→
X1,

→
X2,

→
X3 denote the position of α, β and δ, wolves respectively.

→
A1,

→
A2,

→
A3 and

→
C1,

→
C2,

→
C3 are the respective coefficient vectors. The position of a grey wolf in the search

space can be updated as follows:

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(20)

The other wolves update their positions randomly according to the position of the prey.

3. Attacking prey

The process of hunting ends when the prey stops moving and gray wolves attack the

prey. It is important to note that the fluctuation range of
→
A is [−2a, 2a], where a is linearly

decreased from 2 to 0. The exploration trend happens when
∣∣∣∣→A

∣∣∣∣ < 1 and
∣∣∣∣→C

∣∣∣∣ < 1. At this

moment, the wolves attack the prey.

4. Search for prey

The grey wolves track and chase the prey. The pursuing of the prey is known as the
exploration phase in the GWO algorithm [62]. The parameters α, β, and δ have guidance

responsibility in this process. If
∣∣∣∣→A

∣∣∣∣ > 1, it means the grey wolves are split and distributed

in diverse ways for searching of the prey. After finding it, they congregate to attack.

The coefficient
→
C provides a random weight for the prey while

∣∣∣∣→C
∣∣∣∣ > 1 and promotes

the exploration phase. In addition,
→
C models the natural hindrances in hunting for the

grey wolves.

3.5. Frequency Ratio

One of the statistical bivariate models is FR, which is widely used in modeling envi-
ronmental hazards as a geospatial assessment tool for quantifying the potential relationship
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between dependent and independent variables [63]. The FR value for a certain class from a
given factor can be calculated using:

FR =

Npix(Xi)

∑m
i=1 Xi

Npix(Xj)
∑n

j=1 Npix(Xj)

(21)

where Npix(Xi) is the number of pixels in each class of each factor with land subsidence
locations. X.Npix

(
Xj

)
is the number of pixels of Xj factor, m is the number of classes in the

Xi factor, and n is the number of factors in the study area [64].

3.6. ANFIS with Meta-Heuristic Algorithms

In ANFIS, parameter adjustment and the creation of a basic fuzzy system are done by
combining traditional methods and then back error propagation. In this research, ICA and
GWO were used as meta-heuristic algorithms to enhance the results of the ANFIS system
and also to tweak the parameters of membership functions [52,65]. First, using input and
target data, the FIS is created by the ANFIS model. Next, the membership functions are
optimized and adjusted by meta-heuristic algorithms, and the output for the ANFIS (y)
model is computed by [66]:

e = t − y (22)

RSME =

√
mean(e)2 (23)

where t is the target data, y is a function of input data and optimized FIS, and e is the
error function that should be minimized. When the final conditions are met with the best
output, the optimization process stops; otherwise, the membership function optimization
is repeated.

3.7. Validation

In this research, the ROC curves were used for the accuracy assessment of the LSS
models employed [6,10,39]. The ROC curve analysis is a common method to evaluate
the goodness-of-fit and prediction power of models regarding the area under the curve
(AUC) [2,67]. Ranging from 0 to 1, higher AUC values represent more reliable and accurate
model performance. According to Yesilnacar [53], the qualitative relationship between
AUC and the prediction accuracy of a model can be classified into the following categories:
0.5–0.6 (poor), 0.6–0.7 (average), 0.7–0.8 (good), 0.8–0.9 (very good), and 0.9–1 (excellent).

4. Results

By utilizing the spatial data and subsidence inventory generated and the methods dis-
cussed above, the mapping and assessment of land subsidence susceptibility for Shahryar
County were conducted. In the following sub-sections, the results of the various parts of
the methodology are thoroughly discussed.

4.1. Result of PS-InSAR

The ground deformation rate along the line of sight (LOS) direction during the ac-
quisition time interval was obtained based on the PS-InSAR technique (see Section 3.1).
SARPROZ (SAR PROcessing tool by periZ) [51] software was used to implement the PS-
InSAR technique in the current research paper. The star configuration of the S-1A SLC
time-series data stack is shown in Figure 4. The master image for the dataset was selected
based on maximizing the stack coherence [68]. All slave images were co-registered with
respect to the master image (2019/09/11). The shuttle radar topography mission (SRTM)
DEM was used to remove topographic-related phase components from the interferometric
phases. After the selection of 7881 PSCs, a spatial network was created by Delaunay Trian-
gulation, connecting each point to the other. The unknown LOS velocity and DEM error
were calculated along with the connections by maximizing a periodogram. All the obtained
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parameters were then integrated into the absolute values with respect to a reference point,
which had no subsidence rate. The atmospheric phase for PSCs can be resampled on the
uniform image grid as the APS. With having APS compensated for all slave images, the
unknowns were estimated again for more PS points, selected by a lower threshold on ADI
to obtain a more dense subsidence map. Figure 5a shows the LOS deformation map. Ac-
cording to Figure 5a, the maximum velocity was about −175 mm/year, which occurred in
the southern agricultural part of the region of interest, where more ground-water extraction
was observed.

Further, the LOS deformation rates should be decomposed into horizontal and vertical
deformation components as it is the inherently vertical movement of the Earth’s surface
with a slight horizontal displacement. It has been proved that the horizontal deformation
is a very small portion of motion compared to the vertical deformation [67,69]. Hence,
the LOS deformation could be assumed as negligible and converted simply into the ver-
tical deformation rates using the cosine of the incidence angle of the radar signal. The
interpolated land subsidence inventory map was designed based on the vertical velocity
deformation map for Shahryar County, depicted in Figure 5b. ADI was more successful in
identifying PS points in man-made areas with stable targets than agricultural areas [70].
Since vegetated regions are the main land cover in our case study, an interpolation was
applied to the obtained vertical map to extend the deformation information for the whole
study area. The inverse distance weighted (IDW) interpolation was used with a weighting
power of 2 and neighboring radius of 12 for calculating the vertical velocity interpolation.

Figure 4. The perpendicular baseline graph for the time-series data stack. The dots represents the
images, and the edges denote the interferograms.
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Figure 5. (a) The annual velocity map based on the PSInSAR technique. The map is superimposed on the Google Earth (GE)
imagery; (b) IDW interpolation raster of the velocity map.

4.2. Result of FR

The results of the FR analysis in identifying the relationship of land subsidence
occurrence with the conditioning factors are summarized in Table 3. Two out of five
altitude classes had the highest probability (FR > 1.0), with 1119 to 1137 m being the most
correlated class with land subsidence, followed by the altitude class lower than 1119 m. The
results of the slope angle analysis showed that slopes ranging between 4.5 and 6.8 degrees
had the highest FR (1.11). Further, a TWI class lower than 4.84, profile curvature higher
than 0.0029, convex plan curvature class, and flat (F) slope aspect had the most influence
on LSS for each corresponding factor. Land cover analysis results indicated that forest and
urban classes had the highest probability of land subsidence occurrence, with FR values of
1.17 and 1.04, respectively. Distance to a stream of between 50 to 100 m had the highest FR,
and the class of lower than 50 m had a considerable correlation; a stream density higher
than 2.68 had the highest correlation with land subsidence and the 1.23 to 1.92 class, which
also had a considerable FR value. For distance to road, the 0 to 100 m class had the highest
FR followed by the 100 to 200 m classes. Finally, groundwater drawdown ranging from 55
to 83 m and from 28 to 55 m had higher impacts on land subsidence occurrence.
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Table 3. Relationship between land subsidence occurrence and conditioning factors using the FR model.

FR
No. of Land
Subsidence

Areas

No. Pixels in
the Domain

Class FR
No. of Land
Subsidence

Areas

No. Pixels in
the Domain

Class

Distance to
stream (m)

Altitude (m)

1.18 46 26,180 0–50 1.63 69 32,246 <1119
1.31 43 22,119 50–100 1.78 95 40,783 1119–1137
1.09 37 22,772 100–150 0.907 42 35,442 1137–1157
0.98 27 18,411 150–200 0.092 4 33,287 1157–1179
0.73 57 52,240 >200 0 0 19,088 >1179

Distance to road
(m)

Slope angle

1.052 80 51,395 0–100 0.88 57 49,345 0–2.5
1.051 40 25,705 100–200 1.01 71 53,745 2.5–4.5
0.939 28 20,151 200–300 1.11 53 36,493 4.5–6.8
0.905 17 12,692 300–400 1.05 24 17,416 6.8–10.4
0.95 45 32,000 >400 0.99 5 3846 >10.4

Stream density TWI
0.81 83 68,535 0–0.428 1.2 32 20,419 <4.84
0.99 32 21,673 0.428–1.23 0.97 68 53,623 4.84–5.48
1.3 56 28,947 1.23–1.92 0.94 75 60,506 5.48–6.08

1.03 25 16,307 1.92–2.68 1.029 33 24,560 6.08–7.62
1.5 14 6260 >2.68 0.882 2 1736 >7.62

Groundwater
drawdown (m)

Profile curvature

0.76 10 8837 <28 0.73 12 12,501 <−0.015
1.28 80 42,231 28–55 0.97 51 40,102 −0.01
1.31 100 51,222 55–83 0.78 52 50,521 −0
0.52 20 25,857 83–111 1.19 70 44,847 −0

0 0 13,796 >111 1.48 25 12,874 >0.0029
Slope aspect Land cover

3.7 2 413 F 1.04 62 362,054 Urban areas
1.15 26 17,236 N 0.63 1 9577 Water body
0.66 16 18,326 NE 0.81 22 164,856 Vegetation
1.02 29 21,603 E 0.63 19 183,677 Bare land
1.01 30 22,602 SE 0.55 2 21,954 Agriculture
0.98 31 24,177 S 1.17 104 539,017 Forest
1.05 29 21,085 SW Plan curvature
0.93 23 18,742 W 0.98 69 53,666 Concave
1.1 24 16,662 NW 0.9 62 52,532 Flat

1.1 79 54,643 Convex

4.3. Result of Hybrid Models

In the course of implementation of the hybrid models, 70% of the land subsidence
points (210 locations) were used for training with values 1, and the same number of
randomly selected non-subsidence points were taken into account with 0 values in the
training phase. For the test dataset, 30% of the subsidence inventory (90 locations) with
a value of 1 was used, with 90 randomly assigned points with a value of 0. The training
datasets were used to calibrate the weights of the membership functions. The testing
dataset was used to evaluate the performance of the trained ANFIS ensemble models.
Hybrid models were implemented in MATLAB 2017b software. The parameters used in
meta-heuristic algorithms are presented in Table 4. The prediction power of ANFIS and
the two hybrid models with the training dataset (target) along with the comparison of the
output and target testing dataset is shown in Figure 6.
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Table 4. Parameters used in hybrid algorithms.

ICA GWO

Iteration = 1000
Population = 40

Number of empires = 10
Selection pressure = 1

Assimilation coefficient = 2
Revolution probability = 0.1

Revolution rate = 0.5

Iteration = 1000
Number of wolf groups = 30

Figure 6. The target and output values for training and validation datasets of (a) ANFIS, (b) ANFIS-GWO, and (c) ANFIS-ICA.

The RMSEs of the training and testing phases were calculated and are shown in Table 5.
The two ensemble models enhanced the ANFIS model, and the ANFIS-ICA outperformed
the ANFIS-GWO with an RMSE of 0.276 in the training phase and 0.3199 in the validation
and testing phase. The ANFIS-GWO yielded an RMSE of 0.313 and 0.3217 in training and
validation phases, respectively. Finally, the ANFIS model resulted in 0.323 in training and
0.34 in the validation phase.

Table 5. The comparison of model performance.

Model
RMSE

Train Validation

ANFIS 0.323 0.340

ANFIS-GWO 0.313 0.3217

ANFIS-ICA 0.276 0.3199

The convergence results of the two ANFIS-ICA and ANFIS-GWO ensemble models
up to 1000 iterations are shown in Figure 7. ANFIS-ICA had a better convergence value
(0.276) than ANFIS-GWO (0.313). The lowest amount of the cost function (RMSE) indicates
the best cost and thus the best performance in predicting the results.
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Figure 7. The convergence graph of the objective functions.

4.4. LSSM Using ANFIS and Its Optimized Models

The original ANFIS and its optimized ensembles in this research were trained and
used to estimate land subsidence susceptibility in the study area. Susceptibility modelling
and estimation were all carried out in MATLAB 2017b and were then exported to ArcGIS
10.3 software to classify and generate the susceptibility maps. Land susceptibility index
was classified into five classes, very high, high, moderate, low, and very low, based on
a natural break classification scheme [22,41]. Figure 8 presents the generated classified
subsidence susceptibility maps obtained from ANFIS, ANFIS-GWO, and ANFIS-ICA. As
can be seen, all the output subsidence susceptibility maps are similar and consistent with
each other, particularly the ones for ANFIS-ICA and ANFIS-GWO. Moreover, the map
based on ANFIS-ICA is much smoother than the others.

4.5. Validation

The ROC curves were calculated for all LSS maps using the test data. Figure 9
demonstrates the comparison of AUC for all the models used. The results showed that
the ANFIS-ICA had the highest prediction accuracy (0.932), followed by the ANFIS-GWO
(0.926) and ANFIS (0.908). This proves that the combination of the ANFIS model with
meta-heuristic algorithms such as GWO and ICA can significantly improve the output land
subsidence susceptibility maps in comparison to ANFIS alone.
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Figure 8. The LSS maps of the study area using (a) ANFIS, (b) ANFIS-ICA, and (c) ANFIS-GWO.
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Figure 9. The ROC curves for the LSSMs of the models and their AUC.

5. Discussion

Land subsidence is the slow vertical lowering of the Earth’s surface, posing a serious
threat to both the environment and human life. Recently, there has been an increasing
interest in land subsidence analysis and monitoring in Iran as it is one of the highest
subsidence-prone countries [17,18,20,24]. Natural hazard vulnerability analysis using
machine learning algorithms (i.e., ANFIS) has shown promising results. Therefore, in this
research, the focus was to employ the ANFIS model in combination with meta-heuristics in
land subsidence susceptibility mapping.

Land subsidence inventories are necessary for accurate subsidence susceptibility anal-
ysis. The use of remote sensing SAR data is suitable for providing subsidence inventories
due to their wide availability, independence from fieldwork, time and cost efficiency,
frequent repeatability over time, and, especially, high precision [6]. In this work, the PS-
InSAR technique with its millimetric precision was employed to determine the subsided
areas in the region of interest to form the inventory data used for training and testing the
LSS models.

Important conditioning factors for determining land subsidence prone areas were
identified and collected based on either the literature or availability of data. The FR model
was used to evaluate the correlation and influence of the factors. The results showed
that all the factors employed in this paper had a considerable effect on LSS in Shahryar
County. Among all the factors, the flat (slope aspect) area had the highest FR value (3.7),
indicating high subsidence susceptibility in flat areas. The slope angle is related to the
hydro physiographic characteristics that can influence the water infiltration rate and the
volume and velocity of the Earth’s surface flow [13]. Altitude and groundwater drawdown
were the best predictors of land subsidence in this study, followed by stream density and
distance to stream. Rahmati et al. and Arabameri et al. [2,37] also found that groundwater
drawdown had a greater impact on land subsidence. Other topo-hydrographic factors,
such as stream density and distance to stream are indirectly related to LS as they impact
groundwater recharge and infiltration [2,40] and, as can be seen in the results, the land
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areas closer to streams and with a certain stream density were more susceptible to LS. In
terms of altitude, the lower lands were more prone to subsidence as the class 1137 to 1119 m
and those lower than 1119 m had the highest FR. TWI, plan curvature, and profile curvature
are among secondary topographic derivatives indirectly influencing LS [2,40,71]. These
factors were not among best predictors of subsidence in the study area, which may be due
to smooth and low altitude changes in the study area. The FR analysis showed that a TWI
lower than 4.84 was strongly correlated with LS. In a similar study [40], lower TWI values
(i.e., 2.54 to 8) have been reported to be more prone to subsidence. Positive and convex plan
and profile curvatures had the highest FR value, as reported in [40]. Cropland and urban
land cover types exist in lower altitude and flat areas. The main water source of the area is
groundwater; therefore, more extraction of water in recent years as a result of population
increase has caused the subsidence rate to increase. Previous studies have stressed the
impact of groundwater extraction on subsidence occurrence [72,73]. Regarding the distance
to road factor, the closer to a road, the greater the land subsidence risk, which can be due to
closeness to urban land cover and thus indirectly related to the subsidence phenomenon.

Two novel meta-heuristic algorithms, GWO and ICA, were used to optimize the rules
and parameters of the ANFIS model. Both of these evolutionary algorithms belong to
swarm intelligence. The results showed that ICA had a slower convergence rate than GWO;
however, it had better performance. In order to evaluate the prediction power and accuracy
of the models, RMSE and ROC criteria were used. The RMSE is simply based on error
assessment, whereas ROC is based on true positive (TP), false positive (FP), true negative
(TN), and false negative (FN), which is more appropriate for comparison [42]. ANFIS-ICA
had the lowest RMSE in both the training (0.276) and testing (0.3199) phases, followed
by ANFIS-GWO and ANFIS alone. According to the AUC-ROC results, the ANFIS-ICA
model was more accurate (0.932), followed by the ANFIS-GWO model (0.926) and the
ANFIS model (0.908). It can be seen that the use of machine learning algorithms resulted in
higher prediction accuracy since ANFIS alone yielded a suitable performance compared
to other statistical methods in other studies. It can also be concluded that optimization of
the ANFIS algorithm by meta-heuristics improves its results considerably. This was also
reported in cases of other applications [64,74]. The results showed that the ICA algorithm
was more accurate than the GWO algorithm in optimization of the ANFIS model. The
advantages of the ICA algorithm are high convergence speed and the ability to optimize
functions with a large number of variables [75]. The GWO algorithm has a small number
of disadvantages, including a low solving accuracy, poor local searching ability, and slow
convergence rate [60].

The output land subsidence susceptibility maps of the three models were similar and
in line with each other. However, the map produced by the ANFIS-ICA was smoother than
that of the other two. As could be observed, the high-risk areas were predicted where the
groundwater extraction was higher, elevation was lower, and agricultural land use was
higher. This is because the main source of income in the study area is agriculture. Further,
the population has increased; therefore, food production has stressed the groundwater,
the main water source of the area, and thus the land subsidence risk has become higher in
those areas. Further, it is evident that the subsidence trend is gradually reaching towards
the urban part of the Shahryar County, posing a serious threat to settlements and human
life. The generated LSSMs in this paper can benefit authorities and decision-makers to
identify subsidence-prone areas regarding environmental and urban management.

6. Conclusions

Land subsidence is an important issue in Iran due to the semi-arid and arid climate
and excessive groundwater extraction. Therefore, modeling, simulation, and risk mapping
offer valuable knowledge of environmental geohazards. GIS-based predictions have
proved to be essential for authorities in terms of planning and decision-making. In this
work, we used remote sensing SAR data and the PSInSAR technique to create a land
subsidence inventory of the study area as a high-precision tool with a low cost and frequent
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reproducibility. Since machine learning tools have shown appropriate performance in
modeling and mapping hazard susceptibility, the ANFIS model was used in this research
to map the land subsidence risk in Shahryar County, Tehran province, Iran. Another
objective of this paper was to investigate the effect of optimization of the ANFIS model
through meta-heuristics. Two novel evolutionary algorithms, namely, GWO and ICA,
were used to create ensemble models. The results of the three models in both training
and testing phases were assessed by RMSE. In both phases, ANFIS-ICA had the lowest
RMSE, followed by ANFIS-GWO and ANFIS alone. AUC-ROC analysis was also used
for model evaluation, and its results indicated that ANFIS-ICA had the best prediction
performance (0.932), followed by ANFIS-GWO (0.926) and ANFIS (0.908). To conclude,
the results overall showed the applicability of the ANFIS machine learning algorithm in
land subsidence susceptibility mapping and the effectiveness of its ensembles with meta-
heuristic algorithms. The methodology used is reproducible and can be applied to other
regions with different environmental parameters to test the modelling performance. Further
studies should be applied using other machine learning and deep learning algorithms to
compare their prediction accuracy. In addition, future research can focus on developing
risk monitoring and early-warning frameworks.
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Abstract: The identification of rockfall source areas is a fundamental work for rockfall disaster
prevention and mitigation. Based on the Culmann model, a pair of important indicators to estimate
the state of slope stability is the relief and slope angles. Considering the limit of field survey and the
increasing requirements for identification over a large area, a new approach using the relief–slope
angle relationship to identify rockfall source areas controlled by rock mass strength at a regional
scale is proposed in this paper. Using data from helicopter-based remote sensing imagery, a digital
elevation model of 10 m resolution, and field work, historical rockfalls in the Wolong study area of
Tibet where frequent rockfalls occur are identified. A clear inverse relationship between the relief
and slope angles of historical rockfalls enables us to calculate the rock mass strength of the landscape
scale by the Culmann model and the relief–slope angle relationship curve. Other parameters used in
our proposed approach are calculated by ArcGIS and statistic tools. By applying our approach, the
potential rockfall source areas in the study are identified and further zoned into three susceptibility
classes that could be used as a reference for a regional rockfall susceptibility study. Using the space
partition of historical rockfall inventory, our prediction result is validated. Most of the rockfall source
areas (i.e., 71.92%) identified in the validation area are occupied by historical rockfalls, which proves
the good prediction of our approach. The dominant uncertainty in this paper is derived from the
process of calculating rock mass strength, defining the specific area for searching potential rockfall
source areas, and the resolution of the digital elevation model.

Keywords: rockfall source areas; identification; relief; slope angle; rock mass strength; rockfall sus-
ceptibility

1. Introduction

The identification of potential rockfall source areas is the first step in assessing rock-
fall susceptibility, hazard, risk, and determining rockfall disaster prevention and mitiga-
tion [1–7]. However, it is very difficult work to carry out in mountain areas, especially the
steep and high-relief slopes, which are not accessible on site. Field investigation provides
the most effective method to survey the distribution of potential rockfall source areas at a
specific site [8]. Through field investigation, the engineering geology conditions control-
ling rockfall distribution, including the rock mass strength, orientation of structures, joint
density, slope angle, relief, and the activity of tectonic faults, could be carefully studied on
site [7,9,10]. Recent technologies, including unmanned aerial vehicles, terrestrial laser scan-
ning, monitoring systems, photogrammetry, and point cloud analysis software tools (e.g.,
AgiSoft, Photoscan, and Coltop) [11–14], help researchers to acquire detailed information
of the above conditions.

For the identification of potential rockfall source areas at a regional scale, the tradi-
tional field investigation is not as effective as that at a specific site because of its limited
investigation scope and because it consumes much time and human resources. Hence,
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some researchers have developed regional rockfall susceptibility models based on ArcGIS
to estimate the spatial distribution of rockfall using the causal factors of rockfall including
lithology, terrain, elevation, faults, rainfall, and earthquakes [15–17]. Based on the results
of rockfall susceptibility assessments, the whole area could be zoned into different areas
with different susceptible degrees, which provides useful guidance for regional land use
and rockfall disaster prevention plans. Alternatively, some researchers have identified
rockfall sources at a regional scale by remote sensing interpretation technologies using
multi-temporal aerial photos, helicopter-based remote sensing imagery, and high-resolution
digital elevation model (DEM) [5,6,18]. Subsequently, regional locations of rockfall source
areas could be identified for further rockfall kinematic modeling and predicting regional
rockfall hazards [19].

Rock mass strength is thought to be the basic controlling factor of slope stability [20,21].
A rock slope with a low rock mass strength fractured by different types of fractures is
prone to rockfall [7,22]. Based on Culmann’s two-dimensional slope stability model [23],
a hillslope is susceptible to rockfall if its relief, slope angle, or both are larger than the
threshold values [24–27]. This means that the relief and slope angles are a pair of important
indicators that could be used to identify rockfall source areas on the slopes whose stability
is dominantly controlled by the rock mass strength. Until now, previous studies rarely
focused on the approaches combining the relief and slope angles to identify rockfall source
areas controlled by the rock mass strength at a regional scale [5,28]. Focusing on this issue,
comprehensive technologies, including helicopter-based remote sensing imagery, a DEM
with 10 m resolution, images from Google Earth, and field work, were adopted in this
study. Lastly, a new approach, the procedures, and the application criteria for identifying
rockfall source areas at a regional scale are proposed and were applied in the study area.

2. Materials and Methods

The Wolong (WL) area of Tibet where ideal geological conditions exist to investigate
the characteristics of rock mass outcrops and the distribution of rockfall source areas was
selected for this study (Figure 1). To identify potential rockfall source areas at a regional
scale, a new approach combining the relief and slope angles based on the rock mass strength
is proposed.

2.1. Study Area

The lithology of the area is mainly diorite and granite with a small component of
gneiss [29,30]. Because of the steep terrain and the widely distributed tectonic structures,
the main type of slope failure in the WL area is rockfall. Based on the rockfall scars left on
the steep slopes and the rockfall deposits distributed widely, rockfalls in the study area
occur frequently, and the dominant kinematic failure modes are toppling and planer sliding
(Figure 2).

In this study, based on a power grid project, the helicopter-based remote sensing
imagery obtained in 2017 and the 10 m resolution DEM over the study area were acquired
with the help of the research group State Grid Corporation of China. Using the data of the
complete study area, images of Google Earth, and field work, a rockfall inventory including
235 rockfall scars on bedrocks and 109 rockfall deposits was prepared (Figure 1). The
rockfall scars were identified based on the fresh bedrock color left on the scars (Figure 2).
Because many of the rockfall deposits were removed by the Yarlung Tsangpo River, and
some of the rockfalls are adjacent, it was not possible to track each rockfall’s deposits.
Rockfall deposits at the foot of the slopes were identified based on the shape of the deposit
(e.g., pyramid) and the identifiable rockfall blocks (e.g., meters) left on the deposits.

2.2. Framework of Identifying Potential Rockfall Source Areas

By using ArcGIS and statistic tools, our new approach proposed in this paper includes
the framework as follows:
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Figure 1. Simplified geology map of the study area. Two zones are separated by the space partition for validation of the
prediction result, with (a) the back calculation zone and (b) the verification zone. (c) Sample area presented in Figure 2.

(1) Calculate the rock mass strength parameters (c1, ϕ1) of the bedrock slope at the
landscape scale and build the relief–slope (R–S) angle relationship curve in the study area
(Figure 3a).

(2) Measure the present relief (H) and slope angle (β) of each specific area (A) (Figure 3b)
with the potential rockfall over the slope areas.

(3) Calculate the limit relief (Hc) of the specific area (A) by the Culmann model [23]
(Figure 3a). The Culmann model indicates that the relief of the slope is controlled by the
rock mass strength, and the slope angle (β) has the following relationship with the limit
relief (maximum height) (Hc):

Hc =
4C
γ

sinβcosϕ

[1 − cos(β − ϕ)]
(1)

where c is cohesion, γ is the bulk density, and ϕ is the internal friction angle.
(4) Compare the present relief (H) and the limit relief (Hc) of the specific area to

estimate its state of stability. When the present relief of the bedrock is larger than the limit
relief (Figure 3b), the bedrock is prone to generate rockfalls. Hence, the area whose relief
exceeds its limit relief is identified as the potential rockfall source area.
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(5) Using the procedure from steps (1) to (4), all areas of the slopes over the study area
are searched, and their states of stability are estimated. Eventually, all the potential rockfall
source are identified.

  

  

Figure 2. Samples of the rockfall scars and deposits on the helicopter-based remote sensing imagery
with the location c in Figure 1b and the historical rockfalls with kinematic failure modes of toppling
and planer sliding and their deposits at the foot of the slopes.

Figure 3. Sketch map describing the approach. (a) Slope angle versus relief for hillslope. (b) Sketch
map of estimating the state of stability for the specific area (A).

Different from the availability of rock mass strength tested in the laboratory, the rock
mass strength of bedrocks at the landscape scale is very difficult to test on site because
of the lack of suitable approaches [20,21]. Schmidt and Montgomery [24] proposed an
approach to estimate the rock mass strength parameters (c, ϕ) using the relief and slope
angles of historical rockfalls with the Culmann model. Previous studies have applied the
approach to calculate the parameters of rock mass strength using the relief and slope angles
of historical landsides or rockfall scars in some cases [25–27,31]. In reference to previous
studies, data of the relief and slope angles of 235 historical rockfall scars were first extracted
by ArcGIS. Then, the parameters of the rock mass strength (c, ϕ) at the landscape scale in
our study area were calculated under the precondition that the bedrock relief is controlled
by the rock mass strength.
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3. Results

The geometrical characteristics of historical rockfalls were analyzed to define the
specific area (A) used in the new approach for searching rockfall source areas. Applying
our proposed approach, the rockfall source areas were identified in the study area and
were zoned into three susceptibility classes.

3.1. Geometrical Characteristics of Historical Rockfalls

Before calculating the relief and slope angles of each specific area, a suitable value of
the specific area (A) should be first determined. To define the value of A in this study, the
geometrical characteristics of 235 historical rockfalls were first analyzed by ArcGIS. The
values of the relief and slope angles and the areas of historical rockfalls were measured
separately. According to the statistical results, the relief of historical rockfalls is mainly
distributed between 40 and 130 m, the slope angle is generally larger than 45◦, and the area
of each historical rockfall scar is generally less than 9000 m2. All three groups of data show
Gaussian distribution characteristics (Figure 4). The mean area of historical rockfalls is
5217 m2, which was adopted as the specific area (A) for searching rockfall source areas of
the slopes over the study area.

(a). Relief frequency statistics 

 

(b). Slope angle frequency statistics 

Figure 4. Cont.
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(c). Area frequency statistics 

Figure 4. The geometrical statistics of historical rockfalls.

3.2. Locations of Identified Rockfall Sources

A clear inverse relationship between the relief and slope angles of 235 historical
rockfalls (Figure 5) enabled us to calculate the rock mass strength at the landscape scale
in this study. According to previous studies [25–27,31], the minimum and maximum
parameters of rock mass strength can be estimated using the lower envelope and the upper
envelope of the R–S curves obtained by data of the relief and slope angles of failed slopes.
The upper envelope of the R–S curve (Figure 5) represents the maximum strength of the
rock mass, and the lower envelope represents the minimum.

 
Figure 5. Rock mass strength fitting result and the relief–slope (R–S) angle relationship in the
study area.

Applying the results of 235 historical rockfalls to Equation (1) by the optimization
algorithm (Figure 5), the minimum and maximum rock mass cohesions (c) in the study
area are 28 Pa and 270 kPa, respectively, and both internal friction angles (ϕ) are 23◦. Using
the upper envelope and the mean value of the upper envelope and the lower envelope,
with the lower envelope corresponding to each slope angle, three R–S relationship curves
were built as the threshold to determine if each specific area is stable or unstable (Figure 5).
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The R–S curves could be regarded as three different estimates: the aggressive estimate, the
moderate estimate, and the conservative estimate, corresponding to the upper envelope,
the mean value, and the lower envelope curves, which could be selected by different aims
or rockfall disaster prevention and mitigation strategies.

Based on our approach, to identify the rockfall source area is to identify the area
whose present relief exceeds the limit relief corresponding to its slope angle (Figure 3).
Hence, we calculated the limit relief corresponding to each slope angle (Table 1) using the
three R–S curves presented in Figure 5. Considering the actual slope distribution of the
historical rockfalls (Figure 4b), we mainly focused on the slopes with angles larger than 45◦.
Comparing the present relief and the limit relief in each specific area of the slopes in the
study area, we obtained the rockfall source areas in ArcGIS (Figure 6). More rockfall source
areas are distributed at the lower parts of the slopes whose slope angles are relatively
bigger, which is probably affected by the intense incision of the Yarlung Tsangpo River [32].

Table 1. Limit relief of the specific areas corresponding to the slope angle.

Slope
Angle (◦)

Limit Relief (m) Slope
Angle (◦)

Limit Relief (m) Slope
Angle (◦)

Limit Relief (m)

C-U C-M C-L C-U C-M C-L C-U C-M C-L

46.0 35.5 189.1 342.7 61.0 16.2 86.2 156.2 76.0 9.6 50.9 92.3

47.0 33.2 176.7 320.3 62.0 15.6 82.8 150.0 77.0 9.3 49.4 89.5

48.0 31.2 165.8 300.4 63.0 15.0 79.6 144.2 78.0 9.0 47.9 86.9

49.0 29.3 155.8 282.4 64.0 14.4 76.6 138.8 79.0 8.7 46.5 84.3

50.0 27.6 146.9 266.1 65.0 13.9 73.7 133.6 80.0 8.5 45.2 81.9

51.0 26.1 138.7 251.4 66.0 13.4 71.1 128.8 81.0 8.3 43.9 79.6

52.0 24.7 131.3 238.0 67.0 12.9 68.5 124.2 82.0 8.0 42.7 77.3

53.0 23.4 124.6 225.7 68.0 12.4 66.2 119.9 83.0 7.8 41.5 75.2

54.0 22.2 118.4 214.5 69.0 12.0 63.9 115.8 84.0 7.6 40.3 73.1

55.0 21.2 112.7 204.1 70.0 11.6 61.8 111.9 85.0 7.4 39.2 71.1

56.0 20.2 107.4 194.6 71.0 11.2 59.7 108.2 86.0 7.2 38.2 69.2

57.0 19.3 102.5 185.8 72.0 10.9 57.8 104.7 87.0 7.0 37.2 67.3

58.0 18.4 98.0 177.6 73.0 10.5 55.9 101.4 88.0 6.8 36.2 65.5

59.0 17.6 93.8 170.0 74.0 10.2 54.2 98.2 89.0 6.6 35.2 63.8

60.0 16.9 89.9 162.9 75.0 9.9 52.5 95.2 90.0 6.5 34.3 62.2

Note: for the slope angle, the front part is open interval, and latter part is closed interval. For example, 46 represents the range of (45, 46].
C-U: R–S curve by upper envelope; C-M: R–S curve by mean value; C-L: R–S curve by lower envelope.

Figure 6. Cont.
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Figure 6. The identification results of the rockfall source areas in the study area. The results of (a–c)
correspond to high (I), medium (II) and low (III) rockfall susceptibility classes, respectively.

3.3. Zoning Map of Rockfall Susceptibility

In rockfall risk analysis, the rockfall susceptibility assessment is the first step to carry
out [16,28,33]. The rockfall susceptibility map helps to highlight the spatial distribution of
potentially unstable slopes [34], which is usually zoned into different susceptibility classes,
e.g., high, medium, and low susceptibility, to represent different rockfall susceptible degrees
of slopes. Based on the sketch in Figure 3, if H > Hc, the area A on the slope is unstable,
which means it is prone to rockfall in the future. The larger H is than Hc, the higher the
possibility of rockfall in area A, and hence the higher rockfall susceptibility of area A. To
provide a reference for the susceptibility study following the identification of the rockfall
source areas by our approach, the rockfall source areas were zoned into three susceptibility
classes, high (I), medium (II), and low susceptibility (III) areas, using the upper envelope,
the mean envelope, and the lower envelope in Figure 5. In this way, the regional rockfall
susceptibility maps were produced in the study area (Figure 6).

The slope angle and the elevation of all the susceptibility classes were analyzed,
and their frequency distributions were obtained. According to the results (Figure 7), the
rockfall source areas with different susceptibility classes have different ranges of slope
angle. The rockfall source areas within the high susceptibility class are mainly distributed
on the slopes with the angles of 60–66◦, those of medium susceptibility are distributed
on the slopes with the angles of 54–61◦, and those of low susceptibility are distributed
on the slopes with the angles of 46–55◦. However, based on the distribution statistics of
elevation in Figure 7, no obvious relationship between elevation and susceptibility classes
was observed in this study.

356



Remote Sens. 2021, 13, 938

Susceptibility 
class 

Distribution statistics 
of slope angle/° 

Distribution statistics 
of elevation/m 

 

  

 

  

 

  

Figure 7. The distribution of slope and elevation of the identified rockfall source areas within different susceptibility classes.

4. Discussion

It is important to validate the prediction results in prediction modeling [35]. Hence,
the validation of our proposed new approach is discussed here. The uncertainty in our
new approach is mainly derived from the process of calculating the rock mass strength
parameters, defining the specific area (A) used for searching the rockfall source areas, and
the resolution of the DEM.

4.1. Validation

Proper validation should be based on the comparison between the prediction re-
sults and the actual characteristics affected by future rockfalls [16,35]. The selection of
approaches depends on the characteristics of dataset. In this study, the space partition to
separate our rockfall inventory into two groups was chosen since information was lacking
related to the time of the 235 historical rockfalls (Figure 8). To validate the prediction result,
the rockfall inventory was partitioned into two groups. One group was used for prediction
(Figure 1a) and the other was used for validation (Figure 1b).
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Figure 8. The validation of the prediction result obtained by using one group of historical rockfalls
separated by the space partition (Figure 1a).

The first group with 118 historical rockfalls (Figure 1a) was adopted to calculate the
rock mass strength and build the R–S relationship curve. According to the fitting result of
the selected 118 rockfall sources, the minimum and maximum rock mass cohesions (c) are
28 and 230 kPa, respectively, and both internal friction angles (ϕ) are 22◦. To present a
common case of application, we used the mean value of the upper envelope and the lower
envelope to build the R–S relationship curve in this paper. Based on the procedure of
our approach (Figure 3), the rockfall source areas were obtained. The second group with
117 historical rockfalls (Figure 1b) was used to validate the prediction result (Figure 8). The
validation result demonstrated that 117 historical rockfalls occupy 71.92% of the rockfall
source areas in the validation area predicted by our new approach, which proves to be a
good prediction.

Besides, the prediction result was validated with field work. Most of the rockfall
source areas identified by our approach are distributed on slopes with high relief and steep
terrain. This is consistent with the observation of rockfall distribution on the maps of DEM
and hillshade (Figure 8). Most of the historical rockfall deposits are distributed at the foot
of the slopes with identified rockfall source areas, proving that the identified rockfall source
areas are distributed rockfalls that occurred in the past, and that unstable slopes are prone
to rockfall in the future [19].

4.2. Uncertainty Analysis

An accurate calculation of rock mass strength parameters is the fundamental work in
our new proposed approach. For example, for a slope with a specific relief (H) and slope
angle (β), the bigger the rock mass strength estimated, the higher the value of the limit
relief (Hc) calculated by Equation (1), and hence the bigger the difference between Hc and
H. For the stability of the slope, more stable (i.e., the lower rockfall susceptibility) slopes
were predicted. In other words, if the rock mass strength parameters are overestimated,
the slope would be prone to rockfall with an incorrect prediction of low susceptibility.
In our new approach, the more accurate estimated rock mass strength parameters will
greatly improve the accuracy of the R–S relationship curve, and hence the prediction results
of rockfall source areas. However, it is very difficult to quantitatively estimate the rock
mass strength at the landscape. An in situ test is recognized as one of the most reliable
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methods to obtain rock mass strength [10,20], which proves to be very difficult to carry
out in high mountain areas. In this paper, the back analysis for rock mass strength using
historical rockfalls based on the Culmann model is adopted, whose accuracy depends on
the reliability of the identification, the boundary of historical rockfalls, and the uncertainty
in fitting the data.

According to the procedure of our approach and the sketch in Figure 3, the specific
area (A) is also important in affecting the accuracy of the prediction result. For example, if
a smaller area than the real one was defined to search the potential rockfall source areas, a
lower relief (H) than the real value of a potential source area would be obtained. For the
same slope angle and corresponding estimated Hc, the area would mistakenly be regarded
as more stable (Figure 3) than its real stability state. In this paper, the mean area of historical
rockfalls is defined as the specific area (A) for searching the potential rockfall source areas.
The definition of the parameter could be further studied in the future.

The resolution of DEM plays an important role in controlling the accuracy of the
result [5] because it is the basic data in almost every data process of our new approach. The
higher the resolution of the DEM, the higher the accuracy of the values of the relief and
slope angles of historical rockfalls and the potential rockfall source areas. However, it is
not easy to acquire a high-quality DEM in a large study area currently.

5. Conclusions

The main type of rock mass failure in the Wolong area of Tibet is rockfall. Using data
from helicopter-based remote sensing imagery, a DEM with 10 m resolution of the study
area, images from Google Earth, and field work, a rockfall inventory including 235 rockfalls
scars on bedrocks and 109 rockfall deposits was prepared. According to the statistical
results, the relief of historical rockfalls is mainly distributed between 40 and 130 m, the
slope angle is generally larger than 45◦, and the area of each historical rockfall scar is
generally less than 9000 m2. A clear inverse relationship between the relief and slope
angles of historical rockfalls enabled us to calculate the rock mass strength at the landscape
scale base on the Culmann model, obtaining the minimum and maximum rock mass
cohesions (c) in the study area from 28 to 270 kPa, respectively, and the internal friction
angle of 23◦.

Required by the actual needs of identification on high and steep slopes, this paper
proposes a new approach using the relief–slope angle relationship to identify the rockfall
source areas controlled by the rock mass strength on a regional scale. Based on historical
rockfalls and a high-resolution DEM, we obtained the parameters used in our proposed
approach. By applying our approach, the potential rockfall source areas in the study area
were identified and further zoned into three susceptibility classes that could be used as
a reference for the study of regional rockfall susceptibility assessment. According to the
results, rockfall source areas within the high susceptibility class are mainly distributed on
the slopes with the angles of 60–66◦, those of medium susceptibility are distributed on
the slopes with the angles of 54–61◦, and those of low susceptibility are distributed on the
slopes with the angles of 46–55◦.

By the space partition and the field work, our prediction result was validated. Most
of the rockfall source areas (i.e., 71.92%) identified in the validation area are occupied by
actual historical rockfalls, which proves the accurate prediction ability of our approach.
The locations of the rockfall source areas obtained in this paper could provide reference
for actual rockfall disaster prevention and mitigation in the study area. Our proposed
approach could be used to identify the rockfall source areas in the regional areas that
are not accessible. In the paper, the dominant uncertainty is derived from the process of
calculating the rock mass strength parameters, the process of defining the specific area (A)
that is used for searching the rockfall source areas, and the resolution of the DEM. Many
more studies estimating the rock mass strength at the landscape scale and defining the
specific area (A) are necessary in the future.
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Abstract: The Australian Black Summer wildfires between September 2019 and January 2020 burnt
many parts of eastern Australia including major forests within the Sydney drinking water catchment
(SDWC) area, almost 16.000 km2. There was great concern on post-fire erosion and water quality
hazards to Sydney’s drinking water supply, especially after the heavy rainfall events in February 2020.
We developed a rapid and innovative approach to estimate post-fire hillslope erosion using weather
radar, remote sensing, Google Earth Engine (GEE), Geographical Information Systems (GIS), and the
Revised Universal Soil Loss Equation (RUSLE). The event-based rainfall erosivity was estimated from
radar-derived rainfall accumulations for all storm events after the wildfires. Satellite data including
Sentinel-2, Landsat-8, and Moderate Resolution Imaging Spectroradiometer (MODIS) were used
to estimate the fractional vegetation covers and the RUSLE cover-management factor. The study
reveals that the average post-fire erosion rate over SDWC in February 2020 was 4.9 Mg ha−1 month−1,
about 30 times higher than the pre-fire erosion and 10 times higher than the average erosion rate at
the same period because of the intense storm events and rainfall erosivity with a return period over
40 years. The high post-fire erosion risk areas (up to 23.8 Mg ha−1 month−1) were at sub-catchments
near Warragamba Dam which forms Lake Burragorang and supplies drinking water to more than
four million people in Sydney. These findings assist in the timely assessment of post-fire erosion
and water quality risks and help develop cost-effective fire incident management and mitigation
actions for such an area with both significant ecological and drinking water assets. The methodology
developed from this study is potentially applicable elsewhere for similar studies as the input datasets
(satellite and radar data) and computing platforms (GEE, GIS) are available and accessible worldwide.

Keywords: wildfires; hillslope erosion; satellite imagery; rainfall erosivity; RUSLE

1. Introduction

Because of its mostly hot, dry, and erratic climate, wildfires in Australia and many parts of the
world are frequently occurring events during the hotter months. Between 2017 and 2019, severe
drought developed across much of eastern and inland Australia including Queensland, New South
Wales (NSW), and Victoria, also extending into parts of South Australia and Western Australia. As at
late 2019, many regions of Australia were still in significant drought, contributing to water restrictions
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and extreme fire conditions [1]. The 2019–20 Australian bushfire season, colloquially known as the
“Black Summer,” began with several serious uncontrolled fires in June 2019, an early start to the wildfire
season as it normally starts in early October in NSW [2]. Throughout late 2019 and early 2020 these
wildfires both multiplied and combined, to create mega fires that burnt predominantly throughout the
southeast of the country, peaking during December–January, and having been since contained and/or
extinguished [2–4].

In NSW, the three-year (2017–2019) severe drought had left forests tinder dry, facilitating rapid
expansion of fires across the state. Sydney—the nation’s most populated city (about 5 million
residents)—had been under water restrictions since late 2019, when its dams fell below 45% capacity.
The wildfires in NSW between September 2019 to January 2020 (the 2019-20 fires) were unprecedented
in their extent and intensity [4]. The NSW Rural Fire Service (RFS) reported that the 2019–2020 fires
burnt 5.4 million hectares (including ~11,264 bush or grass fires across 6.7% of the State) and destroyed
2439 homes [3].

Wildfires not only create risk to lives, infrastructure, and properties, but also cause land and
ecosystem degradation through increased soil erosion. The subsequent sediment deposition in rivers,
lakes, and reservoirs is of great concern for drinking water quality, aquatic habitat, and environmental
degradation. When large rainfall events occur in a short period of time, runoffwill wash a lot of ash
and sediment into waterways and dams. Rain also transports other contaminants, such as building
debris, dead animals, and pollutants from fire retardant. Soil sediment, ash, and other contaminants
pose a hazard to human health when mobilized in drinking water catchments. It is therefore necessary
to quantitatively estimate soil erosion after severe wildfires in order to assess the extent and magnitude
of post-fire soil erosion risk and the effectiveness of any rehabilitation or mitigation actions [5].

The Bureau of Meteorology (BoM) recorded 51 mm rainfall in January 2020 and 337 mm in
February 2020 over the Sydney drinking water catchment (SDWC) areas. The rainfall events (especially
in February) were widespread and helped extinguish the wildfires. However, the rainfall also caused
severe runoff and hillslope erosion. As rainfall intensity is the leading agent contributing to greater
erosion rates, and the subsequent effects on water quality, it is necessary to obtain timely rainfall
information for fire recovery and erosion control practices. The rapid assessment of these risks
and timely mitigation actions can significantly reduce risks to public safety, infrastructure, and the
environment [5].

Hillslope erosion (including sheet and rill erosion) is the major form of water erosion and the
dominant source of sediment in waterways in Australia and many parts of the world [5–7]. Monitoring
of hillslope erosion after wildfires may be by direct measurement, such as flumes and sediment traps,
or from tipping bucket sampling techniques. However, these techniques are commonly expensive,
episodic, and impractical to apply across a large catchment. Observers with different levels of expertise
make it difficult to consistently measure or predict long-term soil loss or erosion risk. A common
model and consistent datasets are required for reliable soil loss prediction to provide consistent and
continuous erosion information for short- and long-term soil and water quality management [5–7].

Many erosion models have been developed to predict soil loss in different regions in the world.
Among them, the Universal Soil Loss Equation [8] or the revised USLE (RUSLE) [9] and Water Erosion
Prediction Project (WEPP) [10] are widely used to estimate long-term average soil loss rates using
rainfall, soil, topography, and land cover and management as inputs. These estimates have been used in
long-term planning and soil condition assessment, and have been applied in Australia continent [11,12].
However, the impact of highly variable and extreme rainfall events cannot be estimated using the
long-term averages erosion. Severe erosion and sediment transport are often caused by short but
strong storm events [5,6].

It is increasingly important to construct an event-based erosion model to predict the extreme
erosion risks given the predicted increase in climate variability and fire intensity [13]. Ideally, areas at
risk of severe damage should be identified and prioritized for assessment and remediation in the event
of fire [14,15], especially for drinking water catchments. Yet, there are few studies and applications
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of erosion models on estimation of storm event-based rainfall erosivity and erosion. One of the
major limiting factors is the lack of rainfall data at high spatial and temporal resolutions, as well as
computational capacity of large quantity of spatial data [16,17]. It remains a research challenge to
provide quantitative and timely assessments of hillslope erosion after wildland fires during individual
storm events to support water and catchment management [5].

Weather radar data have very high temporal resolution (15 min or less) and spatial resolution
(1 km or less) with the potential for estimating event-based rainfall erosivity or the 30-min rainfall
erosivity index (EI30). Such data sets have recently been applied in event-based erosion modeling to
compute a spatial EI30 index [18] and to monitor erosion after wildfires at Warrumbungle National
Park in NSW, Australia [5,6]. Its application over a large area or catchment at near real-time of rainfall
events is still a research and implementation challenge. The emerging new technologies, such as
machine learning, Google Earth Engine (GEE) processing, and high-resolution (spatial, spectral and
temporal) satellite remote sensing, can be employed for the efficient implementation of the event-based
erosion model, especially when large catchments or regions are concerned [19]. These together can
provide timely erosion risk estimation that explicitly link soil loss and sedimentation with vegetation
cover and land management, especially in events of wildfires and storms. The improved capability to
predict impacts on water quality as a result of wildfires and erosion helps prioritize the mitigation
actions in the drinking water catchments.

The aim of this study was to develop a rapid approach to assess the post-fire erosion in near
real-time during storm events. We developed an integrated approach using the RUSLE, remote sensing,
and Geographical Information System (GIS) to map the potential erosion risk over space and time,
with the SDWC as the pilot study area. Water managers were able to use the results to prioritize
monitoring points and areas for erosion assessment and interventions following storm events.

2. Materials and Methods

2.1. The Study Area

The SDWC area includes five main catchments and 204 sub-catchments (or drainage units).
It extends from north of Lithgow in the upper Blue Mountains, to the source of the Shoalhaven River
near Cooma in the south, and from Woronora in the east to the source of the Wollondilly River west of
Crookwell. These catchments cover an area of almost 16,000 km2, about seven times larger than the
Australia Capital Territory (ACT) to its southwest (Figure 1). The dam across the Warragamba River
forms Lake Burragorang which provides drinking water to Sydney and surrounding regions for more
than five million people or 60 per cent of the NSW population.

The annual average rainfall in SDWC is about 841 mm based on the BoM gridded rainfall data [20]
over the 30-year period between 1981 and 2010 (or “climate normals”) as used in climate maps and
statistics in Australia and many parts of the world [21]. The rainfall in 2019 (before and during
the 2019–2020 wildfire) is only about 473 mm which was far below the average. The SDWC area
experiences significant seasonal variation in monthly rainfall. The months with the highest rainfalls
are February (100 mm), November (85 mm), and January (79 mm). The months with least rainfalls are
July (55 mm), September (57 mm), and August (59 mm) over the SDWC area.

The dominant land uses are livestock grazing (35%), nature conservation lands or national parks
(30%), crown lands and reserves (16%), and others including intensive agriculture, horticulture, mining,
and reservoirs (19%) based on the 2017 land use map over the SDWC area [22]. Soils types in SDWC
are variable though strongly influenced by lithology and landform. Texture contrast soils with acidic
subsoils (Kurosols) dominate the catchments (46%). Sandy soils with minimal soil development
(Rudosols and Tenosol) are also common (30%) and often very shallow in steep-sloped terrain.
The elevations range from 21 m to 1463 m (a.s.l) with an average slope of 16.7% over the SDWC area.
The elevations range from 41 m to 1356 m (a.s.l) with an average slope of 28.7% at the sub-catchments
near the Warragamba Dam and 70% of areas being mountainous terrain.
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The 2019–2020 fires have severely and extensively burnt major forests within the drinking water
catchments for Sydney, about 30% of SDWC areas have been burnt, and 16% of them are in high or
extreme severity based on the fire extent and severity mapping (FESM) [23]. The fires were more severe
near the Warragamba Dam, where about 81% of designated Special Areas burned (areas with little to no
public access), with 30% at high to extreme fire severities (Figure 1). These drinking water catchments
are managed by Water New South Wales (WaterNSW) and the New South Wales Department of
Planning, Industry and Environment (DPIE).

Figure 1. Location of the Sydney drinking water catchment area and the Warragamba Dam (Lake
Burragorang) Special Areas with fire severities, New South Wales (NSW), Australia. The background
map is the hill-shaded elevation from the 5 m digital elevation model.

2.2. The Datasets

The primary datasets used in this study were radar rainfall data, satellite images (Landsat-8 and
Sentinel-2 with cloud cover < 5%), MODIS-derived fractional vegetation cover (FVC), fire severity,
soil and water quality data. The Lansat-8 (OLI Level-2 surface reflectance) and Sentinel-2 (Level-2A
BOA reflectance images) datasets for the 2019–2020 wildfire period were obtained via the Earth
Engine Data Catalog [24]. The FVC datasets, derived from MODIS Nadir BRDF-Adjusted Reflectance
product (MCD43A4) Collection 6, include monthly Photosynthetic Vegetation (PV), Non-Photosynthetic
Vegetation (NPV), and Bare Soil (BS) at a spatial resolution of 500 m [25,26] were obtained online [27].

Obtaining clear satellite images at high resolution data, for SDWC area is difficult because of
clouds and smokes during the 2019–2020 wildfire period. This problem was partially overcome by
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using Sentinel-2 with a more frequent (5-day) revisiting frequency. The Sentinel-2 multi-spectral
instrument (MSI) sensor provides 13 spectral bands with a spatial resolution of 10–20 m in vegetation
mapping. In addition, Sentinel-2 offers three new red edge spectral bands, which has the advantage in
improving the accuracy for estimating vegetation indices. The blending of the 5-day Sentinel-2 and the
16-day Landsat-8 data made it possible to create time-series vegetation mapping and RUSLE C-factor
estimation in high spatial and temporal resolutions.

Radar rainfall can play a significant role in representing the rainfall intensity, especially in areas
without a high density of gauge networks [28,29]. Even where rain gauges or pluviograph rainfall
stations exist, they are unlikely to replace radar-derived rainfall estimates, because of the high spatial
and temporal resolution from radar data. In Australia, BoM produces real-time quality controlled,
rainfall estimates (namely Rainfields) and forecasts using radar, rain gauges, and numerical weather
prediction models [30]. It converts real-time radar observations of atmospheric reflectivity into
quantitative precipitation estimates (QPEs) via several processing steps including quality controlling,
cleaning, analyzing, and integrating data from radars and rain gauges in real time, offering improved
spatial and temporal resolution in comparison with rain gauges in the areas covered by weather
radars. Rainfields (version 3) includes more radars with QPE products and improved resolution,
regional mosaic grids at spatial resolution of 1 km2 and the national radar mosaic at resolution of
2 km2. In this study, we obtained and used the merged accumulation (Level 2) rainfall for NSW mosaic
radar (IDR311MQ, available via FTP to registered users) with the highest quality of QPE at a spatial
resolution of 1 km2 and a temporal resolution of 15 min. These were blended radar and rain gauge
rainfall estimates where the calibrated radar estimates were used to add spatial details between the
rain gauge locations. Merged rainfall data located at grid points coincident with individual rain gauges
are likely to be very similar to gauge observations available at the time of the generation of the product.
Rainfields products were stored in NetCDF format and arbitrary coordinate system. We developed
automated scripts (R and GIS) to process the Rainfields data including format conversion, re-projection,
resampling, and calculation of precipitation. The accumulated precipitation values are calculated
by multiplying a scale factor (0.05) and adding an offset (zero in this study) according to the user’s
guide [30]:

The FESM is a semi-automated fire severity mapping approach in NSW [23] which used a machine
learning framework based on the sentinel-2 satellite imagery. The severity map has standardized
classes to allow comparison of different fires across the landscape. The FESM severity classes include i)
unburnt, ii) low severity (burnt understory, unburnt canopy), iii) moderate severity (partial canopy
scorch), iv) high severity (complete canopy scorch, partial canopy consumption), and v) extreme (full
canopy consumption). FESM is used in this study for statistical analysis and assessment on impact of
fire severity on hillslope erosion.

In addition, recent land use map, soil data, and LiDAR-derived digital elevation models (DEM) [31]
were also used to estimate the RUSLE factors (i.e., LS-factor) and statistics. Table 1 summarizes the
primary datasets used in this study and their sources.

Table 1. Summary of the primary datasets used in this study.

Dataset Description Source
Spatial Temporal

Resolution Resolution

DEM Digital elevation models (LiDAR 1) DPIE 2 5 m n/a

FESM Fire Extent and Severity Mapping DPIE 10 m monthly

FVC Fractional vegetation cover CSIRO 3 500 m monthly

Landsat-8 Landsat-8 Operational Land Imager NASA 4 30 m 16 days

Landuse NSW Land use map (2017) DPIE polygon n/a

MODIS Moderate Resolution Imaging Spectroradiometer NASA 250–500 m daily
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Table 1. Cont.

Dataset Description Source
Spatial Temporal

Resolution Resolution

Rainfields Bureau of Meteorology radar rainfall BoM 5 1000 m 15 min

Rainfall Bureau of Meteorology gridded rainfall BoM 5000 m daily
Sentinel-2 Sentinel-2 multi-spectral instrument ESA 6 10–60 m 10 days

Soil Digital soil maps DPIE 90 m n/a
1 LiDAR = Light Detection and Ranging; 2 DPIE = New South Wales Department of Planning, Industry and
Environment; 3 CSIRO = Commonwealth Scientific and Industrial Research Organisation Australia; 4 NASA = The
National Aeronautics and Space Administration of the USA; 5 BoM = The Bureau of Meteorology, Australia; 6 ESA
= European Space Agency.

2.3. Event-Based Erosion Modeling

We integrate near real-time weather radar data, remote sensing, Google Earth Engine (GEE),
and GIS to obtain and process timely information for hillslope erosion estimation including event-based
rainfall erosivity and FVC or the cover-management factor (or C-factor). Along with other erosion
factors in relation to soil and topography, we estimate the hillslope erosion at a specific time (Ai) using
the modified RUSLE based on [5,9]:

Ai = EI30i × Ci ×Ki × LS× Pi (1)

where Ai is the computed soil loss per unit area at time i, usually in tons per hectare per time unit
(Mg ha−1 time−1); EI30i is the rainfall–runoff erosivity (R-factor) at time i (usually in MJ mm ha−1 h−1

time−1); Ki is the soil erodibility factor (K-factor, Mg h MJ−1 mm−1), a measure of the susceptibility
of soil to erosion; LS is the slope length and steepness factor (LS-factor, dimensionless); Ci is the
cover-management factor (C-factor, 0-1 dimensionless); Pi is the erosion control factor (P-factor, set to 1
for this study); i denotes a specific time (i.e., month).

Derivation of the factors required by the RUSLE and its applications in NSW are well described in
our previous publications [5–7,32–35]. This study focuses on the recent advancements in weather radar
rainfall estimation, satellite estimation of FVC and GEE technology which enable accurate and rapid
estimation of some RUSLE factors, specifically for the rainfall erosivity (EI30i) and cover factors (Ci).
In addition to these two dynamic factors, the soil erodibility (Ki) factor was estimated based on [35]
using updated soil data (soil texture, structure, permeability, and organic matter) for the SDWC area.
Using the DEM derived from Light Detection and Ranging (LiDAR) [31], we calculated the LS-factor
for the SDWC area with a 5-m spatial resolution based on [33]. The general procedures are illustrated
in Figure 2. All RUSLE factors were resampled to a spatial resolution of 30 m before computing the
erosion rates (Ai).

2.4. Fractional Vegetation Cover and RUSLE C-Factor Estimation

The RUSLE cover-management factor (C) was estimated from satellite data based on [32] on
monthly basis. The satellite data used in this study included MODIS FVC products [25–27], Landsat-8
and Sentinel-2 visible, near-infrared (NIR) and shortwave infrared (SWIR) bands, and Google Earth
Engine Burnt Area Mapping (GEEBAM) products including normalized burn ratio (NBR) [36].
The multiple data sources are complementary in spatial (10–500 m) and temporal (daily to 16 days)
resolutions providing a means for cross validation.

In this study, Sentinel-2 Level-2A surface reflectance (SR) datasets were queried from the GEE
data-pool [24]. An automated GEE script (Sen2cor) was developed for data processing and computation
including radiometric calibration, geometric calibration, and atmospheric calibration. We produced the
Sentinel-2 SR composites for two periods (period 1: July–August 2019, and period 2: January–February
2020), representing the pre-fire season and post-fire season over SDWC.
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Figure 2. The general procedures of hillslope erosion modeling in this study.

In addition to the MODIS-derived monthly FVC products at a resolution of 500 m [25,26], the PV
fraction (f PV) was estimated based on the modified transformed vegetation index (MTVI) [37] using
the NIR and the visible bands as presented in Equation (3). The non-photosynthetic vegetation fraction
(f NPV) was estimated from the normalized difference senescent vegetation index (NDSVI) using the
red and SWIR (shortwave infrared) reflectance as NPV scattering mostly occurs in the SWIR range [38].
The total cover (TC) was calculated as the summary of f PV and f NPV fraction;

f PV = 1.7208
[
1.2
(
RNIR −Rgreen

)
− 2.5

(
Rred −Rgreen

)]
+ 0.1004 (2)

f NPV = 0.82(RSWIR −Rred)/(RSWIR + Rred) + 0.0753 (3)

TC = ( f PV + f NPV)/100 (4)

The RUSLE cover and management (C) factor were estimated from the TC as:

Cj = exp
(
−0.799− 7.74× TCj + 0.0449 × TCj

2
)
× EIj/EIt (5)

where Cj is RUSLE cover-management factor in time j or a given period (e.g., month), TCj is ground
cover (0 to 1) in time j, EIj is the rainfall erosivity over time j, and EIt is the total annual rainfall erosivity.

2.5. Rapid Radar Rainfall Data Processing and Storm Event-Based Rainfall Erosivity Estimation

Automated scripts in R (version 3.6), a free software environment for statistical computing and
graphics, and GIS (ArcGIS version 10.4) were developed to rapidly process radar Rainfields data and
rainfall erosivity estimation based on storm events. The processing included the following steps: i)
R scripts were developed for batch processing the radar rainfall data and converting NetCDF to Tiff
format; ii) the Tiff datasets were then re-projected to Geographic coordinates so that they match with
the other datasets; iii) readjust UTC to AEST (Australian East Standard Time = UTC + 10:00 or 11:00
in daylight saving time); and iv) input to ArcGIS for extraction of rainfall accumulation and further
calculations for rainfall erosivity and erosion based on RUSLE and our previous studies [5,6].

The EI30 index is commonly used in RUSLE to predict the impact of rainfall events on soil
loss [5,18]. For a single storm event, the EI30 is the value of kinetic energy, E in MJ ha−1, multiplied by
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the peak 30-min rainfall intensity I30 (mm hr−1). In this study, E is computed from the composite radar
Rainfields data in 15-min intervals from BoM following:

E =
N∑

r=1

erΔVr (6)

er = 0.29[1− 0.72 exp (−a
ΔVr

Δtr
)] (7)

where ΔVr/Δtr is the rainfall intensity (mm hr−1), while ΔVr refers to rainfall amount during that
particular period Δtr, N is number of 15 min (e.g., N = 2 for 30-min), er (MJ ha−1 mm−1) means kinetic
energy to single storm event, a is an empirical coefficient. The rainfall intensity for interval 30-min
(mm hr−1), I30 is calculated as

I30 = P30 × 2 (8)

P30 is the maximum 30-min rainfall depth (mm); it is multiplied by 2 to convert to an hourly
scale. Peak rainfall amount in 30-min intervals was extracted from radar images at every three 15-min
intervals. The accumulated EI30 values in a day were compared with the erosivity estimated from a
modified daily rainfall erosivity model [5,6].

2.6. Hillslope Erosion Estimation and Risk Scenario Analysis

With all these RUSLE factors, we estimated the hillslope erosion risk for the period of the 2019–2020
fires on a monthly step and on a storm event basis. The pre- and post-fire erosion rates were estimated
using FVC estimated from Sentinel-2, Landsat-8, and MODIS, thus providing cross comparison
and validation.

The rainfall erosivity percentiles for each month have been calculated from the period 2000 to 2019
to match with the same period of MODIS-derived FVC time series. The GIS (ArcGIS) “rank” function
was used to calculate the percentiles. For example, Percentile 95 is 19th rank, percentile 75 is 15th
rank, percentile 55 is 11th rank from the 20-year rainfall data. Using these percentiles, we can work
out the likely occurrence of an event. For example, if we have a rainfall value in the 90th percentile,
this represent the highest 10% erosion risk for this site, or 90% values will be equal to or below this
value. The rainfall erosivity percentiles were further spatially interpolated from 5 km to 30 m (using
Spline method) to produce higher resolution surfaces in GIS for RUSLE modeling consistent with other
factors [29].

Hillslope erosion rates were further estimated and categorized based on these rainfall erosivity
percentiles and the C-factor values related to FESM fire severity classes. We first calculated the mean
annual rainfall erosivity for the climate normal period (1981–2010) and used as the basis to estimate the
various rainfall erosivity percentiles (e.g., 55%, 75%, 95%,) representing rainfall scenarios. The C-factor
values were estimated based on the groundcover levels in association with the fire severity classification.
For example, Class 1 or low severity with 75% cover, Class 2 or high severity with 50% cover, Class 3 or
extreme severity with 25% cover. These combinations of rainfall erosivity and groundcover represent
various possible scenarios of rainfall (amount and intensity) and fire severity classes, thus indicating
the likely consequences of erosion risk for any given rainfall and fire regime.

In addition, we also estimated the return period of rainfall and rainfall erosivity for the post-fire
storm events by using stationary generalized extreme value (GEV) method [39]. We obtained the
annual maxima monthly rainfall, then we fit the GEV to the annual maxima monthly rainfall over the
period 1910–2019 using the maximum likelihood method. Then, the parameters of GEV fit were used
to plot the return level with the corresponding ±1.96 × standard error for a 95% confidence interval.
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2.7. The Normalized Burn Ratio (NBR)

The normalized burn ratio (NBR) and its difference were estimated and used in the GEEBAM
program to find out where wildfires in NSW have affected vegetation [36]. GEEBAM used a series
of Sentinel-2 images to derive NBR and its difference (dNBR) between the pre-fire and post-fire.
NBR is an index designed to highlight burnt areas in large fire zones. The formula is like normalized
difference vegetation index (NDVI), except that the formula combines the use of near infrared (NIR)
and shortwave infrared (SWIR) wavelengths [40]:

NBR =
(NIR− SWIR)
(NIR + SWIR)

(9)

A threshold of dNBR was chosen through visual interpretation to create GEEBAM classes. A higher
value of dNBR indicates increased likelihood that the area has burned, while areas with negative dNBR
values may indicate regrowth following a fire. GEEBAM was used during the 2019–2020 summer to
rapidly predict how severely the tree canopy has burned. It was updated monthly by measuring the
change in the color of vegetation after a fire based on NBR. The NBR and fire severity classes were
further used in this study to assess the vegetation cover and erosion change before and after the fires.

2.8. Validation of Hillslope Erosion Estimation

The direct assessment of final erosion results was difficult as it was not possible to carry out
field measurements on erosion and sediment immediately after the wildfires and storm events,
especially during this Covid-19 pandemic period and the accessibility to the mountainous area. As the
K-factor and LS-factor are relatively stable and they were validated in our previous studies, the cross
validation in this study was focused on the cover-management and the rainfall erosivity factors (refer
Equation (1)). These include: i) The cover-management factor estimated from MODIS, Sentinel-2,
and Landsat-8; ii) the rainfall erosivity factor estimated from BoM gridded rainfall and radar rainfall.
The Nash–Sutcliffe model efficiency coefficient (NSE) and relative error were used to assess the relative
accuracy and differences [33]. In addition, normalized burn ratio (NBR) as used in GEEBAM was also
used to compare FVC (used in RUSLE).

3. Results

3.1. The Temporal Changes of Rainfall, Erosivity and Erosion at SDWC

Based on the historical rainfall records [20], there were only two months over the past 110 years
(1910–2020) that had a rainfall amount greater than the post-fire rainfall in February 2020 at SDWC.
They were February 1956 and March 1978; both had an average monthly rainfall amount of 341 mm
over the SDWC area. Though the rainfall amount (341 mm) was slightly higher than the February
2020 rainfall (337 mm), the rainfall erosivity in February 2020 was estimated the highest (2187.3 MJ
mm ha−1 h−1 month−1). This was because the rainfall in February 2020 was more intense as the
storm events were concentrated in just several days (6–13 February), thus more erosive. As shown
in Figure 3, the return period for the post-fire rainfall in February 2020 was close to a 1-in-40-year
event and the rainfall erosivity a 1-in-257-year event based on the GEV-fitted distribution curve for the
1910–2020 climate.

Table 2 lists the estimated monthly mean rainfall erosivity and erosion at SDWC for the 2019–2020
wildfire period. The monthly mean values on rainfall, erosivity, and erosion are also listed in the table
(mean) for comparison and they were estimated from the recent 20-year rainfall to match at the same
period of the available MODIS FVC data (2000–2019). The estimated post-fire erosion rate (4.88 Mg
ha−1 month−1) in February 2020 increased more than 30 times compared with the previous months
(0.01–0.16 4.88 Mg ha−1 month−1) and about 10 times compared to the mean erosion rate (0.49 Mg
ha−1 month−1) in the same month for the period 2000–2019. The average rainfall erosivity value over
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SDWC in February 2020 was estimated 2187.3 MJ mm ha−1 h−1, exceeding the monthly average value
of February by about seven times. It was more than five times higher than what is considered critical
in soil erosion (i.e., rainfall erosivity values > 500 MJ mm ha−1 h−1 month−1) [41].

Figure 3. The return periods for the 2019–2020 post-fire in the Sydney drinking water catchment area:
(a) Rainfall; (b) rainfall erosivity. The circles indicate return periods for the annual maximum rainfall
based on the 1910–2019 climate; the dash lines are the corresponding ± 1.96 × standard error at the 95%
confidence level.
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Table 2. Estimated mean monthly erosivity and erosion at Sydney drinking water catchment for the
2019–2020 wildfire period.

Month
FVC
(%)

C-factor Rainfall
Rainfall
(Mean)

Erosivity
Erosivity
(Mean)

Erosion
Erosion
(Mean)

Jul–19 93.5 0.0045 15.9 43 12.0 45.0 0.01 0.04

Aug–19 93 0.0046 22.6 39 16.0 86.5 0.02 0.04

Sep–19 92.5 0.0047 53.1 42 68.7 67.0 0.09 0.05

Oct–19 92.2 0.0048 26.0 53 14.0 92.0 0.02 0.09

Nov–19 90.5 0.0053 18.2 75 12.9 114.7 0.02 0.18

Dec–19 88.8 0.0061 2.6 74 2.0 132.1 0.01 0.17

Jan–20 83.7 0.0081 51.4 78 65.2 167.1 0.16 0.26

Feb–20 86 0.0081 337.2 121 2187.3 332.7 4.88 0.49

Mar–20 90.5 0.007 94.8 88 145.8 105.4 0.24 0.26

Apr–20 93 0.006 53.7 52 58.1 79.2 0.08 0.10

May–20 93 0.006 15.9 37 12.0 68.9 0.07 0.05

Jun–20 93.6 0.006 26 82 13.8 109.5 0.02 0.14

Note: C-factor is unitless; Rainfall in mm month−1; Erosivity in MJ mm ha−1 h−1 month−1; Erosion in Mg ha−1

month−1; the Mean values were calculated for the period 2000–2019.

Figure 4 shows the impacts of total vegetation cover and rainfall on erosion at SDWC for the
2019-20 wildfire period. The sharp increase in the erosion rate in February (Mg ha−1 month−1) reflects
the combined impacts of wildfire and rainfall on erosion and their relationships.

We further examined the rainfall patterns in February 2020 and found that most erosive rainfall
over SDWC area occurred between 6–13 February, accounting for approximately 80% of the total
rainfall in that month. With the radar rainfall data at a temporal resolution of 15 min and a spatial
resolution of 1000 m, we were able to estimate the EI30 values on hourly and daily basis or storm
event basis. Figure 5a shows the estimated daily erosion rate from the radar Rainfields data in January
and February 2020. Figure 5b shows an example of the estimated hourly erosion rate from the radar
Rainfields data on 9 February, 2020. The radar-based estimation of rainfall erosivity greatly enhanced
the temporal and spatial resolutions and potentially more useful for post-fire erosion mitigation.

Figure 4. Relationships between erosion and fractional vegetation cover (total cover); and erosion
and rainfall at Sydney drinking water catchment during the 2019–2020 wildfire period (July 2019 to
April 2020).
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Figure 5. Estimated erosion rate from radar Rainfields data in January and February 2020 at: (a) daily
step; (b) hourly step on 9 February 2020.

3.2. The Spatial Variation of Post-Fire Erosion Risk at SDWC

There was great spatial variation in hillslope erosion rates over the SDWC area. Among the 204
drainage units within SDWC, the post-fire erosion rate (February 2020) ranged from 0.1 to 23.8 Mg ha−1

month−1 with a mean value of 4.9 and standard deviation of 4.2 (Mg ha−1 month−1). Figure 6 shows
the average monthly erosion risk in January and February 2020 that represents the effect of post-fire
storm events on hillslope erosion across the SDWC area. Most of the highest post-fire erosion risk
areas appear to be around the Warragamba Dam (Lake Burragorang) including Wild Dog (ID = 193),
Lower Kowmung (ID = 99), and Cedar Ck (ID = 33) as shown in the Figure.

Figure 7 further presents the 10 drainage units with the highest erosion rates over the SDWC area
after the 2019–2020 wildfires and storm events in February 2020. The erosion rates range from 13.2 Mg
ha−1 month−1 in Brogers Ck (ID = 24) to 23.8 Mg ha−1 month−1 in Wild Dog (ID = 193), much higher
than the average annual rate in NSW. Linking erosion risk information with these drainage units (the
smallest water management units) helps the water management agency (i.e., WaterNSW) to prioritize
the monitoring and mitigation actions.
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Figure 6. The hillslope erosion in January and February 2020 showing the impacts of fire and storm
events on erosion, and the ten high erosion risk sub-catchment (labelled with IDs) across the Sydney
drinking water catchment: (a) erosion before storm events; (b) erosion after storm events.
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Figure 7. The highest erosion risk drainage units within the Sydney drinking water catchment area
after the 2019–2020 wildfires in February 2020.

3.3. The Erosion Risk at Different Fire Severity and Erosivity Scenarios

Erosion rates estimated at the high (75 percentile) and extreme (95 percentile) rainfall erosivity
scenarios were compared with the average rainfall erosivity in 2000–2019 (the hillslope erosion modeling
period). The vegetation cover levels before (July–August 2019) and after (January–February 2020) the
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2019–2020 wildfires were estimated from satellite (Sentinel-2 and Landsat-8) derived FVC. It clearly
shows the impact of fire severity on hillslope erosion, and the high fire severity class (canopy fully
affected) has an erosion risk about two to four times higher compared to other classes. The erosion
could increase up to 450% under extreme rainfall erosivity condition for severely burnt areas. Table 3
summarized the estimated erosion rates under different fire severity classes and rainfall scenarios.
Unlike the relative change (%), the actual erosion rates are not always positively correlated to the
fire severity classes because of the impacts of other factors such as rainfall, terrain, and soil (refer
Equation (1)).

Table 3. Estimated mean erosion rates (Mg ha−1 yr−1) at different fire severity classes and rainfall
erosivity scenarios at Sydney drinking water catchment area, and the pre- and post-fire changes.

Fire Severity
Class

Estimated Mean Erosion Rates (Mg ha−1 yr−1) and Change%

Average Rainfall Erosivity
High Rainfall

Erosivity
Extreme Rainfall

Erosivity

Pre-Fire Post-Fire
Change%

(%)
Post-Fire Change% Post-Fire Change%

Low 6.0 9.2 52 10.2 68 17.5 190

Moderate 6.1 10.8 76 12.6 105 20.4 232

High 4.5 8.6 91 10.2 126 16.0 254

Extreme 3.5 10.6 202 12.5 255 19.3 448

3.4. Cross Validation and Comparison of Results

Using the relationship between NBR and FVC we estimated the erosion risk directly from NBR
using the established methods as presented above, the coefficient of determination (R2) from the
erosion estimates between FVC and NBR reached 0.8346 (Figure 8). It implies that the commonly used
NBR index in wildfire studies can be used as a substitute for FVC to estimate the C-factor values and
the erosion rates along with other RUSLE factors.

Figure 9 compares the rainfall erosivity and the final erosion estimation from the BoM daily rainfall
gridded data (5 km) and the radar Rainfields data (15 min, 1 km). Though the source datasets are
very different in resolution and measurement, there is a high correlation between them (R2 = 0.7562),
implying that the radar Rainfileds data can be directly used in estimating erosivity.
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4. Discussion

Vegetation cover (or C-factor) and rainfall (or R-factor) are the two dominant factors affecting
the post-fire hillslope erosion. Vegetation cover, which is important in reducing the impact of rainfall,
was not significantly lower (about 10%) after the wildfire based on the monthly FVC products [25–27].
Over 80% of the soil surface was still covered by either PV or NPV, both can protect soil from erosion.
This agrees well with the study in another national park in Australia [40,41].

Compared to the mean values in February for all years (2000–2020), C-factor value only increased
1.5 times (due to wildfire) but the rainfall erosivity increased about 7 times in February 2020 across the
SDWC area. This suggests that rainfall has a far larger impact than groundcover factor, on hillslope
erosion after wildfires. This is in line with a similar study in the Blue Mountains catchment using the
eWater toolkit (Source) model which reported six times higher sediment load at the downstream outlet
after extreme wildfire in 2001 [42]. The post-fire soil erosion is mainly limited by rainfall erosivity
which agrees with similar studies [43–45].

There was a prolonged dry period before the 2019–2020 wildfires with less than 300 mm rainfall
over the SDWC area for 10 months from April 2019 to January 2020, leading to large quantities of fuel
loads. In February 2020 the rainfall amount reached 337 mm month−1, with several intense storm
events between 6–13 February. The severe hillslope erosion at SDWC was mainly caused by these
extreme rainfall events in February 2020. For example, the erosion rate on a single day (9 February
2020) reached 3.2 (Mg ha−1 day−1) which contributed to 65% of the total monthly erosion (4.9 Mg ha−1

Month−1) in February 2020.
Despite the increased erosion risk, WaterNSW successfully maintained the supply of safe water to

the treatment plants, by proactively managing the water supply system configuration (through sources
selection and offtake depth changes) preventing the inflows from the fire-impacted catchment entering
the supply during these storm events.

Soil erodibility (K) and slope-steepness (LS) factors are relatively stable compared to the dynamic
C-factor and R-factor. Wildfires may alter the soil properties including soil structure, texture,
permeability, and soil organic carbon which are all related to the K-factor as discussed in one
of our previous studies [46]. The extent of fire effects on these soil properties depends on fire intensity,
fire severity, and fire frequency [47] which is complicated and beyond the scope of this study.

The terrain factor also contributed significantly to the post-fire erosion. SWDC area has a rugged
terrain compared with many other parts of NSW. The mean slope is about 17% over the SDWC area,
and 29% in the Warragamba Dam area, much higher than the state average (6%). Because of the steep
terrain, the mean RUSLE LS-factor value at SDWC is 4.7 which is about 2.6 time higher than the State
average (1.8). The LS-factor value at the Warragamba Dam area is even higher (7.2) which is about
4 times of the State average. This implies that the erosion risk at our drinking water catchments are
likely to be 2.6–4 times higher than the rest of the State regardless of other erosion factors. This also
implies the importance of maintaining good vegetation cover and erosion control practices in the
drinking water catchment area.

RUSLE, when appropriately used, can produce meaningful information on relative hillslope
erosion risk at a given time. The event-based rainfall erosivity estimation relies on the availability
of high-resolution rainfall data. The weather radar Rainfield data (15-min, 1 km) are adequate for
estimating EI30 index at daily or sub-daily scale. Such data sets will be increasingly important because
of the higher likelihood of intense storm events and fire frequency under the changing climate with
warmer and drier conditions.

In a GEE environment, various remote sensing data can be searched and used to estimate the FVC
and RUSLE C-factor. The widely used NBR in fire severity mapping and FVC has close correlation and
can be used as a surrogate to FVC for C-factor estimation in erosion modeling.

As the erosion model has been applied at such high spatial (5–30 m) and temporal (daily or hourly)
resolutions, the impacts of fires on soil erosion can be explored at finer landscape scales including
individual hydrological catchments, drainage units, or even paddocks. This helps to locate the high
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erosion risk areas or sediment sources to assist prioritized management practices. Accurate and
effective decision-making is best enabled by linking with detailed and timely information on erosion to
identify the impacts of rain events after the fires.

However, process-based studies to understand the factors controlling surface runoff and erosion,
particularly in relation to aspects of the fire regime are still required to precisely predict the sediment
transport and deposition, especially in the waterways.

5. Conclusions

This study developed an innovative yet practical approach for rapid assessment of post-fire
hillslope erosion risk using weather radar, remote sensing, GEE, and GIS. The automated scripts
running in ArcGIS and GEE allow rapid processing of time-series and event-based spatial data
including satellite and weather radar images to estimate the erosion risk for the 2019–2020 wildfires
at SDWC.

This study was the first attempt to precisely estimate where and when high erosion risk is likely
to occur at daily and/or hourly steps after severe wildland fires across large drinking water catchments,
allowing for more accurate estimation of event-based erosion. With these timely estimates of rainfall
erosivity and C-factor, along with the existing datasets on soil erodibility and slope-steepness, we were
able to deliver rapid assessment of the post-fire hillslope erosion risk and link it with fire severity.
These continuous and consistent estimates of erosion rates were used to analyze the erosion risk
before and after the 2019–2020 wildfires and the subsequent impacts of rainfall on erosion rates.
With these time series datasets, we identified the locations and times of the highest erosion risk.
The sub-catchments near Warragamba Dam have the highest erosion risk because of the bushfires and
rainfall events.

The rainfall erosivity is the dominant factor affecting hillslope erosion after severe wildfires over
the SDWC area. Severe erosion events are often caused by short but intense storm events such as the
case in February 2020. High temporal rainfall data are essential in rainfall erosivity modeling. Weather
radar Rainfields data are adequate for erosivity or EI30 estimation at catchment and regional scales.

Field observations and measurements of soil erosion are necessary for model validation and
improvement. Other relevant water quality models (such as Source developed by eWater Australia)
may be used jointly to validate the modeling accuracy and predict likely pollution risk and delivery to
the river or lake system after severe wildfires [48]. Over the next two-years we plan to collect more field
data on erosion level, ground cover, land management activity, slope and slope length will be gathered
along a set of transects at selected trial catchments for further calibration and validation of methods.
A hillslope sediment erosion trap network, consisting of moderate and low burn severity, prescribed
burn, rainfall event-based, and control sites are planned to be installed at SDWC sub-catchments along
with the water quality stations, and maintained by Water NSW. The goal of the traps is to collect
post-fire and unburnt erosion rates to validate model estimates. This will help further calibrate and
improve the erosion model and link the estimated erosion rates with sediment transport and water
quality downstream. The methodology, once fully validated, will be extended to other areas and
wildfire events to provide timely and accurate information on erosion water quality immediately
after wildfires.
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Abstract: In this paper, we report high statistical evidence for a seismo–ionosphere effects occurring
in conjunction with an earthquake. This finding supports a lithosphere-magnetosphere coupling
mechanism producing a plasma density variation along the magnetic field lines, mechanically
produced by atmospheric acoustic gravity waves (AGWs) impinging the ionosphere. We have
analysed a large sample of earthquakes (EQ) using ground magnetometers data: in 28 of 42 analysed
case events, we detect a temporary stepwise decrease (Δ f ) of the magnetospheric field line resonance
(FLR) eigenfrequency ( f ∗). Δ f decreases of ∼5–25 mHz during ∼20–35 min following the time of
the EQ. We present an analytical model for f ∗, able to reproduce the behaviour observed during the
EQ. Our work is in agreement with recent results confirming co-seismic direct coupling between
lithosphere, ionosphere and magnetosphere opening the way to new remote sensing methods, from
space/ground, of the earth seismic activity.

Keywords: earthquake; coseismic effects; field line resonance; acoustic gravity waves;
lithosphere-magnetosphere coupling

1. Introduction

The study of the physical process connected to the preparation and onset of an earth-
quake is a topic of increasing interest among the scientific community, also in view of the
societal impact of these phenomena. One of the challenges of these studies is to identify
physical phenomena which can be directly connected, without ambiguity, with the earth-
quake geographical location and time window. Most of the evidence in the literature is,
indeed, of a statistical nature, while event based, causal observations of the connection
among ground, ionosphere and magnetosphere are much more difficult to be convinc-
ingly demonstrated. Regarding the statistical evidence, one of the the most interesting
and promising result is related to electromagnetic and ionospheric disturbances occurring
before and during seismic activities. Examples of these results are the experimental investi-
gation of the lithosphere-ionosphere-magnetosphere coupling [1–3] with the observation of
“anomalous” pulses of electromagnetic (EM) emissions in the frequency interval between a
few Hz and up to few tens of kHz, as well as the more recent observations of changes of
the density of the charged trapped particles registered by satellites [4,5]. More recently, in-
vestigations of earthquake preparation phenomena using data registered by the DEMETER
satellite provided statistical evidence for spectral damping of VLF (very low frequency) ra-
dio signals at F-region altitudes and within a radius of 1000–5000 km from the earthquake
epicenter, about 0–3 weeks before the event [6]. In addition, using DEMETER electric and
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magnetic field data, Bertello et al. [7] found an EM wave at ∼300 Hz propagating 2 days
before the L’Aquila 2009 earthquake event. In order to better understand the physical
processes present in the lithosphere-atmosphere-magnetosphere interactions, many studies
focused on the disturbances induced on the atmospheric electric field [8], on the anomalous
geomagnetic pulsations [9,10], as well as on other anomalous disturbances in the iono-
sphere [11] and magnetosphere [12,13]. Searches for possible seismo-ionospheric effects
were also performed before the earthquake by the satellite Interkosmos-19 operating at
F-region altitudes, providing for the first time evidence for an increase of both the intensity
of VLF noise, in the frequency range between 140 Hz to 15 kHz, and for disturbances of the
electron density at a distance from the epicentres up to a few 1000 km [3,14]. More recently,
Carbone et al. [15], Piersanti et al. [16] started the development of an analytical model of
the coupling between lithosphere-atmosphere-ionosphere-magnetosphere to be submitted
to detailed experimental verification (M.I.L.C.). In the M.I.L.C. model the coupling during
active seismic conditions is described by the onset of atmospheric and ionospheric EM
and particle anomalies: a first successful test of the model was the analysis of the 2018
Bayan EQ, when a series of correlated phenomena were detected both by ground sensors
and by low earth orbiting satellites (∼500 km) around the time of EQ occurrence. The
authors explained and modelled the experimental observations as due to the generation of
an acoustic gravity wave (AGW) induced by the EQ which mechanically perturbed the
ionospheric medium causing both an EM emissions and plasma waves. Interestingly, the
model predicts a clear decrease of the magnetospheric FLR f ∗ in concomitance of the EQ
occurrence, which has also been observed. This phenomenon was never reported before in
the literature and it is particularly interesting, since it represents a direct, unambiguous
evidence of the connection between the lithosphere and the magnetosphere, which can be
used both for the analysis of coseismic as well as of precursor phenomena. Following the
result on the 2018 Bayan EQ, we started a systematic study of this phenomena using 42 EQ
in the time span from 2001-07-17 and 2020-08-31. This paper presents the result of this
study, in which we analyze the f ∗ variations using ground magnetometers observations,
and we explain the results of these experimental observations with an analytical model
describing the f ∗ behaviour during active seismic conditions.

2. Data and Methods

The ground magnetometers used for the present analysis come from both INTER-
MAGNET and SUPERMAG magnetometer array networks, which are consortium of
observatories guaranteeing a common standard data release to the scientific community,
leading to possible comparison among measurements at different observation points. In
our analysis we have used 1 s time resolution data.

To evaluate the f ∗, we studied the cross-space spectrum [17] between the North-South
magnetic field components observed at two geomagnetic observatories close enough to the
EQ epicenter location (see Table 1). It is well known that, at the eigenfrequency of a field line
centered between two neighboring stations having almost the same magnetic longitude,
the phase difference maximizes [17,18]. Waters et al. [19] showed that the patterns of the
maximum phase differences in the cross-phase spectrograms were observed consistently
from day to day in the dayside region over baselines of about 100 km in the magnetic
meridian. Green et al. [18] also reported that, among the several methods that determine
the resonant frequency, the phase shift is least affected by geologic inhomogeneity and
consistently defines the resonant frequencies.
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Table 1. Characteristics of the EQ events analyzed from 2001 to 2020. The X indicates a FLR eigenfrequency variation.
The - indicates the absence of a FLR eigenfrequency variation. The NA indicates the impossibility to evaluate the FLR
eigenfrequency. M is the earthquake magnitude. The parameters of the earthquake are provided by USGS data catalog
(https://earthquake.usgs.gov/, accessed on: 16 July 2021).

FLR Date UTC Time Kp M Latitude Longitude Region

X 17/07/2001 14.50.57 0 6.3 3.061◦ S 148.180◦ E Bismarck Sea
X 27/11/2002 00.17.20 1 5.4 12.279◦ N 120.753◦ E Philippines
X 12/12/2003 08.07.30 1 5.2 0.110◦ S 123.991◦ E Indonesia
X 28/01/2004 07.41.04 1 5.7 4.931◦ S 153.584◦ E New Guinea
- 09/02/2006 05.44.30 2 6.2 4.810◦ S 133.063◦ E Indonesia
X 17/05/2006 01.21.26 1 6.0 3.743◦ S 144.305◦ E New Guinea
X 24/06/2006 00.03.07 1 6.3 3.071◦ S 127.183◦ E Indonesia
X 16/09/2007 01.20.38 2 6.4 2.763◦ S 101.106◦ E Indonesia
- 26/10/2007 16.34.47 0 6.0 3.271◦ S 143.763◦ E New Guinea
X 14/11/2007 17.44.04 2 5.7 23.215◦ S 70.526◦ W Chile
- 25/07/2008 20.11.07 1 6.5 5.808◦ S 146.658◦ E New Guinea
X 11/09/2008 00.00.02 1 6.6 1.885◦ N 127.363◦ E Indonesia
- 19/12/2008 00.34.58 2 6.8 20.372◦ N 146.339◦ E Mariana Islands
X 06/01/2009 19.56.25 2 6.0 0.566◦ S 132.784◦ E Indonesia
X 16/02/2009 00.33.36 2 6.1 3.664◦ S 149.608◦ E Bismarck Sea
X 02/03/2009 00.03.39 1 6.5 1.105◦ S 119.868◦ E Indonesia
X 25/07/2009 18.41.58 2 5.8 1.869◦ N 97.020◦ E Indonesia
X 15/10/2009 03.34.28 1 6.0 1.111◦ N 85.322◦ W Ecuador
- 24/02/2008 04.36.29 2 6.5 3.741◦ S 101.986◦ E Indonesia

NA 07/06/2008 19.10.48 2 5.0 3.552◦ S 140.851◦ E Indonesia
- 02/07/2008 00.08.31 2 5.2 12.451◦ N 44.202◦ W Mid-Atlantic
X 07/02/2008 23.16.41 1 5.3 17.558◦ N 144.922◦ E Mariana Islands
- 19/12/2006 12.48.16 2 6.0 2.458◦ N 98.000◦ E Idonesia
X 16/11/2009 18.34.24 0 5.2 19.556◦ S 70.365◦ W Chile

NA 11/01/2009 14.03.49 1 5.6 6.388◦ S 147.423◦ E New Guinea
NA 11/01/2009 14.15.54 1 5.0 0.769◦ S 133.506◦ E Indonesia
X 16/09/2008 21.47.14 2 5.7 17.438◦ N 73.915◦ E India
X 24/05/2003 01.46.06 1 5.9 14.428◦ N 53.813◦ E Owen region
- 14/11/2007 18.55.49 2 5.1 22.670◦ S 70.292◦ W Chile

NA 26/10/2007 16.34.47 1 5.6 3.271◦ S 143.7630 E New Guinea
X 22/11/2003 09.30.03 1 5.1 13.281◦ N 57.466◦ E Arabic Sea
X 12/03/2008 01.32.34 2 6.0 1.934◦ N 132.519◦ E Indonesia
X 02/02/2013 14.17.33 1 6.9 42.8◦ N 143.27◦ E Japan
- 25/10/2013 17.10.16 2 7.1 37.194◦ N 144.66◦ E Japan
X 06/10/2017 07.59.32 1 6.2 37.325◦ N 144.02◦ E Japan
X 08/01/2019 12.39.31 2 6.3 30.526◦ N 131.113◦ E Japan
X 18/06/2019 13.22.22 0 6.4 38.563◦ N 139.504◦ E Japan
X 27/07/2019 18.31.07 1 6.3 33.015◦ N 137.413◦ E Japan
X 19/04/2020 20.39.08 2 6.3 38.858◦ N 141.99◦ E Japan
- 21/11/2016 20.58.47 1 6.9 38.296◦ N 141.642◦ E Japan
X 05/08/2018 11.58.00 0 6.5 8.28◦ S 116.4◦ E Indonesia
X 25/04/2015 06.45.21 2 6.6 28.18◦ N 84.72◦ E Nepal

3. FLR Frequency Behaviour during Seismic Events

We have evaluated the FLR frequency behaviour for 42 low latitudes EQs (below
39◦ of geographical latitude) in the time span from 2001-07-17 and 2020-08-31. A part of
these EQ (first 32 events) belongs to the sample selected by Battiston et al. [4] using POES
satellite data. All the EQs have been chosen as result of a cross-check with the planetary
geomagnetic Kp index [20] in order to exclude any possible f ∗ variation of solar origin.
Table 1 summarizes the results. First of all, the Kp index ranges between 0 and 2, indicating
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that any possible f ∗ variation of solar origin can be reasonably neglected. The EQ are
characterized by a magnitude (M) greater than 5. Then, we found 28 cases out of 42 in
which there is a clear variation of the estimated f ∗ (indicated with the X). In 4 cases it
was not possible to correctly evaluate f ∗ because of the post-sunset occurrence of the EQ
(indicated with the NA). In fact, as explained in Menk et al. [21], the determination of the
FLR frequency usually fails in the nightside regions. Finally, no f ∗ variations has been
detected for 10 case events (indicated with −).

Figures 1 and 2 show four examples of FLR eigenfrequency time dependence in a time
window around the EQ occurrence (red dashed line) using the cross-phase spectrogram.
Colours are representative of the phase difference between the two stations selected for the
f ∗ evaluation.

Figure 1. The cross-phase dynamical spectrograms between two low-latitude ground stations near
the earthquake epicenter: panel (a) Sumatra 16 September 2009 EQ; panel (b) Indonesia 6 January
2009 EQ; panel (c) Philippines 11 November 2002 EQ. Each spectrum has been evaluated over a
1 h interval. Spectra have been smoothed both in time and frequency domains (7 frequency bands
and 15 temporal bands). The red vertical line represents the earthquake occurrence time. In each
panel the top caption reports the INTERMAGNET ground station codices used for the evaluation of
the dynamical cross-phase spectrogram. The color-bar represents the phase difference in degrees
between the equatorward and poleward ground magnetometer.
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Figure 2. The cross-phase dynamical spectrograms for the Indonesia 11 September 2008 earthquake.
Each spectrum has been evaluated over one hour interval. The spectra have been smoothed both
in time and frequency domains (7 frequency bands and 15 temporal bands). The red vertical line
represents the earthquake occurrence time. The green dashed line shows the occurrence of f ∗ decrease
∼2 h before the EQ main shock. The top caption reports the INTERMAGNET ground station codices
used for the evaluation of the dynamical cross-phase spectrogram. The color-bar represents the phase
difference in degrees between the equatorward and poleward ground magnetometer.

As expected, at low latitudes the FLR eigenfrequency is around 110 mHz [19,22,23].
For each event, 2 ± 1 min after the earthquake occurrence (red dashed vertical line) there is
a clear decrease of f ∗. In fact, the upper (a), the middle (b) and the lower panels (c) show
variations of ∼−10 mHz, ∼−25 mHz and ∼−12 mHz, respectively. The time duration of
such variation is ∼15 min for the first (panel a) and the third (panel c) event, and ∼30 min
for the second event (panel b). It is worth highlighting here that in 97% the FLR frequency
variation were characterized by a single decrease coincident with the EQ occurrence, while
in the remaining 3% was featured by a double f ∗ reduction as reported in Figure 2. In fact,
in addition to the decrease of the FLR eigenfrequency at the moment of the EQ occurrence
(red dashed vertical line), a clear reduction of f ∗ is also visible less than two hours before
(green vertical dashed line). The variation is of ∼−10 mHz both for the coseismic f ∗
decrease as well as for the precursor f ∗ decrease, while the time duration is ∼40 min for
the precursor phenomenon and ∼25 min for the coseismic phenomenon.

Figure 3 shows the statistical analysis of the EQ events characterized by a FLR decrease
in terms of frequency variation (δ f ) and relative time duration (δT). It can be easily seen
that the typical δT of the eigenfrequency decrease (panel a) is between 25 and 35 min.
On the other hand, δ f on average shows variations of ∼10 mHz. Figure 3c) shows the
probability density (dP) of δ f as a function of δT. dP has been estimated constructing
bivariate histograms and using a kernel density estimator (e.g., [24]) with the following bin
sizes: δ f , 3 mHz; δT, 3 min. It results that the co-seismic FLR eigenfrequency variation is
characterized by a frequency decrease of 12 ± 3 mHz and a time duration of 36 ± 3 min.
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Figure 3. Eigenfrequency variation (panel (a)) and relative time duration (panel (b)) data distributions
of the FLR. Panel (c) shows the probability density distribution of the eigenfrequency variation as a
function of the relative time duration.

4. Discussion

In order to provide a quantitative explanation to the observed FLR eigenfrequency
variations, we modelled the f ∗ behaviour during the occurrence of an EQ. It is well known
that a geomagnetic field line, with both ends fixed in the ionosphere can be sketched as
a string whose frequency depends on both the magnetic field geometry and the plasma
density along the field line [19,21,25,26]. Following the approach of Singer et al. [27], we
have evaluated f ∗ for an arbitrary magnetic field geometry, starting from the Magnetohy-
drodynamic (MHD) equations related to a stationary EM wave. By referring to the model
reported in Appendix A, we have numerically solved the Equation (A8) using the magnetic
equator as reference point VA(s0) = VA(eq) (VA being the Alfvén speed). We have used
the IGRF (International Geomagnetic Reference Field) model [28] for the internal Earth’s
magnetic field, the T01 model [29,30] for the external part of the Earth’s magnetic field
and a radial power law dependence for the plasma mass density, ρ/ρeq = (r/req)−3 [26].
The boundary conditions of fixed footpoints have been established at some level in the
ionosphere, i.e., at h = 120 km altitude corresponding to the E-layer, where the Alfvén
wave is assumed to be perfectly reflected [17]. Finally, the values of the eigenfrequency f �

have been obtained through Equation (A9) of Appendix A.
Figure 4 shows the modelled diurnal eigenfrequency behaviour of a field line foot-

printed at λmag = 20◦ (λmag being the magnetic latitude). Around noon, we modified the
plasma density at the footprint of the field line using a gradient pressure (∇pden) which
produces a density variation of 15% lasting for about 10 min. Such ∇pden is the result of
the application of the M.I.L.C. model to an EQ characterized by a magnitude MEQ = 6.5, a
PGA = 0.6 g and a Δt = 20 s (PGA and Δt being the Peak Ground Acceleration and time
duration of the EQ, respectively). The M.I.L.C. model is based on the assumption that
an EQ creates an acoustic gravity wave, which propagates through the atmosphere. The
pressure gradient induced by the AGW causes local instability in the ionospheric plasma
density distribution, giving rise to both plasma and EM waves propagating up to the
magnetosphere. In general, it is well known that the concurring contribution of the EM
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wave energy and/or of the plasma density variation produces a change in the local FLR
eigen-frequency [19,31,32]. Indeed, Figure 4 shows that our model is able to produce a clear
f ∗ collapse in correspondence to the plasma density gradient. This result is the consequence
of Equation (A9) according to which any variation in the local magnetic field and/or in
the local plasma density produces a corresponding change in f ∗. It is important to remind
here that the use of the IGRF and the T01 model in solving Equation (A8) produces a 5%
maximum error in the evaluation of f ∗ [23].

Figure 4. As an example, in the Figure, is shown the simulated behaviour of the FLR eigen-frequency
obtained by our modeled for a potential EQ occurred at 20◦ magnetic latitude.

The result displayed in Figure 4 is consistent with the experimental FLR eigenfre-
quency behaviour detected in correspondence of an EQ. In fact, both Figure 1 and 2
show a sudden decrease of f ∗ of ∼10 mHz, 2 ± 1 min after the EQ occurrence lasting
for 20–30 min. Such result completely agree with the probability density bi-variate dis-
tribution in Figure 3c). However, we need to stress here that at low magnetic latitudes
(0◦ ≤ λmag ≤ 30◦) the geomagnetic field line is almost completely surrounded by the
ionosphere. As a consequence any alteration in the ionospheric plasma density induces
a variation in the corresponding eigenfrequency. Consequently, we do interpret the f ∗
changes observed in our 28 EQ events (see Table 1) as caused by the ionospheric plasma
density variation induced by the emission of a co-seismic AGW leading to a pressure
gradient [15].

Finally, in the case of the absence of a co-seismic AGW emission, no possible f ∗
variations can be detected (10 case event, see Table 1). Such a hypothesis is confirmed by
Carbone et al. [15], showing that the atmospheric fluctuations excited by a generic seismic
event on the top of the first layer of the atmosphere can be evanescent. In fact, depending
on the characteristic parameters of the EQ (length of the fault, peak ground acceleration
strong time duration and so on), a the propagation of the AGW up to the ionosphere can be
prevented. In order to confirm such hypothesis, for these events, we analyzed the vertical
atmospheric temperature profiles using the approach described in Piersanti et al. [16] to
catch for possible AGW injection. Here, we display the analysis of the 19/12/2006 Sumatra
EQ, since the remaining nine case events show similar results.
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Figure 5a shows the atmospheric vertical temperature profile (T) as obtained from
ERA5, which is the 5th generation atmospheric data set produced by the European Centre
for Medium-Range Weather Forecasts [33]. The temperature fluctuations (T′), evaluated
as the difference between T and its 2 km moving average, show the expected minimum
and maximum at the tropopause (∼18 km) and the stratopause [34], respectively. A
similar behaviour can be found in both the Brunt − Väisälä frequency (N2) and the po-
tential energy density (EP) value [35]. The lack of any possible wave behaviour in T′
confirms the absence of AGW (and reference therein [36]) injected at the moment of the
EQ occurrence. As a consequence, we can reasonably affirm that the missing of AGW
prevents any possible variation of ionospheric plasma density distribution leading to the
FLR eigenfrequency variation.

Figure 5. Example of AGW analysis. Vertical profiles of: (a) temperature; (b) background temperature;
(c) temperature deviation, (d) square term of Brunt − Väisälä frequency, and (e) potential energy at
13:00 UT on 19 December 2006.

Finally, it is worth noticing that the variation of f ∗ does not show any dependence
on earthquake magnitude (not shown). Such result agrees with Carbone et al. [15], who
demonstrated that the emission of a non-evanescent AGW, generating FLR variation, does
not depend on the individual earthquake parameter alone, but on both the combination of
the length of the fault, the PGA, the time duration of the EQ, etc (see dispersion relation in
Carbone et al. [15]), and the local atmospheric scale height.

5. Conclusions

In the last 20 years, many investigations focused on the possible identification of mag-
netospheric perturbations directly connected to earthquake occurrence ([37] and reference
therein). This paper presents the first evidence, via observation and modelling, of changes
in magnetospheric FLR eigenfrequency associated to the EQ occurrence, demonstrating
a causal connection between seismic phenomena and space based observables . We have
analyzed more than 40 low latitudes EQ from 2000 to 2020, during quiet solar condition
in order to search for magnetospheric signal associate to seismic activity. In 28 events,
we found a clear sudden decrease of the magnetospheric FLR eigenfrequencies, while in
10 cases we did not find any f ∗ variation. The proposed explanation is that the plasma den-
sity at the footprint of the field line magnetically connected to the EQ location was modified
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of about Δρ � 15%, by a gradient pressure fluctuations ∇pden induced by a propagation of
an AGW emitted during the EQ occurrence [15,16]. At low latitudes the magnetospheric
field lines are fully surrounded by the ionosphere and the FLR eigenfrequencies, depending
on both the magnetic field and the plasma density along the field line [19,31], is expected
to decrease [23,26,32]. On the other hand, the possible explanation of the null f ∗ variation
observed in 10 case events, can be found in the lack of the vertical propagation of the AGW
(evanescent) up to the ionosphere, as predicted by the Carbone et al. [15] analytical model.

In is interesting to note that the FLR decrease observed in one case some hours before
the EQ occurrence (Figure 2) could be due to various reasons, such as high-level seismic
activity (especially for events characterized by a sequence of foreshocks before the main
shocks), or to the outflow of radioactive gases (e.g., due to radon decay) by the Earth’s
surface [37,38]. Indeed, both these phenomena would be able to generate changes in
atmospheric temperature and hence AGW formation (e.g., [39]). A similar result was found
in Piersanti et al. [16] who found a decrease of f ∗ 5 h before the EQ occurrence. They
explained their observation in terms of the M.I.L.C. model, pointing out that any AGW
can produce a variation of the ionospheric plasma density distribution (such as travelling
ionospheric disturbances [40]) which in turns changes the Alfvén velocity along the field
line giving rise to a change of the FLR eigenfrequency [19].

In conclusion, our results confirm analytically the direct coupling among lithosphere,
ionosphere and magnetosphere during active seismic conditions, supporting the models
introduced by [16,37] and opening the way to new remote sensing methods combining
space and ground sensing of the earth seismic activity.
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Abbreviations

The following abbreviations are used in this manuscript:

AGW Acoustic Gravity Wave
EM Electromagnetic
EQ Earthquake
FLR Field Line Resonance
IGRF International Geomagnetic Reference Field
MHD Magnetohydrodynamic
M.I.L.C. Magnetosphere Ionosphere Lithosphere Coupling
VLF Very Low Frequency

Appendix A. Field Line Resonance Eigenfrequency Equation

The external perturbation pressure δPAGW produced by the AGW, impinging on
the ionospheric plasma from below, is able to modify the density field thus inducing a
dynamics of plasma which, in turns, produces a perturbed magnetic field b = B − B0 of
the background magnetic field B0. As an order of magnitude estimate, from the Ampere
law |∇b| ∼ β∇δρ, being δρ the fluctuating density and β is the plasma parameter. As a
consequence, by using a relation between density and pressure fluctuation, for example
the adiabatic gas law, it can be found |∇b| ∼ (βρ2

0/γP0B0)∇δPAGW , being ρ0 and P0 some
reference values for density and pressure, and γ is the adiabatic index.

The corresponding low-frequency dynamics of the plasma can be roughly described
by the ideal dissipationless MHD equations

ρ

[
∂v

∂t
+ (v · ∇)v

]
= j × B −∇P

∂B

∂t
= ∇× E (A1)

where v is the fluctuation velocity, j the current density, E the electric field fluctuations and
P the internal pressure. The electric field fluctuations can be obtained by the Ohm’s law by
neglecting the Hall term and the electron pressure gradient because we are interested at the
low-frequency evolution of plasma corresponding to scales much greater than the Larmor
radius, so that E = −v × B. Furthermore, we are dealing with a low-β plasma [41], so that
dynamical processes occurring within the ionospheric plasma cannot significant alter the
background magnetic field, so that the internal pressure gradient ∇P can be neglected in
the momentum Equation (A1). It is worthwhile to note that the same approximations are
usually used to describe the plasma dynamics of low-β laboratory plasma, for example
confined in Reversed Field Pinch devices (e.g., [42]).

To model the eigenfrequencies f ∗ and amplitudes of low-frequency transverse waves,
we use a linear model from Equation (A1), which describes the linear dynamics of fluctua-
tions, namely

ρ0μ0
∂v

∂t
� (∇× b)× B0

∂b

∂t
� ∇× (v × B0) (A2)

where we used the Ampere’s law ∇× B = μ0j. Note that, by considering the plasma
dynamics generated by AGW, the perturbed magnetic field can be viewed as generated by
a small displacement ξ of the plasma [43], not by a compression of the field lines, so that
b lye along the field line and produces the force in the momentum equation. The linear
model (A2) neglects the background current density j0 related to the background magnetic
field [29,30]. In fact, as an order of magnitude estimate, the background current density
|j0| � 1.8 × 10−10 A/m2 results ten times lower than the current density |j| ∼ b/l‖ � 10−9

A/m2 (l‖ is the scale length along the fluctuating magnetic field direction). Let us consider
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a geometry where the z-axis is directed between the field lines. However, both footpoints
of a field line are fixed in the ionosphere, so that the displacement and the separation of
adjacent lines can be described by a function h(x, y, z). From the last Equation (A2), using
v = ∂ξ/∂t along the z-direction, we get the perturbed magnetic field

b = ∇× (ξez × B0) (A3)

(being ez the unit vector in the direction z) apart from a constant which can be cast to zero
without losing generality. Then, from the momentum equation we obtain a relation for the
displacement along the z direction

ρ0μ0
∂2ξ

∂t2 = (B0 · ∇)[(B0 · ∇)ξ] (A4)

By introducing the Alfvén velocity VA = B0/
√

ρ0μ0 and the normalized displacement
ξ ′ = ξ/h we finally obtain the wave equation for the displacement

∂2ξ ′

∂t2 = V2
A(e0 · ∇)

[
h(e0 · ∇)ξ ′ + ξ ′(e0 · ∇)h

]
(A5)

where e0 represents the unit vector along the background magnetic field.
If we consider now the ansatz where ξ ′ behaves as eiωt, under the hypothesis that the

field curvature is smooth enough so the function h is slowly variable, from Equation (A5)
we obtain

(e0 · ∇)
[
(e0 · ∇)ξ ′

]
+

[
(e0 · ∇) ln h2

][
(e0 · ∇)ξ ′

]
+

ω2

V2
A

ξ ′ � 0 (A6)

Introducing the coordinate s along the field line (e0 · ∇) = �−1∂/∂s, where � is the
characteristic length of the field line between two ionospheric footpoints, say using the
coordinate system where 0 ≤ s ≤ 1, we obtain the characteristic value wave equation

∂2ξ ′

∂s2 + P(s)
∂ξ ′

∂s
+

(
ω2�2

V2
A

)
ξ ′ = 0 (A7)

being P(s) = ∂ ln h2/∂s, a unknown function which depends on the coordinate along
the field line. The characteristic frequencies f � we are looking for, correspond to the
characteristic values ω, which can be obtained once the Sturm-Liouville Equation (A7) is
solved supplied by appropriate boundary conditions, for example the condition of fixed
footpoints ξ ′(s�) = (∂ξ ′/∂s)s=s� = 0 at both s� = 0, 1.

To solve the characteristic value equation we can introduce a unknown eigenvalue λ
by modifying the equation as

∂2ξ ′

∂s2 + P(s)
∂ξ ′

∂s
+ λ

[
V2

A(s0)

V2
A(s)

]
ξ ′ = 0 (A8)

where VA(s0) is the value of the Alfvén speed in a point s0. The solution of Equation (A8)
gives us the eigenvalue λ compatible with both the boundary conditions and a fixed value
of VA(s0). Finally, by a comparison of (A7) and (A8), the characteristic frequencies results
to be

f � =
V2

A(s0)
√

λ

�
(A9)

It can be possible to analytically solve Equation (A8) for some particular geometries, by
making explicit the function P(s) and estimate the value of VA(s0). For example in a dipole
field the azimuthal field line displacement, is proportional to h � r sin θ [27], corresponding

393



Remote Sens. 2021, 13, 2839

to a toroidal mode. However, we aimed to a direct comparison with real observations of the
eigenfrequencies f �, and this necessarily requires a numerical integration of Equation (A8),
because we need the exact knowledge of the function P(s).
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