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Abstract: Remote sensing is currently showing high potential to provide valuable information at
various spatial and temporal scales concerning natural hazards and their associated risks. Recent
advances in technology and processing methods have strongly contributed to the development of
disaster risk reduction research. In this Special Issue titled “Remote Sensing for Natural Hazards
Assessment and Control”, we propose state-of-the-art research that specifically addresses multiple
aspects of the use of remote sensing for natural hazards. The aim was to collect innovative methodolo-
gies, expertise, and capabilities to detect, assess monitor, and model natural hazards. In this regard,
18 open-access papers showcase scientific studies based on the exploitation of a broad range of remote
sensing data and techniques, as well as focusing on a well-assorted sample of natural hazard types.

Keywords: remote sensing; natural hazards; hazard; vulnerability; risk assessment

1. Overview of the Special Issue

Each year, natural hazards, such as earthquakes, landslides, avalanches, tsunamis,
floods, wildfires, severe storms, and drought, globally affect humans through deaths,
suffering, and economic losses. According to the insurance broker Aon, 2010-2019 was the
worst decade on record for economic losses due to disasters triggered by natural hazards,
amounting to $3 trillion: a $ trillion more than the 2000-2009 decade. In 2019, economic
losses from disasters caused by natural hazards were estimated to be over $200 billion
(UNDRR Annual Report, 2019).

In this context, remote sensing demonstrates a high potential to provide valuable
information, at various spatial and temporal scales, concerning natural processes and their
associated risks. Recent advances in remote sensing technologies and analysis, in terms
of sensors, platforms, and techniques, have strongly contributed to the development of
natural hazards research.

In this Special Issue titled “Remote Sensing for Natural Hazards Assessment and
Control”, we propose state-of-the-art research that specifically addresses multiple aspects
of the use of remote sensing (RS) for natural hazards (NH). The aim was to collect in-
novative methodologies, expertise, and capabilities to detect, assess monitor, and model
natural hazards.

The present Special Issue of the Remote Sensing journal encompasses 18 open-access
papers that present scientific studies based on the exploitation of a broad range of RS
data and techniques, as well as a well-assorted sample of NH types (Figure 1). Table 1
summarizes the RS data, the processing techniques used in each paper, and the general
purpose of the presented works.

Remote Sens. 2023, 15, 1048. https:/ /doi.org/10.3390/rs15041048 1 https:/ /www.mdpi.com/journal/remotesensing
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Figure 1. Pie charts of general purpose, natural hazard types, data, and RS technique of published papers.
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Table 1. Overview of RS data, techniques, purposes, and NH types that are presented in the papers
comprising the SI. Access links to each paper are also provided together with DOI numbers.

Paper Reference and
DOI with Access Link

RS Data

Processing
Technique

General Purpose

Natural Hazard Types

Chen et al. [1]
https:/ /doi.org/10.339
0/1s14195059 (accessed

on 6 February 2023)

optical, radar

InSAR

assessment

landslide

Wang et al. [2]
https:/ /doi.org/10.339
0/rs14184562 (accessed

on 6 February 2023)

radar

InSAR

new processing method

subsidence

Ma et al. [3]
https:/ /doi.org/10.339
0/rs14174257 (accessed

on 6 February 2023)

optical, radar

InSAR,
TRIGRS model

mapping

landslide

Wang et al. [4]
https:/ /doi.org/10.339
0/rs14153832 (accessed

on 6 February 2023)

radar

InSAR

new processing method

subsidence

Xiong et al. [5]
https://doi.org/10.339
0/rs14133081 (accessed

on 6 February 2023)

radar

InSAR,
exponential model

new processing method

settlements

Wangcai et al. [6]
https://doi.org/10.339
0/rs14092131 (accessed

on 6 February 2023)

radar

InSAR,
random forest

assessment

landslide

Hermle et al. [7]
https://doi.org/10.339
0/rs14030455 (accessed

on 6 February 2023)

optical

Imaging (CD, DIC)

monitoring

landslide
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Table 1. Cont.

Paper Reference and
DOI with Access Link

RS Data

Processing
Technique

General Purpose

Natural Hazard Types

Lietal. [8]
https:/ /doi.org/10.339
0/rs14010030 (accessed

on 6 February 2023)

local dataset

Machine learning

prediction model

earthquake

Seydi et al. [9]
https://doi.org/10.339
0/rs13245138 (accessed

on 6 February 2023)

multispectral and
hyperspectral

Deep Learning

mapping

wildfires

Nolde et al. [10]
https:/ /doi.org/10.339
0/rs13244975 (accessed

on 6 February 2023)

optical
(red and NIR)

Imaging (NDVI)

assessment

wildfires

Kos etal. [11]
https:/ /doi.org/10.339
0/rs13142694 (accessed

on 6 February 2023)

optical, radar

SAR offset tracking

monitoring

glacier

Ding et al. [12]
https:/ /doi.org/10.339
0/rs13091818 (accessed

on 6 February 2023)

review of the literature

flash floods

Cheng et al. [13]
https:/ /doi.org/10.339
0/rs13091775 (accessed

on 6 February 2023)

optical

Imaging (NDWI, SI)

assessment

hazard chain
(dam failure, mud and
hyperc. flow)

Pacheco et al. [14]
https:/ /doi.org/10.339
0/rs13071345 (accessed

on 6 February 2023)

multispectral

k-Nearest neighbor,
random forest

assessment

wildfires

Ranjgar et al. [15]
https:/ /doi.org/10.339
0/rs13071326 (accessed

on 6 February 2023)

radar

InSAR,
Machine Learning

mapping

subsidence

Wang et al. [16]
https:/ /doi.org/10.339
0/rs13050938 (accessed

on 6 February 2023)

optical

Geostatistics

assessment

rockfall

Yang et al. [17]
https:/ /doi.org/10.339
0/rs12223805 (accessed

on 6 February 2023)

multispectral

Geostatistics, RUSLE,
NBR

new processing method

hillslope erosion

Piersanti et al. [18]
https:/ /doi.org/10.339
0/rs13142839 (accessed

on 6 February 2023)

geomagnetic

Geostatistics

assessment

earthquake

1.1. Overview of the Presented Papers

The 18 papers published in the current Special Issue belong to the section “Environ-
mental Remote Sensing” and cover a wide range of applications in terms of the RS data
exploited, processing techniques used, and NH addressed.
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Chen et al. [1] applied multi-source remote sensing (InNSAR from ALOS PALSAR-1 and
-2) and field investigation to study the activity and kinematics of two adjacent landslides
along the Datong River in the Qilian Mountains of the Qinghai-Tibet Plateau (China).

Wang et al. [2] proposed a data partition strategy to solve typical limitations due to
traditional multi-temporal interferometric synthetic aperture radar (MT-InSAR) methods
which require a large computer memory and time when processing full-resolution data.
They validated such a strategy in Changzhou City and in Chongqing City (China).

Ma et al. [3] adopted a new open-source tool named MAT.TRIGRS(V1.0) to establish the
landslide susceptibility map in landslide abundance areas and to back-analyze the response
of the rainfall process to the change in landslide stability. The prediction results were
roughly consistent with the actual landslide distributions in Longchuan County (China).

Wang et al. [4] proposed a wide-area INSAR variable-scale deformation detection
strategy that combined stacking technology for fast ground-deformation rate calculations
and advanced TS-InSAR technology to obtain a fine deformation time series. This new
strategy was tested in the Turpan-Hami basin (China).

Xiong et al. [5] presented a new strategy based on the Multitemporal Interferometric
Synthetic Aperture Radar (MT-InSAR) method to overcome limitations due to an inaccu-
rate settlement prediction using traditional methods. The Xiamen Xiang’an International
Airport (China) was chosen as the test site.

Wangcai et al. [6] assessed landslide susceptibility, hazard, and risk in Yan’an City
(China) using a random forest machine learning classifier and eight environmental factors
influencing landslides. Additionally, Differential Synthetic Aperture Radar Interferometry
(DInSAR) was used for a hazard assessment.

Hermle et al. [7], with the aim of reducing noise from decorrelation in ground motion
detection by imaging, applied, for the first time, the optical flow-time series for fast land-
slides. The debris flows from the Sattelkar area (Austria) was selected as a benchmark site.

Li et al. [8], in order to obtain a precise casualty prediction method that could be
applied globally, a spatial division method based on regional differences and a zoning
casualty prediction method based on support vector regression (SVR) were proposed in
their paper. A selection of 30 historical earthquakes that occurred in China’s mainland
was chosen.

Seydi et al. [9] presented a novel framework for burned area mapping based on the
deep Siamese morphological neural network (DSMNN-Net) and heterogeneous datasets.
Two case study areas in Australian forests were selected.

Nolde et al. [10] exploited the possibilities of a recent EO dataset published by the
German Aerospace Center (DLR) by exemplarily analyzing fire severity trends on the
Australian East coast for the past 20 years.

Kos et al. [11] used SAR offset tracking to reconstruct a unique record of ice surface
velocities for a 3.2-year period for the Palcaraju glacier located above Laguna Palcacocha,
Cordillera Blanca (Peru).

Ding et al. [12] carried out a review of the literature related to the application of RS
and GIS in the study of flash floods. They analyzed more than 200 articles published in the
last 20 years, performing keyword co-occurrence, time zone chart, keyword burst, and the
literature co-citation analysis.

Cheng et al. [13] presented a detailed analysis to investigate the disaster conditions
of the Brumadinho dam failure (Brasil) using satellite images. Their in-depth analysis
revealed a hazard chain containing three stages, namely dam failure, mud-, and hyper-
concentrated flow.

Pacheco et al. [14] used RS to detect, map, and monitor areas that were affected by
forest fires in central Portugal. For this purpose, the study analyzed the performance of the
k-nearest neighbor (kNN) and random forest (RF) classifiers.
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Ranjgar et al. [15] assessed land subsidence susceptibility for Shahryar County (Iran)
using the adaptive neuro-fuzzy inference system (ANFIS) machine learning algorithm.
Additionally, they assessed if ensembles of ANFIS with two meta-heuristic algorithms
could yield a better prediction performance.

Wang et al. [16] proposed a new approach using the relief-slope angle relationship
to identify rockfall source areas controlled by rock mass strength. By using data from
helicopter-based RS imagery, a 10m-DEM, and fieldwork, historical rockfalls in the Wolong
study area of Tibet (China) were identified.

Yang et al. [17] developed a rapid and innovative approach to estimate post-fire
hillslope erosion using weather radar, RS, Google Earth Engine (GEE), GIS, and the revised
universal soil loss equation (RUSLE). They assessed the Sydney drinking water catchment
area and the Warragamba Dam (Australia).

Lastly, Piersanti et al. [18] presented the first evidence, via observation and model-
ing, of changes in magnetospheric field line resonance (FLR) eigenfrequency, which was
associated with the earthquake occurrence, and demonstrated a causal connection between
seismic phenomena and space-based observables.

The Editors expect that these studies will lead to fruitful discussions and scientific
progress, which should ultimately help to improve the overall quality and reliability of
remote sensing as a now indispensable tool for approaching natural hazards.

1.2. Statistics

The total number of researchers and technologists who contributed to the papers was
104, with an average of 5.8 contributors per article. As shown in Figure 2, most of them
worked in China, at least in terms of affiliation, followed by Germany, Italy, Australia, and
Iran. Overall, Universities and Institutions from 16 different countries were involved in the
present Special Issue. Most of the papers described work with practical applications tested
around the world.

Authors' affiiation by country
11 AT.ES,FR HK KR.NL.PK.PT.US
M2 BR.CH

W4 R

7 AU

s T

W0 0E

ez oy

Location of case studies

Figure 2. Overview of the authors’ affiliation by country together with the location of case studies
discussed in the present Special Issue.

The most recurring words among the keywords chosen by the authors are shown in
the word cloud in Figure 3. Among them, “InSAR” was selected six times, followed by

i

“landslide” (4 times), “burned area”, “sentinel”, and “wildfires” with three occurrences.
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Figure 3. Word clouds (also known as text clouds or tag clouds) generated from the keywords of all
contributions to the present Special Issue. The more a word appears as a keyword, the bigger and
bolder it appears in the word cloud.

1.3. Bibliometrics and Impact

The 18 papers were published in the current Special Issue, over 2 years, between
November 2020 and October 2022. Each manuscript was assessed via rigorous peer-
reviewing from two or more esteemed experts in their respective fields. Based on MDPI's
article metrics, this Special Issue has received, up to now (2 February 2023), more than
34,000 total views. A worldwide geographic distribution of readers was also noted. Overall,
the published papers already received 95 citations in the indexed literature indicating the
high scientific quality of the Special Issue. In detail, the work from Ranjgar et al. [15]
reached 22 citations and 3299 online views, followed by the papers from Pacheco et al. [14]
and Ding et al. [12] with 16 and 12 citations, respectively.

2. Further Reading

Readers who are interested in the use of remote sensing data and methods for
the assessment and control of natural hazards, in addition to this Special Issue, can
also refer to manuscripts published in other recent Special Issues of the Remote Sensing
journal, such as the “Remote Sensing of Natural Hazards” issued in 2019-2020 (https:
//www.mdpi.com/si/32980 (accessed on 2 February 2023)), “Remote Sensing in Engi-
neering Geology” published in 20202021 (https:/ /www.mdpi.com/si/28775 (accessed
on 2 February 2023)), and “Natural Hazard Assessment and Disaster Management Using
Remote Sensing” available from 2021 (https://www.mdpi.com/si/64420 (accessed on
2 February 2023)). In these Issues, several applications are offered, ranging from GIS-based
hazard assessment to the use of multi-sensor data for hazard detection and mapping.
Even in these examples, a wide range of natural hazards is covered, including wildfires,
earthquakes, landslides, and floods.

Author Contributions: The authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Acknowledgments: The Guest Editors would like to acknowledge all the authors for contributing to
this Special Issue and all the involved reviewers for their thoughtful comments and efforts toward
improving the submitted manuscripts. Sincere gratitude goes to the Editorial Board and Office of
Remote Sensing.
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Abstract: The increase in temperatures and changing precipitation patterns resulting from climate
change are accelerating the occurrence and development of landslides in cold regions, especially
in permafrost environments. Although the boundary regions between permafrost and seasonally
frozen ground are very sensitive to climate warming, slope failures and their kinematics remain
barely characterized or understood in these regions. Here, we apply multisource remote sensing and
field investigation to study the activity and kinematics of two adjacent landslides (hereafter referred
to as “twin landslides”) along the Datong River in the Qilian Mountains of the Qinghai-Tibet Plateau.
After failure, there is no obvious change in the area corresponding to the twin landslides. Based on
InSAR measurements derived from ALOS PALSAR-1 and -2, we observe significant downslope
movements of up to 15 mm/day within the twin landslides and up to 5 mm/day in their surrounding
slopes. We show that the downslope movements exhibit distinct seasonality; during the late thaw
and early freeze season, a mean velocity of about 4 mm/day is observed, while during the late freeze
and early thaw season the downslope velocity is nearly inactive. The pronounced seasonality of
downslope movements during both pre- and post-failure stages suggest that the occurrence and
development of the twin landslide are strongly influenced by freeze—thaw processes. Based on mete-
orological data, we infer that the occurrence of twin landslides are related to extensive precipitation
and warm winters. Based on risk assessment, INSAR measurements, and field investigation, we infer
that new slope failure or collapse may occur in the near future, which will probably block the Datong
River and cause catastrophic disasters. Our study provides new insight into the failure mechanisms
of slopes at the boundaries of permafrost and seasonally frozen ground.

Keywords: landslides; Gaofen-2; Interferometric synthetic aperture radar (InSAR); freeze—thaw
processes; permafrost; Qilian Mountains

1. Introduction

A landslide is the downslope movement of soil, rock, and debris under the action of
gravity and the landform that results from such movement [1]. The factors triggering slope
failure mainly include rainfall, earthquakes, fluvial erosion, excavation, and construction
activities [1]. Slope failure occurs frequently in rainy and mountainous areas, often resulting
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in casualties and property damage [1,2]. Slope failure at high latitudes and high altitudes
in cold regions has attracted significant attention for decades. Climate warming and the
consequent varied freeze—thaw states in cold regions may accelerate the occurrence and
development of landslides [3,4]. Thaw-related landslide activities (such as retrogressive
thaw slumps and active layer detachment) are increasing extensively in the permafrost
regions of both the Arctic [5-8] and the Qinghai-Tibet Plateau (QTP) [9-11], a phenomenon
that is mainly related to extremely warm summers and extensive summer precipitation.
Even in very cold permafrost regions, extreme warming events can cause slope failure due
to the thawing of ice-rich permafrost [12]. However, slope failures on the boundaries of
permafrost and seasonally frozen ground remain little characterized or understood.

Optical and radar remote sensing techniques are becoming one of the most impor-
tant tools for investigating the activity and kinematics of landslides, especially in rural
and mountainous regions [13,14]. The occurrence and development of landslides can be
obtained from optical remotely sensed images [15-19]. Rapid and abrupt slope movements
can be quantified according to the differences in DEM from two successive orthorectified
images [20-22] or from single-pass INSAR observations [23,24]. However, optical images
are prone to the effects of atmospheric conditions and revisit time, which impede the quan-
tification of landslide activities. In addition, optical-based slope movement is insensitive
to gradual slope movement or creep, which is often a sign of slope stability. Interfero-
metric synthetic aperture radar (InSAR) has been increasingly explored and successfully
applied to identify and monitor gradual slope deformation with centimeter-to-millimeter
accuracy [13,25-28]. The advantage of INSAR is that it is less affected by cloudy weather
and works regardless of whether day or night conditions. Recently, the development of
unmanned aerial vehicle (UAV) cameras allows the generation of very-high-resolution
optical images and digital surface models (DSMs). The combination of INSAR and UAV
data has advanced the understanding of crack development, landslide evolution, and sus-
ceptibility [29-34].

In this study, we combine multisource optical and radar remote sensing images to
investigate the activity and kinematics of two adjacent landslides (hereafter referred to as
“twin landslides”) located in the boundary regions of permafrost and seasonally frozen
ground on Qilian Mountain in the QTP. High-resolution optical satellite and UAV-based
images are used to investigate the activity of the twin landslides. INSAR measurements are
used to map and quantify the gradual slope movement before and after the failure of the
twin landslides. The triggering mechanisms of the twin landslides and their potential risks
are analyzed.

2. Study Area

In this study, we investigate two adjacent landslides occurring on the slope of the
middle and lower reaches of Datong River on the southeast slope of Qilian Mountain.
For convenience, we named the two adjacent landslides as twin landslides and refer to
them as “QLDTO01” and “QLDT02” throughout the paper (Figure 1C). The study area is
located between Tuolai Mountain in the north and Datong Mountain in the south, both of
which belong to branches of the Qilian Mountains. The Wari Gaqu River rises from the
Tuolai Mountains and ultimately joins the Datong River. A number of brooks from the
Datong Mountains = discharge into the Datong River (Figure 1A). Therefore, the study
area is a place where many rivers converge. The Tuolaishan and Datongshan faults are
distributed in the northwest and southwest of the study area, respectively. The altitude
in the study area ranges from 3400 to 3600, which is in the lower boundary of permafrost
and seasonal frozen ground on the QTP. The permafrost distribution map is shown in
Figure 1B [35].

Qilian Mountain is dominated by a continental alpine semi-humid mountain climate,
which is characterized by long, cold, and dry winters and short, cool, and moist summers.
Annual average air and ground surface temperatures are approximately —2.4 and 2.9 °C,
respectively [36]. The coldest January averages below —11 °C, and the warmest July
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37°55'N

averages below 25 °C; most of the Qilian Mountains are below 0 °C from December
to March, and the highest temperatures range from 4 to 15 °C from April to October.
Precipitation ranges from 300 to 500 mm annually and is mainly concentrated during May
to September in the form of rainfall [37,38].
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Figure 1. Study area and field photos. (A) The locations of the twin landslides (QLDT01 and QLDT02)
are marked by yellow dots within the black rectangle. The background map is the hill-shaded
DEM. The mountains, rivers, and roads in our study area are marked. (B) The distribution map of
permafrost and seasonal frozen ground in the QTP [35]. The black rectangle presents the location
of our study area. The inner map in the bottom right-hand corner shows the location of the QTP
in China. (C) An unmanned aerial vehicle (UAV) photograph of the twin landslides taken in April
2021. The white arrow denotes the direction of the landslide movement. The yellow polygons are the
boundaries of the twin landslides.

3. Data and Methods
3.1. Data Sources

To investigate the activity and kinematics of the twin landslides, multisource high-
resolution optical and radar data were acquired during 2009-2020. Google images with a
spatial resolution of 0.65 m were acquired using Map Tile Downloader (version number:
release 2.3, developed by Centmap Co., LTD., located in Hefei, Anhui Province, China).
The details of the remotely sensed images are listed in Table 1. Gaofen-2 is a Chinese
high-resolution optical satellite that was launched in August 2014 and carries two panchro-
matic and multispectral charge-coupled device camera sensors. We used panchromatic
images with a spatial resolution of 0.8-1 m, which were obtained from the China Centre
for Resources Satellite Data and Application (http://www.cresda.com/CN/, accessed
on 10 October 2021). Based on the selection of images free of cloud and snow cover, four
Google and three Gaofen-2 images obtained during 2019-2020 were used.
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The L-band Phased Array type L-band Synthetic Aperture Radar (PALSAR) sensor
is mounted on the Advanced Land Observation Satellite (ALOS)-1/2. Six ALOS-1 (Path:
477, Frame: 750, incidence angle: 38.7°, heading angle: —10.1°, range resolution: 4.66 m,
azimuth resolution: 3.16 m) and thirteen ALOS-2 (Path: 147, Frame: 750, incidence angle:
36.3°, heading angle: —10.4°, range resolution: 4.29 m, azimuth resolution: 3.77 m) SAR
images were chosen to map and quantify the ground movements of the twin landslides.
We expected better performance from the L-band PALSAR data with a wavelength of about
24 cm. This is because L-band electromagnetic waves can penetrate deeper into snow and
vegetated surfaces [39], leading to higher interferometric coherence [40].

To investigate potential unstable zones, we conducted a UAV survey and used
structure-from-motion/multiview stereo photogrammetry to map the twin landslides
and their surroundings on 29 April 2021. We used the DJI Phantom 4 RTK flying platform
with an altitude of 100 m above the ground surface. The heading and lateral overlap of
flying were 85% and 60%, respectively. We obtained the very-high-resolution (VHR) images
and a DEM with a resolution of around 5 cm/pixel using Agisoft PhotoScan software.
The uncertainty of the relative positions was estimated to be around 2-3 cm.

The temperature and precipitation data in the Qilian Mountains from 2000 to 2019
obtained by the National Meteorological Station of China were used to describe the climatic
conditions (http:/ /www.cma.gov.cn/, accessed on 10 November 2021).

Table 1. Summary of the remotely sensed dataset used in this study. The acquisition dates of ALOS
PALSAR-1/2 can be found in Table 2.

Data Resolution (m) Date (YYYYMM) Number of Scenes
Google 0.65 200910, 201006, 201712, 202007 4
Gaofen-2 0.8 201512, 201811, 202008 3
ALOS PALSAR-1 7 2008-2010 6
ALOS PALSAR-2 7 2015-2020 13
UAV 0.05 202104 1

3.2. Mapping of Twin Landslides from Optical Remote Sensing

Google, Gaofen-2, and PALSAR-1/2 satellite images were used to determine the oc-
currence and development of the twin landslides. The Gaofen-2 images were geometrically
corrected using ENVI5.3 software. Then, the one arc-second Shuttle Radar Topography
Mission (SRTM) DEM product was used for image orthorectification. Due to destruction of
the integrity of the original stratum, landslide features such as changed vegetation and soil
collapse can be identified from high-resolution optical images [16,41]. The boundaries of
the twin landslides and adjacent shorelines were outlined based on visual inspection by
three experienced researchers. To further evaluate the change characteristics, we estimated
the rate of landslide areal growth AAarea [6]:

Ay — Ay

AArate =
rate t2 — tl

@
where A; and A, are the total area (m?) of landslide in different timeframes and t; and t,
(year) are the corresponding time points.

VHR optical images have proven useful in identifying landslide features such as small
cracks or ground discontinuities [42,43]. In this study, to map the potential unstable zones
surrounding the twin landslides, we identified cracks through visual inspection of the VHR
UAV optical images. As the spatial resolution of UAV images is 5 cm, cracks with width
larger than 5 cm were very likely to be identified.

3.3. InSAR for Ground Deformation Monitoring

The InSAR technique detects ground movements by comparing the phase differences
between SAR images acquired from slightly different positions at different times [44]. Differ-
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ential INSAR (DInSAR) and multi-temporal INSAR (MTInSAR) have frequently been used
to measure slope movements in both permafrost and nonpermafrost regions [27,28,45-47].
As there are very limited descending PALSAR-1/2 images, all the archived ascending
PALSAR-1/2 images available that covered our study area were examined for ground
deformation monitoring. The interferometric coherence decreases rapidly in the thaw
season (May-October) and is slower in the freeze season (November-next April). To miti-
gate the decorrelation impact, we selected image pairs with temporal spans of less than
150 days and perpendicular baselines shorter than 500 m. Considering the accuracy of
SRTM DEM and the maximum perpendicular baseline (591 m in our case), we estimated
that the residual topographic phase would be about 0.8 radians, corresponding to 1.5 cm in
the INSAR measurements. Relying on the interferometric coherence and phase quality, only
six ALOS PALSAR-1 images and thirteen ALOS PALSAR-2 images, taken during 2009-2010
and 2015-2020, respectively, were selected. This causes severe disconnection between SAR
images and does not allow the use of MTINSAR approaches such as small-baseline subset
InSAR [48].

We calculated ground movement using the DInSAR technique, which was conducted
using the commercial GAMMA software [49]. We constructed three and nine interferograms
for PALSAR-1 and -2, respectively. The range and azimuth look numbers were 2 and 5
for PALSAR-1 and 2 and 4 for PALSAR-2, generating ground pixels of approximately
15 m x 15 m. The one arc-second SRTM DEM product was used to remove the topographic
phase of each interferogram. The temporal and perpendicular baselines are presented
in Table 2. We applied a power spectrum adaptive filter to mitigate the phase noise and
mask out decorrelation areas with a coherence threshold of 0.6 [50]. We unwrapped all the
interferograms using the minimum cost flow approach [51]. To compare the deformation
between PALSAR-1 and -2, a local reference point with high coherence nearby the twin
landslides was selected for calibration of the unwrapped phase. Tropospheric artifacts
may contaminate the ground deformation in mountainous regions. As our study area
was very small, we mitigated tropospheric artifacts by fitting the topographic-related
components [52]. Residual atmospheric and orbital errors were mitigated using a linear
deramping approach.

Table 2. The interferogram pairs from ALOS PALSAR-1/2 and their temporal and perpendicular
spatial baselines.

ALOS PALSAR-1 ALOS PALSAR-2
Master-Slave Time Span Master-Slave Time Span
D (YYYYMMDD) (Days) ~ BL W 1D (YYYYMMDD) (Days) ~ BL

1 20090630-20090815 46 -32 1 20151009-20151218 70 200

2 20091231-20100215 46 491 2 20171201-20180209 70 —98

3 20100703-20100818 46 116 3 20180209-20180601 112 —44
4 20180601-20180727 56 —6
5 20181116-20190125 70 15
6 20190125-20190531 126 —60
7 20190531-20190726 56 78
8 20190726-20190906 42 —10
9 20200306-20200529 84 169

We calculated the light-of-sight (LOS) movement from each interferogram. By dividing
the time interval between the interferogram pairs, we calculated the deformation velocities
along the LOS direction. Assuming the slopes move purely along the downslope direction,
the InNSAR-estimated LOS velocities (V},s) can be projected into the downslope velocities
(V4s) with the following equation [47,53]:
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— ‘/105
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Vs 2
where ttaspect and agjope are the aspect and slope angles, respectively, which can be calculated
using the SRTM DEM data; B is the flight direction of the SAR satellite; and 6, is the
local incidence angle, which can be calculated using the SAR geometry and SRTM DEM
data. To reduce the noise in the calculation of slope, aspect, and local incidence angles, we
applied a Gaussian filter with a 7 x 7 window (around 200 m) to the SRTM DEM.

3.4. Climatic Factors

Air temperature and precipitation data from 2000 to 2019 were used to analyze their
impacts on the evolution of the twin landslides. We calculated four temperature indica-
tors: mean annual air temperature (MAAT), thawing index, warming days, and average
temperature in the coldest month of the year. To account for warming days, we calculated
the number of days with a daily temperature higher than 10 °C. The thawing index TI is
the cumulative number of degree days above 0 °C for a given thaw season, which can be
calculated by [54]:

Nr
Tl = Z T;, T, >0 3)
i=1

where T; is the daily temperature on day 7 and Nr is the number of days in a year with a
temperature greater than 0 °C.

We calculated the annual total precipitation, precipitation intensity, extreme precipi-
tation, and the number of consecutive drought days in a year. The precipitation intensity
is the ratio between the total precipitation and the duration of precipitation days, and
represents the average amount of precipitation in a certain duration. Daily precipita-
tion of between 10 and 25 mm is defined as moderate rainfall by the World Meteoro-
logical Organization. However, because the annual precipitation is about 450 mm, we
consider a daily precipitation of higher than 15 mm to be extreme precipitation in our study.
The consecutive drought days is the number of days without precipitation.

3.5. Risk Assessment

We evaluated the potential risks related to the twin landslides and their surroundings
in the same slopes. A landslide dam forms when a landslide reaches the bottom of a valley
and causes partial or complete blockage of a river [55]. The sudden collapse of landslide
dams and the rapid release of water storage poses a great risk of flooding downstream [56].
The dimensionless blockage index (DBI) has been developed for the prediction of potential
risks of a landslide dam by linking the stability of a landslide dam to three geomorphic
parameters [57]. The dam volume V4 controls the dam height Hy, and is considered as
the main stabilizing factor. The watershed area Ay, indirectly controls the channel flow
and flow power, and is the main factor influencing dam instability. The dam height is an
important variable for evaluating the stability of landslide dams against overtopping and
pipeline failure. Thus, the DBI can be expressed as [57]:

Ap X Ha, @)
d

As only QLDTO01 has caused the formation of a landslide dam, we calculated the DBIL
only for QLDTO01. The dam height was obtained from UAV-based DEM data. The volume of
the landslide dam was calculated from high-resolution UAV-based DEM using the cut-and-
fill volume tool in the Global Mapper software. The hydrological analysis tool was used to
calculate the catchment area from UAV-based DEM in ArcGIS (version number: release 10.7,
developed by Environmental Systems Research Institute, Inc., located in RedLands, CA, USA).

DBI = log(
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4. Results
4.1. Spatiotemporal Variations of the Twin Landslides

The occurrence and development of the twin landslides are shown below (QLDTO01 in
Figure 2 and QLDTO2 in Figure 3). Based on visual interpretation of optical and PALSAR-
1/2 SAR backscatter images, we infer that QLDTO01 occurred between October and De-
cember of 2009, whereas QLDTO02 occurred sometime between October and November of
2015. The failure of QLDTO01 caused the mud and rubble to slide into the river channel and
almost blocked the Datong River (Figure 2B). Crack features can be found in the headwall
regions for both QLDTO01 and QLDTO2 as far back as 2009 (Figures 2A and 3A). As there
are no high-resolution images in our study before 2009, we cannot precisely determine
the exact initialization time of these cracks. Compared to 2009, the cracks in QLDT02 had
significantly enlarged during 20092015 before its failure. The development of QLDTO1 is
slow, and its slide into the Datong River almost stopped during 2010-2018. Contrary to
QLDTO1, the headwall of QLDTO02 continued to slowly retreat during 2009-2015. The mass
of QLDTO02 slid along the northwest side of the headwall region and caused the formation
of a dammed lake at the foot of the slope.

Figure 2. Temporal variations of landslide QLDTO01: (A,B) Google satellite images of landslide
boundary changes in 2009 and 2010 and (C) landslide evolution in 2010, 2017, and 2020.

The total area of the QLDTO1 slide is about 76.5 x 103 m? following the slope failure
in 2009. The landslide body slid into and dammed the Datong River. QLDTO01 slowly ex-
panded at an areal growth rate of 0.5 x 10°> m? during 20112018 (Figure 2C). The total area
for slope failure of QLDT02 is about 131 x 10> m?, which is about double that of QLDT01
(Figure 3C). A small dammed lake has formed at the toe of QLDT02. The areal growth
rate of QLDTO1 is 10.7 x 10> m? during 2016-2018, which has slowed to 5.5 x 10® m?
during 2018-2020.

The slope failure of QLDT01 completely dammed the Datong River and rerouted its
flow (Figure 4). The width of the Datong River beneath QLDT01 was 66 m before the slope
failure in 2009. The landslide body slid into the river and reached to about 4 m beyond the
northern bank when the slope collapsed. The river quickly expanded towards the northern
bank, whereas the river’s width changed to 16 m in 2010. Under continuous fluvial erosion,
the northern bank expanded northward by about 30 m during 2010-2017, whereas the
river’s width changed to 48 m in 2017. In other words, the average bank erosion rate was
about 4 m/year during 2010-2017.
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Figure 3. Temporal variations of landslide QLDT02: (A,B) landslide in Google satellite and Gaofen-2
satellite images from 2009 and 2015; the yellow arrow is the direction of movement of the landslide.
(C) Landslide characteristics recorded by Gaofen-2 satellite images in 2015, 2018, and 2020. A dammed
lake is formed at the toe of the slope, as shown in (D).
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Figure 4. River bank changes of Datong River beneath the twin landslides in 2009, 2010, and 2017.
In 2009, the thinnest section of the Datong River was about 66 m. In 2010, the southern river bank
expanded northward due to the collapse of Landslide QLDTO01, and the width was about 16 m.
In 2017, the north bank continued to expand northward, and the thinnest section of the Datong River
was 48 m.

4.2. InSAR-Derived Downslope Movement of the Twin Landslides

We derive the downslope movement of twin landslides before and after their fail-
ure from PALSAR-1/2 InSAR measurements during 2009-2010 and 2015-2020 (Figure 5).
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Significant downslope movement is observed within the twin landslides, whereas the
maximum displacement rate reaches up to 15 mm/day. We observe strong displacement of
up to 5 mm/day outside the twin landslides. To evaluate the potential risks related to the
twin landslides and their surroundings, we outline one polygon adjacent to the QLDT02
based on the phenomenological features from UAV images (potential risk zone (PRZ) in
Figure 5L).

During the summer before the failure of QLDTO01, significant downslope velocities
up to 15 mm/day are observed in the boundary and central regions of the landslide body,
whereas the mean value is about 4 mm/day (Figure 5A). Five years later, after the failure of
the slope, the mean downslope velocities are smaller than 0.5 mm/day in both the summer
and winter seasons during 2015-2020 (Figure 5D-F).

We observe that for QLDTO02 the mean downslope velocities are about 1.6 mm/day
with a maximum value of 5 mm/day from July 2009 to August 2010, i.e., the periods just
before and after the failure of QLTDO01 (Figure 5A—C). A distinct scarp can be observed
in the high-resolution optical image at the head of the landslide body (Figure 3A), which
may cause severe INSAR decorrelation and result in no measurements in these regions.
The failure of QLDT02 occurred during October and December of 2015; however, there are
no valid InNSAR measurements due to this severe decorrelation. We observe that significant
downslope velocities with mean values of about 2.3 mm/day are pronounced in QLDT02
during July—February of 2016-2020 after slope failure (Figure 5E,H,K). On the contrary,
QLDTO02 is inactive during March-June (Figure 5F,G,L],L).
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Figure 5. The downslope velocity is derived from line-of-sight (LOS) deformation using Equation (2).
The background map is the shaded relief map derived from UAV DEM. The twin landslides (QLDTO01
and QLDT02) and the potential risk zone (PRZ) are marked by red polygons in the bottom right-hand
corner of the subfigures. The positive values refer to the movement in the downslope direction.
The red triangle denotes the location of the reference point.
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5. Discussion
5.1. Triggering Mechanisms
5.1.1. Precipitation

In general, changing precipitation patterns increase subsurface saturation and pore
pressure, which increase the likelihood of slope failure [58]. Extensive or extreme precipita-
tion and rapid snow /ice melt are therefore likely to increase the frequency and magnitude
of landslides [59,60]. The precipitation data near the twin landslides show fluctuating
upward trends during 2000-2019 (Figure 6A). The annual precipitation is 451 mm in 2009
and 448 mm in 2015, which is significantly higher than the mean annual precipitation
since 2000. The annual precipitation in the preceding year is higher than in the year of
slope failure.
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Figure 6. Variations of precipitation during 2000-2019: (A) variations in annual precipitation, (B) pre-
cipitation intensity, (C) number of consecutive drought days in a year.

To evaluate the impacts of precipitation events on the occurrence of the twin landslides,
we graphed the daily precipitation before slope failure (Figure 7). An extreme precipitation
event of 35.8 mm is recorded in August 2009. The accumulated precipitation was about
193 mm during August-September 2019 (Figure 7). The number of consecutive drought
days is among the lowest during 2000-2009 (Figure 6C). Extensive rainwater may increase
the pore water pressure and reduce the shear strength in weak soil layers. Thus, we infer
that the occurrence of QLDTO01 may have been primarily triggered by extensive precipi-
tation. In 2015, there was no extreme precipitation event such as that in 2009, however,
the annual precipitation was higher than the 20-year average (Figure 6A). The number of
consecutive drought days was below the average (Figure 6C). Therefore, we presume that
increased precipitation is likely one of the triggering factors of landslide QLDT02.

18



Remote Sens. 2022, 14, 5059

50

1 T
45 Il Daily precipitation
Cumulative precipitation|

40

T T T 250

— 200

= g
=
5 £
g 3538 Landslide: 9/30-12/31/2009 g
g 35+ ke
= 1150 3
&°°r =
- H100 &
820
] g
g 151 5
S - 50 =
2 10 =
'z g
Q 5k 40 3

0 [ a1 1

8 9 10 i 12

Date (8-12/2009)

Figure 7. Daily and cumulative precipitation during August-December, 2019. A maximum daily
precipitation of 35.8 mm was recorded in August 2009.

5.1.2. Freeze-Thaw Processes

Climate warming and disturbance may have strong impacts on slope stability in cold
environments [3,4]. In permafrost areas, rocks are glued together by ice filling their cracks
and crevices. Freeze-thaw processes are characterized by variability in subsurface tem-
perature and moisture content, which results in substantial fluctuations of shear strength
(cohesion and friction angle) and drives landslide initiation [61]. The transition from
perennially frozen to seasonally frozen ground accelerates the effect of freeze-thaw pro-
cesses on both bedrock and unconsolidated material [62]. As the air temperature increases,
the warming and thawing of permafrost may weaken rock faces and the inherent stability of
permafrost, leading to slope failure [63]. In mountain permafrost regions, e.g., the European
Alps, Canada, and the Tibetan plateau, researchers have recorded an increasing tendency
of landslide activities due to the warming climate [9,64,65].

The MAAT shows an obvious warming trend during 2000-2019 (Figure 8A). The MAAT
in 2009 and 2015 is 2.32 and 2.36 °C, respectively, which is about 0.3 °C above the 20-year
average (Figure 8A). The MAAT values in the preceding years (2008 and 2014) are about
0.7 °C lower than in the failure years. The strong fluctuations in air temperature may
amplify freeze-thaw processes and thus affect slope stability. In 2009, the warming days
(the number of days with air temperature above 10 °C), the thawing index, and the average
temperature in the coldest month were all above their 20-year averages (Figure 8B-D). This
suggests that the warming events in 2009 might have been one of the triggers of QLDTO01
failure. On the contrary, the warming days and thawing index in 2015 are lower than their
averages. However, the mean temperature of the coldest month in 2015 is about 0.7 °C)
above the 20-year average, which suggests a warm winter. Warm winters may slow down
freezing processes, allow the soil water to remain in an unfrozen state for a longer time,
thereby increasing the risk of slope failure.
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Figure 8. Variations in air temperature during 2000-2019: (A) mean annual air temperature (MAAT),
(B) warming days with an annual average temperature greater than 10 °C, (C) thawing index, (D)
average temperature of the coldest month.

The activities and kinematic patterns in the twin landslides and their surroundings
have been derived from InNSAR measurements. We observe that the average downslope
velocities in QLDT01 and QLDTO02 exhibit distinct seasonality (Figure 9). During the
early thawing periods from May to early July, the slopes are in an inactive state. In this
stage, soil thawing is shallow and does not reach the sliding surface, resulting in limited
downslope movement. During the late thawing and early freezing periods from late July
to the next January the slopes are in an active state, with average downslope velocities up
to 4 mm/day. In the late thawing stage, the sliding surface is thawed, which results in
significant downslope movement. Despite the shallow soil being frozen during the early
freezing season, downslope movement remains significant, as the sliding surface is in a
thawed state. During the early freezing period from February to April the slopes become
inactive, as the sliding surface is in a frozen state.

20



Remote Sens. 2022, 14, 5059

7 4 Year: 2009 # QLDTO1
—f— QLDTO2
—§— PRZ

01

74 Year: 2010

0 B

74 Year: 2015

01
7 4 Year: 2017

0 4
7 4 Year: 2018

Downslope velocity (mm/day)

——
| — S —

7 4 Year: 2019

0 . i i

74 Year: 2020

01 & .

151 —— 2000-2019 MDAT s 2000-2019 MDP | g g
g M g
ST 11T W
2 k=
EET-R Desh N, J‘4.,.L.JJu...ui.m...||||||ﬁlm mmm |“ ul"‘m "“““m ‘HMI“”‘ Hlllh‘ ‘Hn.hulll.u.n.l.,,, wr Yo &

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Figure 9. Temporal variations for 2000-2019 in mean daily air temperature (MDAT), mean daily
precipitation (MDP), and average downslope velocities of QLDT01, QLDT02, and potential risk zone
(PRZ) (Figure 5L). The squares present the average downslope velocities, whereas the corresponding
lines show the start and end date of the SAR image pair. The error bars denote the standard deviation
of downslope velocities within the red polygons. The bottom panel plots the MDAT and MDP.

The seasonality of significant downslope movement during both the pre- and post-
failure stages suggest that the occurrence and development of the twin landslides were
strongly influenced by freeze—thaw processes. The seasonal pattern is different from the
seasonal deformation corresponding to freeze uplift and thaw subsidence due to ice-water
phase change constraints in the active layer [66,67]. To put this work in a spatial context,
we compare our study with several freeze-thaw-related slope instability studies on the
QTP. Meng et al. and Hao et al. [34,45] observed deformation velocity up to 100 mm/year
with a linear trend assumption using the multi-temporal INSAR technique on an earthflow
in Yushu, QTP. Dini et al. [68] characterized different magnitudes of LOS deformation over
different types of slope instability in the eastern Himalayas. Hu et al. [53] found similar
seasonal patterns of downslope velocity up to about 3 mm/day during the active stage
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in several rock glaciers in the East Kunlun Mountains. The less pronounced downslope
velocity may be primarily related to the kinematic behaviors of rock glaciers.

5.1.3. Other Triggering Factors

The slope failure of QLDT01 may be partially attributed to fluvial erosion at the slope
toe and its geomorphological characteristics. QLDTO1 is situated at the confluence of
several rivers. The north bank of the Datong River facing landslide QLDTO01 is the Wari
Gaqu River, which flows into the Datong River. This results in high runoff flow of the
Datong River, which is usually accompanied by transverse expansion when it is scoured
downward along the river. Under continuous erosion by river flow or streams, the slope
toe becomes too steep to hold itself, consequently resulting in slope failure [69]. Moreover,
QLDTO01 has a slope of about 17.5 degrees on average, with a slope height of about 66 m,
which make it prone to slope failure.

Shaking from earthquakes may be a direct triggering factor of the QLDTLO2 failure.
According to data from the China Earthquake Networks Center (http://www.ceic.ac.cn,
accessed on 10 November 2021), a Mw 5.2 earthquake occurred on 23 November 2015,
with a focal depth of 10 km and a direct distance of 24 km from QLDTO02 (Figure 1A).
The Tuolaishan fault is the seismogenic fault of this earthquake according to the Qinghai
Earthquake Administration, China (www.ghdzj.gov.cn, accessed on 10 November 2021).
Earthquakes increase the occurrence of landslides due to ground shaking, liquefaction
of susceptible sediments, and swelling of soil materials caused by shaking, which allows
water to seep in rapidly. In addition, earthquakes can alter friction at the base of landslides,
thus accelerating their movement over several days or weeks [70,71].

5.2. Hazard Analysis

We evaluate the stability of the landslide dam of QLDTO01 based on the DBI calcu-
lation. According to the DBI criterion proposed by Ermini and Casagli [57], the state of
landslide dam can be categorized as a stable domain (DBI < 2.75), an uncertain domain
(2.75 < DBI < 3.08), and an unstable domain (DBI > 3.08). The height of the landslide dam
ranges from 0 m at the toe of the landslide to about 40 m at the south bank of the Datong
River. The landslide dam volume and catchment area are 69 x 10°> m3 and 4.4 x 10% m?,
respectively. Relying on different dam heights, the calculated DBI ranges from 2.55 to 2.97,
with an average of 2.78 (Figure 10). We find that the toe (Hg < 3.5 m) and top (Hy > 29 m) of
the slope in QLDTLO1 can be considered as a stable domain, as their DBI is lower than 2.75.
The landslide dam is in the uncertain domain in the middle of the slope (3.5 m < Hq <29 m),
which accounts for 70% of the entire slope. Thus, we infer that the QLDTO1 is at risk of
further slope collapse.

While only a portion of the slope (QLDT02) has collapsed, we evaluate the stability
of the noncollapsed regions of the slope and the potential risks. Two long cracks (about
300400 m) could be observed as of 2009. While one crack (QLDTO01) collapsed in 2009,
only a small portion of another crack developed into a landslide (QLDTO02) in 2015. Based
on the high-resolution UAV DEM (Figure 11B), we find that the slope height varies signifi-
cantly and the slope gradient is large, providing geomorphological conditions for slope
creep. In addition, many new cracks are found in the noncollapsed regions of the slope
(Figure 11A), suggesting the occurrence of strong internal movement. Moreover, continu-
ous InSAR-derived downslope movements are observed, further confirming the instability
of the noncollapsed slope (PRZ in Figures 5 and 9). The volume of the PRZ region is about
12 x 10° m3, which is 1.6 times larger than that of landslide QLDTO1. In addition, there
are temporary houses in the area for locals to graze animals. A potential slope failure may
completely block the Datong River and cause a catastrophic disaster.
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Figure 10. The dimensionless blockage index (DBI) diagram of landslide QLDT01. When the landslide
dam is at the height of 3.5 to 29 m, the mean value of DBl is 2.87, which is in the uncertain domain
(UD). When the height of landslide dam is lower than 3.5 m and higher than 29 m, the average DBI is
2.66, which is in the stable domain (SD).
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Figure 11. (A) The orthophoto map acquired by UAV in April 2021; the red lines denote the cracks.
(B) The UAV-derived DEM map.

6. Conclusions

We have documented the spatiotemporal evolution of two adjacent landslides on
the southeast slope of Qilian Mountain during their pre-failure and post-failure stages
from 2008 to 2020 by integrating multisource optical and radar remote sensing techniques.
The main conclusions are as follows:

1. The occurrence and development of the twin landslides and the adjacent river bank
have been determined using high-resolution optical and radar images.

2. Significant downslope movements are observed within the twin landslides (up to
15 mm/day) and their surrounding slopes (up to 5 mm/day). The downslope move-
ment exhibits distinct seasonality. During February-early July, the downslope velocity
is nearly inactive; during late July-next January, mean velocity of about 4 mm/day is
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observed. The seasonality of downslope movement during both pre- and post-failure
stages suggests that the occurrence and development of the twin landslide are strongly
influenced by freeze—thaw processes.

3.  Combining data on precipitation, air temperature, and InNSAR-based deformation his-
tory, we infer that the occurrence of the twin landslides is mainly related to extensive
precipitation, warm winters, and freeze-thaw processes.

4. From the UAV-based geomorphological features, INSAR-derived downslope move-
ments, and dimensionless blockage index, we infer that new collapse and slope failure
events may occur within the twin landslides and their surroundings, which may
completely block the Datong River and cause a catastrophic disaster.

Our study demonstrates the capability of multisource high-resolution remote sensing
techniques to monitor landslide activities in cold regions. As the impacts of climate warm-
ing becoming more extensive, freeze-thaw-related slope instability in climate-sensitive
regions (the boundary regions of permafrost and seasonally frozen ground, in this case)
should be afforded greater attention.
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Abstract: The Sentinel-1A /B satellite launched by European Space Agency (ESA) in 2014 provides
a huge amount of free Terrain Observation by Progressive Scans (TOPS) data with global coverage
to the public. The TOPS data have a frame width of 250 km and have been widely used in surface
deformation monitoring. However, traditional Multi-Temporal Interferometric Synthetic Aperture
Radar (MT-InSAR) methods require large computer memory and time when processing full resolution
data with large width and long strips. In addition, they hardly correct atmospheric delays and orbital
errors accurately over a large area. In order to solve these problems, this study proposes a data
partition strategy based on MT-INSAR methods. We first process the partitioned images over a
large area by traditional MT-InSAR method, then stitch the deformation results into a complete
deformation result by correcting the offsets of adjacent partitioned images. This strategy is validated
in a flat urban area (Changzhou City in Jiangsu province, China), and a mountainous region (Qijiang
in Chongging City, China). Compared with traditional MT-InNSAR methods, the precision of the
results obtained by the new strategy is improved by about 5% for Changzhou city and about 15%
for Qijiang because of its advantage in atmospheric delay correction. Furthermore, the proposed
strategy needs much less memory and time than traditional methods. The total time needed by the
traditional method is about 20 h, and by the proposed method, is about 8.7 h, when the number
of parallel processing is 5 in the Changzhou city case. The time will be further reduced when the
number of parallel processes increases.

Keywords: MT-InSAR; ground deformation monitoring; Sentinel-1A/B; image partition; block
adjustment

1. Introduction

Due to large coverage and high-precision, Interferometric Synthetic Aperture Radar
(InSAR) has been widely used for mapping surface deformation, such as urban surface
deformation [1,2], seismic deformation [3,4], landslide displacement [5-9], and mining
subsidence [10]. With the fast development of SAR satellite technology [11], the observation
range and frequency are both improved [12-14], providing cycle monitoring for a large-scale
or national wide area. However, the traditional processing strategies for Multi-Temporal
Interferometric Synthetic Aperture Radar (MT-InSAR) cannot efficiently process the huge
number of images with large spatial and temporal coverage. Furthermore, the possible
atmospheric phase screen and orbital errors exist in the SAR images with wide spatial
coverage are difficult to be corrected. Therefore, optimizing the INSAR processing strategy
and parameters is crucial for the application of wide-area InNSAR data.

Using supercomputers or distributed computing systems, such as CASearth Cloud
Infrastructure Platform [15], and ESA’s G-POD environment [16], is a way to improve the
data processing efficiency, but it is too expensive to be popularized. Another way is to
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segment a large image into small blocks, which can significantly reduce the computation
burden and complexity in one block and improve the efficiency of data processing. Cur-
rently, data partition strategies are applied in some steps of SAR data processing, such
as phase unwrapping [17-20], orbital error correction [21], atmospheric correction [22,23],
and PS point decomposition [24,25], but not the whole data process. GAMMA software
provides a well-known patch-based point target analysis method, Interferometric Point
Target Analysis (IPTA) [26]. However, the method of using local reference points between
neighboring patches to extend the results to adjacent blocks is highly affected by unstable
connections, resulting in errors propagating in the result easily [27]. StaMPS method and
software [28] also provide a block strategy to select permanent scatterers, but it is time-
consuming for large-scale areas [29]. Data block processing often introduces systematic
errors, such as reference basis errors [29-31]. To remove these errors, external data (GNSS
and leveling) and modeling [32,33] are needed. Furthermore, the correction efficacy and
precision strongly depend on the precision and spatial distribution of external data.

To address the above problems, we propose a strategy to divide the original data
into small blocks by GAMMA software and process these blocks independently by the
traditional MT-InSAR method. Then, we use the least square method to estimate the basis
between each block and mosaic the corrected block results to obtain the overall results. To
validate our strategy, we selected the Sentinel-1 Terrain Observation by Progressive Scans
(TOPS) data of a city in the plain area (Changzhou City, Jiangsu Province) and a city in
the mountainous area (Qijiang, Chongqing City) in China for the experiment. The results
obtained by the traditional and the proposed methods are compared in terms of precision,
memory consumption, and time consumption. We also discuss the optimal overlap ratio of
blocks and the application of the proposed method.

This study is organized as follows: Section 2 describes the proposed method in detail.
The study area and the datasets are introduced in Section 3. In Section 4, we compare the
precision and time consumption of the proposed method and traditional method. The
block approach and the applicability scenarios of our method is also discussed in Section 5.
Finally, some conclusions are drawn in Section 6.

2. The Block MT-InSAR Data Processing Strategy

In order to solve the great calculation burden caused by Sentinel-1A /B TOPS data of
large spatial and temporal coverage, this paper proposes a data partition strategy based on
the MT-InSAR data method, referred to as the block MT-InSAR algorithm. First, the TOPS
data are co-registered in the study area to obtain registered single look complex (RSLC), and
then the RSLC data are partitioned and processed separately by the traditional MT-InSAR
algorithm. Then, the results are corrected by the adjustment model based on the spatial
consistency of homonymy points (the same ground deformation points located in different
blocks within the overlap areas.). Finally, the results are spliced to obtain the continuous
overall deformation results. The general flow of the method is shown in Figures 1 and Al.

Co-registration Data partition MT-InSAR processing Deformation correction
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Figure 1. Flowchart of the block MT-InSAR algorithm.
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2.1. Data Partition and Block Processing

Even partition [29], quadtree partition [22], and clustering algorithm partition [19,34]
have been used in some parts of data processing, such as atmospheric delay removal, PS
network construction, and phase unwrapping. In order to facilitate the splicing process,
this paper uses even partition to divide the original data into small blocks, in which the
block size and the overlap ratio should be considered.

Block size affects the precision and the processing efficiency of the phase unwrapping,
atmospheric delay, and orbit error partition. If the block interferograms are highly coherent
and easy to unwrap, the block size has little effect on phase unwrapping precision, but a
small block size would lead to high unwrapping efficiency [17]. Additionally, the atmo-
spheric delay in the MT-InSAR consists of a short-scale (few kilometers) and a long-scale
(tens of kilometers) component [35], so the block size smaller than these scales is conducive
to removing atmospheric delay. However, the too-small block size may remove the long-
wavelength deformation signal. The block width and height should be larger than 1/3
ALOS-2 data in range and azimuth for ALOS-2 (70 km) datasets [21]. Therefore, we set the
initial block size as ~30 km in length and width for S1A /B TOPS data.

The overlap ratio between blocks also affects the reliability of results and data pro-
cessing efficiency. The larger the overlap ratio the higher the reliability. For example, if a
block area is overlapped with the surrounding blocks in four directions by 10%, 36% of the
small block is overlapped with the surrounding blocks, and the overlap area will become
96% when the overlap ratio is 40% in width and height directions. (Figure 2a) However,
increasing the overlap ratio will lead to a lot of repeated calculations and reduce the data
processing efficiency. In order to improve the result reliability (>50% overlap area), we take
off the balance between the reliability of results and choose the overlap ratio of 20~40% for
further experiments.
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Figure 2. (a) Diagram of overlap ratio and overlap area. w and / are the width and height of the
overlap region, respectively, and W and H are the width and height of the image, respectively. So,
the overlap ratio is w/W or 1/H. The shadow area is the overlap area in the block (red line) with the
surrounding blocks, and the overlap areais 1 — (1 — 2 x w/W) x (1 — 2 x h/H). (b) Diagram of the
coordinates acquirement of corner points in the overlap region. (c) Diagram of the adjustment model.
The circles represent the deformation points. The thicker the circles, the more times the regions are

overlapped. v represents the deformation rate of each point.

2.2. Results Correction Based on Least Square Estimation

After data partition, we process each block of data to obtain the deformation results
using the improved IPTA-INSAR method [36,37]. The obtained deformation results of all
the blocks are preprocessed through three steps. (1) Co-registration. Due to the location
errors caused by orbital errors and low resolution of DEM; the location of deformation
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results may have a systematic deviation of about 1-2 pixels after geocoding. Such deviation
can be solved by an overall offset correction using some feature points on the ground.
(2) Automatic extraction of overlapping regions. The deformation rates of the homonymy
points in the overlapping region determine the correction precision, so it is necessary
to identify the overlapping regions between the deformation results first. We use the
topological relationship between image overlays (quadrangles) to find the coordinates
of corner points in the overlap region (Figure 2b). (3) High-quality homonymy point
selection. We select homonymy points with high coherence and small uncertainty. After
these operations, the deformation results can be corrected by adjustment.

Errors can be removed during data processing. However, data partition makes each
block have a local reference point, and the benchmarks of these reference points may be
different, resulting in discrepancies between the results of adjacent blocks and affecting the
precision of the overall results. The difference in the deformation rates of the homonymy
points in the overlapping area is described as

vel,»,k — vel]»,k = (Si,k — (Sj,k (1)

where vel; ; and vel ik denote the deformation rate at deformation point k in image i and j,

respectively, and J; , and 6; x denote the error of the corresponding points. Since the error

contains mainly the difference in benchmarks, this value can be assumed as a constant.
The matrix form of Equation (1) is:

V=BX—-L ()
where V = [(501 dvy -+ OU; -+ OO M} T is the residual of the calculated values and
the observations, X = [#; % --- Z%um ]T is the difference between the reference points
of adjacent images estimated by the least square method. B is the coefficient matrix.

T

L = [velyx —velpy wveljy —veljp -]
To solve Equation (2), we have to determine the weights of the blocks according to the
quality of the data involved in the adjustment.

D(L) = ogP~! (©)

0% denotes the variance of unit weight and P is the weight matrix. Assume that the
uncertainty of point i is given by J. Then, the weight of the point is

c
Pi=g @)

In this study, the data are partitioned into small blocks, which are processed indepen-
dently. The Helmert variance component estimation for multiple data classes is applied to
optimize the solution weights of each data set.

S0 =Wy (5)
where 0 = [ffgl ffgz e &(%M ]T is the estimated variance of unit weight. Wy is the
square sum of the corrected values, Wy = [VITPVl VZTPVZ ce V]&PVM} T Sis the

coefficient matrix. After obtaining 8, X is solved using the least square method. Repeat the
above process until § satisfies the given threshold T = 34y, and the corresponding solution
is the optimal X for each SAR image block. The corrected deformation rate is obtained by
Equation (6).

U,éli,k = vdi,k - J?I‘ (6)
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The posteriori variance of unit weight and the covariance array are used to evaluate
the adjustment observation. They can be obtained by

T

g=""" @)
r

Qs, = B/ PB, (8)

In Equation (7), r is the number of redundant observations, and it can be referred to as
the number of degrees of freedom, » = N — M, with N denoting the number of observations,
and M denoting the row number of X. According to the error propagation, the covariance of
the estimate of the homonymy points in the overlap region can be obtained by Equation (9).

Qi = (BQ;'B™P)Q(BQ; 'BTP) = BQ; BT ©)

To verify the precision of the adjustment results, the deformation difference of the
homonymy points before and after correction are compared. The block processing results
are verified by comparing with that of the traditional processing method (the result without
partitioning processing).

2.3. Result Mosaicking

The final step is to mosaic the corrected deformation results of all blocks. After geocod-
ing, the block results are horizontally mosaicked. After correction, the deformation of the
homonymy points in the overlapping area may still have differences, due to the different
errors distribution. We adopt the weighted average method to merge the deformation of
the homonymy points.

After correcting the deformation rate, we correct the deformation sequence. Assuming
that the deformation is linear, T(Ty, T - - T, - - - T¢) is a deformation sequence, and the
corrected deformation sequence at time T, can be obtained by

U

Ta
.= /T (00 + £2)dT = Sg + 20(To — T1) (10)
1

where $,, is the accumulated deformation after correction, v, is the deformation rate. £,
is the correction of deformation rate, but cannot be calculated, S, is the accumulated
deformation before correction. If the deformation is linear, £, is equal to the correction of
average deformation rate in the deformation sequences T. Variant £ can be calculated by
Equation (2), so the equation can be instead of Equation (11). Figure 3 is the diagram of
deformation sequence correction.

Se=Sa+2(T, = Ty) (11)
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Figure 3. Deformation sequence correction diagram.
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3. Experiment and Data Processing
3.1. Study Area and Datasets

Two study areas are selected to validate the proposed method. One is in Changzhou
City (31°09'-32°04'N, 119°08'-120°12'E), a coastal city in eastern China. This area is a
plain with an elevation of about 10 m [38]. It has a highly developed economy and urban
industry. The continuous expansion of urban and engineering projects has changed the
geological environment and led to frequent geological hazards. So, surface subsidence
monitoring in the area is necessary.

The other study area is Qijiang (28°27'-29°11'N, 106°23'-107°03'E), in western China.
It is in the transition zone from the southeastern edge of the Sichuan basin to the Yunnan-
Guizhou plateau. The topography is undulating. The mountainous area accounts for
67.6% of the total area and the hills account for 32.4%. The average elevation of this area is
254.8 m [39].

These two regions are used to test the applicability of the proposed method under
different error conditions.

We collected 110 Sentinel-1A /B TOPS images covering Changzhou City from path T69
and frame 99, between 5 January 2018 and 31 December 2020, and acquired 115 Sentinel-1
images over Qijiang from path T55 and frame 92, between 9 January 2018 and 31 December
2021. Specific image parameters and image acquisition time are shown in Tables 1 and Al
in Appendix A.

Table 1. The image parameters of the study areas.

S . . Pixel Spacing Num of

Study Area  Direction  Path  Heading Incidence (Rg x Az) Images
Changzhou Ascendin T69 —12.79° 36.65° 2.33 x 13.98 m 110
Qijiang S TS5 —1265°  43.64° 233 x 1396 m 115

3.2. Data Processing

Using the method described in Section 2, we partitioned the acquired single look
complex (SLC) images after co-registration and obtained 30 small blocks with overlapping
regions (Figure 4). The block size in Changzhou City is about 7000 x 1400 (pixels), and the
overlap rate is about 30%; the block size in Qijiang is about 6400 x 1600 (pixels), and the
overlap rate is about 25%.

The spatial baselines of Sentinel-1 images are short, so we connected each image
with two (temporally) adjacent images to form a network, only considering the tempo-
ral baselines. A multi-look operation (range: azimuth = 5:1) was applied to reduce the
noise. After the multi-look operation, the image size of Changzhou city was reduced to
1600 x 1400 (pixels) and that of Qijiang was reduced to 1500 x 1600 (pixels). The data were
processed by minimum cost flow (MCF) for phase unwrapping, and Goldstein filtering for
noise mitigation. The PS points were selected considering the phase coherence threshold
and the amplitude dispersion threshold of the amplitude map. Orbital error phases were
removed by polynomial fitting. Most atmospheric phases were removed by differenc-
ing between neighboring PS points, and the remaining was removed by spatial-temporal
filtering. The topographic residual phases were then removed using linear regression.
Finally, the deformation sequence was solved from the remaining phases using Singular
Value Decomposition (SVD). The obtained time series of deformation was corrected by the
method introduced in Section 2.2. The average deformation of the high-quality homonymy
points in the overlapping areas was used for correction. Finally, the result of traditional
processing and block processing were obtained. Figure 5 shows the deformation results of
Changzhou and Qijjiang.
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Figure 4. Data coverage for (a) Changzhou City and (b) Qijiang City. The red line is the administrative
division boundary. The blue frame is the image coverage after partition and the shaded part is the
overlapping area. The gray blocks are not in the study area.
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Figure 5. Deformation results of the study areas. The results of Changzhou found by (a) partition
method and (b) traditional method. The results of Qijiang found by (c) partition method and (d)
traditional method. (e—j) Are time series results of the selected points. The red “+” is the reference
point. The reference points in (a,c) are virtual reference points after free net adjustment because of
there are reference points in each small block before adjustment, and they are the center of gravity of
the image coverage. The reference points of (b,d) are the real reference points in data processing.

4. Result Analysis

When dealing with the deformation time series of a large area, most conventional al-
gorithms use one reference point for phase unwrapping and solve for PS point deformation
rates. If the distance between the PS point and the reference point is large, the precision
of the results is low. Reducing the size of image coverage by partition can improve the
precision of PS points. However, partition leads to different reference points for different

35



Remote Sens. 2022, 14, 4562

blocks, so the deformation results should be corrected to follow one benchmark. In this
section, the partition and the traditional methods are compared in terms of precision and
time consumption.

4.1. Precision of the Deformation Rate

We compare the deformation results in Changzhou found by the partition method
and the traditional method in Figure 5. The two results show a similar distribution of
deformation, but a slight difference in details. We manually selected three regions A, B,
and C for analysis. The size of these regions is 1000 x 1000 (pixels) These three regions
are stable and outside the deformation region, so we assumed the deformation as 0. The
statistical analysis shows that the standard deviation (STD) of the partition results and
the traditional results in region A is 3.4 mm/yr and 3.7 mm/yr, respectively, in region B
is 4.1 mm/yr and 4.2 mm/yr, respectively, and in region C is 4.6 mm/yr and 4.6 mm/yr,
respectively. On the whole, the precision of the results obtained by the partition strategy is
slightly higher than that of the traditional processing results.

Figure 5¢,d show the deformation results of Qijiang found by the two methods, which
generally agreed with each other but some local areas have some slight differences, espe-
cially in the circled areas D, E, F (the selection criteria is the same as A, B, C). The traditional
results contain a large number of uplift signals, which are not deformation signals but
residual errors. These errors are significantly less in the partition results. The STD of
the partition results in regions D, E, and F are 3.2 mm/yr, 3.1 mm/yr, and 3.6 mm/yr,
respectively, and the correspondence of the traditional results are 3.8 mm/yr, 3.9 mm/yr,
and 4.0 mm/yr, respectively. Therefore, the partition method outperforms the traditional
method in error removal.

The comparison results in Table 2 show that the partition method has higher precision
than the traditional method. In the Changzhou experiment, the former obtained a precision
of about 5% higher than the traditional method, and in the Qijiang experiment, the precision
improvement is about 15%.

Table 2. Precision of the deformation velocity in Changzhou and Qijiang found by the two methods.

Study Area Strate Area Number of Std Mean Difference Precision
y 8y Points /(mm/yr) /(mm/yr) /(mm/yr) Improvement
A 564,867 3.4
Partition B 589,430 4.1 4.0
C 593,479 4.6
Changzhou 0.2 5%
A 561,071 3.7
Traditional B 582,648 4.2 4.2
C 591,199 4.6
D 992,679 3.2
Partition E 916,098 3.1 33
F 922,811 3.6
Qijiang 0.6 15%
D 986,163 3.8
Traditional E 897,871 3.9 3.9
F 923,017 4.0

4.2. Precision of the Deformation Sequence

After correcting the deformation rates, we corrected the corresponding deformation
sequences. We selected the deformation time series of 3 points in each of Changzhou city
(P1, P2, P3) and Qijiang (P4, P5, P6) to test the result precision. These points are in the
overlapping regions, and they have different deformation magnitudes. P1 and P4 have
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large deformation rate, P2 and P5 have medium deformation rate, and P3 and P6 have small
deformation rate. The results are shown in Figure 5. In Changzhou City, the difference
between the deformation sequences obtained by our method and that obtained by the
traditional method is not significant. At P2, the deformation sequences obtained by the
two methods almost coincide (Figure 5f), and the deformation rate difference at the three
selected points is less than 1 mm/yr. The RMSE between the two results is 5.3 mm for P1,
3.2 mm for P2, and 4.0 mm for P3. We also selected the time series deformation of the three
points in Qijiang. The overall deformation trend and deformation magnitude obtained by
the two methods are basically the same. The RMSEs between the two results at P4, P5, and
P6 are 6.2 mm, 5.0 mm, and 3.0 mm, respectively.

In Figure 5e/h, the annual average deformation rates of these two points are more than
30 mm/yr, the difference between the deformation rates of these two points was about
1.5 mm/yr, and the deformation monitoring precision of INSAR was also basically in this
range. A simple proportional function model is used for correcting the time series. If the
deformation is nonlinear, the correction of this model might not be appropriate.

4.3. Time and Memory Consumption

The partition and parallel processing strategy can reduce the memory consumption of
every single process. Additionally, increasing the number of parallel processing can reduce
the time consumed by the whole data processing. The partition strategy can be roughly
divided into three stages: image partition, MT-InSAR processing, and correction. The total
time consumed by partition depends mainly on the processing times of image blocks, that
is, the total number of blocks divided by the number of blocks processed in a single parallel
session. The traditional processing spends all its time on MT-InSAR processing.

The program running time and memory consumption of the two strategies are listed
in Table 3. The traditional method costs about 20 h. The total time required for block
processing is 46.6 h when the number of parallel processing is 1. However, when the
number of parallel processing is greater than 2, the block processing needs less time than
the traditional processing. Additionally, it only needs 8.7 h when the number of parallel
processing is 5. In addition, the computer memory occupied by block processing is much
lower than that of traditional processing. In this experiment, the single memory occupied
by partitioning is only 1/20 of that occupied by the traditional processing. When the image
coverage is large or the computer memory is small, the traditional processing may cause
memory overflows and the data cannot be processed successfully, but this problem will not
happen to our data partition processing.

Table 3. Time and memory consumption of traditional processing and block processing with the
number of parallel processing 5.

Changzhou Qijiang
Traditional Partition Traditional Partition
Original size (pixels) 29,739 x 6892 29,739 x 6892 28,104 x 7648 28,104 x 7648
- 6 x5 6 x5
Partition strategy \ ~30% overlap \ ~25% overlap
Size of block (pixels) \ 7147 x 1373 \ 6374 x 1574
Platform CPU: AMD Ryzen 9 5900X 12-Core/RAM:64 G
Multi-look 5:1
Average number of points in a block \ 2,941,200 \ 2,493,200
Total number of points 50,941,512 51,178,814 51,620,120 51,883,633
Memory Usage 272G 13G 279G 13G
Time of partition \ ~1h \ ~1h
Time of INSAR processing ~20h ~12h ~20h ~12h
Time of correction \ ~0.1h \ ~0.1h
Total time ~20h ~8.7h ~20h ~8.7h
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5. Discussion
5.1. Space Consistency Correction

The precision of the deformation in each block can be calculated by Formula (9). In
the results of Changzhou, the unit weight mean error after adjustment is 0.13 mm/yr,
the precision of the block with the highest adjustment precision is 0.27 mm/yr, and the
precision of the block with the lowest adjustment precision is 0.59 mm/yr. In the results of
Qijiang, the unit weight mean error after adjustment is 0.28 mm/yr, the precision of the
block with the highest adjustment precision is 0.40 mm/yr, and the precision of the block
with the lowest adjustment precision is 0.81 mm/yr. The adjustment precision is plotted in
Figures 6 and 7, which show that the precision of the center blocks is higher than that of
the edge blocks.
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Figure 6. (a) Deformation precision of each block after adjustment in Changzhou. (b) The histogram
of the adjustment precision of each block after adjustment, (c) the histogram of the difference of the
mean value of the overlapping area before and after adjustment of each block.
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Figure 7. The same as Figure 6, but for Qijiang.

In theory, after adjustment, the deformation rates of the homonymy points in the
overlapping region should be the same. As Figure 6c shows, before the adjustment, the
difference between homonymy points in Changzhou is more than 5 mm/yr, with an STD
of 5.1 mm/yr, and after the adjustment, the difference almost converges to 0, with an STD
of 0.5 mm/yr. In Qijiang, the difference between homonymy points is more than 7 mm
before adjustment, with an STD of 3.9 mm/yr, and it is reduced to 0.6 mm/yr after the
adjustment. The precision of the block processing results in the two study areas was greatly
improved by adjustment, indicating that adjustment can improve the consistency of the
block deformation results.
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We selected 4 deformation areas (A, B, C, D) in the overlapping area in Changzhou
(Figure A2), and compared their deformation results before and after adjustment in Figure 8.
The results of the two image blocks in region A have little difference, so the improvement
of the result is not significant after the adjustment (Figure 8b,f). However, the results of
regions B, C and D are improved obviously after adjustment. The mean values of the
differences of deformation in these three regions change from 4.1 mm/yr, —5.6 mm/yr,
and 5.6 mm/yr to 0.3 mm/yr, 0.1 mm/yr, and 0.2 mm/yr after correction, and the spatial
consistency of the results improves more significantly.
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Figure 8. The difference in the homonymy points before and after adjustment in regions A, B, C,
and D of Changzhou. (a) shows the location of the four regions. (b-e) Are the difference of the
overlapping areas before adjustment in regions A, B, C, and D, and (f-i) are the difference after
adjustment. (j—m) Shows the statistical histograms of the four regions.

5.2. Effects of Overlap Rate on Result Precision and Time Consumption

In the proposed partition strategy, partitioning the image is the first and most critical
step. Different partition strategies provide different precision results, and different data
processing efficiency. Because we adopt the even partition strategy, the size and overlap
ratio of the blocks have a great impact on the results. To analyze the effects of the overlap
ratio on the partition results, we set one block size and obtained the temporal deformation
results of Changzhou using the overlap ratios of 10%, 20%, 30%, and 40%, separately. The
results are shown in Figure A2. We evaluated the result precision (Table 4).

The precision of the deformation rates obtained by different overlap ratios is similar
because the mean values of the high-quality homonymy points in the overlap region are
used in adjustment, which is slightly influenced by the overlap region. As long as the block
size is the same, the precision of the results obtained by different overlap ratios are similar.
However, the time consumed by different overlap ratios is different. The larger the overlap
ratio, the larger the number of blocks and the longer the processing. When the number of
parallel processing is 5, the total time consumed by the four overlap ratios are 6.6 h, 7.6 h,
9.5h, and 10.7 h, indicating that the consuming time increases with the increase of overlap
ratio. The increase in the overlapping area brings larger double-counted areas and raises
the reliability of the results. Considering the precision, reliability, and time consumption,
we choose 20% as the best overlap ratio. The experiments show that overlap ratio 20% has
similar result precision and time consumption with that of overlap ratio 10%, but it leads to
more than 64% overlap area, which contributes to a significantly higher reliability.
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Table 4. Results of using different block overlap ratios.

Overlap Ratio Total Overlap Block Size (Amount) Precision /(mm/yr) Time of Each Block Total Time
A 3.7
Traditional 0% 29,739 x 6892 (1) B 42 20h 20h
C 4.6
Al 3.5
7000 x 1500 (20) 12h
10% 36% Bl 42 6.7h
4539 x 1500 (5) c1 46 0.8h
A2 3.5
7000 x 1500 (25) 12h
20% 64% B2 41 78h
7000 x 892 (5) e 46 0.7h
A3 3.4
7000 x 1500 (30) 12h
30% 84% B3 41 10.1h
5239 x 1500 (6) 3 46 09h
A4 3.3
Y o 7000 x 1500 (42) 12h
40% 96% 4539 x 1500 (7) g‘i ig 08h 12.7h

5.3. Implications of Data Partition Strategy for MT-InSAR

The administrative boundary of a city is usually an irregular polygon, but the image
coverage is a regular quadrangle. Thus, the image coverage contains many data unrelated to
the study area. The traditional method will also process these data. If such data accounts for
a large proportion of the image, the data processing will waste a lot of time. The proposed
method only processes the block data inside the study area, which can improve the data
processing efficiency. In Figure 4, the gray blocks do not need processing. Furthermore,
the proposed method can refine the data processing for only the blocks with deformation,
which further improves the efficiency of data processing.

The difference in the image coverage will definitely lead to the difference in the results.
In this paper, we divide data into blocks, and process, correct, and splice the results of
all blocks. The atmospheric delay in small range data is easier to remove than that in
the data with large range. Studies have shown that the atmospheric phase in INSAR
data measurements has a close correlation with spatial scale [35]. The atmospheric phase
difference between two PS points with a distance less than 1 km is less than 0.1 rad2 [40],
so the smaller the area, the better the atmospheric error removal according to the error
propagation law. However, for large deformation areas, long-wavelength deformation
may be removed as orbital errors, due to the polynomial fitting [21]. Thus, the proposed
method is not fully applicable to the study area with long-wavelength deformation, such
as interseismic deformation.

The correction of the partition results is based on the assumption that the deformation
rates of the homonymy points are the same. However, the deformation acquired by InNSAR
is the line-of-sight (LOS) deformation, and the deformation direction at each point is related
to the incidence angle. When the deformation of the homonymy point is obtained from
the same orbit and has the same incidence angles, the deformation rates should be the
same. If the partitioned data are acquired under different imaging geometries, there will be
inconsistency in the incidence angles, resulting in different LOS deformation. Therefore,
the incidence angle variation of the results should be considered when the partition data
are acquired from different orbits.

Finally, the method does not use control points for the adjustment. Although the
benchmarks between image blocks are unified, there may be a deviation between the unified
benchmark and the real deformation result datum. We only make a simple correction to
the result but using external data as control points may improve the correction.

6. Conclusions

In this paper, we propose to partition the data into blocks before obtaining the defor-
mation, to save memory and time for large-scale data processing. To validate this method,
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we used the Sentinel-1 TOPS data covering Changzhou, a plain area, and Qijiang, a moun-
tainous area in China. The time series deformation results were obtained in these two
regions using the traditional processing method (the improved IPTA) and the partition
processing method. The latter outperforms the former in precision, time consumption, and
memory occupation. Taking Changzhou City as an example, the memory occupation of the
traditional processing method is about 27.2 G, and the total time consumed by processing
is about 20 h. During partition processing, the memory occupation of each block is only
1.3 G, and the consumed time is 8.7 h when the parallel number is 5. We also compared the
precision of the results obtained by the two methods. The results obtained by the partition
processing in Changzhou is as about 4.0 mm/yr, while the precision of the traditional
processing is about 4.2 mm/yr. The correspondence in Qijiang is about 3.3 mm/yr and
3.9 mm/yr, respectively. The precision of the results obtained by the proposed method is
higher than that obtained by traditional processing.

In general, the proposed method can significantly reduce the memory occupation
and time consumption of data processing under the condition of sufficient parallelism,
and the precision of the results is higher than that obtained by traditional processing.
This method is suitable for monitoring the short-wavelength deformation in a large area,
such as large-scale urban deformation monitoring and large-scale landslide deformation
detection. However, further research is needed for the result splicing and its application to
long-wavelength deformation.
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Appendix A

Table A1l. Parameters of the images used in this study.

Study Area Parameters Acquisition Date (YYYY/MM/DD)
Direction Ascending 2018/01/10 2018/01/22 2018/02/03 2018/02/15
Path T69 2018/02/27 2018/03/11 2018/03/23 2018/04/04
Heading —12.79° 2018/04/16 2018/04/28 2018/05/10 2018/05/22
Incidence 36.65° 2018/06/03 2018/06/15 2018/06/27 2018/07/09
Pixel Spacing 233 x 13.98 2018/07/21 2018/08/02 2018/08/14 2018/09/07
Changzhou (Rg x Az) ’ ’ 2018/09/19 2018/10/01 2018/10/13 2018/10/25
2018/11/06 2018/11/18 2018/12/12 2018/12/24
2019/01/05 2019/01/17 2019/02/10 2019/02/16
Number of 2019/02/22 2019/03/06 2019/03/18 2019/03/30
images 110 2019/04/05 2019/04/11 2019/04/23 2019/04/29
2019/05/05 2019/05/11 2019/05/17 2019/05/23
2019/05/29 2019/06/04 2019/06/10 2019/06/16

41



Remote Sens. 2022, 14, 4562

Table A1. Cont.

Study Area Parameters Acquisition Date (YYYY/MM/DD)
2019/06/22 2019/06/28 2019/07/04 2019/07/10
2019/07/16 2019/07/22 2019/07/28 2019/08/03
2019/08/09 2019/08/15 2019/08/21 2019/08/27
2019/09/02 2019/09/08 2019/09/20 2019/09/26
2019/10/02 2019/10/08 2019/10/14 2019/10/20
2019/10/26 2019/11/01 2019/11/07 2019/11/19
2019/11/25 2019/12/01 2019/12/07 2019/12/13
2019/12/19 2019/12/25 2019/12/31 2020/01/12
2020/01/24 2020/02/05 2020/02/17 2020/02/29
2020/03/12 2020/03/24 2020/04/05 2020/04/17
2020/04/29 2020/05/11 2020/05/23 2020/06/04
2020/06/16 2020/06/28 2020/07/10 2020/07/22
2020/07/28 2020/08/03 2020/08/15 2020/08/27
2020/09/08 2020/09/20 2020/10/02 2020/10/14
2020/10/26 2020/11/07 2020/11/19 2020/12/01
2020/12/13 2020/12/25
Direction Ascending 2018/01/09 2018/01/21 2018/02/02 2018/02/14
Path T55 2018/02/26 2018/03/10 2018/03/22 2018/04/03
Heading —12.65° 2018/04/15 2018/04/27 2018/05/09 2018/05/21
Incidence 43.64° 2018/06/02 2018/06/14 2018/06/26 2018/07/08
Pixel Spacing 233 x 13.96 2018/07/20 2018/08/01 2018/08/25 2018/09/06
(Rg x Az) ’ ’ 2018/09/18 2018/09/30 2018/10/12 2018/10/24
2018/11/05 2018/11/29 2018/12/11 2018/12/23
2019/01/04 2019/01/16 2019/01/28 2019/02/09
2019/02/21 2019/03/05 2019/03/17 2019/03/29
2019/04/10 2019/04/22 2019/05/04 2019/05/16
2019/05/28 2019/06/09 2019/07/03 2019/07/15
2019/07/27 2019/08/08 2019/08/20 2019/09/01
2019/09/13 2019/09/25 2019/10/07 2019/10/19
2019/10/31 2019/11/12 2019/11/24 2019/12/06
Qijiang 2019/12/18 2019/12/30 2020/01/11 2020/01/23
2020/02/04 2020/02/16 2020/02/28 2020/03/11
Number of 2020/03/23 2020/04/04 2020/04/16 2020/04/28
images 114 2020/05/22 2020/06/03 2020/06/15 2020/06/27
2020/07/09 2020/07/21 2020/08/02 2020/08/14
2020/09/07 2020/09/19 2020/10/01 2020/10/13
2020/10/25 2020/11/06 2020/11/18 2020/11/30
2020/12/12 2020/12/24 2021/01/05 2021/01/17
2021/01/29 2021/02/10 2021/02/22 2021/03/06
2021/03/18 2021/03/30 2021/04/11 2021/04/23
2021/05/29 2021/06/10 2021/06/22 2021/07/16
2021/07/28 2021/08/09 2021/08/21 2021/09/02
2021/09/14 2021/09/26 2021/10/08 2021/10/20
2021/11/01 2021/11/13 2021/11/25 2021/12/07
2021/12/19 2021/12/31
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Figure A2. The deformation results in Changzhou obtained using the overlap ratio of (a) 10%, (b) 20%,
(c) 30%, and (d) 40%. A1-C4 are the same areas as A—C described in Section 4.1.
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Abstract: Rainfall-induced landslides pose a significant threat to the lives and property of residents in
the southeast mountainous and hilly area; hence, characterizing the distribution pattern and effective
susceptibility mapping for rainfall-induced landslides are regarded as important and necessary
measures to remediate the damage and loss resulting from landslides. From 10 June 2019 to 13 June
2019, continuous heavy rainfall occurred in Longchuan County, Guangdong Province; this event
triggered extensive landslide disasters in the villages of Longchuan County. Based on high-resolution
satellite images, a landslide inventory of the affected area was compiled, comprising a total of
667 rainfall-induced landslides over an area of 108 km?. These landslides consisted of a large number
of shallow landslides with a few flowslides, rockfalls, and debris flows, and the majority of them
occurred in Mibei and Yanhua villages. The inventory was used to analyze the distribution pattern of
the landslides and their relationship with topographical, geological, and hydrological factors. The
results showed that landslide abundance was closely related to slope angle, TWI, and road density.
The landslide area density (LAD) increased with the increase in the above three influencing factors
and was described by an exponential or linear relationship. In addition, southeast and south aspect
hillslopes were more prone to collapse than the northwest —north aspect ones because of the influence
of the summer southeast monsoon. A new open-source tool named MAT.TRIGRS(V1.0) was adopted
to establish the landslide susceptibility map in landslide abundance areas and to back-analyze the
response of the rainfall process to the change in landslide stability. The prediction results were
roughly consistent with the actual landslide distribution, and most areas with high susceptibility
were located on both sides of the river valley; that is, the areas with relatively steep slopes. The slope
stability changes in different periods revealed that the onset of heavy rain on 10 June 2019 was the
main triggering factor of these group-occurring landslides, and the subsequent rainfall with low
intensity had little impact on slope stability.

Keywords: heavy rainfall; shallow landslides; TRIGRS model; spatial distribution; susceptibility
assessment; Longchuan County; Guangdong Province

1. Introduction

In recent years, an increasing number of intense rainfall events have occurred in moun-
tainous areas due to the impact of global climate change, which has dramatically increased
the frequency of global rainfall-induced landslides [1,2]. Rainfall-induced landslides are
not only widely distributed in the world but also occur frequently and cause significant
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damage to humanity [3-6]. Therefore, a good understanding of the fundamentals of rainfall-
induced landslide occurrence, distribution patterns, and susceptibility assessments can
provide useful guidance for regional disaster prevention and mitigation, and landscape
evolution [7-9].

A new landslide inventory that is generated after a major triggering event (e.g., an
earthquake, volcanic eruptions, or heavy rainfall) is referred to as an event-based landslide
inventory. Owing to the advancements in earth observation technology, such as multi-
temporal high-resolution optical satellite remote sensing, more high-quality earthquake-
induced landslide inventories have been developed. In particular, since the 2008 Wenchuan
earthquake, the establishment of coseisimic landslide inventories has made great progress.
At present, there are roughly 46 detailed coseismic landslide databases mapped as poly-
gons [10-13]. However, unlike earthquake events, the construction speed of landslide
inventories triggered by heavy rainfall events is still relatively slow, and currently there
are only a few heavy rainfall-induced landslide inventories [14-16]. The main reason is
that clouds are often a major obstacle in the affected areas, which may limit the visibility of
satellite images and thus affect the visual interpretation of rainfall-induced landslides [15].
At present, there are 16 public landslide inventories triggered by heavy rainfall events
around the world, with the majority of these landslide databases being on a small scale.
The southeast coastal region in China is economically developed and densely populated.
Influenced by monsoon rainfall, this area is also considered a landslide-prone zone [17,18].
Once landslides occur, the social and economic losses in this area will be huge. A compre-
hensive rainfall-induced landslide database not only contributes to a deeper understanding
of the event occurrence but also provides data support for the subsequent in-depth analysis
of the formation and evolution of the geological disaster chain[15,19]. However, there are
few rainfall-induced landslide inventories for a single event in the southeast coastal region,
and thus more analyses are needed for rainfall-induced landslide inventories in this area.

Rainfall-induced landslide susceptibility can provide valuable information for land-
slide risk assessment. Currently, there are two quantitative methods for assessing the
susceptibility for rainfall-induced landslides, which include the data-driven methods based
on mathematical methods and physical-based methods that couple the hydrological models
and infinite slope stability models. For the data-driven method, the relationship between
the influencing factors and the landslide occurrence are analyzed by mathematical mod-
els [20-22]. Currently, many models have been widely used in landslide susceptibility
mapping, particularly with the development of machine learning technology, such as logis-
tic regression [23,24], random forest [25], artificial neural network [26], convolutional neural
network (CNN) [27], support vector machine (SVM) [28], and decision tree [29]. However,
the outcomes of landslide susceptibility mapping based on the data-driven method could
be subject to considerable uncertainties due to errors and variability in model choice, data
selection, system understanding of weighting factors, and human judgment [30,31]. Mean-
while, the data-driven model does not possess the timeliness of emergency assessment for
a single triggering event, because it requires sufficient landslide data to establish the sus-
ceptibility assessment model. As a consequence, assessment results frequently lag behind
practical application and cannot serve the emergency assessment in a short time [32,33].
Otherwise, due to the fact that the majority of these models are trained by regional landslide
data and are thus limited by regional geological and geomorphic characteristics [14,34,35],
the data-driven model’s applicability in different areas is greatly diminished. However, the
physically based landslide susceptibility assessment can better solve the above problems.

Unlike the data-driven method, the physically based method does not take into
account actual landslide data, but rather simulates the physical process of rainfall-induced
landslide occurrence by coupling the hydrological and infinite slope models [36]. The
physically based method has been pervasively used because of its high predictive capability
and the most acknowledged feasibility for a quantitative assessment of the effects of the
individual parameters that contribute to landslide initiation [37] and it is a useful tool
for determining the susceptibility zonation of rainfall-induced shallow landslides [38].
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In addition, the wide application of GIS technology facilitates the wide application of
physical models in large areas [39,40]. Due to its preferable practicability and wide regional
applicability, physically based models are popular in the spatial prediction of regional
rainfall-induced landslides [41-45]. In recent years, some physically based models for
rainfall-induced landslide susceptibility mapping have been developed, such as the TRIGRS
model [40], the Slip model [46-48], the GIS-TiVaSS model [45,49], the GIS-TISSA model [50],
the CRESTSLIDE model [51,52], and the HIRESSS model [53-55]. Among them, the TRIGRS
model, which accounts for transient pore water pressure, can predict the impact of heavy
rainfall on groundwater changes in a short period. At present, it is the most widely used
physically-based model of slope instability [41,56-58], and has been used in many countries
around the world, including Italy, the United States, China, South Korea, and Southeast
Asia [59-64]. However, the application of the TRIGRS model in China’s southeast area is
limited so it is necessary to investigate the applicability of the model in the spatio-temporal
prediction of rainfall-induced landslides in the southeast mountainous area.

Longchuan County experienced continuous heavy rainfall from 10 June 2019 to
13 June 2019. Extensive landslides, collapses, and debris flows occurred in the villages
of Longchuan county. A total of 352 villages of Longchuan County were devastated to
varied degrees, of which Mibei village in Beiling town was the most severely hit with
1571 individuals affected, 120 buildings fully collapsed, and more than 100 houses dam-
aged. The direct economic loss of this event reached CNY 110 million, exerting a significant
impact on the normal productivity and lives of local residents. Thus, the objectives of this
study are: (1) establishing a landslide inventory including landslides induced by the 2019
Longchuan heavy rainfall event and analyzing the spatial distribution of landslides with
topographical, geological, and hydrological factors; (2) conducting the physically based
susceptibility assessment based on a new open-source tool named MAT.TRIGRS(V1.0)
for predicting the spatiotemporal distribution of rainfall-induced landslides and back-
analyzing the response of the rainfall process on the change of landslide stability.

2. Study Area

Longchuan County is situated in the northeast of Guangdong Province, spanning from
23.8°N to 24.7°N of latitude and from 115.0° to 115.6°E of longitude, and covers an area of
approximately 3089 km? on the surface. The study area is Beiling Town, which is located
in the north of Longchuan County and the upper reaches of Dongjiang River. The climate
in the region is subtropical monsoon with abundant rainfall and sunshine. The annual
rainfall is 1500 mm, and the average temperature is about 22 °C. The study area experiences
the most rainfall in May, June, and July. The geomorphic unit of the study area is a hilly
landform with an elevation range from 100 m to 1100 m (Figure 1). The mountains are steep,
and the peaks are conical due to the relatively developed hydrographic nets and strong
topographic cutting in this area. As a result, numerous “V” shaped valleys developed in
this area, with slope angles ranging from 20 to 50 degrees. The main lithology of the study
area is acid intrusive rock of Ordovician and Silurian, mainly monzogranite (O3-S;), which
accounts for more than 70% of the rock in the whole study area (Figure 2a). In addition, tuff
of Yousheng formation of Middle Cretaceous (Kays) and quartz mica schist of Daganshan
formation of Sinian(ZZdjS) also developed in this area (Figure 2a). The main land use type is
forest, which accounts for 80% of the whole study area, followed by cropland, accounting
for more than 10% (Figure 2b).
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Figure 1. Mapping shows the location and elevation of the study area; (a) Guangdong Province;
(b) location of Longchuan county; (c) the elevation and water net distribution of the study area.

Due to the unique geographical and climatic conditions, Longchuan area experiences
several large or small rainstorms every year, making it one of most vulnerable zones to
geological disasters. From 10 June 2019 to 13 June 2019, Longchuan County suffered
continuous heavy rainfall; this rainfall event triggered a large number of landslides. As
far as local people can recollect, since the evening of the 10 June 2019, transportation has
been disrupted, communication has been lost, and electricity has been cut off. Meanwhile,
the settlement below the mountain was engulfed in mist, and the sound of collapses and
landslides was constant.
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Figure 2. (a) Geological map of the study area obtained from 1:200,000 geological maps published by
China Geological Survey (http://dcc.cgs.gov.cn/, accessed on 1 July 2022); (b) the land use type map
of the study area derived from the 10-m resolution global land cover results [65].

3. Data and Method
3.1. Landslide Mapping

The availability of high-resolution satellite images on the Google Earth (GE) platform
allowed us to conduct a detailed visual interpretation of landslides [66,67]. The remote
sensing images used for landslide interpretation in this study are based on the GE platform.
It was important that the high-resolution satellite image covered the entire study area, and
the dates of images before and after the rainfall event were mainly in January 2019 and
January 2021. Meanwhile, given the relatively long interval between the images before
and after the rainfall event, we obtained the Sentinel-2 images with 10 m resolution as a
supplementary (the pre- and post-events images were 17 April 2019 and 24 September
2019, respectively) (Figure 3). The landslide inventory was checked by Sentinel-2 images to
ensure that the interpreted landslides were caused by the 2019 rainfall event. The reason
for selecting these two images was that they had the closest interval between rainfall events
without cloud cover in the study area. Landslides were identified by visual interpretation
and mapped as polygons. Since the study area has high vegetation coverage, landslides
can be better delineated by satellite images before and after this event. Figure 3 depicts the
Sentinel-2 satellite images before and after the rainfall. According to remote sensing images,
most landslides triggered by this event were small and medium-scale shallow landslides,
and a majority of them were located near Mibei village, showing obvious group-occurring
characteristics (Figure 4).
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Figure 3. Mapping shows the Sentinel-2 images before and after the rainfall event; (a) satellite
image before rainfall event taken on 17 April 2019; (b) satellite image before rainfall event taken on
24 September 2019.

Figure 4. (a) Aerial photograph of Mibei village after the rainfall event, houses are damaged by
rainfall-induced landslides; (b) group-occurring shallow landslides; (c) the landslide damaged the
hillside residences, and the floors on the second floor crashed on the first floor; (d) road damage
caused by landslides (Picture source: http://www.gdlctv.com/Pc/index/new_detalis.htm1?id=3320,
accessed on 25 June 2022).
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3.2. Rainfall Data

We collected the precipitation data over the past two decades from 2000 to 2020 in
Longchuan County (Figure 5). The results show that the average rainfall remained between
1200 and 2400 mm, with periodic fluctuations. The annual rainfall in 2006 and 2017 was
unusually high, reaching almost 2300 mm or more. In comparison, the annual rainfall in 2019
was low with 1500 mm, which was roughly the same as the recent 20-year average (Figure 5a).
Comparing the monthly rainfall in 2019 with the average value over the past two decades
(Figure 5b), we also found that the rainfall from March to June in 2019 was higher than the
monthly average rainfall in the last 20 years. The precipitation in June of 2019 was 300 mm,
slightly higher than the monthly average rainfall of 250 mm in previous years.

500 52400

4501 (a) Monthly rainfall
400H —— Annual rainfall
350

300
250
200
150
100

50

<2000

<1600

Monthly rainfall (mm)
Annual rainfall (mm)

<1200

il | l I | | I} I |

0
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

( b )— 2019
400 Monthly average

100

Precipitation (mm/month)

0_

1 1
X

1 1
sa“"ad ?e“‘\)ad N

1 1
p W W

Figure 5. Monthly rainfall data of Longchuan County in the past 20 years from 2000 to 2020;
(a) monthly and annual average rainfall data over the last 20 years; (b) comparing the monthly
rainfall in 2019 with the average value over the last two decades.

We obtained the data for the rainfall every 12 h based on the rainfall stations of China
Meteorological Administration. Eight national rainfall stations within 50 km of the study
area were utilized for interpolation, and the most popular Kriging interpolation algorithm
was used to obtain the spatial distribution of rainfall (Figure 6). The results show that
this rainfall event occurred primarily from 10 June 2019 to 13 June 2019 (Figure 7). The
cumulative rainfall was basically the same, remaining at 210 to 220 mm, with rainfall in the
west slightly higher than that in the east (Figure 6). Figure 8 shows the distribution of daily
rainfall from 10th to 13th of June during this rainfall event. The rainfall on 10 June 2019 was
the heaviest, peaking at around 120 mm, accounting for more than half of this rainfall event.
The rainfall for the next three days was expected to be around 2040 mm. Otherwise, the
spatial change of daily rainfall in the study area from June 10 to 13 was relatively small, and
the difference of daily rainfall of the study area was essentially maintained within 10 mm.
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Figure 6. Mapping shows the spatial distribution of total rainfall from 10 June 2019 to 13 June 2019.
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Figure 7. Data of the rainfall every 12 h from the national rainfall stations in the study area from
1 May to 30 June.
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Figure 8. Mapping shows the distribution of daily rainfall from the 10th to 13th of June during this
rainfall event; (a) 10 June 2019; (b) 11 June 2019; (c) 12 June 2019; (d) 13 June 2019.

3.3. Data Related to Other Influencing Factors

To assess the role of topographic, geologic, and hydrologic factors on the distribution
of rainfall-induced landslides, we obtained several terrain metrics (i.e., elevation, hillslope
gradient, and topographic relief) and lithologic and hydrological data. The elevation data
were derived from ALOS PALSAR DEM with 12.5 m resolution, which were then resampled
into a 5 m resolution based on the bilinear algorithm. The hillslope gradient and slope aspect
were derived from the DEM data. In addition, we estimated the topographic relief from the
elevation range within a 1.0 km radius. TWI was computed using GRASS GIS and the DEM
data. Drainages were also derived from DEM by AcrGIS. The road data were downloaded
from the OpenStreetMap Data (https:/ /master.apis.dev.openstreetmap.org/export#map=
11/35.2510/103.4308, accessed on 5 June 2022). The lithology data are obtained from
1:200,000 geological maps published by China Geological Survey (http://dcc.cgs.gov.cn/,
accessed on 1 July 2022). The land use type data were derived from the 10 m resolution
global land cover results [65]. The spatial distribution of the above influencing factors was
converted into a raster format with a grid cell size of 5 m. Finally, seven influencing factors
were considered for the statistical analysis, including the elevation, hillslope gradient, relief,
slope aspect, land use type, road density, and distance to river (Figure 9). Meanwhile, the
relationship between different influencing factors and the occurrence of landslides were
analyzed by the polygon feature.
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3.4. TRIGRS Model

The TRIGRS model (Transient rainfall infiltration and grid-based regional slope-
stability model) is a widely used and effective evaluation model of rainfall-induced shallow
landslide susceptibility [68,69]; the model was developed by the United States Geological
Survey (USGS) [40,70] and written by Baum et al in FORTRAN [40], and it needs specific
input parameters, mainly including rainfall parameters, soil mechanics parameters, and
hydrological parameters of the study area. Following the determination of the parameters,
the grid stability caused by the change of transient pore water pressure of each grid during
the rainfall period is calculated based on the GIS platform for the purpose of evaluating the
slope stability of all grids in a certain rainfall period.

Iverson [36] linearized the solution of the Richards equation and this serves as the
foundation for the infiltration models for wet initial conditions. It consists of a steady
component and a transient component of seepage. The steady seepage is determined by
the initial depth of the water table and steady infiltration rate. Under steady infiltration,
the slope is stable. Transient infiltration is the short-term change in pore water pressure
caused by rainfall. The infinite slope model is then applied using the computed transient
pore water pressure. The generalized solution in TRIGRS is:

P(Z,t) = (Z— d)p+ 250 B H(t — ta)[Dy(t — )2

Y1 ierfc{W +ierfc @m-1)diz+(dLz—~Z)

2D (1-12)]2 2Dy (t~t2)) 2 (€))

25N JEH = i) D1t by} g | V22 | ey | =Dzt | |

2Dy (t—ty1)) 2 2Dy (t—ty41))2

where 1 is the groundwater pressure head; t is time; N is the total number of time in-
tervals; Z is depth below the ground surface in the vertical coordinate direction; d is the
depth of steady-state water table; d; 7 is the depth of the impermeable basal boundary;
B = cos? 6 — (Iz;7/Ks), 6 is the slope angle; Iz, is the steady surface flux; Ks is the sat-
urated hydraulic conductivity; I,z is the the surface flux or rainfall intensity for the nth
time interval; D; = Dy/ cos? 8, Dy is the saturated hydraulic diffusivity; and H(t — t,) is
the Heaviside step function in which t,, is the time at the nth time interval in the rainfall
infiltration sequence.

ierfe(y) = = exp (<) —perfe(r) @

where erfc(n) is the complementary error function.

The model calculates infiltration (I) at each cell as the sum of precipitation (P) and any
runoff from upslope cells (Ru), with the caveat that infiltration cannot exceed the saturated
hydraulic conductivity (Ks):

I=P+Ry, if P+ Ry <K 3

=K, if P+ Ry > K; @)

When P + Ru exceeds Ks in a cell, the excess is considered runoff (Rd) and is diverted
to nearby downslope cells.

Ry=P+R,—Ks, if P+R, —Ks >0 ©®)

Ry=0,if P+ R, —K; <0 (6)

The TRIGRS model calculates the slope stability using an infinite-slope stability analy-
sis (Equation (7)), as described in Iverson [36]. The ratio of resistant basal coulomb friction
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to gravitationally induced downslope basal driving stress characterizes the instability of an
infinite slope in the failure analysis [71]. This ratio Fs, is computed at depth Z by

_tang’ ' —y(Z,t)yutang’
E(2,t) = tan ¢ + YsZsind cos é @

where ¢’ is the cohesion of the soil, ¢’ is the friction angle, s is the unit weight, and
Yw is unit weight of groundwater.
The flow chart of this study is shown in Figure 10.
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Figure 10. Flow chart of this study.

4. Rainfall-Induced Landslide Inventory
4.1. Basic Characteristics

This rainfall event triggered 667 landslides over an area of 108 km?, and the majority
of them (552 landslides) occurred in the Mibei and Yanhua villages (Figure 11a,b). The
types of landslides were various, including shallow landslides combined with a small
number of flowslides, rockfalls, and debris flows with a total landslide area of 0.75 km?.
The largest landslide area was approximately 20,000 m?, the smallest area was 50 m?,
and the average landslide area was about 1100 m?2. According to the statistics, there
were 288 landslides with an area of less than 500 m2, accounting for approximately 43%
of all landslides. There were 291 landslides with an area of 500~2000 m?, accounting
for approximately 44%. The number of landslides with an area of 2000~5000 m? and
> 5000 m? was 71 and 17, respectively (Figure 10).
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Figure 11. (a) Rainfall-induced landslide inventory of the 2019 heavy rainfall event in Longchuan
County, the landslide abundance area of this event; (b) map showing the zooming of the landslide
abundance area.

We calculated the landslide number density (LND) and landslide area density (LAD)
within a 1.5 km-radius moving window using a Gaussian density kernel function. The
LND and LAD maps indicated that the maximum LAD and LND of the study area were
9.5% and 78/km?, respectively (Figure 11). Landslides had obvious cluster distribution
characteristics, and a large number of landslides were concentrated within 2 km of the
Mibei Village (Figure 12).

4.2. Factor Analysis

In order to analyze the relationship between different influencing factors and the oc-
currence of landslides, we calculated the frequency distribution of landslides and landscape
(i.e., non-landslide area) and the LAD of different influencing factors. Figure 13 shows
the frequency density distribution of landslide and non-landslide areas, and Figure 14
shows the LAD in different intervals of six influencing factors (the higher the LAD, the
more likely the landsliding will occur). For elevation, the frequency density distribution
of landslide area and non-landslide area was basically the same (Figure 13a), the peak
LAD was situated at elevations from 300 to 450 m, indicating that landslides were more
likely to occur within this elevation range (Figure 14a). For the slope angle, the landscape
area was clustered between 5 and 20°, while most of the landslides occurred on slopes
with the inclination of 15-35° (Figure 13b). Overall, the LAD increased with the increase
in the slope angle and was described by an exponential relationship of y = e(021+008x)
(where x is the slope angle and y is the LAD, Figure 14b), suggesting that with the increase
in the slope angle, the landslide occurrence possibility also increased. In terms of topo-
graphic relief, the relief of non-landslide area was primarily concentrated in the 200~250
m range, whereas the landslide area was primarily clustered in the range of 250~350 m
(Figure 13c). Overall, there was a negative logarithmic relationship between the LAD and
relief, indicating that the LAD decreased with the increase in relief (Figure 14c). On the
part of TWI, landslides were most commonly seen in the range with TWI values between

59



Remote Sens. 2022, 14, 4257

4 and 6, and there was a positive exponential relationship between the LAD and TWI of
y = (~1216+1.18x) (where x is the TWI and y is the LAD), and the LAD increased as the
TWI increased (Figure 14d). For road density, landslides were primarily distributed in
the road density interval between 2 and 4 (Figure 13d). In general, LAD and road density
had a linear relationship of y = 0.14x + 0.45 (where x is the road density and y is the
LAD), which shows that landslides were more likely to occur in areas with a high road
density (Figure 14e). For the distance to river, landslides were more likely to occur in the
range of 100~400 m, and there was no obvious correlation between the LAD and the river

distance (Figure 14f).
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Figure 12. Map showing spatial density of landslides triggered by this rainfall event. (a) landslide

number density (LND); (b); landslide areal density (LAD).
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areal density (LAD); (a) elevation; (b) slope angle; (c) topographic relief; (d) TWI; (e) road density;
(f) distance to rivers.

Figure 15 shows the statistical results of the landslides and the slope aspect. Figure 15a
shows the frequency density of the landslides and landscape (i.e., non-landslide area) on
different slope aspects. The result demonstrates that the non-landslide area was evenly
distributed in all aspects, but most of the landslide area was concentrated in the aspect of
110°~180° (SE to S). The statistical results of LAD show that the peak LAD of 1.4% was
present at the aspects from SE to S for the landslides.

Figure 16 shows the distribution of the landslide and non-landslide area, and the
average landslide area in each land use unit. The result shows that the predominant land
type was forest, which accounts for 80% of the study area, followed by cropland land,
which accounts for more than 10%. The area of urban area and bare land was less than
1%. Among all land types, shrubland was the most prone to landslides, with roughly 10%
of landslides occurring in the 5% area. Landslides were the least developed in cropland,
maybe due to the relatively gentle slope of this unit. Furthermore, statistics on the average
landslide area of different units suggest that bare land had the largest average landslide
area, with more than 1600 m?, followed by forest land, which had an average landslide
area of 1200 m?, and cropland had a relatively small average landslide area, only 600 m?.
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Figure 16. Areal coverage (%) of different land use types for both landslide and landscape overlaid
by average landslide area calculated per each unit.

5. Physically Based Landslide Susceptibility Assessment
5.1. Brief Description of MAT.TRIGRS(V1.0)

To address the issues of the manual modification of plentiful model parameters and
complex data processing in the traditional TRIGRS model, Ma, et al. [72] proposed a new
TRIGRS model using Matlab®programming. It can directly read the grid data of TIF
format as the input, and then directly exports the prediction results of grid files, which
greatly simplifies data preparation and parameter setting. It includes the script files INPUT
DATA.m and TRIGRS.m. The INPUT DATA.m file is used to read the TIF input files, and
TRIGRS.m is the executable program that can be used to calculate the pressure head and
Fs. The minimum Fs and the corresponding pressure head are generated in the TIF format
by calculating the pressure head and Fs at various soil depths. More description can be
obtained in [72].

In the physically based model, in order to obtain accurate landslide prediction results,
sufficient and accurate input data are required [68,73-75]. For the soil thickness distribution,
the Z-model developed by Saulnier, et al. [76] was used to evaluate the soil thickness.
We assumed that the maximum thickness of the soil in the study area was 5 m and the
minimum thickness was 0.5 m based on previous studies [17,77]. Soil thickness can be
estimated and calculated by Equation (8). The bedrock in the study area is monzogranite
(O3-S1), and the landslide occurred primarily in the weathered soil layer on the bedrock’s
surface. The soil type of the weathered soil layer is sandy clay loam. Therefore, combined
with previous studies [17,52,78], we assigned the corresponding values to mechanical and
hydrological parameters including cohesion, internal friction angle, and soil weight of this
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soil type (Figure 17 and Table 1). Based on previous experience [57,79], saturated hydraulic
diffusivity DO was set to Dy = 200K and the initial surface flux (Iz;1) was generally less
than the Ks to one power or more and was set to Iz;7 = 0.01K;.

Zi — Zmin

Zmax — Lmin

hi = hmax — (

) (hmax - hmin) (8)

Figure 17. Maps showing the distribution of slope angle (a), soil thickness (b) and flow direction (c).

Table 1. Mechanical properties of the soil.

Input Cohesion Friction Angle Unit Weight Saturate.d
Parameters (Kpa) ©) (KN/m3) Hydraulic
Conductivity (m/s)
29 20 15 6.59 x 107°

Simultaneously, in order to account for the uncertainties in the physical process that
lead to slope failure, the Monte Carlo simulation, which is a robust and well-known
approach in applications concerning probability analyses and reliability studies, was used
in this study [56,80]. We considered the uncertainties of two main parameters (cohesion
and internal friction angle) that primarily influence the slope failure. To characterize the
probability density function (PDF) of the two random variables, the normal PDF was
adopted. We assumed that the average and standard deviation of the cohesion were 29 kPa
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and 9 kPa and those of the internal friction angle were 20° and 6°. Based on the Monte Carlo
simulation, the input data were calculated by the TRIGRS model, yielding 1000 predicted
pictures of potential landslides in the study area. Finally, the slope failure probability (Pf)
of the study area was obtained.

5.2. Landslide Susceptibility Assessment

Figure 18 shows the distribution of the average value of 1000 predicted pictures
calculated by rainfall data over different time periods. From the calculation results, we
can observe that the Fs of all raster cells were greater than that before the rainfall event,
indicating that all slopes were stable (Figure 17a). In addition, after 12 h of the rainfall
(at 8:00 on 10 June 2019) 12-h rainfall reached 86 mm), the Fs of some grid cells in the
study area decreased. Particularly, some grid cells with a large slope angle began to fail
(Figure 17b). Then, although continuous rainfall occurred in the subsequent stage (after
11 June 2019), the change of Fs in the study area was relatively small, and few new grid
units became unstable.
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Figure 18. Slope stability conditions, expressed in terms of Safety of Factor (FS) in different time
periods of this rainfall event; (a) 20:00 on 9 June 2019 (UTC + 8, before rainfall event); (b) 8:00 on
10 June 2019 (UTC + 8); (c) 20:00 on 11 June 2019(UTC + 8); (d) 8:00 on 13 June 2019(UTC + 8).
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We calculated the Fs results in the various slope interval over different time periods
(Figure 19). The result shows that the Fs of the grids with slope angles between 30 and 40°
was mostly distributed between 1.3 and 2.5, with an average value of around 1.6. After
the onset of heavy rain on 10 June 2019, the Fs of raster cells rapidly decreased, and the Fs
of most grids ranged between 0.9 and 1.7, with an average value of about 1.2. From 8:00
on 10 June 2019, although there was rainfall every day at a subsequent stage, the average
rainfall was less than 2 mm/h. The low rainfall intensity had a little impact on the slope
stability. Rainfall increased to some extent on 12 June 2019, reaching 45 mm in 12 h, and the
Fs decreased slightly. For grids with a slope larger than 40°, we also found the same trend
that the Fs of most grid units decreased rapidly after heavy rainfall, and then basically
remained unchanged. Overall, the Fs of grids with a slope greater than 40 degrees was
much smaller than grids with a slope between 30 and 40 degrees.
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Figure 19. The statistical results of Factor of safety (Fs) in the various slope interval at different
rainfall times; (a) slope angle: 30~40°; (b) slope angle: >40°.

Figure 20 shows the probability distribution of slope failure in different time periods.
Obviously, the prediction results of Pf were roughly consistent with the actual landslide
distribution. Most areas with a high probability (blue areas) were located on both sides of
the river valley, that is, the areas with relatively steep slopes. Before rainfall, almost all the
grids in the study area were less than 0.1, indicating that the slope before rainfall was stable.
After 12 h of rainfall (at 8:00 on 10 June 2019), the area with steep slopes began to show the
instability phenomenon, and the Pf of some grids reached more than 0.6. In the following
continuous rainfall, with the decrease in rainfall intensity, there was a slight increase in the
area with a high probability of failure.
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Figure 20. Probability of slope failure (Pf) in different time periods of this rainfall event; (a) before
rainfall event; (b) 8:00 on 10 June 2019; (c) 20:00 on 11 June 2019; (d) 8:00 on 13 June 2019.

To quantitatively analyze the susceptibility results, we counted the class area, landslide
area, and the corresponding LAD of different susceptibility classes before and after rainfall
(Figure 21). Based on the natural breaks, the susceptibility level was divided into four
classes (i.e., very low, low, moderate, and high). The result shows that before the occurrence
of rainfall, most areas belonged to the low susceptibility area, and the majority of landslides
were concentrated in very low and low susceptibility areas. With the occurrence of rainfall,
the area of low susceptibility areas decreased, while the area of high susceptibility areas
increased. The statistical result reveals that 12.1% of the total landslides occurred in the
25.0% of the area which were classified as moderate and high. Meanwhile, the LAD
increased with the increase in the susceptibility level, which also shows that the model can
effectively predict the potential landslide-prone zone.
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Figure 21. Susceptibility class distribution and the occurrence of landslides within the study area;
(a) before rainfall; (b) after rainfall.

6. Discussion

China’s southeast area is situated in a subtropical monsoon climate zone with frequent
typhoons and rainstorms. The most common types of geological hazards in this area
are landslides and debris flows caused by rainfall, which have the characteristics of a
small scale of individual hazard point, a large number of groups, and a wide distribution
range [18,19]. In mountainous areas, the effect of the orographic amplification of rainfall and
the projection of rainfall-vector on hillslopes [81,82] might result in the windward hill-slope
receiving more rainfall, leading to more landslides on the hillslope scale [83]. Due to the
influence of the monsoon depression and tropical cyclone, the southeast monsoon prevails
in the Longchuan area during the summer (June and July). The landslide distribution
of this rainfall event indicates that the southeast and south aspect hillslopes are more
prone to collapse than the northwest-north aspect ones (Figure 14). The main reason for
this phenomenon is that the south slope is mostly windward, which causes more rainfall
and splash erosion in the area. Otherwise, the bedrock weathering degree of the south
slope will also be high due to the influence of environmental factors such as soil moisture
content, surface temperature, light time, and so forth, leading to relatively weak mechanical
parameters of rock and soil mass. Therefore, under the condition of heavy rainfall, the
south slope is more prone to landsliding.

Slope angle is an important topographic factor affecting the occurrence of landslides.
From the spatial distribution of the landslides, we can observe that the landslides were
mainly distributed in low mountainous areas, with the sections at elevations within
300~450 m and slopes ranging from 15 to 35° (Figure 12). The LAD increased with the
increase in slope angle and was described by an exponential relationship, indicating that
the landslides of this event more easily occurred in areas with steep slopes (Figure 13b).
TWI reflects how surface morphology affects soil groundwater level and moisture content,
which is represented by a theoretical measure of the accumulation of flow [84,85]. Accord-
ing to the statistical results, there was an exponential relationship between the LAD and
TWI, and the LAD increased as the TWI value increased. Especially when the TWI was
greater than 10, the LAD increased rapidly (Figure 14f). Higher soil moisture causes higher
pore water pressure and reduces the strength of rock and soil mass. As a result, when it
rains, the pore water pressure in these areas rises rapidly, resulting in slope failure.

Anthropogenic factors (such as land-use change, deforestation, hill cutting, etc.) play
a significant role in the initiation of landslides in active mountain ranges [86-88]. The
construction of roads has significantly altered the slope stability of mountainous areas,
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making them prone to landslides. When a road is built, the toe of the slope is excavated or
the weight of the slope is increased, and the overall stability above the slope is reduced,
resulting in the occurrence of new landslides or the reactivation of old landslides[89]. From
Figure 13d, we can observe that the landslides of this event were more likely to occur in
areas with high road density, illustrating that anthropogenic factors have accelerated the
instability of the slope in this area. Furthermore, in the Longchuan area, the majority of local
residents have excavated mountains to build houses, leading to a number of nearly vertical
artificial slopes. Meanwhile, human activities will fragment surrounding natural slopes
and increase the degree of rock weathering, which will also exacerbate slope instability in
mountain areas.

The formation lithology of the slope is the material basis of landslides. Granite
layers are one of the most common strata in China’s southeast coastal regions. Long-term
weathering of granite results in widely distributed residual soil layers. For the Longchuan
area, the bedrock is monzogranite (O3-S1), and the landslides occurred primarily in the
weathered soil layer on the bedrock surface [17,77]. The major influence depth of heavy
rainfall was limited to the superficial zone of slopes due to the difference in rainfall intensity
and permeability of granite residual soil. This is why the shallow surface zone was severely
affected by landslides [17]. A saturated seepage field was formed in the shallow surface
zone of slopes as a result of prolonged heavy rainfall. The mechanical strength of saturated
s0il diminished, and slide failure occurred at the shallow surface saturation zone.

7. Conclusions

In this work, we established a landslide inventory including all the landslides induced
by the 2019 Longchuan heavy rainfall event in Guangdong Province, China. We described
the topographical, geological, and hydrological control of landslide hazards. Furthermore,
we conducted the physically based susceptibility assessment of shallow landslides based
on the MAT.TRIGRS (V1.0) tool. The following conclusions can be drawn: (1) This rainfall
event triggered about 670 landslides with a total area of 0.75 km?; the landslides had obvious
cluster distribution characteristics, and a large number of landslides were concentrated
within 2 km of the Mibei village. (2) The landslide abundance was closely related to slope
angle, TWI, and road density but had a low correlation with elevation and distance to rivers.
Among them, the LAD increased with the increase in the slope angle and TWI and was
described by an exponential relationship. Otherwise, the statistical results of the landslides
and the slope aspect showed that most of the landslide area was concentrated in the aspect
of 110°~180° (SE to S). (3) The physically based susceptibility assessment results indicated
that the prediction results were roughly consistent with the actual landslide distribution,
and most areas with a high susceptibility were located on both sides of the river valley. The
onset of heavy rain on 10 June 2019 was the main triggering factor of this group-occurring
landslides. Our study will be beneficial for understanding the distribution pattern and
cause of rainfall-induced shallow landslides in the Longchuan area, and it can provide
data and technical support for the prevention of rainfall-induced geological disasters in the
southeast mountainous area of China.
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Abstract: In recent years, increasing available synthetic aperture radar (SAR) satellite data and
gradually developing interferometric SAR (InSAR) technology have provided the possibility for wide-
scale ground-deformation monitoring using InNSAR. Traditionally, the INSAR data are processed by the
existing time-series INSAR (TS-InSAR) technology, which has inefficient calculation and redundant
results. In this study, we propose a wide-area INSAR variable-scale deformation detection strategy
(hereafter referred to as the WAVS—-InSAR strategy). The strategy combines stacking technology
for fast ground-deformation rate calculation and advanced TS-InSAR technology for obtaining
fine deformation time series. It adopts an adaptive recognition algorithm to identify the spatial
distribution and area of deformation regions (regions of interest, ROI) in the wide study area and uses
anovel wide-area deformation product organization structure to generate variable-scale deformation
products. The Turpan-Hami basin in western China is selected as the wide study area (277,000 km?)
to verify the proposed WAVS-INnSAR strategy. The results are as follows: (1) There are 32 deformation
regions with an area of >1 km? and a deformation magnitude of greater than +2 cm/year in the
Turpan—-Hami basin. The deformation area accounts for 2.4%. of the total monitoring area. (2) A
large area of ground subsidence has occurred in the farmland areas of the ROI, which is caused
by groundwater overexploitation. The popularization and application of facility agriculture in the
ROI have increased the demand for irrigation water. Due to the influence of the tectonic fault, the
water supply of the ROI is mainly dependent on groundwater. Huge water demand has led to a
continuous net deficit in aquifers, leading to land subsidence. The WAVS-InSAR strategy will be
helpful for INSAR deformation monitoring at a national /regional scale and promoting the engineering
application of InSAR technology.

Keywords: wide-area deformation; deformation detection; time-series INSAR; stacking; Turpan-Hami basin

1. Introduction

Advanced microwave remote sensing technology can precisely monitor deformation
over wide areas, which helps geohazard surveys of phenomena such as underground fluid
development, mineral mining, and landslide. In recent years, fast-developing interferomet-
ric synthetic aperture radar (InNSAR) technology and abundant available synthetic aperture
radar (SAR) data [1-4] has laid the foundation for high-precision and wide-scale INSAR
ground-deformation monitoring. INSAR technology has been successfully used to monitor
ground deformation at a regional [5-9] and national scale [10-13]. Large-scale geodetic tech-
nology, such as InNSAR, usually describes the spatial characteristics of ground deformation
by deformation rate, and shows deformation development over time using a time series of
deformation. The deformation region usually accounts for a small part of the monitoring
area [11], so the ground deformation we are interested in only accounts for a small part of
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the wide-area monitoring results. At present, the engineering projects to obtain ground
deformation in a wide study area (WSA) usually calculate the deformation time series using
InSAR datasets covering the whole WSA, using time-series INSAR (TS-InSAR) technology.
Even with multiple spatial resolutions, such schemes require a lot of computing resources
and storage space, and even then require repeated calculations and provide redundant
results, especially in the non-deformation region [14]. Therefore, it is necessary to develop
a set of efficient monitoring methods and procedures for wide-area INSAR deformation
and a more feasible multi-scale deformation product organization structure in the WSA.

One way to improve the computational efficiency of the TS-InSAR method is to
introduce a parallel processing method, which can be realized using high-performance
computers (HPC) [12,15-19]. However, the high cost of HPC equipment hinders the pop-
ularization of this strategy. Another way is to improve the TS-InSAR method itself, by
introducing sequential adjustment theory for real-time InNSAR data processing [20-22],
introducing a geological model or time-series filtering algorithm for high-dimensional
deformation calculation [23-26], or realizing a high-precision TS-InSAR deformation cal-
culation using block solutions [27,28]. These strategies can improve the efficiency of the
TS-InSAR solution to a certain extent. However, for wide-area INSAR deformation monitor-
ing, high-precision independent calculation of all INSAR datasets in the WSA will provide
many useless time-series results, especially in the non-deformation area. Therefore, it is
necessary to develop a demand-oriented multiple spatio-temporal-scale deformation moni-
toring method, considering the universality of monitoring strategies, computing resources,
measurement accuracy, and the efficiency of deformation calculation and interpretation.

The averaging of multiple interferograms (stacking) method was proposed by the
authors in [29], which can obtain the ground-deformation rate by averaging the phase of
the multitemporal differential INSAR (DInSAR) dataset. Compared with conventional TS—
InSAR technologies, such as persistent scatterer (PS) [30], small-baseline subset (SBAS) [31],
and interferometric point target analysis (IPTA) [32], stacking only obtains the deformation
rate with lower technical requirements and higher computational efficiency. Stacking
has been widely used for deformation identification [33-37]. A wide-area deformation
monitoring project usually identifies deformation regions based on the ground-deformation
rate [38]. For the deformation region, the corresponding deformation time series is extracted
to analyze the spatio-temporal evolution of deformation. The deformation time series in
stable zones has less information. Therefore, combining stacking and TS-InSAR may
contribute to efficient variable-scale deformation monitoring.

In this study, we propose a wide-area INSAR variable-scale deformation detection
strategy (WAVS-InSAR). WAVS-InSAR uses stacking technology to quickly calculate the
low-spatial-resolution ground-deformation rate over the WSA. Then, an adaptive intelligent
recognition algorithm is used to identify the location and area of the deformation regions
and determine the regions of interest (ROI). Advanced TS-InSAR technologies are then
used to obtain the high-spatio-temporal-resolution deformation time series in the ROL
Finally, the variable-scale INSAR deformation product in the WSA is obtained by a novel
variable-scale deformation product organization structure. To verify the proposed WAVS—
InSAR strategy, we applied it to the Turpan-Hami basin (about 277,000 km?) in Xinjiang,
China. The Turpan—-Hami basin is the driest place in China, and has the least rainfall in
China. Many tectonic faults, as well as agricultural and mining areas, are scattered across
the basin. It is of great significance to obtain the spatio-temporal distribution characteristics
of ground subsidence and to investigate the surface deformation related to the active
agricultural economy and mineral exploitation in the basin.

The remainder of the paper is organized as follows. We introduce the WAVS-InSAR
strategy in Section 2. In Section 3, the general situation of the Turpan-Hami basin, InNSAR
data, and the data-processing details are briefly described. The variable-scale deformation
product in the Turpan-Hami basin is shown in Section 4, followed by the discussion in
Section 5. Section 6 presents the conclusions.

74



Remote Sens. 2022, 14, 3832

J

Data collection

~

-

2. Methodology

We first collect all available INSAR datasets covering the WSA, and preprocess all
datasets through registration and DInSAR, to generate the multitemporal DInSAR datasets
with the same spatial reference data. Then, we apply the WAVS-InSAR strategy to process
the multitemporal DINSAR data to obtain variable-scale deformation products in a wide
area. The WAVS-InSAR includes the following four modules (Figure 1).

(1) We obtain the wide-area deformation rate using the stacking method [29]. First, we
calculate the deformation rate of each frame using stacking. Then, we mosaic the
results of all frames to obtain the wide-area deformation rates.

(2)  We detect ROI from the deformation rates. Setting the threshold for the deformation
rate, the extension radius, and the minimum clustering area, we calculate the spatial
distribution and area of the ROI in the WSA using an adaptive deformation detection
method [39].

(3) We obtain the high-spatio-temporal-resolution deformation result of ROL The high-
spatio-temporal-resolution time-series and /or multidimensional deformation of the
ROI are calculated using advanced TS-InSAR technologies, such as PS, SBAS, IPTA,
and the multidimensional small-baseline subset (MSBAS) [40-42].

(4) We generate the variable-scale deformation product, combining the high-spatio-
temporal-resolution results of ROI and wide-area deformation rate to generate the
variable-scale deformation product, which can describe deformation in stable areas
only with low-spatial-resolution deformation rate, and in the ROI with the high-
spatio-temporal-resolution deformation rate and time series.
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Figure 1. Flowchart of the method for the variable-scale monitoring of deformation in a wide area.

2.1. Wide-Area Deformation Monitoring Using Stacking

The stacking technology can calculate the deformation rate based on weight and
average the unwrapped phases of the multitemporal DINSAR dataset. The stacking tech-
nology assumes linear ground-deformation changes, and temporal randomly distributed
phase noise, such as atmospheric delay phase. Assuming N + 1 SAR images of one frame
covering the WSA constitute M InSAR pairs, the displacement phase can be separated as

M M
o= ¢;i-Ati/Y A2 1)
i=1

i=1

in which ¢ is the rate of deformation phase change. ¢; and At; are the interference phase
and the time interval of the i-th InNSAR pair, respectively.
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The rate of the deformation phase change would be converted to the deformation rate
(Vite f ) as, B
Vdef :)L'¢/47T (2)

where A is the wavelength of the SAR sensor. The multitemporal DInSAR data in each frame
is processed using stacking technology to obtain the ground deformation of the WSA.

2.2. ROI Detection Based on Wide-Area Deformation Rate

Luo et al. [39] proposed an improved method to automatically identify and evaluate
geological hazards using TS-InSAR results. By judging and analyzing the deformation
rate and time series in the monitoring area, the method can automatically identify the
deformation region and evaluate its hazard grade. In this study, we improve this method
to accurately delineate the ROL

To improve the accuracy of ROI detection, we first apply spatial domain filtering to the
wide-area monitoring results to obtain deformation results with good spatial consistency.
Then, we set the thresholds for deformation rate, extension radius, and minimum clustering
area. When the absolute value of the deformation rate is greater than the deformation rate
threshold, it is considered to be an active point. Otherwise, it is a stable point. Buffer zones
are established around the active points according to the extension radius. The active points
are clustered following the principle of spatial proximity relationship [43]. The clustering
regions are smoothed to refine the boundary. The robust deformation regions and their
area are obtained by removing regions smaller than the minimum clustering area. The ROI
can be finally located based on spatial clustering and the area of deformation.

A detailed description of the intelligent recognition part of the method can be found
in [39]. It should be noted that INSAR can only obtain one-dimensional (1D) deformation
along the line-of-sight (LOS) direction of the SAR sensor, so the INSAR data of one geometry
is insensitive to the deformation of some regions, especially landslides [44]. To obtain more
reliable deformation detection results, we need to use the above method and InSAR data
from different observational geometry. The detection results of multitrack INSAR data are
taken together as the final deformation regions. Then, we can adaptively determine the
ROI and perform fine monitoring.

2.3. ROI Deformation Refinement Using Advanced TS-InSAR

When calculating the wide-area deformation rate, we select the INSAR data with the
same acquisition time from different frames to facilitate the splicing of the results from
different frames and to maintain the consistency of the wide-area deformation rate. To
accurately monitor the deformation in the ROI, we first crop the registered INSAR datasets.
The cropped datasets are used to obtain the time-series and multidimensional ground
deformation of the ROI Detailed steps are as follows.

(1) Deformation time-series calculation. We process the collected INSAR datasets using TS-
InSAR technology, with a smaller multi-looking number (a higher spatial resolution).
In this study, we use an improved IPTA method to calculate the deformation time
series of the ROI [45,46].

(2) Multidimensional deformation rate/time-series calculation. If the ROI has INSAR
data with different observation geometry during the same acquisition time, we can
obtain the vertical and horizontal displacements using the MSBAS method.

If multi-sensor and multitemporal INSAR data covering the ROI are available, we
can collect all data to analyze the long-term deformation and understand the deforma-
tion spatio-temporal evolution features based on the data-overlapping and deformation
model [47,48].

2.4. Variable-Scale Deformation Product Generation

The low-spatial-resolution deformation rate can be used to detect a stable surface in
the WSA, which greatly reduces the task and data volume of wide-area INSAR deformation
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monitoring. In addition, we obtain the fine results of the deformation time series with
a high spatial resolution of ROI using advanced TS-InSAR technology. A variable-scale
deformation product organization structure includes low-spatial-resolution deformation
rates in stable areas of the WSA and the high-spatio-temporal-resolution deformation in
the ROI. Hence, we superimpose the high-spatio-temporal-resolution deformation at the
corresponding regions of the ROI on the wide-area deformation rate results to improve the
spatial and temporal dimensions of the deformation in the ROI. At this stage, we can obtain
variable-scale deformation products in the WSA, which only contain low-spatial-resolution
deformation rates in stable regions, and fine monitoring results in the ROL

3. Study Area and Data Processing
3.1. The Turpan—Hami Basin

The Turpan-Hami basin, consisting of the Turpan and the Hami depressions, is an
intermountain basin located in northwest China (Figure 2). Since the end of the Early
Permian period, the Turpan-Hami basin has developed following the model of “fault-
depression foreland”. It is a typical faulted basin, with limited sedimentary range, great
lateral variation of sedimentary thickness, and multiple depositions and subsidence centers.
The geological conditions and active tectonic motion contribute to oil and gas accumulation
and make the Turpan-Hami basin the largest coal-derived petroleum-producing basin
in China [49]. Moreover, there are many mineral resources in this basin, e.g., coal, iron,
and potassium (sodium) saltpeter. It is the world’s largest potassium (sodium) saltpeter
resource. Aydingkol Lake, located in the middle of the Turpan depression, is the lowest
depression in China, 154.31 m below sea level [50]. Centering on Aydingkol Lake, the
Turpan depression presents a roughly three-ring shape. The outermost ring has high
snow-capped mountains. The middle ring is the Gobi gravel belt. The inner ring is an oasis
plain belt, most of which belongs to a piedmont sloping plain, and accumulates a large
area of fine soil alluvium. The water in the basin mainly comes from rainfall and meltwater
from the surrounding mountains. The Tianshan mountains, e.g., Bogurda Mountain and
Harlick Mountain, are in the north of the Turpan depression. The Flaming Mountains fault
zone lies nearly east-west in the Turpan depression, between Turpan city and Shanshan
county (Figure 2). Weathered material is transported from the Tianshan mountains to the
center of the basin by water flow, but is blocked by the Flaming Mountains fault line and
accumulates in the northern part of the mountains. The surface water and groundwater
from the Tianshan mountains are also blocked by the Flaming Mountains fault line. The
head height of the shallow aquifers is raised on both sides of the Flaming Mountains,
creating overflow zones and an oasis in these areas.

The Turpan-Hami basin has a typical continental warm temperate desert climate,
with abundant heat and extremely little precipitation. It has 3200 h of sunshine in a year.
The hydrogeology, climate, and lighting conditions make it an ideal place for growing
cantaloupe, grapes, cotton, and off-season vegetables. Groundwater is the main source of
agricultural water in the arid area. Previously, karezes were the predominant underground
water conservancy project in this region. A karez uses the principle of water potential
artware to divert water from shallow aquifers to the surface for irrigation. There are more
than 2000 karezes in the Turpan-Hami basin, accounting for more than 70% of the total
number of karezes in Xinjiang [51,52]. However, many electromechanical wells have been
built in the Turpan-Hami basin since the 1960s. Groundwater exploitation has increased
yearly, with the annual overexploitation reaching 2.48 x 10'° m?, leading to the continuous
decline of groundwater level. Advanced water conservancy facilities have reduced people’s
dependence on karezes. Meanwhile, the water supply source of karezes is shallow aquifers.
The continuous reduction of groundwater level directly leads to the decrease or even
drying-up of karezes [53]. The number of water-filled karezes in the Turpan depression
decreased from 1237 in 1957 to 214 in 2014 [51]. In addition, the increased demand and
excess consumption of water resources in upstream areas have seriously threatened the
water supply of Aydingkol Lake, resulting in water area shrinkage. The exploitation
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of groundwater and mineral resources will make the surface of the Turpan-Hami basin
unstable and threatened by potential geohazards.
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Figure 2. The Turpan-Hami basin and SAR data coverage.
3.2. InSAR Datasets
To monitor wide-area deformation in the Turpan-Hami basin, we collected eight
frames of INSAR data covering the whole Turpan—Hami basin from the Sentinel-1 satellite.
The Sentinel-1 satellite began operation in April 2014, and has different observation periods
in different regions, resulting in inconsistent periods of SAR data in different regions. To
ensure the consistency of deformation rates from multiple frames, we selected the images
(628 images in total) from the eight frames acquired from October 2017 to May 2020 (Table 1).
The spatial coverage of each dataset is shown in Figure 2.
Table 1. Acquisition periods of the datasets.
Sensor Frame Time Number Frame Time Number
AT172F1317 77 AT143F131 81
- AT172F1322 13/10/2017-30/05/2020 77 AT143F136 11/10/2007-28/05/2020 81
U
5 AT70F1316 78 AT41F130 78
(})5 AT70F1321 18/10/2017-30/05/2020 78 AT41F135 16/10/2017-21/05/2020 78
DT121F449 19/03/2015-27/04/2020 107 AT41F135 25/03/2015-21/05/2020 123
AT496F840 11 AT497F840 11
ALOS-1 AT496F850 22/01/2007-14/09/2009 1 AT497F850 08/02/2007-04/10/2010 11

Wide-area INSAR deformation shows that many subsidence funnels are concentrated
in the south part of the Flaming Mountains fault zone in the Turpan depression (hereafter
referred to as the SFM—def region). The SEM-def region (the yellow box in Figure 2) was
selected as an application demonstration area of ROI to carry out the fine monitoring of
the deformation time series. Four frames from the ALOS-1/PALSAR dataset spanning
from 2007 to 2010 (green rectangles in Figure 2) and a descending track from the Sentinel-1
dataset (red rectangle in Figure 2) covering the SFM-def region were collected. The common
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monitoring time of the Sentinel-1 ascending (AT41F135) and descending (DT121F449) tracks
data is from 2015 to 2020 (Table 1). These data were used to precisely monitor the long-term
and fine deformation in the SEM—def region.

3.3. Data Processing

We preprocessed all InNSAR datasets covering the WSA. In each frame, one image
was selected as the master image to register and resample the rest images. Multitemporal
InSAR pairs were generated from SAR data in the same frame, based on the appropriate
spatio-temporal baseline thresholds. All multitemporal DInSAR pairs were processed using
GAMMA software [54] and two-pass DInSAR technology [55] to obtain multitemporal
deformation signals. The shuttle radar topography mission (SRTM) digital elevation model
(DEM) with a resolution of 30 m [56] was employed to remove the topographic phases. The
point targets with a coherence lower than 0.3 were eliminated [57]. Least-squares-based
filtering and the minimum cost flow method [58] were then applied to further suppress
phase noise [59] and unwrap the differential interferogram, respectively.

The eight frames of the Sentinel-1 data were preprocessed with a spatial baseline (per-
pendicular) and temporal baseline of 100 m and 48 days, respectively, and a multi-looking
operation of 20:4. Then, stacking was used to process all the multitemporal deformation
signals in each frame, to obtain a wide-area deformation rate of the Turpan—-Hami basin.
The adaptive deformation detection method proposed in Section 2.2 was used to delineate
the deformation regions. The thresholds of the deformation rate, extension radius, and
minimum clustering area were set as +2 cm/year, 250 m, and 1 km?, respectively.

For the SFM—def region, we set the multi-looking parameters of ALOS-1/PALSAR and
Sentinel-1 data as 3:8 and 8:2, respectively. The improved IPTA method was used to com-
pute the four frames of the ALOS-1/PALSAR data and the ascending/descending tracks
from the Sentinel-1 datasets to obtain long-term and high-resolution displacements. More-
over, MSBAS technology was used to obtain multidimensional deformation from the as-
cending/descending tracks of the Sentinel-1 datasets. Then, we obtained the variable-scale
deformation product of the Turpan—-Hami basin, which consists of low-spatial-resolution
deformation rates in the stable areas and high-spatio-temporal-resolution deformation in
the SFM—def region.

4. Results
4.1. Monitoring and Detecting the Wide-Area Deformation in the Turpan—Hami Basin

The wide-area ground subsidence in the Turpan-Hami basin (Figure 3) shows that the
surface of the Turpan-Hami basin is generally stable. The regions with deformation account
for a small proportion of the whole. The main deformation type is subsidence. Based on
the deformation detection threshold set in Section 3.3, we identified 32 deformation areas
(the funnel) in the Turpan—-Hami basin (the blue lines in Figure 3). The area of each funnel
is shown in Table 2. The detected deformation area accounts for about 2.4 %o of the total
monitoring area.

Analyzing the hydrogeology and land cover of the deformation areas, we divided the
ground deformation in the Turpan—Hami basin into three types:

(1) Ground subsidence in agricultural areas caused by groundwater overexploitation.
This kind of subsidence has the largest area and is concentrated in the oasis plain
south of the Flaming Mountains fault zone (Figure 3a).

(2) Ground subsidence associated with mineral mining. This kind of deformation is
sporadically distributed over the Turpan-Hami basin. Such deformation regions have
a small area but large deformation magnitude, e.g., Figure 3b.

(3) Ground uplift associated with the lake water withdrawal, resulting in saline—alkali
lands. This kind of deformation is mainly distributed around Aydingkol Lake, charac-
terized by small magnitude and mainly horizontal movement (Figure 4e,f).
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Figure 3. Wide-area subsidence rate map and the detected deformation regions. The numbers identify
the location of the top 10 deformation regions. (a) The SEM-def region in Figure 4. (b) One of the
major mining areas. Background image: Google Maps satellite image.
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Figure 4. Deformation rate along LOS directions from (a) ALOS-1/PALSAR, (b) ascending track
Sentinel-1, and (c) descending track Sentinel-1 data. Negative values indicate the direction away
from the SAR satellite, while positive values indicate the opposite. (d) The hydrogeology of this
area. (e f) The deformation rate along the up—down and east-west directions calculated from as-
cending/descending tracks Sentinel-1 data. The red dotted line delineates the central area of the
subsidence funnels from 2007 to 2010. The magenta dotted line delineates the central area of the
subsidence funnels from 2015 to 2020.
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Table 2. The area of the deformation funnels.

Num. Area (km?) Num. Area (km?) Num. Area (km?) Num. Area (km?)

1 437.6 9 55 17 2.3 25 1.6
2 61.2 10 5.1 18 2.3 26 1.5
3 42.6 11 4.8 19 2.2 27 15
4 26.1 12 4.1 20 2.2 28 1.5
5 16.1 13 3.4 21 2.1 29 14
6 11.1 14 3.1 22 2.1 30 1.2
7 9.1 15 2.6 23 2.0 31 1.1
8 6.8 16 2.5 24 1.9 32 1.0
Total area (km?) 669.6

The largest deformation funnel is distributed in the SFM-def region, with an area
of 437.6 km?, surrounded by small funnels (Figure 3a). The optical images show that
the subsidence funnels in the SFM-def region are highly correlated with the location of
agricultural areas. Aydingkol Lake is in the south of the SFM—def region (Figure 3a). In
recent years, the area of the lake has continuously shrunk, and a large area of saline-alkali
land has appeared. There is obvious ground uplift in these saline-alkali regions. In addition,
multiple subsidence funnels are observed close to some mines, e.g., the funnel cluster in
Figure 3b. The wide-area deformation results are discussed in detail in Section 5.

4.2. Deformation Time Series of the SFM-Def Region from 2007 to 2020
4.2.1. Long-Term Deformation in the Spatial Dimension

The long-term (2007-2010 and 2015-2020), multidimensional (along with up—down
and east-west directions), and high-spatial-resolution displacements are obtained from the
four frames of the ALOS-1/PALSAR data and the ascending/descending tracks from the
Sentinel-1 data, using advanced IPTA and MSBAS technologies (Figure 4). The ground
deformation is mainly distributed in a plain area south of the Flaming Mountains fault
line (Figure 4d). There are large areas of farmland in this region (Figure 3a), and the
irrigation relies heavily on groundwater. The ground deformation is mainly vertical, with
small horizontal movement (Figure 4e,f), which is typical for displacements caused by
groundwater extraction [60-62]. The red and magenta dotted lines in Figure 4 delineate
the settlement funnel centers in 2007-2010 and 2015-2020, respectively. The area and
magnitude of the subsidence in the northwest of the SFM—def region gradually decrease,
but the subsidence area in the southeast gradually expands and becomes connected. The
center of the funnel shifts from the northwest to the southeast, and form a giant funnel
with a larger subsidence rate and area in the southeast region. See Section 5 for detailed
analysis and discussion.

4.2.2. Long-Term Deformation in the Time Dimension

The long-term deformation rate can reflect the spatial distribution and evolution char-
acteristics of ground deformation. We select two profiles (AA’ and BB') and two points
(P1 and P2) in the SFM-def region (Figure 4) to investigate the variation characteristics
of deformation in the time domain. The long-term time-series displacements at the corre-
sponding position in the two monitoring periods, i.e., 2007-2010 and 2015-2020, are shown
in Figures 5 and 6. The time-series cumulative deformation at AA” and P1, BB’ and P2 can
represent the deformation characteristics of the central region of the subsidence funnels
during the two monitoring periods.
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Figure 6. The time-series cumulative deformation at P1 and P2 in Figure 4. The blue dots represent
the InSAR observations. The magenta lines are the linear fitting results of the corresponding InNSAR
observations.

The long-term deformation at AA’ and P1 shows that the subsidence of the area
with the most significant subsidence in the first monitoring period tends to be stable, and
slows down in the second period. In the first period, the subsidence rate of the section
northwest of AA’ is higher than that of the southeast section. However, in the second
period, this phenomenon is reversed. The subsidence center moves from northwest to
southeast, which is consistent with the spatial evolution of the global subsidence funnel. In
the first period, the subsidence rate of BB’ is small, and presents two separate funnels. In
the latter period, the two funnels merge into a giant funnel. The subsidence area and rate
increases significantly.

Both ALOS-1/PALSAR and Sentinel-1 data can reflect the overall change characteris-
tics of the subsidence in time and space well (Figures 4 and 5). However, compared with
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the ALOS-1/PALSAR data, which have a revisit period of >46 days, the Sentinel-1 data
can capture more detailed changes to the deformation signals with obvious periodicities
in the time dimension due to its higher temporal resolution (>12 days) (Figure 6). The
subsidence mainly occurs in summer. The ground tends to be stable or slightly uplifted in
winter. See Section 5 for detailed analysis and discussion.

4.2.3. Reliability Assessment

As can be seen from Figure 4, the deformation results of the SFM-def region from
the ALOS-1 data of different frames have good consistency. The deformation obtained
by the Sentinel-1 data of ascending and descending tracks also has good consistency in
spatial distribution and magnitude. This indicates that the TS-InSAR results have a good
consistency. To quantitatively assess the reliability of the TS-InSAR results, we compare
the average subsidence rates extracted from the overlapped areas of two adjacent INSAR
frames acquired at the same period, e.g., ALOS-1/PALSAR datasets from AT496F840 and
AT496F850, and Sentinel-1 datasets from AT143F136 and DT121F449 (Figure 2). Due to the
different observation geometry of each monitoring point in different frames, we convert
the LOS deformation to the vertical direction for comparison. The correlation between the
results at AT496F840 and AT496F850, and Sentinel-1 results at AT143F136 and DT121F449,
are 0.98 and 0.99, respectively. The root-mean-square errors (RMSEs) between them are 0.02
and 0.01 mm/year, respectively. These results show good consistency, and the differences
at most points are smaller than three times the RMSE (between the red dotted lines in
Figure 7).
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Figure 7. Comparison between the results obtained by (a) ALOS-1/PALSAR AT496F840 and
AT496F850 data, and (b) the Sentinel-1 AT143F136 and DT121F449 data. The red dotted lines
denote the value three times the root-mean-square error.

5. Discussion
5.1. Anthropogenic Factors of Ground Deformation in the Turpan—Hami Basin

We obtained variable-scale deformation products in the Turpan-Hami basin using the
proposed WAVS-InSAR method. The distribution of most detected deformation funnels
(Section 4.1) is highly consistent with human activity, such as agriculture cultivation and
mineral mining. The agricultural area in the SFM—def region has a funnel cluster with
the largest deformation area and magnitude in the Turpan-Hami basin. We obtained the
long-term and multidimensional ground deformation in the SEM—def region in Section 4.2.
The subsidence center of the first period (2007-2010) shifted from the northwest to the
southeast in the second period (2015-2020).

We collect optical images of the SFM-def region in 2007 and 2018 (Figure 8a,b), cor-
responding to the two monitoring periods. The green lines mark the locations of the
greenhouses that appeared in the latter period. As the optical images show, the majority of
farmland in the SEM—def region in 2007 was open-air farmland. However, in 2018, there
was a large area of greenhouses, especially in the farmland far from the Flaming Mountains
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fault line. Many open-air farmlands in 2007 had been changed to greenhouses (Figure 8). In
traditional open-air farmland, the crops are mainly grain and cotton, which are planted in
spring, managed in summer, and harvested in autumn. However, in greenhouse farmland,
the expected proportion of fruit and vegetable cultivation is more than 70% [63]. After 2009,
many greenhouses were built in Turpan, especially in the agricultural areas far from the
southern margin of the Flaming Mountains fault line (Figure 8b). Advanced agricultural
planting technologies have brought huge economic benefits to Turpan, but also increased
the environmental burden, especially the demand for water [53]. Irrigation water in the
SFM-—def region is mainly groundwater. Hence, ground subsidence caused by ground-
water overexploitation is more significant in the greenhouse areas of the SFM-def region,
resulting in aquifers carrying net deficit and the subsidence center shifting to the southeast
(Figure 8a,b).
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Figure 8. (a,b) Optical images of the SEM—def region in 2007 and 2018. Green lines delineate
greenhouse planting areas. (c,d) Zoom-ins of the blue rectangular area in (a,b) in 2007 and 2018.
Background image: Google Maps satellite image.

Karezes are an important water supply in arid agricultural areas, known as “the
fountains of life”. In China, karezes are mainly distributed in the Turpan-Hami basin
(Section 3.1). A karez is composed of vertical shafts, culverts, water outlets, open channels,
and waterlogging dams, with length ranging from several to dozens of kilometers [51]. The
number and distribution of karezes can reflect the changes to the ecological environment
in the Turpan-Hami basin. It is important to evaluate the health of the aquifer. We
compared two high-resolution (0.44 m) optical images covering the blue rectangular region
of Figure 8a,b in July 2003 and May 2013 (Figure 9), where ground subsidence funnels in the
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second period (Figure 9a,b) were developed. In July 2003, lots of small mounds—the shaft
part of a karez—are linearly distributed in this area (Figure 9c). However, a lot of small
mounds have disappeared in the optical image taken in May 2013, indicating the karezes
in the area were severely damaged (Figure 9d). Some areas that karezes passed through
were turned into farmland (Figure 9¢,f). The water supply of karezes was destroyed. The
water supply in this area will depend mainly on the extraction of groundwater using
electromechanical wells. The karezes may have ceased to function, and dried up.

89°38°E 8936'E 8937E 8938E

Figure 9. Deformation rate in the blue rectangular area of Figure 8 from (a) ALOS-1/PALSAR,
(b) ascending track Sentinel-1 data. (c,d) Optical images of this area in July 2003 and May 2013,
respectively. (e,f) Zoom-ins of the yellow rectangular area in (c,d). Background image: Google Maps
satellite image.

In addition, we collected land cover data of the SFM—-def region in 2000, 2010, and 2020
(Figure 10) (data from global Land Cover Data Product and Service website of National Basic
Geographic Information Center of China (http:/ /www.globallandcover.com/, accessed on
10 July 2022)), and the corresponding area of land cover type in each period (Table 3). The
agricultural area has continuously expanded in the past two decades. Artificial areas have
expanded rapidly in the past decade, more than 10 times the rate of the previous decade.
Water and wetland areas have decreased in the last decade. In 2000 and 2010, the lake area
and the surrounding wetland area of Aydingkol Lake was stable, indicating that surface
runoff and groundwater are still effective for supply of the lake. These water sources can
also partially alleviate the overexploitation of groundwater for agricultural use. However,
in 2020, land cover data showed that the waters and wetland of Aydingkol Lake had almost
disappeared. Farmland area is in the inner ring of Aydingkol Lake (Section 3.1). The
excessive use of surface and underground water in farmland areas has seriously reduced
the water supply of the lake, resulting in the shrinkage of water and wetland, which will
seriously endanger the ecological environment. The transformation of local agriculture
and the economy has upset the ecological balance in the SFM—def region and the balance
of aquifers. Conflicts between the development of the local agricultural economy and
ecological environment should arouse the attention of local governments.
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Figure 10. Spatio-temporal evolution of the land covers in the SFM-def region in 2000, 2010, and
2020. The red and magenta dotted lines delineate the central area of the subsidence funnels during
the periods 2007-2010 and 2015-2020, respectively.

Table 3. The area of different land covers in the SEFM~def region in 2000, 2010, and 2020, obtained
from Globeland 30.

Sort

Time Farmland Grassland Wetland Waters Artificial Nudation
2000 574.33 652.74 99.90 13.68 43.81 2288.24
2010 657.46 669.62 99.90 14.09 48.50 2181.47
2020 705.65 658.64 0.16 1.53 110.14 2194.59
Percentage 1 ° 14.5% 2.6% 0 3.0% 10.7% —4.7%
Percentage 2 © 7.3% —1.6% —99.8% —89.1% 127.1% 0.6%
Percentage 3 © 22.9% 0.9% —99.8% —88.8% 151.4% —4.1%

Unit: km?. 2: Percentage of numerical growth in 2010 compared with 2000. °: Percentage of numerical growth in
2020 over 2010. ©: Percentage of numerical growth in 2020 compared with 2000.

5.2. Geological Explanation of Ground Deformation in the Turpan—-Hami Basin

There are many farmlands in both the Turpan and Hami depressions. Facility agri-
culture planting areas are also developed in other agricultural areas, e.g., the oasis areas
in Hami and the western part of Turpan. However, why is there a large area of ground
subsidence funnels in only the agricultural areas of the SFM—def region?

We plotted the deformation results and the corresponding optical images and faults of
the oasis areas in the Turpan depression and the Hami depression (Figure 11). Rainfall is
scarce in the Turpan—-Hami basin. Irrigation water in the oasis agricultural areas depends
on rainfall and meltwater from the surrounding mountains (Section 3.1). The Flaming
Mountains fault line lies east-west in the Turpan depression, blocking water flowing
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from the Tianshan mountain to the south. The other areas, e.g., the northern part of the
Flaming Mountains fault line and Hami, can directly obtain abundant mountain water.
The surplus water in the Hami oasis can even form a river to supply the downstream area
in the southwest (Figure 11d). However, the SFM-def region is short of surface water
and groundwater, and the only river channel has almost dried up. As the distance from
the southern margin of the fault increases, the water supply gradually decreases. The
limited surface water cannot meet the continuously increasing demand for irrigation water,
resulting in the continuous overexploitation of aquifers, causing the development of many
subsidence funnels in this area.
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Figure 11. Comparison of ground deformation and optical images in (a,b) Turpan and (c,d) Hami
oases. Background image: Google Maps satellite image.

The climate in the Turpan-Hami basin is dry and sunny, so evaporation is serious,
especially in late spring and summer, when 75% of the year’s evaporation occurs. Summer
is also the main period of crop growth, which demands more water for irrigation. The
agriculture in the SFM—def region relies heavily on groundwater exploitation, which directly
leads to the short-term sharp loss of aquifers, and accelerates surface subsidence. From late
autumn to early spring, groundwater exploitation intensity in farmland decreases. The
aquifers are replenished by surface runoff and groundwater reflux. This explains why the
subsidence of the funnels in farmland accelerates in summer and autumn, and slows down
or turns to slight uplift in winter and spring (Figure 6).

5.3. Development of InSAR Deformation Monitoring in a Wide Area

At present, most wide-area INSAR deformation monitoring projects use the TS-InSAR
algorithm to resolve the deformation time series of all highly coherent monitoring points
in each frame [10,11,13,17]. Even though different multi-looking ratios for the WSA and
the ROI were used to improve the efficiency of data processing by controlling the spatial
resolution of the results [14], these methods are still not out of the scope of time-series defor-
mation calculation. Moreover, if the strategy of reducing spatial resolution is not optimized,
it will cause repeated calculations and reduce monitoring efficiency. The deformation rate is
usually used to detect potential geohazards in a wide area [38]. Therefore, the deformation

87



Remote Sens. 2022, 14, 3832

time series of some points is unnecessary, especially for stable areas. Hence, calculating
the deformation time series at all monitoring points wastes computing resources and labor
costs, and produces lots of redundant results. For example, deformation areas account for
about 2.4%o of the total monitoring area in the Turpan-Hami basin. WAVS-InSAR only
calculates the deformation rate at each monitoring point in the WSA. Reducing the time
dimension of the wide-area deformation results can greatly improve the efficiency of the
multitemporal InNSAR solution, especially for a lot of INSAR frames in the WSA. Spatial
distribution and area of deformation are detected by an adaptive deformation detection
method combined with the obtained wide-area deformation rate. After that, high-precision
time-series monitoring is only done in the ROI to obtain effective fine deformation results.

For variable-scale deformation results, the WAVS-InSAR strategy proposes a novel
variable-scale deformation product organization structure, i.e., it shows the deformation
information at the stable surface with low-spatial-resolution deformation rate, while the
ROT has a high-spatio-temporal-resolution deformation time series. This structure reduces
the amount of deformation results in the stable regions of the WSA, locates the ROI
efficiently, and improves the spatial and temporal dimensions of the deformation in the
ROI, which is convenient for the calculation, storage, display, and interpretation of the
deformation results.

As the SAR satellites and InSAR data increase, INSAR deformation monitoring projects
will produce many monitoring results. In the future, wide-area INSAR deformation mon-
itoring projects should be object-oriented, integrating different deformation monitoring
to obtain deformation results of multidimensional and high spatio-temporal resolution,
and ultimately form a set of universal deformation products. The data-processing strategy
and deformation product organization structure proposed in WAVS-InSAR will greatly
improve deformation monitoring efficiency and reduce the storage space of massive In-
SAR monitoring data, which may become a standardized data-processing procedure and
data-storage format for future wide-area INSAR deformation products.

6. Conclusions

In this study, we proposed a variable-scale INSAR ground-deformation detection strat-
egy and a deformation product organization structure for wide-area monitoring, namely
WAVS-InSAR. This strategy efficiently obtains the deformation rate in the WSA, and uses
an adaptive deformation detection method to process the wide-area deformation rate and
obtain the spatial distribution and area of the deformation areas (ROI). High-precision
time-series monitoring is then only done in the RO], to obtain effective fine deformation
results. Therefore, we can produce variable-scale deformation products in the WSA that
consist of low-spatial-resolution deformation rates in stable regions, and fine monitoring
results in the ROL

The proposed WAVS-InSAR was used to monitor wide-area deformation in the
Turpan-Hami basin, which has an area of 277,000 km?2. The results show that there are
32 deformation regions with an area of more than 1 km? and a deformation magnitude
of more than 2 cm/year. The detected deformation areas account for about 2.4%. of the
total monitoring area. The SEM—-def region is selected as an application demonstration
area of the ROI to carry out fine monitoring of the deformation time series. We obtain the
long-term and multidimensional deformation of this area from 2007 to 2010 and from 2015
to 2020 using improved IPTA and MSBAS technologies.

The subsidence funnel center in the SFM—def region moved from northwest to south-
east during 2007 to 2020. Based on the variable-scale deformation products and the infor-
mation regarding hydrogeology, land cover and human activities, we analyze the causes of
ground subsidence. Tectonic faults have blocked the water supply in the SFM-def region.
The rapid development of facility agriculture has increased the water demand for irrigation.
To solve this problem, groundwater has been overexploited. The aquifers in the oasis
plain in the SFM—def region are in a state of net deficit. Increased demand for water in the
upper reaches of Aydingkol Lake has reduced the lake’s water supply. Aydingkol Lake has
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shrunk dramatically. In addition, there are several deformation areas related to mining in
the Turpan-Hami basin.
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Abstract: Many coastal cities reclaim land from the sea to meet the rapidly growing demand for land
caused by population growth and economic development. Settlement in reclaimed land may delay
construction and even damage infrastructures, so accurately predicting the settlement over reclaimed
areas is important. However, the limited settlement observation and ambiguous final settlement
estimation affect accurate settlement prediction in traditional methods. This study proposes a new
strategy to solve these problems by using the Multitemporal Interferometric Synthetic Aperture Radar
(MT-InSAR) method and takes the Xiamen Xiang’an International Airport, built on reclaimed land,
as an example. The MT-InSAR is adopted to process the Sentinel-1 images to obtain the settlement
history of the study area. The results show that settlement mainly occurs in the reclaimed areas, with
the maximum average settlement rate exceeding 40 mm/y. We use the statistical properties of curve
fitting to choose the best curve model from several candidate curve models to predict the settlement
time series. The Asaoka method is used to identify the critical state between settlement and stability.
We predict the consolidation time of the whole study area and reveal that the deformation rate is
positively correlated with the consolidation time. The maximum remaining settlement time is over
ten years since 24 December 2019. Therefore, manual compaction operations can be carried out to
speed up settlement in the areas that need a long time to consolidate. The proposed method can be
used to predict the settlement of similar reclaimed areas, and the predicted results can provide a
reference for engineering construction.

Keywords: settlement prediction; reclaimed land; InNSAR; exponential model; Asaoka method

1. Introduction

Land reclamation from the sea has become an important strategy to promote economic
growth and alleviate the population density in coastal areas [1-3]. However, the compaction
of the underlying soft soil layers in reclaimed areas often leads to land subsidence, which
may cause damage to undergoing construction and infrastructures [4,5]. Settlement moni-
toring and prediction are important in engineering geology [6], especially for reclaimed
areas, where the underlying layers are highly compressible and require a long time for
consolidation. Moreover, post-construction settlement prediction based on the foundation
displacements can provide a reference for engineering construction, deformation early
warning, and future land reclamation.

The methods used to predict the settlement include theoretical estimations based on the
soil consolidation theory [7] and curve-fitting or prediction models based on deformation
measurements [8]. The application of the former is limited by the few samples used and
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theoretical deviations due to different soil compositions. The latter relies on deformation
observations, which are easy to obtain. Therefore, the second group of methods, such
as hyperbolic curve [4,9,10], exponential function [11-13], and grey model [14-16], are
well-applied in engineering settlement monitoring and prediction.

Land settlement is often monitored via in situ measurements and remote sensing
technology. However, in situ measurements, such as Global Navigation Satellite System
(GNSS), leveling, and extensometers, usually have low spatial resolutions due to labor
intensity and high cost [17]. Therefore, with in situ measurements, it is difficult to obtain
the detailed spatial distribution of deformation, which may lead to misunderstanding
settlement behaviors. Interferometric Synthetic Aperture Radar (InSAR) has the ability to
obtain the spatial-temporal distribution of deformation with promising accuracy. More
importantly, it works in a non-contact style, so the acquisition of those data does not affect
engineering construction. Consequently, INSAR has been widely used in measuring ground
deformation, such as landslides [18-20], tectonic movements [21-23], volcano dynamics [24,25],
and land subsidence [26-29], as well as oil and gas fields [30,31]. Moreover, the ability of
long-term deformation time series retrieval of multitemporal INSAR (MT-InSAR) enables
InSAR to predict the settlement of the reclaimed areas.

For settlement prediction, most studies have chosen prior functional models (e.g., hy-
perbolic function, Poisson function, exponential function) to predict the total amount and
termination time of settlement. Kim et al. [9] introduced the hyperbolic model and persis-
tent scatterer INSAR (PS-InSAR) to monitor the land subsidence in Mokpo City, South Korea.
They showed that the prior hyperbolic model has better performance than the linear model.
Hu et al. [11] used multisource remote sensing imagery to characterize landscape changes
in Yan’an, China. They chose the exponential curve model to predict the consolidation
time of the subsiding area. Deng et al. [15] combined PS-InSAR with Grey system theory
to monitor and predict land subsidence in the Beijing Plain. The results indicated that
this method can be an alternative to conventional numerical and empirical models for
short-term prediction in cases in which there is a lack of detailed geological or hydraulic
information. The method of combining InNSAR with curve models to monitor and predict
land subsidence has also been used in different scenarios [4,12,13,32]. Most studies chose
curve models based on experience for settlement monitoring and prediction. The selected
prior models, however, are likely not suitable to describe the deformation of the studied
areas. Shi et al. [17] reported that different models lead to large variations in settlement
predictions. They used exponential curve, hyperbolic curve, and quadratic curve to model
the settlement time series. However, the quadratic curve failed to predict the settlement.
The maximum difference in the final settlement amount predicted by the two curves can
reach 0.2 m. In addition, it is not easy to identify the critical state between deformation and
stability by the curve-fitting method, resulting in biased predictions of the total amount
and the termination time of settlement.

To solve the abovementioned problems, this study proposes a two-step settlement
prediction method. In step one, sufficient deformation points provided via MT-InSAR are
used to choose the best curve to model the settlement pattern. In step two, the predicted
settlement time series and the Asaoka method [33] are used to predict the final settlement
amount and consolidation time. The method is validated using the Xiamen Xiang’an
International Airport (referred to as XXIA hereafter), China, a reclaimed airport under
construction, as a case study.

This study is organized as follows: The study area and datasets are introduced in
Section 2. Section 3 describes the processing flow of MT-InSAR and the deformation results
of the XXIA. Section 4 describes the procedure of settlement prediction. In Section 5, we
discuss the total settlement and the consolidation time of the study area. Some conclusions
are drawn in Section 6.
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2. Study Area and Datasets

Sentinel-1 images over the XXIA acquired between July 2015 and December 2019 were
processed via MT-InSAR to obtain the deformation of the whole study area. Then, we chose
the best curve function to model and predicted the deformation time series of the study
area. The study area and datasets are described in subsequent sections.

2.1. Study Area

The XXIA, a planned 4F-class international airport, is located in the southeast of
Dadeng Island, Xiamen City, China (Figures 1 and 2). The construction of the XXIA started
on 4 January 2022, and about 26 km? of the XXIA will be built on reclaimed land. The
land reclamation project of the XXIA has three phases (Figure 2); the first two phases have
been completed, after which the reclaimed land experienced settlement [2,34]. Settlement
monitoring and prediction of the reclaimed land are crucial to the safe construction of the
XXIA. However, predictions of the total settlement amount and consolidation time of the
XXIA have not yet been reported.

Elevation/m

——j—
TS10'E  TI8I5'E  11820E  118725'E  118°30'E 118°35'E
Figure 1. The Xiamen Xiang’an International Airport (XXIA): (a) coverage of Sentinel-1 images and

the location of the XXIA; (b) optical image of Dadeng Island; (c) location of the XXIA in Fujian
Province, China.

2.2. Datasets

A total of 128 ascending Sentinel-1 images acquired between 6 July 2015 and 24 December
2019 were collected to obtain the deformation time series of the reclaimed land (Table A1).
Coverage of the Sentinel-1 data is shown in Figure 1. The main parameters of the Sentinel-1
images are summarized in Table 1. The images were acquired after the first and second recla-
mation phases were completed. In addition, the SRTM DEM with a resolution of 30 m was
collected to simulate and remove the topographic phase in the differential interferograms.
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W December 2019

Figure 2. Optical images of the XXIA, Dadeng Island, and Xiaodeng Island: (a) illustration of the
three phases of land reclamation. The yellow, white, and red lines are the boundaries of the reclaimed
land in the first, second, and third phases, respectively. The blue line represents the dry land of
Dadeng Island; (b—d) optical images of the study area acquired in December 2011, December 2015,
and December 2019, respectively. The green lines delineate the boundaries of Dadeng Island and
Xiaodeng Island.

Table 1. Acquisition dates and parameters of the collected Sentinel-1 images.

Sensors Direction Incidence Angle Path-Frame Number of Images Temporal
Coverage
Sentinel-1 Ascending 33.91° 142-75 128 6 July 2015-24 December 2019

3. MT-InSAR Processing and Deformation Results
3.1. MT-InSAR Processing

Sentinel-1 SAR images have small perpendicular baselines, so only the temporal
baselines were considered selecting interferometric pairs. The maximum temporal baseline
was set as 36 days. The interferometric pairs were processed via a multi-look operation
(range x azimuth =5 x 1) to form the interferograms. The SRTM DEM was used to
remove the phase contribution of topography in the interferograms. After interferogram
filtering and phase unwrapping, the first-order polynomial function model was used to
remove the phase ramps. Some areas in the study area were reclaimed from the sea, so
they have no external DEM data. We assumed the elevation of the reclaimed land to be 1
and selected high-quality interferograms to perform linear regression between topographic
errors and perpendicular baselines to estimate and remove topographic errors. We used
the amplitude dispersion of pixels [35], intensity, and coherence to remove poor-quality
pixels. The singular value decomposition (SVD) [36] was used to calculate the phase time
series of each pixel. We estimated the linear deformation using the least square method and
then subtracted the phase contributions of linear deformation from the phase time series.
The residual components in the phase time series mainly include nonlinear deformation,
atmospheric artifacts, and noise. The atmospheric phases are highly correlated in space,
while lowly correlated in time. Noise is lowly correlated in both space and time domains.
Therefore, we used temporal and spatial filtering to extract nonlinear deformations from
the residual phases. The final deformation time series of each pixel is the sum of linear
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deformation and nonlinear deformation. The least-square method was performed in the
final deformation time series to estimate the average deformation rate of each pixel.

3.2. Deformation Results

Figure 3 shows the average deformation rate in the line-of-sight (LOS) direction of
the study area. The selected pixels were sufficient to show the spatial distribution of the
settlement, and the deformation areas obtained in this study are generally consistent with
the previous studies [2,34], although the monitoring periods were different. Four areas,
areas—A, B, C, and D—suffered severe settlement, and the maximum settlement rate
exceeded 40 mm/y. The settlement mainly occurred in the reclaimed areas, including the
area reclaimed in the first phase (Figure 3d), the second phase (Figure 3e), and the reclaimed
areas in the northwest (Figure 3a) and southwest (Figure 3b) of Dadeng Island. The
settlement was particularly severe in the northeast of the area reclaimed in the second phase.

118°16'E 118°18'E 118°20'E 118°22'E 118724'E
= . - -

Figure 3. Average deformation rate map of the study area. Positive values denote the deformation
toward the satellite. Negative values denote the deformation away from the satellite: (a) average
deformation rate map of the whole study area; (b—e) enlarged view of areas outlined by dotted lines
in (a).

The first reclamation phase was completed before July 2015, earlier than the monitoring
time of InNSAR. According to the soil consolidation theory [7], some points (see Section 4)
in area C have finished the primary consolidation and entered the second compression
stage. The settlement rate in the area reclaimed in the first stage was around 15 mm/y,
with a maximum settlement rate of 20 mm/y. For area C, the maximum settlement rate
was observed in the southern part, but some points in this area had become stable after
the reclamation. Among the four areas, area C was first reclaimed, so it had the minimum
deformation rate, due to the longer time of consolidation. It is possible that areas A, B, and
D will have a settlement pattern similar to area C in the time domain, as they had similar
strategies of reclamation. Area D had the maximum average settlement rate, as it was
reclaimed in the second phase, which was accomplished in March 2018 and has just entered
the primary consolidation stage. Inside each area, the settlement rates were different.
Specifically, in area D, the southern part was stable, but the northern part experienced
serious settlement. One explanation is that this area underwent several reclamations at
different times (see Section 5).
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4. Methods of Settlement Prediction

The considerable number of measured points obtained from MT-InSAR provided a
good opportunity for the settlement prediction of the XXIA. In this section, we discuss
our methodology, according to which we chose the best model to describe the settlement
pattern of the XXIA and then used the Asaoka method to estimate the termination time of
settlement for predicting the total amount of settlement. The flowchart is shown in Figure 4.
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Figure 4. Flowchart of the settlement prediction.

4.1. Function Model Selection

To describe the settlement patterns of the reclaimed areas, we selected the best one
from three traditional curve functions—namely, the hyperbolic model, Poisson curve model,
and the exponential function model—according to the deformation time series of the XXIA
obtained. The three utilized models are introduced below.

4.1.1. Hyperbolic Model

The hyperbolic model [4,9,10] is an empirical curve fitting method, suitable for fitting
a large amount of measured data. The amount of settlement S; at time ¢ can be expressed as

t—to

S =S+ — 0
! °+a+50—m)

@
where Sy is the initial amount of settlement, tj is the initial time of settlement, and « and
are two unknown parameters. Formula (1) can be rewritten as

t—to
Si— Sy

=ua+p(t—to) 2

As Formula (2) shows, (t — ty)/(St — Sp) and (t — tp) are linearly related. « and 8 can
be estimated by linear regression in t/S; versus f, and then the hyperbolic model of the
settlement can be determined.

4.1.2. Poisson Curve Model
The Poisson curve model [32] can be written as

Sy =c/(1+ aelt) 3

where S; represents the amount of settlement at time ¢. 4, b, and ¢ are three unknown
parameters, which can be determined by the three-stage calculation method.

Assume the total number of SAR images is 71, and the time interval of each two images
is equal. The settlement time series are y1, ¥, ¥3, ..., Yu. The settlement time series is
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divided into three groups. Each group has r = n1/3 items. Let dy, d», and d3 be the reciprocal
sum of the settlement in the following three groups:

r 1 2r 1 n 1
di=3, ?" =Y, ;? 3= 5 vi )
1 1 1
a, b, and ¢ can be determined by the following formulas:
(dy —d3)
=In——=~
b=In B —d, /r (5)
(d1 —dp)?

c=r/ld - ] (6)

(di —da) — (d2 — d3)

(dl — dz)z <1 — E_b>C
a= @)
[(dy —dp) — (d2 —d3)]e" " (1 —e™"?)
In this study, the SAR images used to retrieve the settlement time series were not
acquired at equal intervals, so the settlement time series should be interpolated before
applying the Poisson curve model.

4.1.3. Exponential Function Model

The exponential function model [11-13] assumes that the settlement rate decreases
along the exponential curve with time. The model is expressed as follows:

St = Seo — (Seo — Sp)ello=0)/1 ®)

where S; represents the settlement amount at time ¢, ¢ is the initial time of settlement, 7 is
the unknown parameter, and Sy and S, represent the initial settlement amount and the final
settlement amount, respectively. Nonlinear regression can be used to apply Formula (8).

4.1.4. Optimal Model Selection

Most studies used a few points to evaluate the prediction ability of models. However,
these previously selected points may not be able to describe the settlement characteristics of
the whole study area. Moreover, settlement prediction based on a small number of points is
not very useful in practical engineering. The optimal prediction model based on sufficient
measurements can help monitor the whole study area, guide the construction process, and
provide a reference for the prediction of settlement in similar cases. The application of
MT-InSAR greatly contributes to the optimal model selection.

As mentioned in Section 3.2, the area reclaimed in the first phase has been subsiding
for a long time. The settlement pattern can be well-represented by the long-term settlement
time series of the monitored points, which helps the prediction model selection. Therefore,
the settlement time series of the monitored points (4217 points) in the area reclaimed in the
first phase was used to choose the optimal model from the above three models to predict
the settlement. Points P1-P6 (Figure A1) were chosen to display the settlement time series
and the three fitted curves (Figures 5-7). As shown in Figures 5-7, the three fitted curves
were consistent with the settlement time series. In terms of the determination coefficient R?
and root-mean-square error (RMSE) of points P1-P6 in the curve-fitted models, the Poisson
curve had the worst performance among the three models. Thus, the hyperbolic curve and
exponential curve were used to predict the settlement.
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Figure 6. Poisson curve fitting of (a) P1, (b) P2, (c) P3, (d) P4, (e) P5 and (f) P6. Locations of points
P1—P6 are shown in Figure Al.

We calculated the R? and RMSE values of the 4217 monitored points to qualitatively
choose the optimal curve model. Figure 8 shows the distribution of R? of the three fitted
curves. R? of the Poisson curve was mainly concentrated around 0.984, whereas that of the
hyperbolic curve was concentrated around 0.992, and the exponential curve had the highest
frequency when the correlation coefficient reached 0.996. The statistical histograms of RMSE
(Figure 9) showed that the maximum RMSE of the fitted exponential curves was about
7 mm, far less than that of the fitted Poisson and hyperbolic curves. The fitted exponential
curves also had the minimum mean RMSE. Therefore, the exponential curve model had
the best performance among the three curve models and, therefore, was determined as the
optimal settlement prediction model in the study area.
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4.2. Method of Total Settlement Prediction

Although curve functions are applicable in settlement prediction, they can hardly
determine when the foundation becomes stable. We used the Asaoka method [33] to
identify when the settlement ends, which can obtain a reliable final settlement estimation
using a large amount of measured data. Then, the total settlement was determined by
combing the exponential curve model and the Asaoka method.

The Asaoka method is derived based on the Mikasa one-dimensional consolidation
equation [33]. This method approximates the consolidation differential equation by the
following equation:

d?s ds
W—i—...—i—)\nﬁ— )
where S is the total final settlement, and Ay, Ay, ... Ay, p are constants.

The first-order differential of Formula (9) provides high accuracy for practical engi-
neering applications, so Formula (9) can be rewritten as

das
S+/\]E +/\2

ds
M = 1
S+M M (10)
The time is divided intoj (j =1, 2,3, ... ) equal parts. For time t;, the settlement is St]-,
and we thus obtain

Stj+At =Y+ WIStj (11)

where 7 is the settlement value, and v is a constant. Linear fitting is performed on a series
of scattered points (Stj, Sty ) tO obtain the parameters ¢ and 73, and the final settlement
of the foundation is expressed as S;—co = Y0/ (1 —71)-

5. Discussion
5.1. Settlement Time Series Prediction

The consolidation rate of the foundation is affected by many factors, such as foundation
treatment ways, the reclamation materials, and the thickness of the underlying alluvial
layers, so it varies over regions [7]. It may take years or even more than ten years for
some regions to reach stability under natural conditions. The prediction of the settlement
time series helps locate the areas that need a long time to stabilize, so as to apply manual
intervention, such as tamping and strengthening, to unstable areas and ensure that the
construction is carried out on schedule. In addition, understanding the settlement behaviors
can provide prior information for the planning of engineering projects.

Using the exponential curve model and the Asaoka method, we predicted the set-
tlement time series in the XXIA. Figure 10 shows the predicted settlement curves and
the settlement termination time for points P7-P12 (locations of points P7-P12 are shown
in Figure A2). Their final settlement amount and the settlement termination time were
different. As Figure 10 shows, under the current loads, the final settlement amount of
P8 will reach about 11 cm in late 2027, and P9 will become stable within one year after
December 2019. However, P7, P8, P10, and P11 need a long time for consolidation, which
may be longer than ten years, exceeding the planned time of construction. Therefore, an
artificial compaction process should be performed to speed up consolidation.
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Figure 10. Predicted settlement curves of (a) P7, (b) P8, (c) P9, (d) P10, (e) P11 and (f) P12. Locations
of points P7—P12 are shown in Figure A2. t is the consolidation time, and d is the final settlement.

5.2. Consolidation Time Prediction of the Whole Study Area

The areas reclaimed in the first and second phases have the same geological structure
and foundation treatment methods, so the settlement patterns should be similar. Therefore,
we extended the optimal prediction model and the final settlement calculation method
determined in Section 4 to the whole study area to analyze consolidation. We show the
time required for each point to reach stabilization intuitively in Figure 11.

118°22'E  118°23'E

118°18'E

118°19'E  118°20'E  118°21'E

1 June 2016

16 October 2014

Figure 11. (a) The time needed for stabilization since the acquisition date (24 December 2019) of Dadeng
Island and its reclamation areas: (b) optical image of area A acquired on 13 April 2015; (c) optical
image of area B acquired on 13 April 2015; (d) optical image of area C acquired on 6 February 2015;
(e) optical image of area D acquired on 16 October 2014; (f) optical image of area E acquired on
1 June 2016.

As Figure 11 shows, a large number of points that require more than ten years to
stabilize were observed in the southern part of the area reclaimed in the first phase, the
northeast part of the area reclaimed in the second phase, the northwest of Dadeng Island,
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and the southwest of Dadeng Island. In the interior of Dadeng Island, almost all points
reached stability. Combining with the deformation rate map of the study area (Figure 3), we
found that the locations of the areas with large deformation rates were coincident with that
of the areas needing long settlement duration. The points with long consolidation times
were mostly distributed in the reclaimed area. The type and thickness of the reclamation
materials, the completion time of reclamation, and the effect of foundation treatments
all affect the settlement duration. In this study, Dadeng Island and its reclamation areas
were divided into five parts—namely A, B, C, D, and E. In what follows, we discuss
their remaining consolidation time separately and analyze the main reasons that affect
consolidation in each area.

Area A is the original land of Dadeng Island. As can be seen from Figures 11b and 12,
most of this area is covered by buildings, farmland, planting, and fishery farming areas,
which had no changes during the INSAR monitoring period, except for a few scattered
areas (Figure 3). The deformation results acquired by Liu et al. [2] and Zhuo et al. [34]
also showed that there was no large-scale heavy subsidence in area A. By analyzing the
optical images (Figure 12), we found that the subsidence in a few scattered areas was
caused by city road construction (white dotted rectangle and Figure A3) and farmland. City
road construction started between 29 April 2017 and 10 July 2017. It is reasonable that the
construction activity may cause land subsidence. Therefore, the prediction results are in
line with the actual condition, which further proves the reliability of the proposed method.

24 June 2016

. 7 December 2019

Figure 12. Optical images of the study area acquired on (a) 16 June 2015, (b) 24 June 2016, (c) 29 April
2017, (d) 10 July 2017, (e) 2 June 2018, (f) 26 July 2019, and (g) 7 December 2019.
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Area B was reclaimed in the second phase. Most of this region, except for the northeast
part, needs two to ten years to consolidate. The northeast part was reclaimed before
13 April 2015, when the reclamation of the rest part of area B had not yet started (Figure 12).
Therefore, when settlement in the northeast part ends, the remaining part of area B may
still be in the primary consolidation stage or secondary compression stage. Similarly, areas
C and E have varying consolidation times over different parts.

Area D was reclaimed in the first phase, but its northern and southern parts had
different deformation rates (Figure 3). The southern part needs 4 to 10 years for consolida-
tion. The northern part needs a shorter time to consolidate, and some parts have stopped
subsiding. The first phase of the reclamation project was from March 2014 to 16 June
2015. As shown in Figure 11e, during the foundation treatment, different types of landfill
materials were used in the north and south. The different landfill materials led to the
different remaining settlement times.

In foundation treatment and engineering construction, special attention should be paid
to the areas that need long consolidation times. However, it is worth noting that the predic-
tion method used in this study may not be appropriate to predict the settlement in some
parts of area A. Similar to the abovementioned description, farmland and some construction
activity exist in area A (dry land of Dadeng Island). The subsidence patterns of farmland
and some construction activity may be different from that of reclaimed areas. Therefore,
the interpretation of the predicted settlement should rely on actual deformation patterns.

6. Conclusions

In this study, we focused on settlement time series, final settlement amount, and con-
solidation time prediction over reclaimed areas using the dense deformation measurements
obtained from InSAR. The proposed method consists of two steps: (1) optimal curve model
selection; (2) final settlement prediction using the Asaoka method. The Xiamen Xiang’an
International Airport, a planned reclaimed area, was chosen as the study site to validate
our method. A total of 128 Sentinel-1 images were used to obtain the deformation history
of the study area. We analyzed the InNSAR-derived deformation results and discussed the
predicted settlement. The following main conclusions were drawn from this research:

(1)  Settlement mainly occurred in the reclaimed areas, with the maximum average settle-
ment rate exceeding 40 mm/y between 6 July 2015 and 24 December 2019. Different
parts in one reclaimed area had different settlement rates, due to the uneven construc-
tion progress;

(2) The exponential curve model showed the best performance in fitting the settlement
time series obtained from MT-InSAR over the area reclaimed in the first phase. The
Asaoka method was effective in the determination of deformation and stability;

(3) The settlement time series and the final settlement of the reclaimed land could be pre-
dicted by combining the exponential curve model and the Asaoka method. Predicted
consolidation time indicated that some areas need more than ten years to stabilize
(since 24 December 2019). Manual consolidation should be applied to those regions to
ensure construction speed.

We provided an alternative method to predict the settlement over reclaimed areas
that have no in situ measurements and subsurface information. In this study, no in situ
measurements or geotechnical models were used to predict the settlement, which may lead
to deviation from the actual final settlement. In the future, INSAR, in situ measurements,
geotechnical models, and subsurface information can be integrated to conduct precise and
wide-coverage settlement predictions.
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Appendix A

Table Al. Acquisition dates of Sentinel-1 images.

Satellite Pixel Spacing (Ran x Azi) Acquisition Dates (Year/Month/Day)

2015/07/06, 2015/07/18,2015/08/11, 2015/08 /23, 2015/09/04,
2015/09/16,2015/09/28,2015/10/10, 2015/10/22,2015/11/03,
2015/11/15,2015/11/27,2015/12/09, 2015/12/21, 2016/01/14,
2016/01/26,2016/02/07,2016/02/19,2016/03/02,2016/03/14,
2016/03/26,2016/04/07,2016/04/19,2016/05/01, 2016/05/13,
2016/05/25,2016/06/06,2016/06/30, 2016/07 /24, 2016 /08 /05,
2016/08/17,2016/08/29,2016/09/10, 2016/09/22, 2016/10/04,
2016/10/16,2016/10/28,2016/11/09, 2016/11/21, 2016/12/03,
2016/12/15,2016/12/27,2017/01/08,2017/01/20, 2017/02/01,
2017/02/13,2017/02/25,2017/03/09,2017/03/21, 2017 /04 /02,
2017/04/14,2017/04/26,2017/05/08, 2017 /05/20, 2017 /06 /01,
2017/06/13,2017/06/25,2017/07/19,2017/07/31,2017/08/12,
2017/08/24,2017/09/05,2017/09/17,2017/10/11, 2017/10/23,
2017/11/04,2017/11/16,2017/11/28,2017/12/10, 2017 /12 /22,
2018/01/03,2018/01/15,2018/01/27,2018/02/08, 2018/02/20,
2018/03/04,2018/03/28, 2018/04/09, 2018/04 /21, 2018/05/03,
2018/05/15,2018/05/27,2018/06/08, 2018/06/20, 2018/07/02,
2018/07/14,2018/07/26,2018/08/07,2018/08/19, 2018/08/31,
2018/09/12,2018/09/24,2018/10/06,2018/10/18,2018/11/11,
2018/11/23,2018/12/05,2018/12/17,2018/12/29,2019/01/10,
2019/01/22,2019/02/03,2019/02/27,2019/03/11,2019/03/23,
2019/04/04,2019/04/16,2019/04/28,2019/05/10,2019/05/22,
2019/06/03,2019/06/15,2019/06/27,2019/07/09, 2019/07/21,
2019/08/02,2019/08/14,2019/08/26,2019/09/07,2019/09/19,
2019/10/01,2019/10/13,2019/10/25,2019/11/06, 2019/11/18,
2019/11/30,2019/12/12,2019/12/24

Sentinel-1 23m x 139 m
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118°20E  11821'E  11821'E  118°22'E

Figure Al. Locations of points P1-P6.

118°20'E  118°21'E 11821'E 118°22'E

Figure A2. Locations of points P7-P12.
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24 June 2016

Figure A3. Optical images of the white dotted rectangle area in Figure 12. Optical image ac-
quired on (a) 16 June 2015, (b) 24 June 2016, (c) 10 July 2017, (d) 2 June 2018, (e) 26 July 2019, and
(f) 7 December 2019.
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Abstract: Landslide risk assessment is important for risk management and loss—damage reduction.
Herein, we assessed landslide susceptibility, hazard, and risk in the urban area of Yan’an City, which is
located on the Loess Plateau of China and affected by many loess landslides. Based on 1841 slope units
mapped in the study area, a random forest machine learning classifier and eight environmental factors
influencing landslides were used for a landslide susceptibility assessment. In addition, differential
synthetic aperture radar interferometry (DInSAR) technology was used for a hazard assessment. The
accuracy of the random forest is 0.903 and the area under the receiver operating characteristics (ROC)
curve is 0.96. The results show that 16% and 22% of the slope units were classified as being at very
high and high-susceptibility levels for landslides, respectively, whereas 16% and 24% of the slope
units were at very high and high-hazard levels for landslides, respectively. The landslide risk was
obtained based on the susceptibility map and hazard map of landslides. The results show that only
26% of the slope units were located at very high and high-risk levels for landslides and these are
mainly concentrated in urban centers. Such risk zones should be taken seriously and their dynamics
must be monitored. Our landslide risk map is expected to provide information for planners to help
them choose appropriate locations for development schemes and improve integrated geohazard
mitigation in Yan’an City.

Keywords: landslides; risk assessment; random forest; DINSAR; Yan’an city

1. Introduction

Landslides are common natural phenomena on mountains and slopes that can change
the geomorphology of the landscape. Thus, the massive destruction caused by landslides
is of great concern [1,2]. With global climate change and increasingly intense human
engineering, landslides tend to occur more frequently, resulting in huge economic losses
and many casualties [3,4]. Therefore, risk assessment is often the focus of research [5-8],
especially in populated areas that are prone to landslides. This should help provide
the necessary information to governments and decision makers [6,9]. Risk assessment
is the basis for risk management. It refers to the possibility and severity of landslides
impacting life, health, property, and the environment. In practice, the risk of landslides is
computed as the product of landslide hazard and the vulnerability to potential value loss [5].
Quantitative and accurate risk assessment can be effective information for government
departments in land and resources planning, engineering construction, the prevention and
early warning of landslides, and sustainable development.
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It is crucial to select an optimal model and methodology for landslide risk assessment
because different assessments may have different results and accuracies for the same areas.
In recent decades, numerous landslide susceptibility, hazard, and risk assessment methods
have been applied. However, there has been no study showing that a certain model has the
optimal solution for all risk assessments [10,11]. Models for landslide susceptibility assess-
ment can be classified as physically deterministic, heuristic based on experts” knowledge,
and data-driven quantitative [12]. Physically deterministic models are commonly based on
hydrological characterizations combined with infinite-slope stability analyses to estimate
the relative stability of slopes [13]. Some research has pointed out that these models are
used only for particular hydrological conditions and high model preconditions [14], such as
detailed and homogeneous soil mechanical parameters, hydro environmental factors, and
simple landslide types. For this reason, they could be effective only for mapping small areas
in detail [15,16]. Heuristic models based on experts’ knowledge, including the analytical hi-
erarchy process (AHP) [17], expert knowledge systems [18], and gray relational modes [18],
mainly rely on constructing a relatively simple ranking method determined by experts’
knowledge [16]. Although heuristic models have the advantages of easy application, the
assessment results have low accuracy with a certain level of subjectivity [19]. Previous stud-
ies show that data-driven quantitative models are preferred and applied more frequently
than qualitative evaluation models, such as heuristic or geomorphological mapping [20,21].
Logistic regression (LR) [22,23], frequency ratio (FR) [24,25] and weights of evidence [26]
are the most frequently used statistical models. They are based on considered classical
statistics; index-based, machine learning; neural networks; and multi-criteria decision
analysis. In particular, the use of machine learning for landslide assessment is rapidly in-
creasing [20]. It is a modeling methodology that builds complex relationships between data
and target variables through iterative training and learning without assuming additional
structural constraints [27,28]. Machine learning is often used to solve nonlinear geological
environment problems, such as landslide susceptibility assessment and prediction. For
example, Chen et al. [29] introduced a new bivariate statistical-based kernel logistic regres-
sion to obtain landslide susceptibility maps by optimizing different kernel functions and
two-component statistical correlation analyses. Behnia et al. [30] produced susceptibility
maps for debris flows and other geohazards along the Yukon Alaska Highway Corridor,
in Canada. Hong et al. [31] built a higher-precision susceptibility map of the Guangchang
area in China based on a decision tree model. Furthermore, many studies have compared
the accuracy of machine learning with classical statistical models in landslide susceptibility
assessment [32-34]. They showed that machine learning models provide more accurate
assessments and predictions [35].

Apart from models and methods, selecting appropriate mapping units associated with
the research purpose is a key issue for reasonable and accurate assessment maps. Generally,
the mapping units fall into several groups: grid cells, terrain units, unique conditional
units, topographic units, slope units, complementary geohydrological units and political
or administrative units [20,36]. Each type of unit has certain analytical advantages and
disadvantages. For this reason, the type of unit needs to be determined at the beginning of
a study according to the purpose and scale of the research [36,37]. Landslides tend to show
a clear shape and boundary soon after their occurrence so the slope unit is often preferred
for representing the form of landslides or unstable slopes. In some studies, the slope unit
also performed better than the pixel unit in landslide assessment [38—40].

Yan’an, which is located in the north of Shaanxi Province, on the Loess Plateau, is a
typical valley city. Its particular geography and geological environment background, as
well as increasing human engineering activities, appear to be the causes of more frequent
landslides, collapses, and other geohazards [41]. Several studies have evaluated the suscep-
tibility and stability of landslides in Yan’an City and Baota District based on qualitative
methods and physical models [42—-44]. However, the evaluation factors in those studies
are limited to geological or topographic conditions, and few studies have focused on the
deformations which can reflect the activity of slopes through SAR data in the risk assess-
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ment of the study area. Interferometric synthetic aperture radar (InSAR) technology can be
used to optimize the landslide susceptibility assessment and reduce landslide classification
errors [45]. Additionally, a smaller range and larger scale of quantitative assessments are
necessary for future urban development in Yan’an City if we want to mitigate the geohaz-
ards occurring in current urban constructions. Therefore, this study aims at constructing
a detailed landslide risk assessment in Yan’an City using high-resolution aerial images
and a digital elevation model (DEM). A detailed investigation and understanding of the
characteristics of the geological hazards in the urban area of Yan’an City is considered a
critical part of risk assessment. In the process, it becomes necessary to combine ground
deformation using InSAR technology with conventional topographic and geomorphic
factors for risk analysis. Advanced random forest machine learning classifiers and InNSAR
technology are used in our study to assess landslide susceptibility, landslide hazards, and
the identification of areas exposed to a higher landslide risk in the urban parts of Yan’an
City. It is expected that the assessments of urban hazards and risks in urban areas based on
the slope units can provide more accurate information for government departments and
decision makers in urban planning, construction, and disaster prevention as well as control.

2. Study Area

The present study area is the central urban area of Yan’an City, which is located in
the northern part of Shaanxi Province, China, on the Loess Plateau between the latitudes
0f 36°27'N and 36°41'N and the longitudes of 109°22'E and 109°33'E, covering an area of
185 km? (Figure 1). Its landform features typical and complex loess beams, mounds, and
gullies. The highest elevation in the study area is 1300 m and the lowest elevation is 927 m,
which is in the river valley, so the elevation difference is about 370 m. The climate in the
area is semi-humid and semi-arid, with a continental monsoon climate. In the past, the
average annual precipitation in Baota District was 537 mm, which occurred mainly from
June to September [46].

() Xi'an ]
: ! |
; J L L . 1 . |
109°25'E 109°30'C 109°35'E 105°E 108°E 111°E

Figure 1. The location, boundary, and geomorphology of the present study area in Yan’an City and
Shaanxi Province. YAND—Yan’an New District; HZP—Hezhuangping Town; QG—Qiaogou Street;
CK—Chuankou Town; BTS—Baotashan Street; FHS—Fenghuangshan Street; ZY—Zaoyuan Town;
NS—Nanshi Street; WHS—Wanhuashan Town; LL—Liulin Town.
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From the perspective of regional geology and geotectonics, the study area is located
in the middle-eastern part of the Ordos Block in the North China Block. The tectonic
movement is slight without strong structural deformation and maintains the characteristics
of a stable sedimentary basin. The strata are mainly Mesozoic and Cenozoic, including
Triassic, Jurassic, and Quaternary; however, the Quaternary loess is the most widely dis-
tributed [47]. Triassic and Jurassic strata are mostly seen along both sides of the valley.
Although there is no strong tectonic movement and fault, many landslides have occurred
and developed in the area due to the unique physical and mechanical properties of loess.
Loess is characterized by high porosity, low bulk density, weak cementation, water sen-
sitivity, collapsibility, structural joints, vertical joints, unloading cracks, and a soft layer
structural plane. Under the area’s special landform conditions, landslide hazards could be
induced by summer rainstorms and human engineering activities, which seriously affect
the sustainable development of the local economy and society.

3. Data and Methods

The methodology applied for landslide susceptibility, hazard, and risk assessment
is shown as a flowchart in Figure 2. A detailed explanation is provided in the following
subsections.

Field investigation
Pre-inventor Data collection and ALOS-2 PALSAR-2
¢-inventory processing Data
Remote sensing
images

D-InSAR
Landslide Loess Building TrOCessin
| Slope density ‘ thickness ‘ density ‘ P e
. Profile Exposed bedrock|
Relief curvature pthickness ‘ NDVI ‘

Normalization

v Random forest A
landslide modellin landslide Ground-surface
inventory map susceptibility map deformation

Weighted overlay
analysis

Kriging interpolation of building landslide
distribution and building density hazard map

Risk qualitative
matrix assessment
A

Landslide risk map

Figure 2. The flowchart of landslide risk assessment in the present study.

F

3.1. Landslide Inventory

A landslide inventory map is the first step to assess susceptibility. It shows information
on all historical and active landslides. Combined with field surveys, relevant literature
records and news reports of landslide records were used in this study to verify the spatial
distribution of landslides using Google Earth high-resolution images and an unmanned
aerial vehicle’s digital orthophoto map (DOM) (0.1 m) provided by the Xi’an Center of
China Geological Survey for visual interpretation.
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Generally, slope units are defined by topographic characteristic lines (such as ridgelines

and gully lines) and waterway paths, which are closely related to the DEM of the mountain
area [36]. Therefore, these topographic characteristic lines and waterway paths are also
the basic means to determine slope units in this study. Additionally, to better reflect the
terrain of landslides or unstable slopes, we divided slope units according to topographic
and geomorphic characteristics in the detailed field surveys. The basic requirement in
a field survey is that every gully and slope must be investigated and the results are
presented in the form of slope units. In this study, a total of 1841 slope units covering
the whole study area were surveyed and the location and boundary of discernible slope
units were obtained by the geographic information system (GIS) (Figure 3a). According
to the current morphological characteristics and active state of the slopes in the field
investigation, the slope units were divided into loess landslides, unstable slopes, and
slopes to be evaluated. Loess landslides are the main historical landslides in the study
area; unstable slopes show some deformation signs, such as creep slip, collapse, toppling,
etc., and are developing toward becoming potential landslides. Finally, the landslide
inventory map of the study area was aggregated and shown in Figure 3b, including 344
loess landslides and 411 unstable slopes, detailed in Section 4.1.
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Figure 3. The inventory map of the present study. (a) Slope unit mapping and road elements based on
topography and field surveys. (b) The distribution of landslides and unstable slopes in the study area.

3.2. Factors Influencing Landslides

Selecting appropriate environmental factors and inducing factors is the basis of risk

assessment, which depends on data availability, scale, and study area, and affects future
predictions [21,48]. Based on the field survey and previous work on landslides in the study
area, we considered eight factors: slope, profile curvature, relief, the normalized difference
vegetation index (NDVI), landslide density, building density, the thickness of loess, and the
thickness of exposed bedrock. They are described below.

Slope and profile curvature: A slope gradient is the measurement of the steepness of a
surface. If the slope is too low, the gravitational potential energy is insufficient, and
if the slope is too high, the material accumulation cannot provide the material basis
for landslides. A profile curvature is used to describe the complexity of the terrain,

115



Remote Sens. 2022, 14,2131

which is divided into convex, straight, and concave profiles, and reflects convergent
and divergent drainages in addition to variations in erosion rate [49]. In the study, the
slope and profile curvature were calculated using ArcGIS and a DEM with a spatial
resolution of 2 m (Figure 4a,b).
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Figure 4. The conditioning factors used in this study: (a) slope; (b) profile curvature; (c) relief;
(d) NDVT; (e) landslide density; (f) building density; (g) loess thickness; (h) thickness of exposed
bedrock; and (i) deformation. The above parameters have been normalized.

o Relief: A relief represents the elevation difference within a certain range of the slope
and determines the gravitational potential energy. Only enough gravitational potential
energy can cause landslides (Figure 4c).

e  NDVI: The NDVI reflects the vegetation cover in the study area. High vegetation
coverage is needed to stabilize the slope by the root system and reduce the devel-
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opment of landslides [50]. The NDVI value was calculated using the expression
NDVI = (NIR — R)/(NIR + R) from Landsat-8 images, where NIR is the reflectivity of
the near-infrared portion of the electromagnetic spectrum and R is the reflectivity of
the red portion of the electromagnetic spectrum (Figure 4d).

e Landslide density and building density: The landslide density directly reflects the de-
velopment quantity of disasters in an area. In urban areas, construction activity is one
of the most dominant human activities that cause slope instability. Settlement along
slopes in urban areas is an important factor in slope failure. Therefore, we used build-
ing density to reflect the effect of human activities on slope stability. Landslide density
and building density were calculated for the slope units by vectorizing landslides and
building contours and then interpolating them into grid data (Figures 3 and 4e,f).

The thicknesses of the loess and the exposed bedrock were measured during field
investigations (Figure 4g,h). The loess thickness on a hillslope, which coincides with
the failure depth, is a critical parameter in performing the slope stability analysis. The
overlying loess thickness plays an important role in hydrological effects, such as the ratio of
the saturated depth to the losses [51]. The thickness of the exposed bedrock of the slope has
a great impact on the landslide scale, landslide type, and slope deformation [52]. Due to
the undeveloped tectonic activity in the study area, the effect of earthquakes and faults has
not been considered in this study. In addition, because precipitation within the relatively
small study area is mostly unvarying, precipitation data were excluded from the analysis
processes.

A statistical description of the influencing factors is shown in Table 1. To eliminate the
dimensional influence of factors, the minimax normalization method was applied [53]. The
continuous factor values of each factor were normalized, so all the values fall in the (0, 1)
interval, where the normalized data were calculated following the equation below:

Xi — Xmin

X' = 1)

Xmax — Xmin

where X, is the normalized input and x;, X,i,, and X,y are the actual, minimum, and
maximum input data, respectively. The results of normalized factors are shown in Figure 4.

Table 1. Statistical description of the influencing factors.

Factors Min Max Standard Deviation
Slope (°) 0 86.8 15.5
Profile curvature —497.4 499.0 33.6
Relief (m) 8 166.6 29.4
NDVI —0.23 0.98 0.18
Landslide density 0 0.27 0.06
Build density 0 0.22 0.04
Loess thickness (m) 8.0 160.2 29.3

Bedrock thickness (m) 0 245 34
Deformation (m) 0.11 —0.09 0.014
3.3. DInSAR

In general, the displacement of a pixel is calculated using the interference phase
difference between two SAR images by using the pixel product of a reference image and
slave image—this is the basic principle of INSAR [54]. DInSAR is applied to the removal
of the topographic phase contribution from the interferogram deformation phase using
a two-pass, three-pass, or four-pass technique; however, it is worth noting that the two-
pass technique, which imports an external DEM, yields a more reliable and operational
outcome [54,55]. Furthermore, several limitations of INSAR technology must be considered
at the beginning of use. One limitation is geometric distortion caused by topography,
especially in mountainous areas with high elevations, which is affected by the look side of
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radar observation modes [56]. Another limitation is the poor coherence, even incoherence of
interferograms caused by diffuse vegetation, which is very obvious in the C-band Sentinel-1
images of the study area [57].

In this research, two ascending SAR images acquired from ALOS-2 on 5 Novem-
ber 2018 and 20 May 2019 were selected for interference calculations (Figure 5a and Table 2).
Due to the relatively flat terrain of the study area, the SAR images from a single orbit can
be used to detect and monitor the deformation of most of the slopes. The sensor of ALOS-2
can transmit and receive the L-band with strong penetrating ability and can capture the
ground deformation under the dense vegetation. The external DEM for removing the
topographic phase and geocoding is the 1-arc-second (~30 m) Shuttle Radar Topography
Mission (SRTM) data from NASA. Ground deformation along the LOS (light-of-sight) of the
Yan’an City area was obtained after registration and resampling, differential interference,
coherence calculation, filtering and phase unwrapping, orbit refining, and reflattening in
addition to geocoding. All of these were processed with the DInSAR tool of the SARScape
software (Figure 5b). The normalized deformation factor image is shown in Figure 4i.

Figure 5. Area covered by two ascending SAR images from ALOS-2 (blue rectangle) in (a), and image
of the LOS displacement of the study area (red polygon) using DINSAR technology in (b).
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Table 2. Details of two SAR images and displacement from ALOS-2.

Sensor PALSAR-2
Wavelength 23 cm
Band L
. . 5 November 2018
Acquired time 20 May 2019
Orbit direction Ascending
Angle of incidence 32.5°
Polarization HH
Observation mode Fine
Resolution 10 m
Normal baseline 140.798 m
Absolute time baseline 196 days
Max displacement 0.150 m
Min displacement —0.172m
Standard deviation 0.018 m

3.4. Random Forest

Random forest has been widely used in data classification and management and has
excellent performance in landslide susceptibility mapping. Random forest is an ensemble
machine learning algorithm based on a decision tree. The classifier is a recursive process
from root nodes to child nodes, which is similar to the combination of a decision tree and the
flowchart of a tree structure [58]. The bootstrap method is used to extract multiple samples
from the original samples. Starting from the nodes of a tree, the optimal features among
different internal nodes are selected, and the corresponding branches are determined based
on the test output. Finally, the results are obtained from the leaf nodes of the decision tree.

Random forest has strong generalization ability and can deal with multi-dimensional
and large learning sets. Compared with other statistical learning models, random forest
does not easily generate overfitting. It improves prediction accuracy without significantly
increasing the amount of calculation. It has a higher tolerance for outliers and noise,
resulting in data loss and imbalance. In this study, a random forest module was built based
on the R language. Before running the random forest module to perform the landslide
susceptibility assessment, the training and validation datasets must be selected. In the
study, landslide inventories including stable slopes, unstable slopes, stable landslides, and
unstable landslides were selected as training sites. Using ArcGIS, these slope units were
converted into 109,981 vector points, where 3000 points were selected randomly at each
of the landslide sites and non-landslide sites to train and test the classifier. Finally, its
performance was evaluated with the ROC curve and confusion matrix.

4. Results
4.1. Characteristics of Landslides

Based on the field survey, the geohazards of Yan’an City were counted as 334 land-
slides, 411 unstable slopes, and land subsidence locations. Their depths of the sliding
surface are mainly shallow (less than 30 m) [47]. The landslides can be classified as loess
landslides and loess-bedrock interface landslides because most landslides occur in the
loess layer or on the top of the bedrock (Figure 6a,b). The geometric morphology and
characteristics of the loess landslides and the unstable slopes including the types, lengths,
widths, height, slope angles, and others, such as the longitudinal shape and depth of slide
surfaces, were mapped using the GIS and field investigations with high-resolution DEM
(~2 m) (Table 3). The length and width of landslides are mainly in the range of 50 to 200 m.
The height and slope angle are also condition factors of loess landslides. A higher or steeper
slope has a higher degree of stress concentration and tensile stress range so it is more prone
to failure and sliding. The study area is located in the loess hilly gully region with dense
gullies, and the relative height differences of 60 to 150 m leads to the height of landslides
usually being less than 120 m. Since the late Cenozoic era, the Loess Plateau has been in a
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state of intermittent uplift, with rivers cutting sharply and ravines crisscrossing, creating
topographic conditions for loess landslides. The longitudinal shape can control the values
and positions of the stress inside the slope body and plays a key role in the stability. For
example, flat and convex slopes tend to be more easily destroyed under stress, suggesting
an unstable evolutionary trend, whereas sunken and stepped slopes tend to be more stable
with less stress concentration. Therefore, the longitudinal shapes of landslides in this study
are mainly flat and convex slopes.

Figure 6. Examples of geohazard types mapped in the study area: (a) loess-bedrock interface
landslide; (b) loess landslide; (c) soil-bedrock unstable slope; (d) soil unstable slope; and (e,f) cracks
and damages in the ground and buildings due to land subsidence. Arrows indicate the direction of
the slide and the location of the cracks.

Table 3. Types and characteristics of landslides and unstable slopes. L and U represent landslides
and unstable slopes, respectively.

Type Length (m) Width (m) Height (m) Slope (°) Area (10°m?)

<50 26 <50 25 <30 7 <20 10 <5 73

Loess 243 50100 108  50-100 107 30-60 13 2030 9 510 73

L 100150 104  100-150 99 60-90 118 3040 174  10-15 59
150200 50  150-200 41 90-120 69 4050 55 1520 46

Loess-bedrock 91 200250 22 200-250 31 120150 24 50 0 2025 17
250 24 5250 31 >150 3 25 66

<50 76 <50 35 <30 19 <20 1 <5 145

Loess 285 50100 218 50100 160 30-60 184 2030 59 510 143

U 100-150 82  100-150 138 60-90 161 3040 231 10-15 61
Bedrock 5 150200 19 150-200 39 90-120 40 40-50 108 15-20 28
200250 10 200-250 18 120-150 6 50 1 20-25 12

Loess-bedrock 121 55, 6 5250 21 5150 1 525 2
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Unstable slopes refer to a slope with creep slip, collapse, toppling, lateral tensile
fracture, and other deformation characteristics or trends, and that is regarded as a potential
geohazard. The 411 unstable slopes from the field survey were divided into three types
according to their material composition: (i) soil unstable slope, (ii) rock unstable slope, and
(iii) soil-bedrock unstable slope. There were about 285 soil unstable slopes in the study
area, accounting for 69% of the total number of unstable slopes. Soil-bedrock unstable
slopes and rock unstable slopes are fewer, numbering 125 and five, respectively, accounting
for 31% of the total number of unstable slopes and mainly occurring in the Quaternary
loess and the Jurassic sandstone strata. The unstable slopes have similar characteristics to
landslides in their ranges of length, width, height, and area but the slope angles of unstable
slopes are relatively larger. The characteristics of landslides and unstable slopes in the
present study are summarized in Table 3.

In addition, under the pressure of population growth and development as well as the
preservation of historical and cultural sites, in 2012 the government built a new district
called Yan’an New District by cutting mountains and filling ditches. However, because of
the special microstructure and complex engineering-geological conditions of the loess, land
subsidence in Yan’an New District has become one of the geohazards that requires much
attention. The surface deformation along the radar LOS calculated by the DInNSAR technique
was very similar to that of the small baseline subsets INSAR (SBAS-InSAR) approach from
Sentinel-1 images (see [59,60] for more details). DInSAR and field surveys show that
the land subsidence area is the ribbon (Figure 7), mainly concentrated in the filling area
manifested as wall cracking or collapse, ground subsidence, and cracks (Figure 6e,f).
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Figure 7. Surface deformation image of Yan’an New District from 2018 to 2019 calculated using
DInSAR. Positive values indicate that the ground object deformation is close to the radar along the
radar LOS, and negative values indicate that the ground object deformation is far away from the
radar along the radar LOS.

4.2. Landslide Susceptibility Mapping

The normalized factors were used as the input, and the landslide susceptibility index
was the output data. The mean decrease accuracy and mean decrease Gini coefficient of the
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random forest are used to order the eight variables (Figure 8). The vertical axis represents
the eight variables, with the mean decrease accuracy and mean decrease Gini coefficient
decreasing from top to bottom. It shows that the importance of the hazard density is the
highest and that the build density, thickness of exposed bedrock, loess thickness, relief,
and the NDVI are the next most-important. The ROC curve is widely used to evaluate
the classification results of the random forest classifier through the area under the ROC
curve (AUC) [35]. The vertical axis and horizontal axis represent the true positive rate
(TPR) and false-positive rate (FPR) using the random forest classifier, respectively. TPR
and FPR, also called the sensitivity and specificity, are the ratio of the landslide sample
points correctly detected by the classifier and the ratio of the non-landslide sample points
incorrectly classified as landslide sample points, respectively [61]. The larger the AUC, that
is, the closer the vertex of the curve is to the upper left corner, the better the classifier’s test
capability. In this research, the AUC is 0.96, which indicates excellent classification results
of the random forest classifier (Figure 9). In addition, the confusion matrix shows that the
overall accuracy of the random forest classifier is 0.903 and that the predicted precision
of non-landslides and landslides is 0.927 and 0.881, respectively, which is a good method
to analyze the prediction accuracy (Table 4). Four levels of susceptibility, i.e., very high
(>0.711), high (0.711-0.458), moderate (0.458-0.231), and low (<0.231), were categorized
based on the natural breaks classification conducted using the ArcGIS software (Figure 10).
The natural breaks classification was determined based on natural groupings inherent in
the data. Then, the classification interval was identified to provide an optimum grouping
of similar values and maximize the differences between classes [62,63]. Additionally, the
distribution of the landslide susceptibility index using the natural breaks is shown in
Figure 10b.
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Figure 8. Mean decrease accuracy and mean decrease Gini of variables assigned by the random forest
classifier. The vertical axis is the inducing factor variable. hazard—hazard density; build—build
density; lithe—thickness of exposed bedrock; loess—loess thickness; height—relief; ndvi—NDVI;
curv—profile curvature.

The results show that the distribution of landslides and unstable slopes in the study
area is closely related to the susceptibility partitioning (Table 5). Over one-third of the slope
units in the study area are in the high- and very high-susceptibility areas, accounting for
21% and 16% of the total, respectively, with a total area of 10.1 km?; the remaining slope
units are in the moderate- and low-susceptibility areas. Moreover, 35% of the landslides
and the unstable slopes are located in the very high-susceptibility area, accounting for 16%
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of the total number of the slope units; 33% of the landslides and the unstable slopes are
located in the high-susceptibility areas, accounting for 21% of the total number of the slopes;
21% of the landslides and the unstable slopes are located in the moderate-susceptibility
area, accounting for 27% of the total number of the slopes; and 11% of the landslides and
the unstable slopes are located in the low-susceptibility areas, which account for 36% of the
total number of slopes.
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Figure 9. ROC curves and AUC value for evaluating the classification results of landslide susceptibil-
ity using the random forest classifier.

Table 4. Confusion matrix of the random forest classifier.

Predicted
RE Non-Landslide Landslide Recall
Non-landslide 543 73 0.881
Actual
Landslide 43 541 0.926
Precision 0.927 0.881 0.903

The results of the landslide susceptibility assessments show that two regions are highly
prone to landslides, one being the urban center of Baota District, and the other Nanniwan
Airport (Nnwa) and its surrounding areas. In the urban center of Baota District, including
Yangjialing Village (Yjl), Nanshi Street (Ns), Baiping Village (Bp), Hutoumao Village (Htm),
Zezigou Village (Zzg), Nanzhaibian Village (Nzb), Majiawan Village (Mjw), Huanghaowa
Village (Hhw), Mata Village (Mt), Erzhuangke Village (Ezk), and Shanlangcha Village
(Slc), where landslides occur frequently, the landslide susceptibility is high and very high
because of the very high-density population and frequent human activities (Figure 10).
Due to the effects of road construction, domestic water discharge, crop planting, slope toe
excavation, and other activities, landslides, including rock falls, slope failures, unstable
slopes, and creep, occur frequently, which poses a great threat to the lives and properties of
the local residents. The other highly landslide-prone areas are Nanniwan Airport (Nnwa)
and its surrounding areas, including Yangjiawan Village (Yjw), Maozegou Village (Mzg),
Sanshipu Village (Ssp), and Yejiagou Village (Yjg). Nnwa is the area of mountain excavation
and valley infilling on the Loess Plateau and its construction destroys the stability of the
surrounding slopes, resulting in the development of landslides and unstable slopes in the
surrounding areas.
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Figure 10. Landslide susceptibility map of the study area in (a), and the distribution of the landslide
susceptibility index using the natural breaks in (b).

Table 5. Slope unit statistics based on landslide susceptibility, hazard, and risk zone.

Slope Units VH H M L
Number 291 401 495 654
I Total areas 5.8 43 4.6 6.9
Susceptibility  ppportion (N) 16% 22% 27% 36%
zone Landslides 122 9% 62 54
Unstable slopes 138 147 96 30
Number 293 439 583 526
Total areas 6.4 4.7 6 4.5
Hazard zone Proportion (N) 16% 24% 32% 29%
Landslides 123 89 77 45
Unstable slopes 131 149 93 38
Number 116 377 560 788
Total areas 2.0 44 6.0 9.2
Risk zone Proportion (N) 6% 20% 30% 43%
Landslides 55 78 99 102
Unstable slopes 41 132 133 105
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4.3. Landslide Hazard Mapping

Reliable landslide hazard mapping is crucial for hazard mitigation and risk manage-
ment. In this study, INSAR technology was used to obtain the landslide hazard assessment,
aiming for an ongoing and quantitative practice [63]. The fieldwork showed that the
landslide type in the study area was relatively single, mainly loess landslides, and that the
geological environment and inducing conditions, such as rainfall, are similar in the small
study area, leading to the relatively simple mechanism of loess landslide activity. Therefore,
DInSAR was used as a comprehensive indicator to reflect slope displacement, whether
caused by rainfall or human activities, in landslide hazard assessment. The spatial probabil-
ity of landslides (landslide susceptibility) and the intensity of ground surface deformation
were used in the weighted overlay model parameters to calculate landslide hazard [64].
The weighted overlay technique is defined to develop a map using the overlays of several
raster layers by giving weight to each raster layer according to expert opinions [65]. The
weighted overlay analysis was applied to obtain the landslide hazard assessment using the

following equation:
m

WX ;=) R(j) x X(i,j) (¢
j=1

where m is the total number of factors to assess, WX; is the hazard index of the assessment
units, R(j) is the weight value of each factor, and X(i j) is the value of the assessment factors.
In this study, X(i,j) is the landslide susceptibility index obtained from the random forest
and the ground-surface deformation intensity that was defined using the normalized
ground deformation data obtained from DINSAR during the monitored time; the weight
values of both were set at 0.5 after analyzing the geological environment and inducing
conditions of landslides in the study area, respectively. Finally, the hazard indexes of slope
units were calculated by summing the product of assessment factors and corresponding
weight values. Four levels of hazard, i.e., very high (>0.594), high (0.594-0.416), moderate
(0.416-0.269), and low (<0.269), were categorized based on the natural breaks classification,
and the LOS displacement in different hazard levels were counted, which are illustrated in
Figures 11 and 12, respectively.

The number and LOS displacement values of slope units in different hazard levels
are illustrated in Figure 11. The distribution histogram shows the maximum and mean
displacement values, as well as the number of slope units in different hazard levels. It
shows that the displacement values of slope units are distributed in a normal curve and
that the higher hazard of slope units presents a higher displacement value than the lower
hazard on the whole. The results show that 40% (732) of the slope units in the study area
are in the high- and very high-hazard areas for landslides, accounting for 24% and 16% of
the total, respectively, with a total area of 11.1 km? (Figure 12). There was a small increase
in the number and distribution of the hazard zones in the urban areas compared with the
susceptibility map. About 34% (254) of the landslides and the unstable slopes are located in
the very high-hazard areas, accounting for 14% of the total number of slopes; 32% (234)
of the landslides and the unstable slopes are located in the high-hazard areas, accounting
for 13% of the total number of slopes; 23% (170) of the landslides and the unstable slopes
are located in the moderate-hazard areas, accounting for 9% of the total number of slopes;
and 11% (83) of the landslides and the unstable slopes are located in the low-hazard areas,
which are 5% of the total number of slopes. The results show that the spatial distribution of
landslide hazard areas was consistent with the field investigations.
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Figure 11. Distribution histogram of the number and LOS displacement values of slope units in
different hazard levels: (a) low hazard; (b) moderate hazard; (c) high hazard; and (d) very high
hazard. The red lines represent the average displacement values in different hazard levels.

4.4. Landslide Risk Mapping

The JTC-1 Joint Technical Committee on Landslides and Engineered Slopes noted that
landslide risk is a measure of the probability and severity of the adverse effects of landslides
on health or property, which must consider the hazard mapping and vulnerability of land-
slides [5]. Vulnerability assessment is a fundamental element in the evaluation of landslide
risks [66]. Vulnerability to landslides is expressed in economic (monetary, quantitative)
and heuristic (qualitative) scales. When using economic measurements, vulnerability is
commonly expressed in the element values, such as monetary, intrinsic, and utilitarian
values [67]. Due to a lack of information about properties and population distribution data,
the Kriging interpolation of building distribution and building density was used for the
vulnerability assessment in this study. The location and spatial distribution of buildings
reflect the distance between buildings and slope units, which indirectly indicates the extent
to which buildings and populations are threatened by landslides. Additionally, the building
density can also indicate the properties and populations. Of course, this assumes that the
sizes and values of the buildings are similar and that the differences in the populations
attached to the different buildings are slight. The equation for landslide risk calculation is
expressed as follows:

R=Hp xV (3)
where H; and V|, represent the landslide hazard and vulnerability, respectively. The
landslide risk index obtained from Equation (3) is divided into four levels according to
the natural breaks method after normalization, namely, very high-risk (>0.406), high-risk
(0.406-0.223), middle-risk (0.223-0.101), and low-risk (<0.101). The results of the risk
assessment zones and statistics are shown in Figure 13 and Table 5.
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Figure 12. Landslide hazard map of the study area in (a), and the distribution of landslide hazard
index using the natural breaks in (b).

The landslide risk assessment map shows that the risk in the urban center is higher
than that in the suburban areas, where the risk decreases with increasing distance from
the urban center (Figure 13). Additionally, a total of 20 and 167 extra slopes are in very
high and high-hazard zones besides landslides and unstable slopes (Table 5). About 6%
(116) of the slope units are located in very high-risk zones with a total area of about
2 km?; 20% (377) of the slope units are located in high-risk zones with a total area of
about 4.4 km?, which are mainly distributed in concentrated areas (i.e., Yjl-Sy-Sle-Hhw)
(Figure 13 and Table 5). The building and population densities in these areas are high,
which may lead to significant economic losses and casualties, so it is necessary to pay more
attention and conduct landslide risk management to mitigate the landslide risks. Compared
with the landslide susceptibility and hazard maps, Nnwa and its surrounding areas are
classified into moderate- and low-risk areas because of the low population density in the
areas. In addition, many engineering solutions, including slope geometry modification,
underground drainage systems, gravity retaining walls, and anti-slide piles, have been
applied to stabilize the slopes. Therefore, the slopes, which are originally very highly prone
to landslides, are classified as low-risk zones for landslides.
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Figure 13. Landslide risk map of the study area in (a), and the distribution of the landslide risk index
using the natural breaks in (b).

5. Discussion

Landslide risk assessment has been attracting the attention of researchers and gov-
ernments in order to effectively deal with landslides in the study area. For this purpose,
machine learning and DInSAR technology were used to evaluate the landslide susceptibility
in the main urban parts of Yan’an City. Currently, the susceptibility, hazard, and risk of
landslides in the whole of Yan’an City have been determined in existing studies. In terms
of the methodology, they can be divided into the heuristic model and generalized objective
functions based on experts’ knowledge scoring [44,68,69], a quantitative model of evidence
weight [42], and a physically deterministic model [43]. In terms of map units and scopes,
they can be divided into grid cells (25 m or 30 m), catchment basin units [42-44,68,69],
administrative boundaries [42-44], and watershed boundaries [68,69]. However, those
results are not only subjective but also can only meet the needs of a wide range of risk
management options and cannot truly reflect the geomorphic characteristics of the slope in
the study area, which can be useful for risk management in a large administrative area. The
research reviewed that an inventory including detailed landslide information and a rea-
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sonable mapping unit as well as model type is a prerequisite for obtaining highly accurate
assessment results [20]. Firstly, a landslide inventory with more detailed information can
provide more input data to the model to analyze the relationship between landslides and
geological environment factors to obtain a comprehensive landslide susceptibility map [70].
Some previous studies in the study area may not have shown this. Therefore, a complete
landslide inventory, mapping all landslides in the study area, was determined through
the interpretation of UAV images and site-by-site investigations. Secondly, field surveys
and risk assessment of slope units on a large scale in small areas can provide planners
with an adequate and applicable landslide risk map, especially in areas of critical concern
such as urban centers. Research shows that grid cells or pixels are still the most commonly
used map units in current papers on landslide assessment, and only a few papers have
used slope units [20,21]. To reflect the geomorphic characteristics of slopes, slope units
were used as map units in this study. Thirdly, the selection of a model is also an important
factor affecting the accuracy of landslide susceptibility assessment. There are more and
more models and methods developed for landslide susceptibility assessment, among which
machine learning with good performance can be used to solve the nonlinear relationship
between landslides and geological environment factors [16,34]. For this reason, random
forest was selected to predict landslide susceptibility in the study area, with good proven
performance [34,71]. Therefore, the accuracy of the landslide susceptibility assessment in
this study was improved by using a machine learning model and slope units.

In addition, DInSAR technology was introduced in the process of hazard assessment
to calculate slope deformation, and the hazard was calculated by giving the same weight
coefficient of susceptibility and slope deformation. InNSAR technology was used to perform
a time-effective analysis, and the results can present the active state of slopes directly
to predict the failure time and assess the hazard class of landslides [72,73]. At present,
combining the ground deformation products from the InNSAR technology with a landslide
risk assessment map has become a concern in the relevant research [63,74]. However, many
existing studies focus on the early identification and long-term monitoring of temporal and
spatial evolution using InSAR technology [75,76] but there is still insufficient attention paid
to risk assessment. The application of INSAR data in landslide risk assessment can improve
the reliability of landslide predictions and make a reliable landslide risk map [45].

Finally, landslide risk was calculated by multiplying the hazard with the vulnerability
composed of the spatial distribution and density of the buildings. The susceptibility, hazard,
and risk assessment in this paper have a similar trend to the previous paper on Yan’an
City in the area of different levels and spatial distributions [42-44], such as the area and
percentage of low-susceptibility or hazard zones being greater than that of the higher-
susceptibility or hazard zones, and the high-risk zones in the spatial distribution patterns
are similar, which can also imply the accuracy of this work to a certain extent. Moreover,
the risk assessment in this study can provide more specific guidance for risk management
and prevention in practice.

There are some limitations that need to be considered in future research. Firstly, due
to the lack of detailed population and property data, only the spatial location information
of buildings was used for the vulnerability. The precondition for this question is to assume
that the values of the buildings in the study area are the same, which would lead to certain
information loss for vulnerability. Secondly, influenced by the observation mode of the
radar satellites, the deformations obtained by the SAR images are ultimately along the LOS.
However, the deformation rate along the slope (Vslope) can more intuitively reflect the real
motion of the slopes, which can be transformed through the spatial geometric relationship
between the radar LOS and slope. Due to the limitations of the image numbers in the
SAR dataset from the study area, we have to use the ascending SAR images for INSAR
processing, with which it is difficult to form an effective complement for the descending
data. Therefore, we will also try to transform the LOS displacement into the slope direction
displacement in future research. PSI or SBAS algorithms can be selected to obtain long-term
ground deformation products if the SAR datasets have sufficient and long-term images,
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which can reflect the long-term movement status and trend of slopes [63,74]. It is expected
that more accurate risk assessment maps for the study or elsewhere could be produced by
improving the above limitations.

6. Conclusions

Quantitative risk assessment is very effective for landslide risk management and urban
areas need more detailed investigations and assessments. In this study, the quantitative
landslide risk assessment was based on susceptibility and hazard assessments. The random
forest classifier and eight environmental factors influencing landslides, including slope,
profile curvature, relief, NDVI, landslides density, building density, the thickness of loess
and the thickness of exposed bedrock were used to examine landslide susceptibility in
Baota District, Yan’an City. Combined with DInSAR technology, landslide hazard mapping
was developed to reflect the hazards quantitatively. Surface deformation, which can be
caused by many factors (e.g., precipitation, slope groundwater, and engineering), can be
detected by DInSAR technology with centimeter precision. Finally, the landslide risk map
was obtained by being combined with the landslide susceptibility and hazard assessment
and divided into very high-risk, high-risk, middle-risk, and low-risk areas according to the
natural breaks method.

In this study, a total of 1841 slope units were mapped in the study area, including
334 landslides and 411 unstable slopes determined by field investigations, in which the
main material of landslides and unstable slopes is loess and only a few of them contain
bedrock. The length and width of landslides and unstable slopes are mainly between
50 m and 150 m, the slope angles are mainly between 20° and 50°, and the heights are
predominantly between 30 and 90 m, where the slope angles and heights of most of the
unstable slopes are larger than those of the landslides. The areas are usually less than
20 x 10® m?. Reliable risk assessment was achieved using 1841 slope units, which were
divided based on the terrain, optical images, and DEM. Remote sensing InSAR technology
was applied to determine the quantitative landslide hazard zones. The classification results
of the random forest classifier were evaluated with the receiver operating characteristics
(ROC) curve and confusion matrix. The confusion matrix shows that the overall accuracy
of the random forest classifier is 0.903 and that the AUC value is 0.96, with good prediction
accuracy and classified ability of landslide susceptibility. The results of the landslide risk
assessment indicate the risk level and the corresponding quantity of the slope units and
total areas. Approximately 6% of the slope units located in the very high-risk zones and
20% of the slope units located in the high-risk zones must receive more attention to monitor
the dynamics.

The present research has significant implications for landslide risk mitigation in Baota
District, Yan’an City. Our scientific landslide risk map is expected to promote landslide
prevention based on a zoning strategy and provide a valuable decision to support the local
and regional government for disaster prevention, mitigation, and management, which
eventually can effectively reduce the impacts of geohazards.
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Abstract: Accurate remote analyses of high-alpine landslides are a key requirement for future alpine
safety. In critical stages of alpine landslide evolution, UAS (unmanned aerial system) data can
be employed using image registration to derive ground motion with high temporal and spatial
resolution. However, classical area-based algorithms suffer from dynamic surface alterations and
their limited velocity range restricts detection, resulting in noise from decorrelation and hindering
their application to fast landslides. Here, to reduce these limitations we apply for the first time the
optical flow-time series to landslides for the analysis of one of the fastest and most critical debris
flow source zones in Austria. The benchmark site Sattelkar (2130-2730 m asl), a steep, high-alpine
cirque in Austria, is highly sensitive to rainfall and melt-water events, which led to a 70,000 m?3 debris
slide event after two days of heavy precipitation in summer 2014. We use a UAS data set of five
acquisitions (2018-2020) over a temporal range of three years with 0.16 m spatial resolution. Our new
methodology is to employ optical flow for landslide monitoring, which, along with phase correlation,
is incorporated into the software IRIS. For performance testing, we compared the two algorithms
by applying them to the UAS image stacks to calculate time-series displacement curves and ground
motion maps. These maps allow the exact identification of compartments of the complex landslide
body and reveal different displacement patterns, with displacement curves reflecting an increased
acceleration. Visually traceable boulders in the UAS orthophotos provide independent validation of
the methodology applied. Here, we demonstrate that UAS optical flow time series analysis generates
a better signal extraction, and thus less noise and a wider observable velocity range—highlighting its
applicability for the acceleration of a fast, high-alpine landslide.

Keywords: digital image correlation; phase correlation; optical flow; time series image stack; land-
slides; ground motion identification; displacement mapping; UAS

1. Introduction

Landslides have a causal link to climate change, thus pose an increasing risk in mag-
nitude and frequency for people and their livestock [1]. In particular, investigations of
high-alpine landslide areas are often difficult and dangerous; hence, remote sensing tech-
niques have to be employed to generate sufficient spatial and temporal coverage. Here,
optical space and airborne remote sensing offers two key advantages: (i) Optical images
with their close-to-nadir viewing geometry, with the image plane orthogonal to the sensor’s
line-of-sight (LOS), allow scientists to directly monitor and interpret geomorphic processes
of steep slopes [2] without using derived products. (ii) Optical remote sensing for the calcu-
lation of ground motion by image registration is often the only feasible way to quantify
horizontal surface displacements of both shallow and complex slope instabilities [3], where
geomorphic processes are moving at rates too high for radar remote sensing techniques [4].
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Motion analysis, applied to optical satellite and UAS imagery—including (terrestrial) Li-
DAR data [5-7]—to measure horizontal surface displacement is a well-established method.
Image registration, also known as image matching and image correlation, geometrically
aligns images and allows tracking for accurate 2D change measurements in optical images.
It has been used on a local to regional scale to assess motion fields for glaciological [8-10],
earthquake [11-13], dune migration [14,15], rock glacier [16] and landslide studies [5,17-25].
Image registration is among the most widely utilised techniques in computer vision.
It is used to overlay two or more images of the same scene acquired at different times, from
various viewpoints, by the same or different sensors [26]. Another application is stereo
matching, using an image pair from the same scene taken at the same time from multiple
opposing view angles [27]. Several approaches exist to estimate the relative translative
offset, such as digital image correlation, optical flow and feature matching, which are often
applied to measure displacement and strains. Two major approaches exist to estimate
displacements to sub-pixel precision. The first is the area-based approach (also known
as the correlation-like method), which recognises uniform amplitude patterns in both the
reference and secondary image (Figure 1). Various algorithms calculate the correlation
of these patterns in order to quantify the final displacement. The second is the feature-
based method, less sensitive to illumination changes and image distortions; it depends on
the existence of well-spread, salient features—detectable in both images—which are then
extracted to estimate displacement vectors. This feature recognition approach is suitable
for multisensor analyses and is computationally less expensive. However, its success is
conditioned on surface structures, which therefore restrict its general application [28].

I1(x, v, t) I2(x + AX, y + Ay, t + At)

. displacement = (Ax, Ay)

(X, y) (x + Bx, y + Ay)

time =t time = t + At

Figure 1. Displacement detection of an object in the reference (I;) and secondary (I) image for t and
t+ At

Classical area-based algorithms are cross-correlation, normalised cross-correlation
(NCC) and minimum distance criteria [29], utilising the intensity without any structural
analysis information to match areas or regions [26]. The Fourier shift theorem was proposed
as a method for registering translated images [30] and was used to modify the original
phase correlation (PC) algorithm (using the phase information) [31]. Thus, by introducing
the theorem, the PC works within the frequency domain, utilising rotational and transla-
tional properties to calculate the relative transformation parameters based on a translational
or similarity model [32,33]. Working with sub-pixel accuracy, PC is highly computationally
efficient, and thus can handle large matching templates. Furthermore, it overcomes inten-
sity contrasts, which are frequency-dependent noise, as well as non-uniform, temporal
variations such as disturbing illumination influences [26,31]. Nonetheless, the constraints
to applying Fast Fourier Transform (FFT) for measurements include both the picket-fence
effect and spectral leakage [32]. Computational efficiency can be further enhanced, as
can matching if an (inverse) pyramid approach (i.e., hierarchical cross-correlation) is ap-
plied [34]. Starting with a coarser image resolution on a high pyramid level, matched
patches, i.e., measured displacement, and areas with few matching errors are propagated
to a finer resolution and can be used to guide matching on finer levels down to the original
resolution [35].
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Several area-based applications for motion studies exist in the geoscience community.
One of the first tools was IMCORR (NCC), implemented in SAGA GIS, and thus freely
available [36,37]; another well-known and often-used tool is COSI-Corr (PC and NCC-
based matching) [11,12]. The add-on is free but implemented within the commercial ENVI
Classic. Other open source options are the library MicMac, which employs hierarchical
image correlation, a combination of NCC-based matching and spatial regularisation [38],
and the DIC-FFT (FFT), whose code runs in MATLAB [20]. Two other freely available tools
are CIAS, performing an NCC procedure [9,39], and EMT [40], combining cross correlation
and least square matching.

Several limitations nevertheless still exist for the abovementioned area-based methods.
Geometrical inaccuracies arise from co-registration, with additional problems resulting
from vegetation changes and dynamically significant surface processes, leading to mis-
matches [11,18]. While less sensitive to illumination differences, which are particularly
important and challenging for high-alpine environments (arising from low contrast, moving
cast shadows and cloud shadows), these factors can still result in erroneous displacement
results [11,18,25]. The most important problems for their application to fast landslides are
velocities exceeding the search window-related matching limit, which causes decorrelation
and ambiguous signals [5,41,42]. Finally, external problems influence the calculation results
from orthorectification and sensor model errors [11].

In contrast, the intensity-based approach analyses motions using the differential
matching technique of optical flow, i.e., the determination of the dense deformation field of
two dynamic images by computing motion vectors at every pixel (Figure S1). For more than
40 years, optical flow, also known as motion analysis, has been one of the classic research
problems in computer vision [43]. Following Horn’s taxonomy, a motion field is the 2D
representation of a 3D surface based on the brightness patterns of an apparent motion.
Thus, it is the dense information of a dynamic motion field between two consecutive images.
Based on the assumption of a globally smooth motion field [44], or if the dynamic motion
field is constant within a certain interrogation window [34], the brightness constancy term
is valid, so changes in illumination are resolved in motion [43,45]. As a function of space
(x, y) and time (t), the first image I; (x, y, t) moved by Ax, Ay will correspond to the intensity
of the second image, with an offset I (x + Ax, y + Ay, t + At), which can be expressed as the
optical flow problem: (u, v) = (%’;, %’) .

Fundamental works by Horn and Schunck [44], as well as Lucas and Kanade, [34] accel-
erated computation times, e.g., with the coarse-to-fine search strategy for an inverse image
pyramid approach, which decreases computational costs. Today, due to this computational
effectiveness while handling large displacements at sub-pixel resolutions, this strategy
is widely employed in medical image registration, automotive driver assistance, human
motion analysis, and has been applied in geosciences to determine glacier flow [46,47].

Nevertheless, based on the brightness consistency assumption, limitations arise due
to considerable changes in illumination induced by shadows, seasonal effects such as
non-uniform glacial crevasse patterns, surface feature changes of tumbling rocks, and large
textureless regions due to snow cover and shade [43,46]. Accordingly, optical flow was
suggested for images of low noise and brightness variance to estimate small displacements
only [42]. A recent work by Kroeger et al. [45,48] utilises the fast and noise-robust inverse
compositional image alignment approach [49,50] and proposes a fast dense inverse search
method to capture matches quickly in order to deal with large displacements, deformations,
appearance alterations such as illumination, chromaticity and blur, as well as motion
discontinuities or outliers [45,51].

In general, the application of optical image registration methods can encompass a
large velocity range as these methods are less sensitive to large displacements and long
measurement intervals, leading to decorrelation when using Differential Interferometric
Synthetic Aperture Radar (DInSAR). Its application is restricted to relatively slow motions
(£1m/yr), i.e., remaining below a quarter of the SAR sensors’ wavelength A (>A/4), with
some exceptions of A/2 [4]. Although active radar sensors are relatively independent
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of atmospheric constraints and of shadows, further limiting high-alpine factors include
snow cover, slope exposition, layover effects and foreshadowing [52,53]. Nevertheless,
using optical remote sensing for research on high-alpine sites is often difficult due to
meteorological constraints such as snow cover, clouds or cloud shadows and mountain
ridge topographic shadowing effects for certain seasons and times of day. Even though
satellite revisit rates have significantly increased (e.g., Sentinel-2, five days, PlanetScope,
daily), their actual net revisit rate for high-alpine sites is restricted to a few images per
month [25,54]. Therefore, UAS campaigns offer the highest temporal flexibility to overcome
these obstacles [17], but good quality data depends on GCPs (ground control points)
with reproducible flight plans [55], which requires significantly more time, and hence,
higher costs.

While experience for landslide displacement calculations on area-based image match-
ing exists [14,56], no previous research has applied intensity-based optical flow to derive
ground motion for landslide behaviour assessment. In this study, we test the performance
of the intensity-based fast optical flow method using dense inverse search and compare
the results with the widely known area-based phase correlation algorithm, both of which
are implemented into the commercial software IRIS. We employed these algorithms to
compute the deformation fields for the Sattelkar, a complex landslide in a steep high-alpine
cirque (21302739 m asl) exhibiting varying displacement rates from slow (few meters)
to moderate velocities (<30 m/yr) [57]. We conduct a single interval analysis, together
with a time-series approach, on five UAS orthophotos acquired during a three-year pe-
riod (2018-2020) of both high spatial accuracy and resolution (0.08 m) [58]. We evaluate
the results based on trajectories of large boulder blocks (<10 m) which are traceable in
the UAS orthophotos and stable bedrock. Accordingly, we seek to answer the following
research questions:

1. Is the dense inverse search (DIS) method applicable to the large displacements of
landslides with complex behaviours?

2. Can the method investigate both slow and moderate velocities between repeated
observation intervals?

3. Is the DIS method robust enough to cope with the changing and unfavourable illumi-
nation of a high-alpine steep study site?

4. How does the DIS method perform in comparison to the well-established phase
correlation algorithm?

2. A Complex Landslide

The Sattelkar is a ~30° steep high-alpine deglaciated cirque in the Obersulzbach valley,
Grofivenedigergruppe, Austria (Figure 2). It is located at an altitude between 2130-2730 m
asl and is west-oriented. The cirque is surrounded by a headwall of central granitic gneiss
and is filled with an abundant volume of deposits from past and current rockfalls, glacial
and periglacial debris, moraine walls and relicts of a dissolving rock glacier [59,60]. The
cirque infill is characterised by a wide grain size distribution, with boulders up to 10 m.

Since 2003, surface alterations have taken place: the vegetation cover has degraded,
and been replaced with loose mobile rock material [59]. The deep-seated, retrogressive
movement is sensitive to rainfall and meltwater, causing high water (over)saturation and
leading to a spreading and sliding behaviour on the glacially smoothed bedrock, developing
into a flow-like behaviour while huge blocks tumble and turn—all of which can be classified
as a complex landslide [57]. These characteristics make this a challenging benchmark object
and suitable site for landslide displacement analyses using optical remote sensing.

Based on aerial orthophotos, damage documentation, and witness reports, during
the last decade a continuous intensification of mass wasting and debris flow activities
has taken place. Heavy precipitation on 30 and 31 July 2014 led to a debris flow of about
70,000 m? from the catchment area above the cirque threshold (at ~2000 m asl), and a
further 100,000 m® of mobilized material was entrained from within the channel [59].
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Initial investigations estimated an unstable area of 130,000 m? where 1 mio. m? of
debris showed high activity; displacement rates up to 10 m a~! between 2003-2015 were
obtained from aerial orthophotos and repeated field measurements [59,60]. As the debris
consisted of boulders up to 10 m, continuous visual block tracking could be employed to
estimate the displacement within the active area based on aerial orthophotos. Recent studies
conducted with COSI-Corr confirmed this ongoing increase of mass wasting processes,
with variable displacement rates ranging from 1-14 m in only 42 days [25].

Today long-term monitoring is conducted with high-accuracy UAS; nine differen-
tial GPS-measured GCPs provide continuous stable and precise conditions. Additional
monitoring instruments provide geomorphologic insights into rockfall behaviour via one
autarkic seismograph. Thirteen near-surface temperature loggers at a 0.1 m depth also
record mean annual ground surface temperatures, indicating potential, sporadic permafrost
conditions [61]. Recent empirical statistical permafrost modelling in the Hohe Tauern Range
supports permafrost occurrence at our study site [62].

Figure 2. (a) Sattelkar, 30 June 2019, with the debris cone of the 2014 debris flow event; overview map
of Austria in the top right corner (white) (Osterreichischer Bundesverlag Schulbuch GmbH & Co. KG
and Freytag-Berndt & Artaria KG, Wien, Austria), (b) UAS orthophoto (4 September 2019) with the
landslide in transparent red and the entire cirque indicated with a dashed grey outline, (c) boulder
size of 5-10 m used for manual motion tracking and (d) view on the front of the cirque threshold.

3. Materials and Methods

There are several reasons to utilise UAS orthoimages for our study. We have a stable
set-up for the study site which guarantees a high quality, reliable data set. Due to their
time flexibility, UAS flights are conducted under best illumination conditions, with similar
time periods. Additionally, we have full control of the image acquisition format (same UAS
and flight plan, management over spatial resolution, extent, acquisition altitude and snow
coverage) [55] and the subsequent manual post-processing (georeferencing and spatial
accuracy, orthorectification) [58].

We applied two image matching algorithms to optical multi-temporal UAS orthopho-
tos to identify and quantify horizontal displacements. The first is phase correlation [33],
and the second is optical flow, where we make use of a dense inverse search method
(DIS) [48] which applies the inverse search approach [49,50] based on the fundamental
work of the coarse-to-fine Lucas—Kanade algorithm [34]. The DIS code is freely avail-
able online (OpenCV, https:/ /docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html,
last access 11 October 2021; the script is based on Kroeger et al. [48]). Both algorithms
are incorporated into the commercial software IRIS, developed by NHAZCA S.rl., in
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which the displacements were calculated (https://www.photomonitoring.com/iris, last
access 12 January 2022). Furthermore, we used ArcGIS (calculations, statistics and map
creation), ArcGIS Pro (multihillshade calculations), open source QGIS (data handling and
management) and SAGA (displacement vector calculations).

3.1. UAS Image Acquisition and Processing

Five UAS (unmanned aerial system) acquisition campaigns took place between 2018
and 2020 (Table 1). All UAS flights were conducted at approximately the same time of day
in order to have best similarity of illumination conditions regarding shadows. Additionally,
the flight campaigns were set up around the same dates to have generally equal time
intervals. Thus, for our study approach, the four time intervals of our data set allowed
us—with a sufficient number and an adequate approach—to interpret the processes of both
two one-year-long as well as two summer season intervals, with flights in mid-July and
the beginning of September (Table 1). The flights were planned with UgCS (identical flight
plans with four flights at different elevations of high overlap for front: 80% and side: 70%)
and carried out with a DJI Phantom 4. The ground sampling distance was 7 cm for the area
of ~3.4 km? and with a flight speed of ~8 m/s, with a total flight time of ~3.5 h (Table 2).
Images were taken in RAW format, improved for contrast, highlights, shadows and clarity
using Adobe Exposer, then exported as JPGs (95% compression), and finally processed
with Pix4Dmapper to 0.08 m resolution. Based on nine permanent ground control points
on bare rock (GCPs, 30 x 30 cm), the pictures were georeferenced and orthorectified. GCPs
were repeatedly registered (1000 measurements/position) with the TRIMBLE R5 dGPS
(differential GPS). We post-processed the data using the baseline data of the Austrian
Positioning Service (APOS) provided by the Bundesamt fiir Eich und Vermessungswesen
(BEV). The horizontal RMSE was ~0.05 m and the vertical RMSE was ~0.10 m, and they
were used to rectify all UAS campaigns. Lastly, the data (orthophotos and DEMs) was
clipped to a consistent area of interest (AOI), projected to UTM 33N (EPSG 32633) and
downsampled to 0.16 m (bilinear interpolation) with GDAL to enhance processing time. In
addition, to better understand surface processes, hillshades (ArcGIS) and multi-hillshades
(ArcGIS Pro) were calculated and visualised as GIFs and combined with total displacement
results from PC and DIS (see online supplementary material, OSM).

Table 1. UAS acquisition dates and time interval overview for single (I-IV) and multimaster analysis
(1.-3.-2.-5., 001-004) (see Section 3.2).

Acquisition Dates

Intervals Single

Intervals Multimaster Analysis

Analysis
13 July 2018 (1): 376 :376 | (1-3): ©OOD): | h002):
24 July 2019 ay: 42 a8 | WA g5 | o), 576 | “as” | 09 (o004y:
4 September 2019 ) 727 (2.-5.): 727
(111): 309 791 351 791
9 July 2020 (IV): 64 415
11 September 2020 )
Table 2. UAS flight plans.
Flight Plan Length of Flight Passes No. of Altitude Highest Flight =~ Lowest Terrain
Parts Flightpath [km]  Time [min] Images Startpoint [m] Position [m] Point [m]
Top 6.8 17 6 121 7 2630 3120 2365
Middle 7.5 19 6 135 7 2200 2682 1820
Low 1 7.3 17 6 130 7 1768 2115 1620
Low 2 5.6 14 6 81 7 1768 2110 1620
Total 27.2 67 24 467 7 3120 1620
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3.2. Displacement Calculation and Derivation of Displacement Curves

We systematically tested parameter sensitivities in order to determine the best settings
for both algorithms, PC and DIS. To do so, we conducted horizontal displacement analyses
for all possible time interval combinations on both single analyses (i.e., tn — ty+1) as well
as multimaster analyses (Table 1). Multispectral (rgb) UAS orthophotos were used as the
input, which were transformed into grayscale images.

The parameter settings of the phase correlation in IRIS are (i) step size, which is the
pixel size in x, y between the two sliding windows. This defines the final output resolution,
and thus, the final information density (the smaller the step, the denser the coverage), and
significantly affects computation time. Similarly, the size of the moving window is a critical
parameter, as it defines the physical resolution of the result and represents a compromise
between noisy or homogeneous data, hence producing stable output results. Enlarging
the window size, the correlation can be increased and homogeneity enhanced; however,
computation time will increase. For our input data, we achieved the best results (ii) using
a matching window size of 256 pixels. We set (iii) the subpixel resolution to 0.25, which
resulted in an upsampled cross-correlation by a factor of 4 and a final subpixel resolution
of 0.04 m. Although we had (iv) the option to use the coarse-to-fine pyramid approach,
working with one pyramid level was sufficient, and thus the original resolution was kept.
In the post-processing the results were (v) resampled using nearest neighbour. In order to
identify the matching limitations, i.e., decorrelations, we did (vi) not apply a correlation
coefficient threshold, thus keeping the results raw. For final total displacement visualisation,
a minimum threshold for values below 0.5 m was applied to eliminate noise.

Thereafter, a multitemporal analysis was performed and the same image matching
parameter settings (i-vi) were applied as used for the single analysis. For each reference
image we calculated every secondary image, i.e., retaining all possible image combinations
(Figure 3). Prior to each single displacement analysis, image pairs were co-registered
using the stable area around the landslide. Then, a weighted average using the correlation
coefficient was applied to all single analysis results in order to calculate the final multimaster
outcome. Each single analysis resultant map was saved to facilitate the final analysis.

e SO

IMG 1 IMG 2 IMG 3 IMG N —)

Reference Secondary Secondary Secondary

|| Time Series

Figure 3. Multimaster approach. For each co-registered image of the single analysis (green arrow),
and thus each secondary image pair, the average was weighted with the correlation coefficient of the
first to the last image result (blue arrow).

Using the OpenCV [63] algorithm, which implemented a dense inverse search optical
flow [48], we analysed the UAS data set and tested different parameter combinations for
each single time interval in order to find the most suitable one (Table A1). The matching
patch sizes employed 8 x 8 or 16 x 16 pixels. A mean normalisation for the patches was
applied, which improves the robustness of illumination changes as it calculates every
band’s mean.

Once we determined the best single-interval combinations, we used these results for
the final multimaster analysis of DIS. We used the same multimaster settings as those
applied for the PC multimaster calculation.

In order to calculate the time series (TS) displacement curves based on the multimaster
analysis, in QGIS we created six large rectangles (TS AOI 1-6; see Figure 8). On the basis
of preliminary results during sensitivity tests for both PC and DIS, the AOIs were placed
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beginning in the centre of the landslide process and moving uphill towards the rear (Table 3)
to prevent the AOIs from being disturbed by any noise. Afterwards, they were imported
into IRIS as *.kml. For both TS results (PC and DIS), we then derived for each TS AOI (1-6)
a displacement curve (Figure 8).

Table 3. Areas of rectangles for TS calculation of displacement curves (TS AOI 1-6) and bedrock
identification number (1-5) for the assessment of modelled bedrock displacement.

TS AOI No./Bedrock No. 1 2 3 4 5 6
Time Series AOI [m?] 337.94 457.09 988.15 974.03 969.85 893.25
Bedrock [m?] 162.095 50.31 23.95 13.79 167.50 -

3.3. Accuracy Assessment and Result Validation

We demonstrated the validity of our algorithms in two ways: by (a) checking the
displacement for stable bedrock areas and (b) using the trajectories of manually measured
boulders detectable in the orthophotos. In QGIS we selected five different stable bedrock
areas of sufficient spatial extent outside the landslide process area (Table 3). These areas
were unaffected by cast shadow and remnants of debris from past rainfall events. The
exported *.kml were used in IRIS to derive displacement curves for north-south (NS) and
east-west (EW) displacements.

As image registration is based on the matching of pixel patches, we assumed that
adjacent pixels represented a similar displacement magnitude. To estimate the accuracy of
fit resulting from the total displacement calculations (PC and DIS), we calculated a spatial
mean total displacement of the boulder trajectories with a buffer of 0.1 m to plot against
the manually measured travel distances of the boulder trajectories (Figure 4). We ran a
regression model to see if boulder motion significantly predicted data distance with and
without outliers. In order to detect outliers, we used Mahalanobis distance, a reliable outlier
detection measure, as it focuses on multivariate distributions of more than one variable, and
hence is suitable for our data [64]. Accordingly, we show regression lines without outliers.

After exporting the *.raw results of the total, NS and EW displacement into ArcGIS,
we used the former to visualise the ground motion above 0.5 m displacement for the known
process area, with no further filter applied. This threshold was selected due to the NS
and EW components of the bedrock times series calculations indicating the accuracy of
our calculations (see Section 4.1). With the SAGA tool “Gradient vectors from Directional
Components”, displacement arrows (*.raw NS and EW displacement results, mean value
with a step of 100 and range of 50-250) were calculated. As some arrows were slightly
outside the total displacement results, we filtered and cleaned up the vectors (extent of
total displacement) to avoid ambiguity (see left column, Figure 5).

3.4. Atmospheric and Hydrological Conditions

In order to interpret the calculated displacement results of this hydrologically sensitive
complex landslide, we considered precipitation data. An automatic weather station at
the Kiirsinger cabin in close vicinity to the Sattelkar measures rainfall during the opening
season of the cabin (spring to autumn; Tables 4 and 5).
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Table 4. Number of days with daily amount of precipitation greater than 20, 30, 40 and 50 mm
(meteorological station Kiirsinger cabin).

>20 [mm] >30 [mm] >40 [mm] >50 [mm]
2009 12 5 3 2
2010 8 4 2 1
2011 10 3 1 0
2012 16 5 2 1
2013 6 1 0 0
2014 9 5 3 2
2015 18 6 1 0
2016 10 5 0 0
2017 10 4 0 0
2018 10 5 2 1
2019 11 1 1 1
2020 16 8 6 2

Table 5. Ten highest days of total precipitation for the observation period 2009—2020 (meteorological
station Kiirsinger cabin, descending order).

Date Precipitation [mm]

29 August 2020 82.9
30 July 2014 76.1
27 April 2009 70.1
3 October 2020 62.8
11 June 2014 60.4
19 August 2017 57.2
6 June 2009 52.5
17 July 2010 52.3
28 July 2019 51.2
3 August 2020 50.0

4. Results

This section outlines the results of the studies of the total displacement for the single
and the multimaster analysis; for the latter only we present displacement curves. We further
evaluate the findings based on manually measured boulder tracks and stable bedrock areas.

4.1. Accuracy Assessment: Stable Areas and Ground Truth Comparison

In order to estimate the quality of the algorithms, displacement curves of the stable
bedrock areas 1-5 (Table 3) for all intervals are presented in Figure 4. The maximum
displacement for DIS NS (c) and EW components (d) was the only outlier of —0.5 m for the
last interval IV, Bedrock 2 (Figure 8b). Apart from that, the displacements for the stable
bedrock ranged by +0.3 m. By contrast, PC returned a smaller distribution around zero,
with lower values of £0.2 m for NS components (a) and £0.3 m for EW components (b).
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Figure 4. TS calculated for stable bedrock areas ‘Bedrock 1 to 5" for NS and EW components for DIS
(a,b) and Phase Correlation (c,d). Locations of bedrock areas are displayed in the orthophoto map of
Figure 8.

We assessed the accuracy of the total displacement calculations for both algorithms by
comparing them to a mean buffer around the manually measured boulder paths for the
corresponding time interval. The Mahalanobis outlier detection [64] yielded two outliers
for both DIS and PC (marked in red Figure 5). We found a significant positional relationship
between boulder motion and the modelled DIS mean (b = 0.49, t = 2.72, p < 0.01) and PC
mean (b =0.55, t = 2.89, p < 0.01), and determined that boulder motion accounts for 16%
and 17% of variance in the data distance, respectively. After outlier removal, the variance
in the data distance yielded 56% for DIS (R% = 0.5564) and 65% for PC (R2 = 0.6471). The
plots present results for time interval II for PC (a) and DIS (b) with the regression line after
outlier removal (Figure 5). Figure 6 shows boulder trajectories for PC and DIS.

Displacement vectors indicate a smooth downslope flow direction. There are minor
patches of chaotic directions for a heterogeneous displacement patch in the PC results
(central north and towards the northern end) and for displacements between 0 and 0.5 m at
the landslide head flowing downslope. For the same area, DIS vectors point in different
directions as well as towards the northern rim of the landslide.
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Figure 5. The left top row represents the results from the PC (a), the left bottom row the results from
DIS (b)—both for time interval II: 24 July 20194 September 2019, 42 d. Arrows in black represent
a realistic downslope range between 205-285°, while putting unrealistic directions (285-205°) in
grey. Background: hillshade of UAS DEM, 0.16 m resolution. On the right column, displacements
of manually traced boulder trajectories (x-axis) are plotted against the mean total displacement for
the corresponding trajectory with a buffer of 0.1 m (y-axis) for PC (top right) and DIS (bottom right).
Outliers are marked in red (with block ID), and the regression line in blue after outlier detection
(Mahalanobis distance) and removal. Boulder trajectories are displayed in Figure 6.

4.2. Total Displacement for Single Analysis

This section outlines the results based on single intervals, i.e., t, — ty1, twice covering
an approximately one-year period (I, III) and a summer season (II, IV; see Table 1).

The total displacement from PC results, for all intervals I-IV (Figure 6a-d), yielded
a clearly demarcated landslide body for values above 0.5 m, limited to values of about
20 m. Homogeneous areas (landslide’s rear body in the east to the centre) are replaced by
a patchy, inhomogeneous area for I, Il and IV. The homogeneous displacement is lowest
(0.5-2 m) in II (42 d), slightly higher for I (376 d), and returns highest values (12-14 m)
for both the longer and shorter intervals III (308 d) and IV (62 d). By contrast, for I, III
and IV, the landslide head is less noise-affected for II, with more homogeneous patches.
Comparing displacements to boulder trajectories, the values are consistent apart from the
landslide’s head, with ambiguous signals as well as some 1 m trajectories not reflected in
the landslide’s rear area (Figure 6b,c).
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Phase Correlatlon

Total displacements (I-IV) derived from DIS (Figure 6e-g) lie within the process area,
with patches of particularly high motion (>32 m and 22-25 m) in the northern frontal half (I)
and centre (IV), respectively. Interval II reveals the lowest overall displacement, increasing
towards the front. Displacements in the rear are higher for IIl and IV (1-8 m) than I and II.
Boulder trajectories match well from the centre to the rear (I-IV), except for the foremost
front of the landslide’s head (I-1V).

Dense Inverse Search
T T

Figure 6. Results of single total displacement calculations of UAS orthoimages at 0.16 m resolution
for (a-d) using PC for the left column and (e-h) using DIS for the right column. The time intervals
I-1V (I: 13 July 2018-24 July 2019, 376 d; II: 24 July 2019—4 September 2019, 42 d; III: 4 September
2019-8 July 2020, 308 d; IV: 8 July 20208 September 2020, 62 d) follow from top to bottom and are to
be read in rows to compare the two algorithms. The arrows represent manually measured boulder
trajectories for the corresponding time interval, with displacements in meters indicated on top (ref.
Section Material and Methods). Background: hillshade of UAS DEM, 0.16 m resolution.
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004 (13.07.2018-09.07.2020, 791 d) 002 (13.07.2018-04.09.2019, 418 d)

Comparing the two algorithms on the basis of boulder trajectories, ambiguous areas for
PC return significantly lower displacements for DIS, as indicated by trajectories (23-54 m)
in the centre for I, Ill and IV (a, ¢, d and e, f, h) and at the front, where DIS returns
particularly low motion (3—4 m)—although boulder trajectories appeared to indicate higher
displacements (6-70 m). For I, in the south of the frontal half, some minor heterogeneous
patches exist for PC (a), with similar values for DIS (b), which are confirmed by boulder
trajectories (15, 16 and 17 m). Except for the landslide’s head, both algorithms indicate
consistent displacement values for II, with larger homogeneous areas by PC (b).

4.3. Total Displacement for Multimaster Analysis and Displacement Curves

Here, the results of the multimaster approach focus on interval 002 as well as the
longest final time interval 004 for algorithms PC and DIS (Figure 7). In the previous section,
the first master interval 001 was described, as it is identical to the single analysis interval I.
An overview of the individual image combinations for the multimaster analysis is provided
in Tables 1 and Al.

The PC multimaster displacement for 002 (a) is characterised by a large ambiguous
and heterogeneous area at the landslide’s head, transitioning into a homogeneous area for
the last two-thirds. Here, values increase from 0.5 in the rear to 10 m. The accumulated
displacement for 004 returns values up to 23 m from the centre decreasing towards the
rear. The results derived for DIS 002 reveal values up to 7 m at the landslide’s head and
increase to the highest values (15-32 m) in the centre. There, for 004, both algorithms show
a similar boundary, with displacements decreasing rearwards (PC, 9-2 m, DIS 12-22 m),
with the highest values towards the front (>32 m) for DIS; similar to DIS single analysis
results, values at the foremost landslide’s head do not exceed 10 m.

Figure 7. Results of multimaster TS analysis for total accumulated displacement calculations of UAS
orthoimages at 0.16 m resolution for top row 002 (13 July 2018—4 September 2019, 418 d) and bottom
row 004 (13 July 2018-11 September 2020, 791 d). Left column with PC algorithm (a,b) and right
column DIS (c¢,d). Background: hillshade of UAS DEM, 0.16 m resolution.
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Our calculations of TS displacement curves (Figure 8) for PC (a) and DIS (b) indicate a
continuous increase in displacement. PC exhibited a smooth, linear increase with similar
rates for all five AOIs, apart from AOI 6, and a clear limit at approximately 20 m. For
DIS, by contrast, the maximum accumulated displacement exceeds 42 m for the foremost
AQI 1, followed by AOI 2 with ~40 m—both of which show the strongest increase for an
additional 17-20 m (IV), with higher accumulated displacement values than PC. Generally,
all AOIs increase steadily, similar to PC for I and II, with the rear AOIs (AOI 3-6) more or
less identical for both algorithms (8-20 m).
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Figure 8. Top row represents the accumulated total displacement resulting from the multimaster
analysis for the TS AOI 1-6 from 13 July 2018-8 September 2020 for PC (a) and DIS (b). The orthophoto
map (8 September 2020, UAS 0.16 m resolution) in the middle (c) represents the locations of the TS
AOI 1-6 within the landslide and the stable bedrock areas ‘Bedrock 1 to 5'.
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4.4. Meteorological Data

Precipitation measurements during the UAS observation period 2018-2020 indicate
that 2020 had the highest number of days with a daily amount of precipitation greater than
20, 30, 40 and 50 mm (Table 4). The comparison for the highest days of total precipitation
shows the highest and 10th-highest amount in 2020 at 82.0 and 50.0 mm, respectively,
although the number of days at 50.0 mm are lower than the highest records (Table 5). The
year 2020, with highest amount of total precipitation, is followed by the second-highest,
which was the 2014 debris flow event-year of 76.1 mm.

5. Discussion

We have calculated time series displacements for complementary image-matching
algorithms PC and DIS for a three-year long set of UAS orthophotos. We derived dis-
placements for single time intervals (Figure 6) as well as a combined reference-secondary
image approach (Figure 7), aka multimaster analysis, in order to investigate the complex
behaviour of the Sattelkar, with its heterogeneous motion fields with low to medium veloci-
ties [57,59,60]. In so doing, we were able to derive displacement curves (Figure 8), interpret
our observations in relation to meteorological data (Tables 4 and 5) and confirm the results
in our accuracy assessment on the basis of traceable boulder trajectories (Figures 5 and 6),
as well as stable bedrock displacement curves (Tables 4 and 5).

In answer to research question (1) we determined that, for the most part, the displace-
ment results show that DIS is an applicable method to capture large displacements—even
for a landslide with complex behaviour.

For research question (2), given a very heterogeneous landslide behaviour, the method
allows us to investigate both slow and moderate velocities, which we can in large part
support by manually measuring boulder trajectories and statistical observations (Figure 6).
For a single interval II, apart from two outliers, DIS returns valid ground motion values
(Figure 5). Though derived displacements for the process area from the centre to the
rear are well represented and confirmed by the boulder trajectories, the foremost area
of the landslide’s head is significantly underestimated by a factor of four (I, 1824 m
boulder trajectories) and a factor of five to ten (IIL, IV). This area leads directly over the
cirque threshold into the steep channel, and from field observations we know that surface
processes are particularly dynamic and complex, including tumbling boulders changing
their surface appearance by turning. Nevertheless, DIS shows its capability to reveal the
ongoing process of the dissolving rock glacier, visible in IV (Figure 6h), and less pronounced
in III (g) due to the sharp difference in ground motion. For optical flow to work reliably,
the brightness consistency has to be valid, with illumination changes resulting in motion.
Until now, the use of optical flow has been restricted to ground motion observations of
small displacements, little noise and difference in illumination [47].

However, our results confirm research question (3) that optical flow, using the im-
proved approach of DIS [48] is robust enough for the orthophoto dataset of our high-alpine
steep study site to cope with changing and unfavourable illumination conditions. This is
supported by displacement vectors calculated from NS and EW displacements, which to a
large degree reveal a correct flow direction.

With regards to research question (4), comparing the results of DIS to those of PC,
DIS has been shown to overcome the correlation limits of the PC algorithm. Ambiguous
signals of PC results come from noise resulting from decorrelation as the detection limit;
hence, the maximum possible correlation for the amount of displacement and/or number
of surface changes is reached. The results show that for our high resolution in the UAS
dataset of 0.16 m with temporal baselines the limitation is reached (I, III, IV) [14,16]. In
essence, matching failed due to massive changes in pixel values. Our field observations
provide evidence of the deformation of rock masses with strong surface alterations due to
rotational block behaviour and the high mobility of rock material, which are thus likely to
be responsible for this decorrelation. Similar observations on the matching limitations and
other reasons leading to decorrelation have been confirmed by others [14,42,52]. We decided
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to keep these noise-affected areas to be able to differentiate the results. Consequently,
while towards the front PC decorrelates and DIS seems to be underrepresented, from the
distinctive boundary in the landslide’s centre towards the rear, both algorithms return
similar displacement values, as confirmed by the boulder paths (I, IIl and IV).

These boulder trajectories are reliable and support the correctly derived high dis-
placement values for interval III (308 d), and in particular, the higher ones for interval
IV—although shorter in duration covering the summer period (62 d). This displacement
increase can be explained as a sensitive reaction of the debris due to the heavy precipitation
events in 2020. The year 2020 had by far the highest number of days with daily precip-
itation, followed by the 2014 debris flow event-year. In the summer interval IV (8 July
2020-8 September 2020), the two highest days of total precipitation were measured (see
Tables 4 and 5: highest, 82.9 mm, 29 August 2020; 10th, 50.0 mm, 3 August 2020). We
assume that this heavy rainfall event at the end of August indicates how the debris reacts
to hydrological influences with a massive acceleration [65,66]. It seems unlikely that the
50.0 mm event significantly contributed to this acceleration, as in the previous year the
ninth-highest measure was recorded and showed no signs of acceleration.

Apart from single interval calculations, we further performed a multimaster approach
and compared the results of both PC and DIS algorithms for intervals 002 and 004 (Figure 7).
The previously discussed total displacement distribution for the single intervals is more
pronounced due to the summing up of all possible image interval combinations. While
002 reveals a very similar pattern for the rear of the landslide mass, the front is again
partitioned beginning at the centre, leading to decorrelation for PC (Figure 7a) and high
displacements between 20 and 32 m for DIS. However, these values becomes unrealistically
low towards the landslide’s head (Figure 7). Displacement values reach their maximum
for PC of 20 m (c), whereas DIS exceeds 32 m (d), in these areas. Single analysis interval
I (Figure 6b) and multimaster interval 002 (Figure 7b) reveal an area of particularly high
motion at the northern rim towards the landslide’s head. This high motion can be confirmed
by field observations of severe, high dynamic surface changes—a behaviour visible in the
GIFs (Figures S2-54).

The limitations of ground motion are confirmed by calculated displacement curves
for PC and DIS (Figure 8). Where PC has a definite limit of 20 m for total displacement
detection (a), there is no upper limit for DIS. Generally, displacement curves for both PC
and DIS indicate a clear acceleration behaviour—in particular for the heavy rainfall season
2020. The explanatory power of DIS to derive ground motion and displacement curves
is high.

We applied the approach of displacement curve calculations to areas outside of the
landslide process in order to estimate the quality of the algorithm, as there should be zero
to limited displacement. The NS and EW components for PC show values very close to
zero (£0.2 and £0.3 m), and DIS never exceeds + 0.5 m, indicating the high accuracy and
reliability of our results.

Our results demonstrated the possibilities and limitations of the optical flow dense
inverse search algorithm. Backed by the comparison to the well-known and robust phase
correlation algorithm, we find that DIS is a more sensitive, less rigid and more flexible
algorithm. While computationally very efficient, both small and large displacements
can be detected without upper limitations. We can confirm the results from the DIS
algorithm and for the first time, image registration methods reflect motions we know
through our field observations (area of high motion at the northern rim towards the front,
see Figures 6e, 7c and S3; and at the front of the dissolving rock glacier, see Figure 6g/h).

However, the results must be interpreted with caution as there is a clear underrepresen-
tation for the landslide’s head. Areas of too-high surface dynamics and/or displacements
lead to a drastic change in pixel values. Therefore, PC with an upper detection limit of 20 m
fails, returning areas of decorrelated noise, whereas DIS still returns some displacement
values, but they are too low. These returned values imply a correct signal, but based on
the comparison to PC we know that DIS could lead to underrepresented displacements,
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which is why the results have to be carefully interpreted. Thus, areas of decorrelation can
be interpreted as a valid limit of PC with no over- or underestimation, as with DIS, and a
higher robustness towards illumination changes.

6. Conclusions

This study evaluated the potential of the dense inverse search (DIS) algorithm to
derive ground motions to assess a high-alpine, complex landslide. Our research has made
a substantial contribution, as for the first-time, optical flow was applied to study landslide
behaviour. We tested the algorithm on time interval combinations of single intervals as
well as multimaster pairs of reference-secondary images based on five high accuracy UAS
orthophotos of 0.16 m acquired between 2018 and 2020.

We compared total displacement results of DIS to those of the well-known phase
correlation algorithm (PC), both of which are implemented in the software IRIS, with
regard to trajectories of traceable boulders. These results were contrasted to trajectories
and confirm a high goodness of fit. In an accuracy assessment we evaluated our results
by deriving NS and EW displacements for five stable bedrock areas, ranging between
+0.2 and £0.3 m. Our findings show that DIS is applicable to determine ground motions
of both slow and moderate velocities, as it detected displacements from 0.5 to 42 m for
our observation intervals. This was supported by boulder trajectories and correlated,
heterogeneous displacements derived from PC. DIS further overcame the correlation limits
of PC, which occurred at about 20 m, and we obtained decorrelation even with a larger
template. It is likely that for both severe surface changes and very high displacements,
DIS underestimated values at the landslide’s head, while PC decorrelated due to excessive
surface changes. The findings are based on our experiments and are confirmed by our own
field observations, as well as published descriptions of geomorphological processes [59-61].
In addition, we calculated displacement curves, which indicated acceleration and high
ground motions—thus confirming the displacement increase in summer 2020, which can
be explained by a high rainfall event.

Apart from the complex, high-alpine study site investigated here, DIS could be prof-
itably employed for landslide types from pre-alpine to alpine sites. DIS could also be
of high value for earthquake and glacier studies, as it is able capture displacement rates
exceeding the detection capability of DINSAR. Nevertheless, future studies should focus on
the applicability of complementary optical data from other sensors, improving the accuracy
as well as the robustness for real world illumination conditions to confirm the detection
capability of DIS for landslide displacement. Further research is also needed to exploit
the potential of image-matching techniques for an improved understanding of landslide
kinematics ranging from single block sliding to complex flow-like behaviour, as well as
early warnings for landslides.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390 /1514030455 /51, Figure S1: An example of optical flow for estimating
mouth motion. Two consecutive images show regions of a mouth in motion (a,b) and the estimated
flow field using dense optical flow method (c) adapted from reference [67]. Figure S2: GIF showing
UAS multi-hillshades [0.16 m] of 13 July 2018; 24 July 2019; 4 September 2019; 8 July 2020; 8 September
2020. Figure S3: GIF showing DIS derived total displacement (transparent) superimposed on UAS
multi-hillshades [0.16 m] for the corresponding time interval (I: 13 July 2018-24 July 2019, 376 d;
II: 24 July 2019-4 September 2019, 42 d; III: 4 September 2019-8 July 2020, 308 d; IV: 8 July 2020-
8 September 2020, 62 d). Figure S4: GIF showing PC derived total displacement (transparent)
superimposed on UAS multi-hillshades [0.16 m] for the corresponding time interval (I: 13 July 2018-
24 July 2019, 376 d; II: 24 July 20194 September 2019, 42 d; III: 4 September 2019-8 July 2020, 308 d;
IV: 8 July 2020-8 September 2020, 62 d).
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Appendix A

In order to test IRIS, please visit https:/ /www.photomonitoring.com/iris/ to request
a free trial of the software via the contact form. Last access 12 January 2022.

Table Al. Settings for DIS single analysis.

Fi Gradient Use Mean Use Spatial Var. Re- Var. Re- Var. Re- Var. Re-
inest Patch  Patch R . R R 3 3
Scale Size  Stride Descending Normalisa- Propaga- finement  finement  finement  finement
Iterations tion tion Alpha Delta Gamma  Iterations
Interval I 0 8 3 25 X X 20 5 10 5
Interval I 0 8 3 25 X X 20 5 10 5
Interval IIT 0 16 2 30 X X 15 5 10 10
Interval IV 0 8 3 25 X X 15 5 10 10
Interval 1-3 0 8 3 25 X X 15 5 10 10
Interval 1-4 0 8 3 25 X X 20 5 10 5
Interval 2—4 0 8 3 25 X X 20 5 10 5
Interval 2-5 0 8 3 25 X X 20 5 10 5
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Abstract: The evaluation of mortality in earthquake-stricken areas is vital for the emergency response
during rescue operations. Hence, an effective and universal approach for accurately predicting the
number of casualties due to an earthquake is needed. To obtain a precise casualty prediction method
that can be applied to regions with different geographical environments, a spatial division method
based on regional differences and a zoning casualty prediction method based on support vector
regression (SVR) are proposed in this study. This study comprises three parts: (1) evaluating the
importance of influential features on seismic fatality based on random forest to select indicators for
the prediction model; (2) dividing the study area into different grades of risk zones with a strata
fault line dataset and WorldPop population dataset; and (3) developing a zoning support vector
regression model (Z-SVR) with optimal parameters that is suitable for different risk areas. We
selected 30 historical earthquakes that occurred in China’s mainland from 1950 to 2017 to examine
the prediction performance of Z-SVR and compared its performance with those of other widely used
machine learning methods. The results show that Z-SVR outperformed the other machine learning
methods and can further enhance the accuracy of casualty prediction.

Keywords: earthquake; casualty prediction; importance assessment; spatial division; support vec-
tor regression

1. Introduction

Earthquakes are among the most unpredictable and destructive natural hazards
around the world and have caused extremely heavy damage to human life and posses-
sions [1-4]. China is located at the intersection of the Alpine-Himalayan and Circum-Pacific
seismic zones, and is subjected to the collision and compression of the Eurasian Plate,
Philippine Plate and Indian Plate [5,6]; hence, it has always been prone to earthquakes [7,8].
To date, there have been nine catastrophic earthquakes with more than 200,000 casualties
in the world, of which three occurred in China. Since 1949, more than 100 destructive
earthquakes have occurred in 22 provinces of China, which have caused 270,000 casualties
in total, thereby accounting for 54% of all deaths from natural disasters in this country [5].
Considering the heavy destruction of earthquakes in China’s mainland, this study selected
it as the study area.

After an earthquake, it is necessary to promptly and efficiently conduct emergency
rescue to reduce damage and prevent further increases in the damage degree. An early
prediction of the death toll that is caused by the earthquake is an essential reference for the
government to determine which grade of emergency response [9] to be launched and what
amount of relief supplies to be mobilized to the affected areas [10]. Therefore, rapid and
accurate prediction of the number of earthquake casualties is a focus of disaster assessment
research.
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Related studies on seismic casualty prediction focus mainly on two aspects. One aspect
is the relationships between relevant factors and the number of earthquake casualties; these
studies can be broadly classified into three categories. The studies in the first category
explore the impact of seismic parameters on earthquake fatality. Xiao [11] analyzed the
relationship of seismic intensity and population density with the mean mortality rate,
and proposed an empirical formula for rapidly assessing the death toll, which has been
recommended as an effective method for evaluating the mortality rate by Assessment of
Earthquake Disaster Situation in Emergency Period (a China’s national standard). Jaiswal
and Wald [12] analyzed the mortality rates of earthquakes with various shaking intensity
levels all around the world and proposed a country/region-specific empirical model by
using an optimization method to evaluate seismic mortality. The studies in the second
category seek to identify the relationship between building vulnerability and earthquake
fatality. In the 1980s, commissioned by the Federal Emergency Management Agency
(FEMA), the Applied Technology Council (ATC) [13] surveyed and classified buildings in
California and proposed the ATC-13 earthquake damage matrix for systematically studying
and forecasting possible earthquake losses in this region. Ceferino et al. [14] proposed a
probabilistic model for evaluating the number and spatial distribution of casualties due to
earthquakes, which improved methods that focused only on a single-building by taking
multiple buildings into consideration. The studies in the third category consider the impact
of other factors, such as secondary disasters or demographic characteristics, on human loss.
Bai et al. [15] scientifically assessed the possible casualties that were caused by secondary
disasters and developed a logical regression model for predicting the death toll caused by
landslides in the 2014 Yunnan Ludian Mg 6.5 earthquake. Shapira et al. [16] integrated risk
factors that are related to population characteristics (age, gender, physical disability and
socioeconomic status) and proposed a model on the basis of the widely used loss estimation
model HAZUS.

Other studies focus on enhancing the accuracy of prediction models by improving
models or proposing new methods [17,18]. Karimzadeh et al. [19] presented a GIS-oriented
procedure in combination with geo-related parameters for identifying the destruction
in earthquake-stricken areas and evaluated the seismic loss based on damage functions
and relational analyses. Feng et al. [20] regarded building damage as a major cause of
earthquake deaths, and used high-resolution satellite imagery to detect building damage
in disaster areas. They developed a model for estimating the mortality rate due to an
earthquake based on remote sensing and a geographical information system. To solve
the problems in the evaluation systems (low precision, long time consumption and poor
stability), Zhang [21] proposed a seismic disaster casualty assessment system based on
mobile communication big data. Considering that seismic data has the characteristics of
small scale, nonlinearity and high dimensionality, many scholars have applied machine
learning methods, such as support vector machine (SVM), artificial neural network (ANN),
and random forest (RF), to earthquake casualty prediction models in recent years. Xing
et al. [22] improved SVM with a robust loss function and used it to construct a robust
wavelet earthquake casualty prediction model. Gul and Guneri [23] used earthquake
magnitude, occurrence time, and population density as input parameters and built a model
for earthquake casualty prediction based on the theory of ANN. Jia et al. [24] used the RF
model to compare the importance of features affecting the number of earthquake casualties
and proposed a deep learning model for casualty prediction.

According to the literature review above, relatively complete earthquake casualty
prediction methodologies have been presented by researchers from various aspects, which
provide references for feature selection and model construction in our study. However, an
analysis of the previous studies on earthquake casualty prediction reveals the following
shortcomings: (1) many prediction methods, especially those that utilize empirical func-
tions, can only be implemented with abundant historical seismic data, which makes it
difficult to obtain reliable prediction results when a limited quantity of data are available;
(2) some scholars simply considered one earthquake as the case and used a small number of
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samples to predict the death toll, whose achievements may be difficult to apply and deploy
due to the under-representativeness of predictors and methods; and (3) most studies simply
focused on the statistical relations between influential features and earthquake casualties,
which led to inadequate representativeness and lack of a theoretical basis for the generality
of such prediction models.

Based on the above observations, this study aimed to (1) evaluate the importance of
influential features on seismic fatality, study the regional variations in natural and human
geographical environments, and propose a spatial division approach for dividing the study
area into three degrees of risk zones; (2) improve the support vector regression (SVR) model
with reasonable input factors and the best model parameters for all risk zones; and (3)
evaluate the performance of the proposed zoning model through experiments.

The remainder of this paper is structured as follows. Section 2 introduces the geograph-
ical and seismic background of the study area and describes the data and methodology that
are used in this study. Section 3 presents the process and result of importance assessment
and proposes the approach of spatial division. Section 4 derives the SVR algorithm in detail
and presents the flow of the data processing and model construction. Section 5 presents the
experimental results of the proposed method. Section 6 discusses the results and compares
them with those of other models. The conclusions of this study are contained in Section 7.

2. Materials and Methods
2.1. Study Area

China’s mainland is located at the intersection of the Alpine-Himalayan and Circum-
Pacific seismic zones, where destructive earthquakes occur frequently [25]. Seismicity in
China’s mainland is characterized by high frequency, wide distribution, great intensity,
shallow seismic focus, and clear regional differences. Most earthquakes in this area are
shallow focus earthquakes that occurred within the continental crust, whose principal type
are strike-slip type [26]. Based on statistical data from the Earthquake Science Knowledge
Service System (http:/ /earthquake.ckcest.cn/earthquake_n/dzml/ch5.html, accessed on
15 July 2021), we developed a chart of the spatial distribution of historical earthquakes
in China’s mainland. Figure 1 shows the positions of plates and all earthquakes over Mg
4.0 that have occurred in China’s mainland since 1950. These earthquakes are widely
distributed in China’s mainland and the spatial pattern of seismic activities in this area is
featured by strong activities in the west and weak activities in the east.

With an area of 9.6 million square kilometers (including Taiwan Province), China has
diverse natural and human geographical environments that differ in terms of climates,
landforms and geological conditions in China; hence, it is difficult to build a single seismic
casualty prediction model that is suitable for the whole area. Seismic destructive effects in
this vast area are obviously regional. Figure 2 shows the distribution of population and
historical earthquakes in China’s mainland. The frequency of earthquakes and life losses
caused by these disasters are roughly bounded by a population dividing line called the Hu
Line [27]. To the east of the Hu Line, earthquakes have caused lager death tolls than those
to the west of this boundary, although high seismicity has been observed in the west. Since
1949, 19 provinces in China’s mainland suffered deaths due to earthquakes, among which
Hebei, Sichuan, and Yunnan Provinces suffered the most life loss events, accounting for
more than 90% of all casualties [28].
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Figure 1. Historical earthquakes and plate distribution in China’s mainland; nine-dotted line is the
boundary of China’s territory in the South China sea.
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Figure 2. Historical earthquakes and population distribution in China’s mainland.

2.2. Materials

The data that were used in this study included a geological fault dataset, a population
dataset and an earthquake case dataset. This study trained and verified the proposed
prediction model using the earthquake case dataset, which was also used to evaluate the
importance of factors affecting seismic fatality. Geological fault and population datasets
were used to divide the study area into defined risk zones based on regional differences.

2.2.1. Earthquake Case Dataset

The majority of the earthquake cases were collected from the Earthquake Science
Knowledge Service System (http://earthquake.ckcest.cn/featured_resources/disaster_
show.html, accessed on 20 July 2021), which includes 479 records of earthquakes over Mg
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4.0 that have occurred in China’s mainland since 1950. We deleted cases without deaths,
corrected and supplemented the dataset with relevant literature and reports [29-32], and
finally selected a total of 152 seismic cases with death registers in China’s mainland. The
original earthquake case dataset only had attributes such as location, occurrence date,
magnitude, focal depth and death toll. Because information about historical earthquakes is
very limited and difficult to acquire, a large part of the data mining process was devoted
to collecting and supplementing relevant attributes. We complemented the attributes
of earthquakes, including epicenter intensity, aftershock, landform, climatic condition,
secondary disaster, collapsed buildings and rescue capability, from their disaster situation
evaluation reports and relevant literature [24]. The attributes of occurrence time and day
were converted from the occurrence date. We calculated the linear density of strata faults in
ArcGIS software, and used the statistical analysis tool in ArcGIS to acquire the earthquake
attribute of geological fault density. The attributes of population density and the Gross
domestic product (GDP) were collected from statistical yearbooks of provinces where
earthquakes occurred. GDP is a monetary measure of the market value of all the final
goods and services produced in a specific time period. The data we collected is per capital
GDP, which is the ratio of GDP to the total population of the earth-quake-stricken region.
Detailed information about each attribute in the earthquake case dataset is provided in
Table 1.

Table 1. Specification of attributes in the earthquake case dataset.

No. Attribute Description & Qualification
1 Oceurrence day There are 7 categories where 1~7 C(?rrespond to Monday to
Sunday, respectively.
2 Occurrence fime The time when the earthquake occurred, which is defined
as the minutes after 0:00 on the day.
3 Location The province and city where the earthquake occurred,
including longitude and latitude.
4 Magnitude Defined as the surface wave magnitude.
The vertical distance from the hypocenter to the surface of
5 Focal depth the earth (km).
6 Epicenter intensit Measured according to The China Seismic Intensity Scale
p Y (China’s national standard).
7 Aftershock The number of shocks of magnitude greater than Mg 5.0
after the occurrence of the main shock.
3 Geological fault density The average density ofAstrata faults in the
earthquake-stricken area.
There are five categories, which are labelled 1 to 5, and
9 Landform represent plain, basin, hill, mountain and plateau,
respectively.
L . There are two levels where 0 indicates normal and 1
10 Climatic condition o
indicates abnormal.
There are two categories, where 0 indicates no secondary
11 Secondary disaster disaster and 1 indicates the occurrence of a secondary
disaster.
12 Population density The number of people who live in the earthquake-stricken
area per square kilometer.
13 Collapsed buildings The number of collapsed houses.
There are three levels where 1 indicates lacking assignment,
14 Rescue capability 2 indicates general assignment and 3 indicates improved
assignment.
The ratio of GDP to the total population of the
15 GDP . .
earthquake-stricken region.
16 Death toll The number of casualties due to the earthquake.
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To describe the data distribution characteristics of earthquake cases, we divided their
numbers of casualties into 6 categories: 0-9, 10-99, 100-999, 1000-9999, 10,000-99,999, and
>100,000. Then, we calculated the piecewise frequency statistics for each category and
plotted a statistical chart, which is shown in Figure 3. As shown in this graph, the death
tolls of most earthquakes in the dataset were within the ranges of less than 10, 10-99 and
100-999. Strong earthquakes with many casualties occurred with lower frequency; hence,
this study focuses on accurately predicting the death toll for earthquakes with less than
1000 casualties.

100

80 Selected samples
Unselected samples

60

40

Sample (Cases)
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T T
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Number of casualties (People)

Figure 3. Piecewise frequency statistics of earthquake casualties.

In the construction process of the machine learning model, earthquake samples with
many casualties will exert a significant impact on the performance of the prediction model.
To evaluate the influence of samples with great values, we conducted an experiment to
compare the prediction performance between two data groups: Group A and Group B.
Group A was the dataset including all the 152 seismic cases with 1000 casualties or more.
Group B was the dataset excluding samples whose numbers of casualties were more than
1000. We took Group A as the training dataset and input it into SVR model, and used the
10-fold cross-validation method to evaluate its prediction performance. The evaluation
indicators employed in this experiment were root mean square error (RMSE) and mean
absolute error (MeaAE), which are described in detail in Section 6.1. The same experiment
was also conducted in Group B. We calculated the average RMSE and MeaAE values for
the two groups. The result showed that the RMSE and MeaAE of Group A were 6579.29
and 2346.96, respectively. By contrast, the RMSE and MeaAE of Group B were 48.27 and
40.41 respectively, which means Group B shows significantly better prediction performance
due to the exclusion of extreme value samples.

Considering that the devastating earthquakes with more than 1000 casualties occur
extremely unfrequently, and their disaster mechanisms are much more complicated, the
study focuses on accurately predicting the death toll for earthquakes with less than 1000 ca-
sualties. Therefore, we removed cases with more than 1000 casualties in order to avoid
the influence of great values. A total of 143 seismic cases with death registers were finally
selected. The procedure of dataset division is as follows. (1) In Section 3, we proposes a
spatial division method and divides the study area into three groups: high, moderate and
low risk zones. Based on the result of spatial division, those selected cases were divided
into three parts, including 49 cases in low risk areas, 13 in moderate risk areas, and 81 in
high risk areas. (2) To evaluate the prediction accuracy of the Z-S5VR model for three degrees
of risk zones, we divided the dataset into training and testing datasets. For earthquake
cases in each degree of risk zones, we randomly extracted 1/5 of them as the testing dataset,
and the remainder was divided into the training dataset. We finally extracted 10 cases in
low risk zones, 3 in moderate risk zones, and 17 in high risk zones as the testing dataset
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to evaluate the performance of the seismic casualty prediction model. The remainder was
used as training dataset for building Z-SVR model. Table 2 presents the division of sample
dataset. Figure 4 shows the spatial distributions of historical cases.

Table 2. Numbers of training and testing samples in the defined risk zones.

Zone Training Sample (Cases) Testing Sample (Cases) Total (Cases)

Low risk 39 10 49
Moderate risk 10 3 13
High risk 64 17 81
Total 113 30 143
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Figure 4. Spatial distributions of the earthquake case dataset: (a) Training samples; (b) testing
samples.
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Importance Assessment

2.2.2. Geological Fault Dataset

We collected the geological fault dataset from the China Earthquake Data Center
(http:/ /datashare.igl.earthquake.cn/map / ActiveFault/introFault.html, accessed on 24
July 2021). It provides the spatial distribution of strata faults in China; the data are in vector
format and can be used for spatial analysis in ArcGIS software. This dataset includes 1966
fault segments. For 456 of these segments, detailed parameters such as age, orientation
and sliding rate are provided; for 664, only the name and number are specified; for 846,
only graphical features are provided, without any attributes. Since the coordinate system
of the dataset is the Krassovsky ellipsoid with the Albers projection, we used the projection
raster tool in ArcGIS to convert it into the WGS 1984 to ensure the consistency of the spatial
reference.

2.2.3. Population Dataset

The population dataset was collected from WorldPop (https://www.worldpop.org/,
accessed on 28 July 2021). It details the spatial distribution of the population with a
spatial resolution of 100 m. Its units are number of people per pixel with country totals
adjusted to match United Nations national population estimates. The format of this dataset
is raster, where the digital value of every pixel reflects the total population within this
grid. Considering that the samples in the earthquake case dataset have a long time series
while population data of a single year have difficulty reflecting demographic changes, we
collected population records in China’s mainland every five years from 2000 to 2020 (2000,
2005, 2010, 2015 and 2020) to explore the change in population in a long time series.

2.3. Methods

A methodological flowchart of the investigation is shown in Figure 5.
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Figure 5. Framework of the Z-SVR model.

Seismic fatality is a comprehensive result that is influenced by diverse factors, and
whether a factor has a decisive impact on earthquake casualties is an essential question
for feature selection of prediction models [33]. Therefore, before constructing a prediction
model for earthquake casualties, it is crucial to establish a reasonable index system and
analyze the importance of relevant indicators, which will serve as a reference for the
prediction model to select more important features. Based on regional disaster system
theory, this study established an evaluation index system for 14 major features that affect
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earthquake fatality. We used the earthquake case dataset and the random forest model to
assess the importance weights of features, of which the ranking served as an important
reference for feature selection of the prediction model.

Because of the variations among regions, there will be different numbers of casualties
due to earthquakes with the same ground motion parameter. Therefore, in earthquake cases
with the same seismicity, the diversity of disaster-formative environments and disaster-
affected bodies reflects the difference among regions [34]. Due to the vast area of China’s
mainland, it is difficult to build a universal prediction model that is suitable for all regions.
To enhance the accuracy of earthquake disaster assessment in emergency periods, it is
effective to divide the study area into risk zones based on regional differences and construct
a model that performs well for each risk zone. Based on the results of the importance
assessment and feature selection, geological fault density and population density are the
most important features of disaster-formative environments and disaster-affected bodjies,
respectively. Therefore, we chose these two features with relatively high importance
weights as representative factors for developing a partition standard and dividing the
study area into the defined grades of risk zones. The accuracy and applicability of the
earthquake casualty prediction approach can be improved by building different submodels
for areas with different regional characteristics.

As an extension of support vector machine (SVM) for solving regression problems
support vector regression (SVR) has attracted much attention in the field of machine
learning and displayed strong predictive ability in mortality evaluation. Compared with
other machine learning algorithms, SVR can achieve the optimal solution with a small
number of samples and avoid problems such as overfitting and local extremum as much as
possible, which makes its generalization ability and performance stand out [35]. However,
as a machine learning method that is based on historical statistics, it may be difficult for
the SVR model to accurately predict casualties due to earthquakes occurring in different
regions of the study area, especially those with vast acreage and diverse environments.
Therefore, based on the characteristics of SVR and regional differences in the study area, we
constructed a zoning SVR model (Z-SVR) for various regions in the study area; for which
the optimal model parameters for all risk zones were identified using training samples
from the earthquake case dataset.

3. Spatial Division
3.1. Importance Assessment

According to regional disaster system theory, a seismic disaster is a complex mech-
anism that is a comprehensive result of interactions between disaster-inducing factors,
disaster-affected bodies and disaster-formative environments [36]. Among them, disaster-
inducing factors, such as seismic magnitude and focal depth, are the sufficient condi-
tions for disaster occurrence; disaster-affected bodies, such as population distribution
and building destruction, represent the necessary conditions for disaster resilience; and
disaster-formative environments, such as climatic condition and secondary disaster, pro-
vide a natural and human geological background that affects disaster-inducing factors and
disaster-affected bodies [17]. The loss due to a disaster is attributed to the combined effects
of these three factors; therefore, for screening the prediction indicators, we constructed an
evaluation index system on the basis of regional disaster system theory, which is presented
in Table 3.
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Table 3. Evaluation index system of features that influence earthquake fatality.

Target Level Rule Level Index Level
Magnitude
Epicenter intensity
Focal depth
Disaster-inducing factors Geological fault density

Occurrence time
Occurrence day

Seismic fatality Aftershock

Collapsed buildings
Rescue capability
Population density
GDr

Climatic condition
Landform
Secondary disaster

Disaster-affected bodies

Disaster-formative
environments

Determining the importance weights of all features in the evaluation index system is
a quantitative task in importance assessment. Although traditional linear models show
good performance in the importance assessment of factors that affect earthquake fatality,
the result can be easily disturbed by the uncertainty and fuzziness of input data [37]. An
integrated ensemble model is an effective approach for mitigating the above problem and
improving the accuracy and generalization performance of the evaluation method [38],
which was demonstrated by previous studies [39]. Random forest (RF) is an effective
integrated ensemble model with random binary decision trees for classification or regres-
sion [39]. As an expansion of the bagging method, this algorithm constructs multiple
independent estimators that determine the output result by average or majority voting.
This approach enhances the precision and stability of the prediction model, reduces the
sensitivity of the model to noise and outliers, and avoids problems such as overfitting [40].
In contrast to other machine learning methods, the RF model can provide the quantified
importance of prediction indicators by calculating their increases in predictive error by
randomly permuting the values of a variable through out-of-bag observations of each tree.

We chose 7 indicators of disaster-inducing factors, 4 of disaster-affected bodies and 3
of disaster-formative environments as the input parameters of the RF model to evaluate
their importance to earthquake fatality. The values of the input parameters were extracted
from the earthquake case dataset. We utilized the machine learning package scikit-learn of
the Python programming language to construct the RF model. The “feature_importances_"
is an attribute of the RF model in the scikit-learn package. The importance of a feature is
computed as the normalized total reduction of the criterion brought by that feature. The
procedure is summarized as follows:

e Inputs: Disaster-inducing factors (7 variables), disaster-affected bodies (4 variables)
and disaster-formative environments (3 variables).

e  Parameters: Number of estimators = 150, criterion = ‘squared_error’, max depth =

6, min samples split = 2, min samples leaf = 1, min weight fraction leaf = 0.0, max

features = ‘auto’, max leaf nodes = None, min impurity decrease = 0.0, bootstrap =

Frue, oob score = False, number of jobs = None, random state = None, verbose = 0,

warm start = False, ccp_alpha = 0.0, max samples = None.

Step 1: Use bootstrap sampling to extract subtraining sets from the training set.

Step 2: Generate the feature subsets by randomly selecting features before node

splitting.

Step 3: Establish decision trees.

Step 4: Obtain the results for the sample to be tested.

Step 5: Calculate the importance of the input parameters.

Output: Importance weight of the prediction indicators.
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The ranking of all factors according to the importance weights from low to high is
shown in Figure 6.
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Figure 6. Importance weights of indicators on the index levels.

Based on the results of the importance assessment of influential features, magnitude,
collapsed buildings, epicenter intensity, population density, geological fault density and
GDP are major factors that affect seismic fatality. Magnitude and epicenter intensity are the
two most important parameters to depict the severity of an earthquake and exert substantial
influence on the seismic fatality; however, there is a strong correlation between these two
features. To avoid information redundancy, we selected magnitude, which has greater
importance weight, as the input parameter of the Z-SVR model. Building destruction is
the direct cause of earthquake injuries and deaths [41], and the primary task of emergency
rescue is to search for people who are buried in collapsed constructions. However, the
aim of the proposed model in this study is to rapidly predict the possible casualties of an
instantly occurring earthquake, which requires an extremely fast response speed. It will
take some time to identify the situation of building destruction and count the number of
collapsed buildings. Population density is the most important feature among the disaster-
affecting bodies; since human beings are the major victims of earthquakes, it is significant to
choose this feature as one of the prediction indicators. Geological fault is the most important
factor under the level of disaster-formative environments, where the density of strata fault
lines can be used to quantitively analyze regional differentiation and merits consideration.
GDP is a comprehensive indicator that is mutually restricted with population density in
terms of earthquake casualties; therefore, it is significant to introduce this factor as an input
parameter and consider its comprehensive effect with population density to ensure the
stability and accuracy of the prediction results. In conclusion, based on the result of the
importance assessment and the principles of rapid evaluation and avoiding information
redundancy, we finally selected magnitude, population density, geological fault density
and GDP as the input parameters for the construction of the Z-SVR model, among which
geological fault line density and population density were also applied to divide the study
area into risk zones.

3.2. Population Density

Disaster-affected bodies reflect the necessary conditions for disaster resilience, of which
population density has a major influence on the number of earthquake casualties and the
degree of destruction. High population density provides a vital motivation for the increase
in earthquake casualties [42]. In this study, the population dataset that was collected
from WorldPop includes raster data on the population distribution of China’s mainland
every five years from 2000 to 2020 (2000, 2005, 2010, 2015 and 2020). For those five raster
datasets, we converted the population count value to population density and calculated the
average density, which was implemented using the raster calculator tool in ArcGIS software.
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The general classification standard of population density was used to divide different
population densities into four categroies: extremely sparsely (less than 1 people/ km?),
sparsely (from 1 to 25 people/ kmz), moderately (from 25 to 100 people/ kmz), and densely
populated (greater than 100). Through this standard, we divided China’s population
distribution dataset into four parts, as shown in Figure 7.
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Figure 7. Distribution of classified population density in China’s mainland.

3.3. Geological Fault Density

Disaster-formative environments refer to the natural and human geological back-
ground that affects disaster-inducing factors and disaster-affected bodies [17], among
which geological faults are the zone blocks that bump into each other and generate shakes.
Previous work [28] has demonstrated that the distance from a geological fault is correlated
with the number of casualties that are caused by an earthquake. Therefore, we calculated
the linear densities of strata faults in China using ArcGIS software. The linear densities
were divided into three grades (high, moderate and low) by natural breaks. Figure 8 shows
the spatial distribution of the classified geological fault densities in the study area.
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Figure 8. Distribution of the classified strata fault densities in China’s mainland.
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3.4. Overlay Analysis

Overlay analysis is a frequently used geographic computing operation and a signif-
icant spatial analysis tool in GIS software, which is widely used in applications that are
related to spatial computing [43]. This operation integrates different data layers and their
corresponding attributes in the study area, which connects multiple spatial objects from
multiple data sources and quantitatively analyzes the spatial range and characteristics of
the interactions among different forms of spatial objects. Based on the feature selection
results, geological faults are the birthplace of an earthquake, and humans are the victims
of seismic disasters. In earthquakes with similar seismicity, denser strata fault lines and
higher population density will lead to a greater risk to personnel safety [28]. For the
above reasons, this study divided the study area into parts according to the variations
in population density and strata fault density and established a corresponding partition
standard. We developed a comprehensive partition standard that was used to overlay the
classification results. Then, we divided the study area into risk areas of three grades: low
risk, moderate risk, and high risk zones. The theory and procedure of the proposed spatial
division method are illustrated in Figure 9.
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Figure 9. Spatial division process.

4. Prediction Model
4.1. Algorithm

Support vector machine (SVM) is a kind of machine learning method that is based
on statistical learning theory and is a supervised learning model [44]. SVM implements
the structural risk minimization principle rather than the empirical risk minimization
principle [45], which gives it unique advantages in solving small-sample, nonlinear and
high-dimensional pattern recognition problems. Although SVM was initially applied to
classification problems, it has been gradually used to solve regression problems due to its
good performance in function fitting [46]. SVR is an extension of SVM for solving regression
problems. Compared with other machine learning algorithms, SVR can obtain the optimal
solution with a small number of samples and avoid problems such as overfitting and partial
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extreme values as much as possible [28], and its generalization ability and performance
have been well demonstrated.

The SVR algorithm is explained as follows. Consider a given training sample set
D = {(x1,11), (x2,¥2), ------ , (Xm,ym)}, where x; = (xil,xiz,...,xid)T e Ry, yieR, i=
1,2,...,m, x; is the ith sample and has feature dimensionality 4, x;j is the value of the jth
feature, y; € R is the corresponding target value of the ith sample, and m is the number
of samples. The goal of SVR is to find a regression model f(x) = wTx + b such that f(x)
is close to its corresponding target value y, where w and are parameters to be calculated.
In the traditional regression model, the function loss is calculated based on the difference
between f(x) and y, which is too strict and will eventually lead to overfitting [47]. To
overcome this disadvantage, SVR sets a maximum deviation € between f(x) and y, and the
function loss is counted only when the difference between f(x;) and y; is greater than e
(Figure 10). This is equivalent to constructing a spacer band of width 2e with f(x) as the
center; when the training sample is within the spacer band, the prediction result will be
designated as correct [48]. Therefore, the SVR problem can be formulated as

m
min o]+ C Y- ()~ ) (1)
wb 2 i
where C > 0 is a regularization constant and /¢ is an e-insensitive loss function (Figure 11),
which is expressed as

0, if || < e
|| —e€, otherwise.

tet) = { @

y
Fla L o
fx)te
fx)=wlx+b

(=
2

Figure 10. Sketch diagram for SVR.

£(z)
£(z) = g2
\ / (0 i'f IZI < e
2.(z) ==1{" =
(@) |z| — €, otherwise.
Z

Figure 11. Sketch diagram for the e-insensitive loss function.
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The first term of Equation (1) represents the flatness of the function, which is also called
m
the structural risk, and the second term of the equation, namely, Y- lc(f(x;) — y;), represents
i=1

the fitness between f(x) and its corresponding target values, which is also called the em-
pirical risk [48]. The regularization constant C is a compromise between the structural risk
and empirical risk. The constant C > 0 determines the trade-off between the flatness of
f(x) and the amount up to which deviations larger than € are tolerated [49]. To describe
the real deviation, two slack variables, namely, §; and éi, are introduced, and Equation (1)
can be reformulated as

vi—f(x) <e+&; @)

1 m R
min §|\w|\2+CZ(§i+§i);s.t. -
= &G&>0i=12,...,m

WheE '

{ flxi) —yi <e+éi

To efficiently solve the above optimization problem with inequality constraints, multi-
pliers u; > 0, fi; > 0, a; > 0, and &; > 0 are introduced. Based on the Lagrange multiplier
method, the following function can be deduced from Equation (3):

L(w,b,a,&,&& 1)
1 2 n . m moo
=3llwl|"+C X (&i+8i) — X wili — X s 4
y =1 = i=1 4)
+ '21 ai(f(xi) —yi—e—Gi)+ le &i(yi— f(xi) —e—&).
1= 1=
f(x) = wTx +b is substituted into Equation (4), the partial derivatives of

L (w, b,a,&,c, é, U, ﬁ) with respect to w, b ¢; and cfi are calculated, and these partial deriva-
tives are set equal to 0. The following system of equations is obtained:

m

w =Y (& —a;)x;, (5)

i=1

m
0= (& —a), ©)

i=1
C=ai+p, @)
C =&+ 8)
After solving the above system of equations, the dual problem of SVR can be formu-

lated as

L (&1‘ — IXZ')(&]' — lX]')xiTX]';
. = )
st Yy, (ﬁél — 061') =0,0<a;,& < C.

i=1

max ﬁ(yl(&, *0(,‘) *e(&i J"“i)) 7% g
=1

o j=1 i

To solve the above quadratic programming problem, the Karush-Kuhn-Tucker (KKT)
conditions [50] are used:

ﬂtiEf(xi)fz y)z‘ —€e— gz; =0,

&i(yi — f(xi) —e—G;) =0,

wii; =0, && =0, (10)
(C—a;) =0, (C—&;)& =0

Substituting Equation (5) into f(x) = wTx + b yields the following solution of the
SVR:

flx) = i(ﬁci—ai)xfxw. (11)
i=1
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If the term (&; — «;) of Equation (11) is not equal to 0, the corresponding sample
is a support vector of SVR that is located outside the spacer band. Based on the KKT
conditions, it is found that in Equation (10), every sample (x;, y;) satisfies the conditions
(C—wj) & =0and a;(f(x;) —y; — € — &;) = O; therefore, §; is equal to 0 when 0 < a; < C.
Then, the value of b can be deduced from Equation (11) as

m

b=yi+e—Y (& —a)xlx. (12)

i=1

However, Equation (11) is merely a solution for linear SVR. For real-world problems
with high feature dimensionality, it is impossible to find a hyperplane that satisfies both
fitness and flatness simultaneously [47]. An efficient approach is to map samples from
the original space to a higher-dimensional feature space where the samples are linearly
separable [48], and Equation (5) can be reformulated as

w= 3@~ a)9(x) (13

where ¢(x;) is the feature vector after mapping to a higher-dimensional feature space.
With the utilization of the kernel function method, the following solution for nonlinear
SVR is obtained:

flx) = Z:(@i —a;)x(x,x;) +b (14)

where x(x, x;) = ¢(x)T$(x;) is the kernel function. Table 4 presents various widely used
kernel functions.

Table 4. Specification of kernel functions.

Type Expression !
Linear kernel K(u,v) =u'o
Gaussian kernel K(u,v) = e lu—elf, >0
Polynomial kernel K(u,0) = (yuTv+ r)d
Sigmoid kernel K(u,v) = tanh(yu"v +7)

14 and v are multivariate vectors, and d > 1 is the degree of the polynomial.

4.2. Model Construction

Based on the results of the importance assessment and feature selection, we selected
the magnitude, population density, geological fault density and GDP as the input variables
and selected the number of earthquake casualties as the output variable. Considering
that different prediction indicators have different units of measurements, it is necessary
to normalize the sample dataset to enhance the convergence speed in finding the optimal
solution and to improve the accuracy of the Z-SVR model. The normalization method that
was used in this study was z-score normalization, which can be formulated as

X,‘—f

Zj= ———— (15)
% Yt (xi — x)?

where 7 is the number of samples in the dataset, x;. is the initial value of the i th sample,

n
z is its corresponding normalized value, and X = ) x; is the average initial value of all
i=1
samples.

Previous studies [51,52] have shown that the type of kernel function and corresponding
parameters have substantial impacts on the prediction performance of the SVR model. To
construct a fine-tuned Z-SVR model, parameter C for the linear kernel, parameters (C,
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gamma) for the Gaussian kernel and sigmoid kernel, and parameters (C, gamma, degree)
for the polynomial kernel should be selected [47]. C is the regularization parameter; gamma
and degree are equivalent to 7y and d. in Table 4, respectively. Grid search is a general
and effective method for parameter optimization, which is usually combined with cross-
validation [17]. To find the best SVR model for each risk zone, this study invoked the
GridSearchCV module in the scikit-learn package to search for optimal kernel functions
and their corresponding model parameters in a specified range based on grid search. The
selected parameters of the Z-SVR model are presented in Table 5.

Table 5. Model parameters of Z-SVR.

Zone Kernel Function Parameters
Lowisk Gaussian kernel C =100, gamma = 0.1
Moderate risk Gaussian kernel C =100, gamma =1
High risk Gaussian kernel C =1000, gamma = 0.1

This study obtained the Z-SVR model using the Python programming language
and machine learning package scikit-learn. The procedure of model establishment is
summarized as follows: (1) Select suitable features as input parameters. (2) Preprocess
the sample dataset by normalizing and dividing samples into training data and testing
data. (3) Establishing a scoring rule for comparing the predicted results with the actual
number of death casualties; if these two values are of the same order of magnitude, the
prediction will be considered correct. (4) Invoke the SVR module in the scikit-learn package
to build a model for each risk zone. (5) Invoke the GridSearchCV module in the scikit-learn
package, and obtain parameters and search ranges; then, use the 10-fold cross-validation
method to test the robustness of the model. (6) Input the training dataset into the SVR
model for each risk zone to obtain optimal kernel functions and their corresponding model
parameters for the Z-SVR model. (7) Input the testing dataset into Z-SVR model and predict
the earthquake death tolls. (8) Since the number of earthquake casualties should not be
negative, revise negative prediction results by setting them to 0. (9) Assess the performance
of the Z-SVR model on the testing dataset.

5. Results
5.1. Spatial Division of the Study Area

Considering the vast area and diverse environments of China’s mainland, to build an
earthquake casualty prediction model with better applicability, it is helpful to propose a
machine learning approach with submodels that are applied to different regions. Using the
strata fault dataset and population dataset, we divided the study area into risk zones using
the raster calculator tool in ArcGIS software according to the proposed partition standard.
We plotted the spatial division results and overlaid historical earthquakes with various
magnitudes and numbers of casualties onto it, as shown in Figure 12.
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Figure 12. Distribution of risk zones and historical earthquake in China’s mainland.

As shown in Figure 12, low risk zones were the most extensive, which accounted for
51.94% of China’s mainland, followed by high risk zones, which accounted for 25.59%. The
area of moderate risk zones was the smallest, which accounted for 22.47% of the study
area. According to the distribution of historical earthquakes, the majority of destructive
earthquakes occurred in high risk areas, which indicates the validity of the proposed
spatial division method. Fewer destructive earthquakes occurred in some provinces of
Northern China (Heilongjiang, Jilin, Beijing and Shanxi), Southern China (Hubei, Hunan
and Guizhou) and Eastern China (Zhejiang and Fujian), while these regions were divided
into high or moderate risk zones. This can be explained by the presence of dense strata fault
lines or high population density in these provinces. Considering that regions with fewer
earthquakes usually encounter more casualties due to failure to take necessary precautions
for disasters, it is significant for people in high and moderate risk zones to be trained with
anti-seismic knowledge and to engage in evacuation practices. Interestingly, although
earthquakes occurred in Xizang, Qinghai and Xinjiang Provinces of Western China, most
parts of these regions were divided into low risk zones. This inconsistency is due to the
low population densities of these provinces, which contain vast depopulated zones; this is
supported by the observation that most earthquakes with high seismicity caused minor
casualties in low risk zones.

5.2. Prediction Result of Z-SVR Model

This study improved the SVR model and proposed the Z-SVR model with optimal
parameters for different risk areas. We randomly selected 10 samples in low risk zones
(L1~L10), 3 in moderate risk zones (M1~M3) and 17 in high risk zones (H1~H17) to predict
the numbers of casualties and compare them with corresponding true values, which are
presented in Figure 13 and Table 6. Although the number of casualties varied over a large
range in the risk zones, the differences between the majority of the predicted values by
Z-SVR and the true values were acceptable. However, there were three samples with
noticeable error. Among these three earthquake cases, 2 occurred in Puer (H7 and H14),
and 1 occurred in Lijiang (H17); both cities are located in Yunnan Province. Considering
that Yunnan is a region with significant variation of the geological environment and a huge
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economic gap between cities and villages, further research should be conducted to develop
a specific approach for predicting earthquakes in this region.
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Figure 13. Prediction result of Z-SVR compared with the corresponding true values.

Table 6. Representative earthquakes in testing samples.

Sample No. Time Place True Value Predicted Value

L1 1989/9/22 Xiaojin 1 4.6
L3 1986/8/7 Litang 2 12
L7 2017/8/8 Jiuzhaigou 25 15.8
M1 1991/3/26 Datong-Yanggao 1 1.1
M2 2005/11/26 Jivjiang-Ruichang 13 17.8
H8 1953/5/4 Mile 3 3

H13 1965/1/13 Yuanqu 11 17.9
Hile 2008/8/30 Renhe-Huili 41 39.6

6. Discussion
6.1. Comparison between Z-SVR and Other Models

To evaluate the effectiveness of the proposed model, this study selected training
samples and used a cross-validation method to evaluate the robustness of the Z-S5VR model.
The regression and classification performances of the proposed model were also assessed
by predicting the numbers of casualties in testing samples and comparing the results in
terms of numerical difference and order of magnitude. Similar experiments were also
implemented on other widely used machine learning methods, including random forest
(RF), back propagation neural network (BP) and logistic regression (LR). This was followed
by a series of experiments and detailed analyses.

Several commonly used regression model evaluation indicators were employed in this
study, including root mean square error (RMSE) and mean absolute error (MeaAE), which
are defined as follows:

n
L (vi—9:)° (16)

i=1

RMSE =

S

MeaAE = Z|yz il 17)

where ; is the predicted death toll of the ith sample, y; is the corresponding true death toll,
and 7 is the number of samples.
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The classification model evaluation indicators that were applied in this study were
Precision, Recall and F1, which are defined as follows:

.. TP
Precision = TP+ EP (18)
TP
Recall = TP EN (19)
1 1 1 1
F1 2 (Precision + Recall) @0

where TP is the number of true-positive samples, FP is the number of false-positive samples,
TN is the number of true-negative samples, and FN is the number of false-negative samples.

6.1.1. Cross-Validation

The robustness of each model was evaluated using the cross-validation method. As
discussed in Section 2.2.1, 113 seismic cases were selected as the training dataset, among
which 49 cases were in low risk areas, 13 in moderate risk areas, and 81 in high risk areas.
We randomly divided the cases in low and high risk zones into ten groups, respectively;
considering the limited number of samples, we randomly divided the cases in moderate
risk zones into five groups. The sample data in each group were not repeated. We used
RMSE and MeaAE to compare the regression precision between the Z-SVR model and
other machine learning models using the spatial division method. RMSE and MeaAE were
calculated for three degrees of risk zones (L, M and H) and the average values (RMSE(A)
and MeaAE(A)) were also given. The comparison result of all models is shown in Figure 14.
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Figure 14. Model performance evaluated by the cross-validation method.

Judging from the stability of the prediction results on the training samples, all models
performed relatively better in low and moderate risk zones than in high risk zones. A
possible explanation is that there are 64 training samples in high risk zones, much more
than in low and moderate risk zones. In addition, the true numbers of casualties in these
64 samples vary from 1 to 748, which is a huge range and increases the difficulty for
machine learning models to achieve accurate prediction. Among all prediction models,
Z-LR performed the worst, as its RMSE and MeaAE were 83.37 and 52.72, respectively,
which ranked last in the two evaluation indicators. Z-BP and Z-RF outperformed the
Z-LR model, with RMSEs of 67.30 and 74.27, respectively, and MeaAEs of 42.80 and 49.17,
respectively. In contrast to the above prediction methods, Z-SVR showed higher overall
accuracy in cross-validation experiments for all risk zones. Its RMSE was 59.15, and its
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MeaAE was 36.16, which were significantly lower than those of the compared models;
this indicates that the proposed Z-SVR model had the smallest dispersion and the highest
stability.

6.1.2. Regression Accuracy Evaluation

For samples in low, moderate and high risk zones, this study used Z-SVR and other
models to predict their death tolls. Evaluation indicators of RMSE (L, M and H) and MeaAE
(L, M and H) were calculated for the risk zones, and the overall regression performances
(RMSE(A) and MeaAE(A)) of all models were also calculated, which are plotted in Figure 15.
For samples in low and moderate risk zones, the majority of models showed relatively
high regression accuracy, while for those in high risk zones, the Z-SVR and Z-BP models
showed good regression performance. Among all prediction models, in terms of overall
MeaAE, the Z-BP model showed the best regression accuracy with the lowest value of
16.73, and the Z-SVR model also performed well with MeaAE(A) of 17.39. In terms of
the overall RMSE, the average value of Z-SVR was 35.61, which was the lowest value,
followed by 35.89 for Z-BP. The precision evaluation results from Figure 15 further prove
that the proposed spatial division method has the advantages of enhancing prediction
accuracy and stability. For example, the RMSE of the Z-SVR model was the lowest, namely,
nearly half that of the SVR model; a similar result was obtained between the Z-BP and BP
models. In addition, the best fitting results were obtained by the Z-SVR and Z-BP models,
while the worst results were obtained by the RF, SVR and LR models, among which the
SVR and BP algorithms showed obviously improved performance with the utilization
of the spatial division method. The above analysis demonstrates that spatial division is
an effective method for improving the performance of machine learning algorithms in
predicting earthquake casualties and that the proposed Z-SVR model showed good and
stable performance in casualty prediction.
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Figure 15. Regression performances of Z-SVR and other models.

6.1.3. Classification Accuracy Evaluation

The prediction results of Z-SVR, Z-RF, Z-BP, Z-LR and their initial models were also
compared with the corresponding true values in terms of classification performance, where
pairs of prediction and true values with the same order of magnitude were considered
correct. Based on this criterion, we calculated the evaluation indicators of Precision, Recall,
and F1 for all prediction models for the risk zones, which are presented in Table 7. In
low and moderate risk zones, although the Precision of the LR model was 1, its Recall
performance was unsatisfactory, which led to a low F1 value; compared with LR and other
models, Z-SVR showed better classification performance in low and moderate risk areas
with relatively high Precision values and the highest Recall and F1 values. With regard
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to samples in high risk zones, Z-BP was the model with the best prediction performance,
with an F1 value of 0.87. However, the classification result of Z-SVR in high risk zones was
also excellent, with the highest Recall, the second-highestPrecision and the third-highest F1
values. In general, the Z-SVR model showed significant stability in classification prediction,
with the highest values of Recall and F1 and a relatively high value of Precision. The F1
order of Z-SVR in all risk areas from high to low is moderate, low, and high risk zones.
However, only a few earthquakes with casualties occurred in moderate risk areas; hence, we
obtained a limited number of historical cases for training prediction models and verifying
their performances, which made it difficult to evaluate the difference in classification
performance order between the two models.

Table 7. Comparison of classification performance between Z-SVR and other models for three degrees
of risk zones.

. Low Risk Moderate High Risk

Indicator Model Zones Risk Zones Zgones Total
Z-SVR 0.92 1 0.87 0.87

SVR 0.92 05 0.47 0.63

Z-RF 0.85 1 0.52 0.64

» RF 0.77 1 05 051
Precision Z-BP 0.72 0.83 1 0.94
BP 0.87 0.83 0.71 0.67

Z1R 0.87 0.83 1 093

LR 1 1 0.86 091

Z-SVR 0.9 1 0.82 087

SVR 0.9 0.67 0.47 0.63

Z-RF 0.7 0.33 0.53 057

RF 0.6 0.33 0.47 0.5

Recall Z-BP 05 0.67 0.76 0.67
BP 0.6 0.67 0.65 0.63

Z1R 0.6 0.67 0.71 0.67

LR 0.4 033 0.65 053

Z-SVR 0.9 1 0.81 087

SVR 0.9 0.56 0.46 0.63

Z-RF 071 05 0.52 059

RF 0.61 05 0.45 05

F1 7-BP 0.54 0.67 0.87 0.74
BP 0.63 0.67 0.64 0.65

Z1R 0.63 0.67 0.83 0.74

LR 057 05 0.74 0.67

We also divided the testing samples into three groups according to the number of
casualties, where the division criterion was order of magnitude (1 to 9, 10 to 99, 100 and
greater). We compared the classification performances of Z-SVR and other models in
the groups and calculated the evaluation indicators of Precision, Recall, and F1 for all
prediction models. Figure 16 presents the comparison results of classification performance
between Z-SVR and other models on samples with various numbers of casualties. Z-SVR
provided the most balanced and accurate classification into the three groups. Although
models such as Z-BP and Z-LR showed better classification performance in terms of
Precision or Recall in some groups, the Precision and Recall values of the Z-SVR model in
the three groups were high, balanced and stable; thus, Z-SVR had the highest F1 values in
each group. In general, the Z-SVR model was the most precise and stable model, which
provided accurate classification results for earthquakes with various numbers of casualties.
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Figure 16. Classification results of Z-SVR and other models for earthquakes with casualties of different
orders of magnitude: (a) Comparison of Precision; (b) comparison of Recall; and (c) comparison
of F1.
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6.2. Future Work

Further extensive studies are needed, and recommendations for future research are
discussed as follows. First, this study analyzes the importance of features that affect seismic
mortality, which simply collects 14 features and classifies them into disaster-inducing
factors, disaster-affected bodies and disaster-formative environments. Future studies can
extend the research by refining the classification standard and increasing the number of
factors. Second, this study divides the study area into risk zones of three grades based on
regional differences, where the partition standard exerts a potential influence on the accu-
racy and applicability of the proposed model. Future studies can explore more reasonable
criteria for different study areas. Third, the proposed prediction approach is a regression
model that is based on SVR, which is essentially a data-driven model. Future studies can
build models based on deeper seismic mechanisms to predict deaths that are caused by
earthquakes.

7. Conclusions

This study evaluated the importance of 14 features that affect seismic fatality based on
the RF model. On the basis of the importance assessment, we selected magnitude, popula-
tion density, geological fault density and GDP as the input parameters of the prediction
model, among which the densities of population and geological faults were also integrated
for spatial division. This study also proposed a spatial division method based on the theory
of regional difference. We studied the regional diversity of geological fault density and
population in China’s mainland using the WorldPop population dataset (100 m resolution)
every five years from 2000 to 2020 and the strata fault line dataset and, finally, divided the
study area into zones of various risk grades by overlay analysis. Based on the results of
feature selection and spatial division, this study proposed a zoning prediction model based
on SVR. Using 113 samples in the earthquake case dataset, we implemented model training
and obtained the optimal model parameters for each risk zone to enhance the prediction
accuracy of earthquake death tolls. The following conclusions were drawn from the results
that were obtained in this study:

1.  Among all selected features from the evaluation index system, the order of importance
from high to low is as follows: magnitude, collapsed buildings, epicenter intensity,
population density, geological fault density, GDP, occurrence time, focal depth, occur-
rence day, aftershock, secondary disaster, rescue capability, landform, and climatic
condition.

2. The proposed method of spatial division based on regional diversity could be used as
an effective tool to refine complex study areas. Using this method, we divided China’s
mainland into high, moderate, and low risk zones, which laid the foundation for the
construction of a prediction model with submodels that are suitable for different risk
zones. The verification results demonstrated that the proposed division method is
feasible for classifying study regions, especially those with vast area and complex
environments.

3. The proposed Z-SVR model realizes accurate prediction and good generalization
performance. We collected 143 historical earthquake cases, of which 113 cases were
selected as the training dataset and 30 for examining the prediction performance of
the model. The best model parameters were selected for each risk zone, which led
to precise prediction results in risk zones of various grades. The proposed model
also showed accurate regression and classification accuracy in the various risk zones
compared with other machine learning models, including RF, BP and LR. Moreover,
the proposed Z-SVR model was compared to the initial SVR model using the same
database. Similar experiments were also implemented on comparative machine
learning models, and we found that the prediction performances of all models with
spatial division significantly improved. The above results prove the advantages and
significance of the proposed model and spatial division method.
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Abstract: Wildfires are one of the most destructive natural disasters that can affect our environment,
with significant effects also on wildlife. Recently, climate change and human activities have resulted
in higher frequencies of wildfires throughout the world. Timely and accurate detection of the burned
areas can help to make decisions for their management. Remote sensing satellite imagery can have a
key role in mapping burned areas due to its wide coverage, high-resolution data collection, and low
capture times. However, although many studies have reported on burned area mapping based on
remote sensing imagery in recent decades, accurate burned area mapping remains a major challenge
due to the complexity of the background and the diversity of the burned areas. This paper presents
a novel framework for burned area mapping based on Deep Siamese Morphological Neural Net-
work (DSMNN-Net) and heterogeneous datasets. The DSMNN-Net framework is based on change
detection through proposing a pre/post-fire method that is compatible with heterogeneous remote
sensing datasets. The proposed network combines multiscale convolution layers and morphological
layers (erosion and dilation) to generate deep features. To evaluate the performance of the method
proposed here, two case study areas in Australian forests were selected. The framework used can
better detect burned areas compared to other state-of-the-art burned area mapping procedures, with
a performance of >98% for overall accuracy index, and a kappa coefficient of >0.9, using multispectral
Sentinel-2 and hyperspectral PRISMA image datasets. The analyses of the two datasets illustrate
that the DSMNN-Net is sufficiently valid and robust for burned area mapping, and especially for
complex areas.

Keywords: deep learning; PRISMA; burned area; Sentinel-2; morphological operator; convolutional
neural network

1. Introduction

As a natural hazard, wildfires represent one of the most important reasons for the
evolution of ecosystems in the Earth’s system on a global scale [1-3]. Recently, the frequency
of occurrence of wildfires has increased significantly due to climate change and human
activities around the world [4,5]. Wildfires can be influenced by the environment from
different aspects, such as soil erosion, increasing flood risk, and habitat degradation
for wildlife [6,7]. Furthermore, wildfires generate a wide range of pollutants, including
greenhouse gases (i.e., methane and carbon dioxide) [8].

Burned area mapping (BAM) can be useful to predict the behavior of a fire, to define
the burning biomass, for compensation from insurance companies, and for estimation of
greenhouse gases emitted [9,10]. As result, the generation of reliable and accurate burned
area maps is necessary for their management and planning in the support of decision

Remote Sens. 2021, 13, 5138. https:/ /doi.org/10.3390/rs13245138 183

https:/ /www.mdpi.com/journal/remotesensing



Remote Sens. 2021, 13, 5138

making. BAM by traditional methods (e.g., field surveys) is a major challenge, and these
methods have some limitations, such as the wide areas to be covered and the lack of direct
access to the region of interest, which leads to large time and financial costs [10].

The Earth observation satellite fleet has steadily grown over the last few decades [11].
The diversity of Earth observation datasets means that remote sensing (RS) is now known
as a key tool in the provision of valuable information about the Earth that is available
at low cost and time needs on a global scale [12]. Currently, the upcoming new series of
RS sensors (e.g., Landsat-9, PRecursore IperSpettrale della Missione Applicativa (PRISMA),
Sentinel-5) provides improvements in terms of spatial, temporal, and spectral detail, with
RS now becoming a routine tool with an extensive range of applications [13,14]. The most
common applications of RS include classification [15,16] and detection of targets [17,18]
and changes [19,20].

The diversity of RS Earth observation imagery and its free availability has meant that
monitoring of changes following disasters has turned into a hot topic for research [21-28].
Indeed, we are witnessing many BAM products on a global scale that differ in terms of
spatial resolution and reliability of the burned areas mapped. Based on spatial resolution,
the recent BAM methods can be categorized into two main groups: (1) coarse spatial
resolution satellite sensors and (2) fine spatial resolution sensors.

Burned area mapping based on the low and medium resolution of satellite imagery
is common in the RS community. In recent years, many studies have used BAM based
on Moderate Resolution Imaging Spectroradiometer (MODIS), Sentinel-3, Medium Res-
olution Imaging Spectrometer (MERIS), and Visible/Infrared Imager Radiometer Suite
(VIIRS) [29-31]. However, while these sensors have a high temporal resolution, they suffer
from low spatial resolution. Accurate BAM for small areas is a major challenge due to the
mixing of pixels. Furthermore, the complex diversity of scenes can result in spectrum gains
in one burned pixel to be mixed with some other material. Furthermore, these are based
on ruleset classification and manual feature extraction such that the extraction of suitable
features and the finding of optimum threshold values are time consuming.

Recently, with the arrival of a new series of cloud computing platforms (e.g., Google
Earth Engine, Microsoft Azure), BAM using fine-resolution datasets has been considered by
researchers. The capacity of cloud computing platforms has created a great opportunity for
BAM based on high-resolution datasets and advanced machine-learning-based methods
for accurate mapping. Based on the structure of the algorithm, we can categorize these
methods into two main categories: (1) BAM by conventional machine-learning methods
and (2) BAM via deep-learning-based frameworks.

Burned area mapping based on conventional machine-learning-based methods can be
used to extract spectral and spatial features, and then to define the burned areas according
to a classifier [10]. For instance, Donezar, et al. [32] designed a BAM framework based
on the multitemporal change-detection method and time series synthetic aperture radar
(SAR) imagery. They used an object-based image analysis method for classification of the
SAR imagery. They also used the Shuttle Radar Topography Mission (SRTM) for digital
elevation models to enhance their BAM results. Additionally, Xulu, et al. [33] considered
a BAM method based on differenced normalized burned ratios and Sentinel-2 imagery
in the cloud-based Google Earth engine. A random forest classifier method was used for
the BAM. They reported an overall accuracy close to 97% for detection of burned areas.
Moreover, Seydi, Akhoondzadeh, Amani and Mahdavi [10] evaluated the performance
of a statistical machine-learning method for BAM using the Google Earth Engine and
pre/post-fire Sentinel-2 imagery. Furthermore, they evaluated the potential spectral and
spatial texture features using a Harris hawks optimization algorithm for the BAM. They
reported an accuracy of 92% by the random forest classifier on the validation dataset.
Liu, et al. [34] proposed a new index for BAM for bi-temporal Landsat-8 imagery and an
automatic thresholding method. They evaluated the efficiency of their proposed method in
different areas. Their BAM results showed that their presented method had high efficiency.
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Recently, deep-learning-based approaches have been applied increasingly for map-
ping RS imagery, with promising results obtained. These methods can extract high-level
features from the raw data automatically, by convolution layers. This advantage of deep-
learning-based methods has resulted in their use for BAM. BAM based on deep-learning-
based methods has become a hot topic of research, with many methods being proposed.
For instance, Nolde, et al. [35] designed large-scale burned area monitoring in near-real-
time based on the morphological active contour approach. This framework was applied
through several steps: (1) generation of a normalized difference vegetation index (NDVI) for
pre/post-fire; (2) determination of the region of interest based on active fires, anomaly de-
tection, and region-growing methodologies; (3) accurate shape of the burned area perimeter
extraction based on morphological snakes; (4) confidence evaluation based on a burn area
index; and (5) tracking. The result was accuracy of 76% by evaluation with reference data.
Knopp, et al. [36] carried out BAM by deep-learning-based semantic segmentation based
on mono-temporal Sentinel-2 imagery. They used the U-Net architecture for their BAM. A
binary change map was obtained based on the thresholding of the U-Net probability map.
They reported the difficulty of the segmentation model in some areas, such as agriculture
fields, rocky coastlines, and lake shores. de Bem, et al. [37] investigated the effects of
patch sizes on the result of burned area classification with deep-learning methods using
Landsat-8 OLIL Here, three different deep-learning methods were investigated: simple
convolutional neural network (CNN), U-Net, and Res-U-Net. Their results showed that
Res-U-Net had high efficiency, with a patch-size of 256 x 266. Hu, Ban and Nascetti [26]
evaluated the potential of deep learning methods for BAM based on the unitemporal
multispectral Sentinel-2 and Landsat-8 datasets. Their study showed that deep-learning
methods have a high potential for BAM in comparison to machine-learning methods.
Ban, et al. [38] experimented with the capacity of time series SAR imagery for BAM by a
deep-learning method. To this end, their deep-learning framework was based on CNN and
was developed to automatically detect burned areas by investigating backscatter variations
in the time series of Sentinel-1 SAR imagery. They reported accuracy of <95% for BAM.
Zhang, et al. [39] proposed a deep-learning framework for mapping burned areas based on
fusion Sentinel-1 and Sentinel-2 imagery. Furthermore, they investigated two scenarios for
training the deep-learning method: (1) continuous joint training with all historical data
and (2) learning-without-forgetting based on new incoming data alone. They reported that
the second scenario for BAM showed accuracy close to 90%, in terms of overall accuracy.
Zhang, Ban and Nascetti [39] presented a deep-learning-based BAM framework by fusion
of optical and radar datasets. They proposed a deep-learning framework based on CNN,
with two convolution layers, max-pooling, and two fully connected layers. They showed
an increase in the complexity of the network that resulted in rising computing needs, while
the results for the burned area detection were not enhanced. Farasin, et al. [40] presented
an automatic framework for evaluation of the damage severity level based on a supervised
deep-learning method and post-fire Sentinel-2 satellite imagery. They used double-step
U-Net architecture for two tasks (classification and regression). The classification generated
binary damage maps and the regression was used to generate damage severity levels.
Lestari, et al. [41] increased the efficiency of statistical machine-learning methods and a
CNN classifier for BAM using optical and SAR imagery. Their BAM results showed that
the CNN method has high efficiency in comparison with other machine-learning methods
with texture features. Furthermore, the fusion of optical and SAR imagery can enhance
the results of BAM. Belenguer-Plomer, et al. [42] developed a CNN-based BAM method by
combining active and passive datasets. Sentinel-1 and Sentinel-2 were used by the CNN
algorithm to generate burned areas. Their proposed CNN architecture included two con-
volution layers, a max-pooling layer, and two fully connected layers. The results of BAM
have shown that combining Sentinel-1 and Sentinel-2 imagery can provide improvements.

Although many research efforts have proposed several algorithms for BAM and
applied them to fine-resolution optical and SAR RS imagery, many limitations remain:
(1) Semantic segmentation based methods (e.g., U-Net DeeplabV3+ and Seg-Net) have
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provided promising results, but they need large numbers of labeled datasets, and finding
large amounts of sample data with specific sizes (i.e., 512 x 512 or 1024 x 1024) for small
areas is a major challenge. (2) The performance of statistical classification methods such
as random forest or support vector machine classifiers depend on the setting of the input
features, while the selection and extraction of the informative manual features can be
a time-consuming process. (3) Some studies have focused on only spectral features for
BAM, while the efficiency of spatial features in BAM has been shown in many studies;
furthermore, an unsupervised thresholding manner on the spectral index is not always
effective due to the complexity of the background and ecosystem characteristics, and to the
topographic effects on the surface reflectance [43,44]. (4) Shallow feature representation
methods have been shown not to be applicable in complex areas, especially for BAM tasks.
(5) More methods have focused on time series Sentinel-1 imagery; however, preprocessing
and processing of SAR imagery is very difficult due to noise conditions.

To overcome these problems, the present study presents a novel framework for BAM
with heterogeneous datasets that has many advantages compared to other state-of-the-
art methods. The method proposed here is applied in an end-to-end manner without
additional processes, based on a deep morphological network. This method is based on
change detection that uses pre/post-fire datasets based on deep Siamese morphological
operators. Additionally, the efficiency of the hyperspectral dataset in comparison with the
multispectral dataset shows that this study takes advantage of the hyperspectral dataset.
The proposed framework is additive with the type of datasets, whereby the pre-event
dataset is Sentinel-2 imagery while the post-event dataset can be either Sentinel-2 or
hyperspectral PRISMA datasets.

The main contributions of this study follow: (1) BAM is based on deep morphological
layers for the first time; (2) it takes advantage of the hyperspectral PRISMA sensor dataset
for accurate BAM for the first time; and (3) it includes evaluation of the performance of
the multispectral and hyperspectral dataset in BAM and comparison of the results with
state-of-the-art methods.

This paper is outlined as follows: Section 2 provides the details of the DSMNN-Net
for BAM. Section 3 introduces the study areas and the datasets. The evaluation results of
this study area are provided in Section 4, and the experimentation results are discussed
in Section 5.

2. Methodology

The proposed framework is conducted in three steps, according to the flowchart in
Figure 1. The first step is image preparation, and in this step, some preprocessing (i.e.,
registration) is applied. The second step is the training of the proposed network to tune the
network parameters based on reference sample data. The training and validation datasets
are exploited in the training process to optimize the model parameters, while the testing
dataset is used to evaluate model hyperparameters. The third step is burned area map
generation and accuracy assessment of the result of the BAM.

2.1. Proposed Deep Learning Architecture

The proposed DSMNN-Net architecture for the detection of burned areas is illustrated
in Figure 2. Accordingly, the framework has two parts: (1) two streams of deep-feature-
extraction models and (2) classification. The deep-feature-extraction task is conducted
in a double-stream manner, such that these streams are for post-event and pre-event
datasets, respectively. Then, the deep features are transformed to the next task, which is
the classification. The classification task included two fully connected layers and a soft-
max layer for making a decision. More details of the DSMNN-Net are explained in the
next subsection.
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2.2. Deep-Feature Extraction

Feature extraction can be defined as an image processing technique to determine
the identity of the mutual importance of imaged areas. There are many procedures for
feature extraction in the field of image processing and RS, such as the texture Haralick
feature [45,46], spectral features (e.g., the NDVI) [10], and transformation-based (e.g.,
principal component analysis) and deep-feature [15,47,48] extraction. Among the types
of feature-extraction methods, the deep-feature-extraction methods have found a specific
place in RS communication because they have great potential for the extraction of complex
features from an image [49]. Deep-learning methods can automatically extract high-level
spatial and spectral features simultaneously [50]. This advantage of deep-learning methods
means that they have been used for many applications in RS, such as change detection [51],
classification [52], anomaly detection [53], and damage mapping [54].

Pre-Event Post-Event Reference Map
PRISMA
-2 e Sample Data Ground Truth)
|

Step II

Step IIT

Figure 1. Overview of the general framework for the burned area mapping.
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Figure 2. Overview of the proposed DSMNN-Net architecture for burned area mapping.

The deep features are extracted by convolution layers, and the arrangement of the
convolution layers and their diversity has caused many deep-learning-based methods to be
proposed [55-57]. Presenting the informative structure of convolution layers can be a major
challenge. In this regard, the present study presents a novel framework based on standard
3D, 2D, and depthwise convolution layers, with their combination with morphological
layers. As illustrated in Figure 2, the method proposed here has two deep-feature extractor
streams. The first stream investigates the pre-fire dataset, and the second stream explores
the deep features from the post-event dataset. Each stream includes 2D-depthwise, 3D/2D
standard convolution layers, and morphological layers based on erosion and dilation
operators. Initially, the deep-features extraction is based on 3D multiscale convolution
layers, and then the extracted features are fed into the 3D convolution layer. The main
advantage of 3D convolution layers is to take the full content of the spectral information of
the input dataset by considering the relation among all of the spectral bands. Furthermore,
the multiscale block enhances the robustness of the DSMNN-Net against variations in the
object size [12]. The multiscale block uses a type kernel size of convolution layers that
increase the efficiency of the network. The expected features are reshaped and converted to
2D feature maps, and then the 2D-depthwise convolution layers are used. Next, the hybrid
morphological layers based on 2D dilation and erosion combine with 2D convolution layers
to explore more high-level features. For this, first, we use two erosion layers, and then the
2D convolution layer and dilation layers are used (see Figure 2). Finally, the 2D convolution,
erosion, and dilation layers have been used in the last part of the morphological deep-
feature extractor. The extracted deep features are concatenated for two streams and then
they are flattened and transferred to two fully connected layers, and finally, the soft-max
layer is entitled to decide the input data. The main differences between the proposed
architecture and other CNN frameworks are:

(1) We take advantage of multiscale convolution layers that increase the robustness of
the network against the scale of variations.

(2)  We use the trainable morphological layers, which can increase the efficiency of the
network for the extraction of nonlinear features.
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(3)  We use 3D convolution layers to make use of the full content of the spectral informa-
tion in the hyperspectral and multispectral datasets.

(4) We use depthwise convolution layers that are computationally cheaper and can help
to reduce the number of parameters and to prevent overfitting.

2.3. Convolution Layer

The convolution layers are the core building block of deep-learning methods that can
learn feature representations of input data. A convolution layer builds several convolution
kernels to extract the type of meaningful features. This study used 3D /2D convolution
layers for deep-feature extraction [58-60]. Mathematically, the feature value (¥) in the /th
layer is expressed according to Equation (1) [61]:

vl = g(wlxl 1) +b, 1)

where x is the input data, g is the activation function, b is the bias vector for the current
layer, and w is the weighted vector. The value (v) at position (x,y,z) on the jth feature ith
layer for the 3D convolution layer is given by Equation (2) [62]:

A (x4w)(y+e)(z+A)
VI = g0+ 1, Yoy Lo Yo Wi ol oz @

where y is the feature cube connected to the current feature cube in the (i — 1)th layer, and
Q), @, and A are the length, width, and depth of the convolution kernel size, respectively.
In 2D convolution, the output of the jth feature map in the ith layer at the spatial location
of (x,y) can be computed using Equation (3):

"y*g<bz/+2 Zw 0 Zq) =0 t;)( IXY(;(])(W({))) @)

2.4. Morphological Operation Layers

Topological operators are applied to images by morphological operators to recover
or filter out specific structures [63,64]. Mathematical morphology operators are nonlinear
image operators that are based on the image spatial structure [65-67]. Dilation and Erosion
are shape-sensitive operations that can be relatively helpful to extract discriminative spatial-
contextual information during the training stage [67-69]. Erosion(©) and Dilation(®) are
two basic operations in morphology operators that can be defined for a grayscale image X
with size M x N and W structuring elements, as follows in Equation (4) [65,66]:

(X & W) (x,y) = 5 _(X(x Ly — m) + Wy(l,m)) "

S={({Im|l€{1,23,...,a};me {1,2,3,...,b}; }
where W is the structuring element of dilation that can be defined on domain S. Ac-
cordingly, the erosion operator with structuring element W; can be defined as follows in
Equation (5):

(XOW)(x,y) = {ies(X(x + Ly +m) — We(l,m)) ©)

The structure element is initialized based on random values in the training process.
The back-propagation algorithm is used to update the structure elements in the morpho-
logical layers. The propagation of the gradient through the network is very similar to that
of a neural network.

2.5. Classification

After deep-feature extraction by convolution and morphological layers, the deep
features are transformed for the flattening layer to reshape as 1D vectors. Then, these
vectors are fed to the first fully connected layer and the second fully connected layer. The
latest layer is soft-max, which assigns probabilities to each class for input pixels. Figure 1
presents the classification procedure for this framework.
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2.6. Training Process

The network parameters are initialized based on the initial values and then are tuned
iteratively based on optimizers, such as stochastic gradient descent. The DSMNN-Net is
trained based on the training data, and the error of the network is obtained based on the
calculation of the loss value on the validation dataset. The error of the training model is
fed to the optimizer and is used to update the parameters. Due to back-propagation, the
parameters are updated at each step to decrease the error of comparing the results obtained
from the network with the validation dataset. The Tversky loss function is used to calculate
the network error in the training process, which is a generalization of the dice score [70].
The Tversky index (TI) between ¥ (predicted value) and Y (truth value) is defined as in
Equation (6):

Y|

/%] + B/ ¥]
where & and f control the magnitude of penalties for false positive and false negative pixels,
respectively. These parameters are often chosen based on trial and error.

TI(Y, ¥, o B) = (¥ Ta

(6)

2.7. Accuracy Assessment

We assessed the results of the BAM based on visual and numerical analysis. The
numerical analysis was applied as the standard measurement indices. To this end, the five
most common quantitative assessment metrics were selected to evaluate the results. These
indices are the overall accuracy (OA), the kappa coefficient (KC), and the Fl1-score, Recall,
and intersection over union (IOU).

To compare the performance of the method proposed here, two state-of-the-art deep-
learning methods were selected for this study. The first method was the deep Siamese
network, which has been proposed in many studies for change detection purposes [71-73].
This method has three convolution layers in each stream, and then fully connected was
used for classification. Then, the second method was CNN, based on a framework designed
by Belenguer-Plomer, Tanase, Chuvieco and Bovolo [42] for mapping of burned areas. This
method has two convolution layers and a max-pooling layer, then two fully connected
layers were used. More details of this method can be found in [42].

3. Case Study and Satellite Images
This section investigates the case study area and the satellite data in more detail.

3.1. Study Area

Both study areas in this research were located in the Australian continent. The main
reason for choosing the areas was the availability of the PRISMA hyperspectral datasets
for these areas. Reference is the most important factor in the evaluation of BAM results.
Thus, the reference data were obtained based on visual analysis and the interpretation of
the results of BAM in previous papers. Figure 3 presents the locations of two study areas,
in the southern Australian continent.
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Figure 3. The locations of the two study areas for burned area mapping.

Figure 4 shows the incorporated burned area datasets for the first study area. Figure 5
illustrates the original incorporated dataset for the BAM for the second study area. The
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details for the incorporated datasets for both of the study areas are given in Table 1.
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Figure 5. Illustration of the various incorporated datasets for the burned area mapping for the second study area. (a) Pre-
event Sentinel-2 imagery. (b) Post-event Sentinel-2 dataset. (c) Post-event PRISMA hyperspectral imagery. (d) Ground truth.
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Table 1. The main characteristics of the incorporated datasets for both case studies.

Sensor Properties First Study Area Second Study Area
Spectral bands 13 13
a Spatial resolution (m) 10 10
_g Resampled spatial resolution (m) 30 30
k= Data size (pixel) 1168 x 1168 1159 x 1853
& Pre-event acquired date December 2019 October 2019
Post-event acquired date November 2020 January 2020
< Spectral bands 169 169
% Spatial resolution (m) 30 30
= Data size (pixel) 1168 x 1168 1159 x 1853
P~ Post-event acquired date December 2019 January 2020

3.2. Sentinel-2 Images

Sentinel-2 is a European Space Agency Earth observation project that provides con-
tinuity to services dependent on multispectral high-spatial-resolution observations over
the whole land surface of the Earth. This mission consists of two satellites, Sentinel-2-A
and Sentinel-2-B, which have completed the existing Landsat and Spot missions and have
enhanced data availability for RS communications. One satellite has a temporal resolution
of 10 days, while the two satellites have a temporal resolution of 5 days [10]. The Sentinel-2
main sensor, the multispectral instrument, is based on the push-broom principle. Sentinel-2
has 13 spectral bands and broad spectral coverage.

This study used the Level-2A product as input data for BAM, which are surface
reflectance data. Furthermore, it was necessary to convert the spatial resolution of the
Sentinel-2 dataset into the spatial resolution of the hyperspectral dataset (30 m).

193



Remote Sens. 2021, 13,5138

3.3. PRISMA Images

PRISMA is a medium-resolution hyperspectral imaging mission of the Italian Space
Agency that was launched in March 2019 [74]. The PRISMA sensor is a spaceborne system
that acquires hyperspectral datasets continuously, with a repeat orbital cycle of approxi-
mately 29 days [75]. PRISMA images the Earth surface in 240 contiguous spectral bands
(66 visible to near-infrared, plus 174 short-wave infrared) with a push-broom scanning
mode, covering the wavelengths between 400 and 2500 nm, at a spatial resolution of 30 m.
The high dimensional spectral bands provide the possibility to analyze complex land-cover
objects [14]. We chose the level-2-D product for the BAM, which was preprocessed (i.e., at-
mospheric correction and geolocation, orthorectification) [14]. The PRISMA hyperspectral
dataset is freely available on this website: http://prisma.asi.it/missionselect/, accessed on
16 November 2021. After removing the noisy and no-data bands, 169 spectral bands were
chosen for the next analysis.

4. Experiments and Results

Gathering of sample data is required to estimate the burned area due to using a
supervised learning method. The quality and quantity of the sample data have a key role
in BAM. In this study, the numbers of the sample data were kept at a sufficient level for the
two classes (i.e., burned areas, unburned areas). Figure 6 shows the spatial distribution of
the sample data.
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Figure 6. The spatial distributions of the two study areas for the burned area mapping. (a) Sample
data for the first study area. (b) Sample data for the second study area.

In addition, Table 2 shows the sizes of sample data for two classes in the study areas.

Table 2. The number of samples used for mapping of burned area in the two study areas.

Number of Pixels in Number of .. - .
Case Study the Study Area Class Samples Training Validation Testing
. Unburned 15,318 9803 2450 3065
First study area 989,764 Burned 21,387 13,687 3421 4459
Second study 1 955 898 Unburned 6590 4217 1054 1318
area [ Burned 3206 2051 513 642

4.1. Parameter Setting

The DSMNN-Net has hyperparameters that need to be set. These hyperparameters
were set manually based on trial and error. The optimum values of these parameters were
set as follows: the input patch-size for Sentinel-2 and PRISMA sensors were 11 x 11 x 13
and 11 x 11 x 169, respectively, with 500 epochs; the weight initializer was set as He-
normal-Initializer [76] for convolution layers; the random value for initializing of the
morphological layers, number of neurons at the fully-connected layer was 900; the initial
learning rate was 10%; and the minibatch size was 550. It is worth noting that all of the
hyperparameters were constant during the process for all of the CNN methods. Similarly,
the two other methods set such values. Additionally, the selection of some of these
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parameters was related to hardware (e.g., increasing minibatch size quickly filled the RAM
of the system). Moreover, the weight initializer by the He-normal-initializer increased the
speed of network convergence compared to the random initializer.

4.2. Results

The results for the BAM for the two study areas are considered in this section. For the
two main scenarios, these were investigated according to Table 3.

Table 3. Different scenarios for mapping of burned areas in two case-study areas.

Scenario Pre-Event Dataset Post-Event Dataset
S#1 Sentinel-2 Sentinel-2
S#2 Sentinel-2 PRISMA

4.2.1. First Study Area

Figure 7 shows the results of the BAM based on the post/pre-event Sentinel-2 imagery.
Based on these results, the DSMNN-Net differed from the BAM. Most methods detected
the burned areas, with differences seen in the detail. For example, there are some missed
detection areas in the results of the two CNN-based methods (center of scene) while the
method proposed here detected these well.

Figure 8 shows the mapping results for the heterogeneous dataset provided by var-
ious methods. As shown in Figure 8, all of the methods provided better performance in
comparison with the first scenario (5#1) as a result of the small missed detection area
that was significantly decreased. The results of the DSMNN-Net fit better with ground
truth while results of other methods have many false pixels; in particular, for the Siamese
network (Figure 8a). The main differences among these results are obvious at the edges of
the burned areas.
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Figure 7. Visual comparisons of the results for the burned area mapping based on the post/pre-event Sentinel-2 imagery for
the first study area. (a) Deep Siamese network. (b) Using the CNN method proposed in [42]. (c) Using the method proposed

in the present study. (d) Ground truth map.

150“5]0'(}"]5

The numerical results for the BAM for the first study area are given in Table 4. Based
on these data, the accuracies of all of the methods in both scenarios were >87% in all
terms. The accuracy of the algorithms in combining the hyperspectral datasets with the
multispectral dataset was significantly better than only the multispectral datasets. The
accuracy of the BAM results based on the fusion of the PRISMA imagery and Sentinel-2
imagery was >94% by OA index. However, the results of BAM based on only the Sentinel-2
imagery were very close together, but these were considerably different in the second
scenario (S5#2). The method proposed here provided an accuracy of >97% in terms of the
OA, Recall, and F1-score indices. Furthermore, this provided the highest score by KC index
for the second scenario.
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Figure 8. Visual comparisons of the results for the burned area mapping based on pre-event Sentinel-2 and post-event
PRISMA imagery for the first study area. (a) Deep Siamese network. (b) Using the CNN method proposed in [42]. (c) Using
the DSMNN-Net. (d) Ground truth map.

Table 4. Accuracy assessment for the burned area mapping for the first study area. S#1, pre/post-event Sentinel-2 imagery;

S#2, pre-event Sentinel-2 imagery and post-event PRISMA imagery.

Method Scenario OA (%) Recall (%) F1-Score (%) 10U KC
5 . S#1 87.94 87.10 91.34 0.740 0.716
lamese networ S#2 94.79 96.19 96.43 0.786 0.868
CNN method proposed S#l1 89.35 89.40 92.46 0.842 0.744
by [42] S#2 94.35 97.13 96.17 0.851 0.853
S#1 90.24 92.51 93.26 0.864 0.755
DSMNN-Net S#2 97.46 97.99 98.25 0.901 0.936

OA, overall accuracy; IOU, intersection over union; KC, kappa coefficient.

4.2.2. Second Study Area

Figure 9 illustrates the results of the BAM based on the bi-temporal multispec-
tral/hyperspectral datasets for the second study area. Based on these results, there are some
differences among the algorithms seen for the details. Figure 9a shows the performance of
the deep Siamese network, in that it has low false pixels, although many missed detection
pixels can be seen in the result. However, the lowest missed pixels can be seen in the BAM
for the method proposed by [42] in Figure 9b, although it shows high false pixels in the
results presented. The result of BAM by the DSMNN-Net can be seen in Figure 9c, which
shows the lowest false pixels and missed pixels in the mapping.

The results of the BAM based on the Sentinel-2 and PRISMA sensors for the second
area are presented in Figure 10. Based on the comparisons of the results presented with the
multispectral dataset, there are some improvements in the details of the mapping. These
improvements are more evident in the results of the DSMNN-Net, as some false pixels
were classified correctly.
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Figure 9. Visual comparisons of the results for the burned area mapping based on the post/pre-event Sentinel-2 imagery
for the second study area. (a) Deep Siamese network. (b) Using the CNN method proposed in [42]. (c) Using the method

proposed in the present study. (d) Ground truth map.

199



Remote Sens. 2021, 13,5138

117°45'0"E 118°0'0"E 117°45'0"E 118°0'0"E
@ 2 @ %
o s 54 154
= et = [=
N % % %
& B & -
2 2 @ @~
e 3 2 s
g . £
& & & &
[ Unburned I Unburned
I Burned S S e B Burned e e e K
117°45'0"C 118°0'0"C 117°45'0"E 118°0'0"E
@ (b)
117°450"E 118°00"E 117°450'E 118°00"E
=3 =3 =} F=3
z i e s
& & s 3
I @n » »
Z ) o g
2 2 2 2
3 3 3 3
[ Unburned g 0] 251 5 10
B Bumed o e Kilometrs I Bumed e m— Kilomcters
117°45'0"E 118°00"'E 117°45'0"E 118°0'0"E

(9) (d)

Figure 10. Visual comparisons of the results for the burned area mapping based on the pre-event Sentinel-2 and post-event
PRISMA imagery for the second study area. (a) Deep Siamese network. (b) Using the CNN method proposed in [42].
(c) Using the DSMNN-Net. (d) Ground truth map.

Table 5 presents the quantitative performance comparison of the methods for the
second study area for the BAM. Based on these data, there are some enhancements in the
results of the BAM in all terms for the case study area. The enhancement of the methods is
more evident for the Recall, F1-Score, IOU, and KC indices. For example, the difference
between Recall of the Siamese network in the first and second scenarios is >20%; moreover,
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in other terms, this improvement is >3%. The improvement of the BAM in the CNN
method proposed by [42] was slight. The DSMNN-Net has some improvements that are
more evident by terms KC, IOU, F1-Score, and Recall. For example, these terms show
greater improvement for the method proposed here in the detection of burned pixels, while
there is some improvement in the detection of nonburned pixels.

Table 5. Accuracy assessment for the burned area mapping for the second study area. S#1, pre/post-event Sentinel-2
imagery; S#2, pre-event Sentinel-2 imagery and post-event PRISMA imagery.

Method Scenario OA (%) Recall (%) F1-Score (%) 10U KC

Si K S#1 97.32 78.90 85.03 0.739 0.835
lamese networ S#2 97.41 98.79 88.05 0.786 0.866
CNN method proposed S#l 98.21 98.94 91.44 0.842 0.904
by [42] S#2 98.35 97.75 91.94 0.851 0.910

S#1 98.56 95.13 92.75 0.864 0.919

DSMNN-Net S#2 98.95 98.90 94.80 0.901 0.942

OA, overall accuracy; IOU, intersection over union; KC, kappa coefficient.

5. Discussion

This study focused on BAM based on deep-learning methods based on bi-temporal
multispectral and hyperspectral imagery. BAM has mainly been applied based on low-
resolution satellite imagery (e.g., MODIS, VIIRS, and Sentinel-3). However, BAM based on
these sensors has provided promising results, although mapping of small burned areas is
the most important challenge. These methods support the high coverage areas but do not
provide suitable results for small areas. Furthermore, there are some burned area products
on a global scale based on the MODIS satellite imagery. Many studies have evaluated the
accuracy obtained by BAM based on the MODIS collection, where this has been reported
as <80%, while for the BAM for both study areas, the DSMNN-Net provided an accuracy
of >98% by the OA index (Tables 4 and 5).

Most BAM is mainly based on high-resolution imagery (e.g., Landsat-8, Sentinel-2)
for the normalized burned ratio index. Although this index has provided some promising
results for BAM, due to the dependency of burned areas on the environmental features
and the behavior of the fire, it is hard to discriminate burned areas from the background.
This issue has reduced the efficiency of the BAM methods by the need to threshold the
normalized burned ratio indices. Furthermore, some high-resolution burned area products
on a global scale have been obtained based on this. Thus, these products do not support
accurate BAM in practical real-world burned area estimation. Similarly, some unsupervised
thresholding methods have been used, but due to the complexity of the background and
noise conditions, the selection of suitable thresholds is another limitation of these methods.

Many BAM methods have been proposed based on machine-learning methods, such
as random forest, K-nearest neighbor, and support machine vector. While these methods
have provided acceptable results for BAM, they use handcrafted feature extraction. Manual
feature extraction and then selection of suitable features is a time-consuming process. This
issue needs to be considered when the study area is very large scale and the number
of features is high. Additionally, these methods mainly focus on spectral features and
ignore the potential of spatial features. The potential of spatial features has been shown
in many studies on BAM based on machine-learning methods. The deep-learning-based
methods can automatically extract deep features that are a combination of spectral and
spatial features. This study has used the deep-feature extraction manner for BAM based on
convolution and morphological layers.

To show further the effectiveness of the DSMNN-Net process, we visualized the
feature maps in the different layers to look inside their internal operation and behavior.
Figure 11 illustrates the visualization of the feature maps extracted from some layers in
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the proposed DSMNN-Net for random pixels. The first layers show the shallow features,

while the middle layers focus on the general structure around the central pixel.
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Figure 11. Visualization of feature maps in the DSMNN-Net for a random pixel.

The efficiency of deep features and handcrafted features can be seen in Table 6. Based
on these data, the DSMNN-Net provided greater accuracy compared to other state-of-the-

art methods for BAM using the Sentinel-2 imagery.
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Table 6. Comparison of performance of the DSMNN-Net with other burned area mapping methods.

Reference Accuracy Method Dataset
Support vector machine
Grivei, et al. [77] (F1-Score: 0.873) algorithm and spectral indices, Sentinel-2
factor analysis
Barboza Castillo, et al. [78] 944 Thresholdu}g on the Sentinel-2
spectral index
Syifa, et al. [79] 92 _ Support vector machine and Sentinel-2
imperialist competitive algorithm
. . . Combination of Landsat-8
Quintano, et al. [80] 84 Spectral index and thresholding and Sentinel-2
Ngadze, et al. [81] 92 Random forest Sentinel-2
Roy, et al. [82] 9 Random foFest change regression, Combination o'f Landsat-8
and a region growing manner and Sentinel-2
Lima, et al. [83] 9% Thresholding on the Sentinel-2
spectral index
Seydi, Akhoondzadeh, Amani Spectral and spatial features and .
and Mahdavi [10] o random forest Sentinel-2
DSMNN-Net 98 Deep-learning based Sentinel-2

OA, overall accuracy.

Hyperspectral imagery has a high content of spectral information in comparison with
multispectral imagery. This advantage of hyperspectral imagery helps to detect burned
areas with a highly complex background. Thus, the main reason behind the robust results
provided by the method proposed here is the use of the hyperspectral dataset for the
BAM. The burned pixels have a high similarity to some unburned pixels, and to clarify
this subject, we presented some spectral signatures of burned and unburned pixels in the
different areas. Figure 12 illustrates the similarities of the spectral signatures for the two
main classes. Based on these data, the burned and unburned pixels have similar behaviors
in the 0.45 to 0.8 um range, while for other areas there are some differences in the reflectance.
Therefore, hyperspectral imagery and combining pre-event datasets can be useful for BAM.

Additionally, the proposed suitable deep-feature extraction framework is very impor-
tant in deep-learning-based methods. Among these three deep-learning-based methods,
the method proposed here provided the best performance in all of the scenarios and for
both study areas. This issue originated from the architecture of the deep-learning methods
in the extraction of deep features. The DSMNN-Net extracts the deep features based on
the type of kernel convolution and morphological layers. Initially, the DSMNN-Net uses
multiscale 3D kernel convolution that investigates the relation among the spectral bands in
deep-feature extraction. Based on Figure 12, there are some differences among the spectral
signatures for the same classes, and these differences are greater for some spectral bands.
Furthermore, there is some overlap between the two classes in the spectral bands. Therefore,
using 3D convolution can enhance the efficiency of the network, because this can consider
the relations between the spectral bands and the relations between the central pixel and the
neighboring pixels. This advantage is the most important factor in taking the full content
of spectral information for the BAM. Then, the morphological layers are used to explore
nonlinear characterizers of the input dataset in the mapping. Thus, the DSMNN-Net can
extract high-level and informative deep features based on proposed architectures; as a
result, accurate BAM is possible using this proposed method. Additionally, the diversity
of objects and the complexity of unburned areas mean that the BAM changes, which is
a challenge. Solving this challenge mainly requires increasing the depth of the network,
which results in an increasing number of parameters, and the need for greater training data
and time. Here, the DSMNN-Net uses morphological operation cases to investigate the
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complexity of the background. The morphological operators use nonlinear operations that
increase the efficiency of the network for the BAM.

D? T T T T T T T T T
— Burned
gL — Burned i
— Burned
— Burned
05k | — Burned i
— Butned ST
....... Unburned
3
04 B
&
o .
T e
© 03 =
[
0.z =
01 B
0 1 1 1 1 1 1 1 1
400 B00 800 1000 1200 1400 1600 1800 2000 2200 2400
Wavelength

Figure 12. Spectral signatures among the burned and unburned pixels.

Recently, some semantic-segmentation-based (U-Net architecture) methods have been
proposed. While these methods can provide considerably improved results for BAM,
it needs to be noted that they require large amounts of labeled data of a specific size
(i.e., 512 x 512 or 256 x 256). Obtaining a large amount of labeled datasets for such an
application is very difficult and time consuming. Furthermore, these models are more
complex due to the higher number of parameters and the need for more time for training
the network. The DSMNN-Net used close to 45,000 pixels for the BAM, and obtaining this
amount of sample data is easy according to the extent of the study areas.

One of the most common challenges for BAM based on changes in detection meth-
ods is the detection of nontarget changes. For example, the second study area has some
nontarget change areas where their changes originated from changes in the water level
of the lakes. This issue meant that the methods considered these as burned areas, while
they are nonburned areas. This challenge is more evident in the BAM by the CNN method
proposed in [42]. The sample data should cover more areas in the background, although
the method proposed here controlled this issue in the BAM.

The method proposed here uses adaptive heterogeneous datasets in the mapping
of burned areas. However, pixel-based change detection methods can be applied for bi-
temporal multispectral/hyperspectral datasets easily, while they are difficult to apply for a
heterogeneous dataset. In other words, some methods (i.e., image differencing algorithm)
compare the pixel-to-pixel of the first and second time of bi-temporal dataset for BAM,
while for heterogeneous datasets this is very difficult due to difference in a number of
spectral bands, and content of datasets. The proposed DSMNN-Net can be applied to
heterogeneous datasets without any additional processing (e.g., dimensional reduction).
These advantages will also help in BAM when applied in a near real-time manner. It is
worth noting that the proposed DSMNN-Net applied based on pre-event multispectral
and post-event hyperspectral datasets while the bi-temporal pre-event and post-event
hyperspectral datasets can improve the result of the BAM.
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6. Conclusions

Accurate and timely BAM is the most important factor in wildfire damage assessment
and management. In this study, a novel framework based on a deep-learning method
(DSMNN-Net) and the use of bi-temporal multispectral and hyperspectral datasets was
proposed. We evaluated the performance of the DSMNN-Net for two study areas in two
scenarios: (1) BAM based on bi-temporal Sentinel-2 datasets and (2) BAM based on pre-
event Sentinel-2 and post-event PRISMA datasets. Furthermore, the results for the BAM are
compared with other state-of-the-art methods, both visually and numerically. The results
of the BAM show that the method proposed here has high efficiency in comparison with
the other methods for BAM. Additionally, the use of hyperspectral datasets can improve
the performance of BAM based on deep-learning-based methods. The experimental results
of this study illustrate that the DSMNN-Net has some advantages: (1) it provides high
accuracy for BAM; (2) it has a high sensitivity for BAM for complex background areas; (3) it
is adaptive, with heterogeneous datasets for BAM (multispectral and hyperspectral); and
(4) it can be applied in an end-to-end framework without any additional processing.

Author Contributions: Conceptualization, S.T.S. and M.H.; methodology, S.T.S.; writing—original
draft preparation, S.T.S.; writing—review and editing, S.T.S., M.H. and J.C.; visualization, S.T.S.;
supervision, M.H. and J.C.; funding acquisition, ].C. All authors have read and agreed to the published
version of the manuscript.

Funding: This study received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These datasets
can be found at https:/ /scihub.copernicus.eu/, accessed on 16 November 2021 and http://prisma.
asi.it/missionselect/, accessed on 16 November 2021.

Acknowledgments: The authors would like to thank the European Space Agency and the Italian
Space Agency for providing the datasets. We thank the anonymous reviewers for their valuable
comments on our manuscript. This research was partially supported by the AXA fund for research
and by MIAI @ Grenoble Alpes, (ANR-19-P31A-0003).

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1.

Llorens, R.; Sobrino, J.A.; Fernandez, C.; Fernandez-Alonso, ].M.; Vega, J.A. A methodology to estimate forest fires burned areas
and burn severity degrees using Sentinel-2 data. Application to the October 2017 fires in the Iberian Peninsula. Int. |. Appl. Earth
Obs. Geoinf. 2021, 95, 102243. [CrossRef]

Nohrstedt, D.; Mazzoleni, M.; Parker, C.E; Di Baldassarre, G. Exposure to natural hazard events unassociated with policy change
for improved disaster risk reduction. Nat. Commun. 2021, 12, 193. [CrossRef]

Roy, D.P; Li, Z.; Giglio, L.; Boschetti, L., Huang, H. Spectral and diurnal temporal suitability of GOES Advanced Baseline Imager
(ABI) reflectance for burned area mapping. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102271. [CrossRef]

de Luca, G; Silva, ].M.; Modica, G. A workflow based on Sentinel-1 SAR data and open-source algorithms for unsupervised
burned area detection in Mediterranean ecosystems. GIScience Remote Sens. 2021, 58, 516-541. [CrossRef]

Duane, A.; Castellnou, M.; Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim.
Chang. 2021, 165, 43. [CrossRef]

Palaiologou, P; Kalabokidis, K.; Troumbis, A.; Day, M.A; Nielsen-Pincus, M.; Ager, A.A. Socio-Ecological Perceptions of Wildfire
Management and Effects in Greece. Fire 2021, 4, 18. [CrossRef]

Serra-Burriel, F; Delicado, P.; Prata, A.T.; Cucchietti, EM. Estimating heterogeneous wildfire effects using synthetic controls and
satellite remote sensing. Remote Sens. Environ. 2021, 265, 112649. [CrossRef]

Chowdhury, S.; Zhu, K.; Zhang, Y. Mitigating Greenhouse Gas Emissions Through Generative Adversarial Networks Based
Wildfire Prediction. arXiv 2021, arXiv:2108.08952.

Haque, M.K; Azad, M.A K; Hossain, M.Y.; Ahmed, T.; Uddin, M.; Hossain, M.M. Wildfire in Australia during 2019-2020, Its
Impact on Health, Biodiversity and Environment with Some Proposals for Risk Management: A Review. ]. Environ. Prot. 2021, 12,
391-414. [CrossRef]

205



Remote Sens. 2021, 13, 5138

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Seydi, S.T.; Akhoondzadeh, M.; Amani, M.; Mahdavi, S. Wildfire damage assessment over Australia using sentinel-2 imagery and
MODIS land cover product within the google earth engine cloud platform. Remote Sens. 2021, 13, 220. [CrossRef]

Pandey, P.C.; Koutsias, N.; Petropoulos, G.P,; Srivastava, P.K.; Ben Dor, E. Land use/land cover in view of earth observation: Data
sources, input dimensions, and classifiers—A review of the state of the art. Geocarto Int. 2021, 36, 957-988. [CrossRef]

Seydi, S.T.; Hasanlou, M.; Amani, M.; Huang, W. Oil Spill Detection Based on Multi-Scale Multi-Dimensional Residual CNN for
Optical Remote Sensing Imagery. IEEE |. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10941-10952. [CrossRef]

Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open
science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [CrossRef]

Vangi, E.; D’Amico, G.; Francini, S.; Giannetti, F.; Lasserre, B.; Marchetti, M.; Chirici, G. The new hyperspectral satellite PRISMA:
Imagery for forest types discrimination. Sensors 2021, 21, 1182. [CrossRef]

Wambugu, N.; Chen, Y.; Xiao, Z.; Wei, M; Bello, S.A.; Junior, ].M.; Li, J. A hybrid deep convolutional neural network for accurate
land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102515. [CrossRef]

Xu, L,; Li, J.; Brenning, A. A comparative study of different classification techniques for marine oil spill identification using
RADARSAT-1 imagery. Remote Sens. Environ. 2014, 141, 14-23. [CrossRef]

Gu, Y; Liu, T,; Gao, G.; Ren, G.; Ma, Y.; Chanussot, |.; Jia, X. Multimodal hyperspectral remote sensing: An overview and
perspective. Sci. China Inf. Sci. 2021, 64, 1-24. [CrossRef]

Hong, D.; Chanussot, J.; Zhu, X.X. An Overview of Multimodal Remote Sensing Data Fusion: From Image to Feature, from
Shallow to Deep. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels,
Belgium, 11-16 July 2021; pp. 1245-1248.

Mardian, J.; Berg, A.; Daneshfar, B. Evaluating the temporal accuracy of grassland to cropland change detection using multitem-
poral image analysis. Remote Sens. Environ. 2021, 255, 112292. [CrossRef]

Sun, Y.; Lei, L.; Li, X.; Sun, H.; Kuang, G. Nonlocal patch similarity based heterogeneous remote sensing change detection. Pattern
Recognit. 2021, 109, 107598. [CrossRef]

ElGharbawi, T.; Zarzoura, F. Damage detection using SAR coherence statistical analysis, application to Beirut, Lebanon. ISPRS .
Photogramm. Remote Sens. 2021, 173, 1-9. [CrossRef]

Hashemi-Beni, L.; Gebrehiwot, A.A. Flood extent mapping: An integrated method using deep learning and region growing using
UAV optical data. IEEE ]. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2127-2135. [CrossRef]

Liu, S.; Chi, M.; Zou, Y,; Samat, A.; Benediktsson, J.A.; Plaza, A. Oil spill detection via multitemporal optical remote sensing
images: A change detection perspective. IEEE Geosci. Remote Sens. Lett. 2017, 14, 324-328. [CrossRef]

Moya, L.; Geifs, C.; Hashimoto, M.; Mas, E.; Koshimura, S.; Strunz, G. Disaster Intensity-Based Selection of Training Samples for
Remote Sensing Building Damage Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8288-8304. [CrossRef]

Zheng, Z.; Zhong, Y.; Wang, ].; Ma, A; Zhang, L. Building damage assessment for rapid disaster response with a deep object-based
semantic change detection framework: From natural disasters to man-made disasters. Remote Sens. Environ. 2021, 265, 112636.
[CrossRef]

Hu, X,; Ban, Y.; Nascetti, A. Uni-Temporal Multispectral Imagery for Burned Area Mapping with Deep Learning. Remote Sens.
2021, 13, 1509. [CrossRef]

Munoz, D.F,; Munoz, P.; Moftakhari, H.; Moradkhani, H. From local to regional compound flood mapping with deep learning
and data fusion techniques. Sci. Total Environ. 2021, 782, 146927. [CrossRef]

Zhang, Q.; Ge, L.; Zhang, R.; Metternicht, G.I.; Du, Z.; Kuang, J.; Xu, M. Deep-learning-based burned area mapping using the
synergy of Sentinel-1&2 data. Remote Sens. Environ. 2021, 264, 112575.

Chiang, S.-H.; Ulloa, N.I. Mapping and Tracking Forest Burnt Areas in the Indio Maiz Biological Reserve Using Sentinel-3 SLSTR
and VIIRS-DNB Imagery. Sensors 2019, 19, 5423. [CrossRef]

Lizundia-Loiola, J.; Franquesa, M.; Boettcher, M.; Kirches, G.; Pettinari, M.L.; Chuvieco, E. Implementation of the Burned Area
Component of the Copernicus Climate Change Service: From MODIS to OLCI Data. Remote Sens. 2021, 13, 4295. [CrossRef]
Pinto, M.M.; Trigo, RM.; Trigo, L.E; DaCamara, C.C. A Practical Method for High-Resolution Burned Area Monitoring Using
Sentinel-2 and VIIRS. Remote Sens. 2021, 13, 1608. [CrossRef]

Donezar, U.; De Blas, T.; Larrafiaga, A.; Ros, E; Albizua, L.; Steel, A.; Broglia, M. Applicability of the multitemporal coherence
approach to sentinel-1 for the detection and delineation of burnt areas in the context of the copernicus emergency management
service. Remote Sens. 2019, 11, 2607. [CrossRef]

Xulu, S.; Mbatha, N.; Peerbhay, K. Burned Area Mapping over the Southern Cape Forestry Region, South Africa Using Sentinel
Data within GEE Cloud Platform. ISPRS Int. . Geo-Inf. 2021, 10, 511. [CrossRef]

Liu, S.; Zheng, Y.; Dalponte, M.; Tong, X. A novel fire index-based burned area change detection approach using Landsat-8 OLI
data. Eur. |. Remote Sens. 2020, 53, 104-112. [CrossRef]

Nolde, M.; Plank, S.; Riedlinger, T. An Adaptive and Extensible System for Satellite-Based, Large Scale Burnt Area Monitoring in
Near-Real Time. Remote Sens. 2020, 12, 2162. [CrossRef]

Knopp, L.; Wieland, M.; Rattich, M.; Martinis, S. A deep learning approach for burned area segmentation with Sentinel-2 data.
Remote Sens. 2020, 12, 2422. [CrossRef]

206



Remote Sens. 2021, 13, 5138

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.
59.

60.

61.

62.

63.

64.

de Bem, P.P; de Carvalho Junior, O.A.; de Carvalho, O.L.E; Gomes, R.A.T.; Fontes Guimaraes, R. Performance analysis of
deep convolutional autoencoders with different patch sizes for change detection from burnt areas. Remote Sens. 2020, 12, 2576.
[CrossRef]

Ban, Y.; Zhang, P; Nascetti, A.; Bevington, A.R.; Wulder, M.A. Near real-time wildfire progression monitoring with Sentinel-1
SAR time series and deep learning. Sci. Rep. 2020, 10, 1322. [CrossRef]

Zhang, P; Ban, Y.; Nascetti, A. Learning U-Net without forgetting for near real-time wildfire monitoring by the fusion of SAR and
optical time series. Remote Sens. Environ. 2021, 261, 112467. [CrossRef]

Farasin, A.; Colomba, L.; Garza, P. Double-step u-net: A deep learning-based approach for the estimation of wildfire damage
severity through sentinel-2 satellite data. Appl. Sci. 2020, 10, 4332. [CrossRef]

Lestari, A.L; Rizkinia, M.; Sudiana, D. Evaluation of Combining Optical and SAR Imagery for Burned Area Mapping using
Machine Learning. In Proceedings of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference
(CCWC), Virtual, 27-30 January 2021; pp. 0052-0059.

Belenguer-Plomer, M.A.; Tanase, M.A.; Chuvieco, E.; Bovolo, F. CNN-based burned area mapping using radar and optical data.
Remote Sens. Environ. 2021, 260, 112468. [CrossRef]

Proy, C.; Tanre, D.; Deschamps, P. Evaluation of topographic effects in remotely sensed data. Remote Sens. Environ. 1989, 30, 21-32.
[CrossRef]

Hao, D.; Wen, J.; Xiao, Q.; Wu, S.; Lin, X.; You, D.; Tang, Y. Modeling anisotropic reflectance over composite sloping terrain. [EEE
Trans. Geosci. Remote Sens. 2018, 56, 3903-3923. [CrossRef]

Pouyap, M.; Bitjoka, L.; Mfoumou, E.; Toko, D. Improved Bearing Fault Diagnosis by Feature Extraction Based on GLCM, Fusion
of Selection Methods, and Multiclass-Naive Bayes Classification. ]. Signal Inf. Process. 2021, 12, 71-85.

Raja, G.; Dev, K.; Philips, N.D.; Suhaib, S.M.; Deepakraj, M.; Ramasamy, R K. DA-WDGN: Drone-Assisted Weed Detection
using GLCM-M features and NDIRT indices. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), Vancouver, BC, Canada, 10-13 May 2021; pp. 1-6.

Liu, W.; Wang, C.; Chen, S.; Bian, X_; Lai, B.; Shen, X.; Cheng, M.; Lai, S.-H.; Weng, D.; Li, J. Y-Net: Learning Domain Robust
Feature Representation for Ground Camera Image and Large-scale Image-based Point Cloud Registration. Inf. Sci. 2021, 581,
655-677. [CrossRef]

Yu, Y.; Wang, J.; Qiang, H.; Jiang, M.; Tang, E.; Yu, C.; Zhang, Y.; Li, J. Sparse anchoring guided high-resolution capsule network
for geospatial object detection from remote sensing imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102548. [CrossRef]

Chen, Y,; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on
convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232-6251. [CrossRef]

Li, Y;; Cui, P; Ye, C.; Junior, ].M.; Zhang, Z.; Guo, J.; Li, ]. Accurate Prediction of Earthquake-Induced Landslides Based on Deep
Learning Considering Landslide Source Area. Remote Sens. 2021, 13, 3436. [CrossRef]

Seydi, S.T.; Hasanlou, M. A New Structure for Binary and Multiple Hyperspectral Change Detection Based on 