
Edited by

Land Use/Land Cover 
and Natural Hazards 
Interactions, Changes, and Impacts 

Matej Vojtek, Andrea Petroselli and Raffaele Pelorosso
Printed Edition of the Special Issue Published in Land

www.mdpi.com/journal/land



Land Use/Land Cover and Natural
Hazards: Interactions, Changes,
and Impacts





Land Use/Land Cover and Natural
Hazards: Interactions, Changes,
and Impacts

Editors

Matej Vojtek

Andrea Petroselli

Raffaele Pelorosso

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editors

Matej Vojtek

Constantine the Philosopher

University in Nitra

Nitra

Slovakia

Andrea Petroselli

Tuscia University

Viterbo

Italy

Raffaele Pelorosso

Tuscia University

Viterbo

Italy

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Land

(ISSN 2073-445X) (available at: https://www.mdpi.com/journal/land/special issues/lulc natural

hazards).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-6738-9 (Hbk)

ISBN 978-3-0365-6739-6 (PDF)

© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Federica Isola, Sabrina Lai, Federica Leone and Corrado Zoppi

Land Take and Landslide Hazard: Spatial Assessment and Policy Implications from a Study
Concerning Sardinia
Reprinted from: Land 2023, 12, 359, doi:10.3390/land12020359 . . . . . . . . . . . . . . . . . . . . 1

Chunliu Gao, Deqiang Cheng, Javed Iqbal and Shunyu Yao

Spatiotemporal Change Analysis and Prediction of the Great Yellow River Region (GYRR) Land
Cover and the Relationship Analysis with Mountain Hazards
Reprinted from: Land 2023, 12, 340, doi:10.3390/land12020340 . . . . . . . . . . . . . . . . . . . . 25

Vindhya Basnayaka, Jayanga T. Samarasinghe, Miyuru B. Gunathilake, Nitin Muttil and

Upaka Rathnayake

Planform Changes in the Lower Mahaweli River, Sri Lanka Using Landsat Satellite Data
Reprinted from: Land 2022, 11, 1716, doi:10.3390/land11101716 . . . . . . . . . . . . . . . . . . . . 49

Weijia Tan, Qiangbing Huang and Xing Chen

Physical Model Test on the Interface of Loess Fill Slope
Reprinted from: Land 2022, 11, 1372, doi:10.3390/land11081372 . . . . . . . . . . . . . . . . . . . . 65

Vindhya Basnayaka, Jayanga T. Samarasinghe, Miyuru B. Gunathilake, Nitin Muttil,

Dileepa C. Hettiarachchi, Amila Abeynayaka and Upaka Rathnayake

Analysis of Meandering River Morphodynamics Using Satellite Remote Sensing Data—An
Application in the Lower Deduru Oya (River), Sri Lanka
Reprinted from: Land 2022, 11, 1091, doi:10.3390/land11071091 . . . . . . . . . . . . . . . . . . . . 83

Evelina Volpe, Stefano Luigi Gariano, Francesca Ardizzone, Federica Fiorucci and Diana

Salciarini

A Heuristic Method to Evaluate the Effect of Soil Tillage on Slope Stability: A Pilot Case in
Central Italy
Reprinted from: Land 2022, 11, 912, doi:10.3390/land11060912 . . . . . . . . . . . . . . . . . . . . 99

Lena Junger, Severin Hohensinner, Karin Schroll, Klaus Wagner and Walter Seher

Land Use in Flood-Prone Areas and Its Significance for Flood Risk Management—A Case Study
of Alpine Regions in Austria
Reprinted from: Land 2022, 11, 392, doi:10.3390/land11030392 . . . . . . . . . . . . . . . . . . . . 115

Muhammad Majeed, Aqil Tariq, Muhammad Mushahid Anwar, Arshad Mahmood Khan,

Fahim Arshad, Faisal Mumtaz, et al.

Monitoring of Land Use–Land Cover Change and Potential Causal Factors of Climate Change
in Jhelum District, Punjab, Pakistan, through GIS and Multi-Temporal Satellite Data
Reprinted from: Land 2021, 10, 1026, doi:10.3390/land10101026 . . . . . . . . . . . . . . . . . . . . 131

Raphael Knevels, Alexander Brenning, Simone Gingrich, Gerhard Heiss, Theresia Lechner,

Philip Leopold, et al.

Towards the Use of Land Use Legacies in Landslide Modeling: Current Challenges and Future
Perspectives in an Austrian Case Study
Reprinted from: Land 2021, 10, 954, doi:10.3390/land10090954 . . . . . . . . . . . . . . . . . . . . 149

v



Sabita Shrestha, Shenghui Cui, Lilai Xu, Lihong Wang, Bikram Manandhar and Shengping

Ding

Impact of Land Use Change Due to Urbanisation on Surface Runoff Using GIS-Based SCS–CN
Method: A Case Study of Xiamen City, China
Reprinted from: Land 2021, 10, 839, doi:10.3390/land10080839 . . . . . . . . . . . . . . . . . . . . 177

Francesco Faccini, Fabio Luino, Guido Paliaga, Anna Roccati and Laura Turconi

Flash Flood Events along the West Mediterranean Coasts: Inundations of Urbanized Areas
Conditioned by Anthropic Impacts
Reprinted from: Land 2021, 10, 620, doi:10.3390/land10060620 . . . . . . . . . . . . . . . . . . . . 195

Ioannis Zacharakis and Vassilios A. Tsihrintzis

Environmental Forest Fire Danger Rating Systems and Indices around the Globe: A Review
Reprinted from: Land 2023, 12, 194, doi:10.3390/land12010194 . . . . . . . . . . . . . . . . . . . . 227

vi



About the Editors

Matej Vojtek

Matej Vojtek works as an Associate Professor in the Department of Geography, Geoinformatics

and Regional Development at Constantine the Philosopher University in Nitra (Slovakia) and as a

research scientist in the Institute of Geography at Slovak Academy of Sciences, Bratislava (Slovakia).

His research interests include flood potential, flood hazard, and flood risk mapping and assessment

at various spatial scales (local, regional, national), surface runoff assessment, and landslide hazard

mapping and assessment using geospatial technologies (geographic information systems, remote

sensing, global navigation satellite systems). He has participated in several national and international

research projects as a leader or a project member. He is the author of more than 80 publications,

including original research articles in impacted journals, e.g., Geoscience Frontiers, Journal of Hydrology:

Regional Studies, Journal of Environmental Management or Hydrological Sciences Journal, and educational

works, such as university textbooks.

Andrea Petroselli

Andrea Petroselli is an Associate Professor at Tuscia University (Italy), Department of

Economics, Engineering, Society and Business Organization. He is an expert in modeling and

monitoring hydrological processes. Recent research topics range from infiltration modeling to

rainfall–runoff modeling. He is a member of GISTAR, the GIS Terrain Analysis Research Group

(www.gistar.org), a web portal for researchers and professionals involved in the investigation,

development, and application of GIS-based terrain analysis tools for hydrologic and geomorphic

models, and a member of MechHydroLab, Mechanical Engineering for Hydrology and Water Science

(www.mechydrolab.org/), a multidisciplinary laboratory composed of mechanical engineers,

hydrologists, and water scientists with the goal of combining mechanical engineering technologies

and hydrological sciences toward the development of novel experimental systems for advanced

environmental monitoring.

Raffaele Pelorosso

Raffaele Pelorosso is qualified as an Associate Professor by National Scientific Qualification

in urban and landscape planning and design (Disciplinary Sector 08/F1) and agricultural, forest

and biosystems engineering (Disciplinary Sector 07/C1). He has held several lectures in ecology,

cartography, environmental and urban planning at Tuscia University. His main research interests

include environmental modelling, performance-based urban planning, urban stormwater and climate

regulation by means of green and grey infrastructure, low-entropy systems, climate adaptation,

nature-based solutions and ecosystem services, landscape perception and participatory planning,

land use/land cover changes, rural and peri-urban landscapes, environmental impact assessment,

and landscape connectivity. He is the author of more than 100 scientific works and he has

peer-reviewed for many international journals, such as Land Use Policy, Landscape and Urban Planning,

Frontiers in Built Environment, European Planning Studies, Habitat International, Journal of Cleaner

Production.

vii





Citation: Isola, F.; Lai, S.; Leone, F.;

Zoppi, C. Land Take and Landslide

Hazard: Spatial Assessment and

Policy Implications from a Study

Concerning Sardinia. Land 2023, 12,

359. https://doi.org/10.3390/

land12020359

Academic Editors: Matej Vojtek,

Andrea Petroselli and Raffaele

Pelorosso

Received: 30 December 2022

Revised: 18 January 2023

Accepted: 24 January 2023

Published: 28 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Land Take and Landslide Hazard: Spatial Assessment and
Policy Implications from a Study Concerning Sardinia

Federica Isola, Sabrina Lai, Federica Leone * and Corrado Zoppi

Department of Civil and Environmental Engineering, and Architecture-University of Cagliari,
09123 Cagliari, Italy
* Correspondence: federicaleone@unica.it

Abstract: Land take and soil sealing imply land cover transitions that may possibly result in decreased
capacity to resist landslides; hence, this study focuses on the relations between land-taking processes
and landslide hazard by addressing the following research question: “To what extent do land-taking
processes increase landslide hazard?” The impact of land take is assessed through a regression model
which relates the level of landslide hazard to a set of land cover variables which include artificialized
land; that is, land taken up through urbanization processes, and a set of covariates that represent land
cover types grouped in accordance with the LEAC (land and ecosystem accounting) classification.
This methodological approach is implemented into the spatial context of Sardinia, an insular Italian
region, and shows that not only the amount of taken up artificialized land, but also other types of
land covers, are likely to increase the magnitude of landslide hazard. A set of implications concerning
planning policies related to land cover and land cover transitions are discussed in the concluding
section, where policy recommendations are identified in order to mitigate the impacts of land cover
transitions on landslide hazards.

Keywords: land take; landslide hazard; land cover change

1. Introduction

According to the European Environment Agency, “Land take is the process in which
urban areas and sealed surfaces occupy agricultural, forest or other semi-natural and
natural areas” [1] (p.117). “The most intense form of land take is soil sealing, which is an
essentially irreversible process that leads to the destruction or covering of soils by buildings
and other construction, and layers of completely or partly impermeable artificial material
(asphalt, concrete, etc.). Soil sealing accompanies land take, but areas subject to land take
are usually not entirely sealed” [2]. At the end of 2021, the European Commission approved
the new European Union (EU) Soil Strategy for 2030, which highlights how healthy soils
are essential for achieving the objectives of the European Green Deal concerning climate
and biodiversity. The strategy defines a general framework and concrete measures to
protect and restore soils to ensure their sustainable use [3]. One of the long-term objectives
to be achieved by 2050 is to reach “no net land take” [3] (p. 3). The general framework
of the strategy termed “land take hierarchy” concerns four consequential actions: avoid,
reuse, minimize, and compensate. The first action, i.e., “avoid”, aims at preventing further
land take as much as possible. If land take cannot be prevented, then the second action,
i.e., “reuse”, should be implemented, with a view to reusing land that has already been
urbanized or sealed; for example, through soil remediation or densification. If land take
cannot be prevented and land cannot be reused, the third action should be looked at, to
minimize the effects of land take by impermeabilizing land that is already in unfavorable
conditions. If all the precedent actions cannot be taken, the fourth action provides for
applying compensation and mitigation measures.

In relation to the EU-28 (which means the 27 EU Member States plus the United
Kingdom), although land take decreased from 2000 to 2018, in the period 2012–2018 it
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reached the amount of 539 km2 per year; 78% of land take takes place in agricultural areas,
such as arable lands and permanent crops (50.5%), pasture and mosaic farmland (27.2%),
forests and transitional woodlands (14.3%), and grasslands (6%) [4]. The main causes of
land take are to be attributed to expansion of industrial and commercial areas, and to
enlargement of residential zones and construction sites [2]. In Italy, in the 2020–2021 period,
land take took a value of 69.1 km2, corresponding to an average value of 19 hectares per day.
Only a tiny fraction of this growth in artificial surfaces was compensated by the restoration
of natural areas, which equaled 5.8 km2, due to change from consumed soil to unconsumed
soil through to the recovery of building sites, areas, and surfaces in cases where “reversible”
land take [5] took place.

Moreover, land-taking processes entail several problems, such as the loss of multifunc-
tional and fertile soils, biodiversity degradation and loss of ecosystem services (ESs) [6–8].
ESs are defined as benefits provided by ecosystems to human beings [9]. Since 1970, when
the term “ecosystem service” was coined [10], this theme has increasingly been studied
and analyzed in conceptual terms [11,12], in terms of classification [9,13], and in relation to
their assessment and mapping [14,15]. Moreover, ESs provide protection against hydrogeo-
logical hazards [16]. According to Notaro and Paletto [17], this protection can be direct or
indirect, where the former concerns the defense against natural phenomena such as floods
and landslides.

A landslide is defined as the movement of materials such as rock, soil, debris, and
artificial fill downward and outward along a slope [18] when the forces of gravity exceed
the slope resistance [19]. Moreover, although landslides occur primarily in mountainous
areas, this phenomenon may happen in low-relief zones [20]. The United States Geological
Survey (USGS) [20] identifies three types of landslide causes: geological, morphological,
and human. Indeed, the drivers of landslides may be either natural, caused by the intrinsic
properties of rocks and soils or by physical processes, such as heavy rains and seismic
activity, or artificial when human activities bring about changes in slope stability, as happens
through deforestation or excessive soil sealing [21].

From this perspective, landslides are strongly connected with land use and land
cover dynamics [22] and, particularly, with human-driven processes [23]. Human-induced
activities, such as land use/land cover changes, may alter vegetation structure and modify
soil characteristics and hydrogeological processes [24,25]. Indeed, despite the slowness that
characterized geological and geomorphological changes, land use/land cover changes can
occur in a short period of time due to their high dynamicity [26,27]. Land use/land cover
changes can influence landside events in terms of frequency and spatial configuration due
to their potential negative impacts on hydrological and mechanical processes involving
soils [28,29].

The relation between land use/land cover changes and landslides has been studied
by various authors [23,30,31]. Hao et al. [23] investigated the extent to which the landslide
disaster occurred in 2018 in Kerala, India, was influenced by land use/land cover changes
through a comparison between land use/land cover changes before (2010) and after (2018)
the disaster. Pisano et al. [30] investigated how land cover changes influenced landslide
susceptibility in the past and how they might influence future events, by carrying out a
landslide susceptibility analysis implemented through a spatial multi-criteria evaluation in
relation to three past land cover maps (1954, 1981, and 2007) and three future scenarios (one
in 2030 and two in 2050) in the Rivo Basin, Italy. Muñoz-Torrero Manchado et al. [31] studied
the influence of deforestation and related agricultural activities on landslide susceptibility
using remote-sensing techniques and free satellite data in Nepal.

However, although several authors have studied the relation between land use/land
cover changes and landslide hazard, the relation between land-taking processes and land-
slide hazard is still under-researched. Therefore, this study aims at analyzing the relations
between land-taking processes and landslide hazard in order to understand to what extent
land-taking processes increase landslide hazard through a regression model that relates
the level of landslide hazard to a set of land cover variables that includes artificialized
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land; that is, land taken up through urbanization processes, and a set of covariates that
represent the land cover types associated with the LEAC (land and ecosystem accounting)
classification. The methodological approach is implemented in the Sardinia Region, Italy.

The study is structured into six sections as follows. The second section describes the
study area, the methodological approach used, and the input data for the regression model
(landslide hazard, LEAC land cover groups, geological characteristics and elevation). The
results are presented in the third section and discussed in the fourth section. The fifth
section provides recommendations and implications for spatial planning policies stemming
from the results, while the sixth section provides concluding remarks and future directions
of the research.

2. Materials and Methods

This section is structured into three subsections. The study area is described in the first
subsection. In the second subsection, the discrete-choice Logit model is used to estimate
the relations between land-taking processes and landslide hazard. The third subsection
describes input data for the regression model.

2.1. Study Area

In Italy, a sectoral planning tool termed PAI, an acronym of “piano di assetto idrogeo-
logico” (whose word-for-word translation would be “hydrogeological setting plan”), must
identify areas prone to natural hazards; i.e., both landslide and flood hazard, and define
measures to reduce their magnitude and to prevent or mitigate their impacts. The PAI can
be regarded as part of the broader river basin management plan envisaged by the Water
Framework Directive (WFD) [32], and its responsibility lies with ad hoc established compe-
tent authorities. Accordingly, Italy has been divided into eight river basin districts [33,34],
each having its own competent authority.

One of such seven districts coincides with Sardinia, an Italian island around 24,000 km2

in size and the second-largest island in the Mediterranean Sea Basin. Sardinia is further
divided into seven subdistricts [35], one of which, the so-called “Coghinas-Mannu-Temo”
subdistrict (hereafter, CMT), is the area chosen for this study (Figure 1).

The reasons for choosing the Sardinian CMT subdistrict for this study are twofold.
First, Sardinia is included in the CORINE Land Cover (CLC) inventory coordinated by the
European Environment Agency under the Copernicus program of the EU; this makes it
possible to retrieve a regularly updated series of land cover maps, of which the most recent
one refers to the year 2018 [36]. Second, a comprehensive and detailed spatial assessment
of landslide hazard and risk concerning the whole CMT was carried out and officially
validated in 2014 [37] and it is publicly available from the regional geoportal.

Located to the north-west of Sardinia, with an area of 5575.5 km2, CMT stretches over
more than one-fifth of the island and it comprises around forty watersheds, of which the
largest and most important ones are the four ones from which its name originates, i.e.,
Coghinas River, Mannu River, Mannu River in Porto Torres, and Temo River (Figure 1,
panel C). The prevailing morphology is hilly, heavily marked in the southern border by the
Marghine-Goceano mountain chain and by the Mount Limbara rocky granitic massif to the
east, with the exception of the Nurra coastal plain to the north-west and the smaller plains
around the mouths of the rivers Coghinas and Temo (Figure 2, panel A). As in all of Sardinia,
in CMT the climate is typically Mediterranean, mostly lower meso-Mediterranean, but with
coastal areas included within the upper thermo-Mediterranean zone and mountain chains
in the upper meso-Mediterranean [38] (Figure 2, panel B). As for vegetation, according to
the study by Bacchetta et al. [39], more than 41% of the CMT host species belong to the
Sardinian thermo-meso-Mediterranean cork tree series, while the Sardinian oak tree series
and holm oak tree series occupy around 11% of the CMT each and the other vegetation
series take lower percentages (Figure 2, panel C). Geological instability is diffuse in the
study area, where landslide events have been recorded for decades: the Italian landslide
inventory (IFFI [40,41]) has documented 398 landslide events occurring up to 2007 in the
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CMT. The most prominent category is that of diffuse falls or topples (228 events), followed
by simple falls or topples (95 events); third comes diffuse superficial instability (42 events),
followed by rotational or translational slides (16 events). Very small numbers concern the
other categories; due to the geological and geo-lithological characteristics of the study area,
no flow events have been reported in the study area (Figure 2, panel D).

Figure 1. The eight WFD river basin districts in Italy (panel A), Sardinian watersheds (panel B), and
the Coghinas-Mannu-Temo subdistrict with its watersheds (panel C).

2.2. Regression Model

The relation between landslide hazard (LH) and the size of land taken up (L_TAKE)
is assessed through a linear regression model that uses the LEAC land cover groups as
explanatory variables, whose detailed definitions are given in Section 2.3. The covariate
representing land take is one of the LEAC groups, namely the variable associated with the
artificialized land LEAC group. Dependent and explanatory variables refer to the elements
of a 300 m square grid that overlays the study area, and are measured as their percentage
share of a grid cell. The model operationalizes as follows:

LH = α0 + α1L_TAKE + α2ARA + α3PMF + α4FOR + α5GRSH + α6DEPOQ + α7VOLSE + α8ELEV +
α9HGLAGGED,

(1)

where the dependent variable and covariates are identified as shown below:

• LH is for landslide hazard;
• L_TAKE is for artificialized land or land take;
• ARA is for arable land;
• PMF is for pastures and mosaic farmland;

4
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• FOR is for standing forests;
• GRSH is for natural grasslands, sclerophyllous vegetation, and heathlands;
• DEPOQ is for ground substrate characterized by quaternary deposits;
• VOLSE is for ground substrate characterized by volcanic sedimentary rocks;
• ELEV is for the average elevation of a grid element;
• HGLAGGED is the spatially lagged dependent variable that controls for spatial auto-

correlation of LH.

 

Figure 2. Some features of the Coghinas-Mannu-Temo subdistrict: elevation (panel A); climate zones
(panel B, based on [38]); simplified vegetation series (panel C, based on [39]); documented landslides
events (panel D, based on data from the IFFI project [40]).

The estimates of the coefficients of the multiple linear regression show the correlations
between landslide hazard and the land covers of the LEAC taxonomy and, in particular,
the interdependence of LH and the size of land take.

The use of a multiple linear regression is motivated by the fact that prior assumptions
are not available as regards the functional form of the relations between dependent and
explanatory variables, which is consistent with several studies aimed at identifying the
interdependence between spatial variables [42–45]. From this point of view, a spatial
phenomenon, related to n variables, represented by a surface in an n-dimensional space
whose equation is unknown, can be approximately detected, in each of its points, by
the tangent hyperplane. The linear equation estimated through the regression model,
which relates dependent and explanatory variables, identifies the tangent hyperplane in a
small neighborhood of a point of the surface, and in such neighborhood it represents an
approximation of the unknown equation of the surface [46,47]. As a consequence, model (1)
represents the trace of a hyperplane on a surface in a ten-dimensional space, which reports
the correlations between LH and the nine covariates listed above.

5
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The covariates DEPOQ and VOLSE control for the ground substrate, by considering
if, and to what extent, landslide hazard is influenced by the conditions of the substrate,
which in the study area is mainly featured by cohesive and compact rocks such as volcanic
sedimentary successions (VOLSE) and, secondly, by deposits from the quaternary era
(DEPOQ), i.e., loose incoherent materials. ELEV controls for the altitude impact on landslide
hazard. If the estimates of their coefficients in (1) are significant, this will entail that
substrate and elevation are likely to influence LH, at least to some extent. The magnitude
of the coefficients will show the size of the impacts, in terms of increase or decrease in the
landslide hazard measure.

The sign of ELEV is expected to be negative, since in the study area, on average, land-
slide hazard conditions are more frequent in lowlands rather than in mountainous locations,
as further discussed in Section 3.3, whereas the expected signs of DEPOQ and VOLSE are
positive and negative, respectively, since it is intuitively likely that LH will increase as long
as the substrate incoherence and looseness increases, and the other way around.

The variable HGLAGGED represents the spatially lagged values of LH, and controls
for spatial autocorrelation of the dependent variable in model (1). The HGLAGGED
definition is based on the methodology implemented by Zoppi and Lai [48], which builds
on Anselin’s studies [49,50].

Moreover, a p-value test is used to check the level of significance of the estimates of
the coefficients of model (1).

2.3. Input Data for the Regression Model

The dependent variable and covariates needed to feed into the regression model (1)
were calculated with reference to a 300 m vector square grid that covers all of the CMT
subdistrict (Figure 3) and comprises a total of 62,231 cells, using three main input spatial
datasets listed in Table 1.

Figure 3. The 300 m vector square grid used in this study: extent of the grid with reference to the
Coghinas-Mannu-Temo subdistrict (panel A, no. of cells: 62,231), and detail (panel B).
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Table 1. Input datasets used to compute dependent and explanatory variables.

Input Datasets Sources Link

Landslide
hazard Regional geoportal

https://webgis2.regione.sardegna.it/geonetwo
rk/srv/ita/catalog.search#/metadata/R_SARD

EG:eb38d6c0-b51f-4df1-acdc-f7a752e7664c
(accessed on 17 January 2023)

LEAC land
cover groups

Copernicus—Europe’s
Eyes on Earth program

https://land.copernicus.eu/pan-european/cori
ne-land-cover/clc2018

(accessed on 17 January 2023)

Elevation Regional geoportal
https://www.sardegnageoportale.it/areetemati

che/modellidigitalidielevazione/
(accessed on 17 January 2023)

Geological
characteristics Regional geoportal

https://www.sardegnageoportale.it/index.ph
p?xsl=2420&s=40&v=9&c=14479&es=6603&na

=1&n=100&esp=1&tb=14401
(accessed on 17 January 2023)

2.3.1. Landslide Hazard

In compliance with national law no. 183/1989, in Italy each competent authority
for a WFD river basin district must approve, as part of the comprehensive river basin
management plan, its PAI, which only focuses on landslide and flood risks in the district.
The PAI has a dual character: on the one hand, it is a knowledge-oriented and regularly
updated tool, which provides for the spatially explicit assessment of flood and landslide
risks and hazards, as well as of exposures, hence vulnerable infrastructure, buildings, and
land. On the other hand, it is a legally binding plan, which contains provisions that restrict
land uses and land transformations in areas prone to landslide or flood hazard: the higher
the hazard level, the stricter the restrictions.

The Sardinian Basin Competent Authority approved a first version of its PAI in 2004;
since then, the assessment of the hazard level has continuously been updated to integrate
new studies in previously non-analyzed areas, or to revise locally the hazard level when
a new infrastructure that mitigates natural risks is realized. Accordingly, the landslide
hazard map has been revised 42 times so far, and the flood hazard map 59 times.

Landslide hazard levels in the study area were assessed in a study commissioned by
the Sardinian Basin Competent Authority in 2011, whose documents are publicly available
on the institutional website [37]. The outcomes of the study were approved in 2014 and, as
far as the spatially explicit assessment is concerned, integrated within the 36th updated
revision of regional PAI spatial dataset available from the regional geoportal.

As per the methodology used in the PAI, landslide hazard (HL) classes range in the
0–4 interval, as follows: no hazard: HL = 0; moderate hazard: HL = 1; medium hazard:
HL = 2; high hazard: HL = 3; very high hazard: HL = 4. For each cell in the 300 m square
grid shown in Figure 3, the independent variable LH in model (1) was calculated as the
percentage of the cell’s area having non-null landslide hazard (HL �= 0) in the vector data
retrieved from the geoportal.

Moreover, LH’s spatially lagged variable (HGLAGGED), included in model (1) as a
covariate, was calculated using GeoDA (version 1.20) [51], developed by Dr Luc Anselin
and his team, based initially at the University of Illinois at Urbana-Champaign and currently
at the Center for Spatial Data Science, University of Chicago, United States of America.

2.3.2. LEAC Land Cover Groups

The CORINE (acronym for “Coordination of Information on the Environment”) land
cover is one of the several spatial datasets made available by the EU through the Copernicus
Land Monitoring Services, covering a total of 39 countries, i.e., both members of the
European Environment Agency and cooperating countries, and regularly updated every
six years using a standardized nomenclature, hence allowing for consistent classifications
and measures across time and space, and enabling time-series analyses.
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In this study the 2018 CORINE Land Cover vector map (CLC2018) was used. The map
provides information on land covers, i.e., on the biophysical characteristics of the Earth’s
surface, through a hierarchical classification that comprises 44 classes at the third (and
lower) level, 17 at the second level, five at the first level, with a minimum mapping unit
equaling 25 hectares.

The CLC2018 was next reclassified so as to group the third-level land cover classes
following the taxonomy used by the European Environment Agency for land cover ac-
counts [52] and comprising eight groups. Information on how the reclassification was
performed is provided in Table 2, whose last column lists the CLC classes that were as-
sembled within a single LEAC group. For the purpose of this study, only five groups
out of the eight listed in Table 2 were mapped because three (open space with little or no
vegetation; transitional woodland and shrub; wetlands, water bodies and marine waters)
are not relevant within CMT. Furthermore, the latter group was not relevant with respect
to the aim of this study: indeed, the absence of any relationships between marine or inland
waters and landslide hazards is quite straightforward. CLC classes listed in Table 2 that
only contain one digit (for instance, “1.”) refer to first-level land covers and comprise
all of the second- and third-level land covers that detail the first-level one (for instance,
1.1.1, 1.2.1, and so on); likewise, classes containing two digits (for instance, “2.2.”) refer
to second-level land covers and comprise all of the third-level land covers that detail the
second-level one (for instance, 2.2.1, 2.2.2, and so on). For instance, the “standing forests”
group includes all of the sub-levels of the 3.1 class, which, in the study area, comprise
three third-level land cover classes as follows: 3.1.1 (broad-leaved forests), 3.1.2 (coniferous
forests), and 3.1.3 (mixed forests). More specific information on wood types and manage-
ment can be found in another, and older, land use/land cover map produced in 2008 by
the regional administration of Sardinia [53], which further details the CLC taxonomy up to
the fifth level. According to this dataset, approximately 28% of the surface covered by the
LEAC “standing forest” group in the study area was managed in 2009. Managed forests
were almost completely made up of cork oak woods (27%), while negligible percentages
concerned other types of managed woods, either broad-leaved (for instance, eucalyptus
woods) or coniferous (for instance, pine woods, especially in coastal areas). While many
cork oak woods are still managed for production purposes, especially in North-Eastern
Sardinia [54], eucalypti and pine trees (both non-native species in the island) were planted
mainly for swamp reclamation, slope stability, and erosion control in coastal dunes in the
XX century; as of today, they are often unmanaged, to the extent that some have undergone
a renaturalization process and have evolved into mixed forests, as a result of successional
processes [55] and native species’ regaining their spaces.

Table 2. LEAC groups and corresponding CLC classes.

LEAC Groups CLC Classes

1. Artificialized land (land taken by development) 1.
2. Arable land and permanent crops 2.1. + 2.2. + 2.4.1.
3. Pastures and mosaic farmland 2.3. + 2.4.2 + 2.4.3 + 2.4.4.
4. Standing forests 3.1.
5. Transitional woodland and shrub 3.2.4.
6. Natural grasslands, sclerophyllous vegetation and heathlands 3.2.1 + 3.2.2 + 3.2.3.
7. Open space with little or no vegetation 3.3.
8. Wetlands, water bodies, and marine waters 4. + 5.

Once a vector map of the LEAC groups was retrieved, for each cell in the 300 m square
grid shown in Figure 3, the explanatory variables L_TAKE, ARA, PMF, FOR, and GRSH, in
model (1) were calculated as the percentage of the cell occupied by LEAC groups listed in
Table 2, respectively, as nos. 1, 2, 3, 4, and 6.
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2.3.3. Geological Characteristics and Elevation (Control Data)

A 1:25,000 regional geological map of Sardinia was produced at the beginning of the
year 2000 building upon geological data collected by the former regional agency for mines
and quarries. The spatial dataset, available from the regional geoportal [56], identifies
geological characters in compliance with the “CARG” national mapping program initiated
in the 1980s by the Italian Geological Society. The taxonomy of the Sardinian geological
map is hierarchically structured into five main classes and five levels ([57], pp. 49–108), and
a simple reclassification was carried out in this study, whereby i., first-level classes only
were considered and, ii., three main groups were retrieved by merging first-level classes.
The three groups are as follows: i., quaternary deposits (also comprising lakes); ii., volcanic
sedimentary successions; iii., intrusive complexes and metamorphic basements. Finally, for
each cell in the 300 m square grid shown in Figure 3, the explanatory variables DEPOQ
and VOLSE were calculated as the shares of the cell occupied, respectively, by quaternary
deposits and by volcanic sedimentary successions. For any terrestrial cell in the grid, the
share occupied by the third group is, fairly obviously, the difference between 100 and the
sum of DEPOQ and VOLSE.

Elevation was retrieved from the 10 m resolution digital terrain model (DTM) available
“off the shelf” from the regional geoportal [58]. The Sardinian DTM was produced in the
early 2010s, based on elevation points and contour lines contained in the 1:10,000 regional
technical map (CTR, acronym for the Italian “Carta Tecnica Regionale”). Because the
production process was implemented in compliance with the national guidelines issued
in 2009 [59], horizontal and vertical accuracy, though not explicitly stated in the DTM
metadata, are as follows: horizontal tolerance: 2 m; vertical tolerance in open fields: 2 m;
vertical tolerance in densely wooded areas (i.e., in areas where tree canopy cover is over
70% of the surface): 1

2 of the mean height of the trees. Next, for each cell in the 300 m square
grid shown in Figure 3, the explanatory variable ELEV in model (1) was calculated as the
average elevation in the cell.

3. Results

This section is organized as follows. The first and second subsections show the spatial
framework of, respectively, landslide hazard and the LEAC groups across the study area.
The following subsection presents the outcomes of the estimate of regression model (1)
implemented into the spatial context identified in Section 2.2.

3.1. Landslide Hazard in the Study Area

As Table 3 and Figure 4, panel A, show, in the vast majority of CMT (i.e., 4476.42 km2,
or 80.29% of the CMT land mass) the hazard level was assessed as null by the PAI, while
around a fifth of the subdistrict is prone to landslides, mostly of medium (580.01 km2, or
10.40% of the CMT surface) or high severity (371.84 km2, or 6.67%); a very small share of
the CMT features moderate landslide hazard (107.15 km2, or 1.92%) and a negligible one
is characterized by very high hazard levels (39.80 km2, i.e., 0.71%). As for the 300 m grid,
LH is greater than zero in 30,775 out of the total 62,231 300 m grid cells (Figure 4, panel B);
hence, in nearly half of the cells, landslide hazard, of whichever level, affects a certain share
of the cell.

Table 3. Landslide hazard levels in the Coghinas-Mannu-Temo (CMT) subdistrict.

Landslide Hazard Level (PAI) Area (km2) Area (% CMT)

Absent (HL = 0) 4476.42 80.29
Moderate (HL = 1) 107.15 1.92
Medium (HL = 2) 580.01 10.40

High (HL = 3) 371.84 6.67
Very High (HL = 4) 39.80 0.71
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Figure 4. Landslide hazard levels as assessed by the regional PAI in the Coghinas-Mannu-Temo
subdistrict (panel A), and spatial distribution of the LH variable in the 300 m grid used in this study
(panel B).

3.2. The Spatial Framework of the LEAC Groups

Three LEAC groups prevail in the CMT subdistrict, as shown in Table 4 and Figure 5,
panel A: arable land and permanent crops (32.09%); pastures and mosaic farmland (26.68%);
natural grasslands, sclerophyllous vegetation and heathlands (23.19%). Together, they make
up 81.96% of the study area. Next come standing forests (14.98%), while artificialized land
amounts to 2.37% of the study area, and a negligible share (0.69%) is that of waters, which
are not listed in Table 4 because they were not relevant for this study.

Table 4. LEAC groups as share of the Coghinas-Mannu-Temo subdistrict.

LEAC Groups Area (% CMT)

Artificialized land (land taken by development) 2.37
Arable land and permanent crops 32.09

Pastures and mosaic farmland 26.68
Standing forests 14.98

Natural grasslands, sclerophyllous vegetation, and heathlands 23.19
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Figure 5. Spatial distribution of land covers in CMT classed through the LEAC groups (panel A), and
share of each LEAC group within the 300 m grid used in this study (panels B–F).

Panels B-F in Figure 5 show the spatial layout of the share of each LEAC group in the
300 m grid cells used within this study. Cells having non-null values of L_TAKE form small
and spatially disarticulated bundles. Cells where a share of arable land and permanent
crops (ARA) is present cluster especially along the main plains; however, they are spread
across the subdistrict, except for the Asinara Island to the north and the mountain areas
that delineate the borders of the watersheds. In the latter, clusters of cells hosting standing
forests (FOR) are clearly visible in the map, while the Asinara Island is a hotspot for natural
grasslands, sclerophyllous vegetation, and heathlands (GRSH), which also feature along
the rugged western coast and are scattered across CMT. Finally, cells hosting pasture and
mosaic farmland (PMF) are diffuse across the subdistrict, with the larger assemblage along
the Marghine mountain chain to the southern border.
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3.3. The Outcomes of the Regression Model

The strength and significance of correlations between the explanatory variables in
model (1) were preliminarily assessed through the Pearson product–moment correlation
coefficient; the outcomes of this assessment, which was carried out on the attribute table
of the shapefile containing the 30,775 cells having non-null values of LH, are provided
in Appendix A, Table A1. The strongest correlation is that between PMF and GRSH
(−0.4033, p < 0.01), while |r| < 0.4 for the remaining couples of variables. The lack of
strong correlations between the explanatory variables highlights the absence of issues of
multicollinearity in model (1).

The estimates of the coefficients of DEPOL and VOLSE are significant and show
the expected signs, since comparatively higher values of LH are associated with the in-
coherent and loose substrates that characterize quaternary deposits, and comparatively
lower LH values are correlated with the solid and resistant substrates that feature volcanic
sedimentary rocks.

Moreover, lower altitudes are associated with higher landslide hazard, and a decrease
of 100 m is correlated with an increase of 1.8% in landslide hazard. This outcome may
seem rather counterintuitive, since, in general, it is expected that landslide hazard increases
with elevation, or the higher the altitude, the higher the probability that landslides may
occur. The reason of this finding can be detected from the peculiar spatial taxonomy of
landslide hazard in the study area, mapped in Figure 6, which shows the most relevant
concentration of high-landslide-hazard cells in locations characterized by comparatively
low and medium elevation.

Figure 6. Spatial overlay between historically recorded landslides, landslide hazard areas mapped in
the PAI, and regional DTM.
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Moreover, the spatially lagged variable shows a positive and significant sign, in
terms of p-values, which shows an effective control of the spatial autocorrelation of the
dependent variable.

That being so, since the estimates related to the control variables DEPOL, VOLSE,
and ELEV are statistically significant and consistent with the expectations in terms of the
expected signs, whereas the model offers an adequate control for spatial autocorrelation, the
impacts of the LEAC covariates and, in particular, the influence of the land take variable on
landslide hazard, identified by their estimated coefficients, are reliable and consequential.

The estimated coefficients of the five explanatory variables are significant at 1% and
entail the following results, provided that everything else is equal.

Agricultural land, whether characterized by extensive or intensive production, is
negatively associated with landslide hazard, showing comparatively low correlations,
since, on average, a 10% increase in pastures and mosaic farmland or in arable land
corresponds to a 0.7% decrease or to a 1% decrease in landslide hazard.

Positive correlations are shown by the coefficient of FOR, since 10% increases in FOR
and GRSH are associated with 1.4% and 0.9% increases in LH, respectively. Increases
in forests, natural grasslands, sclerophyllous vegetation, and heathlands are associated
with higher values of LH, which entails that such land covers are likely to identify buffer
zones with respect to areas characterized by relevant landslide hazard. The spatial contexts
featured by these land covers are usually almost totally devoid of human settlements, which
highlights a virtuous spatial organization, which aims at protecting urbanized areas from
the negative impacts generated by landslides, by preserving natural forests and grasslands
from land-taking processes.

All in all, crop production is not associated with increases in LH. On the other hand,
forests are the LEAC group that reveals the most relevant positive correlation with landslide
hazard, whereas natural grasslands, sclerophyllous vegetation, and heathlands are less
relevant in terms of association with LH.

Finally, the regression model identifies the association of LH and L_TAKE as a relevant
positive correlation; namely, a 10% increase in L_TAKE is associated with a 0.8% increase
in LH. In other words, the higher the size of the land take-related covariate, the higher
the size of areas characterized by relevant landslide hazard. This finding highlights that
the spatial structure of the study area is characterized by artificialized areas intertwined
with areas featured by relevant landslide hazard, or that land-taking processes have taken
place in locations that should have been preserved free from urbanization processes due to
the magnitude of landslide hazard. Table 5 reports the results of the estimate and relevant
statistics of regression model (1).

Table 5. Estimate of regression model (1).

Variable Coefficient t–Statistic p–Value

ARA –0.10613 −11.28802 0.00000
PMF –0.07235 −7.81156 0.00000
FOR 0.14146 14.72390 0.00000

GRSH 0.09436 10.44108 0.00000
L_TAKE 0.08803 5.85287 0.00000
DEPOL 0.01569 1.68502 0.09201
VOLSE −0.07308 −15.41213 0.00000
ELEV –0.00978 −10.60318 0.00000

HGLAGGED 0.96762 23.96984 0.00000

Adjusted R-squared: 0.83247

4. Discussion

The mapping of landslide hazard in the study area is quite consistent with the tax-
onomies of similar spatial contexts described and discussed in the current literature. As
described in Section 2, the CMT subdistrict features a hilly ground orography (the Marghine-
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Goceano Chain and the Mount Limbara), with widespread uphill and downhill stretches,
and by a limited coastal plain (the Nurra). As described in Section 3.1, just about one-
fifth of the study area is characterized by a more-or-less relevant landslide hazard which,
nevertheless, has generated a relevant geological instability, demonstrated by nearly 400
events. Hilly spatial contexts intertwined with plain areas are often associated with limited
zones characterized by relevant landslide hazard and by diffused geological instability,
as demonstrated by the regional screening of landslide phenomena in the lowlands of
Calabria, Southern Italy [60]. The European screening study by Jaedicke et al. [61] identifies
the European hotspots concerning landslide hazard, based on the implementation of the
models defined by the International Center for Geohazards (ICG) and the Joint Research
Center of the European Commission (JRC), which are often located in hilly and plain areas,
i.e., with morphological characteristics similar to the CTM subdistrict, sometimes featured
by high levels of precipitation and seismic activity. The European screening is quite con-
sistent with what was detected in the case of the landslide inventory implemented by
Solís-Castillo et al. [62] as regards the Mexican tropical region of Sierra Costa, characterized
by low precipitation rates and landslide hazard diffused over mountainous and plain zones.
Analogous findings are shown, among many, in recent studies concerning the Freetown
region in Sierra Leone [63], and the Whitsunday Region, located in North Queensland,
Australia [64].

The mapping of the LEAC groups in the study area, featuring pastures and mosaic
farmland, natural grasslands, sclerophyllous vegetation and heathlands, and arable land, is
consistent with the spatial taxonomies reported in other studies concerning landslide hazard
in hilly spatial contexts intertwined with plain areas. As in the case of the CTM subdistrict,
important relations are identified between landslide hazard and farming production in
hilly and plain zones by Rendon et al. [65], which are addressed by several policy tools,
aimed at improving the quality of degraded ground and agrosystems, such as the Common
agricultural policy [66], the strategy “Farm to Fork” [67] and the Biodiversity Strategy of
the EU [68]. According to Borrelli et al. [69] and Panagos et al. [70], landslide hazard and
related events in hilly spatial contexts intertwined with plain areas are mainly related to soil
erosion phenomena, which should be addressed by increasing soil retention capacity [60],
and the endowment of ecosystem services such as ground and superficial water resources
quality and recharge, ground and underground biodiversity, and soil resilience to the
impacts of climate change and of landslide events [71].

The outcomes of the regression model can be straightforwardly discussed in the
theoretical and technical context of the current literature.

Negative correlations are associated with agricultural land, whether it is characterized
by intensive or extensive crop farming. This is consistent with the results of several studies
which relate the effectiveness of soil conservation practices based on agriculture. For exam-
ple, Suci et al. [72] highlight the importance of crop farming and crop rotation in improving
soil conservation conditions and landslide hazard mitigation in the rural area planning
in the Indonesian Cidadap Subdistrict located in Western Java. Extensive and, wherever
it is suitable, intensive crop farming are identified as effective approaches to recovering
from scars generated by landslide-related events in Mount Elgon, Uganda [73], where
such practices are implemented through the direct cooperation of local communities. The
extensive mapping of rural areas’ exposure to landslide hazard in Central Italy developed
by Santangelo et al. [74] shows the association of extensive and intensive crop farming to
low-hazard areas as well.

The mapping of the quoted study by Santangelo et al. is consistent with the regression
outcomes related to the covariates that identify forests (FOR), and natural grasslands,
sclerophyllous vegetation, and heathlands (GRSH). Since the latter two LEAC groups
characterize non-urbanized areas, it has to be put in evidence that a virtuous approach to
land use planning brings together Central Italy and the Sardinian CMT subdistrict, since
areas with relevant landslide hazards have been kept almost totally settlement-free.

14



Land 2023, 12, 359

The outcomes related to the DEPOQ covariate are consistent with the studies by Sasaky
and Sugai concerning the Hachimantai region located in Northeastern Japan [75], and by
Akumu et al. [76], where significant landslide hazard is correlated to inland wetlands,
whereas coastal wetlands are associated with low LH, which brings together the CMT and
the Central Italy coastal wetlands, as characterized by Santangelo et al. [74].

As for forests, woodlands, and shrubs, not only do they almost totally feature the
non-urbanized areas of the CMT district, but also they act as spatial contexts whose man-
agement is crucial to implement planning policies aimed at decreasing the environmental
risk associated with landslide hazard. The association of these LEAC groups with ar-
eas characterized by landslide hazard is consistent with their environmental protection
function. This issue is widely addressed in the current literature. The enhancement and
strengthening of forests and woodlands is basically related to the protection of primary
forests, to forest recovery activities, to sustainable management of forests and woodlands,
and to tree planting in spatial contexts characterized by different prevailing ecosystems,
such as urban and agricultural areas, where these LEAC groups play a decisive role in miti-
gating the impact of landslide hazard [77]. FAO identifies forest sustainable management
as the most important operational category to enhance economic, social, and environmental
quality of rural areas, mainly because of its impact on improvement of crop production
and productivity connected to protection from flood and landslide effects [78]. Forest and
woodlands’ recovery and new arboreal plantations are particularly relevant for the defini-
tion and implementation of spatial planning policies since the assessment of their economic
impact in terms of mitigation and adaptation to climate change is generally recognized as
particularly effective in the medium and long runs, especially due to decrease in flood and
landslide risk [79,80], as well as for biodiversity protection and enhancement [81–83].

Finally, the regression model shows that landslide hazard is associated with land
take in significant and quantitatively relevant terms in the CMT subdistrict. This finding
is supported by the fact that the other results of the regression are consistent with the
outcomes of several studies available in the current literature, which implies that the
definition and implementation of spatial planning policies aimed at addressing landslide
hazard in the study area are almost entirely an issue of countering the ongoing land-taking
processes and of deurbanizing at least a part of the areas located in landslide-prone zones.
This is a key issue in the current scientific and technical debate (among many, [84–87]), and
it is widely discussed in the fifth section.

5. Policy Implications

The results show a positive correlation between coefficient of FOR and landslide
hazard due to virtuous spatial organization aimed at protecting urbanized areas and at
preserving natural forests and grassland from land-taking processes. Forests have positive
effects on reducing impacts of landslide. In shallow soils, deep-rooted trees and shrubs
may reduce the occurrence of rapid landslide [88] by anchoring and stabilizing superficial
soil layer to more sound substrates [89]. Moreover, trees may represent a physical barrier
to contrast rocks and debris falls [90]. Therefore, spatial planning policies concerning forest
and woodland recovery and plantations of deep-rooted trees and shrubs are particularly
significant in order to decrease landslide hazard. From this perspective, two main policy
implications can be identified as follows. First, forest management should consider the
potential of forests and woodlands for landslide protection by restoring and protecting
natural forests [91] and by maintaining forest cover. Health and vitality of forests are two
key factors to reduce landslide hazard by strengthening rooting systems of tree in relation
to climate change [89]. Secondly, spatial planning should localize forest in high-risk areas
in order to support a virtuous spatial organization that locates human settlements and
activities in zones characterized by low levels of landslide hazard [89].

The most prominent result is, however, the significant positive correlation concerning
L_TAKE; therefore, as far as land covers and their effects on landslide hazard are concerned,
controlling land-taking processes is the main road to mitigating the hazard. On this premise,
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three main groups of policy implications, respectively concerning land densification, land
recycling, and strategic environmental assessment, can be identified as follows.

At the international level, governments are using different measures to reduce land-
taking processes, such as policy targets [3], financial or fiscal incentives, and environmental
assessment of spatial plan and projects [92]. On the other hand, as shown in the introduction,
land-taking processes are steadily increasing; therefore, further measures are necessary
in order to achieve the EU goal of “no net land take by 2050”. According to the EU
Soil Strategy for 2030, Member States should integrate the actions defined in the “land
take hierarchy”; that is, avoid, reuse, minimize, and compensate, into urban greening
plans, and promote the reuse and the recycling of land and high-quality urban soil [3]. In
particular, land recycling is defined as “the reuse of abandoned, vacant or underused land
for redevelopment. It includes ‘grey recycling’ and ‘green recycling’. Grey recycling is
when ‘grey’ urban objects, such as buildings or transport infrastructures, are built under
redevelopment. Green recycling is when ‘green’ urban objects, such as green urban areas
or sport facilities, are built” [93]. Moreover, land recycling includes three components: gray
land recycling, green land recycling, and land densification.

As for land densification, it implies that land is developed within existing settlements
so as to take advantage of existing infrastructure without using undeveloped land [93].
Therefore, national and regional administrations should promote land recycling strategies
within regional plans, to be further downscaled at the local level through municipal
masterplans where new development should be allowed only if its impacts on land take
are negligible. Moreover, regional strategies should promote a compact urban model based
on the land densification concept to reduce demand for undeveloped areas. However, this
should not be regarded as a “one size fits all” solution, as local specificities need to be
taken into account. Indeed, such measures have been found to be particularly effective
in developed countries, whereas in Latin America and Sub-Saharan Africa, as well as
in already hyper-dense Asian megacities, further urban densification can bring about
negative effects in terms of inequality of spatial distribution and social conditions of the
local communities [94].

With regard to land recycling, this is mainly supported through financial and regula-
tory tools. Concerning the former, financial support through publicly funded programs [95]
and subsidies generated through impact fees, soil sealing fees, or improvement levies [96]
are among the most common tools to promote land recycling. However, national and
regional governments should diversify the set of fiscal tools that usher in creative and
innovative ways to manage land uses effectively and efficiently. For example, the transfer
of development rights can be used to direct development towards already taken up and
well-serviced areas, rather than towards greenfield areas that are poorly connected in terms
of transport, infrastructures, facilities, and services. As for regulatory tools, such as zoning
schemes and land use regulations, these could successfully promote the participation of the
private sector within land recycling projects. Furthermore, flexible and performance-based
zoning regulations could be adopted within municipal masterplans [97]: these should
pursue strict limits and constraints on land take, while allowing land uses that do not result
in artificial land, hence in turn promoting mixed land uses where different functions coexist.
However, because in Italy land use plans are drafted and approved by local municipal-
ities independently of each other, monitoring and evaluating the provisions of existing
municipal land use plans is necessary in order to understand the cumulative effects of
land use regulations in adjacent cities and towns, and their consequences on land-taking
processes. In this regard, in Sardinia, the regional administration can play a key role, since
the regional planning office actively participates in the approval processes of regional and
local plans with a view to ensuring their compliance with both regional planning laws
and the regional landscape plan [98]. Due to the complexity of interests at stake, measures
concerning land-take prevention and limitation, be they finance-based or regulation-based,
call for active involvement of local communities and municipalities [99], and for effective
vertical and horizontal cooperation between governments and other public bodies [100].
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A third important policy implication concerns strategic environmental assessment
(SEA), an appraisal planning tool that is mandatory in EU countries, which ensures that
environmental considerations and sustainable-oriented goals are integrated into plan-
making processes by assessing their likely effects on the environment, by considering
reasonable and more sustainable alternatives, and by taking into account the mutual
relations between the environment and the economic and social sectors [100,101]. Through
the comparison of alternative land uses, the identification of areas that are more suitable for
certain uses, and the evaluation of cumulative, direct, and indirect impacts of land-based
investments, SEA can pave the way for the integration, within spatial plans, of measures
aimed at preventing or minimizing land take.

In areas prone to landslide hazard (as well as in areas prone to flood hazard, which
are not the object of this study), in Sardinia the PAI maps serve as a spatial reference for the
PAI regulations, which restrict land uses and prevent land transformations depending on
the magnitude of the hazard. In this way, the PAI provides a legally binding framework
for municipal masterplans, whose zoning choices must comply with the PAI regulations,
contrary to what has been reported in other countries [102], where new development in
landslide hazard areas is not prohibited [103]. Hence, this higher-level regional planning
tool contributes to limiting land-taking processes in fragile areas, while also providing
relevant spatial information to planners in charge of drafting land use plans and appraising
them through the SEA. Moreover, because the PAI maps are publicly available through the
regional geoportal, they also contribute to raising local authorities’ and local communities’
awareness of landslide hazard and, by doing so, to granting transparency and legitimacy
to restrictions that otherwise would be, in principle, quite conflictual.

6. Conclusions

In this study a novel methodological approach was proposed with a view to analyzing
the relations between land-taking processes and landslide hazard in order to understand
whether, and to what extent, land-take phenomena are associated with landslide hazard.
The outcomes of this analysis were next used to define policy suggestions that, by pre-
venting or minimizing land take, can help mitigating landslide hazard, therefore indirectly
preventing the human and economic losses that might result from land mismanagement.

The methodological approach here proposed as a tool to support decision-making
processes can be exported to other European contexts, since the CLC inventory is available
for 39 European countries [36], among them the 27 EU Member States, provided that a
detailed landslide hazard or landslide susceptibility spatial dataset is available, which is not
the case for all of the EU Member States, as reported in a recent study by Mateos et al. [102].

Moreover, the methodological approach shows a certain degree of flexibility, allowing
for the inclusion of further context-specific spatial or normative variables that might be
appropriate or needed in other contexts. In our selected case study, the influence of two
LEAC groups (open space with little or no vegetation; transitional woodland and shrub)
on landslide hazard could not be assessed because they were not relevant in the study
area, hence this might be a matter for future investigation in other contexts. In addition,
the impact of specific land cover classes on landslide hazard was here not assessed due to
the simplified classification of the LEAC taxonomy, where the 44 CORINE land covers are
aggregated into eight groups. Future directions of the research might therefore include a
more detailed analysis, where the LEAC groups are (completely or partly) replaced by the
CLC classes, which might, however, result in a more complicated implementation of the
model and interpretation of its results.

This study has analyzed the relations between land-taking processes and landslide
hazards in a cross-section terms; therefore, dynamic issues, such as the evolution process
of land covers or the development through time of different forms of urbanization are
not within the scope of this work. However, these are relevant future directions related
to the research work proposed in this article, which may entail the assessment of the
dynamics of the relationship between landslide hazard and land-taking processes. This
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point is analyzed by Pisano et al. [30], who studied how land cover changes affect landslide
hazard in relation to the years 1954, 1981, and 2007. The advantages in analyzing how
land cover changes are correlated to landslide hazard are connected with the outstanding
dynamicity that characterizes land cover change processes. Although different factors
influence landslide hazard in the long run, such as geological and geomorphological
phenomena, land covers are also characterized by short-term dynamics, which stresses the
relevant added value which may be provided by a time-series-based contextualization of
the cross-section assessment here implemented [104]. As regards the dynamic relationships
between urbanization processes and landslide hazard, further important research directions
are represented by the assessment of landslide phenomena in different cities and towns
characterized by diversified urban morphologies, ranging from dense and compact urban
fabrics to sparse and widespread urbanization, in order to define and implement planning
policies and measures aimed at countering and mitigating landslide hazard.
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Appendix A

Table A1. Correlations between the explanatory variables used in model (1): Pearson product–
moment correlation coefficients and significance levels.

L_TAKE ARA PMF FOR GRSH DEPOQ VOLSE ELEV HGLAGGED
L_TAKE −0.0541 −0.0715 −0.0798 −0.1096 0.0614 0.0091 −0.0893 0.0415

ARA 0.0000 *** −0.2600 −0.2727 −0.3633 0.2006 0.1491 −0.3056 −0.1751
PMF 0.0000 *** 0.0000 *** −0.2750 −0.4033 0.0118 0.1708 −0.0034 −0.1894
FOR 0.0000 *** 0.0000 *** 0.0000 *** −0.3118 −0.0434 −0.2723 0.3082 0.1759

GRSH 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** −0.1720 −0.0159 0.0030 0.1699
DEPOQ 0.0000 *** 0.0000 *** 0.0377 ** 0.0000 *** 0.0000 *** −0.3042 −0.2769 0.0186
VOLSE (0.1085) 0.0000 *** 0.0000 *** 0.0000 *** 0.0052 *** 0.0000 *** −0.2143 −0.2093
ELEV 0.0000 *** 0.0000 *** (0.5523) 0.0000 *** (0.5982) 0.0000 *** 0.0000 *** 0.0202

HGLAGGED 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0011 *** 0.0000 *** 0.0004 ***

Below the diagonal (italicized): p-values and significance levels: ***: p < 0.01; **: p < 0.05; *: p < 0.10; (): p > 0.10.
n = 30,775; degrees of freedom = 30,773.
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Abstract: The study of land use/land cover (LULC) changes plays an important guiding role in
regional ecological protection and sustainable development policy formulation. Especially, the
simulation study of the future scenarios may provide a hypothetical prospect which could help
to determine the rationality of current and future development policies. In order to support the
ecological protection and high-quality development strategy of the Yellow River Basin proposed by
the Chinese government, the Great Yellow River Region (GYRR) is taken as the research area. The
multi-period land cover data are used to carry out the analysis of land cover changes. The MOLUSCE
(Modules for Land Use Change Simulations) plugin of QGIS software is used to carry out a land
cover simulation and prediction study for 2030 on a large regional scale. Finally, the land cover
status in the mountainous areas of the GYRR is analyzed thoroughly. The results show a decrease in
agricultural land and increase in forest land during the past 25 years from 1995 to 2020, and that this
trend would continue to 2030. The landscape pattern index analysis indicates that the land cover in
the GYRR has become more and more abundant, and the degree of fragmentation has become higher
and higher, while landscape patches were more evenly distributed in the GYRR until 2020. On the
other hand, the landscape pattern would tend to achieve a certain degree of stability in 2030. The
decrease in farmland and the increase in forest land illustrate the efforts made by the GYRR residents
and governments in improving the ecological environment under the policy of returning farmland to
forests and grasslands. On the other hand, although the residential areas in the mountainous areas
are far away from the mountain hazard historical points because of consideration during construction
with the help of the development of disaster prevention and mitigation over the years, there could be
problem of rapid and haphazard urbanization. It is worth mentioning here that the harmonious and
sustainable development of people and land in the GYRR mountainous areas still requires a large
amount of effort.

Keywords: land cover; QGIS; MOLUSCE; Great Yellow River Region; mountain hazards

1. Introduction

All lives on the earth depend on land, which is the material basis for human survival
and development. Land use refers to the activities related to the focused development and
utilization of land resources by human beings, such as industrial land, agricultural land,
residential land, transportation land, etc. Land cover refers to the natural or man-made
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coverage of the land surface. The material coverage related to various land uses mentioned
above includes crops, forests, grasslands, houses, and so on. Therefore, the land use is a
process occurring on the earth’s surface, while the land cover is the result of various surface
processes. Whether at the regional scale, national scale, or even global scale, change in land
use is constantly causing the accelerated change of land cover [1,2].

Land use/land cover (LULC) changes affect the natural basis of human survival
and development. Climate, soil, vegetation, water resources, and biodiversity are deeply
affected. They are closely related to global climate change, biodiversity reduction, ecological
environment evolution, and the sustainability of human–environment interaction [3]. The
research on land use and land cover changes could provide some reference for policy
formulation, land planning, and many other aspects. Nowadays, LULC change research
has become one of the core topics of global change research [4]. Many national government
agencies, scientific research departments, and social groups are paying attention to land
use and land cover change research, which involves a series of major issues such as the
protection and management of the ecological environment [5,6], the effective development
and rational protection of regional resources [7], the protection of arable land and food
security [8], and the sustainable development of the social economy [9,10].

At present, there are many models that analyze and simulate land use and land cover
change, such as the Markov chain model [11,12], cellular automata model [13], the future
land use simulation (FLUS) model [14], cellular automata Markov (CA–Markov) model [15],
SLEUTH [16,17], etc. Every model has its own specialty for addressing the composite issues
of land use and land cover changes. Now, various LULC prediction models have also been
applied to different regional scales. Han et al. [18] simulated future land use scenarios
for Beijing from 2010 to 2020 by combining the Conversion of Land Use and its Effects at
Small regional extent (CLUE-S) model with a Markov model. Arsanjani et al. [19] used a
hybrid model consisting of the logistic regression model, Markov chain (MC), and cellular
automata (CA) to improve the performance of the standard logistic regression model,
and predicted the future land use for 2016 and 2026 in the metropolitan area of Tehran,
Iran. Kafy et al. [20] used the Cellular Automata (CA) and the Artificial Neural Network
(ANN) machine learning algorithms to simulate the LULC and seasonal land surface
temperature (LST) scenarios of Chattogram, Bangladesh for 2029 and 2039. Puangkaew
and Ongsomwang [21] simulated the LULC data of Phuket Island using the CLUE-S model.
Based on the CA–Markov model, Chen et al. obtained a predicted land use map of a hilly
area, Jiangle, China, for 2014. Li et al. [22] presented a Future Land-Use Simulation (FLUS)
system to simulate global LUCC in relation to human–environment interactions from 2010
to 2100. In general, people may pay more attention to the simulation of land use and
land cover on medium and small scales. However, with the deepening of cross regional
economic and cultural exchanges, the simulation of land use and land cover on a large
regional scale is receiving more and more attention [23]. The improvement of computer
computing ability also provides conditions for the simulation of land use and land cover
on a large regional scale.

In order to achieve long-term peace and stability in the Yellow River Basin, the Chi-
nese government has set the ecological protection and high-quality development of the
Yellow River Basin national strategies that are equally as important as the coordinated
development of Beijing, Tianjin, and Hebei, the development of the Yangtze River economic
belt, the construction of the Great Bay area of Guangdong, Hong Kong, and Macao, and
the integrated development of the Yangtze River Delta [24]. In this study, we performed
the analysis of land cover changes and modeled the future scenario of Land cover with the
help of the Modules for Land Use Change Simulation (MOLUSCE) plugin within QGIS
software [25]. As compared with other land cover simulation tools, MOLUSCE has the
advantages of being open source, free of charge, and simple to operate. We used land
cover data from 1995 to 2020 with a five-year interval, along with spatial variables, such as
elevation, relief, slope, monthly average temperature, annual precipitation, river network
density, Gross Domestic Product (GDP), population, road network density, and city density.
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The logistic regression was used to construct transition potential modeling, and the Cellular
Automata was used to do the future land cover simulation of 2030. On the other hand, we
analyzed the land cover changes between different years, especially the land cover changes
in the mountainous areas of the Great Yellow River Region (GYRR), and comprehensively
discussed relationships between land cover and the mountain hazards in this region. This
study confirms that the MOLUSCE plug-in could be effectively applied to the simulation
of land cover on a large regional scale, and it is also an attempt to explore the relationship
between land cover change and mountain hazards on a large regional scale.

2. Materials and Methods

2.1. Study Area

The Yellow River, located in the north-central part of China (Figure 1), is the second-
longest river in China, with a total length of 5464 km [26]. It flows through the Qinghai
Tibet Plateau, Inner Mongolia Plateau, Loess Plateau, and Huang-Huai-Hai Plain [27], and
goes through nine provinces, including Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia,
Shaanxi, Shanxi, Henan, and Shandong [28,29]. The terrain of the Yellow River Basin is
high in the West and low in the East [30]. According to statistics, the total area of the
Yellow River Basin is 795,000 km2 [31,32]. The annual average temperature of the basin is
about 7 °C and the annual average precipitation is about 440 mm [33]. Now, the Yellow
River basin has become one of the most vulnerable areas of ecological environment in
China due to its complex landforms and climate differences. Serious water pollution,
land desertification, gradual reduction of runoff, intensified soil erosion, and vegetation
degradation [34] have become the focus of sustainable development of the Yellow River
Basin. On 18 September 2019, the “Ecological protection and high-quality development in
the Yellow River River Basin” was upgraded to a major national strategy by the China’s
government on a forum in Zhengzhou, Henan, China [35,36].

It should be noted that the Yellow River is a special river which exists in the form of
suspended river on the ground in the lower reaches. According to statistics, thousands
of years before, and until, 1946, the Yellow River burst 1593 times, and 26 major river
diversions occurred [37–39]. Among them, the northernmost diversion occupied the Hai
River and flowed into the Bohai Sea; the southernmost diversion passed through the Huai
River (Figure 1). Considering the particularity of the Yellow River, we believe that the
relevant research on the Yellow River cannot be limited to the existing basin, because its
lower reaches are bounded by artificial levees and do not show a natural state. Therefore,
we selected the Yellow River Basin, the Huai River Basin, and the Hai River Basin, which
all are greatly affected by the Yellow River, to form the GYRR (Figure 1), and used them as
the research area in response to “ecological protection and high-quality development of the
Yellow River Basin”. For the GYRR, relevant scholars have put forward similar concepts,
such as the “Great Yellow River theory” of Guo [40], which defines a similar research area
to guide relevant researchers to explore the development, evolution, generation, watershed
size, source, rheology, estuary, river length, disaster, and contribution of the Yellow River.
Mostern [41], in his book “The Yellow River-A Natural and Unnatural history”, also selected
a similar study area to introduce many research aspects of the Yellow River, such as history,
loess, levies, and levees.

The GYRR is bounded by the Yanshan and Yinshan Mountains in the north, Helan
and Qilian Mountains in the west, Qinling and Dabie Mountains in the South, and Bohai
and Yellow Sea in the East. The division of the surrounding mountains causes the GYRR
to become an independent geographical unit. The Yellow River, which has changed its
course for many times, has become the tie linking different parts of the geographical unit.
This area has become the main and core area of the Yellow River civilization. In terms of
administrative divisions, the GYRR occupies all of Shandong, Shanxi, and Ningxia, most
places in Henan and Hebei, the east part of Qinghai, the middle and north parts of Shaanxi,
the north part of Jiangsu and Anhui, the south part of Gansu, the northwest corner of
Sichuan, and the middle part of Inner Mongolia. A total of 12 provinces are involved.
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In terms of geomorphology, the western areas of the GYRR are the mountainous areas,
while the eastern part is a large area of alluvial plains. The area percentage of plains and
platforms is about 34.96%, and that of mountainous areas is 65.04% (Figure 2).

Figure 1. GYRR extent, including the Yellow River Basin, the Huai River Basin, and the Hai River
Basin. A similar region concept has been recognized and mentioned by many scholars [40,41].
Historically, the Yellow River has burst and changed its course many times, affecting a wide area. At
present, the lower reaches of the Yellow River are overland rivers, which are not natural rivers, but are
significantly affected by human activities. Therefore, the study of the Yellow River should consider
the history and river characteristics. It is more reasonable to take the area affected by the Yellow River
as the study area of the Yellow River. In particular, we propose that historical archaeologists may
take this area as the research area for Yellow River civilization archaeology.

Figure 2. Landforms of the GYRR. The mountainous areas occupy about two-thirds of the GYRR.
The cultural exchange in the GYRR is convenient, and forms the unique Yellow River civilization.
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2.2. Materials
2.2.1. Land Cover Data

The land cover data used in this study (1995, 2000, 2005, 2010, 2015, and 2020) were
downloaded from the land cover classification data set released by the European Space
Agency (ESA) climate change initiative [42]. The spatial resolution is 300 m. Using the
international Intergovernmental Panel on Climate Change (IPCC) land categories, the
land cover types were divided into 10 categories: (i) agriculture, (ii) forest, (iii) grassland,
(iv) wetland, (v) settlement, (vi) permanent snow and ice, (vii) shrubland, (viii) sparse
vegetation, (ix) bare area, and (x) water (Figure 3). We resampled these land cover data and
obtained multi-temporal 1000-m resolution land cover data.

Figure 3. Land cover of the GYRR from 1995 to 2020. (a) Land cover in 1995; (b) land cover in 2000;
(c) land cover in 2005; (d) land cover in 2010; (e) land cover in 2015; (f) land cover in 2020. Although
the size of the pictures was limited, we could still find the subtle differences between them. For
example, the settlement areas displayed in red shows an obvious increasing trend.

2.2.2. Spatial Variables Affecting the Land Cover Change

Physical and socioeconomic elements may cause alterations in land cover. For the
selection of spatial variables affecting land cover change, we mainly referred to the relevant
literature [14,43–49]. After comparison and analysis, we employed a variety of physical
and socioeconomic elements (Table 1), including the elevation, topographic relief, slope,
annual average temperature, annual average precipitation, river network density, GDP,
population, road network density, and city density.

The elevation data (Figure 4a) were downloaded from the EarthEnv website (https://
www.earthenv.org/topography). We found that the landform of the whole GYRR is high in
the west region and low in the east region. There are many mountains in the west, and
alluvial plains and hills in the east. The highest altitude of the whole area is 6018 m. The
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topographic relief was calculated from elevation, and the maximum relief in this region is
1112 m. The high value of relief is mainly distributed in the Taihang Mountains (Figure 4b).
The slope data (Figure 4c) were also downloaded from the EarthEnv website (https://
www.earthenv.org/topography). The high value distribution of the slope is similar to the
relief high value distribution. The maximum value of the slope is 38.36◦. The temperature
and precipitation data were downloaded from the WorldClim website. WorldClim version
2.1 climate data for 1970–2000 was released in January 2020. They provide monthly climate
data for minimum, mean, and maximum temperature, precipitation, solar radiation, wind
speed, water vapor pressure, and total precipitation at the four spatial resolutions, between
30 s and 10 min. Each download is a “zip” file that contains 12 GeoTiff (.tif) files, one for
each month of the year (January is 1; December is 12). We obtained the annual average
temperature by averaging the 12-monthly mean temperature data. It was found that
the maximum annual average temperature in this area is 16.18°C and the minimum is
−13.68 °C (Figure 4d). Due to the influence of monsoons, the temperature in the East is
higher, while the influence of ocean in the West is weak, and the temperature is lower.
The precipitation data were also taken from the WorldClim website. We summed up the
12-monthly precipitation data to obtain the annual average precipitation. The precipitation
in the GYRR decreases from Southeast to Northwest. The annual maximum precipitation
can reach 1723 mm (Figure 4e). The river network density was calculated using the river
network data (Figure 4f). In addition, data related to human activities mainly include GDP,
population, road density, and city density. Due to the accumulation of human beings in the
plain area, the four above-mentioned factors show the characteristics of high density in the
plain area (Figure 4g−j).

Table 1. Data sources.

Data Source Access Date

Elevation https://www.earthenv.org/topography [50] 20 May 2022
Relief Calculated from Elevation 20 May 2022
Slope https://www.earthenv.org/topography [50] 20 May 2022

Temperature https://www.worldclim.org/data/index.html [51] 22 May 2022
Precipitation https://www.worldclim.org/data/index.html [51] 22 May 2022

River https://www.hydrosheds.org/products/hydrorivers [52] 28 May 2022
GDP https://www.nies.go.jp/link/population-and-gdp.html [53] 6 June 2022

Population https://landscan.ornl.gov/ [54] 10 June 2022

Road https://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1/data-
download [55] 11 June 2022

City https://www.resdc.cn/data.aspx?DATAID=211 [56] 15 June 2022

2.2.3. Mountain Hazards in the GYRR

Mountain hazards generally refer to the hazards that can threaten human beings
and their living environment in mountainous areas [57,58]. Tang et al. [59] discussed
and defined “mountain hazards” in the 1980s, and considered that landslides, collapses,
mudslides, soil erosion, ice avalanches, frozen soil hazards, earthquakes, hail, and other
hazards in the mountainous areas could all be classified as mountain hazards. As compared
with the above-mentioned broad categories, mountain hazards, in a narrow sense, could be
understood as the phenomenon through which the water and soil materials move along the
slope under the driving force of gravity and have a certain destructive capacity [60]. Debris
flows, landslides, collapses, and mountain torrents are the representatives of common
typical mountain hazards. In this study, we collected data on landslides, mountain torrents,
and debris flows in the GYRR. For the collection of landslide and debris flow data, the global
landslide catalog (GLC) from 2007 to 2017 produced by the National Aeronautics and Space
Administration (NASA) of the United States was downloaded to collect rainfall-induced
landslide and debris flow events. The data sources of the GLC include media, disaster
databases, scientific reports, etc. [61]. On the other hand, the Dartmouth flood Observatory
was established in 1993, mainly recording major global flood events from January 1985 [62].
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For the mountain torrents, as a special flood occurring in the mountainous areas, the
mountainous areas of the GYRR were used to screen the above flood event points and to
obtain the mountain torrent points.

 
Figure 4. Impact factors considered in land cover prediction. (a) Elevation; (b) relief; (c) slope; (d) an-
nual average temperature; (e) annual average precipitation; (f) river density; (g) GDP; (h) population;
(i) road density; (j) city kernel density. We have considered as many natural and socio-economic
factors as possible based on the availability of the data.

2.3. Methods
2.3.1. MOLUSCE Plugin

Asia Air Survey Co., Ltd. (AAS) released MOLUSCE (Modules for Land Use Change
Evaluation) at FOSS4G 2013, which was a conference for people working with open-source
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tools. As a user-friendly plug-in for QGIS 2.0 and above, MOLUSE is designed to analyze,
model, and simulate land use/cover changes. MOLUSCE is well suited to analyze land use
and forest cover changes between different time periods, model land use/cover transition
potential or areas at risk of deforestation, and simulate future land use and forest cover
changes [63].

2.3.2. Correlation Analysis

Correlation analysis refers to the analysis of two or more variable elements with
correlation, to measure the closeness of the correlation between the variable factors. The
measurement of the closeness of the relationship between geographical elements is mainly
realized through the calculation and interpretation of the correlation coefficient. Pearson’s
correlation and Cramer’s coefficient are the main correlation analysis methods in the
MOLUSCE plugin of QGIS. Among them, Pearson correlation analysis is a measurement
method of vector similarity [64]. The output range is from −1 to + 1, where 0 represents no
correlation, negative value represents negative correlation, and positive value represents
positive correlation.

The correlation degree is usually judged by the following value ranges:

• 0.8–1.0: extreme correlation;
• 0.6–0.8: strong correlation;
• 0.4–0.6: moderate correlation;
• 0.2–0.4: weak correlation;
• 0.0–0.2: very weak correlation or no correlation.

2.3.3. Change Analysis and Transition Potential Modeling

We used the MOLUSCE plugin inside QGIS to compute the land cover change between
the research intervals. For transition potential modeling, we used the logistic regression
approach. The elevation, relief, slope, monthly average temperature, annual average
precipitation, river density, GDP, population count, road density, and city kernel density
were used as the explanatory factors.

2.3.4. Prediction and Model Validation

The MOLUSCE plugin can not only efficiently compute land cover change analyses,
but is also well-suited for simulating future scenarios of land cover. We used the CA Simu-
lation tool [65–67] of the MOLUSCE plugin inside QGIS to simulate the future land cover
after we finished the transition potential modeling operation using the logistic regression
approach. Next, we entered the reference map and simulated map for comparison and
verification on the Validation page of the MOLUSCE plugin, and obtained the relevant
Kappa coefficient values as a reference to check the accuracy of the simulation results.

2.3.5. Annual Rate of Change Analysis

The annual rate of change (ARC) could be used to represent the magnitude of change
between corresponding years. In order to obtain the annual rate of change for each land
cover type, the area difference between the final year and initial year was divided by the
area of initial year and time (year) period. We used Equation (1) to assess the annual rate of
change in land cover categories [25,68]:

ARC =
AreaFinal − AreaInitial

AreaInitial∗t
× 100% (1)

where ARC is the annual rate of change in land cover categories. AreaFinal and AreaInitial
are the areas of final and initial year, and t is the interval of years between the final year
and initial year.
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2.3.6. Landscape Pattern Index Analysis

The landscape pattern is the arrangement of landscape blocks of different sizes and
shapes formed naturally or artificially in landscape space [69]. The landscape pattern
indexes, as the sub-classification of landscape indexes, reflect the structural characteristics
of land use/land cover types [70]. There are many types of landscape pattern indexes,
and because of the application of new theories in landscape ecology, they are constantly
being pushed forward [71,72]. Researchers often extend this part of the functions of the
Geographic Information System (GIS) to form a unique landscape index software package
based on GIS, such as Fragstats software package.

In order to study the spatial structure characteristics of different land cover types in
the GYRR, this study first introduced the landscape diversity index to characterize them.
Shannon’s Diversity Index (SHDI) is a measurement index which is widely used in ecology
based on information theory, and it is equal to the negative sum of the area ratio of each
patch type multiplied by the natural logarithm of its value at the landscape level:

SHDI = −
s

∑
i=1

PilnPi (2)

where s is the amount of patches, and Pi the area ratio of each patch type. When SHDI = 0,
it indicates that the whole landscape is composed of only one patch, and an increase in
SHDI indicates that the patch types increase or distribute equally in the landscape space.
In a landscape system, the richer the land use/land cover is, the higher the degree of
fragmentation is, and more uncertain information content leads to a higher calculated SDHI
value. The diversity depends on two factors: the number of types and the evenness of
area combination; therefore, the diversity index is the comprehensive embodiment of type
richness and combination complexity [73].

Shannon’s Evenness Index (SHEI) equals the SHDI divided by the maximum possible
diversity under a given landscape abundance (all patch types are equally distributed). The
smaller the SHEI value is, the more likely it is that some patch types may dominate the
landscape, and a value that is close to 1 indicates that there is no obvious dominant type
in the landscape while patch types are evenly distributed. Therefore, when SHEI = 0, it
indicates that the landscape is composed of only one type of patch without diversity, and
SHEI = 1 indicates that the patches are evenly distributed and have the greatest diversity.

SHEI =
SHDI

SHDImax
(3)

where SHDI is Shannon’s Diversity Index, and SHDImax is the maximum possible diversity
under a given landscape abundance (all patch types are equally distributed) [74].

2.4. Technology Roadmap

In the process of this research, our work includes the following steps (Figure 5):
(1) We downloaded the land cover data for six years, including 1995, 2000, 2005, 2010,

2015, and 2020, and then, by comparing and analyzing the data of the first year (1995) and
the last year (2020), we gained general insight into the land cover change in the GYRR in
the past 25 years.

(2) The data of 10 geographical elements from different data sources, including eleva-
tion, relief, slope, annual average temperature, annual average precipitation, river network
density, GDP, population, road density, and city density were collected.

(3) The MOLUSCE plugin was found in the plugin installation window and installed.
(4) We opened the MOLUSCE tool in the Raster menu drop-down list. Initial (2000)

and final (2010) land cover data were used as input. Geographic impact factors, such as
spatial variable, were used as input in the “inputs” tab of the MOLUSCE tool. Then, the
subsequent operations were carried out step by step. The data generated in the previous
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step were the basis for the next operation. In particular, we carried out the prediction of
land cover in 2030 after verifying the effectiveness of the prediction model.

 

Figure 5. Technology roadmap. In this technical route, we not only paid attention to the land cover
change in the whole GYRR, but also paid attention to the land cover change in mountainous areas
which account for two-thirds of the whole GYRR, especially the change in residential areas in the
mountainous areas.

34



Land 2023, 12, 340

(5) By comparing the land cover data in 2020 and 2030, we analyzed the land cover
change over the next 10 years.

(6) On the other hand, we used the mountainous areas of the GYRR to cut out the land
cover data of six periods from 1995 to 2020.

(7) The area changes in different land cover types in the mountainous areas of the
GYRR were analyzed over time.

(8) Mountain hazard data points were downloaded and sorted to conduct the Eu-
clidean distance analysis. The relationship analyses include distance from hazard points,
number of settlement patches, distance from hazard points, and area of settlements.

3. Results

3.1. Correlation between Geographical Variables

We calculated the Pearson correlation coefficient, as shown in Table 2. After compar-
ison, it was found that the variables having strong correlation with each other include
temperature and elevation, city density and temperature, city density and elevation, and
relief and slope.

Table 2. Pearson correlation coefficient between different variables.

Temperature Road
Density

Elevation GDP
City

Density Slope Population Relief
River

Density
Precipitation

Temperature 0.26 −0.95 0.35 0.68 −0.48 0.19 −0.48 0.09 0.48

Road Density −0.27 0.30 0.32 −0.20 0.15 −0.15 0.09 0.19

Elevation −0.37 −0.64 0.49 −0.17 0.49 −0.07 −0.34

GDP 0.37 −0.24 0.19 −0.22 0.06 0.17

City Density −0.19 0.17 −0.19 0 0.35

Slope −0.15 0.87 −0.21 −0.05

Population −0.14 0.04 0.12

Relief −0.19 −0.07

River Density −0.12

Precipitation

3.2. Area Changes and Landscape Pattern Features

The statistical analysis was done on various land cover areas between 1995 and 2020.
The area change and the ARC of the same land cover were calculated (Table 3). It was
noted that the land cover with the largest change was agricultural land, with a decrease of
−16,437 km2. The increase in settlement area is the largest one, with an area of +27,364 km2

and an ARC of 223.69%. The increase in settlement shows the enhancement of human
activities in the past 25 years.

The area transfer analysis was also performed between different land cover types.
According to the area transfer matrix (Table A1), between 1995 and 2020, large change situ-
ations include: 11,171 km2 agricultural land was transformed into forest land, 53366 km2

agricultural land was transformed into grassland, and 20,047 km2 agricultural land was
transformed into settlement land. In terms of forest land, 10,233 km2 forest land was
transformed into agricultural land, and 101,506 km2 forest land was transformed into
grassland. On the other hand, 52,088 km2 grassland was transformed into agricultural
land, 12,597 km2 grassland was transformed into forest land, and 7645 km2 grassland was
transformed into settlement land. The Chord diagram (Figure 6) was used to express the
land cover change. It was found that agriculture, grassland, and forest are the main land
cover types, and account for most of the land studied.

We analyzed the landscape pattern indexes SHDI and SHEI in the GYRR, and the
values of the two indexes increased gradually with time (Figure 7). The continuous increase
in the SHDI value indicate that the land cover in the GYRR had become more and more
abundant, and the higher the degree of fragmentation was, the greater the uncertain
information content became. SHEI was getting bigger and bigger, approaching 1, which
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indicated that there was no obvious dominant type in the GYRR, and landscape patches
were more and more evenly distributed in the GYRR.

Table 3. Land cover change from 1995 to 2020.

Land cover type Area in 1995 (km2) Area in 2020 (km2) Area change (km2) ARC

Agriculture 788,382 771,945 −16,437 −0.08%

Forest 116,638 126,528 +9890 +8.48%

Grassland 476,334 474,525 −1809 −0.38%

Wetland 7005 5410 −1595 −22.77%

Settlement 12,233 39,597 +27,364 +223.69%

Permanent snow and ice 178 169 −9 −5.06%

Shrubland 1257 646 −611 −48.61%

Sparse vegetation 8662 6681 −1981 −22.87%

Bare area 25,027 15,683 −9344 −37.34%

Water 16,126 15,024 −1102 −6.83%

Figure 6. Land cover change in GYRR from 1995 to 2020 using a Chord diagram expression. The right
semicircle shows the proportions of different land covers in 1995, and the left semicircle shows the
proportions of different land covers in 2020. The arrows in the circle indicate the land cover change.

Figure 7. Landscape pattern index analysis. (a) SHDI of GYRR; (b) SHEI of GYRR. The red line in the
figure is a trend line added by the authors.
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3.3. Land Cover Prediction in 2020 and Validation

We used the MOLUSCE plugin for the simulation of land cover in 2020. Using the
projected 2020 data (Figure 8a) for comparison with the actual land cover data in 2020
(Figure 8b), the percentage of correctness was calculated as 96.42%, the Kappa (overall) was
0.94, the Kappa (histo) was 0.98, and the Kappa (loc) was 0.95. The results show that the
10-year interval prediction model has a good result on land cover simulation and prediction.

Figure 8. Actual and projected land cover in 2020. (a) Projected land cover in 2020; (b) actual land
cover in 2020. We know that the more similar the two above maps are, the better the simulation
results will be. However, there are still some subtle differences between the two maps. For example,
the expansion trend of the simulated settlements was still conservative compared with that of the real
settlements, and the real settlements expanded more rapidly, for example, in cities in Henan Province.

3.4. Land Cover Prediction in 2030

The above experimental results show that the 10-year interval land cover prediction
model has good results. At the windows “Cellular Automata Simulation”, the results show
the option “Number of Simulation iterations”. This means that, if only 1 is entered, it will
be projected into the future only once. For example, if the land cover data are for 2000 and
2010, the land cover of 2020 will be projected when entering 1, and 2030 will be projected
in the case of changing the “Number of Simulation iterations” to 2. In this study, the actual
land cover in 2020 was used as the input of the model to simulate and predict the land
cover in 2030 (Figure 9).

According to the statistical results of various land cover types, agricultural land,
wetland, permanent snow and ice, shrubland, and sparse vegetation would be further
reduced. The area of forest, grassland, settlement, bare area, and water would increase
(Table 4).
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Figure 9. Land cover prediction of the GYRR in 2030.

Table 4. Land cover change from 2020 to expected 2030.

Land Cover Type Area in 2020 (km2) Area in 2030 (km2) Area Change (km2) ARC

Agriculture 771,945 767,522 −4423 −0.57%

Forest 126,528 129,153 2625 2.07%

Grassland 474,525 483,604 9079 1.91%

Wetland 5410 4533 −877 −16.21%

Settlement 39,597 36,983 −2614 6.60%

Permanent snow and ice 169 83 −86 −50.89

Shrubland 646 533 −113 −17.49%

Sparse vegetation 6681 4282 −2399 −35.91

Bare area 15,683 16,287 604 3.85%

Water 15,024 13,228 −1796 11.95%

In particular, it can be noted that a large amount of agricultural land would still turn
into grassland and settlement. Some settlement land would be converted into agricultural
land and grassland (Table A2). On the other hand, we analyzed the change in landscape
pattern index (SHDI and SHEI) and found that the two indexes did not change much
(Figure 10). This result shows that the land cover change in the GYRR may enter a stable
development stage when it reaches a certain degree in the future.

Figure 10. Landscape pattern index (SHDI and SHEI) contrast analysis between 2020 and 2030.

3.5. Land Cover Change in Mountainous Areas

For the whole GYRR, the area percentage of plains and platforms is about 34.96%,
and that of mountainous areas is 65.04% (Figure 2). The unique energy gradient causes
the mountains to become an area of natural hazards development, such as debris flows,
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landslides, collapses, avalanches, soil erosion, and mountain torrents. These mountain
hazards may destroy urban and rural settlements, damage roads, bridges, and engineering
facilities, bury farmlands and forests, and block rivers and reservoirs. They may cause
huge casualties, property losses, and ecological damage, seriously threaten the lives and
property of the people in the mountainous areas and the safety of engineering construction,
and restrict the development of resources and economy in the mountainous areas [60].
We cropped out the land cover of the mountainous areas of the GYRR in different years
(Figure 11).

Figure 11. Land cover in mountainous areas of the GYRR in different years.

Blind expansion of cities in mountainous areas can easily cause mountain hazards. It
would cause huge losses to the life, property, and safety of urban residents. For example, on
14 August 2017, a devastating geo-hazard chain—debris slide, debris flow, and sediment-
laden flood—occurred in Freetown, Sierra Leone, resulting in at least 500 deaths, more
than 600 missing, and hundreds of houses destroyed. Although rainfall was a trigger factor
for the Sierra Leone disaster, rapid and haphazard urbanization increased the hazard and
vulnerability [75]. The development of mountain towns is generally affected by many
factors such as social economy, topography, and geomorphology. Compared with plain
towns, their infrastructure is relatively weak. In particular, poor urban planning and
inadequate consideration of risks could lead to the construction of housing in dangerous
areas. On the other hand, the removal of hillside vegetation increases erosion potential;
low cost buildings using fragile building materials and methods could lack resilience;
inadequate risk management leads to weak emergency response.

We have also made area statistics for 10 land cover types (Figure 12). It can be seen
that the settlement area in the mountainous areas had been increasing continuously in
the past 25 years (Figure 12e), with an ARC value of +14.97%. Thanks to the policy of
returning farmland to forests and grasslands implemented by the Chinese government
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in mountainous areas, the area of ecological land such as forest land and grassland had
been continuously increased and, at the same time, the ecological environment had been
improved as a gratifying result (Figure 12b,c).

Figure 12. Land cover in mountainous areas of the GYRR in different years. We tried to use colors
similar to the colors of different land cover types.

We superimposed landslide, debris flow, and mountain torrent points on the base
map of the GYRR (Figure 13). It was found that the mountain-hazard points are mainly
distributed in the Central and Western regions of the GYRR. Next, the Euclidean distance is
calculated using these mountain-hazard point data in order to represent the distance from
the hazard point (Figure 13).

We made the statistics on the number of settlement patches, area of settlements in
the mountainous areas of the GYRR, and the average Euclidean distance from the hazard
points during the period from 1995 to 2020 with a time interval of five years (Figure 14).
According to the statistical results, when the number of settlement patches in mountainous
areas continued to increase, the distance between settlements in the GYRR and hazard
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sites was also increased (Figure 14a). On the other hand, the mountainous residential
areas in the GYRR also increased; however, the distance from the hazard point was also
increasing (Figure 14b). The above two situations show that, although the intensity of
human development in the mountains of the GYRR had been increasing, the awareness of
avoiding hazards was also improved.

 

Figure 13. Mountain-hazard distribution and calculation of Euclidean distance around them.

Figure 14. Relationship between hazard points and settlements. (a) Distance from hazard points and
number of settlement patches; (b) distance from hazard points and area of settlements.

4. Discussion

4.1. Decrease of Farmland and the Increase of Woodland under Returning Farmland to Forest
and Grassland

In 1998, Wuqi County of Yan’an, Shaanxi, China began to forbid grazing on the
mountains [76]. After that, this small county, located in the northwest of the GYRR, began
to take the lead in implementing the policy of returning farmland to forests [77]. Since
1999, Yan’an has reached a forest coverage rate of more than 50% and a vegetation coverage
rate of more than 80% by returning farmland to forest over more than 20 years [78]. This
is only a microcosm of China’s project of returning farmland to forest and grassland.
From 1999 to 2013, a total of 298,000 km2 farmland in China was returned to forest. The
project covers 2279 counties, with 32 million farmers and 124 million farmers directly
benefiting. The central government of China has invested 64.7 billion dollars in the project
of returning farmland to forest [79]. From 2014 to 2018, the new round of returning farmland
to forest and grassland involved 25 provinces (regions) including Hebei, Shanxi, Inner
Mongolia, and others [80]. The Loess Plateau of the GYRR was one of the earliest regions to
implement the project of returning farmland to forest and grassland which has made great
contributions to the improvement of forest coverage in China [81]. Returning farmland to
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forest and grassland provides a reasonable explanation for the reduction in farmland and
the increase of forest land in the GYRR.

4.2. Urbanization in Mountainous Areas of China

Mountainous areas account for 24% of the earth’s land area, and more than 12% of
the world’s population lives in mountainous areas [82,83]. China has a large number
of mountains. The mountainous areas accounts for about 70% of the land area, and
the population accounts for about 45% of the total population of the country. Due to
the geographical and economic marginality of mountainous areas, the overall level of
urbanization development in mountainous areas is far lower than the average level of
China. The low level of urbanization and the slow urbanization process in mountainous
areas, and a large number of agricultural population gathered in mountainous areas, will
certainly bring great pressure to the ecological environment in mountainous areas. Among
China’s 1429 county-level administrative units in mountainous areas, 54% of the counties
have an urbanization rate of less than 20%, and only 10% have an urbanization rate of more
than 40% [84]. The development of natural resources, especially mineral resources, has
played a significant role in promoting the urbanization of mountainous areas, and a number
of resource-based cities have emerged. Tourism is a potential tool to promote the diversified
development of mountain economy, increase the employment of mountainous residents,
alleviate the poverty in mountainous areas, promote the participation of mountainous
areas in economic globalization activities, and correct the development gap in mountainous
areas. In recent years, tourism has become a new driving force to promote the urbanization
of mountainous areas, such as Emeishan City, Wuyishan City, Tai’an City, and Jiuzhaigou
County, and other counties and cities have developed rapidly through tourism. At the same
time, due to the lack of management and the lag in planning, some mountainous tourism
cities have also experienced excessive urbanization [85]. Compared with plain towns, the
urban planning in mountainous areas of China seriously lags behind the urban construction.
At present, low-level spread of built-up areas and inefficient use of land are common in
urban construction in mountainous areas. The level of urban functional layout is not
clear. Especially with the increase in population and the shortage of construction land, the
important functional layout of mountain towns basically ignores the avoidance of mountain
hazards, and the ability of disaster prevention and mitigation is weak. For example, the
area which was most seriously affected by the huge debris flow in Zhouqu, Gansu Province
happened to be the most densely-populated and prosperous area [86,87]. The development
of mountain towns in the GYRR also faces the above problems, accompanied by the increase
in the area of residential areas and the number of residential patches.

4.3. Harmonious and Sustainable Development of People and Land in Mountainous Areas

The development of urbanization in mountainous areas should also be compatible
with the resources and be coordinated with the land space and environmental capacity [88].
People should adhere to the fundamental support of ecological industry and form an
intensive and ecological development model in order to improve the quality of urbanization.
It is necessary to change the traditional direction and mode of urbanization development,
gradually lead the urbanization construction to the road of new urbanization, implement
the green development strategy, intensively utilize resources, improve resource efficiency,
promote the intensive utilization of water, soil, and energy resources, and accelerate the
construction of resource-saving cities and towns [89]. The development of urbanization
in mountainous areas cannot ignore the restrictions of and close relationship with the
mountainous environmental factors. We must grasp the basic characteristics and laws of
the mountainous environment from different scales and regional differences, and deeply
analyze the typical examples of the pattern, resources, and environmental characteristics,
as well as the process of urbanization in mountainous areas. At present, the GYRR is
carrying out the urbanization of the mountainous areas with an ARC value of +14.97%.
There are many problems that need to be seriously considered to minimize the ecological
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problems caused by the rapid urbanization of the mountainous areas and realize the
harmonious and sustainable development of the relationship between people and land in
the mountainous areas.

4.4. Keeping Away from Hazards Benefitting from Disaster Prevention and Mitigation in
Mountainous Areas of China

China’s mountains account for more than two-thirds of the total land area. With the
rapid growth of population and inappropriate production activities in mountainous areas,
mountain hazards occur frequently, and people have been disturbed and destroyed by
mountain hazards in the process of utilization in mountainous areas [90]. Since the 1960s,
China’s relevant departments have begun to carry out the investigation and control of
mountain hazards. For example, the color scientific and educational film "debris flow,"
released in 1965, brought the debris flow phenomenon onto the screen, which played a
very strong role in publicizing and popularizing debris flow knowledge [91]. At present,
many departments and colleges in China have trained many professional scientific and
technological workers in theoretical research and disaster mitigation-prevention practice
regarding mountain-hazards, and laid down a solid foundation in theoretical and technical
reserves, becoming a very active scientific and technological force in China [92,93]. On
the other hand, China has integrated the study of debris flows, landslides, floods, and
other hazards, combined the construction of the large environment with the management
of small watersheds, carried out comprehensive research on the process of various haz-
ards, implemented comprehensive disaster mitigation, scientifically assessed the current
situation and trend of hazards, and put forward quantitative indicators [94]. With the
increasing awareness of disaster prevention and mitigation in mountainous areas, although
the proportion of residential areas and the number of residential patches in mountainous
areas continue to increase, the safety of residential areas in mountainous areas has been
continuously improved due to the conscious distance from mountain hazard points of
urban construction [95].

5. Conclusions

In this study, the GYRR was selected as the research area. The land cover change
analysis, as well as simulation and prediction of future land cover, was performed, focusing
especially on the analysis of the relationship between land cover in mountainous areas
and mountain hazards. This work verifies that the MOLUSCE plug-in could be effectively
applied to land cover simulation on a large regional scale. Based on the analysis in the
current study, the following conclusions are drawn:

(1) Based on multi-period land cover data and physical and socioeconomic factors, the
logistic regression and CA model within the MOLUSCE plugin in QGIS software was used
to perform the future simulation of land cover in the GYRR. This could provide a reference
for related research, especially for large regional-scale land cover simulation.

(2) The decrease in farmland and the increase in forest land illustrate the efforts made
by the government and residents of the GYRR in improving the ecological environment
during the past 25 years.

(3) According to the simulation and prediction results for land cover in 2030, the agri-
cultural land will decrease, and the forest land will increase. At the same time, the increase
in land cover in residential areas could not be ignored, which indicates the continuous
development of urbanization in the GYRR. On the other hand, landscape pattern index
analysis shows that the land cover in the GYRR may enter a roughly stable development
stage when it reaches a certain degree in 2030.

(4) Returning farmland to forest and grassland in the GYRR is conducive to ecological
improvement. On the other hand, although the residential areas in mountainous areas
were built as far away as possible from the mountain hazard points during construction,
there could be a problem of rapid and haphazard urbanization, which should also be paid
attention to.
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Appendix A

Table A1. Area transfer matrix between land cover in 1995 and land cover in 2020.

Land Cover Type

2020 (km2)

Agriculture Forest Grassland Wetland Settlement
Permanent

Snow and Ice Shrubland
Sparse

Vegetation
Bare
Area

Water SUM

1995
(km2)

Agriculture 701,727 11,171 53,366 287 20,047 2 36 174 118 1454 788,382

Forest 10,233 101,506 4562 8 123 0 12 1 5 188 116,638

Grassland 52,088 12,597 399,627 478 7645 10 61 943 1744 1141 476,334

Wetland 1224 0 1083 4015 206 0 0 0 6 471 7005

Settlement 1675 7 62 3 10,473 0 0 0 0 13 12,233

Permanent
snow and ice 0 0 32 0 0 145 0 0 1 0 178

Shrubland 140 456 94 0 9 0 420 106 26 6 1257

Sparse
vegetation 683 2 3358 2 64 0 77 4215 223 38 8662

Bare area 481 2 9681 9 246 5 40 1101 13,437 25 25,027

Water 2710 81 945 546 592 0 0 67 16 11,169 16,126

SUM 771,945 126,528 474,525 5410 39,597 169 646 6681 15,683 15,024 1,456,208

Table A2. Area transfer matrix between land cover in 2020 and land cover in 2030.

Land Cover Type

2030 (km2)

Agriculture Forest Grassland Wetland Settlement
Permanent

Snow and Ice Shrubland
Sparse

Vegetation
Bare
Area

Water SUM

2020
(km2)

Agriculture 747,492 1457 15,042 4 7718 0 5 60 70 97 771,945

Forest 1911 123,088 1421 0 97 0 3 0 0 8 126,528

Grassland 8075 4273 459,873 9 966 0 1 162 1057 109 474,525

Wetland 76 17 193 4342 622 0 0 2 0 158 5410

Settlement 9490 61 3273 132 26,431 0 6 29 50 125 39,597

Permanent
snow and ice 86 0 0 0 0 83 0 0 0 0 169

Shrubland 3 52 71 0 0 0 510 3 7 0 646

Sparse
vegetation 64 45 1789 0 3 0 8 4014 707 51 6681

Bare area 36 9 1240 0 4 0 0 5 14,388 1 15,683

Water 289 151 702 46 1142 0 0 7 8 12,679 15,024

SUM 767,522 129,153 483,604 4533 36,983 83 533 4282 16,287 13,228 1,456,208
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Abstract: Major development projects along rivers, like reservoirs and other hydraulic structures,
have changed not only river discharges but also sediment transport. Thus, changes in river planforms
can be observed in such rivers. In addition, river centerline migrations can be witnessed. The
Mahaweli River is the longest in Sri Lanka, having the largest catchment area among the 103 major
river basins in the country. The river has been subjected to many development projects over the last
50 years, causing significant changes in the river discharge and sediment transport. However, no
research has been carried out to evaluate the temporal and spatial changes in planforms. The current
seeks to qualitatively analyze the river planform changes of the Lower Mahaweli River (downstream
to Damanewewa) over the past 30 years (from 1991 to 2021) and identify the major planform features
and their spatiotemporal changes in the lower Mahaweli River. Analyzing the changes in rivers
requires long-term data with high spatial resolution. Therefore, in this research, remotely sensed
Landsat satellite data were used to analyze the planform changes of Lower Mahaweli River with a
considerably high resolution (30 m). These Landsat satellite images were processed and analyzed
using the QGIS mapping tool and a semi-automated digitizing tool. The results show that major
changes in river Mahaweli occurred mainly in the most downstream sections of the selected river
segment. Further, the river curvature was also comparatively high downstream of the river. An
oxbow lake formation was observed over time in the most downstream part of the Mahaweli River
after 2011. Centerline migration rates were also calculated with the generated river centerlines. It was
found that the rates were generally lower than about 30 m per year, except for at locations where river
meandering was observed. The main limitations of this study were the possible misclassifications due
to the resolution of images and obstructions caused by cloud cover in the Landsat images. To achieve
more accurate estimates, this study could be developed further with quantitative mathematical
analysis by also considering the sediment dynamics of the Mahaweli River.

Keywords: river morphodynamics; centerline migration; Landsat data; planform changes; re-
mote sensing

1. Introduction

The geomorphology of rivers is highly dynamic and has to be closely monitored. Most
of the large meandering rivers in the world, which carry significant sediment loads, are
subjected to change over time [1]. In fact, braided rivers exhibit high variability within
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short periods [2]. These changes are often due to sediment movement, river hydraulic
and hydrological processes, topography, and the vegetation properties of the riverine
environments [3]. Studying the geomorphological changes in rivers is paramount in
understanding the natural dynamics and will be helpful in predicting the patterns of future
planform changes [4]. The knowledge gained through these analyses will be significant in
the decision-making stage of river and floodplain management.

According to the literature, many investigations have been carried out for in recent
decades on river planform changes, although these analyses represent different scales and
have adopted different methods [3–8]. In many historical studies (during the 1990s and
early-2000s), researchers used field data, analytical models, or numerical models to analyze
river planform dynamics [9–12]. With the massive development of technology in recent
years, more sophisticated computers with high computing power and satellite remote
sensing data have become available. Therefore, most recent studies have taken advantage
of remotely sensed satellite data (geospatial imagery) and tools such as GIS and algorithms,
developed with programming languages such as MATLAB and Python [12]. In some cases,
the spatial scale of river planform changes were only a few meters, while in others, there
were migrations of up to a few hundred meters. Hence, the need arises for data with high
spatial and temporal resolution [13]. Further, this will be crucial when analyzing highly
dynamic rivers that contain large numbers of meandering bends.

To analyze the planform changes in rivers, long-term records of the river geomorphol-
ogy are required. However, in many countries, there are no such databases that contain
constant and long-term records of river planforms. This limitation is addressed by using
remotely sensed data [14]. With the recent advancements in technology, the availability
of free data has been hugely increased. Therefore, these remotely sensed data are used
in many projects and research, not only in the water sector but also in many other fields.
The importance of remotely sensed satellite data are their free and global availability and
considerably high resolution (about 30 m). Further, some of these data are available for
more than 30 years (ex: Landsat satellite data is available since 1984) [15].

Many researchers all over the world have used Landsat data to investigate the temporal
variation of river meandering [16]. As it was stated, these techniques are chosen ahead
of onsite surveying due to logistic and financial issues. Wray [17] has used multispectral
Landsat imagery to observe the changes in Palaeochannels of the Namoi River, New South
Wales, Australia. Landsat 7 ETM+ data were used in this analysis and the historical changes
in Namoi River were presented. Schwenk et al. [18] have incorporated the RivMAP toolbox
with Landsat images to detect the physics in meandering migrations in multi-decades for
the Ucayali River (which is the headstream of the Amazon River). Therefore, the usage of
Landsat data by linking them to the analyzer revealed the significance of such data for the
evaluation of river meandering. In addition, Nagel et al. [19] used cloud computing with
Landsat data to understand the migration of communities along the Amazon River due
to the meandering course of the river. Therefore, the indirect impacts were also assessed
based on Landsat data.

However, other than by Basnayaka et al. [15], these recent advances have not been
applied in Sri Lanka to understand the meandering behavior of rivers. The River Mahaweli
is important due to its flat bathymetry downstream. In addition, the sediment flow is
obstructed by several reservoirs along the river. Therefore, assessments of the temporal
variation of the river, in terms of its meandering and planform changes, are essential.
However, survey data along the river section are limited. Thus, this research addresses these
research gaps by analyzing Landsat images of the Mahaweli River to identify the major
planform features and their spatial and temporal variation over a 30 year period from 1991
to 2021. The findings of this research will be helpful for managing the riverine environment
of the Lower Mahaweli River. Additionally, the proposed method is also applicable for
narrow rivers (widths of less than 100 m and greater than the spatial resolution of the
imagery, i.e., 30 m) as the method considers only river centerline variations.
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2. Study Area and Problem Statement

Among the 103 major river basins in Sri Lanka, Mahaweli is the largest river basin
with a catchment area of about 10,448 km2 [20], which is nearly one-sixth of the country.
Further, the Mahaweli River is the longest in Sri Lanka, with a length of about 335 km. The
annual precipitation received by the whole basin amounts to 28 × 109 m3 and the river
has an annual discharge of 8.8 × 109 m3 [20]. According to the Köppen-Geiger climate
classification [21], the upper Mahaweli basin belongs to the equatorial fully humid climate
zone, while the lower Mahaweli basin lies in the equatorial monsoonal climate zone. River
Mahaweli has been subjected to many development projects including hydropower gener-
ation projects, supplying drinking water, and agriculture development projects since the
beginning of the 1970s. The river has been subjected to many pieces of research which are
mostly related to water quality, hydro-meteorological characteristics, sediments geochem-
istry, water demand management, etc. [22–24]. However, the river morphodynamics of the
Mahaweli River is a subject that still needs attention.

Figure 1 clearly showcases the complex river paths of the Mahaweli River (refer to
Figure 1a,c) and its meandering behavior of Mahaweli River (refer to Figure 1b). In addition,
the river planforms are highly observable (refer to Figure 1c) and they are dynamic based on
the flow characteristics depending on the monsoons. Therefore, these observations re-state
the importance of having a scientific analysis of the temporal variation of meandering
behavior and the river planforms. Thus, a segment of the Mahaweli River to perform the
analysis of planform variation over time was selected in this study. The selected river
segment is the lower Mahaweli River starting from Damanewewa up to the sea outfall in
Trincomalee and has a total length of about 107 km (around 1/3 of the river). The selected
river segment is illustrated in Figure 2. The red color box shows the region of interest (ROI)
which is Lower Mahaweli River from Damanewewa to Trincomalee.

(a)

(b) (c)

Figure 1. River meandering behavior: (a) Mahaweli River near its sea outfall; (b) sediment deposition
along the river; (c) complex river path with river planforms (source: Google maps).
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Figure 2. Map of the Mahaweli River basin, Sri Lanka and the selected river segment for the analysis.

3. Data and Methods

3.1. Use of Landsat Imagery

Landsat satellite images provide the most comprehensive record (more than 35 years)
for medium resolution (10–50 m) global scale Earth Observation data [25]; images are
captured at approximately 16 day intervals. The Landsat mission started in 1984 and
continues to today. Currently, there are four Landsat products: Landsat 1–5 MSS, Landsat
4–5 TM, Landsat 7, and Landsat 8–9. The application of Landsat data is widespread because
of their free and global scale availability for a considerably long period (about 35 years). Yet,
one major issue of these data is obstructions caused by the clouds. Further, in some of the L7
images, there are missing data stripes due to a failure that occurred in the scan line corrector
(SLC) [18]. Therefore, in our study, these data were exempted in selecting the imagery.
The current study uses only two types of Landsat data, i.e., Landsat 4–5 Thematic Mapper
(TM), and Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensors (TIRS)
products, to estimate the spatiotemporal variability of river planform of Mahaweli River.

There are several methods to download or access Landsat data, including the United
States Geological Survey (USGS) website, other environmental data catalogues such as
USGS EarthExplorer, LandsatLook Viewer, USGS GloVis, and data catalogues available in
cloud-based platforms like Google Earth Engine [26]. To analyze the river planform changes
in the Mahaweli River, we downloaded Landsat images from the USGS Earthexplorer
website for 30 years spanning from 1991 to 2021. To have a more accurate classification,
Landsat images were selected based on the cloud cover criterion. Images with the least
cloud cover on the river were selected by visually inspecting the available images. Since the
selected three river segments are distributed over two Landsat tiles, (path -141, row–54, 55;
refer to Figure 3) both tiles were downloaded and merged using version 3.16 of QGIS
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software. A tile has 5000 × 5000 pixels with a resolution of 30 m. Before starting the image
classification, all the data were cropped to the interested area to reduce the processing time.

Figure 3. Arrangement of Landsat scenes covering the study area.

3.2. Generating the River Masks

The first step in evaluating the planform changes in the Mahaweli River was to extract
the river masks for each selected year using Landsat imagery. Different techniques are
used in the literature [27–34] to extract surface water pixels from Landsat images. Index-
based classification is one such method that is used to identify water pixels in satellite
remote sensing data. Commonly used water indexes are Automated Water Extraction Index
for images with shadows (AWEIshadow) [27], Tasselled Cap Wetness (TCWCrist) index [28],
Normalized Difference Water Index (NDWI) [29], Modified Normalized Difference Water
Index (MNDWI) [30], and Automated Water Extraction Index for images without shadows
(AWEIno shadow) [31], Water Index (WI2006) [32], Water Index (WI2015) [33] and Water Index
(WI2018) [34].

In the current study, first, we used three water indices to generate the water masks
from Landsat images, considering the accuracy of each index in classifying the water pixels.
According to Fisher et al. [31], the accuracy of classifying water pixels has slightly increased
in WI2015 compared to the WI2006. The water index introduced by Raheem and Alwan
(WI2018) [34] outperforms most of the previously defined water indices in the classification
of water pixels and is comparable to the MNDWI. The mathematical expressions for these
indices are given in literature and these are presented in Table 1.
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Table 1. Different water indexes defined in literature for water pixel classification using multi-spectral
Landsat satellite data. (Surface reflectance values (ρ) of the seven bands are indicated as ρB1 − ρB7

and are the inputs for the equations).

Index Equation Source

NDWI ρB2 − ρB4
ρB2 + ρB4

[29]

MNDWI ρB2 − ρB5
ρB2 + ρB5

[30]
TCWCrist 0.0315ρB1 + 0.2021ρB2 + 0.3102ρB3 + 0.1594 ρB4 − 0.6806ρB5 − 0.6109ρB7 [28]
AWEIshadow ρB1 + 2.5 × ρB2 − 1.5 × (ρB4 + ρB5) − 0.25 × ρB7 [27]
AWEIno shadow 4 × (ρB2 − ρB5) − (0.25 × ρB4 + 2.75 × ρB5) [30]
WI2015 1.7204 + 171ρB2 + 3ρB3 − 70ρB4 − 45ρB5 − 71ρB7 [33]
WI2018

0.12ρB1 + 0.231ρB4
0.752ρB6 + 0.223ρB5

[34]

However, the use of these indices alone did not allow us to accurately classify surface
water. One major reason for these classification errors may be the presence of mixed water
areas such as wetlands. Therefore, it was decided to use Modified Normalized Differ-
ence Water Index (MNDWI) together with two vegetation indices; Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), as suggested in the litera-
ture [35–38] to reduce the misclassification of water areas. The NDVI is used to identify the
vegetation percentages by accounting for the greenness of each pixel, while EVI has the
capability to correct the atmospheric disturbances and noise from canopy backgrounds [39].
The relationship of MNDWI > NDVI and MNDWI > EVI was used to find out the pixels
where the water signals are greater than the vegetation signals and to remove the effect of
mixed water and vegetation. The thresholds of EVI were selected following a trial-and-error
method by comparing the water masks with Google Earth images. The reflectance values of
the images can be affected by the atmospheric condition that exists at the time of acquiring
the images. Therefore, the use of different thresholds for different images can be justifiable
considering the above fact. These resulting raster images were then used in delineating the
river centerlines with the use of the WebPlotDigitizer tool [40].

3.3. Cleaning the River Masks

Having a well-defined river centerline is necessary for the estimation of river direction,
curvature, and migration rates and patterns. Therefore, the created watermasks were
cleaned before digitizing the centerline to remove the misclassified pixels and have a
continuous connection to the river. Further, it removes the unwanted areas such as the water
pixels that are not hydraulically connected to the main river (i.e., tributaries, remainders of
cut-off channels, and riverside cities).

3.4. Delineating River Centerlines

WebPlotDigitizer is a semi-automated digitizing tool that can be used to automatically
digitize images, plots, or maps. In the current study, version 4.5 of WebPlotDigitizer was
used [40] to delineate the centerline of the river using the binary watermask. As the first
step, images of watermask map were loaded into the WebPlotDigitizer. Then the image
was georeferenced using four known points (two points on the X axis and two points on the
Y axis). WebPlotDigitizer software allows users to select the method of digitizing; either to
digitize the plots/images automatically or manually. When digitizing, the software creates
points along the river within a user-specified distance. To have a continuous connection to
the river, the gaps of channel masks need to be filled manually by adding additional points
for the centerline. The coordinates of these points can be then saved as a comma-separated
values (.csv) file or directly copy the data to an Excel or a text file. When saving the (X, Y)
coordinate data were arranged in the order from upstream to downstream.

3.5. Estimation of River Planform Geometry

Three parameters were calculated to identify the spatial and temporal variations of
the river centerline in the Mahaweli River. The distance between two points of the river
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centerline (dsi), inflection angle (θi) and the curvature (ci) between two successive points
(xi, yi) and (xi+1, yi+1) along the centreline was computed by the Equations (1)–(3).

dsi =

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 (1)

θi = arctan(
yi+1 − yi
xi+1 − xi

) (2)

ci =
θi+1 − θi−1

dsi+1 − dsi−1
(3)

The two parameters, i.e., inflection angle and curvature, can be used to identify the
bends of a river. The zero crossing points of the curvature represent meandering bends [8].
Therefore, the above three parameters were calculated and plotted to study the spatial
variation of the Mahaweli River from upstream to downstream. A schematic diagram that
illustrates the relationship between curvature and inflection points are shown in Figure 4.
The points 1–8 represent the inflection points where the bends are separating.

(a) (b)

Figure 4. Schematic diagram of bend separation using curvature of the channel: (a) Bends; (b) inflec-
tion points [8].

3.6. Calculating the Centerline Migration

The centerline coordinates extracted from the WebPlotDigitizer tool were used to map
the river centerlines for the selected nine years. These point data were loaded into the
QGIS software to create the polylines for centerlines. Then the geometric attribute tools
of QGIS were utilized in calculating the centerline migration between two adjacent years.
The centerline migration distances were calculated with an interval of 200 m along the
centerline, with the help of geometric attribute tools in QGIS. To compute the migration
rates, these migrated distances were then divided by the number of years between the
considered two scenarios and obtained the annual migration rates.

3.7. Overall Methodology

The overall methodology carried out in this research is summarized in Figure 5. The
extracted Landsat images spanning from 1991 to 2021 were processed as shown in the
following flow chart to understand the temporal variation of river planforms in the lower
Mahaweli River.
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Figure 5. Flowchart of the overall methodology of the study.

4. Results and Discussion

4.1. River Planform

The annual river masks of the Mahaweli River were analyzed to quantify the planform
variations from 1991 up to 2021. As the selected river stretch has a total length of 107 km,
it was divided into four sections. The generated river masks are presented in Figure 6.
Considering the availability of cloud-free images and the selected time span, nine years
were selected for our analysis.

It can be seen from river masks that there are disconnections in the main river in a few
places. These can occur due to the misclassifications of pixels. These disconnections are
indicated in red color boxes (refer to Figure 6b). One of the major reasons for these errors is
the cloud cover in the selected images. Additionally, errors can be attributed to the lowered
resolution of images compared with the river width. Sometimes, the Landsat images may
not be able to capture the river in narrow areas, i.e., where the width of the river is smaller
or close to the pixel size (30 m). The river braiding/anabranching areas are highlighted in
yellow. Along the selected river segment of the Mahaweli River, there were four clearly
visible braided areas, as marked in Figure 6. According to the extracted river masks, an
oxbow lake formed near Trincomalee at the most downstream point of the Mahaweli River.
This lake formation is illustrated in Figure 6a with a green box.
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(a)

Figure 6. Cont.
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(b)

Figure 6. Cont.
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(c)

Figure 6. Cont.
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(d)

Figure 6. River masks generated for the Mahaweli River from Damanewewa to Trincomalee: (a) Most
downstream river part of the selected Mahaweli River stretch near to Trincomalee; (b,c) middle
stretches of the selected river segment; (d) most upstream part of the selected river stretch starts
from Damanewewa.

4.2. Spatiotemporal Variation of River Centreline

The river centerlines points extracted from the watermasks were processed in QGIS
to create the centerlines and compare the variations. The centerlines of the main river
are presented in Figure 6. Since centerline migrations in the considered river stretch
were mainly observed at the most downstream sections of Mahaweli River, here we have
presented only the stretch (a) described in the previous sub-section. The figure shows the
formation of an oxbow lake (highlighted in red color) over time during these 30 years. The
location of the oxbow lake observed downstream of the Mahaweli River is highlighted in
Figure 7.
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Figure 7. Temporal variation of river centerline.

4.3. Variation of River Curvature

The river curvature for each year was computed and plotted against the distance
along the river centerline. These high curvatures represent the locations of bends along
the river. As shown in Figure 8, the frequency of high curvature bends increases in the
downstream direction. The high curvature of rivers drives the meandering process by
causing erosion in the outer bank and accretion in the inner bank. The river curvature
values are comparable with the values obtained in a similar study done for Deduru Oya in
Sri Lanka [15]. However, the maximum curvature of the selected segment of the Mahaweli
River is higher than that of the Deduru Oya River. According to the literature [41], the
average bend curvature is related to the average migration rate of a certain river bend.
Therefore, these river curvature values are indications of possible meandering bends in the
selected river segment.

Figure 8. Spatial and temporal variation of river curvature.
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4.4. Variation of River Centreline Migration

To estimate the evolution of the river, centerline migration rates were computed as
described in Section 3.6. The migration rates were plotted against the distance along the
river centerline and are illustrated in Figure 9. The results show three major spikes in
the annual migration rates during the periods 2011 to 2015 and 2015 to 2018. This can be
attributed to the changes in the main river flow path that occurred with the oxbow lake
formations (during 2007 and 2011) and sediment bar formations. To have a clearer estimate
of these changes, a mathematical analysis needs to be carried out including the data about
riverbanks and sediment bars. The spatial variation of the annual migration rates shows that
the upstream areas of the selected river segment have fewer rates of centerline migrations
than the downstream segments. This can be explained considering the meandering of the
high curvature bend in the river (mainly the downstream of Mahaweli River).

Figure 9. Spatial and temporal variation of river centerline migration rates.

When compared with the river migration rates of Deduru Oya, the Lower Mahaweli
River exhibits minor values except for the three bends described above. The average
centerline migration rates are within the limit 20–40 m/year.

5. Summary and Conclusions

This study focused on the longest river in Sri Lanka, whose catchment are accounts
for approximately one-sixth of the country’s territory. Landsat satellite images were used
to identify the major planform changes over thirty years from 1991 to 2021, in Lower
Mahaweli River, exhibiting the dynamic nature in its geomorphology. In the selected
river segment, there were four locations where river braiding could be clearly observed.
During the past three decades, there were no considerable changes in the planform of the
Lower Mahaweli River, although small seasonal migrations could be seen in the upstream
parts. However, the downstream segments of the river exhibited significant changes over
time. With the extracted watermasks, the creation of an oxbow lake near Trincomalee was
identified. The migration rates were calculated for the river centerlines; it was found that
the rates were generally lower than about 30 m per annum. There were three locations
where the annual migrations were more than 100 m; these may be the locations where the
main flow path changed due to oxbow lake formation and sediment bar depositions. The
overall results of this study highlight the need for quantitative analyses, especially in the
downstream areas of the Lower Mahaweli River.
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The accuracy of these geospatial analyses depends strongly on the resolution of the
images. Medium resolution satellite images are a good source of data for analyzing the
planform changes of a river when there are no or limited field data available. However,
cloud coverage in these satellite images is a major limitation. Therefore, using satellite
images that are not impeded by clouds or a lack of illumination is suggested. However,
currently, such satellite data are not freely available for long-term analyses, as the images
obtained with active sensors (Sentinel 1) like synthetic aperture radar (SAR) are only
available for very short periods (Sentinel 1 is available only after 2014).

In the current research, the major features of the Mahaweli River planform and their
temporal and spatial variations were identified. However, the methodology was designed
only for a qualitative analysis as an initial study, because, to the best of the authors’
knowledge, no such research has analyzed the river planform geomorphology and its
variations over such a long period using remote sensing technology. The current study is
therefore an introductory work for future detailed mathematical analyses.

The methodology proposed in the current study is applicable to a vast range of
river planform studies, mainly for rivers which are narrower than 100 m. Nevertheless,
the results of our qualitative analysis could be used to manage water resources in the
downstream of the Mahaweli River. The area near the sea outlet of the Mahaweli River is
interesting, as it has one of the world's most famous natural harbors.
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Abstract: The interface between the filling slope and the original slope is inevitable in the process of
building a city in the loess area, which will affect the deformation and stability of the filling slope. In
this paper, the loess fill slope of mountain excavation and city construction project in Yan’an City,
China, is taken as the research object, and, based on field investigation and sampling, the effect of
Loess Fill Slope Interface (LFSI) under rainfall is revealed by physical model test. The test samples
were taken from a Loess Fill in Qilipu community, Yan’an, and three layers of sensors were arranged
at the left and right interfaces of the original slope and the filled slope to monitor the water content,
pore water pressure and deformation and failure characteristics during the experiment. The results
show that ILFS is a rainfall dominant seepage channel, and the infiltration of rainfall along the
interface lags behind. In addition, the variation laws of water content and pore water pressure at
the interface between fill slope and original slope under rainfall are obtained. Finally, the failure
process of loess fill slope under rainfall is summarized: local mud flow failure at the toe of the slope
→ erosion in the middle of the slope → crack initiation on the shoulder of the slope → local slip
on the slope → crack propagation on the shoulder of the slope → shallow slip on the shoulder of
the slope, and the instability mechanism of loess fill slope under rainfall is further revealed. The
research results can provide theoretical and experimental reference for the protection of fill slopes in
loess areas.

Keywords: loess; filled slope; physical model test; interface effect; stability

1. Introduction

Large-scale mountain excavation and city construction project in the Loess Plateau of
China not only brings great opportunities for development, but also risks of slope disasters
and safety hazards [1,2]. Loess is loose in texture and easily softened by water [3]. Rainfall
is a common source of surface water, which may infiltrate along the interface between loess
fill slope and original slope, affecting the stability of loess fill slope in mountain excavation
and city construction project [4,5], triggering slip and instability (Figure 1). Filling body is
the main part of city building project, and is the most important part of the whole project;
its strength directly affects the success of the whole project. Therefore, the stability of filling
slope seriously affects the safety construction and operation of the project, and it is more
important to study the interface effect and instability mechanism between fill slope and
original slope under rainfall [6].

For the filling slope, predecessors have done a lot of research. Day [7] studied the
filled slope and concluded that the slope was unstable due to the loading of the top of the
slope and the shallow slope was not cleared in time. The damaged slope can be repaired
by removing the sliding soil and building a retaining wall. Cheuk et al. [8] discussed the
characteristics of soil nailing in fill slope by numerical simulation. The results show that the
soil nailing structure can reduce the deformation of the loose fill slope caused by rainfall
infiltration, so as to maintain the stability of the slope. Zhang [9] carried out the centrifugal
model test of loess high fill embankment to study the development process and distribution
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of embankment settlement. The results show that the settlement in the middle of the
embankment is greater than that of the shoulder, and the stability of the embankment slope
will be significantly reduced when the slope rate is too large or the construction speed is too
fast. Duan et al. [10] took the high fill slope as an example, the deformation and stability
were analyzed by finite element method and limit equilibrium method, and compared with
the monitoring data in construction. It was found that the stress and displacement results
calculated by finite element method were in good agreement with the field monitoring
data, indicating that the combination of finite element calculation and monitoring analysis
can guide the construction and reinforcement of high fill slope. Zhao et al. [11] divided
the rainfall infiltration process of the newly filled slope into three stages: free infiltration,
scouring infiltration and stable infiltration. During rainfall, the slope top is mainly vertical
expansion and contraction deformation, while the slope surface is mainly lateral free surface
displacement. Wang et al. [12] combined the relative displacement sensing technology and
GSM technology to monitor the fill slope near an airport, and the monitoring results can
be fed back to the monitoring station in real time, which successfully warned the collapse
of the monitoring point. The interface between the original slope and the fill slope will
inevitably be generated in the process of mountain excavation and city construction project,
and sliding failure may occur due to the different strength properties of the soil on both
sides. Through indoor physical model tests, Chang et al. [13] monitored and analyzed the
hydromechanical parameters of the loess fill slope, simulated the failure mode of the loess
fill slope, and proposed engineering measures to prevent and control the instability of the
loess fill slope.

 
Figure 1. Loess filling slope disaster. (a) Local cracking of filling subgrade, (b) filling slope top cracks,
(c) local slip of fill slope and (d) collapse of channel fill slope.

Rainfall can induce slope failure [14–16], and more attention should be paid to the
effect of rainfall on loess filled slope. Through a series of laboratory slope failure tests,
Tohari et al. [17] recorded the hydrological response of the model slope to the saturation
process by using the volumetric soil moisture sensor, and proposed the concept of slope
failure prediction method induced by rainfall. Saadatkhah et al. [18] used the instantaneous
rainfall infiltration and grid-based regional slope stability analysis model, combined with
spatial rainfall distribution model, found that local daily rainfall is not the only factor
affecting slope stability, and long-term early rainfall may play a certain role in the formation
of slope failure mechanism. Hakro [19] believed that the failure of a slope is caused by
the increase of water content and pore pressure through indoor rainfall model test, and
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the pore pressure will increase sharply in the failure process. Gallage et al. [20] studied
the influence of slope inclination on slope stability by artificial rainfall test. The results
show that the slope is more prone to sudden collapse with the increase of slope angle in the
process of rainfall. Model test is an important means to study the deformation and failure
mechanism of slope affected by rainfall [21]. Therefore, a physical model test can be carried
out on loess filled slope.

In summary, previous scholars have studied the deformation and failure process,
instability mechanism, seepage field and stability of fill slope by using physical model test,
field test, field monitoring, numerical simulation or a combination of multiple methods,
and achieved a series of important results. However, there is a little research on the
interface effect between the loess fill slope and the original slope, and the research on the
variation of water content and pore pressure at the loess filling interface and the stability
of the slope under rainfall conditions is not deep enough. In this paper, the variation of
hydrological parameters of original slope and fill slope caused by rainfall infiltration and
some understandings of the interface effect of loess fill slope are obtained by physical model
test. The deformation characteristics and failure process of loess fill slope caused by rainfall
are also summarized. The research results can provide reference for the deformation and
stability of fill slope in mountain excavation and city construction project.

2. Experimental Design

2.1. Experimental Flume

A rigid model box with transparent organic glass on both sides is selected for physical
model test, and the front end is a water tank (Figure 2a,b). The size of the model box is
3.2 m × 1.4 m × 1.5 m and the size of the water tank is 1.4 m × 0.5 m × 0.3 m.

 

Figure 2. Schematic diagrams of the experiment design. (a) Original slope cutting, (b) model
stereogram, (c) model side view, (d) slip zone model-Plastic mesh, (e) sensor embedding and (f) layout
of slope tracing points-Plastic mesh.

67



Land 2022, 11, 1372

2.2. Instrumentation

The experiment mainly includes rainfall device and sensor monitoring equipment.
The rainfall device is mainly composed of water pipeline, water tank, water pump, rainfall
sprinkler, portable control center and rainfall meter. In order to ensure the uniformity of
rainfall, the rainfall height was designed to be 6 m according to the top area and height
of the model. In the control system interface, the continuous change of rainfall intensity
can be realized by adjusting the opening degree of 0–150 mm/h, and the specific rainfall
intensity value can be obtained by connecting the rain gauge with the control system. The
sensors are pore water pressure sensor and moisture content sensor. The range of pore
water pressure sensor is −20–20 kpa, the output voltage range is 0–5 v, and the acquisition
frequency can reach 1 Hz, that is, 1 s can collect a datum. The moisture content sensor
can collect one datum in one minute, and the mass moisture content can be obtained by
dividing the corresponding dry density.

2.3. Materials and Methods

The test samples were taken from a Loess Fill in Qilipu community, Yan’an, Shaanxi,
China (Figure 3), and the retrieved soil samples were screened for 5 mm to remove large
particles and impurities. According to the actual situation, the dry density of the original
slope in the model test is 1.63 g/cm3, the water content is 13.5%, and the natural gravity
(the natural gravity of soil refers to the weight of soil under the condition of natural
moisture content, which is equal to the ratio of the total weight of soil to the total volume
of soil) is 18.53 kg/m3. The dry density of the fill slope is 1.58 g/cm3, the moisture content
is 10%, and the natural gravity is 17.38 kg/m3. Before the beginning of the model test,
the moisture content of the packaged soil was measured by the drying method, and the
moisture content was about 16.3%. Therefore, the soil needs to be turned and aired. The
measured water content after airing was about 14.2%. Considering the water loss in the
filling process, the original slope was filled directly with the water content. Test slope
model length × wide × Height = 3.2 m × 1.4 m × 1.2 m, the filling slope height is 0.9 m,
and the interface between the original slope and the filling body and the filling slope angle
are taken as 30◦ (Figure 2).

The modeling idea is to use the dry density and moisture content to jointly control the
manual compaction. Each 10 cm is divided into one layer, and the required mass of each
layer is calculated. Taking into account the slope shape to be formed in the later stage, the
soil that is appropriate greater than the calculated mass is weighed. The filling of the layer
is carried out, and the density of the compacted soil layer is measured by the ring knife
method. After meeting the requirements, the next layer of filling is carried out. Firstly, the
original slope is filled on the left side, and it is placed for a week. Then, the dry density
and moisture content of the filling area are controlled on the right side. The slope on the
right side is filled as the filling slope. When filling the filling slope, the penetration test
ring knife sample is taken to fill the filling area. The sensor part is buried using Luoyang
shovel. According to the meteorological data of Yan ‘an, the maximum rainfall in an hour
was 62 mm (1979) and the maximum daily rainfall was 139.9 mm (1981). According to the
similarity ratio of rainfall intensity, the model rainfall intensity is 12.4 mm/h. Since the
uniformity of rainfall device is poor at low rainfall intensity, and considering the uniformity
of rainfall time, by controlling the hourly rainfall to be 12.4 mm, 9 h–18 h per day, the rain
intensity was 24.8 mm/h. Observation and data collection are carried out during and after
rainfall. In the evening, the model was covered with plastic cloth to keep moisture until
the slope no longer changed significantly, and the experiment lasted for eight days. Three
layers of sensors were arranged on the left and right interface of the original slope and the
filled slope, with elevations of 1.0 m, 0.8 m and 0.4 m, respectively (Figure 2c,e). There were
six moisture measuring points and nine pore pressure measuring points in total, and the
collection interval of the two sensors was 1 min, which was mainly used to analyze the
interface effect on the same horizontal line.
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Figure 3. Location map of sampling points. (a) Sampling site, Shanxi Province; (b) loess fill in Qilipu
community, Yan’an; (c) soil samples for test.

In order to simulate the interface effect between loess fill and original slope, plastic
mesh is used as sliding zone in this test [22] (Figure 2d). After the completion of slope
filling, marked nails are placed on the slope and the top of the fill slope in order to observe
the deformation characteristics of the slope and the top of the fill slope and analyze the
deformation and failure process of the fill slope (Figure 2f). Specifically, set for the top of
the slope inserts two rows, slope inserts four rows and each row inserts five marked nails.

3. Results

3.1. Variation of Slope Water Content
3.1.1. Variation of Water Content at Top of Slope (H1 = 1.0 m)

Figure 4 shows the variation curve of water content increment with time at different
measuring points at the top of the slope (H1 = 1.0 m). In the LFSI and the filling slope, the
variation of water content with time under the action of rainfall is similar: the water content
first increases gradually, and then gradually decreases after a period of rainfall when it
reaches a certain stable value or maximum value. Before the end of the daily rainfall, the
increment of volumetric water content at the interface W2 is greater than that in the filling
body W3, indicating that LFSI is an easy channel for rainfall seepage. The time of water
content decline at W2 measurement point was later than that at W3 after the end of rainfall,
indicating that part of the water will accumulate at LFSI and continue to permeate along
LFSI after rainfall, and the water at W2 at the interface is supplemented, resulting in the
lag of water content decline at W2.
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Figure 4. Variation of water content in the following days, from the first to the eighth (H1 = 1.0 m).

3.1.2. Variation of Water Content in the Middle and Upper Slope (H2 = 0.8 m)

Figure 5 shows the variation of water content in the middle and upper slope (H2 = 0.8 m)
(W5 is located at LFSI and W6 is located in the filling body). It can be found that the water
content in the middle and upper part of the slope increases gradually with time under
the action of rainfall. When it increases to a certain stable value or maximum value, it
gradually decreases after a period of rainfall, which is basically consistent with the variation
trend of W2 and W3 measuring points at the top of the slope. The increment of volume
moisture content before the end of rainfall shows that water content W5 is greater than
W6, indicating that LFSI has infiltration advantage. The reason for the abnormality on
the third day may be that the water content at W6 increased for a period after the rainfall
on the second day. It is speculated that cracks occur near W6, and the rainwater is easy
to gather at the measuring point, resulting in the increment of moisture content of W6.
At 17 h 26 min on the third day, a shallow slope slip occurred, and the stress inside the
slope was redistributed, resulting in no obvious seepage advantage at W6. Therefore, the
advantageous seepage at the interface is reflected again after the fourth day. The time of
water content decline in W5 after the end of rainfall was later than that in W6, indicating
that water distribution at the end of rainfall was collected at the interface and continued
to infiltrate along the interface, supplementing water content in W5, resulting in lagging
water content decline in W5.

3.1.3. Variation of Water Content in Slope Toe (H3 = 0.4 m)

Figure 6 shows the variation of water content increment at different measuring points
at the foot of slope (H3 = 0.4 m) with time (W8 is located at LFSI and W9 is located in
the filling body). From the fourth day of rainfall, with the increase of rainfall time, the
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increment of moisture content of W8 began to be greater than that of W9, which also
indicates that there is a lag phenomenon of rainfall infiltration along LFSI.

 

Figure 5. Variation of water content in the following days, from the first to the eighth (H2 = 0.8 m).

According to the analysis of the above test results, the essence of the “interface effect”
of the loess fill slope is that the interface is a rainfall dominant seepage channel, and there
is a lag phenomenon of rainfall infiltration along the interface (Figures 4–6), that is, after
the end of rainfall, part of the water will continue to be collected at LFSI and penetrate
along LFSI.

3.2. Variation of Pore Water Pressure of Slope

Pore water pressure increment (the pore water pressure measured at each point at
each time was subtracted from the pore water pressure before the test (9 h per day)) is
adopted for analysis.

3.2.1. Variation of Pore Water Pressure at Top of Slope (H1 = 1.0 m)

Figure 7 shows the curve of pore water pressure increment versus time at the top of
slope (H1 = 1.0 m) (pp1 is located in the original slope, pp2 is located in the LFSI, and
pp3 is located in the fill slope, where pp represents pore water pressure, the number is the
corresponding measuring point position number). It can be found that the pore pressure at
each measuring point increases sharply first and then decreases in the process of rainfall.
The change of pore water pressure mainly comes from seepage. In the process of rainfall,
rainwater infiltrates from the top of the slope and the slope surface, and seepage occurs
inside the slope, which makes the pore water pressure gradually increase. As the infiltration
of rainwater gradually forms a transient saturated zone on the surface of the slope body,
the infiltration rate of rainwater decreases, resulting in a slow or declining increase of pore
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pressure. Pore water pressure decreases gradually after rainfall due to the lack of water
replenishment and evaporation of slope.

 

Figure 6. Variation of water content in the following days, from the first to the eighth (H3 = 0.4 m).

3.2.2. Variation of Pore Water Pressure in Middle and Upper Slope (H2 = 0.8 m)

Figure 8 shows the curve of pore water pressure increment versus time in middle
and upper slope (H2 = 0.8 m) (pp5 is located in the original slope, pp6 is located in the
LFSI, and pp6 is located in the fill slope). It can be found that the pore pressure at each
measuring point gradually increases sharply, then increases slowly or decreases, and
decreases gradually after the end of rainfall.

3.2.3. Variation of Pore Water Pressure in Slope Toe (H3 = 0.4 m)

Figure 9 shows the curve of pore water pressure increment versus time in slope toe (H3
= 0.4 m) (pp7 is located in the original slope, pp8 is located in the LFSI, and pp9 is located
in the fill slope). As can be seen from Figure 9, pore water pressure at each measuring
point first rises sharply, then rises slowly or decreases, and gradually decreases after the
end of rainfall. The pore pressure data fluctuated significantly after the rainfall at pp9
measurement point on the fourth day, which may be caused by the mudflow destruction
at the foot of slope on the third day and the rainfall on the fourth day, resulting in the
development of cracks near pp9 measurement point, and the pore pressure oscillated
significantly under the action of rainfall in the following days.
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Figure 7. Variation of pore water pressure in the following days, from the first to the eighth (H1 = 1.0 m).

 

Figure 8. Variation of pore water pressure in the following days, from the first to the eighth (H2 = 0.8 m).
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Figure 9. Variation of pore water pressure in the following days, from the first to the eighth (H3 = 0.4 m).

4. Discussion

4.1. Variation Characteristics of Water Content and Pore Pressure

Figure 10a shows the daily maximum increment change curves of water content at
W2 and W3 at the top of the slope (H1 = 1.0 m). It can be seen that the maximum daily
increment of water content Δw gradually decreases with the increase of rainfall days, and
the cumulative increment value is 99.5% and 63.4%, respectively, which may be because
with the increase of rainfall days, the soil at W2 and W3 is closer to the saturated water
content [23], resulting in the decrease of the maximum increment, which is consistent with
the model test conclusion of Crosta [24] and Li et al. [25]. In Figure 10b, W5 shows a similar
law with the W2 and W3, and the cumulative increment value is 79.2%, while the daily
maximum increment of water content of W6 in the filling slope increases first and then
decreases gradually with the increase of rainfall days. It can be seen from Figure 10c that
the daily maximum increment of water content at W8 and W9 increased first and then
decreased gradually with the increase of rainfall days, and both reached the maximum
value on the second day of rainfall, but the cumulative increment value is55.0% and 51.7%,
respectively. It is speculated that this may be related to scouring damage in the middle of
slope on the second day of rainfall.

Figure 11a shows the daily maximum increment change curves of pore water pressure
at the top of the slope (H1 = 1.0 m). On the first to fourth day of rainfall, pp1, pp2 and pp3
near the top of the slope showed that the daily maximum pore water pressure increment
Δμ gradually increases and the increasing speed is slower with the increase of rainfall days.
Under the action of rainfall, the daily maximum pore pressure increment at LFSI (pp2) near
the top of the slope is greater than that of the fill slope (pp3), which once again shows that
rainfall at LFSI is easy to infiltrate. As can be seen from Figure 11b, the daily maximum
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pore pressure increments at pp4, pp5 and pp6 are characterized by a sharp increase at the
beginning of the rainfall, then a steady increase, and finally an increase trend. The daily
maximum increments at LFSI and within the filling slope are greater than those within the
original slope (pp4 measuring point), while the daily maximum pore pressure increment at
pp5 at LFSI is basically stable in the later stage of rainfall. It can be seen from Figure 11c
that the daily maximum pore pressure increment of each measuring point pp7, pp8 and
pp9 on the first to fourth day of rainfall gradually increases with the increase of rainfall
days. Locally, the daily maximum pore pressure increment of pp9 at the foot of the fill
slope first decreases, then increases and finally decreases, which is closely related to the
process of water enrichment at the foot of the slope and water seepage after slump, and also
consistent with the experimental results of Chueasamat et al. [26] and Orense et al. [27].

 
Figure 10. Daily maximum increment of moisture content at different measuring points (a) H1 = 1.0 m,
(b) H2 = 0.8 m and (c) H3 = 0.4 m.

4.2. Analysis of Slope Deformation Characteristics and Failure Process

The increase of pore water pressure will cause slope failure during rainfall [28–30].
The foot of the filled slope is the most vulnerable place to damage under the action of
rainfall [13,17,26,27], which is due to the low terrain at the toe of the slope, the rainwater is
easy to collect, and the soil is soaked [17,27,31], resulting in the reduction of shear strength.
At 14 h 25 min on the first day of rainfall, two mud flow failures occurred at the slope
toe (Figure 12a). Figure 12b shows that there are many small-scale mud flow damages on
the slope surface at 17 h 45 min after the end of rainfall on the first day, and local erosion
damages occur in the middle and both sides. Figure 12c shows the picture of slope surface
18 h after the end of rainfall on the second day. The slope erosion continued to intensify on
the second day of rainfall, and the erosion on the right side is the most serious. Obvious
cracks appeared at 8 h 50 min before rainfall on the third day near the slope shoulder
(Figure 12d), which may be related to the evaporation of water at night on the previous day.
The crack L1 was about 18 cm from the slope shoulder, about 90 cm in length, and about
47 cm from the left side of the model box.
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Figure 11. Daily maximum increment of pore pressure increment at different measuring points
(a) H1 = 1.0 m, (b) H2 = 0.8 m and (c) H3 = 0.4 m.

At 17 h 26 min on the third day of rainfall, two large-scale shallow sliding failures
occurred at about 0.85 m from the bottom of the slope (Figure 13a). The sliding width of the
left side is about 74.2 cm and the right sliding width is about 65.8 cm, and the right sliding
trailing edge was 22 cm more than the left sliding trailing edge. It can also be seen from
slope monitoring landmarks 6-2 and 6-4 that there is also a small scale of sliding damage
above shallow sliding. Under the action of long-term rainfall, shallow sliding failure is
more likely to occur in the lower part of the slope, which is consistent with Wu et al. [32]
and Kim et al. [33] model test. At 8 h 50 min before the rainfall on the fourth day, there were
five cracks near the slope shoulder (Figure 13b), and four new cracks (L2, L3, L4 and L5)
were generated on the slope surface and slope top near the slope shoulder. The length of
L1 does not change, but the width increases; L2 and L3 are located on the slope, L2 is about
38 cm long, 22 cm away from the slope shoulder, and L3 is about 32 cm long, 35 cm away
from the slope shoulder; L4 and L5 are located on the slope top, L4 is about 52 cm long,
and the longest distance slope shoulder is about 14 cm and L5 is about 31 cm long, 12 cm
away from the slope shoulder. The development of cracks indicates that the continuous
action of rainfall produces the change of stress field in the slope [34,35], and the tensile
stress is generated near the top and shoulder of the slope, which is easy to produce tensile
failure [35,36].
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Figure 12. The deformation characteristics and failure process of slope. (a,b) Mud flow at slope toe
and slope erosion on the first day, (c) slope erosion on the second day and (d) slope cracks on the
third day.

 

Figure 13. Large-scale shallow sliding failures. (a) Shallow sliding of slope toe, and (b) slope top and
surface cracks.
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Figure 14a shows the change of shoulder cracks in the first 8 h 50 min of daily rain-
fall from day four to day nine. Under the action of continuous rainfall, the cracks near
the slope shoulder gradually increased, expanded and deepened, L4 and L5 cracks be-
gan to connect from the sixth day, and gradually developed in the later stage, but there
was no significant change in the overall shape of the slope from the third day. More-
over, on the eighth day of rainfall, the slope body was still not damaged along the crack,
which may be due to the blockage of the shear outlet of the sliding body on the slope
shoulder by the mud flow accumulated at the slope foot (Figure 14b). Considering the
gentle angle of the slope itself and no further change in the overall shape of the slope
since the mud flow at the foot of the slope, the test was stopped after the rainfall on the
eighth day.

 

Figure 14. Deformation and failure process of fill slope under rainfall. (a) Crack development process
near slope shoulder and (b) shallow sliding process.

In summary, the deformation and failure mode of loess fill slope under rainfall is
shallow slip, and the failure process can be summarized as follows: local mud flow failure
at the toe of the slope → erosion in the middle of the slope → crack initiation on the
shoulder of the slope → local slip on the slope → crack propagation on the shoulder of the
slope → shallow slip on the shoulder of the slope. Under the long-term effect of rainfall,
the loess fill slope of mountain excavation and city construction project will first appear
small mud flow damage at the foot of the slope, and then cracks appear at the shoulder
of the slope. Rainwater infiltrates along the interface between the original slope and the
filling slope and cracks, resulting in a sharp increase in the internal moisture content and
pore pressure of the filling slope, which reduces the strength of the slope soil. Especially,
under the action of repeated rainfall, the shallow surface soil will suffer obvious damage
by dry-wet cycle [36,37], rainwater is more easily infiltrated, and the shear strength of
soil will be reduced [38,39], resulting in the shallow landslide disaster of the filling slope.
Therefore, it is necessary to pay attention to the treatment of slope shoulder and interface,
and strengthen drainage and ecological protection measures for loess fill slope of mountain
excavation and city construction project [13].

5. Conclusions

Taking the typical mountain excavation and city construction project fill slope in Yan’an
as the research background, through the physical model test of filling slope considering
interface effect under rainfall, the following conclusions are drawn:
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(1) The essence of the “interface effect” of loess fill slope is that the interface is a dominant
seepage channel of rainfall, and there is lag phenomenon of rainfall infiltration along
the interface; that is, some water will continue to accumulate at the interface of loess
fill slope after rainfall, and continue to infiltrate along the interface;

(2) The increase of pore water pressure will cause slope failure during rainfall, and the
foot of the filled slope is the most vulnerable place to damage under the action of
rainfall, which is due to the low terrain at the toe of the slope, the rainwater is easy
to collect, and the soil is soaked, resulting in the reduction of shear strength. The
appearance picture of slope deformation characteristics shows that shallow sliding
failure is more likely to occur in the lower part of the slope under long-term rainfall;

(3) The deformation and failure mode of loess fill slope under rainfall is shallow slip, and
the failure process can be summarized as follows: local mud flow failure at the toe of
the slope → erosion in the middle of the slope → crack initiation on the shoulder of
the slope → local slip on the slope → crack propagation on the shoulder of the slope
→ shallow slip on the shoulder of the slope.

The interface and its effect in the geological body is a very complex, difficult and mean-
ingful research topic. As for the simulation of the original slope in the indoor model test of
the excavated and filled slope of the City-building gully, since the original slope is formed
for a long time and has its own structure in practical engineering, and it is impossible to
simulate the original slope in the laboratory through simple ramming. Therefore, how
to simulate the original slope needs further discussion and verification. In addition, the
interface simulation is difficult in the model test. The slope is formed by tamping; therefore,
the original slope and filling are simulated by plastic window gauze, and the test effect is
not ideal. How to simulate the interface and reflect the interface effect in the model test
needs further discussion and verification.
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Abstract: River meandering and anabranching have become major problems in many large rivers
that carry significant amounts of sediment worldwide. The morphodynamics of these rivers are
complex due to the temporal variation of flows. However, the availability of remote sensing data
and geographic information systems (GISs) provides the opportunity to analyze the morphological
changes in river systems both quantitatively and qualitatively. The present study investigated
the temporal changes in the river morphology of the Deduru Oya (river) in Sri Lanka, which is a
meandering river. The study covered a period of 32 years (1989 to 2021), using Landsat satellite data
and the QGIS platform. Cloud-free Landsat 5 and Landsat 8 satellite images were extracted and
processed to extract the river mask. The centerline of the river was generated using the extracted river
mask, with the support of semi-automated digitizing software (WebPlotDigitizer). Freely available
QGIS was used to investigate the temporal variation of river migration. The results of the study
demonstrated that, over the past three decades, both the bend curvatures and the river migration
rates of the meandering bends have generally increased with time. In addition, it was found that
a higher number of meandering bends could be observed in the lower (most downstream) and the
middle parts of the selected river segment. The current analysis indicates that the Deduru Oya has
undergone considerable changes in its curvature and migration rates.

Keywords: river meandering; river morphology; centerline migration; remote sensing; satellite images

1. Introduction

River morphodynamics are an intriguing subject and much research has been carried
out to study the dynamics of the fluvial processes. Meandering is one important river
process that has attracted the attention of researchers worldwide. The process is associated
with outer bank erosion and deposition at the inner bank. The velocity and the shear stress
distribution asymmetry in curved river segments are the reasons for these erosions and
accretion [1]. Estimating and predicting the meandering features of a certain river over time
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have great importance in engineering and geological applications, such as management of
infrastructure, erosion, and agricultural land. Meandering has become a prevailing issue for
many major rivers in the world that carry a significant amount of sediment load, including
the Amazon River and Yangtze River, and many other alluvial riverine environments. The
process is highly dynamic in nature and needs to be assessed with a close examination over
a considerable period that is sufficient to capture the dynamics of the river morphology.
According to Constantine et al. [2], these large meandering rivers with high sediment
transport rates can sometimes have migrations of several meters in a year.

The studies on river meandering in the literature can be categorized into three types
based on the method they follow in extracting the meandering parameters. Some studies
have adopted analytical methods to analyze the process [3], whereas others have used field
measurements [4,5]. Furthermore, some studies have used numerical models to extract
the meandering features of rivers [6]. However, with the recent development of remote
sensing technologies, the data available for analysis have significantly increased. These
remotely sensed data are widely used in many disciplines and for different applications,
including geospatial analysis, agricultural management, morphological analysis, etc. Hence,
in recent years, several algorithms and programs have been developed to analyze these
remotely sensed data [7]. The ability to capture real-time environments using remote
sensing technologies within a short time and improved computing capacities have increased
the use of remotely sensed images in the estimation of river morphodynamics [8].

Many Sri Lankan rivers are facing major issues due to river meandering, such as the
erosion of agricultural land, reduction of flood plain areas, and effects on infrastructure,
such as bridge failures, etc. The erosion of outer banks can result in the exposure of the
bridge abutments and subsequent failures. Therefore, understanding and predicting the
meandering morphodynamics of a certain river have great importance in river management.
The Kelani River, the Kalu River, the Deduru Oya, the Gin River, and the Mahaweli River are
a few examples of rivers where a significantly meandering process can be observed [9–11].
The meandering process can clearly be witnessed downstream of the rivers. However,
research efforts to identify the meandering problem are still lacking for many major rivers
in Sri Lanka. Several studies have discussed the meandering behavior of Sri Lankan rivers;
however, most were focused on various issues related to the meandering process, such
as water quality [9–13]. None tried to analyze these rivers in Sri Lanka by using Landsat-
based remote sensing data to represent their meandering behavior. Therefore, the search
for sustainable solutions in a country like Sri Lanka, which has a radial river system, is
challenging. Thus, the research presented herein aimed to provide information about these
morphodynamical features for one of the major rivers in Sri Lanka, the Deduru Oya. This
is the first attempt to use Landsat remote sensing data in Sri Lankan rivers to capture the
meandering behavior, and the findings will be helpful in designing and managing the
riverine environment of the Deduru Oya.

Remote Sensing Applications in the Fluvial Context

Remotely sensed satellite data are used in many applications, including geological
studies, agricultural management, coastal management, spatial planning, land-use manage-
ment, river management, disaster risk analysis, and GIS mapping [14–18]. Among these
applications, the raster-based digital elevation models are useful. The raster-based digital
elevation models (DEMs) take satellite images as an input to derive elevations. These DEMs
are used in many studies as sources of topographic data because they are easy to access
and available over the whole world. Satellite-derived meteorological data (rainfall data,
temperature data, evapotranspiration estimates, etc.) are used in data-scarce regions in
particular, and these satellite technologies are becoming a good source of data because of
their free availability and easy access [19,20]. The recent development of these technologies
has significantly increased the availability of satellite images and the tools and software
used for analysis. Therefore, in the monitoring and modeling of fluvial processes, remote
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sensing data are frequently used to estimate river floods and to detect the fluvial planform
changes and the controlling processes [21].

The morphological changes in the Bislak and Cagayan Rivers in the Philippines were
studied by Boothroyd et al. [22] for a period of over 30 years using Landsat satellite
images and the Google Earth Engine (GEE) cloud platform. To estimate the river planform
changes, riverbank erosion, and accretion, Rowland et al. [23] introduced an algorithm
called Spatially Continuous Riverbank Erosion and Accretion Management (SCREAM),
which uses satellite remote sensing data to extract river properties. RivaMap is another
algorithm that has been developed to analyze and map river features from remotely
sensed satellite images [24]. Indian satellite remote sensing (IRS) data were used by
Boruah et al. [25] to map the geomorphology and physical habitats of the Brahmaputhra
River close to the Himalayas, where the river is braided and has instabilities.

Combining the available knowledge from this literature, the meandering behavior of
the Deduru Oya in Sri Lanka is qualitatively presented in this research.

2. Study Area

Sri Lanka is a water-rich country that has 103 major river basins. The Deduru Oya is
one of the major rivers in Sri Lanka, originating in the Western part of the central highlands
(in Matale and Kandy districts) and reaching the Indian Ocean on the west coast of Sri
Lanka near the Chilaw urban area. Nearly 97% of the river basin lies in the northwestern
province and only 3% belongs to the central province [26]. The basin is located in the
intermediate agro-climatic zone. Based on the terrain features, the catchment of the Deduru
Oya is categorized into two classes: uplands and lowlands. The mainstream of the river
has a length of 115 km and an annual discharge of 1608 million cubic meters (MCM) into
the sea [27,28]. The average annual rainfall received by the catchment is 1609 mm and the
maximum amounts are recorded in October and November [28].

The digital elevation model (DEM) shows that the lower Deduru Oya river basin has
almost flat terrain compared to the upland area, which could be a reason for the frequently
observed river meandering. Furthermore, the downstream area of the river is facing the
problem of erosion and could undergo the possible exposure of bridge foundations at the
outer banks and accretion of sediment at the inner banks (see the area in the red square
in Figure 1a). In addition, much damage to the infrastructure due to eroded banks can be
easily observed (see Figure 1b). Furthermore, the meandering bend and its sand deposition
can be clearly seen in Figure 1c. These were observed by the authors during their field
visits to the area.

 
(a) 

Figure 1. Cont.
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(b) 

 
(c) 

Figure 1. River meandering behavior: (a) meandering behavior and sediment deposition along the De-
duru Oya (source: Google maps); (b) eroded riverbanks and damaged houses (photo credit—D.C.H);
(c) meandering bend (photo credit—D.C.H).

The study area reached from downstream of the Deduru Oya reservoir dam to the
river mouth (sea outfall), which is about a 70 km long stretch along the river. The Deduru
Oya river basin and the selected river segment are presented in Figure 2.

Figure 2. Map of the Deduru Oya river basin and the river segment selected for the analysis.
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3. Data and Methods

The meandering morphodynamics of the river were estimated through a spatiotem-
poral analysis of the river planform using freely available remotely sensed satellite data.
Many geospatial analysis tools can calculate pixel-based indices using different band
combinations from the remotely sensed images. The mapping of different features, such
as water, vegetation, and soil properties, was carried out using combinations of these
pixel-based indices.

The remotely sensed satellite image data were used to identify the river mask, plan-
form, and centerline in this study. Through a temporal analysis performed for a selected
period, the meandering dynamics of the Deduru Oya were estimated using remotely sensed
satellite data, semi-automated digitizing software, and a QGIS mapping tool.

3.1. Landsat Satellite Data Acquisition

Four Landsat products are available: Landsat 1–5 MSS, Landsat 4–5 TM, Landsat
7, and Landsat 8–9. In the current study, we used the Landsat 4–5 Thematic Mapper
(TM), Landsat 7 Enhanced Thematic Mapper (ETM+), and Landsat 8 Operational Land
Imager (OLI) and Thermal Infrared Sensors (TIRS) products to calculate the meandering
morphodynamics. The temporal availability, resolutions, and number of bands for each
Landsat data type are given in Table 1.

Table 1. Landsat data availability (https://earthexplorer.usgs.gov/, accessed on 2 May 2022).

Landsat Data Resolution Available Period Number of Bands

Landsat 1–5 MSS 60 m 1972–2012 04

Landsat 4–5 TM 30 m 1982–2012 07

Landsat 7 ETM+ 30 m 1999 to present 08

Landsat 8 OLI and TIRS 30 m April 2013 to present 11

Landsat 9 OLI 30 m February 2022 to present 11

The data were extracted from the USGS Earthexplorer website (https://earthexplorer.
usgs.gov/, accessed on 2 May 2022) and covered 32 years from 1989 to 2021. These
Landsat images were filtered based on the cloud cover criterion. The maximum cloud
cover threshold for the land area was taken to be 20%, thereby removing the images where
the river was significantly covered by clouds. Further, there were Landsat images with
transverse no-data stripes in the images taken after 2003. These images were also excluded
when selecting the satellite images for our analysis. Additionally, poorly georeferenced
images among the available Landsat images were removed. The selected Landsat data and
the dates of acquisition of the images are listed in Table 2.

Table 2. Landsat data used for the present analysis.

Year Landsat Data Type Extracted Date

1989 Landsat 5 TM 2 December 1989
1994 Landsat 5 TM 11 September 1994
2001 Landsat 5 TM 14 September 2001
2005 Landsat 5 TM 17 March 2005
2008 Landsat 5 TM 4 November 2008
2021 Landsat 8 OLI 23 October 2020

These Landsat images can be downloaded as tiles and each tile contains 5000 × 5000
30 m pixels obtained on a given day. Before the analysis, the images were cropped to our
study area to reduce the image processing time. As mentioned in Section 3.1, this area was
the lower Deduru Oya, downstream of the Deduru Oya reservoir. Figure 3 shows two
Landsat images of the downstream Deduru Oya taken in 2008 and 2010.
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(a) (b)

Figure 3. Illustrative maps of meandering features of the Deduru Oya using Landsat data: (a) for 2008—
Landsat false color composite bands on LT05_L1TP_142055_20081229_20200828_02_T1_B (1, 4, 7);
(b) for 2010—Landsat false color composite bands on LT05_L1TP_142055_20100218_20200824_02_T1_B
(1, 4, 7).

3.2. Extraction of Water Mask

One important aspect of the Landsat data is the availability of multispectral bands,
and these bands can be combined to calculate indices that represent the relative abun-
dances of different features, such as water, vegetation, and built-up areas [29]. Due to this
capability, Landsat images are commonly used when calculating land use/land cover and
vegetation properties, when identifying water bodies, and for flood mapping. Considering
the above properties, it was decided to use the Landsat images for the extraction of the
river water masks.

The first step of the process was to extract the river mask using the different Landsat
band collections from the Landsat images. Landsat satellite data types, including Landsat
4–5 TM, Landsat 7 ETM+ and Landsat 8 OLI, and Landsat 8 TIRS, were used to extract
the river mask. The extraction was performed based on three indices calculated using the
Landsat image bands.

1. NDVI—normalized difference vegetation index
2. MNDWI—modified normalized difference water index
3. EVI—enhanced vegetation Index

MNDWI is frequently used when identifying water bodies because of its ability to
suppress the noise from built-up land. However, misclassifications can still happen when
using only the MNDWI, mainly due to mixed distributions of water and vegetation, espe-
cially in wetland areas [30]. Therefore, it has been suggested in the literature [30–33] that
MNDWI should be used together with NDVI and EVI to avoid these classification errors.
The calculated values for the NDVI represent the percentage of vegetation in each pixel
(30 m × 30 m pixels) and the MNDWI indicates water and non-water pixels. The NDVI,
MNDWI, and EVI are defined by Equations (1)–(3). In these equations, ρNIR is a near-
infrared band and ρSWIR1 is a mid-infrared band; for example, in Landsat 5 TM images,
band 4 represents the infrared band and band 5 represents the shortwave infrared band,
and in the Landsat 8 images, band 5 represents the infrared band and band 6 represents the
shortwave infrared band.

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)

MNDWI =
ρGreen − ρSWIR1

ρGreen + ρSWIR1
(2)

EVI =
ρNIR − ρRed

ρNIR + 6ρRed − 7.5ρBlue
(3)

Considering the above facts and the previous work by Xia et al. [30], it was decided to
use the criteria MNDWI > NDVI and MNDWI > EVI to extract the water pixels, with the
water signals being stronger than the vegetation signals. Further, to avoid the interference
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of wetland vegetation, the condition EVI < 0.1 was used. The water mask extraction process
was automated using a simple python script and GIS environment. The resulting raster
images were then used to extract the river centerline.

3.3. River Centreline Delineation

River planform extraction was performed with the extracted water mask. The cen-
terline of the river had to be identified using the river mask created in the previous step.
Several methods have been proposed in the literature to identify the centerline of a certain
river. One method is to identify the shortest flow path in a multi-branching channel. The
main channel might not always be the shortest flow path, especially in cases where there
are chute channels. However, the main channel has a higher discharge compared to the
chute channels.

A semi-automated digitizing software package called WebPlotDigitizer version 4.5 [34]
was used to extract the river centerline coordinates from the water mask images. After
importing the 2D water mask image to the WebPlotDigitizer, it was calibrated using the
axis coordinates of a few selected known points. The software allows the user to perform
the digitization manually or using automatic digitization algorithms. There are several
automatic extraction algorithms available in the software for extracting a large number
of data points within a short time. In our study, we used the averaging window method
as the automatic extraction algorithm. Then, these automatically extracted points were
adjusted manually to fit them to the actual river by comparing the background image of
the water mask and the points generated by the automatic extraction algorithm. Finally,
the extracted points were saved as comma-separated value (.csv) files and these data were
used to calculate the geometric parameters for the channel. A brief overview of the overall
methodology followed in the study is presented in Figure 4.

 

Figure 4. Overview of the methodology of the study.
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3.4. Estimating Planform Geometry

For a certain point (xi, yi), the centerline arc length (Si), the inflection angle (θi), and
the curvature (ci) were calculated using Equations (4)–(6).

Si =

√(
xi − x(i−1)

)2
+

(
yi − y(i−1)

)2
(4)

θi = tan−1

(
yi − y(i−1)

xi − x(i−1)

)
(5)

ci =
θ(i+1) − θ(i−1)

S(i+1) − S(i−1)
(6)

The zero-crossing points of the spatial variation of the centerline curvature (ci) indicate
the inflection points or the separation of individual meander bends [8]. Therefore, the
variation of the centerline curvature was plotted against the river length to identify the
individual meandering bends of the Deduru Oya. After separating the bends, the geometry
of meandering bends was estimated based on two parameters. Meandering length (ML)
was defined as the axial length of an individual meander along the direction of flow, and
the sinuosity as the ratio between the actual channel length and the direct axial length of
the river [35].

3.5. Estimation of Centreline Migration

The evolution of a planform can be analyzed by estimating the centerline migration
rates. This was carried out by calculating the rates of migration in the river centerline
between two consecutive years. This was undertaken with the use of the Geometric
Attribute tools in the QGIS software package. First, transects were created to each river
centerline with constant distances. Then, the intersecting points on the river centerlines
were ranked based on the distance along the river, and distances were calculated between
the transects based on their ranks. Finally, the annual river migration rates were estimated
by calculating the distance of the migration during the selected time interval and dividing
the migrated distance by the time taken for the migration.

4. Results and Discussion

4.1. River Planform

The river masks extracted based on the three indices described in Section 3.3 are
presented in Figure 5 (data only shown for 1989, 2005, and 2021). The results indicated
that the river masks in some images did not have continuous connections (see the dashed
red circles). This can be attributed to the misclassifications that occurred due to the low
resolution of the satellite images and the possible cloud cover in some images. The selected
river segment of the Deduru Oya has a river width of about 50 m upstream and 200 m near
the outlet. However, the resolution of Landsat 5 and Landsat 8 images is 30 m. Therefore,
the representation of the river was difficult for the narrow sections. This was one of the
major limitations of our study of the morphology of the Deduru Oya. Further, this limitation
could also have reduced the accuracy of the delineated river planform. Misclassifications
due to the mixture of water, sediment, and vegetation can also cause erroneous water
mask classifications.

In addition, the blue patch shown in Figure 5c (see green dashed rectangle) represents the
recently constructed Deduru Oya reservoir, which is mainly used for irrigation purposes.
However, the study took place downstream of this reservoir.
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(a) 

 

(b) 

 

(c) 

Figure 5. Extracted water masks for: (a) 1989; (b) 2005; (c) 2021.

4.2. River Centerline Variation

The centerlines were generated for the selected six years with the use of a digitization
tool. The extracted centerlines for each year are presented in Figure 6. Significant varia-
tions can be clearly seen at the bends of the Deduru Oya. This is clear evidence of river
meandering in the Deduru Oya. The changes are significant and, therefore, the riverbanks
and the surrounding vicinity at the bends are highly vulnerable to erosion (sedimentation).

The spatial distributions for the river curvature for the six analyzed years are shown in
Figure 7. The figure clearly shows the possible meander bends and their locations along the
river centerline. In addition, the values for the curvature give an idea of the meandering
sinuosity. When analyzing the temporal changes in the river curvature, the highest degree
of curvature in the bends was observed in the years 2021 and 2005, while the lowest bend
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curvature values were observed for 1989. These curvature estimates were used to separate
the individual bends.

Figure 6. Temporal variation of river centerline.

Figure 7. Spatiotemporal variation of curvature along the river centerline.

4.3. River Centerline Migration

The rate of total migration along the channel was plotted and the graph is presented
in Figure 8. This was used to identify the variations in the migration rates on the spatial
and temporal scales.

According to the estimated annual centerline migration rates, the minimum migration
amounts were observed during the period from 1989 to 1994 and the maximum amount
of total river migration occurred during the period from 2005 to 2008. These migration
rates are significant and can also be seen in Figure 2. The damage resulting from these
migrations is thus disastrous.
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Figure 8. Centerline migration rates for the Deduru Oya.

The meandering bends identified in the study region of the Deduru Oya are shown in
Figure 9 in a coordinate system. These bends were further analyzed, and the meandering
length and sinuosity of each bend were calculated using the Geometric Attribute tools
in QGIS.

Figure 9. Separation of individual meander bends along the Deduru Oya.

Different types of meandering bend migration are described in the literature [35,36]
depending on the direction and nature of the migrations. The concept of an inflection point
was used to separate the individual meander bends and qualitatively study the types of
bends. These bends are shown in Figure 10. Deb et al. [35] and Lagasse [36] classified
meander bend migrations according to the patterns of the centreline migrations of rivers.

The bends detected in Figure 9 were compared with these different modes of meander-
ing loop development described in the literature and classified by visually inspecting the
changes in the river channel during the selected period. These results are shown in Table 3.

The extension bend migration type was the most frequently found bend migration
type in the study area (see Table 3). Therefore, the curvature is increasing in the Deduru Oya.
In addition, the maximum meander lengths were observed to be at the fourth, seventh,
eighth, and ninth bends (see Figure 9). These bends were located downstream of the
study area. In addition, the nine bend, which was classified as a translation, exhibited
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the maximum sinuosity. Therefore, this bend is moving along the river. Interestingly, the
16th bend showcased the migration type involving a neck cutoff by a chute. Therefore,
the meandering behavior of the bend is becoming reduced over time and straightening
the river at the 16th bend. Furthermore, the lowest meander length was observed at the
12th bend.

Figure 10. Different types of bend migrations: (a) extension; (b) translation; (c) rotation; (d) conversion
to a compound loop; (e) neck cutoff by closure; (f) diagonal cutoff by chute; (g) neck cutoff by chute
(extracted from Lagasse [36]).

Table 3. Classification of meandering bend migrations in the lower Deduru Oya.

Bend ID
Location Coordinates

Meander Length (m) Sinuosity Type of Bend Migration
Starting Point Endpoint

1 (369,891, 840,926) (370,469, 841,322) 1147 1.67 Diagonal cutoff by chute
2 (370,469, 841,322) (371,392, 841,643) 1074 1.12 Rotation
3 (371,392, 841,643) (372,085, 841,713) 970 1.26 Extension
4 (372,085, 841,713) (372,744, 842,194) 1747 2.14 Extension
5 (373,439, 842,829) (374,175, 842,607) 958 1.28 Extension
6 (374,175, 842,607) (374,658, 842,408) 602 1.14 Conversion to compound loop
7 (376,310, 843,127) (378,050, 843,167) 2137 1.22 Extension
8 (378,050, 843,167) (380,069, 843,259) 2937 1.48 Extension
9 (381,376, 845,347) (381,803, 846,241) 2052 2.16 Translation
10 (381,803, 846,241) (381,770, 847,127) 1239 1.42 Conversion to compound loop
11 (382,838, 849,184) (383,484, 849,056) 793 1.13 Extension
12 (383,484, 849,056) (383,897, 848,928) 581 1.39 Extension
13 (385,793, 849,733) (386,464, 850,102) 948 1.74 Translation
14 (388,671, 851,246) (389,186, 851,590) 1304 1.75 Rotation
15 (389,427, 851,590) (389,864, 851,679) 850 1.41 Extension
16 (395,413, 853,972) (397,947, 854,106) 3136 1.23 Neck cutoff by chute
17 (405,221, 853,671) (406,338, 853,766) 1361 1.18 Extension
18 (417,035, 854,669) (417,950, 854,127) 1277 1.17 Translation
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The identification of the bend migration type is important for any future riverbank
conservation and protection services. The planners can introduce necessary steps suitable
for each river bend.

5. Summary and Conclusions

Studying river migration patterns is an important factor when designing critical
infrastructure, such as bridges, roads, etc. In addition, it is highly important for managing
river flows. The results of this study will therefore be useful for planning river management
activities (conservation) and designing infrastructure close to the river.

The current study was conducted to develop a simple method to investigate the river
meandering features of a narrow river using freely available remote sensing satellite data
and GIS tools. The method was applied to a meandering river in Sri Lanka (the Deduru
Oya) to investigate the change in the active channel during the past three decades from 1989
to 2021. This is the first such study undertaken for the river basins in Sri Lanka and, more
importantly, for the Deduru Oya (as per the authors’ knowledge). The method developed
used Landsat satellite image data to identify the river planform and this was then digitized
to calculate the river geometry, the changes over time, and the meandering features of the
Deduru Oya.

The current analysis indicated that the highest number of meandering bends could
observed in the lower (most downstream) and the middle parts of the selected river
segment. It was also observed that the Deduru Oya has undergone considerable change
in its curvature and migration rates. According to the results obtained, the curvatures of
the critical meandering bends have increased over time between 1989 and 2021. Similarly,
the annual meandering rates were observed to be higher in recent years compared to the
past. The meandering bends identified were classified according to the bend types defined
by Lagasse [36]. This information can be effectively used by the Irrigation Department
of Sri Lanka to restore and conserve the riverbanks and their surroundings. This is very
important as the Deduru Oya has been identified as one of the rivers in Sri Lanka that has
been most intensely mined for construction sand. Therefore, the riverbanks are often mined
legally and illegally. The riverine ecosystem always affects the meandering process and
vice versa. For example, the existence of vegetation close to the river banks slows down
meander bend migration, and the river meandering can also turn the vegetated areas into
wetlands, completely changing the ecosystem features. Thus, the findings of this research
are very useful for the management of the river ecosystem. In addition, the Deduru Oya
floods annually. Knowledge about the meandering patterns of the Deduru Oya river will
help to reduce flood-related erosion risks in the riverine environment. Therefore, the results
can be used for flood risk analysis of the Deduru Oya river. Furthermore, the mathematical
representations of these meandering bends could also be investigated in a future study.

The usefulness of Landsat satellite data for studying river channel morphodynamics
is widely acknowledged in the literature [2,8,22,35–39]. However, the accuracy of the
geomorphological applications of these satellite data is highly dependent on the resolution
of the images and the river width. Analyzing the narrow channels (i.e., river width < 100 m)
using medium-resolution images (Landsat, Sentinel, etc.) can reduce the accuracy of the
results [21]. The width of the Deduru Oya changes from about 50 m in the upstream
areas to about 200 m near the sea outfall. Hence, there are limitations regarding feature
extraction and classification when using these freely available Landsat images, which
can cause misclassifications and reduce the accuracy of the extracted river representation.
Therefore, it is recommended to use satellite data that have higher resolutions in future
studies. Another limitation of the current method is that it is only able to estimate the
centerline changes over time and cannot be used to identify sediment bars or to determine
the dynamics of sediment in rivers. Therefore, the method could be developed to calculate
the sediment bar dynamics in the Deduru Oya in future research.
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Abstract: Among the various predisposing factors of rainfall-induced shallow landslides, land use
is constantly evolving, being linked to human activities. Between different land uses, improper
agricultural practices can have a negative impact on slope stability. Indeed, unsustainable soil tillage
can modify the mechanical properties of the soils, leading to a possible increase of the instability
phenomena. However, the effects of soil tillage on slope stability are poorly investigated. To address
this topic, the PG_TRIGRS model (a probabilistic, geostatistic-based extension of TRIGRS) was
applied to a cultivated, landslide-prone area in central Italy, thoroughly studied and periodically
monitored through systematic image analysis and field surveys. A heuristic approach was adopted
to quantitatively evaluate the effect of soil tillage on the mechanical properties of the soil: after a first
run of the model with unbiased parameters, the slope stability analysis was carried out assuming
several percentages of reduction of the effective soil cohesion to mimic an increasing impact of soil
tillage on the strength conditions. Then, a comparison between observed landslides and the spatial
distribution of the probability of failure derived from the application of PG_TRIGRS was carried
out. A back analysis with contingency matrix and skill scores was adopted to search for the best
compromise between correct and incorrect model outcomes. The results show that soil tillage caused
a 20 to 30% reduction in soil cohesion in the analyzed area.

Keywords: land use; landslide modelling; shallow landslides; soil cohesion; soil tillage

1. Introduction

Shallow landslides induced by rainfall are very common phenomena that occur in
hilly and mountainous areas, causing loss of human life and environmental and economic
damage [1,2]. The main triggering factors of shallow landslides are represented by intense
or prolonged rainfall [3–5], while the main predisposing factors are represented by lithology,
morphology [6,7], and soil conditions—such as land cover and land use [8,9]. In particular,
land use is constantly evolving, and its changes affect landslide occurrence [10–14]. Indeed,
changes in vegetation cover have an impact on the landscape diversity [15] and relevant
effects on the hydrological processes and mechanical structure of the soil, with either posi-
tive or negative consequences for slope stability [16–19]. Moreover, agricultural practices,
on one hand, contribute positively to landscape and on the other hand, can have a negative
impact on the slope stability. As an example, unsustainable agricultural practices character-
ized by heavy mechanization, such as soil tillage, can generate an excessive pressure on the
soil, making the soil more susceptible to instability and degradation phenomena [20].

Several scientific contributions, among others, show the positive effects of vegetation
cover on slope stability [21–25]: from a hydrological point of view, the vegetation dissipates
most of the kinetic energy of the raindrops, weakening the erosion action, with a degree of
interception depending on the density of the leaves and the size of the plant [26]; from a
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geo-mechanical point of view, the most important effect is represented by the mechanical
reinforcement exerted by the roots [22,27–30], consisting of an increase in the shear strength,
included in the Mohr–Coulomb failure criterion as additional soil cohesion [31,32]. In
particular, the main contribution of roots to soil strength is related to the presence of small
roots in the most superficial soil layers, which increase the compound matrix strength. Such
an effect has been largely known as root reinforcement [33]. Another action involves large
roots which intersect the shear surface and mobilize a soil–root friction force instead of the
entire tensile strength [14]. Moreover, root reinforcement depends on the density of roots
in soils and root diameters. As an example, grasses provide significant reinforcement to the
shallower layers of soil, while woody roots of trees and shrubs provide reinforcement over
a greater depth of soil through a combination of both fine, fibrous roots and coarser, woody
roots [34].

Conversely, the effects of agricultural practices, and in particular of soil tillage, on
slope stability conditions are poorly investigated. In this case, some studies show that the
modification of soil’s mechanical properties can be related to the tools used to till the land.
In particular, some studies investigated how the soil characteristics vary in response to
practices with the aim of assessing the efficiency of agricultural machinery, e.g., [35]. As
an example, tillage with a rotary paraplow can be considered as a conservation technique
leaving the soil state unchanged [36]. Other works, e.g., [37], show that the effect of tillage
tools on the soil depends on the nature of the soil (fine-grained or coarse-grained soil). In the
case of paddy soils, different laboratory experiments were conducted to determine the effect
of tillage operations on the soil’s physical, rheological and mechanical properties [38,39]. A
negative impact of the tillage operation was found in soil bulk density, while a change in
the rheological behavior of paddy soil according to the variation of the moisture content
was observed [38]. Some authors have performed field-scale analyses aimed at evaluating
the effect of different tillage techniques (conventional or conservation) on soil erosion, also
in comparison with non-tilled cases [40–42]. Overall, considerable increases in soil erosion,
runoff, and sediment loss are observed in the cases with conventional tillage as compared
with the cases with soil saving technologies (conservation tillage or no-tillage) [41,42]. On
the other hand, no significant differences in hydraulic conductivity were observed [40].
Recently, Straffelini and co-authors proposed a physical modeling approach to assess
runoff and soil erosion in vineyards under different soil managements and observed that
continuous tillage aggravated soil erosion as compared to reference tillage, single tillage,
and nectariferous [43].

To our knowledge, no articles regarding particularly the impact of soil tillage on slope
stability and shallow landslide occurrence in hilly environments are currently present
in the literature. Indeed, most studies have focused on steep, often terraced landscapes
[see, e.g., [20] for further references] or on erosion hazards, e.g., [41,42]. Quantitative
measurements of the link between tillage operations and soil mechanical characteristics
are not straightforward. However, there is a general consensus that tillage, plowing, and
leveling generate a modification of the mechanical properties of the soils involved, leading
to a possible increase in the propensity to slope failures of an area. In particular, soil tillage
could lead to a decrease of the soil cohesion (e.g., due to soil disaggregation) and an increase
of the friction angle (e.g., due to soil compaction). Quantitative data on this topic are rarely
available: a table reporting quantitative changes in the mechanical parameters was found
only in Albiero et al. (2014) [44].

In this paper, we analyze the decrease of the soil cohesion due to soil tillage, through a
back-analysis approach and with the application of a probabilistic, physically-based model
for the triggering of rainfall-induced landslides [45] in an agricultural environment. The
choice of a probabilistic model is motivated to take into account the natural changes of the
physical and mechanical properties of soils and rocks, which are characterized by high vari-
ability in space both in horizontal and vertical dimensions [46]. In probabilistic approaches,
the safety level of the slope is given by the probability of failure (PoF), i.e., the probability
associated with a value of factor of safety ≤1. Probabilistic approaches can provide a high
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level of reliability when a detailed description of the study area is available in terms of
slope topography and physical, mechanical, and hydraulic soil properties. For landslide
prediction, probabilistic approaches, which assume input data as random variables de-
fined through their probability density functions, are more suitable than deterministic
approaches, which assume the input data without uncertainty [47].

The model is applied to the Collazzone area, a cultivated area located in central Italy,
characterized by a high susceptibility to landslides. The area has been the subject of several
studies, e.g., [48–50] and is periodically monitored through systematic image analysis and
on-site surveys [51,52]. This allowed a preliminary quantitative assessment of the effect
of the crops on the stability conditions of the area. Through a back-analysis approach and
with the support of sensitivity indices, a quantitative evaluation on the effect induced by
soil tillage on the mechanical properties of the soil has been provided. The contribution
is divided as follows: after the introduction, an overview of the theoretical aspects of the
landslide model and the method used in this study are illustrated in Section 2. The descrip-
tion of the study area and the database available for the mechanical soil characterization
are part of this paragraph. In Section 3, after defining the geotechnical and hydrological
assumptions considered for the reliability analysis, the results of the model are shown and
discussed. The conclusions and future research developments represent the final section of
the paper (Section 4).

2. Materials and Methods

2.1. Study Area and Data

The Collazzone area extends for 80 km2 in the Perugia province, Umbria region, central
Italy (Figure 1A). The geology of the area has been investigated several times [53,54]: it
consists of the alternation of recent fluvial deposits along the valley bottoms, continental
gravel sand and clay, travertine deposits, sandstone and marl in various percentages and
thinly layered limestone. The digital elevation model (with a 20 m resolution) reveals that
the territory is mainly hilly with elevations ranging between 145 and 634 m a.s.l.; the slopes
that stand on the area have a gradient varying between 5◦ and 50◦, with the highest values
in the northern part of the area (Figure 1B).

 

Figure 1. (A) Localization of the study area (in red) within the Umbria region (blue bor-
ders); (B) slope distribution in the area; (C) geotechnical classification of soil types according to
Fanelli et al., (2016) [55]; the green circles represent the landslides.
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For the purposes of this work, defining the mechanical parameters needed in in-
put by the model: the geotechnical classification of the Perugia province proposed by
Fanelli et al., (2016) [55] was adopted, which includes an estimation of the physical and
mechanical properties of the soil types constituting the near-surface cover. According to
this classification, which reports the geotechnical parameters and a general description of
the stratigraphy, the central part of the study area is covered mainly by clays, while the
rocks (e.g., marl and travertine) are distributed in the south-eastern part of the study area
(Figure 1C).

The area studied represents a high percentage of cultivated land (Figure 2) and the
soil is inventoried as arable land. According to the last Agriculture Report, published on
the Umbria region website (https://www.regione.umbria.it/agricoltura/statistica, last
accessed on 28 April 2022), about 75% of the total agricultural area is used. According to
the reference soil groups of the international soil classification [56] and to the map of the
soils of the Umbria region [57], most of the area can be classified as a calcaric cambisol.

 
Figure 2. Maps showing (A) the distribution of land use and (B) a picture of the cultivated and
uncultivated areas in the study area.

Despite the presence of vegetation, the area presents a high landslide susceptibility,
typically, the slope failures are triggered chiefly by meteorological events, including intense
and prolonged rainfall and rapid snow melting [53]. Using aerial and satellite images,
Fiorucci and co-authors [51] estimated the landslide mobilization rates in the area in
the period 2004–2005 and speculated that the remarkably high yearly rate of landslide
mobilization observed in the area in the analyzed period might be due to the agricultural
and land use practices. Considering the interesting case study for the period 1941–2005, a
multi-temporal landslide inventory map analyzing different sets of aerial photographs and
field surveys is available for the area [53]; even now, numerous annual surveys continue to
be made in the area and an ongoing mapping has also been made using remote sensing
product such as Lidar, monoscopic and stereoscopic satellite images [51,52,58], and field
surveys carried out after intense or prolonged rainfall, when images were not available.
The last survey was carried out by CNR-IRPI on 20 December 2020, following the copious
rain that affected the area in the first ten days of the month. In particular, on 8 December
from 03:00 A.M. to 15:00 P.M. (local time), 50 mm of cumulative rainfall fell (Figure 3),
corresponding to a mean intensity of 4 mm/h (0.07 mm/min) and a peak intensity of
9.2 mm/h (0.16 mm/min).
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Figure 3. Bar chart showing the hourly rainfall measured by the rain gauge located in Collazzone on
8 December 2020. Data provided by the administration of the Umbria region.

The landslide information was obtained through a reconnaissance survey of the area
(20 December 2020) driving and walking along main, secondary, and farm roads [59]. The
investigators stopped at viewing points to check slopes where single or multiple landslides
were identified and took photos of each landslide or group of landslides using a camera
provided with GPS, and prepared a rapid (raw) mapping of the landslide. In the laboratory,
the geolocated photographs were used to improve the location of the individual landslides
and to characterize the type and the size. Landslides identified in the field and in the
photographs were mapped on Google Earth. The main weakness of the reconnaissance
inventory is the completeness, since from viewing points some slopes are not entirely visible,
and an undetermined number of landslides may not have been identified and mapped.

During this last field survey, an event inventory was defined, including 26 shallow
landslides. For the aim of this work, the landslides located in areas classified as rocks
according to Fanelli et al. (2016) [55] and in uncultivated areas were excluded from the
analysis; thus only 19 landslides (shown in Figure 2) were considered for modelling and
analysis. As can be seen from Figures 1 and 2, these 19 landslides are located in the central
portion of the area; the soils involved (Figure 1C) are clays, characterized by a cohesive
resistance. Figure 4 shows an example of a shallow landslide (soil slide) mapped during
the field survey.

 
Figure 4. Example of shallow landslide (soil slide) in the study area. Photo taken on
20 December 2020, by CNR-IRPI.
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2.2. Method

In order to evaluate the effect of soil tillage on the stability conditions of the area, the
method applied in this research includes the comparison between landslides observed
in situ and the PoF distribution deriving from the application of the PG_TRIGRS model.
PG_TRIGRS (probabilistic, geostatistic-based, transient rainfall infiltration and grid-based
slope stability model) is a probabilistic extension [45] of the deterministic version imple-
mented in the original TRIGRS code, developed by Baum et al., (2008) [60], which treats
each cell of the study area, subdivided into a GIS grid, as an infinite slope. Referring to
deterministic slope stability analysis, TRIGRS allows the coefficient of failure FS along the
slip surface to be evaluated with respect to translational sliding as:

Fs(Z, t) =
τf

τm
=

tan φ′
tan α

+
c′ − γwψ(Z, t) tan φ′

γZ sin α cos α
, (1)

where τm is the mobilized shear stress, τf is the available shear strength, c′ and φ′ are the
effective cohesion and friction angle of the soil, respectively, ψ = u/γw is pressure head, u
is the pore water pressure, γw is the water unit weight, α is the slope angle and γ is the
unit weight of the soil. In transient flow conditions, the factor of safety varies with Z and t,
due to the evolution with time and space of the pressure head ψ generated by the rainfall
infiltration process [60].

In the deterministic analysis, Fs depends on 12 parameters, briefly represented as:

Fs = f (α, h, dw, γs, c′, ϕ′, Eed, ks, θs, θr,aα,, ILT
)
, (2)

in which, in addition to the quantities identified above, θs and θr are the saturated and
residual volumetric water content, Eed the soil stiffness, dw the initial pre-storm water table
depth, aα and ILT the pre-storm infiltration rate parameters; h the thickness of the soil cover
and ks the hydraulic conductivity.

The parameters present in Equation (2) are deterministic quantities, considered exact
values without uncertainty, but soils and rocks are described by parameters characterized
by high variability in space both in horizontal and vertical dimension [61]. For instance,
mechanical properties show their uncertainty not only from site to site and within a given
stratigraphy, but also within homogeneous covers, as a consequence of natural deposition
processes [62]. When the randomness of the quantities is considered, the stability conditions
are expressed by the PoF and the input quantities are random variables. This is the
approach followed by PG_TRIGRS which considers random variables c′, φ′ and ks; the
PoF is evaluated cell-by-cell, through the probabilistic point estimate method approach.
The code, validated over different areas of the Umbria Region characterized by different
landslide susceptibility levels [46,63,64], has been used to evaluate the PoF distribution
linked to the rainfall event described in Section 2.1. In particular, different analyses were
carried out considering different scenarios of reducing the mechanical properties of the soil
linked to soil tillage.

Considering the spatial distributions of slopes and soils (Figure 1), it could be observed
that the landslides were not localized in areas with higher slopes. Conversely, the landslides
were mostly localized in human-modified clay soils in the central part of the study area,
where the land is more easily cultivated than in the eastern part of the area, where fine-
grained soils alternate with rocks.

These findings highlight the impact of agricultural practices on the soil’s mechanical
characteristics. In fact, arable land often requires conventional tillage that is able to alter the
intrinsic physical properties of the soil, such as soil structure, porosity, pore-size distribution,
aggregation, particle size distribution, water retention capacity and permeability but above
all the effective cohesion of soil [65].

Moreover, agricultural practices induce changes on the slopes. Indeed, in the rainiest
periods there are freshly tilled soils without vegetation, while in the driest periods they
are covered with vegetation. To this purpose, two images of the study area gathered in
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April 2018 and October 2019 and are shown in Figure 5. Moving from autumn to spring,
the seasonal transformations undergone by the slopes can be seen; these changes are very
likely associated with agricultural practices that are supposed to reduce soil strength.

 
Figure 5. Two aerial images of the central part of the study area (red dots represent shallow landslides).
In October, the area is devoid of any vegetation (many brown areas); in April, several zones are fully
vegetated (green). Background images from Google Earth.

In the absence of quantitative information and specific studies on this topic, to take
into account the impact of soil tillage in the analysis of the stability conditions of the area,
a heuristic approach was here adopted. In particular, the slope analysis was carried out
assuming a decrease of the effective cohesion c′ equal to 10, 20, 30, 40 and 50% in all arable
areas (cf. Figure 2B) to mimic an increasing impact of soil tillage on the geomechanical
conditions. In all model runs, the same triggering rainfall event was considered as input.
In this way, only the effect of soil tillage on the stability conditions was evaluated.

3. Results and Discussion

3.1. Statistical Analysis

As mentioned, the random variables considered in the PG_TRIGRS approach are:
(i) the effective cohesion c′; (ii) the effective friction angle ϕ′ and (iii) the saturated hydraulic
conductivity ks. The random variability is described, for each variable, by theoretical
probability density function (pdf); the pdf definition was evaluated on the basis of in situ
measurements available for different soils of the Perugia Province [55]. The correlation
coefficient (ρ) between c′ and ϕ′ is assumed to be equal to −0.5 [66–68], while the correlation
between ks and the soil strength parameters is assumed equal to 0. Major details of the
stochastic characterization of the mechanical properties of the soil are presented in the
work of Fanelli et al., (2016) [55] and Salciarini et al. [45,69]; for further information, the
stochastic soil characterization is summarized in Table 1.
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Table 1. The table summarizes the stochastic parameters (mean value and coefficient of variation,
CoV) used to characterize the soils in the study area (according to Fanelli et al., 2016 [55]). In the
reliability analyses, rocks such as limestone, marl limestone, conglomerate, marl and travertine are
not considered.

c′ (kPa) ϕ′ (◦) Ks (m/s) CoV (c′) CoV (ϕ′) CoV (ks)

Alluvium 3 28 5 × 10−8 0.25 0.05 0.9
Terraced alluvium 6 29 1 × 10−7 0.25 0.05 0.9

Clay 15 26 5 × 10−11 0.25 0.05 0.9
Eluvial deposit 7 29 1 × 10−9 0.25 0.05 0.9

Landslide deposit 0 31 5 × 10−8 0.40 0.09 2.4
Sand 0 30 5 × 10−5 0.40 0.09 2.4

Turbidite 5 30 5 × 10−7 0.25 0.05 0.9

In the absence of detailed information or recorded data, the initial pre-storm water
table depth (dw) was set equal to 50% of h, and the steady pre-storm infiltration rate
(ILT) was assumed to be negligible. The soil covers were considered completely saturated
(Sr = 1) and the soil thickness did not exceed 2 m. The stability analyses were conducted
under saturated conditions, as conservative assumptions, therefore evaluations about the
estimated soil moisture or the groundwater level change were not considered in the study.

3.2. Modelling Results

Starting from the soil characterization shown in Table 1, the model was applied to the
study area considering the rainfall event described in Section 2.1 (Figure 3). The results
show that the area is mostly stable (Figure 6). The stability conditions vary considering the
critical rainfall event, but the PoF values are negligible in most part of the area. A small area
with PoF between 0.3 and 0.5 is located in the northwestern part, which is characterized by
high slopes and Turbiditic soils (with low values of c′).

 

Figure 6. The image shows the PoF distribution considering natural conditions for the soil cover and
the rainfall event described in Figure 3. For the soil characterization, the mechanical properties used
are reported in Table 1.
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Observing the landslide distribution, we noticed that the movements occurred on the
portions of the study area characterized by modest slopes; the soil mainly involved is clay
(according to Fanelli et al., 2016 [55]). This evidence suggested that agricultural techniques
such as soil tillage could significantly reduce the effective cohesion of the soil covers. As
previously mentioned, a reduction in the average value of cohesion was considered for the
arable soils in the study area. Figure 7 shows the PoF spatial distributions, evaluated at the
end of the considered rainfall event, assuming reductions of c′ in arable areas respectively
equal to 20 (Figure 7A), 30 (Figure 7B), 40 (Figure 7C) and 50% (Figure 7D).

Figure 7. Spatial distribution of PoF considering a reduction of c′ in arable areas equal to 20% (A),
30% (B), 40% (C), and 50% (D).
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The 20% reduction for c′ amplified the portions of the area originally identified by
PG_TRIGRS and shown in Figure 5; however, the central sector of the area, where shallow
landslides were localized, was still affected by a negligible PoF. The central sector is
characterized by gentle slopes, ranging from a minimum of 3◦ to a maximum of 18◦,
therefore, the triggering causes of the observed landslides were likely due to the changes in
the mechanical characteristics of the soil.

As expected, higher probabilities of failure are observed considering a 30% of reduction
for the effective cohesion of the soils (Figure 7B). This decrease of c′ produces, in the central
part of the area, a large sector characterized by PoF values between 20 and 30%; and
most landslides are correctly predicted by the model. The additional decrease of 40% for
c′ provides only an increase in extension of the critical areas already identified, without
significantly improving the model prediction. Finally, considering a reduction of 50% for c′,
a large part of the area becomes unstable.

Figure 8 summarizes the quantitative results obtained from the analyses. Each row
represents the distribution of the cells in the various PoF classes, while for each column
a different reduction of c′ has been considered. As the reduction of c′ increases, as can be
expected, more pixels move towards classes with higher PoF. The pixels decrease, with
reference to first class (white), is minimum passing from a reduction of about 10% to a
reduction of 20% of c′, while it becomes important considering the c′ reduction of 30 to
50%. Pixels belonging to the orange class (0.2 < PoF ≤ 0.3) also increase passing from the
reduction of c′ of 20 to 30%.

Figure 8. Pixel distribution in the five classes of PoF, according to the different reductions of c′.

Relating to the spatial distribution of PoF with the landslides observed in situ, the c’
reduction corresponding to the absence of landslides in the first class (0 < PoF ≤ 0.2) is 50%.
In other words, considering a reduction of c′ equal to 50%, the pixels were the landslides
that have been measured and all were located in the second class (PoF > 20%). The
model identified accurately the pixels characterized by landslide occurrence but incorrectly
classified the other stable pixels.

3.3. Reliabaility Analysis

In order to evaluate the reliability of the proposed method, we used the standard
contingencies and metrics adopted for model evaluation. For each case of c′ reduction,
we calculate the number of cells with: landslides correctly hindcasted by the model (true
positives, TP); landslides mapped but not hindcasted by the model (false negatives, FN);
positive outcome from the model and absence of mapped landslides (false positives, FP);
no landslides mapped and negative outcome from the model (true negatives, TN). Given
that the outcome of the model is probabilistic and not deterministic, we set three increasing
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thresholds values for PoF to define a positive and a negative outcome. In particular,
we identified the values of 0.2, 0.3, 0.5 as the threshold PoF value for calculating the
contingencies. As an example, in the case of the PoF threshold fixed at 0.2, we considered
a positive outcome of the model to be a cell with a PoF > 0.2 and a negative outcome a
cell with a PoF ≤ 2; in the case of 0.5 threshold, a positive (negative) outcome was a cell
with a PoF equal or higher (lower) than 0.5. Therefore, for each case of c’ reduction and
for each PoF threshold value, we calculated the four contingencies and some skill scores:
the true positive rate, TPR = TP/(TP + FN); the false positive rate, FPR = FP/(FP + TN);
the Hansen–Kuipers skill score, HK = TP − FN; the predictive power, Pp = TP/(TP + FP).
Detailed results are reported in Table 2. As an example, with reference to the lowest Pof
threshold (0.2), the best HK value is obtained considering a 40% reduction of c′.

Table 2. Values of the calculated skill scores for the five cases of c′ reduction and the three PoF
threshold values. For each case of c′ reduction, the average value for each skill score is also reported.
The best average values for each skill score are in bold.

C′ Reduction PoF Threshold
Skill Scores

FPR (%) Pp (%) TPR (%) HK (%)

10%

0.2 3.6 5.2 11.1 7.5
0.3 62.5 8.4 100.0 37.5
0.5 9.1 0.0 0.0 −9.1

Mean 25.1 4.5 37.0 12.0

20%

0.2 5.3 3.6 11.1 5.8
0.3 49.9 7.1 100.0 50.1
0.5 9.9 0.0 0.0 −9.9

Mean 21.7 3.6 37.0 15.3

30%

0.2 21.6 2.6 33.3 11.8
0.3 24.1 3.6 33.3 9.2
0.5 11.4 10.6 25.0 13.6

Mean 19.0 5.6 30.6 11.5

40%

0.2 38.6 2.8 63.0 24.3
0.3 55.5 0.8 23.5 −32.0
0.5 9.8 4.8 20.0 10.2

Mean 34.6 2.8 35.5 0.9

50%

0.2 48.4 2.5 70.4 22.0
0.3 64.8 2.0 52.6 −12.2
0.5 11.6 10.3 37.5 25.9

Mean 41.6 4.9 53.5 11.9

Finally, we calculated the mean values of the skill scores for each case of c′ reduction,
averaging the values obtained for the three PoF thresholds values (Table 2). The average
TPR closest to 1 (i.e., the optimal value) was observed for a c′ reduction equal to 50%;
however, this condition also generated many FP, thus, other considerations were needed.
Indeed, if we considered the average values of FPR and HK, the best model performance
was obtained considering a 20 and 30% reduction of c′, respectively. Overall, the best
compromise between correct and incorrect model outcomes was obtained considering a
20% reduction of c′ between 20% (best values for HK) and 30% (best value for FPR and Pp).

4. Conclusions

The paper presents a study focusing on the effect of soil tillage due to agricultural
activity on slope stability conditions in a hilly environment. To this aim, a back analysis
has been performed using the PG_TRIGRS model on the study area of Collazzone, central
Italy. The code has already been used for the prediction of shallow landslides in the Umbria
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Region, but it has not been tested on areas where landslides, triggered by a specific rainfall
event, have been directly observed. The proposed probabilistic approach which assumes
input data as random variables defined through their probability density functions, can
provide a higher level of reliability than deterministic approaches, which assume the input
data without uncertainty.

For this preliminary study, we decided to perform the stability analyses under sat-
urated conditions and we have not considered the randomness of the initial water table
depth dw in order to have only three random variables in input (c′, ϕ′, and ks). This choice
allowed us to reduce the computational times and to better identify the effect of soil tillage
on the soil’s mechanical properties. However, future upgrades of the method will include
the piezometric variability, the unsaturated conditions, and the soil thickness analysis.
The study area selected for this purpose is of particular scientific interest because it is
characterized by intense agricultural activity that greatly increases its susceptibility to
landslides. The latter appears to be related to agricultural management systems which
modify the physical and mechanical properties of the soil. During the year the ground
is tilled and denuded in the rainiest period, while in the summer and spring months the
slopes appear covered by vegetation. The continuous change in soil conditions alters the
mechanical characteristics of the soil in a non-negligible way. The use of unsustainable
agricultural machinery should be limited to avoid loss of cohesion in the cover soil.

From the results obtained in this study, with reference to the area analyzed, soil
tillage due to agricultural activity caused a reduction in cohesion of between 20 and 30%;
this estimation agrees with the results obtained in studies aimed at evaluating the effects
produced by specific tillage on soil’s mechanical properties [44]. With reference to the
results, the slope stability model is able to predict surface landslides but it classifies, as
a precaution, the areas not affected by landslides. In any case, in order to safeguard the
Collazzone area from shallow sliding phenomena, it is necessary to practice planned and
appropriately selected agricultural techniques.

The method presented in this work is quantitative and reproducible, thus can be
applied in other areas with similar environmental contexts, also for comparison with in
situ and laboratory tests to refine and optimize the evaluation of the effect of soil tillage on
slope stability.
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Abstract: Increasing flood damage has led to a rising importance of land use in flood risk management
policies, commonly referred to as the spatial turn in flood risk management. This includes policies
aiming at making space for rivers, which, in practice, lead to an increasing demand for land. Although
research has been conducted on the variety of policies, the resulting land use conflicts in flood-prone
areas have not been paid much attention to. This paper therefore analyses the current land use and
its changes in Alpine flood-prone areas in Austria. The results show that space for rivers has been
decreasing due to human activities (e.g., river straightening and channel narrowing) since the middle
of the 19th century, and settlements have been expanding into flood-prone areas. Furthermore, the
share of valuable agricultural land (which is important for food production) located in flood hazard
zones is higher in more mountainous areas. Given the limited space for permanent settlement in
Alpine regions, these land use changes exert pressure on the availability of land suitable for flood
risk management. Therefore, making space for rivers as part of flood risk management policies faces
considerable restrictions in Alpine areas.

Keywords: flood risk; land use; settlement development; agricultural land use; flood-prone areas;
Alpine regions

1. Introduction

Flooding is one of the most damaging natural hazards worldwide, with flood risks
ever increasing [1]. This can, among other things, be linked to climate change, which is
likely to further intensify flooding. Detailed evaluations of climate change impacts on
flooding at local level, however, are still inconclusive [2,3]. A second important driver of
increasing flood damage is socio-economic development, including an increase in wealth,
population development, and settlement expansion in flood-prone areas [4–6].

In order to reduce flood risks, a shift from controlling rivers and hazard prevention to
an integrated approach of flood risk management can be observed [7–10]. Integrated flood
risk management includes structural and non-structural measures, moving away from a
solely engineering task to the inclusion of different disciplines [11,12]. With this paradigm
shift, spatial planning has become a crucial part of flood risk management, and related
policies are seen as an essential means to prevent flood damage [11]. Scholarly literature
uses the term ‘spatial turn’ to describe the increasing relevance of (mainly undeveloped)
land for flood risk management [13,14]. According to van Ruiten and Hartmann [14], three
aspects can be regarded as valid indicators for this spatial turn in flood risk management:
“[ . . . ] the policy of more space for the river, an integrated approach to the issue, and an approach
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beyond structural measures”. To operationalize the spatial turn, Löschner [13] goes into
more detail, including, among other aspects, “policy efforts to widen rivers and improve the
connectedness between rivers and floodplains”.

Research has been conducted on the implementation of policies addressing ‘making
space for rivers’ [15]. This includes research on the ‘Room for River Directive’ in the
Netherlands [16–18], analysis of the practical implementation of giving space to rivers in
Germany [19], and studying the application of the ‘Room for River Directive’ in Canada [20].
Furthermore, in the UK, there is research on the effectiveness of national planning policy in
achieving compromises between space for rivers and space for people. This underlines the
“conflict between land and water” [21].

This paper builds upon the aspect of ‘making space for rivers’, which, in practice,
means an increasing demand of land both for river restoration and flood risk management.
In consequence, this demand of land for rivers can lead to land use conflicts [21]. Although
the implementation of related policies has been widely explored, there is research demand
on the quality and extent of land use conflicts in flood-prone areas, particularly in areas with
limited space for permanent settlement. This research will address this gap by looking at
land cover changes and the current land use in flood-prone areas in Austrian Alpine regions.
Considering the aspects of transformation of water bodies, settlement development, and
agricultural land, this paper will answer following research questions. How did water
bodies and settlements in flood-prone areas change between 1826–1857 and 2016 in Austrian
Alpine regions? How are flood-prone areas in Alpine regions currently used (focusing on
settlements and agriculture)?

A historic view on the human transformation of Alpine water bodies shows the
decreasing space for rivers. As part of flood risk management, structural measures have
been applied, including river channelization. Research on the channelization of Alpine
rivers shows that, in comparison to other European countries, rivers in Austria have been
altered more intensely [22]. These regulations left rivers with limited land availability [23].
Thus, river regulations are the preceding development, making it necessary nowadays to
consciously implement policies in order to return space to rivers. However, it is not simply
narrowing riverbeds that affect runoff. The use of flood-prone areas for settlements has
an additional impact on discharge due to an increase in sealed surfaces water that cannot
infiltrate into the ground, impacting the flood event [23]. Besides the relevance of widening
rivers as a part of flood risk management, the ecological benefits must not be ignored [24].
The use of floodplains for agriculture as well as settlements often has a negative impact on
the aquatic ecosystems [25,26].

Furthermore, a view on settlement development in flood-prone areas will underline
the increasing land-take and will show the land use pressure in flood-prone areas. Research
has been conducted on the exposure of settlements to flooding on different levels, showing
a general increase in built-up land in hazard zones [5,27–29]. Our research will add to this
broad spectrum of research on flood exposure by analyzing settlement development in
areas up to a one in a 300-year flooding on a cross-regional level.

Besides settlement development, this paper presents an analysis of agricultural land
in flood-prone areas, with a focus on land valuable for regional food production. A con-
siderable share of areas in flood-prone areas is used for agricultural purposes [30]. The
potential for mutual impacts is accordingly great, which makes it important for inclusion
in this research.

The paper aims at showing land use dynamics in flood-prone areas and the resulting
consequences for flood risk management, including the limitations of giving space to rivers.
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2. Materials and Methods

2.1. Study Area

The research presented in this paper focuses on Alpine regions in Austria, and even
though they are not homogeneous, they share similar spatial challenges. First of all,
Alpine areas are prone to multiple natural hazards, including snow avalanches, landslides,
and floods; floods, however, cause the most economic damage [31]. Furthermore, the
space for permanent settlement is limited due to topography. According to the Alpine
Convention, 65% of Austrian territory is part of the Alps. However, only 35.7% of the
area for permanent settlement is situated within the Alps. This results in only 21.18% of
the Austrian Alps being suitable for permanent settlement [32]. In addition to the limited
space, the on-going conversion of (mainly) farmland to housing, commercial and industrial
areas, and traffic and recreation infrastructure increases the pressure on open-space land
uses. For Austria, this so-called land-take amounted to approximately 12 hectares per day
in 2020 [33]. The increasing land-take in combination with limited space for permanent
settlement particularly exerts pressure on existing and available land resources for flood
runoff and flood retention [34].

The research is based on GIS analysis of spatial data on the land use of flood-prone
areas, including settlements, water bodies, and agricultural land. For water bodies and
settlements, historical as well as current data exists for the catchment area of the rivers
Rhine (Vorarlberg), Salzach (Salzburg), and Drava (East Tyrol and Carinthia) (see Figure 1).
The agricultural land use was analyzed based on current data, which was available for the
whole of Austria.

Figure 1. Study area (source of borders: Federal Office of Metrology and Surveying (BEV), Alpine
Convention; source of digital terrain model: GELAENDE—basemap.at, accessed on 28 February 2022).

2.2. Data

The historical settlement data and the data on water bodies are based on the Franzis-
cean Cadastre (1826–1859), which was digitalized by Hohensinner et al. [35]. The use of
historical data can lead to some inaccuracies; the Franciscean cadastre shows variations in
accuracy between intensely used valley areas and more remote locations higher up [35].
For the analysis of settlements, the lesser details at high altitudes does not matter as much,
because the main settlements were located in the valleys.

For current land use (2016) based on LISA (Land Information System Austria) data,
several datasets were combined [36]. To add detailed differentiation within agricultural
land uses, the IACS (Integrated Administration and Control System) dataset was used [37].
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Further, the glaciers are based on Buckel and Otto [38], and a dataset on mid-sized rivers
and smaller ponds was gathered from OpenStreetMap [39]. For small rivers and streams,
data from a project on “Strategic Planning for Alpine River Ecosystems” were used [40].
The different datasets were combined and prepared by Hohensinner et al. [35]. For the
recent agricultural land analysis, the IACS spatial dataset of 2018 was used. For the
exposure analysis of particularly valuable agricultural land, the results of the BEAT project
were used as a spatial dataset, comprising the areas of valuable agricultural land [41]. For
the economic evaluation of agricultural land, regional standard output coefficients were
considered [42]. The standard output represents the average monetary value of agricultural
output at farm-gate price in euro per hectare or per head of livestock. In order to quantify
the decline of agricultural land in recent decades, the data of the agricultural structure
survey and IACS data from the Green Report 2021 were used [43].

Flooding area combines information derived from the existing flood hazard maps
provided by the Federal Water Engineering Administration (Bundeswasserbauverwaltung)
and the Austrian Service for Torrent and Avalanche Control (Wildbach- und Lawinenver-
bauung), as well as data on 200-year flood events from HORA (Austrian Flood Hazard
Map). The flood-prone area used for the exposure analysis encompasses all available
flooding data in Austria, showing the area potentially affected by a 300-year flood event,
which will be referred to as the flood-prone area in this paper. The focus is put on a 300-year
flood, which includes areas with lower probability of flooding, in order to integrate areas
that might be affected more by flooding in the future due to climate change impacts. Addi-
tionally, by covering an area of a 300-year flood in this research, ‘protected’ areas behind
structural flood protection measures are included in the land use analysis of flood-prone
areas. These data were also prepared by Hohensinner et al. [35].

2.3. Methods
2.3.1. Human Transformation of Alpine Water Bodies

In order to ascertain human modifications of the Alpine channel network, the historical
and current active channels, i.e., water-covered areas and adjacent unvegetated sediment
bars, were vectorized using ESRI ArcGIS 10.6. A comparative analysis yielded quantitative
losses of running waters as a consequence of river channelization and flood prevention
measures. The areal changes in standing water bodies (lakes, ponds, reservoirs) were
derived analogously [35].

2.3.2. Settlement Development

The settlement area for this research includes buildings and adjacent streets, squares,
gardens, and smaller parks. The method applied to research the development of settlements
inside flood-prone areas is described as a “classical approach for flood exposure assessment”
by Papilloud et al. [44], which has been broadly applied. Using ESRI ArcGIS 10.6., the
settlement development was calculated by overlapping the historical with the current data;
the difference between the datasets represents the development. To calculate the exposure
of settlements to flooding, the results of the first step (settlement development) were further
crossed with the flood-prone area. This made it possible to see the difference between
the development inside and outside flooding areas. Besides the temporal aspect of the
analysis, it was also interesting to look at the regional differences. For this purpose, the
data were intersected with the municipality borders, showing settlement development
inside and outside flood-prone areas per municipality. The results from the GIS analysis
were further processed in Excel to calculate the relative development, which is based on
the factor calculated by dividing the current settlement area by the historical area.

The historical data in East Tyrol and the eastern part of the province Carinthia was less
detailed than in the other regions, and settlements included grassland to some extent [35].
In order to correct the settlement extents, as an estimate, half of the historical settlement
area was excluded from the investigation based on a previous analysis of local sample data.
The results of some individual municipalities may therefore be less accurate. Even though
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the analysis was broken down to a municipality level, the spatial distribution was observed
on a regional level. In addition, due to some spatial inaccuracy between the historical
and the current data [35], the analysis worked with the assumption that settlement areas
have not been decreasing in a significant manner since the mid-19th century. Therefore,
settlement areas that appear in the historical context but do not in the current data were
added to the current settlement.

The flood-prone area is based on current calculations but was also used for the histori-
cal analysis. It is likely that a 300-year flood in the historical context covered more ground.
The results therefore only show the minimum of settlements exposed to a 300-year flood.

2.3.3. Agricultural Land

In the case of agricultural land, the analysis is based on the IACS dataset of 2018.
It allows a detailed differentiation of agricultural land use on field level (18 land use
categories). Spatially overlapping the land use data with the flood-prone areas shows the
agricultural areas affected by flooding. To calculate the economic value of crop production
in flood-prone areas, the spatial land use areas in hectares were multiplied by the regional
standard output coefficients (according to crop type). This reveals the economic value of
crop production within flood-prone areas (livestock production was not taken into account).
It allows regionally differentiated conclusions on how strong the pressure might be for farm
enterprises and where the situation might be more conflict-ridden between farming and
flood risk management. Results of the research project BEAT categorized agricultural land
within agricultural production zones based on their relevance for regional food supply [41].
Intersecting flood-prone areas with these data shows potential pressure in the view of food
security. The analysis was carried out for Austria and specifically for the Federal State of
Carinthia as an Alpine region.

3. Results

3.1. Human Transformation of Alpine Water Bodies

Since the first half of the 19th century, almost all larger running waters in the Aus-
trian Alps have been severely modified by humans due to river straightening and channel
narrowing. The main objective for the comprehensive hydraulic works was on land recla-
mation, improvement of navigation, and log driving. As a consequence, since 1826–1859,
40% of the former surface area of the Alpine running waters have vanished (see Figure 2).
Expressed in a simplified manner: on average, rivers and streams have lost 40% of their
former active channel width (omitting reductions in channel length due to river straight-
ening). The data clearly show truncated flood retention and conveyance capacities due
to the infilling of former channel areas. Surprisingly, stagnant water bodies have slightly
increased in surface area. The reason for this can be found in new glacier lakes that have
emerged after glacier decline and—most of all—in the construction of large reservoirs for
hydro-energy purposes. Due to their storage capacity, the latter can partly help mitigate
flood risks in Alpine environments [45]. Figure 2 also reveals the comprehensive areal
reduction in ice-covered areas as a consequence of glacier retreat. Glaciers formerly covered
2.6% of the study area; today, they merely form 0.7%. This equals to an areal reduction
of 73%. Because glaciers annually and inter-annually buffer precipitation in form of ice,
they significantly influence the flow and flood regime of Alpine rivers. The severely re-
duced glaciated areas indicate significant losses in runoff storage capacity, resulting in
increasing surface runoff during precipitation events [46]. Thus, it amplifies the flood risk
in downstream valley sections.

3.2. Land Use in Flood-Prone Areas
3.2.1. Settlement Development

Although the area for running waters and glaciers has been reduced within the time
frame of the analysis, settlement areas have expanded. These analyses were conducted for
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the catchments of the rivers Rhine, Salzach, and Drava, which include main parts of the
Austrian federal states of Vorarlberg, East Tyrol, Salzburg, and Carinthia.

Figure 2. Proportions of the Alpine water bodies and glaciers in the Austrian catchments of the rivers
Rhine, Salzach, and Drava (%) (left column: 1826–1859, right: 2016).

First, data on the general settlement development (i.e., inside and outside flooding
areas) between 1826–1859 and 2016 were analyzed. The results show that development
was primarily taking place in areas around the main cities and in larger valleys, such as the
Rhine-Valley in Vorarlberg. Settlement expansion did not occur to the same extent in the
mountainous regions. A comparison of the amount of settlement area per region historically
and currently was made (see Figure 3). Although in the historical context, the percentage of
settlement area per region is below 0.5%, in 2016, it increased to 3.6% in Vorarlberg and to
approximately 2% in Carinthia and Salzburg. The settlement development therefore varies
between the different Alpine regions but has significantly increased throughout the whole
study area.

Figure 3. Proportion of settlement area per region.

Besides the general settlement development, the amount of space that is affected by
flooding is an important variable. The results show that in Vorarlberg, 10 % of the study
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area is potentially affected by flooding. In Carinthia, it is 7%, in Salzburg 5%, and in East
Tyrol, 3 %. At local level, considerable differences within each federal state can be found,
from flood zones covering 97.6% of the surface area of the municipality of Altach to 0.89% in
Dünserberg (both located in Vorarlberg). These differences derive from the municipality’s
location being either in a broad valley or in a very mountainous area. Thus, municipalities
were and are affected by flooding in a very different way.

To show the settlement areas exposed to flooding, development inside and outside
flood-prone areas was analyzed, as well as the absolute and relative values, which are
based on the factor calculated by dividing the current settlement area by the historical
area. The results from the historical analysis show that, for the whole study area, 21% of
settlement areas were located within flood-prone areas. In 2016, this amounted to 29%;
therefore, an increase in development in flood-prone areas can be detected. Differences
can be observed when comparing absolute and relative development. The absolute value
indicates a higher increase in settlements outside of flooding areas, whereas the relative
value is higher for development inside flood-prone areas. On the one hand, this is caused
by the limited use of floodplains for development in the 19th century, when adding just
a few buildings could result in a high relative value. On the other hand, a shift towards
using (former) floodplains for development can be observed.

Besides the temporal aspect of the analysis, the regional differences—based on the
municipalities—was explored. According to the absolute numbers, settlement development
in flood-prone areas shows a similar dissemination as the general settlement development.
Municipalities with a high settlement expansion in flood zones are located in urban areas
and the main valleys. Peripheral regions show less development in flood-exposed areas.
This demonstrates the link between settlement development in flood-prone areas and the
general settlement dynamic within a municipality. Furthermore, a correlation can be found
between the number of buildings and infrastructure located in flooding areas and the
amount of land potentially affected by flooding within a municipality.

To gain further insight into the spatial distribution of flood damage potential, the
amount of settlement area situated in flood-prone areas per municipality was calculated.

Especially in Salzburg and Carinthia, it can be observed that, in more mountainous
and peripheral regions, a higher share of settlements is located in flood-prone areas (both
in the historical and the current context; see Figure 4).

Figure 4. Percentage of settlement area potentially affected by flooding in Carinthia, 2016 (source of
borders: Federal Office of Metrology and Surveying (BEV)).
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By the results of this exposure analysis, the growing pressure on flood-prone areas and
the increase in flood damage potential due to settlement development becomes evident.

3.2.2. Agricultural Land

As settlements are expanding, agricultural land is declining. In the period from 1951
to 2020, the agricultural area in Austria has decreased by 35% (excl. alpine pastures) [43].
Within the last 20 years, agricultural areas have decreased by 14%, from about 3 million ha
(year 2000) to 2.6 million ha in 2020 [43]. Figure 5 shows the decline in agricultural land
area over the last 20 years, differentiated by Austrian federal states. The significantly higher
decline in the Alpine parts of the country is clearly visible. In Carinthia, the southernmost
province, the decline in agricultural area was 21%.

Figure 5. Decline in agricultural land in Austrian federal states between 2000 and 2020 in % (source
of borders: Federal Office of Metrology and Surveying (BEV), Alpine Convention).

In total, 38% of Austria was used for agriculture in 2018, which amounts to 3.2 million ha
(including 0.6 million ha of alpine pastures). At municipality level, this share of agricultural
area varies greatly, for example, in municipalities in Carinthia, it differs between 1% and 56%.
According to the spatial intersection of agriculture with flood-prone areas, 7.7% (246,300 ha) of
Austrian agricultural areas are situated within flooding areas. In Carinthia, this share is 8.2%.
The spatial distribution of these areas is, of course, not uniform, and the share of agricultural
land within flood-prone areas varies greatly by municipality. In Carinthia, for example, in the
municipality Villach, it is 62%, in four others, it is approximately 50%, and in 12 municipalities,
it is still more than 20% (see Figure A1 in Appendix A).

Looking at agricultural land use in flood-prone areas of Carinthia in detail fodder
growing (27.5%), extensive grassland (24.2%), feed grain (20.9%), and intensive grassland
(17.4%) are the most predominant of 18 land use categories. Within the entire region of Austria,
intensive grassland (23.2%), feed grain (21.5 %), extensive grassland (15.2%), fodder growing
(10.4%), and oleaginous fruit (8.3%) are the predominant land use categories. In the Alpine
region, there is proportionally more field fodder and extensive grassland, whereas bread crop,
oleaginous fruit, and intensive grassland are less present (see Figure A2 in Appendix A).

While the first part was looking at agricultural land in general, in the next step a focus is
put on land valuable for food production and the economic value of agriculture. About 42% of
Austrian agricultural areas are considered particularly valuable for agricultural use—due to
their relevance for regional food supply—by the research project BEAT [41]. In order to define
valuable agricultural land, the natural characteristics for agricultural production, the resulting
production potential—also under climate change conditions—and the regional distribution at
the level of small-scale agricultural production areas were considered.

Intersecting these valuable agricultural areas with flood-prone areas reveals that in
Austria, 12% (157,200 ha in total) of the total agricultural production areas designated as
valuable are located in flood risk areas, whereby their spatial distribution varies greatly.
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Figure 6 shows the small-scale agricultural production areas (areas of similar agricultural
production conditions) and the associated share of the total valuable area in the respective
production area that lies within flood-prone areas.

Figure 6. Share of high value agricultural area in Austria situated in flood risk zones per small
agricultural production zone (=grey polygons), 2018 (source of borders: Federal Office of Metrology
and Surveying (BEV), Alpine Convention).

Particularly in Alpine regions, a greater proportion of soils identified as important for
food security tend to be located in flood-prone areas. Whereas the Austrian average of high
value agricultural land situated within flood-prone areas is 12%, Carinthia has a share of
21%. Figure 7 shows the distribution of this share for Carinthian municipalities.

Figure 7. High value agricultural area in Carinthia situated in flood risk zones, share of high value
area per municipality, 2018 (source of borders: Federal Office of Metrology and Surveying (BEV)).

The economic value of agricultural areas is calculated by multiplying the hectare of
agricultural land in flood-prone areas with an average regional Standard Output (SO).
Figure 8 shows the production value of agricultural land in flood-prone areas per munici-
pality. Very high in absolute figures is the agricultural production in flood-prone zones, for
example, in the municipalities in St. Andrä, Klagenfurt, Wolfsberg, Hermagor-Pressegger
See, and Spittal/Drau. In addition to the absolute numbers, the relative share of agricultural
production value at risk is equality important for farm enterprises and food production.
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For example, in the communities Freistritz an der Gail, Weißenstein, Baldramsdorf, Nötsch
im Gailtal, and Spittal/Drau, the relative share is above 60%. The relative value takes the
different municipality sizes into account and shows especially high numbers in the south
west of Carinthia.

Figure 8. Standard output in EUR of agricultural areas (only value of crop production in intersecting
areas—without livestock value) situated in flood-prone areas—sum per municipality and share
within flood-prone areas, 2020 (source of borders: Federal Office of Metrology and Surveying (BEV)).

In this calculation, only the standard output values of crop production are considered.
In order to be able to assess the full economic exposure, it would also be necessary to
include animal production, which is, in part, closely intertwined with crop production.

4. Discussion

This research investigated land use in flood-prone areas to assess the pressure these
areas are undergoing and the resulting consequences.

In the case study area, the space for river channels has been reduced by 40% since
the middle of the 19th century. In addition, research shows a strong reduction in wetlands
there [35]. This significant reduction was caused by river straightening and drainage works in
order to decrease the impacts of frequent flood events and to reclaim wetlands for development
and intensified agriculture. In the long run, however, these measures led to an increase in
flood hazard due to the decreasing space for runoff in the case of floods with low and medium
probability [23]. Furthermore, the reduction in glaciers impacts flood runoff. These past
developments underline the importance of policies for making space for rivers, not only to
reduce flood risks but also to improve the ecological situation of riverine landscapes.

In the case study area, settlement development between the middle of the 19th century
and 2016 took place inside and outside flood-prone areas; however, the relative growth
is significantly higher inside flooding zones. This result shows a shift towards the use of
flood-prone areas for settlement development, which depicts an increase in flood damage
potential. This rise in damage potential can also be observed in other exposure-related
studies [5,27–29,47]. A multi-hazard exposure analysis for Austria shows a general increase
in buildings by 643% between 1919 and 2012, properties exposed to river flooding have
grown by 650%, and buildings exposed to torrential flooding have risen by 594% [29]. A
general increase in flood damage potential due to settlement development can therefore be
observed throughout the scientific literature.

Besides settlement development, our research results also point out that the share of
settlements affected by flooding is higher in mountainous regions. In Alpine regions, the
space for permanent settlement is limited and, due to the topography, is mainly located in the
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valleys. At the same time, flooding zones cover big parts of the valley floor. Therefore, there is
an overlapping of flood-prone areas and the area for permanent settlement. Land use pressure
on flood-prone areas is not limited to Alpine regions in Austria; other mountain areas face
similar challenges of settlement expansion and decreasing space for flood runoff [48].

When it comes to the demand of making space for rivers, agricultural areas are the first
choice. They provide areas for infiltration and runoff, with potential flood damages being
on a lower level compared to settlement areas. The results show that agricultural land is
decreasing, with Alpine regions showing a greater decline. In addition, the percentage of
agricultural land within flood-prone areas is higher in mountain areas than outside. To
gain a better understanding of the impact of flooding on agricultural land, a differentia-
tion between agricultural areas with different characteristics is necessary. According to
Grüneis et al. [30], the flooding of agricultural land results in quantifiable economic losses
for farmers such as crop damages, erosion, landfall silting, and contamination, as well
as hardly quantifiable environmental damages. These economic losses depend on crop
species, growth stage, and soil properties and affect not only single-farm enterprises but
the whole agricultural sector. This leads to macroeconomic questions of saving regional
food supply, which has recently gained more importance, especially due to the increasing
land-take by settlements and thus decreasing agricultural land. The results show that, at
a national scale, the percentage of highly valuable agricultural land in flood-prone areas
is higher in Alpine regions. This is also underlined by regional results. The western part
of Carinthia is more mountainous (which is reflected in the limited space for permanent
settlement—see Figure A3 in Appendix A) and also displays a higher amount of valuable
farmland in flood-prone areas than the eastern part.

In the example of Carinthia, our results show that the share of settlements and valuable
agricultural land in flood-prone areas is higher in pronounced mountain regions. The
overlapping of flood-prone areas, valuable agricultural land, and settlements is likely to
reduce the options of providing land for flood risk management and river restoration.

Research on the current use of former floodplains in Austria in 2003 concludes that
over half of them are nowadays used for field crops and grassland [49]. The use of
former floodplains for agriculture contributes to the fact that valuable agricultural land is
nowadays located in flood-prone areas. The higher amount of valuable agricultural land
in flood-prone areas in Alpine regions is further explained by a higher soil quality in the
valley areas and the topography, which limits the use of space for agricultural production.

Research by Haidvogl et al. [50] in the area of St. Pölten in Lower Austria discusses the
interdependencies of flood protection measures and settlement development. In combina-
tion with population growth, the demand for building land, and the construction of flood
protection measures, settlement development along the river Traisen in ‘flood-protected’
areas was encouraged [50]. However, there remains a residual flood risk after the construc-
tion of flood protection measures [51]. The so-called ‘levee-effect’ or ‘safe-development
paradox’ describes an increasing flood damage potential in areas with residual risk [52,53].
This research did not specifically focus on areas with residual risk behind levees due to
the scale of the analysis. However, these areas are included because of the extent of the
flooding areas applied. The increasing settlement development in flood-prone areas can
therefore be connected to the construction of flood protection measures and the creation
of ‘flood-protected’ areas. Besides the ‘levee-effect’, the limited space for permanent set-
tlement in Alpine areas and the general increase in settlements led to an increase in flood
damage potential.

Based on the results, consequences for flood risk management can be derived. Making
space for rivers to reduce future flood damage is an important approach that is confronted
with limited space and land use pressure in Alpine regions. Many former floodplains,
which nowadays could be used for river restoration, e.g., local widening of watercourses or
reconnecting rivers with previous river branches, were often claimed by settlement and
agriculture. In other countries, the approach of making space for rivers also faces difficul-
ties [19,20,24]. In general, research suggests that a broad inclusion of relevant stakeholders
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at different governmental levels is necessary to implement a flood risk management that
aims to make more room for rivers [16,19]. One of these disciplines is spatial planning,
which takes on an important role when it comes to keeping flood runoff and retention areas
undeveloped. Another important stakeholder is agriculture. As a major land use agent,
it influences the emergence of floods. Agricultural cultivation substantially contributes
to flood risk reduction. Reducing surface runoff and maintaining the infiltration capacity
of the soil are particularly effective, as developing land for the purpose of retention can
additionally reduce floods [43,54]. In general, integrated flood risk management is an inter-
disciplinary approach including a broad range of technical and non-technical measures to
reduce flood risks, in addition to giving space to rivers. This includes emergency measures,
flood-adapted building, and hazard zone mapping [12].

The limitations of making room for river are not only connected to the lack of space;
the implementation also needs a general shift towards an integrated flood risk management,
including a wider range of stakeholders.

5. Conclusions

The aim of this research was to examine the development of land use in flood-prone ar-
eas in an Austrian Alpine region and the resulting potential for land use conflicts. Research
was guided by two research questions:

(1) How did water bodies and settlements in flood-prone areas change between 1826–1857
and 2016 in Austrian Alpine regions? In the past, one important goal of flood preven-
tion was making space for new settlements and intensifying agricultural production,
which led to a decrease in rivers and streams by 40%. Flood-prone areas (potentially
affected by a 300-year flood) are nowadays more intensely used by settlements than
in the mid-19th century. The amount of settlement areas located in flood-prone areas
rose from 21% to 29%; flood damage potential is therefore increasing.

(2) How are flood-prone areas in Alpine regions currently used (focus on settlements and
agriculture)? The regional analysis of settlements located in flood-prone areas shows
that in pronounced mountain regions, a higher percentage of settlements is affected
by flooding. Flood-prone areas are also needed for agricultural production; 7.7% of
agricultural areas in Austria are located in flood-prone areas. Looking at valuable
agricultural land, 12% is affected by flooding; however, the percentage is higher in
Alpine regions. In Carinthia, for example, 21% of valuable agricultural land is located
in flood-prone areas.

A lack of space because of the topography, pressure on land due to settlement dynam-
ics, and the importance of land for regional food production are key factors when it comes
to the land use pressure in flood-prone areas and the limitations of a making space for
rivers policy.

The increasing settlement development in flood-prone areas highlights the importance
of spatial planning to preserve areas for flood runoff and retention and thus to reduce
flood risk. Further research is needed on spatial planning approaches, particularly in areas
with residual risk to address the ‘levee-effect’ and the increasing flood damage potential.
Additionally, a focus in future flood risk management should be put on a more detailed
differentiation of agricultural land based on economic and ecologic functions as well as on
the flood-adapted cultivation of farmland.
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Appendix A

Figure A1. Share of agricultural area in Carinthia situated in flood risk zones per municipality, 2018
(source of borders: Federal Office of Metrology and Surveying (BEV)).

Figure A2. Agricultural land use in flood-prone areas 2018, left side: Austria, right side: Carinthia.
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Figure A3. Share of area for permanent settlement per municipality in Carinthia (own presentation;
source of borders: Federal Office of Metrology and Surveying (BEV); source of area for permanent
settlement: Statistics Austria).
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Abstract: Land use–land cover (LULC) alteration is primarily associated with land degradation,
especially in recent decades, and has resulted in various harmful changes in the landscape. The
normalized difference vegetation index (NDVI) has the prospective capacity to classify the vegetative
characteristics of many ecological areas and has proven itself useful as a remote sensing (RS) tool in
recording vegetative phenological aspects. Likewise, the normalized difference built-up index (NDBI)
is used for quoting built-up areas. The current research objectives include identification of LULC,
NDVI, and NDBI changes in Jhelum District, Punjab, Pakistan, during the last 30 years (1990–2020).
This study targeted five major LULC classes: water channels, built-up area, barren land, forest,
and cultivated land. Satellite imagery classification tools were used to identify LULC changes in
Jhelum District, northern Punjab, Pakistan. The perception data about the environmental variations
as conveyed by the 500 participants (mainly farmers) were also recorded and analyzed. The results
depict that the majority of farmers (54%) believe in the appearance of more drastic changes such
as less rainfall, drought, and decreased water availability for irrigation during 2020 compared to
30 years prior. Overall accuracy assessment of imagery classification was 83.2% and 88.8% for 1990,
88.1% and 85.7% for 2000, 86.5% and 86.7% for 2010, and 85.6% and 87.3% for 2020. The NDVI for
Jhelum District was the highest in 1990 at +0.86 and the lowest in 2020 at +0.32; similarly, NDBI
values were the highest in 2020 at +0.72 and the lowest in 1990 at −0.36. LULC change showed a clear
association with temperature, NDBI, and NDVI in the study area. At the same time, variations in the
land area of barren soil, vegetation, and built-up from 1990 to 2020 were quite prominent, possibly
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resulting in temperature increases, reduction in water for irrigation, and changing rainfall patterns.
Farmers were found to be quite responsive to such climatic variations, diverting to framing possible
mitigation approaches, but they need government assistance. The findings of this study, especially
the causes and impacts of rapid LULC variations in the study area, need immediate attention from
related government departments and policy makers.

Keywords: farmers’ perception; NDVI; climate change; remote sensing; GIS; NDBI

1. Introduction

According to the Fourth Assessment Report of the IPCC, with the end of the current
century, the average phase temperature will increase up to 1.1–6.4 ◦C worldwide [1]. Climate
is the main factor for food production, crop growth, and the rural livelihoods of billions of
rural communities from different regions of the world [2–5]. In recent decades, global climate
change has greatly affected vegetation [6,7]. Pakistan is an agrarian country, and its economy
depends on agriculture; it is susceptible to climate fluctuations [8,9]. Land cover degradation
is a decrease in the capacity of the land to yield profits in land use (LU) related to quantified
control of the land area [10]. Land cover (LC) describes the general characteristics of the land
surface, including forest, barren land, water, mountain summits, hill slopes, cropping, and the
urban setup [11]. Land cover has the most delicate relation with land use [12,13]. Mapping
land use–land cover (LULC) has been completed efficiently with satellite images at many
spatial, spectral, and temporal resolutions [1,14,15], while in arid and semi-arid ecology, the
application of multi-temporal satellite images has been reduced to develop and assess LULC
fluctuations [16,17]. Alterations in LULC could be examined because they affect land ecology
permanently, particularly in built-up areas of micro-climate heating [18]. The normalized
difference vegetation index (NDVI) estimates the green vegetation density [19] and, in recent
decades, has broadly been used for explaining the spatio-temporal features of LULC, with
quantitative vegetation cover [20,21].

There are different activities that can alter LULC, which have been extensively studied
due to it being the most important part of these types of studies. Various researchers have
established an overview of the effects on LULC in different parts of the world, associated
with agricultural expansion [22,23], urban expansion [24], and engineering projects such as
access and energy [25,26].

The NDVI standards range from “−1.0 to 1.0”; minimum NDVI values are used for
whole surface resources, and maximum NDVI standards are used for green flora [27].
Negative NDVI values represent areas with very low or null vegetation cover, such as
water bodies and urban areas, whereas positive values concern pixels with vegetation
from very low to high cover [28]. When near to “0”, NDVI standards are represented
by bare soil [29]. The NDVI is extensively applied in remote sensing (RS) investigations
because it provides suitable evidence for adding and exploring flora [27,28,30]. The NDVI
is applied to determine the combined performance of climatic variation and the vegetation
distribution at vast spatial and temporal scales [31] as the biomass of plant diversity is
interrelated with precipitation, temperature, and evapotranspiration [32–34]. Geographic
information systems (GISs) and remote sensing (RS) are essential tools [35] applied for
the investigation of urban dimensions and density with LULC mapping and ecological
impacts of urban programming within certain periods [36]. Remote sensing provides
on-time availability of LULC and vegetation cover data at specific periods in an economical
manner [37–39]. GISs manage and analyze spatial data accurately and are an important
and basic need of this area of study [40].

RS data are a helpful tool in the mapping of LULC [41,42]. For LULC mapping,
the temporal Landsat sensor data of the Landsat-7 Enhanced Thematic Mapper (ETM),
Landsat-5 Thematic Mapper (TM) with ETM+ [43], and Landsat-8 Operational Land
Imager (OLI) have been extensively used to discover the variation in the NDVI, NDBI, and
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LULC [33]. Assessing variation evaluates the earlier and present situation visually as well as
quantitatively and thus supports indenting the fluctuations linked to LULC characteristics
depicting different satellite datasets [44]. Proper classifications require previous data from
particular regions for collecting recorded data from working areas. Field-recorded data
have been used to explain applications for selected classification algorithms [45].

Several such types of attempts to assess and manage LULC changes and degra-
dation using RS data were explored by various researchers from countries around the
world [46], such as northwest Ethiopia [4], West Africa [7], Ethiopia [11], Malaysia [12],
Zimbabwe [17], Bangladesh [21], Southern Africa [30], Iran [37], Nepal [39], China [40],
northern Ethiopia [42], Brazil [47], Iraq [48], and Turkey [49]. Pakistan is regarded as one of
the agricultural countries in the world which are directly influenced by climatic fluctuations,
which ultimately affect the economy of lowland farmers. From Pakistan, various studies
in southern Punjab [1], Islamabad [2], Faisalabad and Multan [27], Vehari [28], Sindh [35],
Azad Jammu and Kashmir [50], Multan [51], Lodhran [52], and Khyber Pakhtunkhwa [53]
have been conducted for the assessment and management of LULC changes using RS
data. In the conducted research, over a longer time period, LULC change assessment was
recorded in Jhelum District using RS and GIS tools. Following are the main objectives of
the current study:

• To identify temporal LULC changes during the last 30 years and farmers’ perception
regarding climate change and LULC variations;

• To analyze and map NDVI, NDBI, and LULC changes by using satellite data;
• To compare the various characteristics of LULC, NDBI, and NDVI during the past 30 years.

2. Materials and Methods

2.1. Study Area

Jhelum District is located to the north of the Jhelum River and bounded by Rawalpindi
District in the north, Sargodha and Gujrat Districts in the south, Azad Kashmir in the east,
and Chakwal District in the west [54] (Figure 1). The total human population of the district is
1.223 million [54]. The climate is a semi-arid, warm subtropical type and recognized as having
warm summer and severe winter seasons. Jhelum is a semi-mountainous region; the mean
annual rainfall is 880 mm, while the average annual temperature is 23.6 ◦C [55]. The Jhelum
River flows through 247,102 acres of lengthy plain area and 41,207 acres of mountainous
zones. The district has the world’s second largest salt mine (Khewra salt mine), which covers
an area of 2.268 million acres [54]. People of the area have diverse modes of lifestyles, beliefs,
and traditions [56]. Some typical landscapes are shown in Figure 2.

2.2. Methods and Materials
2.2.1. Satellite Data

For LULC, NDVI, and NDBI variation assessment in the study area over a temporal
gradient of 30 years (1990, 2000, 2010, 2020), Landsat 8 (OLI), Landsat 7 (ETM+), and
Landsat 4, 5 (TM) satellite remote sensing imagery data were used and downloaded
from the website (http/www.earthexplorer.usgs.gov (accessed on 6 August 2020)) of the
United States Geological Survey (USGS). The details of the downloaded satellite images
are presented in Table 1.
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Figure 1. Map of the study area.

 

Figure 2. View of different land cover types in Jhelum District showing diverse LULC: (a) road in the mountains representing
a new built-up area in 2020; (b) barren land (sandy dune cutting), another important LULC category in the area; (c) vegetation
cover; (d) anthropogenic activities affecting LULC variations; (e) deforestation affecting vegetation cover; (f) natural
disturbance causing LULC variations.
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Table 1. Arrangement of Landsat satellite imagery.

Sr. # Acquirement Date Data Type Resolution Sensors Path/Rows

1. 17/3/1990 Landsat imagery 30 m TM 150/037
150/038

2. 25/3/2000 Landsat imagery 30 m TM 150/037
150/038

3. 12/3/2010 Landsat imagery 30 m ETM+ 150/037
150/038

4. 9/3/2020 Landsat imagery 30 m OLI 150/037
150/038

2.2.2. Survey Data

In this study, responses of 500 farmers in Jhelum District were recorded by using the
snowball sampling method to document perceptions linked to LULC and climate changes.
A total of 25 union councils in the study area were targeted, encompassing five villages
per union council. The data linked to different climatic variables were recorded during
August 2020 to July 2021. Study contributors were selected concentrating on middle-aged
and elderly people (range: 30–80 years old), particularly farmers from 75 considered
villages of Jhelum District. The investigated variables were composed of climate change
records (including rainfall duration, rainfall intensity, and temperature variations) and
LULC variations during the past 30 years.

GPS was used to record the sample locations for the considered LULC categories.
A mobile-associated tool (Open Data Kit) was used for gathering the digital and geo-
referenced field records.

2.2.3. Climatic Data

Climate data (precipitation and temperature) of Jhelum District for the last 30 years
(1990 to 2020) were acquired from the Pakistan Metrological Department (PMD). The
analysis of variance (ANOVA) test was applied in SPSS version 17 to seek the significant
differences among the group means of collected climatic data. Furthermore, the collected
climatic data of the study locations were geo-referenced, interpolated, and mapped by
using ArcGIS software.

2.3. Image Classification

The Landsat images are composed of several bands, where there are 11 bands in the
Landsat 8 images. These bands were composited to obtain single-color imagery and to subset
the research area, and extraction by the mask tool was conducted in ArcGIS 10.1 software [57].
Digital LULC grouping through the supervised classification technique was used, and field
data were employed as ground truth data. LULC maps for the mentioned temporal intervals
were developed using supervised classification by centering the research area of focus in
the field assessment together with the exercise and authentication portions. Finally, LULC
imagery was re-classified in ArcGIS 10.1 to quantify the variations over the indicated study
years. ERDAS imagine 15 and ArcGIS 10.1 proved practical tools for assessing the LULC
using satellite images. The detailed research framework is presented in Figure 3.
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Figure 3. Flow chart for the methodology.

2.4. Assessment of NDVI and NDBI

The variations in the land cover encompassing vegetation for the considered study
years (1990, 2000, 2010, 2020) were assessed by calculating and analyzing the NDVI. This
remote sensing index to seek vegetation health is calculated as follows [58]:

NDVI =
NIR − RED
NIR + RED

(1)

where NIR represents near-infrared radiation band (TM band 4; OLI and ETM band 5), and
RED represents the red radiation band (TM band 3; OLI and ETM band 4).

Likewise, the NDBI was used for built-up determination in the study area. The NDBI was
obtained by using Arc GIS 10.1 software, and the following formula, as communicated by [59]:

NDBI =
MIR − NIR
MIR + MIR

(2)

where MIR represents the central infra-red band (TM band 5; OLI and ETM band 6), and
NIR depicts the near-infrared band (ETM and TM band 4; OLI band 5). Therefore, the
NDVI was used to assess change in the vegetation cover, and the NDBI was used to find
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variations in the built-up area by using satellite imagery and show expressive standards
between −1 and 1.

2.5. Accuracy Estimation

Accuracy can be considered to determine the effectiveness of several image processing
methods in the alignment of imagery [59,60]. The error matrix is the greater grouping and
has conjoint meaning to existing accuracy outcomes [61]. Numerous statistical procedures
of accuracy assessment can find out of the error matrix including the percentage for
producers’ accuracy or workers’ accuracy as a total accuracy that reveals the error prepared
by coincidence [62].

Overall accuracy =
No. of sample classes grouped accurately

No. of reference sample classes
(3)

There should be a maximum standard of assurance for any suitable study outcome
in the conclusion of the accuracy assessment. The KHAT standards below determine
how a good RS group supports, or how far it is accurate in, the reference facts [35]. The
mathematical equation of KHAT is

K =
observed accuracy − chances of assessment

1 − chances of agreement
(4)

3. Results and Discussion

3.1. Farmers’ Perceptions about Temperature and LULC

Farmers were interviewed to obtain their perceptions about climate change, LULC,
and their impact on climatic variability, adaptation, and experience stages. Almost all of
the farmers (94.5%) stated that climactic change effects were noted and witnessed in Jhelum
District (Figure 4).

 

Response

Figure 4. Farmers’ opinion of the degree of variations in climate variables in recent years.

A total of 54% of the farmers perceived that significant variations have occurred in
the rainfall volume, beginning of the planting period, spreading of the harvesting time,
and irregular drought circumstances which occasionally happen in the growth phase. The
same decreases in rainfall and increasing drought conditions have been reported in other
areas of Pakistan [63,64]. About 25% of the farmers supposed that their livings face many
fluctuations due to the rise in the temperature in the study area. Only 5.5% perceived
no change in climate in the last 30 years. Concerning the temperature variation, 94.5%
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of the farmers stated that they had practiced different crop varieties in recent years, and
only 5.5% carried out something different (see Table 2). However, most of the respondents
understood that rainfall has been decreasing in terms of volume and the number of rainy
days, while the intensity of rainfall has been increasing, which has brought devastation in
the form of floods with the passage of time.

Table 2. Farmers’ feedback about climatic and LULC variations.

Sr. # Climatic Variables Feedback Percentage

1 LULC variations
Yes 82

No 18

2 Temperature
Increase 94.5

Reduction 5.5

No change 0

3 Irrigation water
Increase 25.3

Reduction 63.5

No change 12.2

About 63.5% of the farmers observed that water availability has reduced in recent
years, while only 32% of the cropped area is irrigated, and 68% is rain-fed land. However,
72% of the irrigation area would boost fertilizer utilization: 28% of the irrigation types
recognized the purpose of changing cropping patterns without using fertilizers. Regarding
applications to detect climatic pressures perceived by agriculture (irrigation and rainfall),
different investigations led on the agriculture type (rainfall duration, number of occurrences
of rainfall and its intensity) for the farmers’ actual and scheduled practices found that 36.5%
of the informants only observed increases in rainfall, whereas 63.5% observed reductions
in rainfall (Table 3). Agricultural practices were documented between two groups of
informers, including their association with temperature and rainfall, the ratio of fertilizer
usage, and scheduled capitalization on detected occasions.

Table 3. Farmers’ observations about rainfall.

Sr. # Climatic Variables Feedback Percentage

1 Rainfall period
High 37.2

Low 57.6

No variation 16.2

2 Number of events
of rainfall

High 14.3

Low 80

No variation 6.7

3 Rainfall density
High 22.5

Low 72.5

No variation 5

3.2. Climate Factors of the Research Area

Climate variation showed the most substantial influence on the adaptation of LULC
categories in numerous regions of the land [41,65,66]. Similarly, alternation in climatic impacts
on the biosphere of the land has a close link with hydrological and energy chains, explaining
the effect on the vegetation index (VI) where it increases to its highest quantity [67]. In recent
years, universal variation in weather has had many influences on vegetation [7,68].

Climate change has a disproportionate influence on the adaptations of LULC types in
different parts of the biosphere. Among different climatic aspects, rainfall and temperature
were more associated with LULC. Meanwhile, the recorded data of temperature throughout
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the field investigations along the coordinates were entered into the ArcGIS 10.1 software
and afterward interpreted applying inverse distance weighting (IDW), from which the
spatial map of temperature was achieved. These maps indicate the temperature change all
over the study area, which indicates the cooler and hotter areas in Jhelum District.

Figure 5 represents the average temperature and rainfall maps for Jhelum District. At
the same time, the thematic map (presenting the spatio-temporal variation in temperature)
and the central area were acquired. The increase in temperature was recorded up to
28.84 ◦C, and the decrease in temperature was documented as 27.25 ◦C. Furthermore, it
is assumed that the survey points nearby Jhelum District show maximum temperatures.
From these particular points, it is confirmed that the lowest temperature was recorded in
the water channels (Jhelum River) and forest parts, and, on the other hand, the average
temperature was noted in the barren area and plane part. The highest temperature was
noted in the built-up parts. The average rainfall and lowest rainfall in our study area
are presented in Figure 5. The highest rainfall increased to 212 mm, while the lowest
rainfall value documented was 68.33 mm. The rainfall map remarkably indicates that
the maximum rainfall was recorded in Tehsil Pind Dadan Khan. It can be observed that
maximum rainfall was recorded in areas such as vegetation area and forest land.

Figure 5. Maps of climate features (rainfall is in millimeters, and temperature is in degrees Celsius) in the research area.

3.3. LULC Change Detection

LULC types with the highest and lowest variations in LULC were assessed at all
levels to find out the maximum relative variation over the last 30 years in Jhelum District.
The supervised classification analysis indicated that the research district was protected
with different land topographies (forest, cultivated area, water, built-up land, and barren
land)—the classification arrangement of LULC was carried out by applying surveys with
GIS information from Jhelum. Training sites for supervised classification were selected
based on different GPS-based samples taken from the field for each land use–land cover
class. Then, those GPS locations were plotted on images, and signatures were saved to
perform supervised classification using the iso-cluster algorithm. From 1990, cultivated
area was 49.54%, followed by water (9.61%); covered area by built-up area was 1.95%;
and barren land covered about 31.79%. However, in 2020, forest and cultivated area were
3.36% and 63.39%, followed by water (4.09%); covered area by built-up area was 3.50%;
and barren land covered about 25.65%, as presented in Figure 6.
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Figure 6. Land use–land cover maps of the district.

Built-up area in the year 1990 covered 1.95% overall, while in the year 2020, built-up
area expanded up to 3.5%, compared to the year 1990. However, there was a massive
expansion of built-up areas with significant proliferation from 1990 to 2020 (Table 4). Barren
area in 1990 covered 31.79%, while in 2020, barren land reduced (25.65%) compared to
1990. It was estimated that bare land changed to housing colonies, commercial parts, and
roads. Water channels covered one of the smallest areas among all the categories for Jhelum
(9.61%, 8.51%, 6.30%, and 4.09% in 1990, 2000, 2010, and 2020, respectively).

Table 4. Summary of LULC changes from 1990 to 2020.

LULU
1990 2000 2010 2020 1990–2020

Ha % Ha % Ha % Ha % Ha %

Forest 25,710.89 7.11 21,313.15 5.90 16,190.64 4.48 12,182.64 3.36 −13,528.25 −3.74
Cultivated area 179,025.57 49.54 192,955.93 53.39 215,529.7 59.64 229,096.76 63.39 50,071.19 13.86

River 34,742.13 9.61 30,742.13 8.51 22,777.12 6.30 14,785.12 4.09 −19,957.01 −5.52
Barren land 114,885.09 31.79 108,358.77 29.98 96,244.73 26.63 92,692.26 25.65 −22,192.83 −6.14

Built-up area 7030.51 1.95 8024.21 2.22 10,652 2.95 12,637.41 3.50 5606.9 1.55
361,394.19 100 361,394.19 100 361,394.19 100 361,394.19 100

In the current attempt, LULC categories with the lowest and highest variations in
LULC were nominated by minimum and maximum standards to categorize the comprehen-
sive relative change during the past 30 years in Jhelum. There are several smaller colonies
that have settled along the central highway and nearby Jhelum District. The total number
of these colonies is more than 50 in Jhelum District. The estimated area of the mentioned
colonies ranges from 4 to 6 acres. The spread of housing colonies along main roads is an
indication of urban expansion in the studied district. Change discovery aims to recognize
which LULC expanded or reduced over the past 30 years, and which land uses changed
into another LULC category. The results of [69] showed that in recent years, there has
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been an increase in built-up areas, whereas the ratio of increase for the occupied area was
slightly smaller, which is estimated to directly produce a fast rise in the expansion of urban
areas in future years, resulting in a reduction in the vegetative area.

3.4. The NDVI and NDBI

The standards of the NDVI are an indication of the volume of chlorophyll content
existing in vegetation, where the highest NDVI values depict healthy and thick vegetation,
whilst the lowest NDVI values represent thin vegetation. From the study of Jhelum District,
NDVI standards in 1990 varied from maximum value of +0.86 to −0.12, whereas during
2000, the same varied from +0.75 to −0.17, and in 2010, the NDVI value showed the
minimum value, which was −0.28, while the maximum was +0.62, whilst in 2020, the
NDVI displayed the minimum value, of −0.32, and the maximum was +0.56 (Table 4). As
averages, NDVI values were detected as 0.37, 0.29, 0.17, and 0.12 for 1990, 2000, 2010, and
2020, respectively. The NDVI of Jhelum District was at its maximum in 1990 at +0.86, and
during 2020, it was −0.32, which determines the NDVI classes representing the spatial
arrangement of vegetative and green zones found on the map, which displays the creative
and best vegetative areas for cultivation as forest and vegetative land (Figure 7).

Figure 8 indicates the extracted NDBI classes demonstrating the spatial arrangement
of built-up and water land for 1990, 2000, 2010, and 2020. Average NDBI values were
observed to be 0.04, 0.15, 0.19, and 0.27 for 1990, 2000, 2010, and 2020, respectively. Likewise,
NDBI standards for Jhelum District were greater in 2020 at +0.72 and lowest in 1990 at
−0.36. In Figure 8, the maps show that the red zones were found to be the minimum
vegetative land areas, such as water channels, built-up area, and bare land. The NDBI was
linked to the temperature, where the values for the NDVI were greater in regions with
maximum temperature areas.

Figure 7. Normalized difference vegetation index maps of Jhelum.
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Figure 8. Normalized difference built-up index maps of the research area.

Linear regression analysis was applied to create a link between the NDBI and NDVI.
First, regression analysis (R2) was conducted to determine how variations in the LU
intensity within the LULC unit differ over space and pass the intra-LU change of the NDBI.
However, a negative association between the NDVI and NDBI can be presented, with a
correlation coefficient of R2 = 0.82 for 1990, 0.79 for 2000, 0.76 for 2010, and 0.72 for 2020
shown in all imagery between the vegetation index (NDVI) and NDBI-derived built-up
portions, as shown in Figure 9. Furthermore, the regression analysis indicated that in the
given areas where the NDBI values were the highest, the NDVI values were the lowest.

The NDVI is generally applied in all vegetation indices established, and its progress is
due to random dissimilarity, as stated by [70]. However, due to specific driving factors such
as the local temperature, it is recognized that the link to the NDBI powerfully affects the
land surface temperature (LST), followed by main roads and LULC [45]. All the calculated
NDVI and NDBI values of the considered study area and duration are presented in Table 5.

Table 5. Summary of maximum and minimum values of NDVI and NDBI.

Years NDVI NDBI

Maximum Minimum Average Maximum Mininim Average

1990 0.86 −0.12 0.37 0.45 −0.36 0.045
2000 0.75 −0.17 0.29 0.54 −0.25 0.145
2010 0.62 −0.28 0.17 0.58 −0.2 0.19
2020 0.56 −0.32 0.12 0.72 −0.18 0.27
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Figure 9. Regression analyses concerning NDBI and NDVI in the study district.

3.5. Accuracy Assessment

Table 6 shows the producer and consumer accuracy outcomes with KHAT (k) values
in 1990, 2000, 2010, and 2020 in Jhelum District. The maximum producer and consumer
accuracies from the cultivated area remained 88% and 92%, respectively. Additionally, the
maximum producer and user accuracies of built-up land were 89.5% and 88.8%, respectively.
The average producer and user accuracies were 83.2% and 88.8% for 1990, 88.1% and 85.7%
for 2000, 86.5% and 86.7% for 2010, and 85.6% and 87.3% for 2020, respectively, in Jhelum
District. The overall accuracy for grouping is 0.93% for 1990, 0.87% for 2000, 0.91% for 2010,
and 0.88% for 2020 (Table 6).

Table 6. Kappa (K) and accuracy of producers and consumers.

LULC Classes

Season and Class

Overall Accuracy
KProducers’ Accuracy (%) Consumers’ Accuracy (%)

1 2 3 4 Avg. 1 2 3 4 Avg.

1990 90.2 85.2 83.7 86.7 81.2 83.2 83.2 88.1 89.7 92.5 90.7 88.8 0.93 0.86
2000 88.1 88 91.3 85.1 88.1 88.1 86.7 86.2 85 88.1 82.5 85.7 0.87 0.82
2010 85.6 84.4 87.4 90.8 84.3 86.5 88.9 86.7 88 82.4 87.5 86.7 0.91 0.89
2020 83.2 80.1 86.5 88.7 89.5 85.6 92 92 85.3 80 89.1 87.3 0.88 0.85

Where: 1 = forest area; 2 = cultivated area; 3 = river; 4 = barren land; 5 = built-up area.

The KHAT (K) coefficients for 1990, 2000, 2010, and 2020 are 0.86, 0.82, 0.89, and
0.85, respectively, in the research area. The accuracy classification was stated as both the
consumers’ accuracy and producers’ accuracy [67,71]. According to [72], the producers’
accuracy is described as the quantity of land types properly categorized in the classification
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of the imagery, whereas the consumers’ accuracy is the possibility that a type in the
classification of imagery is precise when applied on the land.

4. Conclusions

The current research was conducted in Jhelum District, Punjab (Pakistan), to determine
the impact of climatic variations and LULC changes. The livelihood of the farmers in the
study area is entirely dependent on agriculture and linked with normal temperatures
and rainfall. However, fluctuations in the normal temperature resulted in a shortage of
rains, an increase in drought events, and a decrease in water availability for irrigation,
hence directly affecting the agrarian community and farming inventions. The increasing
temperature and reduced water availability for irrigation due to less rainfall are considered
as serious concerns in the study area. Growers are conscious about the climatic fluctuations
and familiarize themselves with approaches to manage the impacts but need government
support. The outcomes show that the vegetation section contributes an extra grounded
constructive link with the NDVI for all the levels, as open area and built-up land negatively
associated with LULC and the NDVI during the last 30 years. On average, NDBI and
NDVI standards were recorded between 0.37 and 0.12, and 0.04 and 0.27, from 1990 to
2020, respectively, whereas average producer and user accuracies were 83.2% and 88.8%
for 1990, 88.1% and 85.7% for 2000, 86.5% and 86.7% for 2010, and 85.6% and 87.3% for
2020. Accordingly, the “Kappa coefficients” for 1990, 2000, 2010, and 2020 were 0.86, 0.82,
0.89, and 0.85, respectively, in the study area. “Barren land” in 1990 occupied the class with
31.79%, but in 2020, it decreased (25.65%) compared to 1990. The outcome indicates that
the bare land transformed into housing areas and roads. Water covered 9.61% in 1990, but
it remarkably reduced (5.52%) in 2020 compared to 1990 in Jhelum District.

It is concluded that LULC changes are significant for a comprehensive series of uses,
comprising temperature, soil destruction, and land planning events. There were main
variations in barren land, water channels, and vegetative areas across the studied temporal
gradient due to the increasing human influence in acquiring arable lands. The research
outcome shows the main observational base for regular inspections of variations in land
supervision and will prove helpful for policy makers to improve strategies to manage land
capitals efficiently.
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Abstract: Land use/land cover (LULC) changes may alter the risk of landslide occurrence. While
LULC has often been considered as a static factor representing present-day LULC, historical LULC
dynamics have recently begun to attract more attention. The study objective was to assess the effect of
LULC legacies of nearly 200 years on landslide susceptibility models in two Austrian municipalities
(Waidhofen an der Ybbs and Paldau). We mapped three cuts of LULC patterns from historical
cartographic documents in addition to remote-sensing products. Agricultural archival sources were
explored to provide also a predictor on cumulative biomass extraction as an indicator of historical
land use intensity. We use historical landslide inventories derived from high-resolution digital terrain
models (HRDTM) generated using airborne light detection and ranging (LiDAR), which are reported
to have a biased landslide distribution on present-day forested areas and agricultural land. We asked
(i) if long-term LULC legacies are important and reliable predictors and (ii) if possible inventory
biases may be mitigated by LULC legacies. For the assessment of the LULC legacy effect on landslide
occurrences, we used generalized additive models (GAM) within a suitable modeling framework
considering various settings of LULC as predictor, and evaluated the effect with well-established
diagnostic tools. For both municipalities, we identified a high density of landslides on present-day
forested areas, confirming the reported drawbacks. With the use of LULC legacy as an additional
predictor, it was not only possible to account for this bias, but also to improve model performances.

Keywords: land use/land cover legacy; airborne LiDAR-based HRDTM; generalized additive model;
landslide susceptibility modeling; historical landslide inventory bias; biomass extraction

1. Introduction

Landslides pose a threat to human lives and infrastructure. A changing climate
and land use/land cover (LULC) alter the landslide risk and thus have societal conse-
quences [1,2]. In Austria, landslides are relevant natural hazards preconditioned by factors
such as lithology, geomorphology, tectonic structures and LULC, and are mainly triggered
by long-lasting heavy rainfall and rapid snowmelt [3]. Therefore, understanding the factors
that increase the chance of landslide occurrence is crucial for spatial planning in the face of
ongoing and expected future climate and LULC changes.
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LULC types, and their changes, are reported to have different hydrological and
geomechanical effects controlling slope stability [4]. While forest is often considered to
stabilize slopes [5], forest harvesting or road construction undercutting slopes may reduce
slope stability [6,7]. However, in landslide studies, LULC has often been considered as
a static factor representing solely the present-day LULC [8] (i.e., latest available LULC).
Recently, more studies have begun to account for historical LULC in landslide analysis,
assigning LULC dynamics an important role in explaining landslides [9–12]. Beguería [9]
and Persichillo et al. [11] discovered a high landslide susceptibility on abandoned cultivated
land, even after revegetation by shrubs or trees in the Spanish Pyrenees and in the Oltrepò
Pavese (Italy), respectively. Gariano et al. [10] and Pisano et al. [12] found evidence that
land management reduced landslide occurrences in Southern Italy (Calabria and Molise),
supporting the importance of LULC changes in spatial planning practice. However, due
to the availability of mainly remote-sensing products (aerial or satellite imagery), these
landslide analyses were only able to consider historical LULC since the mid-20th century
(e.g., since 1954 in [12] or since 1957 in [9]). To the authors’ knowledge, only one study
used historical cartographic documents as additional sources (e.g., Napoleonic cadastral
map) to assess the long-term legacy effects of LULC on mass movements [13].

In general, legacy effects describe the influence of past events or processes on later
states, often spanning decades to centuries [14,15]. Long-term legacy effects of past LULC
have been shown to exist in the context of socio-ecological dimensions such as contempo-
rary forest structure, management and disturbance risk [16] or biodiversity [17,18]. For
mass movements, Lopez-Saez et al. [13] revealed the potential of historical LULC changes
in explaining the paradoxical observation of reduced rockfall hazards despite an increased
urban exposure in the Grenoble conurbation since 1850. Especially the forest densification
at the upper part of the slope was considered to contribute to the identified decrease in
rockfall frequency and energy for volumes up to 5 m3 [13].

For landslide analysis and modeling, landslide inventories are a fundamental source to
improve the understanding of the factors that precondition and trigger landslides. In the last
decade, low-cost, airborne LiDAR-based high-resolution digital terrain models (HRDTM)
became available area-wide for all federal provinces of Austria (≤10 m × 10 m) [19]. Many
studies demonstrated the potential of LiDAR HRDTM and its derivatives to identify
landslides, and thus to substantially improve conventionally created landslide invento-
ries [20–22], especially underneath the forest cover, where passive remote-sensing sensors
are of limited utility [23].

Generally, landslide inventories have an unknown level of incompleteness [24] and
thus may be biased. Inventory biases have previously been studied for remotely-sensed,
event-based or archival inventories, and can be caused by focusing solely on administrative
boundaries, damage reports or on a single triggering event [25,26]. While most authors re-
ported the usefulness of LiDAR-derived historical landslide inventories, only few analyzed
drawbacks of the data source [26,27]. For example, it is very challenging or even impossible
to determine a landslide’s exact extent, absolute age, trigger, and potential for reactiva-
tion when using only HRDTM derivatives [28,29]. Additionally, according to Petschko
et al. [27], forest cover may have a conservation effect on the landslide morphology (i.e.,
“young” morphology of a “very old” landslide), while landslides may be underrepresented
on agricultural land and near infrastructure due to land rehabilitation (i.e., “very young”
morphology but no visibility on orthophoto) resulting in a landslide inventory that is
substantially biased towards a high landslide density in recently forested areas. Analyzing
the effect of systematically incomplete landslide inventories, Steger et al. [26] discovered
that landslide susceptibility models emphasized bias-describing predictors (e.g., larger
regression coefficients), and as a consequence the bias was directly propagated into the
landslide predictions. While Petschko et al. [27] recommended to exclude inventory-biasing
observations (i.e., “old” and “very old” landslides) or to drop the bias-describing predictor
(i.e., present-day land cover) from modeling, Steger et al. [26] included the bias-describing
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predictor (e.g., forested area) as a random effect and used only the fixed effects to make
model predictions.

In this study, we investigated the association between LULC legacies and landslide
susceptibility using an airborne LiDAR-derived historical landslide inventory in two
municipalities in Austria (Waidhofen an der Ybbs and Paldau). We addressed the following
main questions: (i) are long-term LULC legacies important and reliable predictors of
landslide susceptibility? And (ii) can LULC legacies help to understand and account for
possible inventory biases in modeling present-day landslide susceptibility? Additionally,
we analyzed the transferability of landslide models between study areas and the effect of
dropping inventory-biasing observations.

For the analysis, we digitized and classified LULC patterns for three-time cuts com-
prising nearly 200 years using various spatial data sources. In addition, yields and livestock
statistics were compiled from archival sources and statistical publications, and summarized
as socio-ecological variables reflecting plot-level LULC legacies. For the assessment, we
used generalized additive models (GAM) within a modeling framework considering differ-
ent combinations of LULC legacy implementations while also accounting for land surface
variables (e.g., slope angle, etc.) and lithological conditions as possible confounders. We
evaluated the effect of LULC legacies using well-established diagnostic tools for model
assessment and interpretation.

2. Materials and Methods

2.1. Study Area

The study was conducted in two municipalities in Austria: Waidhofen an der Ybbs
(referred to as Waidhofen) in Lower Austria, and Paldau in Styria. The two municipalities
represent different landscapes (Figure 1A,C).

Waidhofen is located in the Ybbstaler Alps from 14◦39′ E 47◦52′ N to 14◦56′ E 48◦01′ N,
covers an area of 131 km2 and has a population of about 13,000 inhabitants [30]. Its elevation
rises towards the south with a relative relief of 54–651 m/km2. In the limestone-dominated
south, up to 1205 m above the Adriatic (m AA) are reached; towards the flysch zone in
the north the mountains transition into gentle hills (302 m AA) [31]. In contrast, Paldau
lies in the East Styrian Basin with a relative relief of 6–138 m/km2 (282 to 465 m AA),
characterized by unconsolidated sediments of the Neogene to Quaternary period [32].
The municipality is an agriculturally favorable region mainly with corn and pig farming.
Paldau has a population of 3000 inhabitants [33], it extends from 15◦43′ E 46◦54′ N to
15◦51′ E 46◦59′ N and covers 39 km2.

The geological setting coupled with the characteristic very local, frequent and intense
rain events in summertime create conditions that make both study areas particularly prone
to landslides of different types and magnitudes [34–36]. In the last decades, landslide
occurrences have caused substantial damage to settlements and infrastructure in both
study areas [37,38].

2.2. Data

This study is based on land surface and landslide data from various sources and at
different spatial resolutions. As our target resolution, we used 10 m × 10 m to account for
the dependence of landslide susceptibility on local-scale topography.
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Figure 1. Overview of study area. (A): Location of study areas in Austria. (B): Landslides visible in Waidhofen’s slope map
(red rectangle in (C)). (C): HRDTM and derived landslide inventory. (D): A landslide on cropland in the district South East
Styria, which occurred after an extreme rainfall event in June 2009, and “disappeared” in the following years. Photo taken
on 23 July 2009.

2.2.1. Land Surface Data

For both study areas, airborne LiDAR-based HRDTMs of 1 m × 1 m resolution were
available, which were provided by the GIS department of the Styrian government for
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Paldau (acquisition year: 2009), and by the provincial government of Lower Austria for
Waidhofen (acquisition year: 2017), respectively (Table A1).

Datasets of hydrologic and hydropedologic characteristics were compiled by the Aus-
trian Research Centre for Forests in 2014 for Waidhofen [39] (50 m × 50 m resolution) and
in 2017 for Paldau [40] (100 m × 100 m resolution), respectively, and were made available
by the respective federal states. The datasets include information on soil parameters such
as soil type, total pore volume, and hydraulic conductivity of the topsoil (0–20 cm).

Geological basemaps at a 1:50,000 scale were provided by the Geological Survey of
Austria for Waidhofen and by the Styrian GIS department for Paldau, respectively. In
both geological basemaps, alluvial deposits were corrected in order to match valley floors
visible in the HRDTM. Furthermore, we reclassified the geological units into a smaller
number of relevant classes. In Waidhofen the reclassification was based on lithology and
geomechanical properties which resulted in seven lithological units of (i) alluvial deposits,
(ii) talus and glacial deposits, (iii) Inneralpine Neogene, (iv) Klippen zone, (v) flysch zone,
(vi) Upper Austroalpine marls, and (vii, reference level) Upper Austroalpine limestone.
In Paldau, we specified five geological units based on grain size distribution and age of
origin: (i, reference level) Neogene formations with coarse-grained layers, (ii) Neogene
formations dominated by fine-grained sediments, (iii) pre-Würmian Pleistocene formations,
(iv) Würmian and Holocene sediments, and (v) other units.

2.2.2. LULC Legacy

By combining unique historical spatially explicit information on LULC in the two
study areas and numerical information on land use intensity, we were able to create informa-
tion on LULC legacies that could be used as an input in landslide susceptibility modeling.
This is, to our knowledge, the first study that uses such a long, multi-temporal and spatially
explicit LULC record to better understand regional-scale landslide susceptibility.

To generate this dataset, we collected, digitized and harmonized data depicting dif-
ferent spatial patterns for the years 1820, 1960 and 2015 (Table 1). Our data sources
included the Franciscan Cadastre of 1820, aerial photographs of 1960, and aerial orthopho-
tos combined with Integrated Administration and Control System (IACS) data of 2015
(“present-day”). Numerical information on LULC intensity (e.g., agricultural yields and
machinery numbers) was collected at communal, district or provincial levels from archival
sources and both historical and recent statistics, and was up- or downscaled to match the
municipal level. The data sources assigned to a time cut slightly differed in their year
of origin between the municipalities (Table 1). The selection of the time cuts was based
on characteristic socio-economic framework conditions of the Central European cultural
landscape following Bender [41] (i.e., time cuts around 1850, 1914, 1960 and present age) as
well as on the availability and temporal proximity of data.

We created a vector GIS database with LULC polygons from these sources using ESRI
ArcGIS. We distinguished between forest area, cropland and grassland, and classified the
remaining LULC as “settlement and other” (for details refer to Table A2 in the Appendix A).
Due to varying data quality (Q, Table 1), in the first step, the cadastral maps (1820) and
orthophotos (2015) were georeferenced and digitized (EPSG: 32633) since these allowed us
to map boundaries between distinct land uses. In a second step, we used these layers as
base maps for digitizing the less distinct areas from greyscale aerial photographs (1960).
Spatially persistent natural and built structures were kept unchanged for all time cuts.
Furthermore, we consistently used a display scale of 1:1000 to keep the digitization error
constant. The estimated overall positional error is up to 3–5 m for 1820, 5–10 m for 1960,
and less than 3 m for 2015.
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Table 1. Sources of land use legacy information of at least acceptable spatial and thematic quality identified for the case
study areas.

Year Study Area Source Source Holder Q Q-Explanation

Land use and land cover

1820
Wh Maps of Franciscan

Cadastre

Provincial Archive of Lower
Austria ++ Sharp delimitation of utilization

unit
P Federal Office for Calibration and

Measurement ++

1962 Wh Aerial images Federal Office for Calibration and
Measurement

~ Differentiation based on greyscale
aerial photography1953 P ~

2015 Wh,
P Orthophotos & IACS * Open Data Austria ++ Parcel-sharp delimitation of

arable land and grassland

Agricultural yields (cereal and grassland)

1820 Wh Text records of
Franciscan Cadastre

Provincial Archive of Lower
Austria + based on two cadastral

municipalities of Waidhofen
1820 P Sandgruber [42] ~ average of Styria

1960 Wh,
P Agricultural statistics Statistics Austria Library ++ data on municipality level

2015 Wh,
P IACS * Open Data Austria + data of farms in municipality

Wood yields

1820 Wh Text records of
Franciscan Cadastre

Provincial Archive of Lower
Austria + based on two cadastral

municipalities of Waidhofen
1820 P Gingrich et al. [43] ~ average of Styria

1965 Wh,
P Weiss et al. [44] ~ Austrian average

2015 Wh,
P Forest inventory Federal Forest Office ~ state averages

Wh: Waidhofen, P: Paldau; * Data status of temporal extent of 2016; Quality (Q): ++: high spatial and thematic quality, +: high spatial or
thematic quality, ~: acceptable spatial and thematic quality. Adapted from Knevels et al. [45].

Based on the numerical information, we quantified biomass extraction as yields (kg
fresh weight per ha and year, kg FW/ha/a) at the lowest possible administrative level and
allocated it to cropland, grassland and forests. Biomass extraction represents the output
from the agricultural production system and is thus an indicator of the LULC intensity
during historical time periods [46]. For the biomass extraction from cropland, we employed
the cereal yields as proxy; data on harvest from meadows was collected for grassland yields,
and wood extraction was derived from forest yields.

We finally intersected the three vector datasets for 1820, 1960 and 2015 successively
to one final file, keeping all available attributes, and converted the result to raster format
at the uniform target resolution. Biomass extraction was summed over the time cuts to
obtain a cumulative land use intensity (Figure A1 in Appendix A). This is an innovative
approach for this socio-ecological indicator in the context of landslide science as other
authors calculated cumulative materials flows [47] or greenhouse gas emissions [48] in
other application contexts. To avoid artifacts due to geometric inaccuracies inherent in the
vector files and from sliver polygons, isolated pixels were identified, and the affected grid
cells were excluded from the landslide sampling design described below (see Section 2.2.3).
The estimated digitization errors (3–10 m) might partly be counteracted by using a target
resolution of 10 m × 10 m (i.e., resolution corresponds to largest estimated error).

The created historical LULC legacy dataset was made publicly available [49].

2.2.3. Airborne LiDAR-Derived Landslide Inventories

For both study areas, we derived historical landslide inventories by mapping land-
slides visible in the HRDTM following the approach proposed by Schulz [22]. We included
landslides in earth and debris materials, focusing on the slide type with possible transitions
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to complex slide flows according to the classification scheme by Cruden and Varnes [50].
Landslides were digitized as polygon features also distinguishing between landslide body
and scarp (Figure 1B). Selected mapped landslides were inspected in the field for validation,
and we corrected the inventory where necessary. In total, in Waidhofen, 621 landslides
were mapped, covering 5.31% of the municipal area, and in Paldau, 418 landslides (4.14%
of the area; Figure 1C; Table A3 in the Appendix A).

Following Hussin et al. [51], we randomly sampled landslide presence points in the
landslide scarp area using the recommended 50-m distance constraint, and attributed the
point to the corresponding grid cell in our target grid (in total 974 and 559 landslide points
in Waidhofen and Paldau, respectively). For sampling non-landslide points, we defined
the landslide-free area by excluding the mapped landslides and a surrounding 50-m buffer
to account for digitization errors. We furthermore excluded so-called trivial areas—areas
considered as not susceptible to landsliding (e.g., floodplains, flat areas) [52]. Isolated
grid cells (see Section 2.2.2.) and anthropogenic structures with similar geomorphometric
characteristics as landslides (e.g., quarries) were also masked. For the landslide absence
locations, we distributed random points in a 1:1 sampling ratio using a minimum nearest-
neighbor distance of 50 m to reduce spatial autocorrelation.

2.3. Methods

The relationships between LULC legacies and landslide distribution were analyzed
using GAMs [53,54] while also accounting for the local topography as an important prepara-
tory factor for landslides [8]. GAMs have become popular in landslide susceptibility studies
due to their ability to model nonlinear relationships while allowing for a separate interpre-
tation of additive effects in terms of odds ratios and variable importance [55].

Our analysis was conducted in the free and open source computing environment R (R
version 3.5.3) [56]. We used the GAM implementation of the mgcv package [54] and the
mlr package [57] as the modeling framework. Furthermore, for terrain analysis we used
System for Automated Geoscientific Analysis (SAGA) GIS 6.3.0 [58] through RSAGA [59]
and Terrain Analysis Using Digital Elevation Models (TauDEM) 5.3 [60] via R system calls.

For downscaling the input data to the target resolution, we applied bilinear interpo-
lation for resampling using SAGA GIS. However, we acknowledge that we are unable to
capture local-scale patterns of geology or soil parameters.

2.3.1. Landslide Susceptibility Modeling Design

For landslide susceptibility modeling, we related land surface variables, soil parame-
ters, lithological units and LULC legacies as predictors to landslide occurrences (Table 2 for
overview).

Our model design enabled us to explore relationships between LULC legacy and
landslide distribution, and to improve the understanding of the potential biases in airborne
LiDAR-derived landslide inventories. We created landslide susceptibility models with
different sets of input variables: (i) The baseline model ‘GAM-Base’ excludes LULC legacy
variables; for the assessment of the LULC legacy effect, we built (ii) a GAM using the
present-day LULC as an additional predictor (GAM-2015), (iii) a GAM based on the LULC
legacy information from 1960 to 2015 (GAM-1960), and (iv) a GAM based on the LULC
legacy information since 1820 (GAM-1820). Moreover, we tested (v) a GAM using the
setting of GAM-2015, but excluding potentially inventory-biasing observations following
the recommendations of Petschko et al. [27] (GAM-2015-Masked; i.e., all observations
located in continuously forest-covered areas). Furthermore, we allowed modeled landslide
occurrences to be dependent on the combined effect of the historical biomass extraction
and present-day LULC class rather than modeling LULC legacy variables as additive
terms. Thus, the predictor of LULC legacy information in GAM-1820 and GAM-1960 was
implemented as a parametric, linear interaction term between the LULC of 2015 and the
historical biomass extraction (sum since 1820 or 1960). Moreover, we tested the model’s
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transferability between study areas, but excluded predictors that are specific to each area
(i.e., lithology).

For both study areas, the airborne LiDAR-derived historical landslide inventory and
the created landslide susceptibility models are available as Supplementary Materials.

Table 2. Predictor variables for landslide susceptibility modeling.

Variable(s) Software Setting Method

land surface variable
convergence index (100 m, 500 m) SAGA GIS r = 100 m, 500 m [61]

curvature (plan, profile) SAGA GIS [62]
flow accumulation, D-Infinity TauDEM log-transformed [63]

normalized height SAGA GIS w = 5; t = 2; e = 2 [64]
slope angle SAGA GIS [62]

slope angle, catchment area SAGA GIS [65]
slope aspect (S-N, W-E) SAGA GIS cosine, sine transformed [62,66]

topographic position index (TPI) SAGA GIS r = 500 m [67]
topographic wetness index (SWI) SAGA GIS [65]

soil
total pore volume up to 20 cm depth, median

hydraulic conductivity up to 20 cm depth, median
lithology

geology * ref: Waidhofen (vii),
Paldau (i)

land use/land cover legacy
LULC 2015 ref: ‘Forest’

biomass extraction (1820, 1960) sum since 1820 and 1960

Setting, scale-dependent parameters: r: radius; w,t,e: Parameters in SAGA GIS module Relative Heights and Slope Positions; * ref =
reference level (see Section 2.2.1).

2.3.2. Assessment of the Effect of Land Use Legacy

The empirical effect of LULC legacy on landslide occurrence was assessed in terms
of model performance, variable importance, odds ratios (OR) of the LULC classes, and
transformation function plots of the three most important predictor-response relationships.

For the model assessment, we applied a k-fold spatial cross-validation (SpCV) to
achieve independent test areas and thus a bias-reduced predictive performance as a mea-
sure of model generalization [55]. For SpCV, we partitioned the data into five disjoint folds
using k-means clustering of the coordinates (k = 5), and repeated this procedure 100 times.
In each repetition, subsequently, four folds were used as training data while the remaining
fold was used for validation until each fold was used once for validation (i.e., k models
per repetition, 500 models in total). Furthermore, we ensured comparability between the
models’ performance estimates using identical training and validation data for each study
area and repetition.

The area under the receiver operating characteristic curve (AUROC) was computed as
the performance measure. The AUROC is a quality measure suitable for binary response
data and is a common evaluation tool for landslide susceptibility models [55]. AUROC
values lie between 0.5 (no discrimination) and 1.0 (perfect discrimination), and were inter-
preted following the recommendations of Hosmer et al. [68]. Additionally, differences in
model performances were tested using Wilcoxon signed-rank tests (α = 0.05; R coin pack-
age) [69,70], and p-values were adjusted for multiple comparisons according to Benjamini
and Hochberg [71].

As a measure of variable importance, we extracted for each variable the mean decrease
in deviance explained (mDD, %) under the consideration of all SpCV models. The mDD
indicates the explanatory contribution of a variable to the overall explained deviance of the
corresponding model [72,73]. The higher the mDD value, the greater is the contribution of
a variable, and thus its importance. To compute the mDD, we left the variable of interest
out while fixing the remaining smoothing parameters (mgcv::gam sp argument) during
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model (re-)training, and subsequently measured the percentage differences of the deviance
explained [73].

Transformation function and OR plots were used to explore the relationships between
landslide distribution and the three most important predictors as well as LULC legacy of
each model setting. Additionally, we extracted comparative predictor-response relation-
ships reported in studies of the same area [73,74]. A transformation function plot shows
the predictor-response relationship as a parametric (linear) or non-parametric smoothing
function by using the additive structure of a GAM. We visualized predictor-response rela-
tionships on the logit scale (i.e., linear predictor scale). An OR indicates the chance that
an outcome occurs given a specific exposure, relative to a reference exposure [75]. An OR
less than one means an exposure with lower odds of the outcome while an OR higher than
one shows an exposure with higher odds of the outcome, while accounting for the other
variables in the model; an OR of one is associated with no influence of the exposure [75].
We calculated ORs for the LULC classes with ‘forest’ as reference level. Additionally, we
derived ratios of ORs (rOR) by dividing a model’s predictor-response relationships by
the corresponding relationship in GAM-Base. rOR enables a more sensitive comparison
between models.

3. Results

3.1. LULC Change

The analysis of almost 200 years of changes in LULC displayed distinct trends in the
two municipalities (Figure 2).

Even though forest covered more than one third of the total land area in both case
studies throughout the investigation period (Figure 2A), in Paldau, its area decreased by
113.2 ha (8%) from 1820 to 2015, while in Waidhofen, the forest area increased by more than
1000 ha (18%) from 1820 to 2015. In both areas, cropland extent declined while grassland
and “settlement and other” expanded. In Waidhofen, in 2015 only 1% of the area was used
as cropland (1820: 26%), while in Paldau, the share diminished from 43% to 37%. Areas
classified as “settlement and other” increased in Waidhofen more than fivefold from 1820
to 2015 (246 ha to 1431 ha) and in Paldau more than sevenfold (104 ha to 750 ha).

Biomass extraction nearly doubled in both municipalities from one time cut to the
next (Figure 2A; Paldau: 4969 to 10,630 to 18,674 kg/ha/a, Waidhofen: 4661 to 8410 to
16,773 kg/ha/a). Cereal yields increased most strongly in both municipalities (factors 9.8
and 7.9 in Waidhofen and Paldau, respectively). Grassland yields increased less strongly
and reached their maximum in 1960. In both study areas, wood extraction declined slightly
from 1820 to 1960 (Waidhofen: −6%, Paldau: −2%), but it more than doubled from 1960 to
2015 (Waidhofen: 5067 kg/ha/a, Paldau: 5667 kg/ha/a). In 1820, wood extraction had the
largest share in biomass extraction in both municipalities.

The landslide distribution for the different LULC classes and time cuts showed con-
trasting patterns in Waidhofen and Paldau (Figure 2C). While in Waidhofen, the change
pattern in landslide distribution and LULC distribution by LULC category was similar
(Figure 2A,C), in Paldau the change pattern showed clear differences. There, 82.4% of the
landslides were located in present-day (2015) forest areas, which also showed the highest
landslide frequency ratio (FR) of 2.5 (Figure 2C); in Waidhofen, 42.2% of the landslides
were found in present-day forested areas with a FR of nearly 1. In Waidhofen in 2015,
grassland showed the highest FR of 1.14 (Paldau: FR of 0.78). Furthermore, in Paldau,
69% of the landslides were located in continuously forest-covered areas (28.7% for LULC
change pattern) and in Waidhofen 20.7% (27.5% for LULC change pattern), respectively. In
both study areas, landslides were least frequent on present-day cropland (Paldau: FR 0.05,
Waidhofen: 0.31).
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Figure 2. LULC change in the study areas for different time cuts. (A): Changes of LULC patterns (in %, left) and changes of
biomass extraction (in kg/ha/a, right). (B): Cultural landscape persistence maps showing persistent historical structures in
present-day LULC. (C): Landslide distribution for different LULC patterns (in %) and their changes (left), and landslide
frequency ratios for the LULC pattern in 2015 (right).

3.2. LULC Legacy Effects on Landslide Occurrence
3.2.1. Model Performance and Transferability

We applied SpCV with the AUROC as performance measurement to gain information
on the model’s capabilities to discriminate landslides from non-landslides observations.
The performance assessment showed distinct differences between the study areas (Figure 3,
Table A4 in the Appendix B).
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Figure 3. Model performance in SpCV and transferability assessment. (A): Study-area specific SpCV and transferability
estimates. (B): SpCV estimates using the combined data from both municipalities.

For Waidhofen the median AUROC (mAUROC) in SpCV ranged between 0.78 for
GAM-1820 and 0.80 for GAM-2015-Masked, i.e., acceptable to excellent discrimination
capabilities. In contrast, in Paldau, GAM-Base had the lowest mAUROC of 0.88 and GAM-
2015-Masked the highest mAUROC of 0.93, i.e., excellent to outstanding discrimination.
AUROC estimates for Waidhofen were substantially more variable than for Paldau (in-
terquartile ranges, IQR, 0.13 to 0.14 versus 0.03 to 0.06). Model transfer to the other study
area resulted in a strong drop in model performance, with a decrease of 0.11–0.14 for model
transfer to Waidhofen and 0.05–0.12 in Paldau. As in SpCV, GAM-2015-Masked performed
best (Waidhofen: 0.69, Paldau: 0.85), followed by GAM-Base (Waidhofen: 0.65, Paldau:
0.83) in both study areas.

In the performance assessments for the combined data, the mAUROC and IQR values
of the combined validation data fall in between the estimates of Paldau and Waidhofen
(Figure 3B, Table A4 in the Appendix B). GAM-Base had the lowest mAUROC of 0.81 and
GAM-2015-Masked the highest mAUROC of 0.84.

Regarding the effect of LULC legacy predictors on the performance, for Paldau the
performance estimates were marginally, but yet significantly higher with the inclusion of
legacy information (order of significant “<” and non-significant “=” differences in AUROCs:
GAM-Base < GAM-1960 < GAM-1820 = GAM-2015 < GAM-2015-Masked, Table A5 in the
Appendix B). However, for Waidhofen, such a tendency was not identifiable (GAM-2015 <
GAM-1820 = GAM-Base < GAM-1960 < GAM-2015-Masked, Table A5 in the Appendix B).
Furthermore, for both study areas the landslide model excluding observations located in
continuously forest-covered areas (i.e., GAM-2015-Masked) showed the highest estimates
in SpCV (combined and non-combined data) and transferability assessment.

3.2.2. Variable Importance

The assessment of variable importance showed differences in the variable ranking of
the study areas, although slope angle was shared as a top-tier predictor (Figure 4, Table A6
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in the Appendix B). In Waidhofen, the top three ranks were identical across all settings:
1. slope angle (mDD 7.45–8.63%), 2. lithology (mDD 3.72–6.38%), and 3. plan curvature
(mDD 2.09–2.83%). In Paldau and across all settings, four different variables occurred in
the top three ranks: slope angle (mDD 4.38–7.68%), profile curvature (mDD 3.05–6.37%),
slope aspect (S-N, mDD 3.94%), and a LULC legacy variable (LULC 2015 or LULC legacy
1820/1960, mDD 3.64–3.92%). In all models, slope angle was the most important variable,
except for Paldau’s GAM-2015-Masked, where profile curvature was more important
(mDD 6.37%).

Figure 4. The three most important variables in terms of decrease in deviance explained [%]. Refer to Table A6 in the
Appendix B for an overview of variable importance for all predictor variables.

The top-ranked variable was always a land surface variable, specifically slope angle
and in one setting profile curvature (Table A6 in the Appendix B). Soil variables were less
important with a highest rank of 11 with 0.62% mDD in Waidhofen (hydraulic conductivity
in GAM-2015-Masked), and of 7 with 1.3% mDD in Paldau (hydraulic conductivity in
GAM-2015-Masked), respectively. LULC legacy variables were less important in Waidhofen
(mDD 0.26–1.07%), while for Paldau, they showed a high mDD of 3.64–3.92%. Lithology,
in contrast, was only important in Waidhofen (mDD 6.34–6.38%; Paldau: 0.25–0.39%).

3.2.3. Predictor-Response Relationships

In both study areas, based on the transformation function plots in logit scale, we found
a general agreement on the predictor-response relationships among all model settings,
except for the GAM-2015-Masked (Waidhofen: Figure A2, Paldau: Figure A3). However,
some differences in the predictor-response relationships for the three most important
variables could be identified (Figure 5).
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Figure 5. Comparison of predictor-response relationships of the three most important predictors (left column, (a–c) and
(g–i)) and the LULC legacy variables (right column, (d–f) and (j–l)) for each study area. Grey: 95% Bayesian credible interval
of GAM-Base. Lithological units in Waidhofen: Reference unit: ‘Upper Austroalpine limestone’, 0: talus and glacial deposits,
1: Inneralpine Neogene, 2: Klippen zone, 3: flysch zone, 4: Upper Austroalpine marls. Note: the y axes are plot-dependent,
and the x axes of non-parametric transformation functions are limited to the 5th to 95th percentile range.

In both study areas, the chance of landslide occurrence was higher on steeper slopes.
Among the model settings, the predictor-response relationship of GAM-Masked-2015
indicated the comparatively highest rOR compared to GAM-Base (e.g., for 15◦, Paldau: 1.4,
Waidhofen: 1.6). Minor differences of the other models in reference to GAM-Base were
mostly at lower and upper quartiles of the value ranges (Figure 5a,g), but fell within its
95% Bayesian credible interval.

In Waidhofen, for the variable plan curvature, the chance of landslide occurrence was
higher on concave than on convex surfaces, but without substantial differences between
the models (Figure 5b). Regarding the variable lithology (Figure 5c), each lithological unit
showed a higher chance of landslide occurrences relative to Upper Austroalpine limestone
(e.g., GAM-Base: OR of 13 for flysch zone). However, among the model settings, the rORs
of GAM-Masked-2015 were generally lower by a factor of 0.6, and fell partially outside the
Bayesian credible interval of GAM-Base.

In Paldau, for the variable profile curvature, the chance of landslide occurrence was
lower on concave than on convex surfaces (Figure 5h). Substantial differences between the
models were identifiable only for GAM-2015-Masked on convex surfaces with a curvature
greater than 0.005 m−1 (e.g., landslides were 1.3 times more likely relative to GAM-Base).
Among the model settings, south-exposed slopes were less susceptible to landslides than
north-exposed slopes, with only marginal differences between models (Figure 5i).
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Regarding the LULC variables, in Waidhofen LULC 2015 was significant only in
the GAM-2015-Masked setting for “settlement and other” with an OR of 0.43 relative
to forest areas (Figure 5d). Using additionally the biomass extraction as LULC legacy
interaction term (i.e., GAM-1960 and GAM-1820), the predictor was significant and showed
a higher chance of landslide occurrence with higher biomass extraction for each LULC
class (Figure 5e,f). Compared to forest areas, landslides were more likely on cropland and
less on grassland and “settlement and other”. However, using the long-term legacy in
GAM-1820, the contrast relative to forest areas showed higher ORs for cropland (e.g., for
10,000 kg FW/ha/a: OR of 2.95 for GAM-1820 and of 2.53 for GAM-1960), but lower OR
for grassland (OR of 0.83 for GAM-1820 and of 0.46 for GAM-1960) and “settlement and
other” (OR of 0.67 for GAM-1820 and of 0.43 for GAM-1960) compared to GAM-1960.

In Paldau, for the variable LULC 2015 in GAM-2015 and GAM-2015-Masked, all LULC
classes were significant terms and also showed a similar pattern with minor differences
with respect to forest area (reference level; Figure 5j): For GAM-2015, the chance of landslide
occurrence on cropland was only 0.07 times as high as in forest areas (OR of 0.06 for GAM-
2015-Masked), 0.32 times as high on grassland (OR of 0.33 for GAM-2015-Masked), and
0.26 times as high on “settlement and other” (OR of 0.25 for GAM-2015-Masked). Including
the biomass extraction as LULC legacy interaction term (i.e., GAM-1960 and GAM-1820;
Figure 5k,l), for both models, the coefficients of grassland and “settlement and other” were
not significant anymore, while with a higher biomass extraction the chance of landslide
occurrences on cropland was lower (e.g., for 10,000 kg FW/ha/a: OR of 0.16 for GAM-1960
and of 0.27 for GAM-1820) and higher on forest areas (OR of 3.4 for GAM-1960 and of 3.7
for GAM-1820), respectively. Using the long-term legacy in GAM-1820, the ORs of the
LULC classes relative to forest areas were generally lower compared to GAM-1960 (e.g.,
for 10,000 kg FW/ha/a on cropland: OR of 0.05 for GAM-1960 and of 0.07 for GAM-1820).

We extracted reported relationships of comparative studies, in which the landslide
dates were known (for Paldau: event-based landslide inventory of southeast Styria in [73])
or the relative landslide age could be approximated (Waidhofen: remotely-sensed landslide
inventory based on [21] used e.g., by [74]). For the land surface variables, we generally
found a good match in the shape of the predictor-response relationships in both study
areas (Figure 6), with the exception of slope aspect (S-N) in Paldau. Contrary to our results,
in Knevels et al. [73] the predictor slope aspect was less influential with south-exposed
slopes being slightly more susceptible to landsliding than north-exposed slopes.

Regarding the LULC variables, for Waidhofen, Steger et al. [74] reported that land-
slides were 1.7 to 2.0 times more likely on arable land or pastures compared to forests,
while in our study, LULC was only significant when biomass extraction was included
(i.e., GAM-1960 and GAM-1820). For southeast Styria, Knevels et al. [73] found non-forest
areas more than three times as susceptible to landsliding as forest areas (OR > 3.6). Yet,
in Paldau’s GAM-2015 and GAM-2015-Masked, we found contrasting results (OR < 0.33
outside forest).
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Figure 6. Comparison of predictor-response relationships between event-based landslide and historical LiDAR-derived
landslide inventories. (A): Event-based inventory of Waidhofen (left, Table 1 in [74]) and southeast Styria (right, [73]).
(B): Historical LiDAR-derived inventory of Waidhofen (left) and Paldau (right). Note: the logit scale is variable-dependent,
the intercept for slope angle in Waidhofen was artificially set, and the x axes are limited to the 5th to 95th percentile range.

4. Discussion

4.1. Initial Objective: Effect of LULC Legacy on Modeling and Biases

We were able to successfully link the historical LULC characteristics covering a period
of almost 200 years in two Austrian municipalities to landslide occurrences identified in an
airborne LiDAR-derived HRDTM. The established landslide susceptibility models showed
performances with acceptable to outstanding discrimination capabilities, confirming the
proposed modeling approach. Landslide models including LULC legacy predictors had
significantly higher (for Paldau) or at least equal (for Waidhofen) performances compared to
a reference model without LULC (GAM-Base, Table A5 in the Appendix B), demonstrating
the potential of LULC legacies for explaining landslide susceptibility today.

The use of LULC legacies may improve the understanding of LULC dynamics and
landslide occurrences. The LULC legacy categories were generally more susceptible to
landsliding with a higher biomass extraction (excluding cropland in Paldau; Figure 5e,f,k,l).
In particular, present-day forested areas previously used for agricultural activities were
more prone to landsliding than continuously forested areas, confirming findings for less
extensive historical time periods by Beguería [9] and Persichillo et al. [11]. Thus, the effect
of LULC legacies on landslide occurrences might be a good explanation of contradictory
empirical observations such as landslide events in forests [23]. Additionally, for Waidhofen,
we conclude that forest areas are more susceptible to landsliding than grassland, after
accounting for biomass extraction. While Goetz et al. [7] reported that forest harvesting
may temporally lead to open or semi-open forest types and thus reduced slope stability due
to different soil hydrological and mechanical conditions (e.g., reduced rainfall interception
and root cohesion), Tasser et al. [76] found managed grassland to be significantly less
erodible than abandoned areas. However, we acknowledge that potentially landslide
mitigating land management strategies are not incorporated in the analysis, and that the
difference between forest and grassland may also be related to inventory biases.

Inventory biases are a known issue in landslide modeling [25,26]. We suggest that the
identified substantial difference in the predictor-response relationship for LULC compared
to other studies, is due to the underlying airborne LiDAR-derived historical landslide
inventory. In particular, we assume that in Paldau, the high number of landslides in
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continuously forest-covered areas (69%, FR of 2.5 in 2015) can be explained by an inventory
bias, which ultimately produces biased predictor-response relationships (OR of 0.33 for
outside forest relative to forest areas vs. OR of >3.6 in Knevels et al. [73]). A bias was
also detectable in Waidhofen’s inventory, albeit weaker (about 20% of the landslides in
continuously forested-covered areas). This is consistent with the reported drawbacks of
such landslide inventories [26,27]. Unreflecting model interpretation might thus lead to the
conclusion that forest areas are more susceptible for landslides than other LULC categories
(i.e., contrasting the findings of [4,5,13,73]). We assume that the inventory bias results from
the fact that landslide traces on agricultural land are quickly “tilled away” (Figure 1D), and
that landslides affecting the built environment are removed during reconstruction, while
in forests, they are preserved for an extended period of time (see Figure 12 in [28]).

For bias mitigation, we explored three approaches. Following the recommendations
of Petschko et al. [27], (i) dropping the bias-describing predictor from modeling (i.e., LULC;
GAM-Base) had only minor effects on the predictor-response relationships compared to the
other models (excluding GAM-2015-Masked). We assume that confounding effects may
explain these minor differences (e.g., slope angle: forest area more likely located on steeper
slopes [26]). Besides, (ii) excluding inventory-biasing observations (i.e., continuously forest-
covered areas; GAM-2015-Masked) led to substantial differences of predictor-response
relationships for some variables (e.g., slope angle in both study areas, profile curvature in
Paldau, lithology in Waidhofen, Figure 5), yet the OR of the LULC categories in reference
to forest were similar to GAM-2015. However, since the relationships are in general
agreement with other research results [73,74] (Figure 6), further research might help to
evaluate and identify the “true” relationship. Moreover, reducing the models’ training
data may not always be suitable (e.g., sparse inventories), and might even decrease model
performances [77,78]. (iii) Using LULC legacy information (i.e., biomass extraction, GAM-
1820 and GAM-1960), the predictor-response relationships matched GAM-Base except for
the minor differences mentioned above, and we could reduce the bias of a higher landslide
chance on forest area relative to other LULC categories. Additionally, we identified a
tendency towards relatively lower OR in forests using long-term legacies. Albeit the
landslide inventory bias still had an effect on the landslide models for all approaches, for
studies based on airborne LiDAR-derived landslide inventories we recommend to exclude
bias-describing predictors (e.g., LULC) in the first place, or to enrich the feature space with
a bias-reducing information predictor (e.g., LULC legacies).

Moreover, when considering LULC as a predictor, it should be kept in mind that
each study area has its unique legacy. The transferability assessment showed a poorer
transferability of landslide models that were fit only in one study area (AUROC loss
up to 0.14, Figure 3). While the transformation functions of slope angle, plan curvature
and the LULC legacy category forest matched between study areas, for other important
variables they were partly (e.g., concave profile curvature) or even completely opposed
(e.g., slope aspect, S-N and other LULC legacy categories; Figures A2 and A3). Moreover,
landslide models using the combined data did not improve performances compared to
both area-specific models. However, for event-based landslide modeling with especially
sparse inventories, the opposite may be true (see Figure 4 in [73]).

Regarding the variable importance assessment, the results are in agreement with
findings in other studies despite different landslide inventories: For Waidhofen, Steger
et al. [74] also identified the slope angle as the most influential predictor, while present-day
land cover ranked last. In the landslide model of Knevels et al. [73] fitted in southeast
Styria (where Paldau is located), the present-day LULC (categorized into forest classes) and
slope angle ranked second and third, respectively. We conjecture that the lower influence
and different shape of the slope aspect relationship (Figure 5) could be due to effects such
as pre- or post-failure HRDTM or the specific rainfall event in the study of [73].
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4.2. Study Data: Challenges and Requirements

We encourage the use of long-term LULC legacy data in landslide studies. The pre-
sented LULC legacy predictor is not only a simple and comprehensible way to highlight
historical LULC dynamics but may also support spatial planning in preventive disaster re-
duction regarding future LULC changes. With historical cartographic documents of several
countries (e.g., Habsburg, Franciscan or Napoleonic cadastral map) [79] and information
on long-term biomass extraction [80,81] becoming increasingly available in a pre-processed
form, there is a real opportunity to further explore LULC legacies in future studies.

For the creation of LULC legacy data, we used data sources of different spatial,
temporal and thematic quality and resolution (Table 1). For the time cut of 1960, the
available greyscale aerial photographs for the municipalities were nine years apart (Paldau
1953 and Waidhofen 1962). Thus, LULC changes in the context of the “economic miracle”
(e.g., mechanized agriculture, urban growth and sprawl) beginning in 1955 may not yet
be present in Paldau [82]. Also, the interpretation of the greyscale aerial photographs
of low image quality was particularly challenging (especially grassland vs. cropland).
Additionally, the thematic resolution of the data sources used for the biomass extraction
(i.e., wood and agricultural yields) was very heterogeneous in terms of the aggregated
spatial statistical reference unit (e.g., the data availability for wood yields was for time
cut 1960 on a national scale and for 2015 on for federal states). Nevertheless, we suggest
that the data still allows conclusions to be drawn about long-term trends [43,45,81]. We
acknowledge that the digitization of LULC legacy data was a time-consuming process and
historical imagery at an appropriate scale may not be available everywhere.

The landslide inventories were separately created for each study area by local ex-
perts. There is evidence that landslide inventories are not only incomplete to an unknown
degree [24], but also that landslide inventories compiled by different experts may have
positional mismatches up to 70% [23]. Therefore, in this study, consistent rules were agreed
upon to ensure or at least strive for a homogeneous inventory quality (e.g., uniform dig-
itization scale, order of digitization: first landslide scarp, then body, etc.). To overcome
the drawbacks of the inventory (e.g., bias in forest areas) and to enhance the explanatory
power of the LULC legacy variables in modeling landslides, we encourage to collect and
analyze additional historical aerial photographs, orthophotos or satellite images in order
to estimate landslide ages [4,11,27].

5. Conclusions and Outlook

In this study, LULC and legacies of its change could successfully improve the ex-
planation of landslide distribution as we identified the LULC variable as a meaningful
predictor in landslide susceptibility modeling. Higher biomass extraction resulted in higher
landslide susceptibility (excluding cropland in Paldau), explaining different risk levels
in areas with the same present-day LULC. Furthermore, we could confirm that airborne
LiDAR-derived inventories may be biased towards currently forested areas (e.g., high
landslide density in Paldau with a FR of 2.5). Using long-term LULC legacy variables
accounting for changes for almost 200 years, we could successfully reduce the effects of
LULC-related inventory bias. However, without any information on the failure date or
at least an approximated time slice, the additional landslides preserved in forest areas
may still lead to an unknown bias in the model, and thus lead to potentially contradictory
relationships between landslide occurrences and LULC legacies (e.g., OR < 0.33 outside
forest relative to forest areas in Paldau). Other bias-avoiding strategies such as removing
inventory-biasing observation led to improved model performances, but also to different
predictor-response relationships. Thus, the implementation and interpretation of LULC
as a bias-describing predictor must be carefully considered. We highly encourage further
research using event-based landslide inventories with known landslide ages or age ranges
to avoid such biases.
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The construction of historical LULC datasets is relevant for future use both from
methodological and empirical perspectives. Methodologically, the approach chosen here
can be used in future analyses in cases where both geographic and statistical information on
LULC are available and can be combined. Empirically, the dataset established may be used
for future analyses of different issues related to long-term LULC change, in particular those
related to sustainable LULC intensification (e.g., cultural landscape change [45]). With the
publication of the historical LULC legacy dataset [49], we highly encourage future research
with this data and a replication of the analysis, especially once a reliable event-based
landslide inventory for the study areas is available.
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Appendix A. Descriptive Summary of Input Data

Table A1. Sources of land surface data.

Study Area Source Holder Resolution

airborne LiDAR-based high-resolution digital terrain model

Waidhofen provincial government of Lower Austria 1 m × 1 m, acquisition year: 2014
Paldau GIS department of the Styrian government 1 m × 1 m, acquisition year: 2009

hydrologic and hydropedologic parameters

Waidhofen
Austrian Research Centre for Forests

50 m × 50 m, year: 2014
Paldau 100 m × 100 m, year 2017

geological basemaps

Waidhofen Geological Survey of Austria 1:50,000
Paldau GIS department of the Styrian government 1:50,000

For downscaling to the target resolution of 10 m × 10 m, bilinear interpolation was applied.

Table A2. Overview of the classification and recording of land use classes according to time cut.

land Use/Land Cover
Category

Time Cut 1820 Time Cut 2015
LULC Types in the

Franciscan Cadastre *
IACS, Orthophotos

forest (including forest pasture)
Hardwood forests, Coniferous forests, Mixed
forests, Chestnut forests, Meadows with fruit

trees
All forest types digitized from orthophotos

grassland Dry meadows, wet meadows, pastures,
community pastures, shrubs

IACS agricultural parcel: Grassland, alpine
pastures, pasture

cropland Orchards, vegetable gardens, vineyards, arable
land (with fruit trees, trees and vines) IACS agricultural parcel: arable land

settlement and other
Marshes, lakes, ponds, rivers and streams,
wastelands and bare rocks, buildings (all

types), trails (all types)

Remaining area, which includes, e.g.,
buildings, impervious surfaces, water

bodies, excavation pits and quarries, urban
green, near-natural areas

* LULC types not listed here are not present in the study area; LULC classes of the 1960 time cut were digitized in aerial photographs,
modified from Knevels et al. [45].

Table A3. Summary of the landslide inventory data.

Waidhofen Paldau

Number landslides 621 418
scarps 829 469
bodies 663 348

samples 974 559
Total Area [m2] (%) landslides 6,976,638 (5.31) 1,621,250 (4.14)

min mean max min mean max
Area [m2] landslides 113 11,235 1,163,088 30 3879 206,842

scarps 2 517 79,640 12 140 1518
bodies 52 9876 1,083,448 24 3949 206,842

Perimeter [m] landslides 44 451 7250 26 163 1821
scarps 7 101 3013 18 71 373
bodies 29 297 4548 28 168 1821
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Figure A1. Biomass extraction [kg FW/ha/a] as an indicator of historical land use intensity of study areas.
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Appendix B. Summary of Model Assessment Results

Table A4. Results of the model assessments within the study area with SpCV, and assessment of
model transferability between both areas.

Model
~
x Min Max IQR Transfer

A: Waidhofen
GAM-Base 0.79 0.7 0.91 0.14 0.65
GAM-2015 0.79 0.69 0.91 0.14 0.64

GAM-2015-Masked 0.8 0.68 0.91 0.13 0.69
GAM-1960 0.79 0.7 0.91 0.14 0.65
GAM-1820 0.78 0.7 0.91 0.14 0.65

B: Paldau
GAM-Base 0.88 0.83 0.93 0.03 0.83
GAM-2015 0.89 0.85 0.94 0.06 0.8

GAM-2015-Masked 0.93 0.88 0.98 0.04 0.85
GAM-1960 0.89 0.85 0.94 0.06 0.78
GAM-1820 0.89 0.85 0.94 0.06 0.79

C: Combined
GAM-Base 0.81 0.74 0.91 0.07
GAM-2015 0.81 0.74 0.91 0.07

GAM-2015-Masked 0.84 0.75 0.93 0.07
GAM-1960 0.82 0.74 0.91 0.07
GAM-1820 0.81 0.74 0.91 0.07

AUROC Statistic: median (x̃), minimum (Min), maximum (Max), interquartile range (IQR), transferability
estimate (Transfer).

Table A5. Wilcoxon signed-rank tests for AUROC performance differences within each study area
estimated with SpCV.

Model mAUROC N * Z p-Values r

A: Waidhofen
GAM-2015 0.79

<GAM-1820 0.78 36 2.7 0.01 0.45
=GAM-Base 0.79 35 0.93 0.18 0.16
<GAM-1960 0.79 36 4.24 <0.001 0.72

<GAM-2015-Masked 0.80 36 2.24 0.02 0.37
B: Paldau

GAM-Base 0.88
<GAM-1960 0.89 66 5.01 <0.001 0.62
<GAM-1820 0.89 66 4.35 <0.001 0.54
=GAM-2015 0.89 66 1.54 0.06 0.19

< GAM-2015-Masked 0.93 66 7.03 <0.001 0.87
mAUROC: median AUROC of SpCV; N: Number of observations per group; * tied observations were removed;
Z: Z score;alternative hypothesis: greater, α = 0.05; <: Differences significantly greater from previous model, =: No
significant difference to the previous model.
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Table A6. Variable importance measured as mean decrease in deviance explained (%), rank of variable in parentheses.

Variable
Study
Area

GAM-Base GAM-2015
GAM-2015-

Masked
GAM-1960 GAM-1820

land surface variable

convergence index, 100 m Wh 1.23 (5) 1.27 (5) 1.3 (6) 1.15 (5) 1.17 (5)
P 0.91 (7) 0.97 (8) 0.71 (11) 0.96 (8) 0.98 (7)

convergence index, 500 m Wh 0.87 (8) 0.86 (9) 0.99 (9) 0.83 (10) 0.86 (9)
P 0.93 (6) 1.16 (6) 3.25 (4) 1.2 (6) 1.18 (6)

curvature, plan Wh 2.09 (3) 2.1 (3) 2.83 (3) 2.17 (3) 2.17 (3)
P 2.38 (4) 1.43 (5) 0.84 (10) 1.46 (5) 1.49 (5)

curvature, profile Wh 1.45 (4) 1.58 (4) 1.78 (4) 1.65 (4) 1.57 (4)
P 3.32 (3) 3.2 (3) 6.37 (1) 3.08 (3) 3.05 (3)

flow accumulation
Wh 0.42 (13) 0.43 (12) 0.48 (14) 0.5 (13) 0.46 (12)
P 0.07 (15) 0.2 (16) 0.46 (13) 0.22 (16) 0.21 (16)

normalized height Wh 0.02 (15) 0.02 (16) 0.05 (16) 0.04 (16) 0.03 (16)
P 0.95 (5) 0.95 (9) 3.15 (5) 0.93 (9) 0.93 (9)

slope angle Wh 8.01 (1) 7.7 (1) 8.63 (1) 7.45 (1) 7.61 (1)
P 7.68 (1) 4.38 (1) 4.62 (2) 4.77 (1) 4.64 (1)

slope angle, catchment area Wh 1.11 (7) 1.15 (6) 1.1 (8) 1.07 (7) 1.15 (6)
P 0.55 (11) 0.47 (12) 0.2 (15) 0.44 (12) 0.43 (12)

slope aspect, S-N Wh 1.12 (6) 1.07 (7) 1.11 (7) 1.06 (8) 1.12 (7)
P 3.94 (2) 2.3 (4) 1.25 (8) 2.36 (4) 2.33 (4)

slope aspect, W-E Wh 0.61 (11) 0.58 (11) 0.84 (10) 0.52 (12) 0.56 (11)
P 0.32 (13) 0.29 (14) 1.68 (6) 0.27 (15) 0.27 (15)

TPI
Wh 0.86 (9) 0.89 (8) 1.64 (5) 0.89 (9) 0.91 (8)
P 0.7 (9) 0.84 (11) 0.14 (16) 0.84 (11) 0.84 (11)

SWI
Wh 0.66 (10) 0.66 (10) 0.39 (15) 0.68 (11) 0.67 (10)
P 0.66 (10) 0.39 (13) 0.95 (9) 0.35 (13) 0.35 (13)

soil

total pore volume Wh 0.35 (14) 0.31 (14) 0.51 (13) 0.29 (15) 0.31 (15)
P 0.47 (12) 0.86 (10) 0.68 (12) 0.87 (10) 0.87 (10)

hydraulic conductivity Wh 0.44 (12) 0.41 (13) 0.62 (11) 0.35 (14) 0.38 (14)
P 0.9 (8) 0.98 (7) 1.3 (7) 0.98 (7) 0.97 (8)

lithology

lithology/geology Wh 6.38 (2) 6.37 (2) 3.72 (2) 6.37 (2) 6.34 (2)
P 0.25 (14) 0.27 (15) 0.39 (14) 0.27 (14) 0.28 (14)

land use/land cover legacy

LULC 2015
Wh 0.26 (15) 0.6 (12)
P 3.64 (2) 3.92 (3)

biomass extraction, 1960 *
Wh 1.07 (6)
P 3.81 (2)

biomass extraction, 1820 *
Wh 0.43 (13)
P 3.85 (2)

* Biomass extraction in interaction with LULC 2015; Wh: Waidhofen, P: Paldau.
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Figure A2. Predictor-response relationships of landslide models in Waidhofen. Grey: 95% Bayesian credible interval of
GAM-Base. Reference level of LULC 2015: ‘Forest’; Lithological units: Reference: ‘Upper Austroalpine limestone’, 0: talus
and glacial deposits, 1: Inneralpine Neogene, 2: Klippen zone, 3: flysch zone, 4: Upper Austroalpine marls. Note: the y axes
are plot-dependent, and the x axes of non-parametric transformation functions are limited to the 5th to 95th percentile range.
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Figure A3. Predictor-response relationships of landslide models in Paldau. Grey: 95% Bayesian credible interval of GAM-
Base. Reference level of LULC 2015: ‘Forest’; Lithological units: Reference: ‘Neogene formations with coarse-grained layers’,
0: ‘Neogene formations dominated by fine-grained sediments’, 1: ‘pre-Würmian Pleistocene formations’. Note: the y axes
are plot-dependent, and the x axes of non-parametric transformation functions are limited to the 5th to 95th percentile range.
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Abstract: Rapid urban development results in visible changes in land use due to increase in imper-
vious surfaces from human construction and decrease in pervious areas. Urbanisation influences
the hydrological cycle of an area, resulting in less infiltration, higher flood peak, and surface runoff.
This study analysed the impact of land use change due to urbanisation on surface runoff, using
the geographic information system (GIS)-based soil conservation service curve number (SCS–CN)
method, during the period of rapid urban development from 1980 to 2015 in Xiamen, located in
south-eastern China. Land use change was analysed from the data obtained by classifying Landsat
images from 1980, 1990, 2005, and 2015. Results indicated that farmland decreased the most by
14.01%, while built-up areas increased the most by 15.7%, from 1980 to 2015. Surface runoff was
simulated using the GIS-based SCS–CN method for the rainfall return periods of 5, 10, 20, and
50 years. The spatial and temporal variation of runoff was obtained for each land use period. Results
indicate that the increase in surface runoff was highest in the period of 1990–2005, with an increase of
10.63%. The effect of urbanisation can be realised from the amount of runoff, contributed by built-up
land use type in the study area, that increased from 14.2% to 27.9% with the rise of urban expansion
from 1980 to 2015. The relationship between land use and surface runoff showed that the rapid
increase in constructed land has significantly influenced the surface runoff of the area. Therefore, the
introduction of nature-based solutions such as green infrastructure could be a potential solution for
runoff mitigation and reducing urban flood risks in the context of increasing urbanization.

Keywords: land use change; surface runoff; urban development; green infrastructure; Xiamen

1. Introduction

Urbanisation is a growing concern in the present world. With over 55% of the world’s
population living in urban areas [1], urban expansion has dramatically influenced the
change in urban land use. Land use change due to urbanisation results in more impervious
surfaces that have considerable impacts on urban hydrology [2]. Urban expansion leads
to large impervious surfaces that reduces rainwater infiltration, generating high surface
runoff and peak flow, thus increasing the risks of urban flooding and waterlogging [3].
Urban development is one of the major causes of urban pluvial flooding, aggravated by
poor urban drainage systems that become more severe with increasing frequency and
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magnitude of extreme precipitations as a consequence of climate change, affecting the
urban population, infrastructure, and economy [4–6].

The effect of land use change on surface runoff depends on many factors such as
spatial characteristics of land use, rainfall, and soil [7]. The effect is most prominent in areas
undergoing rapid urbanisation where natural vegetation has been removed and replaced
by constructed land [8]. Removal of trees and vegetation and construction of commercial
and residential buildings, streets, and parking lots alters the water balance of an area by
changing the balance between rainfall, infiltration, evapotranspiration, and runoff [9,10].
Constructed areas such as concrete buildings, roofs, paved roads, and sidewalks lead to an
increase in impervious surfaces, which reduces the time of concentration for runoff, leading
to higher storm runoff and peak discharges [11,12]. As a result, flooding and waterlogging
are common issues in highly urbanised areas [13].

The effect on hydrological processes, particularly surface runoff characteristics, of land
use change due to urbanisation has been studied by many researchers [14–16]. Specifically,
Hu, Fan, and Zhang [2] investigated the impact of land use change on the distribution of
surface runoff in the highly urbanised city of Beijing. Results indicated that the change
in surface runoff is strongly associated with change in impervious areas. Chen et al. [17]
showed that non-uniform urban expansion and intensification are the major driving forces
for changing surface runoff. The studies mentioned above indicate that changes in ur-
ban land use with more impervious surfaces reduce the ability to intercept rainfall and
exacerbate surface runoff process.

The SCS–CN method, developed by the Natural Resources Conservation Service
(NRCS), U.S. Department of Agriculture (USDA), is one of the most widely used methods
in many hydrological studies, particularly for estimating surface runoff, accounting several
factors such as soil, land use treatment, and topographical features, and incorporating these
factors into a single CN parameter [18–21]. However, the conventional method is more time
consuming and error prone. Remote sensing (RS) and a geographic information system
(GIS) can be used effectively to manage spatial and non-spatial databases that represent
the hydrologic characteristics of the watershed [22]. Therefore, the application of GIS and
remote sensing with hydrological models yield results with high reliability and accuracy
over conventional methods [23]. Many hydrological studies are being conducted with the
integration of GIS and RS techniques for simulating surface runoff. For instance, Shadeed
and Almasri [24] demonstrated that the integration of GIS with SCS–CN for simulating
runoff volume proved to be an effective tool in arid to semi-arid catchments [24]. Similarly,
Liu and Li [25] used a GIS-based SCS model for runoff generation in Loess plateau of China
and found that the calculated and observed runoff processes were well correlated.

Recently, the GIS-based SCS–CN method has been used widely to study the impacts
of land use change and urban growth on surface runoff [2,14,26]. For example, Jahan
et al. [27] investigated the impacts of suburban growth on surface runoff using GIS-based
SCS–CN, and concluded that the integrated approach is useful for land use change detection
and analysis of impact of suburban growth on surface runoff. Furthermore, Vojtek and
Vojtekova [14] applied the SCS–CN method in a GIS environment to study the impact of
land use change on surface runoff. Results indicated that the method is suitable for spatial
modelling of runoff characteristics of a basin where few data are available. Therefore, GIS
and remote sensing in the SCS–CN model is a more efficient and cost-effective method that
produces adequate results without using complex data in analysing the impact of land use
change and urban growth [27–30]. In this study, the GIS and SCS–CN method is integrated
to analyse the effect of land use change, and examine the spatial-temporal variation in
surface runoff at an urban scale.

Firstly, the study assessed land use change in Xiamen city from 1980 to 2015 by
analysing land use images in GIS environment. Then, surface runoff depth was estimated
using SCS–CN method. We used GIS-based SCS–CN method to evaluate the effect of
land use change on surface runoff. The main objective of this research is to identify the
characteristics of land use change from 1980 to 2015 and analyse the impact of land use
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change due to urbanisation on the temporal and spatial distribution of surface runoff under
the rainfall return periods of 5, 10, 20, and 50 years.

2. Materials and Methods

2.1. Study Area

Xiamen City is located on the west coast of the Taiwan Strait, composed of the main-
land area along Xiamen Bay, Xiamen Island, Gulangyu, and other islands, including
6 administrative districts: Huli, Siming, Haicang, Jimei, Tong’an, and Xiang’an, as shown
in Figure 1. The city has a total land area of 1699 km2 and a sea area of 324 km2. The
study area is predominantly flat, low relief, with medium-low mountains, plains, and tidal
flats. The slope of the terrain descends from northwest to southeast. The northwest part is
mountainous, with the highest elevation of 1175 m above sea level, located on Yunding
mountain [31]. Xiamen has a subtropical monsoon climate, with humid and mild climates
throughout the year. According to the Xiamen Statistical Yearbook, annual average tempera-
ture and rainfall are approximately 21 ◦C and 1200 mm, respectively, with most rainfall in
June, July, and August, accounting for more than half of the annual rainfall. Xiamen is one
of the special economic zones in China and has experienced a rapid economic development
and urbanisation [31]. According to Xiamen Municipal Bureau of Statistics [32], urban
built-up area of the city has expanded from 38.5 km2 in 1985 to 348.23 km2 in 2017. The
permanent population of the city was 4.29 million in 2019 [32]. As of 2019, the urbanisation
rate of the population in Xiamen is 89.2% [33]. Xiamen has experienced several natural
disasters, especially flooding and waterlogging induced by sea-level rise and storm surges,
which is further intensified by rapid urban growth in past decades. Hence, there is an
urgent need for mitigation of the potential hazards induced by urban development and
climate change.

Figure 1. Location of study area with administrative boundary and catchment divisions.

Figure 2 shows the overall methodology of the study conducted for analysing impact
of land use change on surface runoff with the application of GIS and SCS–CN method.
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The GIS environment was used to build and intersect land use and HGS shapefiles. The
land use and soil complex were used to obtain the weighted CN. The CN value of each
polygon was estimated using the USDA table. Finally, raster calculator in the GIS was
used to calculate runoff depth from CN values for the four rainfall return periods. The
methodology was applied to four different years of 1980, 1990, 2005, and 2015, respectively.

 

Hydrological soil group map 

Soil and Land use complex 

Determination of maximum soil retention (S)  

Landsat image  

(1980, 1990, 2005, 2015) 

Weighted Curve Number 

Soil type Map 

Land use classification map 

Rainfall (5-year, 10-year, 20-year, 50-year) 

Impact of land use changes  

Digital Elevation 

model (DEM) 

Watershed delineation 

Calculation of runoff with 

respect to land use changes  
Change in surface runoff in 

different land use conditions.  

Surface runoff and runoff coefficient  

Figure 2. Flowchart showing the methodology of the study.

2.2. Data Source and Methods

(a) Land use data
Multispectral satellite images from Landsat 3 MSS, Landsat 5 TM, and Landsat 7

ETM+ were obtained to create a land use map of the study area for 1980, 1990, 2005,
and 2015. The images were downloaded from Centre for Earth Observation and Digital
Earth (CEODE), Chinese Academy of Sciences, and the United States Geological Survey
(USGS) [34]. Images were georeferenced to the UTM, Zone 50 North, WGS-84 projection,
and Beijing 1954 coordinate systems. The spatial resolution is set to 30 m. The land use was
classified according to the National Land Cover Data Sets (NLCD) of China generated by
Liu et al. [35] in the construction of the China 20th Century LUCC Spatio-temporal Platform.
The method of unsupervised classification with Iterative Self Organizing Data Analysis
Technique Algorithm (ISODATA) was used for image classification. Based on the national
land use data product by Geographical Information Monitoring Cloud Platform, the
land use was initially classified as six first level categories and twenty-five second level
categories, which were reclassified into eight classes for the study. High resolution satellite
imagery from Google Earth was used for visual interpretation and accuracy assessment.
The overall accuracy and kappa coefficient of classified land use types is more than 85%.
The high overall accuracy and kappa coefficient suggests a good relationship between
classified image and reference image. The detailed descriptions of land use classes are
given in Table 1. ArcGIS 10.5 and ENVI 5.3 software were used to generate various layers
and land use maps.
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Table 1. Land use classes and their description.

Land Use Description

Farmland
Areas for growing crops, mainly including paddy fields and arable lands for vegetable farming, with
or without regular irrigation facilities. It includes farmland where rice and dry land crops are rotated.

Woodland
Areas referring to forestry land for growing trees, shrubs, bamboos, and coastal mangroves,

including trees and shrubs with canopy density more than 30%.

Grassland
Areas of all kinds of grassland, mainly with herbaceous plants covering more than 5%, including

shrub grassland with grassland and canopy density.

Water
Areas of natural land waters and water conservancy facilities, including natural and artificial river

canals, lakes, and reservoir ponds.

Coastal wetlands Areas of tidal flats and beach lands, including lands near water level of the rivers and lakes.

Built-up land
Urban land refers to land in large, medium, and small cities, residential areas, and built-up areas
above county towns. It also includes construction sites such as factories and mines, large-scale
industrial areas, oil fields, salt fields, and quarries, as well as roads, airports, and special sites.

Rural settlements Refers to rural settlements independent of cities and towns.

Unused land
Areas of bare land, lands covered with gravel, sand, rocks, and saline-alkali and marsh lands.

Generally, vegetation coverage is less than 5%.

(b) Soil data
Soil data were obtained from Harmonized World Soil Database (HWSD) and Food

and Agriculture Organization (FAO). Soil information for Xiamen city was obtained from
1:1 million soil map of China with a resolution of 1 km (30 × 30 arc seconds) [36]. Hydro-
logical soil groups are classified into A, B, C, and D on the basis of water transmission and
infiltration rate of soil when the soil is thoroughly wetted [29]. Soil group A has a high
infiltration rate and the lowest runoff potential. These soils consist of sands or gravels
that have a high rate of water transmission. Group B and C soils have moderate runoff
potential and infiltration rate with a slower rate of water transmission. Soil group D has
the lowest infiltration rate and highest runoff potential composed of clay or clayey loam
soils with a very slow rate of water transmission [29]. Based on soil texture and soil type,
the study area is classified into three HSG types, B, C, and D, as can be seen in Figure 3,
which mostly contribute to large surface runoff and less infiltration.

(c) Rainfall data
Long-time series rainfall data from 1985 to 2015, collected at the Xiamen meteorological

stations, were acquired from the China Meteorological Data Service Centre of the China
Meteorological Administration. The rainfall amount for the return periods of 5, 10, 20, and
50 years were obtained from maximum daily rainfall data for the hydrological analysis, as
seen in Table 2. The rainfall for corresponding return periods was determined by using
Log Pearson Type III distribution, which is the common probability distribution method
used in China [37]. The study assumed that the climatic and soil conditions are constant.
To investigate spatial heterogeneity, the study required uniformly distributed station data,
which are not available. Therefore, for the temporal analysis of rainfall from the stations,
the station with the most complete data was selected as a representative of the study
area’s rainfall. Furthermore, the study area is small, and changes in rainfall variation is
considered insignificant.

(d) Digital Elevation Model (DEM)
A digital elevation model (DEM) with a 30 m resolution was downloaded from the

USGS website. Using hydrology tools in ArcGIS 10.8, 19 catchments were obtained, as seen
in Figure 1. The sinks in the DEM data were filled, water flow direction was estimated, and
flow accumulation was set with a threshold of 10,000 and 60,000 to obtain the catchments.
As the study area has short streams and not many large rivers, areas in the southwest do
not have adequate streams to obtain a catchment. Hence, runoff obtained from these areas
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was not significant, and only those areas with enough streams within the threshold are
selected as catchments for runoff analysis.

Figure 3. Soil type and hydrological soil group in Xiamen.

Table 2. Rainfall depth for 24 h maximum daily rainfall in different return periods.

Return period (years) 5 10 20 50

Rainfall (mm) 194.3 237.7 280.1 335.3
Source: Xiamen Meteorological Bureau.

2.3. SCS–CN Method

The SCS–CN method is the most commonly used empirical hydrological method
developed by the NRCS, USDA, and is widely used to simulate runoff [19,29]. The curve
number method has been successfully adopted in many ungauged watersheds and has
expanded its scope of application in urbanised catchments and forested watersheds [29].
The surface runoff model uses the curve number approach of the US Soil Conservation
Service [29], based on combinations of land use, hydrological soil group, and antecedent
moisture condition (AMC) for the estimation of runoff. The amount of runoff was estimated
using the SCS–CN method in presence of GIS and RS. The curve number is the most
important factor in determining runoff via the SCS based method. The runoff of the soil
and land use complex is represented by CN, which is a function of soil type, moisture
conditions, and land use type [38].

The SCS–CN model is based on the water balance equation as shown in the
Equations (1)–(3).

P = Ia + F + Q (1)

Q
P − Ia

=
F
S

(2)

Ia = λ × S (3)
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where P is the rainfall depth (mm), Ia is the initial abstraction of the rainfall (mm), F is
infiltration, Q is surface runoff depth (mm), S is the potential maximum soil retention, and λ
is abstraction coefficient that ranges between 0.0 to 0.2 or 0.05 for urbanised catchments [39].
The value of 0.2 as mentioned by Natural Resources Conservation Service (NRCS) was
used in the study [29]. The runoff depth can be obtained for two conditions from the
Equations (1) and (2):

For P > Ia and

Q =
(P − Ia)2

P − Ia + S
(4)

If P < Ia, Q = 0 and Q from Equation (4) is expressed as follows:

Q =
(P − 0.2S)2

P + 0.8S
(5)

In Equation (5), S was obtained from the dimensionless parameter CN. CN is runoff
curve number that ranges from 0 to 100.

S =
25, 400

CN
− 254 (6)

In the SCS–CN method, curve number plays an important role in determining the
surface runoff of an area, and its value depends on the corresponding soil type and AMC.
AMC is antecedent moisture condition present in the soil at the beginning of the rainfall.
Areas with a higher curve number represent higher runoff generated from the surface. In
our study, we chose B, C, and D as three hydrological soil groups (HSG) present in the study
area, and the soil moisture condition (AMC II) was set as moderate according to average
runoff condition. A combined map of land use and HSG was generated by combining land
use and soil maps in ArcGIS using overlay analysis. Then, the CN values were assigned
for each polygon based on the information of land use and soil. The CN values for each
land use type under AMC II is obtained from the TR-55 lookup Table 3 [29,40].

Table 3. CN numbers for corresponding land use types.

SN Land Use and Cover Type
Hydrological Soil Group Type

B C D

1. Farmland 71 78 81

2. Forestland 58 72 79

3. Grassland 56 70 77

4. Water Body 100 100 100

5. Coastal wetlands 89 93 95

6. Built-up land 98 98 98

7. Rural settlements 71 79 83

8. Unused land 86 91 94

Area weighted CN was obtained to simulate the runoff of the whole area using
the initial curve numbers from the table as in Equation (8). Combining the CN values
of different land use and soil complex polygons, weighted CN was calculated for each
catchment. The weighted CN is calculated by taking the sum of each CN value multiplied
by its fraction of the total area of each land use type [41]. The Equation is given below:

CNw =
∑(CNi × Ai)

A
(7)

183



Land 2021, 10, 839

where CNw is the weighted curve number; CNi is the curve number for each land use
type; Ai is area of land use with respective curve number; and A is the total area of each
land use type. Finally, surface runoff depth was estimated, and runoff coefficient, i.e., the
ratio of runoff to rainfall, was calculated.

2.4. Analysing Impact of Land Use Change on Surface Runoff

Impact of land use change on surface runoff was analysed by comparing the difference
in runoff variables. Runoff depth and runoff coefficient was used as two variables to assess
land use change on surface runoff. Surface runoff from the catchments were obtained
for the different land use conditions and runoff was calculated under different rainfall
return periods. The difference of runoff and runoff coefficient was obtained for the land
use period of 1980–1990, 1990–2005, and 2005–2015 by using Equations (8)–(10):

ΔQ = Qa − Qb (8)

Δ ∝=
ΔQ
P

(9)

Δβ =
ΔQ
Qb

× 100% (10)

where Qa and Qb denotes surface runoff depths (mm) of the initial and final land use,
respectively, P is the rainfall depth (mm), ΔQ is the change in runoff depth between two
periods of land use conditions, Δα is the absolute change in the runoff coefficient, and Δβ
represent relative change in runoff. Land use change leads to an increase in surface runoff
if the values of ΔQ and Δα are positive in the above Equation (10).

A relationship between land use and surface runoff was determined by using Pearson’s
product–moment correlation coefficient. A positive and larger correlation coefficient
suggests that the factor is more significant in the change in surface runoff.

2.5. Validation of SCS–CN Model

For analysing the performance of the model, the model was validated using observed
flow and simulated runoff between 1981 and 2015. Four statistical indices, as shown in
Table 4, were used for testing the goodness of fit.

Table 4. Statistical indices used for model validity.

Coefficient Description Optimal Value

Percent bias (PBIAS)
measures the average tendency of the

simulated values to be larger or smaller than
their observed ones.

0—Optimal,
Negative—underestimation,

Positive—overestimation

Nash-Sutcliffe efficiency (NSE)

a normalised statistic that calculates the
relative magnitude of the simulated flow
variance compared to the observed flow

variance.

NSE = 1—perfect match,
NSE = 0—model predictions accurate as the

mean of the observed data,
−Inf < NSE < 0—observed mean is a better

predictor than the model

Correlation coefficient (r)
statistical measure of the strength of the

relationship between the relative movements
of simulated and observed flow.

Ranges from −1 to 1
−1—perfect negative correlation

1–perfect positive correlation
0—no correlation

Volumetric efficiency (VE) represents the fraction of water delivered at
the proper time

−Inf ≤ VE ≤ 1
close to 1—efficient

3. Results

3.1. Land Use Change in the Study Area

Land use types for four different years can be seen in Figure 4. The spatial distribution
of land use types show that the area has experienced significant change, especially due
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to urban expansion. There was a remarkable expansion of built-up areas from 62.85 to
307.54 km2 between 1980 and 2015. It was the largest gain, with a net increase of 244.69 km2.
The largest net loss from 1980 to 2015 was observed in farmland and coastal wetlands with
218.2 km2 and 46.65 km2, respectively. However, constructed land that includes built-up
land and rural settlements underwent the largest net increase. The forest area reduced
substantially with a change of 23.93 km2.

Figure 4. Land use maps of Xiamen in 1980, 1990, 2005, and 2015.

Similarly, grassland and farmland were replaced by built-up areas in the south and
south-eastern parts of the mainland and major parts of the island. It can be observed that
most coastal wetlands decreased from 1980 to 1990, and built-up areas occupied most
areas. The land area of Xiamen City expanded outward by reclamation and construction
along the coast after the national survey of 1985, which contributed to the expansion of
land area and reduced wetlands in 1990 [42]. A considerable increase in water bodies
indicate some farmlands being converted to reservoirs, aqua farms, and other constructed
wetlands. Table A1 shows the conversion of the land use in the form of a change matrix for
the period of 1980 to 2015. There was a major conversion from farmland to constructed
land. The trend of land use change from 1980 to 2015 indicates that urban development
has dominated the island city, resulting in vast areas of impervious surfaces.

In Table A2, the percent and area change of each land use type is depicted from 1980 to
2015. It can be observed that farmlands have been reduced by 14.01% and built-up area has
increased by 15.7%. The transfer process of land use types in between the study years can
be seen from Figure 5. It can be noticed that major portion of change in farmlands in 1990
and 2005 have been replaced by built-up land. Overall, constructed land increased from
9.12% in 1980 to 26.1% in 2015. This indicates that urban impervious areas have increased
considerably in the last few decades of the study period.
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Figure 5. Transfer process of land use type during 1980–2015.

3.2. Spatial Distribution of Runoff in Different Years

The spatial distribution of runoff depth for the highest rainfall return period of 50 years
is shown in Figure 6. Surface runoff depth ranges from 176.28 mm to 329.16 mm. The area
covered by built up land with higher CN depicts a higher amount of runoff in the period
from 1980 to 2015. Xiamen Island, particularly dominated by constructed area, shows
larger areas of high runoff. The urban areas with high CN are often the areas with high
runoff value.

Under the land use conditions of 1980, 1990, 2005, and 2015, the average surface
runoff depth and runoff coefficient show an increasing trend as shown in Figure 7. The
average surface depth of the area under four different periods differ from 117.2 to 271.6 mm,
and runoff coefficient fluctuated from 0.6 to 0.8. The calculated value of average surface
runoff and runoff coefficient increases as the rainfall return period increase from 5 years to
50 years. It can be observed that surface runoff and runoff coefficient significantly increase
from the year 1990 to 2015. The amount of runoff percent for different land use types can
be noticed in Figure 8. A major portion of runoff is contributed by built-up land and rural
settlements which are the major constructed land in the study area with the rise from 38.2%
to 48.4%. Runoff contributed by built-up land alone in the study area increased from 14.2%
to 27.9% from 1980 to 2015. Similarly, farmlands and coastal wetlands also contribute to
the significant portion of surface runoff in the study area.
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Figure 6. Surface runoff depth in Xiamen from 1980 to 2015.

Figure 7. Average surface runoff depth Q (mm) and runoff coefficient (RC) under the return period
of 5, 10, 20, and 50 years under the land use conditions of 1980, 1990, 2005, and 2015.
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Figure 8. Runoff depth across different land use types.

3.3. Change in Surface Runoff in Different Land Use Conditions

Increase in urbanised area gives rise to impervious surfaces, resulting in increased
surface runoff. Table 5 depicts the change in surface runoff at different stages of land use
conditions for the rainfall return periods of 5, 10, 20, and 50 years. Increase in amount
of runoff (ΔQ) is highest during 1990–2005 and lowest during 1980–1990. The surface
runoff coefficient change (Δα) during the periods is influenced by the respective change in
average surface runoff under return periods of 5, 10, 20, and 50 years.

Table 5. Changes in surface runoff at different stages under rainfall return periods of 5, 10, 20, and
50 years.

Return Period Time Period
Amount of Runoff
Change (ΔQ) mm

Percent Change in
Runoff (ΔC) %

Δα

5 years

1980–1990 1.01 0.86 0.005

1990–2005 12.57 10.63 0.065

2005–2015 6.15 4.70 0.032

10 years

1980–1990 1.13 0.72 0.005

1990–2005 13.67 8.68 0.058

2005–2015 6.62 3.87 0.028

20 years

1980–1990 1.22 0.63 0.004

1990–2005 14.50 7.37 0.052

2005–2015 6.97 3.30 0.025

50 years

1980–1990 1.32 0.53 0.004

1990–2005 15.33 6.16 0.046

2005–2015 7.32 2.77 0.022

3.4. Relationship between Surface Runoff and Land Use

Land use exhibits a high relationship with surface runoff with a statistically significant
correlation (p > 0.05). As shown in Table 6, farmlands (−0.97), forestland (−0.96), and
grassland (−0.97) contribute negatively to the surface runoff, which indicates that increase
in these land use types contribute to a decrease in surface runoff. Increase in urban built-up
land (0.98) and rural settlements (0.99) corresponded to an increase in average surface

188



Land 2021, 10, 839

runoff, while the decrease in farmland, forestland, and grassland contribute to higher
runoff. Furthermore, increase in coastal wetlands contribute to a decrease in runoff, and
unused land contributed positively to average runoff. The results are consistent with
the common knowledge that increase in urban constructed land causes an increase in
surface runoff; however, increases in farmland, grassland, forestland, and wetlands lead
to a reduction in surface runoff. Water bodies are considered to have less effect on runoff
depth, hence the relationship is less significant.

Table 6. Relationship between land use and surface runoff under rainfall return period of 50 years. t—t-statistic, p—p-value,
and R2—Pearson’s correlation coefficient. Areas in square kilometres.

Farmland Forestland Grassland
Water
Body

Coastal
Wetlands

Built-Up
Land

Rural
Settlements

Unused
Land

Runoff
(Q50)

1980 681.14 494.87 153.78 37.84 48.56 62.85 79.38 0 136.96
1990 667.2 486.48 153.48 62.02 7.7 93.51 88.2 0 177.77
2005 540.02 474.01 151.82 67.94 2.46 191.83 93.22 0 218.28
2015 462.94 470.94 150.91 64.99 1.91 307.54 99.46 0.18 271.62

t −5.3587 −4.9696 −5.7872 1.77715 −1.9197 7.6905 8.734 2.0111 -
p 0.03311 0.03819 0.02858 0.2185 0.1949 0.01649 0.01286 0.182 -

R2 −0.97 −0.96 −0.97 0.78 −0.81 0.98 0.99 0.82 -

3.5. Rainfall-Runoff Correlation Analysis

The correlation analysis shown in Figure 9 indicates a strong linear relationship
between the SCS–CN runoff and maximum daily rainfall, with a correlation coefficient
of 0.99. The study results are comparable with the findings of Rawat and Singh [43] who
found a good coefficient of determination (0.91) in a small study area using the SCS–CN
model. The slope of the line determines the runoff coefficient, i.e., 0.84. The resulting
findings are similar to Al. Ghobari et al. [44], who came to the conclusion that the SCS–CN
model has a better simulation effect on study areas with a coefficient of runoff greater
than 0.5 than those with a coefficient of runoff less than 0.5. This coefficient may provide
valuable information on the extent of the basin response to runoff generation.

Figure 9. Relationship between rainfall and SCS–CN runoff.

3.6. Validation of SCS–CN

The SCS–CN model was validated using historical observations and simulated flow
from 1980 to 2015, as shown in Figure 10. Some statistical efficiency criteria are used to
perform evaluation of the validation results between simulated output and observed data
which are percent bias (PBIAS), correlation coefficient (r), Nash–Sutcliffe efficiency (NSE)
and volumetric efficiency (VE). These statistical indices indicate the goodness of fit between
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simulated and observed data. The model successfully predicts the annual flow with the
high accuracy as depicted by the indices. The PBIAS, r, NSE, and VE were −5.7, 0.82, 0.64,
and 0.86, respectively. Although there is an underestimation of streamflow due to static
land use, annual flow statistics indicate that there is a good relationship between observed
and simulated streamflow. Hence, the model performance was satisfactory and responded
well in simulation of runoff.

Figure 10. Observed and simulated annual flow from 1981 to 2015.

4. Discussion

The study area has undergone significant land use change from 1980 to 2015. A
significant loss of farmland was observed in the period between 1980 and 2015. During
this period, most of the farmlands are replaced by built-up lands in the south-eastern
part of the study area. After the national survey was carried out in 1985, the land area of
Xiamen City expanded outward through reclamation [42]. The major land use change in
Xiamen is attributable to land reclamation and urban development in the past years. The
process of urban construction in reclaimed land and building new residential areas started
to rise after 1985, which is reflected in the runoff increase after 1990 [45,46]. In 1980, after
the city was declared as specific economic zone, most of the farmlands and forestlands
were converted into urban areas between 1985 and 2005. After 2005, there was major sea
reclamation which increased the urban area. New initiatives for industrial and economic
development occurred in the period of 1990 to 2005, and an urban renewal program took
place between 2003 and 2012 [31]. The change in land use significantly affected the runoff
hydrology of the city as a result of urban development. The high values of runoff gradually
expanded outside Xiamen Island and were mainly distributed in the areas with increased
urban construction [40]. Results show that particular increase in constructed land with
higher CN value contributes to higher runoff, whereas farmland, forestland, and grassland
with lower CN contribute to a lower percent of runoff [30]. Therefore, change in land use,
particularly an increase in urban areas, corresponds to an increase in runoff. As a result
of rapid urbanisation, significant increase in surface runoff is observed in the island and
outer areas of mainland, which poses higher risks for urban as well as coastal floods [47].
Similar results depicting the strong impact of urbanisation on surface runoff has been
obtained by previous studies [2,7,17,48]. Relevant studies have shown that the extent to
which urbanisation affects hydrological response depends on spatial and temporal scale,
physical geography, landscape composition, and physical and climatic characteristics [49].
The study area, being a lowland coastal area, is relatively flat, and a major part of the area
has a slope of less than 15%. Therefore, the slope of the area had a less significant effect on
the surface runoff. Additionally, the main objective of the study is to analyse the impact of
land use change on the surface runoff, especially due to rapid urbanisation. The impact of
slope on the runoff characteristics (peak flow and runoff velocity) are not studied in detail.
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However, future studies could help better understand the effect of slope on peak flow and
runoff velocity.

This study demonstrated the use of a GIS-based SCS–CN method to assess the effects
due to land use change on surface runoff by integrating spatial data and hydrological
parameters. A GIS-based approach proved to be a reliable tool for quantifying the impact
of land use change on runoff with respect to change in CN, which is a function of soil, land
use, and moisture conditions [50]. The input data of the soil map and rainfall were based
on actual field data, and the CN values of each land use type were obtained from the USDA
standard table. The simulation of runoff was validated by comparing the observed and
simulated annual flow in the study area, which shows that the design runoff simulated by
the model is well accepted. Therefore, the model produced accurate and reliable results of
runoff incorporating different spatial aspects. The results were consistent with the results
obtained by previous studies of runoff simulations in Xiamen [40,42,51].

To fully comprehend the impacts of spatiotemporal land use change on abrupt or
gradual flood peaks and runoff flow, various geographical parameters that influence the
runoff should be considered in future studies. In the study, other human and environmental
factors affecting runoff, such as the construction of dams, reservoirs and underground
extraction, drainage systems, temperature, canopy cover, and soil loss, etc. are given little
attention. Therefore, it is necessary to conduct extensive studies including these factors in
the future.

5. Conclusions

With the gradual increase in urban areas from 1980 to 2015, a major fraction of land
was converted to areas with poor infiltration and low potential storage, which significantly
influenced surface runoff. In order to analyse the effect of land use change due to urbanisa-
tion on surface runoff, we used GIS-based SCS–CN model. The change in average runoff
during the study period was determined, and relation between land use and runoff was
obtained. A relation between rainfall and SCS runoff showed that the performance of
SCS–CN model is suitable for runoff estimation. The GIS-based approach seemed to be an
efficient tool for assessing the land use change and surface runoff through spatial analysis.
Hence, the conclusions derived are as follows:

1. The major changes in land use were observed at the expense of conversion of farmland
to built-up land. Farmland decreased by 14.02%, and built-up land increased by 15.7%,
from 1980 to 2015. Another significant change can be observed in the reduction in
coastal wetlands by 2.99% which is attributed to land reclamation and conversion of
reclaimed land to constructed land. Overall, the constructed land in the study area
increased from 9.12% in 1980 to 26.1% in 2015;

2. Spatial change in surface runoff was noticed from 1990 to 2015 in the south-eastern
part of the study area, in which there are areas with higher urban built-up land.
Therefore, the increase in runoff in the study area indicates the positive impact of
urbanisation. The amount of runoff contributed by land use type shows that, with
the increase in total constructed land, the amount of runoff significantly increased
from 38.2 to 48.4%. The amount of surface runoff is noticed to be increased from 1990,
which is consistent with the rise in urban development that occurred since 1990;

3. The average surface runoff was positively correlated with the built-up and rural set-
tlements, but negatively correlated with the areas of farmland, forestland, grassland,
and coastal wetlands. The urbanised land use was determined as a dominant factor
for surface runoff increase during the period from 1980 to 2015.

The areas with higher runoff, especially in Xiamen Island, dominated by urban built
up land, should be given more attention during land use planning. Forestland, grassland,
and farmland in the area have a higher significance for storing runoff. Therefore, these
natural green infrastructures should be considered as potential areas for runoff storage.
Further research can be focused in exploring the effectiveness of natural infrastructure and
nature-based solutions for runoff mitigation and reducing urban flood risks.
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Appendix A

Table A1. Land use and land cover change from 1980 to 2015.

Land Use (km2)
1980 1990 2005 2015

Land Cover Change
(1980–2015)

km2 % km2 % km2 % km2 % km2 %

Farmland 681.14 43.71 667.20 42.81 540.02 35.50 462.94 29.70 −218.2 −14.01
Forestland 494.87 31.75 486.48 31.21 474.01 31.16 470.94 30.21 −23.93 −1.54
Grassland 153.78 9.87 153.48 9.85 151.82 9.98 150.91 9.68 −2.87 −0.19

Water body 37.84 2.43 62.02 3.98 67.94 4.47 64.99 4.17 27.15 1.74
Coastal wetlands 48.56 3.12 7.70 0.49 2.46 0.16 1.91 0.12 −46.65 −2.99

Built-up land 62.85 4.03 93.51 6.00 191.83 12.61 307.54 19.73 244.69 15.70
Rural settlements 79.38 5.09 88.20 5.66 93.22 6.13 99.46 6.38 20.08 1.29

Unused land 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.18 0.01

Table A2. Land use change transfer matrix between 1980 and 2015.
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Land Use 2015 (In km2)

Land Use Class
Built-Up

Land
Coastal

Wetlands
Farmland Forestland Grassland

Rural
Settlements

Unused
Land

Water
Body

Grand
Total

Built-up land 61.82 0.01 0.58 0.15 0.03 0.02 0.00 0.18 62.78
Coastal wetlands 22.92 1.76 0.51 0.11 0.00 0.84 0.15 22.07 48.37

Farmland 179.68 0.01 456.75 3.60 0.95 25.28 0.00 15.13 681.42
Forestland 21.36 0.00 1.79 463.23 5.19 3.18 0.00 0.18 494.95
Grassland 5.05 0.00 0.88 2.27 144.54 0.69 0.00 0.20 153.62

Rural settlements 7.41 0.01 1.56 0.88 0.03 69.04 0.00 0.07 79.01
Unused land 0.00 0.00 0.00 0.35 0.00 0.00 0.00 0.00 0.35
Water body 9.10 0.01 1.06 0.48 0.01 0.03 0.00 27.08 37.77
Grand Total 307.350 1.810 463.134 471.062 150.754 99.096 0.159 64.913 1558.277

Note: The bold letters indicate that there is no change in the land use change over the time period.
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Abstract: Flash floods represent one of the natural hazards that causes the greatest number of
victims in the Mediterranean area. These processes occur by short and intense rainfall affecting
limited areas of a few square kilometers, with rapid hydrological responses. Among the causes of
the flood frequency increase in the last decades are the effects of the urban expansion in areas of
fluvial pertinence and climatic change, namely the interaction between anthropogenic landforms
and hydro-geomorphological dynamics. In this paper the authors show a comparison between flood
events with very similar weather-hydrological characteristics and the ground effects occurred in
coastal areas of three regions located at the top of a triangle in the Ligurian Sea, namely Liguria,
Tuscany and Sardinia. With respect to the meteorological-hydrological hazard, it should be noted
that the events analyzed occurred during autumn, in the conditions of a storm system triggered
by cyclogenesis on the Genoa Gulf or by the extra-tropical cyclone Cleopatra. The “flash floods”
damage recorded in the inhabited areas is due to the vulnerability of the elements at risk in the
fluvio-coastal plains examined. There are numerous anthropogenic forcings that have influenced the
hydro-geomorphological dynamics and that have led to an increase in risk conditions.

Keywords: flash floods; intense rainfall; urbanized areas; damage; anthropic impacts; West
Mediterranean; Italy

1. Introduction

Climatic changes, including the increase in extreme temperatures and number of
heavy rainfall events, have been recorded since around 1950 in different areas of the
world [1]. Floods are already the most frequent in European coastal areas [2–4] and among
the costliest and deadliest natural processes in the Mediterranean area [5].

Based on an international disaster database [6], 200 billion Euros in damages related to
various calamities since 1900 have occurred in the countries surrounding the Mediterranean
Sea out of which 85 billion are related to river flooding [7,8].

The observed variability of flood frequency and discharge magnitude is therefore the
result of a complex interaction between rainfall history and the factors that control the
response of the river basins, in particular, run-off modes. In the Mediterranean environ-
ment, the global warming process manifests itself with an increase in the average annual
air temperature and with a variation in the rainfall regime [9,10]. Some regions such as
Liguria, Tuscany and Sardinia in Italy; Provence-Alpes-Cote d’Azur and Corse in France;
and Catalonia and the Valencia area in Spain are particularly exposed to flash floods [7,11]
for which rainfall peaks and the flood peaks of the watercourses are very close in time. This
particular pattern is the result of the interplay between the dominant atmospheric low level
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flow circulation patterns and the relief and orientations of the northern Mediterranean
coasts, which forces convergence and triggers convection.

The magnitude and impact of extreme floods vary significantly over the Mediterranean
region with a significative difference between the West and East parts [12]. The western
part of the region is much more prone to high impact and high magnitude events [13–16].
This is probably due to: (a) The proximity of the Atlantic Ocean and oceanic climatic
influences at latitudes where eastward atmospheric flows dominate [7,17]; (b) the reliefs
surrounding the West Mediterranean Sea forces the convergence of low-level atmospheric
flows and the uplift of warm wet air masses that drift from the sea to the coasts, thereby
triggering active convection and consequently short intense bursts of rainfall.

The coasts of the Mediterranean Sea are characterized by short and intense rain-
falls [13,17], which in recent decades have shown an increasing frequency [18,19]. Further-
more, for Italy, the statistics seem to indicate an increase in geo-hydrological phenomena
in small basins for the last 30–50 years [20]. These rainfalls, especially if concentrated on
reliefs not far from the coasts, can generate the phenomenon of flash floods along the short
streambeds that have significant slopes [21–23]. Such precipitations are characterized by
convective events, typically with 100 mm or more cumulated rainfalls over a few hours.
The affected areas are often limited to a few hundred square kilometers, with rapid hy-
drological responses, e.g., less than 6 h delay between the peak rainfall intensity and peak
water discharge downstream [8].

The coastal urban flooding is a complex phenomenon which may occur in various
forms such as: Urban flooding due to high intensity rainfall (pluvial flooding); urban
flooding due to inadequate drainage; flooding caused by overtopping in the channels or
streams/rivers. In coastal urban cities such as Genoa, Olbia and Livorno, severe flood
scenarios mostly take place due to combination of surface flooding and stream overtopping.
Urban flooding is one of the most severe problem in numerous parts of the world because
they affect goods and can cause casualties. Urban flood, being a natural disaster, cannot
be avoided; however, the losses incurred due to flooding can be reduced by proper flood
mitigation planning. As such, it is necessary to have a proper estimation of flood extent
and flood risk for the different flow conditions so that proper flood evacuation and disaster
management plan can be prepared in advance.

The flash flood consequences and the ground effects are amplified if the floodwaters
spread to densely urbanized areas [24–27]. They are usually crossed by canalized streams
that are often culverted for long stretches. These streambeds, which have been narrowed
year after year to acquire new urban spaces [28,29], are often surmounted by bridges that
are inadequate, with spans that are clearly insufficient for the discharge of flood waters.

Flash floods characterized by severe ground effects are generally triggered by:

1. Short-lived (often less than 3 h) strongly convective intense rainfall events, with
total rainfall amounts (200–300 mm). Such violent events have a limited areal extent
(<100 km2) and generate local floods of small headwater streams that usually possess
a surface of <40 km2. A typical example of such flash floods is the catastrophic flash
flood that occurred in eastern part of Genoa Metropolitan Area in November 2002 [30].

2. Mesoscale convective systems can produce stationary rainfall amounts exceeding 200–
300 mm in a few hours [31]. During two severe cloudbursts that hit the Liguria coasts
in the last 10 years, 539.0 mm/24 h were recorded at the Brugnato rain gauge station,
during the famous Cinque Terre event, in Eastern Liguria during October 2011 [32]
and 556.0 mm/24 h at Quezzi station, Bisagno Valley, Genoa city in November
2011 [33,34]. The areal extent of such events ranges from less than 100 km2 to greater
than hundreds of km2.

3. On some occasions, heavy and prolonged rainfall may be part of a large-scale per-
turbation lasting several days. In such cases, extreme rainfall accumulation may be
observed locally: 700 mm over 6 days (up to 1800 mm in October and November)
caused floods and further loss of life on the border between Liguria and Piedmont
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during the events of 21–22 October 2019 and 23–24 November 2019 [35]. These events
generally cover a larger area from hundreds to thousands of km2.

Along the Italian coasts, during the period from September to November, the so-
called “Meteorological Fall” is the main season for flash floods that cause severe damage
and often casualties due to their suddenness. This is particularly the case of mesoscale
convective systems producing long lasting and stationary rainfall events that lead to strong
responses by the watersheds concerned (i.e., high runoff rates due to soil saturation) and
substantial coincidence between the peak rainfall and flood peak in small hydrographic
basins (<250 km2).

The north-western coasts of Italy are historically subject to flash floods: Ligurian
coasts, along with the Tuscan coasts and coasts in Sardinia. There are at least 46 damaging
flood events that have been recorded in the last 30 years, practically one every 7.8 months
(Table 1): 9 events occurred in Tuscany, while 19 cases occurred in Liguria and Sardinia.

Table 1. Severe meteorological events during the period 2000–2020 that occurred in Sardinia and
along the coasts of Liguria and Tuscany with severe consequences (flooding/flash floods) for urban
areas and inhabitants. The content of the brackets displays the victim numbers. The three events
described in this article are bolded.

Year Month Day Place/Area (Casualties) Region

2020 Nov 28 Bitti (3) Sardinia

2020 Oct 2–3 Ventimiglia (10) Liguria

2017 Sept 9–10 Livorno (8) Tuscany

2015 Jul 22 Cagliari Sardinia

2014 Oct 14 Grosseto and Orbetello Tuscany

2014 Nov 5 Carrara (1) Tuscany

2014 Nov 10 Recco-Chiavari-Camogli (2) Liguria

2014 Oct 9–10 Genoa (1) Liguria

2013 Nov 18 Olbia (18) Sardinia

2012 Nov 28 Carrara and Ortonovo Tuscany

2012 Nov 12 Maremma and Grosseto (7) Tuscany

2011 Nov 7 Isola d’Elba (1) Tuscany

2011 Nov 4 Genoa (6) Liguria

2011 Oct 24–25 Cinque Terre e Lunigiana (13) Liguria and Tuscany

2010 Oct 4 Genoa Sestri Ponente (1) Liguria

2010 Sept 7 Genoa Liguria

2010 Jan 25–26 Olbia Sardinia

2008 Nov 4 Olbia Sardinia

2008 Oct 22 Capoterra (5) Sardinia

2008 Jun 16 Genoa Liguria

2007 Jun 1 Genoa Liguria

2006 Nov 13 Cagliari Sardinia

2006 Sept 25–26 Cagliari Sardinia

2006 Sept 15 Bordighera and Vallecrosia Liguria

2006 Aug 16–17 Genoa Liguria

2005 Nov 13 Cagliari Sardinia

2005 Apr 5–6 Cagliari, Capoterra, Pula Sardinia

2004 Dec 6 Villanova Strisaili (2) Sardinia

2003 Sept 23 Massa-Carrara (2) Tuscany

2002 Nov 23 Imperia and Genoa Liguria

2002 Nov 11 Cagliari Sardinia

2002 Oct 9 Cagliari Sardinia

2000 Nov 6 Imperia and Savona Liguria
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On the one hand we can affirm that flash floods are geo-hydrological processes linked
to particular hydro-meteorological conditions and that their behaviors are significantly
affected by climate change [36], but on the other hand we cannot omit the fundamental
role played by wild urbanization [37], which has affected many towns on the western
Mediterranean coast. This uncontrolled expansion occurred after the Second World War
and appears to have been particularly significant in the already notoriously hazardous
areas that have undergone and imparted important changes to the hydrographic network
over time.

There are some fundamental reasons that constitute the basis of the decision to write
this paper. First of all, the fact that no author has so far compared the events that took
place in these regions, which are located adjacent to one another along the coast around
the Upper Tyrrhenian Sea, in the national and international body of literature and research.
The second reason is to compare the dynamics of three similar flood events, both in terms
of meteorological and hydrological characteristics, and in terms of effects on the ground,
with particular attention to the identification of any anthropogenic factors. In detail, three
flash flood events were chronologically analyzed (Figure 1): (1) Genoa Sestri Ponente
(Liguria), which occurred on 4 October 2010; (2) Olbia flood (Sardinia) on 18 November
2013 triggered by cyclone Cleopatra; (3) Livorno flood (Tuscany) on 9 September 2017
triggered by the cyclone Genoa Low.

Figure 1. Geographic location of the case-studies: Genoa Sestri Ponente (Liguria), Livorno (Tuscany)
and Olbia (Sassari, Sardinia). Other places named in the text: (1) Cagliari; (2) Savona; (3) Versilia;
(4) Garfagnana; (5) Imperia; (6) Massa and Carrara; (7) Villanova Strisaili; (8) Capoterra; (9) Bor-
dighera, Vallecrosia, Ventimiglia; (10) Cinque Terre; (11) Elba Island; (12) Grosseto, Maremma;
(13) Recco, Camogli, Chiavari; (14) Bitti; (15) Orbetello.
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2. Study Area

2.1. Genoa Sestri Ponente City

Sestri Ponente is a district of the Genoa Metropolitan City, the regional chief town
of Liguria (northern Italy) (Figures 1 and 2A); it extends over an area of about 8 km2,
with a population of 45,000 inhabitants. Until 1926, Sestri Ponente was an autonomous
municipality until it was incorporated, together with other municipalities of the Genoa
neighborhood, called “genovesato”, into the “Big Genova” City. The historic core of
Sestri Ponente is represented by a narrow coastal strip, about 1 km long, running parallel
to the shoreline and included in the floodplain between the Chiaravagna stream to the
east and the Cantarena stream to the west. The industrial expansion in the 1920s and
1930s developed in the alluvial plain around the historic core, while the subsequent urban
sprawl from the 1960s to date has continued upstream and occupies the hill slopes behind
(Figure 2A). Now the city is developed for 2.6 km in length along the coastline.

Figure 2. Elevation maps and catchments of the case studies: Genoa Sestri Ponente (A), Olbia (B)
and Livorno (C). Numbers refer to catchments in Table 2.
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From the geomorphological point of view, Sestri Ponente stands on a narrow alluvial
plain that is 2 km length and less than 500 m wide and is genetically linked to the action of
several watercourses and significantly modified by anthropogenic landforms. Drainage
networks are well developed with a torrential hydrological regime. Catchments are very
small in size (generally <10 km2) and characterized by high energy relief (Table 2) due to
elevation exceeding 700 m a.s.l. at a few kilometers from the coast and high slope gradient
locally higher than 60% (Figure 3A): Rio Chiaravagna Stream (11 km2, with an estimated
maximum full-flow rate of 213 m3/s for a 50-years return period), Rio Cantarena Stream
(1.58 km2, 52 m3/s), Rio Molinassi Stream (2.00 km2, 66 m3/s) and Rio Marotto Creek
(0.67 km2, 22 m3/s) [38]. The final stretches of these waterways are generally canalized
and drained.

Table 2. Morphometric parameters of the basins analyzed (the numbers refer to Figure 2). H Max, maximum altitude; H
Med, mean altitude; G med, mean gradient; Sup, surface; Ss, soil sealing; L rn, river network total length; Dd, Drainage
density.

Area Catchment
H Max

(m)
H Med

(m)
G Med

(%)
Sup

(km2)
Ss

(%)
L Rn
(km)

Dd
(km−1)

Genoa
1 658 262 47.2 11 23.4 60.5 5.7
2 438 89 31.8 1.9 49.4 5.6 3.0
3 545 230 49.4 1.8 20.4 9.2 5.1

Livorno

4 430 71 13.4 37.4 23.9 126.0 3.4
5 456 132 19 8.9 22.9 26.0 2.9
6 107 26 3 3.0 57.2 5.4 1.8
7 456 148 20.6 21.9 13.1 71.1 3.3

Olbia
8 457 89 10 20.9 14.1 37.0 1.8
9 700 115 12.8 48.2 10.7 104.6 2.2

Land use in the studied catchments mainly consists of artificial surfaces (32.5%) in
the lower part and forests and seminatural areas (45.0%) in the upper part of the basins;
subordinately are agricultural areas (7.0%) (Supplementary Materials Table S1)

The climate of Sestri Ponente is typically Mediterranean, with hot summers and
relatively mild winters: the average annual temperature is about 15 ◦C with a significant
upward trend. The mean annual rainfall during the period from 1960 to 2019 is about
1100 mm and the annual rainy days are 71 with an average rainfall rate of 14 mm/d, which
is also increasing [21]. The episodes of intense and short-lived rain are frequent, especially
in the autumn months (October and November), when typically small-sized and quasi-
stationary V-shaped convective systems are generated [31]. These systems result in extreme
flood-causing rainfalls, for which ground effects are often disastrous. In the post-war
period alone, flood events occurred 10 times in 69 years, which on average amounts to 1
event every 6.9 years (Supplementary Materials Table S2).

2.2. Olbia City

The Olbia city is one of the major cities of Sardinia and the most important link with
the mainland and other Mediterranean countries due to its tourist and commercial port
(Figures 1 and 2B). It extends for about 40 km2 (including the more peripheral districts)
with a population of about 60,000 inhabitants, while during the summer it can reach
100,000 inhabitants.

The whole coastal sector has undergone important changes since the early 1900s as a
result of management and sanitation. In the first decades of the 20th century, large swampy
and brackish areas were reclaimed. Then, beginning from the 1960s Olbia experienced a de-
mographic increase related to the tourist development in the neighboring Costa Smeralda,
which is world-famous for its sea landscape and resorts. In 50 years, the town has tripled
its population, transforming the socio-economic fabric and the population of inhabitants
increased from 17,800 inhabitants (1961) to 60,000 today.
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The plain of Olbia occupies a structural depression resulting from the kinematics of the
Sardinian-Mediterranean block related to the formation of the Western Tyrrhenian Sea [39].
Due to the irregular and indented coastal morphology, with parallel hollow rias separated
by prominent ridges featured by typical plateau and sierras, drainage patterns are mainly
dendritic and slightly developed; the upper part of catchments locally exceeds 700 m
a.s.l. and the watercourses that result are generally steep (Figure 3B). As a consequence
of the progressive urbanization of the plain, streams crossing the urban area are strongly
modified due to canalization and flow regulation. The main watercourses (Table 2) are the
Rio Seligheddu Stream (38.4 km2, with a maximum capacity of 330 m3/s for a 200 year
return period), the Rio San Nicola Stream (30 km2, 170 m3/s) and the Rio Gadduresu
Stream (7 km2, 55 m3/s) as well as other minor ones (<5 km2), resulting in an overall flow
rate exceeding 600 m3/s [40,41].

Land use in the studied catchments consists mainly in agricultural use (63.9%); arti-
ficial surfaces are present in suborder (12.9%) and forests and seminatural areas (22.7%)
(Supplementary Materials Table S1).

The climate is typically Mediterranean, with mild and humid winters and hot and dry
summers. The average annual temperature is about 16 ◦C. Sardinia is located almost at
the center of a low-pressure area that determines the convergence of different air masses
and the formation of self-regenerating convective systems, especially during the winter
period, resulting in strong “V-shaped” marine thunderstorms. The mean annual precip-
itation ranges between 600 and 900 mm and the annual rainy days are 60 (rainfall rate
10–15 mm/d): rainfall is more abundant in the autumn and winter months (from October to
December), while a minimum rainfall peak occurs in summer [41]. The urban development
of Olbia is relatively recent. As a consequence, only documents of floods post Second
World War have been discovered and considered: at least 16 flash floods in the last 69 years
(on average 1 event every 4.3 years) (Supplementary Materials Table S2).

2.3. Livorno City

Livorno city extends for just over 100 km2 of surface along the Tyrrhenian coast and
represents one of the most important trade and industrial centers in Tuscany (central
Italy) (Figures 1 and 2C): the urban area is subdivided into numerous districts and a total
of approximately 158,000 inhabitants are counted. The city has already developed in
historical times around the port area, with progressively more important enlargements
since the beginning of 1900 linked to the development of communications and industrial
activities. Urbanization has resulted in the growing occupation of natural drainage areas
and floodplains [29,42]. Most expansions relate to the period after Second World War.

Livorno town stands on a flat sector (in the north-side and along the coast) which
corresponds to a polycyclic marine terrace characterized by the presence of three orders
of sea terraces that are, at least, aged between the middle Pleistocene and the upper
Pleistocene. They are crossed by a hydrographic network that consists of several streams.
The alluvial plain is, in fact, a low coastal terrace located north of the city and is shaped by
the course of the River Arno in the mouth area.

Catchments are small (Table 2), with a size of generally <30 km2; they do not reach
particularly high elevation (about 400 m a.s.l.) in their upper sectors; they possess mildly
steep terrain and gentle hilly slopes (Figure 3C). Drainage networks are well developed;
they possess watercourses of limited length; and a well-defined grid of small tributaries:
the major ones are the Rio Ugione Stream (33.2 km2 with a maximum evaluated discharge
of 137 m3/s for a 200-years return period), the Rio Ardenza Stream (21.2 km2, 284 m3/s)
and the Rio Maggiore Stream (8 km2, 100 m3/s) [43].
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Figure 3. Slope maps and catchments of the case-studies: Genoa Sestri Ponente (A), Olbia (B) and Livorno (C).

Land use in the studied catchments mainly consists of forests and seminatural ar-
eas (50.0%); agricultural are present in suborder (28.5%) and artificial surfaces (20.4%)
(Supplementary Materials Table S1).

During the period 1969–2018, the mean annual rainfall recorded in Livorno is about
800 mm that is mainly concentrated during the autumn, with an average of 74 rainy
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days (rainfall rate 10.7 mm/d) [44]. The climate is Mediterranean, characterized by warm
summers, mitigated by the presence of sea breezes and not particularly cold winters. The
average annual temperature is about 15.8 ◦C.

Damaging effects on the ground in Livorno are associated with both flooding of water
streams and pluvial floods due to intense rainfall events: before the last event, they occurred
at least 16 times in 71 years. On average there is 1 event every 4.4 years (Supplementary
Materials Table S2).

3. Materials and Methods

3.1. Research Methodology

The applied methodology has been developed in different phases. First of all, a
close bibliographic and cartographic research has been carried out, with the aim of cata-
loguing recent and historical floods that occurred in the three study areas (Genoa, Olbia
and Livorno) and correlate regions. Flood and damage information have been derived
from different sources: (i) newspapers articles and chronicles notes from local media,
(ii) inedited documents and technical and event reports collected in archives of local mu-
nicipalities, (iii) books and scientific papers gathered in the libraries and (iv) interviews
with local inhabitants.

We obtained rainfall and hydrological data about recent and past events from Hy-
drological Annals edited by SIMN (“National hydrographic and Tidal Service”), as well
as technical and weather-hydrological reports compiled by territorial agencies and re-
gional databases.

For Liguria, information from “Reports of the weather-hydrological events (2003–
2019)” by ARPAL and from “Pluviometrical regional database” by OMIRL was mainly
used. For Sardinia, information from “Report of the weather-hydrological events (2013)”
by ARPAS was mainly used. For Tuscany, information from “Report of the weather-
hydrological events (2009–2019)” by CFR and LaMMA Association was mainly used.

Subsequently, a closer pluviometrical examination has been performed for the most
recent and damaging flood events: (i) 4 October 2010 in Sestri Ponente [45], (ii) 18 November
2013 in Olbia [46] and (iii) 9 September 2017 in Livorno [47,48].

Flooded areas in the Sestri Ponente, Olbia and Livorno cities during the three con-
sidered events have been surveyed and provided by the regional cartographic online
database of Liguria, Sardinia, Tuscany and also by the Livorno Municipality. Culverted
streams and canals in the Olbia urban area have been surveyed from aerial photointerpre-
tation, technical surveys and the analysis of technical reports for the construction of the
drainage canals.

A multi-temporal comparison has been performed using historical and current topo-
graphical and cartographical maps in order to identify anthropogenic landforms and to
reconstruct the urban evolution for each case study. In addition, field observations have
been carried out to evaluate geomorphological and hydrological aspects of the urbanized
areas involved in the flood events. All maps and cartographic data used in the research are
listed in Table 3.

We integrated all georeferenced data in a Geographical Information System: using
QGIS, we derived new original thematic maps which are useful to provide the immediate
identification of both flooded areas in relation to urbanization and the main anthropogenic
landforms within each study area.
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Table 3. Vector and raster data used in the research. Name: DTM, Digital Terrain Model; CORINE, Coordination of
information on the environment (European Environment Agency, 1995); TMI, Topographical Map of Italy. Source: GE,
Google Earth; IGM, Italian Military Geographical Institute; ISPRA, Higher Institute for Environmental Research and
Protection; LR, Liguria Region; PGRA, Flood risk management plan, SR, Sardinia Region; TR, Tuscany Region. Type: R,
raster; V, vector.

Name Source Type Scale/Pixel Date

Catchment LR V 1:10,000 2019

DTM
LR R 5 m 2016
TR R 10 m 2017
SR R 10 m 2012

Flooded areas—PGRA
LR V 1:10,000 2015
TR V 1:10,000 2016
SR V 1:10,000 2017

High-resolution satellite image GE R - 2020

Hydrographical network
LR V 1:5000 2019
TR V 1:10,000 2018
SR R 1:10,000 2019

Land use—CORINE Land cover ISPRA V 25 m 2012
Soil sealing ISPRA R 10 m 2018

TMI—Series 25 “Foglio 082—Tavoletta II-NE
(Rivarolo Ligure/Sestri Ponente)” IGM R 1:25,000 1878, 1907, 1923, 1930,

1934, 1940

TMI—Series 25 “Foglio 082—Tavoletta II-SE (Genova)” IGM R 1:25,000 1899, 1907, 1923, 1930,
1934, 1939

TMI—Series 25 “Foglio 111—Tavoletta I-NO
(Tombolo/Tirrenia)” IGM R 1:25,000 1881, 1939

TMI—Series 25 “Foglio 111—Tavoletta I-NE (Guasticce)” IGM R 1:25,000 1881, 1939
TMI—Series 25 “Foglio 111—Tavoletta I-SE (Salviano)” IGM R 1:25,000 1881, 1939
TMI—Series 25 “Foglio 111—Tavoletta I-SO (Livorno)” IGM R 1:25,000 1881, 1939

TMI—Series 25 “Foglio 182—Tavoletta I-NE (Muddizza Piana)” IGM R 1:25,000 1958
TMI—Series 25 “Foglio 182—Tavoletta IV-SO (Loiri)” IGM R 1:25,000 1896, 1931, 1958

TMI—Series 25 “Foglio 182—Tavoletta IV-NO
(Terranova Pausania/Olbia” IGM R 1:25,000 1896, 1931, 1958

3.2. Hydro-Meteorological Data of the Last Flood Events

Liguria, Sardinia and Tuscany overlook the Ligurian-Tyrrhenian Sea and are three
regions that are very prone to violent atmospheric phenomena (see Table 1). Genoa Sestri
Ponente, Olbia and Livorno, which are coastal cities that arose at the mouth of rivers, natu-
rally have a long and troubled history of floods that are usually flash floods: their degree of
damage has increased year after year in proportion to the degree of urbanization reached
by the cities. The areas of river pertinence, that is, those closest to the riverbeds which
were once occupied by fields and pastures, have gradually been invaded by buildings;
consequently, every time a watercourse overflows during present times, damages result.

This finding stems precisely from the review of the latest cases in the three cities
examined. For Genova Sestri Ponente, the last flood of 4 October 2010 was undoubtedly the
most serious in terms of damage. The storm cell formed on the first morning of 4 October
2010 stabilized in the neighborhoods of the western city between Pegli, Sestri Ponente and
Val Polcevera where it unleashed all its power and caused a true flash flood. In about five
hours, between 8 a.m. and 1 p.m., over 400 mm of water fell on the hills behind Sestri
Ponente [45]. All the streams reached rapidly exceptional discharges: the waters violently
flooded shops, garages, basements, squares, streets, washed parked cars away and also
resulted in a victim.

Olbia has also suffered many flood events in the past: 14 events in the period 1946–
2010. However, the severest flood was the last flash flood that occurred on 18 November
2013. Six provinces out of the eight existing on the island were affected: the total damage
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amounted to about 660 million EUR [46] and 18 were casualties; some were drowned at
home and others were dragged by the fury of the streamflows while driving their cars.
The Cyclone Cleopatra hit the interior of Sardinia with cumulative rainfall greater than
400 mm: the Olbia rain gauge station recorded a value of 117.6 mm, while the Putzolu rain
gauge station, in a village close to Olbia, recorded 175.2 mm in 24 h [47]. The waters of the
canals and streams crossing the town overflowed with heights greater than two meters
on the countryside level. In the town if Olbia, 11 were the casualties and 40 people were
hospitalized for symptoms of asphyxia and hypothermia after having been at the mercy
of freezing water for hours. Over 2000 displaced people resulted and some hundreds of
millions of EURO in damages were incurred.

Livorno also has a long list of flood events; there is at least 14 between 1946 and 2004,
but the most recent event was certainly the most serious of its history. On the evening of
9 September 2017 a violent cloudburst hit the Livorno area: 242 mm of rainfall (74.8 mm
in 30 min and 210.2 mm in 2 h) was recorded on the hilly areas just east of the city, on the
upper basins of the Rio Maggiore and Rio Ardenza streams [48]. The Rio Maggiore stream,
culverted in the 1980s, overflooded at the beginning of the culvert and invaded a large area
of the city. In total, over 4.3 km2 were flooded and a large part of this was an urbanized
area. The damage to structures and infrastructures was very serious (6.6 million euros),
with 8 casualties and a dozen injured in the city alone.

4. Results

4.1. Rainfall Events

With respect to the event of 4 October 2010 on the Ligurian coast, from the analy-
sis of rainfall data recorded in the basins considered (Table 1) it can be highlighted that
for the Genoa Sestri Ponente area precipitation resulted from the formation of intense
self-regenerating systems (MCS) due to a configuration favorable to a strong convergence
between South and South-East, which insisted on the center of the region and in partic-
ular on the border between the provinces of Genoa and Savona. Around midnight on
4 October 2010, a stormy event of strong intensity occurred in the area of the Ligurian
coast, enhanced by the orographic barrier of the Alpine–Apennine chain and favored by
the high sea temperature due to the concomitant presence of an anticyclonic front in the
Mediterranean Sea.

After about six hours, a violent weather-pluviometric system reached the town of
Varazze with rainfall of about 100 mm/1 h and 220 mm in 3 h. Between 9 p.m. and 12 p.m.,
the storm cells that had hit the Riviera di Ponente moved towards Genova Sestri Ponente,
which was about 20 km to the east. Here, the rainfall recorded at the Mt. Gazzo station
(OMIRL-ARPAL hydrological Service) reached 124 mm/1 h, 243 mm/3 h, 360 mm/6 h and
411 mm/12 h (Figures 4–6), compared to annual averages of about 1100 mm. In the areas
surrounding Sestri Ponente, high intensities of rain were recorded: 98 mm/1 h peak and a
cumulative rainfall of 377 mm/12 h in Pegli (west), while at the Bolzaneto station (north)
cumulative rainfall was recorded at 73 mm/1 h and 295 mm/12 h. In Genoa and east of
Sestri Ponente, the peak intensity was 40 mm/1 h and the cumulative was 100 mm/12 h
(Figure 7).

From 1945 to present day, in which at least ten events with damaging effects on
the ground occurred, the event of 4 October 2010 in Liguria the sixth highest for rainfall
intensity within a time period of 12 h.
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Figure 4. Cumulative rainfall map for a time period of 3 h: (A) Genova Sestri Ponente, 4 October 2010; (B) Olbia, 18 Novem-
ber 2013; (C) Livorno, 9 September 2017. Rain gauge stations: (GP) Genova Pegli; (MG) Monte Gazzo; (PO) Pontedecimo;
(BO) Bolzaneto; (LM) Livorno Mareografo; (ST) Stagno; (QU) Quercianella; (VB) Valle Benedetta; (CO) Collesalvetti;
(SI) Siberia; (SA) Santermo; (SL) Santa Luce; (SO) Solvay; (PU) Putzolu; (MO) Monti; (MP) Monte Petrosu; (SP) Sa Pianedda.
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Figure 5. Cumulative rainfall map for a time period of 6 h: (A) Genova Sestri Ponente, 4 October 2010; (B) Olbia, 18 Novem-
ber 2013; (C) Livorno, 9 September 2017. Rain gauge stations: (GP) Genova Pegli; (MG) Monte Gazzo; (PO) Pontedecimo;
(BO) Bolzaneto; (LM) Livorno Mareografo; (ST) Stagno; (QU) Quercianella; (VB) Valle Benedetta; (CO) Collesalvetti;
(SI) Siberia; (SA) Santermo; (SL) Santa Luce; (SO) Solvay; (PU) Putzolu; (MO) Monti; (MP) Monte Petrosu; (SP) Sa Pianedda.
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Figure 6. Cumulative rainfall map for a time period of 12 h: (A) Genova Sestri Ponente, 4 October 2010; (B) Olbia, 18 Novem-
ber 2013; (C) Livorno, 9 September 2017. Rain gauge stations: (GP) Genova Pegli; (MG) Monte Gazzo; (PO) Pontedecimo;
(BO) Bolzaneto; (LM) Livorno Mareografo; (ST) Stagno; (QU) Quercianella; (VB) Valle Benedetta; (CO) Collesalvetti;
(SI) Siberia; (SA) Santermo; (SL) Santa Luce; (SO) Solvay; (PU) Putzolu; (MO) Monti; (MP) Monte Petrosu; (SP) Sa Pianedda.

The meteorological event that affected the Olbia area on 18 November 2013 is among
the most serious in recent years that have extensively affected the entire region of Sardinia

208



Land 2021, 10, 620

in a paroxysmal manner. The set of meteoclimatic conditions resulted in the formation of
strong “V-shaped” self-healing marine storms on the eastern sector [28] and is linked to
the Cleopatra perturbation with consequent effects on the ground, such as flash floods.

The violent thunderstorms, produced by the convergence line of winds from the west
and south-east close to the internal reliefs in the upper part of the river basins, have given
rise to cumulative rainfall exceeding 230 mm in the area; an exception to this is Olbia,
which hovered around the 120 mm mark with a maximum hourly intensity of 61 mm (Sa
Pianedda station) [49]. With respect to the rainfall trend, reference was made above all
the rain gauges of Olbia and Putzolu (ARDIS hydrological network): the latter, less than
10 km as the crow flies west of Olbia, is more representative of the hydrological conditions
persisting in the interior of the hydrographic basins along which the most damaging effects
occurred. The set of data available, however, allowed a better spatial reconstruction of the
meteoric event.

At the Olbia rain gauge, the maximum intensity was 28 mm/h (between 6 p.m. and
7 p.m.) and it was preceded by at least another 8 h of precipitation with variable intensity
up to 18 mm/h. At the Putzolu rain gauge, higher rainfall heights were recorded, with a
daily cumulative of 175.2 mm compared to that of Olbia with 117.6 mm. The maximum
hourly intensities in Putzolu reached 45 mm/h between 3 p.m. and 4 p.m., while at
the Monte Petrosu rain gauge, the intensity over 15 min was 26.4 mm along the coast.
The station that recorded the highest cumulative precipitation was that of Sa Pianedda,
which is close to the first hills south of Olbia, with values equal to 150 mm/3 h, 167.2
mm/6 h and 247.4 mm/12 h. The estimated return periods are about 200 years (up to
12 h) for the Putzolu station and about 50 years (up to 6 h on the data) for Olbia [49]
(Figures 4–6). Over 80% of the recorded rainfall was concentrated in just over six hours,
but persisted for over 12 h (Figure 7); due to their continuity, they were sufficient to cause
maximum flows not only in the smallest basins but also in the terminal sections of the
largest hydrographic basins.

During the night between 9 and 10 September 2017, the flood event that affected the
town of Livorno was anticipated by several storms. During the first, which mainly affected
the coastal areas between the territories of Livorno city and Marina di Pisa, maximum
cumulative rains of 63.4 mm/1 h was recorded over Livorno (between 8:45 p.m. and
9:45 p.m.) and 65.6 mm/1 h in Marina di Pisa (Bocca d’Arno station). In latter area the
rainfall continued to intensify, but the rains practically stopped in Livorno after 9.45 p.m.

Starting from 2:00–2:30 a.m. on Sunday, a new and strong thunderstorm, which
then turned out to be the most violent, mainly affected the areas between the southern
area of Livorno city and Rosignano town [43,50–52]. In these areas, the values of rainfall
reached, which on short durations are really extreme, had peaks higher than 42.4 mm/15’,
121.8 mm/1 h (Rp > 200 y), 210 mm/2 h and 230 mm/3 h [44,50] (Figure 7). There is
a clear difference between the maximum data recorded in these hours in the different
time intervals of the durations 1, 2 and 3 h by the stations of Quercianella and Valle
Benedetta compared to the stations located slightly further south or more inland (such as
Castellina Marittima and Santa Luce) (Table 4) or further north (as Livorno Mareografo);
this difference highlights the strong localization of the thunderstorm phenomenon that
locally discharged over 200 mm of rainfall in 2 h (Figures 4–6). Estimated return periods
for 1 h and 3 h of rainfall that were recorded during this event are more than 200 years.
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Figure 7. Hyetograms and hydrograms for the events of Genoa (A), Olbia (B) and Livorno (C). Legend: 1. Hourly intensity
(mm/h), 2. Cumulated rainfall (mm), 3. Discharges (m3/s); 4. Discharges for return period = 50 years (m3/s); 5. Discharges
for return period = 200 years (m3/s).
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Table 4. Maximum cumulative rainfall values over short durations (from 15 min to 3 h) recorded for the stations of
Quercianella, Valle Benedetta, Santa Luce and Castellina Marittima [48].

Rain Gauge
Station

Max Rainfall 15′ (mm) Max Rainfall 1 h (mm) Max Rainfall 2 h (mm) Max Rainfall 3 h (mm)

Quercianella 42.4 121.8 188.6 206.2
Valle Benedetta 38.4 120.8 210.2 235

Santa Luce 23 66.4 98.2 105.8
Castellina Mar. 40.2 89.6 109.6 122.2

4.2. Ground Effects of the Flash Floods

With respect to the 2010 event in Genoa, the effects on the ground were determined
by rainfalls produced by the convergence between the northern currents coming from
the colder Po basin and the warm humid current coming from the sea. In the face of the
quantities of rain received from the Sestri Ponente area, the water level in the streams
increased in a short time: the Varenna Stream in Pegli reached a peak of 2.62 m with a rapid
increase of 2.08 m in one hour (Pegli hydrometer). The Molinassi, Chiaravagna, Ruscarolo
and Cantarena streams flooded the areas close to their beds and the Genoese quarter of
Sestri Ponente (Figure 8A). Along the streets, the water level reached variable heights from
20 cm to over 150 cm; the estimated discharge rates for the Chiaravagna and Cantarena
streams were comparable to those calculated for a Return time (Rt) of 50 years, while for
the flood of the Molinassi Stream it was estimated at Rt = 200 years.

The response times of the meteorological-hydrological event were extremely short:
Testimonies and amateur images document that after less than half an hour from the peak
of flow, the flood of the Chiaravagna stream occurred and it poured along the roads as
the water leaking from the streambed. The rainfall caused a rapid increase in flooding
along with the transport of suspended materials and floating shrubs and trees that were
eroded along unprotected embankments. The speed of the process made it impossible to
implement interventions, unless the event was almost concluded. People were taken by
surprise along the streets: water spread into residential areas and businesses and caused
extensive damage (Figure 8B).

Along the slopes of the Chiaravagna (11 km2) and Molinassi (2 km2) basins, many
shallow landslides have been triggered: they interrupted the access roads to the small
inhabited areas placed on the hills.

Many streets were flooded and the settlements on the adjacent hills were isolated.
The flow of mobilized debris was quickly channeled along the river beds and lower areas
which caused critical hydraulic conditions in the secondary hydrographic network and
also because the canals that pass culverted under the roads and the inhabited area were
not able to dispose the relevant discharges and were quickly clogged.

With respect to the 2013 event, the area affected by the event was estimated at around
1500 km2 and includes three main basins: the Cedrino and Posada basins and the catchment
upstream of Olbia [53]. The city of Olbia was the most affected city, with eleven victims;
much of the downtown area was inundated by the flood waters of the San Nicola and
Seligheddu streams in the mouth area. Witnesses claim to have seen the hydrometric
levels increase by about 3 m and this would be confirmed by the simulations carried out
by [54] and associated with flow velocities higher than 3.2 m/s in the upstream sectors
along the hydrographic lines. The railway embankment and the various bridges upon the
arrival of the flood wave along the aforementioned canals had a dam effect and caused the
flooding of the streets and the first floors of the houses. The most acute phase of the flood
event was observed between 5:00 p.m. and 7:00 p.m., with more evident manifestations at
around 6:00 p.m. on the Rio Seligheddu Stream and at around 6:30 p.m. on the urbanized
stretch of Rio Gadduresu Stream which is its left tributary. Around 9:00 p.m. the flood
had subsided with evident manifestations in the sectors surrounding the watercourses
of Seligheddu, San Nicola, Zozò, Paule Longa and to a lesser extent the Pasana. In some
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sectors (former Artillery area), with variable tie rods up to about 2 m, the effects of the
flood of Rio Gadduresu Stream from the north and east overlapped with those of Rio
Seligheddu Stream from the south, which is a condition favored by the existing artifacts
which represented temporary structures that are damming to the outflow of flood waters
(Figure 9A–C) [55].

Figure 8. (A) Chiaravagna Stream flooded the ground floors, where there are many business shops and in some cases the
water and mud depending on the preferential outlet flow found that entered the shops from the rear part, as can be seen in
a sports shop in the Aprosio Square [56]. (B) Image taken from a movie. Chiaravagna Stream during the paroxistic phase of
flooding: the black line indicates the submerged left bank wall; the red asterisk represents the bridge of Chiaravagna Street.
The building from which the photograph was taken was built just on the riverbed in the 1960s. The October 2010 event
(the last one of a long list) was recognized as one of the causes of the flooding of the river: it was demolished a few years
later [56]).
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Figure 9. (A) Olbia: Although about 15 h had passed since the paroxysmal phase, in some morphologically depressed areas
of the city the water remained well above 1.3–1.4 m in height. Some cars were totally submerged in one of the streets most
affected by the flood in the Baratta quarter (courtesy of private citizen). (B) Olbia, left bank of the Rio Seligheddu Stream,
canalized stretch (foto Luino). Water level left a marker on the wall, which is evidenced by white line. The height of the
waters is evidenced by the bed dragged and placed over the roof of the ground floor (white arrow). (C) Olbia: very common
situation along the areas close to the streambeds (foto Luino). In this image, the Rio San Nicola (red arrow) waters exceeded
the natural bank that was devoid of embankments or retaining walls and easily reached the houses located on the left bank,
which was a short distance away. In many houses, the underground garages have been foolishly built and had been totally
flooded (black arrow indicates the level), with serious damage inducted to parked cars. The extracted cars are so saturated
with fine material (silt and clay) that they had to be demolished (image in the left corner).

During the 2017 event, watercourses flooded the surrounding areas in the hilly sector,
where some bridges were damaged and many residents remained isolated. Towards the
valley, in the area of the Rio Ardenza and Rio Maggiore mouths, the effects were even more
serious with extensive flooding and entire neighborhoods invaded by water and mud. The
major effects on the territory (floods, overflows and transport of debris material) were
caused by the minor hydrographic network that originates from the Livorno hinterland
and flows directly into the sea, as in the case of the Rio Maggiore and Rio Ardenza streams.
The culverted stretches, often having insufficient section and occluded by detrital, vegetal
and urban material carried by the waters, were bypassed by the floodwaters that retraced
the ancient surface river paths. In particular, the waters of the Rio Maggiore Stream, despite
the presence of retention basins, managed to flow freely in the area of the Stadio Ardenza
District, in the neighboring streets and in Barriera Margherita. The Rio Maggiore Stream
escaped from the culvert and poured with high speed into a fenced courtyard that was
morphologically depressed compared to the nearby streets. The ground-floor flat in Sauro
Street (Figure 10A,B) was flooded within minutes and four people drowned in it. Due to
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the overflow of the Ardenza Stream and its tributary Forcone stream, four other people
lost their lives. The flood event caused in total eight victims in the Livorno area.

In addition to the Rio Ardenza and Rio Maggiore streams, the Ugione, Quercianella
and the Chioma streams inundated large areas (Figure 10C). A bridge adjacent to a provin-
cial road collapsed along the Ardenza. The total damage was estimated at 180 million
EUR [57].

Figure 10. Livorno. (A) aerial photograph of the Ardenza Stadium district. In the foreground isthe house where the four
victims drowned (white asterisk). The yellow line highlights the culverted streambed of the Rio Maggiore: its flood waters
were the cause of the rapid flooding of the courtyard (evidenced by red lines) and of the ground-floor flat [58]. (B) Livorno:
the house where four people from the same family drowned (courtesy of Il Tirreno). Their ground-floor flat is located at the
end of a large courtyard, below street level on Rodocanacchi Street (area of the Ardenza football stadium). The red arrow
indicates the level reached by the floodwaters in a few minutes. (C) Livorno: the Stagno district that was largely flooded by
the Rio Ugione floodwaters with the Via Aurelia (yellow line) and the refineries in the background [58].
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4.3. Urban Geomorphology

The case studies examined are characterized by a similar geomorphological structure
and recent evolution, which has profoundly changed almost all Mediterranean urban
areas [22,29]. Sestri Ponente, Olbia and Livorno are in fact three cities built on a coastal
floodplain at the mouth of small hydrographic basins (Figure 11A–C).

Figure 11. Hydrographic networks: culverted stretches are indicated with red lines. (A) Genoa Sestri Ponente; (B) Olbia;
(C) Livorno. Streams: (a) Varenna; (b) Molinassi; (c) Cantarena; (d) Chiaravagna; (e) Ruscarolo; (f) Ugione; (g) Maggiore;
(h) Ardenza; (i) Forcone; (j) Quercianella; (k) Chioma; (l) San Nicola; (m) Canale Zazà; (n) Gadduresu; (o) Seligheddu;
(p) Paule Longa.
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In this morphological situation, it is therefore possible to identify the processes related
to the shapes of the landscape: the sea wave action along the coastal strip and the river
dynamics in the rear belt, up to the hill base. The footprint of the anthropic landforms
dominates the current urban landscape. If natural landforms were almost exclusive until
the 18th–19th centuries, then in the last 150 years there has been a gradual increase in
anthropogenic activities in the area with consequent major changes [59]. Two historical
moments demonstrate great changes in the urban landscape due to anthropic impact: the
first around the middle of the nineteenth century (industrial revolution) and a second in
the second half of the twentieth century [60], after the conclusion of the Second World War
(greater well-being, population growth and finally tourism). At present time, in all the cases
examined it is therefore possible to identify modified natural landforms, anthropic land-
forms and disappearing (or vanished) landforms. The most common modified natural form
is the main and secondary riverbed: in all the cases analyzed, the riverbed in the coastal
floodplains was narrowed, channeled, rectified, often culverted and sometimes diverted.

In Sestri Ponente, the Chiaravagna Stream is channeled in its 2 km terminal, while the
Ruscarolo Stream, originally an autonomous basin, flows entirely into the Chiaravagna.
The other four streams of the plain are invisible, that is, culverted practically throughout
the terminal stretch and flow within the urban fabric. A multitemporal cartographic
comparison allows us to evaluate a narrowing of the riverbed in the last 200 years between
25% and 50% [34].

In Olbia, the Seligheddu Stream to the south and the San Nicola Stream to the north
are represented today by artificial canals cemented with an inverted trapezoidal section,
with many deviated and culverted sections, and affects the town with a multi-kilometric
development [49].

The coastal stretch between Livorno and Antignano is characterized by three water-
courses: to the south, the Rio Ardenza Stream is channeled in its final stretch for at least
2 km, with conspicuous narrowing and rectification of the section of the riverbed; on the
other hand, the Rio Maggiore Stream and the Fosso Botro canal have been transformed
into culverts [43].

The anthropogenic shapes dominate the urban landscape and can be traced back to
forms of accumulation: in Sestri Ponente, Olbia and Livorno, among the most significant
and common are the embankments, the reclaimed land at sea and the defenses along the
coast, while urbanization has involved remodeling of the existing topographic surface with
diffuse fillings.

Sestri Ponente is dominated by the sea fill on which the shipyards and the Genoese
airport are built on: the railway line runs on an embankment and, further upstream, there
is the motorway embankment. The fluvio-coastal plain is practically fully urbanized and
the most significant phases of expansion were those of the second half of the 19th century
and in the second half of the 20th century.

Olbia has a deeply modified coastal strip for the construction of the maritime station
by the filling of the sea; the road and railway embankments emerge in the strip behind
the historic core. Particularly significant is the construction of artificial canals built in the
1920s, while urbanization appears significant from the second half of the 20th century, but
continued into the third millennium.

The urban coastal stretch south of Livorno has sea fills that are almost continuous,
but they are less deep than the ones in Sestri Ponente and are protected by sea defenses.
In the strip immediately behind it, there are the railway and motorway embankments;
urbanization is continuous, with the exception of some sports facilities, and can be traced
back to the second half of the 20th century. The waterways have been channeled and
retention basins have been built along the final stretch of the Maggiore Stream.

Lastly, the disappeared forms, i.e., those dismantled or covered by anthropic activities,
deserve a mention: In the case of Sestri Ponente, in addition to the consumption of land on
the entire coastal floodplain there is the disappearance of the beach that occupied the entire
stretch of sea in proximity to the coast for a length of about 2.5 km. In the Livorno coastal

216



Land 2021, 10, 620

strip, the small cliffs modeled in the cemented sandstones alternating with small beaches
have been incorporated into the sea fillings built from the second half of the 19th century,
while in the coastal plain behind them marshes and coastal dunes have disappeared. In the
case of Olbia, even if the imprint of the rias coast remains evident, the disappearance of the
marshes has been noted, which characterized much of the coastal strip north and south of
Olbia (Terranova Pausania) and into which the hydrographic network used to flow, as well
as the salt flats near the historic center and small beaches bordered by cliffs modeled in
granite between the Roman Port in the north and the Lepre Island in the south.

5. Discussion

The case-studies presented in this article show some geomorphological similarities:
the cities arose on alluvial plains, typical of the coastal strip [22,29,56,61] of the Ligurian-
Tyrrhenian Sea. They extend for several kilometers along the coastline (2.6–11.5), occupying
variable areas (8–30 km2) with high hills behind (330–580 m) and some kilometers away
(3.8–6). Many streams cross the cities and some of them possess relevant areas (up to
38 km2): they can reach relevant discharges during the violent rainfall events and in
proportion to the basin areas (up to 8.6 m3/s/km2) (Table 5).

With respect to the weather-hydrological aspect, it should be emphasized that all the
considered events occurred during the autumn season (from September to November), in
conditions of a storm system triggered by cyclogenesis at the Gulf of Genoa (Liguria and
Tuscany) or by the extra-tropical cyclone Cleopatra (Sardinia).

Table 5. Geomorphological features of the three cases analyzed. City Develop, development of the city along the coastline;
Hill Height, height of the hills located behind the city; Distance, distance between the coastline and closest hills; Basin Area,
area of the largest hydrographic basin behind the city; Max Discharge, maximum discharge for a 200-years return period.

City
City Area

(km2)
City Develop

(km)
Hill Height

(m)
Distance

(km)
Basin Area (km2)

Max Discharge
(m3/s)

Genova Sestri Ponente 8 2.6 580 3.8 11 (Chiaravagna) 213 (50 years)
Olbia 27 11.5 460 6 38.4 (Seligheddu) 330

Livorno 30.2 7.8 330 6 33.2 (Ugione) 137

Despite the trend in the number of rainy days being negative and the progressively
decreasing annual cumulative rainfall, perturbations capable of generating intense rainfall
are increasingly frequent in the Mediterranean area [10], with a growth corresponding
to intense geo-hydrological events. A sentence that summarizes this concept is currently
widely used: “it rains less, but worse”.

If we add the progressive increase in temperatures to this [62], it is possible to confirm
the data on climate change underway [63,64] with recent evidence of events studied in the
geo-hydrological field: For example, the event of Lavagna-Genoa in 2002 [30], autumn 2011
in Liguria [65] and event of October 2014 in Liguria [33,66]. These data are also supported
by studies in other disciplines [67,68].

The events considered had rainfall that reached values between 10.4–15.2% of the
annual total in 1 h; between 22% and 25.8% in 3h (minimum difference between the
minimum and the maximum); between 26.5% and 32.7% in 6 h; finally, values between
27.2% and 42% in 12 h (Table 6).

Table 6. Rainfall of the three events (for 1,3,6 and 12 h) compared with the mean annual precipitation,
MAP (%).

MAP 1 h 3 h 6 h 12 h

Genoa Sestri Ponente 1100 124 (11.3%) 243 (22%) 360 (32.7%) 411 (37.4%)
Olbia-Sa Pianedda 588 61 (10.4%) 150 (25.5%) 167.2 (28.4%) 247.4 (42%)

Livorno-Quercianella 800 121.8 (15.2%) 206.2 (25.8%) 212.4 (26.5%) 217.6 (27.2%)
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The percentages obtained actually indicate the rainfall characteristics of each individ-
ual event: the Livorno event was more concentrated on 1–3 h, the Sestri Ponente on 6 h
and the Olbia event on 12 h. The intense precipitations occurred in correspondence with
strong winds and storm surges, showing hourly cumulative rainfall values comparable to
half-yearly or annual averages. The precipitations sent the hydrographic system into crisis:
the levels of the streams grew rapidly, reaching and exceeding the alert levels.

The responses of river basins to intense and short rainfalls depended on several factors:
(i) land use, (ii) bedrock permeability, (iii) thickness of the eluvium-colluvial cover and
(iv) initial content of soil moisture. If, in normal conditions, the Mediterranean catchment
areas possess a runoff coefficient of 0.4–0.6, in the conditions of saturated or impermeable
soils, runoff coefficients close to 1 can be achieved [69,70].

The streambeds in the cities, over the years, have been gradually narrowed to conquer
more urban areas and often the beds have been culverted for long stretches and flow under
roads and buildings. It is therefore natural that the streambeds were not able to dispose of
the huge discharge of the streams in which water shrubs, large trees (uprooted upstream
or in the riverbed), garbage cans and vehicles are often transported.

The increase in urbanized areas has amplified this problem, leading to an increase in
waterproofed surfaces; this has caused the irreversible loss of soil and consequent impact
on the flow of water, which when unable to infiltrate the soil, is dispersed by surface flow.
The latter, increasing in terms of drained volumes and transit speed, is responsible for
problems in the control of surface waters, in particular during particularly intense rainfall
phenomena. The growth in waterproofed surfaces, in fact, involves an increase in the
runoff coefficients and a reduction in the run-off times, making it necessary to construct
structures for containment and disposal (bypasses) of exceptional flood events.

In the last 150 years, the Sestri Ponente, Olbia and Livorno cities have suffered re-
markable transformations, especially in the coastal areas (Figure 12). This has led to the
growth of urbanized areas along the plain, with partial or total impairment of the areas of
fluvial pertinence. The waterways have undergone riverbed narrowing, containment and
lateral and bottom constraints, which has resulted in the unsuitability for the disposal of
significant flood flows.

The serious damage recorded for the cases treated, primarily the 27 overall casualties
of the three events described, are linked to the vulnerability of the numerous elements
present in the fluvio-coastal plains of Genoa, Olbia and Livorno. Among the anthropogenic
forcings that have influenced the hydro-geomorphological dynamics and which have
determined the increase in risk conditions, the following are counted [71,72] (Figures 13
and 14):

• Modification of land use in general from agricultural to compact urban cover, with a
consequent high decrease in the run-off time;

• Progradation of the coastline by the method of sea filling (e.g., sea filling for the
construction of Cristoforo Colombo platform airport and the marine port of Sestri
Ponente);

• Modified river forms: the watercourse active beds show marked evidences of canaliza-
tion and narrowing of the outflow sections, sometimes deviations and often culverts
(Figure 15);

• Construction of buildings and infrastructures (especially since the 1960s) in areas
known to be hazardous from a hydraulic point of view.

218



Land 2021, 10, 620

Figure 12. Hydrographic networks, urbanized areas and land use of the basins of Genoa Sestri Ponente (A), Olbia (B)
and Livorno (C). Land cover: (1.1) urban fabric; (1.2) industrial; (1.3) mine, dump and construction sites; (1.4) artificial
non-agricultural vegetated areas; (2.1) arable land; (2.4) agricultural areas; (3.1) forests; (3.2) shrub and/or herbaceous
vegetation associations; (3.3) open spaces with little or no vegetation.
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Figure 13. Urban evolution, evidenced by different colors for Genoa Sestri Ponente (A), Olbia (B) and Livorno (C) since the
end of the 19th century. In the legend: (H.N.) Hydrographical network; (C) Culvert; (F.A.) Flooded area.

A very important aspect that characterized all three events was the lack of communi-
cation with the population before and during the culminating phase of the event [73–75].
In all three cities, the inhabitants were surprised by the flooding of the streams and the
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rapid growth of water in the city: this made it impossible, in some cases, to escape to safety
(15 drowned victims) or to bring their own goods (especially vehicles).

A last and very important topic concerns the historical sources. Moreover, in this
study, a careful historical reconstruction has made it possible to detect how much the
anthropic changes may have influenced the bed of the watercourses year after year, de-
cisively conditioning the floods during the paroxysmal phase of the event and creating
casualties and a lot of damage. A correct utilization of the historical sources could save
lives and goods.

Figure 14. Urban development in the coastal plain of: (A) Genoa Sestri Ponente, compared with the
percentage of urbanization involved over time by a flood of comparable size in terms of volume and
area to that occurred 10 April 2010; (B) Olbia, compared with the percentage of urban areas involved
over time by a flood of a comparable extent in terms of volume and area to that of 18 November
2013; (C) Livorno, compared with the percentage of urbanization involved over time by a flood of
comparable magnitude in terms of volume and area to that of 10 September 2017.
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Figure 15. The importance of the historical sources is underlined by this 1824 cadastral map of Livorno. The Rio Maggiore Stream
flowed naturally and was free from anthropogenic influences (blue stroke on the map). Its course has been diverted over the years and,
above all, the stream has been culverted: it now flows invisibly between the houses of the city (orange stroke). The house where the
victims drowned in September 2017, which will be built afterwards in the early 20th century, is highlighted in red ([76], modified).

6. Conclusions

Two factors, which are very different from each other, are at the basis of the geo-
hydrological processes that have affected long stretches of the Mediterranean coast in
recent decades. The first, which is of anthropogenic origin, is the urban expansion that
began after the end of the Second World War. The second, which is of “apparently” natural
origin, is climate change (for which the role played by man is now very clear to everyone).
The combination of these two factors, which are in some manner very distant from each
other, is now causing a situation that is difficult to manage and that places us at the forefront
of real emergencies for which it will be necessary to utilize precise analytical tools, sensible
land use planning and rapid and resolving interventions.

The floods that occurred in Genoa, Olbia and Livorno revealed the state of vulnerabil-
ity of the city towards hydraulic processes in spite of many accurate mitigation interven-
tions carried out in the last decades and above all the inadequacy of the current urban fabric
in relation to the hydrographic network, both on the hydraulic and geomorphological level.

The comparison between the events described highlights the need to plan flood risk
mitigation activities beyond the essential structural interventions on the hydrographic
network, whether it be main and minor and at basin scale (extraordinary maintenance),
which involves inevitable financial programs that are costly and delayed over time. It
appears essential that we prepare non-structural measures which includes both active
(routine maintenance, thickening of the weather-hydrological monitoring and construction
of expansion tanks) and passive (land use rules with intensive use of urban drainage
systems sustainability, foreclosure of fluvial pertinence areas, historical investigation of past
events, population trainings, information to inhabitants and insurance coverage) measures.
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With regard to the actions to be taken in the short-term and medium-term in order to
adapt to the resurgence of flash flood effects on the ground, there are several methodological
examples for the Mediterranean area that involve urban, social and economic choices. For
example, we want to mention the TRIGEAU project [77] and the ADAPT project [78],
which suggests strategies to mitigate the effects of climate change. In particular, the
ADAPT project suggests: (1) Actions to improve geo-hydrological conditions, such as
increasing knowledge on the processes that contribute to the occurrence of geo-hydrological
criticalities, adapting existing mitigation works, carrying out interventions for urban flood
mitigation and urban greening interventions; (2) actions to increase the resilience of the
population and assets at risk with training activities; (3) actions to improve governance
with legislative adjustments, urban interventions and limitations on urbanization and
restoration of areas of river pertinence and re-naturalization.

Until the state and every single municipality decides to take serious and decisive
action to solve this age-old problem, the flash floods will continue to cause victims and
massive damage to private and public property.
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Abstract: The objective of the present review is to analyze and evaluate the most used and well-
performing environmental forest fire danger rating systems and indices globally, aiming to the
creation of an integrated forest fire danger system for Greece. The analysis emphasizes the core input
parameters that have been associated with forest fire danger (i.e., weather, vegetation, topography,
and hydrology) and the computational procedure of each system index as well as the categorization
of the output values. Online search engines such as Scopus, Google Scholar, WorldWideScience,
ScienceDirect, and ResearchGate were used in the search for relevant literature published in scientific
journals, manuals, and reports. The retrieved studies were classified and reviewed. Studies were
selected for analytically describing the calculation process related to forest fire danger ignition and
not being strictly geographically bound. A total of 210 studies were included in the current review,
describing 63 forest fire danger systems and indices. These were analyzed and evaluated based on a
scoring system. Overall, the top-rated indices were the: Nesterov’s index, Sharples’ index, Keetch
and Byram’s drought index, Telicyn logarithmic, and vapor pressure deficit, and the 3rd and the 4th
also proved to be the most accurate for fire-prone regions. Remote sensing indices also proved to be
promising in forest fire danger estimation.

Keywords: forest fire; fire danger rating systems; environmental fire danger; fire indices; drought
indices; remote sensing fire indices; fire ignition probability; climate change extremes

1. Introduction

The role of forests—which cover approximately 31% of the global land [1]—is of great
importance in ecological-environmental and socio-economic terms [2]. However, interna-
tionally, there has been a radical increase in the annual number of forest fire danger days
and forest fire incidents, with climate change being one of the major contributors [3–10].
During the past two years, more than 45 million hectares have been burned across re-
gions in Russia, Brazil, Canada, the United States of America, the European Union, and
Australia [11–16], where forested areas cover 56% of the global forest land [1,17,18].

Several studies and reports indicate that most of the forest fire incidents are man-
driven, in the form of either arson or negligence [19–24]. Nevertheless, wildfires occur
mostly during periods of high temperature, intense drought, strong winds, low relative
humidity, and inadequate precipitation [25–27].

Fire danger rating systems and indices are the products of systematic research both in
theoretical and in empirical terms. Hence, many environmental fire danger rating systems
throughout the world focus on the calculation of the condition of dead or alive fuels, such
as fuel moisture codes, alongside meteorological parameters that have an impact on the
source of heat as well as the ambient oxygen supply [28–31]. However, these systems ignore
the human-driven ignition causes, with the latter being covered to a certain extent in the
related literature [19–21,32–38]. Furthermore, only a limited number of studies adopts an
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integrated and/or holistic approach combining natural and human-driven causing factors
as well as weather indices and conditions [39–41].

The objective of this review article is to report, analyze, compare, and evaluate the
most applied and well-established environmental fire danger rating systems and indices
around the world, aiming at the development of an integrated fire danger rating system
for Greece.

2. Materials and Methods

Adopting the approach by Chuvieco et al. [34], fire risk assessment consists of two
pillars: danger and vulnerability. Fire danger—also reported as fire hazard—is related to
the conditions that favor the fire outbreak and its spread, while vulnerability is related to
the possible outcome of a fire event as far as effects and value loss are concerned [34,42,43].

The present article focuses mainly on systems and indices that estimate fire danger
ignition probability related to environmental factors as proposed by Cardille et al. [33]. The
present review follows the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) 2020 guides for systematic reviewing; thus, the following selection
criteria for the considered references were set [44]: (1) studies must be papers published in
scientific journals, manuals that are operationally in use, or technical documents supporting
fire agency policies; (2) studies must contain systems or indices that focus on fire ignition
probability; (3) studies must include systems indices that are not strictly geographically
bound; and (4) the indices and systems must include environmental input parameters
(such as weather, vegetation, hydrology, and others). Although there are already several
research and review articles related to fire danger rating systems [45–50], to the best of our
knowledge, the present study is the most complete as far as the number, the geographical
scale, and the analysis of the computational procedure of systems and indices are concerned.

The research commenced with the examination of fire danger rating systems currently
in use in countries with significant fire history and forest land, such as the USA, Canada,
Russia, and Brazil, in the official websites of the respective ministries or agencies. Since the
original publications, which describe the systems of the mentioned countries, were gathered,
further research was held in the cited literature of the above publications. In addition,
online search engines such as Scopus, Google Scholar, WorldWideScience, ScienceDirect,
and ResearchGate were used, with the use of the following keywords: “fire danger”, “fire
danger rating systems”, “fire danger indices”, “fire ignition probability”, “fire danger and
remote sensing”, “fire danger and drought”, and “forest fire danger rating systems”, among
others. The research was conducted during an eight-month period lasting until July 2022,
while the consulted sources were scrutinized according to the following steps: (1) the
titles of the studies were compared with the above keywords; (2) those that matched were
examined by their respective abstract; and (3) those whose abstracts fulfilled the selection
criteria mentioned above were included. Moreover, filters such as “natural caused fires”,
“risk assessment”, and “year of publication” were used.

Systems and indices included in the current study were divided into two groups:
(1) the ad hoc fire systems indices; and (2) the indirect indicators. The first one consists
of all the systems developed exclusively for fire danger estimation gathered based on
geographical criteria, while the second one contains indices that have been proven to be to
a certain extent related to fire danger estimation and are divided into drought or moisture
presence and into remote sensing indices. All systems and indices involve three major
procedures: (1) the collection of the input data; (2) the computational procedure; and (3) the
outcome categorization in danger classes. These three procedures were identified and
extracted from the collected studies. The first two are described in the next sections. The
last one, alongside supporting material from the computational procedure in the form of
tables, is included in the Supplementary Material (SM) of the present paper. Tables and
sections in the Supplementary Material are cited in the manuscript with the indication “S”,
followed by the number of the respective table or paragraph.
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All systems indices were eventually evaluated based on the cited literature. For
validating the accuracy of each system index, the values of the latter were calculated for
the two-month period from June–July 2022 using an ad hoc calculating package created in
the Python programming language. Hence, the computed values were correlated to days
with and without fire occurrences. The principles and the material gathered in the current
review are expected to contribute positively to the forest fire science. All parameters not
described after the presented equations are included in the Supplementary Material as
Section S3. Nomenclature.

3. Results

Overall, a total of 210 studies met the inclusion criteria and were considered in the
review. The selection process in numbers is presented in Figure 1. From the selected
studies, a total of 63 systems indices were gathered—including modified versions—across
16 countries, as presented in Table 1.

Figure 1. The selection process of consulted studies based on PRISMA 2020 flowchart for
systematic reviews.

3.1. North America Fire Danger Systems and Indices
3.1.1. Canadian Forest Fire Danger Rate System

The Canadian Forest Fire Danger Rate System (CFFDRS) is a meteorologically based
approach in fire danger rating developed in Canada in 1968, consisting of four subsystems:
Fire Weather Index (FWI), Fire Behavior Prediction (FBP), Fire Occurrence Prediction (FOP),
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and Accessory Fuel Moisture (AFM) [30,51,52]. In the current study, though, only the
FWI system will be considered, as it is related to fire ignition probability. The FWI system
comprises six modules: Fine Fuel Moisture Code (FFMC), Duff Moisture Code (DMC),
Drought Code (DC), Initial Spread Index (ISI), Buildup Index (BI), and Fire Weather Index
(FWI) [30,53]. The three moisture codes refer to the moisture levels of three different fuel
type categories, respectively, depending on fuel weight and fuel layer depth, while the
two following indices are intermediate products that are related to fire spreading and
total available fuel accordingly and produce the FWI [30,52,54–56]. The final index, FWI,
is a general measure of fire danger representing potential fire-line intensity [56–58]. The
calculation of all FWI system components is complex, as a total of 30 computation steps
lead to the final output [59].

Depending on FWI values, six danger classes were defined in the original publica-
tion [30] as displayed in Table S1. However, when FWI is used in other countries, classes
are redefined based on local calibrations [47,60–64].

3.1.2. National Fire Danger Rating System

The National Fire Danger Rating System (NFDRS), developed in 1972 [29] and revised
in 1978, 1988 [14,65,66], and 2016, is the USA fire danger rating approach. It is designed to
be scientifically based, applicable across the USA, adaptable, and inexpensive in operating
terms [27]. The NFDRS uses meteorological as well as fuel moisture and topographical
inputs, while a series of equations and calculations lead to six hourly output components:
Spread Component (SC), Energy Release Component (ERC), Burning Index (BI), Ignition
Component (IC), Human- and Lightning-Caused Fire Occurrence Index, and Fire Load
Index [65,67,68]. The first three indices are based on combustion physics [69] and corre-
spond to fire behavior characteristics, while the remaining indices provide an estimation
on fire danger rating [29,65]. In the computation procedure, in which computer programs
such as “AFFIRMS” and “FireFamily” or nomograms can be utilized, land slope is divided
into three classes and fuel types into five, while nine fuel models are implemented in the
system [29,65,70–73].

The NFDRS has various outputs; therefore, the categorization of fire danger rat-
ing can be estimated through the evaluation of different aspects of the system’s compo-
nents. In the current study, fire danger rating (Table S2) was produced based on the fire
characteristics charts.

Table 1. Environmental fire danger rating systems indices.

No Systems Indices Origin Publications

Ad hoc Fire Danger Rating Systems

North American

1 CFFDRS Canada [30,51,55,56,59]
2 NFDRS USA [29,65–67]
3 Fosberg USA [74,75]
4 Fosberg + USA [76]
5 BEHAVE USA [69,73,77,78]
6 CBI USA [79]
7 HDWI USA [80]
8 LASI USA [81]

Southern Hemisphere

9 FFDI Australia [28,82,83]
10 GFDI Australia [28,82,84]
11 FFBT Australia [85,86]
12 SFDI Australia [87,88]
13 LFDI S. Africa [89,90]
14 FMA Brazil [91]
15 FMA+ Brazil [92]
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Table 1. Cont.

No Systems Indices Origin Publications

16 IRM Argentina [93]
17 RF Brazil [94]
18 EPI Brazil [95]
19 PEI Brazil [95]

Mediterranean

20 r (Orieux) France [96]
21 I87 France [97]
22 Numerical France [98]
23 Lourenco Portugal [99]
24 Lourenco_m100 Portugal [99]
25 Lourenco_f Portugal [99]
26 Ifa Portugal [100,101]
27 ICONA Spain [102]
28 CFS Italy [103]
29 IREPI Italy [104]
30 IFI Italy [105,106]
31 DMRIF Tunisia [107]

North Eurasian

32 AI Sweden [108]
33 BIt Germany [109]
34 IBr Germany [110]
35 TLI Russia [111]
36 NI Russia [112]
37 mNI Russia [113]
38 Zhdanko Russia [114]
39 M68 Germany [113]
40 mM68 Germany [113]
41 DW Finland [115]

Indirect Indicators

Drought–Moisture

42 MDI USA [116]
43 KBDI USA [117]
44 SDI Australia [118]
45 PDSI USA [119]
46 RDI Greece [120]
47 CWD USA [121]
48 VPD USA [122]
49 DI France [123,124]

Remote Sensing

50 NDVI USA [125]
51 RG USA [31]
52 VG USA [31]
53 NDWI USA [126]
54 NDWI_m USA [127]
55 NDII_6 USA [128]
56 NDII_7 USA [128]
57 NMDI USA [129]
58 SAVI USA [130]
59 EVI USA [130]
60 VARI USA [131]
61 FPI USA [70,132]
62 FPI_m1 USA [133]
63 FPI_m2 USA [61,134]
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3.1.3. Fosberg and Modified Fosberg Indices

Fosberg developed an index supplemental to the NFDRS based on wind speed and
equilibrium moisture content [74–76]. The basic equation, in SI units, is given below:

FFWISI =
η

0.3002

[
1 +

( w
1.690344

)2
]0.5

(1)

where FFWISI is Fosberg index (SI units), η is a factor related to equilibrium moisture, and
w is wind speed (km/h). The index value categorization is shown in Table S3 [76,135].

Since the original index ignores precipitation, a modified version was proposed by
Goodrick [76], which includes a drought index developed by Keetch and Byram [117]:

FAF = 0.000002 KBDI2 + 0.72 (2)

where FAF is a correction function, and KBDI is the Keetch and Byram drought index. The
improved formula of Fosberg index can be computed as follows:

FFWIm = FAF · FFWISI (3)

The original form of the Fosberg index is described in paragraph S2.1 in Supplementary
Material, including the calculation of the other parameters.

3.1.4. BEHAVE System

BEHAVE is a system for evaluating fire potential that uses the same mathematical
model as NFDRS although the equations differ as well as the input parameters, which can
vary according to the available information, while the concept of BEHAVE focuses on fire
behavior prediction rather than fire danger rating [77,136,137]. It consists of two subsystems,
one for fuel modeling—in which 13 fuel types are introduced—and one for fire prediction,
in which Rothermel’s models are deployed alongside Byram’s fire intensity [57,69,78].

3.1.5. Chandler Burning Index

Chandler proposed a simple index as a function of air temperature and relative
humidity that estimates fuels ignitability and is calculated as follows [79]:

CBId =
[
(104.5 − 1.373RH + 0.54T)124 · 10−0.0142RH

] 1
60

(4)

CBIm =
{
[(110 − 1.373RH)− 0.54(10.2 − T)] · 124 · 10−0.0142RH

} 1
60

(5)

where CBId and CBIm are daily and monthly, respectively, Chandler Burning Indices. For
calculating CBIm, average values of dry bulb air temperature T (in ◦C) and relative humidity
RH (%) over a 30-day period are required. The categorization of the index is presented in
Table S4.

3.1.6. Hot-Dry-Windy Index

A simple index combining air temperature, relative humidity, and wind speed was
developed in 2018 in the USA and named the Hot-Dry-Windy Index (HDWI). It can be
computed with the following equation [80,138]:

HDWI
(

km
h

)
=

Wmax Δemax

3.6
(6)

where Wmax is the maximum wind speed (m/s), and Δemax is the maximum vapor pressure
deficit (hPa) on daily basis, and the factor 3.6 is needed for conversion to SI units. The
HDWI has been evaluated for a short number of incidents. A better accuracy for severe fire
occurrences than the following LASI index was observed, so it has also been proposed to
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replace the latter one in the USA; however, further analysis is required, as it is presumed
to perform poorly in thunderstorm-caused fires [80,138–140]. The higher the index values,
the higher the fire danger.

3.1.7. LASI Index

The Lower Atmosphere Stability Index (LASI) is based on the atmospheric stability
conditions and severe fires of a 20-year period [81]. Haines divided the USA into three
climatic zones based on average elevation, where the LASI index is applied differently, as
shown in Table S5 [81,141–143].

The LASI index is significantly different from all other indices analyzed in the current
study, as it uses dry bulb air temperature values from two different atmospheric pressure
levels based on elevation as well as the difference between dry bulb air temperature and
dew point temperature on a third level, which is either the first or the second one, according
to Table S5. LASI has been proven to perform well in diverted climatic regions of the world
and has a very simple computational process [143–148]. Nevertheless, the low availability
of the input data from a typical meteorological station limits the wider usage of LASI, while
the absence of wind speed and drought factors substitutes LASI as a supplemental index
for forest fire danger rating.

3.2. South Hemisphere Fire Danger Systems and Indices
3.2.1. Australian Systems and Indices

Two major fire danger rating systems were developed in Australia: McArthur Fire
Danger Meters and Forest Fire Behavior Tables [28,82]. The first system was designed for
Eastern Australia in the 1960s and has undergone since then several revisions, with the final
versions being Mark 5 (FFDI) for forest fires and Mark 5 (GFDI) for grassland fires. The
second was designed for western Australia in 1980s and is based on tables that predict fire
behavior based on fuel characteristics and types of six dominant tree species [85,86]. These
systems were produced based on empirical data from experimental fires in the Australian
wildland [28,85]. The following equations can be used for the computation of the systems
mentioned above [82]:

FFDI = 2e(−0.45 + 0.987ln(DF) − 0.0345RH + 0.0338T + 0.0234W) (7)

where DF is a drought factor calculated as in paragraph S2.2 in Supplementary Material [82].
Accordingly, grassland fire danger indices (Mark 5) can be calculated based on paragraph
S2.2 in Supplementary Material [82–84].

Eventually, the forest fire behavior tables (FFBT) system was designed to be deployed
in a different manner than the previous systems, based on parameters provided in the
aforementioned tables [85]. Nevertheless, a set of 72 equations was developed in the 1990s,
from which the basic ones that describe the final index are displayed in paragraph S2.2 in
Supplementary Material [99,102]. The categorization of the indices’ danger classes analyzed
above is based on the fire danger rating and displayed in Table S6; hence, the rest of FFBT
output categorization is omitted [84,149,150].

In 2009, due to the complexity of the established systems in Australia, Sharples devel-
oped a computationally simple index. Firstly, a simple fuel moisture index was introduced,
validated in the Australian eucalypt forests, and given by the following equation [87]:

SFMI = 10 − 0.25(T − RH) (8)

where SFMI represents Sharples’ fuel moisture index.
Secondly, embodying SFMI, Sharples developed a fire danger index taking into account

wind speed values, according to the following equation [88]:

SFDI =
max(Wo, W)

SFMI
(9)
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where SFDI (Equation (9)) stands for Sharples’ fire danger index; Wo is set to 1 km/h in
order to avoid zero values. The categorization of the index danger classes is presented in
Table S7 [88].

3.2.2. Lowveld Fire Danger Index

Lowveld Fire Danger Index (LFDI) was developed in South Africa based on the
Angstrom and the Canadian Forest Fire Danger Rating Systems and has been the official sys-
tem used in the country, with the computational procedure being the following [89,90,151]:

LFDI = (BI + WF) RCF (10)

where LFDI is the Lowveld Fire Danger Index, BI is the Burning Index, WF is the Wind
Factor, and RCF is the Rain Correction Factor. BI is related to the Angstrom index (with
R2 = 0.99), while it has been proven to be accurate in Greece—a typical Mediterranean coun-
try with long fire seasons [151]. The components of the index are presented in paragraph
S2.3 in Supplementary Material, while the fire danger classes of the index are presented in
Table S8.

3.2.3. Formulas of Monte Alegre

Megafires occur frequently in the tropical forests in the greater Amazon area; hence, a
significant number of indices have been proposed and applied in Latin America Countries,
mostly at the regional level [152,153]. Thus, a plethora of indices has been in use currently
in Latin America. The first one, FMA, is a simple index that combines the number of
days without any precipitation and relative humidity values, as attested by the following
equation [91,153–155]:

FMA = ∑n
i=1

100
RHi

(11)

where RH stands for relative humidity on day i; n is the total amount of days without rain
greater than 12.9 mm. However, in the case of rain between 2.5 and 12.9 mm, the FMA
index must be reduced, as displayed in Table S9.

The FMA formula takes into account only two of the core meteorologic parameters;
hence, an alteration has been proposed in order to include wind speed in the computational
procedure [92,153–155]:

FMA+ = ∑n
i=1

(
100
RHi

)
e(0.04W) (12)

The categorization of danger classes of both indices is shown in Table S10.

3.2.4. Rodriguez–Moretti Index

The Rodriguez–Moretti Index (IRM), elaborated in the regions of Andean and Patago-
nia, combines the four basic meteorological components: dry bulb air temperature, wind
speed, relative humidity, and days without any rain greater than 2 mm [93,153,156,157].
Each of the four components is converted to input values using respective tables, as sum-
marized in Table S11, according to the following equation [93,153,156,157]:

IRM = Ti + RHi + Wi + Ri (13)

where Ti is temperature index, RHi is relative humidity index, W is wind speed index, and Ri is
rainless days. The fire danger classes of the index are presented in Table S12 [93,153,156,157].

3.2.5. Risco do Fogo Index

The Risco do Fogo (RF) was developed by the Brazilian “Instituto Nacional de In-
vestigaciones Espaciales” (INPE) based on simple meteorological inputs and vegetation
type [94,157–159]. However, RF requires precipitation data for a period of 120 days in
advance of the day of interest in order to estimate a series of respective factors [94,157–159].
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The equations describing the precipitation factor—which is of great importance in fire
danger estimation for the current index—the period of drought, as well as the other com-
ponents of the index are presented in paragraph S2.4 in Supplementary Material and in
Table S13.

RF = RFo·FLAT· (14)

where FLAT and FELV are latitude and elevation factors, accordingly, and RF is the final
fire risk (Risco do Fogo). The categorization of the index danger classes is displayed in
Table S14.

3.2.6. Evaporation-Precipitation Indices

Two indices related to evaporation and precipitation are described in the current
section. The first one is based on the division of the two parameters, while the second one
is based on the respective difference [93,95,160]:

EPI = ∑t
i=1(

Ei
Pi
) (15)

where EPI is the evaporation divided by precipitation index, E is evaporation (mm), and t
is the number of days since the start of the calculations. Respectively, the second index is
computed as follows [93,95,160]:

PEI = ∑t
i=1(Pi − Ei) (16)

where PEI is the precipitation subtracted with evaporation. Both indices are cumulous, and
their calculations follow the restrictions shown in Table S15 [95,160]: The higher the EPI
index values, the higher the fire danger, while the lower the PEI index values, the higher
the fire danger [95,154,155,160,161].

3.3. Mediterranean Indices
3.3.1. Orieux Index

In recent decades, forest fires have been on the rise across the Mediterranean, a re-
gion that has been indicated as severely vulnerable to climate change impacts, including
increased forest fire season duration [162–164]. Moreover, the largest percentage of human-
caused fires (95%) worldwide has been reported in the Mediterranean [165,166]. Hence,
a great number of systems have been developed and used although other indices un-
der calibration, such as the FWI from CFFDRS and FFDI, are currently preferred to be
used [63,105,166].

The first of the Mediterranean indices presented here is the one developed in France
by Orieux and is based on the exponential decrease of soil water reserve as well as wind
speed values. The calculation of the index requires the estimation of the potential evapo-
transpiration through the Thornthwaite equation [96,167,168]. A maximum water reserve
value of soil is considered to be 150 mm and represents the starting point of the index
calculation, as the following equation suggests [96]:

r = R·e(− ΣETP
R ) (17)

where r is the daily value of soil water reserve (which represents Orieux index), R is the
maximum value of r equal to 150 mm, and ETP is the potential evapotranspiration com-
puted through Thornthwaite’s equation as in paragraph S2.5 in Supplementary Material
and Table S16 [119,167,169].

The Orieux index is cumulative; thus, the previous day ETP is needed for present-
day calculations. If precipitation occurs, the index increases although in the original
publication [96], the method of applying the rainfall event effects is not clarified. Index
categorization classes can be estimated as presented in Table S17.
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3.3.2. Carrega’s I87 Index

Another index developed in France as well, by Carrega [97,170], embodies the soil
water reserve index as proposed by Orieux [96] alongside superficial water reserve, tem-
perature, relative humidity, and wind speed. Index I87, which is an amelioration of I85, was
proposed by Carrega [96], and it additionally includes temperature and superficial water
reserve and can be calculated as follows [170]:

I87 =
max(10, T)W · C

RH · rs
√

r
(18)

where T is dry bulb air temperature in ◦C, W is wind speed in m/s, RH is relative humidity
(%), C is a phenological coefficient that corresponds to 200 in summer and winter and 100 in
autumn and spring, r is Orieux water reserve saturated at 150 mm, and rs is superficial
water reserve saturated at 10 mm and computed using Thornthwaite’s equation, as in
paragraph S2.5 in Supplementary Material.

Carrega’s index is cumulative as well; hence, the previous-day evapotranspiration is
needed in the computation of current-day parameters. In case of a rain event, the values of
soil water reserve and superficial reserve must be augmented by the amount of rain, while
the second reserve must be further increased by 1 mm if dew occurs during night or 2 mm
if the dew is strong [170]. The categorization of Carrega’s index is not represented clearly in
the original publication, where a very high danger corresponds to values greater than 200.

3.3.3. Numerical Index

The third index, called the Numerical Index and developed by Drouet and Sol in
southern France, is based on the product of soil water reserve, wind speed, and false
relative humidity, while other meteorological factors, such as temperature and cloud
coverage, are used although considered less important [98,171,172]. The estimation of the
index undergoes the following procedure:

Numerical Index = 25 − (FHR · Cres · Cvent)

15
+ A (19)

where FHR is the false relative humidity, Cres is the coefficient of soil water reserve, Cvent is
the coefficient of wind, and A is a correction coefficient. These parameters are computed as
described in paragraph S2.6 in Supplementary Material [173,174]. The fire danger classes
are shown in Table S18.

3.3.4. Portuguese Indices

Another index developed in the Mediterranean is the Portuguese index. It was
developed by the Portuguese Meteorological and National Institute by modifying the
Nesterov index (presented in a later section). The Portuguese index is an estimation of
atmospheric conditions at the fuel layer and consists of three indicators [100,101]: an
ignition index, a rain coefficient, and a wind speed coefficient. The final index can be
estimated according to the following equations [100,101,175]:

Ifai = Ii + Ia(i−1) + CW (20)

where Ifai is the Portuguese Index on day i, Ii is the ignition index, Ia(i−1) is a variant of the
Nesterov Index, and CW is a wind coefficient. The calculations can be found in paragraph
S2.7 in Supplementary Materialand and Table S19.

Finally, Ifai and Ia(i−1) are re-estimated according to tables presented in the original
publication as well as the Swiss Federal Institute’s fire weather danger wiki [176], while the
danger classes are shown in Table S20.
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Lourenço [99]—one of the two developers of the Portuguese Fire Danger Index—
describes five simple fire danger indices that require only two to three of the basic meteoro-
logical parameters. These indices are described in the following equations:

LFDRI =
T

RH
(21)

where LFDRI stands for Lourenço’s fire danger index, T is dry bulb air temperature,
and RH is relative humidity. Three variations of Lourenço’s fire danger index (LFDRImax,
LFDRIm, and LFDRIm100) have been documented, which use the maximum and minimum
values of temperature and the relative humidity, respectively, as well as wind speed values
(see paragraph S2.7 in Supplementary Material). The final index provided by Lourenço
combines meteorological data from the day of interest plus the sequent day’s forecast, as
given below:

LFDRIf =
{

Ti
RHi

+
Wi
100

+

{
[2(Tj − Ti) + (RHi − RHj) + (Wj − Wi)]

1
100

}}
R (22)

where LFDRIf is Lourenço’s fire danger index for forecast, i represents current day, j the
next day, and R is a risk factor based on each region’s historical profile in fires, as shown in
Table S21 with the categorization of the LFDRI indices fire danger classes [99].

3.3.5. ICONA Index

Another method for predicting forest fire danger rating, in the Mediterranean, was
developed in 1993 in Spain [102] although a calibrated and enhanced version of the Cana-
dian FWI is currently in operation in the country [177]. The ICONA index is based on
fine fuel moisture content and wind speed, embodying the parameters for fuel modelling
that the BEHAVE system utilizes [78]. The calculation process depends on tables provided
by the system [102], and the terms and parameters have been translated as presented in
paragraph S2.8 in Supplementary Material. The original publication defines four danger
classes, as presented in Table S22 [102].

3.3.6. Italian Indices

There are two major indices used in continental Italy: the first one has been applied
mostly in the Mediterranean part of Italy (CFS—Italian Fire Danger Index) and is based on
McArthur’s meters, while the second one (IREPI) was developed especially for the Alpine
regions [103,104]. The Italian Fire Danger Index consists of both equations and tables,
where simple meteorological data are inserted. The computational process is presented in
paragraph S2.9 in Supplementary Material [103,175]. The Italian Fire Danger Index main
equation is shown below:

CFS = 3.9Ar2(0.048T − 0.051RH + 0.033W) (23)

where Ar is a parameter estimated as given in paragraph S2.9 in Supplementary Material.
The index is cumulative, as the previous day’s soil water deficit is needed, while the
categorization can be estimated as displayed in Table S23 [178,179].

The second index, designed for the Italian Alps, is based on the relationship of potential
and daily evapotranspiration and is called “Indice di Riduzione Evapotranspirazione
per il Pericolo d’Incendio” (IREPI). The following equation can be used for the IREPI
estimation [104,180]:

IREPI =
(
(ETP − ETR)

ETP

)
100 (24)

where ETP is the potential evapotranspiration, and ETR the real evapotranspiration in mm
per day. There is a plethora of equations and methods in order to compute ETR and ETP, as
are presented analytically in Xiang et al. [181] and McMahon et al. [182]. As this difference
increases, the fire danger decreases.
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A third index designed for Mediterranean vegetation characteristics is operational in
Sardinia, named the Integrated Fire Index or Ichnusa Fire Index (IFI), and consists of four
components [105,106,183]. Two versions of the index have been documented; thus, both
will be presented in the current study:

IFI = DC + FC + MC + TC (25)

where DC is Drought Code indicating the evapotranspiration rate, FC is Fuel Code, MC is
Meteo Code, and TC is Topological Code.

IFI′ = DC + FC + MC + R (26)

with R being the code for solar radiation, replacing the TC parameter. The calculation of the
above codes is analyzed in paragraph S2.9 in Supplementary Material. The categorization
of the index is based on five danger classes (Table S24) after the normalization of the index,
a process not clearly described in the original publication [106].

3.3.7. Tunisian Index

DMRIF is a simple index used in Tunisia, which requires a limited number of weather
parameters [107,184]. According to the number of days since last rainfall event, there are
two cases:

DMRIF = −131.7r + 5.9W + 26.8Nd + 1.4Tmax − 32.8Q, if Nd > 6 (27)

DMRIF = −26.3r + 4.6W + 0.5Tmax, if Nd ≤ 6 (28)

where r represents the soil water reserve (mm), which can be estimated according to
Thornthwaite equation; W defines wind speed (m/s); Nd is the number of days since
the last rainfall event; Tmax is maximum dry bulb air temperature (◦C); and Q is the
amount of precipitation (mm). The index categorization differs for each case, as shown in
Table S25 [107,185].

3.4. Northern Eurasian Indices
3.4.1. Angstrom Index

Forest fires are rapidly increasing in the temperate and boreal forests of northern
Europe and Russia as well due to climate change, among other causes [37,186–188]. Several
indices have been developed in the greater area, which have been also deployed in diverted
climatic zones [64,68,155,189].

One of the simplest but also highly effective indices in the respective literature is the
index developed in Sweden by Angstrom [152,153]. The index is calculated based on the
following equation [79,108]:

AI =
RH
20

+
27 − T

10
(29)

where RH is relative humidity (%), and T is temperature (◦C), both measured at 13:00 local
time. The index categorization is in line with Table S26 [79,108].

3.4.2. Baumgartner Index

The Baumgartner index was developed and destined to be deployed in Bavaria al-
though some findings indicate that its suitability in the area is limited [190]. The index relies
directly on precipitation and indirectly on temperature, wind speed, net solar radiation,
elevation, and relative humidity of five days in advance of the current one, according to the
following equation [68,109]:

BIt = ∑5
i=1(ETPi−1 − Pi−1) (30)
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where BIt is Baumgartner Index for day t, ETP is potential evapotranspiration calculated by
Penman equation [191], and P is precipitation in mm. The respective categorization, which
excludes winter months fire danger, is shown in Table S27.

3.4.3. Bruschek Index

Another index developed in Germany, called Bruschek Index, that uses simple meteo-
rological data can be computed by the following equation [110,192]:

IBr =
∑ve

i=vs sdi
∑ve

i=vs Pi
(31)

where IBr is Bruschek Index, sdi is a parameter that equals 1 whether daily dry bulb air
temperature is equal or greater than 25 ◦C and 0 in all other cases on day i, Pi is the
precipitation depth on day i, vs is the starting period of vegetation green-up (the 1st of
April), and ve is the end period (the 30th of September). The higher the index values, the
higher the fire danger.

3.4.4. Telicyn Logarithmic Index

Another index mostly used in the tropical forests of Latin America—although devel-
oped in the Soviet Union [111]—is the Telicyn logarithmic Index (TLI), which requires
simple meteorological inputs. The computational procedure is based on the following
equation [153–155]:

TLI = ∑n
i=1 log 10(Ti − Tdew, i) (32)

where Ti is the dry bulb air temperature on day I; Tdew,i is dew point temperature on day
i; n is the number of days without rain greater than 2.5 mm; and log10 is the logarithm on
base 10. When the rainfall depth exceeds 2.5 mm, the index is set to zero. In line with the
Monte Alegre formulas, the index is cumulative, requiring values of the previous day. The
categorization of the index can be concluded from Table S28 [92,160,193].

3.4.5. Nesterov, Modified Nesterov, and Zhdanko Indices

The index of Nesterov—amongst the most widely used [47,68,101,105,112,155]—was
developed in the Soviet Union. The index uses the dry bulb air temperature and dew
point temperature as well as the number of days with precipitation depth less than 3 mm,
according to the following equation [47,79,112]:

NIt = ∑t−1
i=1(Ti − Tdew, i)Ti (33)

where NIt is the Nesterov index on day t. The meteorological data must be recorded at
15:00 local time. Two modified versions of Nesterov index were proposed by Käse and
Zhdanko, as in paragraph S2.10 in Supplementary Material and in Table S29 [113,114,186].
The categorization of the Nesterov indices is displayed on Table S30 [194,195]. However,
no categorization of the Zhdanko index was found in the respective literature although the
index is similar to Nesterov but with much lower values.

3.4.6. M68 and Modified M68 Indices

M68 was developed by Käse in east Germany based on the same principle as the Nes-
terov index; however, three coefficients are implemented representing corrections related to
precipitation, snow coverage, and vegetation condition, as presented below [113,192,196]:

M68t = ∑30 Sept
15 Febr(Tt − 10)Δet, (without coefficients) (34)

The calculations of the modified versions of M68 index are presented in paragraph S2.11
in Supplementary Material and Table S31. The categorization of the M68 and the modified
M68 are displayed in Tables S32 and S33.
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3.4.7. Finnish Fire Index

The Finnish Fire Index (FFI) is based on the calculation of volumetric moisture content
changes, and most of the parameters can be computed according to Allen et al. [173] and
Monteith [197]. The FFI relies on three components [115,198,199]:

DW = Epot · DE + Pi (35)

where DW is the volumetric moisture content change of the total surface layer, Epot is
the potential evaporation according to Penman and Monteith equation, DE is the drying
efficiency, and Pi the precipitation depth in mm remaining in the surface layer. These three
components can be calculated as in paragraph S2.12 in Supplementary Material [199]. The
value of DW can be calculated as well as the fire danger class according to Table S34 [64,199].

3.5. Drought–Moisture Indices
3.5.1. Munger Drought Index

The first index, proposed in 1916 by Munger, is based on the number of consecutive
days with precipitation height less than 1.27 mm and has been proven to be efficient for
short-time drought periods [116,200]:

MDI = 0.5 · d2 (36)

where MDI represents Munger’s Drought Index; d is the number of consecutive days with
rain height less than 1.27 mm. The higher the index value, the higher the fire danger is.

3.5.2. Keetch–Byram Drought Index

The drought index proposed by Keetch and Byram (KBDI) is one of the most used
in fire danger rating systems. It is based on the next principles: the rate of moisture loss
dependent on vegetation density, vegetation and rainfall have an exponential relationship,
evapotranspiration determines the rate of soil’s moisture loss—which is depleted with time
exponentially, and an arbitrary layer depth of 8 in. (~20 cm) of soil capacity is arbitrarily
used [47,81,82,117,201]. The following equations can be used for KBDI calculation:

KBDIt = Q +
[
(800 − Q)

(
0.968e0.0486(1.8T+32) − 8.3

)
dt
] 10−3

1 + 10.88e(
−0.0441Pa

25 )
(37)

The components of the KBDI can be computed according to paragraph S2.13 in
Supplementary Material as well as the original form of the KBDI equation [202,203]. The
index categorization can be concluded according to Table S35 [117,204]. The KBDI index
has been criticized for underestimating soil drying or wetting rates, especially in the critical
phase between spring and summer, while it ignores the contribution of wind [47,118,205].

3.5.3. Soil Dryness Index

In order to solve the KBDI’s inaccuracies, Mount developed the Soil Dryness Index
(SDI), which embodies a different calculation approach for interception and runoff compo-
nents into the soil–moisture deficit relationship [118,205,206]. The computational procedure
is analyzed below:

SDIt = SDIt−1 − Pnet +ET (38)

where SDI represents Soil Dryness Index on day t, Pnet is the net precipitation, and ET is the
evapotranspiration. The latter two components can be estimated based on Table S36 and
paragraph S2.14 in Supplementary Material [118]. The SDI categorization for fire danger is
described in Table S37 [205].
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3.5.4. Palmer Drought Severity Index

One of the most-used drought indices in the USA is the Palmer Drought Severity
Index (PDSI) developed in 1965; this index has also been associated with forest fire danger
rating estimation [207–209]. The index relies on the hydrologic balance of water supply and
loss—using historical drought data—dividing soil into layers with different water storage
capacity, according to the following formulas [207–209]:

PDSIi = 0.897PDSIi−1 +
zi

3
(39)

where PDSIi is Palmer’s drought severity index on month i, and Z is the current moisture
anomaly on the same month, as described in detail in paragraph S2.15 in Supplementary
Material and Table S38 [173,207–212].

Although PDSI is the most broadly used drought index in the USA, there are some
skeptical reviews considering the evapotranspiration calculation approach, the simpli-
fication method used for potential runoff and recharge delay, the ignorance of freezing
conditions, the monthly basis estimation of the index, as well as the arbitrary subdivision
of drought classes [208,213,214]. The index categorization is presented in Table S39 [207].

3.5.5. Reconnaissance Drought Index

A drought index embodying cumulative precipitation and potential evapotranspira-
tion is the Reconnaissance Drought Index (RDI), and its three versions are as described
below [120,215]:

RDIk =
∑k

j=1 Pj

∑k
j=1 ETPj

(40)

where RDIk is the index value for month k, Pj is the precipitation on month j, and ETPj is the
potential evapotranspiration on month j. The two other versions of the index are presented
in paragraph S16 in Supplementary Material. The categorization of the last version of the
index is presented in Table S40.

3.5.6. Climatic Water Deficit and Vapor Pressure Deficit

Another two indicators of water presence in the vegetation and in the air are climatic
water deficit and vapor pressure deficit, respectively, with the latter already being men-
tioned. These indices have been directly correlated to some extent with fire danger, while
they are included in other systems as well [3,121,122]:

CWD = ETP − ETR (41)

Δe = Esat − Eact = 0.6108e
17.27T

T+237.3

(
1 − RH

100

)
(42)

where CWD is Climatic Water Deficit; ETP and ETR represent potential and real evapotran-
spiration, respectively.

3.5.7. Darcy’s Law

Although Darcy’s law describes the flow of a fluid through a porous medium and was
basically developed to describe the flow of groundwater, a hydraulic corollary has been
developed based on this law for the estimation of the possibility of a certain plant surviving
harmful conditions, such as drought, wildfires, and pest attacks [123,124]. The equation is
strongly related to plants physiology as well as meteorological parameters, according to
the subsequent formula [124]:

DBI =
As · Ks(ψs −ψL)

h · η · AL · Δe
(43)
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where DBI is the Darcy-law-based index; As is the cross-sectional area of the conducting
sapwood in cm2 that has to be measured on field; Ks is the specific conductivity of the
sapwood that has to be measured on field; ψs, ψL are soil and leaf water potential, respec-
tively; h is the plant height that has to be estimated by field measurements or through
remote sensing techniques; η is water viscosity that can be estimated through tables related
to fluid mechanics [216]; AL is the average leaf area that can be estimated or measured;
Δe is vapor pressure deficit. The ψs and ψL can be calculated as in paragraph S2.17 in
Supplementary Material [217,218]. Darcy’s law requires a significant amount of field mea-
surements, while it refers to a single tree, meaning that average values have to be inserted
for vegetated areas—requiring similar plant types.

3.6. Remote Sensing Indices
3.6.1. Normalized Difference Vegetation Index

The advance in satellite technologies alongside with the remote sensing techniques
has been proven significant in the development of fire danger rating systems, as the spatial
and temporal resolution of the input data as well as the output indices has followed the
improvement in computational systems [219]. In the current section, some of the most
used and documented indices of remote sensing related to fire danger estimation will
be described.

The Normalized Difference Vegetation Index (NDVI) is one of the most used con-
cerning this category [34,220]. The index is based on the high reflectance of vegetation’s
chlorophyll in the near-infrared spectrum of radiation and the respective low reflectance on
red, which differentiate the healthy plants containing an important amount of chlorophyll
from the water-stressed ones [125,221]. The calculation of NDVI is given below [221,222]:

NDVI =
NIR − R
NIR + R

(44)

where NIR is the near infrared value of a pixel band (with wavelength from 0.80 to 0.90 μm),
and R is the respective red one band (with wavelength from 0.63 to 0.70 μm). The NDVI
has been used as a proxy of fuel moisture content and has been proven to be a reliable
option when the required satellite data are available [223–230]. NDVI values are in range
of −1 to 1, with positive values close to 1 showing healthy vegetation and negative values
close to −1 showing water stressed vegetation.

3.6.2. Relative and Visual Greenness

The Relative and Visual Greenness are indices produced by NDVI values for long and
medium periods of observations and have been used in several studies as a long- and medium-
term, respectively, fuel moisture index [31,231,232] according to the following equations:

RG = 100
[

NDVIo − NDVImin
NDVImax − NDVImin

]
(45)

VG =
100
0.66

NDVIo (46)

where RG and VG are relative and visual greenness, respectively; NDVIo is the NDVI index
with values over a two-week period of observations; NDVImin and NDVImax are the NDVI
index minimum and maximum values, respectively, for historical observations. Higher
index values show more water presence in the vegetation.

3.6.3. Liquid Water Presence-Based Indices

Another category of indices based on the infrared bands consists of indices enhancing
the visibility of plants that contain water in liquid form, such as the normalized differ-
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ence water index NDWI, the normalized Multi-Band Drought Index (NMDI), and the
Normalized Difference Infrared Indices (NDII), calculated as follows [126]:

NDWI =
NIR − SWIR
NIR + SWIR

(47)

where NIR as in Equation (44) and SWIR is the shortwave infrared band (with wave-
length from 1.00 to 2.50 μm). A second version—less used—is given by the following
expression [127]:

NDWIm =
G − NIR
G + NIR

(48)

where G is the green band (with wavelength from 0.53 to 0.60 μm). Higher values of both
indices show greater water presence. Two versions also have been utilized for NDII indices
concerning the bandwidth of the SWIR wavelength [128]:

NDII6 =
NIR − SWIR2

NIR + SWIR2
(49)

NDII7 =
NIR − SWIR3

NIR + SWIR3
(50)

where NDII6 is the index using the 6th band of MODIS satellites, which is represented here
by SWIR2 with bandwidth 1.628–1.652 μm; NDII7 is the index using the 7th band of the
respective satellite represented by SWIR3 with bandwidth 2.105–2.155 μm. In Equations (49)
and (50), NIR corresponds to the 2nd band of MODIS with a bandwidth of 0.841–0.876 μm.
Finally, the NMDI uses two bands for liquid water absorption, enhancing the sensitivity to
drought severity concerning both plants and soil [129]:

NMDI =
NIR − (SWIR2 − SWIR3)

NIR + (SWIR2 + SWIR3)
(51)

where the proposed wavelengths are 0.860 μm, 1.640 μm, and 2.130 μm for NIR, SWIR2,
and SWIR3, respectively.

3.6.4. Soil Adjusted Vegetation Index

The Soil-Adjusted Vegetation Index (SAVI) also refers to NDVI, as it was proposed
as an amelioration of the latter for soil reflectance correction in sparsely vegetated areas,
according to the following relationship [130]:

SAVI =
[

NIR − R
NIR + R + L

]
(1 + L) (52)

where L is a factor representing vegetation density ranging from 0 (very high vegetation
density—SAVI equals to NDVI) to 1 (very low vegetation density). The output values are
slightly lower than the respective NDVI ones, as for leaf area index (LAI as mentioned
above) equal to 0.5 and 1, NDVI ranges from 0.24 to 0.60 and from 0.44 to 0.74, while the
respective SAVI values range from 0.21 to 0.24 and 0.38 to 0.40 accordingly [131].

3.6.5. Enhanced Vegetation Index and Visible Atmospheric Resistant Index

These two indices are alternatives to NDVI. The Enhanced Vegetation Index (EVI)
considers atmospheric and canopy noise, while the sensitivity to high density vegetation is
greater, according to the following equation [233]:

EVI = G
[

NIR − R
NIR + C1 · R − C2 · B + L

]
(53)
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where G, C1, and C2 are the gain factor coefficient (equal to 2.5) and the aerosol resistance
terms (equal to 6 and 7.5, respectively); B stands for the blue band (with a wavelength
range from 0.43 μm to 0.50 μm), while all others are as in previous equations.

The Visible Atmospheric Resistance Index (VARI) considers the atmospheric noise
as well; however, it requires data from the visible spectrum, in line with the following
relationship [133]:

VARI =
G − R

G + R − B
(54)

3.6.5.1. Fire Potential Index Model and Modifications

Fire Potential Index (FPI), which combined satellite and field observations with high
correlation to fire incidents. FPI was developed as an alternative to the complicate NFDRS
calculations, while its intended accuracy approximates the 1 km [70]. FPI embodies some of
the remote sensing indices mentioned in earlier sections as well as the fuel models proposed
by the developers of NFDRS. The computational procedure of FPI alongside the two
modifications is presented in paragraph S2.18 in Supplementary Material, Tables S41 and
S42 [31,61,65,67,133,134]. Finally, the FPI has been proven to be reliable in environmentally
diverted areas [133,134] although the ignition source of the fire incidents is ignored.

4. Discussion

The 63 systems indices reported in the current review incorporate environmental
parameters for assessing directly or indirectly the fire danger in wildlands. However, there
is a variety in parameters used as input for the analyzed systems, while their respective
significance, impact, and calculation procedures also differ from case to case. Therefore,
inputs, calculations, and outputs are the core parts of the evaluation process. Table 2
displays the relationships between systems and input parameters except for the remote
sensing indices, as in these, the input parameters are the reflectance values of satellite
images. For assessing the performance of the systems and indices in terms of inputs,
calculations, and outputs, thirteen criteria were established according to the cited references
of the current review, which were grouped in four categories: (1) computational procedure;
(2) fire characteristics; (3) modularity; and (4) credibility. The final grade is the sum of all
points derived from these criteria.

4.1. Computational Procedure

Five criteria are incorporated in the present group: (1) calculation complexity, defined
by the number of equations and tables needed for the calculation of an index; (2) required
data volume, defined by the number and the form of the data; (3) input data complexity,
defined by the difficulty to acquire or measure the input data; (4) units which can be in SI or
in US customary units; and (5) accumulated index related to previous calculations. The first
three are rated on the scale 0–5, with 5 implying the less complex and 0 the most challenging
to estimate. If the unit system differs from SI, then a point is subtracted from the sum of the
first five criteria, while the same happens in the case that an index is cumulous, as different
units and cumulus indices require additional calculations. The final result is divided by
two in order to ensure equal weights to the following criteria.

4.2. Fire Characteristics

Two criteria are included in fire characteristics: (1) input variables type, defined by the
first line of Table 2, and (2) fire danger aspect, related to fire ignition, spread, or severity.
For every variable type and fire danger aspect, a point is added to the sum of the criteria
for every index, as indices including more types of parameters and fire characteristics are
considered as the most integrated.
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4.3. Modularity

Two criteria are included as well in this group: (1) useful subcomponents related to
intermediate outputs of the fire danger systems and (2) embodiment of other indices. Both
are rated in a binary form, adding a point to the overall sum for every criterion that is
fulfilled. Modularity is not a necessity; however, it can be considered as a leverage in the
calculation process as well as in the integration of the deployed indices.

4.4. Credibility

The final category can be considered as the most essential in operating terms and
consists of four criteria: (1) calculation basis, referring to the theoretical background
concerning each system’s development; (2) output categorization, concerning the clarity
and the relevance of the output to the fire danger rating; (3) validation, concerning the
estimation of the system index values in real scenarios and based on the selected studies of
this review; and (4) adaptability, related to the degree that a system has been successfully
tested in different environments. In the first one, six cases can be distinguished: arbitrary,
empirical, scientific-based systems, and their combinations per two. Arbitrary systems
are considered less credible, especially in different environments; thus, no points are
added in the evaluation process. Empirical systems are developed to be more well-suited
to local conditions; hence, these systems are rated with two points, while the mixture of
arbitrary-empirical basis is rated with one point. Scientific-based systems provide enhanced
credibility; therefore, the respective rate equals three, the mixture of scientific-arbitrary
basis is rated with two, and lastly, the mixture of scientific-empirical basis is rated with
four, as it is the most complete approach. In the second one, the output categorization can
be clear and immediately related to fire danger, moderately clear and related to fire danger,
and not clear or not immediately related to fire danger, with ratings being 1, 0, and –1,
respectively. In the third and the fourth criteria, the validation results and adaptability are
rated from 0 concerning systems that have not been yet deployed and from 3 concerning
systems that have been used in almost every environment for a long period of time. The
results of the evaluation procedure are displayed in Table 3. The results presented in Table 3
use the same weight for all criteria although the first and the last group are considered of
higher importance as more criteria and points are included. Other combinations of weights
can also be defined. NI, AI, KBD and NDVI are the top-performing indices, while IREPI,
IBr, CWD, and DI have the lowest scores.

Table 3. The evaluation of systems and indices for fire danger rating.

S1 Σ S2 Σ S3 Σ S4 Σ Grade

Index A B C D E F G H I J K L M

CFFDRS 1 2 4 SI −1 6 m i 2 1 0 1 se 1 3 3 11 17
NFDRS 0 0 3 O 0 2 m,v,t i,b,S 6 1 1 2 se 0 3 2 9 18
Fosberg 3 4 5 O 0 11 m i 2 0 0 0 s 1 2 1 7 14.5
Fosberg + 2 3 5 O 0 9 m i 2 0 1 1 s 1 1 1 6 13.5
BEHAVE 0 0 3 O 0 2 m,v,t b,S 5 1 1 2 se 1 2 1 8 17
CBI 5 5 5 SI 0 15 m i 2 0 0 0 e 1 1 1 5 14.5
HDWI 4 4 5 SI 0 13 m i 2 0 0 0 s −1 1 1 4 12.5
LASI 5 4 1 SI 0 10 m i,S 3 0 0 0 a 1 3 2 6 14
FFDI 2 2 5 SI −1 8 m i 2 1 1 2 se 1 3 2 10 18
GFDI 4 3 4 SI 0 11 m,v i 3 0 0 0 se 1 2 1 8 16.5
FFBT 1 2 3 SI 0 6 m,v i 3 0 0 0 se 1 1 0 6 12
SFDI 5 5 5 SI 0 15 m i 2 1 0 1 se 1 1 1 7 17.5
LFDI 4 4 4 SI 0 12 m,h i 3 0 0 0 se 1 2 1 8 17
FMA 5 5 5 SI −1 14 m i 2 0 0 0 ea 1 2 1 5 14
FMA+ 5 4 5 SI −1 13 m i 2 0 0 0 ea 1 2 1 5 13.5
IRM 5 4 5 SI 0 14 m i 2 0 0 0 e 1 1 1 5 14
RF 3 2 3 SI 0 8 m,v i 3 1 0 1 se 1 2 2 9 17
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Table 3. Cont.

S1 Σ S2 Σ S3 Σ S4 Σ Grade

Index A B C D E F G H I J K L M

EPI 5 5 5 SI −1 14 m,h i 3 0 0 0 a −1 1 1 1 11
PEI 5 5 5 SI −1 14 m,h i 3 0 0 0 a −1 1 1 1 11
r (Orieux) 2 3 4 SI −1 8 m,h i 3 1 0 1 ea 1 2 1 5 13
I87 2 3 4 SI −1 8 m,h i 3 0 1 1 sa −1 2 1 4 12
Numerical 2 4 5 SI −1 10 m i 2 1 1 2 sa 1 1 1 5 14
Lourenco 5 5 5 SI 0 15 m i 2 0 0 0 a 1 2 1 4 13.5
Lourenco_m100 5 4 5 SI 0 14 m i 2 0 0 0 a 1 2 1 4 13
Lourenco_f 5 5 4 SI 0 14 m i 2 0 0 0 ea 1 2 1 5 14
Ifa 4 4 5 SI −1 12 m i 2 0 0 0 se 1 2 1 8 16
ICONA 3 1 3 SI 0 7 m,v,t i 4 1 0 1 se 1 2 1 8 16.5
CFS 3 3 3 SI −1 8 m,h i 3 0 0 0 sa 1 2 1 6 13
IREPI 3 5 5 SI 0 13 h i 2 0 0 0 a −1 2 0 1 9.5
IFI 2 0 1 SI 0 3 m,v,h,t i 5 1 0 1 sa 1 1 0 4 11.5
DMRIF 4 3 4 SI −1 10 m,h i 3 0 1 1 sa 1 2 1 6 15
AI 5 5 5 SI 0 15 m i 2 0 0 0 sa 1 3 3 9 18.5
BIt 4 4 5 SI −1 12 m,h i 3 0 0 0 ea 1 1 1 4 13
IBr 5 5 4 SI −1 13 m i 2 0 0 0 a −1 1 1 1 9.5
TLI 5 4 5 SI −1 13 m i 2 0 0 0 sa 1 2 2 7 15.5
NI 5 5 4 SI −1 13 m,h i 3 0 0 0 s 1 3 3 10 19.5
mNI 4 4 4 SI −1 11 m,h i 3 0 0 0 se 1 1 1 7 15.5
Zhdanko 4 4 4 SI −1 11 m,h i 3 0 0 0 se 1 1 1 7 15.5
M68 3 4 4 SI −1 10 m,h i 3 0 0 0 se 1 1 1 7 15
mM68 3 4 4 SI −1 10 m,h i 3 0 0 0 se 1 2 1 8 16
DW 2 0 0 SI 0 2 m,h i 3 0 0 0 se 1 2 1 8 12
MDI 5 5 5 SI −1 14 h i 2 0 0 0 s −1 1 1 4 13
KBDI 4 3 4 O −1 9 m,h i 3 0 0 0 se 1 3 3 11 18.5
SDI 3 3 3 SI −1 8 m,h i 3 0 0 0 se 1 3 2 10 17
PDSI 1 2 1 O −1 2 m,h i 3 0 0 0 se 0 3 2 9 13
RDI 5 5 4 SI −1 13 m,h i 3 0 0 0 s 0 1 0 4 13.5
CWD 4 3 3 SI 0 10 h i 2 0 0 0 a −1 2 1 2 9
VPD 5 5 5 SI 0 15 m i 2 0 0 0 e −1 2 2 5 14.5
DI 3 1 1 SI 0 5 h i,S 3 0 0 0 s −1 0 0 2 7.5
NDVI 5 5 5 SI 0 15 v i,S 3 0 0 0 s −1 3 3 8 18.5
RG 5 5 4 SI −1 13 v i,S 3 0 1 1 se −1 2 2 7 17.5
VG 5 5 4 SI −1 13 v i,S 3 0 1 1 se −1 1 1 5 15.5
NDWI 5 5 5 SI 0 15 v i,S 3 0 0 0 s −1 1 1 4 14.5
NDWIm 5 5 5 SI 0 15 v i,S 3 0 0 0 s −1 0 1 3 13.5
NDII6 5 5 5 SI 0 15 v i,S 3 0 0 0 s −1 0 1 3 13.5
NDII7 5 5 5 SI 0 15 v i,S 3 0 0 0 s −1 0 1 3 13.5
NMDI 5 5 5 SI 0 15 v i,S 3 0 0 0 s −1 0 1 3 13.5
SAVI 5 5 5 SI 0 15 v i,S 3 0 0 0 s −1 0 1 3 13.5
EVI 5 5 5 SI 0 15 v i,S 3 0 0 0 s −1 0 1 3 13.5
VARI 5 5 5 SI 0 15 v i,S 3 0 0 0 s −1 0 1 3 13.5
FPI 2 3 4 SI −1 8 m,v i,S 4 0 1 1 se −1 2 2 7 16
FPI_m1 3 3 4 SI −1 9 m,v i,S 4 0 1 1 se −1 1 1 5 14.5
FPI_m2 3 3 4 SI −1 9 m,v i,S 4 0 1 1 se −1 1 1 5 14.5

Legend (Column heading)

S1 Computational
procedure D Units L Validation B Behavior

S2 Fire characteristics E Accumulated index M Adaptability S Severity
S3 Modularity F Fire danger variables N Accuracy A Arbitrary
S4 Credibility G Fire danger aspect M Meteorology E Empirical
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Table 3. Cont.

S1 Σ S2 Σ S3 Σ S4 Σ Grade

Index A B C D E F G H I J K L M

Σ Sum H Useful
subcomponents V Vegetation S Scientific

A Calculation
complexity I Embodiment of

other indices T Topography Si International
system

B Required data
volume J Development basis H Hydrology O Other

C Input data
complexity K Output interpretation I Ignition

4.5. Accuracy

The last but also the most important step for selecting the best fire danger rating system
or index is estimating the respective accuracy. For the evaluation process, four regions
within the Greek territory were selected, as depicted in Figure 2: (1) Mt. Penteli region in
Attica; (2) the Regional Authority of Evros, northeastern Greece; (3) the Region of Kimi-
Aliveri in Evoia; and (4) the Regional Authority of Helia-Achaia. As shown in Figure 2,
fire incidents for the period 01/06/2022–31/07/2022 were gathered from satellite images
provided by the NASA-FIRMS (https://firms.modaps.eosdis.nasa.gov/map/, accessed on
1 August 2022) [234] as well as meteorological data from the local weather stations, provided
by the National Weather Service of Greece and the National Observatory of Athens.

 

Figure 2. Fire incidents and weather stations in the areas of interest.
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For calculating the values of the indices for every region, a computer program in
Python was developed according to the equations presented in this article and the respective
SM file. The program uses as input the meteorological data, i.e., temperature, relative
humidity, wind speed, and precipitation depth, while it calculates other intermediate
parameters needed for the computation of the fire indices, such as the number of days of
drought, evapotranspiration, etc. The computational procedure concludes with the output
values of every index on daily basis from 1 June 2022 to 31 July 2022. Unfortunately, due to
lack of some specialized data, not all presented indices were used. The following indices
were excluded from this accuracy experiment: BEHAVE, LASI, FFBT, ICONA, IREPI, PDSI,
CWD, Darcy, as well as remote sensing indices, as a different approach would have to be
adopted; thus, the comparison would be unrepresentative.

According to the index values in relation to fire incident or no fire occurrence, the
following four cases were examined: (1a) no fire occurrence and index “hit”; (1b) no fire
occurrence and index “miss”; (2a) fire occurrence and index “hit”; and (2b) fire occurrence
and index “miss”. In case of no fire incident, an index hit is considered as the outcome
value out of the range of extreme fire danger class—according to SM tables. Accordingly, in
case of a fire event, an index hit is when the respective outcome value is in the range of the
extreme fire danger class. Fire danger classes for some of the indices had to be redefined
to be realistic in the Greek environment in order to fit with the outcome value ranges.
Cases 1a and 1b were marked with 1 and 0 points, respectively, per day of calculations,
while cases 2a and 2b, which were considered more important for fire management, were
marked with 2 and −2, respectively. For the final score, all index marks were normalized by
dividing with 277 (the maximum mark for all days and all regions). The five most-accurate
indices for the tested period and regions in Greece were proven to be the following: (1) NI;
(2) KBDI; (3) SFDI; (4) FFDI5; and (5) SDI. The five least-accurate indices were as follows:
(1) DW; (2) r (Orieux); (3) IBr; (4) IFI; and (5) PEI. The NI has also been successfully applied
in mountainous areas in Greece [235–237], corroborating the findings of the present article.

Eventually, the scores of indices (presented in Table 3) and the accuracy marks were
summed, using equal weights (divided with the respective maximum grade), to produce
the final evaluation of the included indices, as shown in Table 4.

Table 4. Overall performance of environmental fire danger systems and indices based on the five
groups of criteria.

Index Score Index Score Index Score

NI 0.68 Zhdanko 0.56 pmM68 0.51
KBDI 0.65 M68 0.55 HDWI 0.49
SFDI 0.64 CBI 0.55 FMA 0.49
FFDI5 0.62 RF 0.55 RDI 0.49
SDI 0.61 DMRIF 0.54 CFS 0.48
LFDI 0.60 IRM 0.54 EPI 0.47
GFDI5 0.59 Fosberg 0.53 Numerical 0.46
TLI 0.59 MDI 0.53 FMA+ 0.46
CFFDRS 0.59 Lourenco_f 0.53 I87 0.44
Ifa 0.59 Lourenco 0.53 DW 0.44
AI 0.58 BIt 0.52 r (Orieux) 0.43
NFDRS 0.58 Lourenco_m100 0.52 IBr 0.43
mNI 0.57 Fosberg+ 0.51 IFI 0.42
VPD 0.57 mM68 0.51 PEI 0.41

5. Conclusions

A total of 63 environmental fire danger rating systems from across the globe were
analyzed and compared. The most important parameters were associated with weather
and hydrology although the most accurate indices required only two to five inputs. Some of
the most-used systems—also reported in the present review—require complex calculations.
However, the top-rated indices and the most accurate as well were those with simpler
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formulas and procedures. In addition, indices developed in a specific region have been
proven to be more accurate in different environments—as most of the Mediterranean indices
included in the current study underperformed in Greece. Additionally, the most complete
systems—such as the CFFDRS and the NFDRS—had a fine performance, while the FFDI5
reached near the top, leading to the conclusion that if these systems adapt better to the local
conditions, their performance will be greater than the respective one of the simpler indices.
Finally, this review corroborated the inadequacy of the existing environmental fire danger
rating systems in predicting modern day incidents, as the top-performing systems had
an accuracy of 60–66% and a total score of 59–68%, indicating the need for an integrated
approach including social and other factors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/land12010194/s1, Paragraphs S2.1–S2.18; Tables S1–S42. The SM file
presents the calculation procedure and value range for each system and index. Also, the SM includes
the nomenclature.
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