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Bäcklund Transformations for Liouville Equations with Exponential Nonlinearity
Reprinted from: Axioms 2021, 10, 337, doi:10.3390/axioms10040337 . . . . . . . . . . . . . . . . . 97

Thomas Ernst
A New q-Hypergeometric Symbolic Calculus in the Spirit of Horn, Borngässer, Debiard and
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axioms

Editorial

Henri Poincaré’s Comment on Calculus and Albert Einstein’s
Comment on Entropy: Mathematical Physics on the Tenth
Anniversary of Axioms
Hans J. Haubold

United Nations Office for Outer Space Affairs, A-1220 Vienna, Austria; hans.haubold@gmail.com

This Special Issue of the journal Axioms collates submissions in which the authors
report their perceptions and results in the field of mathematical physics and/or physical
mathematics without any preconditions of the specific research topic. The papers are
intended to provide the reader with a broad window into the status of the research field
showing our understanding of how a known concept changes our thinking in that area
of science.

The history of interactions between physics and mathematics is old and complex.
Physics cannot flourish without mathematics and mathematics frequently takes its inspi-
ration from physics. The inward-bound trajectory of 20th century physics towards the
discovery of the most fundamental laws of physics resulted in the creation of quantum field
theory (QFT) and string theory (ST). QFT/ST was a revelation of 20th century scientists well
into the 21st century and is widely recognized as being far from fully understood. Research
into QFT/ST has made use of ever more sophisticated mathematics, including cutting
edge mathematics at the focus of present-day research. Conversely, many developments in
QFT/ST have also led to profound new insights, constructions, and even entire subfields
of mathematics (examples include vertex operator algebra theory and homological mirror
symmetry). A community of scientists, involving both mathematicians and physicists,
are vigorously engaged in the pursuit of investigating QFT/ST and its relationship with
mathematics. There is dual and equal emphasis on both the discovery of the fundamental
laws of nature as well as on mathematical discovery. This field of intellectual research has
been termed physical mathematics. Physical mathematics is a subfield of the much broader
field of mathematical physics [1].

1. Solvay 1911: Poincaré (Leibniz Newton Calculus) and Einstein (Boltzmann
Gibbs Entropy)

A similar situation occurred at the beginning of the 20th century in physics and
mathematics. The situation was reflected in the proceedings of the first Solvay Council
more than 100 years ago in 1911. The central topic at this time was not QFT but quantum
mechanics and the Solvay Council proceeded in elaborating on questions concerning
Planck’s quantum of action in terms of mathematics and physics [2].

For this Special Issue of Axioms, the question of what the eminent physicists and
mathematicians contributed to the deliberations of the first Solvay Council had in mind
for their research to develop “the theory of [photon] radiation and quanta” into quantum
physics on a similar standing as classical physics was considered. When planning this
Special Issue of Axioms the question was asked if we were in a similar situation today
asking for the discovery of “the theory of neutrino radiation and quanta” generalizing the
mathematics and physics of the standard model of elementary particle interactions.

The Solvay Councils have been devoted to understanding preeminent open problems
in physics by applying modern mathematics. Hendrik A. Lorentz was chairman of the first
Solvay Conference on Physics, held in Brussels from 30 October to 3 November 1911. The
subject was The Theory of Radiation and Quanta. This council looked at the problems of
having two approaches, namely, classical physics and quantum physics.
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On one side, at the first Solvay Council, a time between the discovery of Planck’s
quantum of action and the birth of Heisenberg’s and Schrödinger’s quantum mechanics,
Poincaré asked if it was still possible to represent basic physical laws (mechanics) in terms
of differential equations [3]?. Today a follow-up question to Poincare’s question could
be, in principle: What physics is behind the so-called fractional calculus and fractional
differential equations [4]?

On the other side, although the equation on Boltzmann’s grave at the Vienna Central
Cemetery captures his insight into entropy, he never wrote it down himself. It was Planck
who, in 1900, first wrote into the form that became Boltzmann’s epitaph and supported
the birth of quantum theory. In 1905, in one of his papers, Einstein termed it Boltzmann’s
principle. This equation reflects the fundamental insight that the second law of thermody-
namics can only be understood in terms of a connection between entropy and probability
and thus the second law is statistical in nature. Einstein’s perspective on classical statistical
mechanics and particularly on Boltzmann’s principle is reflected by his written words:

“What I find strange about the way Mr. Planck applies Boltzmann’s equation is
that he introduces a state probability W without giving this quantity a physical
definition. If one proceeds in such a way, then, to begin with, Boltzmann’s equa-
tion does not have a physical meaning. The circumstance that W is equated to the
number of complexions belonging to a state does not change anything here; for
there is no indication of what is supposed to be meant by the statement that two
complexions are equally probable. Even if it were possible to define the complex-
ions in such a manner that the S obtained from Boltzmann’s equation agrees with
experience, it seems to me that with this conception of Boltzmann’s principle
it is not possible to draw any conclusions about the admissibility of any funda-
mental theory whatsoever on the basis of the empirically known thermodynamic
properties of a system.” [5].

Even earlier, Einstein emphasized with respect to the equation S = (R/N) l gW + const.,
that:

“Neither Herr Boltzmann nor Herr Planck gave a definition of W. They put
formally W = number of complexions of the state under consideration”.

2. Mathematical Physics

What is the meaning and purpose of the field of mathematical physics or physical
mathematics? The common understanding is that mathematical physics applies rigorous
mathematical ideas to problems inspired by physics and to investigate the mathematical
structure of physical theories, and vice versa. As such, it is a remarkably broad subject.
Mathematics and physics are traditionally tightly linked subjects and many historical
figures, such as Isaac Newton and Carl Friedrich Gauss, were both physicists and mathe-
maticians. Traditionally mathematical physics has been closely associated with ideas in
calculus, particularly those of differential equations.

In recent years, in part due to the rise of QFT, quantum gravity, and cosmology,
many more branches of mathematics have become major contributors to physics. The
section Mathematical Physics of the Journal Axioms covers a wide field for research in
the mathematical and physical sciences and their applications, including applications in
chemistry, biology and the social sciences. Depending on the inclination of the authors of
research papers in Axioms, one may prefer mathematics from the point of view of physics
or vice versa.

3. From Solvay 1911 to Axioms 2022: Fractional Calculus and Non-Additive Entropy

Mathematical structures entered the development of physics, and problems emanating
from physics influenced developments in mathematics. Examples include the role of
Riemann’s differential geometry in Einstein’s general relativity, the dynamical theory of
space and time, and the influence of Heisenberg’s quantum mechanics in the development
of functional analysis built on the understanding of Hilbert spaces. A prospective similar
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development occurred a couple of decades ago when non-Abelian gauge theories emerged
as QFTs for describing fundamental particle interactions. Recently, attention has turned to
the application of Riemann–Liouville fractional calculus [6–8] to physics, including Tsallis
non-additive entropy [9,10]. Statistical mechanics concerns mechanics (classical, quantum,
special or general relativistic) and the theory of probabilities through the adoption of a
specific entropic functional [11]. Connection with thermodynamics and its macroscopic
laws is established through this function.
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axioms

Perspective

Some Multifaceted Aspects of Mathematical Physics,
Our Common Denominator with Elliott Lieb †

Daniel Sternheimer 1,2,‡

1 Department of Mathematics, Rikkyo University, Tokyo 171-8501, Japan; dasternh@gmail.com
2 Institut de Mathématiques de Bourgogne, 21078 Dijon, France
† Dedicated to our friend Elliott Lieb on the occasion of the ninetieth anniversary of his birth.
‡ Honorary Professor, St Petersburg University (Russia) and Member of the Board of Governors, Ben Gurion

University (Israel).

Abstract: Mathematical physics has many facets, of which we shall briefly give a (very partial)
description, centered around those of main interest for Elliott and us (Moshe Flato and I), and around
the seminal scientific and personal interactions that developed between us since the sixties until
Moshe’s untimely death in 1998. These aspects still influence my scientific activity and my life.
They also had as a corollary a variety of “parascientific activities”, in particular, the foundation of
IAMP (the International Association of Mathematical Physics) and of the journal LMP (Letters in
Mathematical Physics), both of which were strongly impacted by Elliott, and Elliott’s long insistence
that publishers do not demand “copyright transfer” as a precondition for publication but are satisfied
with a “consent to publish”, which is increasingly becoming standard. This article being mainly
a testimony to the huge scientific impacts of Elliott and also of Moshe, their intertwined aspects
constitute the core of the present contribution. The last part deals briefly with metaphysical and
metamathematical considerations related to axioms.

Keywords: mathematical physics; Elliott Lieb; the International Association of Mathematical Physics
(IAMP, history and development); Letters in Mathematical Physics (LMP); history; God as an (op-
tional) axiom; metamathematics; symmetries; particle physics

MSC: 01A99; 01A85; 01A80; 00A79; 00A30; 03F40

1. Some History and Related Material
1.1. The Context of Our First Interactions with Elliott Lieb

a. Moshe Flato and I first met at HUJI (the Hebrew University of Jerusalem) in 1958–1961,
when we were M.Sc. students, he of Giulio (Joel) Racah and I of Shmuel Agmon, whose
original lecture on the theory of distributions we both attended in 1958–1959. Agmon turned
100 in February 2022 and still lives in Jerusalem, where I visited him in early June; on that
occasion we discovered that his French D.Sc. thesis had been edited for French language
by a common friend (the wife of a leading French astrophysicist), whose father was a
friend of my mother and had found for me a room in the apartment of a neighbor when
I was student at HUJI. That year, I also visited Moshe’s home in Tel Aviv to borrow the
excellent notes he had taken at the lecture on hydrodynamics, given the year before by
Abraham Robinson, who was then back at HUJI and is better known at present as the
founder of “nonstandard analysis”. (After getting a B.Sc. at the Hebrew University and, at
the beginning of WWII, being stuck in France with a German passport, Robinson managed
to reach London and became an expert on the airfoils used in the wings of fighter planes
(essentially, conformal mapping) which he taught to himself while serving with the Free
French Air Force). The lecture on hydrodynamics was a prerequisite for the “graduate
seminar” on aerodynamics where Robinson had given me a talk and which I was attending
at HUJI after immigrating to a kibbutz in Israel in October 1958 with a “Licence” (B.Sc.)
from Lyon in France.
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Quite naturally I was asked (by a relative of Moshe in Lyon who was my mother’s best
friend and her deputy in the local branch of the Women’s International Zionist Organization,
it is a small world) to help Moshe Flato after he arrived in Paris in October 1963, before
defending the Ph.D. on group theory in nuclear physics, which he had prepared under
Racah. Our interaction became much stronger, and its impact is felt after his untimely death
in 1998. In Paris, since October 1961, I was “attaché de recherche” at CNRS, with Szolem
Mandelbrojt (who had been Agmon’s D.Sc. adviser) as adviser and his former student
Jean-Pierre Kahane as deputy.

Incidentally, I had met Kahane at the first scientific meeting I attended, an “Inter-
national Symposium on linear spaces”, 5–12 July 1960 in Jerusalem. Much later, Lech
Maligranda (a former student of Orlicz, who appears in the photo) published on arXiv [1]
a very interesting historical note consisting of the photo below, accompanied by a brief
description of the meeting. It shows the participants, most of them famous mathematicians
(including Agmon); I still remember many of them. For the benefit of the reader, I insert
in this paper, a semi-final version of the photo that was sent to me by Maligranda, with
a request to help identify some of the few names that were not handwritten by him on
the Figure 1.

Figure 1. Jerusalem 1960, Linear Spaces Symposium.

In 1964, Moshe and I started to work on applications of group theory to physics (a
major topic for Wigner and Racah), in particular, to particle physics. That evolved into
“team work” (see, e.g., [2]), which lasted 34 years, until his death, and which I have been
developing ever since.

b. The first interactions we (Moshe Flato and I) had with Elliott, beyond those which
happen normally between scientists, date (if I remember well) to the mid seventies, after
Elliott arrived at Princeton. It seems to me important to describe briefly how (and in
which context) this happened. However, before this, I want to extend my most heartfelt
congratulations to Elliott for being awarded (in January 2022) the highest honor bestowed
by the American Physical Society, the APS Medal for Exceptional Achievement in Research
for “major contributions to theoretical physics through obtaining exact solutions to important
physical problems, which have impacted condensed matter physics, quantum information, statistical
mechanics and atomic physics”. (The Medal was awarded for the first time in 2016 to Edward
Witten.) And for being awarded the 2022 Gauss Prize at the International Congress of
Mathematicians "for deep mathematical contributions of exceptional breadth which have shaped
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the fields of quantum mechanics, statistical mechanics, computational chemistry, and quantum
information theory." (Since 2006 the Gauss Prize is awarded every four years at the IMU
Congress to honor scientists whose mathematical research has had an impact outside
mathematics.)

Flato and I have been visiting Princeton, frequently for the time, since our first visit
from France to the US in 1966, at the invitation of Eugene Wigner. Establishing a connection
with Wigner was a natural step for Moshe. At Princeton, Wigner held the Higgins Professor-
ship in physics, a named chair, which (after Wigner’s retirement) Elliott inherited. The chair,
in Wigner’s time, was not subjected to regular teaching duties. However, when Elliott
received it, and was asked by his colleagues about retirement, he declared very honestly
that he does not intend to retire. Since he had only turned 43 in July 1975, the “perk” in
teaching duties (not the named chair) became limited to 5 years! (Elliott transferred to
Emeritus status only 42 years later.)

Already in the seventies, Moshe and I had experience in a wide variety of areas of
mathematics (both applied and pure) and physics. This certainly helped us to then become
friends with Elliott after his arrival at Princeton. A main factor for that “chemistry” was
also that, though specializing in different aspects of mathematical physics, we shared a
love for Science in all its aspects, especially in mathematics, physics and their interrelation.

Moshe’s uncompromising attitude made a strong impact in the French scientific
community immediately after his arrival in October 1963 (as a theoretical physicist and for
some reasons in the group of Louis de Broglie). Eventually (and quite naturally), he found
“scientific asylum” in the (more open) French mathematical school.

As mentioned above, I was, since 1961, a member of CNRS and a D.Sc. student in
complex analysis, participating in the vivid mathematical life at Institut Henri Poincaré.
That included, in 1963–1964, participating (together with many who eventually became
leading French mathematicians in our generation) in the Cartan–Schwartz seminar [3] on
the (then new) important Atiyah–Singer index theorem, which was held in parallel with
another seminar on the same topic at Princeton organized by Richard Palais [4], exchanging
by airmail roneotyped documents. My share (Exp. No. 22, 23p.) in the “Schwartz” side of
it consisted of two talks on the multiplicative property of the analytic index, a crucial and
nontrivial step needed for “dimensional reduction” (to varieties of dimension 2 and 1, and
to the Laplacian and Dirac operators, respectively). My interests shifted to group theory in
(particle) physics in 1965 because of my increasingly close collaboration with Flato.

1.2. Our Mathematical Physics around the Seventies

The main topics treated by Moshe and I in the 1970s dealt with two main intertwined
aspects of physics, in general, and its mathematical formulation, in particular. They
are, on the one hand, the importance (and an original use) of symmetries, especially in
particle physics and in connection with relativity (a natural development of our work in
the 1960s). That included the use of the AdS (Anti de Sitter) deformation of the Poincaré
(inhomogeneous Lorentz) group and of its two special (most degenerate) representations,
discovered in 1963 by Wigner’s brother-in-law Dirac [5], who called them “singletons”
and which we called Di and Rac (on the basis of Dirac’s Bra and Ket); we used them, in
particular, to interpret (also dynamically [6]) the photon as a composite of two singletons.

On the other hand, an original mathematical interpretation of quantization as a defor-
mation of classical theories, now widely called “deformation quantization” [7,8]. The latter
aspect relates to (and if I may say, constitutes) a conceptual basis for quantum physics,
which has been, in a variety of ways, a leitmotif in Elliott’s huge scientific production.

The “chemistry” that immediately developed with Elliott was increased by the fact
that some of Elliott’s first papers have a common background with Moshe’s first interests
in physics, in particular with Moshe’s 1960 M.Sc. Thesis with Racah on ionic energy levels
in crystals [9,10].
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1.2.1. A Couple of Short Explanations

a. As was observed already in 1964–1965, the Poincaré symmetry group of special
relativity SO(3, 1) ·R4 can be viewed as a deformation (in the sense that had been defined
then by Gerstenhaber [11]) of the Euclidean symmetry group SO(4) · R4 of Newtonian
mechanics. The mathematically precise notion of deformation of groups and algebras
is, in a way, an inverse operation to the “physical” notion of “contractions”, which had
been introduced in a more limited context in the 1950s, “in physics” by E.P. Wigner and
E. Inonu [12], and by I.E. Segal in a side remark at the end of an article [13]. The latter
notion has been studied and generalized by a number of people (for an informative more
recent paper, see, e.g., [14]).

In those days, a natural question was asked, whether there is any connection between
the experimentally guessed (by analogy with spectroscopic symmetries, of which Racah
and Wigner had made ample use) unitary symmetries of elementary particles, especially
the SU(3) “internal” symmetry of the “eightfold way” (of Gell’mann and Neeman), and
the Poincaré “external” symmetry. It would have made life easier for many at the time
that there be no connection, but we objected [15] on mathematical grounds (dear to Elliott
in other areas of physics) to “proofs” that the only connection possible was a direct prod-
uct [16]. The “theorem” of Lochlainn O’Raifeartaigh was formulated at the Lie algebra level,
where the proof is not correct because it implicitly assumes that there is a common dense
domain of analytic vectors for all the generators of an algebra containing both symmetries.
(Some later attempts by physicists to obtain similar results in a variety of contexts also
contained implicit assumptions.) In fact, as it was formulated, the result is wrong, which
we exemplified later with counterexamples. That did not prevent O’Raifeartaigh from
becoming a friend. A direct product result was proved shortly afterward by Res Jost [17]
and, independently, by Irving Segal [18] but only in the more limited context of unitary
representations of Lie groups.

b. In recent years, it dawned on me, based on the fact that deformations of algebraic
structures play a major role in physics, that the above could be a false question. In a nutshell,
we know that the Euclidean symmetry can be mathematically deformed to the Poincaré
group of relativity by introducing a nonzero parameter 1/c (where c is the velocity of
light in vacuum), and that, in turn, the latter can be deformed into AdS (the anti De Sitter
symmetry SO(3, 2)) by introducing a tiny negative curvature in space-time. This permitted
us to show that the photon may be considered [6] as dynamically composite (of two Dirac
singletons) and that so can the leptons [19].

Moreover, we know that Lie groups and algebras may be deformed into the so-called
“quantum groups”, but as Hopf algebras. The axioms for the latter were written in the
1940s, well before truly representative examples emerged from physics in the 1980s (in
particular in Faddeev’s Leningrad group in relation with quantum integrable systems).
These “quantum groups” have an additional Hopf algebra structure, which makes them, in
a way, analogous to Lie groups. They have been extensively studied in the past 40 years
or so, and applied in various areas of physics. We also know since the 1990s that the
latter “at root of unity” (i.e., when the deformation parameter is a root of unity) have finite-
dimensional unitary representations, a property that was at the base of the introduction of
compact “internal symmetries” to organize the experimentally discovered multiplets of
elementary particles (not to mention the so-called “quarks”, proposed already in 1964, but
that is another story).

It is, thus, tempting to try and consider some form of quantum AdS as a candidate
for these mysterious internal symmetries, even more so since it arises from relativity by
deformations. That is what I have suggested in recent papers and talks (see, e.g., [20]).

1.2.2. The Context around This Contribution

As mentioned above, some of Elliott’s works deal with topics that have a nonzero
intersection with Moshe’s early works (with Racah). More importantly, in most of his works
and in ours, paying attention as much as possible to mathematical rigor is essential (which
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for Elliott may include finding the best constant in inequalities). Admittedly, a number
of physicists do not understand the point in working so hard to prove mathematically
results that have been “known” for a very long time using handwaving arguments, and
have often been “confirmed experimentally”. However, Elliott and us are convinced that
achieving as much mathematical rigor as possible is of utmost importance, can prevent
drawing erroneous conclusions (as shown also by our above-mentioned counterexamples)
and may even lead to the discovery of new phenomena.

Furthermore, Elliott was never narrow minded and is (like us) interested in a large
variety of scientific domains. His position at Princeton gave him superb occasions to
satisfy his scientific curiosity. (For us, extensive traveling and inviting a wide spectrum of
mathematicians and physicists, which Elliott also practiced a lot, achieved similar results).
I remember that, during one of my visits to Princeton this century, he was amused by the
fact that “stringies”, as he called the many people working in and around the so-called
string theory (which is more a framework as David Gross remarked), had become very
excited by our works on singletons (see, e.g., [6]). In October 2015, he (together with
Michael Aizenman) invited me to deliver a talk at the Princeton Mathematical Physics
seminar (which meets at irregular intervals on Tuesdays). That talk was very well attended
by leading people from the University and the Institute. My title (based in part on [20])
was (in obvious allusion to a popular paper by Wigner): “The reasonable effectiveness of
mathematical deformation theory in physics, especially quantum mechanics and maybe
elementary particle symmetries”.

Our interactions with Elliott were not limited to the professional side, but here is not
the place to expand on that. There were many occasions for interactions since he has always
been an avid traveler, also for non scientific reasons (which did happen rarely to us and,
the pandemic and age getting in the way, regretfully happens less to me in recent years).

2. Elliott and Us, the Science and Society Aspect

In the following, I shall therefore, concentrate on three main aspects of our interactions,
which relate to physics and (the scientific) society: the birth of IAMP (the International
Association of Mathematical Physics) in the 1970s; Elliott’s impact on LMP (Letters in
Mathematical Physics), the scientific journal initiated by Moshe, both in the mid 1970s; and
his largely victorious battle with publishers on the Copyright issue.

LMP started with the relatively small D. Reidel publishing company, later included
in the mathematical section of Kluwer. Eventually, LMP became affiliated at Kluwer with
physics (for a variety of “corporate” reasons), after Elliott’s time as one of the Editors.
It remained there when the scientific part of Kluwer was merged by new owners with
Springer into a new company, still named Springer, which is now part of the huge Springer–
Nature. That is a typical example of the acquisition-merger trend, which pervaded also the
scientific publications world. It has some benefits (of scale in particular) but it is potentially
dangerous in our increasingly digitalized era. For example, what will happen to the few
platforms that host most scientific publications, paid for by the work of dedicated scientists
and the (large) contributions of their institutions, if the corporations who own and manage
these platforms become bankrupt and the platforms become suddenly dark? It would take
time for the scientific societies to get around the technical and legal problems involved, and
in the meantime, most of the past scientific work will be available only in the libraries of a
few institutions, bringing (especially in theoretical domains) research tools back at least
half a century.

2.1. The Birth of IAMP

(a). The prehistory of M ∩Φ. In April 1966, the CNRS organized in Gif-sur-Yvette an
international conference titled “Extension du groupe de Poincaré aux symétries internes
des particules élémentaires”. Flato was an initiator and a co-organizer, together with Louis
Michel and Jean-Pierre Vigier. At the conference dinner, he sat next to Gunnar Källén,
an auxiliary member of the Nobel Committee for physics, who, like Flato, had (mildly
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speaking) a sharp tongue. (I was seated on the other side of Källén and remember well
some of their exchanges, which are not for publication, even now when those involved
are no longer with us). Between the two developed an immediate and strong empathy.
A year later, our friend Gilbert Karpman was appointed scientific attaché of France in
Stockholm and a Franco-Swedish conference on mathematical physics was planned with
Flato and Källén. After Källén’s death in the crash of the plane, he was piloting on his
way to CERN in October 1968, that series of meetings (the first was held in Stockholm in
December 1968) was given Källén’s name. A second one was held in Paris in June 1970
and a third in Göteborg in June 1971. In December 1972, that became a franco-polish-
swedish conference on fundamental problems in elementary particles physics, held in
Warsaw just before the “International Conference on Mathematical Problems of Quantum
Field Theory and Quantum Statistics” magnificently organized in Moscow by our friend
Nikolay Nikolayevich (N.N.) Bogoliubov (with a ceremony at the Kremlin). The latter
was eventually considered as the First IAMP Congress. That is where the symbol M ∩Φ
was introduced.

It was at the International Congress of Mathematicians held in Moscow in August
1966, which Moshe and I attended as part of the (relatively large) French delegation, that
we first met N.N. Bogolyubov and many other Soviet mathematicians with whom Moshe
established friendly relations from the beginning. Among them were the young Ludwig
Dmitriyevich Faddeev and the older Israïl Moyseyovich Gelfand, who invited Moshe
to deliver a talk at his celebrated seminar. There was immediate empathy with them,
facilitated by the fact that Moshe could speak quite fluently Russian with an almost native
accent which his perfect ear had caught from his family (he had, however, to rely on me to
read Cyrillic). At ICM66 N.N. (Nikolay Nikolayevich) invited Moshe and me to come after
ICM66 to the Laboratory of Theoretical Physics (which he created and now bears his name)
in the relatively new J.I.N.R. (Joint Institute for Nuclear Research) established in 1956 in the
new “town of science” Dubna. Which we did, and we visited Dubna several times after
that. I continued the tradition this century until the pandemic (and more) got in the way.

In December 1972, after the extension to Poland of our Gunnar Källén meetings,
almost all participants of it continued to Moscow to M ∩Φ. A cocasse anecdote occurred in
Warsaw while we were there for Christmas 1972 at the home of our friend, the late Ryszard
Ra̧czka. He had direct phone connection to Moscow, so Moshe called I.M. Gelfand’s home
and the call started as follows: “Merry Christmas Israïl Moyseyovich” said Moshe, to which
the latter replied “Merry Christmas Moysey Salomonovich”.

(b). In March 1974, a continuation and extension of the 1972 franco-polish-swedish
meeting was held in Warsaw, an International Symposium on Mathematical Physics (even-
tually considered as the second IAMP Congress). That is where we launched the ideas of
both a mathematical physics society and a new scientific journal, of shorter publications, a
somewhat mathematical physics analog of the Physical Reviews Letters.

2.2. The Development of the Concept of IAMP

Though a European, I had become an individual member of the APS (American
Physical Society) in 1967, after our first visit to US in 1966 during which we visited at BNL
(Brookhaven National Laboratory) my direct cousin Rudolph Sternheimer, who sponsored
me. APS is, by nature, much larger than the AMS (American Mathematical Society) and
organized differently. A European Physical Society (EPS) was created only in 1968, mainly
as a federation of national societies (individual membership is possible, but relatively rare
and powerless). The European Mathematical Society (EMS) was founded much later, in
1990. It is also a federation of about 60 national societies, but has many individual members
electing representatives who participate in the general assemblies alongside with delegates
of national societies.

After the creation of the EPS, it seemed natural to me, since mathematical physics
was more developed in Europe, that a European Mathematical Physics society be created,
but (like the APS) with mainly individual members, who could be coming from all over
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the world. That is why, together with Flato, we suggested just that in 1974 in Warsaw.
There was an immediate reaction, in particular from our friends Elliott and Huzihiro Araki
(from Japan, who also turned 90 in July 2022) who said: the idea is good but should by no
means be restricted to Europe in its denomination. We obviously agreed. The development
took some time, in particular because a number of leading mathematical physicists did not
see the necessity and were afraid that Moshe would use it for personal enlargement, which
had never been his intention.

Rudolf Haag, who, at first, had been reluctant to the idea, eventually became convinced
that Moshe was not looking to use IAMP. That happened in 1975, at a meeting in Lausanne
(managed by Marcel Guenin, who had played a role in the early EPS). He described the
events in a historical paper [21] from which I extract the following part:

“An important development for mathematical physics taking shape in 1975 was the
foundation of the International Association of Mathematical Physics. The creation of
such an organization had been proposed for several years by Moshe Flato and pushed
very vigorously by him against some opposing faction of scientists which included me.
The controversy was in part due to lack of clarity about the objectives of the proposed
organization but in part also due to personal animosities. Some of us had begun our
scientific life before the great inflation in numbers at a time when the theoretical physics
community was a rather tightly knit group, inspired by great masters like Lorentz, Planck,
Einstein, Bohr, Sommerfeld, . . . We did not see any need for a new organization outside
the existing mathematical and physical societies and feared the spectre of a public relations
oriented lobby engaged in fund raising for some pet projects. The somewhat flamboyant
and aggressive manners of Moshe Flato had earned him quite a number of enemies. Res
Jost had published [17] an unusually sharp reply to a criticism by Flato; Louis Michel
had had some clashes with him; Daniel Kastler and myself were embarrassed and annoyed
when at a party in Moscow, while we were talking with Bogolubov, Flato came up raising
his glass, slapping Daniel on the shoulder exclaiming: “Don’t you think Daniel, that we
should see to it that Bogolubov gets the next Nobel Prize? But Flato had also friends who
appreciated his unconventional ways and his generosity. A 1974 attempt to create the
organization by an overwhelming vote of the participants at an international congress
on mathematical physics in Warsaw failed, mainly because the Russian delegation was
uncertain whether this was politically correct. So in Fall 1975 it was decided that a few
representatives of the opposing groups should get together and settle the issue. We met in
Lausanne. On one side there was Flato and Piron, on the other side Hepp and myself and,
if I remember correctly, Borchers as a neutral witness. In the course of the discussion
Flato succeeded in convincing me that he was not a bad guy and we ultimately agreed
that the organization should be created, that the first president should be Walter Thirring
and that in the executive board there should be no person who had played any role in
the previous controversy. Thirring accepted the task and appointed a committee of four
persons, consisting of Araki, Piron, Ruelle and Streater, to work out the statutes of the
organization. Araki in his usual careful, conscientious way wrote the final version of the
statutes, which were approved by the vote of the inscribed members in July 1977. Thus
the organization could start its life”.

The above-mentioned paper by Haag was initiated by (and with) Araki and me, for a
different purpose that was eventually discontinued by the publisher and the paper was
published in the H (history) section of the EPS Journal. It basically reflects the events of
that time, but, in my opinion, a number of statements could require “footnotes”, especially
concerning the description of events involving Flato and me. Most of that is another matter
(see, e.g., [2]), but some precisions can be made, in addition to the fact that I came to Moshe
with the idea of an Association, which he liked and adopted as his: we often operated like
that, as a team. (The issue of the Nobel prize for Bogolubov, which did not happen for
reasons related to the way the Soviet Union operated, is still restricted.)

As a “sabra”, Moshe seemed quite extroverted with a flamboyant and often aggressive
style. However, that was his way to hide shyness and humility, as people who got to
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know him well eventually realized, including Yvette Chassagne, the first woman to become
“préfet” in France, after which she was chairperson of Union des Assurances de Paris (UAP)
between 1983 and 1987, then the largest French insurance company. There, she asked Flato
to establish a Scientific Council which included many VIPs, and a scientific prize, that was
awarded by that Council, one of the first being given to Lieb in 1985.

Moshe did not leave anybody indifferent. Most of those who got to know him became
friends, which includes Elliott of course. Moshe’s extraordinary personality and ability to
develop contacts in many areas and countries gave him a special status. Mutatis mutandi,
similar things can be said of Elliott.

2.3. The Prolonged Impact of Elliott on IAMP
2.3.1. The Evolution of IAMP

As attested by Haag, Elliott’s friend Walter Thirring played a crucial role in the effective
start of IAMP and was the president during its first 3 years of existence (1976–1978), followed
by Araki and Elliott, who was always in the background and is the first scientist to have
been president twice (1982–1984 and 1997–1999). As a matter of fact, the indirect impact
of Elliott on IAMP never ceased to be felt and remains a kind of watermark, though he
himself would have preferred, and been more comfortable with, a greater diversity in
the definition of “IAMP mathematical physics”, which represents only a part of his wide
scientfic interests. Elliott (private communications) is fully aware that this is not a healthy
situation, and so are many members of the Executive Committees over the years. Serious
efforts towards increasing diversity are made, but so far inner dynamics make these efforts
insufficient. Both Elliott and I feel it would be good for the spectrum represented in the
IAMP institutions and activities to be more inclusive.

2.3.2. A Perverse Effect of Democracy

As one can read in its statutes (which appear as a page in the IAMP site), IAMP
is governed by an “Executive Committee” elected by a ballot of the General Assembly
(in practice, electronically before an ICMP) for a term of three years (renewable only
once) by its ordinary members who have paid their (modest) dues. The problem, which
happens to various degrees in many democratic institutions, is that many mathematical
physicists (an admittedly imprecise notion) do not pay dues or do not bother to vote for a
variety of reasons, and that those who do vote represent only a fraction of the spectrum of
mathematical physics, concentrated in parts of the spectrum. The net result is that the first
twelve scientists appearing on the list after the vote increasingly reflect these parts, which
contributes to discouraging people from other areas.

It is natural that scientists tend to vote for scientists they know, which often means
people close to their fields. Not many have as wide a vision of Science as Elliott. Being
at the origin of the creation of IAMP, many of its first members knew me well. That is
how I was elected to its first two Executive Committees, and in that capacity, became also
a member of the Commission on Mathematical Physics (C18) established by the IUPAP
(the International Union of Pure and Applied Physics) in 1981. However, a perverse effect
manifested itself with the passing of time. The Executive Committees tried to suggest that
voters take into account the diversity of mathematical physics, which, in fact, might be
better represented by the symbol M ∪Φ, in order to make more clear that it includes also
what we call “physical mathematics”, i.e., mathematics motivated by physics. Incidentally,
in the UK, for a long time, mathematical physics referred mainly to the study of partial
differential equations.

The problem recently became more acute with the pandemic and the overwhelming
use of talks via Zoom or similar, which made an increasing number of talks accessible to
a large audience (if people have time for that). As stated on the IAMP site, a long list of
talks can be found on the site researchseminars.org, where the official “One World” IAMP
seminars are listed. That long list is not easy to use, and (at present) misses a number of
important seminar series that give perspectives on wide areas. For instance, the Rutgers
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Mathematical Physics seminars of Elliott’s friend Joel Lebowitz who (at 91) manages to
bring, week after week, review talks by leading speakers covering important sectors of
mathematical physics and applied mathematics in a very broad sense.

2.4. Elliott and LMP

Concommitant to, but independant of, the creation of IAMP is the start of LMP (Letters
in Mathematical Physics), which initially was meant to be a journal of important short
contributions, being to CMP (Communications in Mathematical Physics) a kind of analog
of what is PRL (the Physical Review Letters) is to the remainder of the Physical Review. It
was also initiated by Moshe in Warsaw in 1974. The first contacts were made (with the help
of Ryszard Ra̧czka) with PWN (Polish Scientific Publishers), but it soon became clear that,
given the delays that regular mail would bring (in particular due to political censorship in
Poland), that was not a realistic option. However, through PWN, contacts were made with
the (then small) D. Reidel Publishing Company, based in Dordrecht, whose owner Anton
Reidel liked to come to Poland in order to buy icons.

That is how the first issue of LMP appeared at the end of 1975, with at first four Editors
(Flato, Ryszard Ra̧czka, Stan Ulam and Marcel Guenin) and a diversified Editorial Board.
For a short while thereafter, in order to speed up publication, it was decided that proofs
would not be sent to the authors unless they insisted on it. After a year or so, during
which errors were introduced at the production level by an automated text editor (e.g.,
“conformal” becoming “conformational” in a title), a problem we all encounter until now
with automatic corrections on many devices, that practice was abandoned. Eventually
the publisher grew in size, becoming one of the two major Dutch publishing houses in
Science, and hired for LMP a superb dedicated editor for the papers (a former British
physics student named Richard Freeman). LMP also grew in size and so did its backlog, but
the quality remained high. Contrarily to what some had feared, there was no competition
with the “classic” journal Communications in Mathematical Physics (CMP, published by
Springer in Heidelberg), rather complementarity. The structure of the journal evolved
somewhat with time, but its way of operating remained.

Following our suggestion, Elliott joined LMP as one on the main Editors starting with
volume 8 (issue 1), January 1984. That was announced in an Editorial signed by Moshe
in the preceding issue. His first duty as Editor was to cosign with Moshe an obituary for
Mark Kac, who had been a member of the Editorial Board of LMP. Elliott’s impact was felt
in many areas, both scientific and concerning the journal governance. He formally ceased
being one of the Editors after volume 39 (issue 4), March 1997. When Flato died suddenly
(at the age of 61) in November 1998, it fell on me to manage a smooth transition, which
I did, with the help of the team he had built. Elliott’s input has been very important in
those circumstances, and he continues informally to be of help in many matters concerning
the Journal.

2.5. Copyright Transfer vs. Consent to Publish

Before, during and after, our interactions around LMP, we became involved in the
uphill battle Elliott has been waging, for years, with many publishers concerning the latters’
demand of transfer of copyright for scientific texts that were published, mainly in journals.
Without such a transfer, papers could not be published. (The case of books by one or few
authors may be different). We supported Elliott’s point and made it ours, including for our
publications. With good reason, he considered that such a demand is outrageous, dealing
with work performed by scientists (usually paid by academic institutions, mostly with
public support and often outside of their obligations) and was the fruit of their minds,
formed by years of studies. One of the arguments of the publishers, which we encountered
both as authors and as editors, was that they are better equipped than scientists to defend
the copyright (from possible plagiarism) than individual authors. In mathematical physics
(and other areas), such an argument is largely hypothetical. We were sometimes told (orally)
that there is a notion of “fair use” permitting authors to use (up to about 20% of) their
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own work in a later work. That would not be needed if only Consent to Publish is granted.
However, even if Copyright is transfered, no sensible publisher would count words and
sue an author if it determines that the use of previous material exceeds the interpretation
of “fair use”.

My conjecture is that a hidden reason for the demand of copyright transfer, across the
board of the large spectrum of a publisher (without consideration of the fact that domains
like mathematical physics can be special cases), is that some “smart" managers assumed
that the amount of copyrights they have adds to the market value of the publisher, if and
when (as has happened an increasing number of times) some financial institution wants to
buy it. This argument was probably found fallacious, the consent to publish, which Elliott
has been insisting on since many years, being sufficient. At first, a compromise was found,
but not publicized for a long time, that authors may keep Copyright to themselves and
give the publisher only “Consent to Publish” of the text in a given journal (a kind of “Lieb
exception”). That is now increasingly the case of most of our publishers. Various juridical
formulations are given to that, depending on the lawyers who play an increasing role with
publishers. Here also, Elliott’s vision and persistence have been rewarded.

3. Metaphysical—“Metamathematical” Remarks
3.1. Preparatory Introduction

On the web site of the journal “Axioms”, its aims start with the sentence “Axioms (ISSN
2075-1680) is an international, open access journal which provides an advanced forum for studies
related to axioms”. The following remarks are motivated by that sentence, though they are
largely disconnected from the remainder of that contribution, and only vaguely related to
the very general definition of the journal as “a journal of mathematics, mathematical logic
and mathematical physics”.

These remarks were, in part, triggered by a question that is often asked in various
forms. That kind of question was recently (on 22 January 2020 to be precise) asked to me by
the most tolerant rabbi of one of the two branches of Chabad in Tokyo: whether I believe in
a God or at least in a kind of supreme being.

My answer started with the 1931 incompletemess theorems of Gödel in axiomatic
set theory (more precisely, about natural numbers). The interested reader can find online
precise formulations of these theorems. For the purpose of the present remarks, we can be
satisfied with the somewhat vague statement that the (second) incompleteness theorem,
an extension of the first, shows that such a system (of axioms) cannot demonstrate its
own consistency.

My answer to the Chabad rabbi continued with a far reaching extension of the above,
which, in a way, is the basis of my “Weltanschauung” (comprehensive conception of the
world), according to which the notion of a God, or supreme being, is an axiom that may,
or not, be added to a Weltanschauung. That attitude may be called “atheism” if one takes
at its face value the prefix “a”, in contradistinction with what Proudhon and others called
“anti-theism” (a notion which appeared already in 1788 in the Oxford English dictionary).

For me the notion of a God (or supreme being) is an axiom which may, but need
not, be added to whatever “axioms” you choose to govern your life. Both alternatives are
self-consistent. It is then a matter of choice whether one chooses to add such an axiom to
one’s own system of axioms. That is, in a way, similar to the so-called “axiom of choice”
in the most commonly accepted (Zermelo–Fraenkel) set theory, which is at the basis of
most parts of modern mathematics. The analogy (imperfect as all analogies are) goes even
further, because most humans use, in their everyday language, an implicit reference to
some God. For example, I have often heard Japanese (most of whom have a very relaxed
attitude toward religions) say “I play to God” (Asians often do not distinguish between r
and l) merely to express some wish.

Incidentally, when in Fall 1958, I arrived from France at the Hebrew University (HUJI)
as a (third year mathematics) student, Avraham (Halevi, born Adolph) Fraenkel (1891–
1965) had just retired. My mother met him there in 1957, which was instrumental in her
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decision to let me immigrate to Israel in 1958 (at that time I was only 20 and still a minor by
French law). Fraenkel was succeeded in his chair by Abraham Robinson (mentioned in the
historical introduction above). There are many anecdotes related to Fraenkel from the time
when he was teaching at HUJI (one of which I used in a small humoristic column that got
published in “Le Monde” in the late 1950s), but that would take us too far off.

3.2. God as an Axiom—And Some Corollaries

My purpose here is not to add a tiny fraction, which some may consider as blasphe-
matory, to the many (often millenary) discussions around the notions of God (sometimes
written G*d, especially by “Haredi” Jews, a term derived from the Biblical verb hared, which
appears in the Book of Isaiah and is translated as “[one who] trembles” at the word of God)
and around the various religions derived therefrom.

My late mother, whom I respect immensely (fifth commandment of Judaism), used to
tell me that a main difference between Judaism and all other religions is that every Jew has
a direct line to God (if I may add, whatever that means), while in all other religions, there
must be some intermediary (whatever name is given to that notion). The problem is that in
most “sects” (including of Jews) the members feel the need to follow some guide. If that is
their free choice, let it be.

My very personal (rather iconoclastic and deliberately carricatural) definition of re-
ligion is that it is a sociological phenomenon of sado-masochistic nature, in which those
I will call here (for the purpose of cartoon)“sadists”, avatars of those who claim to speak
in the name of their god (and would like to impose their view on others) fix rules, which
“masochists” enjoy imposing upon themselves. In “Le médecin malgré lui” by Molière (act
1, scene 2) a bigot (Robert) attempts to interfere in the life of a couple of servants (Martine
and Sganarelle) because the latter beats Martine, only to be answered by her: “I want him
to beat me”.

Coming back to axioms, as stated above, my personal claim is that, by an audacious
generalization of Gödel’s incompleteness theorem, the notion of God is an axiom which
may, but need not, be added to whatever set of axioms one uses as a guide. Many prefer
to add such an axiom, and to follow one of the manifold variations on that theme that
have been added over time. In many modern societies one is free not to do so, but that
does not mean that one is “off the hook", on the contrary. When one lives in a society
(which is the case of almost all humankind), there are limitations to the freedom of each
individual person, when (and hopefully only when) it infringes upon the freedom of others.
These limitations, or at least many of them, may be easier to accept when it is claimed that
they come from some supreme being. However, claiming that the existence of such an
axiom is not your problem does not free you from its corollaries.

On the contrary, it renders each and every one responsible to make life in society
as harmonious as possible, without having to fear a “Père Fouettard”, the character who
supposedly accompanies Saint Nicholas on his rounds during Saint Nicholas Day (6
December). “Vaste programme” as is supposed to have said, in a very different context,
Général De Gaulle after seeing on the first Jeep who entered Paris on 24 August 1944
an inscription “death to idiots” (“mort aux cons”). Indeed, neither alternative is easy to
achieve, but these are not “mission impossible”. Both Theodor Herzl and Walt Disney, and
many others, have quotes going in similar directions, e.g., “If you will it, it is no dream”
and “If you can dream it, you can do it. Remember it all started with a mouse”.
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Abstract: The existence and uniqueness of a local solution is proved for the incomplete Cauchy type
problem to multi-term quasilinear fractional differential equations in Banach spaces with Riemann–
Liouville derivatives and bounded operators at them. Nonlinearity in the equation is assumed to be
Lipschitz continuous and dependent on lower order fractional derivatives, which orders have the
same fractional part as the order of the highest fractional derivative. The obtained abstract result
is applied to study a class of initial-boundary value problems to time-fractional order equations
with polynomials of an elliptic self-adjoint differential operator with respect to spatial variables as
linear operators at the time-fractional derivatives. The nonlinear operator in the considered partial
differential equations is assumed to be smooth with respect to phase variables.

Keywords: multi-term fractional differential equation; quasilinear equation; Riemann–Liouville frac-
tional derivative; defect of Cauchy type problem; fixed point theorem; initial-boundary value problem

1. Introduction

In recent decades, problems with fractional derivatives have been studied by many
authors [1–5]. Now fractional integro-differential calculus is an important tool in modeling
various phenomena that arise in physics, chemistry, mathematical biology, engineering, etc.
(see e.g., [6,7]).

The purpose of this paper is to study the local unique solvability of initial value
problems for multi-term equations in Banach spaces with fractional Riemann–Liouville
derivatives Dβ

t z, β > 0, fractional Riemann–Liouville integrals Jβ
t z, β ≥ 0, and with

nonlinearity, which depends on fractional derivatives of lower orders

Dα
t z(t) =

m−1

∑
j=1

AjD
α−m+j
t z(t) +

n

∑
l=1

Bl D
αl
t z(t) +

r

∑
s=1

Cs Jβs
t z(t)

+ F(t, Dα−m
t z(t), Dα−m+1

t z(t), . . . , Dα−1
t z(t)). (1)

Operators Aj, j = 1, 2, . . . , m− 1, Bl , l = 1, 2, . . . , n, Cs, s = 1, 2, . . . , r are supposed to
be bounded on a Banach space Z , a nonlinear map F ∈ C(Z;Z), where Z is an open set in
R×Zm.

Note that unique solvability issues for the Cauchy problem to multi-term linear
equation of form (1) with Gerasimov—Caputo derivatives and bounded operators at
them were studied in [8], various classes of nonlinear equations with Gerasimov—Caputo
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derivatives [9–11], or with a unique Riemann–Liouville derivative in a linear part of an
equation [12,13] have been studied before.

Linear equations of form (1) with Riemann–Liouville derivatives were studied in the
work [14] in the case of bounded operators in the equation, and in [15] in the case of closed
operators. In [14] it was shown, that the Cauchy type problem for an equation with several
Riemann–Liouville derivatives has the so-called defect m∗, when several initial data must
be zero in the lower order initial conditions for the solvability of the problem. So, a natural
initial value problem for a multi-term equation of such type is, generally speaking, the
incomplete Cauchy problem

Dα−m+k
t z(t0) = zk, k = m∗, m∗ + 1, . . . , m− 1. (2)

Section 2 of this work contains the unique solvability theorem for linear (F ≡ f (t))
problem (1), (2) from the work [14].

In Section 3, firstly problem (1), (2) is reduced to the integro-differential equation

z(t) =
m−1

∑
p=m∗

Zp(t− t0)zp +

t∫

t0

Zm−1(t− s)F(s, Dα−m
s z(s), . . . , Dα−1

s z(s))ds, (3)

where {Zp(t) ∈ L(Z) : t > 0}, p = m∗, m∗ + 1, . . . , m− 1 are the p-resolving families of
operators for linear Equation (1). Next, under the condition of Lipschitzian continuity of
the nonlinear operator F, using the theorem of contraction mapping for Equation (3), we
prove the unique solvability of problem (1), (2) on a small enough interval.

Finally, in the last section a theorem of a local in time unique solution existence is
obtained for initial-boundary value problems to a class of quasilinear equations with time-
fractional derivatives, where linear operators are polynomials of an elliptic self-adjoint
operator, which is differential with respect to spatial variables.

2. Preliminary Results

Let us consider the fractional integral and fractional derivative of Riemann–Liouville
with the initial point at t0 ∈ R:

Jα
t h(t) :=

t∫

t0

(t− s)α−1

Γ(α)
h(s)ds, Dα

t h(t) = Dm
t Jm−α

t h(t), t > t0,

where m− 1 < α ≤ m ∈ N, i.e., m := dαe.
By L[h] denote the Laplace transform of a function h : R+ → Z . For the fractional

integral and the fractional derivative of Riemann–Liouville we have the equalities [2]

L[Jα
t h](λ) = λ−αL[h](λ), L[Dα

t h](λ) = λαL[h](λ)−
m−1

∑
k=0

λm−1−kDα−m+k
t h(0),

Hereafter Dα−m+k
t h(0) := lim

t→0+
Dα−m+k

t h(t).

Let Z be a Banach space, L(Z) be the Banach space of bounded linear operators on Z ,
T > t0. Consider the inhomogeneous equation

Dα
t z(t) =

m−1

∑
j=1

AjD
α−m+j
t z(t) +

n

∑
l=1

Bl D
αl
t z(t) +

r

∑
s=1

Cs Jβs
t z(t) + f (t), t ∈ (t0, T). (4)

Here 0 < α1 < α2 < · · · < αn < α, ml := dαle, m := dαe, αl − ml 6= α − m,
l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0, operators Aj, j = 1, 2, . . . , m− 1, Bl , l = 1, 2, . . . , n,
Cs, s = 1, 2, . . . , r, are linear and bounded in Z . Let
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α := max{αl : l ∈ {1, 2, . . . , n}, αl −ml < α−m}, m = dαe,

α := max{αl : l ∈ {1, 2, . . . , n}, αl −ml > α−m}, m = dαe.
Denote by m∗ := max{m− 1, m} the defect of the Cauchy type problem for Equa-

tion (4) [14].
A solution of the incomplete Cauchy type problem

Dα−m+k
t z(t0) = zk, k = m∗, m∗ + 1, . . . , m− 1, (5)

for (4) is a function z : (t0, T] → Z such that Jm−α
t z ∈ Cm((t0, T];Z) ∩ Cm−1([t0, T];Z),

Jml−αl
t z ∈ Cml ((t0, T];Z), l = 1, 2, . . . , n, Jβs

t z ∈ C((t0, T];Z), s = 1, 2, . . . , r, while equal-
ity (4) for t ∈ (t0, T] and (5) hold.

Put Γ = Γ+ ∪ Γ− ∪ Γ0, Γ0 = {λ ∈ C : |λ| = r0, arg λ ∈ (−π, π)}, Γ± = {λ ∈ C :
arg λ = ±π, |λ| ∈ [r0, ∞)},

Rλ :=

(
I −

m−1

∑
j=1

λj−m Aj −
n

∑
l=1

λαl−αBl −
r

∑
s=1

λ−βs−αCs

)−1

,

Zp(t) =
1

2πi

∫

Γ

λ−αRλ ·
(

λm−1−p I −
m−1

∑
j=p+1

λj−1−p Aj

)
eλtdλ, p = 0, 1, . . . , m− 1, t > 0.

Substitute in ([14], Theorem 2) t− t0 instead of t and obtain the next result.

Theorem 1 ([14]). Let m − 1 < α ≤ m ∈ N, 0 < α1 < α2 < · · · < αn < α, ml − 1 <
αl ≤ ml ∈ N, αl − ml 6= α − m, l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0, Aj ∈ L(Z),
j = 1, 2, . . . , m − 1, Bl ∈ L(Z), l = 1, 2, . . . , n, Cs ∈ L(Z), s = 1, 2, . . . , r, zk ∈ Z , k =
m∗, m∗ + 1, . . . , m− 1, f ∈ C((t0, T);Z) ∩ L1(t0, T;Z). Then there exists an unique solution to
(4), (5). It has the form

z(t) =
m−1

∑
p=m∗

Zp(t− t0)zp +

t∫

t0

Zm−1(t− s) f (s)ds.

3. Quasilinear Equation

Let Z be an open set in R×Zm, F : Z → Z , consider the quasilinear equation

Dα
t z(t) =

m−1

∑
j=1

AjD
α−m+j
t z(t) +

n

∑
l=1

Bl D
αl
t z(t) +

r

∑
s=1

Cs Jβs
t z(t)

+ F(t, Dα−m
t z(t), Dα−m+1

t z(t), . . . , Dα−1
t z(t)). (6)

A solution of the incomplete Cauchy type problem

Dα−m+k
t z(t0) = zk, k = m∗, m∗ + 1, . . . , m− 1, (7)

for Equation (6) on (t0, t1] will be called such function z ∈ C((t0, t1];Z), that Jm−α
t z ∈

Cm((t0, t1];Z) ∩ Cm−1([t0, t1];Z), Jml−αl
t z ∈ Cml ((t0, t1];Z), l = 1, 2, . . . , n, and Jβs

t z ∈
C((t0, t1];Z), s = 1, 2, . . . , r, the inclusion (t, Dα−m

t z(t), Dα−m+1
t z(t), . . . , Dα−1

t z(t)) ∈ Z
and equality (6) are valid for all t ∈ (t0, t1], conditions (7) are fulfilled.

Let us introduce the notations x := (x0, x1, . . . , xm−1) ∈ Zm, Sδ(x) = {y ∈ Zm−1 :
‖yk − xk‖Z ≤ δ, k = 0, 1, . . . , m− 1}.
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A mapping F : Z → Z is called locally Lipschitzian in x, if for every (t, x) ∈ Z
there exist such δ > 0, l > 0, that [t − δ, t + δ] × Sδ(x) ⊂ Z, and for all (s, y), (s, v) ∈
[t− δ, t + δ]× Sδ(x) the inequality

‖F(s, y)− F(s, v)‖Z ≤ l
m−1

∑
k=0
‖yk − vk‖Z

is satisfied.

Lemma 1. Let 0 < α1 < α2 < · · · < αn < α, m = dαe, ml = dαle, αl − ml 6= α − m,
l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0, Aj ∈ L(Z), j = 1, 2, . . . , m − 1, Bl ∈ L(Z),
l = 1, 2, . . . , n, Cs ∈ L(Z), s = 1, 2, . . . , r, zk ∈ Z , k = m∗, m∗ + 1, . . . , m − 1, Z be an
open set in R×Zm, (t0, 0, 0, . . . , 0, zm∗ , zm∗+1, . . . , zm−1) ∈ Z, F ∈ C(Z;Z). Then a function
z : (t0, t1]→ Z is a solution of problem (6), (7) on (t0, t1], if and only if Jm−α

t z ∈ Cm−1([t0, t1];Z)
and for all t ∈ (t0, t1]

z(t) =
m−1

∑
p=m∗

Zp(t− t0)zp +

t∫

t0

Zm−1(t− s)F(s, Dα−m
s z(s), . . . , Dα−1

s z(s))ds. (8)

Proof. If z is a solution of problem (6), (7), then the mapping

t→ F(t, Dα−m
t z(t), Dα−m+1

t z(t), . . . , Dα−1
t z(t))

acts continuously from [t0, t1] into Z due to the definition of the solution at small enough
t1 − t0. By Theorem 2 (see [14]) a solution satisfies Equation (8).

Let z satisfy Equation (8), then one can verify that z is a solution to problem (6), (7)
due to Theorem 1 [14] and by repeating word to word the proof of Lemma 3 in [14].

Theorem 2. Let m− 1 < α ≤ m ∈ N, 0 < α1 < α2 < · · · < αn < α, ml − 1 < αl ≤ ml ∈ N,
αl −ml 6= α−m, l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0, Aj ∈ L(Z), j = 1, 2, . . . , m− 1,
Bl ∈ L(Z), l = 1, 2, . . . , n, Cs ∈ L(Z), s = 1, 2, . . . , r, zk ∈ Z , k = m∗, m∗ + 1, . . . , m− 1, Z
be an open set in R×Zm, (t0, 0, 0, . . . , 0, zm∗ , zm∗+1, . . . , zm−1) ∈ Z, a mapping F ∈ C(Z;Z)
is locally Lipschitzian in x. Then there exists such t1 > t0, that problem (6), (7) has an unique
solution on (t0, t1].

Proof. Take y := Jm−α
t z ∈ Cm−1([t0, t1],Z), then y(k) = Dα−m+k

t z, k = 1, 2, . . . , m− 1. Then
the mapping t→ F(t, y(t), y(1)(t), . . . , y(m−1)(t)) acts continuously from [t0, t1] into Z . By
Lemma 1 it suffices to show that the equation

y(t) =
m−1

∑
p=m∗

Jm−α
t Zp(t− t0)zp + Jm−α

t

t∫

t0

Zm−1(t− s)F(s, y(s), y(1)(s), . . . , y(m−1)(s))ds (9)

has an unique solution y ∈ Cm−1([t0, t1],Z) for some t1 > t0.
It was proved in Theorem 1 [14] that Dα−m+n

t Zm−1(0) = 0, n = 0, 1, . . . , m− 2. Since
for all p = 0, 1, . . . , m− 1

∥∥∥∥∥
λ−αRλ

µ− λ

(
λm−1−p I −

m−1

∑
j=p+1

λj−1−p Aj

)∥∥∥∥∥
L(Z)

≤ C1

|λ|α−m+2 ,

α−m + 2 > 1, so, L
[
Dα−m+n

t Zm−1
]
(µ) = µn−mRµ, at t ∈ [t0, t1], n = 0, 1, . . . , m− 2,
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‖Dα−m+n
t Zm−1(t)‖L(Z) ≤

1
2π

∫

Γ

‖λn−mRλ‖L(Z)|eλt|ds ≤ C2

∞∫

δ

rn−mdr + C3 ≤ C4. (10)

At n = m− 1 we have

Dα−1
t Zm−1(t) =

1
2πi

∫

Γ

Rλ

λ
eλtdλ

= I +
1

2πi

∫

Γ

λ−1

(
m−1

∑
j=1

λj−m Aj +
n

∑
l=1

λαl−αBl +
r

∑
s=1

λ−βs−αCs

)
Rλeλtdλ,

for λ ∈ Γ
∥∥∥∥∥λ−1

(
m−1

∑
j=1

λj−m Aj +
n

∑
l=1

λαl−αBl +
r

∑
s=1

λ−βs−αCs

)
Rλ

∥∥∥∥∥
L(Z)

≤ C5

|λ|1+δ
,

where δ = min{1, α− αl : l = 1, 2, . . . , n}. Consequently, at t ∈ [t0, t1]

‖Dα−1
t Zm−1(t)‖L(Z) ≤ C6. (11)

Let τ > 0 and δ > 0 be such that [t0, t0 + τ] × Sδ(z) ⊂ Z, where z = (0, 0, . . . , 0,
zm∗ , zm∗+1, . . . , zm−1) is constructed using initial data (7). Denote by S the set of functions
y ∈ Cm−1([t0, t0 + τ];Z) such that ‖y(q)(t)‖ ≤ δ, q = 0, 1, . . . , m∗ − 1, ‖y(k)(t)− zk‖ ≤ δ,
k = m∗, m∗ + 1, . . . , m− 1 for t0 ≤ t ≤ t0 + τ. We define a metric on S

d(y, v) :=
m−1

∑
k=0

sup
t∈[t0,t0+τ]

‖y(k)(t)− v(k)(t)‖Z ,

then S is a complete metric space.
Note that

Jm−α
t

t∫

t0

Zm−1(t− s)F(s, y(s), y(1)(s), . . . , y(m−1)(s)) ds

=

t∫

t0

Jm−α
t Zm−1(t− s)F(s, y(s), y(1)(s), . . . , y(m−1)(s)) ds.

This equality can be proved by changing the order of integration in its left part.
Define for y ∈ S

G(y)(t) :=
m−1

∑
p=m∗

Jm−α
t Zp(t− t0)zp +

t∫

t0

Jm−α
t Zm−1(t− s)F(s, y(s), y(1)(s), . . . , y(m−1)(s)) ds

for t ∈ [t0, t0 + τ]. Let us prove that G maps the metric space S into itself and it is a
contraction operator, if τ > 0 is sufficiently small. Indeed, for n = 0, 1, . . . , m−1

[G(y)](n)(t) =
m−1

∑
p=m∗

Dα−m+n
t Zp(t− t0)zp

+

t∫

t0

Dα−m+n
t Zm−1(t− s)F(s, y(s), y(1)(s), . . . , y(m−1)(s))ds,
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since Dα−m+n
t Zm−1(0) = 0, n = 0, 1, . . . , m − 2. By Theorem 2 [14] we have G(y) ∈

Cm−1([t0, t0 + τ];Z), [G(y)](q)(t0) = 0, q = 0, 1, . . . , m∗ − 1, [G(y)](k)(t0) = zk, k =
m∗, m∗+ 1, . . . , m− 1. Therefore, for t ∈ [t0, t0 + τ] ‖[G(y)](q)(t)‖Z ≤ δ, q = 0, 1, . . . , m∗− 1,
‖[G(y)](k)(t) − zk‖Z ≤ δ, k = m∗, m∗ + 1, . . . , m − 1, for a small enough τ > 0. So,
G : S → S .

Denote F(t, Dy(t)) := F(t, y(t), y(1)(t), . . . , y(m−1)(t)) for brevity. We have at n =
0, 1, . . . , m− 1, t ∈ [t0, t0 + τ] due to (10), (11)

‖[G(y)](n)(t)− [G(v)](n)(t)‖Z =

∥∥∥∥∥∥

t∫

t0

Dα−m+n
t Zm−1(t− s)

(
F(s, Dy(s))− F(s, Dv(s))

)
ds

∥∥∥∥∥∥

≤ τ sup
t∈[t0,t0+τ]

∥∥Dα−m+n
t Zm−1(t)

∥∥
L(Z)l

m−1

∑
k=0

sup
t∈[t0,t0+τ]

‖y(k)(t)− v(k)(t)‖Zds

≤ C7τd(y, v) ≤ d(y, v)
2m

for small enough τ. Therefore, d(G(y), G(v)) ≤ 1
2 d(y, v), the operator G has a unique fixed

point y0 ∈ S , it is an unique local solution of integro-differential Equation (9). Thus, there
exists a unique solution to problem (6), (7) on the segment [t0, t0 + τ], it is uniquely defined
by the equality z = Dm−α

t y0.

4. A Class of Initial-Boundary Value Problems

Assume given the polynomials

P1(λ) =
ν

∑
p=0

apλp, Pj
2(λ) =

ν

∑
p=0

bj
pλp, Pl

3(λ) =
ν

∑
p=0

cl
pλp, Ps

4(λ) =
ν

∑
p=0

ds
pλp,

ap, bj
p, cl

p, ds
p ∈ C, p = 0, 1, . . . , ν ∈ N, j = 1, 2, . . . , m − 1, l = 1, 2, . . . , n, s = 1, 2, . . . , r,

aν 6= 0, Ω ⊂ Rd is a bounded domain with a smooth boundary ∂Ω,

(Au)(ξ) = ∑
|q|≤2ρ

aq(ξ)
∂|q|u(ξ)

∂ξ
q1
1 ∂ξ

q2
2 . . . ∂ξ

qd
d

, aq ∈ C∞(Ω),

(Blu)(ξ) = ∑
|q|≤ρl

blq(ξ)
∂|q|u(ξ)

∂ξ
q1
1 ∂ξ

q2
2 . . . ∂ξ

qd
d

, blq ∈ C∞(∂Ω), l = 1, 2, . . . , ρ,

q = (q1, q2, . . . , qd) ∈ Nd
0, |q| = q1 + · · ·+ qd, and the operator pencil A,B1,B2, . . . ,Bρ is

regularly elliptic [16]. Define the operator A1 ∈ C l(L2(Ω)) with the domain

DA1 = H2ρ

{Bl}(Ω) := {v ∈ H2ρ(Ω) : Blv(ξ) = 0, l = 1, 2, . . . , ρ, ξ ∈ ∂Ω}

by the rule A1u := Au. Suppose that A1 is a selfadjoint operator; then its spectrum σ(A1)
is real and discrete [16]. Moreover, assume that the spectrum σ(A1) is bounded from
the right and does not contain zero, {ϕk : k ∈ N} is an orthonormal in L2(Ω) system
of eigenfunctions of A1 in L2(Ω) which is enumerated in nonincreasing order of the
corresponding eigenvalues {λk : k ∈ N} with their multiplicities counted.

Take m − 1 < α ≤ m ∈ N, 0 < α1 < α2 < · · · < αn < α, ml − 1 < αl ≤ ml ∈ N,
αl −ml 6= α−m, l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0, H : Rm+1 → R. Denote by m∗ the
defect of the Cauchy type problem, which is defined by the set of numbers α1, α2, . . . , αn, α
(see the second section), and consider the initial-boundary value problem

Dα−m+k
t u(ξ, 0) = uk(ξ), k = m∗, m∗ + 1, . . . , m− 1, ξ ∈ Ω, (12)
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BlAku(ξ, t) = 0, k = 0, 1, . . . , ν− 1, l = 1, 2, . . . , ρ, (ξ, t) ∈ ∂Ω× (t0, t1], (13)

P1(A)Dα
t u(ξ, t) =

m−1
∑

j=1
Pj

2(A)Dα−m+j
t u(ξ, t)

+
n
∑

l=1
Pl

3(A)Dαl
t u(ξ, t) +

r
∑

s=1
Ps

4(A)Jβs
t u(ξ, t)

+H(ξ, Dα−m
t (ξ, t), Dα−m+1

t (ξ, t), . . . , Dα−1
t (ξ, t)), (ξ, t) ∈ Ω× (t0, t1].

(14)

Put ρ0 ≥ 0, X := {v ∈ H2ρν+ρ0(Ω) : BlAkv(ξ) = 0, k = 0, 1, . . . , ν − 1, l =
1, 2, . . . , ρ, ξ ∈ ∂Ω}, Y := Hρ0(Ω) is a Sobolev space Wρ0

2 (Ω) for ρ0 > 0, or the Lebesgue

space Lρ0(Ω), if ρ0 = 0; L := P1(A) ∈ L(X ;Y), Mj := Pj
2(A) ∈ L(X ;Y), j = 1, 2, . . . , m−

1, Nl := Pl
3(A) ∈ L(X ;Y), l = 1, 2, . . . , n, Ss := Ps

4(A) ∈ L(X ;Y), s = 1, 2, . . . , r.
If P1(λk) 6= 0 for all k ∈ N, then there exists the inverse operator L−1 ∈ L(Y ;X )

and (12)–(14) is representable in form (6), (7), where Z = X , Aj = L−1Mj ∈ L(Z),
j = 1, 2, . . . , m− 1, Bl = L−1Nl ∈ L(Z), l = 1, 2, . . . , n, Cs = L−1Ss ∈ L(Z), s = 1, 2, . . . , r,
zk = uk(·), k = m∗, m∗ + 1, . . . , m− 1, F(x0, x1, . . . , xm−1) = L−1H(·, x0, x1, . . . , xm−1).

Theorem 3. Let m− 1 < α ≤ m ∈ N, 0 < α1 < α2 < · · · < αn < α, ml − 1 < αl ≤ ml ∈ N,
αl −ml 6= α−m, l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0, the spectrum σ(A1) do not contain
the origin and zeros of the polynomial P1, 4ρν + 2ρ0 > d, uk ∈ X , k = m∗, m∗ + 1, . . . , m− 1,
H ∈ C∞(Ω×Rn;R). Then at some t1 > t0 there exists an unique solution of problem (12)–(14).

Proof. In this problem the domain of nonlinear operator is Z = R×Xm and due to the
inequality 4ρν + 2ρ0 > d by Proposition 1 ([17], Appendix B) we have

H(·, x0(·), x1(·), . . . , xn−1(·)) ∈ C∞(Xm; H2ρν+ρ0(Ω)),

hence, F(x0(·), x1(·), . . . , xm−1(·)) := L−1H(·, x0(·), x1(·), . . . , xm−1(·)) ∈ C∞(Xm;X ). Then
by Theorem 2 we obtain the statement of this theorem.

Example 1. Take α = 5/2, m = 3, n = 1, r = 1, α1 = 2/3, β1 = 1/2, ν = 2, P1(λ) = λ2,
P1

2 (λ) = b0 + b1λ + b2λ2, P2
2 (λ) ≡ 0, P1

3 (λ) = c0 + c1λ + c2λ2, P1
4 (λ) = d0 + d1λ + d2λ2,

d = 1, Ω = (0, π), ρ = 1, Au = ∂2u
∂ξ2 , B1 = I. Then α := max ∅ := 0, m := d0e = 0,

α := max{2/3} = 2/3, m := d2/3e = 1, m∗ = 1, problem (12)–(14) has the form

D5/2
t

∂4u
∂ξ4 (ξ, t) =

(
b0 + b1

∂2

∂ξ2 + b2
∂4

∂ξ4

)
D1/2

t u(ξ, t)

+

(
c0 + c1

∂2

∂ξ2 + c2
∂4

∂ξ4

)
D2/3

t u(ξ, t) +
(

d0 + d1
∂2

∂ξ2 + d2
∂4

∂ξ4

)
J1/2
t u(ξ, t)

+F(ξ, J1/2
t u(ξ, t), D1/2

t u(ξ, t), D3/2
t u(ξ, t)), (ξ, t) ∈ (0, π)× (t0, t1],

u(0, t) = u(π, t) =
∂2u
∂ξ2 (0, t) =

∂2u
∂ξ2 (π, t) = 0, t ∈ (t0, t1],

D1/2u(ξ, 0) = u1(ξ), D3/2u(ξ, 0) = u2(ξ) ξ ∈ (0, π).

5. Conclusions

The local solvability is shown for the incomplete Cauchy type problem to a solved with
respect to a highest derivative multi-term fractional differential equation with bounded
operators at Riemann–Liouville derivatives in a Banach space with locally Lipschitzian non-
linear part. The results of the work [14] on inhomogeneous linear multi-term equation are
used here for the research of the quasilinear equation, depending on lower order fractional
derivatives with orders, which fractional part is equal to the fractional part of the highest
fractional derivative. The abstract result was applied to the investigation of initial-boundary
value problems to partial differential equations containing polynomials with respect to
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self-adjoint elliptic differential in spatial variables operator at time-fractional derivatives.
Here the highest time-fractional partial derivative acts on the highest spatial derivative.

Our next step is to abandon this condition by allowing unlimited operators in an
abstract equation. The linear case of this type has been investigated in [15], the nonlinear
one has not yet been studied. Another significant step planned by the authors in the coming
papers will be the rejection of conditions for the fractional part of the orders of derivatives
on which the nonlinear operator depends (see above).
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Abstract: In this paper, we investigate the existence and nonexistence of positive solutions for a
system of Riemann–Liouville fractional differential equations with r-Laplacian operators, subject to
nonlocal uncoupled boundary conditions that contain Riemann–Stieltjes integrals, various fractional
derivatives and positive parameters. We first change the unknown functions such that the new
boundary conditions have no positive parameters, and then, by using the corresponding Green
functions, we equivalently write this new problem as a system of nonlinear integral equations. By
constructing an appropriate operator A, the solutions of the integral system are the fixed points of
A. Following some assumptions regarding the nonlinearities of the system, we show (by applying
the Schauder fixed-point theorem) that operator A has at least one fixed point, which is a positive
solution of our problem, when the positive parameters belong to some intervals. Then, we present
intervals for the parameters for which our problem has no positive solution.

Keywords: Riemann–Liouville fractional differential equations; nonlocal boundary conditions; posi-
tive parameters; positive solutions; existence; nonexistence

MSC: 34A08; 34B10; 34B18

1. Introduction

We consider the system of fractional differential equations with r1-Laplacian and
r2-Laplacian operators

{
Dα1

0+(ϕr1(Dβ1
0+u(t))) + a(t)f(v(t)) = 0, t ∈ (0, 1),

Dα2
0+(ϕr2(Dβ2

0+v(t))) + b(t)g(u(t)) = 0, t ∈ (0, 1),
(1)

supplemented with the uncoupled nonlocal boundary conditions




u(j)(0) = 0, j = 0, . . . , n− 2; Dβ1
0+u(0) = 0, Dγ0

0+u(1) =
p

∑
j=1

∫ 1

0
D

γj
0+u(τ) dHj(τ) + a0,

v(j)(0) = 0, j = 0, . . . , m− 2; Dβ2
0+v(0) = 0, Dδ0

0+v(1) =
q

∑
j=1

∫ 1

0
D

δj
0+v(τ) dKj(τ) + b0,

(2)

where α1, α2 ∈ (0, 1], β1 ∈ (n − 1, n], β2 ∈ (m − 1, m], n, m ∈ N, n, m ≥ 3, p, q ∈ N,
γj ∈ R for all j = 0, 1, . . . , p, 0 ≤ γ1 < γ2 < · · · < γp ≤ γ0 < β1 − 1, γ0 ≥ 1, δj ∈ R
for all j = 0, 1, . . . , q, 0 ≤ δ1 < δ2 < · · · < δq ≤ δ0 < β2 − 1, δ0 ≥ 1, r1, r2 > 1,
ϕrj(ζ) = |ζ|rj−2ζ, ϕ−1

rj
= ϕ$j , $j =

rj
rj−1 , j = 1, 2, a0 and b0 are positive parameters, the

functions a, b : [0, 1]→ R+ and f, g : R+ → R+ are continuous, (R+ = [0, ∞)), the integrals
from (2) are Riemann–Stieltjes integrals with Hi, i = 1, . . . , p and Kj, j = 1, · · · , q functions
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of bounded variation, and Dκ
0+ denotes the Riemann–Liouville derivative of order κ (for

κ = α1, β1, α2, β2, γi for i = 0, 1, . . . , p, δj for j = 0, 1, . . . , q). This paper is motivated by the
applications of r-Laplacian operators in various fields such as fluid flow through porous
media, nonlinear elasticity, nonlinear electrorheological fluid and glaciology, (for details,
see [1] and its references).

In this paper, we provide sufficient conditions for the functions f and g, and intervals
for the parameters a0 and b0 such that problem (1), (2) has at least one positive solution
or no positive solution. For the proof of the main existence result, we use the Schauder
fixed-point theorem. Using a positive solution of (1), (2) we understand a pair of functions
(u, v) ∈ (C([0, 1];R+))2, satisfying the system (1) and the boundary conditions (2), with
u(t) > 0 and v(t) > 0 for all t ∈ (0, 1]. The method for studying problem (1), (2) consists of
the following stages. First, we make a change in the unknown functions such that the new
boundary conditions have no positive parameters, and then, by using the corresponding
Green functions, we equivalently write this new problem as a system of nonlinear integral
equations. By constructing an appropriate operator A, the solutions of the integral system
are the fixed points of A. Following some assumptions regarding the nonlinearities of the
system, we show that operatorA has at least one fixed point, which is a positive solution of
our problem, when the positive parameters belong to certain intervals. Then, we provide
intervals for the parameters for which problem (1), (2) has no positive solution. We now
present some recent results related to our problem. In [2], by using Guo-Krasnosel’skii
fixed-point theorem, the author studied the system of fractional differential equations

{
Dα1

0+(ϕr1(Dβ1
0+u(t))) + λ f (t, u(t), v(t)) = 0, t ∈ (0, 1),

Dα2
0+(ϕr2(Dβ2

0+v(t))) + µg(t, u(t), v(t)) = 0, t ∈ (0, 1),
(3)

subject to the boundary conditions (2) with a0 = b0 = 0, where f , g ∈ C([0, 1]× R+ ×
R+,R+), and λ, µ are positive parameters. The author presented various intervals for λ
and µ, such that problem (3), (2) with a0 = b0 = 0 has at least one positive solution (u(t) > 0
for all t ∈ (0, 1], or v(t) > 0 for all t ∈ (0, 1]). The author also investigated the nonexistence
of positive solutions. In [3], the authors studied the existence and nonexistence of positive
solutions for the system (3) with the coupled boundary conditions




u(j)(0) = 0, j = 0, . . . , n− 2; Dβ1
0+u(0) = 0, Dγ0

0+u(1) =
p

∑
j=1

∫ 1

0
D

γj
0+v(τ) dHj(τ),

v(j)(0) = 0, j = 0, . . . , m− 2; Dβ2
0+v(0) = 0, Dδ0

0+v(1) =
q

∑
j=1

∫ 1

0
D

δj
0+u(τ) dKj(τ),

where γj ∈ R for all j = 0, 1, . . . , p, 0 ≤ γ1 < γ2 < · · · < γp ≤ δ0 < β2 − 1, δ0 ≥ 1, δj ∈ R
for all j = 0, 1, . . . , q, 0 ≤ δ1 < δ2 < · · · < δq ≤ γ0 < β1 − 1, γ0 ≥ 1, Hi, i = 1, . . . , p and Kj,
j = 1, . . . , q are functions of bounded variation. In [4], the authors investigated the positive
solutions for the system of fractional differential equations

{
Dα

0+u(t) + a(t)f(v(t)) = 0, t ∈ (0, 1),
Dβ

0+v(t) + b(t)g(u(t)) = 0, t ∈ (0, 1),

supplemented with the integral boundary conditions





u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =
∫ 1

0
u(τ)dH(τ) + a0,

v(0) = v′(0) = · · · = v(m−2)(0) = 0, v(1) =
∫ 1

0
v(τ)dK(τ) + b0,

where n − 1 < α ≤ n, m − 1 < β ≤ m, n, m ∈ N, n, m ≥ 3, a, b, f, g are nonnegative
continuous functions, H and K are bounded variation functions, and a0, b0 are positive
parameters. Other recent research regarding fractional differential equations and systems of
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fractional differential equations with or without Laplacian operators and their applications
can be found in the papers [5–9], and in the monographs [10–12]. In comparison with
other papers, the novelty of our work consists of the combination between the system
of fractional differential equations (1), in which sequential fractional derivatives with r-
Laplacian operators are considered, and the existence of positive parameters in the general
integro-differential boundary conditions (2).

The paper has the following structure. In Section 2, we provide some preliminary
results, including the Green functions associated with our problem (1), (2) and their prop-
erties. In Section 3, we present the main theorems for the existence and nonexistence of
positive solutions for (1), (2). Section 4 contains an example to illustrate our results, and in
Section 5, we provide our conclusions.

2. Auxiliary Results

In this section, we present some auxiliary results related to our problem (1), (2) from [2].
We first consider the fractional differential equation

Dα1
0+(ϕr1(Dβ1

0+u(t))) + h(t) = 0, t ∈ (0, 1), (4)

with the boundary conditions

u(j)(0) = 0, j = 0, . . . , n− 2; Dβ1
0+u(0) = 0, Dγ0

0+u(1) =
p

∑
j=1

∫ 1

0
D

γj
0+u(τ) dHj(τ), (5)

where α1 ∈ (0, 1], β1 ∈ (n − 1, n], n ∈ N, n ≥ 3, p ∈ N, γj ∈ R for all j = 0, 1, . . . , p,
0 ≤ γ1 < γ2 < · · · < γp ≤ γ0 < β1 − 1, γ0 ≥ 1, Hj, j = 1, . . . , p are bounded variation
functions, and h ∈ C[0, 1]. We denote using

∆1 =
Γ(β1)

Γ(β1 − γ0)
−

p

∑
j=1

Γ(β1)

Γ(β1 − γj)

∫ 1

0
ζβ1−γj−1 dHj(ζ).

Lemma 1. If ∆1 6= 0, then the unique solution u ∈ C[0, 1] of problem (4), (5) is

u(t) =
∫ 1

0
G1(t, s)ϕ$1(Iα1

0+h(s)) ds, t ∈ [0, 1], (6)

where the Green function G1 is given by

G1(t, s) = g1(t, s) +
tβ1−1

∆1

p

∑
i=1

(∫ 1

0
g2i(τ, s) dHi(τ)

)
, t, s ∈ [0, 1], (7)

with

g1(t, s) =
1

Γ(β1)

{
tβ1−1(1− s)β1−γ0−1 − (t− s)β1−1, 0 ≤ s ≤ t ≤ 1,
tβ1−1(1− s)β1−γ0−1, 0 ≤ t ≤ s ≤ 1,

g2i(τ, s) =
1

Γ(β1 − γi)

{
τβ1−γi−1(1− s)β1−γ0−1 − (τ − s)β1−γi−1, 0 ≤ s ≤ τ ≤ 1,
τβ1−γi−1(1− s)β1−γ0−1, 0 ≤ τ ≤ s ≤ 1,

i = 1, . . . , p.

Now, we consider the nonlinear fractional differential equation

Dα2
0+(ϕr2(Dβ2

0+v(t))) + y(t) = 0, t ∈ (0, 1), (8)
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with the boundary conditions

v(j)(0) = 0, j = 0, . . . , m− 2; Dβ2
0+v(0) = 0, Dδ0

0+v(1) =
q

∑
i=1

∫ 1

0
Dδi

0+v(t) dKi(t), (9)

where α2 ∈ (0, 1], β2 ∈ (m − 1, m], m ∈ N, m ≥ 3, q ∈ N, δi ∈ R for all i = 0, . . . , q,
0 ≤ δ1 < δ2 < · · · < δq ≤ δ0 < β2 − 1, δ0 ≥ 1, Ki, i = 1, . . . , q are bounded variation
functions, and y ∈ C[0, 1]. We denote using

∆2 =
Γ(β2)

Γ(β2 − δ0)
−

q

∑
j=1

Γ(β2)

Γ(β2 − δj)

∫ 1

0
ζβ2−δj−1 dKj(ζ).

Lemma 2. If ∆2 6= 0, then the unique solution v ∈ C[0, 1] of problem (8), (9) is

v(t) =
∫ 1

0
G2(t, s)ϕ$2(Iα2

0+y(s)) ds, t ∈ [0, 1], (10)

where the Green function G2 is given by

G2(t, s) = g3(t, s) +
tβ2−1

∆2

q

∑
i=1

(∫ 1

0
g4i(τ, s) dKi(τ)

)
, t, s ∈ [0, 1], (11)

with

g3(t, s) =
1

Γ(β2)

{
tβ2−1(1− s)β2−δ0−1 − (t− s)β2−1, 0 ≤ s ≤ t ≤ 1,
tβ2−1(1− s)β2−δ0−1, 0 ≤ t ≤ s ≤ 1,

g4i(τ, s) =
1

Γ(β2 − δi)

{
τβ2−δi−1(1− s)β2−δ0−1 − (τ − s)β2−δi−1, 0 ≤ s ≤ τ ≤ 1,
τβ2−δi−1(1− s)β2−δ0−1, 0 ≤ τ ≤ s ≤ 1,

i = 1, . . . , q.

Lemma 3. Assume that Hi : [0, 1] → R, i = 1, . . . , p, and Ki : [0, 1] → R, i = 1, . . . , q are
nondecreasing functions and ∆1 > 0, ∆2 > 0. Then, the Green functions G1 and G2 given by (7)
and (11) have the following properties:

(a) G1, G2 : [0, 1]× [0, 1]→ R+ are continuous functions;
(b) G1(t, s) ≤ J1(s) for all t, s ∈ [0, 1], where J1(s) = h1(s) + 1

∆1
∑

p
i=1

∫ 1
0 g2i(τ, s) dHi(τ),

and h1(s) = 1
Γ(β1)

[(1− s)β1−γ0−1 − (1− s)β1−1], s ∈ [0, 1];

(c) G1(t, s) ≥ tβ1−1J1(s) for all t, s ∈ [0, 1];
(d) G2(t, s) ≤ J2(s) for all t, s ∈ [0, 1], where J2(s) = h2(s) + 1

∆2
∑

q
i=1

∫ 1
0 g4i(τ, s) dKi(τ),

and h2(s) = 1
Γ(β2)

[(1− s)β2−δ0−1 − (1− s)β2−1], s ∈ [0, 1];

(e) G2(t, s) ≥ tβ2−1J2(s) for all t, s ∈ [0, 1].

Lemma 4. Assume that Hi : [0, 1] → R, i = 1, . . . , p, and Ki : [0, 1] → R, i = 1, . . . , q are
nondecreasing functions, ∆1 > 0, ∆2 > 0, and h, y ∈ C([0, 1],R+). Then, the solutions u and v
of problems (4), (5) and (8), (9), respectively, given by (6) and (10) satisfy the inequalities u(t) ≥ 0,
v(t) ≥ 0, u(t) ≥ tβ1−1u(τ), v(t) ≥ tβ2−1v(τ) for all t, τ ∈ [0, 1].

3. Main Results

In this section, we study the existence and nonexistence of positive solutions for
problem (1), (2) by imposing various conditions on the functions a, b, f and g. We present
the assumptions that we will use in the sequel.

(I1) α1, α2 ∈ (0, 1], β1 ∈ (n− 1, n], β2 ∈ (m− 1, m], n, m ∈ N, n, m ≥ 3, p, q ∈ N, γj ∈ R
for all j = 0, 1, . . . , p, 0 ≤ γ1 < γ2 < · · · < γp ≤ γ0 < β1 − 1, γ0 ≥ 1, δj ∈ R
for all j = 0, 1, . . . , q, 0 ≤ δ1 < δ2 < · · · < δq ≤ δ0 < β2 − 1, δ0 ≥ 1, r1, r2 > 1,
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ϕrj(ζ) = |ζ|rj−2ζ, ϕ−1
rj

= ϕ$j , $j =
rj

rj−1 , j = 1, 2, a0 > 0, b0 > 0, Hi, i = 1, . . . , p and
Kj, j = 1, . . . , q are nondecreasing functions, ∆1 > 0 and ∆2 > 0.

(I2) The functions a, b : [0, 1]→ R+ are continuous and there exist t1, t2 ∈ (0, 1) such that
a(t1) > 0, b(t2) > 0.

(I3) The functions f, g : R+ → R+ are continuous, and there exists c0 > 0 such that

f(z) < c
r1−1
0
L , g(z) < c

r2−1
0
L for all z ∈ [0, c0], where

L = max

{
Λi

Γ(αi + 1)

(∫ 1

0
sαi($i−1)Ji(s) ds

)ri−1

, i = 1, 2

}
,

with Λ1 = supt∈[0,1] a(t), Λ2 = supt∈[0,1] b(t).

(I4) The functions f, g : R+ → R+ are continuous and satisfy the conditions limz→∞
f(z)

zr1−1 =

∞, limz→∞
g(z)
zr2−1 = ∞.

Using (I1), (I2) and Lemma 3, we deduce that the constant L from assumption (I3) is
positive.

We consider the problems





Dα1
0+

(
ϕr1(Dβ1

0+x(t))
)
= 0, t ∈ (0, 1),

x(j)(0) = 0, j = 0, . . . , n− 2, Dβ1
0+x(0) = 0, Dγ0

0+x(1) =
p

∑
i=1

∫ 1

0
Dγi

0+x(τ) dHi(τ) + 1,
(12)





Dα2
0+

(
ϕr2(Dβ2

0+y(t))
)
= 0, t ∈ (0, 1),

y(j)(0) = 0, j = 0, . . . , m− 2, Dβ2
0+y(0) = 0, Dδ0

0+y(1) =
q

∑
i=1

∫ 1

0
Dδi

0+y(τ) dKi(τ) + 1,
(13)

The aforementioned problems (12) and (13) have the solutions x(t) = tβ1−1

∆1
and

y(t) = tβ2−1

∆2
, t ∈ [0, 1], respectively. Using (I1), we have x(t) > 0 and y(t) > 0 for

all t ∈ (0, 1]. For a solution (u, v) of problem (1), (2), we define the functions h(t) =

u(t) − a0x(t) = u(t) − a0tβ1−1

∆1
, and k(t) = v(t) − b0y(t) = v(t) − b0tβ2−1

∆2
, for t ∈ [0, 1].

Then (1), (2) can equivalently be written as the system of fractional differential equations




Dα1
0+

(
ϕr1(Dβ1

0+h(t))
)
+ a(t)f(k(t) + b0y(t)) = 0, t ∈ (0, 1),

Dα2
0+

(
ϕr2(Dβ2

0+k(t))
)
+ b(t)g(h(t) + a0x(t)) = 0, t ∈ (0, 1),

(14)

with the boundary conditions





h(j)(0) = 0, j = 0, . . . , n− 2; Dβ1
0+h(0) = 0, Dγ0

0+h(1) =
p

∑
j=1

∫ 1

0
D

γj
0+h(τ) dHj(τ),

k(j)(0) = 0, j = 0, . . . , m− 2; Dβ2
0+k(0) = 0, Dδ0

0+k(1) =
q

∑
j=1

∫ 1

0
D

δj
0+k(τ) dKj(τ).

(15)

Using the Green functions G1 and G2, Lemmas 1 and 2, a pair of functions (h, k) is a
solution of problem (14), (15) if, and only if, (h, k) is a solution of the system of nonlinear
integral equations





h(t) =
∫ 1

0
G1(t, s)ϕ$1(Iα1

0+(a(s)f(k(s) + b0y(s)))) ds, t ∈ [0, 1],

k(t) =
∫ 1

0
G2(t, s)ϕ$2(Iα2

0+(b(s)g(h(s) + a0x(s)))) ds, t ∈ [0, 1].
(16)
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We consider the Banach space X = C[0, 1] with the supremum norm ‖h‖ = supτ∈[0,1]
|h(τ)| for h ∈ X , and the Banach space Y = X ×X with the norm ‖(h, k)‖Y = max{‖h‖,
‖k‖} for (h, k) ∈ Y . We define the set E = {(h, k) ∈ Y , 0 ≤ h(t) ≤ c0, 0 ≤ k(t) ≤ c0}. We
also define the operator A : E → Y , A = (A1,A2),

A1(h, k)(t) =
∫ 1

0
G1(t, s)ϕ$1(Iα1

0+(a(s)f(k(s) + b0y(s)))) ds, t ∈ [0, 1],

A2(h, k)(t) =
∫ 1

0
G2(t, s)ϕ$2(Iα2

0+(b(s)g(h(s) + a0x(s)))) ds, t ∈ [0, 1],

for (h, k) ∈ E . We remark that (h, k) is a solution of system (16) if and only if (h, k) is a fixed
point of operator A.

Our Theorem 1 is the following existence result for problem (1), (2).

Theorem 1. We suppose that assumptions (I1)− (I3) are satisfied. Then, there exist a1 > 0
and b1 > 0 such that for any a0 ∈ (0, a1] and b0 ∈ (0, b1], the problem (1), (2) has at least one
positive solution.

Proof. By assumption (I3), we find that there exist p0 > 0 and q0 > 0 such that f(z) ≤ c
r1−1
0
L

for all z ∈ [0, c0 + p0], and g(z) ≤ cr2−1
0
L for all z ∈ [0, c0 + q0]. We define a1 = q0∆1 and

b1 = p0∆2. Let a0 ∈ (0, a1] and b0 ∈ (0, b1]. Then, we obtain

f(k(s) + b0y(s)) ≤ c
r1−1
0
L

, g(h(s) + a0x(s)) ≤ cr2−1
0
L

,

for all s ∈ [0, 1] and (h, k) ∈ E . Hence, by using Lemma 4, we deduce that Ai(h, k)(t) ≥ 0,
i = 1, 2, for all t ∈ [0, 1] and (h, k) ∈ E . By Lemma 3, for all (h, k) ∈ E , we obtain

Iα1
0+(a(s)f(k(s) + b0y(s))) =

1
Γ(α1)

∫ s

0
(s− τ)α1−1a(τ)f(k(τ) + b0y(τ)) dτ

≤ c
r1−1
0

LΓ(α1)

∫ s

0
(s− τ)α1−1a(τ) dτ ≤ Λ1c

r1−1
0

LΓ(α1)

∫ s

0
(s− τ)α1−1 dτ =

Λ1c
r1−1
0 sα1

LΓ(α1 + 1)
, ∀ s ∈ [0, 1],

and then,

A1(h, k)(t) ≤
∫ 1

0
J1(s)ϕ$1

(
Λ1c

r1−1
0 sα1

LΓ(α1 + 1)

)
ds

=

(
Λ1c

r1−1
0

LΓ(α1 + 1)

)$1−1 ∫ 1

0
J1(s)sα1($1−1) ds ≤ c0, ∀ t ∈ [0, 1].

In a similar manner, for all (h, k) ∈ E we have

Iα2
0+(b(s)g(h(s) + a0x(s))) ≤ Λ2c

r2−1
0 sα2

LΓ(α2 + 1)
, ∀ s ∈ [0, 1],

and

A2(h, k)(t) ≤
∫ 1

0
J2(s)ϕ$2

(
Λ2c

r2−1
0 sα2

LΓ(α2 + 1)

)
ds ≤ c0, ∀ t ∈ [0, 1].

Therefore, we find that A(E) ⊂ E . By using standard arguments, we deduce that A
is a completely continuous operator. Therefore, using the Schauder fixed-point theorem,
we conclude that A has a fixed point (h, k) ∈ E , which is a nonnegative solution for
problem (16) or, equivalently, for problem (14), (15). Therefore, (u, v), where u(t) = h(t) +
a0x(t) = h(t) + a0

tβ1−1

∆1
, v(t) = k(t) + b0y(t) = k(t) + b0

tβ2−1

∆2
for t ∈ [0, 1], is a positive
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solution of problem (1), (2). This solution (u, v) satisfies the conditions a0tβ1−1

∆1
≤ u(t) ≤

a0tβ1−1

∆1
+ c0 and b0tβ2−1

∆2
≤ v(t) ≤ b0tβ2−1

∆2
+ c0 for all t ∈ [0, 1].

Theorem 2 is the following nonexistence result for problem (1), (2).

Theorem 2. We suppose that assumptions (I1), (I2) and (I4) are satisfied. Then, there exist
a2 > 0 and b2 > 0 such that, for any a0 ≥ a2 and b0 ≥ b2, the problem (1), (2) has no
positive solution.

Proof. By (I2), there exist [θ1, θ2] ⊂ (0, 1), θ1 < θ2 such that t1, t2 ∈ (θ1, θ2), and then

Ξ1 :=
∫ θ2

θ1

J1(s)
(∫ s

θ1

a(τ)(s− τ)α1−1 dτ

)$1−1
ds > 0,

Ξ2 :=
∫ θ2

θ1

J2(s)
(∫ s

θ1

b(τ)(s− τ)α2−1 dτ

)$2−1
ds > 0.

We consider

R = max
{

2ri−1Γ(αi)
(

Ξiθ
β1+β2−1
1

)1−ri
, i = 1, 2

}
.

By using (I4), for teh R defined above, we deduce that there exists M0 > 0 such
that f(z) ≥ Rzr1−1, g(z) ≥ Rzr2−1 for all z ≥ M0. We define a2 = M0∆1

θ
β1
1

and b2 = M0∆2

θ
β2−1
1

.

Let a0 ≥ a2 and b0 ≥ b2. We assume that (u, v) is a positive solution of (1), (2). Then,
(h, k) where h(t) = u(t)− a0x(t) = u(t)− a0

tβ1−1

∆1
, k(t) = v(t)− b0y(t) = v(t)− b0

tβ2−1

∆2
for t ∈ [0, 1], is a solution for (14), (15) or equivalently for (16). By using Lemma 4, we
have h(t) ≥ tβ1−1‖h‖, k(t) ≥ tβ2−1‖k‖ for all t ∈ [0, 1]. Then, inft∈[θ1,θ2]

h(t) ≥ θ
β1−1
1 ‖h‖,

inft∈[θ1,θ2]
k(t) ≥ θ

β2−1
1 ‖k‖. Using the definition of x and y, we obtain inft∈[θ1,θ2]

x(t) =

θ
β1−1
1
∆1

= θ
β1−1
1 ‖x‖ and inft∈[θ1,θ2]

y(t) = θ
β2−1
1
∆2

= θ
β2−1
1 ‖y‖. Therefore, we find

inf
t∈[θ1,θ2]

(h(t) + a0x(t)) ≥ inf
t∈[θ1,θ2]

h(t) + a0 inf
t∈[θ1,θ2]

x(t)

≥ θ
β1−1
1 ‖h‖+ a0θ

β1−1
1 ‖x‖ ≥ θ

β1−1
1 ‖h + a0x‖,

inf
t∈[θ1,θ2]

(k(t) + b0y(t)) ≥ inf
t∈[θ1,θ2]

k(t) + b0 inf
t∈[θ1,θ2]

y(t)

≥ θ
β2−1
1 ‖k‖+ b0θ

β2−1|
1 ‖y‖ ≥ θ

β2−1
1 ‖k + b0y‖.

In addition, we have

inf
t∈[θ1,θ2]

(h(t) + a0x(t)) ≥ θ
β1−1
1 ‖h‖+ a0θ

β1−1
1

∆1
≥ a0θ

β1−1
1

∆1
≥ a2θ

β1−1
1

∆1
= M0,

inf
t∈[θ1,θ2]

(k(t) + a0y(t)) ≥ θ
β2−1
1 ‖k‖+ b0θ

β2−1
1

∆2
≥ b0θ

β2−1
1

∆2
≥ b2θ

β2−1
1

∆2
= M0.

Now, by using Lemma 4 and the above inequalities, we obtain
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Iα1
0+(a(s)f(k(s) + b0y(s)))

≥ 1
Γ(α1)

∫ s

θ1

(s− τ)α1−1a(τ)f(k(τ) + b0y(τ)) dτ

≥ R
Γ(α1)

∫ s

θ1

(s− τ)α1−1a(τ)(k(τ) + b0y(τ))r1−1 dτ

≥ R
Γ(α1)

∫ s

θ1

(s− τ)α1−1a(τ)

(
inf

τ∈[θ1,θ2]
(k(τ) + b0y(τ))

)r1−1
dτ

≥ RMr1−1
0

Γ(α1)

∫ s

θ1

(s− τ)α1−1a(τ) dτ, ∀ s ∈ [θ1, θ2],

and then

h(θ1) ≥
∫ 1

0
θ

β1−1
1 J1(s)ϕ$1

(
Iα1
0+(a(s)f(k(s) + b0y(s)))

)
ds

≥
∫ θ2

θ1

θ
β1−1
1 J1(s)ϕ$1

(
RMr1−1

0
Γ(α1)

∫ s

θ1

(s− τ)α1−1a(τ) dτ

)
ds

=
R$1−1M0θ

β1−1
1

(Γ(α1))$1−1

∫ θ2

θ1

J1(s)
(∫ s

θ1

(s− τ)α1−1a(τ) dτ

)$1−1
ds

=
R$1−1M0θ

β1−1
1 Ξ1

(Γ(α1))$1−1 > 0.

We deduce that ‖h‖ ≥ h(θ1) > 0. In a similar manner, we find

Iα2
0+(b(s)g(h(s) + a0x(s)))

≥ R
Γ(α2)

∫ s

θ1

(s− τ)α2−1b(τ)

(
inf

τ∈[θ1,θ2]
(h(τ) + a0x(τ))

)r2−1
dτ

≥ RMr2−1
0

Γ(α2)

∫ s

θ1

(s− τ)α2−1b(τ) dτ, ∀ s ∈ [θ1, θ2],

and so

k(θ1) ≥
R$2−1M0θ

β2−1
1 Ξ2

(Γ(α2))$2−1 > 0.

Therefore, ‖k‖ ≥ k(θ1) > 0.
Besides, from the above inequalities, we obtain

Iα1
0+(a(s)f(k(s) + b0y(s)))

≥ R
Γ(α1)

∫ s

θ1

(s− τ)α1−1a(τ)

(
inf

τ∈[θ1,θ2]
(k(τ) + b0y(τ))

)r1−1
dτ

≥ Rθ
(β2−1)(r1−1)
1

Γ(α1)
‖k + b0y‖r1−1

∫ s

θ1

(s− τ)α1−1a(τ) dτ, ∀ s ∈ [θ1, θ2],

and then

h(θ1) ≥
∫ θ2

θ1

θ
β1−1
1 J1(s)

(
Rθ

(β2−1)(r1−1)
1

Γ(α1)

)$1−1

‖k + b0y‖
(∫ s

θ1

(s− τ)α1−1a(τ) dτ

)$1−1
ds

=
θ

β1+β2−2
1 R$1−1

(Γ(α1))$1−1 ‖k + b0y‖
∫ θ2

θ1

J1(s)
(∫ s

θ1

(s− τ)α1−1a(τ) dτ

)$1−1
ds

=
θ

β1+β2−2
1 R$1−1

(Γ(α1))$1−1 Ξ1‖k + b0y‖ ≥ 2‖k + b0y‖ ≥ 2‖k‖.

Hence,

‖k‖ ≤ h(θ1)

2
≤ ‖h‖

2
. (17)
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In a similar manner, we deduce

Iα2
0+(b(s)g(h(s) + a0x(s)))

≥ R
Γ(α2)

∫ s

θ1

(s− τ)α2−1b(τ)

(
inf

τ∈[θ1,θ2]
(h(τ) + a0x(τ))

)r2−1
dτ

≥ Rθ
(β1−1)(r2−1)
1

Γ(α2)
‖h + a0x‖r2−1

∫ s

θ1

(s− τ)α2−1b(τ) dτ, ∀ s ∈ [θ1, θ2],

and so

k(θ1) ≥
∫ θ2

θ1

θ
β2−1
1 J2(s)

(
Rθ

(β1−1)(r2−1)
1

Γ(α2)

)$2−1

‖h + a0x‖
(∫ s

θ1

(s− τ)α2−1b(τ) dτ

)$2−1
ds

=
θ

β1+β2−2
1 R$2−1

(Γ(α2))$2−1 ‖h + a0x‖
∫ θ2

θ1

J2(s)
(∫ s

θ1

(s− τ)α2−1b(τ) dτ

)$2−1
ds

=
θ

β1+β2−2
1 R$2−1

(Γ(α2))$2−1 Ξ2‖h + a0x‖ ≥ 2‖h + a0x‖ ≥ 2‖h‖.

Hence,

‖h‖ ≤ k(θ1)

2
≤ ‖k‖

2
. (18)

Therefore, using (17) and (18), we conclude that ‖h‖ ≤ ‖k‖2 ≤
‖h‖

4 , which contradicts
the inequality ‖h‖ > 0. Then, problem (1), (2) has no positive solution.

4. An Example

We consider α1 = 1/2, α2 = 1/3, β1 = 9/4, n = 3, β2 = 17/5, m = 4, p = 2, q = 1,
γ0 = 8/7, γ1 = 1/5, γ2 = 2/3, δ0 = 11/6, δ1 = 3/4, r1 = 21/5, $1 = 21/16, r2 = 11/2,
$2 = 11/9, a(t) = 1, b(t) = 1 for all t ∈ [0, 1], H1(t) = 7t/6 for all t ∈ [0, 1], H2(t) =
{1/2, t ∈ [0, 11/23); 17/18, t ∈ [11/23, 1]}, K1(t) = {2, t ∈ [0, 2/5); 61/21, t ∈ [2/5, 1]}.
We also consider the functions f(z) = σ1zω1

zω2+σ2
, g(z) = σ3zω3

zω4+σ4
for all z ∈ R+, with σi > 0,

ωi > 0, i = 1, . . . , 4, ω1 > ω2 + 16/5, ω3 > ω4 + 9/2. We have limz→∞
f(z)

zr1−1 = ∞ and

limz→∞
g(z)
zr2−1 = ∞.

Hence, we consider the system of Riemann–Liouville fractional differential equations




D1/2
0+

(
ϕ21/5(D9/4

0+ u(t))
)
+

σ1(v(t))ω1

(v(t))ω2 + σ2
= 0, t ∈ (0, 1),

D1/3
0+

(
ϕ11/2(D17/5

0+ v(t))
)
+

σ3(u(t))ω3

(u(t))ω4 + σ4
= 0, t ∈ (0, 1),

(19)

with the boundary conditions





u(0) = u′(0) = 0, D9/4
0+ u(0) = 0, D8/7

0+ u(1) =
7
6

∫ 1

0
D1/5

0+ u(τ) dτ +
4
9

D2/3
0+ u

(
11
23

)
+ a0,

v(0) = v′(0) = v′′(0) = 0, D17/5
0+ v(0) = 0, D11/6

0+ v(1) =
19
21

D3/4
0+ v

(
2
5

)
+ b0.

(20)

We obtain ∆1 ≈ 0.19646507 > 0, ∆2 ≈ 2.94848267 > 0. Therefore, assumptions (I1),
(I2) and (I4) are satisfied. In addition, we find
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g1(t, s) =
1

Γ(9/4)

{
t5/4(1− s)3/28 − (t− s)5/4, 0 ≤ s ≤ t ≤ 1,
t5/4(1− s)3/28, 0 ≤ t ≤ s ≤ 1,

g21(t, s) =
1

Γ(41/20)

{
t21/20(1− s)3/28 − (t− s)21/20, 0 ≤ s ≤ t ≤ 1,
t21/20(1− s)3/28, 0 ≤ t ≤ s ≤ 1,

g22(t, s) =
1

Γ(19/12)

{
t7/12(1− s)3/28 − (t− s)7/12, 0 ≤ s ≤ t ≤ 1,
t7/12(1− s)3/28, 0 ≤ t ≤ s ≤ 1,

g3(t, s) =
1

Γ(17/5)

{
t12/5(1− s)17/30 − (t− s)12/5, 0 ≤ s ≤ t ≤ 1,
t12/5(1− s)17/30, 0 ≤ t ≤ s ≤ 1,

g41(t, s) =
1

Γ(53/20)

{
t33/20(1− s)17/30 − (t− s)33/20, 0 ≤ s ≤ t ≤ 1,
t33/20(1− s)17/30, 0 ≤ t ≤ s ≤ 1,

G1(t, s) = g1(t, s) +
t5/4

∆1

[
7
6

∫ 1

0
g21(τ, s) dτ +

4
9
g22

(
11
23

, s
)]

,

G2(t, s) = g3(t, s) +
19t12/5

21∆2
g41

(
2
5

, s
)

,

h1(s) =
1

Γ(9/4)

[
(1− s)3/28 − (1− s)5/4

]
,

h2(s) =
1

Γ(17/5)

[
(1− s)17/30 − (1− s)12/5

]
,

for all t, s ∈ [0, 1]. In addition, we deduce

J1(s) =





h1(s) +
1

∆1

{
7

6Γ(61/20)
(1− s)3/28 − 7

6Γ(61/20)
(1− s)41/20

+
4

9Γ(19/12)

[(
11
23

)7/12
(1− s)3/28 −

(
11
23
− s
)7/12

]}
, 0 ≤ s <

11
23

,

h1(s) +
1

∆1

{
7

6Γ(61/20)
(1− s)3/28 − 7

6Γ(61/20)
(1− s)41/20

+
4

9Γ(19/12)

(
11
23

)7/12
(1− s)3/28

]
,

11
23
≤ s ≤ 1,

J2(s) =





h2(s) +
19

21∆2Γ(53/20)

[(
2
5

)33/20
(1− s)17/30 −

(
2
5
− s
)33/20

]
, 0 ≤ s <

2
5

,

h2(s) +
19

21∆2Γ(53/20)

(
2
5

)33/20
(1− s)17/30,

2
5
≤ s ≤ 1,

After some computations, we obtain
∫ 1

0 s5/32J1(s) ds ≈ 2.7671383,
∫ 1

0 s2/27J2(s) ds ≈
0.12990129, Λ1 = 1, Λ2 = 1 and L ≈ 29.30581677. We take c0 = 1 and, if we choose
σi, i = 1, . . . , 4 which satisfy the conditions σ1 < 1+σ2

L and σ3 < 1+σ4
L , then we deduce

f(z) ≤ σ1
1+σ2

< 1
L and g(z) ≤ σ3

1+σ4
< 1

L for all z ∈ [0, 1]. For example, if σ2 = 1 and σ4 = 2,
then for σ1 ≤ 0.068 and σ3 ≤ 0.102, the above conditions for f and g are satisfied. Hence,
assumption (I3) is also satisfied. Using Theorems 1 and 2, we conclude that there exist
a1, b1, a2, b2 such that, for any a0 ∈ (0, a1] and b0 ∈ (0, b1] there exists at least one positive
solution of problem (19), (20), and, for any a0 ≥ a2 and b0 ≥ b2, there exists no positive
solution of (19), (20).

5. Conclusions

In this paper, we studied the system of Riemann–Liouville fractional differential
Equation (1) with r1-Laplacian and r2-Laplacian operators, supplemented with the nonlocal
uncoupled boundary conditions (2), which contain fractional derivatives of various orders,
Riemann–Stieltjes integrals, and two positive parameters. The functions a, b, f and g from
the system are continuous ones and satisfy some additional assumptions. We presented
some auxiliary results, including the associated Green functions with their properties. Then,
we investigated problem (1), (2) in some stages. First, we made a change in the unknown
functions, such that the new boundary conditions have no positive parameters, and then,
by using the Green functions, we equivalently wrote this new problem as the system of
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nonlinear integral equations (16). By constructing an appropriate operator A, the solutions
of the integral system are the fixed points of A. By applying the Schauder fixed-point
theorem, we showed that the operator A has at least one fixed point, which is a positive
solution of our problem, when the positive parameters belong to some intervals. Then, we
provided intervals for the parameters for which problem (1), (2) has no positive solution.
We also presented an example to illustrate our obtained results.
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Abstract: The main objective of this paper is to use the generalized proportional Hadamard fractional
integral operator to establish some new fractional integral inequalities for extended Chebyshev
functionals. In addition, we investigate some fractional integral inequalities for positive continuous
functions by employing a generalized proportional Hadamard fractional integral operator. The
findings of this study are theoretical but have the potential to help solve additional practical problems
in mathematical physics, statistics, and approximation theory.

Keywords: extended Chebyshev functional; generalized proportional Hadamard fractional integral operator

MSC: 26D10; 26A33; 05A30; 26D53

1. Introduction

Fractional calculus has a new orientation not only with respect to mathematics but
also to physics, statistics, engineering, and other applied sciences. Its birth dates back to
ancient times, and its development has been rapid in recent years, gaining new momentum,
especially with the definition of new fractional integral and derivative operators. New
fractional operators lead to useful applications and generalizations in the field, and their
kernel structures and properties give them an advantage over classical derivative and
integral operators.

Recently, many mathematicians have worked with slightly different fractional integral
formulas. For example, see [1–7] for Riemann–Liouville fractional integral operators, [8] for
Hadamard fractional integral operators, [9–12] for Saigo fractional integral operators, [13–15]
for conformable fractional integral operators, [16–18] for generalized Katugampola fractional
operators, and [19–22] for k-generalized (in terms of hypergeometric function) fractional inte-
gral operators. In [3,20], the authors investigated fractional integral inequalities for extended
Chebyshev functionals by employing Riemann–Liouville and generalized k-fractional integral
fractional integrals, respectively. Recently, many mathematicians have examined several kinds
of fractional integral and derivative operators with different types of kernels, such as loga-
rithmic kernels, non-singular exponential kernels, etc. During the past few years, numerous
analyses of real-world problems, mathematical models, and numerical methods have been
resolved by fractional derivatives and integrals [13,15,23–33]. Anber et al. [34] presented some
fractional integral inequalities similar to the Minkowski fractional integral inequality, using the
Riemann–Liouville fractional integral. In [35], Panchal et al. studied weighted fractional integral
inequalities using a generalized Katugampola fractional integral operator. In [36], Andric et al.
proposed the reverse fractional Minkowski integral inequality using the extended Mittag-Leffler
function with the corresponding fractional integral operator, which was proved together with
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several related Minkowski-type inequalities. Rahman et al. [37–39] investigated the Minkowski
inequality and some other fractional inequalities for convex functions by employing fractional
proportional integral operators. Atangana and Baleanu proposed a new fractional derivative
operator with a non-local and non-singular kernel [40]. In [41], Jarad et al. proposed fractional
conformable integral and derivative operators. In [42–44], Jarad et al. and Rahman presented the
concepts of non-local fractional proportional and generalized Hadamard proportional integrals
involving exponential functions in their kernels. In [14,45–47], the authors explored various
integral inequalities by employing conformable and generalized conformable fractional integrals.
Caputo and Fabrizio [48] introduced new fractional derivatives and integrals without singular
kernels. Later, Lasada and Niteto proposed certain properties of fractional derivatives without
a singular kernel [49]. Nale et al. and Rahaman et al. [44,50] investigated some Minkowski-
type inequalities and other integral inequalities by considering the generalized proportional
Hadamard fractional integral operator. Kukushkin [51] examined the final terms of a differential
operator with a fractional integro-differential operator composition on a bounded domain of
n-dimensional Euclidean space, as well as on the real axis. One of the central points was the
relation connecting fractional powers of m-accretive operators and fractional derivatives in
the most general sense. By virtue of such an approach, we express fractional derivatives in
terms of infinitesimal generators. In this regard, operators such as the Kipriyanov operator,
Riesz potential, and difference operator are considered. In addition, in [52], Yosida studied
the semigroup that generates the involved fractional integro-differential operators due to the
Balakrishnyan formula. We think that it would be interesting to illustrate the relevance of the
topic by presenting and comparing the well-known Chebyshev inequality in L1. In [53], the
Chebyshev functional for two integrable functions u and v on [a, b] is defined as follows:

T[u(x), v(x)] =
1

b− a

∫ b

a
u(x)v(x)dx− 1

b− a

( ∫ b

a
u(x)dx

)
1

b− a

( ∫ b

a
v(x)dx

)
. (1)

Many applications and several inequalities related to Chebyshev functionals can be
found in [6,54–56]. Let us now consider the following extended Chebyshev functional [3]:

T[u(x), v(x), p(x), q(x)] =
∫ b

a
q(x)dx

∫ b

a
p(x)u(x)v(x)dx +

∫ b

a
p(x)dx

∫ b

a
q(x)u(x)v(x)dx

−
( ∫ b

a
p(x)u(x)dx

)( ∫ b

a
q(x)v(x)dx

)

−
( ∫ b

a
q(x)u(x)dx

)( ∫ b

a
p(x)v(x)dx

)
,

(2)

where u and v are two integrable functions on [a, b], and p and q are positive integrable
functions on [a, b]. In order to present a famous inequality for this function, let us now
introduce the concept of synchronous (asynchronous) functions.

Definition 1. Two functions u and v are called synchronous (asynchronous) functions on [a, b] if
(

u(τ)− u(σ)
)(

v(τ)− v(σ)
)
≥ (≤)0, τ, σ ∈ [a, b]. (3)

Hence, if u an v are synchronous on [a, b], then T[u(x), v(x), p(x), q(x)] ≥ 0.
Motivated by [3,19,34,38,39,43,44], our purpose in this paper is to obtain fractional

integral inequalities for the extended Chebyshev functional and other fractional inequalities,
using the generalized Hadamard proportional integral. The assumption of synchronous
(asynchronous) functions will sometimes be made.
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The paper has been organized as follows. in Section 2, we recall basic definitions,
remarks, and lemmas related to generalized Hadamard proportional integrals. In Section 3,
we obtain fractional integral inequalities for extended Chebyshev functionals using gen-
eralized Hadamard proportional integrals. In Section 4, we present some other fractional
integral inequalities using generalized Hadamard proportional integrals. In Section 5, we
give the concluding remarks.

2. Preliminary

Here, we present some important definitions, remarks, and lemmas of the generalized
proportional Hadamard fractional integral operator, which will be used throughout this pa-
per. Recently, Rahman et al. [43] presented the left and right-sided generalized proportional
integral operators as follows:

Definition 2. The left- and right-sided generalized proportional fractional integrals are, respec-
tively, defined by

aJ
α,β[z(x)](x) =

1
βαΓ(α)

∫ x

a
e
[

β−1
β (x−t)

]
(x− t)α−1z(t)dt, a < x (4)

(here, the first x between the brackets refers to the variable of the function z(x), and the second x
between the brackets refers to the integral upper bound; other notations are possible), and

J
α,β
b [z(x)](x) =

1
βαΓ(α)

∫ b

x
e
[

β−1
β (t−x)

]
(t− x)α−1z(t)dt, x < b, (5)

where the proportionality index is β ∈ (0, 1], α ∈ C with R(α) > 0, and Γ(α) is the classical
well-known gamma function.

Remark 1. If we consider β = 1 in Equations (4) and (5), then we obtain the well-known left- and
right-sided Riemann–Liouville integrals, which are, respectively, defined by

aJ
α[z(x)](x) =

1
Γ(α)

∫ x

a
(x− t)α−1z(t)dt, a < x (6)

and

Jα
b [z(x)](x) =

1
Γ(α)

∫ b

x
(t− x)α−1z(t)dt, x < b, (7)

where α ∈ C with R(α) > 0.

On the other hand, recently, Rahman et al. [44] proposed the following generalized
Hadamard proportional fractional integrals.

Definition 3. The left-sided generalized Hadamard proportional fractional integral of order α > 0
and proportional index β ∈ (0, 1] is defined by

aHα,β[z(x)](x) =
1

βαΓ(α)

∫ x

a
e
[

β−1
β (ln x−ln t)

]
(ln x− ln t)α−1 z(t)

t
dt, a < x. (8)

Definition 4. The right-sided generalized Hadamard proportional fractional integral of order α > 0
and proportional index β ∈ (0, 1] is defined by

Hα,β
b [z(x)](x) =

1
βαΓ(α)

∫ b

x
e
[

β−1
β (ln t−ln x)

]
(ln t− ln x)α−1 z(t)

t
dt, x < b. (9)
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Remark 2. If we consider a = 1 in Equation (8), then we obtain

1Hα,β[z(x)](x) =
1

βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln t)

]
(ln x− ln t)α−1 z(t)

t
dt, x > 1. (10)

Hereafter, to lighten the notation, we setHα,β
1,x [z(x)] =1 Hα,β[z(x)](x).

Remark 3. If we consider β = 1, then Equations (8)–(10) will lead to the following well known
Hadamard fractional integrals, indicated as

aHα[z(x)](x) =
1

Γ(α)

∫ x

a
(ln x− ln t)α−1 z(t)

t
dt, a < x, (11)

Hα
b [z(x)](x) =

1
Γ(α)

∫ b

x
(ln t− ln x)α−1 z(t)

t
dt, x < b, (12)

and

Hα,β
1,x [z(x)] =

1
Γ(α)

∫ x

1
(ln x− ln t)α−1 z(t)

t
dt, x > 1. (13)

One can easily prove the following results.

Lemma 1. With the special function: z(x) = e
[

β−1
β (ln x)

]
(ln x)λ−1, we have

Hα,β
1,x

[
e
[

β−1
β (ln x)

]
(ln x)λ−1

]
=

Γ(λ)
βαΓ(α + λ)

e
[

β−1
β (ln x)

]
(ln x)α+λ−1, (14)

and the following semigroup property holds:

Hα,β
1,x

[
Hλ,β

1,x [z(x)]
]
= Hα+λ,β

1,x [z(x)]. (15)

Remark 4. If β = 1, then Equation (14) reduces to the result of [57] as defined by

Hα
1,x

[
(ln x)λ−1

]
=

Γ(λ)
Γ(α + λ)

(ln x)α+λ−1. (16)

3. Fractional Integral Inequalities for Extended Chebyshev Functional

In this section, we establish a fractional integral inequality involving generalized
proportional Hadamard fractional integral operators. We now prove the following lemma.

Lemma 2. Let f and g be two integrable and synchronous functions on [1, ∞), and u, v : [1, ∞)→
[0, ∞). Then, for all x > 1, α > 0 and β ∈ (0, 1], we have

Hα,β
1,x [u(x)]Hα,β

1,x [v f g(x)] +Hα,β
1,x [v(x)]Hα,β

1,x [u f g(x)] ≥
Hα,β

1,x [u f (x)]Hα,β
1,x [vg(x)] +Hα,β

1,x [v f (x)]Hα,β
1,x [ug(x)].

(17)

It is understood that, for instance, v f g(x) = v(x) f (x)g(x).

Proof. Since f and g are synchronous functions on [1, ∞), for all τ ≥ 0 and σ ≥ 0, the
following inequality holds:

(
f (τ)− f (σ)

)(
g(τ)− g(σ)

)
≥ 0. (18)
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Then, Equation (18) becomes

f (τ)g(τ) + f (σ)g(σ) ≥ f (τ)g(σ) + f (σ)g(τ). (19)

Let us now consider

ψ(x, τ) =
1

βαΓ(α)τ
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1. (20)

We can clearly state that the function ψ(x, τ)u(τ) remains positive, because for all
τ ∈ (1, x), (x > 1), α, β > 0. Multiplying both sides of Equation (19) by ψ(x, τ), then
integrating the resulting identity with respect to τ from 1 to x, we obtain

1
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1u(τ) f (τ)g(τ)

dτ

τ

+
1

βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1u(τ) f (σ)g(σ)

dτ

τ

≥ 1
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1u(τ) f (τ)g(σ)

dτ

τ

+
1

βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1u(τ) f (σ)g(τ)

dτ

τ
.

(21)

Consequently,

Hα,β
1,x [u f g(x)] + f (σ)g(σ)Hα,β

1,x [u(x)]

≥ g(σ)Hα,β
1,x [u f (x)] + f (σ)Hα,β

1,x [ug(x)].
(22)

Taking both sides of Equation (22) and multiplying them by ψ(x, σ)v(σ), which remains
positive because for all σ ∈ (1, x), (x > 1), α, β > 0, then integrating the resulting identity
with respect to σ from 1 to x, we obtain

Hα,β
1,x [u f g(x)]

1
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln σ)

]
(ln x− ln σ)α−1v(σ)

dσ

σ

+Hα,β
1,x [u(x)]

1
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln σ)

]
(ln x− ln σ)α−1v(σ) f (σ)g(σ)

dσ

σ

≥ Hα,β
1,x [u f (x)]

1
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln σ)

]
(ln x− ln σ)α−1v(σ)g(σ)

dσ

σ

+Hα,β
1,x [ug(x)]

1
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln σ)

]
(ln x− ln σ)α−1v(σ) f (σ)

dσ

σ
.

(23)

This completes the proof of Inequality (17).

We present below the major result of the paper.

Theorem 1. Let f and g be two integrable and synchronous functions on [1, ∞), and r, p, q :
[1, ∞)→ [0, ∞) (so are positive). Then, for all x > 1, α > 0 and β ∈ (0, 1], we have

2Hα,β
1,x [r(x)]

[
Hα,β

1,x [p(x)]Hα,β
1,x [q f g(x)] +Hα,β

1,x [q(x)]Hα,β
1,x [p f g(x)]

]
+

2Hα,β
1,x [p(x)]Hα,β

1,x [q(x)]Hα,β
1,x [r f g(x)] ≥

Hα,β
1,x [r(x)]

[
Hα,β

1,x [p f (x)]Hα,β
1,x [qg(x)] +Hα,β

1,x [q f (x)]Hα,β
1,x [pg(x)]

]
+

Hα,β
1,x [p(x)]

[
Hα,β

1,x [r f (x)]Hα,β
1,x [qg(x)] +Hα,β

1,x [q f (x)]Hα,β
1,x [rg(x)]

]
+

Hα,β
1,x [q(x)]

[
Hα,β

1,x [r f (x)]Hα,β
1,x [pg(x)] +Hα,β

1,x [p f (x)]Hα,β
1,x [rg(x)]

]
.

(24)
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Proof. To prove this theorem, we put u = p and v = q into Lemma 2, and we obtain

Hα,β
1,x [p(x)]Hα,β

1,x [q f g(x)] +Hα,β
1,x [q(x)]Hα,β

1,x [p f g(x)] ≥
Hα,β

1,x [p f (x)]Hα,β
1,x [qg(x)] +Hα,β

1,x [q f (x)]Hα,β
1,x [pg(x)].

(25)

Now, multiplying both sides of Equation (25) byHα,β
1,x [r(x)], we have

Hα,β
1,x [r(x)]

[
Hα,β

1,x [p(x)]Hα,β
1,x [q f g(x)] +Hα,β

1,x [q(x)]Hα,β
1,x [p f g(x)]

]
≥

Hα,β
1,x [r(x)]

[
Hα,β

1,x [p f (x)]Hα,β
1,x [qg(x)] +Hα,β

1,x [q f (x)]Hα,β
1,x [pg(x)]

]
.

(26)

Again, putting u = r and v = q, into Lemma 2, we obtain

Hα,β
1,x [r(x)]Hα,β

1,x [q f g(x)] +Hα,β
1,x [q(x)]Hα,β

1,x [r f g(x)] ≥
Hα,β

1,x [r f (x)]Hα,β
1,x [qg(x)] +Hα,β

1,x [q f (x)]Hα,β
1,x [rg(x)],

(27)

Multiplying both sides of Equation (27) byHα,β
1,x [p(x)], we have

Hα,β
1,x [p(x)]

[
Hα,β

1,x [r(x)]Hα,β
1,x [q f g(x)] +Hα,β

1,x [q(x)]Hα,β
1,x [r f g(x)]

]
≥

Hα,β
1,x [p(x)]

[
Hα,β

1,x [r f (x)]Hα,β
1,x [qg(x)] +Hα,β

1,x [q f (x)]Hα,β
1,x [rg(x)]

]
.

(28)

With the same arguments as in Equations (26) and (28), we can write

Hα,β
1,x [q(x)]

[
Hα,β

1,x [r(x)]Hα,β
1,x [p f g(x)] +Hα,β

1,x [p(x)]Hα,β
1,x [r f g](x)

]
≥

Hα,β
1,x [q(x)]

[
Hα,β

1,x [r f (x)]Hα,β
1,x [pg(x)] +Hα,β

1,x [p f (x)]Hα,β
1,x [rg(x)]

]
.

(29)

Adding Inequalities (26), (28) and (29), we obtain Inequality (24).

Lemma 3. Let f and g be two integrable and synchronous functions on [1, ∞), and u, v : [1, ∞)→
[0, ∞). Then, for all x > 1, β, ϕ ∈ (0, 1], and α, φ > 0, we have

Hα,β
1,x [u(x)]Hφ,ϕ

1,x [v f g(x)] +Hφ,ϕ
1,x [v(x)]Hα,β

1,x [u f g(x)] ≥
Hα,β

1,x [u f (x)]Hφ,ϕ
1,x [vg(x)] +Hφ,ϕ

1,x [v f (x)]Hα,β
1,x [ug(x)].

(30)

Proof. Multiplying both sides of Equation (22) by 1
ϕφΓ(φ)σ e

[
ϕ−1

ϕ (ln x−ln σ)
]
(ln x − ln σ)φ−1,

σ ∈ (1, x), x > 1, φ, ϕ > 0, which remains positive (in view of the argument mentioned
above in the proof of Lemma 2). Then, integrating the resulting identity with respect to σ
from 1 to x, we have

Hα,β
1,x [u f g(x)]

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1v(σ)

dσ

σ

+Hα,β
1,x [u(x)]

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1v(σ) f (σ)g(σ)

dσ

σ

≥ Hα,β
1,x [u f (x)]

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1v(σ)g(σ)

dσ

σ

+Hα,β
1,x [ug(x)]

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1v(σ) f (σ)

dσ

σ
.

(31)

This completes the proof of Inequality (30).
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Theorem 2. Let f and g be two integrable and synchronous functions on [1, ∞), and r, p, q :
[1, ∞)→ [0, ∞). Then, for all x > 1, β, ϕ ∈ (0, 1], and α, φ > 0, we have

Hα,β
1,x [r(x)]

[
Hα,β

1,x [q(x)]Hφ,ϕ
1,x [p f g(x)] + 2Hα,β

1,x [p(x)]Hφ,ϕ
1,x [q f g(x)]

+ Hφ,ϕ
1,x [q(x)]Hα,β

1,x [p f g(x)]
]

+
[
Hα,β

1,x [p(x)]Hφ,ϕ
1,x [q(x)] + Hφ,ϕ

1,x [p(x)]Hα,β
1,x [q(x)]

]
Hα,β

1,x [r f g(x)] ≥

Hα,β
1,x [r(x)]

[
Hα,β

1,x [p f (x)]Hφ,ϕ
1,x [qg(x)] + Hφ,ϕ

1,x [q f (x)]Hα,β
1,x [pg(x)]

]
+

Hα,β
1,x [p(x)]

[
Hα,β

1,x [r f (x)]Hφ,ϕ
1,x [qg(x)] + Hφ,ϕ

1,x [q f (x)]Hα,β
1,x [rg(x)]

]
+

Hα,β
1,x [q(x)]

[
Hα,β

1,x [r f (x)]Hφ,ϕ
1,x [pg(x)] + Hφ,ϕ

1,x [p f (x)]Hα,β
1,x [rg(x)]

]
.

(32)

Proof. To prove this theorem, we put u = p and v = q into Lemma 3, and we obtain

Hα,β
1,x [p(x)]Hφ,ϕ

1,x [q f g(x)] + Hφ,ϕ
1,x [q(x)]Hα,β

1,x [p f g(x)] ≥
Hα,β

1,x [p f (x)]Hφ,ϕ
1,x [qg(x)] + Hφ,ϕ

1,x [q f (x)]Hα,β
1,x [pg(x)].

(33)

Now, multiplying both sides of Equation (33) byHα,β
1,x [r(x)], we have

Hα,β
1,x [r(x)]

[
Hα,β

1,x [p(x)]Hφ,ϕ
1,x [q f g(x)] + Hφ,ϕ

1,x [q(x)]Hα,β
1,x [p f g(x)]

]
≥

Hα,β
1,x [r(x)]

[
Hα,β

1,x [p f (x)]Hφ,ϕ
1,x [qg(x)] + Hφ,ϕ

1,x [q f (x)]Hα,β
1,x [pg(x)]

]
,

(34)

Now, putting u = r and v = q into Lemma 3, we obtain

Hα,β
1,x [r(x)]Hφ,ϕ

1,x [q f g(x)] + Hφ,ϕ
1,x [q(x)]Hα,β

1,x [r f g(x)] ≥
Hα,β

1,x [r f (x)]Hφ,ϕ
1,x [qg(x)] + Hφ,ϕ

1,x [q f (x)]Hα,β
1,x [rg(x)].

(35)

Multiplying both sides of Equation (35) byHα,β
1,x [p(x)], we have

Hα,β
1,x [p(x)]

[
Hα,β

1,x [r(x)]Hφ,ϕ
1,x [q f g(x)] + Hφ,ϕ

1,x [q(x)]Hα,β
1,x [r f g(x)]

]
≥

Hα,β
1,x [p(x)]

[
Hα,β

1,x [r f (x)]Hφ,ϕ
1,x [qg(x)] + Hφ,ϕ

1,x [q f (x)]Hα,β
1,x [rg(x)]

]
.

(36)

Arguing as for Equations (34) and (36), we obtain

Hα,β
1,x [q(x)]

[
Hα,β

1,x [r(x)]Hφ,ϕ
1,x [p f g(x)] + Hφ,ϕ

1,x [p(x)]Hα,β
1,x [r f g(x)]

]
≥

Hα,β
1,x [q(x)]

[
Hα,β

1,x [r f (x)]Hφ,ϕ
1,x [pg(x)] + Hφ,ϕ

1,x [p f (x)]Hα,β
1,x [rg(x)]

]
.

(37)

Adding Inequalities (34), (36) and (37), we obtain Inequality (32).

Remark 5. We assume f , g, r, p and q satisfy the following conditions:

1. the functions f and g are asynchronous on [1, ∞);
2. the functions r, p, q are negative on [1, ∞);
3. two of the functions r, p, q are positive and the third is negative on [1, ∞).

Then, Inequalities (24) and (32) are reversed.
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4. Some Other Fractional Integral Inequalities

Now, we give some other fractional integral inequalities using generalized propor-
tional Hadamard fractional integral operators.

Theorem 3. Suppose that f , g, and h are positive and continuous functions on [1, ∞), such that

(g(τ)− g(σ))
(

f (σ)
h(σ)

− f (τ)
h(τ)

)
≥ 0, τ, σ ∈ (1, x) x > 1. (38)

Then, for all x > 1, α > 0 and β ∈ (0, 1], we have

Hα,β
1,x [ f (x)]

Hα,β
1,x [h(x)]

≥
Hα,β

1,x [g f (x)]

Hα,β
1,x [gh(x)]

. (39)

Proof. Since f , g, and h are three positive and continuous functions on [1, ∞), by Equation (38)
we obtain

g(τ)
f (σ)
h(σ)

+ g(σ)
f (τ)
h(τ)

− g(σ)
f (σ)
h(σ)

− g(τ)
f (τ)
h(τ)

≥ 0, τ, σ ∈ (0, x)x > 0. (40)

Multiplying both sides of Equation (40) by h(σ)h(τ), we have

g(τ) f (σ)h(τ)− g(τ) f (τ)h(σ)− g(σ) f (σ)h(τ) + g(σ) f (τ)h(σ) ≥ 0. (41)

Now, multiplying Equation (41) by ψ(x, τ) defined by Equation (20), then integrating the
resulting identity with respect to τ from 1 to x, we obtain

f (σ)
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1g(τ)h(τ)

dτ

τ

− h(σ)
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1g(τ) f (τ)

dτ

τ

− f (σ)g(σ)
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1h(τ)

dτ

τ

+
h(σ)g(σ)
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1 f (τ)

dτ

τ
≥ 0.

(42)

It follows from Equation (42) that

f (σ)Hα,β
1,x [gh(x)] + g(σ)h(σ)Hα,β

1,x [ f (x)]

− g(σ) f (σ)Hα,β
1,x [h(x)]− h(σ)Hα,β

1,x [g f (x)] ≥ 0. (43)

Again, let us multiply Equation (43) by ψ(x, σ) as defined by Equation (20), which remains
positive because for all σ ∈ (1, x), (x > 1), α, β > 0. Then, integrating the resulting identity
with respect to σ from 1 to x, we obtain

Hα,β
1,x [ f (x)]Hα,β

1,x [gh(x)]−Hα,β
1,x [h(x)]Hα,β

1,x [g f (x)]

− Hα,β
1,x [g f (x)]Hα,β

1,x [h(x)] +Hα,β
1,x [gh(x)]Hα,β

1,x [ f (x)] ≥ 0, (44)

which implies that

Hα,β
1,x [ f (x)]Hα,β

1,x [gh(x)] ≥ Hα,β
1,x [h(x)]Hα,β

1,x [g f (x)]. (45)

This completes the proof of the theorem.
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Theorem 4. Suppose that f , g, and h are positive and continuous functions on [1, ∞), such that

(g(τ)− g(σ))
(

f (σ)
h(σ)

− f (τ)
h(τ)

)
≥ 0, τ, σ ∈ (1, x) x > 1, (46)

Then, for all x > 1, β, ϕ ∈ (0, 1], and α, φ > 0, we have

Hα,β
1,x [ f (x)]Hφ,ϕ

1,x [g f (x)] +Hφ,ϕ
1,x [ f (x)]Hα,β

1,x [gh(x)]

Hα,β
1,x [h(x)]Hφ,ϕ

1,x [g f (x)] +Hφ,ϕ
1,x [h(x)]Hα,β

1,x [g f (x)]
≥ 1. (47)

Proof. Multiplying Equation (43) by 1
ϕφΓ(φ)σ e

[
ϕ−1

ϕ (ln x−ln σ)
]
(ln x − ln σ)φ−1, σ ∈ (1, x),

x > 1, φ, ϕ > 0, which is always positive, then integrating the resulting identity with
respect to σ from 1 to x, we have

Hα,β
1,x [hg(x)]

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1 f (σ)

dσ

σ

−Hα,β
1,x [g f (x)]

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1h(σ)

dσ

σ

−Hα,β
1,x [h(x)]

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1g f (σ)

dσ

σ

+Hα,β
1,x [ f (x)]

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1 f h(σ)

dσ

σ
≥ 0.

(48)

This gives us the following relation:

Hφ,ϕ
1,x [ f (x)]Hα,β

1,x [gh(x)]−Hφ,ϕ
1,x [h(x)]Hα,β

1,x [g f (x)]

−Hφ,ϕ
1,x [g f (x)]Hα,β

1,x [h(x)] +Hφ,ϕ
1,x [gh(x)]Hα,β

1,x [ f (x)] ≥ 0. (49)

From Equation (49), we obtain

Hφ,ϕ
1,x [ f (x)]Hα,β

1,x [gh(x)] +Hφ,ϕ
1,x [gh(x)]Hα,β

1,x [ f (x)]

≥ Hφ,ϕ
1,x [h(x)]Hα,β

1,x [g f (x)] +Hφ,ϕ
1,x [g f (x)]Hα,β

1,x [h(x)]. (50)

This yields Inequality (47). This completes the proof of the theorem.

Remark 6. If we take α = φ and β = ϕ in Theorem 4, then we obtain Theorem 3.

Theorem 5. Suppose that f and h are two positive continuous functions such that f ≤ h on [1, ∞).
If f

h is decreasing and f is increasing on [1, ∞), then, for any p ≥ 1, x > 1, α > 0 and β ∈ (0, 1],
we have

Hα,β
1,x [ f (x)]

Hα,β
1,x [h(x)]

≥
Hα,β

1,x [ f p(x)]

Hα,β
1,x [h

p(x)]
. (51)

Proof. Now, by taking g = f p−1 in Theorem 3, we obtain

Hα,β
1,x [ f (x)]

Hα,β
1,x [h(x)]

≥
Hα,β

1,x [ f f p−1(x)]

Hα,β
1,x [h f p−1(x)]

. (52)

Since f ≤ h on [1, ∞), we have
h f p−1 ≤ hp. (53)
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Multiplying Equation (53) by ψ(x, τ) defined by Equation (20), then integrating the result-
ing identity with respect to τ from 1 to x, we obtain

1
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1 f p−1h(τ)

dτ

τ
(54)

≤ 1
βαΓ(α)

∫ x

1
e
[

β−1
β (ln x−ln τ)

]
(ln x− ln τ)α−1hp(τ)

dτ

τ
, (55)

which implies that
Hα,β

1,x [h f p−1(x)] ≤ Hα,β
1,x [h

p(x)]. (56)

Thus, we have
Hα,β

1,x [ f f p−1(x)]

Hα,β
1,x [h f p−1(x)]

≥
Hα,β

1,x [ f p(x)]

Hα,β
1,x [h

p(x)]
. (57)

From Equations (52) and (57), we obtain Equation (51).

Theorem 6. Suppose that f and h are two positive continuous functions such that f ≤ h on [1, ∞).
If f

h is decreasing and f is increasing on [1, ∞), then, for any p ≥ 1, x > 1, β, ϕ ∈ (0, 1], α, φ > 0,
we have

Hα,β
1,x [ f (x)]Hφ,ϕ

1,x [h
p(x)] +Hφ,ϕ

1,x [ f (x)]Hα,β
1,x [h

p(x)]

Hα,β
1,x [h(x)]Hφ,ϕ

1,x [ f p(x)] +Hφ,ϕ
1,x [h(x)]Hα,β

1,x [ f p(x)]
≥ 1. (58)

Proof. Taking g = f p−1 in Theorem 4, we obtain

Hα,β
1,x [ f (x)]Hφ,ϕ

1,x [h f p−1(x)] +Hφ,ϕ
1,x [ f (x)]Hα,β

1,x [h f p−1(x)]

Hα,β
1,x [h(x)]Hφ,ϕ

1,x [ f p(x)] +Hφ,ϕ
1,x [h(x)]Hα,β

1,x [ f p(x)]
≥ 1, (59)

then, by hypothesis, f ≤ h on [1, ∞), which implies that

h f p−1 ≤ hp. (60)

Now, multiplying both sides of Equation (60) by 1
ϕφΓ(φ)σ e

[
ϕ−1

ϕ (ln x−ln σ)
]
(ln x − ln σ)φ−1,

σ ∈ (1, x), x > 1, φ, ϕ > 0, which remains positive. Then, integrating the resulting identity
with respect to σ from 1 to x, we have

1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1h f p−1(σ)

dσ

σ

≤ 1
ϕφΓ(φ)

∫ x

1
e
[

ϕ−1
ϕ (ln x−ln σ)

]
(ln x− ln σ)φ−1hp(σ)

dσ

σ
.

(61)

Integrating both sides of Equation (61) with respect to σ over 1 to x, we have

Hφ,ϕ
1,x [h f p−1(x)] ≤ Hφ,ϕ

1,x [h
p(x)]. (62)

Multiplying both sides of Equation (62) byHα,β
1,x [ f (x)], we obtain

Hα,β
1,x [ f (x)]Hφ,ϕ

1,x [h f p−1(x)] ≤ Hα,β
1,x [ f (x)]Hφ,ϕ

1,x [h
p(x)]. (63)

Hence, from Equations (56) and (63), we obtain

Hα,β
1,x [ f (x)]Hφ,ϕ

1,x [h f p−1(x)] +Hφ,ϕ
1,x [ f (x)]Hα,β

1,x [h f p−1(x)]

≤ Hα,β
1,x [ f (x)]Hφ,ϕ

1,x [h
p(x)] +Hφ,ϕ

1,x [ f (x)]Hα,β
1,x [h

p(x)]. (64)
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From Equations (59) and (64), we obtain Equation (58). This ends the proof of the theorem.

5. Concluding Remarks

In [42], the authors proposed the concept of generalized proportional fractional integral
operators with exponential kernels. Following this, Rahman et al. [44] worked on these
operators and established some fractional inequalities for convex functions by considering
Hadamard proportional fractional integrals. In this study, we obtained some fractional
integral inequalities for the extended Chebyshev function by considering the generalized
proportional Hadamard fractional integral operator. The inequalities investigated in this
paper represent novel contributions in the fields of fractional calculus and generalized
proportional Hadamard fractional integral operators. They are also expected to lead to some
applications for determining the uniqueness of fractional differential equation solutions. We
also believe that the findings of this study will help to solve additional practical problems
in mathematical physics, statistics, and approximation theory.
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Abstract: Generalized numbers, arithmetic operators, and derivative operators, grouped in four
classes based on symmetry features, are introduced. Their building element is the pair of @-
logarithm/@-exponential inverse functions. Some of the objects were previously described in the
literature, while others are newly defined. Commutativity, associativity, and distributivity, and also a
pair of linear/nonlinear derivatives, are observed within each class. Two entropic functionals emerge
from the formalism, and one of them is the nonadditive Tsallis entropy.

Keywords: deformed numbers; deformed algebras; deformed calculus; nonadditive entropy

1. Introduction

Extensivity of an entropy is expressed as ( being proportional to the number # of
elements of the system. The hypervolume Ω of the phase space of a system composed
by independent subsystems increases with the product of the hypervolumes `8 of the
corresponding subspaces of its elements (`8 > 1). For identical and independent subsys-
tems, the phase space exponentially increases with the number of elements, Ω = `#1 , and
thus the Boltzmann entropy is proportional to # : ( = : lnΩ = #: ln `1, i.e., it is extensive.
Correlations between subsystems make the hypervolume of the phase space smaller than
that of the product of the hypervolumes of its subsystems, and particular kinds of strong
correlations make the phase space asymptotically increase as a power law, at a much slower
rate than the exponential law; in these cases the Boltzmann entropy is no longer extensive.
For such special cases, —and there are plenty of observational, experimental, and numerical
examples— the nonadditive entropy (@ [1] becomes proportional to # , recovering extensiv-
ity, which is a central property for connecting with thermodynamics (see details and further
implications of extensivity in Ref. [2]). The mathematical property that plays this role is a
generalized multiplication operator defined in Ref. [3]. The present paper identifies four
classes of generalized algebras associated with the nonextensive formalism in a broader
point of view. One of them contains the above-mentioned generalized multiplication. These
developments hopefully help to understand the underlying mathematical structures that
support the nonextensive statistical mechanics.

The Tsallis nonadditive entropy (@ has induced investigations on deformed mathe-
matical structures aiming to represent relations of the nonextensive framework through
expressions formally similar to the standard Boltzmann-Gibbs (BG) statistical mechanics.
The definition of the generalized logarithm function (the @-logarithm) [4]

ln@ G ≡ G
1−@ − 1
1 − @ , (G > 0), (1)
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allowed to rewrite (@ ≡ : (@ − 1)−1 (
1 −∑,

8 ?@8
)

(in its discrete version) as

(@ = −: ∑,
8 ?@8 ln@ ?8 ,

= :
∑,

8 ?8 ln@ (1/?8)
(2)

(sum over , microstates, each one labeled 8, with their corresponding probabilities ?8 ,
: is a positive constant, @ ∈ R is the generalizing entropic index). Ordinary formalism
is recovered as @ → 1 (ln1 G = ln G; (1 = (BG = :

∑,
8 ?8 ln 1/?8), equiprobability yields

(@ [?8 = 1/,] = : ln@, . The @-logarithm presents the limiting cases

lim
G→0+

ln@ G =

{ −1
1−@ , @ < 1,

−∞, @ ≥ 1,
(3)

lim
G→∞ ln@ G =

{
∞, @ ≤ 1,

1
@−1 , @ > 1.

(4)

Its inverse, the @-exponential, is

exp@ (G) =




[1 + (1 − @)G] 1
1−@ \

(
G + 1

1−@
)
, @ < 1,

eG , @ = 1,
1

[1 − (@ − 1)G] 1
@−1 \

(
1

@−1 − G
) , @ > 1,

(5)

(\ (G) is the Heaviside step function) that is more compactly written as exp@ (G) = [1 + (1 −
@)G]1/(1−@)+ , with the symbol [·]+ ≡ max{0, ·}, — the subscript symbol + encompasses the
Heaviside function. The Heaviside step function \ (G) defines the cutoff condition: the
@-exponential is set to zero for @ < 1 and G < −1/(1 − @), and diverges for @ > 1 and
G > 1/(@ − 1). In the following we use either notations exp@ (G) or eG

@ , equivalently. Some
properties of @-logarithm and @-exponential functions may be found in [2,5–7].

The @-logarithm of a product splits into a nonadditive form for @ ≠ 1:

ln@ (GH) = ln@ G + ln@ H + (1 − @) ln@ G ln@ H. (6)

This property triggered the definition of new generalized arithmetic operators: (i) what
if the right hand side (r.h.s.) of this expression is viewed as the definition of a generalized
addition of @-logarithms? Answer: Equation (4) of [3], Equation (7) of [8], Equation (25) of
the present work. (ii) What should be the argument of the @-logarithm of the left hand side
(l.h.s.) of (6) if its r.h.s. were an ordinary addition, instead of the generalized addition just
defined? Answer: Equation (7) of [3], Equation (8) of [8], Equation (48) of the present work.
Since then, these operators have usually been referred to as @-addition and @-multiplication,
or, more colloquially, @-sum and @-product. This @-multiplication is the one that makes
(@ extensive, as mentioned previously, and it is not distributive with respect to the @-
addition, and Nivanen et al. [8] identified additional deformed operators, recovering the
distributivity [their Equations (24)–(28)]. In an extension of that work by the same authors
with collaborators [9], the @-multiplication and the @-addition were identified as belonging
to two different classes, and further operators were defined.

Examples of mathematical developments along these lines include: spiral general-
izations of the trigonometric and hyperbolic functions through the extension of Euler’s
formula to the complex domain [10], generalization of derivative operators [3,11], gener-
alizations of Fourier transforms, representations of the Dirac delta function [12,13], two
parameter extensions for the logarithm and exponential and their related algebras [14,15]
etc. Other deformed mathematical structures were introduced, particularly the Kaniadakis
formalism [16–19], from which some of the developments within the nonextensive context
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have been inspired. Generalization of algebras has been recently proposed [20], conforming
to the group entropy theory [21].

Examples of physical systems described by nonextensive statistical mechanics include:
anomalous diffusion of cold atoms in dissipative optical lattices [22], anomalous diffusion in
granular matter [23], experimental high energy physics [24], and observational high energy
physics in cosmic rays [25]. An up-to-date bibliography may be found at the site [26].

The present paper revisits generalized algebras and calculus motivated by the nonex-
tensive formalism in a broader point of view. It identifies the basic arithmetic operators for
four complementary classes, and defines a pair of linear/nonlinear derivative for each one.
A connection with entropic functionals is established. The starting point is the definition of
the generalized numbers.

The paper is organized as follows. Section 2 introduces four deformed numbers, by
combining the pair of the inverse logarithm/exponential functions and their generalized
forms. Section 3 explores each class of deformed arithmetics, derived from the generalized
numbers. Section 4 is dedicated to the deformed calculus emerged from the infinitesimal
deformed differences. Two possibilities are focused: a linear and a nonlinear deformed
derivative. A connection between these structures with entropic functionals is addressed
in Section 5. Particularly, the nonadditive entropy (@ is alternatively obtained through a
procedure that uses one of the generalized powers defined in Section 3. Section 6 draws our
final remarks and points towards new perspectives. Throughout the text, many expressions
use symbols designed for compactness. Some of them appear in their explicit forms in the
Appendix A.

2. Deformed q-Numbers

One fundamental mathematical object deserves a special attention within the present
context, namely, the very concept of number. This was implicitly advanced within the
nonextensive formalism in Ref. [10], through the variable Z@ = ln eI@ (I ∈ C) used in the
generalization of Euler’s formula, that may be read as a complex generalized number
[see Equation (22) of [10], Equation (10a) of the present work]. Deformed numerical sets
(@-natural N@ , @-integer Z@ , @-rational Q@ , @-real R@ numbers) were considered following
Peano-like axioms and generalized arithmetic operators were consistently defined [27].
Those generalized numbers are a transformation of the so-called&-analog of = —& standing
for quantum, within the context of quantum calculus (we write it with upper case & to
avoid confusion with the present lower case index @) [28]:

[=]& = &
= − 1
& − 1

, (7)

from which we borrow the idea of a @-number. This connection had been previously
realized, see [29]. Deformation of reals had also been reported in Ref. [30].

Given a continuous, analytical, monotonous, invertible function 5 (G) generalized
through a real parameter @ that recovers the ordinary case as a limiting procedure (in this
context, @ → 1), we introduce the generalized numbers through four combinations, such as
the ordinary case identically recovered:

[G]@ = 5
(
5 −1
@ (G)

)
, (8a)

@ [G] = 5@
(
5 −1 (G)) , (8b)

{G}@ = 5 −1 ( 5@ (G)) , (8c)

@{G} = 5 −1
@

(
5 (G)) . (8d)

The adopted notation obeys the following criteria: the square brackets are used when
5 −1
@ (or 5 −1) is the argument of 5 (or 5@) and the curly brackets are used when 5@ (or 5 ) is the

argument of 5 −1 (or 5 −1
@ ); the function labeled as 5 is arbitrary. The deformation parameter

@ is used as a subscripted postfix if the inner function is deformed, referred to as i-number,
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Equations (8a) and (8c), and as a subscripted prefix if the outer function is deformed, referred
to as o-number, Equations (8b) and (8d) (in analogy with the notation employed for the
generalized hypergeometric series — in that case, prefix for the numerator, postfix for the
denominator).

The pair of i/o numbers are inverse of each other, and thus

@

[ [G]@ ]
=

[
@ [G]

]
@
= @

{ {G}@ }
=

{
@{G}

}
@
= G. (9)

To be more specific to the case we are focusing upon, we define 5 (G) = ln G, and,
consequently, 5 −1 (G) = eG . It follows the le-numbers (l stands for logarithm and e stands
for exponential, ‘le’ expresses the order in which the functions are taken)

[G]@ = ln eG
@ (ile-number), (10a)

@ [G] = ln@ eG (ole-number), (10b)

and the el-numbers

{G}@ = e ln@ G (iel-number), (11a)

@{G} = eln G
@ (oel-number). (11b)

Equation (11) is constrained to G ∈ R+. This limitation can be overcome, allowing
G ∈ R, in analogy to what was done in Ref. [31], by ad hoc redefining the el-numbers as

{G}@ = sign(G) e ln@ |G | (iel-number), (12a)

@{G} = sign(G) eln |G |
@ (oel-number), (12b)

with sign(G) = G/|G | and sign(0) ≡ 0. The present work uses the el-numbers as defined by
Equation (12), but expressions are easily rewritten in its simpler form (11) by taking into
consideration the restricted domain.

The le-numbers have one fixed point ([G] = G) at [0]@ = 0, and @ [0] = 0 (ile and ole,
respectively) for all values of @ ≠ 1. The iel-numbers have two fixed points ({G} = G) for
@ < 1, at {±1}@ = ±1, — zero is not a fixed point for iel-numbers, since � {0}@ (limG→0− {G}@ =
−e−1/(1−@) , limG→0+ {G}@ = e−1/(1−@) ) —, and three fixed points for @ ≥ 1, at {0}@ = 0 and
{±1}@ = ±1. The oel-numbers have three fixed points, at @{0} = 0, and @{±1} = ±1. Due to
the cutoff condition of the @-exponential, @<1

{ |G | < e1/(@−1)} = 0, and due to the absolute
values, the el-numbers are odd, for both i and o deformed numbers ({−G} = −{G}). le-
numbers and el-numbers are monotonous crescent with the ordinary numbers, i.e., if G > H,
[G] > [H] and {G} > {H} for both i and o deformed numbers. An exception may apply for
the oel-numbers: it may happen G > H but @{G} = @{H} = 0 for @ < 1 within the cutoff region,
|G | ≤ exp

(− 1/(1− @)) and |H | ≤ exp
(− 1/(1− @)) . The inverse relations between ile/ole and

iel/oel numbers expressed by Equation (9) are valid outside the cutoff regions. Figure 1
illustrates the four @-numbers. These deformed numbers also satisfy the identities

[
ln G

]
@

= ln
(
@{G}

)
, (13a)

@

[
ln G

]
= ln

( {G}@ )
= ln@ G, (13b)[

ln@ G
]
@

= ln@
(
@{G}

)
= ln G, (13c)

@

[
ln@ G

]
= ln@

( {G}@ )
, (13d)
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{
exp G

}
@

= exp
(
@ [G]

)
, (14a)

@

{
exp G

}
= exp

( [G]@ )
= exp@ G, (14b){

exp@ G
}
@

= exp@

(
@ [G]

)
= exp G, (14c)

@

{
exp@ G

}
= exp@

( [G]@ )
. (14d)

Whenever convenient and not ambiguous, for the sake of compactness of notation,
we henceforth may occasionally use the symbols 〈G〉@ to denote the i-numbers (either [G]@
or {G}@), and @ 〈G〉 to denote the o-numbers (either @ [G] or @{G}), and the most general
case 〈G〉, without subscripts, to denote any of the four generalized numbers (not to be
confound with mean value or the bra-ket symbols). The expressions ‘generalized number’
and ‘generalized variable’ are used interchangeably, just as the convenience of the context,
without restricting ourselves to the rigorous mathematical distinction these concepts may
have.

The following sections explore the connections of these deformed numbers with their
corresponding arithmetics and calculus.
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Figure 1. @-numbers , illustrated with @ = −1 (red), 1 (black), 3 (blue). (a) ile-number; [G ≤ −1/(1 −
@)]@<1 → −∞, illustrated by the vertical red asymptote for @ = −1; [G ≥ 1/(@ − 1)]@>1 →∞, illustrated
by the vertical blue asymptote for @ = 3. (b) ole-number; limG→−∞ @<1 [G] = −1/(1 − @), illustrated
by the horizontal red asymptote for @ = −1: limG→∞ @>1 [G] = 1/(@ − 1), illustrated by the horizontal
blue asymptote for @ = 3. (c) iel-number; limG→0± {G}@<1 = ±e−1/(1−@) ; illustrated for @ = −1;
limG→±∞{G}@>1 = ±e1/(@−1) , illustrated by the horizontal blue asymptotes for @ = 3; (d) oel-number;

@<1{|G | ≤ e−1/(1−@) } = 0, illustrated for @ = −1; @>1{|G | ≥ e1/(@−1) } → sign(G)∞, illustrated by the
vertical blue asymptotes for @ = 3.

3. Deformed q-Arithmetics

Starting from the generalized numbers (10) and (12) we identify four generalized
classes of arithmetics. In this paper, the designation @-addition, @-multiplication, etc., are
ambiguous, and thus we introduce a different notation: the ile-, ole-, iel-, and oel- arithmetic
operators. Particularly, and partially anticipating the results of the next subsections, the
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deformed addition and subtraction of Ref. [3] belong to the ole-algebra (here symbolized by
[@ ]⊕ and [@ ]	 ), considered in Section 3.2, and the deformed multiplication and division
of Ref. [3] belong to the oel-algebra (here symbolized by {@}⊗ and {@}� ), considered in
Section 3.3. By @-arithmetics we generically denote the set of the four arithmetics described
in this paper. They can also be referred to as @-algebras, understood as algebras over the
real numbers, or some subset of the reals.

An i-arithmetic operator is defined as the i-number of the ordinary arithmetic operator
of the corresponding o-numbers, and, complementary, an o-arithmetic operator is defined
as the o-number of the ordinary arithmetic operator of the corresponding i-numbers. The
generating rules follow the lines of the ^-arithmetic operators of Kaniadakis [16–18], more
generally expressed by Equation (1) of [32] (also in [20]), and are

i-arithmetics: G #〈@〉 H =
〈
@ 〈G〉 ◦ @ 〈H〉

〉
@

, (15a)

o-arithmetics: G 〈@〉# H = @

〈 〈G〉@ ◦ 〈H〉@ 〉
. (15b)

The symbol ◦, a small circle without subscripts, represents any general usual arithmetic
operator, ◦ ∈ {+,−,×, /}; its generalized version is represented by a larger circle #, with
bracket subscripts: prefixed/postfixed, square/curly, in consonance with the case. To avoid
ambiguity in notation, the generalized operators are represented within a circle with their
subscripts within brackets. The generalized numbers are represented within brackets, with
their subscripts without brackets.

Some general relations are valid for all cases (the symbol # without subscript gener-
ically represents the neutral element of the addition for any of the four arithmetics # ∈
{#[+], [+]# , #{+}, {+}#}; similarly to �, the neutral element of the multiplication; �, the ab-
sorbing element of the multiplication): the neutral element of the deformed addition
# , such as G ⊕ # = G, is the corresponding deformed zero (#[+] = [0]@ , [+]# = @ [0],
#{+} = {0}@ , {+}# = @{0}); the deformed additive opposite of G, written as 	 G ≡ 0 	 G,
such that G ⊕ (	G) = # , and G 	 H = G ⊕ (	 H). Similarly, the neutral element of the deformed
multiplication �, G ⊗ � = G, is the corresponding deformed unity (�[×] = [1]@ , [×]� = @ [1],
�{×} = {1}@ , {×}� = @{1}). The deformed multiplicative inverse of G, written as � � G, is such
that G ⊗ (� � G) = �, and G � H = G ⊗ (� � H). The absorbing element � of the deformed
multiplication, such that G ⊗ � = �, coincides with the neutral element # of the corre-
sponding deformed addition (�[×] = #[+], [×]� = [+]# , �{×} = #{+}, {×}� = {+}#). The deformed
addition and multiplication are commutative (G ⊕ H = H ⊕ G, G ⊗ H = H ⊗ G), associative
[G ⊕ (H ⊕ I) = (G ⊕ H) ⊕ I, G ⊗ (H ⊗ I) = (G ⊗ H) ⊗ I], and the deformed multiplication is (left
and right) distributive with respect to the deformed addition

[
G ⊗ (H ⊕ I) = (G ⊗ H) ⊕ (G ⊗ I),

(H ⊕ I) ⊗ G = (H ⊗ G) ⊕ (I ⊗ G)] [32]. Some constraints may apply to these relations according
to the case, to be detailed in the next subsections.

3.1. ile-Arithmetics

The ile-algebraic operators follow from the generating rule expressed by (15a). The
ile-addition is

G ⊕ [@ ] H =
[
@ [G] + @ [H]

]
@

,

= ln exp@

(
ln@ eG + ln@ eH

)
.

(16)

The neutral element of the ile-addition is #[+] = [0]@ = 0, and consequently the opposite
ile-additive of H is

	 [@ ] H =
1

1 − @ ln
(
2 − e(1−@)H

)
. (17)
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The ile-difference (15a) with #〈@〉 = 	 [@ ] ,

G 	 [@ ] H =
[
@ [G] − @ [H]

]
@

,

= ln exp@

(
ln@ eG − ln@ eH

)
,

(18)

consistently satisfies G 	 [@ ] H = G ⊕ [@ ] ( 	 [@ ] H ) for all @.
The ile-multiplication is

G ⊗ [@ ] H =
[
@ [G] @ [H]

]
@

,

= ln exp@

(
ln@ eG ln@ eH

)
,

(19)

with its neutral ile-multiplicative element �[×] = [1]@ = (1− @)−1 ln(2− @) for @ < 2 ([1]@≠1 ≠ 1,
��[×] for @ ≥ 2), and its ile-absorbing element �[×] = [0]@ = 0, for all @. The ile-division is

G � [@ ] H =

[
@ [G]
@ [H]

]
@

,

= ln exp@

(
ln@ eG

ln@ eH

)
,

(20)

and � �[×] � [@ ] 0.
The ile-power of G is defined as the ile-multiplication of = identical factors G,

G �∧ [@ ] = =
=∏
[@ ] G =

[ (
@ [G]

)= ]
@

. (21)

Its analytical extension from = ∈ N to H ∈ R is written as

G �∧ [@ ] H = ln exp@

( (ln@ eG)H )
, (G > 0), (22)

with the particular cases: G �∧ [@ ] 0 = [1]@ (G ≠ 0), G �∧ [@ ] 1 = G (G ≠ 0), 1�∧ [@ ] H ≠ 1 (for
@ ≠ 1), limG→0+ (G �∧ [@ ] H) = 0 (H > 0), limG→0+ (G �∧ [@ ] H) → ∞ (H < 0), and the trivial
case G �∧ [1] H = GH . The ile-power is right-distributive with respect to the ile-multiplication:
(G ⊗ [@ ] H) �∧ [@ ] I = (G �∧ [@ ] I) ⊗ [@ ] (H �∧ [@ ] I).

The repeated generalized addition defines a different generalized multiplication
that can be named as dot-multiplication, identified by the symbol �, to distinguish it
from the previous generalized multiplication (or times-multiplication), symbolized by ⊗
[Equation (19) for the ile class]. The repeated ile-addition is given by

= � [@ ] H =
=∑
[@ ] H,

=

[ =∑
@ [H]

]
@

,

= ln exp@

(
= ln@ eH

)
,

(23)

where we have used the generalized summation symbol for the ile class,
∑
[@ ] , compatible

with the notation adopted in this work. Analytical extension from = ∈ N to G ∈ R yields the
non commutative generalized ile-dot-multiplication:

G � [@ ] H =
1

1 − @ ln
(
G e(1−@)H − (G − 1)

)
+
. (24)

The dot-multiplication with the unity has two behaviors, due to its non-commutativity.
The trivial case (1 � H = H) holds for the four classes (for the ile-dot-multiplication of
this subsection, as well as for the ole-, iel-, and oel- of the subsections to come). The
other case, G � 1, connects the dot-multiplication with the deformed numbers. The ile-dot-
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multiplication with unity results G � [@ ] 1 =
[
G @ [1]

]
@
, with @ [1] = ln@ 4 =

(
e1−@ − 1

)/(1 −
@) ≠ 1 for @ ≠ 1. Repeated ile-dot-multiplication defines ile-dot-power, not explicitly shown
here.

The generating rule (15b) defines the ole-algebraic operators. The ole-addition (or
ole-sum) is

G [@ ]⊕ H = @

[ [G]@ + [H]@ ]
,

= ln@ exp
(

ln eG
@ + ln eH

@

)
,

= G + H + (1 − @)GH.

(25)

Its neutral ole-additive element is [+]# = @ [0] = 0 and the opposite ole-additive element
[@ ]	 H such as H [@ ]⊕ (0 [@ ]	 H) = 0 is

[@ ]	 H =
−H

1 + (1 − @)H ,
(
H ≠ 1/(@ − 1)) , (26)

and, consequently, the ole-subtraction is

G [@ ]	 H = @

[ [G]@ − [H]@ ]
,

= ln@ exp
(

ln eG
@ − ln eH@

)
,

=
G − H

1 + (1 − @)H

(27)

provided H ≠ 1/(@ − 1). These are the generalized addition and subtraction of Ref. [3],
referred to as @-sum and @-difference, respectively (see also Section 3.3.3 of Ref. [2]).

From (15b), the ole-product

G [@ ]⊗ H = @

[ [G]@ [H]@ ]
,

= ln@ exp
(
ln eG

@ ln eH
@

)
,

(28)

and its neutral ole-multiplicative element [×]� = @ [1] = e1−@ − 1
1 − @ ≠ 1 for @ ≠ 1, together with

the ole-division,

G [@ ]� H =
q

[ [G]@
[H]@

]
,

= ln@ exp

(
ln eG

@

ln eH@

)
,

(29)

are coherent with the ole-multiplicative inverse element [×]� [@ ]� H = ln@ exp
( (ln eH@)−1) . The

ole-absorbing element is [×]� = @ [0] = 0. The generalized diamond multiplication defined
by Equation (24) of Ref. [27] is related to the ole-multiplication as G [@ ]⊗ H = (G @̂ H) [@ ]⊗ 1,
and this expression connects the distributivity property of the diamond multiplication
with respect to the ole-addition (Equation (28) of Ref. [27]) and the distributivity of the
ole-multiplication with respect to this generalized addition.

The ole-power (the repeated ole-multiplication),

G [@ ]�∧ = =
{q}

=∏
G = @

[ ([G]@ )=] , (30)

after analytic continuation, becomes

G [@ ]�∧ H = ln@ exp
(
ln eG

@

) H
, (G > 0), (31)
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with G [@ ]�∧ 0 = @ [1] (G ≠ 0), G [@ ]�∧ 1 = G (G ≠ 0), 1 [@ ]�∧ H ≠ 1 (for @ ≠ 1), limG→0+ (G [@ ]�∧ H) =
0 (H > 0), limG→0+ (G [@ ]�∧ H) → ∞ (H < 0 and @ < 1), limG→0+ (G [@ ]�∧ H) = 1/(@ − 1) (H < 0
and @ > 1), G [1]�∧ H = GH . The ole-power is right-distributive with respect to the ole-
multiplication: (G [@ ]⊗ H) [@ ]�∧ I = (G [@ ]�∧ I) [@ ]⊗ (H [@ ]�∧ I).

The repeated ole-addition has been defined in Ref. [3], and reads

= [@ ]� H =
[q]

=∑
H,

=
q

[ =∑
[H]@

]
,

=

(
1 + (1 − @)H)=+ − 1

1 − @ .

(32)

This is identical to Equation (8) of Ref. [9]. Analytical extension into the real domain
yields the non commutative ole-dot-multiplication:

G [@ ]� H =

(
1 + (1 − @)H) G+ − 1

1 − @ . (33)

The ole-dot-multiplication with the unity is expressed by G [@ ]� 1 = @

[
G [1]@

]
,

with [1]@ = ln exp@ (1) = (1 − @)−1 ln(2 − @) ≠ 1 for @ ≠ 1 and @ < 2. This relation
connects the ole-dot-multiplication and the le deformed numbers with the &-analog of =
(7): = [@ ]� 1 = (&= − 1)/(& − 1), with & = 2 − @. The ole-dot power naturally follows from
the repeated ole-dot-multiplication, not shown here.

3.2. iel-Arithmetics

According to the generating rule for i-algebras (15a), the iel-addition is

G ⊕{@} H =
{
@{G} + @{H}

}
@

,

= sign(G + H) exp
(
ln@

���sign(G) eln |G |
@ + sign(H) eln |H |

@

���) .
(34)

The cutoff of the @-exponential (5) imposes restrictions on the domain of (34). Its
neutral iel-additive element #{+} = {0}@ , is

#{+} → 0, @ ≥ 1,

#{+} ≤ e
−1

1−@ , @ < 1.
(35)

For @ < 1, there are infinite neutral iel-additive elements, including the zero. The
iel-difference reads

G 	{@} H =
{
@{G} − @{H}

}
@

,

= sign(G − H) exp
(
ln@

���sign(G) eln |G |
@ − sign(H) eln |H |

@

���) .
(36)

The opposite iel-additive element is

	{@} H =




−H, if |H | > exp
(
−1

1−@
)
,

−sign(H) exp
(
−1

1−@
)
, if |H | ≤ exp

(
−1

1−@
)
,




@ < 1,

−H, @ = 1,

−H, if |H | < exp
(

1
@−1

)
,

−sign(H) exp
(

1
@−1

)
, if |H | ≥ exp

(
1

@−1

)
,




@ > 1.

(37)
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The iel-multiplication and the iel-division are

G ⊗{@} H =
{
@{G} @{H}

}
@

,

= sign(GH) exp
(
ln@

(
eln |G |
@ eln |H |

@

))
,

(38)

G �{@} H =

{
@{G}
@{H}

}
@

,

= sign(G/H) exp

(
ln@

(
eln |G |
@

eln |H |
@

))
.

(39)

The neutral element of the iel-multiplication is �{×} = {1}@ = 1.
The iel-absorbing element coincides with the neutral iel-additive element, �{×} = #{+} (35).
The repeated iel-multiplication (iel-power) is given by

G �∧ {@} = =
=∏

{@}
G =

{ (
@{G}

)= }
@

, (40)

which is rewritten as (after analytical extension from = ∈ N to H ∈ R)

G �∧ {@} H = exp
(
ln@ ( eln |G |

@ )H )
, (G > 0), (41)

with the particular cases G �∧ {@} 0 = 1 (G ≠ 0), G �∧ {@} 1 = G (G ≠ 0), 1 �∧ {@} H = 1 (H ≠ 0),
limG→0+ (G �∧ {@} H) = exp

( − 1/(1 − @)) (H > 0 and @ < 1), limG→0+ (G �∧ {@} H) → ∞ (H < 0
and @ < 1), limG→0+ (G �∧ {@} H) = 0 (H > 0 and @ > 1), limG→0+ (G �∧ {@} H) = exp

( − 1/(1 − @))
(H < 0 and @ > 1), G �∧ {1} H = GH . The iel-power is right-distributive with respect to the
iel-multiplication: (G ⊗{@} H) �∧ {@} I = (G �∧ {@} I) ⊗{@} (H �∧ {@} I).

The repeated iel-addition defines the iel-dot-multiplication:

= �{@} H =
=∑

{@}
H,

=

{ =∑
@{H}

}
@

,

= sign(H) exp(ln@ =) |H |=1−@
.

(42)

Analytical extension from = ∈ N to G ∈ R+ can be represented by

G �{@} H = sign(H) exp(ln@ G) |H |G1−@
, (G > 0). (43)

The iel-number is connected to the iel-dot-multiplication by G �{@} 1 =
{
G @{1}

}
@
=

{G}@ , since @{1} = 1.

3.3. oel-Arithmetics

The oel-arithmetic operators derives from (15b):
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G {@}⊕ H = @

{ {G}@ + {H}@ }
,

= sign(G + H) exp@

(
ln

���sign(G) eln@ |G | + sign(H) eln@ |H |
���) , (44)

G {@}	 H = @

{ {G}@ − {H}@ }
,

= sign(G − H) exp@

(
ln

���sign(G) eln@ |G | − sign(H) eln@ |H |
���) , (45)

G {@}⊗ H = @

{ {G}@ {H}@},

= sign(GH) exp@

(
ln

���eln@ |G | eln@ |H |
���) , (46)

G {@}� H = @

{ {G}@
{H}@

}
,

= sign(G/H) exp@

(
ln

����eln@ |G |

eln@ |H |

����
)
. (47)

Equations (46) and (47) can be rearranged as

G {@}⊗ H = sign(GH)
(
|G |1−@ + |H |1−@ − 1

) 1
1−@

+
(48)

and

G {@}� H = sign(G/H)
(
|G |1−@ − |H |1−@ + 1

) 1
1−@

+
. (49)

The oel-product and the oel-ratio were defined in Ref. [3], referred to as @-product
and @-ratio, respectively (see also Section 3.3.2 of Ref. [2]). The cutoff that appears in (48)
defines regions in which the oel-arithmetical operators are ill-defined. Figures 2 and 3
show the regions for which the cutoff applies for the oel-addition and oel-multiplication,
respectively. The first column of each (Figures a and c) shows instances for @ < 1, and the
second column (Figures b and d), for @ > 1. The first line (Figures a and b) exhibits the
cutoff regions with a shaded pattern for one typical value of the parameter @. The second
line (Figures c and d) display superimposed curves of the borders of the cutoff regions for
various values of @, without shading them, otherwise they would be confusing; they follow
the same pattern of the corresponding Figures a and b, respectively. The cutoff regions are
closed for @ < 1 (illustrated with @ = −1 by Figures 2a and 3a), and they are open and not
connected, lying on the outer side delimited by the bounding curves, for @ > 1 (illustrated
with @ = 3 by Figures 2b and 3b). The second line of the figures help us to understand
the effect of the deforming parameter @ on the cutoff regions. As @ approaches unity from
below (Figures 2c and 3c), the cutoff regions become smaller and eventually vanish. For
the oel-addition, Figure 2c, the borders of the cutoff region approach the second bisector
(H = −G), and, for the oel-multiplication, Figure 3c, they approach the origin (0, 0). As @
approaches unity from above (Figures 2d and 3d), the cutoff regions move away from the
origin. At @ = 1, no pair of numbers (G, H) fall within the cutoff regions, and the ordinary
arithmetic operators are defined everywhere.
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Figure 2. Cutoff regions for the oel-addition (44). Left column: @ < 1, right column: @ > 1. Top
line: the shaded regions correspond to the cutoff regions of the oel-addition. (a) @ = −1. (b) @ = 3.
Bottom line: the curves represent the cutoff borders. Regions are not shaded to avoid excessively
heavy representation. Their pattern is similar to (a,b): for @ < 1, the cutoff regions lie inside the
corresponding closed curves, and for @ > 1, the cutoff regions lie outside the corresponding curves.
(c) Different values of @ < 1 (indicated). The cutoff region shrinks and eventually collapses at H = −G
as @ → 1−. (d) Different values of @ > 1 (indicated). As @ → 1+, the non connected regions depart
from the origin, and there are no cutoff regions.

The distributivity of the oel-multiplication with respect to the oel-addition is valid when-
ever the cutoff conditions of the l.h.s. and the r.h.s. of G {@}⊗ (H {@}⊕ I) = (G {@}⊗ H) {@}⊕ (G {@}⊗ I)
are not met. As @ approaches unity, even from below or from above, the distributivity of the
oel-multiplication with respect to the oel-addition is valid for all real values (G, H, I).

The neutral oel-additive element is {+}# = @{0} = 0 for @ ≥ 1, and � {+}# | {+}# {@}⊕ G = G
for @ < 1. As a consequence, there is no opposite oel-additive element for @ < 1. For @ ≥ 1,
{@}	 H = −H. The absorbing element {×}� = @{0} = 0 for @ ≥ 1, and � {×}� | {×}� {@}⊗ G = 0 for
@ < 1 and |G | > 1. If @ < 1, and |G | < 1 the cutoff of (48) (see (5)) implies that zero is an
absorbing element, and, in this case, differently from the other three generalized algebras,
{+}# ≠ {×}�. The neutral multiplicative element of the oel-multiplication is {×}� = @{1} = 1, for
all values of @. The inverse oel-multiplicative element is

1 {@}� H =

{
sign(H) (2 − |H |1−@ ) 1

1−@ , if |H | < 2
1

1−@ ,

0, otherwise.
(50)

This implies the unorthodox property limH→0+ (1{@}� H) → 21/(1−@) , for @ < 1.
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Figure 3. Cutoff regions for the oel-multiplication (46). Left column: @ < 1, right column: @ > 1. Top
line: the shaded regions correspond to the cutoff regions of the oel-multiplication. (a) @ = −1. (b)
@ = 3. Bottom line: the curves represent the cutoff borders, |H | = (1 − |G |1−@)1/(1−@) . Regions are not
shaded to avoid excessively heavy representation. Their pattern is similar to the adopted in (a) or
(b): for @ < 1, the cutoff regions lie inside the corresponding closed curves, and for @ > 1, the cutoff
regions lie outside the corresponding curves. (c) Different values of @ < 1 (indicated). The cutoff
region shrinks and eventually collapses at (0, 0) as @ → 1−, when the curves coincide with the axes.
(d) Different values of @ > 1 (indicated). As @ → 1+, the non connected regions depart from the origin,
and there are no cutoff regions.

The oel-power, previously defined in Ref. [3] (with different symbols), is written as

G {@}�∧ = =
{q}

=∏
G = @

{ ({G}@ )=}, (G > 0). (51)

This operator also appears as Equation (8) of Ref. [9]. We make an analytical extension
from = ∈ N to H ∈ R, and the oel-power can also be written as

G {@}�∧ H = exp@

(
H ln@ G

)
, (G > 0). (52)

Particular cases are G {@}�∧ 0 = 1 (G ≠ 0), G {@}�∧ 1 = G (G ≠ 0), 1 {@}�∧ H = 1 (H ≠ 0),
limG→0+ (G {@}�∧ H) = 0 (H ≥ 1, @ < 1), limG→0+ (G {@}�∧ H) = exp@

( − H/(1 − @)) (H < 1, @ < 1),
limG→0+ (G {@}�∧ H) = 0 (H > 0, @ > 1), limG→0+ (G {@}�∧ H) → ∞ (H < 0, @ > 1), and, as always,
G {1}�∧ H = GH . The oel-power is right-distributive with respect to the oel-multiplication:
(G {@}⊗ H) {@}�∧ I = (G {@}�∧ I) {@}⊗ (H {@}�∧ I).

The repeated oel-addition is

{q}

=∑
H =

q

{
=∑
{H}@

}
. (53)
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Its analytical extension from = ∈ N to G ∈ R+ defines the non commutative oel-dot-
multiplication:

G {@}� H = sign(H) ((1 − @) ln G + |H |1−@ ) 1
1−@
+ , (G > 0). (54)

The oel-number is connected to the oel-dot-multiplication by G {@}� 1 = @

{
G {1}@ } =

@{G}, since {1}@ = 1.

4. Deformed q-Calculus

Following the lines of Ref. [3] (see also Sections II.C and II.D of [33]), we connect
the deformed algebra with deformed calculus, and define the deformed differentials of
ordinary numbers:

d[@ ] G = lim
G′→G

(
G ′ 	 [@ ] G

)
, (55a)

[@ ]dG = lim
G′→G

(
G ′ [@ ]	 G

)
, (55b)

d{@} G = lim
G′→G

(
G ′ 	{@} G

)
, (55c)

{@}dG = lim
G′→G

(
G ′ {@}	 G

)
. (55d)

The definitions of the corresponding deformed differences, Equations (18), (27), (36),
and (45), lead to

d[@ ] G = d
(
@ [G]

)
, (56a)

[@ ]dG = d
( [G]@ ) , (56b)

d{@} G = d
(
@{G}

)
, (56c)

{@}dG = d
( {G}@ ) , (56d)

i.e., the deformed differential of an ordinary variable (l.h.s. of (56)) is equal to the ordinary
differential of the corresponding complementary deformed variable (r.h.s. of (56)): the
i-differential of a variable is equal to the ordinary differential of an o-variable, (56a) and
(56c), and the o-differential of a variable is equal to the ordinary differential of an i-variable,
(56b) and (56d). All the deformed differentials given by (56) can be arranged as the product
of the ordinary differential dG by a deforming function ℎX (G), with X ∈ {ile, ole, iel, oel}
representing the deformation ( d[@ ] G = ℎile (G) d G, [@ ]d G = ℎole (G) d G, d{@} G = ℎiel (G) d G,
{@}dG = ℎoel (G) d G). Their explicit forms are

ℎile (G) = e(1−@)G , (57a)

ℎole =
1

1 + (1 − @)G ,
(
G ≠

−1
1 − @

)
, (57b)

ℎiel (G) =
1
G

(
1 + (1 − @) ln G) @

1−@ , (G > 0), (57c)

ℎoel (G) =
1
G@

exp
(
G1−@ − 1

1 − @

)
, (G > 0). (57d)

A pair of generalized derivatives of a function 5 (G), holding a duality nature between
them, stem from each of the deformed differentials, according to which variable the de-
formed differential applies on: whether on the independent variable G, — and thus a linear
deformed derivative —, generically represented by DX 5 (G), or on the dependent variable 5 ,
— and thus a nonlinear deformed derivative — generically represented by D̃X 5 (G), resulting
in eight different cases:
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1. ile-Derivatives
Linear ile-derivative:

Dile 5 (G) ≡
d 5 (G)
d[@ ] G

=
1

ℎile (G)
d 5 (G)

dG
, (58a)

Nonlinear ile-derivative:

D̃ile 5 (G) ≡
d[@ ] 5 (G)

dG
= ℎile

(
5 (G)) d 5 (G)

dG
. (58b)

2. ole-Derivatives
Linear ole-derivative:

Dole 5 (G) ≡
d 5 (G)
[@ ]d G

=
1

ℎole (G)
d 5 (G)

dG
, (59a)

Nonlinear ole-derivative:

D̃ole 5 (G) ≡ [@ ]d 5 (G)
dG

= ℎole
(
5 (G)) d 5 (G)

dG
. (59b)

3. iel-Derivatives
Linear iel-derivative:

Diel 5 (G) ≡
d 5 (G)
d{@} G

=
1

ℎiel (G)
d 5 (G)

dG
, (60a)

Nonlinear iel-derivative:

D̃iel 5 (G) ≡
d{@} 5 (G)

dG
= ℎiel

(
5 (G)) d 5 (G)

dG
. (60b)

4. oel-Derivatives
Linear oel-derivative: linear oel-derivative:

Doel 5 (G) ≡
d 5 (G)
{@}d G

=
1

ℎoel (G)
d 5 (G)

dG
, (61a)

Nonlinear oel-derivative:

D̃oel 5 (G) ≡ {@}d 5 (G)
dG

= ℎoel
(
5 (G)) d 5 (G)

dG
. (61b)

The duality between the linear and the nonlinear generalized derivatives is expressed
by DX 5 (G) = D̃X 5

−1 (G). The el-derivatives are defined for G > 0. The ole-derivatives has
been defined in Ref. [3], then referred to as @-derivative (the linear deformed derivative)
and its dual @-derivative (the nonlinear deformed derivative). Particularly, the linear ole-
derivative (59a) was used to generalize Fisher’s information measure and the Cramer-Rao
inequality [34]. The eigenfunction of the linear i/o-deformed derivative is the ordinary
exponential of the o/i-deformed variable, which directly follows from (56). They are
(written with the symbols 〈·〉 representing either [·] or {·})

d exp
(
@ 〈G〉

)
d〈@〉 G

=
d exp

(
@ 〈G〉

)
d

(
@ 〈G〉

) = exp
(〈G〉@ ) (62a)
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and

d exp
(〈G〉@ )

〈@〉d G
=

d exp
(〈G〉@ )

d
(〈G〉@ ) = exp

(〈G〉@ ) . (62b)

Particularly, the @-exponential (5) is the eigenfunction of the linear ole-derivative,
DoleeG

@ = eG
@ (a particular case of (62b) with eG

@ = e[G ]@ , see (14b)). Alternatively, its or-
dinary derivative is d eG

@ /d G =
(
eG
@

)@ . The nonlinear deformed derivative of which the
@-exponential is eigenfunction was defined in Ref. [11]:

D̃@ 5 (D) = [ 5 (D)]1−@ 35 (D)
3D

, (63)

where we have used the symbol, D̃@ to distinguish it from the present deformed derivatives.
The integral of the inverse of a variable,

∫ G

1 C−1dC, is typically associated to, and
frequently taken as the definition of, the logarithm function. The general nonlinear cases are

d〈@〉 〈ln G〉@
d G

=
〈@〉d @ 〈ln G〉

d G
=

1
G

. (64)

The particular case of this equation for the nonlinear ole-derivative is (see (13b)):
D̃ole ln@ G = 1/G. Alternatively, the ordinary derivative of the @-logarithm is d ln@ G /d G =
1/G@ . This expression yields an integral representation of the @-logarithm function,

∫ G

1
C−@dC = ln@ G. (65)

The dual linear deformed derivative of (63), defined by Equation (25) of Ref. [33],

D@ 5 (G) = 1
G1−@

d 5 (G)
dG

, (66)

operates on the @-logarithm similarly to the nonlinear ole-derivative: D@ ln@ G = 1/G.
Generalized derivatives of a power (for the linear cases), or generalized powers (for

the nonlinear cases), of @-numbers, are

Di
(
@ 〈G〉=

)
= = @ 〈G〉=−1,

Do
( 〈G〉=@ )

= = 〈G〉=−1
@ ,

(67)

D̃i
( 〈G〉@ �∧ 〈@〉 = )

= D̃i
( 〈G=〉@ ) = = G=−1,

D̃o
(
@ 〈G〉 〈@〉�∧ =

)
= D̃o

(
@ 〈G=〉

)
= = G=−1.

(68)

Second and higher deformed linear derivatives follow the usual rule, D2
X 5 (G) =

DX

[
DX 5 (G)

]
and so on, but for the deformed nonlinear cases, second order derivatives

(and similarly for higher order derivatives) are defined as

D̃
2
X 5 (G) = ℎX

(
5 (G)) d

dG

[
ℎX

(
5 (G)) d 5 (G)

dG

]
. (69)

The product rule for the deformed linear derivatives is identical to the usual one,
DX

(
5 (G) 6(G)) = DX

(
5 (G)) 6(G) + 5 (G)DX

(
6(G)) . The product rule for the deformed nonlin-

ear derivatives is

1
ℎX

(
5 (G)6(G)) D̃X

(
5 (G) 6(G)

)
=

(
1

ℎX
(
5 (G)) D̃X 5 (G)

)
6(G) + 5 (G)

(
1

ℎX
(
6(G)) D̃X 6(G)

)
. (70)
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The deformed antiderivatives, or indefinite deformed integrals, associated to the linear
deformed derivatives are defined by

∫ G

(X)
5 (G ′) dG ′ ≡

∫ G

5 (G ′) dXG
′, (71)

=
∫ G

5 (G ′) ℎX (G ′) dG ′ (72)

(the symbol (X) within parenthesis refers to the deformation, and not a limit of inte-
gration), so

DX

∫ G

(X)
5 (G ′) dG ′ = 5 (G) (73)

and ∫ G

(X)
DX 5 (G ′) dG ′ = 5 (G) +�. (74)

One possibility for defining the deformed antiderivatives associated to the nonlinear
deformed derivatives, particularly following the definition used in [3] for the X = ole case,
is

∫̃ G

(X)
5 (G ′) dG ′ ≡

∫ G 1
ℎX

(
5 (G ′)) 5 (G ′) dG ′, (75)

A significant weakness with this option is that the following important properties are
not satisfied:

D̃X

∫̃ G

(X)
5 (G ′) dG ′ ≠ 5 (G) (76)

and ∫̃ G

(X)
D̃X 5 (G ′) dG ′ ≠ 5 (G) +�. (77)

5. Entropy Generator

The connection between entropies and derivatives was pointed out by Abe [35]. He
observed that the Boltzmann-Gibbs entropy can be rewritten as (with : = 1)

(1 = − d
dU

6(U)
����
U=1

(78)

with

6(U) =
,∑
8

?U. (79)

He realized that (@ entropy can be similarly recast through the Jackson’s derivative of
a function 5 (G) [36]

D(J)@ 5 (G) ≡ 5 (@G) − 5 (G)
@G − G (80)

(the same deformed derivative of quantum calculus [28]; Newtonian derivative is recovered
as the limiting case @ → 1), so

(@ = −D(J)@ 6(U)
���
U=1

. (81)

This property had been interpreted as expressing the association between Boltzmann-
Gibbs entropy ((1) to infinitesimal translations, and Tsallis entropy to finite dilations [2].
Abe applied this procedure a step further, and used a different derivative operator on 6(U),
generating a new symmetric entropic functional ((@ with @ ↔ @−1 invariance. Following the
same line, a two-parameter derivative operator was used to define a two-parameter (@,@′
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entropy, that recovers the previous ((@ , (@ and (1 with convenient choices of the indices @
and @′ [37].

All the eight deformed derivatives (58)–(61) applied on (79) result in (1 entropy with
a multiplying function of the parameter @: −DX6(U) |U=1 = ℎ

[
X (1) (1, where DX represents

any of the deformed (linear or nonlinear) derivatives (at this point we do not use the tilde
for the nonlinear deformed derivatives), ℎX (1) is a particular value of the corresponding
Equation (57), [ = −1 for the linear deformed derivatives, and [ = +1 for the nonlinear
deformed derivatives. This is a consequence of the generalized derivatives being based
on infinitesimal deformed translations, and the infinitesimal nature of the translation
determines the entropy (except for a multiplicative constant), despite of the deformations.

A non-trivial result is obtained by inverting the procedure. Instead of applying one
of the generalized derivatives on the generating function (79), we apply the ordinary
Newtonian derivative on a generalized generating function:

(X@ = −
d

dU
6X (U; @)

����
U=1

. (82)

The generalized generating functions are obtained through the four generalized
powers, (22), (31), (41), (52): 6ile (U; @) = ∑,

8 (?8 �∧ [@ ] U), 6ole (U; @) = ∑,
8 (?8 [@ ]�∧ U),

6iel (U; @) = ∑,
8 (?8 �∧ {@} U), 6oel (U; @) = ∑,

8 (?8 {@}�∧ U). The resulting functionals are

(ile
@ =

∑
8

@ [−?8] ln
(
@ [?8]

)
, (83a)

(ole
@ = −

∑
8

[?8]@ ln
( [?8]@ ) − (1 − @)∑

8

?8 [?8]@ ln
( [?8]@ )

, (83b)

(iel
@ = −

∑
8

?8 ln
(
@{?8}

) − (1 − @)∑
8

?8 ln ?8 ln
(
@{?8}

)
, (83c)

(oel
@ = −

∑
8

?@8 ln
( {?8}@ )

. (83d)

The use of the generalized derivatives essentially result in the same, −DX6X (U; @) |U=1 =
ℎ
[
X (1) (X@ , except for a multiplicative constant for the le cases, since ℎiel (1) = ℎoel (1) = 1. The

certainty distribution originates non zero values for the le functionals: (ile
@ [?8 = 1; ? 9 =

0,∀ 9 ≠ 8] ≠ 0 for @ > 1, and, (ole
@ [?8 = 1; ? 9 = 0,∀ 9 ≠ 8] ≠ 0 for @ < 1, since @ [1] ≠ 1 and

[1]@ ≠ 1. Additionally, the le functionals present negative values: (ile
@ presents negative

values for @ < 1, (ole
@ presents negative values for @ > 1. Besides, there are ranges of values

of @ for which neither (ile
@ nor (ole

@ present a definite concavity (two instances: @ = 2.4, for
ile; @ = 2.3, for ole). These are severe drawbacks and consequently (83a) and (83b) can not
be considered as legitimate entropic forms.

The iel-functional (iel
@ fails on the expansibility property for @ < 1 (adding events of

zero probability), since @<1{0} is not defined. For @ > 1, it is expansible, non negative and
the certainty distribution (?8 = 1; ? 9 = 0,∀ 9 ≠ 8) implies (iel

@ = 0, so, (83c) is admissible as an
entropic form for @ > 1.

The oel-functional (83d) is the nonadditive entropy (@ (see Equation (13b)), vastly
considered in the literature. This result permits to amend a previous statement: (@ entropy,
that is associated to finite dilations, can also be associated to infinitesimal translations, but
in a deformed space expressed by the oel-power. Figure 4a illustrates the concavity for the
two admissible entropic functionals, Equation (83c) with @ > 1 and Equation (83d), for a
two-state system. Figure 4b illustrates el-entropies as monotonically increasing functions
of the number of states, for the equiprobable distribution, ?8 = 1/, , ∀8, with the abscissa
in logarithm scale, for which the usual case appears as a straight line.
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Figure 4. (a) el-Entropies for a two-state system. (iel
@ (83c) for @ = 2 (red); (oel

@ = (@ (83d), for
@ = 0.5 (green), @ = 2 (blue); (1 (black). (@ entropy is convex for @ < 0, see [1]. (b) el-Entropies
for equiprobable states as a function of, . Abscissa in log scale, for which the Boltzmann case is a
straight line (black). (iel

@ for @ = 2 (red), (oel
@ for @ = 0.5 (green), @ = 2 (blue).

6. Final Remarks

A forerunner of the transformations given by Equation (10) is the relation between
Rényi entropy, (R

@ = (1 − @)−1 ln
( ∑,

8 ?@8
)
, and Tsallis entropy (2) (see Equation (8) of

Ref. [1]), (R
@ = [(@]@ , and, equivalently, (@ = @ [(R

@ ]. Another instance of the transformation
represented by the ile-number (10a) appeared in Equation (22) of Ref. [10] and allowed
the generalization of trigonometric functions. The ole-number @ [G] appeared as Equation
(5) of Ref. [38], as the scaling factor of the generalized Kolmogorov-Nagumo average
for expressing the Rényi entropy. A former example of connecting deformed numbers
with deformed differential operators have appeared in Ref. [39], with the transformation
(10a) and the deformed differential (59a), establishing an equivalence between a position-
dependent mass system in a usual space and a constant mass within a deformed space.
These works have been recently extended to the deformed version of the Fokker-Planck
equation for inhomogeneous medium with position-dependent mass [33]. In addition, the
use of the iel-number, Equation (11a), to the generalization of the Riemann’s zeta function
has been recently advanced in [40].

Expressions with operations belonging to one class of @-algebra may result in opera-
tions belonging to a different class. Some instances: the following are generalizations of the
logarithm of a product as a sum of logarithms

(
ln(GH) = ln G + ln H

)
:

ln@
(
GH

)
= ln@ G [@ ]⊕ ln@ H, (84a)

ln@
(
G {@}⊗ H

)
= ln@ G + ln@ H, (84b)

ln
(
G ⊗{@} H

)
= ln G [@ ]⊕ ln H, (84c)

ln
(
G {@}⊗ H

)
= ln G ⊕ [@ ] ln H. (84d)

Generalizations of the logarithm of a power, ln GH = H ln G, are

ln@
(
G {@}�∧ H

)
= H ln@ G. (85a)

ln
(
G �∧ {@} H

)
= H [@ ]� ln G, (85b)

ln
(
G {@}�∧ H

)
= H � [@ ] ln G. (85c)

The counterpart of these expressions are generalizations of the exponential of a sum
as a product of exponentials, eG+H = eG eH :

e G [@ ] ⊕ H
@ = e G

@ e H
@ , (86a)

e G + H
@ = e G

@ {@}⊗ e H
@ , (86b)
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e G [@ ] ⊕ H = e G ⊗{@} e H , (86c)

e G ⊕ [@ ] H = e G
{@}⊗ e H , (86d)

and the power of an exponential as the exponential of a product
((eG) H = eHG

)
:

e G
@ {@}�∧ H = e HG

@ , (87a)

e G �∧ {@} H = e H [@ ] � G , (87b)

e G
{@}�∧ H = e H � [@ ] G . (87c)

Relations (84) are also valid for the logarithm, or for the @-logarithm, of a ratio, simply
replacing ordinary or general products by ordinary or general ratios, and ordinary or
general sums by ordinary or general differences. Similarly, relations (86) are also valid
for the exponential, or for the @-exponential, of a difference, by replacing the operators
accordingly. Sums of @-logarithm functions, Equation (84b), appeared in the literature prior
to the definition of the @-product [3] —here called the oel-product, Equation (48)— within
the context of the generalization of Boltzmann’s molecular chaos hypothesis and the �
Theorem, see Equation (16) of Ref. [41] and Equation (22) of Ref. [42]. The oel-product has
shown to be a key ingredient to the generalization of the Fourier transform and the central
limit theorem [43,44]. It is allowed to think that the present algebras may be relevant within
these contexts.

Equation (85a) is the one referred to in the Introduction, that makes (@ extensive:
consider a composed system for which its subsystems have,8 > 1 available states. If they
are independent, the number of available states of the composed system is , =

∏#
8 ,8 ,

and, besides, if they are identical, , = ,#
1 . Correlations between the subsystems lead

to a smaller number of available states for the composed system, and particular strong
correlations represented by , = ,1 {@}�∧ # , with @ < 1, makes (@ = : ln@, = #: ln@,1.
This is a non trivial case of extensivity.

Different possibilities for generating rules of arithmetic operations, instead of (15),
are @ [G] [@ ]# @ [H] = @ [G ◦ H], [G]@ #[@ ] [H]@ = [G ◦ H]@ ; These patterns are used in
References [27,40].

Weberszpil, Lazo, and Helayël-Neto [45] have shown that the linear ole-derivative
(59a) is the first order expansion of the Hausdorff derivative. Whether the other gener-
alized derivatives are also connected to fractal derivatives and fractal metrics remains to
be investigated.

Two of the functionals obtained with the recipe of applying the ordinary derivatives
to a generalized version of the generating function, (82), result in admissible entropic forms
corresponding to the el-class: (iel

@ (83c), and (oel
@ (83d). The other functionals (83a) and (83b)

are not admissible to be considered as entropies, but this does not mean that the le-algebras
or le-calculus they are based on are not feasible for other applications.

Extension to the complex domain of the deformed numbers still remains to be explored.
Two-parameter generalization are not addressed here, we just advance a few lines. Two-
parameter generalizations of numbers in accordance with the present developments are
given by

@ [G]@′ ≡ [G]@,@′ = ln@ exp@′ (G), (88a)

@{G}@′ ≡ {G}@,@′ = exp@ (ln@′ G). (88b)

The use of the relatively uncommon subscripted prefix to represent the two parameter
deformed number may be avoided, since there is no ambiguity with the symbol 〈G〉@,@′ .
Two-parameter arithmetic operators follow straightforwardly:

G #〈@,@′〉 H =
〈 〈G〉@′,@ ◦ 〈H〉@′,@ 〉

@,@′ , (89)
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for which, of course, all the previous developments are particular cases. The two-parameter
algebra of Ref. [15] is obtained through a different generating rule than (89): it derives from
the two-parameter generalized logarithm and exponential functions [14] (Equations (16)
and (17) of [15]).

It also comes naturally the two-parameter derivative D@,@′ 5 (G), with deformation on
both the independent and dependent variables. A broader generalization of the derivatives
can be defined by using not only deformations on the variation of the independent and
dependent variable, but also on the ratio among them, with three parameters, in a rather
intricate way, say: @ for the deformed differential of the independent variable, @′ for the
deformed differential of the dependent variable, and @′′ for the deformed ratio between
them. A particular case with @ = @′ = @′′ was shown in Ref. [46], and, more recently, in
Ref. [47].

Finally, all the present scenario stands on the pair of @-logarithm/@-exponential func-
tions, inverse of each other. The whole picture may be differently deformed by using
different continuous, monotonous, and invertible pair of functions, in agreement with
Equation (8).
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Abbreviations
The following prefix abbreviations are used in this manuscript:

ile inner logarithm exponential, see Equation (10a)
ole outer logarithm exponential, see Equation (10b)
iel inner exponential logarithm, see Equation (11a)
oel outer exponential logarithm, see Equation (11b)

Appendix A. A Note on Notations—Explicit Expressions

The peculiar notation adopted in the present work is conceived for compactness,
once the explicit forms of some equations may be large or cumbersome. The notation
for the generalized numbers is inspired in the &-analog of = [28], a generalized number
represented within square brackets (7). The four classes of generalized numbers are
grouped into two categories, one, the ‘le’ category, uses the generalized exponential (or its
ordinary version) as argument of the ordinary logarithm (or its generalized version), and
the other, the ‘el’ category, the other way around. We have used square brackets for the
former, and curly brackets for the latter. Some ambiguity is unfortunately unavoidable, as
square and curly brackets are also used with their usual meanings, and the reader must
resolve it by the context. We refer to them as ‘le’ or ‘el’ concerning the order in which the
logarithm/exponential functions appear. Despite of the unusualness, or even possibly
strangeness, of the notation, we consider that it may help identify the classes more promptly
than something like ‘type 1’, ‘type 2’, etc. Differently from the generalized numbers, we use
the subscripts enclosed by their corresponding brackets, when dealing with generalized
arithmetic operators, so the reader can easily identify the object being generalized, if it is
a number or an operator. We have chosen prefix and postfix subscripts, to avoid using
superscripts. These pair of subscripts may play a simplifying role if used appropriately, as
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illustrated by Equation (9). In the following we present explicit forms of some expressions,
for the benefit of the interested reader. The notation [·]+ ≡ max{0, ·} is used here.

ile-number (Equation (10a))

[G]@ = 1
1 − @ ln

(
1 + (1 − @)G

)
+
. (A1)

ole-number (Equation (10b))

@ [G] = e(1−@)G − 1
1 − @ . (A2)

iel-number (Equation (12a))

{G}@ = sign(G) exp
( |G |1−@ − 1

1 − @

)
. (A3)

oel-number (Equation (12b))

@{G} = sign(G)
(
1 + (1 − @) ln |G |

)1/(1−@)

+
. (A4)

ile-addition, ile-subtraction (Equations (16) and (18))

G ©± [@ ] H =
1

1 − @ ln
[
1 + (1 − @)

(
e(1−@)G − 1

1 − @ ± e(1−@)H − 1
1 − @

)]
+
, (A5)

=
1

1 − @ ln
[
e(1−@)G ± e(1−@)H ∓ 1

]
+
. (A6)

ile-multiplication (Equation (19))

G ⊗ [@ ] H =
1

1 − @ ln
[
1 + (e

(1−@)G − 1) (e(1−@)H − 1)
1 − @

]
+
. (A7)

ile-division (Equation (20))

G � [@ ] H =
1

1 − @ ln
[
1 + (1 − @) e(1−@)G − 1

e(1−@)H − 1

]
+
. (A8)

ile-power (Equation (22))

G �∧ [@ ] H =
1

1 − @ ln
[
1 + (1 − @)

(
e(1−@)G − 1

1 − @

) H]
+
, (G > 0). (A9)

ole-addition (see Equation (25))

ole-subtraction (see Equation (27))

ole-multiplication (Equation (28))

G [@ ]⊗ H =
exp

[
ln[1+(1−@)G ]+ ln[1+(1−@)H ]+

1−@
]
− 1

1 − @ , (A10)

=
[1 + (1 − @)G]

1
1−@ ln[1+(1−@)H ]+
+ − 1
1 − @ , (A11)

=
[1 + (1 − @)H]

1
1−@ ln[1+(1−@)G ]+
+ − 1
1 − @ . (A12)
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ole-division (Equation (29))

G [@ ]� H =
exp

[
(1 − @) ln[1+(1−@)G ]+

ln[1+(1−@)H ]+

]
− 1

1 − @ . (A13)

ole-power (Equation (31))

G [@ ]�∧ H =
exp

[(1 − @)1−H lnH [1 + (1 − @)G]+
] − 1

1 − @ , (G > 0). (A14)

iel-addition, iel-subtraction (Equations (34) and (36))

G ©± {@} H = sign(G ± H)

× exp

©«

����� sign(G)
[
1 + (1 − @) ln |G |

] 1
1−@

+
± sign(H)

[
1 + (1 − @) ln |H |

] 1
1−@

+

�����
1−@

− 1

1 − @

ª®®®®®®®¬
. (A15)

iel-multiplication (Equation (38))

G ⊗{@} H = sign(GH) exp
©«

����
[
1 + (1 − @) ln |G |

]
+

[
1 + (1 − @) ln |H |

]
+

���� − 1

1 − @

ª®®®®¬
. (A16)

iel-division (Equation (39))

G �{@} H = sign(G/H) exp


(1 − @)−1

©«

���������

[
1 + (1 − @) ln |G |

]
+[

1 + (1 − @) ln |H |
]
+

���������
− 1

ª®®®®¬


. (A17)

iel-power (Equation (41))

G �∧ {@} H = sign(G) exp
©«

����
[
1 + (1 − @) ln |G |

] H
+

���� − 1

1 − @

ª®®®®¬
, (G > 0). (A18)

oel-addition, oel-subtraction (Equations (44) and (45))

G {@}©± H = sign(G ± H)

×
[
1 + (1 − @) ln

���� sign(G) exp
( |G |1−@ − 1

1 − @

)
± sign(H) exp

( |H |1−@ − 1
1 − @

) ����
] 1

1−@

+
. (A19)

oel-multiplication (see Equation (48))

oel-division (see Equation (49))
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oel-power (Equation (52))

G {@}�∧ H =
(
sign(G)) H [

H |G |1−@ − (H − 1)] 1
1−@
+ , (G > 0). (A20)

(ile
@ functional (Equation (83a))

(ile
@ =

,∑
8

e−(1−@) ?8 − 1
1 − @ ln

[
e(1−@) ?8 − 1

1 − @

]
. (A21)

(ole
@ functional (Equation (83b))

(ole
@ = −

,∑
8

ln
[
1 + (1 − @)?8

]
1 − @ ln

[
ln

[
1 + (1 − @)?8

]
1 − @

]

−
,∑
8

?8 ln
[
1 + (1 − @)?8

]
ln

[
ln

[
1 + (1 − @)?8

]
1 − @

]
(A22)

(iel
@ functional (Equation (83c))

(iel
@ = −

,∑
8

?8
1 − @ ln

[
1 + (1 − @) ln ?8

] − ,∑
8

?8 ln ?8 ln
[
1 + (1 − @)] ln ?8

]
(A23)

(oel
@ functional (Equation (83d), see also Equation (2))
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Abstract: Problem statement: The initiation of a detonation in an explosive gaseous mixture in the high
activation energy regime, in three space dimensions, typically leads to the formation of a singularity
at one point, the “hot spot”. It would be suitable to have a description of the physical quantities
in a full neighborhood of the hot spot. Results of this paper: (1) To achieve this, it is necessary to
replace the blow-up time, or time when the hot spot first occurs, by the blow-up surface in four
dimensions, which is the set of all hot spots for a class of observers related to one another by a
Lorentz transformation. (2) A local general solution of the nonlinear system of PDE modeling fluid
flow and chemistry, with a given blow-up surface, is obtained by the method of Fuchsian reduction.
Advantages of this solution: (i) Earlier approximate solutions are contained in it, but the domain of
validity of the present solution is larger; (ii) it provides a signature for this type of ignition mechanism;
(iii) quantities that remain bounded at the hot spot may be determined, so that, in principle, this
model may be tested against measurements; (iv) solutions with any number of hot spots may be
constructed. The impact on numerical computation is also discussed.

Keywords: weak detonation; high activation regime; nonlinear PDEs; Fuchsian reduction analysis;
Lorentz transformation; blow-up; hot spot; chemically reactive flows

PACS: 11.30.Cp; 47.40.Rs; 82.33.Vx

MSC: 80A25; 35Q07; 35B44

1. Introduction

Observations of ignitions in explosive gaseous systems indicate that the process is
initiated in localized regions called reaction centers, or “hot spots”. This phenomenon is
ubiquitous, from the combustion engine to stellar explosions [1–4], including engines using
carbon-free fuels such as ammonia or hydrogen [5–7]. A given observer typically sees one
of these hot spots to first form at a definite point in space and time. We have pointed out
earlier [8] (Section 10.4) that the set of hotspots in the weak detonation problem forms a
blow-up pattern in the sense of Fuchsian reduction [9]. Here, we give a more detailed
description of the solutions of the relevant system of nonlinear PDEs, indicating quantities
that could be measurable. We also show that the notion of blow-up time, namely, the time
when a singularity first occurs in a given inertial frame, is physically meaningless. As a
consequence, the hot spot in the laboratory frame loses physical significance and must be
replaced by the set of all hot spots seen by different observers. They form the blow-up
surface in the sense of reduction theory [8,10], namely, the set of points at which a given
solution presents a singularity. As we have shown in related contexts, reduction theory
not only gives a precise description of singularity formation, it also enables its control
by boundary action [11] and accounts for the possible concentration of energy or other
quantities at the different blow-up points [12].

We first review the modeling assumptions (Section 2) and earlier results on the hot
spot problem showing how our approach improves upon them (Section 3). Then, we
perform a reduction analysis of the model, leading to a local representation of the general
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solution (Sections 4 and 5). The effect of Lorentz transformations on blow-up patterns is
then described in a general set-up, common to all applications (Section 6). Section 7 is
devoted to a discussion of the results and outlines perspectives for further work. Section 8
summarizes the conclusions. The derivation of the equations from first principles, and
their non-dimensionalization, are given in Appendices A and B respectively.

The main new results are: (i) The hot spot first recorded by a given observer is not the
cause of ignition. (ii) The present solution of the relevant equations has a wider domain of
validity than earlier ones, that are recovered as special limiting cases. (iii) Our approach
provides a set of measurable quantities that may be viewed as a signature for this type of
ignition mechanism. (iv) Special relativity is relevant for purely geometric and kinematical
reasons, even when the relativistic effects on the chemistry are negligible.

2. The Weak Detonation Problem: Modeling Assumptions

Let us first review the modeling assumptions that seem to represent the current
consensus [13]. For background information, see also references [1,4,14,17–30,32,34].

Since ignition occurs on a very small scale, it is reasonable to assume that dissipative
and convective effects may be neglected. In that case, near each hot spot, the behavior of
the gas may be assumed to be close to a spatially homogeneous explosion. This leads to
the following assumptions:

(A1) One considers small perturbations of a uniform state.
(A2) The chemistry is modeled by a one-step, strongly exothermic irreversible reaction

with the Arrhenius reaction rate.
(A3) The activation energy is large.
(A4) The reaction progresses so fast that the diffusion and convection effects are negligible.
(A5) Reactants and products are perfect fluids with the same specific heats; they may be

considered as forming a single perfect fluid.

Assumption (A1) is usually expressed by saying that the detonation is “quasisteady”.
Since fluid elements have no time to drift appreciably away from the hot spot, it is usually
called a “weak detonation”. This detonation is similar to the “weak detonation” represented
by a nearly vertical line connecting two points on two Hugoniot curves in the p–v diagram.
See [21] (p. 19) for details on terminology. Because of (A2), (A4) and (A5), one focuses
on the reactive Euler equations with the Arrhenius reaction rate, recalled in Appendix A.
Assumptions (A2)–(A4) suggest a choice of scales, leading to a non-dimensional form of
the equations, namely, the system (A6) in Appendix B. It is obtained in two steps. One first
introduces non-dimensional variables t∗ and x∗ = (x∗1 , x∗2 , x∗3) and dependent variables u∗,
T∗, p∗, ρ∗ and y∗, that represent velocity, temperature, pressure, density and reactant mass
fraction, respectively. One also introduces the dimensionless inverse activation energy θ,
the ratio of specific heats γ and the non-dimensional heat release parameter β. Second, one
expands u∗, T∗, p∗, ρ∗ and y∗ in powers of θ−1 in the limit when θ is large.

u∗ =
u1

θ
+O( 1

θ2 ) (1a)

T∗ = 1 +
T1

θ
+O( 1

θ2 ) (1b)

p∗ = 1 + γ
p1

θ
+O( 1

θ2 ) (1c)

ρ∗ = 1 +
ρ1

θ
+O( 1

θ2 ) (1d)

y∗ = 1 +
y1

θ
+O( 1

θ2 ). (1e)

The factor γ was introduced in the expansion of p∗ to make formulae simpler. This
expansion reflects assumptions (A1) and (A3); θ is large and the variables describe a nearly
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uniform state. Neglecting the terms in 1
θ2 , it follows that the specific internal energy ε and

the total specific energy e are comparable, because the squared velocity is of order 1
θ2 and

e = ε0 +
1
θ
(cvT1 + qy1),

where ε0 is the specific internal energy in the reference state.
Inserting (1) into (A6) and keeping contributions of order 1

θ , we obtain that the first
correction to the uniform state is governed by the following nonlinear system, in which
the dependent variables are (ρ1, u1, p1, T1, y1), that represent the departure of the non-
dimensionalized density, fluid velocity, pressure, temperature and reactant mass fraction,
respectively, from their values in the reference, constant state.

γp1 = ρ1 + T1 (2a)

∂t∗ρ1 + div∗ u1 = 0 (2b)

∂t∗u1 +∇∗p1 = 0 (2c)

∂t∗y1 = − 1
β

exp T1 (2d)

∂t∗T1 = (γ− 1)∂t∗ρ1 + γ exp T1. (2e)

More precisely, (A6a)–(A6c) and (A6e) directly imply (2a)–(2d); on the other hand,
Equation (A7) yields, at leading order, the simple relation

∂t∗ [T1 − (γ− 1)p1 + βy1] = 0. (3)

Using (2d), Equation (3) is equivalent to (2e).
It suffices to determine T1, u1 and ρ1 from (2b)–(2d); one may then obtain p1 from (2a)

and y1 from (3).
Limits on the validity of this expansion may be estimated as follows:

1. Reactant depletion (y = 0) corresponds to y1 ≈ −θ.
2. The term T1/θ becomes comparable to unity when T1 is of the order of θ.
3. The replacement of (A7) by (3) requires that ρ1θ−1∂t∗ [T∗ + βy∗] is small.
4. The replacement of D/Dt∗ by ∂t∗ requires dropping θ−1u1∂x∗X � ∂t∗X for each of

the expressions X to which this material derivative is applied.

The solutions of system (2) blow up in finite time and the final phase of rapid increase
in temperature, just before singularity formation, is called thermal runaway. The hot spot for
a given observer is thus very close to the point in spacetime where the first singularity of
the system appears in his/her frame. However, it is merely part of a weak detonation locus,
or blow-up set, described in this paper by the equation t = ψ(x, y, z), where ψ depends on
space variables. This set represents “a locus of nonuniform ignition times, resulting from
the nonuniform initial state, in which each fluid particle released its chemical energy at a
different time” [28] (p. 1243). The hot spot in a given system corresponds to a spacetime
point (t0, x0) such that ψ becomes minimum at x0. We shall see that this point of spacetime
is not a Lorentz invariant.

Two aspects of this problem are somewhat unusual and make many standard tools
in the study of partial differential equations inappropriate. First, this initial phase of the
process does not propagate as a wave, even though the equations are of hyperbolic type.
Indeed, the hot spots observed by different observers are not causally related to one another.
Ignition leads to the formation of a blow-up pattern in the sense of [9]. The second difficulty
is that the temperature does not become infinite; the model ceases to be valid as soon as
the variables ρ1, etc., become of the order of θ, or when the reactant is depleted (y = 0).
Therefore, information on the limit as T1 goes to infinity is indeed irrelevant; we need
expressions that make sense for a large, but finite T1. Before we obtain such expressions,
let us review earlier approaches.
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3. Earlier Results

Numerical work is made difficult by the blow-up singularity [15,22]. Therefore,
perturbative approaches are preferred. Three perturbative methods of solution have been
applied to this problem. The first method [16] consists, when there is only one space
variable, called x∗, in introducing a shifted dimensionless time variable t̃ = t∗d − t∗, with
t∗d constant and a self-similar variable s = x∗/t̃, such that the hot spot develops at time
t̃ = 0, when the space coordinate vanishes. Thus, the fact that ignition at different points
occurs at different times is neglected in the vicinity of the first hot spot. This leads to
expansions involving t̃n(ln t̃)m, where n and m are integers. The expansions break down
when s = O(t̃−1/2); this self-similar scaling “does not quite span the entire hot spot” [16]
(p. 439) and variables of the form x∗/t̃m, with appropriate m, must be introduced. The
second method [14] considers the limit in which 1 � (γ − 1)/γ � θ−1, in one space
dimension; in this limit, (2e) decouples from the other equations. The hot spot is again
investigated using a self-similar variable, leading to a further restriction on the validity
of the expansion. The third approach [28] is to insert a small parameter µ in front of the
space derivatives, making the spatial derivatives less important than the time derivatives
and using µ as the expansion parameter. The result is a formal expansion involving
τ = ψ(x∗, µ)− t∗, where ψ(x∗, µ), representing the ignition time at the location x∗, is itself
expanded in powers of µ. The method may be extended to three-dimensional situations.
In all cases, the spatial gradient of ψ must have length less than unity. In addition, one
requires θ−1 � µ = θ1/3 � 1, see [28] (p. 1258). The solution is not uniform as τ → 0.

The upshot of the above results is the following: The initiation of a weak detonation
appears to be well represented by a solution of system (2), with a logarithmic singularity
on a set of the form t∗ = ψ(x∗). Ignition appears to start first at a spacetime point (t∗0 , x∗0),
such that t∗0 = ψ(x∗0) and ψ(x∗) has a minimum for x∗ = x∗0 , but only if one restricts one’s
attention to a neighborhood of x∗0 that shrinks as t∗ tends to the blow-up time t∗0 = ψ(x∗0).
It would be desirable to obtain a solution valid in a full neighborhood of the hot spot. This
is the result of the present paper.

4. Strategy and Results

We obtain expansions describing singular solutions of the basic system (2), uniformly
in the vicinity of the hot spot, yielding a domain of validity larger than that obtained
via self-similar variables. We construct (Theorem 2) a convergent expansion for three-
dimensional solutions that contains powers and logarithms of τ := ψ(x∗)− t∗, multiplied
by functions of the space variables, assuming |∇ψ| is small, which is appropriate near the
minimum of ψ. If the hot spot appears for τ = 0, at x∗ = 0, the expansion is valid in a set
defined by inequalities of the form τ < 0 and |x∗| < δ (we write |x| for the usual length
of a 3-vector x). Therefore, it is valid in a full neighborhood of the origin. It contains five
freely specifiable functions of three variables that are called singularity data, including ψ.
This number is the greatest possible, since there are five unknowns (density, temperature
and the three components of velocity) that determine pressure and reactant mass fraction.
The arbitrary functions may be interpreted in terms of the asymptotics of T1, u1 and ρ1,
because, even though they may become very large at the hot spot, there are combinations
of these variables that have well-defined limits as t∗ → ψ(x∗) and these limits have simple
expressions in terms of the arbitrary functions—more precisely, the five functions (two
scalar functions ψ, σ0 and the three components of a 3-vector w0). They are related to the
asymptotics of the non-dimensionalized variables via

ρ1/T1 →
|∇ψ|2

γ− |∇ψ|2 ,

u1 −
∇ψ

γ− |∇ψ|2 T1 → w0 −
∇ψ

γ− |∇ψ|2 ln
1− |∇ψ|2
γ− |∇ψ|2 ,
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and
ρ1 − u1 · ∇ψ→ σ0 −w0 · ∇ψ.

The method leading to these results consists in integrating the system starting from
the singularity. Thus, the solution is determined from the arbitrary functions in its singular
expansion, i.e., by its singularity data on the blow-up surface, rather than by Cauchy data
on some hypersurface away from the singularity (for the relation between Cauchy data
and singularity data in a typical case, see [31]). While, in the Cauchy problem, the series
solution is determined by its first few terms and contains only integral powers of the
time variable, in singular problems such as this, the expansion involves logarithms and
the arbitrary coefficients are not the first few coefficients of the series. More complicated
functions, such as fractional powers, are required in some cases, but not here. There are
general rules to perform the reduction and to predict the form of the solution [8]. In fact, a
major advantage of the reduction technique is that it enables one to predict the form of the
expansion to any order, without having to compute it, since this task is often unwieldy.

Simple applications of these results include the following.
(1) Recovering earlier results: Hot spots correspond to the minima of the function ψ,

and the large activation energy regime is appropriate in a small neighborhood of these
minima. This makes it easy to compare our solution to the three asymptotic approaches
in Section 3. The results of the first method may be recovered by expanding our solution
after introducing self-similar variables. Expanding our solution in powers of γ leads to
the second method. Inserting the parameter µ, both in the expansion and in ψ, leads to the
third method. Therefore, each of these is recovered as a particular limit of our solution. As
already noted, the introduction of self-similar variables leads to a restriction in the domain
of validity of the solution.

(2) Better approximation for large γ: The second application of our expansions is the de-
termination of the limits of validity of large activation energy asymptotics. System (2) was
obtained from the reactive Euler equations by assuming the activation energy parameter θ
to be large. This implies that one replaces the material derivative ∂t + u · ∇ by ∂t. Indeed,
u ≈ u1/θ, so that the spatial derivative term is of higher order in an expansion in powers
of θ. Our results show that the neglected terms are smaller than the ones that have been
kept if

the gradient of ψ is small compared with γ,

where the detonation locus is given by t∗ = ψ(x∗) in non-dimensional variables and γ is
the ratio of specific heats. This suggests that this approximation could be better in cases
where γ is large.

(3) Signature of detonation: The expansions obtained in this paper also enable one to
compute quantities that remain finite at blow-up. They can be used as a characteristic
signature of this ignition mechanism. This may also be used to monitor the quality of
numerical schemes. More generally, the expansions may be used as a substitute for the
numerical solutions precisely where the solution is large and mesh refinement may become
unwieldy. More applications and perspectives are described in Section 7.

5. Reduction Analysis

We construct solutions of system (2) that become infinite when t reaches a value
ψ(x) that depends on space. This reflects the expectation that ignition does not occur
simultaneously everywhere. We first introduce new variables, identify the leading form of
the expansion of the solution and prove that solutions with this behavior exist. Furthermore,
we show that they are uniquely determined by some of the lower-order terms in the
expansion and that these terms have a simple interpretation.

5.1. Introduction of the Detonation Locus

Let us first introduce new space and time variables:

τ = ψ(x∗)− t∗; ξ = (ξ1, ξ2, ξ3) = (x∗1 , x∗2 , x∗3).
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We assume that |∇ψ| < 1. The derivation operators transform as follows (we let
∇ξ = (∂/∂ξ1, ∂/∂ξ2, ∂/∂ξ3)):

∇∗ = ∇ξ + (∇∗ψ)∂τ

∂∗t = −∂τ

div∗ u1 = divξ u1 + (∇∗ψ) · ∂τu1.

In particular, ∇∗ψ = ∇ξ ψ. For any expression F(ξ) that does not depend on τ, we
write ∇F for ∇ξ F. The set of spacetime points where τ = 0 represents the locus where
the temperature becomes infinite. The actual detonation front is the locus where T1 = ηθ,
where η is a constant of order unity.

System (2), expressed in the new variables, can be written as

γp1 = ρ1 + T1 (4a)

∂τ [ρ1 − u1 · ∇ψ] = divξ u1 (4b)

∂τ [u1 − p1∇ψ] = ∇ξ p1 (4c)

∂τT1 = (γ− 1)∂τ p1 − exp T1 (4d)

∂τy1 =
1
β

exp T1. (4e)

We now transform this system into an equivalent form that is easier to analyze.

Theorem 1. System (4) is equivalent to the system

γp1 = ρ1 + T1 (5a)

∂τρ1 =
1
B
[A− (1− B) exp T1] (5b)

∂τu1 = (A− exp T1)
∇ψ

B
+∇ξ p1 (5c)

∂τT1 = (γ− 1)
A
B
− α exp T1 (5d)

∂τy1 =
1
β

exp T1, (5e)

where

α =
γ− |∇ψ|2
1− |∇ψ|2 (6a)

A = divξ u1 + (∇ψ) · ∇ξ p1 (6b)

B = 1− |∇ψ|2. (6c)

Proof. Equations (5a) and (5e) are identical with (4a) and (4e). Using (6), Equation (4c)
yields (5c). The other equations are transformed as follows. Replace (4b) by the linear
combination (4b)+(∇ψ)·(4c); this yields

∂τ

[
ρ1 − p1|∇ψ|2

]
= A,

where A is defined in (6). Using (4a), this relation is equivalent to

∂τ

[
(γ− |∇ψ|2)ρ1 − |∇ψ|2T1

]
= γA. (7)

Using (4a), Equation (4d) may be written as

∂τ [T1 − (γ− 1)ρ1] = −γ exp T1.
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Replace Equations (7) and (4e) by their linear combinations with coefficients
(γ− 1, γ− |∇ψ|2) and (1, |∇ψ|2), respectively; this yields (5b) and (5d). Retracing one’s
steps, one may conversely derive (4) from (5). This completes the proof.

Remark 1. System (6) does not give the derivative of p1 directly. However, this derivative may be
obtained by adding (5b) and (5c) and using (5a). We obtain

∂τ p1 = (A− exp T1)/B. (8)

5.2. Removing the Leading Singularity

In the right-hand side of Equation (5d) for T1, the most important term should be the
exponential, since the process is driven by the reaction. Let us use this observation to obtain
some heuristic information on the appropriate behavior of the variables near the singularity,
before we set out to construct solutions with this behavior. If the exponential is dominant in the
right-hand side of (5d), then ∂τT1 ≈ −α exp T1 and we expect T1 ≈ ln(1/ατ). In that case, we
have ∂τρ1 ≈ (B− 1)B−1 exp T1 ≈ (B− 1)/(αBτ), hence, we expect ρ1 ≈ k ln(1/τ), with

k =
1− B

αB
=

|∇ψ|2
γ− |∇ψ|2 =

|∇ψ|2
αB

=
γ

αB
− 1. (9)

Finally, ∂τu1 ≈ −B−1eT1∇ψ; hence, the expected behavior u1 ≈ (αB)−1∇ψ ln(1/τ).
Now, the term ∇ξ p1 = γ−1(ρ1 + T1) contains terms involving ln τ; hence, u1 involves
terms in τ ln τ. These considerations suggest the introduction of renormalized variables
(Φ, R, U) by letting

T1 = ln
1

ατ
+ ϕ1(ξ)τ ln τ + τΦ(ξ, τ) (10a)

ρ1 =
|∇ψ|2

αB
ln

1
τ
+ σ0(ξ) + σ1(ξ)τ ln τ + τR(ξ, τ) (10b)

u1 =
∇ψ

αB
ln

1
τ
+ w0(ξ) + w1(ξ)τ ln τ + τU(ξ, τ). (10c)

These new dependent variables are renormalized in the sense that the “infinite part”
of the solution was subtracted off and the remainder has been divided by an appropriate
power of τ. This analysis is an application of the general procedure described in [8] (§ 1.4).
Using (2a), we now have

p1 = (ρ1 + T1)/γ =
1

αB
ln

1
τ
+ (σ0 − ln α)/γ + (σ1 + ϕ1)/γ + τ(Φ + R)/γ. (11)

The main result of this section states that, once ψ, σ0 and w0 are given, with |∇ψ| < 1,
the solution is completely and uniquely determined; σ1, ϕ1 and w1 may be found in closed
form and the renormalized variables have expansions that may be computed inductively
to any order, while the corresponding series converges if the data are analytic, or represent
a very smooth function if the data are themselves very smooth.

Theorem 2. System (5) admits, near the origin, a family of solutions given by power series in τ,
τ ln τ and τ(ln τ)2, with coefficients depending on ξ, provided that |∇ψ| ≤ 1 and

σ1 = − Ã
αB2 [γ− 1 + (γ + 1)B] (12a)

ϕ1 = −γ− 1
2B

Ã (12b)

w1 = − Ã
2αB2∇ψ[γ− 1 + 2B]− 1

γ
∇k, (12c)
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where k is given by (9) and

Ã =
(γ− |∇ψ|2)∆ψ + 4 ∑i,j ψiψjψij

(γ− |∇ψ|2)2 . (13)

The functions σ0 and w0 and the function ψ may be chosen arbitrarily; they determine all the
other terms in the expansion.

Proof. For any quantity X, Taylor’s expansion gives an analytic function G2 such that
eX = 1 + X + X2G1(X). Therefore,

eT1 =
1

ατ
exp[ϕ1τ ln τ + τΦ]

=
1

ατ
+

ϕ1

α
ln τ +

Φ + G2

α
,

where

G2 = G2(ξ, τ, τ ln τ, τ(ln τ)2, Φ) =
τ

α
(ϕ1 ln τ + Φ)2G1(ϕ1τ ln τ + τΦ). (14)

Additionally, (6), (10c) and (24) yield

A = Ã ln
1
τ
+ A0 + A1τ ln τ + τA , (15)

where

Ã = divξ

( ∇ψ

γ− |∇ψ|2
)
+∇ψ · ∇ξ

1
γ− |∇ψ|2

=
∆ψ

γ− |∇ψ|2 + 2 ∑
j

ψj∂j
1

γ− |∇ψ|2

= (γ− |∇ψ|2)−2

[
(γ− |∇ψ|2)∆ψ + 4 ∑

j,k
ψiψkψjk

]
,

and

A0 = divξ w0 +∇ψ · ∇ψ(σ0 − ln α)/γ (16a)

A1 = divξ w1 +∇ψ · ∇ξ(σ1 + ϕ1)/γ (16b)

A = divξ U +∇ψ · ∇ξ(Φ + R)/γ. (16c)

Note that
γÃ = (k + 1)∆ψ + 2∇ψ · ∇k.

We may now determine ϕ1, σ1 and w1, and obtain the reduced equations for R, Φ and
U. We let

D = τ∂τ .

We substitute (10) into each of the Equations (5b)–(5d). The following calculations
have a common pattern. In each case, the choice of the leading terms in (10) ensures that
the leading order terms in the resulting equation vanish. The vanishing of the next terms
(in τ ln τ) determines ϕ1, σ1 and u1. Finally, dividing by τ, one obtains a singular system
for the renormalized unknowns, to which solutions are given by an existence result for
singular initial-value problems. We now carry out this program.

From Equation (5b), we obtain

Dρ1 = Aτ/B− |∇ψ|2 τ

B
exp(T1),
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hence, using (10b) and (9),

− k + σ1τ(1 + ln τ) + τ(D + 1)R =
τ

B
A− k[1 + ϕ1τ ln τ + τ(Φ + G2)]. (17)

The first term on the right cancels with one of the terms on the left. Equating the
coefficients of τ ln τ, we obtain

σ1 = − Ã
B
− kϕ1

=
Ã
2B

[k(γ− 1)− 2]

=
Ã
2B

(γ− 1)|∇ψ|2 − 2(γ− |∇ψ|2)
γ− |∇ψ|2

=
Ã
2B

(γ + 1)|∇ψ|2 − 2γ

αB
= − Ã

αB2 [γ− 1 + (γ + 1)B].

This proves (12a).
Dividing (17) by τ and using (9), the reduced equation for R is obtained:

(D + 1)R + kΦ = −σ1 +
1
B
[A0 + A1τ ln τ + τA ]− kG2. (18)

From (5d), we obtain

DT1 = (γ− 1)
τA
B
− ταeT1 ,

hence,

− 1 + ϕ1τ(1 + ln τ) + τ(D + 1)Φ =
γ− 1

B
(τA)− 1− ϕ1τ ln τ − τ(Φ + G2). (19)

Equating the coefficients of τ ln τ and using (13), we obtain ϕ1 = − γ−1
B Ã− ϕ1, or

ϕ1 = −γ− 1
2B

Ã.

This proves (12b).
Dividing (19) by τ, the reduced equation for Φ is obtained:

(D + 2)Φ = −ϕ1 +
γ− 1

B
[A0 + A1τ ln τ + τA ]− G2. (20)

From Equation (5c), we obtain

Du1 = τ(A− eT1)
∇ψ

B
+ τ∇ξ p1.

or

−∇ψ

αB
+ τw1(1 + ln τ) + τ(D + 1)U

=
∇ψ

αB
[ταA− 1− ϕ1τ ln τ − τ(Φ + G2)] (21)

+∇ξ

[
τ ln(1/τ)

γ− |∇ψ|2 + (σ0 − ln α)
τ

γ
+

ϕ1 + σ1

γ
τ2 ln τ +

τ2

γ
(Φ + R)

]
.
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Equating the coefficients of τ ln τ, we obtain, since (αB)−1 = (k + 1)/γ,

w1 = −∇ψ

B
Ã− ∇ψ

αB
ϕ1 −∇ξ

1
αB

= −∇ψ

B
Ã +

∇ψ

αB
(γ− 1)

Ã
2B
− 1

γ
∇ξ k

=
Ã
2B
∇ψ

[
γ− 1

γ− |∇ψ|2 − 2
]
− 1

γ
∇ξ k

=
Ã

2αB2∇ψ
[
2|∇ψ|2 − (γ + 1)

]
− 1

γ
∇ξ k.

This proves (12c).
Dividing (21) by τ, the reduced equation for U is obtained:

(D + 1)U +
∇ψ

αB
Φ (22)

= −w1 +
∇ψ

B
[A0 + A1τ ln τ + τA − G2/α]

+∇ξ

[
(σ0 − ln α)/γ +

ϕ1 + σ1

γ
τ ln τ +

τ

γ
(Φ + R)

]
.

It remains to prove that the renormalized unknowns admit the desired expansion. We
start from the reduced system formed by (17), (20) and (22), namely

(D + 1)R + kΦ = −σ1 +
1
B
[A0 + A1τ ln τ + τA ]− kG2

(D + 2)Φ = −ϕ1 +
γ− 1

B
[A0 + A1τ ln τ + τA ]− G2

(D + 1)U +
∇ψ

αB
Φ = −w1 +

∇ψ

B
[A0 + A1τ ln τ + τA − G2/α]

+∇ξ

[
(σ0 − ln α)/γ +

ϕ1 + σ1

γ
τ ln τ +

τ

γ
(Φ + R)

]
.

Letting X = (R, Φ, U)T , this system has the general form

(D + A)X = F(τ, τ ln τ, τ(ln τ)2, X , τ∇ξX ), (23)

where

A =




1 k 0 0 0
0 2 0 0 0
0 (∂ψ/∂ξ1)/αB 1 0 0
0 (∂ψ/∂ξ2)/αB 0 1 0
0 (∂ψ/∂ξ3)/αB 0 0 1




.

The essential features of this system are the presence of a factor of τ in front of
every space derivative of a component of X and the fact that all the eigenvalues of A are
positive. This system admits a formal series in powers of τ, τ(ln τ) and τ(ln τ)2 (using [8]
(Theorem 2.4)), with coefficients depending only on ξ—they may be expressed explicitly in
terms of the data characterizing the singularity, namely, ψ, σ0 and w0. By [8] (Theorem 4.5),
this series converges for a small τ; it is real for τ real and positive, because, by induction,
all the terms of its expansion are.

Remark 2. We record the expression for p1 that follows from (10) and (5a):

p1 = (ρ1 + T1)/γ =
1

αB
ln

1
τ
+

σ0 − ln α

γ
+

ϕ1 + σ1

γ
τ ln τ +

τ

γ
(Φ + R). (24)
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Remark 3. The singularity data (σ0, w0, ψ) have a simple meaning at a point where ∇ψ = 0.
It is always possible to achieve this by performing a Lorentz transformation, since |∇ψ| is small
in the situation considered here. In that case, the leading terms in the expansions of ρ1 and u1
vanish. Therefore the arbitrary functions σ0 and w0 represent the density and Eulerian velocity at
the first point of the hot spot. Further, we find that ϕ1 and w1 vanish at this point and that σ1 is
proportional to ∆ψ.

6. Lorentz Transformation and Blow-Up Patterns

We now show that the hot spot, defined as the first spacetime point where a singularity
forms, is not a Lorentz invariant; therefore, it is not an intrinsic feature of the ignition
process. Since this is a purely kinematical phenomenon, of general applicability, we explain
our result in general terms. To apply it to the ignition problem, it suffices to set f = ψ in
what follows.

Let us consider a physical phenomenon that exhibits a singularity that is observed to
take place along a singular locus Σ described by an equation t = f (x, y, z) with f smooth,
in a given inertial system (S), by an observer who labels events in his/her local Minkowski
space with coordinates (x, y, z, t). In this section, we establish that the first spacetime
singularity for (S), corresponding to the minimum of f , is not the first spacetime singularity
for another inertial observer. To see this, let us perform a Lorentz transformation. By
translation of variables, we may assume that f admits a minimum for x = y = z = 0.
Adding a constant to f , we may also assume that f (0, 0, 0) = 0. Since f is minimum at
the origin, there, we have ∂x f = ∂y f = ∂z f = 0. Since performing spatial rotations on
coordinates does not change the value of the minimum of f , it suffices to consider a special
Lorentz transformation in the x-direction:

x′ = γ(x− vt); t′ = γ(t− vx/c2); y′ = y, z′ = z, with γ = (1− v2/c2)−1/2.

The inverse transformation is given by

x = γ(x′ + vt′); t = γ(t′ + vx′/c2); y = y′, z = z′.

Therefore, the equation of the singular set, namely, t− f (x, y, z) = 0, becomes

F(t′, x′, y′, z′, v) := γ(t′ + vx′/c2)− f (γ(x′ + vt′), y′, z′) = 0. (25)

Equation F = 0 is an implicit equation for the singularity locus as viewed in (S’).
Since ∂F/∂t′ = γ(1− v fx(γ(x′ + vt′), y′, z′)) reduces to γ at the origin (because fx = 0
there), the implicit function theorem enables one to locally solve equation F = 0 in the
form t′ = g(x′, y′, z′, v). Differentiating Equation (25) with respect to the primed variables,
we obtain the following:

∂x′g =
∂x f − v/c2

1− v∂x f
, ∂y′g =

γ−1∂y f
1− v∂x f

, ∂z′g =
γ−1∂z f

1− v∂x f
,

where ∂x f = ∂ f
∂x (x, y, z) = ∂ f

∂x (γ(x′ + vt′), y′, z′), ∂x′g = ∂g
∂x′ (x′, y′, z′, v), and similarly for

∂y f , ∂z f , ∂y′g, ∂z′g.
Now, the places where f exhibits an extremum (∂x f = ∂y f = ∂z f = 0, point D on

Figure 1) do not coincide with those where g does (∂x′g = ∂y′g = ∂z′g = 0, point E on
Figure 1). The location of the first singularity in the second system (S’) is obtained by
solving the equation ∂x′g = 0 in (S’); the same spacetime point E would be obtained in (S)
by solving ∂x f = v/c2 in (S). By contrast, in (S), the first singularity D satisfies ∂x f = 0.
The change in the spacetime point where the first singularity is observed may be seen
geometrically in one space dimension (see Figure 1). Therefore, the first singularity in
(S’) does not correspond to the same spacetime point as the first singularity in (S). The
first hot spot in a given inertial system is not the cause of ignition and has no intrinsic
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physical significance. By contrast, the blow-up set is a well-defined geometric object and
its geometric characteristics are physically meaningful.

1 

 

 

Figure 1. Illustration of the transformation of the first hot spot under a Lorentz transformation. The singular
set Σ (in blue) has equation t = f (x) in a two-dimensional Minkowski space, for an observer with
rectangular coordinates (t, x). The time of the first singularity corresponds, for this observer, to
the spacetime point D. For another inertial observer, his/her time and space axes are slanted lines,
as indicated, and the first singularity is observed at a different spacetime point E, that may be
constructed by finding the tangent to Σ (in red) parallel to the x′-axis.

7. Discussion and Perspectives
7.1. Detonation Signature

The preceding results lead to the identification of combinations of physical quantities
that admit limits on the detonation front. Indeed, Theorem 2 shows that the following
combinations of the unknowns tend to a finite limit at the singularity (as τ → 0):

ρ1 − u1 · ∇ψ → σ0 −w0 · ∇ψ (26a)

ρ1/T1 → k (26b)

u1 −
∇ψ

αB
T1 → w0 +

∇ψ

αB
ln α (26c)

|∇ψ|2T1 − (γ− |∇ψ|2)ρ1 → −|∇ψ|2 ln α− (γ− |∇ψ|2)σ0 (26d)

(D − 1) exp T1 → ϕ1/α. (26e)

where the quantities α, B and ϕ1 are determined in terms of the arbitrary functions (see
Theorems 1 and 2). In particular, when ∇ψ = 0 — that is, on the hot spot in the inertial
frame at hand —the leading order infinities vanish in the expressions for the density and
Eulerian velocities and we obtain the simple result

ρ1 → σ0 (27a)

u1 → w0 (27b)

(D − 1) exp T1 → ϕ1/α. (27c)

These limiting behaviors, (26) and (27), give a characteristic signature of this detona-
tion mechanism, that might be tested against measurements.

The fact that the first hot spot is not the cause of ignition is reflected in the fact that
ψ is not a constant. The fact that the blow-up pattern is curved in general is reflected in
the dependence of the coefficient σ1 (in the expansion of the density) on the second-order
derivatives of ψ, see (12a) and (13).

A particularly simple limiting behavior is ρ1/T1 → k, where, we recall (see (9) and (6)),
k only depends on the ratio of specific heats and the length of the gradient of ψ, that is, on

90



Axioms 2021, 10, 311

the normal velocity in (S) of the detonation front. An overview of measurement techniques
may be found in the second chapter of [32]; see also recent papers, such as [6,34].

7.2. Other Asymptotics

In this paper, we assume that the three spatial variables are scaled using the same
characteristic length `0. It would be interesting to introduce different scalings, since some
measurements are performed on thin domains, that are essentially two-dimensional [33,34].
The gap width plays the role of a second small parameter, in addition to the inverse
activation energy. The detonation signature could exhibit a marked dependence on gap
width, which would be consistent with the results of [33,34].

An important application of much current interest is the possibility of introducing
ammonia rather than methane in fuel composition, since the former does not contain
carbon. The literature is extensive [5–7]. This would have obvious advantages from the
environmental point of view. It would be of interest to determine the non-dimensional
parameters for different fuel compositions.

7.3. Relativistic Effects

The fact that the first hot spot for one observer may not be the first for another is
a consequence of the kinematics of special relativity, irrespective of the importance of
relativistic effects on the chemistry. This being said, there are two ways to introduce further
relativistic effects in this problem. The first is to consider situations in which relativistic
effects are significant, as in astrophysics. The second would be to repeat measurements
such as those of [33,34] in a moving frame. For instance, one could set the cell used in these
measurements in rapid rotation and perform measurements in the (stationary) laboratory
frame. One could similarly consider a circular shock tube. Such measurements are perhaps
feasible; their interpretation would depend on the importance of inertial effects.

8. Conclusions

(1) When a singularity is formed along a smooth hypersurface of Minkowski spacetime,
with an equation of the form τ := t− ψ(x, y, z) = 0, the spacetime location of the first
hot spot is not a Lorentz invariant. This is a consequence of the Lorentz transformation
between observers in special relativity and is independent of the size of the relativistic
effects in the modeling of the physical situation that led to singularity-formation. However,
the set of all singularities seen by all observers is a well-defined geometric object—the
blow-up set.

(2) These ideas apply to the weak detonation problem. We have solved the appropriate
system of PDEs, in the limit of high activation energy, by integrating them from singularity
data given on the blow-up set, or detonation locus, and obtained a general solution of
the equations. It contains the maximum number of arbitrary functions, namely, five. This
solution improves earlier results in three respects: (i) It provides a description of the
solution that is valid when it is large, but not infinite; in the weak detonation problem,
the temperature never becomes actually infinite. (ii) It identifies which combinations of
physical quantities remain finite at blow-up. (iii) It takes into account the kinematics of
special relativity.

(3) In addition, the arbitrary functions (σ0, w0, ψ) in the general solution admit a
physical interpretation in terms of the behavior of density, velocity and temperature at the
singularity. This provides a signature for this type of ignition mechanism.

(4) Perspectives include the following: (i) a similar asymptotic study for nearly two-
dimensional situations used in some measurements; (ii) the measurement of a detonation
signature on the basis of the limiting behavior of the physical quantities, including the
curvature of the blow-up pattern; (iii) the inclusion of the relativistic effects in the chemistry;
(iv) the impact of fuel composition, especially the inclusion of hydrogen or ammonia in
the mix, on the non-dimensional parameters, therefore on the domain of validity of this
ignition mechanism.
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Appendix A. Derivation of the Basic System

Let us consider a reactive fluid, with reactant mass fraction y (i.e., one gram of fluid
contains y grams of reactant and 1− y grams of reaction products). The overall reaction
is modeled by a one-step irreversible reaction in the form A1 −→ A2, where the reactant
A1 and the product A2 have the same specific heats cp and cv, as well as the same molar
mass µ. This makes it possible to consider A1 and A2 as forming a single perfect fluid,
with density ρ, specific volume v = 1/ρ, Eulerian velocity u = (u1, u2, u3), pressure p and
temperature T, that all vary with in space and time. Therefore, the equation of state is

p
ρ
= pv =

R
µ

T,

where R is the perfect gas constant, γ = cp/cv, and

R
µ

= cp − cv = (γ− 1)cv.

The specific internal energy is

ε = cvT + qy =
p/ρ

γ− 1
+ qy,

where the constant q is the heat release rate. The total specific energy is

e = ε +
1
2

u2,

where u2 = u · u. The reaction rate is given by the Arrhenius law

Dy
Dt

= r(y, t) := −Ay exp
(
− E

RT

)
. (A1)

where A and E are constants.
To write the conservation laws, let us introduce the material derivative operator

D
Dt

=
∂

∂t
+

3

∑
i=1

ui
∂

∂xi
.

Mass, momentum and energy conservation read

Dρ

Dt
+ ρ div u = 0 (A2a)

Du
Dt

+
1
ρ
∇p = 0 (A2b)

ρ
De
Dt

+ div (pu) = 0. (A2c)
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By (A2a), ρt + div(ρu) = 0. Therefore,

div(pu) = p div u + u · ∇p

= − p
ρ

Dρ

Dt
− ρu

Du
Dt

= ρ
D
Dt

[
p
ρ
− 1

2
u2
]
− Dp

Dt
.

In addition, p/ρ = (cp − cv)T. On the other hand,

ρ
De
Dt

= ρ
D
Dt

[
cvT + qy +

1
2

u2
]

.

Therefore, Equation (A2c) takes the form

ρ
De
Dt

+ div(pu) = ρ
D
Dt

{
[cvT + qy +

1
2

u2] + [(cp − cv)T −
1
2

u2]

}
− Dp

Dt
.

Using the Arrhenius law,

ρcp
DT
Dt
− Dp

Dt
= −ρq

Dy
Dt

= −ρqr = Aρqy exp(− E
RT

). (A3)

To sum up, we have to solve the following system:

p = (γ− 1)cvρT (A4a)
Dρ

Dt
+ ρ div u = 0 (A4b)

Du
Dt

+
1
ρ
∇p = 0 (A4c)

ρcp
DT
Dt
− Dp

Dt
= Aρqy exp(− E

RT
) (A4d)

Dy
Dt

= −Ay exp(− E
RT

). (A4e)

The objective is to solve this system in the limit when the activation energy E is large.

Appendix B. Non-Dimensionalization

Appendix B.1. Non-Dimensional Variables

Let us introduce a reference state characterized by the values p0, ρ0, T0 and y0, a
reference length `0 and reference time t0. They determine u0 = `0/t0. We introduce scaled
variables by

x∗ =
x
`0

; t∗ =
t
t0

; p∗ =
p
p0

; u∗ =
u
u0

; ρ∗ =
ρ

ρ0
; y∗ =

y
y0

; T∗ =
T
T0

.

We take y0 = 1 and assume the equation of state holds for the reference state p0 =

(γ− 1)cvρ0T0. The velocity c0 =
√

γp0/ρ0 determines the acoustic time ta =
`0
c0

. The main
non-dimensional parameters for the present analysis are
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θ = E/RT0 (non-dimensional activation parameter)

tr = A−1 exp θ (initial reaction time)

c0 =
√

γp0/ρ0

M =
ta

t0
=

u0

c0
(Mach number)

β =
qy0

cpT0
(heat release parameter).

Substituting these relations into (A4), we obtain

p∗ = ρ∗T∗ (A5a)
Dρ∗

Dt∗
+ ρ∗ div∗ u∗ = 0 (A5b)

ρ∗
Du∗

Dt∗
+

1
γM2∇

∗p∗ = 0 (A5c)

ρ∗
DT∗

Dt∗
− γ− 1

γ

Dp∗

Dt∗
=

t0

tr
βρ∗y∗ exp[θ − θ

T∗
] (A5d)

Dy∗

Dt∗
= − t0

tr
y∗ exp[θ − θ

T∗
]. (A5e)

Appendix B.2. Choice of Time and Length Scales

The modeling assumptions (A2–A4) translate into the following choices:

• Fix the reference time t0 by t0/tr = 1/(βθ).
• Fix the reference length so that M = 1. That means ta = t0, or `0 = c0t0.

To express the compatibility of these assumptions, we relate M and θ. First,

M =
ta

t0
=

ta

tr
βθ =

ta

A−1 exp θ

qy0

cpT0
θ.

Therefore, since ta = t0,
M = 1 = Aβθtae−θ .

The assumptions M = 1 and θ � 1 are compatible if Aβ is large; this is consistent
with the assumption that the reaction is strongly exothermic. Additionally, since t0 � tr
for βθ � 1, the reaction proceeds slowly with respect to the reference time scale t0.

With these assumptions, the dimensionless equations become

p∗ = ρ∗T∗ (A6a)
Dρ∗

Dt∗
+ ρ∗ div∗ u∗ = 0 (A6b)

ρ∗
Du∗

Dt∗
+

1
γ
∇∗p∗ = 0 (A6c)

ρ∗
DT∗

Dt∗
− γ− 1

γ

Dp∗

Dt∗
=

1
θ

ρ∗y∗ exp[θ − θ

T∗
] (A6d)

Dy∗

Dt∗
= − 1

βθ
y∗ exp[θ − θ

T∗
]. (A6e)

Multiplying (A6e) by βρ∗ and adding the result to (A6d) yields

(ρ∗ − 1)
D

Dt∗
[T∗ + βy∗] +

D
Dt∗

[
T∗ − γ− 1

γ
p∗ + βy∗

]
= 0. (A7)
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Abstract: This work aims to obtain new transformations and auto-Bäcklund transformations for
generalized Liouville equations with exponential nonlinearity having a factor depending on the first
derivatives. This paper discusses the construction of Bäcklund transformations for nonlinear partial
second-order derivatives of the soliton type with logarithmic nonlinearity and hyperbolic linear parts.
The construction of transformations is based on the method proposed by Clairin for second-order
equations of the Monge–Ampere type. For the equations studied in the article, using the Bäcklund
transformations, new equations are found, which make it possible to find solutions to the original
nonlinear equations and reveal the internal connections between various integrable equations.

Keywords: nonlinear equations in partial derivatives; hyperbolic equations; Bäcklund transforma-
tions; Clairin’s method; differential relationships; the Liouville equation

1. Introduction

The study of Bäcklund transformations is one of the current topics in the theory of
partial differential equations. Such transformations are used to find solutions to nonlinear
differential equations. Due to the complexity of various nonlinear equations, there is no
single method for solving them. For integrable systems, effective methods have been
developed, such as the inverse scattering method [1,2], the Hirota method [3–5], the
Painleve method [6,7], Bäcklund transformations [8–11] and the mapping and deformation
method [2].

Bäcklund transformations are an example of differential geometric structures gener-
ated by differential equations. They make it possible to obtain not only pairs of equations
but also a solution to one of them if the solution to the other is known. These transforma-
tions play an important role in integrable systems since they reveal internal connections
between various properties, such as the definition of symmetries [12,13] and the presence
of a Hamiltonian structure [14–16]. More recently, many studies have been carried out in
this area [11,17–19].

This article is a presentation of new results on transformations and auto-Bäcklund
transformations for equations of the Klein–Gordon type, using the method of constructing
transformations for the Liouville equation. The paper considers special cases of equations
with exponential–power nonlinearity having a factor depending on the first derivatives.
The construction of transformations is based on Clairin’s method [20].
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2. Methods

We consider the following nonlinear equation of the hyperbolic form:

vξη = f (v, vξ, vη). (1)

The method developed by Clairin to construct Bäcklund transformations of a general
form is applicable when the functions z and v satisfy different partial differential equations.
The technique of constructing Bäcklund transformations is general to any hyperbolic
equation and completely repeats the construction for the Liouville equation.

Differential equations of the second order of the form

f1(ξ,η, z, zξ, zη) zξξ + f2(ξ,η, z, zξ, zη) zξη + f3(ξ,η, z, zξ, zη) zηη + f4(ξ,η, z, zξ, zη) = 0.

are called Monge–Ampere equations [21]. The Bäcklund transformation linking two
such second-order equations for the v and z functions is given by a pair of first-order
differential equations:

∂z
∂ξ

= F1

(
z, v,

∂v
∂ξ

,
∂v
∂η

)
. (2)

∂z
∂η

= F2

(
z, v,

∂v
∂ξ

,
∂v
∂η

)
. (3)

To define an explicit transformation type, it is necessary to find the functions F1 and
F2. The integrability condition (the equality of the mixed second derivatives) requires that
the functions (2), (3) satisfy the relation

∂2z
∂η∂ξ

− ∂2z
∂ξ∂η

= 0.

Each of the variables z, zξ, zη and, respectively, v, vξ, vη, depends on ξ and η. Given
the equality (2), we obtain

∂2z
∂η∂ξ

=
∂F1

∂η
=

∂F1

∂z
zη +

∂F1

∂v
vη +

∂F1

∂vξ
vξη +

∂F1

∂vη
vηη (4)

∂2z
∂ξ∂η

=
∂F2

∂ξ
=

∂F2

∂z
zξ +

∂F2

∂v
vξ +

∂F2

∂vξ
vξξ +

∂F2

∂vη
vηξ (5)

Using Formulas (2), (3) to exclude zξ and zη, finally, we obtain the condition of
compatibility as
(
− ∂F2

∂vξ

)
vξξ+

(
∂F1

∂vξ
− ∂F2

∂vη

)
vξη+

∂F1

∂vη
vηη−

∂F2

∂v
vξ+

∂F1

∂v
vη+ F2

∂F1

∂z
− F1

∂F2

∂z
= 0 (6)

We consider the function z as a solution to some simple equation, the form of which is
defined below. Then, while at least one of the coefficients,

∂F1

∂vη
,

∂F2

∂vξ
or
(

∂F1

∂vξ
− ∂F2

∂vη

)
,

is not zero, Equation (6) is a partial differential equation for the function v.
Since Equation (1) contains vξη, but not vξξ or vηη, from the condition of compatibility

(6), we expect that
∂F2

∂vξ
= 0,

∂F1

∂vη
= 0,

∂F1

∂vξ
− ∂F2

∂vη
6= 0

Then, we must assume
∂z
∂ξ

= F1

(
z, v,

∂v
∂ξ

)
, (7)
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∂z
∂η

= F2

(
z, v,

∂v
∂η

)
. (8)

Therefore, Equation (6) takes the form
(

∂F1

∂vξ
− ∂F2

∂vη

)
vξη −

∂F2

∂v
vξ +

∂F1

∂v
vη + F2

∂F1

∂z
− F1

∂F2

∂z
= 0

The η-derivative of (7) is

∂2z
∂η∂ξ

=
∂F1

∂z
zη +

∂F1

∂z̃
vη +

∂F1

∂vξ
vξη. (9)

Further reasoning depends on the type of equation under consideration. Let us
consider the following equations:

vηξ = (a + bv)evvξ − vξvη, (10)

vηξ =
α32α21

8α11
ev(1 + 2v)vξ − vξvη, (11)

vηξ =
α21

8α2
11

ev(vη − vξ), (12)

vηξ = evvη − e−vvξ. (13)

These equations have a hyperbolic linear form on the left side and a nonlinear right
side depending on the function and the first derivatives to variables η and ξ, wherein the
derivatives vη, vξ are included in equations only in the first degree, so the general form of
these equations is rewritten as

vηξ = Ω(v, v1
ξ, v1

η),

Here, a one in the exponent indicates that these variables are included in this equality
only to the first degree.

We assume that the Bäcklund transformations make it possible to move to the simplest
hyperbolic equation zξη = 0.

Using Equations (8)–(10), we obtain

zξη =
∂F1

∂z
F2 +

∂F1

∂v
vη +

∂F1

∂vξ
Ω(v, v1

ξ, v1
η) = 0. (14)

Take from (14) the derivative to vη. Then,
∂Ω(v,v1

ξ,v1
η)

∂vη
does not depend on vη, since vη

comes into equality only in the first degree

∂2F1

∂z∂vη
F2 +

∂F1

∂z
∂F2

∂vη
+

∂2F1

∂v∂vη
vη +

∂F1

∂v
+

∂2F1

∂vξ∂vη
Ω(v, v1

ξ, v1
η) +

∂F1

∂vξ

∂Ω(v, v1
ξ, v1

η)

∂vη
= 0.

Taking into account equalities (7), (8), we have ∂F1
∂vη

= 0, ∂F2
∂vξ

= 0 and then ∂2F1
∂z∂vη

= 0,
and equality remains

∂F1

∂z
∂F2

∂vη
+

∂F1

∂v
+

∂F1

∂vξ

∂Ω(v, v1
ξ, v1

η)

∂vη
= 0.

Having performed re-differentiation to vη, we have

∂2Ω(v, v1
ξ, v1

η)

∂v2
η

= 0,
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∂2F1

∂z∂vη
∂F2

∂vη
+

∂F1

∂z
∂2F2

∂v2
η

+
∂2F1

∂v∂vη
+

∂2F1

∂vξ∂vη

∂Ω(v, v1
ξ, v1

η)

∂vη
= 0.

Considering ∂F1
∂vη

= 0, we obtain

∂F1

∂z
∂2F2

∂v2
η

= 0.

We conduct similar actions with equality (3). Differentiating to vξ twice, we obtain

∂F2

∂v
∂2F1

∂v2
ξ

= 0.

Therefore, the functions F1 and F2 have a linear form to vη and vξ, respectively. Then,
we have

∂z
∂ξ

= f1(z, v) + p1(z, v)
∂v
∂ξ

, (15)

∂z
∂η

= f2(z, v) + p2(z, v)
∂v
∂η

. (16)

We write the compatibility condition of Equation (6) with the new conditions (15)
and (16):

(p1 − p2)Ω(v, v1
ξ, v1

η)− ∂( f2+p2vη)
∂v vξ

+
∂( f1+p1vξ)

∂v vη + ( f2 + p2vη)
∂( f1+p1vξ)

∂z − ( f1 + p1vξ)
∂( f2+p2vη)

∂z = 0
(17)

After differentiating this expression to variable vη and vξ, we proceed to the analysis
of the equation

(p1 − p2)
∂2Ω(v, v1

ξ, v1
η)

∂vξ∂vη
− ∂p2

∂v
+

∂p1

∂v
+ p2

∂p1

∂z
− p1

∂p2

∂z
= 0. (18)

Further studies depend significantly on
∂2Ω(v,v1

ξ,v1
η)

∂vξ∂vη
, so let us move on to a detailed

analysis of equality (18) for each equation studied separately.

3. Results
3.1. Bäcklund Transformations for Nonlinear Equation

Let us perform the Bäcklund transformation for nonlinear Equation (10).

Equation (18) for (4), (5), considering that
∂2Ω(v,v1

ξ,v1
η)

∂vξ∂vη
= −1 takes the form

∂p1

∂v
+ p2

∂p1

∂z
− p1 = p1

∂p2

∂z
+

∂p2

∂v
− p2. (19)

It can be assumed that p1 6= p2, and we define the relationship between the functions
p1(z, v) and p2(z, v). We convert (19) to the following form:

∂(p1 − p2)

∂v
− (p1 − p2) = p2

1
∂

∂z
p2

p1
,

then, if we assume p1 − p2 = evϕ(z), then p1 = p2 + evϕ(z), and for the function p2, we
have the equation

[p2 + evϕ(z)]2
∂

∂z
p2

p2 + evϕ(z)
= 0.
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Obviously, if p2 + evϕ(z) = 0, then p1 = 0. This option could be considered but with
only one undefined function ϕ(z) remaining, which reduces the possibility of varying the
unknowns in further reasoning, so calculate p2 + evϕ(z) 6= 0, and then

∂

∂z
p2

p2 + evϕ(z)
= 0.

This leads to the dependence p2
p2+evϕ(z) = ψ(v) and the definition of functions p2 and

p1 in the form

p2 =
ψ(v)

1−ψ(v) evϕ(z), p1 =
1

1−ψ(v) evϕ(z).

Now, Equation (17) will take the form
[
(a + bv)e2vϕ(z)− ∂ f2

∂v + 1
1−ψ(v) ev

(
f2

∂ϕ(z)
∂z −ϕ(z) ∂ f2

∂z

)]
vξ

+ f2
∂ f1
∂z − f1

∂ f2
∂z +

[
ψ(v)

1−ψ(v) ev
(
ϕ(z) ∂ f1

∂z − f1
∂ϕ(z)

∂z

)
+ ∂ f1

∂v

]
vη = 0.

We differentiate the last equation to the variable vη and the same expression to the
variable vξ; as a result, we obtain the system

(a + bv)e2vϕ(z)− ∂ f2

∂v
+

1
1−ψ(v) ev

(
f2

∂ϕ(z)
∂z

−ϕ(z)∂ f2

∂z

)
= 0, (20)

f2
∂ f1

∂z
− f1

∂ f2

∂z
= 0, (21)

ψ(v)
1−ψ(v) ev

(
ϕ(z)

∂ f1

∂z
− f1

∂ϕ(z)
∂z

)
+

∂ f1

∂v
= 0. (22)

We look for functions f1(z, v), f2(z, v) in the following form

f1(z, v) = ψ1(v)g1(z), f2(z, v) = ψ2(v)g2(z).

We substitute these equations in the system (20)–(22) and isolate the logarithmic
derivatives ln g2, ln g1, lnϕ:

(a + bv)e2vϕ(z)− g2(z)
∂ψ2(v)

∂v
+

ψ2(v)
1−ψ(v) evg2(z)ϕ(z)

∂

∂z

(
ln
ϕ(z)
g2(z)

)
= 0, (23)

ψ2(v)ψ1(v)g2(z)g1(z)
∂

∂z

(
ln

g1(z)
g2(z)

)
= 0, (24)

g1(z)
∂ψ1
∂v
− ψ(v)ψ1(v)

1−ψ(v) evϕ(z)g1(z)
∂

∂z

(
ln
ϕ(z)
g1(z)

)
= 0. (25)

One can choose a special form of functions gj(z), ϕ(z) so that the system takes a
simpler form; then, the differential equations can be explicitly integrated. We calculate

g1(z) = g2(z) = k1z, ϕ(z) = k2z, k1, k2 = const,

and the system (23)–(25) will take the form

k2(a + bv)e2vz− k1
∂ψ2(v)

∂v
= 0,

k1z
∂ψ1
∂v

= 0.
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As a result, simple differential equations are obtained for functions ψ2(v), ψ1(v). Let
us define them:

ψ2 =
k2

k1

∫
(a + bv)e2vdv =

k2

4k1
(2a− b + 2bv)e2v + C1, ψ1 = k = const.

Now, the transformations (2), (3) take the form

∂z
∂ξ

= kk1z +
k2

1−ψ(v) evz
∂v
∂ξ

, (26)

∂z
∂η

= z
[

k2

4
(2a− b + 2bv)e2v + C1

]
+ k2evz

ψ(v)
1−ψ(v)

∂v
∂η

. (27)

Thus, the Bäcklund transformation is obtained in the form (26), (27). The system
(26), (27) is combined with any functionψ(v). We consider the following option: ψ(v) = 2,
C1 = 0, k = k1 = 1, k2 = −2, and then the relations (26), (27) will take the form

∂z
∂ξ

= z + 2evz
∂v
∂ξ

,
∂z
∂η

= 4evz
∂v
∂η
−
(

a− 1
2

b + bv
)

ze2v. (28)

Let us check whether it is possible to obtain Equation (10) from the system (28).
If we differentiate the first equality of the system (28) to the variable η and the second

to the variable ξ, we obtain

zξη = zη + 2evzvηvξ + 2evzηvξ + 2evzvηξ,

zξη = 4evzvξvη + 4evzξvη + 4evzvξη − 2(a + bv)ze2vvξ −
(

a− 1
2

b + bv
)

zξe2v.

We subtract the upper equality from the lower one and collect similar terms:

(1 + 2evvξ)zη = 2evzvξη + 2evzvξvη − 2(a + bv)ze2vvξ +
[

4vη −
(

a− 1
2

b + bv
)

ev
]

evzξ.

We eliminate the derivatives zη, zξ, using the relations (28). Canceling by non-zero
functions, we obtain Equation (10).

Let us see which equation goes to the original Equation (10) using transformations (28).
To do this, we convert Equation (28) to the form

∂ ln z
∂ξ

= 1 + 2
∂ev

∂ξ
,

∂ ln z
∂η

= 2
∂ev

∂η
−
(

a− 1
2

b + bv
)

e2v. (29)

Let us try to identify how the functions z(ξ,η) and v(ξ,η) are related, taking into
account that the functions satisfy Equation (10). Let us differentiate the second equality (29)
to the variable ξ:

(ln z)ηξ = 4(ev)ηξ − 2(a + bv)e2vvξ

and replace the expression (a + bv)evvξ with the terms of Equation (10), then

(ln z)ηξ = 4(ev)ηξ − 2(vηξ + vξvη)ev = 2(ev)ηξ.

Taking into account the first differential constraint (29), the derivatives can be omitted
up to a constant

ln z = 2ev + ξ.

Then, the function v(ξ,η) is expressed through z(ξ,η)

v = ln
[

1
2
(ln z− ξ)

]
. (30)
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Denoting ln z = w(ξ,η) and substituting (30) in (10), we obtain

wηξ =
1
2

(
a + b ln

[
1
2
(w− ξ)

])
(w− ξ)(wξ − 1). (31)

Theorem 1. Bäcklund transformations

∂w
∂η

= 2ev ∂v
∂η
−
(

a− 1
2

b + bv
)

e2v,
∂w
∂ξ

= 1 + 2ev ∂v
∂ξ

, (32)

link Equations (10)–(31).

Equation (11) is a special case of (10), so the following conclusion can be formulated
for this equation.

Corollary 1. Bäcklund transformations

∂w
∂ξ

= 1 + 2ev ∂v
∂ξ

,
∂w
∂η

= 4ev ∂v
∂η
− α32α21

4α11
ve2v, (33)

link Equation (11) to the following equation:

α32α21

8α11
(wξ − 1)(w− ξ)

(
1
2
+ ln

[
1
2
(w− ξ)

])
− wξη = 0. (34)

Theorem 2. For Equation (11), there is a Bäcklund auto-transformation of the form

eg ∂g
∂ξ

= ev ∂v
∂ξ

, eg ∂g
∂η

= 2ev ∂v
∂η
− α32α21

8α11
ve2v. (35)

Proof of Theorem 2. Let us write the equality (35) in the following form:

∂eg

∂ξ
= ev ∂v

∂ξ
,

∂eg

∂η
= 2ev ∂v

∂η
− α32α21

8α11
ve2v,

and cross-differentiate. Equalizing the left parts gives

ev ∂v
∂ξ

∂v
∂η

+ ev ∂2v
∂ξ∂η

− α32α21

8α11

∂v
∂ξ

e2v − α32α21

4α11

∂v
∂ξ

ve2v = 0

or Equation (11). �

Now, we rewrite the second equality (35) in the form

∂eg

∂η
= 2

∂ev

∂η
− α32α21

8α11
ve2v,

and differentiate by ξ

∂2eg

∂η∂ξ
= 2

∂2ev

∂η∂ξ
− α32α21

8α11
e2v(1− 2v)

∂v
∂ξ

.

We replace the term α32α21
4α11

vξev(1 + 2v) in the last equality with the remaining terms
from (11), and then

∂2eg

∂η∂ξ
= 2

∂2ev

∂η∂ξ
− ev

(
∂2v

∂η∂ξ
+

∂v
∂ξ

∂v
∂η

)
,
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which leads to the equality
∂2eg

∂η∂ξ
=

∂2ev

∂η∂ξ
.

This means that the functions eg and ev can differ only by arbitrary terms of the form
ϕ(ξ) +ψ(η), so

eg +ϕ(ξ) +ψ(η) = ev. (36)

If ϕ(ξ) = ψ(η) = 0, then g = v, and from equalities (35), we obtain Equation (11).
Let us determine what happens ifϕ(ξ) 6= 0, ψ(η) 6= 0. Let us perform substitution (33)

in Equation (11); then, we obtain

eg
ηξ =

α32α21

8α11
([eg +ϕ(ξ) +ψ(η)]2 ln[eg +ϕ(ξ) +ψ(η)])ξ.

Let us perform differentiation

eg(gηξ + gξgη) = α32α21
8α11

2[eg +ϕ(ξ) +ψ(η)] ln[eg +ϕ(ξ) +ψ(η)](eggξ +ϕ′(ξ))
+α32α21

8α11
[eg +ϕ(ξ) +ψ(η)](eggξ +ϕ′(ξ))

and group the terms with a common derivative; we obtain

eg(gηξ + gξgη) =
α32α21

8α11
[eg +ϕ(ξ) +ψ(η)](2 ln[eg +ϕ(ξ) +ψ(η)] + 1)(eggξ +ϕ′(ξ)),

here, ϕ(ξ), ψ(η) are arbitrary functions.

Corollary 2. Bäcklund transformations

∂q
∂ξ

+ϕ′(ξ) = ev ∂v
∂ξ

,

∂q
∂η

+ψ′(η) = 2ev ∂v
∂η
− α32α21

8α11
ve2v,

associate Equation (11) with the equation

qηξ =
α32α21

8α11
[q +ϕ(ξ) +ψ(η)](2 ln[q +ϕ(ξ) +ψ(η)] + 1)(qξ +ϕ′(ξ)),

here, ϕ(ξ), ψ(η) are arbitrary functions.

Similarly, starting the transformation with a detailed analysis of equality (18), in each
case for the remaining studied Equations (12) and (13), the following theorems are proved:

Theorem 3. Bäcklund transformations of the form

wξξ = wξ
∂v
∂ξ
− α21

16α2
11

evwξ, (37)

wξη =
wξ
2

∂v
∂η
− α21

16α2
11

evwξ, (38)

connect Equation (12) with the equation

(w2)ξη = 4w2
ξ. (39)

104



Axioms 2021, 10, 337

Theorem 4. Bäcklund transformations of the form

∂w
∂ξ

=
∂v
∂ξ
− ev,

∂w
∂η

= e−v

connect Equation (13) with the equation

wηξ + wξwη = −1.

3.2. Applying Differential Couplings to Obtain Exact Solutions

Theorem 5. If Equation (39) has a solution

w = 2η+ ξ, (40)

then Equation (12) has a solution:

v = − ln

[
C− α21

16α2
11
(ξ+ η)

]
, C = const. (41)

Proof of Theorem 5. We use the found transformations (37), (38) and substitute the known
solution (40) in them, and then system (37), (38) takes the form

∂v
∂ξ

=
α21

16α2
11

ev,
∂v
∂η

=
α21

16α2
11

ev,

from here, we find
e−v = C− α21

16α2
11
(ξ+ η),

here, C is an arbitrary constant. As a result, the solution (41) of Equation (12) was found. �

Let us perform some transformations in Equation (39), multiplying both sides by w2:

w2(w2)ξη − [(w2)ξ]
2
= 0,

and, using the Fourier method of separation of variables, we obtain a solution to Equation (39)
in the form

w = e
λ
2 (η+ξ), λ = const.

Theorem 6. If Equation (39) has a solution

w = e
λ
2 (η+ξ), λ = const (42)

then Equation (12) has a solution

v = ln λ+ λ
(
η+

1
2
ξ

)
− ln

∣∣∣∣∣1−
α21

8α2
11

eλ[η+
1
2ξ]

∣∣∣∣∣. (43)
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Proof of Theorem 6. Using the found transformations (37), (38), we substitute the known
solution (42) into it, and then system (37), (38), after cancellation by λ

2 e
λ
2 (η+ξ), takes

the form
λ

2
=

∂v
∂ξ
− α21

16α2
11

ev, λ =
∂v
∂η
− α21

8α2
11

ev, (44)

from the first linear partial differential equation, we find

v− ln

[
λ

2
+

α21

16α2
11

ev

]
=
λ

2
ξ+ϕ(η),

where ϕ(η) is an arbitrary function, and from the second equation of system (44), we
determine the form of the function ϕ(η): ϕ(η) = 2eλη. �

Expressing the function v explicitly, we obtain the solution (43) of Equation (12).

Theorem 7. If Equation (12) has a solution

v = a(η+ ξ),

then Equation (39) has a solution

w = −16α2
11

α21
exp

[
− α21

16αα2
11

eα(η+ξ) − α
2
η

]
. (45)

Proof of Theorem 7. Using the found transformations (37), (38), we substitute the known
solution v = a(η+ ξ) , and then we obtain the system of equations

(ln wξ)ξ = α− α21

16α2
11

eα(η+ξ),

(ln wξ)η =
α

2
− α21

16α2
11

eα(η+ξ),

which can be easily integrated over the corresponding variables

ln wξ = αξ− α21

16αα2
11

eα(η+ξ) +ϕ(η), (46)

ln wξ =
α

2
η− α21

16αα2
11

eα(η+ξ) +ψ(ξ), (47)

where ϕ(η), ψ(ξ) are the constants of integration (arbitrary functions). �

Let us extend the definition of the functionsϕ(η) and ψ(ξ) so that the obtained values
of the right-hand sides of the system (46), (47) coincide as follows:

ϕ(η) =
α

2
η, ψ(ξ) = αξ.

As a result, an expression for the function wξ is defined:

wξ = e
α(ξ+ 1

2η)−
α21

16αα2
11

eα(η+ξ)
.

We perform integration over ξ, and we obtain the unknown function w(ξ,η) (45). The
form of function (45) is shown from two angles in Figure 1 (for α = 1, α21

α2
11

= −32).
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Figure 1. A 3D graph of the function (45) shown from two angles (a) and (b). Here, F ≡ w(ξ,η).

Theorem 8. Equation (31) has a solution implicitly given in the form of a series

ln
∣∣∣∣ln
[

1
2
(w− ξ)

]∣∣∣∣+
∞

∑
n=1

(−1)n

n · n!
lnn
[

1
2
(w− ξ)

]
=
α32α21

8α11
(γξ+ η) + C2,

where constants γ, C2 are arbitrary constants.

The proof is carried out by simple verification.

Theorem 9. If (10) has a solution v = a, then (31) has a solution

w = ξ− α32α21

4α11
ae2aη. (48)

Proof of Theorem 9. We substitute v = a into the found differential links (34) and integrate
each equality.

w = ξ+ϕ(η),

w = −α32α21

4α11
ae2aη+ψ(ξ).

We equate the obtained expressions for the function w and redefine arbitrary functions
ϕ(η), ψ(ξ). As a result, we obtain (48). �

Theorem 10. If Equation (11) has a solution v = η, then Equation (34) has a solution

w = 4eη − α32α21

16α11
(2η− 1)e2η + ξ. (49)
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Proof of Theorem 10. Substitute v = η into the found differential constraints (33) and
integrate each equality.

w = ξ+ϕ(η),

w = 4eη − α32α21

16α11
(2η− 1)e2η +ψ(ξ).

We equate the obtained expressions for the function w and redefine arbitrary functions
ϕ(η), ψ(ξ). As a result, we obtain (49) (Figure 2). �

Figure 2. The plot is according to Formula (49) at α32α21
16α11

= 1
3 . Here, F ≡ w(ξ,η).

Theorem 11. Equation (11) has a solution implicitly given in the form of a series

ln|v|+
∞

∑
n=1

(−v)n

n · n!
=
α32α21

8α11
(γξ+ η) + C2, (50)

where constants γ, C2 are arbitrary constants.

The proof is carried out by simple verification.
Solution (50) is a cylindrical surface with a guide shown in Figure 3.
Let us use the found auto-Bäcklund transformations (35) for Equation (11) and solution

(50). If we assume that g(ξ,η) = v(ξ,η), then using (35), we can find a new solution to
Equation (11). Substitute expression (50) into the left-hand side of (35):

α32α21

8α11
g =

1
γ

ev ∂v
∂ξ

,

α32α21

8α11
g = 2ev ∂v

∂η
− α32α21

8α11
ve2v.

Equating the left-hand sides, we obtain a linear first-order equation for the function
v(ξ,η)

2
∂v
∂η
− 1
γ

∂v
∂ξ

=
α32α21

8α11
vev, (51)
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Figure 3. Cylindrical surface guide (50), where n = 1, 2, . . . , 100.

To find the general solution of this equation, we find the first integrals of the system

2γξ+ η = C1,
8α11

γα32α21

[
ln|v|+

∞

∑
n=1

(−v)n

n · n!

]
+ ξ = C2. (52)

The general solution to equation (51) has the form

F

(
2γξ+ η,

8α11

γα32α21

[
ln|v|+

∞

∑
n=1

(−v)n

n · n!

]
+ ξ

)
= C,

Here, F is any function.
Equation (11) is nonlinear; therefore, it is necessary to clarify the form of the function

F. Let us substitute expression (52) into Equation (11)

16α11

α32α21

[
2

F1

F2
2

F12 −
F2

1
F3

2
F22 −

F11

F2

]
= −

(
1
γ
+

F1

F2

)(
2γ

F1

F2
+ 1
)

ev(1 + 2v). (53)

Here, F1 is the derivative of F by the first component, and F2 is the derivative of F by
the second component.

As one can see, equality (53) is not identically fulfilled; therefore, it is necessary to
require that one of the systems is fulfilled:





1
γ + F1

F2
= 0,

2 F1
F2

2
F12 − F2

1
F3

2
F22 − F11

F2
= 0,

, or





F1
F2

= − 1
2γ ,

2 F1
F2

2
F12 − F2

1
F3

2
F22 − F11

F2
= 0

. (54)

All the terms of the equalities are homogeneous, so we use the technique that allows
us to separate the arguments of the function. We represent F in the form

F = X(C1)Y(C2),

where X depends on the first component C1 of the function F, and Y on the second
component C2 (52), and then the first equality of system (54) takes the following form (due
to the similarity of the first equalities of the systems, the result of the substitution for the
second system is written in parentheses):

X′

X
= − 1

γ

Y′

Y
= λ,

(
X′

X
= − 1

2γ
Y′

Y
= λ

)
,
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Here, λ is an arbitrary parameter.
The functions take the form

ln|X| = λC1, ln|Y| = −γλC2, (ln|X| = λC1, ln|Y| = −2γλC2),

which leads to the following kind of function

F(C1, C2) = eλC1−γλC2 ,
(

F(C1, C2) = eλC1−2γλC2
)

, (55)

where

λ(C1 − γC2) = λ

(
γξ+ η− 8α11

α32α21

[
ln|v|+

∞

∑
n=1

(−v)n

n · n!

])
,

(
λ(C1 − 2γC2) = λη− λ 8α11

α32α21

[
ln|v|+

∞

∑
n=1

(−v)n

n · n!

])
.

The connection between the components C1, C2, satisfying the second system (expres-
sion in brackets), led to the absence of dependence on the variable ξ, so this case is not
considered further.

The second equality of system (54) is satisfied identically. The dependence on λ is
insignificant; therefore, we assume λ = 1.

The following theorem is proved:

Theorem 12. Equation (11) has a solution

exp

(
γξ+ η− 8α11

α32α21

[
ln|v|+

∞

∑
n=1

(−v)n

n · n!

])
= C.

The result of the theorem can be generalized.

Corollary 3. Equation (11) has a solution

F

(
γξ+ η− 8α11

α32α21

[
ln|v|+

∞

∑
n=1

(−v)n

n · n!

])
= C, (56)

here, F is an arbitrary function.

The proof is carried out by simple verification.

4. Discussion

The considered equations refer to wave equations with a nonlinear right-hand side,
which has an exponential–power relationship. The exponential–power model is a multi-
plicative combination of exponential and power models. Finding exact solutions to such
equations is fraught with great difficulties since a change in variables does not bring the
equation to a linear form or simplification; therefore, it is necessary to use a modification
that differs from the mappings. Differential links are such a transformation. Bäcklund
transformations are a differential relationship of two equations. Recently, this approach
has made it possible to solve many interesting problems [8–11,14,17–19].

In addition, for a given solution of one equation, Bäcklund transformations make it
possible to determine, up to a finite number of constants, the solution of the second equa-
tion, and this connection works in two directions. Therefore, for Equations (12) and (39),
choosing a simple solution in the form w = 2η+ ξ, and for Equation (39), using the con-
structed Bäcklund transformations (37), (38), a solution of Equation (12) was found in the
form (41) (application of differential constraints (Statements 1 and 2)). Using the same differ-
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ential constraints (37), (38) from the solution of Equation (12), an exact solution to Equation
(39) was obtained (application of differential constraints (Statement 3)). Similar results
were obtained for pairs of equations: Equations (10) and (31) and Equations (11) and (34).

An especially interesting case is when the Bäcklund transformations translate the equa-
tion into itself—auto-transformations. This property is typical for nonlinear equations with
soliton solutions [13]. The present article discusses the construction of auto-transformations
for Equation (11) (Section 3 (Results), Theorem 2). Differential constraints (35) made it
possible to construct a general solution (56) from solution (50).

5. Conclusions

For the equations studied in the article, new equations were found using Bäcklund
transformations, which make it possible to find solutions to the original nonlinear equations
and to identify internal connections between various integrable equations.

The present paper proves theorems on Bäcklund transformations of nonlinear hyper-
bolic partial differential equations of the second order of the Klein–Gordon class, which are
special cases of the Liouville equation, with exponential nonlinearity having a multiplier
depending on the function and its first derivatives. The transformations were constructed
using Clairin’s method. The new equations obtained with the help of differential connec-
tions can be used for further studies of equations of this type, as well as for solving many
applied problems in various fields of natural science.

Author Contributions: Conceptualization, methodology, investigation and writing—original draft
preparation, T.V.R.; investigation and writing—original draft preparation, R.G.Z.; validation and
writing—review and editing, A.R.Z.; validation and formal analysis, O.V.N. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by the North-Caucasus Center for Mathematical Research
under agreement No. 075-02-2021-1749 with the Ministry of Science and Higher Education of the
Russian Federation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M. Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 1967,

19, 1095–1097. [CrossRef]
2. Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M. The Korteweg-de Vries equation and generalizations. VI. Method for

exact solutions. Commun. Pure Appl. Math. 1974, 27, 97–133. [CrossRef]
3. Hayashi, M.; Shigemoto, K.; Tsukioka, T. Common Hirota form Bäcklund transformation for the unified Soliton system. J. Phys.

Commun. 2020, 4, 015014. [CrossRef]
4. Hirota, R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 1971, 27, 1192–1194.

[CrossRef]
5. Ma, W.; Zhou, Y. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 2018, 264,

2633–2659. [CrossRef]
6. Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Equations, and Inverse Scattering; Cambridge University Press: Cambridge, UK,

1991.
7. Xu, G. Painleve analysis, lump-kink solutions and localized excitation solutions for the (3+1)-dimensional Boiti-Leon-Manna-

Pempinelli equation. Appl. Math. Lett. 2019, 97, 81–87. [CrossRef]
8. Aguirre, R.; Gomes, J.F.; Retore, A.L.; Spano, N.I.; Zimerman, A.H. Recursion Operator and Bäcklund Transformation for Super

mKdV Hierarchy. Quantum Theory Symmetries Lie Theory Its Appl. Phys. 2018, 1, 293–309.
9. Chen, S.; Ma, W.; Lü, X. Bäcklund transformation, exact solutions, and interaction behavior of the (3+1)-dimensional Hirota-

Satsuma-Ito-like equation. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105135. [CrossRef]
10. Rasin, A.; Schiff, J. Bäcklund transformations for the Boussinesq equation and merging solitons. J. Phys. A Math. Theor. 2017, 50,

325202. [CrossRef]
11. Redkina, T.V.; Zakinyan, R.G.; Zakinyan, A.R.; Surneva, O.B.; Yanovskaya, O.S. Bäcklund Transformations for Nonlinear

Differential Equations and Systems. Axioms 2019, 8, 45. [CrossRef]
12. Sun, Z.Y.; Gao, Y.T.; Yu, X.; Meng, X.H.; Liu, Y. Inelastic interactions of the multiple-front waves for the modified Kadomtsev-

Petviashvili equation in fluid dynamics, plasma physics, and electrodynamics. Wave Motion 2009, 46, 511–521. [CrossRef]

111



Axioms 2021, 10, 337

13. Veerakumar, V.; Daniel, M. Modified Kadomtsev-Petviashvili (MKP) equation and electromagnetic soliton. Math. Comput. Simul.
2003, 62, 163–169. [CrossRef]

14. Song, J.F.; Hu, Y.H.; Ma, Z.Y. Bäcklund transformation and CRE solvability for the negative-order modified KdV equation.
Nonlinear Dyn. 2017, 90, 575–580. [CrossRef]

15. Zakharov, V.E.; Kuznetsov, V.A. Hamiltonian formalism for nonlinear waves. Adv. Phys. Sci. 1997, 167, 1137–1168. (In Russian)
16. Gulenko, V.V.; Guschin, V.V. Hamiltonov formulation of new dynamic equations. Rep. Acad. Sci. Ukr. 1994, 3, 73–77. (In Russian)
17. Cheng, J. Miura and auto-Bäcklund transformations for the q-deformed KP and q-deformed modified KP hierarchies. J. Nonlinear

Math. Phys. 2017, 24, 7–19. [CrossRef]
18. Zabrodin, A.V. Bäcklund transformations for the difference Hirota equation and the supersymmetric Bethe ansatz. Theor. Math.

Phys. 2008, 155, 74–93. [CrossRef]
19. Tsiganov, A.V. Bäcklund transformations and divisor doubling. J. Geom. Phys. 2018, 126, 148–158. [CrossRef]
20. Lamb, G.L. Elements of Soliton Theory; John Wiley & Sons: New York, NY, USA, 1980.
21. Pogorelov, A.V. Multivariate Monge-Ampere Equation; Science: Moscow, Russia, 1988. (In Russian)

112



Citation: Ernst, T. A New

q-Hypergeometric Symbolic Calculus

in the Spirit of Horn, Borngässer,

Debiard and Gaveau. Axioms 2022,

11, 64. https://doi.org/10.3390/

axioms11020064

Academic Editors: Hans J. Haubold

and Anna Maria Fino

Received: 28 December 2021

Accepted: 30 January 2022

Published: 4 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

A New q-Hypergeometric Symbolic Calculus in the Spirit of
Horn, Borngässer, Debiard and Gaveau

Thomas Ernst

Department of Mathematics, Uppsala University, P.O. Box 480, SE-751 06 Uppsala, Sweden; thomas@math.uu.se

Abstract: The purpose of this article is to introduce a new complete multiple q-hypergeometric
symbolic calculus, which leads to q-Euler integrals and a very similar canonical system of q-difference
equations for multiple q-hypergeometric functions. q-analogues of recurrence formulas in Horns
paper and Borngässers thesis lead to a more exact way to find these Frobenius solutions. To find the
right formulas, the parameters in q-shifted factorials can be changed to negative integers, which give
no extra q-factors. In proving these q-formulas, in the limit q → 1 we obtain versions of the paper
by Debiard and Gaveau for the solution of differential or q-difference equations. The paper is also a
correction of some of the statements in the paper by Debiard and Gaveau, e.g., the Euler integrals
and other solutions to differential equations for Appell functions, also without references to page
numbers in the standard work of Appell and Kampé de Fériet. Sometimes the q-binomial theorem is
used to simplify q-integral formulas. By the Horn method, we find another solution to the Appell Φ1

function partial differential equation, which was not mentioned in the thesis by Le Vavasseur 1893.

Keywords: symbolic calculus; canonical system of q-difference equations; q-Euler integral

MSC: Primary 33D05; Secondary 33C65; 33D70; 33D60

1. Introduction

We refer to our standard work [1] and to the paper on multiple q-hypergeometric
functions [2]. The pathbreaking paper [3] by Debiard and Gaveau on a new umbral
calculus led to the automatic solutions of differential equations for multiple hypergeometric
functions according to Frobenius and Horn. In this paper, we generalize this method to the
q-case and slightly change the notation for a better overview. As examples, the exponent
in method of Frobenius is changed from α to λ and the Euler operator x d

dx is changed to
θ(q) as in [1]. Our umbral calculus simply means that a θq,1 ∨ θq,2 before a double power
series is replaced by the exponents of x ∨ y. The same goes for additive arguments in the
Γq function.

A proper notation is extremely important in papers on special functions, since long
computations often occur and the origin of the variables is crucial for the understanding of
the formulas. The notation and especially the computations in [3] are sometimes erroneous,
one example is the notation on the top of page 789, where small a, αi and α occur, together
with a misprint. For operators, we mention the spaces of formal power series in their
definitions. We also remember that in Horns paper ([4], p. 387) and in Borngässers
thesis [5], recurrence formulas for the determination of the other solutions in the method of
Frobenius were given, which was missed in [3].

The paper is organized as follows: In Section 1 we define all q-functions. In Section 2
we present Horns and Borngässers recurrence formulas for the coefficients in the method of
Frobenius, which have a very similar form as before. In Section 3 we introduce the general
symbolic calculus. In Section 4 we find bases for the spaces of solutions by the Frobenius
method for the first q-Appell function. In Sections 5–8 we consider the q-Appell functions
Φ1, Φ2, Φ3, Φ4.
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Let δ > 0 be an arbitrary small number. We will always use the following branch of
the logarithm: −π + δ < Im (log q) ≤ π + δ. This defines a simply connected space in the
complex plane.

The power function is defined by

qa ≡ ea log(q). (1)

A q-analogue of a complex number is also a complex number.

Definition 1. The q-analogue of a complex number a is defined as follows:

{a}q ≡
1− qa

1− q
, q ∈ C\{0, 1}, (2)

The q-shifted factorial is defined by

〈a; q〉n ≡
n−1

∏
m=0

(1− qa+m), (3)

The q-derivative is defined by

(
Dq ϕ

)
(x) ≡





ϕ(x)−ϕ(qx)
(1−q)x , when q ∈ C\{1}, x 6= 0;

dϕ
dx (x), when q = 1;
dϕ
dx (0), when x = 0.

(4)

Definition 2. The following operator will also be useful.

θq,j ≡ xjDq,xj . (5)

Definition 3. [1]. The q-analogues of the Appell functions are

Φ1(a; b, b′; c|q; x1, x2) ≡
∞

∑
m1,m2=0

〈a; q〉m1+m2〈b; q〉m1〈b′; q〉m2

〈1; q〉m1〈1; q〉m2〈c; q〉m1+m2

xm1
1 xm2

2 ,

max(|x1|, |x2|) < 1.

(6)

Φ2(a; b, b′; c, c′|q; x1, x2) ≡
∞

∑
m1,m2=0

〈a; q〉m1+m2〈b; q〉m1〈b′; q〉m2

〈1; q〉m1〈1; q〉m2〈c; q〉m1〈c′; q〉m2

xm1
1 xm2

2 ,

|x1| ⊕q |x2| < 1.

(7)

Φ3(a, a′; b, b′; c|q; x1, x2) ≡
∞

∑
m1,m2=0

〈a; q〉m1〈a′; q〉m2〈b; q〉m1〈b′; q〉m2

〈1; q〉m1〈1; q〉m2〈c; q〉m1+m2

xm1
1 xm2

2 ,

max(|x1|, |x2|) < 1.

(8)

Φ4(a; b; c, c′|q; x1, x2) ≡
∞

∑
m1,m2=0

〈a; q〉m1+m2〈b; q〉m1+m2

〈1; q〉m1〈1; q〉m2〈c; q〉m1〈c′; q〉m2

xm1
1 xm2

2 ,

|√x1| ⊕q |
√

x2| < 1.

(9)

2. q-Analogues of Horns and Borngässers Recurrence Formulas

The purpose of this section is to introduce q-analogues of Horns and Borngässers
recurrence formulas ([4], p. 387), ([5], p. 26 ff) for double series. We just state the formulas,
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the proofs are simple; in the process we slightly improve the notation. We start with the
double q-hypergeometric series

z ≡ H(x, y) =
∞

∑
m,n=0

Amnxmyn, (10)

where the two quotients

f (m, n) ≡ Am+1,n

Amn
, g(m, n) ≡ Am,n+1

Amn
(11)

are rational functions in q-analogues of m, n. Now put

f (m, n) ≡ F(m, n)
F′(m, n)

, g(m, n) ≡ G(m, n)
G′(m, n)

, (12)

where F(mn), G(mn), F′(mn), G′(mn) are entire products of q-analogues in m, n of maxi-
mal second order in m, n. We assume that F′(mn) has the factor {1 + m}q , G′(mn) has the
factor {1 + n}q.

All these q-functions are q-analogues of the Appell, confluent Humbert, etc., and Horn
functions.

We just state a q-analogue of a generalization of the Euler operator ([4], p. 387).
Assume that α, β ∈ R[θq,1, θq,2]. α, β are linear functions of θq,1 and θq,2 with coefficients
∈ Z, and z is defined by (10).

(1− q)2{α}q{β}qz =
∞

∑
m,n=0

〈α; q〉1〈β; q〉1 Amnxmyn. (13)

A q-analogue of an improved version of ([4], p.387), where we have skipped the sums
∑α,β. Assume that α, β, γ, δ, α′, β′, γ′, δ′ ∈ R[θq,1, θq,2] are linear functions of θq,1 and θq,2
with coefficients ∈ Z. Furthermore, the function z in (10) satisfies the system of q-difference
equations

(
x{α}q{β}q − {α′}q{β′}q

)
z = 0,(

y{γ}q{δ}q − {γ′}q{δ′}q
)
z = 0,

(14)

with convenient boundary values.
Case I. Assume instead that

z =
∞

∑
m,n=0

Cmnxm+ρyn+σ, (15)

where ρ and σ are unknown real constants. In the previous case, Cmn become Amn. We now
have the recurrence formulas

{
F′(m + ρ, n + σ)Cm+1,n = F(m + ρ, n + σ)Cm,n

G′(m + ρ, n + σ)Cm,n+1 = G(m + ρ, n + σ)Cm,n,
(16)

which follow from the previous recurrence formulas for Amn.
By comparing the coefficients of

xm+ρyn+σ, m = −1; n ≥ 0 (17)

in the first recurrence, and the coefficients of

xm+ρyn+σ, m ≥ 0, n = −1 (18)
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in the second recurrence, we obtain the equations ([5], p. 27), ([4], p. 388) for the determina-
tion of the exponents ρ and σ {

F′(ρ− 1, σ) = 0,
G′(ρ, σ− 1) = 0

(19)

Case II. For the determination of the solutions in the vicinity of the point (∞, ∞), we
look at series of the form

z =
∞

∑
m,n=0

Cmnxρ−myσ−n, (20)

where ρ and σ are unknown real constants. We now have the recurrence formulas
{

F(ρ−m− 1, σ− n)Cm+1,n = F′(ρ−m− 1, σ− n)Cm,n

G(ρ−m, σ− n− 1)Cm,n+1 = G′(ρ−m, σ− n− 1)Cm,n.
(21)

By comparing the coefficients of

xρ−myσ−n, (22)

we obtain the equations ([5], p. 28), ([4], p. 388) for the determination of the exponents ρ
and σ {

F(ρ, σ) = 0,
G(ρ, σ) = 0

(23)

Case III. For the determination of the solutions in the vicinity of the point (0, ∞), we
look at series of the form

z =
∞

∑
m,n=0

Cmnxρ+myσ−n, (24)

which leads to the recurrence formulas
{

F′(ρ + m, σ− n)Cm+1,n = F(ρ + m, σ− n)Cm,n

G(ρ + m, σ− n− 1)Cm,n+1 = G′(ρ + m, σ− n− 1)Cm,n.
(25)

By comparing the coefficients of

xρ+myσ−n, (26)

we obtain the equations ([5], p. 29), ([4], p. 388) for the determination of the exponents
ρ and σ {

F′(ρ− 1, σ) = 0,
G(ρ, σ) = 0.

(27)

Case IV. Finally, for the determination of the solutions in the vicinity of the point
(∞, 0), we look at series of the form

z =
∞

∑
m,n=0

Cmnxρ−myσ+n, (28)

which leads to the recurrence formulas
{

F(ρ−m− 1, σ + n)Cm+1,n = F′(ρ−m− 1, σ + n)Cm,n

G′(ρ−m, σ + n)Cm,n+1 = G(ρ−m, σ + n)Cm,n.
(29)
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By comparing the coefficients of

xρ−myσ+n, (30)

we obtain the equations ([5], p. 29), ([4], p. 388) for the determination of the exponents ρ
and σ {

F(ρ, σ) = 0,
G′(ρ, σ− 1) = 0

(31)

3. General Symbolic Calculus

The purpose of this section is to introduce the general symbolic calculus for double
series.

Definition 4. We put

Hq(a, b, c, x) ≡ {θq,1 + c}qDq,x − {θq,1 + a}q{θq,1 + b}q. (32)

Then we have

Hq(a, b, c, x) 2φ1

[
a, b
c

∣∣∣∣q; x
]
= 0. (33)

We are always interested in solutions to the equation

Hq(a, b, c, x)( f (x)) = 0. (34)

Around x = 0 another solution, apart from y1 in (33) is (6.186 [1])

y2 = x1−c
2φ1

[
a− c + 1, b− c + 1

2− c

∣∣∣∣q; x
]

. (35)

The purpose of the next definition is to keep the powers of the variables in the operator.

Definition 5. Let A, B, C be three operators R[[x]]→ R[[x]], which are linear in θq,1, θq,2. Then
we define

Hq(A, B, C, x) ≡ {θq,1 + C}qDq,x − {θq,1 + A}q{θq,1 + B}q. (36)

Lemma 1. Compare with ([3], p. 777). Let F (a, b, c, x) be a solution of

Hq(a, b, c, x)F = 0. (37)

Then
F (A, B, C, x) (38)

is a solution of

Hq(A, B, C, x)F (A, B, C, x) = 0. (39)

Definition 6. Compare with ([3], p. 777). Assume x > 0, C, λ ∈ R, ψ(y)× y−λ ∈ R[[y]].
Then, in the umbral sense,

xCθq,2 ψ(y)=̈ψ(xCy). (40)

Assume that

φ(~a,~b, y) ≡ yλ
∞

∑
k=0

〈~a; q〉k
〈1,~b; q〉k

yk. (41)
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Then, in the umbral sense,

φ(~a + ~a′θq,2,~b + ~b′θq,2, y) ≡ yλ
∞

∑
k=0

〈~a + ~a′(λ + k); q〉k
〈1,~b + ~b′(λ + k); q〉k

yk. (42)

Furthermore, for the Γq-function:

Γq(α + θq,2)yλ=̈Γq(α + λ)yλ. (43)

We can generalize this to many variables.

Definition 7. Compare with (3.9 [3]). Let Hq(x, y) be an operator R[[x]]→ R[[x]]:

Hq(x, y) ≡ {θq,1 + γθq,2 + c}qDq,x − {θq,1 + αθq,2 + a}q{θq,1 + βθq,2 + b}q. (44)

The parameters in Hq(x, y) will always be the same.

Remark 1. The function (44) generalizes the basic definition (32) and is a special case of the more
general definition (36). The notation in ([3], 3.9) is slightly misleading.

Theorem 1. Compare with ([3], (3.12) p. 779). Let Fj(a, b, c, x), j = 1, 2 of the form (41) be two
independent solutions of

Hq(a, b, c, x)Fj = 0. (45)

Furthermore, let ψj(y) ∈ R[[y]], j = 1, 2 be q-hypergeometric series, with suitable conver-
gence radii. Then the general solution of the equation

Hq(x, y) f = 0 (46)

in the umbral form (42) is given by

f (x, y) =
2

∑
j=1

Fj(αθq,2 + a, βθq,2 + b, γθq,2 + c, x)φj(y). (47)

Proof. This follows from (39).

Theorem 2. Compare with ([3], (4.5) p. 780). Let ψ(y) ∈ R[[y]] be a q-hypergeometric series,
with suitable convergence radius. Then the series

F(x, y : q) ≡ 2φ1(αθq,2 + a, βθq,2 + b, γθq,2 + c|q; x)ψ(y) (48)

is a double q-hypergeometric series, convergent in the vicinity of (0, 0).

Proof. Similar to ([3], p. 780).

Definition 8. Compare with (5.1 [3]). Introduce the two general operators R[[x, y]]→ R[[x, y]]:

H1;q(x, y) ≡ {γ1θq,2 + c1}qDq,x − {α1θq,2 + a1}q{β1θq,2 + b1}q,

H2;q(y, x) ≡ {γ2θq,1 + c2}qDq,y − {α2θq,1 + a2}q{β2θq,1 + b2}q.
(49)

We wish to study the system of q-difference equations
{

H1;q(x, y) f (x, y) = 0
H2;q(y, x) f (x, y) = 0.

(50)
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The system (50) is called q-compatible if it has common solutions f (x, y).

Theorem 3. Compare with ([3], p. 785). The system (50) is q-compatible if the following two
products of q-analogues are equal,

P1(m, n; q) = P2(m, n; q), (51)

where

P1(m, n; q) ≡ {m + α1n + a1}q{m + β1n + b1}q{m + γ1(n + 1) + c1}q

{n + α2(m + 1) + a2}q{n + β2(m + 1) + b2}q{n + γ2m + c2}q,

P2(m, n; q) ≡ {m + α1(n + 1) + a1}q{m + β1(n + 1) + b1}q{m + γ1n + c1}q

{n + α2m + a2}q{m + β2n + b2}q{n + γ2(m + 1) + c2}q.

(52)

For the following proof, compare with ([3], p. 786).

Proof. We put

f (x, y) =
∞

∑
m,n=0

Amnxmyn. (53)

We first calculate the following operator formulas.

{θq,1 + γ1θq,2 + c1}qDq,x f =
∞

∑
m,n=0

am+1,n
{m + γ1n + c1}q

〈1; q〉m〈1; q〉n
xmyn (54)

{θq,1 + α1θq,2 + a1}q{θq,1 + β1θq,2 + b1}q f

=
∞

∑
m,n=0

amn
{m + α1n + a1}q{m + β1n + b1}q

〈1; q〉m〈1; q〉n
xmyn,

(55)

where
Amn ≡

amn

〈1; q〉m〈1; q〉n
. (56)

The first Equation (50) is satisfied when

am+1,n

amn
=
{m + α1n + a1}q{m + β1n + b1}q

{m + γ1n + c1}q
. (57)

The second Equation (50) is satisfied when

am,n+1

amn
=
{n + α2m + a2}q{n + β2m + b2}q

{n + γ2m + c2}q
. (58)

Using Horn’s notation, we have

f (m, n) ≡ Am+1,n

Amn
=
{m + α1n + a1}q{m + β1n + b1}q

{m + γ1n + c1}q{m + 1}q
, (59)

g(m, n) ≡ Am,n+1

Amn
=
{n + α2m + a2}q{n + β2m + b2}q

{n + γ2m + c2}q{n + 1}q
. (60)

Now (51) follows from the compatibility condition

f (m, n)g(m + 1, n) = f (m, n + 1)g(m, n). (61)

Similarly, we find that the q-hypergeometric functions defined by (6)–(9), after rescal-
ing, satisfy the systems (50).
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4. Bases for the Spaces of Solutions by the Frobenius Method

Assuming that our system (50) is q-compatible, by using Lemma 1, we construct a
basis for its solutions. Like in ([3], p. 788), the parameter ci 3 −Z. Many of these solutions
are obtained simply by the same formula after q-deformation like in [1]. We note that other
solutions are obtained by permutation of the variables.

Solutions in the Vicinity of (0, 0)

Now we assume that

ψ(y) ≡ yλ
∞

∑
k=0

an
yk

〈1; q〉k
. (62)

Consider the basis y1(x), y2(x) in (33) and (35). In all these assumptions, we put the
first coefficient a0 = 1. Note that this was not mentioned in [3]. In order to obtain solutions
of our system of q-difference equations, define (49)

f (x, y; q) ≡ 2φ1(α1θq,2 + a1, β1θq,2 + b1, γ1θq,2 + c1|q; x)ψ(y). (63)

This implies

f (x, y; q) =
∞

∑
m,n=0

an
〈α1(n + λ) + a1, β1(n + λ) + b1; q〉m
〈1, γ1(n + λ) + c1; q〉m〈1; q〉n

xmyn+λ (64)

(θq,2 + γ2θq,1 + c2)Dq,y f = yλ
∞

∑
m,n=0

anxmyn−1{n + λ}q

〈α1(n + λ) + a1, β1(n + λ) + b1; q〉m{n + λ− 1 + γ2m + c2}q

〈1, γ1(n + λ) + c1; q〉m〈1; q〉n

(65)

(θq,2 + α2θq,1 + a2)(θq,2 + β2θq,1 + b2) f

= yλ
∞

∑
m,n=0

anxmyn{n + λ + α2m + a2}q

〈α1(n + λ) + a1, β1(n + λ) + b1; q〉m{n + λ + β2m + b2}q

〈1, γ1(n + λ) + c1; q〉m〈1; q〉n

(66)

By equating the last two formulas for n = 0, we obtain the indicial equation

{λ}q{λ− 1 + γ2m + c2}q = 0, m ≥ 0, (67)

which implies

λ = 0, ∀γ2,

λ = 0∨ λ = 1− c2 if γ2 = 0.
(68)

5. First q-Appell Function

We now apply the general method from the previous section to the first q-Appell
function. Put γi = αi = 1, ci = c, ai = a in (49). Like before the system is denoted by
(Hi f (x, y; q))2

i=1.

{[
{θq,1 + θq,2 + c}qDq,x − {θq,1 + θq,2 + a}q{θq,1 + b1}q

]
f (x, y; q) = 0[

{θq,1 + θq,2 + c}qDq,y − {θq,1 + θq,2 + a}q{θq,2 + b2}q
]

f (x, y; q) = 0.
(69)

With (62), a0 = 1 and y1 in (33), we get the first q-Appell function. Next consider the
function y2 in (35).
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We find that the following equation can be rewritten by (40) and (43) as

fD(x, y; q)

≡ x1−c−θq,2 2φ1(a + 1− c, b1 + 1− c− θq,2; 2− c− θq,2|q; x)ψ(y)

=x1−c
∞

∑
m,n=0

an
〈a + 1− c, b1 + 1− c− n− λ; q〉m
〈1, 2− c− n− λ + c1; q〉m〈1; q〉n

xm−n−λyn+λ.

(70)

Lemma 2.

〈b1 + 1− c− n; q〉m〈c− 1; q〉n〈2− c; q〉m−n

〈2− c− n; q〉m〈c− b1; q〉n〈b1 + 1− c; q〉m−n
= qn(b1−1). (71)

This lemma is used in the proof (77). Similar to ([3], p. 793) we find that

[
{θq,1 + θq,2 + c}qDq,y

]
(xm−n−λ+1−cyn+λ)

= {m}q{n + λ}qxm−n−λ+1−cyn+λ−1.
(72)

Again, λ = 0, and we have

H2 fD(x, y; q) = x1−c

[
∞

∑
m,n=1

an
〈a + 1− c, b1 + 1− c− n; q〉m
〈2− c− n; q〉m〈1; q〉m−1〈1; q〉n−1

xm−nyn−1

−
∞

∑
m,n=0

an〈n + b2, 1 + m + a− c; q〉1
〈a + 1− c, b1 + 1− c− n; q〉m
〈1, 2− c− n; q〉m〈1; q〉n

xm−nyn

]

= x1−c
∞

∑
m,n=0

[
an+1

〈a + 1− c, b1 + 1− c− n; q〉m+1

〈1− c− n; q〉m+1〈1; q〉m〈1; q〉n

−an〈n + b2, 1 + m + a− c; q〉1
〈a + 1− c, b1 + 1− c− n; q〉m
〈1, 2− c− n; q〉m〈1; q〉n

]
xm−nyn.

(73)

By the condition H2 f = 0 we obtain

an+1

an
=
〈n + b2, 1− c− n; q〉1
〈b1 − c− n; q〉1

. (74)

This implies

an =
〈b2, c− 1; q〉n
〈c− b1; q〉n

, (75)

ψ(y) = 2φ1(b2, c− 1; c− b1|q; y). (76)

Then, we can induce by (71)

fD(x, y; q)

= x1−c
∞

∑
m,n=0

〈a + 1− c, b1 + 1− c− n; q〉m〈b2, c− 1; q〉n
〈1, 2− c− n; q〉m〈1, c− b1; q〉n

xm−nynqn(1−b1)

=x1−c
∞

∑
m,n=0

〈a + 1− c; q〉m〈b1 + 1− c; q〉m−n〈b2; q〉n
〈2− c; q〉m−n〈1; q〉m〈1; q〉n

xm−nyn.

(77)

We can rewrite this in the form of q-Horn function, convenient for convergence aspects.

fD(x, y; q) = x1−c
∞

∑
m,n=0

(−1)m−nQE
(
−
(

m− n
2

)
+ (m− n)(c− 2)

)

〈a + 1− c; q〉m〈b1 + 1− c; q〉m−n〈c− 1; q〉n−m〈b2; q〉n
〈1; q〉m〈1; q〉n

xm−nyn.

(78)
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The operator form is

fD(x, y; q) = x1−c
2φ1(a + 1− c, b1 + 1− c− θq,2; 2− c− θq,2|q; x)

2φ1

(
b2, c− 1; c− b1|q;

y
x

)
.

(79)

The series (78) converges in a slightly larger region than

|x| < 1, |y/x| < 1. (80)

5.1. First Horn Recurrence Solution

The Horn recurrence (16) for ρ = 1− c, σ = 0 gives




Cm+1,n
Cmn

= 〈a+1−c+m+n,b1+1−c+m;q〉1
〈1+m+n,2−c+m;q〉1

Cm,n+1
Cmn

= 〈a+1−c+m+n,b2+n;q〉1
〈1+m+n,1+n;q〉1 .

(81)

The solution to this recurrence is

f2(x, y; q) = x1−c
∞

∑
m,n=0

〈a + 1− c; q〉m+n〈b1 + 1− c〉m〈b2〉n
〈2− c〉m〈1; q〉m+n〈1; q〉n

xmyn. (82)

This solution, not of usual q-hypergeometric type, was not given in the thesis by Le
Vavasseur.

By symmetry, we get a third solution f3(x, y; q), the three functions { fi(x, y; q)} form a
basis for the system Φ1 around (0, 0).

5.2. Q-Integral Representations

We now turn to q-integral representations of solutions to the system for Φ1. The
operator form

Φ1(a; b1, b2; c|q; x, y)

= 2φ1(a + θq,2, b1; c + θq,2|q; x) 2φ1(a, b2; c|q; y)
(83)

together with the q-integral for 2φ1 (7.50 [1]) gives the q-Picard integral (10.104 [1]) for the
first q-Appell function.

The operator form (79) together with (7.50 [1]) gives a q-analogue of (7.11 [3]).

Theorem 4.

fD(x, y; q) ∼= x1−c Γq

[
2− c

a + 1− c, 1− a

] ∫ 1

0
ta−c (qt; q)−a

(xt; q)b1+1−c

3φ2

[
a, b2

c− b1

∣∣∣∣q; yqb1−c+a
∣∣∣∣
∣∣∣∣
((xt)−1qc−b1 ; q)k

(t−1qa; q)k

]
dq(t).

(84)

Proof. We can apply (43) for following deduction.

fD(x, y; q) ∼= x1−c Γq

[
2− c− θq,2

a + 1− c, 1− a− θq,2

] ∫ 1

0
ta−c

(qt; q)−a−θq,2

(xt; q)b1+1−c−θq,2

2φ1

[
c− 1, b2
c− b1

∣∣∣∣q;
y
x

]
dq(t)=RHS.

(85)

Similarly, we get an improved version of (7.12, [3]).
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Theorem 5.

fD(x, y) = x1−c Γ
[

2− c
b1 + 1− c, 1− b1

] ∫ 1

0
tb1−c(1− t)−b1(1− xt)c−a−1

(
1− y

x

)−b2
dt.

(86)

Proof. Permute the parameters in the proof.

A q-analogue of (86)

fD(x, y; q) ∼= x1−c Γq

[
2− c

b1 + 1− c, 1− b1

] ∫ 1

0
tb1−c (qt; q)−b1

(xt; q)a+1−c

1
( y

x qb1−1; q)b2

dq(t).
(87)

5.3. Solutions Around (0, ∞)

From Ansatz III we obtain the equations
{
{ρ}q{c + σ + ρ− 1}q = 0,
{b2 + σ}q{a + ρ + σ)q = 0.

(88)

This has the three solutions

ρ = 0, σ = −b2

ρ = 0, σ = −a

ρ = b2 + 1− c, σ = −b2.

(89)

Put

ψ(y) ≡
∞

∑
n=0

an
y−n−λ

〈1; q〉n
. (90)

According to (40) and (43), the condition H1g1(x, y; q) = 0 gives,

g1(x, y; q)

≡ 2φ1(a + θq,2, b1; c + θq,2|q; x)ψ(y)

=
∞

∑
m,n=0

an
〈a− n− λ, b1; q〉m

〈1, c− n− λ; q〉m〈1; q〉n
xmy−n−λ.

(91)

Lemma 3.

〈a− b2 − n; q〉m〈b2 − c + 1; q〉n(−1)m−n

〈c− b2 − n; q〉m〈b2 + 1− a; q〉n〈a− b2; q〉m−n〈b2 + 1− c; q〉n−m

= QE
(
−
(

m
2

)
−
(

n
2

)
−m(c− b2 − n)− n(2b2 + 1− c)

)
.

(92)

This lemma is used in the following proof. Similar to ([3], p. 796) we find that

[
{θq,1 + θq,2 + c}qDq,y

]
(xmy−n−λ)

= {m− n− λ− 1 + c}q{−n− λ}qxmy−n−λ−1.
(93)
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We have

H2 f (x, y; q) = −
∞

∑
m,n=0

an
〈a− n− λ, b1; q〉m

〈1, c− n− λ; q〉m〈1; q〉n
[
{m− n− λ− 1 + c}q{−n− λ}qxmy−n−λ−1

+{b2 − n− λ}q{a + m− n− λ}qxmy−n−λ
]
.

(94)

For n = 0, the condition H2 f = 0 implies λ = b2, and we have

H2 f (x, y; q) = y−b2
∞

∑
m,n=0

[
−an
〈a− b2 − n, b1; q〉m{b2 + n}qq−n−b2

〈c− b2 − n; q〉m−1〈1; q〉m〈1; q〉n

xm−nyn−1 + an+1
〈a− b2 − n− 1; q〉m+1〈b1; q〉m
〈1, c− b2 − n− 1; q〉m〈1; q〉n

]
xmy−n−1q−n.

(95)

By the condition H2 f = 0 we obtain

an+1

an
=
〈n + b2, c− b2 − n− 1; q〉1
〈a− b2 − n− 1; q〉1

q−b2 . (96)

This implies

an =
〈b2, b2 + 1− c; q〉n
〈b2 + 1− a; q〉n

qn(c−a−b2), (97)

ψ(y) = 2φ1(b2, b2 + 1− c; b2 + 1− a|q; yqc−a−b2). (98)

According to (92), we should have

g1(x, y; q)

= y−b2
∞

∑
m,n=0

〈a− b2 − n, b1; q〉m〈b2 + 1− c, b2; q〉n
〈1, c− b2 − n; q〉m〈1, b2 + 1− a; q〉n

xmy−nqn(c−a−b2)

=y−b2
∞

∑
m,n=0

〈b1; q〉m〈a− b2; q〉m−n〈b2; q〉n〈b2 + 1− c; q〉n−m

〈1; q〉m〈1; q〉n

(−x)m(−y)−nQE
(
−
(

m
2

)
−
(

n
2

)
−m(c− b2 − n) + n(c− 2b2 − 1)

)
.

(99)

We can again rewrite this in the form of the q-Horn function. The operator form is

g1(x, y; q) = 2φ1(a + θq,2, b1; c + θq,2|q; x)

2φ1(b2, b2 + 1− c; b2 + 1− a|q; yqc−a−b2).
(100)

Again put

ψ(y) ≡ y−λ
∞

∑
n=0

an
y−n

〈1; q〉n
, (101)

and use the other q-hypergeometric function solution around 0.
According to (40) and (43), we have

g2(x, y; q)

≡ x1−c−θq,2 2φ1(a + 1− c, b1 + 1− c− θq,2; 2− c− θq,2|q; x)ψ(y)

=x1−c+λy−λ
∞

∑
m,n=0

an
〈a + 1− c, b1 + 1− c + n + λ; q〉m
〈1, 2− c + n + λ; q〉m〈1; q〉n

xm+ny−n.

(102)
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Similar to ([3], p. 797) we find that

[
{θq,1 + θq,2 + c}qDq,y

]
(xm+n+λ+1−cy−n−λ)

= {m}q{−n− λ}qxm+n+λ+1−cy−n−λ−1.
(103)

Because of the factor {b2 − n− λ}q, λ = b2, and we have

H2g2(x, y; q)(1− q)2 = x1−c+b2 y−b2

[
∞

∑
m=1,n=0

−an
〈a + 1− c, b1 + 1− c + n + b2; q〉m〈n + b2; q〉1

〈2− c + n + b2; q〉m〈1; q〉m−1〈1; q〉n
xm+ny−n−1q−n−b2

+
∞

∑
m=0,n=1

an〈1 + m + a− c; q〉1
〈a + 1− c, b1 + 1− c + n + b2; q〉m
〈1, 2− c + n + b2; q〉m〈1; q〉n−1

xm+ny−nq−n

]

= x2−c+b2 y−b2
∞

∑
m,n=0

[
−an
〈a + 1− c, b1 + 1− c + n + b2; q〉m+1

〈2− c + n + b2; q〉m+1〈1; q〉m〈1; q〉n
〈n + b2; q〉1q−b2

+an+1〈1 + m + a− c; q〉1
〈a + 1− c, b1 + 2− c + n + b2; q〉m

q〈1, 3− c + n + b2; q〉m〈1; q〉n

]
xm+ny−n−1q−n.

(104)

By the condition H2g2 = 0 we obtain

an =
〈b2, b1 + b2 + 1− c; q〉n
〈b2 + 2− c; q〉n

qn(1−b2), (105)

ψ(y) = y−b2 2φ1(b2, b1 + b2 + 1− c; b2 + 2− c|q; y−1q1−b2). (106)

g2(x, y; q) = xb2+1−cy−b2
∞

∑
m,n=0

〈a + 1− c, b1 + 1− c− n; q〉m〈b2, c− 1; q〉n
〈1, 2− c + n + b2; q〉m〈1, b2 + 2− c; q〉n

xm+ny−nqn(1−b1)

= xb2+1−cy−b2 Φ1

(
b1 + b2 + 1− c; a + 1− c, b2; b2 + 2− c

∣∣∣∣q; x,
x
y

qn(1−b2)

)
.

(107)

The operator form is

g2(x, y; q) = x1−c−θq,2 2φ1(a + 1− c, b1 + 1− c− θq,2; 2− c− θq,2|q; x)

y−b2 2φ1(b2, b1 + b2 + 1− c; b2 + 2− c|q; y−1q1−b2).
(108)

Type B2. Use the same ψ(x) and the function (6.187 [1]), according to (40) and (43)

g4(x, y; q)

≡ y−a−θq,1 2φ1(a + θq,1, a + 1− c; a + 1− b2 + θq,1|q;
1
y
)ψ(x)

=y−a
∞

∑
m,n=0

an
〈a + n + λ, a + 1− c; q〉m

〈1, a + 1− b2 + n + λ; q〉m〈1; q〉n
xn+λy−m−n−λ.

(109)

Similar to ([3], p. 798) we find that

[
{θq,1 + θq,2 + c}qDq,x

]
(xn+λy−m−n−a−λ)

= {c− a− 1−m}q{n + λ}qxn+λ−1y−m−n−a−λ.
(110)
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Again, λ = 0, and we have

H1g4(x, y; q) = y−a

[
∞

∑
m=0,n=1

an
〈c− a− 1−m; q〉1〈a + n, a + 1− c; q〉m
〈1, a + 1 + n− b2; q〉m〈1; q〉n−1

xn−1y−n−m

−
∞

∑
m=1,n=0

an〈b1 + n; q〉1
〈a + n, a + 1− c; q〉m
〈1, 2− c− n; q〉m〈1; q〉n

q−mxny−m−n

]

= y−a
∞

∑
m,n=0

[
an+1

〈c− a− 1−m; q〉1〈a + n + 1, a + 1− c; q〉m
〈1, a + 2 + n− b2; q〉m〈1; q〉n

−an〈n + b1; q〉1
〈a + 1− c, a + n; q〉m+1

〈a + 1 + n− b2; q〉m+1〈1; q〉m〈1; q〉n
q−m

]
xny−m−n.

(111)

By the condition H1g4 = 0 we obtain

an+1

an
= −qa+1−c 〈n + b1, n + a; q〉1

〈a + 1 + n− b2; q〉1
. (112)

This implies

an = (−1)n 〈a, b1; q〉n
〈a + 1− b2; q〉n

qn(a+1−c) (113)

ψ(x) = 2φ1(a, b1; a + 1− b2|q;−xqa+1−c). (114)

Finally, we obtain a q-analogue of the corrected version of Levavasseur.

g4(x, y; q) = y−a−θq,1 2φ1

(
a + θq,1, a + 1− c; a + 1− b2 + θq,1

∣∣∣∣q;
1
y

)

2φ1(a, b1; a + 1− b2|q;−xqa+1−c)

= y−aΦ1

(
a; b1, a + 1− c; a + 1− b2

∣∣∣∣q;− x
y

qa+1−c,
1
y

)
.

(115)

Theorem 6. The second solution is

h2(x, y; q) = y−a
∞

∑
m,n=0

〈a + 1− c; q〉n−m〈a; q〉n〈b1; q〉m
〈a + 1− b2; q〉n〈1; q〉m〈1; q〉n−m

xmy−n

QE((c− a)(m− n) + (1− b2)n).

(116)

This solution is a q-analogue of ([5], p. 31).

Proof. From the recurrences, using (6.14 [1]), we can find

h2(x, y; q) = y−a
∞

∑
m,n=0

〈c− a + m− n; q〉n−m〈1− a− n; q〉n〈b1; q〉m
〈−a− n + b2; q〉n〈1; q〉m〈m− n; q〉n−m

xmy−n=RHS.

(117)

Theorem 7. The third solution is

h3(x, y; q) = xb2+1−cy−b2

∞

∑
m,n=0

〈a + 1− c; q〉m−n〈b2; q〉n〈b1 + b2 + 1− c; q〉m
〈2 + b2 − c; q〉m〈1; q〉n〈1; q〉m−n

xmy−n

QE(−nb2 + n).

(118)
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This solution is a q-analogue of ([5], p. 31).

Proof. For the case ρ = b2 + 1− c, σ = −b2 we obtain the recurrence




Cm+1,n
Cmn

= 〈a+1−c+m−n,b1+b2+1−c+m;q〉1
〈1+m−n,2+b2−c+m;q〉1

Cm,n+1
Cmn

= 〈1+m−n,−b2−n;q〉1
〈a+m−n+1−c,−1−n;q〉1 .

(119)

The solution to this recurrence, using (6.14 [1]), is

h3(x, y; q) = xb2+1−cy−b2
∞

∑
m,n=0

〈a + 1− c; q〉m−nxmy−n

〈−b2 + 1− n; q〉n〈b1 + b2 + 1− c; q〉m
〈2 + b2 − c; q〉m〈−n; q〉n〈1; q〉m−n

=RHS.

(120)

6. Second q-Appell Function

Now we put γi = 0, , αi = βi = 1, ai = a in (49).

Theorem 8. A q-analogue of ((1) [6]), ([7], p. 50). The q-difference equation for Φ2 has the
following four independent solutions in the vicinity of (0, 0).

f1(x, y; q) ≡ Φ2(a; b1, b2; c1, c2|q; x, y),

f2(x, y; q) ≡ x1−c1 Φ2(a− c1 + 1; b1 − c1 + 1, b2; 2− c1, c2|q; x, y),

f3(x, y; q) ≡ y1−c2 Φ2(a− c2 + 1; b1, b2 − c2 + 1; c1, 2− c2|q; x, y),

f4(x, y; q) ≡ x1−c1 y1−c2

Φ2(a− c1 − c2 + 2; b1 − c1 + 1, b2 − c2 + 1; 2− c1, 2− c2|q; x, y).

(121)

Proof. According to (40) and (43), we find

f3(x, y; q)

≡ 2φ1(a + θq,2, b1; c1|q; x)y1−c2 2φ1(a + 1− c2, b2 + 1− c2; 2− c2|q; y)

=RHS.

(122)

f4(x, y; q)

= x1−c1 2φ1(a + 1− c1 + θq,2, b + 1− c1; 2− c1|q; x)

y1−c2 2φ1(a + 2− c1 − c2, b + 2− c2 + 1; 2− c2|q; y)

=RHS.

(123)

Remark 2. The asymmetric expressions for f4(x, y) in ([3], p. 804 f) are in error.

A q-analogue of ([3], p. 804).

Theorem 9. A q-integral representation of Φ2(a; b1, b2; c1, c2|q; x, y)
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Φ2(a; b1, b2; c1, c2|q; x, y) ∼= Γq

[
c1

a, c1 − a

] ∫ 1

0
ta−1 (qt; q)c1−a−1

(xt; q)b1
∞

∑
m=0

〈b2, a + 1− c1; q〉m
〈1, c2; q〉m

(−ty)m(tqc1−a; q)−m

QE
(
−
(

m
2

)
+ m(c1 − a− 1)

)
dq(t).

(124)

Proof. According to (7.50 [1]) we have

LHS = 2φ1(a + θq,2, b1; c1|q; x)2φ1(a, b2; c2|q; y)

=Γq

[
c1

a + θq,2, c1 − a− θq,2

] ∫ 1

0
ta+θq,2−1

(qt; q)c1−a−θq,2−1

(xt; q)b1

2φ1(a, b2; c2|q; y) dq(t)=RHS.

(125)

Theorem 10. The functions f3(x, y; q) and f4(x, y; q) have q-integral representations

f3(x, y; q) ∼= x1−c1 Γq

[
c2

a, c2 − a

] ∫ 1

0
ta−1 (qt; q)c2−a−1

(yt; q)b2
∞

∑
m=0

〈a + 1− c1, a + 1− c2, b1 + 1− c1; q〉m
〈1, 2− c1, a; q〉m

(−xt)m(tqc2−a; q)−m

QE
(
−
(

m
2

)
+ m(c2 − a− 1)

)
dq(t).

(126)

f4(x, y; q) ∼= x1−c1 y1−c2 Γq

[
2− c1

a + 1− c1, 1− a

] ∫ 1

0
ta−c1

(qt; q)−a

(xt; q)b1+1−c1
∞

∑
m=0

〈a + 2− c1 − c2, b2 − c2 + 1, a; q〉m
〈1, 2− c2, a + 1− c1; q〉m

(−yt)m(tq1−a; q)−m

QE
(
−
(

m
2

)
−ma

)
dq(t).

(127)

Proof. Use formulas (122) and (123).

7. Third q-Appell Function

Let us put αi = βi = 0, γi = 1, ci = c, ai = a, bi = b in (49).

Theorem 11. A q-analogue of ([3], p. 805). The third q-Appell function has q-integral representation

Φ3(a1, a2; b1, b2; c|q; x, y) ∼= Γq

[
c

a1, c− a1

] ∫ 1

0
ta1−1 (qt; q)c−a1−1

(xt; q)b1
∞

∑
m=0

〈a2, b2; q〉m
〈1, c− a1; q〉m

ym(qc−a1 t; q)m dq(t).
(128)

Proof. Using (7.50 [1]), we have

LHS=Γq

[
c + θq,2

a1, c− a1 + θq,2

] ∫ 1

0
ta1−1

(qt; q)c−a1−θq,2−1

(xt; q)b1

2φ1

[
a2, b2

c

∣∣∣∣q; y
]

by(43)
= RHS.

(129)
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8. Fourth q-Appell Function

Finally, we put γi = 0, αi = βi = 1, ai = a, bi = b in (49). We have

Φ4(a, b; c1, c2|q; x, y) = 2φ1(a + θq,2, b + θq,2; c1|q; x)2φ1(a, b; c2|q; y). (130)

Theorem 12. A q-analogue of ([3], p. 807). The fourth q-Appell function has q-integral represen-
tation

Φ4(a, b; c1, c2|q; x, y) ∼= Γq

[
c1

a, c1 − a

] ∫ 1

0
ta−1 (qt; q)c1−a−1

(xt; q)b
∞

∑
m=0

〈a + 1− c1, b; q〉m
〈1, c2; q〉m

(−yt)m (tqc1−a; q)−m

(xtqbt; q)m

QE
(
−
(

m
2

)
−m(a + 1− c1)

)
dq(t).

(131)

Proof. Using (7.50 [1]) and (43), we have

LHS=Γq

[
c1 + θq,2

a + θq,2, c1 − a− θq,2

] ∫ 1

0
ta+θq,2−1

(qt; q)c1−a−θq,2−1

(xt; q)b+θq,2

2φ1

[
a, b
c2

∣∣∣∣q; y
]
=RHS.

(132)

Theorem 13. A q-analogue of ([3], pp. 807–808). The q-difference equation for Φ4 has the
following four independent solutions in the vicinity of (0, 0).

f1(x, y; q) ≡ Φ4(a, b; c1, c2|q; x, y),

f2(x, y; q) ≡ y1−c2 Φ4(a− c2 + 1; b− c2 + 1; 2− c2, c1|q; x, y),

f3(x, y; q) ≡ x1−c1 Φ4(a− c1 + 1; b− c1 + 1; 2− c1, c2|q; x, y),

f4(x, y; q) ≡ x1−c1 y1−c2

Φ4(a− c1 − c2 + 2, b−c1 − c2 + 2; 2− c1, 2− c2|q; x, y).

(133)

Proof. According to (40) and (43), we find

f2(x, y; q)

= 2φ1(a + θq,2, b + θq,2; c1|q; x)y1−c2 2φ1(a + 1− c2, b + 1− c2; 2− c2|q; y)

=RHS.

(134)

f4(x, y; q)

= x1−c1 2φ1(a + 1− c1 + θq,2, b + 1− c1 + θq,2; 2− c1|q; x)

y1−c2 2φ1(a + 2− c1 − c2, b + 2− c1 − c2; 2− c2|q; y)

=RHS.

(135)

Theorem 14. The functions f2(x, y; q) and f4(x, y; q) have q-integral representations
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f2(x, y; q) ∼= y1−c2 Γq

[
c1

a, c1 − a

] ∫ 1

0
ta−1 (qt; q)c1−a−1

(xt; q)b
∞

∑
m=0

〈a + 1− c1, a + 1− c2, b + 1− c2; q〉m
〈1, a, 2− c2; q〉m

(−yt)m (tqc1−a; q)−m

(xtqbt; q)m

QE
(
−
(

m
2

)
−m(a + 1− c1)

)
dq(t).

(136)

f4(x, y; q) ∼= x1−c1 y1−c2 Γq

[
2− c1

a + 1− c1, 1− a

] ∫ 1
0 ta−c1 (qt;q)−a

(xt;q)b1+1−c1
∞
∑

m=0

〈a+2−c1−c2,b2−c2+1,a;q〉m
〈1,2−c2,a+1−c1;q〉m

(−yt)m(tq1−a; q
)
−m

QE
(
−
(

m
2

)
−ma

)
dq(t).

(137)

Proof. Use formulas (134) and (135).

9. Conclusions

We have given the other solutions to the systems of q-difference equations in three
forms

1. the factorized, umbral form
2. the series expansion, with convergence regions, q-analogues of [3]
3. possibly, a q-integral representation

These convergence regions are always larger than in the ordinary case, sometimes
q-deformed cones arise. Our method leads to more direct computation of the other solu-
tions of Appell differential and similar differential equations than the papers by Horn and
Borngässer. We have illustrated the new symbolic calculus in the special case q-Appell
functions, since more complex functions would lead to longer computations. These compu-
tations are similar to the solutions of differential equations by the Frobenius method. We
started with the solutions in the vicinity of (0, 0) and obtained the usual indicial equation
for the exponents. Then we found all solutions, which was treated by Borngässer [5]. With
the help of a lemma, we found a recurrence for the unknown coefficients, and the unknown
function was sometimes another q-Appell function and sometimes a q-Horn function.

Then, by the symbolic operator formulas, we found q-integral representations of the
formulas in the basis. For the solutions around (0, ∞) we found λ = b2 and by using
another lemma, we obtained another q-Horn function in the basis of solutions.

10. Discussion

The Frobenius method [8] for solutions of differential equations originates from papers
by Thomae [9], who studied logarithmic solutions of the Euler equation and Thomé [10],
who wrote about very general solutions of differential equations, convergent in disks
around a point a.

Thanks to Debiard and Gaveau for their most interesting papers on multiple hyper-
geometric functions. We have retained their notation as much as possible. The Debiard–
Gaveau umbral method was neither used in the thesis by Borngässer [5], nor in the papers
by Horn [4]. However, the umbral q-difference equations for q-Appel functions in our
book ([1], p. 436), in the spirit of Mellin [11] and Thomae [9], are equivalent to the q-
difference equations in this paper. The paper is also interesting for the case q = 1, since
Borngässer’s thesis [5], in German, is almost unknown, and is now available, in part,
in English. In a future paper, we will discuss the q-difference equations and q-integral
representations of the corresponding q-Horn functions. Likewise, the confluent forms [12],
as well as other multiple q-hypergeometric functions can be treated with this method.
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Control of String Vibrations by Displacement of One End with
the Other End Fixed, Given the Deflection Form at an
Intermediate Moment of Time
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* Correspondence: solodusha@isem.irk.ru

Abstract: We consider a boundary control problem for the equation of string vibration with given
initial and final conditions, given the deflection form at an intermediate moment of time. The control
is carried out by displacement of one end with the other end fixed. The problem is reduced to the
problem of a distributed action control with zero boundary conditions. We propose a constructive
approach to constructing a boundary control action by the separation of variables and methods of
the theory of control of finite-dimensional systems. The approach is applied to given functions. A
computational experiment was carried out with the construction of the corresponding graphs and
their comparative analysis. They confirm the obtained results.

Keywords: vibration control; boundary control; intermediate state control; separation of variables

1. Introduction

Mathematical modeling of various controlled physical and engineering processes
associated with vibration systems leads to wave equations. Controlled vibration systems
are widespread in various theoretical and applied fields of science. In practice, control
problems often arise for both distributed and lumped systems, in particular, when forming a
given (desired) form of motion that satisfies multipoint intermediate conditions. Multipoint
boundary value problems of control and optimal control of dynamical systems given both
the classical boundary (initial and final) and multipoint intermediate conditions have
applied value and theoretical importance. Therefore, they require research. In the scientific
literature, multipoint boundary value problems of control are considered for systems
described both by ordinary differential equations and partial differential equations. Unlike
control problems for systems described by ordinary differential equations, control problems
for ones described by partial differential equations with multipoint intermediate conditions
are little studied.

Many researchers study problems of (optimal) control of vibrational processes. As a
rule, both distributed and boundary-concentrated impacts are considered [1–19]. Modeling
and control of dynamic systems is currently an actual scientific direction. At the same time,
mathematical models of dynamic systems use both ordinary differential equations and
partial differential equations with intermediate conditions. Studies of the above problems
are the subject of such research contributions as [4–9,20,21] and others.

In production processes associated with the longitudinal movement of materials (for
example, a paper web), undesirable transverse perturbations arise, which, for a vertical
section, is described by the wave equation of a longitudinally moving string [22]. As a
result, statements associated with generating the desired oscillation arise, i.e., oscillation
control problems over a finite time. One of the possible approaches designed to prevent
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the appearance of unwanted disturbances can be considered the control of oscillations
with given multipoint intermediate conditions. These conditions can be interpreted as a
driving force.

Control and optimal control problems for the string oscillation equation with given
initial and final conditions and undivided values of string point velocities at intermediate
times are considered in [5,6]. The presented work is close to these articles.

This study solves the problem of boundary control of vibrations of a homogeneous
string with given initial and final conditions, with a given form of deflection at an interme-
diate moment of time. Control is implemented by displacing the left end with the right end
fixed. The problem is reduced to a distributed action control problem with zero boundary
conditions. Using the method of separation of variables and methods of the theory of
control of finite-dimensional systems for the first n harmonics of vibrations, we construct
the required boundary control, under the action of which the deflection function of the
string takes a given (or close to a given) value at an intermediate moment of time. In the
paper, we formulate the corresponding statement and theorem for the first n harmonics.
The results obtained for the first n harmonics are illustrated for n = 1 and n = 2. The
presented study is located at the intersection of several scientific fields. We use terminology
and approaches from the fields of control of systems with distributed parameters and
control of finite-dimensional dynamic systems.

This paper is organized as follows. Section 2 contains formulas necessary for the
analytical construction of the solution. Further, in Section 3, using the method of separation
of variables and methods of the theory of control of finite-dimensional systems, for the first n
harmonics of vibrations, we construct the required boundary control and the corresponding
string deflection function. The presented formulas are necessary for the constructiveness of
constructing an analytical solution. The constructed analytical solution of the formulated
problem is compactly presented in Sections 2 and 3 with the corresponding formulations of
the obtained general results in the form of a statement and a theorem. Section 4 presents
formulas for fixed n = 1 and n = 2. They are also used in the Section 5 of the paper. In
Section 5, we realize a computational experiment, build corresponding graphs and make a
comparative analysis. They confirm the results of the study. The conclusion summarizes
the main results.

2. Problem Statement and Its Reduction to a Problem with Zero Boundary Conditions

Consider the small transverse vibrations of a taut homogeneous string described by
the function Q(x, t), 0 ≤ x ≤ l, 0 ≤ t ≤ T, which obeys the wave equation

∂2Q
∂t2 = a2 ∂2Q

∂x2 , 0 < x < l, t > 0, (1)

subject to boundary conditions

Q(0, t) = u(t), Q(l, t) = 0, 0 ≤ t ≤ T. (2)

In the Equation (1) a2 = T0
ρ , where T0 is string tension, ρ is density of the homogeneous

string, and the function u(t) is a boundary control (u(t) is unknown function).
Let the initial and final conditions be given as follows:

Q(x, 0) = ϕ0(x),
∂Q
∂t

∣∣∣∣
t=0

= ψ0(x), 0 ≤ x ≤ l, (3)

Q(x, T) = ϕT(x) = ϕ2(x),
∂Q
∂t

∣∣∣∣
t=T

= ψT(x) = ψ2(x), 0 ≤ x ≤ l, (4)

where T is some given moment of time. It is assumed that the function Q(x, t) ∈ C2(ΩT),
where the set ΩT = {(x, t) : x ∈ [0, l], t ∈ [0, T]}.
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Let at some moment of time t1 (0 < t1 < T) an intermediate state of points (deflection)
of the string be given:

Q(x, t1) = ϕ1(x), 0 ≤ x ≤ l. (5)

Let us state the following problem of boundary control of string vibrations.
Among possible boundary controls u(t), 0 ≤ t ≤ T, (2), it is required to find such

a control that would cause the vibrating motion of the system (1) to pass from the given
initial state (3) to the final state (4), taking a given form of deflection (5) at an intermediate
moment of time.

Let us assume that the functions ϕi(x)
(

i = 0, 2
)

belong to the space C2[0, l] and
the functions ψ0(x) and ψT(x) belong to the space C1[0, l]. The function u(t) ∈ C2[0, T]
is called an admissible control. It is also assumed that all functions are such that the
consistency conditions below are satisfied.

Since the boundary conditions (2) are not homogeneous, we reduce the solution to the
problem stated to a control problem with zero boundary conditions. Hence, following [23],
we find the solution to the Equation (1) in the form of the sum

Q(x, t) = V(x, t) + W(x, t), (6)

where V(x, t) is an unknown function to be determined, with homogeneous boundary
conditions

V(0, t) = V(l, t) = 0, (7)

and the function W(x, t) is the solution to the Equation (1) with non-homogeneous boundary
conditions

W(0, t) = u(t), W(l, t) = 0.

The function W(x, t) has the form

W(x, t) =
(

1− x
l

)
u(t). (8)

Substituting (6) into (1) and considering (8), we obtain the following equation for the
determination of the function V(x, t):

∂2V
∂t2 = a2 ∂2V

∂x2 + F(x, t), (9)

where
F(x, t) =

( x
l
− 1
)

u′′ (t). (10)

The function V(x, t) by virtue of conditions (2)–(5) must satisfy the initial conditions

V(x, 0) = ϕ0(x) +
( x

l
− 1
)

u(0),
∂V
∂t

∣∣∣∣
t=0

= ψ0(x) +
( x

l
− 1
)

u′(0), (11)

the intermediate condition

V(x, t1) = ϕ1(x) +
( x

l
− 1
)

u(t1) (12)

and final conditions

V(x, T) = ϕT(x) +
( x

l
− 1
)

u(T),
∂V
∂t

∣∣∣∣
t=T

= ψT(x) +
( x

l
− 1
)

u′(T). (13)

It follows from the condition (7) that

V(0, ti) = V(l, ti) = 0,
∂V(0, t)

∂t

∣∣∣∣
t=ti

=
∂V(l, t)

∂t

∣∣∣∣
t=ti

= 0, i = 0, 2. (14)
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From the conditions (11), (12) and (13), given (14), we obtain the following consistency
conditions:

u(0) = ϕ0(0), u′(0) = ψ0(0), ϕ0(l) = ψ0(l) = 0, (15)

u(t1) = ϕ1(0), ϕ1(l) = 0, (16)

u(T) = ϕT(0), u′(T) = ψT(0), ϕT(l) = ψT(l) = 0. (17)

Thus, taking into account the conditions (15)–(17), the conditions (11)–(13) are written
as follows:

V(x, 0) = ϕ0(x) +
( x

l
− 1
)

ϕ0(0),
∂V
∂t

∣∣∣∣
t=0

= ψ0(x) +
( x

l
− 1
)

ψ0(0), (18)

V(x, t1) = ϕ1(x) +
( x

l
− 1
)

ϕ1(0), (19)

V(x, T) = ϕT(x) +
( x

l
− 1
)

ϕT(0),
∂V
∂t

∣∣∣∣
t=T

= ψT(x) +
( x

l
− 1
)

ψT(0). (20)

Thus, the solution to the stated problem of boundary control of vibrations of a string
with a given form of deflection at an intermediate moment of time is reduced to the problem
of control of (9) with boundary conditions (7) and is stated as follows: to find such a control
u(t), 0 ≤ t ≤ T, under which the vibratory motion (9) with boundary conditions (7) from
the given initial state (18) through the intermediate state (19) passes to the final state (20).

3. Problem Solution

Given that the boundary conditions (7) are homogeneous and consistency conditions
are satisfied, according to the Fourier series theory, we find the solution to the Equation (9)
in the form

V(x, t) = ∑∞
k=1 Vk(t) sin

πk
l

x. (21)

Let us represent the functions F(x, t), ϕi(x)
(
i = 0, 2

)
, ψ0(x) and ψT(x) as Fourier

series, and by substituting their values together with V(x, t) in the Equations (9) and (10)
and in the conditions (18)–(20), we obtain

..
Vk(t) + λ2

kVk(t) = Fk(t), λ2
k =

(
aπk

l

)2
, Fk(t) = −

2a
λkl

u′′ (t), (22)

Vk(0) = ϕ
(0)
k −

2a
λkl

ϕ0(0),
.

Vk(0) = ψ
(0)
k −

2a
λkl

ψ0(0), (23)

.
Vk(0) = ψ

(0)
k −

2a
λkl

ψ0(0), (24)

Vk(T) = ϕ
(T)
k − 2a

λkl
ϕT(0),

.
Vk(T) = ψ

(T)
k − 2a

λkl
ψT(0), (25)

where Fk(t), ϕ
(i)
k
(
i = 0, 2

)
, ψ

(0)
k and ψ

(T)
k denote the Fourier coefficients of the functions

F(x, t), ϕi(x)
(
i = 0, 2

)
, ψ0(x) and ψT(x), respectively.

The general solution to the Equation (22) with the initial conditions (23) is of the form

Vk(t) = Vk(0) cos λkt +
1

λk

.
Vk(0) sin λkt +

1
λk

∫ t

0
Fk(τ) sin λk(t− τ)dτ. (26)

Now, given the intermediate (24) and final (25) conditions and the consistency condi-
tions (15)–(17), using the approaches given in [8,9], we obtain from (26) that the function
u(τ) for each k must satisfy the following integral relation:

∫ T

0
Hk(τ)u(τ)dτ = Ck(t1, T), k = 1, 2, (27)
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Hk(τ) =




sin λk(T − τ)
cos λk(T − τ)

h(1)k (τ)


, h(1)k (τ) =

{
sin λk(t1 − τ), 0 ≤ τ ≤ t1,
0 , t1 < τ ≤ T,

Ck(t1, T) =




C1k(T)
C2k(T)
C1k(t1)


, (28)

C1k(T) =
1

λ2
k

[
λkl
2a

C̃1k(T) + X1k

]
, C̃1k(T) = λkVk(T)− λkVk(0) cos λkT −

.
Vk(0) sin λkT,

C2k(T) =
1

λ2
k

[
λkl
2a

C̃2k(T) + X2k

]
, C̃2k(T) =

.
Vk(T) + λkVk(0) sin λkT −

.
Vk(0) cos λkT, (29)

C1k(t1) =
1

λ2
k

[
λkl
2a

C̃1k(t1) + X(1)
1k

]
, C̃1k(t1) = λkVk(t1)− λkVk(0) cos λkt1 −

.
Vk(0) sin λkt1,

X1k = λk ϕT(0)− ψ0(0) sin λkT − λk ϕ0(0) cos λkT,

X2k = ψT(0)− ψ0(0) cos λkT + λk ϕ0(0) sin λkT, (30)

X(1)
1k = λk ϕ1(0)− ψ0(0) sin λkt1 − λk ϕ0(0) cos λkt1.

Thus, to find the function u(τ), τ ∈ [0, T], we obtain the infinite integral relations
(27). In practice, the first n harmonics of vibrations are selected and the problem of
control synthesis is solved using methods of the theory of control of finite-dimensional
systems [8,9,24].

For the first n harmonics, let us introduce the following block vector notations:

Hn(τ) =




H1(τ)
H2(τ)

...
Hn(τ)


, ηn =




C1(t1, T)
C2(t1, T)

...
Cn(t1, T)


. (31)

with the dimensionalities Hn(τ)− (3n× 1) and ηn − (3n× 1). Consequently, for the first n
harmonics, taking into account (31) from (27), we have

∫ T

0
Hn(τ)un(τ)dτ = ηn (32)

(here and elsewhere, the designation of the letter “n” in the lower index will mean “for the
first n harmonics”).

The obtained relation (32) implies the validity of the following statement.

Statement. For each n, the process described by equation (22) with conditions (23)–(25) is com-
pletely controllable if and only if, for any given vector ηn (31), the control un(t), t ∈ [0, T], can be
found, satisfying condition (32).

For arbitrary numbers of first harmonics, the boundary control action un(t), satisfying
the integral relation (32), has the form [8,9,24]:

un(t) = HT
n (t)S

−1
n ηn + fn(t), (33)

where HT
n (t) is a transposed matrix and fn(t) is some vector function such that

∫ T

0
Hn(t) fn(t)dt = 0, Sn =

∫ T

0
Hn(t)HT

n (t)dt. (34)

Here, Hn(t)HT
n (t) is the outer product, Sn is a known matrix of dimensionality

(3n× 3n) and it is assumed that detSn 6= 0.
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Thus, the following theorem is true.

Theorem 1 When the initial data of the problem specified in Section 1 are matched and the complete
controllability condition is fulfilled, problem (1)–(5) has a solution determined for each harmonic of
motion by the formula (33).

Substituting (33) into (22) and the expression obtained for Fk(t) into (26), we obtain
the function Vk(t), t ∈ [0, T]. Then, from (21), we have

Vn(x, t) = ∑n
k=1 Vk(t) sin

πk
l

x, (35)

and from (6) for the first n harmonics, the string deflection function Qn (x, t) is written as

Qn(x, t) = Vn(x, t) + Wn(x, t), (36)

where
Wn(x, t) =

(
1− x

l

)
un(t). (37)

4. Solution Construction in the Cases When n = 1 and n = 2

Applying the above approach, we construct the boundary control given n = 1 and
given n = 2 and the string deflection function, respectively.

4.1. Case n = 1

Given n = 1 (therefore, k = 1), according to (31), we have H1(τ) = H1(τ) and
η1 = C1(t1, T), and from (34) we obtain

S1 =
∫ T

0
H1(τ)HT

1 (τ)dτ =




s(1)11 s(1)12 s(1)13

s(1)21 s(1)22 s(1)23

s(1)31 s(1)32 s(1)33


.

Elements of the matrix S1, according to the notation (28), have the following form:

s(1)11 =
T
2
− 1

4λ1
sin 2λ1T, s(1)12 = s(1)21 =

1
2λ1

sin2 λ1T, s(1)22 =
T
2
+

1
4λ1

sin 2λ1T,

s(1)33 = t1
2 − 1

4λ1
sin 2λ1t1, s(1)13 = s(1)31 = t1

2 cos λ1(T − t1)− 1
2λ1

sin λ1t1 cos λ1T,

s(1)23 = s(1)32 = 1
2λ1

sin λ1t1 sin λ1T − t1
2 sin λ1(T − t1),

and ∆ = detS1 6= 0. Denote by S−1
1 the symmetric matrix of dimension (3× 3) inverse to

the matrix S1.
From (33), it follows that u1(τ) = HT

1 (τ)S
−1
1 η1 + f1(τ). Assuming that f1(τ) = 0, we

obtain, given τ ∈ [0, t1],

u1(τ) = sin λ1(T − τ)[ŝ11C11(T) + ŝ12C21(T) + ŝ13C11(t1)]
+ cos λ1(T − τ)[ŝ21C11(T) + ŝ22 C21(T) + ŝ23C11(t1)]
+ sin λ1(t1 − τ)[ŝ31C11(T) + ŝ32C21(T) + ŝ33C11(t1)],

(38)

and given τ ∈ (t1, T],

u1(τ) = sin λ1(T − τ)[ŝ11C11(T) + ŝ12C21(T) + ŝ13C11(t1)]
+ cos λ1(T − τ)[ŝ21C11(T) + ŝ22C21(T) + ŝ23C11(t1)].

(39)
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Note that according to (36), we can write the expression for the function Q1 (x, t).
Assume that t1 = l

a , T = 2 l
a . Then, given λ1 = aπ

l , we obtain t1λ1 = π, Tλ1 = 2π and
λ1(T − t1) = π. For matrices S1 and S−1

1 , we have:

S1 =




l
a 0 − l

2a
0 l

a 0
− l

2a 0 l
2a


, S−1

1 =




2a
l 0 2a

l
0 a

l 0
2a
l 0 4a

l


,

and for the control from (38) and (39), we obtain

u1(τ) =

{ a
l cos λ1τ C21(T) + 2a

l sin λ1τ C11(t1), τ ∈ [0, t1],
a
l cos λ1τ C21(T)− 2a

l sin λ1τ (C11(T) + C11(t1)), τ ∈ (t1, T].
(40)

For the function V1(t) from (26), given (22), so that F1(t) = − 2a
λ1l u′′ 1(t), we obtain,

given t ∈ [0, t1],

V1(t) =
(

V1(0)−
aλ1t C11(t1)

πl

)
cos λ1t +

( .
V1(0)

λ1
+

a(2C11(t1) + λ1t C21(T))
2πl

)
sin λ1t,

and given t ∈ (t1, T],

V1(t) =
[

V1(0) +
a(t− t1)λ1

πl
C11(T) +

a(t− 2t1)λ1

πl
C11(t1)

]
cos λ1t

+

[ .
V1(0)

λ1
+

atλ1

2πl
C21(T)−

a(C11(T) + C11(t1))

πl

]
sin λ1t.

From (36), given (35) and (37), we have

Q1(x, t) = V1(t) sin
π

l
x +

(
1− x

l

)
u1(t). (41)

4.2. Case n = 2

Given n = 2 (i.e., k = 1, 2) from (31), according to (28)–(30), we have

H2(τ) =

(
H1(τ)
H2(τ)

)
=




sin λ1(T − τ)
cos λ1(T − τ)

h(1)1 (τ)
sin λ2(T − τ)
cos λ2(T − τ)

h(1)2 (τ)




, η2 =

(
C1(t1, T)
C2(t1, T)

)
=




C11(T)
C21(T)
C11(t1)
C12(T)
C22(T)
C12(t1)




,

where

h(1)1 (τ) =

{
sin λ1(t1 − τ), 0 ≤ τ ≤ t1,
0, t1 < τ ≤ T,

h(1)2 (τ) =

{
sin λ2(t1 − τ), 0 ≤ τ ≤ t1,
0 , t1 < τ ≤ T.

The values C11(T), C21(T), C11(t1), C12(T), C22(T) and C12(t1) can be easily calculated
using formulas (29) and (30). Their explicit form is omitted for brevity.

From (34), we obtain

S2 =

T∫

0

H2(τ)HT
2 (τ)dτ
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where S2 is a symmetric matrix of dimension (6× 6) and its elements s(2)ij are equal to ones
of the matrix S1, i.e.,

s(2)ij = s(1)ij for i, j = 1, 3; s(2)ij = s(2)ji for i, j = 1, 6, i 6= j.

Given λ2 = 2aπ
l and using the assumptions made in Section 4.1, for the matrix S2,

we obtain:

S2 =




l
a 0 − l

2a 0 0 0
0 l

a 0 0 0 − 4l
3aπ

− l
2a 0 l

2a 0 − 2l
3aπ 0

0 0 0 l
a 0 l

2a
0 0 − 2l

3aπ 0 l
a 0

0 − 4l
3aπ 0 l

2a 0 l
2a




,

where the calculation takes into account the following ratios: t1λ2 = 2π, Tλ2 = 4π,
λ2(T − t1) = 2π, (λ1 + λ2)T = 6π, λ1 + λ2 = 3aπ

l , λ1 − λ2 = − aπ
l , λ2

1 − λ2
2 = −3

( aπ
l
)2,

λ1T + λ2t1 = 4π, λ1T − λ2t1 = 0, λ2T + λ1t1 = 5π and λ2T − λ1t1 = 3π. Let us note that
detS2 = l6

64 a6 π4 p q , where p =
(
9π2 − 64

)−1, q =
(
9π2 − 16

)−1. Having the matrix S2, it is

not difficult to calculate the matrix S−1
2 , the inverse to it.

From (33), it follows that u2(τ) = HT
2 (τ)S

−1
2 η2 + f2(τ). For simplicity, assuming that

f2(τ) = 0, we obtain given τ ∈ [0, t1],

u2(τ) =
2a
l q
(
9π2C11(t1) + 8C11(T) + 6πC22(T)

)
sin λ1τ

+ 3aπ
l p(16C12(t1)− 8C12(T) + 3πC21(T)) cos λ1τ

+ 2a
l p
(
32C12(T)− 9π2C12(t1)− 12πC21(T)

)
sin λ2τ

+ 3aπ
l q(8C11(t1) + 4C11(T) + 3πC22(T)) cos λ2τ,

(42)

and given τ ∈ (t1, T],

u2(τ) =
2a
l q
[
8C11(T)− 9π2(C11(t1) + C11(T))− 6πC22(T)

]
sin λ1τ

+ 3aπ
l p(16C12(t1)− 8C12(T) + 3πC21(T)) cos λ1τ

+ 2a
l p
[
9π2(C12(t1)− C12(T)) + 32C12(T) + 12πC21(T)] sin λ2τ

+ 3aπ
l q(8C11(t1) + 4C11(T) + 3πC22(T)) cos λ2τ,

(43)

where

C11(T) =
l

2a
(V1(T)−V1(0)) +

ϕT(0)− ϕ0(0)
λ1

,

C21(T) =
l

2aλ1

( .
V1(T)−

.
V1(0)

)
+

ψT(0)− ψ0(0)
λ2

1
,

C11(t1) =
l

2a
(V1(t1) + V1(0)) +

ϕ1(0) + ϕ0(0)
λ1

,

C12(T) =
l

2a
(V2(T)−V2(0)) +

ϕT(0)− ϕ0(0)
λ2

, (44)

C22(T) =
l

2aλ2

( .
V2(T)−

.
V2(0)

)
+

ψT(0)− ψ0(0)
λ2

2
,

C12(t1) =
l

2a
(V2(t1)−V2(0)) +

ϕ1(0)− ϕ0(0)
λ2

.

From (26), for V2(t) given (22), so that F2(t) = − 2a
λ2l u′′ 2(t), we obtain,
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given t ∈ [0, t1]

V2(t) =
α1

λ2
1−λ2

2
cos λ1t− β1

λ2
1−λ2

2
sin λ1t +

(
V2(0)− β2t

2λ2
+ α1

λ2
1−λ2

2

)
cos λ2t

+

( .
V2(0)

λ2
+ α2t

2λ2
+ β1λ1

λ2(λ2
1−λ2

2)
+ β2

2λ2
2

)
sin λ2t

and given t ∈ (t1, T],

V2(t) =
γ1

λ2
1−λ2

2
sin λ1t− α1

λ2
1−λ2

2
cos λ1t

+

(
V2(0) +

α1
λ2

1−λ2
2
− γ2t

2λ2
+π(λ1−2λ2)(γ2−β2)

2λ2(λ2
1−λ2

2)

)
cos λ2t

+

( .
V2(0)

λ2
+ α2t

2λ2
+ γ2

2λ2
2
+ λ1(γ1+2β1)

λ2(λ2
1−λ2

2)

)
sin λ2t,

where

α1 =
3aλ2

1 p
l

[8(2C12(t1)− C12(T)) + 3 πC21(T)],

α2 =
3aλ2

2q
l

[4(2C11(t1) + C11(T)) + 3 πC22(T)],

β1 =
2aλ2

1q
πl

(
9 π2C11(t1) + 6πC22(T) + 8C11(T)

)
,

β2 =
2aλ2

2 p
πl

(
32C12(T)− 12πC21(T)− 9 π2C12(t1)

)
,

γ1 =
2aλ2

1q
πl

[
9 π2(C11(t1) + C11(T)) + 6πC22(T)− 8C11(T)

]
,

γ2 =
2aλ2

2 p
πl

[
32C12(T) + 12πC21(T)− 9 π2(C12(T)− C12(t1))

]
.

From (36), given (35) and (37), we have

Q2(x, t) = V2(x, t) + W2(x, t) = V1(t) sin
π

l
x + V2(t) sin

2π

l
x +

(
1− x

l

)
u2(t). (45)

5. Computational Experiment

Applying the above approach, we construct the boundary control given n = 1 and
n = 2 and the string deflection function, respectively. This section includes the initial data,
the results obtained and a discussion of the methodology’s effectiveness.

5.1. Initial Data

Let us present the results of a computational experiment for a given initial, interme-
diate and final state of the string given n = 1 and n = 2 assuming that a = 1

3 and l = 1
and compare the behavior of the string deflection function with the given initial functions.
Given the chosen values of a and l, we have

t1 =
l
a
= 3, T = 2

l
a
= 6, λ1 =

π

3
, λ2 =

2π

3
.

The choice of an intermediate value t1 = T
2 is due to practical recommendations [4].

We choose the specific initial functions from the functions class from the problem
statement (Section 2) that satisfied the consistency conditions (15)–(17).

Let the following initial state be specified given t = 0:

ϕ0(x) =
1
2

x2 − 2x
5
− 1

10
, ψ0(x) = − x2

3
+

x
3

,
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Given t1 = 3, an intermediate state is specified as follows:

ϕ1(x) =
x3

3
− x2 +

2x
3

,

Moreover, given T = 6, the next end state is specified:

ϕT(x) = 0, ψT(x) = 0.

The proposed approach is applicable for any initial functions that meet the necessary
requirements given in Section 2 so that the selected functions are some of them.

Note the choice of final zero values does not reflect the essence of the limitations of the
technique and is made to simplify the final formulas. In addition, the problem of stabilizing
string vibrations is relevant for damping transverse vibrations of a longitudinally moving
string (for example, a paper web) in production [22].

The coefficients of the Fourier series for the functions ϕ0(x), ψ0(x), ϕ1(x), ϕT(x) and
ψT(x) are equal, respectively, to:

ϕ
(0)
1 = − 4

π3 −
1

5π
, ϕ

(0)
2 = − 1

10π
, ψ

(0)
1 =

8
3π3 , ϕ

(1)
1 =

4
π3 , ϕ

(1)
2 =

1
2π3 ,

ψ
(0)
2 = ϕ

(T)
1 = ϕ

(T)
2 = ψ

(T)
1 = ψ

(T)
2 = 0.

The values of these functions at the ends of the string are as follows:

ϕ0(0) = − 1
10 , ϕ1(0) = ϕT(0) = ψT(0) = ψ0(0) = ϕ0(1) = ϕ1(1) = ϕT(1)

= ψT(1) = ψ0(1) = 0.

From (23)–(25), we have

V1(0) = −
4

π3 ,
.

V1(0) =
8

3π3 , V1(3) =
4

π3 , V1(6) = 0,
.

V1(6) = 0,

V2(0) = 0,
.

V2(0) = 0, V2(3) =
1

2π3 , V2(6) = 0,
.

V2(6) = 0.

From (44), we have

C11(6) =
6

π3 +
3

10π
, C21(6) = −

12
π4 , C11(3) = −

3
10π

,

C12(6) =
3

20π
, C22(6) = 0, C12(3) =

3
4π3 +

3
20π

.

5.2. Results

In this section, we present the calculation formulas obtained for the functions u1, u2,
V1, V2, Q1 and Q2. From (40), (42) and (43), we have

u1(t) =

{
− 4

π4 cos π
3 t − 1

5π sin π
3 t, t ∈ [0, 3],

− 4
π4 cos π

3 t − 4
π3 sin π

3 t , t ∈ (3, 6],
(46)

u2(t) = 6
5π2

(
π2 − 20

)
p cos π

3 t − 6
5π2

(
π2 − 20

)
q cos 2π

3 t

− 1
5π3

(
9π4 − 8π2 − 160

)
q sin π

3 t− 1
10π3

(
9π4 + 13π2 − 960

)
p sin 2π

3 t, t ∈ [0, 3],
(47)

u2(t) = 6
5π2

(
π2 − 20

)
p cos π

3 t − 6
5π2

(
π2 − 20

)
q cos 2π

3 t

− 4
5π3

(
43π2 − 40

)
q sin π

3 t + 1
10π3

(
77π2 − 960

)
p sin 2π

3 t, t ∈ (3, 6].
(48)
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Note that the following estimates are obtained for the functions u1(t) and u2(t):

max
0≤ t≤6

|u1(t)| ≈ 0.1354, max
0≤ t≤6

|u2(t)| ≈ 0.1193.

We obtain the following explicit expressions for the functions V1(t) and V2(t):

V1(t) =





tπ2−120
30π3 cos π

3 t − 20t+3π2−240
30π4 sin π

3 t, t ∈ [0, 3],
3π2+20t−180

30π3 cos π
3 t − 2(t−9)

3π4 sin π
3 t , t ∈ (3, 6],

(49)

V2(t) = 2
5π3

(
π2 − 20

)
p cos π

3 t − 1
15π4

(
9π4 − 8π2 − 160

)
q sin π

3 t

+ 1
30π3

((
9π4 + 13π2 − 960

)
t− 12π2 + 240

)
p cos 2π

3 t

−
(

2
5π2

(
π2 − 20

)
tq+ 1

60π4

(
81π6 + 1215π4 − 24, 688π2 + 25, 600

)
pq
)

sin 2π
3 t,

t ∈ [0, 3],

(50)

V2(t) = 2
5π3

(
π2 − 20

)
p cos π

3 t − 4
15π4

(
43π2 − 40

)
q sin π

3 t

+ 1
30π3

((
960− 77π2)t + 27π4 + 258π2 − 5520

)
p cos 2π

3 t

−
(

2
5π2

(
π2 − 20

)
tq + 1

60π4

(
−324π6 + 3609π4 + 8432π2 − 66, 560

)
pq
)

sin 2π
3 t,

t ∈ (3, 6].

(51)

Note that the following estimates take place for the functions V1(t) and V2(t):

max
0≤t≤6

|V1(t)| ≈ 0.1165, max
0≤t≤6

|V2(t)| ≈ 0.0321.

This confirms that the absolute value of each subsequent summand of series (21)
decreases.

From (41) and (45), given (46)–(51), we obtain the following explicit expressions for
the functions Q1(x, t) and Q2(x, t):

given t ∈ [0, 3],

Q1(t, x) =
(

tπ2 − 120
30π3 cos

π

3
t − 20t + 3π2 − 240

30π4 sin
π

3
t
)

sin πx

−
(

4
π4 cos

π

3
t +

1
5π

sin
π

3
t
)
(1− x),

given t ∈ (3, 6],

Q1(t, x) =
(

3π2 + 20t− 180
30π3 cos

π

3
t − 2(t− 9)

3π4 sin
π

3
t
)

sin πx

−
(

4
π4 cos

π

3
t +

4
π3 sin

π

3
t
)
(1− x),

given t ∈ [0, 3],

Q2(x, t) =
(

tπ2 − 120
30π3 cos

π

3
t − 20t + 3π2 − 240

30π4 sin
π

3
t
)

sin πx

+

(
2

5π3

(
π2 − 20

)
p cos

π

3
t − 1

15π4

(
9π4 − 8π2 − 160

)
q sin

π

3
t

+ 1
30π3

((
9π4 + 13π2 − 960

)
t− 12π2 + 240

)
p cos 2π

3 t

−
(

2
5π2

(
π2 − 20

)
tq + 1

60π4

(
81π6 + 1215π4 + 24, 688π2 + 25, 600

)
pq
)
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· sin
2π

3
t
)

sin 2πx +

(
6

5π2

(
π2 − 20

)
p cos

π

3
t − 6

5π2

(
π2 − 20

)
q cos

2π

3
t

− 4
5π3

(
43π2 − 40

)
q sin

π

3
t+

1
10π3

(
77π2 − 960

)
p sin

2π

3
t
)
(1− x),

and given t ∈ (3, 6],

Q2(x, t) =
(

3π2 + 20t− 180
30π3 cos

π

3
t − 2(t− 9)

3π4 sin
π

3
t
)

sin πx

+

(
2

5π3

(
π2 − 20

)
p cos

π

3
t − 4

15π4

(
43π2 − 40

)
q sin

π

3
t

+
1

30π3

((
960− 77π2

)
t + 27π4 + 258π2 − 5520

)
p cos

2π

3
t

−
(

2
5π2

(
π2 − 20

)
tq +

1
60π4

(
−324π6 + 3609π4 + 8432π2 − 66, 560

)
pq
)

· sin
2π

3
t
)

sin 2πx +

(
6

5π2

(
π2 − 20

)
p cos

π

3
t− 6

5π2

(
π2 − 20

)
q cos

2π

3
t

− 4
5π3

(
43π2 − 40

)
q sin

π

3
t +

1
10π3

(
77π2 − 960

)
p sin

2π

3
t
)
(1− x).

At the moment of time t = 0, the functions Q1(x, 0) and Q2(x, 0) are equal to:

Q1(x, 0) = − 4
π3 sin πx− 4

π4 (1− x),

Q2(x, 0) = − 4
π3 sin πx +

288
5π2

(
π2 − 20

)
pq(1− x).

Calculate

∂Q1(x, t)
∂t

∣∣∣∣
t=0

=
.

Q1(x, 0) =
8

3π3 sin πx− 1
15

(1− x),

∂Q2(x, t)
∂t

∣∣∣∣
t=0

=
.

Q2(x, 0) =
8

3π3 sin πx

− 1
15π2

(
162π6 − 675π4 − 9776π2 + 25, 600

)
pq(1− x).

We can check that the expression of the deflection functions Q1(x, 3) and Q2(x, 3) at
the final moment of the segment [0, 3] coincides with the corresponding expression at the
beginning of the next time interval, and the functions have the form:

Q1(x, 3) =
40− π2

10π3 sin πx +
4

π4 (1− x),

Q2(x, 3) =
40− π2

10π3 sin πx +
1

10π3

(
5π2 + 9π4 − 800

)
p sin 2πx

− 12
5π2

(
π2 − 20

)(
9π2 − 40

)
pq(1− x).

The deflection function and its derivative at the moment of time t = 6 are equal,
respectively, to:

Q1(x, 6) =
π2 − 20

10π3 sin πx− 4
π4 (1− x),

∂Q1(x, t)
∂t

∣∣∣∣
t=6

=
.

Q1(x, 6) =
4

3π3 sin πx− 4
3π2 (1− x),
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Q2(x, 6) =
π2 − 20

10π3 sin πx +
1

10π
sin 2πx +

288
5π2

(
π2 − 20

)
pq(1− x)

∂Q2(x, t)
∂t

∣∣∣∣
t=6

=
.

Q2(x, 6) =
4

3π3 sin πx− 6
5π

(
π2 − 20

)
q sin 2πx

− 1
15π2

(
855π4 − 2576π2 − 5120

)
pq(1− x).

5.3. Illustrative Material

Let us illustrate the obtained formulas on the graphs. The graphs of the functions
u1(t) and u2(t) are given in Figure 1.
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Figure 2. Graphs of the functions 𝑉1(𝑡) (solid line) and 𝑉2(𝑡) (dashed line). 

The graphical representation of the functions 𝑄1(𝑥, 0), 𝑄2(𝑥, 0) and  𝜑0(𝑥) is illus-

trated in Figure 3. 

Figure 1. Graphs of u1(t) (solid line) and u2(t) (dashed line).

The graphs of the functions V1(t) and V2(t) are shown in Figure 2.

Axioms 2022, 11, x FOR PEER REVIEW 13 of 17 
 

−
1

15𝜋2
(162𝜋6 − 675𝜋4 − 9776𝜋2 + 25,600)𝑝𝑞(1 − 𝑥).  

We can check that the expression of the deflection functions 𝑄1(𝑥, 3) and 𝑄2(𝑥, 3) at 

the final moment of the segment [0,3] coincides with the corresponding expression at the 

beginning of the next time interval, and the functions have the form: 

𝑄1(𝑥, 3) =
40−𝜋2

10𝜋3
sin𝜋𝑥 +

4

𝜋4
(1 − 𝑥),  

𝑄2(𝑥, 3) =
40 − 𝜋2

10𝜋3
sin𝜋𝑥 +

1

10𝜋3
(5𝜋2 + 9𝜋4 − 800)𝑝sin2𝜋𝑥  

−
12

5𝜋2
(𝜋2 − 20)(9𝜋2 − 40)𝑝𝑞(1 − 𝑥).  

The deflection function and its derivative at the moment of time 𝑡 = 6 are equal, re-

spectively, to: 

𝑄1(𝑥, 6) =
𝜋2−20

10𝜋3
sin𝜋𝑥 −

4

𝜋4
(1 − 𝑥),  

𝜕𝑄1(𝑥, 𝑡)

𝜕𝑡
|
𝑡=6

= �̇�1(𝑥, 6) =
4

3𝜋3
sin𝜋𝑥 −

4

3𝜋2
(1 − 𝑥),  

𝑄2(𝑥, 6) =
𝜋2 − 20

10𝜋3
sin𝜋𝑥 +

1

10𝜋
sin2𝜋𝑥 +

288

5𝜋2
(𝜋2 − 20)𝑝𝑞(1 − 𝑥)  

𝜕𝑄2(𝑥, 𝑡)

𝜕𝑡
|
𝑡=6

= �̇�2(𝑥, 6) =
4

3𝜋3
sin𝜋𝑥 −

6

5𝜋
(𝜋2 − 20)𝑞sin2𝜋𝑥  

−
1

15𝜋2
(855𝜋4 − 2576𝜋2 − 5120)𝑝𝑞(1 − 𝑥).  

5.3. Illustrative Material 

Let us illustrate the obtained formulas on the graphs. The graphs of the functions 

𝑢1(𝑡) and 𝑢2(𝑡) are given in Figure 1. 

 

Figure 1. Graphs of 𝑢1(𝑡) (solid line) and 𝑢2(𝑡) (dashed line). 

The graphs of the functions 𝑉1(𝑡) and 𝑉2(𝑡) are shown in Figure 2. 

 

Figure 2. Graphs of the functions 𝑉1(𝑡) (solid line) and 𝑉2(𝑡) (dashed line). 

The graphical representation of the functions 𝑄1(𝑥, 0), 𝑄2(𝑥, 0) and  𝜑0(𝑥) is illus-

trated in Figure 3. 

Figure 2. Graphs of the functions V1(t) (solid line) and V2(t) (dashed line).

The graphical representation of the functions Q1(x, 0), Q2(x, 0) and ϕ0(x) is illustrated
in Figure 3.
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Figure 3. Graphs of Q1(x, 0) (solid line), Q2(x, 0) (dashed line) and ϕ0(x) (dash-dotted line).

The graphs of the functions Q1(x, 3), Q2(x, 3) and ϕ1(x) are shown in Figure 4, which
illustrates the small discrepancies between these functions.
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Figure 4. Graphs of Q1(x, 3) (solid line), Q2(x, 3) (dashed line) and ϕ1(x) (dash-dotted line).

Graphical representations of the functions Q1(x, 6) and Q2(x, 6) and
.

Q1(x, 6) and
.

Q2(x, 6) are shown in Figures 5 and 6, respectively.
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Figure 5. Graphs of Q1(x, 6) (solid line) and Q2(x, 6) (dashed line).
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Figure 6. Graphs of
.

Q1(x, 6) (solid line) and
.

Q2(x, 6) (dashed line).

Figure 7 provides graphical illustrations of the dynamics of the behavior of the func-
tions Q1(x, t) and Q2(x, t) given t = 0, 1, 2, 3, 4, 5, 6.
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Figure 7. Graphs of the functions Q1(x, t) (solid line) and Q2(x, t) (dashed line) at fixed points in
time t: (a) t = 0; (b) t = 1; (c) t = 2; (d) t = 3; (e) t = 4; (f) t = 5; (g) t = 6.

5.4. Discussion of Results

For a comparative analysis of the results obtained, we denote by εn
(
x, tj

)
=

∣∣Qn
(

x, tj
)
− ϕj(x)

∣∣ and ε̃n(x, tm) =
∣∣∣

.
Qn
(
x, tj

)
− ψm(x)

∣∣∣, n = 1, 2, m = 0, 2, j = 0, 2 (here,
m = j = 2 corresponds to the moment of time t2 = T), which illustrate the discrepancy
between these functions.

The maximum values of residuals εn
(
x, tj

)
, ε̃n(x, tm), En

(
x, tj

)
=
∫ 1

0 εn
(

x, tj
)
dx and

Ẽn(x, tm) =
∫ 1

0 ε̃n(x, tm)dx are given in the following table.
Tables 1 and 2 show that, under the constructed control, the behavior of the string

deflection functions is quite close to that of the given initial ones. An illustration of the
residuals at the initial and intermediate time points is shown in the following figures. The
graphical representation of the functions εn(x, 0), n = 1, 2, is shown in Figure 8.

Table 1. Comparison of residuals for ϕj.

t0=0 t1=3 t2=6

n=1 n=2 n=1 n=2 n=1 n=2

max
0≤x≤1

εn

(
x, tj

)
0.0589 0.0673 0.0411 0.0665 0.0559 0.0669

max
0≤x≤1

En

(
x, tj

)
0.0307 0.0349 0.0068 0.0170 0.0413 0.0371

Table 2. Comparison of residuals for ψm.

t0=0 t2=6

n=1 n=2 n=1 n=2

max
0≤x≤1

ε̃n(x, tm) 0.0667 0.0714 0.1351 0.1970

max
0≤x≤1

Ẽn(x, tm) 0.0341 0.0365 0.0402 0.0711
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The graphical representation of the functions εn(x, 3), n = 1, 2, is shown in Figure 9.
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Figure 9. Graphs of the functions ε1(x, 3) (solid line) and ε2(x, 3) (dashed line).

The proposed analytical constructions are valid for any first n harmonics of string
vibrations. Numerical calculations, illustrations of the results and their analysis were
carried out with the help of the developed general approach for n = 1, 2. The series (21) is
uniformly convergent for functions from the above classes. The behavior of the functions
V1(t) and V2(t) shows it (see Figure 2).

Thus, given n = 1 and n = 2, we construct explicit expressions of the boundary control
u1(t) and u2(t) and those of the string deflection functions Q1(x, t) and Q2(x, t).

6. Conclusions

We proposed a constructive method for constructing the control of vibrations of
a homogeneous string with a given deflection shape at an intermediate moment. We
also proposed a constructive method for constructing the control of homogeneous string
vibrations with a given deflection shape at an intermediate moment. The control was carried
out by shifting one end with the other end fixed. The construction scheme was as follows:
We reduced the original problem to the control problem of distributed influences with zero
boundary conditions. Further, we used the method of separation of variables and methods
of control theory for finite-dimensional systems with multipoint intermediate conditions.

We formulated the corresponding statement and theorem for the first n harmonics. A
specific example illustrated the obtained results. We realized a computational experiment,
constructed the corresponding graphs and made a comparative analysis. They confirm the
results of the study. The proposed method can be extended to other non-one-dimensional
vibrational systems. The results presented in the paper can be used in the design of
boundary control of vibration processes in physical and technological systems.
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Abstract: We address a hyperbolic predator–prey model, which we formulate with the use of the
Cattaneo model for chemosensitive movement. We put a special focus on the case when the Cattaneo
equation for the flux of species takes the form of conservation law—that is, we assume a special
relation between the diffusivity and sensitivity coefficients. Regarding this relation, there are pieces
arguing for its relevance to some real-life populations, e.g., the copepods (Harpacticoida), in the
biological literature (see the reference list). Thanks to the mentioned conservatism, we get exact
solutions describing the travelling shock waves in some limited cases. Next, we employ the numerical
analysis for continuing these waves to a wider parametric domain. As a result, we discover smooth
solitary waves, which turn out to be quite sustainable with small and moderate initial perturbations.
Nevertheless, the perturbations cause shedding of the predators from the main core of the wave, which
can be treated as a settling mechanism. Besides, the localized perturbations make waves, colliding
with the main core and demonstrating peculiar quasi-soliton phenomena sometimes resembling the
leapfrog playing. An interesting side result is the onset of the migration waves due to the explosion
of overpopulated cores.

Keywords: Patlak–Keller–Segel systems; the Cattaneo model of chemosensitive movement; hyperbolic
models; shock waves; conservation laws

MSC: 92C17; 35L40; 92E20

1. Introduction

The Patlak–Keller–Segel (PKS) law provides a simple macroscopic model for a per-
ceptual motion (taxis) of the particles ensemble in response to the spatial gradient of a
stimulus (or signal) field. The commonly recognized formulation of the PKS flux reads as:
χp∇s, where the notations of p, s, and χ stand for the density of the medium that moves
in response to the signal, the intensity of the signal itself and the sensitivity coefficient,
correspondingly. A multitude of parabolic PKS systems resulting from the summation of
the diffusive and PKS fluxes stand as the subject of intensive research for last five decades.
A considerable number of reviews expose the advances in this area, e.g., [1–3].

However, usage of the parabolic framework is not a unique way of treating the PKS
law. For example, Dolak and Hillen [4] proposed a different formulation known as the
Cattaneo model for chemosensitive movement. In contrast with the parabolic models,
this one takes into account the inertia of the response and becomes hyperbolic. At that,
the flux has a contribution from the local time derivative of itself in addition to those
mentioned above. From the articles [5,6], it follows that the common parabolic model,
the Cattaneomodel and several other hyperbolic models represent the approximations of
the kinetics equations under different hypotheses. There is a concise review by R. Eftimie [7]
of this subject that covers deriving the models and the issues of exact solutions, stability
and bifurcations, etc. It makes clear that the hyperbolic models are not less natural than
their parabolic counterparts, e.g., while modelling the aggregation processes in the active
media. Nevertheless, the former receive much less attention than the latter. The mentioned
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review by R. Eftimie reports the deficiency of results for understanding the generic pattern
emerging from the dynamics of the local hyperbolic models even in the case of one spatial
dimension (see Table 9.1, Chapter 9) despite a considerable piece of work exposed therein.

Anyway, the hyperbolic models are the subject of continuing research. Among the
recent results, those published in [8,9] have much to do with the present study. These
articles address propagating the travelling shock waves and the gradual formation of the
shocks from the initially smooth solutions for an infinite time extent. The analysis covers the
rigorous proof of both features for a non-local hyperbolic model of a media, the density of
which governs its velocity via the action of a given first-order pseudo-differential operator.
Interestingly, the travelling shock waves coexist with the smooth ones. The latter are the
widely studied features in the parabolic case, see, e.g., [10–12] and the references therein.
The studies of their hyperbolic counterparts likely traced back to K. Hadeler [13–16].

In the present paper, we address similar issues but in a different context. We consider
the Cattaneo model for a predator–prey community with the Lotka–Volterra kinetics.
Regarding the predator flux, we assume that the diffusivity coefficient, µ = µ(p, s), and
the sensitivity coefficient, χ = χ(p, s), are given functions in the species densities, p and
s. In addition, we assume that 1-form −µ(p, s)dp + pχ(p, s)ds is exact. Despite being
restrictive, this assumption relies on certain biological grounds [17,18]. Formally, it entails
the conservatism of the flux equation. Thanks to this circumstance, we take advantage of
considering the travelling shock waves and arrive at very simple exact solutions for the
limit case of sedentary prey and a highly-inertial predator. In the aforementioned articles,
K. Hadeler addressed the travelling waves in a semi-linear version of the Cattaneo model.
However, the model dealt with here is not semi- but quasi-linear. Besides, the conservatism
allows for the elimination of the flux from the governing equations using the ansatz by
K. Hadeler; see the reference above again. This reduction is helpful for calculating the
numerical solution. The numerical continuation of the travelling shock waves to a wider
parametric area discovered their smooth counterparts. These are the soliton-like waves.
The study of their perturbations and collisions have discovered a rather peculiar interplay
that resembles the quasi-soliton interactions reported in [19–21]. An interesting side result
is the explosive migration waves emergent from the overpopulated cores.

Thus, there are several key findings in the present article, namely: (i) identifying a class
of the Cattaneo models for the chemosensitive movement that allows the formulation of the
governing equations as the conservation laws on one hand and, on the other hand, includes
a biologically justified model; (ii) discovering the exact solutions describing the travelling
shock waves in the limit of sedentary prey and highly-inertial predators; (iii) discovering
the smooth counterparts of the shocks in the general case and their interactions such as
leapfrog playing; (iv) observing the migration waves due to exploding the overpopulated
kernels; (v) formation of the layers of high concentrations of the species nearby the fronts
of waves emerging from the collisions of the solitary waves or upon the massive escape
from the overpopulated areas.

The paper is organized as follows. In Section 2, we formulate the model and put
it into the dimensionless form. In Section 3, we consider the case of the sedentary prey,
in which the system becomes purely hyperbolic. In Section 4, we discuss the general issues
regarding the shock waves, particularly the travelling ones. In Section 5, we distinguish a
special case that allows a very simple exact solution. In Section 6, we discuss the general
setting of the numerical experiments, and present their results. In Section 7, we discuss
the results of our study and their applications. In the Appendix A, we have gathered the
precise formulations of the data used for performing the numerical experiments.
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2. The Governing Equations and Scaling

The governing equations read as:

pt + qx = F(p, s) (1)

τqt + νq = χ(p, s)psx − µ(p, s)px, (2)

st = G(p, s) + Dssxx. (3)

In this system, the dependent variables, x and t, stand for the spatial and temporal
coordinates, correspondingly, x ∈ R, t > 0. The dependent variables are p = p(x, t),
q = q(x, t) and s = s(x, t). The first and the last one play the parts of the densities of the
species, say, the predators and the prey, correspondingly. The first two equations constitute
the Cattaneo model for the prey-sensitive movement of the predators, so that the remaining
dependent variable, q, stands for the predators’ flux. The prey spreads itself purely by
diffusion, and the notation of Ds stands for its diffusivity. In what follows, Ds ≡ const by
assumption. We also assume that the predators’ diffusivity, µ(p, s), and the sensitivity,
χ(p, s), are specified, and

pχ(p, s)→ 0, p→ +0, ∀ s ≥ 0. (4)

We assume that the reaction terms, G and F, are prescribed, but postpone further
detailing them to Section 5. The mechanical analogy suggests treating the second term
on the left hand side of the second equation as a contribution of the resistance of the
environment to the predator’s motion. So, we will be calling the correspondent coefficient,
ν, as the resistivity.

Let the notations T, X, P, S, Q, Dp, C, Jp, Js stand for characteristic scales for the time,
length, predator’s density, prey’s density, diffusivity, sensitivity, predator’s and prey’s
sources densities correspondingly. The resistivity coefficient, ν, is naturally dimensionless.
Since the values of Dp, Ds and C depend on the concrete species, it is natural to consider
them as anyhow given. In contrast, the values of X, T, S, P, Jp and Js are free to choose.
Given this, let us set

T = τ, X =
√

τDp, Q = P

√
Dp

τ
, Jp = Js = τ−1, (5)

and postpone defining the values of P and S. We also set

µ̄( p̄, s̄) = D−1
p µ(Pp̄, Ss̄), χ̄( p̄, s̄) = C−1χ(Pp̄, Ss̄). (6)

In what follows, every variable employed is dimensionless by default.
Upon the above scaling, the dimensionless form of the governing equations reads:

pt + qx = F(p, s), (7)

qt + νq = κχ(p, s)psx − µ(p, s)px, (8)

st = G(p, s) + δsxx, (9)

κ = CS/Dp, δ = Ds/Dp. (10)

For the forthcoming analysis, it is important to distinguish the case when the right-
hand side in the flux equation is integrable in the sense that:

κχ(p, s)psx − µ(p, s)px = (ϕ(p, s))x. (11)

For such an integrability, it is necessary and sufficient to link the diffusivity to the
sensitivity as follows:

µs(p, s) = −κ(pχ)p. (12)
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3. Sedentary Prey and Hyperbolicity

Throughout this section, we consider the system (7)–(9) with δ = 0. Then it becomes a
first order quasi-linear PDE system, which we put into the form:

zt + A(z)zx = b(z), where (13)

z =




p
q
s


, b :




p
q
s


 7→




F(p, s)
−νq

G(p, s)


, A :




p
q
s


 7→




0 1 0
µ(p, s) 0 −κpχ(p, s)

0 0 0


. (14)

The eigenvalues of matrix A are ±
√

µ(p, s), 0. They are real and distinct one from
another as long as µ(p, s) > 0. It is always true by assumption. Hence the system of
Equations (13) and (14) is strictly hyperbolic. The above triple of eigenvalues deter-
mines the triple of characteristic speeds—that is, every characteristic of system (13) al-
lows a parametrization by the mapping t 7→ (t, X(t)) that satisfies an equation Ẋ(t) =
λ(p(X(t), t), s(X(t), t)), where λ ∈ {0,±

√
µ(p, s)}.

A question to ask about a first-order hyperbolic system is whether or not it allows
diagonalizing by a pointwise transform ρ = R(z). Such an ansatz generally does not exist
for a system that includes more than two equations. The diagonalizing is feasible, provided
that the system matrix, A = A(z), satisfies an integrability criterion, which allows a straight
algebraic formulation. Another formulation requires satisfying the Frobenius condition
dωi ∧ωi = 0 with every 1-form ωi = `i · dz generated by the vectors of the dual eigenbasis
{`1, `2, ...} of the matrix A (this is the eigenbasis of the transposed matrix). Then for every i
there exists a factor αi = αi(z) such that αiωi = dρi, and ρi = Ri. The last criterion is handy
to use as long as there is a handy dual eigenbasis, as in the case of matrix (14), for example.
Then a routine calculation reduces the diagonalization criterion to the following condition:

µs(p, s) = κpχ(p, s)5
(

ln
µ(p, s)

p2χ2(p, s)

)

p
. (15)

Under condition (12) the obtained criterion simplifies to:

µ(p, s) = pc(s)χ(p, s), (16)

where c stands for an arbitrary function. Thus, assuming the diagonalization entails
restrictions that are too artificial even in the simplified form. That is why we will not be
considering this option in this study anymore.

Let the condition (12) hold throughout all subsequent considerations. Then there exists
a single-valued function ϕ = ϕ(p, s) such that:

dϕ = µ(p, s)dp− κpχ(p, s)ds. (17)

Hence, the system (13) and (14) consists of conservation laws, namely:

pt + qx = F(p, s), qt + ϕx = −νq, st = G(p, s). (18)

This feature makes feasible the generalized solutions, e.g., the shock waves.
Consider now a shock wave with discontinuities at some curve x = X(t). Then the

velocity of the shock, Ẋ, has to satisfy the Rankine–Hugoniot conditions entailed by the
conservations laws (18). They read as:

Ẋ[p] = [q], Ẋ[q] = [ϕ], Ẋ[s] = 0. (19)
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Here the notation of a dependent variable put in the square brackets stands for the
jump of this variable across the discontinuity—that is, the difference between the limit
values evaluated for (x, t)→ (X(t) + 0, t) and (x, t)→ (X(t)− 0, t). At that,

[ϕ] =

(p+ ,s+)∫

(p− ,s−)

µ(p, s)dp− κpχ(p, s)ds, (20)

where the superscripts + or − stand for the unilateral limit values at the left and right
shores of the discontinuity (when the observer looks forward alongside the time axis).
There are two possibilities. The first is the standing wave—that is,

Ẋ = 0, [q] = [p] = 0, (21)

where the value of [s] remains undetermined. The second is the travelling wave—that is,

Ẋ 6= 0, [s] = 0, [q]2 = [p][ϕ] = [p]

(p+ ,s∗)∫

(p− ,s∗)

µ(s, p)dp = [p]2µ(p∗, s∗), (22)

where s∗ = s(X(t), t) is the value of the prey density directly on the shock (note that
function s remains continuous across the shock), and p∗ ∈ (p−, p+) is an unknown quantity
that for each t satisfies the equation:

(p+ ,s∗)∫

(p− ,s∗)

µ(p, s)dp = [p]µ(p∗, s∗). (23)

The speed at which such a wave propagates can take two opposite values, namely:

Ẋ = [q]/[p] = [ϕ]/[q] = ±
√

µ(p∗, s∗). (24)

Generically, the shock wave speeds determined in (24) differ from the characteristic
ones, which are discontinuous across the shocks. It depends on the inequalities between
the velocity of a specific shock wave and the limit values of the characteristic velocities
whether or not this shock propagates. These inequalities are known as Lax conditions.
Checking them yields a conclusion that shock waves can propagate provided that:

(
µ(p+, s∗)− µ(p∗, s∗)

)(
µ(p−, s∗)− µ(p∗, s∗)

)
< 0. (25)

Moreover, exactly one of the two possible shock waves can propagate, and the prop-
agation speed is equal to

√
µ(p∗, s∗) provided that µ(p−, s∗) > µ(p∗, s∗) or −

√
µ(p∗, s∗)

otherwise.
A peculiar degeneration occurs when a predator’s diffusivity is independent of its

density—that is, µ = µ(s). Given this, the expressions for the shock wave speeds read
as either:

Ẋ = ±
√

µ(s∗) (26)

or Ẋ = 0. It is worth recalling that s∗ stands for the trace of the prey’s density, s, right on
the shock. It is defined well due to the continuity of the function s across the shock. Hence,
every possible wave’s speed coincides with a characteristic one—that is, the shocks spread
along the characteristics.
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Matching the predator-independent diffusivity to the integrability condition, (12) and
assumption (4) make the sensitivity, χ, predator-independent too. Given this, the integra-
bility condition simplifies as follows:

µ = µ(s), µs(s) = −κχ(s). (27)

Modulo the scaling, relation (27) is equivalent to that deduced by Tyutyunov et al. from
biological rationales in the aforementioned articles. Also, Tyutyunov et al. addressed some
issues of stability and pattern formation for the corresponding PKS systems in the parabolic
form [22]. Throughout the rest of the present article, we will be studying Cattaneo’s systems
that arise from relation (27).

4. The Travelling Shock Waves for the Predator-Independent Diffusivity

Let d/dt stand for the total derivative along a characteristic. From system (18) it
follows that:

dq
dt

+ λ
dp
dt

= κχ(s)psx − νq + cF(p, s), (28)

where the notation of λ = ±
√

µ(s) stands for the corresponding characteristic speed. If this
characteristic supports a shock, then the same equations hold on the shores of the shock
with the limit values of every quantity involved. Subtracting them and eliminating the
variable q with the use of the Rankine–Hugoniot conditions (19) lead to the following
equation on the shock

d(λ∗[p])
dt

+ λ∗
d[p]
dt

= κχ∗[psx]− νλ∗[p] + c[F], q = λ∗[p], (29)

where subscript ∗ indicates the quantities, which depend on the values of s∗ only. Further-
more, from the continuity of the prey’s density, s, it follows that the gap of ∇s across the
shock is normal to it everywhere—that is,

[st] + λ∗[sx] = 0. (30)

So, we are discussing the travelling shock waves. By definition, such a wave propa-
gates at a constant speed c, and the corresponding solution depends on only one variable,

ξ = t− x/c. (31)

Then the characteristics at which the shocks occur are the parallel lines determined by
equations ξ = ξ∗ for the values of ξ∗ varying over some set, Σ, which we assume to be finite.
This set gathers all the discontinuities of the solution in variable ξ. On the complement of
the singular set, the system (18) reduces to an ODE system. Namely,

(c2 − µ(s))pξ = c2(F(p, s)− ν(p− r))− κχ(s)pG(p, s), rξ = F(p, s), sξ = G(p, s), (32)

where r = p− q/c, ξ 6∈ Σ. The conditions for matching the solutions are defined on the
adjacent intervals separated by a discontinuity following from Equations (29) and (30).
The latter holds trivially for every function in only variable ξ, while the former turns to a
system of functional equations as follows:

c2([F]− ν[p])− κχ∗[pG] = 0, [s] = 0, [r] = 0. (33)

The last equation in this set is equivalent to [q] = c[p]. The following constraint is for
the wave speed, c, to obey:

∃ c : ∀ ξ∗ ∈ Σ λ∗ = ±
√

µ(s∗) = c, s∗ = s(ξ∗). (34)
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Alluding to the values of the unknown, s, taken on Σ is correct by the continuity
that is consistent with the matching condition (33). The same is true regarding another
unknown, r.

The first equation in system (32) degenerates when the independent variable, ξ, is
approaching a discontinuity. Let us restrict ourselves within the solutions obeying the
following condition:

p±ξ = o
(
(ξ − ξ∗)−1

)
, ξ → ξ∗, (35)

where the superscripts, + and −, are to distinguish the solutions settled on the right and left
intervals adjacent to the discontinuity point, ξ∗. This estimate entails one more condition
for matching the solutions at the discontinuity. Namely, the following equations are to obey:

c2(F(p±∗ , s∗)− ν(p±∗ − r∗))− κχ∗p±∗ G(p±∗ , s∗) = 0, (36)

where the notations of p±∗ , s∗ and r∗ stand for the unilateral limits of variable p and the
bilateral limits of variables s and r correspondingly. It is worth noting that subtracting the
equalities (36) gives the first of matching condition (33).

At first, let us address the waves which allow a single shock only. Then there must
be only one discontinuity on the ξ-axis, so let us place the origin there, and put ξ∗ = 0.
Consider the equation:

µ(z)F(x, z)− ν(x− y)− κχ(z)xG(x, z) = 0. (37)

By conditions (36), a nonzero jump across the singularity in variable p due to a
travelling wave presumes that Equation (37) has several distinct solutions (xi, y, z) with
the same y, z, e.g., z = s∗, y = r∗, xi = p+∗ and xj = p−∗ for some i 6= j.

Assume there exists a nonempty set filled with solutions (x, y, z) to Equation (37) such
that x ≥ 0, z ≥ 0, and let the projection of this set onto the yz-plane alongside the x-axis
cover some domain with multiplicity N ≥ 2. For every point (z, y) in this domain, let
Pi = Pi(y, z), i = 1, 2, . . . , N be the coordinates of projection of its pre-image on the x-axis
alongside the yz-plane. Then constructing the travelling shock waves can go the following
way: set

s∗ = y, r∗ = z, p+∗ = Pi(y, z), p−∗ = Pj(y, z), i 6= j, (38)

and then try to find the solutions p± = p±(ξ), r± = r+(ξ), s± = s±(ξ) to Equation (32),
that are defined and bounded for ±ξ > 0 and match the data listed above when ξ = 0.
Note that the values of y, z are free to manipulate. One can try to obtain some pairs of
conjugated waves by transposing i and j. Since we have been assuming the projection to
be the N-leaf covering mapping, there are N(N − 1)/2 conjugated pairs of the datasets.
In the next subsection, we will be considering a case of a very simple implementation of
the approach outlined above.

5. The Inertial Limit for the Sedentary Prey

At this point, we need more details regarding the reaction terms, F = F(p, s) and
G = G(p, s). Henceforth, we will be assuming the following:

F = p f (p, s), f |s=0 < 0, G = sg(p, s), g(0, 0) > 0, gp|p=0 = −1, gs|s=0 = −1. (39)

The last two assumptions are equivalent to inequalities gp|p=0 < 0, gs|s=0 < 0 modulo
the scaling of variables p, s since the characteristic scales of these variables, P and S, are
indefinite still. For example, the Lotka–Volterra kinetics while being normalized in accord
with (39) reads as

F = p(γs− β), G = s(α− s− p), α, β, γ = const > 0. (40)

Thus, parameter α plays the part of the carrying capacity given the scaling adopted here.
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Consider the Cauchy problem

Sτ = G(0, S), S|τ=0 = a. (41)

Assume there exists a number a0 > 0 such that for every a ∈ [0, a0] problem (41)
has a solution S = S(τ, a) defined on R, and such that the mapping a → S(τ, a) sends
the segment [0, a0] to itself for every τ ∈ R. Consider also the following system of func-
tional equations:

g(p, s) = 0, f (p, s) = 0, (42)

and assume there exists a positive solution s = se > 0, p = pe > 0. The last assumption
entails the existence of a strictly positive equilibrium for general system (7)–(9). By equilib-
rium, we mean a particular solution specified as follows: q = 0, p = const, s = const, so
that both species distribute themselves homogeneously. A nonnegative equilibrium not
being strictly positive can make sense too. For example, the Lotka–Volterra kinetics (40)
allows an equilibrium with p = 0, s = α for every parameter setting, and there exists the
strictly positive equilibrium se = β/γ, pe = α− se provided that β < αγ.

Throughout the rest of this section, we will be considering the inertial limit and
sedentary prey. So, we put ν = δ = 0. We also assume all the listed assertions on the
kinetics to be true. The Lotka–Volterra kinetics defined in (40) meet such an assumption for
β < αγ; at that, the ODE involved in the Cauchy problem (41) reads as Sτ = S(α− S).

Given the assumption made, there are at least two solutions, x = Pi(y, z), i = 1, 2
to Equation (37) defined in some vicinity of every point (y, se). At that, P1 ≡ 0, while
function P2 (in fact, in one variable, z) is that defined implicitly by equations µ(z) f (x, z) =
κχ(z)g(x, z) = 0, Pi(se) = pe. However, we do not need much manipulating with the
values y, z here, since the choice is evident; namely, x1 = 0, x2 = pe, z = se, and the
values of y are arbitrary. Then there are two pairs of the travelling shock waves, one pair
propagates at speed c =

√
µ(se), and the other one propagates at the opposite speed.

The formulae for both are the same, and they read as:

p = 0, r = y, s = S(ξ, se), ξ ∈ (−∞, 0), p = pe, r = y, s = se, ξ ∈ (0, ∞), (43)

p = 0, r = y, s = S(ξ, se), ξ ∈ (0, ∞), p = pe, r = y, s = se, ξ ∈ (−∞, 0), (44)

where y is an arbitrary constant.
Waves (43) and (44) are conjugated in the sense explained in the previous section but

not mirroring one by the other one. Although both species in both waves take the same
equilibrium values within the areas settled by predators, outside them, prey spreads itself
differently. Indeed, the solutions to the Cauchy problem (41) generically behave differently
for ±τ > 0 (except for the equilibria).

In Figure 1, the left and middle frames show profiles of waves (43) and (44) corre-
spondingly. For both waves, the front of the predator’s invasion moves towards the smaller
concentration of prey. This feature is not as paradoxical as it can seem given the locality of
the predator–prey interactions.

An overlay of waves (44) and (43) gives examples of finite predators’ mass localized
within a patch that moves uniformly. Such a wave propagates with two shocks at the speed
c =

√
µ(se) or at the opposite speed. The formulae read as:

p = 0, r = y, s = S(ξ − ξ0, se), ξ < ξ0,

s = se, p = pe, r = y, ξ ∈ (ξ0, ξ1), ξ1 − ξ0 = M/pe (45)

p = 0, r = y, s = S(ξ − ξ1, se), ξ > ξ1,

where the values of y and M > 0 are arbitrary constants. At that, the values of M stand
as the mass of the patch. It is worth noting that the shapes of the patchy waves differ
depending on the sign of the wave speed, c. The prey are dying out to the left (right) of
the predators patch for negative (positive) c, so that the patch moves towards the smaller
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concentration of prey (see the right panel in Figure 1). In Section 7, we return to these
waves to discuss their relevance to the population dynamics.

Figure 1. The figure shows the propagation of waves (43)–(45) calculated for the Lotka–Volterra
kinetics (40) (from the left to the right). Each frame shows three instantaneous profiles for both the
predator and the prey densities. In the left and middle frames, the blue (green) coloured lines are for
the former (latter), while the solid, dashed and dotted lines picture the profiles taken at t = 0, t = 3/2
and t = 3. The right frame addresses the wave that transports a patch filled with the unit mass of
predators. At that, the dashed (solid) lines mark out the densities of the predators (prey). The colours
green, red and blue are for the shots taken at t = 0, t = 3/2 and t = 3 (so that the wave speed is
negative). All three panels correspond to the Lotka–Volterra kinetics (40), where α = 1, β = 0.2,
γ = 0.8. At that, the diffusivity function reads as µ = (1 + s)−1, so that κ = 1, and the equality (27)
determines the sensitivity, χ. These definitions give the wave speed, c =

√
µ(se) ≈ 0.9. Finally, recall

that the figure regards the diffusionless and inertial limit, and δ = ν = 0, hence.

6. Numerical Experiments

In this section, we present the numerical solutions to system (7)–(9) that we formulate
with the use of the Lotka–Volterra kinetics (40) and predators’ diffusivity µ = (1 + κs)−1.
The diffusivity determines the sensitivity, χ(s), by the simplified integrability condition (27).
For the numerical implementation, we eliminate the flux, q, from this system with the
use of ansatz by K. Hadeler (see references provided above). As a result, we arrive at the
following equations:

ptt + ν(pt − F(p, s)) = (µ(s)p)xx + (F(p, s))t, (46)

st = G(p, s) + δsxx. (47)

Substituting this second-order system for the original one (which is of order 1) requires
ad hoc initial conditions. These are:

pt=0 = p0, st=0 = s0, pt t=0 = F(p0, q0)− q0x, (48)

where the notations of p0, q0, s0 stand for the functions which determine the initial values
of the dependent variables of the original system (7)–(9). The numerical implementation
also requires restricting the solution within a finite spatial domain and formulating suitable
boundary conditions. So, we set

px x=±L = 0, sx x=±L = 0. (49)

It turns out that the numerical solving of the initial-boundary problems (46)–(49) is
quite feasible with the Maple built-in PDE solver.
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Implementation of the numerical solution should cover a spatial interval wide enough
to put the artificial boundaries far out of the domain in which the phenomena of interest
occurs. We had controlled all the results below by widening the spatial area and found them
reproducing themselves sustainably for values of L higher than 8. In particular, L = 10 for
all the figures presented in this section. In a similar way, we checked the influence of the
mesh refining and varying the level of smoothing used for preparing the initial data and
found the results of this inspection quite satisfactory.

The first set of numerical experiments is for answering the question of whether the
shock waves persist for the positive values of the resistivity, ν and the prey diffusivity, δ.
To this end, we have been taking the profiles of the species’ densities, s and p from the
waves (43)–(45) and putting them as the initial profiles, s0 and p0, which enter the boundary
conditions (48). At that, we have been smoothing the shocks slightly. Further, we have been
putting q0 = c∗p0, where c∗ =

√
µ(se) is the shock wave speed. This choice is consistent

with the definition of the shock waves. Appendix A provides the concrete details of setting
initial conditions, the control parameters values, etc. The answer to the question formulated
above is fully affirmative. The shocks become a bit smoother, but keep propagating at an
almost constant speed that is nearly equal to the value of c∗. Figure 2 shows the typical
behavior of the slightly smoothed counterpart of the patchy shock wave. This figure tells
us that the smoothed patch spreads as a kind of soliton, which is shaped rather sharply for
the small resistivity and prey diffusivity. An increase in the resistivity produces scattering
of the predators behind the rear front of the wave.

The next piece of computing addresses the interactions of the observed solitary waves
with some perturbations applied initially. These are:

(a) a small displacement of the species density profiles one relative to the other one with
no deformation;

(b) a small deformation of the species density profiles;
(c) a small droplet of predators localized behind the main core;
(d) a small droplet of predators localized ahead of the main core.

In cases (a) and (b), the smallness means that the magnitudes of mutual displace-
ments (deformations) are approximately ten percent of the magnitude of the main patch.
The smallness of the droplet means that its mass is ten times smaller than the mass of
the main patch, while they both are localized in the intervals of nearly equal lengths. In
Appendix A, there is the exact formulation of the initial conditions and the concrete values
of the control parameters.

In cases (a) and (b), the effects of the initial perturbations manifest themselves mostly
by the predators scattering, which goes almost the same way as shown in the bottom row
of frames in Figure 2, with no any qualitative distinctions. So, we do not illustrate these
cases. Case (c) is similar to the above, but shedding the predators is rather intensive. We
illustrate this case in the top row of frames in Figure 3. Case (d) demonstrates a very
peculiar interplay of solitary waves. Namely, the main patch and the droplet attract one
to the other one until they clash. Then they play leapfrog: droplet climbs over the patch
and rolls down to the other side of it. The patch drops some mass due to the scattering but
keeps moving at almost the same speed. The droplet keeps moving too but in the opposite
direction while getting bigger and sharper. We illustrate this case in the bottom row of
frames in Figure 3.
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Figure 2. The figure illustrates propagating the solitary waves that are the slightly smoothed counter-
parts of the shock patchy wave (45) when the resistivity, ν, and prey diffusivity, δ, take some small
values. In Appendix A, there is the accurate exposition of all the parameter values and initial data that
we have used for producing all the pictures displayed herein. The upper row of frames shows three
distributions of the predators over x, t-plane which arise from propagating the shock and smoothed
patchy waves. The left upper frame displays the former while the central and right frames display the
latter for two different values of the resistivity. Both values are small, but the one corresponding to
the central frame is substantially smaller. The saturation of blue is in use for indicating the predators’
density. The central and lower rows animate the propagation of the smoothed patchy waves shown in
the middle and right frames in the upper row. For comparison, the shock patchy wave (that we have
been showing in the left upper frame) is animated in the same frames synchronously. For capturing
the former (latter), the solid (dotted) lines are in use, and the coloring of them distinguishes the
species. Namely, for both waves, the profile of the predators’ (prey) density is blue (green) colored.

The results presented above confirm the stability of the travelling patchy waves.
Figure 4 demonstrates the results of a more extreme crash-test. Appendix A provides the
detailed description of the initial states and other settings used for this piece of computing.
It is worth recalling that every travelling patchy wave has a counterpart that propagates
at the opposite speed. Gluing this pair provides the initial state for computing the next
five patterns pictured in Figure 4. Overall, they illustrate the collision of two patchy waves.
The remarkable feature is that the collision gives rise to an expansion wave, at the fronts
of which peaks are arising and sharpening in the course of its propagation. The mirror
symmetry of the patterns is due to the mirror symmetry of the problem and initial data.
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Figure 3. The figure illustrates the evolution of the initial perturbations described in clauses (c)
and (d) on page 10. In particular, the bottom row demonstrates the leapfrog playing. The detailed
description of the initial states and all other settings used for computing this figure is in Appendix A.

Figure 4. The figure illustrates a collision of two patchy waves, which propagate at the opposite
speeds. The blue (green) lines are for the instant profiles of the predators’ (prey) density. The detailed
description of the initial states and other settings used for computing this figure is in Appendix A.

Further, we proceed with an asymmetrical initial configuration that arises from per-
turbing the travelling patchy wave in a way similar to that used in case (d) above. However,
the perturbation is not small this time as its mass is equal to the patch mass. Appendix A
provides a detailed description of the initial states and other settings used for this piece
of computing. In Figure 5, the two rows of images display two ways of the evolution of
this configuration for two different values of the resistivity, ν. The top row regards the
smaller resistivity. The initial stage of evolution is qualitatively like that reported for case
(d) above. New features arise after the leapfrog playing. Among them, the most notable is
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the spike that springs up suddenly at the foremost bound of the main patch. The other core
becomes sharper too. The bottom row shows the changes due to increasing the resistivity
to a considerable extent. It is easy to see a powerful smoothing, which is emergent from
forcing out the waves by the equilibrium state. The rightmost frame indeed allows us to
see that the values of the densities are close to the equilibrium ones near the origin. Here
it is worth recalling that, for the kinetics (40), the equilibrium densities are pe = α− se,
se = β/γ. So, pe ≈ 0.43, se ≈ 0.57 for the parameters values adopted for computing the
patterns presented herein.

The numerical experiments illustrated above are about the travelling shock waves
presented in Section 5. The system we deal with, however, hides a multitude of interesting
features, one of which is the formation of peaks after colliding the travelling patchy wave
with another pattern, which is not necessarily a wave of the same type too. In Figure 6, we
illustrate the occurence of a similar feature irrespective of the patchy waves. Namely, we
consider an explosion wave due to a unit mass of the predators smoothly localized in a
compact area at the initial time moment with the zero initial flux, q0. At that, the initial
density of prey is everywhere equal to the carrying capacity, which, effectively, takes the
value of the parameter α given the scaling applied here. At the same time, it is the value
of carrying capacity that corresponds to the prey density at the equilibrium state with no
predators. Then the initial core of the predators stands as a perturbation, which is not small
though localized. The bottom (top) row of frames corresponds to the parameters values
such that the equilibrium state with a positive predators’ density is possible (impossible).
The mirror symmetry of the patterns is due to the mirror symmetry of the problem and
initial data, the detailed description of which is in Appendix A. Both rows demonstrate an
explosion of the initial core accompanied by spreading the predators across a widening
areal extent with peaks at the bounds. Outside these boundary layers, both densities tend
to the equilibrium values. If the positive equilibrium density of the predators is not feasible
then smoothing and decaying of the boundary peaks takes place by degrees. Otherwise,
these peaks become sharper and higher.

Figure 5. The figure illustrates two ways of evolution of a heavily perturbed patchy wave. The per-
turbation is smoothly localized ahead from the patch and got moving instantly towards the patch.
The meaning of the colors and styles of lines is the same as for Figure 3. The detailed description of
the initial states and other settings used for computing this figure are in Appendix A.
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Figure 6. The figure illustrates propagating two waves due to the explosion of a smoothly localized
unit mass of predators amid the uniform distribution of prey, the density of which is equal to the
carrying capacity. The blue lines are for the instantaneous graphs of the predators’ density. The green
lines are for the deviation of the prey density from the carrying capacity. The detailed description of
the initial states and other settings used for computing this figure is in Appendix A.

7. Discussion

We have addressed a Cattaneo-type dynamics of the predator–prey system with the
Lotka–Volterra kinetics term in one spatial dimension. By assumption, only the predators
are capable of the perceptual motions, and the flux of them generally reads as pχ(p, s)sx −
µ(p, s)px, where µ(p, s) and χ(p, s) are some prescribed functions. To start with, we have
considered the sedentary prey. In this approximation, the governing equations turn to
form a strictly hyperbolic system, for which we have formulated the criterion for reducing
to Riemann’s invariants in terms of sensitivity, χ(p, s), and diffusivity, µ(p, s), explicitly.
It has turned out, however, that the class of systems obeying this criterion looks rather
artificial. At the same time, reducing the governing equations to the conservation laws
happened to be less restrictive. In particular, such a reduction is possible provided that
µ = µ(s), κχ(s) = −dµ/ds . Since there are biological rationales for this structural relation
(see the reference above), we have accepted it.

For the systems of conservation laws, the shock waves are natural, and we have
derived a system of conditions on the shocks. In the inertial limit—that is, for ν = 0—we
have discovered a very simple exact solutions that describe the travelling shock waves.
The wave pattern represents a semi-infinite or even finite patch of predators that propagates
at a constant speed. There are no predators outside the patch while both species coexist in
the equilibrium state inside, see Figure 1. The wave speed is equal to ±

√
µ(se), where se is

the prey density at the equilibrium state.
The waves carrying semi-infinite patches describes the transitions between two equilib-

ria states. The community goes either from the extinction of both species to the coexistence
at the equilibrium or from the coexistence at the equilibrium to the extinction of the preda-
tors and restoring the prey up to the carrying capacity. In this sense they resemble the
KPP-Fisher waves. Here, however, the extinction of predators means that the wave either
has not brought them to the areal extent under consideration yet or has moved them out
already. The interesting feature is that the front of the predators’ invasion always moves
towards the smaller concentration of prey. This is not as paradoxical as it can seem given
the locality of the predator–prey interactions. Thus, two patterns of behavior are emergent
from propagating these waves. The first is restoring the resource up to the carrying capacity
after the migrating predators’ withdrawal. The second is the transition from the prey dying
out to the mutual equilibrium with the spreading predators. The travelling shock waves
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carrying a finite mass of the predators combine both features. Indeed, the profile of such a
wave involves the transitions from the mutual extinction via the coexistence to the extinc-
tion of predators. Besides, the patch of predators moves towards the smaller concentration
of prey again. So, the corresponding pattern of behavior looks like preventing the prey
from dying out and even restoring the prey population due to migrating a compact core of
the predators.

We have extended the travelling shock waves to the positive values of the prey
diffusivity, δ, and the resistivity, ν, numerically. It turns out that they withstand such
an extension, at least while the values of δ and ν remain small enough. The shocks
smooth themselves, but the speed at which they propagate is nearly equal to the value of
c = ±

√
µ(se).

The shock waves carrying a finite mass of predators transform themselves into the
smooth soliton-like waves, to which we have paid particular attention, see Figure 2. An in-
teresting feature is shedding the predators behind the rear front of the wave due to an
increase in the resistivity. As a result, the core of migration leaves behind itself a populated
areal extent, which remains settled even when the migration core moves far ahead. Thus,
propagating the patchy wave can play a part in settling the predators due to migration.

A relatively small predator’s droplet that occurs instantly ahead of or behind the
main core of the soliton-like wave enhances the above scattering but does not cause any
other noticeable changes (see Figure 3). The main core never absorbs the droplet in the
case of collision, but they both keep moving after a peculiar interaction resembling the
leapfrog play. Quite a different pattern of behavior arises from colliding the cores, which
have gathered the equal masses of the predators (see Figures 4–6). We have examined
colliding for several pairs of cores, which belong to the following classes: (i) two identical
smoothed travelling patchy waves which propagate at opposite speeds; (ii) a compact
group of predators that occurs suddenly ahead of the predators’ patch of a travelling wave
and get moving towards it; (iii) a finite mass of predators that suddenly have landed on a
compact part of a greater areal extent where the resource density has attained the value of
the carrying capacity. Merging the cores immediately leads to local overpopulation and
a lack of prey, which, in turn, gives rise to an explosive migration. The explosion wave
spreads the predators uniformly across a widening area while boundary layers of high
density occur near the wave fronts. Deep in this area, the species coexist at equilibrium if
feasible, or the predators become extinct, and the prey density goes back to the carrying
capacity. Various numerical experiments have been reproducing this pattern of behavior
sustainably though not literally, of course. Thus, we conclude that the explosive waves that
we have been discussing deliver a mechanism for overcoming the local overpopulation
and lack of resources.
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Appendix A. Initial Data

Implementing the numerical experiments, the outcomes of which we have been dis-
cussing above, numerically solved several initial-boundary value problems, each of which
comprises Equations (46) and (47) with the Lotka–Volterra kinetics (40), boundary condi-
tions (49), and initial conditions (48). These problems depend on the control parameters,
α, β, γ, δ, κ, ν, L. We have also been using parameter ε while smoothing some initial condi-
tions. Table A1 displays the values of these parameters and the subsections below explain
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setting the initial conditions for the concrete computations. We also recall that, throughout
all the computations, the predators’ diffusivity reads as:

µ(s) =
1

1 + κs
. (A1)

At that, the relation (27) determines the predators sensitivity, χ.

Table A1. The correspondence between the Figures presented above and the values of the parameters
that enter Equations (46) and (47) and initial conditions (48).

Figure α β γ δ ε κ ν L

Figure 2, top row-left 1 0.4 0.7 0.00 n/a 0.6 0 n/a
Figure 2, top row-middle 1 0.4 0.7 0.01 0.05 0.6 0.005 10

Figure 2, top row-right 1 0.4 0.7 0.01 0.05 0.6 0.1 10
Figure 2, middle row 1 0.4 0.7 0.01 0.05 0.6 0.005 10
Figure 2, bottom row 1 0.4 0.7 0.01 0.05 0.6 0.1 10

Figure 3, top row 1 0.4 0.7 0.01 0.05 0.6 0.1 10
Figure 3, bottom row 1 0.4 0.7 0.01 0.05 1 0.05 10

Figure 4 1 0.4 0.7 0.01 0.05 0.6 0.1 10
Figure 5, top row 1 0.4 0.7 0.01 0.05 0.6 0.25 10

Figure 5, bottom row 1 0.4 0.7 0.01 0.05 0.6 1.5 10
Figure 6, top row 1 0.5 0.4 0.01 0.05 1 0.2 10

Figure 6, bottom row 1 0.4 0.7 0.01 0.05 1 0.2 10

Appendix A.1. Data for Figure 2

The initial conditions are:

2p0 = peerf
(

x−x0
2εc∗

)
− peerf

(
x−x1
2εc∗

)
, pe = α− β

γ , q0 = c∗p0 (A2)

and s0 is given by equality (45), where ξ = x/c∗, ξ0 = x0/c∗, x0 = −1/pe, x1 = 0,
ξ1 = x1/c∗, c∗ =

√
µ(se) and se =

β
γ .

Appendix A.2. Data for Figure 3

As we have been saying on page 10, this Figure corresponds to the initial data that
read as:

p0 = pw + Ppd, q0 = c∗pw + Qpd, s0 = sw, (A3)

where the notations of pw and sw stand for the same functions as those defined in Appendix A.1.

P = 0.1, Q = 0, pd = exp(−3(x + 5)2) for the top row,

P = 0.1, Q = −0.1, pd = exp(−3(x− 3)2) for the bottom row.

Appendix A.3. Data for Figure 4

In this Figure, the all of images correspond to the initial data that read as:

2p0(x) =

{
pw(x), x > 0,

pw(−x), x < 0,
, pw = peerf

(
x− x0

2εc∗

)
− peerf

(
x− x1

2εc∗

)
. (A4)

q0 = −c∗erf(3x)p0(x) (A5)

s0 =

{
sw(x), x > 0,

sw(−x), x < 0,
, (A6)

where the notation of sw stands for the same function as that defined in Appendix A.1
with ξ = x/c∗, ξ0 = x0/c∗, ξ1 = x1/c∗, c∗ =

√
µ(se) and se = β

γ . Here x0 = −5− 1/pe,
x1 = −5.
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Appendix A.4. Data for Figure 5

In this Figure, both rows of images correspond to the initial data that read as:

p0 = pw + pd, q0 = c∗(pw − pd), s0 = sw + sd, (A7)

where pw and sw are the same as those defined in Appendix A.1, and

pd = sd =

√
3 exp

(
− 3(x−3)2

2

)

√
2π

, c∗ =
√

µ(se), se =
β

γ
.

Appendix A.5. Data for Figure 6

In this Figure, both rows of images correspond to the initial data that read as:

p0 =
5e−

25x2
4

2
√

π
, q0 = 0, s0 = α. (A8)
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Abstract: In this paper, a symplectic algorithm is utilized to investigate constrained Hamiltonian
systems. However, the symplectic method cannot be applied directly to the constrained Hamiltonian
equations due to the non-canonicity. We firstly discuss the canonicalization method of the constrained
Hamiltonian systems. The symplectic method is used to constrain Hamiltonian systems on the basis
of the canonicalization, and then the numerical simulation of the system is carried out. An example is
presented to illustrate the application of the results. By using the symplectic method of constrained
Hamiltonian systems, one can solve the singular dynamic problems of nonconservative constrained
mechanical systems, nonholonomic constrained mechanical systems as well as physical problems in
quantum dynamics, and also available in many electromechanical coupled systems.

Keywords: constrained Hamiltonian system; canonicalization; symplectic method; numerical
simulation

MSC: 37J60; 37J10; 37K05; 37K50

1. Introduction

In 1993, symplectic algorithms for constrained Hamiltonian systems have been pro-
posed [1]. We know that the displacements q and momenta p of an object moving freely
are given by a Hamilton canonical equation in the form [2]

.
q = ∇pH(p, q),

.
p = −∇q(p, q) (1)

where p, q ∈ Rn, H : Rn × Rn → Rn is called the Hamiltonian function. A natural ques-
tion is what happens when (1) is constrained by algebraic equations on q and/or p. That is,
there are Hamiltonian constraints of the form g(q) = 0, and it leads to the constraints of
Hamiltonian equations as [3,4]

.
q = ∇pH(p, q),

.
p = −∇q H(p, q)− λG(q)t, (2)

where g : Rn → Rn , G(q) = gq(q) ∈ Rn×m and λ ∈ Rm. Equation (2) is called a con-
strained Hamiltonian system, which is not only a relatively loose concept but also a general
constrained mechanical system. The flow of a Hamiltonian system like (1) possesses an
important symplectic geometric structure. It has been observed in numerical experiments
that symplectic methods with fixed step-size possess better long-term stability properties.
Leimkuhler and Skeel [5] investigated symplectic numerical integrators of constrained
Hamiltonian systems in molecular dynamics. By composition methods, Reich [6] studied
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symplectic integration of the constrained Hamiltonian systems. The method they proposed
can reduce Hamiltonian differential-algebraic equations to ordinary differential equations
in Euclidean space.

When studying symmetry properties of classical and quantum constrained systems,
Li [7,8] found that via Legendre transformation, a singular Lagrangian system can be
transformed into the phase space determined by generalized momenta and generalized
coordinates. Since there are inherent constraints between generalized momenta and gen-
eralized coordinates, it is named a constrained Hamiltonian system. A lot of important
physical systems belong to this system, such as quantum electrodynamics, quantum flavor
dynamics, and so on. Even many electromechanical coupled systems belong to constrained
Hamiltonian systems. For a Lagrangian system, if the value of determinant det

(
∂2L

∂qs∂qk

)

vanishes, then it is named as a singular Lagrange system. The Lagrangian function of
supersymmetry, supergravity, and string theory are all singular. Therefore, the fundamental
theory of constrained Hamiltonian systems acts an important role in modern quantum field
theory [9].

In the late 1980s, Feng et al. established the so-called symplectic algorithms to study
the equations in Hamiltonian form and showed that these methods are more superior over
a long time by combining theoretical analysis and computer experimentation [10,11]. The
symplectic method has been widely recognized as a suitable numerical integrator with
global conservation properties for canonical Hamiltonian systems. It has been well applied
in testing particle simulation and some physical experiments in plasma physics, and thus
derived a series of results, for instance, a variational multi-symplectic particle-in-cell algo-
rithm of the Vlasov-Maxwell system [12], the practical symplectic partitioned Runge-Kutta
and Runge-Kutta-Nystrom methods [13], the symplectic integrations of Hamiltonian sys-
tems [14], symplectic integrators of the Ablowitz–Ladik discrete nonlinear Schrödinger
equation [15], etc. The standard symplectic scheme normally works for a canonical struc-
ture of the dynamical system. However, the symplectic simulation for the constrained
Hamiltonian systems is beset with difficulties since the constrained Hamiltonian systems
are usually non-canonical.

In this paper, we will present a general procedure for constructing the canonical
coordinates of constrained Hamiltonian systems. By defining a variable transformation and
calculations, the canonical variables for constrained Hamiltonian systems can be derived,
and thus the constrained Hamiltonian systems are canonicalized. Once the canonical
coordinates of constrained Hamiltonian systems are derived, one can employ the standard
canonical symplectic methods to study the constrained Hamiltonian systems. The method
we proposed is of importance in the study of constrained Hamiltonian systems. We believe
that the symplectic method of constrained Hamiltonian systems given in this paper can be
used in the study of quantum dynamics, electromechanical coupled systems, and strange
constrained dynamics as well.

To verify the effect of the canonicalization and illustrate the advantage of the canonical
symplectic simulation, a numerical example of the constrained Hamiltonian system is
presented. Clearly, the numerical results derived by the canonical symplectic method are
more accurate in the long-term simulation since they can maintain conservation properties.

2. Canonicalization of Constrained Hamiltonian Systems

Assume that a mechanical system is determined by the generalized coordinates
qi(i = 1, 2, . . . , n), and the Lagrangian function L = L(t, qi,

.
qi) satisfies det

(
∂2L

∂qs∂qk

)
= 0

When the generalized momenta and Hamiltonian of the system are constructed, there are
inherent constraints between the canonical variables in the phase space

φj(t, qi, pi) = 0 (j = 1, 2, . . . , n− r, i = j = 1, 2, . . . , n) (3)

this is the constraint equation that should be obtained between the generalized coordinates
and the generalized momenta of the constrained Hamiltonian system.

170



Axioms 2022, 11, 217

Then the motion equations of a singular system can be written as [11]

.
qi =

∂Hc

∂pi
+ λj

∂ϕj

∂pi
,

.
pi = − ∂Hc

∂qi
− λj

∂ϕj
∂qi

(i = 1, 2, . . . , n) (4)

where Hc is the Hamiltonian of the system and λj is the Lagrange multiplier. The multiplier
in Formula (4) can be given by Equations (3) and (4).

The motion Equation (4) of the constrained Hamiltonian system can be rewritten as




.
p1
...
.
pi.
q1
...

.
qn




=

(
0n Sn
Tn 0n

)




∂Hc
∂p1
...

∂Hc
∂pi
∂Hc
∂q1
...

∂Hc
∂qi




= M2n×2n




∂Hc
∂p1
...

∂Hc
∂pi
∂Hc
∂q1
...

∂Hc
∂qi




, (5)

where

Sn =




−1− λj
∂ϕj
∂Hc

. . . 0
...

. . .
...

0 · · · −1− λj
∂ϕj
∂Hc




n×n

, Tn =




1 + λj
∂ϕj
∂Hc

. . . 0
...

. . .
...

0 · · · 1 + λj
∂ϕj
∂Hc




n×n

(6)

and M2n×2n is an anti-symmetric matrix.
Let v = (p, q)T , where p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn) , then Equation (5)

can be rewritten as
.
v = K(v)−1∇Hc(v), (7)

where

K(v) =
(

0n T−1
n

S−1
n 0n

)
. (8)

It is easy to see that Equations (5) and (7) are non-canonical Hamiltonian systems.
To rewrite the non-canonical Hamiltonian system in canonical form, we let Z = Ψ(v)

be the corresponding canonical variables which is a transformation from R2n to R2n.
Z = ( p̃, q̃)T are new variables after canonicalization. By the chain rule, the canonicalization
of Equation (7) can be written as [11]

.
Z =

(
∂Ψ
∂v

)
K(v)−1

(
∂Ψ
∂v

)T
∇H̃(Z), (9)

where H̃(Z) = Hc(v). If we let
(

∂Ψ
∂v

)
K(v)−1

(
∂Ψ
∂v

)T
= J−1, i.e.,

K(v) =
(

∂Ψ
∂v

)T
J
(

∂Ψ
∂v

)
(10)

Note that K(v) is a given matrix and v = (p, q)T is the original variable, so we
can get Ψ(v) through this transformation, which is a set of canonical new generalized
momenta p̃ = ( p̃1, p̃2, . . . , p̃n) and generalized coordinates q̃ = (q̃1, q̃2, . . . , q̃n). Now, we
have transformed the non-canonical Hamiltonian system into a canonical Hamiltonian
system.

By substituting the new variables into the original Hamiltonian of the constrained
system, it becomes canonical. Based on the canonical Hamiltonian equations, one can
examine their properties and hence some useful algorithms can be applied to examine
the numerical solutions and numerical simulation of the constrained Hamilton systems.
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The results of the original system can be obtained by replacing the new variables with the
old ones.

3. Symplectic Method for Constrained Hamiltonian Systems

The constrained Hamiltonian systems are transformed in the canonical form (9):

dZ
dt

= J−1∇̃H(Z), (11)

that is, the canonical Hamiltonian system is

dZ
dt = J−1∇̃H(Z), J =

(
0 In
−In 0

)
, Z ∈ R2n (12)

We now show that the properties, conclusions, and calculation methods of canonical
Hamiltonian systems can be extended to constrained Hamiltonian systems. We give the
symplectic method for constrained Hamiltonian systems as follows.

A transformation of the constrained Hamiltonian system

Ψ : R2n → R2n, v =

(
p
q

)
→ Z̃ =

(
p̃
q̃

)
(13)

is called the symplectic transformation for a system if its Jacobian is a symplectic matrix

(
dZ̃
dZ

)T

J

(
dZ̃
dZ

)
= J ⇔

n

∑
k=1

dp̃k ∧ dq̃k =
n

∑
k=1

dpk ∧ dqk. (14)

For the canonical Hamiltonian system (9), if

p̃ = p− τ ∂H
∂q ( p̃, q), q̃ = q + τ ∂H

∂p ( p̃, q), (15)

then it is a first-order symplectic scheme. When H(p, q) = U(p) + V(q), Equation (15)
becomes

p̃ = p− τ ∂V
∂q (q), q̃ = q + τ ∂U

∂p ( p̃), (16)

which is an explicit symplectic scheme. For the canonical Hamiltonian system (9), the Euler
midpoint rule is

Z̃ = Z + τ J−1∇H(
Z̃ + Z

2
), (17)

which is a second-order symplectic scheme. A Runge-Kutta method

Z̃ = Z + τ
m
∑

i=1
bi J−1∇H(Ki), Ki = Z + τ

m
∑

i=1
aij J−1∇H(Kj), i = 1, . . . , m, (18)

is symplectic if and only if bibj − biaij − bjaij = 0. In Equations (15)–(18), τ represents the
time step size.

4. Example

The Lotka-Volterra model can be expressed as a non-canonical Hamiltonian system
with n = 1 ( .

p
.
q

)
=

(
0 −pq
pq 0

)
∇H(p, q), (19)

where H(p, q) = p− 2 log p + q− log q.
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The Hamiltonian H can be rewritten as H = H1 + H2 with H1 = p − 2 log p and
H2 = q− log q. According to the canonialization method shown in Section 2, we have

K =

(
0 1

pq
− 1

pq 0

)
. (20)

According to Equation (10), we get

∂ p̃
∂p

∂q̃
∂p −

∂ p̃
∂p

∂q̃
∂p = 0, ∂ p̃

∂p
∂q̃
∂q −

∂q̃
∂p

∂ p̃
∂q =

1
pq

(21)

and
p̃ = log(p), q̃ = log(q). (22)

Hence, we have
p = exp( p̃), q = exp(q̃) (23)

and thus
H̃( p̃, q̃) = exp( p̃)− 2p̃ + exp(q̃)− q̃, (24)

which is a canonical Hamiltonian system. Using the second-order explicit symplectic
scheme on the basis of the canonicalization, we get the trajectory of the canonical variable

p̃, q̃ , where p̃(0) = ln 2, q̃(0) = ln 3, and time step size τ = 0.1 (see Figure 1).
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and 
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which is a canonical Hamiltonian system. Using the second-order explicit symplectic 

scheme on the basis of the canonicalization, we get the trajectory of the canonical 

variable qp ~,~ , where �̃�(0) = ln2, �̃�(0) = ln3, and time step size 𝜏 = 0.1 (see Figure 1). 

 

Figure 1. Trajectory of the canonical variable qp ~,~ . Figure 1. Trajectory of the canonical variable p̃, q̃ .

Using Equation (23) we can obtain p, q, and p(0) = 2, q(0) = 3, and time step size
τ = 0.1, then using the second-order explicit symplectic scheme on the basis of p, q, we get
the trajectory of the non-canonical variable p, q (see Figure 2).
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In addition, the implicit Runge-Kutta method of order 3 is applied directly to the
non-canonical Hamiltonian system directly, and then we get the trajectory of the original
variables p, q, and p(0) = 2, q(0) = 3 and time step size τ = 0.1 (see Figure 3).
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As can be seen from Figures 1 and 2, the trajectory diagrams of regularized variables
and initial variables are kept unchanged by a symplectic algorithm. After 1,000,000 steps,
the graph remains basically unchanged, which indicates that the symplectic algorithm of
constrained Hamiltonian systems has the property of preserving structure. Namely, the
physical properties of constrained Hamiltonian systems can be maintained by a symplectic
method. One can see from Figure 3 that the graph using the third-order Runge Kutta
method (or general numerical calculation method) is very unstable. This method does
not have the property of preserving the structure, that is, it cannot maintain the physical
properties of the constrained Hamiltonian systems. It is shown clearly from the three
figures that the symplectic algorithm has better structure-preserving properties. It is of
great significance to study the constrained Hamiltonian systems using the symplectic
algorithm.

5. Conclusions

In this paper, we discuss the canonicalization method of the constrained Hamiltonian
systems, then the symplectic method is applied to the constrained Hamiltonian systems on
the basis of the canonicalization. Compared with the traditional Runge-Kutta method, they
have better structural preservation properties. Consequently, the symplectic methods can
be applied to more noncanonical Hamiltonian systems, which will be further investigated
in our next work.
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Abstract: This paper presents a new theoretical approach to the study of robotics manipulators
dynamics. It is based on the well-known geometric approach to system dynamics, according to which
some axiomatic definitions of geometric structures concerning invariant subspaces are used. In such
a framework, certain typical problems in robotics are mathematically formalised and analysed in
axiomatic form. The outcomes are sufficiently general that it is possible to discuss the structural
properties of robotic manipulation. A generalized theoretical linear model is used, and a thorough
analysis is made. The noninteracting nature of this model is also proven through a specific theorem.
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1. Introduction

To briefly describe the history of robotics up to the present day is not a superfluous
task. It is curious to first search for the original meaning of the word. Some philologists
propose that the term “robot” came from the Latin root of the word “robor-roboris”, one
of the meanings of which is “force”. In any case, the term “robot” was introduced for the
first time in 1921 by the Czech writer Karel Capek in his satirical work entitled “Rossum’s
Universal Robots”; in Czech, “robota” means “work”. Some consider the source to be Indo-
European, so it might be useful, in this endeavor, to track down various corruptions, such
as “labor-laboris”, and hence “work”. Capek’s satirical work emphasizes the difference
between the machine and the human and, in particular, the substantial difference consists
in the fact that robots never get tired.

After World War II, the need to manipulate radioactive material generated the need
to build the first mechanical manipulators that are remotely controlled. They were made
in the laboratories of Argonne and Oack Ridge (USA), and were of the master–slave type,
which are manipulators consisting of a “slave part” driven by the human operator whose
movements were duplicated on the slave part through a series of mechanical linkages.
General Electric, together with General Mills, called these teleoperators. However, the
teleoperators were certainly not the only expression of robotics in the years following World
War II; the CNC-machines (Computerized Numerical Control machines), initially used for
the lamination of some parts of the aircraft, joined these. In fact, the numerical control
machines had a considerable weight in history of robotics. Their great merit was to fully
replace the human operator in the teleoperators. In 1954, for the first time, George Devol
replaced in teleoperators the human operator with a programmable controller similar to
that present in the numerical control machines, giving rise to the first real robot: “real” to
emphasize the fact that a machine during the execution of tasks does not depend in any
way on a human. Devol’s patent rights were bought by Eledemberg Joseph, a student at
Columbia University, who in 1956 built Unimation. This company in 1961 installed in the
plants of General Motors the first robot that, because of its programmability, was able to
perform a wide range of operations, multiplying the flexibility of the chain of assembly.
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Mechanically, the robot was with an open kinematic chain consisting of many degrees of
freedom and consequently its control was not an easy task. To improve the pilotability of
the robots and strengthen their capacity, in 1962, Ernst inserted the first force sensors in the
structure of the mechanical robots.

The sensing robots went on in different forms: Tomovic and Bono developed a pressure
sensor for taking robotics; McCarthy developed a vision system binary, etc. The entire
activity research concretized in the first manipulator industrial computer control of the
Cincinnati Milacron, baptized “The Tomorrow Tool T3 (1973). In addition, in the 1970s, the
Unimation begins to produce the PUMA (Programmable Universal Machine for Assembly),
which represents one of the cornerstones in the history of robotics.

During the 1980s, the research, aimed at improving performance of industrial robots,
was developed and the first techniques to control the position and the stiffness of robots
in feedback. In the past few years, the trend has been to build very versatile devices. An
example useful for all is the Robotworld of Automatix structured into several modules, each
with four degrees of freedom, which can be connected to different tools for the execution of
various operations.

The potential applications of the research in the field of robotic manipulation have
been and still are the reasons driving the research. For example, think of the possibilities of
their use in operating in environments hostile to man (or applications in space exploration
in central nuclear, removal of toxic waste), or the robotization of work notoriously difficult
and/or dangerous to humans, or, finally, medical applications (robotic protheses, using
robotic surgery).

Technological development has not only increased the use of robots in industrial
fields, but has also made it possible for them to actually use different applications, such
as medical implants instruments for non-invasive surgery. These applications require
high-precision performance and often also a high execution speed. In general, therefore,
studies highlighting the extent to which the potentialities and prospects of such devices
can be improved are required. Robotic manipulation systems are of a great importance
due to their flexibility for application in any industrial sector. Their flexibility is a result
of the multifunctionality of robotic hands, which allows for their application to industrial
processes in many fields and for the possibility of interactions and cooperation with other
robotic structures. This is connected with the fact that manipulation skills are, together
with speech, probably the most important features that distinguish humans from animals.
A certain evolutionary biology believes that a certain part of human supremacy over
other primates is also due to the prensility of our upper limbs that allowed the immediate
application of ideas in what is usually called actions, a process otherwise definitely more
complicated. In other words, one might wonder what would be without prensility of the
upper limbs. This seems to be unimaginable, to have a reality different from what we have
today. Due to this consideration, this can seem elementary, and leads us to think about
how important it is that a machine performs a certain function, or better, a certain action.
In this sense, to be able to affect the environment, a manipulator needs more versatile
hands. As a result of technological development, the application of robotics is on the rise in
many industrial sectors, and even in the medical field (e.g., micro-manipulation of internal
tissues or laparoscopy). Due to the high mechanical efficiency and the vast possibilities of
application of robots, in the past years the manipulation was followed with great interest in
both academic and industrial world, refs. ([1–9]). For these advanced applications, robotic
devices with high performances in terms of precision and speed are required. In order to
achieve high performances, a general strategy in robotics is represented by the decoupling
control technique.

1.1. Coupling and Decoupling

The decoupling of coupled systems is one of the most interesting problems in system
theory and control. The decoupling control strategies allow us to simplify the control
itself and also the identification procedure of the parameters of the robot. The couplings
which are contained in the mathematical description of the robot model through the motor
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inertia, the mass inertia, the stiffness and the damping matrix within the joints should be
decoupled by the control. These couplings lead to an eighth-order multivariable system for
each joint. The decoupling within joints is achieved by a novel MIMO state controller motor
positions and output torques and their derivatives as states. In general, in order to design
the controller of robots taking into account the coupling, the system is broken down into
two decoupled subsystems using modal decoupling and subsequently considered as two
separate single-variable systems (SISO). Thus, the parameters of the SISO state controller
can be determined for the respective subsystem and two independent controllers are to be
designed [10]. A globally asymptotic stability for the entire system can be achieved with the
MIMO state controller. The controller significantly expands the approaches from [11], both
theoretically and practically. The decoupling control represents one of the most interesting
controller structures that have been implemented on robots. Multivariable systems, in
which several output variables can be dependent on several input variables at the same
time, are characterized by the mutual coupling of inputs and outputs. It is therefore the task
of the control design for multivariable systems to minimize the influence of the coupling so
that, in the ideal case, each output variable is only influenced by a corresponding virtual
manipulated variable and thus the controlled system achieves the desired smooth dynamic
behavior, ref. [12]. When designing a controller for a linear multivariable system, there are
basically two options:

• central controller design
• decentralized controller design.

The modal method for the controller design is used to decouple the system from the
controller. While central controller design is based on the overall system, decentralized
controller design uses several decoupled, lower-order subsystems instead of the high-
order, coupled system. In the following, the two methods are presented and analyzed
one after the other. In a centralized decoupled control design, the state controller can be
designed through the complete modal synthesis, whereby the closed overall system is
decoupled. In the context of a decentralized decoupled control design, if a multivariable
system is decoupled, the synthesis problem is reduced to the case of single control. For
this, the system is first transformed into a modal form in which it can be divided into
several small, decoupled subsystems. The decoupling control finds application, not only in
manipulation systems, but also in other systems. One example is represented by the mobile
robots. For instance, in [13], an explicit model predictive control (MPC), in combination
with sliding mode control in the context of a decoupling controller, is proposed. The
decoupling control is particularly important for MPC in order to reduce the computational
load. In addition, recent MPC contribution takes into account the problem of computational
load in the field of tracking of different trajectories mark progress in optimal design for
model predictive control based on a new improved intelligent technique and it is named
the modified multitracker optimization algorithm, such as, for instance, in [14]. This
modification improves the exploration behavior to prevent it from becoming trapped in
a local optimum. The proposed method is applied on the robotic manipulator to track
trajectories. In addition, more recently, in [15], an optimized algorithm in MPC context
for autonomous vehicle is proposed. More in general, the decoupling proposed in this
contribution can be integrated in with the methods proposed in [16], as well as in [17,18],
in which the D-decomposition method is used in order to compute optimized controller
gains that provide fine performance in different engineering applications.

1.2. Main Contribution of the Paper

The present paper presents a new approach to the study of robotics manipulators
dynamics based on the well-known geometric control approach to system dynamics. Using
this framework several typical problems in robotics are mathematically formalised and
analysed. The outcomes are sufficiently general that it is possible to discuss the struc-
tural properties of robotic manipulation, which are obtained using a geometric approach.
The geometric approach was pioneered in the 1970s, in [19–22]. The approach used for
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the derivation of these properties is decidedly new in this kind of literature that refers
especially to [23–26]. The novelty consists in using the geometric approach (theory of
invariants subspaces) analysis and then the derivation of the properties as listed above
for the synthesis of control systems that guarantee and then allow to exploit these prop-
erties in any operating condition. The seminal references for this approach were [20,27].
The problem of the noninteracting force motion model is here investigated, a generalised
linear model is used, and a careful analysis is performed. Contributions to the topic of
manipulation using the geometric approach further progressed through the use of linear
algebra. Recent contributions, such as in [28–30] have led to progress in the analysis and
synthesis of geometric controllers for application to electro-mechanical systems. In [31–33],
a geometric approach guarantees robustness and many practical advantages in possible
real applications; see [34]. In particular, the geometric approach can be focused on the dis-
turbance decoupling problem [35], an issue that has attracted many scientists. Furthermore,
in [36–38], interesting and interpretable results are proposed. For a broad overview of the
manipulation control problem, the reader is referred to [26] and the references therein. The
present paper aims at analysing the structural properties of noninteraction with respect
to rigid-body object motions and reachable contact forces along with possible mechanism
redundancy. More recently, refs. [39–41] underline the importance of a noninteraction in
the control strategy to simplify the structure of the controller. In the same way, ref. [42–44]
point out the importance of the position/force control in robotic manipulation.

The present study is conducted using geometric techniques. Some axiomatic def-
initions of geometric structures concerning invariant subspaces are used as a possible
framework in order to derive some structural properties in the considered system. This
paper follows the contributions published in [31,35] and, more recently, in [32,34,45]. These
studies on geometric control represent an interesting line of research in which problems
such as decoupling, noninteraction and disturbance rejection are taken into account in the
context of mechanical systems.

1.3. Structure of this Contribution

The present paper is structured as follows. In Section 2, the linearized dynamical
model is derived. Section 3 is dedicated to the reachable internal contact forces and
a fundamental theorem is demonstrated. In Section 4, the noninteraction property is
presented. In Section 5, a possible reinterpretation of the theoretical results is proposed
and a case study with its simulations is shown. The paper closes with a conclusion and
an appendix in which the proof of the theorem that states the structural property of
noninteraction is proposed.

2. Dynamic Model

For the dynamic model, q ∈ Rq denotes the vector of manipulator joint positions, τ ∈ Rq

denotes the vector of joint actuator torques, u ∈ Rd denotes the vector locally describing
the position and the orientation of a frame attached to the object, and w ∈ Rd denotes the
vector of forces and torques resulting from external forces acting directly on the object. In
the literature, w usually refers to the disturbance vector. The force/torque interaction ti at
the i-th contact is taken into account by using a lumped-parameter (Ki, Bi) model of visco
elastic phenomena. According to this model, the contact force vector ti is as follows:

ti = Ki(hci −o ci)+Bi(h ċi −o ċi), (1)

where vectors hci and oci describe the postures of two contact frames, the first on the
manipulator and the second on the object, where the i-th contact spring and damper are
anchored. Matrices Ki and Bi are symmetric and positive definite and the dimensions
of vectors involved in Equation (1) depend on the particular model used to describe the
contact interaction [46]. The Jacobian J and grasp matrix G of the manipulation system,
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see [25,47], are defined by the linear maps relating the velocities of vectors hc and oc with
the joint and object velocities q̇ and u̇, respectively:

h ċ = Jq̇,
o ċ = GTu̇.

(2)

Note that JTt and Gt dually represent the effects of contact forces t on the manipulation
and object dynamics whose full nonlinear models are, respectively:

Mhq̈ +Qh = −JTt + τ,

Moü +Qo = Gt +w.
(3)

Here, Mh and Mo are inertia symmetric and positive definite matrices, while Qh and Qo are
terms including velocity-dependent and gravity forces of the manipulator and the object,
respectively. To proceed with the analysis of the linearised model of the full manipulation
system, consider a reference equilibrium configuration

q = qo, u = uo, q̇ = u̇ = 0,
τ = τo, w = wo t = to,

such that
τo = JTto and wo = −Gto.

The linear approximation of the manipulation system in the neighbourhood of this
equilibrium is given by

ẋ = Ax +Bτδτ +Bwδw, (4)

where the state and input vectors are defined as the departures from the reference equilib-
rium configuration as follows:

x = [δqT , δuT , δq̇T , δu̇T]T = [(q − qo)T (u − uo)T q̇T u̇T]T
,

δτ = τ − JTto,

δw = w +Gto.

(5)

The dynamic, input and disturbance matrices are

A = [ 0 I
Lk Lb

], Bτ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

M−1
h

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Bw =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

M−1
o

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

To simplify the notation, we will henceforth omit the symbol δ. According to [47], by
neglecting gravity, assuming a locally isotropic model of visco–elastic phenomena (where
the stiffness matrix K is proportional to the damping matrix B), and assuming that the
local variations of the Jacobian and grasp matrices are small, blocks Lk and Lb in A can be
simply obtained as

Lk = −M−1Pk, Lb = −M−1Pb, (7)

where
M = diag(Mh, Mo),

Pk = [ JT

−G
]K[ J −GT ],

Pb = [ JT

−G
]B[ J −GT ].
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Concerning the contact forces, we then obtain

t′ = t − to = K(Jδq −GTδu)+B(Jδq̇ −GTδu̇), (8)

and in terms of matrices, we have
t′ = Ctx,

where the output matrix of the contact force is as follows:

Ct = [ KJ −KGT BJ −BGT ]. (9)

The properties of grasping defined as follows have a relevant influence on the dynamic
behaviour of the manipulation system, refs. [25,47]. These properties are based on the
existence of the null spaces of the Jacobian and grasp matrices J and G and of their transpose
matrices.

Definition 1. A grasp (or manipulation system) is considered defective if ker(JT) ≠ 0.

Definition 2. A grasp is considered indeterminate if ker(GT) ≠ 0.

If a grasp is indeterminate, there exist motions of the objects under which no variations of
contact forces occur. In other words, indeterminacy implies that the object is not firmly grasped.

Definition 3. A manipulation system is considered graspable if ker(G) ≠ 0.

If a system is graspable, it is possible to exert contact forces with zero resultant forces
on the object. Usually in the literature, the forces belonging to the null space of G are
referred to as internal forces. Finally, the well-known notion of manipulator redundancy is
formalised as follows.

Definition 4. A grasp is considered redundant if ker(J) ≠ 0.

Proposition 1. If a system is not indeterminate, i.e., ker(GT) = 0, then the minimal A-invariant
subspace containing im(Bτ), minI(A, Bτ), is externally stable.

From now on, we will assume that the considered system is not indeterminate
ker(GT) = 0. Concerning the coordinate movements of the object, the following proposition [47]
show that the subspace JΓT

qc = GTΓT
uc. of rigid-body motions is reachable.

Proposition 2. The rigid kinematics are described by the base matrix Γ whose columns form a basis for

ker[ J GT ] = im(Γ), (10)

where Γ = [ΓT
qc ΓT

uc].
Proposition 3. Let the subspace of rigid-body motions be defined as the column space of Tc, where

Tc =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc 0
Γuc 0
0 Γqc
0 Γuc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

Accordingly, the following holds:

im(Tc) ⊆ minI(A, Bτ).
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3. Reachable Internal Contact Forces

Contact forces t are exerted on an object by the manipulation system in order to maintain
the grasp, reject disturbance wrenches w and control the object motion. Therefore, the control
of contact forces is a fundamental part of the manipulation control problem, as the better the
control of forces, the finer the manipulation. In [47], the reachable subspace of contact forces as
an outputs of the dynamic system given in Equation (4) was studied. The following theorem
provides an explicit formula for the subspace of reachable internal forces.

Theorem 1. Under the hypothesis stating that K is proportional to B,

Rti,τ = im((I −KGT(GKGT)−1G) Ct) = im((I −KGT(GKGT)−1G) KJ).

Then, the output matrix is defined as follows:

eti = Etix; with Eti = (I −KGT(GKGT)−1G)Ct = [ Qk 0 Qβ 0 ], (12)

where
Qk = (I −KGT(GKGT)−1G)KJ. (13)

and
Qβ = (I −BGT(GBGT)−1G)BJ. (14)

It should be remarked that im(Qk) = im(Qβ) under the hypothesis im(K) = im(B).

4. Noninteraction as a Structural Property

The present section aims to analyse noninteraction as a control property for a general
grasping mechanism with respect to the rigid-body object motions and the reachable
contact forces together with the possible mechanism redundancy. The geometric approach
is used for this analysis. It should be remarked that the earliest geometric approaches
to noninteracting control where proposed by Basile and Marro [19,20] and to Wonham
and Morse [21,22,27]. The results of this section address the force/motion noninteracting
control of general manipulation mechanisms and are based on necessary and sufficient
conditions for the existence of the noninteraction control law given in [19,20]. We now
proceed to analyse noninteraction as a structural property of general manipulation systems
by formalizing the notion of force/motion noninteraction.

Definition 5. A control law for the dynamic system in Equation (4) is noninteracting with respect
to the regulated outputs euc, eti and eqr if there exists a partition τuc, τti and τqr of the input vector
τ such that for an initial condition of zero, each input τ(⋅) (with all the other inputs, also being
zero) only affects the corresponding output e(⋅).
The Fundamental Theorem

The following theorem shows that the noninteraction of the regulated outputs euc, eti
and eqr for the dynamic system in Equation (4), is an intrinsic structural property of general
manipulation systems. Assume that following hypothesis:

H1. The manipulation mechanism is not indeterminate that is, ker(GT) = 0.

Then, the following theorem holds.

Theorem 2 (Noninteraction). Consider the linearized manipulation system given in Equation (4).
Under Hypothesis H1, there exists a noninteracting control law decoupling the following outputs:

(a) the rigid–body object motions euc,
(b) the reachable internal forces eti,
(c) the mechanism redundancy eqr.
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Proof. Under hypothesis H1, the couple (A, Bτ) is stabilisable (Proposition 1). Moreover,
under H1 for the linearized system in Equation (4), it is a simple matter to verify that the
system is detectable based on the informative output y = (qT , tT)T . Then, there exists an
observer–based controller noninteracting with respect to the regulated outputs euc, eti and
eqr. Recall that following:

euc = Eucx = [ 0 ΓP
uc 0 0 ]x; (15)

eti = Etix = [ Qk 0 Qβ 0 ]x; (16)

eqr = Eqrx = [ ΓP
r Mh 0 0 0 ]x. (17)

Based on the theorem in [20], emerges that the outputs euc, eti and eqr are noninteracting if
and only if

EucRKuc = im(Euc),

EtiRKti = im(Eti),

EqrRKqr = im(Eqr),
(18)

where Kuc = ker(Eti)∩ ker(Eqr),

Kti = ker(Euc)∩ ker(Eqr),

Kqr = ker(Eti)∩ ker(Euc).

(19)

Here,RK(⋅) denotes the K(⋅)-constrained controllability subspace, which is the subspace of
all the points reachable through trajectories leaving the origin and belonging to K(⋅). We go
on to prove the equalities in Equation (18). To simplify the proof, we replace the intersection
subspaces in Equation (19) with suitable subspaces whose constrained controllability sets
suffice for our purposes. The demonstration is provided in Appendixes A and B. ◻
5. Case Study

Considering theorem in [34] which states that for the linearized manipulation system
under the hypothesis ker(GT) = {0}, it is possible to find a stabilizing state–feedback control
law, τ = Fx + τ∗ and an input partition τ∗ = Utiuti +Uucuuc which realize a noninteracting
control of the reachable internal forces ti and rigid–body object motions uc as follows:

(Eti, A +BτF, BτUti),

(Euc, A +BτF, BτUuc),
(20)

it holds: Rti = minI(A +BτF, BτUti) ⊆ ker(Euc),

EtiRti = im(Eti),
(21)

Ruc = minI(A +BτF, BτUuc) ⊆ ker(Eti),

EucRuc = im(Euc).
(22)

The partition matrices Uuc and Uti are such that the following conditions are satisfied:

im(BτUuc) = im(Bτ)∩Ruc,
im(BτUti) = im(Bτ)∩Rti,

(23)

and matrix F satisfies the following conditions:

(A +BτF)Ruc ⊆Ruc,(A +BτF)Rti ⊆Rti.
(24)

The decoupling controller is that sketched in Figure 1.
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Dynamics
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Figure 1. Force/motion decoupling controller.

In this section numerical results are reported for the simple defective gripper pictorially
described in Figure 2.

c1

c2

Joint q1

Joint q2

Joint q3

B

Y

X

circular trajectory of the center
of mass of the object

Figure 2. Planar 3–DoF’s Cartesian manipulator. It exhibits a defective (ker(JT) = 0) grasp.

It is a planar 3–DoF’s Cartesian manipulator and has been chosen in order to show the
effectiveness of previous results for industrial grippers. In the base frame B, the contact
centroids, see [48], are c1 = (2, 2), c2 = (2, 3) and object center of mass is cb = (2, 2.5) while
the transpose of the Jacobian and the grasp matrix assume the following values

JT = ⎡⎢⎢⎢⎢⎣
0 1 0 0
1 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎦; G = ⎡⎢⎢⎢⎢⎣
1 0 1 0
0 1 0 1

0.5 0 −0.5 0

⎤⎥⎥⎥⎥⎦.

The inertia matrices of the object and manipulator along with stiffness and damping
matrices at the contacts are assumed to be normalized to the identity matrix. The controlled
outputs are (a) the projection ti of the contact forces along the 1–dimensional subspace
of reachable contact force im([0 1 0 − 1]T) and (b) the projection of the rigid–body motion

in the 2–dimensional subspace of object motions im
⎡⎢⎢⎢⎢⎣

1 0
0 1
0 0

⎤⎥⎥⎥⎥⎦ which, since u = [δx δy δθ]T ,

corresponds to translations of the object.
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General Procedure

The objective of the control is twofold. First, force and motion control must be de-
coupled, then the perfect tracking of desired trajectories tid and ucd can be achieved. The
decoupling controller is pictorially described in Figure 1 and has been synthesized, accord-
ing to Section 4, Equations (20), (23) and (24). State–feedback matrix F and input partition
matrix U = [ Uti Uuc ] are obtained respectively according to the following procedure:

• Item 1: Considering Equation (21), the reachable subspace of the internal contact force is
calculated: Rti = (ET

tiEti)−1ET
ti im(Eti). (25)

• Item 2: OnceRti is obtained, partition Uti using (23), is obtained as follows:

im(Uti) = (BT
τ Bτ)−1BT

τ im(Bτ)∩Rti. (26)

• Item 3: Considering Equation (21), matrix Fti is calculated such that the following con-
dition
is satisfied: Rti = minI(A +BτFti, BτUti) ⊆ ker(Euc). (27)

• Item 4: Considering Equation (22), the reachable subspace of the internal coordinated
movements is calculated as follows:

Ruc = (ET
ucEuc)−1ET

ucim(Euc). (28)

• Item 5: OnceRuc is obtained, partition Uuc using (23), is obtained as follows:

im(Uuc) = (BT
τ Bτ)−1BT

τ im(Bτ)∩Ruc. (29)

• Item 6: Considering Equation (22), matrix Fuc is calculated such that the following con-
dition
is satisfied: Ruc = minI(Ati +BτFuc, BτUuc) ⊆ ker(Eti). (30)

• Item 7 : The final state–feedback noninteracting matrix is the following:

F = Fti + Fuc. (31)

End

Matrix Fti realizes the invariance of the internal contact forces. In this context, it is pos-
sible to squeeze the object without moving it. Using matrix Fti the following noninteracting
transition matrix is obtained:

Ati = A +BτFti. (32)

In the same way, matrix Ati, defined in Equation (32), together with matrix Fuc realize the
invariance of the subspace of the object motions. In this context, it is possible to move the
object without squeezing it. Thanks to matrix Fuc the following transition matrix which
realizes the noninteracting control system is obtained:

Adec = Ati +BτFuc. (33)

To go more in depth, Equation (31) is obtained from Ati = A +BτFti and Adec = Ati +BτFuc.
A combination of these two relations yields:

Adec = A +Bτ(Fti + Fuc), (34)
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and Equation (31) comes from Equation (34). Considering numerical data, the following
matrices are obtained:

F = ⎡⎢⎢⎢⎢⎣
−7 6.5 −6 −1 −41 0 −7.5 −0.02 −5.5 −3 −22 0
10 −120 10 −72 5 0 0.29 −16 0.29 7.2 −6.2 0−6.1 6.5 −7.1 −0.97 −41 0 −5.5 −0.021 −7.5 −3.1 −22 0

⎤⎥⎥⎥⎥⎦,

Uti =
⎡⎢⎢⎢⎢⎢⎣
−0.707

0
0.707

⎤⎥⎥⎥⎥⎥⎦
, Uuc =

⎡⎢⎢⎢⎢⎢⎣
0 −0.707
1 0
0 −0.707

⎤⎥⎥⎥⎥⎥⎦
.

Considering an angular velocity of 0.1 rad/s and uo of coordinates (2.5, 1) as possible
starting point, see Figure 2, the control task consists of maintaining the contact force to
the constant value of to = [0; 1; 0;−1]T . The joint forces τ∗ = Utiuti + Uucuuc represents
the control law which guarantees the perfect tracking of desired object motions with the
desired internal force ti, see Figure 3. The required circular trajectory of the center of mass
of the object is represented in Figure 2.
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Figure 3. Internal force ti perfectly tracks the constant internal force while the object center of mass
perfectly tracks the unit circle as depicted in Figure 2.

It is worthwhile to remark that for a simple industrial gripper, under the reasonable
hypothesis that the angular dynamics of the object can be disregarded, linearized dynamics
represents the complete description of manipulation system dynamics.

6. Conclusions and Future Work

This paper considered the problem of noninteracting control in a linearized general
manipulation systems. The geometric approach was used throughout the paper. The main
results demonstrate that, in general, there always exists an observer-based control law that
is noninteracting with respect to the aforementioned outputs. Note that the generality
of our approach allows for the consideration of this force/motion noninteraction as a
structural property of general manipulation systems. A possible future work can include
the analysis of the robustness of the proposed theorem including also a robust design of
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the controller. Moreover, also a possible noninteraction realized using a feedback from
the measured output and its corresponding robust control design should be taken into
consideration.
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Nomenclature

q ∈ Rq vector of manipulator joint positions
τ ∈ Rq vector of joint actuator torques

u ∈ Rd vector locally describing the position and the orientation of a frame attached
to the object

w ∈ Rd vector of forces and torques resultant from external forces acting directly on
the object

ti force/torque interaction ti at the i-th contact(Ki, Bi) lumped parameters of visco-elastic phenomena
x(t) position of the armature
hci vector describing the posture of the contact frame on the manipulator
oci vector describing the posture of the contact frame on the object
J Jacobian matrix of the manipulator
G grasp matrix of the manipulator
Mh and Mo inertia symmetric and positive definite matrices

Qh and Qo
terms including the velocity-dependent and gravity forces of the
manipulator and object, respectively

x state space
A dynamic matrix
Bτ input matrix
Bw disturbance matrixBτ = imBτ image of matrix Bτ (subspace spanned by the columns of matrix Bτ)
y = (qT , tT)T informative output
Ct output contact forces
Tc subspace of rigid body
Ta complementary subspace of rigid body
minI(A,B) =∑n−1

i=0 AiimB
minimum A-invariant subspace containing im(B) (controllable subspace)

maxV(A,B,C) maximum (A,B) controlled invariant subspace contained in C
minS(A,C,D) minimum (A,C) conditioned invariant subspace containing DRti,τ subspace of reachable internal forces

euc, eti and eqr
rigid–body object motions, reachable internal forces and mechanism
redundancy outputsRK(⋅) :K(⋅)-constrained

controllability
subspace

subspace of all the points reachable through trajectories leaving the origin
and belonging to K(⋅).

im(Sq) subspace of manipulator movements reachable from movement of the object
im(Su) subspace of object movements reachable from movement of the manipulator

Appendix A

This appendix outlines Theorem 2 in all its formal aspects.
Before proceeding to prove Theorem 2, certain additional notation and results are

required.
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Let us define the subspaces of the state spaces im(Tr), im(Ti), im(Th) and im(Td),
where

Tr =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γr 0
0 0
0 Γr
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
; Ti =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
Γi 0
0 0
0 Γi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Th =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γh 0
0 0
0 Γh
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Td =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
Γd 0
0 0
0 Γd

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(A1)

Here Γr, Γi, Γh and Γd are the basis matrices for the subspaces previously defined. In partic-
ular, Γr is a basis matrix for ker(J), and im(Γi) = 0 because our system is not indeterminate.
Regarding the other subspaces, the following is established:

Γh = b.m. of im(M−1
h JT)∩maxI(M−1

h JTKJ, ker(GKJ)),

Γd = b.m. of im(M−1
o G)∩maxI(M−1

o GKGT , ker(JTKGT)).
(A2)

Appendix A.1. Demonstration of the Noninteraction Theorem

We begin with the calculation ofRK(⋅) and, in particular, with the calculation of the
subspaces included inRK(⋅) . In this appendix, ker(Qk) and ker(Qβ) will be calculated. It
may be useful to remark that ker(Qk) = ker(Qβ) under the hypothesis of proportionality
outlined above.

ker(Eti) = ker[ Qk 0 Qβ 0 ] ⊇ im(Lti),

where

Lti =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqr 0 Γqc 0 Γqc 0 Γqc 0 Γqc 0 ..
0 0 Γuc 0 −Γuc 0 −HΓuc 0 −H2Γuc 0 ..
0 Γqr 0 Γqc 0 Γqc 0 Γqc 0 Γqc ..
0 0 0 Γuc 0 −Γuc 0 −HΓuc 0 −H2Γuc ..

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and H = M−1

o GBGT . It can be recalled that B is proportional to K. In the same way

ker(Euc) = ker[ 0 ΓT
uc 0 0 ] ⊇ im(Luc),

where

Luc =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqr 0 Γh 0 Sq 0 0 0
0 0 0 0 0 0 ker(ΓT

uc)∩ Su 0
0 Γqr 0 Γh 0 Sq 0 0
0 0 0 0 0 0 0 ker(ΓT

uc)∩ Su

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (A3)

with
Sq = minI(M−1

h JTKJ, M−1
h JTKGT) (A4)

and
Su = minI(M−1

o GKGT , M−1
o GKJ). (A5)

Finally, it can be recalled that Γh is a basis matrix of

Im(M−1
h JT)∩maxI(M−1

h JTKJ, ker(GKJ)). (A6)

Regarding the subspace

ker(Eqr) = ker[ ΓP
r Mh 0 0 0 ],

189



Axioms 2022, 11, 309

it is very easy to check
ker(Eqr) ⊇ im(Lqr)

with
im(Lqr) = im[ Th Tc Ta Td ], (A7)

where the matrices Th, Tc, Ta and Td are previously defined. It is useful to note that im(Lqr)
includes all subspaces except for the redundant movements subspace. We here begin the
calculation with the intersection in Equation (19):

im(Luc)∩ im(Lqr) ⊇ im(Bti),

with

Bti =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γh 0 Sq 0 0 0
0 0 0 0 ker(ΓT

uc)∩ Su 0
0 Γh 0 Sq 0 0
0 0 0 0 0 ker(ΓT

uc)∩ Su

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (A8)

Equation (A8) states a subspace included in the above intersection. In fact, by Equation (A7),
the subspace im(Lqr) includes all subspaces except for the redundant movements. The
following calculation is now given:

im(Lti)∩ im(Lqr) ⊇ im(Buc)
where

Buc =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc 0 Γqc 0 Γqc 0 Γqc 0 ..
Γuc 0 −Γuc 0 −HΓuc 0 −H2Γuc 0 ..
0 Γqc 0 Γqc 0 Γqc 0 Γqc ..
0 Γuc 0 −Γuc 0 −HΓuc 0 −H2Γuc ..

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (A9)

This intersection is a result of the definition of Su (because HΓuc ⊆ Su) and of Lemma A5
reported in Appendix B.

Finally,
im(Lti)∩ im(Luc) = im(Bqr),

where

Bqr =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γr 0
0 0
0 Γr
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (A10)

which is very easy to verify.
It the following we will formally prove “part a)” of Theorem 2.

Proof. (“Part a)” of Theorem 2)
We now calculate

maxV(A, im(Bτ), im(Buc)).

This calculation it is extremely elementary, and it follows that

maxV(A, im(Bτ), im(Buc)) = im(Buc).

Next, we calculate
minS(A, im(Buc), im(Bτ)).

In general, the following holds, independent of the representative basis: It can be
recalled that the subspaces are independent of every possible basis.
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Z0 = im(Bτ),

Zk = Zk−1 +A(Zk−1 ∩ im(Buc)),

where

im(Buc) = im(Lti)∩ im(Lqr),

Z1 = (im(Bτ)+A(im(Bτ)∩ im(Buc))),

Z1 =
⎛⎜⎜⎜⎝Bτ +A

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

Γqc
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠,

Z1 = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc 0
0 0

M−1
h JTBJΓqc M−1

h
M−1

o GBJΓqc 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Z1 = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc 0
0 0
0 M−1

h
M−1

o GBJΓqc 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

We now calculate Z2 = im(Bτ)+A(Z1 ∩ im(Buc)).

Next, the following emerges:

im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc
0
0

M−1
o GBJΓqc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⊆ im(Buc),

this shows that the intersection can be separately calculated. In fact, it is not useless to
remember that for the subspaces intersections it is possible to use the distributive property
only if at least one of the subspaces is included in the other subspace.

Now, im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

M−1
h

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∩ im(Buc) = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

Γqc
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
because M−1

h has full rank. The other intersec-

tion ∀ a ∃ b, c, d and e can be calculated as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc
0
0

M−1
o GBJΓqc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
a =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc
Γuc
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
b +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

Γqc
Γuc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
c +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc−Γuc
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
d +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

Γqc−Γuc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
e.

It is easy to see that c = −e and d = −b. Thus,

Z1 ∩ im(Buc) = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc 0
0 0
0 Γqc

M−1
o GBJΓqc 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Now,

Z2 = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 Γqc 0
M−1

o GBJΓqc 0 0
0 0 M−1

h
X1 X2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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im(X1) = M−1
o GKJΓqc −M−1

o GBGT(M−1
o GBJΓqc)

and
im(X2) = M−1

o GBJΓqc.

This can be written as

Z2 = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−Γqc Γqc 0
M−1

o GBJΓqc 0 0
0 0 M−1

h−H2Γuc HΓuc 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

This calculation does not need to determine the minimum subspace exactly, and
the resulting subspace is sufficint to test the condition: It is useful to remember thatRBuc = maxV(A, im(Bτ), im(Buc)) ∩minS(A, im(Buc), im(Bτ)) in our case we have thatRBuc ⊇ im(Buc) ∩Z2, and Z2 ⊆ Z∞ at the end im(Buc) = maxV(A, im(Bτ), im(Buc)). It can
then be concluded that if Euc(im(Buc)∩Z2) = im(Euc), it will also be true that Euc(RBuc) =
im(Euc). RBuc ⊇ maxV(A, im(Bτ), im(Buc))∩Z2.

This calculation is simple:

RBuc ⊇ im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc −Γqc 0
0 M−1

o GBJΓqc 0
0 0 Γqc

HΓuc −H2Γuc 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

To complete the proof, it remains to be verified that

EucRBuc = im(Euc).

This is trivial; in fact,

Euc = Γuc(ΓT
ucΓuc)−1[ 0 ΓT

uc 0 0 ].
The theorem is thus proved, and JΓqc = GTΓuc and ΓT

ucM−1
o GBGTΓuc have full rank. ◻

It the following we will formally prove “part b)” of Theorem 2.

Proof. (“Part b)” of Theorem 2)
We begin by calculating the controlled invariant subspace

maxV(A, im(Bτ), im(Bti))
and the conditioned invariant subspace

minS(A, im(Bti), im(Bτ)).

To calculate the first of the above subspaces, is sufficient to find a subspace im(V)
controlled invariant in (A, Bτ) and included in im(Bti) with the following structure: To
realise this kind of proof it is not necessary to find a controlled invariant subspace. Instead, it
is sufficient to consider a subspace included in im(Bti). This choice is helpfull in designing
the contoller. In fact, this choice is constructive and the resolvent subspace must be
controlled invariant.

V =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γh 0 SqZ 0 M1 0 0 0
0 0 0 Mb M2 0 0 0
0 Γh 0 0 0 SqZ 0 M1
0 0 0 0 0 0 Mb M2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (A11)
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Here, Z is such that

im(M−1
o GKJSqZ) = im(M−1

o GKJSq)∩ ker(ΓT
uc). (A12)

The subspace im(V) must be controlled invariant, and it is necessary that:

Aim(V) ⊆ im(V)+ im(Bτ), (A13)

im(V) ⊆ im(Bti). (A14)

Condition (A14) is satisfied if:

im(M1) ⊆ Sq, (A15)

im(M2) ⊆ ker(ΓT
uc), (A16)

im(Mb) ⊆ ker(ΓT
uc). (A17)

Furthermore, condition (A13) it is satisfied if

M−1
o GKJSqZ ⊆ im[ Mb M2 , ] (A18)

−M−1
o GKGTMb ⊆ im[ Mb M2 ], (A19)

M−1
o GKJM1 −M−1

o GKGTM2 ⊆ im[Mb M2 ]. (A20)

In Appendix B, it is demonstrated that if Sq ≠ 0, then it is always possible to resolve the last
three relations:

im[ Mb M2 ] ≠ 0.

We now calculate
minS(A, im(Bti), im(Bτ))

using the following algorithm:

Z0 = im(Bτ),

Zk = Zk−1 +A(Zk−1 ∩ im(Bti)),

where A is defined as

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 Iq 0
0 0 0 Iu−M−1

h JTKJ M−1
h JTKGT −M−1

h JTBJ M−1
h JTBGT

M−1
o GKJ −M−1

o GKGT M−1
o GBJ −M−1

o GBGT

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and

Bτ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

M−1
h

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Now, the following holds:

(Z0 ∩ im(Bti)) = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

Γh SqZ
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where Z is such that

im(M−1
o GKJSqZ) = im(M−1

o GKJSq)∩ ker(ΓT
uc). (A21)
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This involves

Z1 = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γh SqZ 0
0 0 0
0 0 M−1

h
0 M−1

o GBJSqZ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

This subspace is not conditioned invariant, but it will be sufficient for our demonstration.
In fact, the dimension of this subspace is sufficient to guarantee the rank condition. Now, it
is easy to show that RBti ⊇ maxV(A, im(Bτ), im(Bti))∩Z1.

This calculation is simple, and

RBti ⊇ im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γh 0 SqZ 0
0 0 0 0
0 Γh 0 SqZ
0 0 M−1

o GBJSqZ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

It is possible to verify that this subspace is not a self-hidden controlled invariant
subspace in im(Bti) and that it is not controlled invariant, but this is not necessary for
the present proof. It may be useful to recall that RBti = maxV(A, im(Bτ), im(Bti)) ∩
minS(A, im(Bti), im(Bτ)) and that in the present case, we have RBti ⊇ im(V) ∩Z1. Re-
calling that Z1 ⊆ Z∞ by im(V) ⊆ im(Bti), we can conclude that Eti(im(V)∩Z1) = im(Eti),
Eti(RBti) = im(Eti) will also hold. To conclude it will be proved that

EtiRBti = im(Eti). (A22)

It has been shown that the outputs were defined as follows:

eti = Etix,

with

Eti = (I −KGT(GKGT)−1G)Ct = [ Qk 0 Qβ 0 ],
(A23)

where
Q = Qk = Qβ = (I −KGT(GKGT)−1G)KJ. (A24)

We next calculate the null subspace of Q.

Remark A1. The null subspace of Q can be easily calculated. In fact, ker(Q) = ker(J)+V , whereV = {v∣KJv ∈ ker(I −KGT(GKGT)−1G) = im(KGT), v ∉ ker(J)}. By Equation (10) it is easy to
show that V = im(Γqc) and thus that:

ker(Q) = im(Γr)+ im(Γqc). (A25)

◻
The following two Lemmas demonstrate the useful property

EtiRBti = im(Eti), (A26)

which is equivalent to
im(Q[ Γh SqZ ]) = im(Q).

To prove Equation (A26), we show that

ker(Q)∩ im[ Γh SqZ ] = 0, (A27)

rank([ Γh SqZ ]) = rank(Q). (A28)
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Lemma A1.
ker(Q)∩ im[ Γh SqZ ] = 0. (A29)

Proof. If we begin from the previous Remark A1, Equation (A29) can be verified by
determining whether the vectors x, y, v and w exist such that

Γrx + Γqcy = Γhv + SqZw.

In fact, by im(Γqc), im(Γh) and im(Sq) are included in im(Mh
−1JT), while im(Γr) is not,

because it is included in ker(J). In general, given a linear application L, im(LT) + ker(L) = I.
Thus, the above equation can be written in the following form:

Γqcy = Γhv + SqZw.

If this equation holds, then

M−1
o GKJΓqcy = M−1

o GKJΓhv +M−1
o GKJSqZw.

By Equation (10) and Γh ⊆ ker(GKJ) in Equation (A6), we can deduce the following:

M−1
o GKGTΓucy = M−1

o GKJSqZw.

However, this is never verified. Due to the choice of Z M−1
o GKJSqZ ⊆ ker(ΓT

uc), while
it will be easy to show that if M−1

o GKGTΓuc ⊆ ker(Γ
T
uc), then the matrix M−1

o GKGT will be
an orthogonal projector. However, this is not true because it is not in a projector form. It is
useful to recall that given a subspace Lwith a basis matrix is L, ker(LT) = (im(L))⊥ and the
ortogonal proiector is (I − L(LTL)−1LT).

This demonstrates that condition (A29) is proven. ◻
Lemma A2.

rank[ Γh SqZ ] = rank(Γh)+ rank(SqZ)
= q − r − c.

Proof. The first equality is derived from the null intersection between im(Γh) and im(SqZ).
In fact, by condition (A6), im(Γh) is a subspace of maxI(M−1

h JTKJ, ker(GKJ)) orthogonal
to im(M−1

h Sq) in accordance with Equation (A4). The proof of the second equality of the
lemma begins with the following consideretions. First,

maxI(M−1
h JTKJ, ker(GKJ)) = im(M−1

h Sq)⊥,

from which it follows that

im(M−1
h JT) ⊆ maxI(M−1

h JTKJ, ker(GKJ))⊕ im(M−1
h Sq).

Now, by Equation (A4) im(M−1
h Sq) ⊆ im(M−1

h JT) and from the above inclusion and the
definition of Γh in Equation (A6), it follows that

im(M−1
h JT) = M−1

h JT ∩(maxI(M−1
h JTKJ, ker(GKJ))⊕im(M−1

h Sq))
= (M−1

h JT ∩maxI(M−1
h JTKJ, ker(GKJ)))⊕ im(M−1

h Sq)
= im(Γh)⊕ im(M−1

h Sq).

We thus obtain
rank(Γh)+ rank(Sq) = rank(M−1

h JT) = rank(J) = q − r
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and
rank(Γh) = q − r − rank(Sq). (A30)

The rank of SqZ remains to be calculated. Recalling that Sq and Z are basis matrices and
that from Equation (A12) rank(Z) ≤ rank(Sq), it follows that

rank(SqZ) = rank(Z). (A31)

By the introduction of Z in Equation (A12), it follows that

rank(Z) = rank(Sq)− rank(Z⊥). (A32)

Here, rank(Sq) is the number of components of z ∈ Z. The last part of this demonstration
consists of estimating rank(Z⊥), which, by Equation (A12) is

rank(Z⊥) = rank(ST
q JTKGTM−1

o Γuc).

By Equation (A4), it is easy to show that ker(ST
q ) ⊆ ker(GKJ). Thus, ker(ST

q )∩ im(JTKGT) =
0, and

rank(Z⊥) = rank(JTKGTM−1
o Γuc). (A33)

Now, we prove that

rank(Z⊥) = rank(JTKGTM−1
o Γuc) = rank(Γuc) = c. (A34)

If we transpose Equation (A33), the following hold:

rank(Z⊥) = rank(ΓT
ucM−1

o GKJ).

By Equation (10)

rank(Z⊥) = rank(ΓT
ucM−1

o GKGTΓuc) = rank(Γuc),

where the last equality follows because the matrix ΓT
ucM−1

o GKGTΓuc has full rank. Finally,
by Equations (A31), (A32) and (A34), it can be concluded that

rank(SqZ) = rank(Sq)− c.

Comparing this last result with Equation (A30)

rank[ Γh SqZ ] = q − r − c.

◻
Remark A2. The Equation (A28) was proved only if in the case of kinematic defectivity (ker(JT)) ≠ 0),
i.e., with J ∈R(t×q), thus only in the case of t > q. It is easy to prove that t ≤ q is a trivial extension.
Let r and c be the ranks of the matrices Γr and Γuc, respectively. It follows that rank(J) = q − r. By
Lemma A2, rank[ Γh SqZ ] = rank(Γh)+ rank(SqZ) = q − r − c. In conclusion, Equation (A28)
demonstrates that

rank(Q) = q − r − c,

which follows trivially from Equation (A25). In fact, rank(Q) = rank(QT) = q − rank(ker(Q)) =
q − (r + c).

It the following we will formally prove “part c)” of Theorem 2.
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Proof. (“Part c)” of Theorem 2)
It is possible to show the following:

im(Lti)∩ im(Luc) ⊇ im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γr 0
0 0
0 Γr
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

This subspace is A-invariant and thus guarantees the necessary conditions. By

Eqr = Γr(ΓT
r Γr)−1[ ΓT

r Mh 0 0 0 ],
even the rank condition is invariant. ◻
Appendix B

In this appendix, we provide several technical results useful for the calculations given
in Appendix A.

Lemma A3. Let Sq and Su be basis matrices of minI(M−1
h JTKJ, M−1

h JTKGT)
and minI(M−1

o GKGT , M−1
o GKJ), respectively. Then,

M−1
o GBJSq ⊆ Su.

Proof. Being

Sq = minI(M−1
h JTKJ, M−1

h JTKGT), and (A35)

Su = minI(M−1
o GKGT , M−1

o GKJ). (A36)

Now,

S⊥u = maxI(GKGTM−1
o , ker(JTKGTM−1

o )), (A37)

(Su)⊥ ⊆ ker(JTKGTM−1
o ), (A38)

(M−1
o GBJSq)⊥ = ker(ST

q JTBGTM−1
o ) ⊇ (ker(JTBGTM−1

o ). (A39)

Thus, (M−1
o GBJSq)⊥ ⊇ S⊥u , (A40)

and finally,
M−1

o GBJSq ⊆ Su. (A41)

◻
Lemma A4. Let Sq and Su above be defined. It follows that

M−1
o GBJSq ∩ ker(ΓT

uc)∩ Su = M−1
o GBJSqZ.

Proof. Recalling the definition of Z, it follows that im(M−1
o GKJSqZ) = im(M−1

o GKJSq)∩
ker(ΓT

uc), although it remains to be demonstrated that M−1
o GBJSqZ ∩ Su = M−1

o GKJSqZ.
This follows immediately by the previous Lemma A3. ◻
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Lemma A5. The complementary subspace im(Ta) was defined in [49] as the deforming motions
subspace. It is possible to choose a complementary subspace im(Ta) such that

im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γqc 0−Γuc 0
0 Γqc
0 −Γuc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⊆ im(Ta).

This part of the appendix discusses, through the following lemma, three necessary
conditions to obtain the controlled invariant subspace im(V) as pointed out in Appendix A.

Lemma A6.

M−1
o GKJSqZ ⊆ im[Mb M2 ],

−M−1
o GKGTMb ⊆ im[Mb M2 ],

M−1
o GKJM1 −M−1

o GKGTM2 ⊆ im[Mb M2 ].
Proof. The proof starts distinguishing three possible cases depending on ker(ΓT

uc).
Case 1:
ker(Γuc) is M−1

o GKGT-invariant.
This is the simplest case. In fact, if we take Mb = ker(ΓT

uc) and M2 = 0 such that the first
and the second equations are satisfied automatically, the third will be satisfied for M1 = 0.

Case 2:
ker(ΓT

uc) /⊇ M−1
o GKGTker(ΓT

uc) and ker(ΓT
uc)∩M−1

o GKGTker(ΓT
uc) ≠ 0.

In this case the second equation can be verified by the following:

M2 = ker(ΓT
uc),

Mb ∶ M−1
o GKGTMb =

ker(ΓT
uc)∩M−1

o GKGTker(ΓT
uc).

Now, the first equation is trivially verified, while the third will be verified if

M−1
o GKGTker(ΓT

uc) ⊆ im[ M−1
o GKJSq ker(ΓT

uc) ].
We will demonstrate that this condition is always verified.

Case 3:
The last case to analyse is that in which

ker(ΓT
uc)∩M−1

o GKGTker(ΓT
uc) = 0.

Under this condition, the second equation is satisfied only with Mb = 0. To satisfy this, it is
sufficient to set im(M2) = ker(ΓT

uc). This implies the same condition of the second case and
thus involves the following condition:

M−1
o GKGTker(ΓT

uc) ⊆ im[ M−1
o GKJSq ker(ΓT

uc) ].
◻

The following lemma shows how this condition is verified.

Lemma A7. If Sq ≠ 0, then the matrix

[ M−1
o GKJSq ker(ΓT

uc) ]
is a basis matrix of the subspace Rd, where d is the dimension of the physical space.
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Proof. Sq = minI(M−1
h JTKJ, M−1

h JTKGT) and the M−1
h is positive definite:

im(M−1
o GKJ) ⊇ im(M−1

o GKJSq) ⊇ im(M−1
o GKJM−1

h JTKGT) = im(M−1
o GKJ).

This implies that
im(M−1

o GKJSq) = im(M−1
o GKJ).

It is now easy to prove that

Rd ⊇ im[ M−1
o GKJ ker(ΓT

uc) ] ⊇ im[ M−1
o GKJΓqc ker(ΓT

uc) ],
im[ M−1

o GKGTΓuc ker(ΓT
uc) ] = Rd

and
rank(M−1

o GKGTΓuc) = rank(Γuc),

because M−1
o GKGT has a null subspace equal to zero. ◻
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Abstract: Existence and uniqueness of solutions for a simplified model of immiscible two-phase
flow in porous media are obtained in this paper. The mathematical model is a simplified physical
model with hysteresis in the flux functions. The resulting semilinear hyperbolic-parabolic equation is
expected from numerical work to admit non-monotone imbibition-drainage fronts. We prove the
local existence of imbibition-drainage fronts. The uniqueness, global existence, maximal regularity
and boundedness of the solutions are also discussed. Methodically, the results are established by
means of semigroup theory and fractional interpolation spaces.

Keywords: two-phase flow; Sobolev spaces; analytic semigroups; fractional interpolation; local and
global solutions

MSC: 34K30; 35K57; 35Q80; 92D25

1. Introduction

A great many studies in applied mathematics and mathematical physics are concerned
with multiphase flow in porous media. From a mathematical point of view, these studies
are important because they feature intrinsically nonlinear equations and hysteresis. Nonlin-
earity and hysteresis are longstanding “hot topics” that continue to generate fundamental
insights and progress in mathematics, physics and engineering.

The purpose and significance of this work is to report rigorous results based on
nonlinear semigroup theory for a simplified one-dimensional mathematical model of
immiscible two-phase flow with hysteresis in porous media. It exhibits strongly nonlinear
and nonmonotone solutions as a result of hysteresis. Our simplified model is introduced
here as the nonlinear initial and boundary value problem





ut(z, t) + f (u, z)uz(z, t)− Duzz(z, t) = 0, z ∈ Ω, 0 < t ≤ T
u(z, 0) = u0(z), z ∈ Ω
uz(z, t) = 0, z ∈ ∂Ω, 0 < t ≤ T

(1)

where z ∈ Ω is position, Ω = (0, 1) is the domain, t ∈ [0, T] is the time, u : Ω× [0, T]→ R
is the unknown saturation function of the wetting phase, and u0 : Ω → R is the initial
saturation. The nonlinear term is defined as

f (u, z) = χ(z, za) f ′im(u) + [1− χ(z, za)] f ′dr(u) (2)

with fi ∈ C2(R) with i ∈ {im, dr} and a fixed position za ∈ (0, 1). The characteristic
function χ(·, za) is defined as χ(z, za) = 1 for z ≥ za and as χ(z, za) = 0 for z < za. Further,
ut denotes the derivative with respect to t, uz denotes the derivative with respect to z, and
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uzz denotes the second derivative with respect to z. We assume throughout this paper that
fi(u) with i ∈ {im, dr} are twice continuously differentiable and

fi(0) = 0, fi(1) = 1, f ′i (w) = f ′′i (w) = 0, w ∈ R \ (0, 1). (3)

Furthermore, we assume that D is a positive non-zero constant, 0 < D < ∞.
Many authors have discussed the existence and uniqueness of weak solutions for two-

phase flow equations using different analytical approaches, see [1–5]. The field is much too
large to be reviewed here, and we thus restrict attention on the problem of nonmonotone
solutions [6–8]. Our objective in this paper differs from most other works, because we wish
to apply nonlinear semigroup theory and fractional interpolation spaces to problem (1) in
the limit of small D → 0. Presently, there exist several nonlinear semigroup approaches
in the literature to prove the existence and uniqueness of solutions of elliptic–parabolic
partial differential equations, see [9–15]. The works of [9–12] addressed elliptic–parabolic
problems in porous media.

However, for elliptic–parabolic partial differential equations, such as (1), all analytical
investigations known to us neglect hysteresis in f (u, z) and assume f (u, z) = f (u). Ex-
ceptions are [13,16], where a generalized Prandtl–Ishlinskii play operator and a Preisach
hysteresis model are discussed. There, the hysteresis operators only affect the time deriva-
tive ∂/∂t and not the nonlinear function f . Our method in this paper is based on the
decoupling of hysteresis processes.

2. Methods

In this section, some basic methods and notations are recalled. Let X be a Banach
space and denote its norm by ‖·‖. The space of bounded linear mappings X → X is
denoted by B(X). The uniform operator norm in B(X) is indicated by ‖·‖B(X). The norm
in the Lebesgue space L∞(Ω) is written as ‖·‖∞. For s ∈ R the norm on the fractional
Sobolev spaces Hs(Ω) = Ws,2(Ω) will be denoted by ‖·‖Hs . The closure of the space of
test functions C∞

0 (Ω) inHs(Ω) will be denoted byHs
0(Ω). The spaceHs

N(Ω), defined for
s > 3/2, denotes the Sobolev space with zero Neumann boundary conditions. The duality
products of Hs(Ω) and H−s(Ω) are denoted by 〈·, ·〉. In the scope of this article, all
Lebesgue and Sobolev spaces are defined on the domain Ω and from now are written
without the domain Ω. For more details on the definitions, see ([15], Chapter 1).

Definition 1 ([15], Chapter 1). Let 0 < T < ∞ and 0 < σ < β ≤ 1. Then, the space
F β,σ((0, T]; X) consists of functions h : (0, T]→ X fulfilling the following conditions:

1. The limit limt→0 t1−βh(t) exists in X.
2. The function h is Hölder continuous with exponent σ and weight function s1−β+σ, i.e.,

sup
0≤s<t≤T

s1−β+σ‖h(t)− h(s)‖
(t− s)σ

< ∞, (4a)

sup
0≤s<t

s1−β+σ‖h(t)− h(s)‖
(t− s)σ

t→0−→ 0. (4b)

Endowing F β,σ((0, T]; X) with the norm

‖h‖F β,σ(0,T] := sup
0≤t≤T

t1−β‖h(t)‖+ sup
0≤s<t≤T

s1−β+σ‖h(t)− h(s)‖
(t− s)σ

(5)

a Banach space is obtained.
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Let A : X ⊃ D(A)→ X be a densely defined, closed linear operator with the resolvent
set ρ(A) and the spectrum σ(A). We use the notation

Σω := {λ ∈ C \ {0} : |arg λ| < ω} (6)

for open sectors in the complex plane. The domain D(A), of the operator A, is a Banach
space equipped with the graph norm |x|A = ‖x‖+ ‖Ax‖.

Definition 2 ([15], Chapter 2 and 3). 1. An operator A in a Banach space X is called sectorial,
if 0 ∈ ρ(A) and if there exists an angle ω ∈ (0, π] and a constant M ≥ 1 such that

σ(A) ⊂ Σω, (7a)
∥∥∥(λI − A)−1

∥∥∥ ≤ M
|λ| for λ ∈ C \ Σω. (7b)

If A is sectorial, the infimum of all ω ∈ (0, π] such that Equation (7) holds is denoted by ωA
and is called the sectorial angle of A.

2. A family of operators {G(z) ∈ B(X) : z ∈ Σω} with ω ∈ (0, π/2), is called an analytic
semigroup if it satisfies the following properties:

(a) The mapping z→ G(z) is analytic in Σω.
(b) For z1, z2 ∈ Σω, the relation G(z1 + z2) = G(z1)G(z2) holds.
(c) G(0) = I holds, and the following strong convergence condition holds for all x ∈ X

and ω′ ∈ (0, ω):

G(z)x → x for z→ 0 with z ∈ Σω′ \ {0} . (8)

3. A sectorial operator A generates an analytic semigroup, and this semigroup is denoted by
e−tA with t > 0.

We use the definition of fractional powers by the Dunford integral.

Definition 3 ([15], Chapter 2). For z ∈ C with <z > 0 one defines

A−z =
1

2πi

∫

Υ
λ−z(λ− A)−1 dλ (9)

where the integral contour Υ lies in ρ(A) and surrounds σ(A) counterclockwise excluding the
negative real axis. The principal branch on C \ (−∞, 0] is chosen for the analytic function λ−z.
Clearly, A−z is a one-to-one function for any <z > 0. Then, the positive fractional powers are
defined as

Az = (A−z)−1 for <z > 0 (10)

with domain D(Az) = R(A−z) whereR(·) denotes the range.

Lemma 1 ([15], Eqs. (2.129),(2.133)). Let A be a sectorial operator with angle ωA < π/2 and
let e−tA with t > 0 denote the analytic semigroup generated by −A. For all θ > 0 there exists a
constant Cθ < ∞ such that the inequalities

∥∥∥Aθe−tA
∥∥∥ ≤ Cθt−θ for 0 < θ < ∞, (11)

∥∥∥
(

e−tA − 1
)

A−θ
∥∥∥ ≤ Cθtθ for 0 < θ ≤ 1, (12)

hold for all t > 0.
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Theorem 1 ([15], Chapter 2). Let D = const. and let ε > 0. Then, for z ∈ Ω, the operator

A = − ∂

∂z

(
D

∂

∂z

)
+ ε, (13)

D(A) = H2
N := {u ∈ H2 : uz|∂Ω = 0} (14)

in L2 is sectorial with angle ωA < π/2. For any ωA < ω ≤ π/2, the operator fulfills Equa-
tions (7a) and (7b), where the constant M is determined by Ω, D and ω and depends on ε.

Proof. This follows from Theorem 2.3, Theorem 2.7 and the discussion at the beginning of
Chapter 2 in [15].

3. Results

In the following, we prove the existence of local solutions in Theorem 3. We show
that local solutions are global in Corollary 1. Finally, in Theorem 4, we prove that initial
conditions with values in [0, 1] lead to solutions with values in [0, 1]. By “solutions”, we
mean functions that belong to the space U defined in Theorem 3 below and that satisfy
Equation (15).

As remarked above, the notation L2 = L2(Ω), Hk = Hk(Ω) and ‖·‖ = ‖·‖X=L2 is
used. In this section, the initial and boundary value problem (1) is solved in the function
space C

(
(0, T];L2). Problem (1) is transformed into the abstract Cauchy problem

{
ut(t) + Au(t) = F(u(t)), t > 0
u(0) = u0

(15)

with the linear operator A : D(A)→ L2 defined by

A = −D∂2
z + ε (16)

with fixed ε > 0 as in Theorem 1 and the nonlinear function F : D(A1/2)→ L2 defined by

F(u) = −χ(·, za) f ′im(u)uz − [1− χ(·, za)] f ′dr(u)uz + εu. (17)

The domain D(A) of the linear operator A is given by

D(A) = H2
N = {u ∈ H2 : uz|∂Ω = 0}. (18)

The domains of the fractional powers Aθ of A (or the interpolation spaces between
D(A) and L2) are given by

D(Aθ) =

{
H2θ for 0 ≤ θ < 3/4,
H2θ

N for 3/4 < θ ≤ 1,
(19)

see ([15], Chapter 16). Therefore the domain of the nonlinear function F is given as

D(A1/2) = H1.

Lemma 2. For bounded functions fi ∈ C2 with bounded derivatives f ′i and f ′′i where i ∈ {im, dr},
u, v ∈ H1, χ(·, za) : Ω → {0, 1} is bounded and measurable, za ∈ Ω and ε > 0 the nonlinear
function F : H1 → L2 with

F(u) = −χ(·, za) f ′im(u)uz − [1− χ(·, za)] f ′dr(u)uz + εu (20)
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fulfills the inequalities

‖F(u)− F(v)‖ ≤ CF

[(
1 +

∥∥∥A1/2v
∥∥∥
)∥∥∥A1/2(u− v)

∥∥∥
]

(21)

‖F(u)‖ ≤ CF

∥∥∥A1/2u
∥∥∥ (22)

for all u, v ∈ H1 with 0 < CF < ∞ and the operator A defined above in Equation (16).

Proof. The functions f ′im, f ′dr and χ(·, za) are bounded and measurable. Therefore, the
nonlinear function F is continuous as a sum of continuous functions, and it maps every
u ∈ H1 to F(u) ∈ L2.

For convenience the notations χim = χ(·, za) and χdr = 1− χ(·, za) are used. Then
one obtains

‖F(u)− F(v)‖ ≤ ∑
i∈{im,dr}

‖χi‖∞
∥∥ f ′i (v)vz − f ′i (u)uz

∥∥+ ε‖u− v‖

≤ ∑
i∈{im,dr}

(∥∥ f ′i (u)(vz − uz)
∥∥+

∥∥vz
(

f ′i (v)− f ′i (u)
)∥∥)+ ε‖u− v‖ (23)

for u, v ∈ H1. Let N be the embedding constantH1 → L∞ and define

C′f ,i := sup
w∈R

∣∣ f ′i (w)
∣∣, (24a)

C′′f ,i = sup
w∈R

∣∣ f ′′i (w)
∣∣ (24b)

CF = max
{

C′f ,im + C′f ,dr + ε, N
(

C′′f ,im + C′′f ,dr

)}
(24c)

for i ∈ {im, dr}. The embedding ofH1 → L∞ holds because Ω is one-dimensional. With
these definitions, Equation (23) is estimated as

‖F(u)− F(v)‖ ≤ ∑
i∈{im,dr}

(
C′f ,i‖vz − uz‖+ C′′f ,i‖vz(v− u)‖

)
+ ε‖u− v‖

≤
(

C′f ,im + C′f ,dr + ε
)
‖u− v‖H1 +

(
C′′f ,im + C′′f ,dr

)
‖vz‖‖u− v‖∞

≤
(

C′f ,im + C′f ,dr + ε
)
‖u− v‖H1 + N

(
C′′f ,im + C′′f ,dr

)
‖v‖H1‖u− v‖H1

≤ CF

[(
1 +

∥∥∥A1/2v
∥∥∥
)∥∥∥A1/2(u− v)

∥∥∥
]

(25)

which proves (21). The verification of (22) follows from (21) by setting v = 0.

Theorem 2. Problem (15) with A given by (16) and F(u) given by (17) is well-defined for all
L2-valued functions u(t) that satisfy

u ∈ U = C
(
(0, T];H2

N

)
∩ C
(
[0, T];H1

)
∩ C1

(
(0, T];L2

)
. (26)

Proof. First, A is an operator C
(
(0, T];H2

N
)
→ C

(
(0, T];L2). Second, the time derivative

d/dt is an operator C1((0, T];L2)→ C
(
(0, T];L2). According to Lemma 2 F is a mapping

H1 → L2. This implies that it is also a mapping C
(
[0, T];H1)→ C

(
[0, T];L2).

Theorem 3. Define the linear operator A : D(A) = H2
N → L2 as in Theorem 1 and the nonlinear

function F : D(A1/2) = H1 → L2 as in Lemma 2. There exists a T > 0, such that, for every
u0 ∈ H1, there exists a unique local solution u of problem (1) in the function space

U = C
(
(0, T];H2

N

)
∩ C
(
[0, T];H1

)
∩ C1

(
(0, T];L2

)
. (27)
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Further, if u0 ∈ H2
N , then this solution belongs to the space

U2 = C
(
[0, T];H2

N

)
∩ C1

(
[0, T],L2

)
. (28)

Remark 1. The definition of U explains the solution concept: The factor C1((0, T],L2) ensures that
the solutions u possess a strong derivative with respect to time, considered as L2-valued functions
on (0, T]. The factor C((0, T],H2

N) ensures that the solutions u belong to the domain of A for
t > 0. The factor C([0, T],H1) ensures that u(0+) = u0 with respect to the topology ofH1. These
solutions are solutions in the weak sense, in particular.

Proof. Following [15], the idea of the proof is to rewrite problem (15) as
{

ut(t) + Au(t) = G(t), t > 0
u(0) = u0

. (29)

To this end, the fixed-point theorem is applied to the mapping M

Mu(t) = e−tAu0 +
∫ t

0
e−(t−τ)AF(u(τ))dτ (30)

which is defined on the space X (T) ⊃ U defined in Equation (31) and seen to be a con-
traction on a suitably chosen closed subset Y(T, CT) with 0 < CT < ∞. The first step is to
determine Y(T, CT) and to verify the requirements for the fixed point theorem ([17], Theo-
rem 1.A, p. 17). In the second step, it is shown that, if u is a fixed point of the mapping M,
then, for every σ ∈ (0, 1/2), the function F ◦ u is an element of the space F 1/2,σ((0, T],L2).
If F ◦ u ∈ F 1/2,σ((0, T],L2), then G(t) = F(u(t)) is an admissible inhomogeneity for the
Cauchy problem (29). Finally, the uniqueness of the solution is shown.

Using Equations (16) and (17), the initial and boundary value problem (1) is trans-
formed into an abstract Cauchy problem (15).

The linear operator A, defined in (16), is a sectorial operator with angle ωA < π/2 by
virtue of Theorem 1 and the infinitesimal generator of the analytic semigroup e−tA.

Step 1: Requirements for the fixed-point theorem. For every T > 0, the Banach Space X (T)
is defined as

X (T) = C
(
[0, T];H1

)
⊃ U (31)

with norm ‖u‖X = sup0≤t≤T

∥∥∥A1/2u(t)
∥∥∥. Additionally, one defines the closed subset

Y(T, CT) ⊂ X (T) of all u that satisfy
∥∥∥A1/2u(t)

∥∥∥ ≤ CT for all t ∈ [0, T]. (32)

Now, we derive conditions for the constants CT and T from Equation (32) such that
the mapping M from Equation (30) maps Y(T, CT) into Y(T, CT). For any 0 ≤ σ < 1/2
and 0 < t ≤ T, one derives the estimate

∥∥∥A1/2+σ Mu(t)
∥∥∥ =

∥∥∥∥A1/2+σ

{
e−tAu0 +

∫ t

0
e−(t−τ)AF(u(τ))dτ

}∥∥∥∥

≤
∥∥∥A1/2+σe−tAu0

∥∥∥+
∥∥∥∥A1/2+σ

∫ t

0
e−(t−τ)AF(u(τ))dτ

∥∥∥∥ (33)

≤
∥∥∥Aσe−tA

∥∥∥
∥∥∥A1/2u0

∥∥∥+
∫ t

0

∥∥∥A1/2+σe−(t−τ)A
∥∥∥‖F(u(τ))‖dτ.
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Using Lemma 1, Equation (22) from Lemma 2 and Equation (32), we find

∥∥∥A1/2+σ Mu(t)
∥∥∥ ≤

∥∥∥Aσe−tA
∥∥∥
∥∥∥A1/2u0

∥∥∥+ CF

∫ t

0

∥∥∥A1/2+σe−(t−τ)A
∥∥∥
∥∥∥A1/2u

∥∥∥dτ

≤
∥∥∥Aσe−tA

∥∥∥
∥∥∥A1/2u0

∥∥∥+ CFCT

∫ t

0

∥∥∥A1/2+σe−(t−τ)A
∥∥∥dτ

≤
∥∥∥Aσe−tA

∥∥∥
∥∥∥A1/2u0

∥∥∥+ CFCTC 1
2−σt1/2−σ. (34)

For σ = 0, Equation (32) holds if the right side of Equation (34) is smaller or equal to CT
and∥∥∥e−tA

∥∥∥
∥∥∥A

1
2 u0

∥∥∥+ CFCTC 1
2
t

1
2 ≤ CT ⇔ CT

(
1− CFC 1

2
t

1
2

)
≥
∥∥∥e−tA

∥∥∥
∥∥∥A

1
2 u0

∥∥∥. (35)

If 1− CFC1/2T1/2 > 0 or equivalently

T < (CFC1/2)
−2 (36)

holds, then CT can be chosen such that

CT > sup
0≤t≤T

∥∥∥e−tA
∥∥∥

∥∥∥A1/2u0

∥∥∥
1− CFC1/2T1/2 . (37)

The right hand side of (37) is bounded because the norm
∥∥e−tA

∥∥ is bounded according
to ([15], Proposition 2.5, p.86). Then, the mapping M fulfills the condition

sup
0≤t≤T

∥∥∥A1/2Mu(t)
∥∥∥ ≤ CT (38)

where CT is given by (37), and Mu(t) ∈ Y(T, CT) holds.
The next step is to show that M : Y(T, CT)→ Y(T, CT) is a contraction mapping. One

estimates

sup
0≤t≤T

‖Mu(t)−Mv(t)‖X ≤
∥∥∥∥
∫ t

0
e−(t−τ)A{F(u(τ))− F(v(τ))}dτ

∥∥∥∥
X

= sup
0≤t≤T

∥∥∥∥A1/2
∫ t

0
e−(t−τ)A{F(u(τ))− F(v(τ))}dτ

∥∥∥∥

≤ sup
0≤t≤T

∫ t

0

∥∥∥A1/2e−(t−τ)A
∥∥∥‖F(u(τ))− F(v(τ))‖dτ. (39)

Using Lemma 2 and Equation (25) to estimate the integral term, one obtains

sup
0≤t≤T

‖Mu(t)−Mv(t)‖X ≤ CF(1 + C) sup
0≤t≤T

∫ t

0

∥∥∥A1/2e−(t−τ)A
∥∥∥
∥∥∥A1/2(u− v)

∥∥∥dτ

≤ CF(1 + C)
∫ T

0

∥∥∥A1/2e−(t−τ)A
∥∥∥dτ

∥∥∥A1/2(u− v)
∥∥∥

≤ CF(1 + C)
∫ T

0

∥∥∥A1/2e−(t−τ)A
∥∥∥dτ‖u− v‖X

≤ CF(1 + C)C1/2T1/2‖u− v‖X . (40)

Thus, the mapping M : Y(T, CT)→ Y(T, CT) is a contraction if CF(1 + C)C1/2T1/2 < 1 or
equivalently

T < (CF(1 + C)C1/2)
−2. (41)
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It remains to prove that Mu(t) ∈ C
(
[0, T];H1) holds. For this purpose, one calculates for

t > s > 0

Mu(t)−Mu(s) = e−tAu0 +
∫ t

0
e−(t−τ)AF(u(τ))dτ −Mu(s)

= e−tAu0 +
∫ s

0
e−(t−τ)AF(u(τ))dτ−Mu(s)+

∫ t

s
e−(t−τ)AF(u(τ))dτ

= e−(t−s)A Mu(s)−Mu(s) +
∫ t

s
e−(t−τ)AF(u(τ))dτ

=
[
e−(t−s)A − 1

]
Mu(s) +

∫ t

s
e−(t−τ)AF(u(τ))dτ. (42)

With Equation (42), one obtains
∥∥∥A1/2{Mu(t)−Mu(s)}

∥∥∥

≤
∥∥∥A−σ

[
e−(t−s)A − 1

]∥∥∥
∥∥∥A1/2+σ Mu(s)

∥∥∥+
∥∥∥∥A1/2

∫ t

s
e−(t−τ)AF(u(τ))dτ

∥∥∥∥

≤
∥∥∥A−σ

[
e−(t−s)A − 1

]∥∥∥
∥∥∥A1/2+σ Mu(s)

∥∥∥+
∫ t

s

∥∥∥A1/2e−(t−τ)A
∥∥∥‖F(u(τ))‖dτ. (43)

Then, Equations (12), (22), (32) and (34) lead to∥∥∥A1/2{Mu(t)−Mu(s)}
∥∥∥

≤ Cσ(t− s)σ
(

Cσs−σ
∥∥∥A

1
2 u0

∥∥∥+ CFCTC 1
2−σs

1
2−σ
)
+ CFCTC 1

2

∫ t

s
(t− τ)−

1
2 dτ

≤ (t− s)σs−σ
(

Cu0 + CAs1/2
)
+ C(t− s)1/2

= (t− s)σs−σ
(

Cu0 + CAs1/2 + C(t− s)1/2−σsσ
)

≤ (t− s)σs−σ
(

Cu0 + CAt1/2 + Ct1/2−σtσ
)

≤ (t− s)σs−σ
(

Cu0 + Ct1/2
)

≤ C(t− s)σs−σ. (44)

Equation (44) shows that Mu(t) is now part of the function space C
(
(0, T];H1). The

estimate
∥∥∥A1/2{Mu(t)−Mu(0)}

∥∥∥ =

∥∥∥∥A1/2
∫ t

0
e−(t−τ)AF(u(τ))dτ

∥∥∥∥

≤ CFCTC1/2

∫ t

0
(t− τ)−1/2 dτ

≤ CFCTC1/2t1/2 (45)

shows that

lim
t→0

∥∥∥A1/2{Mu(t)−Mu(0)}
∥∥∥ = lim

t→0
Ct1/2 = 0 (46)

and therefore Mu(t) is part of C
(
[0, T];H1).

If Equations (36), (37) and (41) are fulfilled, then a fixed point Mu = u ∈ Y(T, CT)
exists according to ([17], Theorem 1.A, p. 17), and the fixed point u(t) obeys

u(t) = e−tAu0 +
∫ t

0
e−(t−τ)AF(u(τ))dτ for all t ∈ [0, T]. (47)

Step 2: Show that F ◦ u ∈ F 1,σ([0, T],L2) holds for any fixed point u of M. It is immediate
from the definition of Y(T, CT) and Lemma 2 that F ◦ u is a continuous function on [0, T].
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The function F(u) has to fulfill condition (4) from Definition 1. Using Equations (21), (38)
and (44), one obtains, for 0 < s < t ≤ T, the estimate

‖F(u(t))− F(u(s))‖ = ‖F(Mu(t))− F(Mu(s))‖
≤ CF

[(
1 +

∥∥∥A1/2Mu(t)
∥∥∥
)∥∥∥A1/2(Mu(t)−Mu(s))

∥∥∥
]

≤ CF(1 + CT)
∥∥∥A1/2(Mu(t)−Mu(s))

∥∥∥
≤ CF (t− s)σs−σ. (48)

Therefore, we can conclude that F ◦ u ∈ F 1,σ([0, T],L2) is true, and we can write the
semilinear evolution problem (15) as a linear evolution problem (29).

Using ([15], Theorems 3.4, 3.5, p. 124, 126), it follows that the fixed points u (see
Equation (47)) are elements of the function space U from (27). Further, it follows that u
belongs to the function space U2 from Equation (28) if u0 ∈ H2

N .
Step 3: Uniqueness of solutions. Any solution u ∈ U of problem (4.1) satisfies F ◦ u ∈

F 1/2,σ((0, T],L2) and is a solution of the problem (4.15) with G(t) = F(u(t)) in the sense of
([15], Theorem 3.4). According to ([15], Theorem 3.4, Eq. (3.13)), any solution u ∈ U of (29)
is also a fixed point of M. Therefore, uniqueness follows from the fixed point theorem ([17],
Theorem 1.A, p. 17).

Corollary 1. Every local solution of problem (1), in the sense of Theorem 3, extends uniquely to a
global solution.

Proof. Because the constant T > 0 in Theorem 3 is independent of the initial condi-
tion u0 the theorem can be applied repeatedly to prove the existence of a solution u ∈
C((0, ∞),H2

N)∩C([0, ∞),H1) that is piecewise differentiable as a function with values inL2.
Invoking uniqueness, piecewise differentiability improves to differentiability for all t > 0
as a function with values in L2, that is, one obtains u ∈ C((0, ∞),H2

N) ∩ C([0, ∞),H1) ∩
C1((0, ∞),L2).

Theorem 4. Let u0 ∈ H1 and u(z, t) be the unique global solution of problem (1). If the initial
condition fulfills 0 ≤ u0 ≤ 1, then the global solution u fulfills 0 ≤ u ≤ 1 as well.

Proof. First, the lower bound 0 ≤ u(t) is discussed by using a penalty function

E(u) =





u2

2
for −∞ < u < 0

0 for 0 ≤ u < ∞
(49)

which is continuously differentiable and whose first derivative satisfies the general Lips-
chitz condition. The function

H(t) =
∫

Ω
E(u(t))dz =

∫

Ω1

E(u(t))dz +
∫

Ω2

E(u(t))dz (50)

averages the value of the penalty function over the domain Ω. In Equation (50), it holds
that Ω1 ∪Ω2 = Ω and Ω1 ∩Ω2 = ∅. The domain Ω1 denotes the time-dependent domain
where E(u) > 0 holds and Ω2 denotes the time-dependent domain where E(u) = 0 holds.
Clearly, H(t) is a continuously differentiable function for t > 0 because u ∈ U with
the derivative
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d
dt

H(t) =
∫

Ω

dE(u)
du

ut dz

= D
∫

Ω

dE(u)
du

uzz dz−
∫

Ω
∑

i∈{im,dr}

dE(u)
du

χi f ′i (u)uz dz

= −D
∫

Ω
∂z

(
dE(u)

du

)
uz dz−

∫

Ω
∑

i∈{im,dr}

dE(u)
du

χi f ′i (u)uz dz

= −D
∫

Ω1

|uz|2 dz−
∫

Ω
∑

i∈{im,dr}

dE(u)
du

χi f ′i (u)uz dz (51)

where χim = χ(z, za) and χdr = 1− χ(z, za). Since f ′i (u) = 0 for any −∞ < u < 0 and
dE(u)/du = 0 for any 0 ≤ u < ∞, it holds that

∫

Ω

dE(u)
du

χim f ′im(u)uz dz =
∫

Ω

dE(u)
du

χdr f ′dr(u)uz dz = 0. (52)

Thus, we find H(t) ≤ H(0), and H(0) = 0 implies H(t) ≡ 0, i.e., 0 ≤ u(t) for t ∈ [0, T].
Similarly, we can easily prove that u(t) ≤ 1 for every t ∈ [0, T] by taking u∗(z, t) =

1− u(z, t) on [0, ∞) and formulating problem (1) as follows





u∗t (z, t) + f ∗(u, z)u∗z (z, t)− Du∗zz(z, t) = 0, z ∈ Ω, 0 < t ≤ T
u∗(z, 0) = u∗0(z), z ∈ Ω
u∗z (z, t) = 0, z ∈ ∂Ω, 0 < t ≤ T

(53)

with z ∈ Ω, t ∈ (0, Tu0 ] and

f ∗(u, z) = χ(z, za) f ′im(1− u∗(z)) + [1− χ(z, za)] f ′dr(1− u∗(z)). (54)

4. Discussion

In the following discussion, the above results for Equation (1) are interpreted from the
perspective of previous studies. Hysteretic two-phase flow in porous media was previously
modeled using the initial and boundary value problem [8]





ut(z, t) + ∂
∂z fG (u)− Duzz(z, t) = 0, z ∈ Ω, t > 0

u(z, 0) = u0(z), z ∈ Ω
uz(z, t) = 0, z ∈ ∂Ω, t > 0

(55)

with the nonlinear fractional flow functions fG : [0, 1] → R+ and the capillary coefficient
D > 0. Problem (55) becomes equivalent to Equation (1) for ∂

∂z fG (u) = f (u, z)uz where
the derivative is a distributional derivative. The fractional flow function is indexed by a
graph G(z, t) ∈ [0, 1]×R+ ×R+ ×R, see ([8], Equation (9)). The graph G(z, t) represents
different flow processes obtained from a suitable hysteresis model. At a fixed z, this
depends on the saturation history u(z, t) at z. Let the time instants ti with i = 0, . . . , N
and 0 = t0 < t1 < t2 < · · · < tN < t denote the switching times between drainage and
imbibition at z. The graph G changes only at these switching instants.

Consider the initial-boundary value problem for Equation (55) with a non-monotone
initial condition as shown in Figure 1. Assume without loss of generality, that the profile
propagates in the positive z-direction. Let u(z, t) with z ∈ Ω be the saturation profile at
time t. Then the imbibition interval I(t) at time t is defined as the largest singly connected
interval on which u(z, t) is monotone decreasing but not constant everywhere. Similarly,
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the drainage interval D(t) at time t is defined as the largest singly connected interval on
which u(z, t) is monotone increasing but not constant everywhere. For the initial saturation
profile of Figure 1 at time t = 0, the two intervals are illustrated as gray regions in the top
row of Figure 2. Additionally, a time-dependent plateau interval is defined as

P(t) =
{

z : ut(z, t) = 0 , u(z, t) = max
z′∈Ω

u(z′, t)
}

. (56)

P(t = 0) is illustrated as the gray region in the left graph of the second row in Figure 2.
The propagated plateau interval P(T) for T > 0 is depicted in the second row on the
right. Throughout Figure 2, the initial condition u(z, 0) is plotted as a dashed line, and the
propagated profile u(z, T) with T > 0 is shown as a solid line. Because P(0) ∩ P(T) 6= ∅, a
position za ∈ P(0) ∩ P(T) can be selected such that the drainage process on the left (z < za)
decouples from the imbibition process on the right (z > za).

0 1

0

1

Figure 1. Initial condition u(z, 0) for problem (55) with a single overshoot.

Numerical solutions for problem (55) with initial data as shown in Figure 1 were
studied in [6–8]. For this simple class of processes with a single saturation overshoot, the
saturation history at positions z > za has length N(z) = 0, while N(z) = 1 for z ≤ za.
For any time t with 0 < t < T, there is a fixed graph G im describing the flow process
at each z ∈ I(t) in terms of a flow function fim(u; {u∗0}) parametrized by the saturation
value u∗0 = u(z, 0) at t0 = 0. Furthermore, there is a fixed graph Gdr describing the
flow process at each z ∈ D(t) in terms of a flow function fdr(u; {u∗1}) parametrized
by the saturation value u∗1 = u(z, t1) at the time instant t1(z) when the flow process
switched from imbibition to drainage. For a single overshoot, the value of u∗1 is, of course,
u∗z = maxz∈Ω u(z, 0). By continuity of the hysteresis model and by continuity of the graph
G = G im ∪ Gdr, the flux is continous for all z ∈ P(t) with 0 < t < T. In this situation, the
first order term in Equation (55) simplifies to

∂

∂z
fG (u) =

∂

∂z

(
χI(t) fim(u; {u∗0}) + χD(t) fdr(u; {u∗1})− χP(t) fim(u; {u∗0})

)
(57a)

=
∂

∂z

(
χI(t) fim(u; {u∗0}) + χD(t) fdr(u; {u∗1})− χP(t) fdr(u; {u∗1})

)
(57b)

= χI(t) f ′im(u; {u∗0})uz + χD(t) f ′dr(u; {u∗1})uz − χP(t) f ′im(u; {u∗0})uz (57c)

= χ(z, za) f ′im(u; {u∗0})uz + [1− χ(z, za)] f ′dr(u; {u∗1})uz (57d)

where fim( · ; {u∗0}) = fG im( · ) and fdr( · ; {u∗0}) = fGdr( · ). A possible choice for
fG can be seen in ([8], Equation (2)). The term χP(t) f ′im(u; {u∗0})uz is necessary because
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the imbibition interval and drainage interval are overlapping in the plateau interval P(t).
Inserting this into the differential Equation (55) gives

ut + χ(z, za) f ′im(u; {u∗0})uz + [1− χ(z, za)] f ′dr(u; {u∗1})uz − Duzz = 0 (58a)

where {u∗0} = u0(z) = u(z, 0) is the initial condition and {u∗1} = u(z, t1(z)) is the
saturation at position z at the switching time t1. The fractional flow functions for imbibition
and drainage at the switching point obey flux continuity at t1, i.e.

fim(u(z, t1); {u∗0}) = fdr(u(z, t1); {u∗1}) (58b)

for all z ∈ P(t). Note that the fractional flow functions are explicitly position dependent
due to hysteresis.

0 1

0

1

Figure 2. Schematic illustration for the decoupling of the imbibition and drainage fronts. The initial
saturation profile u(z, 0) is the dashed line, and the propagated profile u(z, T) with T > 0 is shown
as a solid line. The top left figure illustrates I(0) in gray, the top right figure illustrates D(0) in gray,
the middle left figure shows the intersection P(0) = I(0) ∩D(0) at time t = 0, the middle right figure
shows P(T) at some time T > 0, and the lower left figure shows P(0) ∩ P(T). The location za in the
lower right subfigure can be chosen arbitrarily from within the gray interval P(0) ∩ P(T) in the lower
left subfigure.

Numerical (and experimental) evidence in [6–8] suggest that imbibition and drainage
fronts decouple for the simple class of hysteretic processes with a single saturation over-
shoot assumed in our mathematical model. The decoupling assumption is supported by
noting that, for D = 0, piecewise constant functions are indeed weak solutions.
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The decoupling is implemented here in this work by assuming that the set P(t) has
positive measure for some nonempty time interval [0, T] with T > 0. If the decoupling
assumption holds true, then the fractional flow functions

fim(u(z, t); {u∗0}) = fdr(u(z, t); {u∗1}) (59)

agree for all z ∈ P(t). In this way, a plateau in the saturation determines two position-
independent fractional flow functions that agree on P(t) for 0 < t < T. The rigorous
results for problem (1) obtained in this work support the numerical results for problem (55)
in [8]. The main point here is that, given a non-monotone single overshoot initial condition
similar to the one shown in Figure 1, there is an open interval

⋂T
t=0 P(t) ⊂ (I(t) ∩D(t))

with u = const. for t ∈ [0, T] and za ∈
⋂T

t=0 P(t). This fact ensures the decoupling of the
imbibition and the drainage front, and Equation (55) can be reduced to Equation (1) for
t ∈ [0, T].

Acknowledgments: The authors are grateful to Dr. Bakkyaraj T. for many fruitful discussions.
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Abstract: The tensorial force acting in a localized seismic focus is introduced and the corresponding
seismic waves are derived, as solutions of the elastic wave equation in a homogeneous and isotropic
body. The deconvolution of the solution for a structured focal region is briefly discussed. The far-field
waves are identified as P and S seismic waves. These are spherical-shell waves, with a scissor-like
shape, and an amplitude decreasing with the inverse of the distance. The near-field seismic waves
are spherical-shell waves, decreasing with the inverse of the squared distance. The amplitudes and
the polarizations of the near-field seismic waves are given. The determination of the seismic-moment
tensor and the earthquake parameters from measurements of the P and S seismic waves at Earth’s’
surface is briefly discussed. Similarly, the mainshock generated by secondary waves on Earth’s
surface is reviewed. The near-field static deformations of a homogeneous and isotropic half-space are
discussed and a method of determining the seismic-moment tensor from epicentral near-field (quasi-)
static deformations in seismogenic regions is presented.

Keywords: seismic tensorial force; far-field seismic waves; near-field seismic waves; seismic mainshock;
quasi-static deformations

MSC: 35Q74; 86A15; 86A17; 86A22

1. Introduction

The near-field seismic ground motion is of great importance for its potentially damag-
ing effects in epicentral regions of shallow earthquakes [1–5]. In this respect, the near-field
seismic waves play the main role. At the same time, an equally important role is played by
the (quasi-) static deformations produced on Earth’s surface by a continuous accumulation
of energy in shallow seismic foci, not necessarily resulting in an earthquake. Consequently,
the near-field seismic motion is a complex subject, which requires the solution of both
the elastic wave equation and elastic equilibrium (static deformations). Besides technical
difficulties in getting such solutions, an important starting point is a realistic force acting in
a seismc focus. Apart from the intrinsic interest in the solution itself, we we may use this
solution for getting information about the focal parameters and the seismic mechanism in
the focus. Such subjects are discused in the present paper.

We start by introducing the tensorial force density acting in a seismic focus localized
both in space and time (which may produce an earthquake called herein an elementary
earthquake [6,7]). This is an important novelty point, because the tensorial force introduced
herein is written in a covariant form, which is independent of the reference frame. In
addition, it gives a vanishing total force and torque, as required by physical conditions. The
deconvolution needed for a structured focus is briefly discussed. We present the solution of
the Navier-Cauchy elastic wave equation with this tensorial point force in a homogeneous
and isotropic body, and give information about the necessary regularization procedure
employed in getting this solution [7]). The solution provides both the far-field P and S
seismic waves and the near-field seismic waves. This is another novelty point, because the
solution is obtained in compact, covariant form, without resorting to Stokes double-couple
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procedure. The P wave is longitudinal, while the S wave is transverse. In the current
seismological literature the P wave is called “primary” wave, while the S wave is called
“secondary” wave (see, for instance [8,9]). We prefer to call them collectively “primary”
waves, and use the term “secondary” waves for the mainshock. Indeed, once arrived at
Earth’s surface, these primary waves generate wave sources localized on the surface, which,
in turn, produce secondary waves, according to Huygens principle. These secondary
waves were computed, which is another novelty point [7]. They look like an abrupt wall
with a long tail, propagating on Earth’s surface and lagging behind the primary waves: it
corresponds to the seismic mainshock recorded in seismograms. The far-field seismic waves
can be used for determining the energy, the magnitude and the other earhquake parameters,
as well as for determining the tensor of the seismic moment [10]). This procedure is
briefly discused here. Next, this paper is focused on the solution of the elastic equlibrium
equation with the tensorial force in a homogeneous and isotropic body, and discusses the
(quasi-) static elastic deformations produced on Earth’s surface [6]. A special procedure
of estimating the seismic moment and other focal parameters from measurements of the
(quasi-) static crustal deformations made on Earth’s surface is presented.

2. Tensorial Focal Force-Structure Factor

As it is well known, the elastic wave equation is conveniently solved with a force
source localized both in space and time [8,11]. The corresponding solution is called the
fundamental solution. Therefore, we assume a seismic focus placed at R0, where a force
source appears at the moment of time t0, lasting for a short time. The corresponding
force density is written as s(R0t0)

δ(R− R0)δ(t− t0), where the factor s(R0,t0)
may include

differential operators acting upon the variables R and t, besides other components, arising
from physical requirements (e.g., for satisfying dimensionality requirements). Let us denote
the fundamental solution by u(R0t0)

(R − R0, t − t0) (usually called the Green function).
Now, let us assume that the seismic focus has a structure, both in space and time. This
structure may be represented as a linear superposition of localized sources, i.e., the force
density is represented as

F(R, t) = ∑
i

s(Riti)
δ(R− Ri)δ(t− ti) . (1)

It is easy to see that the solution corresponding to the source F(R, t) is given by the
convolution

U(R, t) = ∑i u(Riti)
(R− Ri, t− ti) =

=
∫

dR′dt′u(R′t′)(R− R′, t− t′)∑i δ(R′ − Ri)δ(t′ − ti) .
(2)

By deconvoluting this equation, we may find out the structure of the seismic focus. The
deconvolution is made by fitting the series of fundamental solutions u(Riti)

(R− Ri, t− ti)
to U(R, t), where Ri, ti and s(Riti)

are fitting parameters.
The tensorial force density acting in a localized seismic focus is [6,7]

Fi(R, t) = MijTδ(t− t0)∂jδ(R− R0) , (3)

where Mij is the (symmetric) tensor of the seismic moment, i, j denote cartesian coodinates
and T is the (short) duration of the seismic activity in the focus. We call the earthquakes
produced by this force elementary earthquakes. We note that the force density given by
this equation leads to a vanishing total force and a vanishing torque. It is a representation
of what is called usually the double-couple force [9] (p.60, exercise 3.6). The problem of
determining the seismic waves produced by this force is similar to the Stokes problem with
the force source fiTδ(t− t0)δ(R− R0) [12], where the force components fi are replaced by
the operator Mij∂j. Since this operator does not commute with the coordinates, we cannot
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simply apply it to the Stokes solution, such that we need to rederive the solution for the
force source given by Equation (3).

3. Seismic Waves

The elastic wave equation for a homogeneous and isotropic body (Navier-Cauchy
equation) is

ü− c2
t ∆u− (c2

l − c2
t )grad divu = f , (4)

where u is the displacement, cl,t are the velocities of the longitudinal and transverse waves
and fi = Fi/ρ, with Fi given by Equation (3) and ρ the density of the body. The solution
of this equation can be obtained by using the well-known Helmholtz decomposition u =
gradΦ + curlA, divA = 0 and f = gradφ + curlH, divH = 0, where the potentials satisfy
the Poisson equations ∆φ = div f , ∆H = −curl f and the wave equations Φ̈− c2

l ∆Φ = φ,
Ä− c2

t ∆A = H. These equations are solved by means of the Kirchhoff formula for retarded
radiation, e.g., by using

Φ(R, t) =
1

4πc2
l

∫
dR

′ φ(t− | R− R
′ | /cl , R′)∣∣R− R′
∣∣ . (5)

In applying this formula, redundant terms appear in the potentials Φ and H, caused by
the singular derivative of the modulus function

∣∣∣R− R
′
∣∣∣. This ambiguity is similar to the

unphysical constant potential produced by the solution of the Poisson equation inside a
sphere with a surface electrical charge. The elimination of these unphysical contributions
requires a regularization of the solution [13]. The regularized solution u = un + u f consists
of near-field displacement waves

un
i = − T

4πρc2
t

Mijxj
R3 δ(t− R/ct)+

+ T
8πρR3

(
Mjjxi + 4Mijxj −

9Mjkxixjxk
R2

)
·

·
[

1
c2

l
δ(t− R/cl)− 1

c2
t
δ(t− R/ct)

]
(6)

and the far-field displacement waves

u f
i = − T

4πρc3
t

Mijxj
R2 δ

′
(t− R/ct)+

− T
4πρ

Mjkxixjxk
R4

[
1
c3

l
δ
′
(t− R/cl)− 1

c3
t
δ
′
(t− R/ct)

]
,

(7)

where R stands for | R− R0 | and t for t− t0 [7]. In these equations the δ(t− R/cl,t) may be
viewed as a function h(t− R/cl,t) with the support of the order ∆t = T (∆Rl,t = cl,tT) and
magnitude 1/T, where ∆Rl,t are of the order of the dimension of the focus (with volume
' l3). Similarly, the magnitude of the function h

′
(t− R/cl,t) is of the order 1/T2.

The far-field waves given by Equation (7) are spherical-shell waves propagating with
velocities cl,t, with longitudinal and transverse polarizations, respectively, with a scissor-
like shape; their amplitudes go like 1/R for R � l. A qualitative sketch of these waves,
together with the mainshock is shown in Figure 1. These waves correspond to the P
(longitudinal) and S (transverse) seismic waves, generated by an elementary earthquake.
We call them primary waves. It is convenient to introduce the unit vector n = R/R along
the propagation direction and the notations Mii = M0 (the trace of the tensor of the seismic
moment), Mi = Mijnj (the seismic-moment vector) and M4 = Mijninj (the unit quadratic
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form of the seismic-moment tensor). The amplitudes of the far-field waves (as given by
Equation (7)) can then be written as

v f
l =

1
4πρc3

l TR
M4n , v f

t =
1

4πρc3
t TR

(M −M4n) . (8)

Similarly, the near-field waves look like spherical shells propagating with velocities cl,t,
with mixed polarizations. Their amplitudes of the near-field waves (Equation (6)) can be
written as

vn(cl) =
1

8πρc2
l TR2 [(M0 − 9M4)n + 4M] ,

vn(ct) = − 1
8πρc2

t TR2 [(M0 − 9M4)n + 6M]

(9)

for waves which propagate with velocities cl,t. The longitudinal and transverse parts of
these waves are

vn
l (cl) =

1
8πρc2

l TR2
(M0 − 5M4)n , vn

t (cl) =
1

2πρc2
l TR2

(M −M4n) (10)

and
vn

l (ct) = −
1

8πρc2
t TR2

(M0 − 3M4)n , vn
t (ct) = −

3
4πρc2

l TR2
(M −M4n) . (11)

These amplitudes decrease like 1/R2 for R� l.

O

P

S

MS

t

Figure 1: A qualitative sketch of scissor-like P and S seismic waves (indicated by arrows)
and the seismic main shock (MS), vs time t.

where R stands for | R −R0 | and t for t − t0 (Apostol (2017b)). In these equations the115

δ(t−R/cl,t) may be viewed as a function h(t−R/cl,t) with the support of the order ∆t = T116

(∆Rl,t = cl,tT ) and magnitude 1/T , where ∆Rl,t are of the order of the dimension of the117

focus (with volume ≃ l3). Similarly, the magnitude of the function h
′
(t − R/cl,t) is of the118

order 1/T 2.119

The far-field waves given by equation (7) are spherical-shell waves propagating with velocities120

cl,t, with longitudinal and transverse polarizations, respectively, with a scissor-like shape;121

their amplitudes go like 1/R for R ≫ l. A qualitative sketch of these waves, together with122

the main shock is shown in Fig. 1 These waves correspond to the P (longitudinal) and S123

(transverse) seismic waves, generated by an elementary earthquake. We call them primary124

waves. It is convenient to introduce the unit vector n = R/R along the propagation direction125

and the notations Mii = M0 (the trace of the tensor of the seismic moment), Mi = Mijnj (the126

seismic-moment vector) and M4 = Mijninj (the unit quadratic form of the seismic-moment127

tensor). The amplitudes of the far-field waves (as given by equation (7)) can then be written128

8

Figure 1. A qualitative sketch of scissor-like P and S seismic waves (indicated by arrows) and the
seismic main shock (MS), vs. time t.

A spherical-shell wave has a thickness of the order ∆R = cT, where c is a generic
notation for wave velocities. It affects a circular epicentral region with radius d on Earth’s
surface. For a focus placed at depth h the radius d is given by (h + ∆R)2 = h2 + d2,
i.e., d '

√
2h∆R (for ∆R � h). For instance, for h = 100 km and ∆R = 3 km we get

d ' 24 km. This epicentral displacement lasts approximately ∆t ' ∆R/c, e.g., ∆t ' 1 s for
c = 3 km/s. Thereafter, the spherical-shell wave (primary wave) propagates on Earth’s
surface with a circular wavefront. The points on Earth’s surface where the seismic wave
arrives become sources of secondary elastic waves, propagating back in the Earth and on
Earth’s surface. Their cummulative effect on Earth’s surface look like an abrupt wall with
a long tail [7]. Specifically, the surface displacement in cylindrical coordinates behaves
like ur,ϕ ∼ r/(c2τ2 − r2)3/2, uz ∼ 1/r(c2τ2 − r2)3/2, where r is the radial corodinate on
Earth’s surface (assumed a plane surface) and τ is the time from the moment when the
wave touched the epicentre. This is the mainshock, as recorded in typical seismograms.
A primary wave propagates on Earth’s surface with a (non-uniform) velocity larger than
the elastic-wave velocity of the mainshock, such that there exists a time delay between
the arrival of the primary wave and the arrival of the mainshock, which laggs behind the
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primary wave. The formulae given above for the amplitudes of these secondary waves are
valid for a limited range of epicentral distances centered on r ∼ h. Their singularities at
cτ = r are smoothed out by the non-uniform velocity, e.g., c2τ2 − r2 −→ h2 for cτ − r ' 0
and the time delay is of the order h2/cr for h� r [7].

4. Seismic Moment

The amplitudes of the primary P and S waves (Equation (8)) measured at Earth’s
surface can be used to determine the tensor of the seismic moment and earthquake pa-
rameters like energy, magnitude, fault orientation, the magnitude of the fault slip, and to
estimate the duration of the seismic activity in the focus and the dimension of the focus [10].
This is achieved by using the energy conservation in the propagation of the seismic waves,
the work done by the focal forces and the Kostrov representation of a shearing fault. The
results are comparable with the results produced by the currently used methods [14–19].
For instance, by using this method, the estimated magnitude of the Vrancea earthquake of
28 October 2018 was 5.3, while the current method gave 5.5 (as reported by the Institute of
Earth’s Physics, Magurele in Romanian Earthquake Catalogue, ROMPLUS (2018)) [20,21].
In addition, this information can be used to get an estimate of the near-field waves, accord-
ing to Equation (9) (the Kostrov representation leads to a vanishing trace M0 = 0 of the
seismic-moment tensor). Similarly, the method can be applied to explosions, where the
tensor of the seismic moment is diagonal (Mij = −Mδij) [10]. For orientative purposes it
is worth giving here a recipe for a qualitative estimate of these parameters. The duration
of the seismic activity in the focus can be estimated by T =

√
2Rv/c, where v is a generic

amplitude of the primary waves measured at distance R form the focus on Earth’s surface,
and c is a generic elastic-wave velocity (e.g., c = 3− 7 km/s). The volume of the focal
region is V = π(2Rv)3/2, the released energy is of the order E = µV, where µ is the Lame
coefficient, and the magnitude of the seismic moment is (Mij)

1/2 = 2
√

2E. The well-known
Hanks-Kanamori relationship lg(Mij)

1/2 = 1.5Mw + 16.1 provides the magnitude Mw [10].
Another method of getting information about the seismic-moment tensor is given

here, by using the quasi-static deformations produced by a tensorial focal force in near-field
epicentral zones of the seismogenic regions.

A continuous accumulation of tectonic stress may be gradually discharged, to some
extent and with intermittence, causing quasi-static crustal deformations of Earth’s surface
in seismogenic zones [22–28]. Measurements of these deformations may give, besides
qualitative information about the seismic activity, an estimation of the depth of the focus
and the focal volume, as well as an opportunity of estimating the tensor of the seismic
moment for a shearing fault.

The static deformations produced by a tensorial point force density f in a homogeneous
isotropic elastic half-space are given by the equation of elastic equilibrium

∆u +
1

1− 2σ
grad divu = −2(1 + σ)

E
f , (12)

where u is the displacement vector (with components ui, i = 1, 2, 3), E is the Young modulus
and σ is the Poisson ratio. The components of the force density are given by

fi = Mij∂jδ(r− r0) , (13)

where r0 is the position of the focus and Mij is the tensor of the seismic moment. It is
convenient to write f = −[2(1 + σ)/E]f and Mij = −[2(1 + σ)/E]Mij (reduced force and
reduced seismic moment). Equation (12) is solved for a half-space z < 0, with free surface
z = 0, the position of the focus being r0 = (0, 0, z0), z0 < 0 (epicentral frame); we use the
radial coordinate ρ = (x2 + y2)1/2 with in-plane coordinates x, y and notations x1 = x,
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x2 = y, x3 = z. The components of the displacement vector of the surface z = 0 are given
by [6]

2π · uα = −Mαβ I(1)β + Mα3 I(0)−

− 1
2 Mβγ∂β∂γ[2σI(3)α − z0 I(2)α ]−

−z0M3β∂β I(1)α + 1
2 M33[2σI(1)α + z0 I(0)α ] ,

(14)

and
2π · u3 = − 1

2 Mαβ∂β[(1− 2σ)I(2)α + z0 I(1)α ]+

+z0M3α I(0)α + 1
2 M33[(1− 2σ)I(0) − z0

∂
∂z0

I(0)] ,
(15)

where
I(0) = − z0

r3 , I(1) = 1
r , I(2)α = − xα

r(r+|z0|) ,

I(3)α = − xα
r+|z0| ,

(16)

I(n)α = ∂α I(n) (n = 0, 1, 2, 3) and r = (ρ2 + z2
0)

1/2; we use α, β, γ = 1, 2. The solution can
be compared with previous results [29], obtained by using particular cases of the Mindlin
solution.

The components uα given by Equation (14) are vanishing for ρ −→ 0 and go like 1/ρ2

for ρ −→ ∞; they have a maximum value for ρ of the order | z0 |. The component u3 goes
like 1/z2

0 for ρ −→ 0 and 1/ρ2 for ρ −→ ∞. It is convenient to give these displacement
components for ρ close to zero, i.e., in the seismogenic zone (close to a presumable epicentre).
We get

uα = 1
16π

[
4(1− 2σ)M33 − (3 + 2σ)M0

] xα
|z0|3 +

+ 1
8π (1− 2σ)

Mαβxβ

|z0|3 + ... ,

u3 = 1
8πz2

0

[
2(3− 2σ)M33 − (1 + 2σ)M0

]
+

+ M3αxα

2π|z0|3 + ... ,

(17)

where M0 = Mii is the trace of the tensor Mij.
A simplified numerical estimation of the unknowns (components of the seismic mo-

ment) can be obtained as follows. We assume M0 = 0 (as for a shearing fault), replace all the
components of the seismic-moment tensor in Equation (17) by a mean value M and average
over the orientation of the vector ρ; we denote the resulting u3 by uv (vertical component)
and introduce uh (horizontal component) by uh =

(
u2

1 + u2
2
)1/2; we get approximately

uh '
(1− 2σ)

∣∣M
∣∣

4π

ρ

| z0 |3
, uv '

(3− 2σ)M
4πz2

0
; (18)

hence, we get immediately the depth of the focus

| z0 |'
1− 2σ

3− 2σ
|uv|/(∂uh/∂ρ) (19)

and the mean value M = 4πz2
0uv/(3− 2σ) of the (reduced) seismic moment. Making use

of Mij = −[2(1 + σ)/E]Mij, we have

Mav ' −
2πE

(1 + σ)(3− 2σ)
z2

0uv (20)
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for the mean value Mav of the seismic moment Mij (Equation (18)). Since the small dis-
placement values uh, uv may be affected by errors, a mean value of the seismic moment
may be viewed as satisfactory. For Mav = 1022 dyn · cm (which would correspond to an
earthquake with magnitude Mw = 4 by the Hanks-Kanamori law lg Mav = 1.5Mw + 16.1),
Young modulus E = 1011 dyn/cm2, σ = 0.25 and depth | z0 |= 100 km we get a vertical
displacement uv ' 1 µm; we can see that the static surface displacement is, indeed, very
small. A reliable determination of such quasi-static diplacemenents may raise difficulties.
The seismicity accounts for a very small fraction of crustal deformation [30].

A rough estimate for the elastic energy stored by the static deformation is given by
E ' 4πz2

0E | uv |' 2(1 + σ)(3− 2σ)|Mav|; it is also given by E ' µV, where µ is the
Lame coefficient and V is the focal volume (µ = E/2(1 + σ); the other Lame coefficient
is λ = Eσ/(1− 2σ)(1 + σ)); making use of the approximations introduced above, we
get V ' 8π(1 + σ)z2

0 | uv |. For | z0 |= 100 km and uv = 1 µm (σ = 0.25) we get a
volume V ' 105π m, i.e., a linear dimension l ' 500 m (noteworthy, a static deformation
may diffuse, such that the corresponding focal volume is larger than the focal volume
of a sudden earthquake discharge). Similarly, from Equation (17) we get an estimate
uij ∼ V/ | z0 |3 for the surface strain; using the numerical data above, it is extremely small,
of the order 10−10.

For more specific information we make use of the general results of static deforma-
tions [6]; the displacement components given by Equation (17) can be written in a general
form (for M0 = 0) as

ui = {[2(3− 2σ)M(n)
4 − (9− 10σ)M(nv)

4 ]ni−

−4M(n)
4 vi + (1− 2σ)Mijvj} 1

8πz2
0

,
(21)

where
n = (xα, z− z0)/ | z0 | , v = (xα, z)/ | z0 | ,

M(n)
4 = Mijninj , M(nv)

4 = Mijnivj ;
(22)

in Equations (21) and (22) we retain only contributions linear in xα and in the limit z→ 0.
Within these restrictions the form given by Equation (21) is unique. In these equations

Mi = Mijvj '
Miαxα

| z0 |
(23)

are the components of a vector and

M(n)
4 ' 2M3 + M33 , M(nv)

4 ' M3 (24)

are scalars. Taking the scalar product nu ' u3 in Equation (21), we get

M(n)
4 =

4πz2
0u3 + 4(1− σ)M3

3− 2σ
; (25)

inserting this M(n)
4 and M(nv)

4 ' M3 in Equation (21) we are led to

uα =
1− 2σ

3− 2σ

xα

| z0 |
u3 +

1− 2σ

8πz2
0

Mα (26)

(and the identity u3 = u3). This equation gives

Mα = 8πz2
0

(
1

1− 2σ
uα −

1
3− 2σ

xα

| z0 |
u3

)
(27)
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(and Mα = −[E/2(1 + σ)]Mα) as functions of the measured quantities uα, u3 and xα; M(nv)
4

and M(n)
4 are given by Equations (24) and (25) as functions of u3 and the parameter M3,

which remains undetermined. This is the maximal information provided by measuring
the static displacement in a seismogenic zone; the parameter z0 can be estimated from
Equation (19).

Further on, we assume that the components Mα of the vector M are determined
from data, according to Equation (27); the component M3 will be determined shortly. The
scalars M(nv)

4 ' M3 and M(n)
4 are given by Equations (24) and (25), respectively; they

depend on the parameter M3. Parameters z0 (focus depth) and the focal volume V remain
undetermined. Order-of-magnitude estimations given above (Equation (19) and below)
may be used to this end.

In order to determine the components of the seismic moment we use the Kostrov
expression derived for a shearing fault [10]; it is given by

Mij = M0(siaj + sjai) , i, j = 1, 2, 3 , (28)

where M0 = 2µV and si, ai are the components of two orthogonal unit vectors s and a: s is
normal to the fault plane and a is directed along the fault displacement (fault sliding). We
can see that Equation (22) implies M0 = Mii = 0. We assume that the measured data of
the static displacement satisfy this condition. In addition, we assume that M0 is a known
parameter.

We introduce the scalar products A = av and B = sv and write

As + Ba = m , Bs + Aa = v (29)

from Equation (28), where m = M/M0; we solve this system of equations for s and a with
the conditions s2 = a2 = 1, sa = 0. We note that Equation (28) is invariant under the
symmetry operations s ←→ a and s, a ←→ −s, −a (and s ←→ −a); consequently, it is
sufficient to retain one solution of the system of Equation (29) (it has multiple solutions), all
the others being given by these symmetry operations. We get

s = A
A2−B2 m− B

A2−B2 v , a = − B
A2−B2 m + A

A2−B2 v (30)

and
A2 + B2 = m2 = v2 , 2AB = v2m4 , (31)

where m4 = mv/v2 = Mijvivj/v2M0. From m2 = v2 we get the component M3, as given by

M2
3 =

(
M0
)2

v2 −M2
α ; (32)

we may take

A = v

√√√√1 +
√

1−m2
4

2
, B = sgn(m4) · v

√√√√1−
√

1−m2
4

2
(33)

as a solution of the system of Equation (31); this solves the problem of determining the seis-
mic moment from the measurements of the surface static displacement. From Equation (28)
the seismic-moment tensor is given by

Mij =
M0

v2(1−m2
4)

[
mivj + mjvi −m4

(
mimj + vivj

)]
; (34)

the vector v is known from Equation (22) (z → 0, v = ρ/ | z0 |) and the vector m is
known from Equations (27) and (32) (with z0 and M0 as known parameters); the scalar m4
is given by m4 = Mαvα/v2M0. The component M3 does not enter the expression of m4; it is
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included in Mij. The quadratic form Mijxixj = const is a hyperbola; its asymptotes indicate
the fault plane (vector s) and the fault slip (vector a).

The isotropic case Mij = −Misδij, where Mis = 2(2µ + λ)V, implies a surface dis-
placement

u =
Mis(1 + σ)

4πz2
0E

[(3− 10σ)n− (3− σ)v] , (35)

the vector M being given by M = −Misv. The energy can be estimated as E = Mis/2 =
4πz2

0E | uv |, which leads to a focal volume V = [4π(1 + σ)(1− 2σ)/(1− σ)]z2
0 | uv |.

5. Concluding Remarks

The solutions of the elastic wave equation and the equation of elastic equilibrium
in a homogeneous and isotropic body are presented, for a tensorial point force acting in
a seismic focus localized both in space and time. The solutions exhibit both the far-field
elastic waves, identified as primary P and S seismic waves, and the static deformations,
discussed herein mainly on Earth’s surface. The mainshock of secondary waves produced
by the primary waves arrived at Earth’s surface is briefly discussed, as well as the procedure
of determining the tensor of the seismic moment and the other earthquake parameters
(like energy, magnitude, fault orientation, fault slip, duration of the seismic activity in
focus and an estimated dimension of the seismic focus). A procedure of extracting such
information from the measurements of the crustal (quasi-) static deformations made on
Earth’s surface is also presented. We may envisage that such a procedure, in spite of its
challenging difficulties, may become applicable.

The seismic waves and the static deformations discussed in this paper are derived
for a homogeneous and isotropic elastic body. While this may be viewed as a reasonable
assumption for a large-scale description, it is a serious limitation for the near-field scale,
where the local inhomogeneities (local site effects) play an important part.
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